|t|
0.508
0.753
0.488
75
6.2 .1.6 Snow redistribution via wind
Met 1 recorded maximum wind speeds of 24.5 m s 1, a mean wind speed of 5.2 m s 1 and a
'
mean wind direction of 247° ( WSW), calculated as per Stull ( 2017 ). Threshold values for dry
_
snow redistribution via wind range from 4 to 11 m s 1 ( Li and Pomeroy, 1997). These are well
within the measurements taken at Met 1. This is also consistent with the variable snow depth
measurements at Met 1. Wind is one of the primary factors affecting snow distribution within
Conrad Basin, as snow distribution patterns are similar year to year ( Figure 6-10).
Figure 6-10: Snow distribution in Conrad Basin for May 2020 (left image ) and May 2021 (right image ). Red
shading indicates snow depth.
The reason this may be important is the relation between potential solar radiation and wind
in Conrad Basin. The predominant wind direction throughout the study period was west
south west. Snow is generally scoured on windward southwestern slopes and deposited on
the leeward northeastern slopes ( Figure 6-10). Snow depths versus aspect ( Figure 6-lla )
shows similar results, calculated from snow depth and aspect rasters, although with a more
76
pronounced west -east trend.
However, there may be sampling bias as northwest to
northeast slopes were not sampled as frequently as other aspects due to constraints in DEM
and ice margin limits on the area of interest. Area surrounding Transects 1, 2, and 3 were
covered from ice margin to DEM limit. The cliff band east of Transect 1 was the easternmost
limit ( Figure 6-12).
Southwestern slopes will, however, receive the most solar radiation. The wind is transporting
snow off the slopes that receive the most solar radiation also making them available for
atmospheric cooling. While no relation necessarily exists within the data, I surmise that
within this basin on a large scale overall, there is an amplification in the relation between
solar radiation and ground temperatures because of the direction of the prevailing wind and
given that the likelihood of wind driven snow redistribution is high. The aspects that receive
the most direct solar radiation are also those that face the windward direction with wind
speeds in the basin more than capable of redistributing snow. This will also lead to greater
cooling driven by colder atmospheric conditions and shallower snowpacks on windward
sides.
Figure 6-11: Polar plots of ( a ) maximum winter snow depth (m ) versus aspect and (b ) median hourly ground
temperature ( °C) over the Winter period versus aspect.
Figure 6-12: Area of interest for snow depth versus aspect raster analysis. Magenta dashed line indicates
boundary. Snow depth map overlaid as red shading.
6.2 .1.7 Lag Analyses
Met 1 had sporadic snow accumulation over the study period. Early snow accumulations
reduced the variability of ground temperature profiles in November ( Figure 6 -13 a and Figure
6-14a ) . Correlation coefficients were calculated between observed temperature gradients
and ( a ) air temperature and ( b ) solar radiation lagged at one- hour intervals (+48 and -48
hours) for each period of interest. The maximum Pearson Correlation Coefficient and
corresponding lag is noted in each plot.
The greatest absolute lag between ground temperature and air temperature or solar
radiation was observed in periods with greater snow depth. Negative lag indicates ground
78
temperature response subsequent to changes in air temperature. Correlation coefficients
between solar radiation and ground temperatures are very low during snow - covered periods
( Figure 6-14b and d). This is likely due to snow cover acting as a barrier and reflector that
prevents solar energy from reaching the ground surface. The relationship between air
temperature and ground temperature during snow covered periods is much stronger ( Figure
6-13 b and d). The lag between air temperature and ground temperature is the shortest in
the July period with a lag of -1 hour. This is also the period with the shortest lag between
solar radiation and ground temperatures where lag is -4 hours.
These results reaffirm the importance that snow plays as an insulator and as a barrier for the
ground thermal regime.
Air temperatures show a stronger relationship with ground
temperature than solar radiation, however, there is still a strong relationship with solar
radiation and ground temperatures in snow free periods.
79
G
20 -
1.0
a ) Nov
b)
0.5
QJ
3
ra
0
0.0
cu
E
^
-0.5
-20 2020 -11-18 2020-11- 24 2020 -11- 30
C
max r = 0.73
-1.0
20 -
-100
1.0
c ) Feb
at Lag = -10
T
i
-50
0
T
50
100
d)
0.5
QJ
a
03
0
0.0
cu
E
-0.5
£ - 20 -
- 1.0
2021-02 -05
U
20 -
2021-02 -11
max r = 0.93
atl ag = -4
T
i
-100
-50
0
50
100
1.0
e ) Apr
0.5
03
3
03
0
0.0 -
E
-0.5
£ -20 -
-1.0
2021- 04-18 2021-04 - 24 2021- 04- 30
maxr = 0.60
-100
atLag = -3
0
- 50
50
100
1.0
u
20 0.5
QJ
a
fO
0
0.0
E
-0.5
£ - 20 - g) July
- 1.0
2021- 07 -18 2021-07 - 24 2021- 07- 30
MetairT( ° C )
Ground T( ° C )
max r = 0.80
at Lag = -1
T
-100
-50
0
50
(
)
Lag hrs
r vs Lag
100
Figure 6-13: Lag analysis between hourly ground and air temperatures at Met 1. Hourly ground and air
temperatures for ( a ) November, (c ) February, (e ) April, (g) July periods of interest. Corresponding lag
analysis with Pearson Correlation Coefficients between ground and air temperatures for ( b ) November, ( d )
February, ( f) April, and ( h ) July at an hourly time scale.
80
u
a
B
rp
20 -
1.0
a ) Nov
r f
Q . -A A
A A A A A A A A A H_A A_A. _ Q
|-20 -
2
50
(
0-
0.0 -
-0.5 -
S?
2020-11-16
20 -
0.5 -
J5
-1 <
CL
u
5
- 1.0
2020-11- 24
r f
AJLLAJLAJ\JL/UUIAAA | .0
I
J5
0
-25
0
25
50
d)
0.0 -
-0.5 -
-l £
2021-02-03
2
3
rp
-50
at Lag = - 28
0.5 -
-1.0
20 -
max r= 0.15
1.0
c ) Feb
|-20 -
u
b)
2021-02 -11
max r= -0.33
-50
-25
\at Lag= -43
0
25
50
1.0
e) Apr
0.5 r fE
0 1
- 0.0 >
Q.
ID
^
o
-0.5 -
- -1 ui
— 20 -
-1.0
2021-04-16
2021-04- 24
max r= |0.72
-50
-25
at Lag= - 4
0
25
50
1.0
u
20 -
1
fE
o
o
S
( accessed May 31, 2020 ).
Bevington, A., 2020, Personal Communication.
Bilish, S. P., H. A. McGowan, and J. N. Callow, 2018, Energy balance and snowmelt drivers of
a marginal subalpine snowpack: Hydrological Processes, v. 32, no. 26, p. 3837-3851,
doi:10.1002/ hyp.13293.
