T D
ICI Y
Yu ctin g , 'ha o
B..' '.,
( n11an I ethunc l 1ni\ er-. Jt\ r cd 1cinc ,' cicncc. ~ 000
l. .'c . JJ!in l 1li\cr-.it). ~ 00 5
1
RT
,
BMITT£:0 I P RTIAL FULI· ILLM I:
RE
IR ME T F R Df:-~ G R EI: r
D T RAT
F PHI L .'OPT IY
·r OJ·
I
N T RAL R ~
NIV ~R ITY
D - VIRO ME TAL ,' T DI E.'
F N RTH RN BRITI H OLUMBIA
June 2015
~·' Yueting
hao, 20 15
tra t
~th;lnPr
i ·ant hut the di\er~e mcchanisti · e\ents
ur) ( 1 Ilg) i a \\cll-knc \\n neurot
1' It\- ha\e -\et heen lulh
, soci ted \\ ith
e I I 1r d the me ·halll . Ill
l
r
1cllg neurc t
1 ' It
lucid · ted . In this study. we
partt ·ularl}
ih
r 1Ssihle roles
in
n ur deg ~neratl\ e d1 ea e.., ltke I Mktn on· dt..,ea e (I [ ) u~tng dopaminergic neuronal cells
and an n-human pnmate mt d l In the ·ell culture m )del. \\e cc mpared effects ){ Mel lg t
tho T indu cd h: 1-meth: 1-.f-phen: lr: ndtn1um ( 1f P ). a \\ell-e~tahli~hed drug that can
Parkins ni 'm-like : mpt m
indu
\ protctmlc appn ach \\as u~ed t identif) and analyl'e
Mellg afTe ted pr tein and their ht )]c g1cal function and associated pathwa;s in both the
cellular and marmo. et model .
)ur re ulh shO\\Cd that Mellg induced changes of
gen .. pr tein pr file are imilar to the effects as
l
1PP . l· \idence from proteomic results
·ugg t d M llg au
d neurc d generati\ e effecb not on!; as~ociatcd with PD but also other
neurodegenerati\
rder , uch a Huntington· . di ea e (} ID ).
di
and amyotrophic lateral
l;hcimer · s disease ( D).
ler i ( L ). \\'e also found brain regional pecific re ponse to
MeHg timuli. ba d on the protein profile affect d in the following order: cerebellum ->
occipital lobe (OL) > frontal lob
derivative m tabolic proc
(FL) of the c rebrum.
. ynaptic tran mi
ln the
ercbellum. carb h;drate
ion. cell dev lopment and calcium ·ignaling
are dominant functions and path'v\ay contributing to the motor deficit in Mel lg-treated
et. Mellg
marm
a
found to
electi I
target membrane pr t in
in the cerebellum
particularly in ·ynaptic membranes . MeHg af[i cted protein 1nv lved in energ; metaboli ·m
in both
the
L and F
f the cerebrum thr ugh different proteins and biochemical path\\ a) .·. In
L, protein
were enriched in functions of carbohydrate metabolic proce · . lipid
.ii
111
tab li pr
11 ular
111m
a id 111 tab li pr c , , . h 111
and regul ti n f b d\ Ouid l " I. In the
in" oh d in th
m tab li
l. diffi rentiall; e 1 re ed pre t ins 'v\ere main!
11 \ lc and ell di \ i. i n. gl; cer li p1d met b li pr
pro e.. . cellular ammc
pr te I) i . ·1he d) h me ·ta. 1
c.
, . . , ul fur
mpound
cid met b li ' proce"'"'· micr tubule-based pro ess. and
r \\ ater tran p 1rt and a ~ 1' iated path'v\a) s 1bscrved in 0 L
nd FL \\a fi und t 1 be the under!: mg mechani m f1r brain edema c b. cned in the Mel Ig
expo. ed mannc :ct.
\Ciprottn . u ·ha II 14(P,' P5)inthc ' erebellumand
PCl: in
L \\ "re e'hibited to he · re pr tein. in linking multifunction targeted b; Mel Ig. ·r his study
pr "ide
n ur t xt
a ne\\ per. pccti\ e upon under tandtng
dcfi it ·.
n urod generati\'e di
nd
. ugge:t
potential
mechani~ms
link .
bet'v\ecn
behind Mellg mediated
Mel lg
exposure
and
rder. in human
.iii
Table f
ntent
ppro al page ... ........... ................................................. ................................................. 1
b tract .. ... .......... ... ...................... .............................................................. .... ............. .. 11
Table of
ontent ........ .. ........ .. .............................................................. .. ................ ..... 1v
Li t f Table ............................................................................. ........... ...... .. .......... ... .. VII
Li t of Figur . ............................................................................................................. viii
lo ary .. ... ............................................................................................ ................ ..... . xi
ckno"'·ledgement .. ............ .................................................... ............. ....................... XII
hapter I. lntr ducti on .. .... ........................................................... ............ .................... 1
Rational e ......................... ...... ........ .................................................................................................. 3
Re earc h H yp th e i ...................................................................................................................... 4
Objective a nd
tru tur : ............................................................................................................... 4
Chapter II. L itera ture R ev ie"'· .. ... .............. .. ... .............................. ......... ... .. ... ..... .. ...... ... 6
1. Mercury in e nviro nm ent .......................................................................... ................................. 6
2. Toxic Effects a nd Mechani m of M eth ylm e rcury ................................................................. 9
2. 1 Targe t ites, )- mptom and pathologica l chan ge . ....................................................................... ... 9
2 2 Mec hani m of MeHg actio n ............................................................................................................. 11
3. Methylm ercury as a risk factor fo r neur·od ege nerative disea e ......................................... 23
4. MPP+ and its dopaminergic neurotoxicity ............................................................................. 27
Chapter Ill. Effects of Methylm ercu ry on Dopamine Relea e in MN9D Ne uron a l Cell
................ .................................................................................................................... 29
Abstract ........................................................................................................................................ 30
Introduction .................................................................................................................................. 31
Material a nd Method ................................................................................................................. 33
ell lin e and treatm ent ......................................................................................................................... 33
ell viability a ay .............................................................................................................................. 34
IIPL detec ti on o f DA and it · metabolites in MN9 0 ce ll cu ltu re medi um ......................................... 34
erni -reve r e transcript P R ................................................................................................................. 35
Immun obl ot .................................................................................................................................. ...... . 36
An aly i of MA -B ac ti vity ............................................................................................................. 36
Statis ti cal Analy is ....................................................................................................................... 37
Re ults ........................................................................................................................................... 37
. IV
Th t
I
90
it fM ll g nd PP t th e
9 0 ell
1n d pam111 e and 1t metabo lite re lea e fro m
f 1n Jtr e pos ure to cll g and PP on do pamm c )C lin g genes
of 1n 1tr
. po ure t
f Mell g and
Oi cu
PP on
. 37
37
................................ 38
38
n d pam 1n e C) l111 g pro te1n
-Bact I\ 1t_ ............................................................................... 38
ell g and MPP
ion ................................................................... .. ................................................................ 45
o nclu ion ................................................................................................................................... 48
ckno\\·ledge m nt .......... ....................... .. ............... .................................................................... 49
hapter IV .
ffect of Methylm rcuf!
n M 90 do pamin rgic n uron
IL : a
genomic and pr t omic analy i. .................................................................................. 50
Ab tract .......................................................... .. .... .. ... ... .. .............................................................. 51
lntr d ucti n ........................... .................. ..... ................................................................................ 52
Material and Meth d ............................................................. .................................................... 54
II ulture and hem1cal e p urcs .... .............. .. . . ...... ............ ............................................... 54
PO P R rra) a a) ................................................................................................................ 54
............................................................................................................... 55
Prot omi
nal) 1s
e tern blot anal) 1s .................................................................................................................. 57
Re ult ...................................................................................................................... . .................... 58
PO P R rra1 anal] 1 ....
58
The prote 111 abu ndance profiling. ................................................... ....................................................... 59
.. ............................................................................ 59
Path v. ay enrichm nt anal} i .....
Molecu lar function s and on·e lation anal} i ........................................................................ 60
Validatio n of proteomic re sult ................................................................................................................ 61
Discus ion ....................... .............................................. .. .................................................. ... ......... 71
Conclusion ........................................................ ... .... ... .. ... ..... .. .......................... ............................ 76
Chapter V: Proteomic Ana lys is of Cerebellum in Common Marmoset exposed to
Methylmercury ........ .................................................................................................... 77
Abstract ........................................................................ .. ........................ ............................ .......... 78
Introduction ..................................................................................................................... ............ . 79
Materials and Method ................................................................................................................ 80
Anim al and meth !mercury trea tm ent ................................................................................... ...... ..... 80
1-M / M ........ ..................................................................................................................... 81
Data anal ysis ....................................................................................................................................... . 83
We tern bl ot analy i ·························································································································· . 85
Result ........................................................................................................................................... 86
Protein id entifi cati on and ce llul ar co mponent di stributi on .......... ...................... ................................. 86
87
0 analy i of differenti all y ex pre ed protein in cerebe llum ...................................... ..... ...... ......
Pathway analysi .. ...................................................................... ................................. ......... ... .. ....... 89
v
eri fi at1 n f prot tn
1 n u tn g n alternat1 e method
........................................................... 89
Di cu i n ..................................................................................................................................... 98
hapter VI: Prot me pr fi ling r vea l r gi nal protein a lt ration in cerebrum of
common marmo t ( a llithri. jacchu e ·po, ed to m thylm rcury .......................... 103
b tract ...................................................................................................................................... 104
l n tr duction ................................................................................................................................ 105
Material and M th d . ............................................................................................................... 106
penmental an1malc; nd eth) lmer ur: dmtn1c;trat1on ................................................................ 106
amp le Pr parat1011 and Ma . pe trometrt
nal: c; 1c, .............................................................. 107
108
11 om ap1cn Databa e ear h nd uantltdtton
108
llular
mp nent D1 tnbut1 n
Data nal: 1 nd
c1p1tal l obe ................................... .. 109
Fun tional nrt hment nal: 1 for I rontal lobe and
110
Path\\ a: 1: nnchment nah 1 and Mapptn g
110
e tern 81 t nal)'il
R
ult ......................................................................................................................................... Ill
eth} Imer ur: -1ndu d Prot 111 bundan e ' han ges 111 th e hontal Lobe and 0 ip1tal Lobe of
Marmo t. . .
. .... ..... .. .. .... 111
nri hment Funct1 nal nal: i D1ffl rent1all} \pre sed Prote1n s fl r rLand C L .......................... 112
Functional nnotatton et\\Or" of FL and L of Marmose t b] lue
........................................... 113
K
1gnificant PathV\a)
114
Validation of Differential I] xpre ed Prote1n
114
.
.
D ISC U tOn •••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 129
Co nclu sion .................................................................................................................................. 134
Chapter VII. Conclusions .......................................................................................... 136
Key findings of thi
tud y .......................................................................................................... 136
Contributions to knowledge and limitation ........................................................................... 141
Future research .......................................................................................................................... 142
Publications and Academic Activities during PhD. Study ......................................... 143
References ................................................................................................................. 144
Appendix 1: Establishing the Cerebellar Granule Neuron and Astrocytes Primary
Culture Model for Methylmercury Toxicity tudy .................................................... 162
Appendix II: Supplementary data ..................................................................... ........ 170
Appendix Ill: Authorship Statements for Published
hapter ................................. 185
.VI
t f Table
hapter Ill:
abl 1. L \' I of
in ub ti n V\ i th e I Ig r
P
and I I
( ~l
In M
cell culture medium after
P P .. C r ~ 4 h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
hapter IV:
Table l . ignifi
nt han ged PI related ge nes in Mcl lg and MI p + treated M
cells 62
Tab! -· P related gene: pr tein. \\er " identifi ed in the tV\O ~~ays of P P ' R rray and
pr t me r fi I"' .................................................................................... 63
hapter V:
Table l . ignificant
( iolo gi al Pre ce. S) term ba, cd se ts or differentiall y e pressed
prot in in M ll g-treat d marmo et cerebellum ......................... ... .................... 90
able_. Enriched microR
and their target ge n · in th e ' functi n term of synapti
tran mi ion ......................................................................................... 91
Table . ompari on between protein quantification re ult u in g We t rn blot and
prote mic analy i .................................................................................92
C hapter VI :
Tablel. Functional
term (BP) differentiall y xpre d protein m Mel-Ig-treated
Frontal Lobe ...... .. .... ........................................... ............ . ..................... 115
Table2. Functional GO term (BP) of differentially expre ed protein in MeHg-treated
ccipital Lobe ............................... .. ..................................................... 11 7
Table3. K
G pathway identified in MeHg e po ed manno et frontal lob ............. 1 19
Table4. K
G pathway identifi d in Me l lg e po ed marmo et occipital lobe . . ......... 120
TableS. Proteomics re ult were confitmed by We tern blot in marmo et tV\O brain
region s .... ........... .......... ...... ... . ............... ............................................. 121
.VII
t f Fi ur
hapter III :
Figur 1.
inM
e-re p n
un c. 1 ( ) cth; !mer ·ur; ( ell g) and (B) MPP + toto i it
ell aftL:r _4 and 4 h L:\.P 1surc ...................................................... .40
igur -· T .. pi
I hr mat( gram.
fI
. I )I
' and I I
............................ ..... 4 1
1gure .
c-depcndL:nt efT~ ·t r (A) 1cll g and (I ) 1 I • on the c. pre ·si ns of Tl L
T and a- , ; n mR
anal; n .:d h; R r -P ' R .................................................. .42
igur 4.
e-rL:. p ns ~ ~ fTcct ( f (
cl lg and (B) MPP on the c. press ion s of TIL
and a- ) n pr tL:in anal;1 d h\ immun 1hlot ........................................... .4
Figure . Effe t · of
I Ig and
PP on M ( -B cti\ it; in M JD cells .................. .44
ha pter IV:
Figur 1.
lean pi t hov. the ge ne ex pr ion in 1.5 -fold change in Mel Ig 2.5 ~M and
5~M ( and B). MPP+40~M ( ) expo ed M 9 cell ....................................... 64
nrichment anal; i of K
Pathv..a; in (A) McH g l ~M. (B) M 1lg 5~M and
VID ..................................... 66
( )MPP+ 10~MtreatedM 9 c II analyzedh;
igure2.
igure3. (A) Heat map f common changed protein for ' 0 molecular functional
clas ification in MeHg and MPP treated MN9D cell . Prot ins abundance ratio
(treated/control) are compared bet\\oeen (B) MeHgl ~M /Con (I g2) and MPP +l O~M /C n
(log2) and ( ) MeHg 5~M and MPP + 10~M .................................................... 67
igure4 . MeHg induced all th prot in abundance change in MN9D ell . Protein
abundance wa di splayed a fold chang ........................................................ 68
FigureS . Protein abundance change induced by MeHg ba ed on molecular function
classification ......................................................................................... 69
igure6 . We tern blot verified ex pres ion of t\t\IO protein s (V ATI L and BAZ 1B) from
M analy i .................................................................................. . ........ 70
hapter V:
igure ] . A. I Ieatmap of pro tein abu ndance pattern in difTercntially expressed proteins.