Bosson, J.- B., P. Deline, X. Bodin, P . Schoeneich, L. Baron, M. Gardent, and C. Lambiel, 2015,
The influence of ground ice distribution on geomorphic dynamics since the Little Ice
Age in proglacial areas of two cirque glacier systems: Earth Surface Processes and
Landforms, v. 40, no. 5, p. 666-680, doi:10.1002/ esp.3666.
Brennan, D. T., D. M. Pearson, P. K. Link, and K. R. Chamberlain, 2020, Neoproterozoic
Windermere Supergroup Near Bayhorse, Idaho: Late-Stage Rodinian Rifting Was
Deflected West Around the Belt Basin : Tectonics, v. 39, no. 8,
doi:https:// doi.org/10.1029/ 2020TC006145.
Brown, R . L., and H. D. Gibson, 2006, An argument for channel flow in the southern Canadian
Cordillera and comparison with Himalayan tectonics: Geological Society, London,
Special Publications, v. 268, no. 1, p. 543-559, doi:10.1144/GSL.SP. 2006.268.01.25.
Calonne, N., F. Flin, S. Morin, B. Lesaffre, S. R. du Roscoat, and C. Geindreau, 2011, Numerical
and experimental investigations of the effective thermal conductivity of snow:
Geophysical Research Letters, v. 38, no. 23, doi:10.1029/ 2011GL049234.
Calonne, N., L. Milliancourt, A. Burr, A. Philip, C. L. Martin, F. Flin, and C. Geindreau, 2019,
Thermal Conductivity of Snow, Firn, and Porous Ice From 3- D Image- Based
Computations: Geophysical Research Letters, v. 46, no. 22, p. 13079-13089,
doi:10.1029/ 2019 GL085228.
Clarke, J., and D. McClung, 1999, Full - depth avalanche occurrences caused by snow gliding,
Coquihalla, British Columbia, Canada : Journal of Glaciology, v. 45, no. 151, p. 539-546,
doi:10.3189/ S0022143000001404.
Cline, D. W., 1997, Snow surface energy exchanges and snowmelt at a continental,
midlatitude Alpine site: Water Resources Research, v. 33, no. 4, p. 689-701,
doi:10.1029/97 WR00026.
95
Danby, R. K., and D. S. Hik, 2007, Responses of white spruce ( Picea glauca ) to experimental
warming at a subarctic alpine treeline: Global Change Biology, v. 13, no. 2, p. 437451, doi:10.1111/ j.1365-2486.2006.01302.x.
DeWalle, D. R., and A. Rango, 2008, Principles of Snow Hydrology: Cambridge, Cambridge
University Press, doi:10.1017/ CB09780511535673.
Dingman, S. L., 2002, Physical hydrology: Upper Saddle River, N.J, Prentice Hall.
Ecological
2020,
of
Framework
Canada,
Cordillera
Montane
Ecozone:
( accessed May
30, 2020).
EMUD,
RTK GPS receiver for high
2022, Reach RS
( accessed January 5, 2022).
precision
surveying:
EROS, E. R. 0. and S. ( EROS) C., 2018, USGS EROS Archive - Digital Elevation - Shuttle Radar
Topography Mission ( SRTM ) 1 Arc -Second Global: United States Geologic Survey.
Etzelmuller, B., M. Hoelzle, E. S. Flo Heggem, K. Isaksen, C. Mittaz, D. V. Muhll, R. S. pdegard,
W. Haeberli, and J. L. Sollid, 2001, Mapping and modelling the occurrence and
distribution of mountain permafrost: Norsk Geografisk Tidsskrift - Norwegian Journal
of Geography, v. 55, no. 4, p . 186-194, doi:10.1080/00291950152746513.
Evenchick, C. A., M. E. McMechan, V. J. McNicoll, and S. D. Carr, 2007, A synthesis of the
Jurassic-Cretaceous tectonic evolution of the central and southeastern Canadian
Cordillera : Exploring links across the orogen, in Special Paper 433 : Whence the
Mountains ? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of
Raymond
Geological
Society
A.
117-145,
of
Price:
America, p.
doi:10.1130/ 2007.2433 (06).
Farbrot, H., T. F. Hipp, B. Etzelmuller, K. Isaksen, R. S. 0degard, T. V. Schuler, and 0. Humlum,
2011, Air and Ground Temperature Variations Observed along Elevation and
Continentality Gradients in Southern Norway: Air and Ground Temperatures along
Gradients in Southern Norway: Permafrost and Periglacial Processes, v. 22, no. 4, p.
343-360, doi:10.1002/ppp.733.
Federer, C. A., 1965, Sustained winter streamflow from groundmelt: Research Note NE -41.
Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest
Experiment Station. 1-4, v. 41.
Fitzpatrick, N., V. Radic, and B. Menounos, 2019, A multi-season investigation of glacier
surface roughness lengths through in situ and remote observation: The Cryosphere,
v. 13, no. 3, p. 1051-1071, doi:10.5194/tc-13 -1051-2019.
96
Fitzpatrick, N., V. Radic, and B. Menounos, 2017, Surface Energy Balance Closure and
Turbulent Flux Parameterization on a Mid-Latitude Mountain Glacier, Purcell
in
v.
p.
Earth
Canada :
5,
Mountains,
Frontiers
67,
Science,
doi:10.3389/ feart.2017.00067.
FLNRORD, 2021, BC Water Tool: ( accessed October 14, 2021).
Fuchs, S., and M. Brundl, 2005, Damage Potential and Losses Resulting from Snow Avalanches
in Settlements of the Canton of Grisons, Switzerland: Natural Flazards, v. 34, no. 1, p.
53-69, doi:10.1007 /sll069 -004-0784-y.
Goodrich, L. E ., 1982, The influence of snow cover on the ground thermal regime: Canadian
Geotechnical Journal, v. 19, no. 4, p. 421-432, doi:10.1139 /t82-047.
Map:
of
Interactive
2020,
BC,
Snow
Stations
( accessed May 11, 2020).
Government
Gruber, S., C. R. Burn, S. Harris, S. L. Smith, P. Bonnaventure, L. Arenson, M. Geertsema, and
B. Benkert, 2015, Permafrost in mountainous regions of Canada, in GEO Quebec 2015:
Challenges from North to South: Unpublished, doi:10.13140/ RG.2.1.4091.4405.
Gruber, S., R. Fleiner, E. Guegan, P. Panday, M .-O . Schmid, D. Stumm, P . Wester, Y . Zhang,
and L. Zhao, 2017, Review article: Inferring permafrost and permafrost thaw in the
mountains of the Hindu Kush Himalaya region: The Cryosphere, v. 11, no. 1, p. 81-99,
doi:10.5194/tc-ll-81-2017.
Hasler, A., and M. Geertsema, 2013, Provisional permafrost map of British Columbia:
Government of British Columbia .
Hasler, A., S. Gruber, and W. Haeberli, 2011, Temperature variability and offset in steep alpine
rock and ice faces: The Cryosphere, v. 5, no. 4, p. 977-988, doi:10.5194/tc -5-9772011.
Hock, R., 2005, Glacier melt: a review of processes and their modelling: Progress in Physical
Geography: Earth and Environment, v. 29, no. 3, p. 362-391,
doi:10.1191/0309133305 pp453 ra.
Hoelzle, M ., 1996, Mapping and modelling of mountain permafrost distribution in the Alps:
Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, v. 50, no. 1, p. 11-15,
doi:10.1080/00291959608552347.
Hoy, T., B. N. Church, A. Legun, K. Glover, G. Gibson, B. Grant, J. O. Wheeler, K. P. E. Dunne, J.
Cunningham, and P. J. Desjardins, 1994, Bedrock Geology - Data Catalogue:
( accessed May 31,
2020 ) .
97
Jiskoot, H., and M. S. Mueller, 2012, Glacier fragmentation effects on surface energy balance
and runoff : field measurements and distributed modelling: Hydrological Processes, v.
26, no. 12, p. 1861-1875, doi:10.1002/hyp.9288.
Jones, H. G., 1999, The ecology of snow-covered systems: a brief overview of nutrient cycling
and life in the cold: Hydrological Processes, v. 13, p. 13.
Keller, F., and H. Gubler, 1993, Interaction between snow cover and high mountain
permafrost at Murtel/Corvatsch, Swiss Alps, in Proceedings of the 6th International
Conference on Permafrost, Beijing: South China University of Technology Press, p.
332-337.
Lafaysse, M., B. Hingray, P. Etchevers, E. Martin, and C. Obled, 2011, Influence of spatial
discretization, underground water storage and glacier melt on a physically-based
hydrological model of the Upper Durance River basin: Journal of Hydrology, v. 403,
no. 1-2, p. 116-129, doi:10.1016/ j.jhydrol.2011.03.046.
Lapo, K . E., L. M. Hinkelman, M. S. Raleigh, and J. D. Lundquist, 2015, Impact of errors in the
downwelling irradiances on simulations of snow water equivalent, snow surface
temperature, and the snow energy balance: Water Resources Research, v. 51, no. 3,
p. 1649-1670, doi:10.1002/ 2014WR016259.
Li, L., and J. W. Pomeroy, 1997, Estimates of Threshold Wind Speeds for Snow Transport Using
Meteorological Data : Journal of Applied Meteorology and Climatology, v. 36, no. 3, p.
205-213, doi:10.1175/1520-0450(1997) 036<0205 :EOTWSF>2.0.CO;2.
Li, X., X. Zheng, L. Wu, K. Zhao, T. Jiang, and L. Gu, 2016, Effects of snow cover on ground
thermal regime: A case study in Heilongjiang Province of China : Chinese Geographical
Science, v. 26, no. 4, p. 527-538, doi:10.1007/sll769 -016-0825 -y.
Lopez-Moreno, J. I., S. R. Fassnacht, J. T. Heath, K. N. Musselman, J. Revuelto, J. Latron, E.
Moran-Tejeda, and T. Jonas, 2013, Small scale spatial variability of snow density and
depth over complex alpine terrain: Implications for estimating snow water equivalent:
Advances in Water Resources, v. 55, p. 40-52, doi:10.1016/ j.advwatres.2012.08.010.
Luetschg, M., M. Lehning, and W. Haeberli, 2008, A sensitivity study of factors influencing
warm/thin permafrost in the Swiss Alps: Journal of Glaciology, v. 54, no. 187, p. 696704, doi:10.3189 /002214308786570881.
Lundquist, J. D., and F. Lott, 2008, Using inexpensive temperature sensors to monitor the
duration and heterogeneity of snow-covered areas: Water Resources Research, v. 44,
no. 4, doi:10.1029/ 2008WR 007035.
Marks, D., and J. Dozier, 1992, Climate and energy exchange at the snow surface in the Alpine
Region of the Sierra Nevada: 2. Snow cover energy balance: Water Resources
Research, v. 28, no. 11, p. 3043-3054, doi:10.1029/92WR 01483.
98
Menounos, B., 2021, Continuing works at Conrad. Personal communication.
Menounos, B., and B. M. Pelto, 2021, Conrad Glacier LiDAR data.
Menounos, B., B. M. Pelto, S. W. Fleming, D. Moore, F. Weber, D. Hutchinson, and J. Brahney,
2020, Glaciers in the Canadian Columbia Basin Technical Report : Canadian Columbia
Basin Glacier and Snow Research Network.
Mickschl, C., 2016, Effects of the ground heat flux on snowpack ablation in a semi-arid
mountain climate: Albuquerque, New Mexico, The University of New Mexico, 78 p .
Midttdmme, K., and E. Roaldset, 1999, Thermal conductivity of sedimentary rocks:
uncertainties in measurement and modelling: Geological Society, London, Special
Publications, v. 158, no. 1, p. 45-60, doi:10.1144/GSL.SP.1999.158.01.04.
Miller, F. K., E. H. McKee, and R. G. Yates, 1973, Age and Correlation of the Windermere Group
in Northeastern Washington: Geological Society of America Bulletin, v. 84, no. 11, p.
3723, doi:10.1130/0016-7606(1973 ) 84<3723 :aacotw>2.0.co;2.
Morin, S., F. Domine, L. Arnaud, and G. Picard, 2010, In -situ monitoring of the time evolution
of the effective thermal conductivity of snow: Cold Regions Science and Technology,
v. 64, no. 2, p. 73-80, doi:10.1016/ j.coldregions. 2010.02.008.
Morse, P. D., C. R. Burn, and S. V. Kokelj, 2012, Influence of snow on near-surface ground
temperatures in upland and alluvial environments of the outer Mackenzie Delta,
Northwest TerritorieslThis article is one of a series of papers published in this CJES
Special Issue on the theme of Fundamental and applied research on permafrost in
Canada .: Canadian Journal of Earth Sciences, v. 49, no. 8, p. 895-913,
doi:10.1139/ e 2012-012.
Mukul, Manas, V. Srivastava, S. Jade, and Malay Mukul, 2017, Uncertainties in the Shuttle
Radar Topography Mission ( SRTM ) Heights: Insights from the Indian Himalaya and
Peninsula : Scientific Reports, v. 7, p. 41672, doi:10.1038/srep 41672.
Oke, T. R., 1987, Boundary layer climates: Routledge, 460 p.
Payne, J. T., A. W. Wood, A. F. Hamlet, R. N. Palmer, and D. P. Lettenmaier, 2004, Mitigating
the effects of climate change on the water resources of the Columbia River basin :
Change,
no .
62,
v.
1-3,
233-256,
Climatic
Pdoi:10.1023 / B:CLIM.0000013694.18154.d 6.