B. ellul ar component di tribution fo r the to tal identified protein. (n=998. IPA mapped
I ) and differe nti all y e pre ed pro tei n (n- 10-) in marmo ·ct ccrebcllum ................. 93
.VIII
igur 2. n nn tati
pr t in in M
rk
nri hm nt ellul r
Figure .
f thr e fun ti nal gr up [! r differ ntiall
pre ed
t ereb llum ......... .. .. .. ... .. ........ .......... .... ...... 4
mp nent
nal) i u ing Babelomic · .............. .... 95
igur 4. The t p 1
n ni al pathv. ) identified h; th lngenuit Pathvva
nal sis
rt db their p_, alu , ................................................................ .. 9
Figure . We, t rn bl t 'crificd r ur pr tcin. identi fl d from M.' anal is in marm )Set
er b llum ........................ . ......................................... . ......................... 97
hapter V I:
igur 1.
MeHge
u ntifi ati n anal) , i. of identified pr tein s in frontal lohe and occipital lobe in
ed marn1 et .............................................................. . ...... ... 122
igur ~. II atmap f pr tein abundant hangc~ in differential!; c. pre ·sed pr tein s in FL
( ) and L ( ' ). nd ellular c mponcnL distribution for identified proteins in frontal
1 b (B) and ccipital I be, ( )......................................... ... ..................... 123
~ igur
3.
-nri hment depletion analy is of differential ex pre ed pr tein for frontal
I be and ccipital I b in MeHg-treated marmo. et. on!; the ignificant functional term
(P<0.05) are appear in bar chart ................................................................ 125
Figur 4. nnotation network f dif~ r ntiall y ex pre, ed proteins in FL (A) and L (B)
were vi ualized by lue
Clu pedia ............. .................. .. ........................ 126
FigureS. Validation of the proteomic r ult u ing Vv'B analy i of 4 protein in fr ntal
lobe and occipital lobe ................................................................................... 127
Figure6. Va opre in-regulated water reab orption pathwa; wa cia ified by K
pathway mapping ystem from uploaded 62 differentially ex pre ed prot in in FL .... 128
A ppendix 1:
Figure 1. Diagram of primary cerebellar astrocyt
i olation and purification .. . ......... 158
Figure2 . Diagram of cerebellar granule neuron and progenitor cell collection .......... 159
and
Nco-culture plating in a ratio of 1:6 for 7 da) · folio\\ ing
igure3. Diagram of
MeHg expo ure ................................................................................................................ 159
Figure4. Immunofluore cence of Cerebellum Astrocytcs (AS) and erehellar ranule
Neur n ( GN) co-c ulture for 10 day · ................................................................ 162
. IX
5. I
p tn t 1d
~ igur
nd m n
reb llum n ur n
f
taining f m n c r bellar a tr 1 te
4- mi ............................................................................ 16
igur .
ll viabilit; f c rebellar granule neur n and a tr
te in m n and
ultur ~ ll ~ing a .... h . p ur ( and 4 h . po. ure (B) t vari u
ncentration of
Mel Ig ............................................................................................... . 1 4
pp ndi
II: 'upplementary Data
hapt r
T ble 1.
_ identifi ed pr tein. datase t in
d Ig- trea tcd ce rebellum ............... 1 6
Li t f 1 2 difTercnti all; e'
s_ ~tem. I Ig accumulati
r the a ute phase 111
n ~as highest in the cerebellum
1inamata disease case~. 'I he pathological changes of
·h wed that damage pred )minantl)
1ccurred in the calcarine regiOn , the
po t entral and pre entral g; ri. and the temp )raJ tran s\ erse gy ru s. The to icity in the
c r b llum \\a
purkinj
hara teri1ed b) I s · c f granu le neuron s hut a relative ~ell maintained
c II ( ~ to . 1997). indicating that granule neuron s are specific tartgeted cells for
Mel-lg toxicity. Brain ed rna and ub equent i chemic changes were observed in the early
tage of acute ca e . In chroni ca e . Hg accumulation ~a . lower in brain ti . ue than the
other organ ( kabe and Takeuchi. 1980). A neur logical study of 77 autopsy ca es from
Minamata di ea e found 80.5 o/o patient with
n ory impairment. 35.8°/o of patient had lo~er
e tr mity coordination. patients ~ith con triction of vi ual field
retrocochlear hearing lo
ccupied 28.8°/o. and
was in 15.3°/o ( chino tal.. 1995). Another evere occurrence of
MeHg poi oning occuned in Iraq in 1971-1972s with mortality rate of 459 ca e from 6530
record d ho pita! ca e (Bakir et al.. 1980). Patient exhibited
imilar ymptom (muscle
weakne s. ataxia. dy arthria and tremor, ev r ca e appear visual and hearing impairment)
found in Minamata di ea e. Notably, neuro logical deficits such a un teadine · and frequent
fa ll , early sign for Mel lg poisoning. were ob erved in the Iraqi patient . There are 3 major
fa tor reported to contribute to cause thi tragedy : people ~ ho consumed bread that \\as
10
tr
t d
c
ith M Hg
rding t thi
fungi id , br eding r ut fr m
hang
) mpt m and hi t path
v. r par II I v. ith the degree
2.2 Mechani m
al o th prin ipl targ t rgan
tud; ( Bakir et a!.. 198
ning ba d n th
ed m ther. nd prenatal e p
ur .
f Mel Ig
gi al alt ration . . The brain path 1 gical
r p is ming nd bloc d mercur le cl.
f McHg acti n
including Mel lg enter the hod) and c crt their t ), ic ciTe ts in 4 general pha e ·
a
rding t
arc ni and I arhicri. 1 8 ) and Philbert (Philbert ct al., 2000): ( 1)
Mar 111
d liv ry pha . entr)
re ept r/m tab li
)[ action; (2)
ph e. bind and rea t \\ith spe iiic cellular targets: ( ) to icodynamic
pha e, initiati n fbi
and functi n in
into orgam ·m and di trihution to the regton
h mica] hange : and (4) lead to the alteration of cellular structure
(clinical pha e).
ince the initial identification of l lg poi oning in 1956,
the clinical n urology and the effect of neur toxicit; of Mel lg have been v.idely studied.
How ver. the mechani m re p n ible [! r MeHg induced change in neurobehavioral effect
and function are till enthu ia tically debat d.
number of ·tudie have shov.n that Mel Ig
di rupt a number of cellular function including inhibition of prot in ynthe i . microtubule
di ruption. and increase of cyto olic and mitochondrial
vel
and di rupt of
neurotran mitter function in the brain, uch a catecholamine (Ro i. et al.. 1997: Fit anaki
and Aschner. 2005a: Johan on et al.. 2007:
anfeliu et al.. 2003 ). llere. I pre nt a mini
review on the mo t commonly proposed m chani m
[! r MeHg neurotoxic it) .
2. 2. 1 Oxidal ive stress and Ani ioxidanl defense
xidative tre s is a condition of fom1ation of total free radical in a cell that exceeded the
anti-ox idant capabi Iity that triggers variet of pathological condition ( Smcyne and Sme\ ne.
11
201 ). Tr nit in r a
gcn p 1e ( R , ) are
f r a tive
I ignall in g. nd ntio. id nt
ellul r pr
t th red . b ian
. I ligh
n
n/) m
ntrati n
in b d;
mm nl
e i t d in n rmal
uld rapid!
r m
e R
t
f R ,' may cau e o idati e modi f and
n rau. tad llir ct al.. ~0 1~ ). ' mentioned abo c.
damag
f macr m le ule
d li
ph c. llg enter. the ell. h) binding Jig mL pre. cnt in membrane. whi h include
f\'
1n
the first
thi I gr up. el n gr up. amino. phc sphak and car be x; I. Mcll g can bind t -, ,I I nd - 'e lI
ligand in th
) t ine amino acid resulting in the r m1ation of a Mel Ig
stcinc c mplc
i t a!.. ~ 14 : ' lark on. 19 7 . I hi · is al. o the major c, cretion route for Mel Ig. for
( ar
e. ample. Mellg i tran ported
th li\er canalicular membrane · into bile in the form of
H-Me g c mpl x ( utczak and Ballatori . 1994 ). , 'elen proteins ( ie .Glutathione p roxidasc
1.
PX 1) and non-pr t in abundant in -,, 1I (membrane tran sporter . Iipoic acid) are more
·u ceptible target
protein
f MeHg . .'elenopr tein
like
' PXI are also important anti xidative
again t MeHg toxicity. In addition. previous
tudy ha
sho-wn that Mel Ig
preferentially bind to high molecular w ight prot in (> 200Kda) uch a
·keletal mu cl
myo in heavy chain. which ha. been proved in tuna fi sh mu cle by metallomic approach
(Kutscher et al.. 2012).
xc ss1ve RO
generation 1s a well-document d mechanism of MeHg neuroto. icity
demon trated both in vitro (primary cerebellar granul neuron ) ( arafian and Verity. 1991)
and in vivo (rat cerebral cort
) tudie (Liu eta!.. 2014). R
i an important factor in redox
ignalling and maintain cellular oxygen homeo ta is. Imbalance bctv~een R
and anti-oxidative repair y tern can lead to <."'~ . idati ve
tre
production
(Shukla et al.. 2011 ). and
sub quent damage the cellu lar macromolecule and disturb signa l tran ·duction path\\ a) .·.
R
formation canal o ind irect! mediate glutamate cxcitoxicity. For example.
u ct al (Xu
12
~ rmati
L 2 12) h vv d M I Ig i gn i fi
t
idati
dam g
d h m
ta i
imbalan
vva
in mit
h ndria
111
rt . of rat. The auth r al
r bral
a re ult of R
n. lipid. pr tei n and D
dem n tr ted glutamate
m diat d inhibiti n of glutamine , nth ase.
' 2+
a
b n d a.· ne f th t .· ic mcchani m. ~ r Mel lg-indu ed R ._' generati n
f r t brain ·li e. and · ntributcd to the
hain effect of mit ch ndrial
dy fun ti n nd :idati\e . tre:· ( )ama et al.. 1994). Imp rtantly. R ,' i able t adversely
af~
t
llular ma r mole ule:
thr ugh o. idation . (
u h a I
dam g i an thcr m I cular me hani sm )b ·ened in Me l Ig nclll·ot
idati n
au ·ed
icity . C idative D A
may n gativel) afT ct n ur de\ ~lopment thr ugh a non-mutation mechani sm to alter gene
tran cripti n. fa ilitate formation of ·enobiotic-macromolccular adducts. and di rupt other
macromolecular target
uch a protein . lipid and ignal tran duction (Well s et al.. 201 0) .
repair and ap pto i are normal I) t'v\
re pon e. ~ llo'v\ ing DNA damage which arc
initiated by oxidative tre . It wa reported in murin embryonic fibrobla t · that 0
protein oxoguamne glyco yla
damage following MeHg
1 (
1)
protect cell
repa1 r
from D A double strand break
po ur . indicated D A repair y t m deficiency (
Gl -- null)
and inc rea ed the cellular en itivity to MeHg to icity ( ndovcik et al.. 2012 ).
lutathion (
H) is a critical part of cellular anti-oxidant defen e machinery and i required
to prot ct c lls from RO induced pero. idation of lipid membrane and D A damage induced
by MeHg (Gib on et al.. 2014 ). Anti-oxidative agent/drug can inc rea e G I I level
attenuated MeHg-induced n urotoxicity. For example. the antioxidant
and
(quercitrin and
quercetin) have been hown to provide neuron prote tive effect · against Me!Ig induced lipid
peroxidation and ROS formation in cortical brain slices of rats (Wagner et al.. 201 0) . Pretreatment
f tea polyphenol
( 1mmol/kg) rever ·ed Mellg caused GPX I reduction and
13
glut mat uptak di rupti n 10
f f1
n id Vvith
cl lg,
\\Cll
frat (Liu t al.. 2 14 ). M ri ctin, a member
mpl etely inhibited R
.
brain mit
ti on. In additi n.
G rmation
fa M ll g ; . t me
hondrial d · fun ti n (Fran
cllg ha. hi gh affinit y f r cysteine a. mcnti ned ab
ct al. ,
c. and
mpl c.· . tructure i simil ar to that f the ne utral amin acid .
r m thi a. p L methi mn e ma; al.
M ll g c. p ure b
gcn rati n and lipid
ugge. t th at anti -ox idati\ c agent. may . ervc a p t ntial treatment for
Me ll g int
methi nine .
rt
nti . idant pr p rti e ..
n indu ed b
.... 01 ). ~ h e e.· mpl
rebral
sef\ e a. potential treatm ent ~ r acute
mp titi n r r the bind ing . pot of th e Mel lg- ' ys tcin c compl ex (Roos ct
al.. _o 11 ).
2.2.2 Calcium hom eo tasi
Cal ium and cal ium ignallin g path'v\ a) pl ays an important role in Mcl-I g indu ced tox icity.
Alm o t all the id ntifi ed mechani m related to MeJ l g tox icit) 'v\ a initi ated or lead by oth r
fac tor to increa
f intrac llular calcium conce ntrati on ([ 'a 2 +]i ) (Roo · et al.. 201 2). There
are two main way that [ a2 ]i can be affected: one i the regul ati on of intrace llul ar Ca 2
tore, and another is pla ma membrane perm eability to
+
rupti on of either ource can
alter intrace llular calcium concentrati on (Atchi on and Hare, 1994 ). Intrace llular ca lcium
signaling i required to timul ate energy production by catalyz the key enzyme in Kreb
cycle which can directl y affect mitochondri al re pi ration fun cti on (Roo ct a!. . 20 12 ).
acted a a dri ving force in the mitochondri al matri x, and an in crea e o r cytoso li c Ca 2 •
ti mu lated a partate-glutamate exchange r ( l 25a 12, part or the malate-a. partate shuttl e).
thu s b o ting pyruvate upplicati on to ini ti al Kreb cyc le in co rti ca l neuron · (Li orente-Fo lch
et a!., 20 15 ).• akamoto et a!. ( akamoto et al.. 1996) demon. tratcd that ca lcium bl oc k. rs
(flun ari zine, nifedipine, ni cardipinc, and erapami l) attenuated the to.· ic effec ts (hod \ \\ ei ght
14
mpt m ) m rat indu e
and n ur
g1 al
gr nular
11 , al ium bl
k r Ounari7ine v.a
death fr m M I lg t xi it; .
b rv d the reducti n
ultur b) u ing
n ther , tud;
[ [ 'a- ]i and
· 'a 2 '
a2
nth~
.
' b
.
u mg pnmar
reb llar
h v.n t hav pr t ted fleet again t ce ll ·
ondu ted b;
]a: .
t a!. ( ' a o t a!., 2001)
h nne! hi ' ker (ben/ami!). and inhibitor (thap ·igargin
f ' a 2 •-
shO\\ed that Me l lg induced R S [! rmation that
a 2 • m hili/ali n fr 1m endoplasmic reti ulum store and e tracellular
ther h nd. an earlier stud) puhli . hed h) ( ;ama et al. (Oyama et al., 1994)
r p rt d that MeHg (I 0)1
enhancement
M ll g.
cl Ig ' ) l<. t ·icit; in rat cerebell r granule neuron
P e Ill nd pia mic reti ' ulum . I he) al
\\>a indep nd nt c f
b
) induced increasing le\el~ of [ 'a 2 ]i V\hich resulted in the
f R , g n rati n in isolated cerebellar neurons )f rats . .'imilarly. another
tudy dem n trat d in rat tri tal ·ynapt
ome · that RO ,' formation V\a a downstream event
of mit chondrial dy function indue d h) Mellg V\hich ""a dependent on an increas
mitochondrial calcium level ( reiem and
whether [Ca 2+]i o erload and R
of
eegal. 2007) . Therefore. it i . till d batable
generation indue d h; MeHg are a cau. e-effect or an
independent event . However. there i little doubt that r gulation of intracellular calcium
level i a critical factor in the n urotoxicity outcome indue d by M Hg. In addition. it wa
hown in
57BL/6J mice orally exposed to MeHg ( 1 or 5mg/kg) for 11 day led to R
formation. [Ca 2 +]i alteration. decrea e mitochondrial membrane potential and r localization
of cytochrome c (Bell um et al.. 2007). The e events did not accompany a ignificant n uronal
ce ll (mi c cerebellar granu l ce ll ) death. indicating that ubcellular biochemical chang ,
occurred without lethal cell inj ury in hort term e. posure to Meiig in mice (Bellum et al..
2007). Though Me l lg may not direc tl y lead to neurona l death, inhibitio n c r glutamate uptake
may cau e ce ll energy d fi cit ( ehinde r et al.. 1996) as a resu lt of mitochondrial d) sfunction,
ca lcium dy homeostati
and reduced glutathi one leve l.
bnormal calcium ·ignalling or
15
al i urn i n d h n1
ultim tel
tgn !ling r athv,a; i
~ napti
1 ad t
fl
f bi
n rg ti
1n
mit
hondrial
tn\ h d in man; impc 11ant neur nal function such a
pia tici t). the g~nerati n of brain rh) thms and asso iated learning, mem r and
c gniti n ( erridg . _o I ). Ph :ph lipa~e ' is knov.n a. initial fact( r of calcium signalling
thr ugh
ti\ ati n of JP~ In ~ it I tri pho ph ate). a sec md messenger. i capab le of regulate
n entration betv.een e'tra and intracellular calcium store ( ' hang, . . . 011 : Venkatachalam et
aL '
2) . Mellg ( ~M) \\as
r und to initiate calcium signalling by activation of
Pho ph lipa e ' and phosph lipase
111
m u
2 \\hich re . ulted in the release of interleukin-6 (IL-6)
c r bra! glia ( 'hang. 2011 ). Ba ·ed on the
bsef\ation of Mc11g increasing of
[ a2 Ji in pinal motor n uron culture . Ramanathan ct al. (Ramanathan and Atchi son. 2011)
+
rep rt d that M Hg-induc d calcium alteration v.a. related v..ith the glutamate receptors
mediated pathway .
pplicati n of NM A receptor blockers ( AP-5 or MK- 01) ignificantly
reduced MeHg-induc d calcium influx . In
intracellular
..,
a~
ummary. the con equence
level is an important mechani m for th
downstream pathway that lead to neurodegeneration or cell death.
of increa ing
activati n/inhibition of
alcium i al o the key
ion in linking the proce s of synaptic transmission and neurotran mitt r relea .
2. 2. 3 Synapl ic transmission and Neuro/ransmi//er release
Another well-documented mechani m for MeHg to. ic action
neurotransmitter (NT) r lea e in the proce
the alteration of the
of synaptic transmi ssion .
xon terminals are
distal termination of a on that functioning a storage and release of Ts . rhi · proces: i · aid
by opening of vo ltage-gated Ca 2-t channel · when depolari;:ation occurred in the pres) naptic
16
m mbran
f [
n
a ad
lin
a ~+ ]i
t L l
1 . B th intr - and e tr
in n n e t rmin 1 • nd the
ignal
f fu i n f ;napti \e i le t r lea c
t hi . n. 19
n n
mpetiti\e m nncr t inhibit ' a2 mflu
f al ium th n an evoke a . ignalling
·1 b; e. c;t s1
el Ig \\
he human brain
ynap e. The
t s napti
left (I enn
~ 11 v.ing an acti 1n p tcntiaL but incrca e the
I [ a2 ]i in nene terminal (I nn) and
n ur tran mitter
l ium c ntribut t the high
r 'P rtcd t blc k ' a 2 ' channeL in the ncr c terminal 111 a
nd
n ntrati n
).
cllular
tchi ·on. 1996) . ·1 h~ ma111 target d
f Mel lg arc glutamate ( ' ]u). d paminc (I
). and cholinesterase ( 'hE).
ntain · apprc '\imatel; 10 11 neur )n . . and each neuron has ab )Ut 7000
. ;nap · ~
are the · mnccti\c stru ·turc that allov. s "cross talk" between
n ur n ( adiq et a!.. 2012 ). It ha · b~en ·ho\'- n that Mel Ig altered the s; naptic transmi ssion
by changing either th
ndu ti n nene action potential or directly inhibiting synaptic
tran mi i n. or both ( tchi
acid receptor in
non-NMD
nand Hare. 1 94 ). Mel Ig particularly inhibits e, citatory amino
. Bl eking
f ex itatory amino acid receptor of
MDA receptor and
recept r po tponed th increa e of [ 'a 2 +]i mediated by Mel Ig (Ramanathan and
Atchison. 2011 ). The amino acid L-glutamate a
mammalian
the major e citat ry
ignal
in the
. plays a critical role in neuron development including ynap e induction.
elimination, cell differentiation and death. Glutamate i con tantly ecret d from the cells but
removed quickly from extrac lluJar fluid. and there are sev raJ thou and-fold gradi nt
difference aero
plasma membrane . In normal condition. only a mall amount glutamate i
ke pt in ex tracellular pace (Danbolt. 200 1). Therefo re. it i importa nt to maintain a ll1\\er
level of glutamate in the e tracellul ar fluid .
lutamate uptake i the primary mechani m for
maint nance of glutamate co ncentrati on
whi ch pro tec t
the brain from glutamate
excitotox icity. There are a number of report prov ing that the inhibition of glutamate uptake
an important mechani sm
f Mel lg- induced exc itoto:icity. }~ or example . .luare/ et al
17
t aL 2
front l c rt
2 . u d mi r dial
f rat
p
d t
Anoth r tud; r ported Mel Ig at
uptake 111 a
b er e glutamate fluctuati n in the
M I Ig and [! und an remark ble increa e
glutamat c 11 e11trati n. It \Na al
inhibiti 11 of glutamate uptak
i t hniqu t
f e tra ellular
rep rted that Ia tational e p sur t M I Jg caused an
1n cerebellar . lice,
f mou e pup ( Manfr i et a!.. 2 04 ).
icle glutamate
n entrati n: bet\\-een 2-1 011M inhibited
ncentrati n dependent manner. the authc r~ als
dem 11strated the failure of
glutamate upt kc \\a re ulted from inhibition f the proton gradient and I J+- 'I Pa e activity
inrat") naptic\~
i le(P rciunculactal..200 ).
Cdutamate re ept r ig11alli11g v..a f und t be an thcr ke) target for Mel Ig.
(u-ami 11o- -h) dr . ) -5-meth) 1-4-i oxaz lepropionic acid recept r) and
MPA receptors
M A recept r ( -
mdh) 1-d-a partat r cept r ) are glutamate receptor that play vital roles for modulation of
. naptic tra11 mi 1011. y11aptic pia ticit; in
Leveille et al.. 2008:
' (Danbolt. 2001: Ha himoto et a!.. 2001:
ku and Huga11ir. 2013: ' hepherd and Huganir. 2007). motor learning
and coordination (Ha himoto t al.. 2001:
ku and H uganir. 2013 ). Activation of
MD
receptor was reported a a mechanism of MeHg-induc d excitator neurotoxicity. An in ' 'ivo
c periment studying effect of MeHg on brain developm nt and vulnerability to NMDA
r~c.eptors (Miyamoto et aL 2001) found that the mo t
ever neuron al damage occurr d in
the occ ipital cortex of P 16 rat . and the MeHg-induced neurodegeneration \\a
attenuated by an NMDA receptor antagoni t. MK-80 1.
·ignificantl)
dount e and Chan r ported in an in
nlro study that exposure of MeHg 0.25 and ljlM to human
H-SY5Y cells for 4h re ulted in
an increa e of NMDA receptor level and ub equ ntl; cau ed cell death ( dount e and
han.
2008). Ba u et al. (Ba u et al., 2007) reported a decrease in NMDA receptor leveL in \\ ild
mink brain exposed to 0-2ppm Me ll g in dietary . The author. suggc ·ted that the decrea ed
18
M
r
r ult
pt r
indi at d ab vc. a tr
thu
f
mp n at r
m
hani m [! r limiting Me ll g mediat d
; tc arc more su cpti blc t
cl lg a cumulate than neurons, and
r pre ent an imp 11ant target fc r Mcl lg tox ici t; ( . chn r et al.. ... 007 ). Besides
glutamat r uptake. the a. tr c; tic glutamate tran sp rtcr is an ther regulated mechani ·m t
balan c glutamate home sta ·is and the le\el of extracellular c. citoto 1c amm J acid .
Jut mat a partate tran. p rt r ( i L , ' I) and glutamate tran sporter- ] ( :iL'I- I) are primary
glutamat
tran port ~r. that are found prcdc minantl; in astrocytcs (Mutku · ct al., 2005).
MeHg \\a
h \\n t inhibit the tran port of c;stine and c;stcine in astrocytes (A ·chner ct al.,
2007). MeHg \\a
neur n
al o rep rted to affect s dium tran sportation bet\\cen astrocyte and
through in hi bi ti n
f a tr cyti
cy. tine uptake on the ·ystcm X( A ' ) (cysti nc
tran port y t m in a trocyte ) ( II n et al.. 200 1b). Treatment of ' II -K 1 cells with Mel Ig
ignificantly increa ed the xpre
n of
LA T tran porter and decrea ed cxprc s1on of
LT-1 in protein level (Mutku et al.. 2005). Another stud; al o reported that the mR A
level
of two
lu transporter .
LA T and
LT -1. \\-ere down-regulated in the cerebral
cortex of rat treated with MeHg (Liu tal.. 2013 ).
In addition to
lu, other NT such a cholinergic and the dopaminergic y t m \\-ere al o
reported to be affected by MeHg. Musc le chol ine tera
activity was hown to be inhibited in
H. malaharicus fo llowing low do e of M Hg e po ure in a fi ·h model ( lve Co ta et al..
2007). However, Ba u et al. (Bas u et a!.. 2006) reported no significant e ffect of Mellg on
bl ood cho line tera c ac tivity in capti ve mink, but hi gh ' hE activit) \\a detected in th e
occipital co rtex and basa l ga ngli a of mink brain , also they ob erved a paralleled increased
mu carini c cholin rgic rece ptor leve l. The c studies indica ted a potential di ·ruption of
19
h lin rg1 n ur tr n mi
m
iII b
)11
pti
tran mi
1
n
u h a
f~
t
fMeHg nth dopamin rg1c
el Ig . emingl) targeted multiple fa
di e
tr n mt. 10n pr
he
ti n enti tied "M th lmer ur
d In the
addr
n ur d g ner ti\
n regul ted b Me ll g.
e ..
ri k factor
a
In
~ r
the glutamate
ther pr ce .. es affected b; Mel lg invol ed 1n synaptic
neuronal p tential and the S)naptic do~n tream . ignal ling ar
furth r addre cd a. it i be) ond the
C
n t
pe of thi . re\ leV. .
. . . . -1 Effects on C\to.\keleton microtuhuln am/ Other.\
Mi r tubule i
ne of th" thr ~e mmn comp ment ,
ther part
Jude mi rofilament (made or pr tein actin) and intermediate filaments .
111
Micr tubule pia; a \ita! r lc in mit
1 · pro
r the cyt )Skeleton in eukaryotic cell ·,
e ·. including mitotic :pindle in dividing cells,
cell cycle arre t at M pha e and Iat ap pto i ( M IIi ned
and ' ajate, 2003 ). ' yto ·keletal
protein are required for cell movement. mitotic ·pindle fom1ation. organelle and ve icle
tran port chromo omal
gregati n. cell ignaling and cell divi ·i n. thu any impairment f
microtubule would affect th
a ociat d function (Cre po-Lopez et al.. 2009) .
ffects of
Hg pecies on microtubule n twork ~a introduced in the 1970 . mercury preferabl; bind t
protein that form the microtubul
. tubulin and kine in . Microtubule di ruption ~a reported
in a number of MeHg expo ed experimental model . Berget al. (Berget al.. 201 0) conducted
a proteomic
tudy where they identified the group function of tubulin/di ruption or
microtubule in Mel Ig e po ed Atlantic cod brain. An in \'ilro study u ·ing di !Terentia ted N2
neurobla toma cells showed that MeHg perturbed tubulin tyro ·ination. the earl; neuronal
biomarker of mercury toxicity, implicating the neurite outgro'v\th 'v\as inhibited (La\\ ton et al..
2007). Me l Ig i known to di rupt cell c cle through microtubulcs hccau~c the mitotic spindle
tructure comprises the most abundant microtuhulcs proteins. In neuronal (mouse
20
n ur bl
and
1111
2/
t rna) nd n nn ur nal ( P L.. c 11 , M 1Ig tr atment I d t
pt
ub equ nt
ted
ell
arre ted
) le p rturbati n thr ugh int rfcring with
an imp rtant v nt in th development of ap pt , i in b th ell line , (Miura
r tubul
t al .,
i , indi
pha.
).
icr tubul e
rc
riti al fil ament us stru ture
t
reg ul ate the
nset of
ap pt
, and th p5 independ ent path\\ a): \\ a. in\ olved in the Mel lg m di aled ap pt
(Miura
t a!..
mi grat r; pr
).
sho wn t
el lg- indu ed mi crotubul e dis rupti n v., as a!
nd di . turb a'\ nal elongatio n in th e cultured embr
inhibit
nal carcin rna cell s,
nd the e path I gi al h nge are important t ) un de rstand )f Mel Ig induced tru turc crash
f
r b llum and
ther brain regi n in the deve l pm ent of utero and postn atal tage
(Philb rt t a!.. ~ 0 0 ). ince M Hg hi gh! ; rea t Vv ith sulfh ydr; l gro up in cy tein e re idues of
ce llular mi crotubul pr tein (Philb rt t al. . 2000) . Mel Ig can potenti all y inhibit mi crotubul e
polymeri zati on, and thi effe t i a um ed thr ugh binding to the free sulfh dry! group at th e
end and on th e urface of mi crotubule : thi ha bee n prove n in ''ilro e perim ent (V oge l et al. ,
1985 ).