Pelto, B. M., B. Menounos, and S. J. Marshall, 2019, Multi-year evaluation of airborne
geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains,
Canada : The Cryosphere, v. 13, no. 6, p. 1709-1727, doi:10.5194/tc -13 -1709- 2019.
Pomeroy, J . W., and E . Brun, 2001, Physical properties of snow.
99
Poulton, T. P., and P. S. Simony, 1980, Stratigraphy, sedimentology, and regional correlation
of the Horsethief Creek Group ( Hadrynian, Late Precambrian ) in the northern Purcell
and Selkirk Mountains, British Columbia: Canadian Journal of Earth Sciences, v. 17, no .
12, p. 1708-1724, doi:10.1139/ e80-179.
Price, R. A., 2000, The Southern Canadian Rockies: Evolution of a Foreland Thrust and Fold
Belt: Geological Association of Canada-Mineralogical Association of Canada, v. Joint
Annual Meeting (GeoCanada 2000 ), p. 252.
Raleigh, M. S., K. Rittger, C. E. Moore, B. Henn, J. A. Lutz, and J. D. Lundquist, 2013, Groundbased testing of MODIS fractional snow cover in subalpine meadows and forests of
the Sierra Nevada : Remote Sensing of Environment, v. 128, p. 44-57,
doi:10.1016/ j.rse.2012.09.016.
Rasouli, K., J. W. Pomeroy, J. R. Janowicz, S. K. Carey, and T. J. Williams, 2014, Hydrological
sensitivity of a northern mountain basin to climate change: Hydrological Processes, v.
28, no. 14, p. 4191-4208, doi:10.1002/hyp.10244.
Riley, S. J., S. D. DeGloria, and R. Elliot, 1999, A terrain ruggedness index that quantifies
topographic heterogeneity: Intermountain Journal of Sciences, v. 5, no. 1-4, p. 23-27.
Robertson, E., 1988, Thermal Properties of Rocks, Open-File Report: United States
Department of the Interior Geological Survey, Open -File Report.
Rodder, T., and C. Kneisel, 2012, Influence of snow cover and grain size on the ground thermal
regime in the discontinuous permafrost zone, Swiss Alps: Geomorphology, v. 175176, p. 176-189, doi:10.1016/j.geomorph.2012.07.008.
Sattler, K., B. Anderson, A. Mackintosh, K. Norton, and M. de Roiste, 2016, Estimating
Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on
Climatic Conditions at Rock Glacier Sites: Frontiers in Earth Science, v. 4, p. 4,
doi:10.3389/ feart.2016.00004.
Schon, J., 2015, Physical properties of rocks: fundamentals and principles of petrophysics:
Amsterdam, Netherlands, Elsevier .
Shur, Y. L., and M. T. Jorgenson, 2007, Patterns of permafrost formation and degradation in
relation to climate and ecosystems: Permafrost and Periglacial Processes, v. 18, no. 1,
p. 7-19, doi:10.1002/ppp.582.
Simony, P. S., and S. D. Carr, 2011, Cretaceous to Eocene evolution of the southeastern
Canadian Cordillera: Continuity of Rocky Mountain thrust systems with zones of "insequence" mid-crustal flow : Journal of Structural Geology, v. 33, no. 9, p. 1417-1434,
doi:10.1016/j.jsg.2011.06.001.
100
Sjoberg, Y., A. Jan, S. L. Painter, E. T. Coon, M. P. Carey, J. A. O'Donnell, and J. C. Koch, 2021,
Permafrost Promotes Shallow Groundwater Flow and Warmer Headwater Streams:
Water Resources Research, v. 57, no. 2, doi:10.1029/ 2020WR027463.
Smith, R., 2011, Space-time dynamics of runoff generation in a snowmelt- dominated
montane catchment: University of British Columbia .
Stamen Design, 2022, Stamen Terrain, Terrain: worldwide, OpenStreetMap.
Staub, B., and R. Delaloye, 2017, Using Near -Surface Ground Temperature Data to Derive
Snow Insulation and Melt Indices for Mountain Permafrost Applications: Permafrost
and Periglacial Processes, v. 28, no. 1, p. 237-248, doi:10.1002 /ppp.l890.
Staub, B., A. Hasler, J. Noetzli, and R. Delaloye, 2017, Gap-Filling Algorithm for Ground Surface
Temperature Data Measured in Permafrost and Periglacial Environments: Permafrost
and Periglacial Processes, v. 28, no. 1, p. 275-285, doi:10.1002 /ppp.l913.
Stocker -Mittaz, C., M. Hoelzle, and W. Haeberli, 2002, Modelling alpine permafrost
distribution based on energy-balance data : a first step : Permafrost and Periglacial
Processes, v. 13, no. 4, p. 271-282, doi:10.1002/ppp.426.
Stull, R., 2017, Practical Meteorology: An Algebra -based Survey of Atmospheric Science:
Vancouver, B . C., University of British Columbia, 940 p.
Sturm, M., M. A. Goldstein, and C. Parr, 2017, Water and life from snow: A trillion dollar
science question: Water Resources Research, v. 53, no. 5, p. 3534-3544,
doi:10.1002/ 2017 WR020840.
Sturm, M., J. Holmgren, M. Konig, and K. Morris, 1997, The thermal conductivity of seasonal
v.
Glaciology,
43,
of
no.
26-41,
p.
143,
snow:
Journal
doi:10.3189/ S0022143000002781.
Tombe, S., 2021, Pers Comm: Rock Sample Identification.
Wang, T., A. Hamann, D. Spittlehouse, and C. Carroll, 2016, Locally Downscaled and Spatially
Customizable Climate Data for Historical and Future Periods for North America : Public
Library of Science ( PLoS), e0156720 p., doi:10.1371/journal.pone.0156720.
Zhang, T., 2005, Influence of the seasonal snow cover on the ground thermal regime: An
Geophysics,
43,
of
no.
Reviews
RG 4002,
overview :
p.
v.
4,
doi:10.1029/ 2004RG000157.
101
APPENDICES
Appendix A - Thermal Analysis Labs
Thermal Conductivity
Evaluation Report MTPS
TAL
THERMAL ANALYSIS LABS
*
494 Queen Street
Fredericton, N.B., E3B 1B6
Tel: (506 ) 457-1515
Fax: (506 ) 454-7201
www.ThemialAnalysisLabs.com
Contact Information
Company
Address
Contact
University of Northern BC
Meaghan Fielding, BSc
Sarah Ackermann, MSc
September 3 , 2021
Final
1.0
Prepared by
Reviewed by
Date
Report Type
Rev.
3333 University Way
Prince George, BC
V2N 4Z9, Canada
Kevin Ostapowich
Test Details and Example Setup
Sample(s) Submitted: 4
Sample(s) Tested: 4
Test Method( s): MTPS
Accessory(s): N/A
Calibration(s): Ceramics
Temperature Condition(s): -20°C, 0°C, 20°C
Atmospheric Condition(s): Ambient
Contact Agent(s): Wakefield Thermal Grease
.
Figure 1 Example Test Setup
Result Highlights
6
5
2
4
I
>
1 3
I,
II
I
1
0
Conrad General
200811-100
200810-102
200813-105
-20"C iO'C i20“C
.
'
Figure 2 Thermal Conductivity Results
I Error bars represent 2x standard deviation.
1
102
TAL
THERMAL ANALYSIS UBS
494 Queen Street
Fredericton , N.B. , E36 1B6
Tel: (506 ) 457-1515
Fax: (506 ) 454-7201
www.ThermalAnalysisLabs.com
*
Detailed Results
Table 1. Thermal Conductivity Results 2
Sample ID and
Reference Name
Conrad General
(CG)
200811-100
( 100 )
200810-102
( 102 )
200813-105
( 105)
Sensor
Temperature
(°C )5
Thermal
Conductivity k
(W /mK )
-20
-18.5
0
20
-20
0
20
0.7
19.8
-18.5
0.5
19.6
0
0
Set
Temperature
RSD
Thermal
Effusivity e
RSD
(%)
( Ws VK )
(% )
5.076
5.132
4.993
4 658
4.540
4282
1.0
16
21
1.1
2.6
1.0
3408
3433
3371
3219
3165
3047
0.7
1.1
1.4
0.1
2.856
2.0
2358
1.2
-0.2
2.297
3.5
2072
2.0
'
-1
0.7
1.7
0.7
Procedure
Details on the operation of the Trident, the test method, and the analysis of results
are provided in Appendix 1. All samples were tested using the Ceramics calibration, and
Wakefield 120 thermal grease was used as a contact agent.
Samples CG and 100 had multiple useable pieces, and thus samples were
interchanged to test for uniformity. No significant difference in thermal conductivity was
observed between pieces of sample. Samples 102 and 105 had only 1 useable piece
each (due to thickness/flatness requirements), and thus all measurements were taken on
the same piece of sample.
Sample was placed on sensor and a 500g weight was placed on top of the sample
to aid in reducing contact resistance. All testing was performed in a Tenney Thermal
Chamber to enable temperature control.
: Reported thermal conductivity (k) and associated relative standard deviation (RSD) are the average of 15
measurements taken over 3 test sets, with the exception of -20*C, for which the 15 measurements were taken
consecutively
3 Temperature was determined as the average MTPS sensor temperature recorded during each test set.
2
103
494 Queen Street
Fredericton , N B , E36 1B6
Tel: ( 506 ) 457-1515
Fax: (506 ) 454-7201
www.ThermalAnalysisLabs.com
TAL
THERMAL ANALYSIS LABS
Discussion
4 samples provided by UNBC were tested using the MTPS (Modified Transient
Plane Source ) method. All samples were tested at 0°C, and samples CG and 100 were
additionally tested at -20°C and 20°C. At 0°C, sample 105 had the lowest thermal
conductivity (2.297 W /mK) and sample CG had the highest thermal conductivity (5.132
W/mK ). For sample 100, thermal conductivity decreased slightly with increasing
temperature. For sample CG, thermal conductivity stayed relatively constant with
increasing temperature.
Thermal effusivity is also reported. Thermal effusivity represents the touch
perception' of the sample. Samples with high thermal effusivity values feel cool to the
touch (metal), and samples with low thermal effusivity values feel warm to the touch
(blanket). Figure A 7 shows the typical thermal effusivity range for textiles, as this is the
field that most commonly tests for this property.
3
104
494 Queen Street
Fredericton , N.B. , E36 1B6
Tel: (506 ) 457-1515
Fax: (506 ) 454-7201
www.ThermalAnalysisLabs.com
TAL
THERMAL ANALYSIS UBS
*
Appendix 1: C -Therm Trident Thermal Conductivity Analyzer
Figure A1. C-Therm’s Trident Controller & MTPS Sensor
The C-Therm Trident is a modular system that uses different sensor configurations
to accommodate a wide range of sample types. When operated with a Modified Transient
Plane Source (MTPS) sensor, it is an integrated solution for thermal conductivity and
thermal effusivity measurement and operates in compliance with ASTM Standard D798416.
The MTPS sensor is a one-sided, interfacial heat reflectance device that applies a
constant current heat source to the sample. The interfacial sensor heats the sample by
approximately 1-3°C during the testing The sample's thermal properties define the
dissipation of the heat, and causes a distinct temperature rise at the sensor interface. The
rate of the increase in temperature at the sensor surface is inversely proportional to the
ability of the sample to transfer heat. Thermal conductivity and effusivity are measured
directly, providing a detailed overview of the thermal nature of the sample material.
For solid samples: The sample is simply placed onto the sensor with a 500g weight
applied on top of the sample to ensure sufficient contact. For samples weighing more
than 150g the weight is not used, unless otherwise specified.
i
105
Appendix B - Site information table
HOBOjend
Chjjigt
HOBO dual
20Rug mean
20Rug medi
20Asp mean
20Asp medi
20Slp mean
Chl depth
20862559
10
147
20880638
1.00
148
14
21
1.10
2008 K>103
200810104
200810105
Geology
UTM X
UTM Y
504017 5631233 metapelite/ quartzite
503892 5631353 metapelite
1
503603 5631789 metapelite w/quartz vein
1
503589 5631807 metapelite
1
503670 5631755 metapelite
1
503726 5631626 metapelite
1
200811100
1
503769
200811101
200811102
200811103
1
1
4
504058
504014
503701
200811104
4
503908
200811105
4
200811106
4
504477
504393
200813100
2
2
503562
5630980 metapelite
5630497 glacier
5630342 glacier
5630155 metapelite
5630357 metapelite w/ minor quartzite
5630942 metapelite
20880637
20862553
14.5
14
14.5
503257
5630836 metapelite
20880612
20862576
14
200813102
200813103
200813104
2
2
503053
502599
2
502238
5630661 metapelite
5630609 metapelite
5630588 metapelite w / minor quartzite
20863987
20880635
20880639
20862579
20862568
20862560
14.5
14
15
200813105
2
502151
5630562 metapelite
20880632
20862567
200813106
2
501955
20880634
20862571
200813107
200813108
200814100
200814101
200814102
200814103
2
2
3
3
3
3
501815
501671
20781200
20880627
20863988
20863990
20880607
20862529
20862570
20862527
20862566
20862564
20862530
15.5
9
14.5
15
13
15
200814104
3
503628
20880610
20862558
200814105
200814106
Met
Metl
3
3
503581
503519
5630395 metapelite w / minor quartzite
5629809 metapelite
5629564 quartzite
5630738 metapelite w / minor quartzite
5630746 metapelite w / minor quartzite
5630742 metapelite w/ minor quartzite
5630766 quartzite w/ minor pelite
5630789 metapelite w/ minor quartzite
5630788 metapelite w/ minor quartzite
5630787 metapelite w / minor quartzite
5631009 metapelite
20880614
20880611
20880640
20862569
20862557
20862555
Site
Transect
200810100
200810101
200810102
200813101
1
503685
503681
503684
503674
503877
5631469 quartzite
5631105 metapelite
20880630
20862577
20880605
20862575
10
20862552
20862572
20862551
14.5
14.5
14.5
14
14.5
20880628
20863992
20880602
20880606
20862554
14.5
10
0.81
20880609
20880603
20880604
20862556
20862565
20862578
13
13.5
10
10
50
0.98
0.85
0.53
0.86
20781197
20862573
100
20863991
20862528
20880615
20862531
20880608
100
1.02
10
140
221
311
121
116
118
21
0.77
146
147
17
0.97
144
144
89
143
142
90
20
16
11
8
I
10
10
10
-50
0.98
0.53
140
221
311
121
21
9
32
28
0.44
0.43
66
46
10
1.84
1.81
264
266
33
10
0.71
0.70
263
257
13
10
0.68
0.49
0.63
128
123
13
10
0.48
102
105
10
10
10
10
0.79
0.25
1.26
0.68
0.22
1.24
105
202
152
112
219
152
15
5
25
14
10
0.48
0.46
130
125
9
14.5
M
10
0.43
1.15
1.57
M
62
92
9
10
10
10
0.44
1.07
1.74
1.55
1.51
1.91
2.07
1.21
1.79
0.82
86
132
119
133
150
60
87
127
118
130
161
14.5
10
0.56
0.51
148
154
21
32
23
27
30
25
12
14.5
14.5
10
10
0.62
0.58
139
128
113
139
11
11
15.8
10
0.51
0.52
0.57
0.49
152
152
9
10
10
1.24
106
200810105
Tot pot sol Conductiv Removed.