In recent year , the role of glial cell e pec iall ; a trocyte . in maintainin g functions of
neurons have been bett r defin ed. They not onl y pro\ ide ph y ical structure to
upport
neuron , but also functi onall y interact with n uron or non-neuro n ce ll
in ph y ical and
di seas conditions, which include neuronal ynchroni za ti on, ynapti c tran. mi
ion regul ati on
and controlling blood flow (Volterra and Meldole i, 2005) .
li a ce ll infl amm ator; ignaling
respon e to MeH g i a n wl y empha ized mechani m in re pon e to M 1-lg neuroto. icit) . In
attempt to te t Mel lg on the re pon e of pro-inflamm atory cytokine from gli a cell s. B a ~' ' Ctt
et al. (Ba sctt et a!., 201 2) found Mel lg dec rca ed IL-6 relea 'e in a do. e depend ent manner in
microglia/a tro yte culture with pre-stimulation with toll -like rece ptor li gand . AI ' O. the ratio
21
f mi r gli
11.
m difi
nd
h
tr
111
r ult
indi at
that
eH g
inflammat f) r
' I 7.
L4.
b an 1mp rtant fa t r affe ting l L-6
an a [! ct micr glia
ti nth int ra ti nb tvv en m1 cr gli astr
h m kine
ell
'
fun ti n thr ugh
lTilCf arra
. In an her
t
' ' L9 and
ti on \\ ere f und tc be , ignifi
L 1.... ) that were a
tud ,
ciatcd with
ntl ) in ' fCa cd (.... - [! Jd hangc ) in re ponsc
erebcllum ( I Omg kg da; for 10 da , ) (II an g ct al. . 20 II) . In
eH g timuli 111 m u
t
[! und t
ulture
dditi n. gap jun ti n hannel , a
nncc ti n . tru turc bet-w een a. tr cytes, play · a vital role
in n ur -gli int racti n (R ua h t al. . ~000) . ' nn cx in protein c nditi on , arc important in
th
[! rmati
n
f gap JUn ti n
111
n ur n-gli a co mmuni ca ti ns.
dj ace nt astr cytes
JS
connected thr ugh gap juncti on hannel ( ' J ' ).e.g .. '. 4 and hemi chann cls t regul ate A TP
relea
and glutamate tran mi i n ~ 11 wing intrace llul ar calcium elevati on to respond
neur nal glutamat r I a in g (Maragaki and R th tein . 2006:
ther i little r earch to inve ti gate th e rol e of
J ' fun cti on
r Il ana et al. , 2009) . ,'
n mercury neuron tox icity
(Kawa aki et al.. 2009 : Kothmann t al.. 2009). The arli er publi cati on
inhibited the function of
J
far.
howed th at MeHg
both in cultur d rat o teo bl a t-like cell (. chirrm acher et al..
1998) and rat pro imal tubular cell
(Yo hid a
t al.. 1998 ). Mercury chl oride wa al o
reported to affect junctional coupling in epitheli al canine kidney cell ( leo et al.. 2002).
Thi
literature revtew hi ghli ghted a number of sing! mec hani m
re ponsible of Mell g
neurotoxicity. It is important to note that there are many potenti al known and unkno\\ n interconnections b tween each of these m chani sms. For exampl e. both the event of ox idat ive
tre
and glutamate dy homeosta i were m chani m invo lved in M ll g tox ic it) ob en ed
in rat c rebral corte , and the potential
al
provoke m rc RO
f
lu dy homeo tas i cau cd Ca 2+ overl oad could
formation (Liu et al. , ~ OL ). Mell g cxpo ·urc induced
.· idati\e
22
H d pl ti n, R
~ rm
glut mate tr n p rt r and
" rl ad
t\.\ 0
e
dam g (
2 14 ).
ffl ted
h
nn
h th fll1
t d pr
ti n and the
it
m 111 metal
wa m diated b
p th a
f R
'
( eng
rt
f intr el lular calcium in the rat
t a!.,
gcnerati n and glutam tc d h meo ta i
ellg-indu ed neur t . icit; ( , chn r taL 2007).
3 . Meth y lmercur a a n k fa t r f r ne urod e
h
it
indu ing n ur heha\ i )ral
m th lm r ur; and le d ( 'arp nt --r. ~00 1).
), p rkin
ne rative di ea e
hanges after dcvel pmental c p
cure degenerative di · rd r
uch a
( rr ) and am) tr phic lateral ·cler
n' . di ea
ure arc
lzheimer'
(AL, ) affect
v raJ million pe pie V\ rldV\ide (Migli re and 'oppcdc. 2009). The inheritance of m st of
n urod g nerativ di · a
rar ly [! II "' Mendelian laVv but in ·tead reflect a more complex
interacti n V\ith multi pi predi p
ing gene and en vir nm ntal factor · (
va t majority of AD. PD and
L
contribution of comple
occur a
p radi
chner, 2009). The
D rm , likely re ulting from th
int raction betwe n gen tic and nvironmental pollutants uch a
pe ticide and h avy metal . Interacti n between gene and environmental factor is crucial
in modulating the vulnerability to PD ( L' Epi copo et a!., 201 0) . Th alteration of tubulin
tructur , mitochondrial dysfunction and sub equent biological change in lipid, protein and
DNA peroxidation are common change ob erved in AD (Carocci
t al..
2014) and PD
patients. These pathological changes are al o often ob erved in MeHg induced neurotoxicit)
in different exp rimental model .
PD i a commonly occurring neurodegenerati c di order characterized b.}
elective lo, · of
dopaminergic neuron and progres ive neurodegencrativc movement di ·order that produces
mu cular rigidity, bradykinc ia, tremor of re ·ting limbs and loss of po ·turn! balance
23
( bdulwahid
pre
rif nd
I nt and d
hm d Kh n. 2 10: Jiang t 1.. 2
in th br in.
nigra. v ntral t gm ntal ar ~a
1·
ncur n main!
nthc i7 d
t v.idel; . tudied s;~tem · in the brain . ince iL di sc
7 : J nc. and
in th sub tantia
ncur I gical and en do rinol gical diseas s such
hi7 phrcnia. and I Iuntingt n · s, d i ca. e ( ' ui et a!.. ~006 ).
unn tt. _
pinephrin ,
nd h; p thalamu. ( i oullon. 2002). The dy. function of
d paminergic rclat d pathv\ a) . c n pr du
am ng them
) i the m st
pamine (
um nt d ate h lamin neur tran mitter am ng th h rm ne
n r pin phrin . and
a
7 .
neurons ha c been
cry (Bjorklund and
iller. _00 :Yo ung et al.. 2011 ). In addition. dopamine rc carch
ha b n unique \\ithin the neur . cience in a v.a; that is ahlc to bridge basic science and
clinical pra ti
(Bj rklund and
unnetL 2
7b). ince I
is involved in many important
a pect of behavi r. uch a m tor controL m od regulation. cognitive ta k . addicti n, Jeep.
puni hment and re\1\- ard ( i oull n. 2002) ( Li
neurotran mi i n m diat
and Roeper. 2008 ). D paminergic
through everal linked pr ce es. including sy nthe i . rclea e.
torage. r ceptor activation. uptake and metaboli m. Tyro inc hydroxyla
(TH). an enzyme
that limit DA ynthe i . convert L-tyro ine to L-
P . \1\-hich i then decarboxylated to
DA. Then DA is tran ported into
through the ve icular monoamine
ynaptic ve icle
tran porter (VMA T). with presynaptic action potentiaL
r leased from the cell.
nee
relea ed, DA activates a variety of po t ynaptic receptor \1\- hich ar Iinked to different c II
signaling pathway . DA transmi sion is inactivated by re-uptake the of D
tran porter (DAT)
into the pre ynaptic neuron where it i metabolized by catechol-0-methyltran ·fera e ( ' MT)
and monoamine oxida e (M 0) (.lone and Miller, 2008). Environmental neurotoxicant · are
able to depre
or enhance dopaminergic n urotran mitter by impacting th
proce , leading to pathological alteration
add iction (Jon
and Mi ller, 2008).
in DA-assoc iated disorder
D
cycling
such a
PD and
nd rslanding the molecular mechani sm or hO\\ those
24
nz m
k
m th
nt
n ur
d pamm
and d pamm rg t
lib
'Will fa iii tate identifi ati n or d , 1gn
f n
a ad
path a
re pond to
I gical targe t to
ph arm
r lated to dopamine neur tran mi tter di order.
pr te t nd treat di e
lth ugh the eti 1 g; and path )gene, i.
f P
1• p
rl; under. tood. interacti n between
g ne · nd ~n\ ir nmental fa tc r. haH: been impli a ted a. critical fact rs 111 m dulating the
vulnerabilit; t P
p llutant
t aL. 2000 ).. ' e\ era! ·tudi s ha\ e rerorted that en vir nmental
u h as pe. ticide: and hea\; metal
( j rklund, 1
al
(I Ieller
M i h lk et al.. 200 : R
been h 'Wn t link t a\ ariet;
lzheim r'
di ea e and Parkin
f PO
s ct a!.. 2006h ). r, posure to heavy metal ha
related di ea ·es . uch as
ni m (J n
ttenti n
and Miller. 2008) .
eficit
isorder.
'hr nic e p ·ur
of
g n rati n ha h en pr po ed to contri hute to the neurodegenerati n
rot n
f
r0
pia; a ke; role in the pathogenesis
neuron
ander
and
r enamyre. 20 l 3 ). ' harle. et al. ( ' harle
et al.. 2006)
analyzed data collected from L049 men aged het'Ween 7 l to 93 and D und a igni ficant
a ociation between occupational e po ure to pe ticide . olvent . metal , mangane . and
mercury (during their middle age) and 14 movement abnormalitie . It wa found that high r
exposure to any metal , and
p cifically mercury, wa a ociated with abnormal fa ial
ex pres ion. Dantzig (Dantzig, 2006) tudi d 14 patient with Parkin on' di ea e, and found
detectable amou nt of blood Hg in 13 patient who a! o had
rover'
di
a e (tran ient
acantholytic dermato i ) and proposed that llg cou ld be involved in the etiolog; or PD and
rover's di ease.
A di cu ed earl i r. the syndrome cau d by Me ll g poi ·oning is called Minamata di ·ea:e
( eccat IIi et al. , 20 10). The early ign or congenita l Mellg poi ·oning can he mistal-.en for
other di ea c and over-looked, especia ll y in mild cases ( randjean et aL 20 I 0) . l--or
25
amp le, th
ndr m
pi
h p
the ta ,
.
mt a
t a!.. 1
d
h aring (
ntr 1 tud; .
c e
t
.
111
ith r m ngan
pr du
), v. hi h bar m n)
r c pper \\ a. as
iatcd 'v\ith P . 1 he
ppcr. v.. a. a.
iated 'v\ith P
cupati nal e po ur
als
[t und
howe
r,
indi ate that
f the
th t dual
ccupational
r nn al n \\ a: n t related t th e n. et f P
arl ) ex pc ure t
chemi cals in creased th e
metab lie ;ndr m lik di ea c and c th er health i ue in later life (F
ampl e i
f
imi I ri tic. t P . In a p pulation -ba cd
rell ct al ( J rcll ct al.. 19 9) ~ und that hr 111
p ur t 1r n, m r un
doe
d in adult during the Minamata and Iraq
n r di turban c , tr m r , d arthria, and lo
f le d. 1r )n and
mbin ti n
vid n
d b Mel Ig b r
u ccptibility to
ct al. . 201 ). An
p ur t meth; lazo. ymcth anol (a ncuronto in ) from th e ource of fo od
or m dical treatm nt potenti all y contributed to th e eti ology of AL,, and PO dementia
compl e
ndrome in region pecifi c p pul ati n ( ' uam. Kii and W st Papua). ' urrent
know! dg indicat
that th re are van ou ri. k fac tor leadin g to the dev lopmcnt of PO
phenotype. which e pre sed in th in cr a ed odd rati o for PO in epid m1
g1c tu die and
characteri tic ofth e ph notype produced in experimental model ( 'ory- , I chta t al. , 2005) .
Wh ther MeHg expo ure i a ri sk factor in th e form ati on of PD phenotype i
till not kn own.
However. th ere are known ynergisti c effe ct of vari ou to in that can re ult in co nditi on
like PD. For example. oxidati ve tre
is an important factor o curr d in the proce
neurod egen rati on ( hukla et al. , 2011 ). Many of the MeHg induced change
f
uch a
oxidati ve stre
and di turbance of neurotran smitter functi on have al o been impli ca t d a
major factor
in PD . Moreover, th ere ar
likely other overl apping and/or unknO\\n
mechani ms in the etiology of PD . Re earch on the e. pl orati on of envi ro nm ental toxicant ·
uch as M I lg e po urc and relevant di order ha e trcmcnd ou · impli ca ti o n ~ in prevention
26
and lini al
gn
m hani m
fM
MPP
ti
( ang n
i a m t b lit
pr du t
id n
f MPl P. a \\ell kn 'Wn to icant that el cti ely de troy
d pamin rg1
neur n in the uh. tantial ni gra. v.hi h is haractcri ti
.... 01
. MPT
\\a identifi d b) a
n 'vV
nth ti
th m hani ti
drug in anti- P
and th n entry
~ th
(llarc et al. ,
imilar
hrc nic . ign · of Parkin s n ·
di ca c
n. MPTP MPP ' \\a. \\ide!] used a parkin on m mimic m
u1 t al., 20 I 1: Zhang et al.. 2011) and devel pment of new
tud; of
tal.. 20 l 0: ' a
(
of P
identl; in 19 ~ fr m pc pic \\h addi ted in admini ster a
mpound \\hi h c n induce
(Lang t n tal.. 19 . ., ). in
need d to larif
ll through
tal.. 201 0) . MPP + i · c nvert d from MPTP by MA ,
T. which particularly high e pre · ed in the cytopla m and
membrane of ub tantia nigra par ( torch t al.. 2004 ). MPP ' i d liv r d from cytopla m
into the mitochondrial matrix by the gradient betwe n inner m mbrane . and then combine
with NADH dehydrogena e of complex I to top electron tran port. I ading to
The ub equent effect of the energy d ficit cau
TP depletion .
of extracellular DA level in
triatum, and further promote the generation of R S. uch a hydro yl radical ( · H) ( ing r
and Ramsay. 1990). Therefore, the important manife tation of MPP+ excert it neurotoxicity
is mediated through inhiting respiratory chain compl
I in mintochondrial. Intraventricular
infu ion of MPP on rat ha been shown to reduce triatal DA level and progr
ive lo t of
TH-positive neurons. Mitochondrial appear ~ woll n. and conden ed material \\ re found in
DA neurons (Yazdani tal., 2006). Mor over. execs ive production of free radical in rea ·e
memberane lipid p ro idation thu ace leratc the vulnerability of dopminergic cell death
( bala, 2002) a wel l a
ther neuro logical ympotom 'Which featured by PO patient .
27
High-throughput
cr emng m th d
ha e dem n, tr ted that multiple
In
ed int
MPP
indu ed d p mincrgi
indu
d gen
hang
in th
ateg ric
ample, MPP + in 40 ~M
n ur
f ap pt
ignaling pathwa
. . id ti ve tr s. and ir n binding
n
ell . a midbrain d rived d pamincrgic ncur nal cell line (Wang ct aL 2007).
ha
g n
m d pam in rgic
hang
p pt
and
mit
t al ( ' ha
et a!. ~ 15) :tud\.
imilarl , in
h ndrial
PP + 'A a
ignaling tran ·du ti n. tran , porter
d grad
y tem. v.
al
and iron transport.
d\ ·functi n. I paminergic signaling transduction
d m n tr ted a th m t affl ct d function affected b; MPP +.
MPP n ur t xi it; . . u h
hown triggering signifi ant
was
ther mechani ms related to
· ubiqui tin pro tea · me . ; tern (UP ,' ). an intraccll ular protein
h 'An a · ciation v.. ith MPP induced d pamincrgic n urotoxicity
(Lim. 2007). It ha be n r p rt d that Puerarin. an anti-oxidative c mponent extracted from
Pueraria I bata and
h'A i Pu raria th m
ni i Benth. v..as able t
protect , , 11-SYS Y from
MPP+ ( 1mM) elicited c ll death through r gulation of UP ' functi n ( ' heng et al.. 2009) .
Mor over. MPP e hi bit d neuroto icit; wa reported to be related to the metal m taboli . m
in idiopathic Parkin on· di ea e (Hare et al.. 2013 ). In a population ba d ca e-control tud).
Gorell et aL ( orell et aL 1997) howed that occupational expo ure (more than 20 year ) of
lead-copper. lead-iron and iron-copper ignificantly as ociated 'Aith PD than any of the e
metal alone, indicating the e metal may erv a n k factors alone or together to facilitate
the d velopmcnt of PD. However. th
mechani m underlying the e effect remam to be
ill ustrated.
28
hapter III.
ffect
f M thylmercur
eur nal
n D pamin Relea e in MN9D
ell
ame and lffiliation of 1111lor :
Yu ting ha 3 ,
ing Man ' hanh *
ur ·c and I·n\ir nm ntal ,' tudie. ,
Univ r it) Wa). Prin e ' e rge. B ' . ' anada
a unb
of
....
rthern Briti h
4Z9
cpartment f Bi I gy. nivcr ity of )ttawa,
1 6
Fmail : lauri .chan au ttaV\a.ca
0 Mari e ' uri c,
29
b tract
len
f Parkin. on' di ea e
ur t etnir nment l p llutant , but them chani m
f path gen si are till
_. pid mi l gi al evid n
(P ) nd
p
un lear.
he bj
d pamin rgi
tiv
ha, h \\n a
f thi . tud
L
iati n b tV\ en pre
t
tn\
• tigate effect.
and c mpare that t
n ur n l ell line.
f meth lm r ur (M ll g) on a
1-meth l-4-phen lpyridinium
(MPP , a \\ell-e ta li hed agent a..
iatcd \\ith pathogene i of PI . M
e p
(10-400~tM) ~ r 24 or 4
d to Mellg (1-10)-lM) and MPP
h.
D elL were
ur results . howed that
M Hg indu ed ell death v. ith b th time and de e dependently . M J lg al o dccrea ed the
r I a
of d pamine (
(H
) imilar t th effe t
th
ame tim . both MeHg and MPP .. de rea ed the ynthc i of tyr
). .4-dihydr x; phcn; !acetic acid (D P
' ).and hom
anillic acid
f MPP . . There V\a an incrca. e in I ( PA ' I IV AID
and dopamine tran p rter (D T) at the mR
and pr t in level .
ratio . At
inc hydroxyla e (Ttl )
Xpre
I
n
f the U.-
ynuclein (a- yn). a hallmark neuropathological indicat r of PD. wa al o up-regulat d at
the mR A level but not at th
oxida e B activity wa
The e finding
protein level after MeHg and MPP + do ing. Monoamine
up pre ed in all MeHg treatment and MPP ( 1).lM )-treated c II .
suggest that MeHg can disrupt th
ynthe i . the uptake of D
and th
metaboli m as well as alter the biology of a- yn imilar to MPP . Expo ure to MeHg rna;
potentially be a ri k factor for the development of PD.
Key word : Heavy metaL Neuroto icity; MP P+; Parkin on· di ea ·
30
Introduction
Parkin
n di ea
milli n
fp
hav r
gni7 d a p
(J n
and
(P ) i
f th m
pie v. rldv. ide. The
iti\e
t c mm n neur d g n rati
·a t au ·e of P
e er. rec nt
n. 197 ~).
rk
ccurren e of PO
metal · have
ciated '' ith the path gene is f PI (R )OS, ..... 00 : Michalke, 2009).
m thylm r ur] (M Hg).
and Mag
is , till unclear. I I
rr lati n bctv.cen indu. trializati )n and the
a w 11-knO\\ en' ir nmental neur t
M rcur ·
di ea e that affect
iller. _ 0 ). r n' ir nm ntal p )llutants :u h as pesticide and hea
b n r p rt d t be a
( lark
n
re m re t
ntral n rv u
icant. The orgamc
1c to li,ing organi ms than it
) tem i the mam target of rgam
[! rm '.
such a
1n rgamc form
mercury ( ' lark
n
. 2 06). M r ury an b accumulated in the c rte , ·triatum. hipp
ampu , brain
ord . The m t comm n clini al neur I gi al
ympt m of
t m, cerebellum. and pinal
MeHg p i oning ob erved in adult in Japan and Iraq epi
, en ory di turbances. trem r . dy arthria. and lo
Par the ia i u ually the fir t neurofunctional
2006 ). Pathological re ult
central nervou
de were hypoesthesia. ata 1a.
of hearing ( inomiya et al.. 1995 ).
ymptom ob erved ( lark on and Magos.
in the victim of Minamata our break al o indicated that the
ystem wa th primary it of MeHg poi oning ( ' lark on and Mago . 2006 ).
The motor dysfunction
caused by MeHg e po ure ar
imilar to th
ymptoms of
Parkin n · disease.
The bi ological mechani m of MeHg on central nerv u
y tem are ti ll unc lear.
ne of the
e tabli hed mechani m by whi ch MeHg can e ' ert to. icity i th roug h the di . ruption of
neur tran mitter fun cti on (Fitsanaki
and A chner. 2005 b). Dopamin e (OA) i the most
preva lent catec holamine neurotran mitter co mpared to epinephrine and norepinephrine in the
31
br in.
nd
h
rin
di ea
di rupti n
gi
l di a
f d pamtn rg1
u h
r !at d path a
P rkin
m
( u i et aL .... 0 . Th re i
n
111
1 ' eL (Far
P L ... , th intr - ellul ar dopamine
M Hg (
tt ri ct al.. _
meth 1- -a artate ( M
au
neur 1 gi al
nd
hiz phrenia, and I luntingt n'
di
vid n e f Mellg affe ting th relea
mpl . inje ti n f MeHg int the tri tum in fe ly m
dep nd nt in rca
n
.F r
f
in g rat indue d a concentrati n-
ct a!.. ~002 ). In th rat phc cr m c t rna cell I in
ntent v. a. d ·c-dcpend cntl ] decrea cd after
po ure t
). Mel Ig can aL o medi ate its nc ur t . icit) by interferin g with
) or d pamine rgi rccept r. .
egati e co rr lati on were ~ und
betw n t talll g and d paminergic
2 rece ptor den. ity in v.. ild mink (Ba u ct al. , 2005a) and
wild ri ver tt r ( a u et al. , 2 05b ).
I . Mef Ig wa. reported to in crea e NMDA recept r ·
both in vitro and in ,.i,·o (Mi yam t et al. . 200 1:
d unt
and
han, 20 8) . The e re ulL
ugge ted Me g c uld di rupt d pamin ergic path v..ay in the central ner ou
1-meth yl-4-phen lp ridinium ion MPP+ i
a we ll
anatomi caL behavioraL and biochemical change
y tern .
tudi ed comp und th at can induce
im ilar to th o e ee n in Parkin on' di ea e,
whi ch i characterized by ni gro tri atal dopamin ergic n uro-d ge n rati n (Heikkil a et al. .
1984 ~ Yuan et aL 2008). MPP ha bee n hovvn to cau e a lo
of th e stri ata l nerve termi nal
a indicated by decrease in tyro ine hydroxylase (TH ) and dopamin e tran porter (OAT) a
well a dopamine and its metabolites leve l (Nakai et al. , 2003 ). a- ynuclein (a- yn ). a
presynapti c protein closely related to DA regulati on (l· ountain and R., 2007: Fountaine and
Wade-Matiin s, 2007: Herm an on et a!.. 200 ~ Zhou et al. . 2006) i a neuropathological
hallmark of PD . Pro hibiti ve ac ti vity of DA ha
bee n foun d to be high !) rela ted to
acc umul ati on of th e a- , yn protofi bri I (C onway et al. , _oo I ). M pp+ has bee n ho\\ n to cause
an increa e in a-Sy n aggrega ti on (Jeth va et al. , _o 1 I). In addition, Mo n amine oxidase-B
32
(M
1
a mit
h ndrial
nz m
MPP ~ (
udim and
akhl ..... 0 ). M
that has b en
iatcd
ts po i ti
inhibit r ha. be n d e ~ c l pcd in th e treatm ent of P
and M
2
.
rt MPTP 1-meth '1-4-ph n l- L2.. -t trah dr p rid inc) to th a tive
n
d m n tr t d t
m tab lit
f M
f th
n
i th PO,
(Y udim and Ri dcrcr.
4) .
Th mam bj cti\'e f thi
it me hani m
mpan , n to MPr ·. ~· c meas ured th e rclca. e f
111
with MeHg and M P
of ynth
h dr
izin g
yla
·tud ) i. t in\ c. ti ga tc th e cflcc t of M ll g n
+
•
regul ation and
and its metabo lites
·p ure u ing a neuronal ce ll Iinc M 9 . whi ch have th e properti es
at ch I min e and ex prc. in g ncur n- ·pcc ifi c mark er
uch as tyro ·in
(Herm an n. _00 ). We hvp th e iz th at Mellg can dec rea ·c th e relca c of
by: 1) d cr a in g the
limiting nzyme for D
A
ynthe i 'v\ith dee r a e in l] r in c hydr xy la ·e (T ll ). th e ratei : 2) dec rea in g th e DA re- uptake through th e decrea e
ynth
f
dopamine tran porter (D T). a tran m mbrane protein th at m di ate th e r -uptak of DA;
and 3) reducin g DA metabolite by inhibition MA -B ac ti vity. W will al o in e ti gate the
effect of MeHg on the synthe i of a- yn in the M 9D cell .
Material and Methods
Cell line and treatments
MN9D cell s ( hoi et aL
199 1) were main tained in DM M ( igma. M . U
uppl emented with 1Oo/o (v/v) fetal bovin
100!-lg/mL streptomyc in ( ibco,
2 at 37°
erum , 3. 7g/L Nal-JC
1.
)
1OOU /mL penici ll in. and
nt. , Canada) in an incubator 'v\ ith an atmosphere or 5° 0
ell s were gr wn in poly-0 -ly ine coa ted lla ·k (BD. NJ, U,, ). MN9D celL
w re e p cd to different d c of Mel lg or MPP +. Stoc k so lut ions ( 1mM MeHg or 1OmM
33
MPP )
er
pr par d in \\at r. Medi
btain d fr m
]fa
ar
wa r pi
) and
d
er
48h. Me ll g
nd MPP
1
wer
igm - ldrich ( nt. ' anada) .
ell viabi lity a ay
n M
a
a h \\ 11
) \\a
f
arricd
-v. 11 plate
n entrati n bet\\
all
i r ~4h he~ r
bout
adding the neurot
x ]O
c lL
ere
lated in
1n Mellg or MPP + at
n I ~tM t l 0 ~tM, r l O~tM t 400 ~M, r ·pe ti vel . , ample treatment
ndu t d \\ith fi\
in triplicate .
ut t1 '\aluatc ell \iahilit)' .
rcpli ate in each , periment and each e, periment wa
onductcd
ntr I and blank amp! \\ere in luded in all ample plate . Treated ce ll s were
r , oluhiliz d MTT ~ nnazan produ t wa
ed t gr \\ [! r _4h and 4 h. The am unt
determined by p troph t m tf) at
95 nm . ' ell viability \\a e pre ed a percentage of
the contr I gr up.
HPLC detection of DA and it metabolite in MN9D cell culture medium
After 24h incubation with MeHg or MPP +. 200~1 aliquot of m dia from 1 x 10 7 ce ll w re
mixed 1:1 with ice-cold 0.5M metaphosphoric acid, and filtered through a 0.22~M centrifuge
tube filter ( orning. NY, U A) at 15,000 rpm 15 min at 4° . The flovv parts \\er collected
and 20~L
ample was then loaded. 0
, 3A-dihydroxyph nylacetic acid (0 P
homovanillic acid (HV A) were analyz d by
detector (pul ed Water 464, Millipore, M ,
usmg a
IL
N HPL
) and
y tern with electrochemical
). The isocratic
paration was perf rmed
18 rever e-p ha e column ( 150 x 4.6 mm, 4~M: Phenomenex. ' . U A). The
mobil e phase was made up of a 0.1 M acetate, 0.1 M citrate butTer at pl-14. cc ntaining
228 mg/L _, OTA tetra odium
alt. 200mg/ L sodium octyl sulfate and 10°o methanol a
de cribed previously (Vicente-Torr s et al., 2002). The OA, DOP
' and IIV
release le\ el
34
ln
11
1 ul t d ba d n a m1
!uti n.
nl
th r\\-1
tra n
ript P R
f
( nt.
m nti n d.
a
rding t
n
n c n ntrati n
II reagent \\-er purcha ed from
igma- ldrich
anada).
em1 -rev er
V\a i )lated fr m ·e ll , mplc, arter 4 h of e. p sure. vvith th u. e f
tal R
R
d tandard ur
a 1 Plu Mini
it ( tagen.
Ou r m ter ln\·itr gen.
c nccntration V\a. mea ·urcd in a
nt.. 'anada) . R
nt. 'anada).
11g of i ·olatcd total R
u ing th T qman Rev r c Tr n. cription Reag nt · kit ( pplied
a final\' lum
lumn
ubit
V\a. rever. ed tran cri bed
io y ·tem ,
nt, anada) in
f I 00 111 follov, ing the manufacturer's in tructions. Primers (Liu et al.. 2008;
Zhang tal.. ~0 I Oa) u ed were
T (forvvard 5' -T ' '1 GGT ' ATTC:iT'I 'T ' 'TC- 3'.
-...,, ). 1 H (forward 5'-
A
T
5'-T
ynuclein (forward 5'-T
A T
revrse5'-
T
T
ATAGA
T T
' GT
TC A A 'TT ACA A-3'),a-3'. rever e 5'-
-3'). GAPDH (forward 5'-TTGTTACCA C GG
T TTTA
CG-3'.
G-3')a aninternalcontrol.
ycling condition wer 95 ° for 5 min. 0 cycle of 95 °
for 30 ec. 56° - 60°
for 30 ec.
72 ° for 30 sec and follow d by a 5 min e ten ion tep at 72 ° . The product w reanalyzed
u ing agaro e gel electrophoresi . Band inten itie w redetermined den itom trically u ing
ene Tools oftware ( yngen . MD, U A). and the r ult ar
hov.n a r lative e. pr
1011
of ratio of target gene to internal c ntrol.
35
lmmun blot
fter 4 h f
p
ur
elL \\ere h n
ktail
nd
dium
rth \anadate (,' anta
h m gent7 d b) · Jni ati n and
·on entrati n \\a
pr tein
dermin ed b) Bradfl rd as. a)
e membrane ·.