20Sno mean
20Sno medi 21Sno niean 21Sno medi 21Sno min
21Sno max
21Sno rang
0.17
0.19
0.14
0.10
0.82
0.22
1.04
1534949
4.5 yes
2.17
2.09
2.69
2.61
1.91
3.51
1.60
689050
2.3 yes
9
2.856 no
1822584
1840498
2.9 yes
32
1307836
2.3 yes
28
1256858
21
2.3 yes
200811100
17
0.51
0.48
1.44
1.45
0.87
2.15
1.28
783794
4.49 yes
200811101
200811102
200811103
1.49
0.12
4.22
1.47
0.09
4.20
2.36
0.76
3.31
2.35
0.73
3.30
1.83
0.42
2.95
-
2.76
1.80
3.72
0.93
2.22
0.77
679358
780678
612629
2.9 no
2.3 yes
yes
200811105
20
18
11
8
34
200811106
12
200813100
12
Site
200810100
200810101
200810102
200810103
200810104
200811104
20Slp medi
20
20
-
-
-
-
-
4.06
4.06
3.58
3.59
3.18
3.96
0.78
732215
yes
0.55
-0.10
0.18
0.52
1.54
0.07
0.05
1.60
-0.07
3.44
938230
0.05
-0.34
0.42
0.00
-0.35
0.68
3.51
0.76
1.03
2.9 no
5.1 no
5.1 yes
2.9 yes
5.1 yes
2.9 no
2.3 yes
2.297 yes
5.1 yes
2.9 yes
4.5 no
5.1 yes
5.1 yes
5.1 yes
4.5 yes
5 1 yes
5.1 yes
5.1 yes
2.9 yes
-
-0.11
-0.17
1549559
1025901
200813101
9
2.26
2.30
2.77
2.81
2.09
3.38
1.29
680634
200813102
14
4
-0.06
-0.07
-0.07
0.27
0.30
-0.46
1.44
1531799
0.16
0.17
-0.16
0.98
0.44
0.60
1171457
25
1.48
2.47
2.55
1.67
3.53
1.86
200813105
9
-0.12
1.46
0.14
-
0.17
0.11
-0.28
0.77
200813106
200813107
200813108
9
1.77
-
-0.06
0.54
1.71
-0.05
0.16
1.74
-0.06
0.02
1.19
0.51
0.72
2.05
0.55
1.44
1.05
0.86
22
31
1.75
0.05
0.69
1.06
2.16
717864
1555384
827570
200814100
20
4.43
5.04
3.89
4.05
2.04
5.59
3.55
622090
200814101
200814102
200814103
24
28
14
11
9
1.38
3.03
0.08
1.23
1.76
0.75
3.20
2.86
0.20
4 72
2.45
4.44
6.24
2 10
989883
709577
3 00
11
1.19
1.65
1.08
1.62
1.71
2.32
1.60
2.26
0.77
-4.55
2 62
0.64
5.21
1.69
3 05
1.83
3.01
0.03
3 57
1.87
3.01
2.95
2.37
1.08
849741
714460
9
-0.16
-0.15
0.00
-0.02
-0.31
0.31
0.62
1539852
200813103
200813104
200814104
200814105
200814106
Metl
-0.09
2.70
0.12
-
3 52
-
1118918
1484717
687335
107
Site
Dowel
200810100 good
200810101 cracked but still standing at angle
200810102 good
200810103 good
200810104 good
200810105 good
Annual T Mean G
Annual T Med G
Annual T Med l
10.1
2.7
-1.2
3.6
0.3
-1.2
-3.2
6.1
0.2
-4.0
-3.3
-4.8
1.3
-1.8
200811100 good
2.7
200811101 good
200811102 completely broken
200811103 na
4.1
1.9
0.4
0.7
200811105 good
200811106 good
200813100 good
200813101 good
200813102 good
200813103 good
200813104 completely broken - HOBO Dual failed
Annual T Mean l
-0.5
-0.1
-1.0
-0.4
200811104 na
Annual T SD G
1.4
2.1
0.5
-0.7
-0.2
2.9
0.9
3.4
8.3
4.3
-1.1
-0.4
-1.6
7.9
1.7
6.7
3.3
7.0
8.6
4.2
1.8
9.2
8.8
-0.9
-1.5
-0.1
6.9
3.5
-0.8
9.3
0.4
2.3
0.4
4.0
0.4
Annual T SDJ
13.7
9.2
9.5
12.0
8.7
Winter T Mean G
3.5
-
0.3
-3.8
-6.6
-2.4
-3.9
-1.2
-2.0
-0.8
12.3
0.0
8.8
0.3
-1.1
-0.7
-1.0
-0.2
10.4
-3.3
-1.5
-1.6
-1.2
-4.0
-1.8
-0.1
-4.4
-2.8
-1.5
4.3
4.1
9.4
10.8
11.1
-0.1
9.0
3.7
3.5
0.1
6.8
3.8
0.0
8.9
1.3
1.8
-1.5
-0.4
10.5
8.3
1.4
2.0
3.9
-1.8
-1.8
12.4
11.0
0.2
8.2
200813105 good
1.9
-0.7
1.9
-2.0
200813106 good
200813107 good
200813108 good
200814100 completely broken (thermistor almost pulled from hole)
200814101 good
200814102 good
200814103 completely broken
200814104 cracked but standing on angle
200814105 completely broken
200814106 completely broken
good
Metl
3.2
0.1
1.3
2.1
0.1
2.0
-2.7
9.3