1; i buffl r kit vvi th PM. F, pro tea. e
). The cell
ru1.
ere then
entrifugcd at I ~.O OOrpm for _0 mm at 4° ' . Pr te in
(_ -60~tg) \\ere . cparatcd
nitro ellul
t d in Rl
Bi -Rad. ll er ulcs,
' ).
liqou ls
n I 0-15° o a r) !amide ge ls and tran ferred
1emhr ne: \\ere hi< eked \\ith 3° o BS
sc lution
111
f
nto
TBST
.·olution befl re incuh tim \\ ith the fl liO\\ ing antihodic. : 'Ill ( ' hem icon. l :500), OAT
( hem icon I : ~
loading
). and u-.') n ( ' hemic< n. 1: 0 ). ' P I I ( ,' anta
ntrol. Pr tein hand \\ere dete ted h) a
quantifi d b) 1ene T ol anal)
ru7 , I: 00) was used a a
.3'-Diaminohenzidine (0/\B) kit, and
ft\\are (, ;ngenc. MI . US ).
A naly i of MAO-B activity
ell were collected aft r 48h treatm nt. V\a h d and re- u pended in c ld
mM K L 120 mM NaCL 50 mM
al--bP
4. pH 7.4 ). then
a/K buffer (5
onicated . , upernatant were
removed for protein concentration analy i (Bradford a . ay) . MA -B activity was mea ured
a de cribed earlier with modification ( tam ler et al.. 2005~ Zhou and Panchuk-Vo lo hina.
1997). Briefly, the reacti on tarted when th M 0-
inh ibi tor clorgyline ( 1mM) V\a
incubated with ampl e fo r 30 mi n at room temp rature, then 100111 of work ing olution
contain ing Am plex Red (20 mM ), hor e radi sh pero, ida e typ IV (200
/mL). tyramine
( 100 mM) and Na/K buffe r we re add ed into the cell ample . Incubation. \\ re continu d for
a minimum of 30 min . pecifi c flu ore ce nc of re orufin , the oxidati on produc t of Ample.·
Red reage nt, wa m a ured u in g a Multilabel Mi roplatc Reader (Bioscan Inc ., Wa ·hington
36
i th , itati n at
Onm and m1
rufin pr du t wa
e a pm 1/mg pr t in/minut .
pr
tati tical
nal
II d t
pre entcd a me n
ar
1
analy i V\ith ne-V\ay
r t-te t
(**)
n det cti n at 9 nm. R
r tV\ gr up
' .
. ,' tati . tical
. ignific nee
as obtained b
te ·t. [! II v.ed b) L,' 0 int r-group
mpan
n u ing ,' P,',' I .0 ,' ftV\arc .
mpan
vanance
n post ho test ,
aluc f P<0.05 (*), ? <0.01
r P< . 01 ( *** v. a r garded a . igni fi ant.
Re ult
T he to icity of Me H g and M PP to th e M 9 0 ce ll v iabi li ty
MeHg d crea d c ll viabilit at con
ntrati n of 5~-tM, 7 . 5~-tM, and 10~-tM in 24 and 48h
( ig. 1 ). The
~ 8~-tM in 4
50 wa
e timated to b
h. In contra t MPP + do ing re ulted in a
dec rea e of cell viability at all concentration ( 10~-tM -400~-tM) for both 24h and 48h (Fig . 1B) .
Changes in dopamin e and it metabolites relea e f rom MN9 D cell
Typical HPL
chromatogram of the culture m dia after the MN9D cell v..ere xpo ed to
MeHg and MPP are hown in Fig 2. The quantitie of e. tracellular DA produced b) the
MN9D cell declined with increa ing do es of MeHg (Table L (F(3,8)=, .607, ? =0.065) . The
lowest DA relea e was 0 . 1 2 ~-tM when do d with 10~-tM MeHg for 24h compared to 0., 4 ~tM
in the co ntrol. MPP+ exerted the stron ge t effec t at 50~tM resulting in 0.04~tM (P 0.0 I) on
DA release in the media.
here were decrea e tendencies in D PAC and I I A release from
ce ll media treated with Mel Ig and MPP+. The DO PAC llV AIDA ratio increased slight!)
37
ith M Hg
p
ur
.P
F . ) 0.
)
nd
ignifi anti
wi th MP P+ e p ure
P-
ro o 8
~
.::
a-Syn
.0
< 04
GAPDH
0
MeHg 0
1
5
7.5
10
0
(~)
1
24
8
I
TH
~
18
-,
r
t
5
MeHg ( ~M )
75
10
TH • OAT • a-Syn
I
J
c
OAT
:::J
~ 1.2 .J
~
a-Syn
~
.0
< 0.6
.J
GAPDH
0
MPP• 0
10
50
200
400
(~)
0
10
50
200
400
M PP+( ~ M)
Figure4. Dose-re pon e effect of (A) MeHg and (8) MPP + on th e pre ion of TIL DA T
and a- yn protein analyz d by immunoblot. MN9D cell were exposed t MeHg or MPP + at
diffi rent concentration for 48h. The total homogenate wer prepared from M 9D c II .
Data how a typical e periment performed in triplicat . ach band wa quantified b;
den itometry and nonnalized to that of GAPDH. Value are mean ±
independent xperim nts. *P
......
(.)
~
CD
0
2
~-
1
-=~
I
~
~
~ igure5 .
e po
0
ffect of MeHg and MPP ~ on M
-B acti\ it} in MN9D cell . M 9
cell
were
d to a dif:D rent range of M Hg and MPP ~ [! r 48h . A one tep nuorom tric method
wa u d t determine M
-B activit} . Re rutin pr duct wa e pre ed a
protein/minute.
perim nt wer run in triplicate . "**P
a.
1 E-0 1
7
5
l
log 2 Fold Differen c e (MeHg51AM/Control)
Log2 Fold Differen c e (MeHg2.51JM /C ontrol )
c
1 E-05
1 E-04
Figure 1. Vo lcano pl ot
1 E-03
ex pre sio n in 1.5 -foJd chan ge in M eH g
2.5 ~M and S ~M (A and B), MPP+ 40~M
(C) expo ed MN 9D ce ll s. T he blue Jines
indicate the thre hold fo r th e P value of
<1.>
:J
ro
>
how the gene
1 E-02
a.
the /-test.
1 E-01
1 E+OO
-7
-5
-3
-1
3
5
7
9
Log2 Fold Differen ce (MPP+401JM/Control)
64
Fatty ac1d metabolism
1 7%
Alan1ne . aspartate and glutamate metabolism
17%
A
Proteasome
17%
2 2rYo *
Pyruvate metabolism
2 2% *
Propanoate metabolism
Alzheimer's disease
28%
Ox 1dat1ve phosphorylation
28%
Insulin signaling pathway
34%*
Parkinson 's disease
3 4% *
3 9%,
Regulation of actin cytoskeleton
3 gof<, *
Pur1ne metabolism
4 5% *
Huntington 's d1sease
0
2
Pyruvate metabolism
1.3%
Cit rate cycle (TCA cycle)
1.3%
B
Fatty acid metabolism
1 8% *
Propanoate metabolism
1.8% *
Amyot rophic lateral sclerosis (ALS)
2 2% *
Glutat hione metabolism
2.2% *
Valine, leucine and isoleucine degradation
2.2% *
Ribosome
3.6% *
Parkinson's disease
4.5% *
Alzhe imer's disease
4.9% *
Oxidati ve phosp horylat ion
Hunt ington's d isease
10
8
4
6
#Protein s/Term
4.9% *
_.,",--'II
0
~"f-./""'~-~
:~~,..,..~~~T'!""'>>~~·~"'~)J"~"-~""!o!'!''j
.
3
'
.
12
6
9
# Protein s/Term
6 3% *
15
18
65
Fatty ac1d metabolism
08%
Pyruvate metabolism
08%
c
Propanoate metabolism
1 1% *
Parkinson 's d1sease
13%
Ox1dat1ve phosphorylation
1 3%
Arginme and prol1ne metabolism
1 3%.
Proteasome
1 3%.
Pynm1d1ne metabolism
16%
Ubiquitin mediated proteol ysis
1 8%
Cell cyc le
2 1% *
Ribosome
3 2% *
Spliceosome
7 4% *
0
6
18
24
12
#Protein s /Term
30
36
Figure2. nrichment analy i of KE G Pathwa; in (A) MeHg 111M. (B) MeHg S11M and
(C) MPP+l 011M treated MN9D cells analyzed by D VID . Th elected 12 enriched
categories were applied in the figure .
66
l
oxidoreductase
activity
B
4 .0
BRIX l
structural
const itu en t of
cytoskel eton
DY N LL2
STOM
T U BB3
T U BB 4A
1\PRT
;;;
QJ
iii
c..
n
........
0
::I
0
O'Q
N
0
:::1.
.....
0'1
....
CD
~
transf erase activity
:::E -2 0
-40
r- hel icase activity
1
-40
-2 0
1
r
0.0
2.0
r
4 .0
6.0
MPP+10~M/ Con (log2)
~
SLTM
PI\BPC 4
nucleic acid binding
c
r- RNA splicing fa ctor activity
RB M 28
RB M 39
STX12
TFG
receptor and signal tran sducer
activity
IT PI\
SMC4
FI\F1
GI\T 1\4
N u ll2
M EPCE
M TC H 2
N CI\PG
OSB PL1A
PLRG1
RN H1
SSSC/\1
c
::t
XRCCl
EIF3H
SDPR
GL01
51001\6
PS M G1
I\P1 61
I\P2 M 1
ARPP19
..
:::E
DDXl
DDX18
DDX191\
DHX30
H2AFY
HIST1H1D
I\BCF2
M E M 01
NAPl L4
N UP50
TI M M BA
EIF2B4
:.
!2 0 0
AS3MT
BI\ZlB
PIGK
SDF2L 1
TBL2
M I\P2K1
-I
\
cg; 2.
g
~ hydrolase activity
....J
prote in binding
transporter activity
translation initiation factor activit)/
lyase activity
calcium ion binding
chaperon
l
4 oI
~ 201
c
80
~
i-"iI
...
-4 .0
I
-4 .0
others
I
-2.0
I
0.0
I
2.0
4 .0
MPP+10~M /Con (log2 )
Figure3 . (A) Heat map of common changed proteins for GO molecular functional
classification in MeHg and MPP+ treated MN9D cells. Protein abundance ratio
(treated/contro l) are compared between (B) MeHgl1-1M/Con (log2) and MPP +l 01-1M/Con
(log2) (Spearman correlation coefficient rs=0.504 with a p-va1u <0.0001) and (C) MeHg
S1-1M and MPP+101-1M (Spearman correlation coefficient r.,=0.525 with p-value <0.000 1).
67
liJM MeHg
• 51JM Mc Hg
u
.
~
0
~
£
"C
:2
0
,~ ~- ~ _,.~ "' . ,.. ~ ~-0 ~~ ,(:- "' ~ ' ..~ .::-~ r,"> <" ~ ~ ~ ,., •• ..1- ~., .,~ ..... #' ~.. (' .? ..,, ,~ " .t "' .,~ ~· ~· ~.. .t! ¢" *' •" ...~ y ._, .p .;,' ._, "' ,r ~~ ~.,. "./':
,..::' ._.." .;;~ v ~ • +'',--'"'.,~;..~·~~:f~J?.;'l>~iifJI.fl."'~~~~"J. 18 and o/o of term ge ne 2:. 15o/o) were
appli ed to reduce the related term redund ancy. Onl y
0 te m1 s w ith P va lue Ie , than
0.05 were accepted a nd prese nted . Cytoscape Cl ue Pedi a plug- in (Bindea et a!.. 20 13) wa
used to visuali ze the known interactions (from STRING 9.0) betwee n the GO term s and
the associated prote in s.
84
Two nlin
b
t aL 2009),
ere u ed D r
than 0.05
r er oftware,
a u ed a
ab I m1
4 .2 (M dina t al.. 20 10) and
ellular c mp nent nrichment anal
ori lla ( den
P value les
ut ff.
In rder t explore the p tential regulated tran cri ption factor o [ Me l-Ig on ion tran port,
Web
talt (WE -ba ed
Ene ._ eT
identify enrichment of miR
naLy i Toolkit) (Wang et aL 2013) wa used t
targe ted ge nes in the GO term of ynaptic tran mi
1 n.
Pathway enrichment anu/ysi.\
Pathway enrichm nt analy i on the differentially e pressed protein
u ing IP
and Web
talt onlin
ource .
were conducted
li t of 102 differentially expressed protein
in marmo et cerebellum wa uploaded into the IPA database.
identified and were eligible for generating Canonical
ne hundred proteins were
ignaling pathways . Web e talt
online source was also u ed for pathway analy is which provided the direct connection to
biological pathway
from Kyoto Encyclopedia of
Hypergeometric test was u ed to calculat
ene and Genomes (KEGG ).
P value from the differentially expressed
proteins against the identified 1000 proteome . Bonferroni method wa applied to correct
the P-value for KEGG pathway analysis.
Western blot analys is
To validate the results from the proteomic analysi , four proteins, Disks large homolog 4
(DLG4), Sodium/calcium exchanger 1 (SLC8A 1) Vesicular glutamate transporter 1
( L l 7A7) and T-complex protein 1 subunit zeta (C T6A) were quantified u ing
western blot. Protein extraction and concentration determination were the same as
85
rib d in
tion 2. 1. Pr t in ampl
(1 0-401-lg)
ere 1 ad d and eparated by 10-12°/o
). Membrane
er block d for lhr with 5o/o kim
aline +Tw en-20), and incubated with
.
.
anou pnmary
antib di
50. ab 1825 ). , L 17 7 ( 1: 00. ab 104 98), and
L ' 8 1 ( 1:800,
ab 1779 2) ( beam.
ambridge, M ), and
T6
Biot chnolog
anta
overn ight.
milk in
B
(Tri Buffered
Inc.
ruz.
' ) at 4°
( I :200, sc-1 896) ( anta
ruz
fter wa hing by TB T,
membrane wer
incubated \\ith llor radi h peroxidase-conjugated (liRP) eco ndary
antibodi
ruz
( an ta
iotechnolog; In .
anta Cruz. C ). goat anti-rabbit lgG-1 IRP
( 1:12000. c-2004) or mou e anti-goat Ig -HRP ( 1:12000. sc-235 4) for 1 hr at room
temperatur . The blot
were
tained b;
Iarity We tern ECL Sub trate (Bio-Rad,
Mi i auga, ON). and target band vvere vi ualized by using Chemidoc imaging system
(B io-Rad , Hercul es, CA). The target band wa quantifi d by using image J software and
the density of each band wa normalized against GAPDH .
Results
Protein identification and cellular component distribution
Proteomic analysis across the 6 cerebellum sample in control and the MeHg-treated
groups resulted in the identification of 2563 proteins (TabS.l ). Representative MS/MS
spectra for two proteins DLG4 (P78 52, Di sks large homolog 4) and L 17A 7 (Q9P2U7.
Vesicular glutamate tran sporter 1) are shown in FigureS .1. Only proteins identified in all
6 samples in control and MeHg- treated mamoset cerebellum were included in our
analysis, which resulted in 1000 proteins.
total of 102 proteins -were found to be
86
differ ntiall
e pr
d (
d crea ed and 16 increa ed) in the M Hg tr ated ample
c m ared t th c ntr l (Tab, .2 ).
th
f di fferenti all y changed protein
abundance chang
between the
ig. 1
h w
contr
and M Hg-tr ated manno. et cer bellum ampl e . Th tripli cate sampl e in th e
c ntr 1 gr up and the the MeHg treatmen t group ~e re clearl y eparated and a good
y in the pr tei n patt rn wa. fou nd ~ ithi n each gr up . Re ults of IPA gene
ont log
(
) analy i
f c llular compo nent are
abundance f id ntifi d pro tein wa a.
foll owin g d
ho\\. n in Fig. ! B. The relative
ciated \\. ith vario us cellul ar co mponents in th e
endin g ord er: cyto pla m (62o/o) > nucl eu ( 16o/o) > plasma membrane
(1 5o/o) > extrace llular space (3o/o).
organell es. The relativ
The remainin g 4°/o w re a oc iated with oth er
percentage of di fferenti all y ex pres ed proteins di stribution
fo llowed the ord er of cytopla m (55o/o) > pl asma membrane (27o/o) > nucl eu (14°/o) >
extracellular space (1 o/o), and other organell es co mprising 3o/o. There was a signifi cant
difference in organell e di tributi on between all th e identifi ed proteins and th e
differentially expressed protei ns conducted by Fisher's exact te t (P=0.046).
GO an alys is of differentially ex pressed proteins in cerebellum
The functional enri chm ent analysis results showed that 62 out of the 102 differentially
expressed proteins were included in 24 significant GO terms (P<0.05) (Tabl e 1). All the
proteins associated with each of th ese 24 signifi ca nt GO term s are hown in Table
These signifi cant GO term s we re grouped into three groups and th
.1.
key biological
fun cti ons of these groups includ e: 1) ca rbohydrate derivative meta bolic proce s and
purine as oc iated nucleotid e metaboli c process; 2) ion tra nsport inc luding vesicle-
87
m diat d tran p rt and ynapti
m rph gen
i in ol
tran mi wn: and
) cell de el pment a well a
d in n ur n differentiation. Ba d
functi nal annotati n net vvork analy i clu tered the
different bi
gical function group
differential!
e. pre ed protein
(Fig. 2 ). It
11
n the pr tein imilarity, the
ignificant
, hovv n
tenn
into three
i ually that 1110 t of the
are a ociatcd vvith the carbohydrate derivativ
m tabolic proce , and purine and ribonu leotide m tab lie proce se . ~o re proteins uch
a
D
4.
TP2 2 and PL
1 \\ere found to be important m linking biological
functi n m arbohydrate deri\'ative metabolic proces . synaptic transmi s10n and cell
development.
Web e talt miR A enrichment analy i res ult showed th e top 10 enriched miRNA
targetting the 20 proteins included in the GO function term of ynaptic tran mi ssion
(Table 2). MIR-19A and MIR-19B were the only significant miRNA that targeted five
down-regulated protein (NAPB, PLCBl, SYTl, BSN, ATP2B2 and NAPB) in th
process of synaptic tran mission (Table 2).
Results of the GO cellular component enrichment analysi
showed the differentiall y
expressed proteins was significantly enriched in pia rna membrane (46.1 o/o). pia rna
membrane part (33.3o/o). membrane fraction (21.6%) and cell junction (15.7o/o)
(Babelomics, Fisher's exact test, P
w
I
()
0
:::>
()
0
=.
B
70
• Identi fied proteome
60
-
~
• Differential expression
50
~ 40
~
~ 30
~
~ 20
10
0
Cytoplasm
Plasma
Membrane
Nu cleus
Extracellu lar
Space
Other
F igure 1. A. H eatmap of prote in a bund ance pattern in di ffe renti all y ex pressed protein s. B.
ellular component di stributi on fo r the tota l identifi ed protei ns (n=99 8, IPA mapped ID )
and diffe renti ally expre ed protein s (n= l 02) in marm o et cerebe ll um . There was a
significant diffe rence in the di stribution of subce llul ar locali zation between total
id entifi ed proteins and signifi cantl y changed prote ins (F isher's exact test P =0.046).
93
f8X02
Bt VRB
PSMC3
SR
VCP
car
GNB5
2
A
hydrate de nva ~ve calaboltc
process
}11trogen compound ca[?'
procass
punfllH:Ontalntng comP9unQ_
_,....--metabolic Prt>ClY
•
SPTANI
RUVBL2
C,MPS
(
GBAS
nbose
ONMI
cell morphogenesiS Involved 1n
neuron d1fferenhat10n
PHGOii
carbohydrate
.AP
derivative metabolic
nucteotrde metabolic process
process
...,e metabolic procass
• ...At.
PIP4K2V
IIRF~
I
•
L1CAM
c II pari morphogenesiS
cell prOJeChon morphogenesrs
cell morphogenesiS rnvolved 1n
ATP6V10
GNA.ORASI
d1fferentratron
SPTBN2
OLG4
•
ANK2
PAKI SRCINI
~ ·K3A
Stde ohosphate metabolic
RAB3A
NTNAP ' NRCAM
procass
111
•
punne nucteotrde metabolic p
puMe nbonucleol!de ~
VPS4A
A P2B2
cell development
PLCB1
ATP6V1H
ANKI
•
LGII
HANK1
co TB
organophosphate metabohc proce~
nbonu
~de metabolic proces:s-
GNAS
•
KCNJIO
GLIJ0 1
•
nucteobase-contarnrng small
molecule metabolic process
lC8At
f)
•
BSN
SUB !
•
SCNlA
synaphc transmiSSIOn
ion transport
LRPI
PPIP
SNAP2~
r t\2
SYT'
NAPB
Ar ::Z112 AMPH
S(P
$
CAM~ 2A
•
SlC17A7
•
SLCGAI
Figure2. An annotation network of three functional group for differentially expressed
proteins m MeHg-treated marmoset cerebellum. The network was generated by
ClueGO+Cluepedia, the GO "Biological Process" was selected, GO term connection
restriction (Kappa score2:0.3 ). Colour nodes represent the functional groups of GO term,
and the size of node indicates the significance of the terms. The identified changed
proteins associated with each term are high lighted in red .
94
• Identified proteome
Cell junction
• Differential expression
*
Plasma membrane part
Plasma membrane
*
Membrane fraction
*
0
10
20
30
40
50
Percentage (%)
Figure3. G enrichment cellular components analysi u ing Babelomics. The a teri ks
indicate ignificant enrichment (P0
180
:r
GAPOH
a..
*
20
05
0 90
:r
•
a..
••
Cl
0
a..
•
•
0 45
•
•
•
•
••
•
08
~
~
a..
••
04
0
<
•
0.6
c(
X
•
00
**
AQP4
0
02
••
••
••••
00
0 00
Control
MeHg
Control
Me Hg
FigureS. Validation of the prot om1c re ult u ing WB analy is of 4 proteins in frontal
lobe and occipital lobe .
. Representative blot of 4 protein from control and MeHgtreated marmo et occipital lobes. B. emi-quantitative mea urement of target proteins as
indicated by 6-7 WB analysi . Target proteins were first normalized by against their
corresponding housekeeping proteins-GAPDH (n= 6. 2 replicates/sample) .
127
VASOPRESSIN REGULATED WATER REABSORPTION
T~ght June n
)
---!)
.,0
Renal in ten titiwn
flu..il (b d)
Co Bet~ duct p rinc~ al cell
urinary lumen
F-acb.n
A~
Basolaterel
membrane
derolyme117.11.
membrane
V2R
AVP
Mlcrotubule
AC
E.xoc ytos IS
~
I AQP2 I \
l
\
Rec
hng\
l
-------~-------,-- ~
\
l
\
I AQP2 I
I AQP2 I --..
Unnary excrebon
/
I
Degradabon
I Reb5 I
I AQP2 I
I
I
I
I
I
- - • Water homeostasiS
0
H;P
I
+
Earl endosome
Tight junction
I AQP3 I
04962 7121/10
(c) Kanelusa Laboretones
Figure6 . Vasopress in-regulated water reab orption pathway was clas ified by K G
pathway mapping system from upload d 62 differentially expressed proteins in FL. Protein
hi ghli ght with red were the one mapped in Vasopre in-regulated \\later reabsorption path\\a).
128
Di cu ton
er brum, e p iall in fr ntal 1 b (F ) and ccipital 1 b
n
f th main targ t r gi n
(cal arine and
(
) ha been h wn to b
f M Hg neur to i ity ( t . 1997) . With tw d ep fi sure
ylvian) in cer brum. marmo et ha e more
imilar neuroanat my to
human than rodent Vvhich lack de p fi ure. in the erebrum . Therefore , mann
good model [! r n uro
human databa
[! r pr
1 n
et i a
e tudy relevant to human (Eto e/ a!. 2001 ). We searched
tein id ntifi ati n from marmo et M , /M
data, and us d human
originat d antib die in We tern bl t for validation . There ults (Fig.5) further proved the
genom
imilarity
f the two
pecie . and the
trategie
vve used in thi
appropriat . MeHg treatment cau d m r ury accumulati n in FL and
tudy were
L. The average
concentration of total m rcury in OL (31.41Jg/g) wa higher than FL (26.71Jg/g) in the
MeHg treated marmo et (Yama1noto et al.. 2012).The e results agree with other studies
howing that OL were more usceptible to MeHg effects compared to other cortical
regions in Minamata disease patient
(Okabe and Takeuchi 1980) and in common
marmoset (Eto et al., 2001 ).
The global proteome of FL and OL in the cerebrum of the MeHg expo ed manno et wa
examined.
A total of 877 proteins were identified in both FL and OL regions. The
number of the identified proteins was similar to those reported by We seling et al
(Wesseli ng el a!., 20 13) using similar label-free LC-MS methods in rat frontal cortex .
Out of the 151 differentially expres ed protein identified in FL and OL, only 3 proteins
(DYNCI LI2, HISTI H2BH and PC) were common! af[i cted in both region (Fig.1).
Thi s indi cated that the effec ts of Me l fg on pro tein abundance change Vvere regionally
129
p
iii in the t
f c rebrum. hi ob rvation i further upported by the re ults
lob
of the h at map anal
1
that h wed hi gh d gre
f con i tenc
of protein e pre ion
ithin th tr atment and c ntr 1 group but a clear di fferen c in protein pattern betwe n
th t
gr up
protein in th e
and
). Ther were more differ ntially xpressed
L ( 6) than in the L (5 9).
he majorit pr tein were di tributed in the
and
111
cyt pia min both L and
location betw n th
( ig.2
L ( ig.2
and
her wa al
differenti ally e. pre ed protein
prot in in the t\\ region . T he e re ult
cellular organ ll e within th FL and
ur re ult
).
no difference in subcellul ar
and that
f the t tal id entifi ed
ugge t that Mel lg did not target parti cul ar sub -
L of ce r brum .
how that the effect of M J-I g in th e FL we re not very specifi c and were
medi ated primaril y through the di rupti on of c II di vi ion, decrease in key anti ox id ant
protein , and interference in the proce ses of energy generati on. These are refl ected by
the protein affected by MeHg in the FL are mainl y in vo lved in cell cyc le and cell
di vision, microtubul e-based process, cellul ar metaboli c proces in cludin g cellul ar amin o
acid metabolic process and sulfur compound metaboli c proce , proteolys is, and growth
development (Fig.3A). The e findin gs are similar to those reported in a previo us
proteomics stud y (Keyvanshokooh et a/.. 2009) that proteins in ce ll metabolism, cell
division and signal transducti on were affected in juvenil e belu ga brain with 0.8ppm
MeHg exposure for 70 day . Among the significant changed functions, su lfur compound
metaboli c process acco unted fo r the highest percentage (20o/o) of proteins compared to
other functions in FL (Fig3 .A). As MeHg is known to react particularl y with ulfhydryl
group (-S H) and
elenohydryl group to form MeHg amino ac id or protein complex
( arocci et a/. , 2014 ), the signifi cant change in protei ns invo lved in ulfur compound
130
m tab lie
m
hani tic
tr
idati
elen
nz m
M H g.
b
e p
(BPNTl ,
pr c
id en e [i r u h pr
b d
h
e
N,
P , TXNRDl ) pr
I o. the mi r tubul
ba ed proce
u h a T
wa
ided
the
ugge t th at Mel Ig can au e
re ul t al
RDl , a major antio idant
ll c cle and ce ll di i i n wa the large t ategor
f ce ll di vi i n in mit
ob
N
rea ing ulfl1 dr I prote in
ure ( abl e I ).
microtubul e
MTHFDl ,
f function affected
identifi ed
n itive to Mell g
mi cr tubul e i, imp rta nt c. to ke lento n tructure in manipula tion
i . M ll g \\a
like ly d i rupting ce ll di vi i n pr ce s thro ugh
d p lym eri zati o n (C lark on. 199 : Miura et al., 1999 ). M o reove r, we
rved functi onal enrichment in th e glyce r lipid metab li e process a oc iated w ith 4
di f£ r nti all y chang d pr te in
(A LY , BP NT 1, F S , PPPl
ACLY and FASN are key enzy me
parti ularl
B ) in the FL (Tab 1 ).
fo r lipogene i and chole terogenesis w hich are
important for the ge nerati on of acetyl- oA for ace tylcholine
ynth esis
(Beigneux e/ al. . 2004 ), and de novo fatty acid synthe is (Kn o bloch e/ a/. . 20 13 ). A
acetyl- oA is the core enzym e connectin g fatty acid m etabo li sm enter into Krebs cyc le
(Edmund s e/ a!. . 2014 ). M eH g can target the processes of energy generati o n and interrupt
nutrition support in FL of mannoset brain . In parall eled w ith the biological functi on
analy is. we al so identifi ed specific path ways in pyrin1idine m etabo li m and pyru vate
metaboli sm in FL (Tab.3 ), which act as the essential energy source in Kreb
cycl e
(Prasad e/ a/. , 201 1; Schroder e/ a!. . 200 5).
In comparison, th e effect of M eHg on the OL protein s were more x ten ive but ap peared
to target some key prote in s uch a apolipoprotein
(APOE ), G luta thi o ne Perox idase- ]
(GPXl ) and Aquaporin 4 (AQP4). MeH g wa o bse rved impa irin g the function in li pid
metabo li c process (A LDHSA l , APO E, CMAS, D LAT, GPX l , LAMTORI, LRPl,
131
OX Tl , P , PP 1,
E R) and
llular lipid metab li
MA , D AT, GP 1 L MTORl
tal.(
ndre ll et a/ .. 200 7 ) a l
nz m
in the
e p
nthe i
of neura l lipid . wa
impa irment
s ( LDHS 1,
PO ,
Tl, PPTl , TE R) ( ab2). Vendr ll
rep rt d that -ketoacid -
d to 60nM M eHg ~ r 10 da
In dditional t
RPl , 0
proc
enz m
tran ferase L a k y
d crea cd in cer be liar g ranule cell
.
f lipid meta b li m . encrg
gen rati o n wa di rupted in th e
a evide nced by functi n alterati n of carb hydrate deri vati ve m etabo li c process and
ing l - rgani m
arbohydrate m etabo li c proc
. M oreo er, the o b erved change
in
butanoate metabo li m (Tab.4 ), an important pathway und e r carbohydrate m etabo li sm
provide further evid ence that M eH g indirec tl y influ enced th e energy meta bo li sm . T h se
results agree w ith our previou prot omi c tudy (K ong et a/.. 20 13) bowin g th at 25o/o of
their protein
changed in the m eta boli c of carbo hydrates and energy generati on
associated m eta boli m in the om atosensory cortexes of rats dosed wi th M eHg.