6.2
10.3
7.8
3.6
0.2
4.0
-
0.1
2.5
6.9
-
11.7
8.5
11.6
9.0
-3.2
-0.1
-5.5
0.0
5.2
1.8
0.1
5.0
3.6
0.0
7.1
3.6
0.1
8.6
5.9
9.1
-0.4
-0.6
-0.4
-3.9
-
3.1
0.0
7.1
1.9
3.2
2.2
-1.5
11.5
2.8
0.0
1.1
-0.9
3.2
2.5
0.2
5.2
-1.3
8.9
7.3
3.8
-0.6
9.8
1.8
3.7
1.6
-0.2
-0.1
9.3
-5.7
0.1
6.8
0.5
-1.5
9.8
-1.3
12.3
-2.8
-0.3
-3.7
-0.2
8.6
108
Site
Winter T Med G
Winter T SD G
Winter T Mean l
Winter T Med l
Winter T SD l
November T Mean November T Med G November T SD G November T Mean. November T Med l
5.7
5.0
6.5
3.2
10.0
6.7
7.1
1.7
7.2
7.3
200810100
-
-
-
0.2
6.3
6.1
5.1
0.2
-6.1
7.7
5.5
-6.1
0.1
3.7
8.0
4.8
8.4
-5.3
1.6
0.2
1.3
0.0
0.0
3.3
-3 7
-1.4
-1.7
-1.6
-1.9
-1.3
-4.6
-1.7
-0.2
-4.4
-1.6
-6.0
-3.2
200810101
200810102
200810103
200810104
200810105
0.2
5.4
7.6
3.8
-5.2
0.2
5.2
5.5
4.7
4.3
200811100
1.4
0.8
200811101
0.3
200811102
-3.5
-
-3.7
-3.8
200811105
200811106
200813100
-1.8
-2.0
-1.5
-5.2
-3.1
200813101
-0.1
200813102
-5.6
0.9
1.0
0.9
6.5
3.9
0.2
6.2
200813103
-4.1
3.9
200813105
4.8
5.3
3.5
200813106
0.4
6.8
4.3
-0.2
-5.6
-9.0
-7.3
200813108
-0.1
-6.9
-6.7
-9.0
200814100
-0.6
0.4
-0.4
200814101
-0.7
2.0
200814103
200814104
200814105
200814106
200811103
200811104
200814102
Metl
0.4
-6.6
8.1
5.7
1.0
1.0
1.0
0.4
0.2
0.4
0.4
0.1
4.4
-4.2
-0.8
-1.5
-1.3
-5.3
-1.6
-4.3
1.0
0.9
1.0
1.0
8.4
5.2
0.2
8.3
-
-5.5
-0.8
-1.5
-1.2
-5.5
-1.8
0.0
0.0
-7.1
0.0
1.1
1.4
1.4
0.9
0.1
0.0
0.3
1.1
0.5
0.1
1.4
0.2
-8.6
8.4
7.5
6.8
-
0.2
-9.3
-
-8.7
-8.2
-7.1
1.5
0.0
-1.3
-5.2
-0.7
-1.4
-1.6
-6.7
-1.9
-0.1
-7.5
-6.4
0.1
-5.2
-0.7
-1.5
-1.5
-6.9
-2.0
-0.1
6.2
-4.4
0.1
7.5
0.4
6.4
6.6
1.2
7.6
7.9
0.2
0.2
0.0
0.1
-8.2
-7.6
-8.4
-7.9
1.5
3.8
-0.5
0.4
-0.4
-0.2
0.4
-0.7
0.5
-1.3
-0.6
-6.5
-
1.8
0.1
0.1
0.1
0.2
1.4
0.1
-1.5
-0.5
-6.8
0.1
7.6
0.1
-1.8
-0.6
-6.2
1.0
-4.6
-0.2
3.1
0.5
5.7
-0.8
-0.3
-3.6
0.1
-8.6
8.7
-0.4
2.2
-0.6
6.5
0.0
-2.4
-0.3
-5.0
2.5
0.3
6.1
-3.1
-0.4
-3.9
-2.5
-0.4
-5.7
3.2
0.6
8.7
-6.2
-0.4
-5.8
-6.3
-0.3
-6.0
1.3
0.2
1.2
-7.1
-0.5
-7.1
-7.1
-0.3
-7.3
-3.2
0.2
-0.2
-6.1
-4.9
-
0.4
6.4
7.8
5.4
-7.3
-4.5
200813104
200813107
-0.2
-
0.1
5.5
0.2
-
-5.1
8.4
0.9
0.2
1.2
0.2
-
-7.7
-6.6
0.2
-9.0
-9.0
-0.2
0.1
109
Site
November T SD l
April T Med G
February T Mean G February T Med G February T SD G
February T Mean l February T Med l February T SD l
April T Mean G
12.4
11.4
4.3
14.1
12.7
6.1
2.5
-
-
-
-
200810100
2.3
200810101
0.0
0.2
0.2
0.0
0.1
0.1
0.0
200810102
2.7
-11.0
-10.8
-15.0
-4.7
-8.8
2.9
-6.1
-6.4
200810103
2.0
200810104
2.7
200810105
1.7
200811100
0.7
200811101
200811102
200811103
0.2
1.6
0.0
200811104
0.0
200811105
200811106
0.5
2.0
200813100
0.6
200813101
0.1
200813102
2.0
200813103
200813104
1.9
200813105
2.4
200813106
-15.4
-4.8
-9.1
-1.9
5.3
0.3
2.3
-16.8
-5.1
-11.1
-1.8
0.1
-2.0
0.3
0.3
0.0
-7.8
-2.1
-2.3
-1.9
-7.1
-2.2
-2.3
-1.9
0.0
3.0
0.1
-9.4
-2.1
-2.2
-2.0
0.1
0.1
5.1
-13.5
-13.1
-4.7
-0.3
11.9
-4.6
-0.3
0.3
3.7
0.1
0.1
1.0
0.8
0.1
-16.1
-5.0
-10.9
-1.9
6.7
-2.6
-2.5
0.4
3.4
1.5
0.2
0.0
2.1
1.5
2.7
-0.4
-0.2
-0.1
-0.1
1.4
0.0
9.1
2.1
0.0
0.1
0.2
0.9
2.4
-
0.2
0.5
2.4
-
0.0
0.9
0.0
0.1
-2.6
-2.6
0.0
0.2
8.3
-0.6
-0.5
-0.8
-0.2
0.6
-0.5
0.3
3.0
-0.8
-0.5
-2.3
-2.0
0.2
4.2
-16.7
-15.9
-4.6
-0.4
0.3
0.0
-4.7
-0.4
-11.4
3.8
-14.0
5.9
-6.1
-5.2
1.4
-7.4
-13.9
-6.6
0.1
2.4
2.2
-7.9
-0.5
-7.0
-0.5
-15.2
-9.3
-
April T SD G
0.9
0.0
1.4
0.4
-0.2
-0.1
0.4
0.9
0.0
2.6
0.1
0.1
2.2
0.0
-9.4
-0.6
-8.8
-0.5
3.4
0.9
0.1
2.6
0.1
-0.5
-0.5
0.0
-16.2
-10.7
-0.7
-13.6
-9.0
-0.7
7.5
1.0
0.3
3.2
3.8
0.1
0.7
12.4
0.1
0.8
11.8
-
0.0
0.1
4.6
-2.6
-0.7
-0.1
-0.7
-2.7
-0.7
-0.1
-0.7
0.5
0.0
2.3
1.3
200814100
0.4
-0.8
-15.1
-8.0
-0.8
200814101
200814102
200814103
1.3
0.2
1.9
0.1
0.8
11.8
0.1
0.8
10.7
0.1
5.4
2.4
0.0
0.0
0.0
4.0
0.3
1.7
0.1
0.2
0.1
1.6
200814104
0.1
0.1
0.1
0.0
0.1
0.1
0.0
0.1
0.1
0.0
200814105
200814106
2.1
-2.7
-0.4
-2.6
-0.4
0.2
-2.7
-0.5
0.2
0.0
-2.8
-0.5
0.1
-0.8
-0.2
-0.8
-0.2
-12.3
4.4
-14.3
-12.1
7.4
1.1
0.1
200813107
200813108
Metl
0.3
2.1
-
-
-11.9
-
-
-
-
-
0.0
0.4
0.1
2.8
110
Site
April T Mean [
April T MedJ
April T SD l
WET Med G
WET Mean G
WET Med l
WET Mean l
WET SD G
WET SD I
200810100
4.7
0.9
10.9
-2.5
-2.6
3.4
-1.0
-3.7
9.9
200810101
0.2
0.2
0.1
0.1
0.1
0.0
0.1
0.1
0.0
-5.1
-6.8
-3.2
-4.8
2.1
3.1
1.8
-5.5
-1.9
-2.7
-6.5
-4.6
-5.2
6.5
7.9
8.7
200810104
200810105
2.6
-0.7
9.4
-4.7
-6.9
-2.9
-4.5
200811100
0.0
0.1
0.4
-1.5
-1.4
0.1
-1.4
-1.5
0.1
200811101
200811102
0.0
0.4
0.0
0.0
0.0
0.2
3.0
0.0
-
0.1
0.0
0.0
3.0
0.0
-
0.2
3.0
-
-3.0
0.0
0.1
-2.6
-1.5
-2.6
-1.5
0.0
-2.5
-1.4
-2.5
-1.5
200810102
200810103
200811103
0.0
-
-2.4
200811105
-2.5
-0.3
200811106
1.8
200811104
-1.9
-2.4
7.5
1.1
0.0
-2.5
-0.2
0.0
0.6
6.9
0.4
-2.5
-3.3
-2.5
-3.4
1.7
0.1
2.9
-2.5
-3.3
-2.5
0.1
0.1
0.1
-3.7
6.6
200813100
-0.3
0.0
0.9
-3.8
-3.8
0.3
-3.8
-3.8
0.5
200813101
-0.2
-0.2
0.1
-0.3
-0.3
0.0
-0.3
-0.3
0.0
200813102
200813103
200813104
1.7
-0.3
-0.7
-4.1
-3.9
-4.2
-3.9
1.4
0.4
-3.4
-4.3
-4 5
0.1
0.1
8.7
6.8
0.0
0.1
C1
5.2
1.9
0.0
200813105
1.8
-0.1
8.4
-3.9
-3.9
0.7
-4.2
-4.4
2.3
200813106
200813107
-0.5
1.3
-0.4
-0.3
0.1
8.0
-0.5
-4.7
0.0
2.9
-0.6
-4.3
-0.5
-5.6
0.0
7.6
200814100
-0.7
-0.7
0.1
200814101
0.0
0.1
0.2
200814102
200814103
-0.6
-0.5
-0.8
200814106
-0.1
-
0.1
4.8
0.0
0.4
-0.9
-0.5
-0.8
-2.8
200814105
0.2
0.1
0.7
-0.9
-0.6
-0.8
-2.6
200814104
0.6
0.1
-0.5
-4.4
-5.6
-1.0
-0.6
-0.9
-2.9
Metl
2.2
0.3
0.4
200813108
-0.1
0.1
8.0
-5.6
0.9
0
0.0
-0.6
-0.8
-2.9
0.0
-1
0.1
0.1
-1.6
-1.6
-0.4
-3.7
-0.4
-3.6
0.0
1.5
0.0
0.1
0.0
2.4
-4.5
0.1
0.1
-1.6
-1.6
-2.9
-4.3
-0.3
-0.3
0.0
0.1
0.0
4.1
0.1
0.1
0.0
7.4
Ill
Appendix C - Hourly temperature profiles for all sites
C)
200810102
e)
Site
200810104
g)
h)
:
!i
:•
TC7sj
='
T57
^
Site:
200811101
Site
200811100
,'s
H
- 25 - Site :
Site :
200811103
200811102
2020 - 10
2021 - 02
2021-06
2020-10
Ground
Snow
2021-02
Interface
2021-06
Snow cover
112
50
v
l)
k)
u
25 -
3IQ
11
_
E
0.
l
25 - Site:
200811104
CD
Q
CD
50
U
V
Site:
200811105
m)
.cjsS
n)
;
II
$
CD
3
TO
CD
;i
Q.
E
H
50
ID=
200813100
200811106
u
OJ
Site:
- 25 - Site:
71
0)
p)
'il
•
i
25
j:;
i
5
CD
CL
!
JU
o
i
E
I
CD
Site:
25 - Site:
200813101
50
U
200813102
q)
r)
i
CD
25
:
.3
il
5
CD
CD
CL
m
_:
\C
0
E
l
CD
25 - Site:
200813103
50
u
Site:
200813105
s)
CD
5
CD
CD
_
E
Q
l
CD
25 - Site:
200813106
2020-10
2021-02
2021-06
2020-10
Ground
Snow
2021-02
Interface
2021- 06
Snow cover
113
u)
v)
i
200813108
I
200814100
x)
:
Ik.
Site:
200814102
z)
;
200814104
ab )
nr
Site:
200814106
2020-10
2021-02
Snow
Interface
Snow cover