Our results also confirm that APOE is a key protein in mercury neurotoxicity (Godfrey e /
a!. , 2003).
APOE was fo und to be the mo t intense interacti on hub in O L n etwork
(Fig.4B) w ith 3.7-fo]d
increase. A PO
is a famil y member of apolipoprotein
functioning as regulate lipid transport in the bod y (Hatters e/ a/. , 2006 ).
n epid mio logy
stud y showed a significant correlati on between APOE 4 genotyping and 465 pati ent
diagnosed with chronic mercury to icily (Woj cik el a/. . 2006 ). APO ~ and other a ltered
proteins in lipid assoc iated categorie
in OL indi cated that different pro tein s and
separated biochemical processes in the two region contribute to the en rgy uppl y deficit.
These type of prote ins and associated function s ugge ted that chan ge in energy derived
132
carb h drate and lipid metab li m are a c re featur of M Hg neur to icity in both F
and
L.
B id
carb h drat
and lipid metabolic pr c
e , Me l Ig al
ar~ ct
transport,
intracellular
ignal tran duction, prot oly i , multicellular organismal development,
cellular amin
a id and nucle tide metabolic proce
were r pot1ed previou 1; t
K
be related t
th
L.
PX1
1
11 of the e function
lutathi ne Per xidase-1 (G PXl ) was
[the total identified 19 functional term
a family member of elenoprotein
hydrogen pero ide .
We tern blot)
ut
L.
Mel Ig into ication (Allen et al., 2001 a;
an hoko h t al.. 2009: Kong et a!., 2013 ).
invol ed in 12 MeHg affected functi n
in the
111
which catalyze the reduction of
he down-regulation of GPXl (2.5-folds in both LC-M /MS and
ugge ted glutathion
depletion occurred in M Hg affected multiple
functions, and the decrea e in anti-oxidant capacity could also be one of th
of MeHg
toxicity in the OL.
We observed the brain edema occurred in MeHg treated marmoset (Yamamoto et al.,
2012). The identification of water transport related pathway in the vasopressin-regulated
water reabsorption in the FL (Tab.3) provides the biological pathway evidence to the
observed effects of the brain edema. Vasopression regulate water reabsorption by
secreting A VP (antidiuretic hormone vasopressin) through neurons projection to regulate
water reabsorption in kidney (Boone and Deen, 2008). This pathway is one of the main
ystems to maintain water homeostasis in our body. A total of 4 differentially expressed
prote ins (DYNClLil , DYNC1LI2, NSF, RABll A) can be mapp d in pathwa; of
Vasopre sion-regulated water reabsorption (Fig.6 ).
In contrast, we found a ignificant
133
alter d functi n in regulati n of b d
AQP4, A TPl 83, DGKB, G
( ab2).
In th
previ u
tudy,
al
rep rted t
be clo el
ith 9 protein
r p rted the
p
relat d t
ver-
d marm set
blot analy i (Tab.
te t . The re ult
QP4 \\a aL
olved (APOE,
pre ion of
L
QP4 and it
(Yamam t et aJ., 20 12).
the reablorption of
m r gulati n and r gulati n of brain edema (King and
ignificant up-regulation
111
M, PRK B, R BSA, WDRl ) in th
Y1A2, PI
r lati n hip with brain edema in MeHgP4 wa
fluid 1 el
erebr
pinal 0 uid ,
gre, 1996). In this stud y,
b erved in MS results, th ugh not in We tern
and Fig. ). and thi may due to technical variation between the two
f
P4 activati n indicat d that MeHg can increase permeability of
AQP4 channel to enhance brain wat r flu ,
with other 8 protein
resulting in brain edema. 1 aken together
identified in functi nal group of regulation of body f1 uid levels
itnplied a water transport dy hom o ta i occurred in the
L of Mel-Ig- treated mamoset.
These re ults offered the mechani tic explanations of observed edema in both FL and OL
of the cerebrum in the MeHg exposed manno et .
Conclusion
This is the first report of whole proteome alteration in primate cerebrum region
with
MeHg exposure. Occipital lobe was more susceptible to MeHg effects than the frontal
lobe. We demonstrated the importance of energy diminish (carbohydrate and lipid
metabolic processes), anti-oxidant depletion, and dysfunctions of water transport as a
conseq uence of MeHg exposure. The two brain regions showed imilar endpoint effect in
energy metabolism but acting through different proteins and biological pathways .
Disruptions of regulation of body fluid levels including pathway in vasopression-
134
r gulat d
ater reab
brain edema.
rpti n are th Imp rtant mechani m f MeHg cau ing marmoset
PO E wa the
re pr t in linking multi functi n in Meilg-treated occipita!
lob . Th id ntifi d bi I gical functi n and pathwa
f MeHg-indu
pr vide the po sible 1nechani m
d neur nal dcfici t in frontal! be and ccipi tal lob .
Acknowledgement
W appr ciat Fr d li ma for hi profc
nal advice and help in bioinformatics analysis .
135
hapter VII.
Ba ic life
c1en
r
ar h i
t
onclu ion
d t rmme the prec1 e
tep
f the compl
c scade and
p t ntiall target m le ul and bi logical pathv.ay involved in different functi n or di ea es.
The g al i to devel p n v l therapj t target these proc
under tanding
important
f the neur
e or promote health.
hemical and fun ti nal circuitry deficits 1
trategy particularly for neur degenerati e di ea e
eviden e h v.ing that envir nmcntal p llutant
can be linked with neur degenerative di
interaction
se and impr
an
( olde, 2009) . There are
uch a methylmercury (MeHg) potentially
a e . H wever, very I ittle i
known of the
f to i ant-di ea e uch a M I-Ig and PD . The entry and di tribution of MeHg in
organi m i a com pi , proc
of MeHg poi oning, it i
. In pite of progre
in under tanding of the initiating factor
till no cure so far to remove mercury/MeHg even in the early stage
of mercury poi oning (Farina et al., 2011 ). How to prevent MeHg-caused neuron dysfunction
as well as the sub equent cell death i the key point to treat or prevent the MeHg-cau ed
pathological progress. In this respect. a strategy which aims at systematic identifying
sensitive molecular targets of MeHg as well as the association with neurodeg nerative
disease posed a critical role in prevention and treatment of mercury poisoning and other type
of neurodegenerative conditions.
Key findings of thi
tudy
Thi s the is has two aims: o ne was to investi gate the assoc iation of MeHg toxicity with PD .
MPP+, a well -known neurotox icant that can induce PO like symptoms i used a the positive
contro l. T he second a im was to systemati call y tudy the protein profi le in respon e to Mel Ig,
136
a
ell a identifi ati n th
planati n fl r
Th
d ffl ct indu ed b M I lg.
P 1 manu cript pr
nted 1n
g ne /pr tein for d pamin
hapter III
nz m
r gulat d by th
content .
nz 'm
re p n ible ~ r D
e, p
he e re ~ ult
ure
h w d th
c mparative changes of key
induced b MeH g and MPP ~ using a dopaminergic
) c cl
n ur n cell model. The rat -limiting
DAT, and
in bi 1 gical fun lion and pathway to seek
ub equ nt chang
T I I [! r
nthesis
metaboli m M
, dopamine transporter
-B were
ignificantly down-
f both toxicant , re ulting in a decrea e in extracellular DA
ugge ted MeHg c uld affect many c mm n key gene /protein in
regulation dopamine dynamic
imilar t
MPP +. To further explore the underlying
mechani m of the effl ct of MeHg and MPP +, a gen mic and proteomic approach was used
to study their effects on key PD gene and on the total proteome u ing the same MN9D cell
model in the 2nd manu cript pre ented in
hapter IV . A total of 6 genes including TH in
dopaminergic transduction signaling pathway were found to be affected by both MeHg and
MPP+ treated MN9D cells. This result further confirmed our ob ervations that the two
toxicants can induce similar pathophysiological vulnerability to DA and dopaminergic
associated signaling. Proteins in energy metabolism including propanoate metaboli sm,
pyruvate metabolism and fatty acid metabolism, oxidative pho phorylation were altered with
treatment of MeHg and MPP+. The disruptions of these cellular functions in the dominergic
celJs can be the underlying mechanism of PD . In addition, we also found that MeHg
interrupted pathways involved in other neurodegenerative diseases including AD, ALS and
especially in HD. Resu lts from these two chapters clearly sho\\- that MeHg can b a potential
risk factor for PD by affecting imilar biochemical pathway and endpoint effect
uch a
137
en rg
d fi it that ar
affl t d b
MPP +. M re
er, MeHg rna
al
involve m other
n ur d g nerati e condition .
Th
yd
and 4 111 manu ript pre ented in
c mpr hen i
hapt r
and VI h wed for the first time the
prote me change 1n di f[i rent brain rcg1 n (cere bell urn , fr ntal lobe and
cipital l be) f marm . t e. po ed t McHg. Th re wa a clear regi nal difference in the
number and profil e
chang
in th
identified in th
f pr tc in
affec ted b; MeHg leadin g to th e differenti al functional
thre brain region . Ba ed on the number of differ ntiall y ex pre ed protein
r g10 n , w
h V\ ed th e r lative vuln erabl e sites in res ponse to Mell g
timuli in the following order: er bellum ( 102) >
ccipital lobe (89) > frontal lobe (62).
Moreo er, MeHg affect d protein as ociated with th e most di ver e cellular fun ction s and
number of biological pathway in th e cerebellum and occipital lobe. Th se results support
previous observati on that cerebellum and occipital lobe were the primary target of MeHg
(Eto, 1997).
alcium signalin g and ion transport espec iall y ynaptic transmi ssion were
identified as the main affected pathway and function in the cerebellum of MeHg expo ed
marmoset. Corresponding to the biological functi on alterati on , MeHg wa fo und mainl y to
target organelle di stributed in pl asma membranes e peciall y in synaptic membrane in
cerebellum . One of the most important findin g of our tud y is the identifi cati on of DLG4
and MIR-19A/MIR-19B as the key targets leading to multipl e effect of MeHg in the
cerebellum. In the frontal and occipital lobes of the cerebrum of MeHg treated marmo et
APOE was identifi ed as a key affected protein that serve as a hub linkin g mul ti-functio n .
Thi s direct cause-effect relationship provide e cell ent mechani tic upport for the previou ~
reported correlati on between the APO 4 genotype and pati ent with chroni c mercury toxicity
(Wojcik et al. , 2006), and furth er support the proposed usc of APOE a a potentia l clinical
138
icit
bi n1arker [! r n1 r ur
ith
and in
an u neur degenerati e di ea
tudi e
ith P , we al o id ntifi d interaction of
he pr teomic re ult of both the in vitr
sh wed tha t M H g indu ced
a
Parkin
n 's
di ea e,
111
pr teins ass ciated with
and
ugge ting that M H g can be a ri k fac tor in the deve lopment of patho gen
is of
di ea
uch
hange
di ea e
neur degen rati e
lzh imer '
et aL 200 ). In a ditional to the evidence
that MeH g i a ociated
upp rting ur h p th
M Hg
( odfr
Huntin gton 's
van u n urodegene rati ve co nditi n .
Th
ultimate g a l of mechani ti c
tud y i
t
id entify the molecul a r, bi ochemi cal or
ph
iol ogical change that can ex pl ain the fun cti o na l or behav ioral changes o b erved . In thi s
study, we demon trat d the foll owing mech ani m s: i ) Me l lg impaired energy ge neration in
m armoset brain by affecting key prote in invo l ed in carbohydrate deri ved metaboli m and
lipid metaboli sm in all three region of marm o et brain ; i i) ignificant alterati ons of syna ptic
tran mi ion, carboh ydrate derived m ta bolic process and neuro nal mo rpho logy in the
cerebellum may explain the motor dy function sign presented in MeH g-d o ed mam1 o et: iii )
M eH g caused brain edema by altering the key protein A QP4 as well a its associated water
tran sport pathway.
In sun1mary, our results suggest that M eH g can be a risk factor for multiple neurological
disorders (PD , HD , AD, ASL) . The present res ults (Chap Ill and IV) speci all y foc u ed on the
compari sion of biological pathway
and molec ul ar changes o f MeHg and MPP + in the
context of PD pathogenes i , whi ch not onl y provided the ev idence in the a sociat ion of
MeHg with PD but also gave the additiona l hints for other dopaminergic r lated di order .
such as I ID , schi zophreni a and dru g addiction . furth erm o re, the re ult of C hap ter V and VI
demon strated a compreh nsive overview of the mo lec ul ar change and targets across the
139
c r b llum,
target
L, and
L r gion m M Hg e p
uld p t ntiall
bee m
g
d
ph rmarc 1 gi al target :D r tr atment
d marm
chapter ,
tran mi
4 and
P
id entified mo lecul ar
andida tc :D r de el ping biomarker in diagn
f Me ll g int
m clini c per pecti v
or
icati n. Particularl y, the e tudi e are
1mp rtant in prov iding th ba i .G r the d ve l pm nt of pre
mi tigate the e ad ve r e effl ct
et. The
nti ve and treatment trategie to
e ampled candidates in previous
ar c r protein in linkin g and m aintaining fun cti ons of synaptic
n and lipid m eta bo li m in the phy ical conditi n. ignifi cant changes of these two
protein c uld be pr mi ing m ark er. or a the candid ate targe t in predi ction/ treatm ent for
M eHg p i 10nmg. M reover, the "omi c " appr ac h wa pr ved as a re li abl e and powerful
method to id enti fy k y targe t prot in . and provi ded a n ve l way to 1uc idate th e r gionalspecifi c bi ologica l fun cti on and pathway a oc iated w ith M eHg n urotox ic ity. T herefore,
L -M S/MS i apprope rate t chnique and t st me thodo logy to evalu ate th e effects of M e H g
exposure on hum an nervo us
y tern. Finally, results of thi s stud y provid e th e indirect
guid ance to policy deci sion -makin g in the deve lopment of regulati on fo r MeHg emi ss ions
and exposure advisori es to protect the health of sen itive popul ati ons. Hg is a glo ba l i ue
encountered in various countries including Canada. In term s of potential tox ic effects of Hg
in the ai r, food, w ild life and human health, there is still far too littl e to know the e act toxic
m echanisms of MeH g p arti c ular on hum ans, the top chefs in the food chain. T he present data
provides the dose effects of M eH g that co ul d be reffe red for safety evalua tio n, and for further
fac ilitate o ur understandi ng of the pathogenesi changes of MeHg toxicity from laboratory
anim als to peopl e. Partic ulary, the primate m ode l used in th is study provided the more direct
proofs fo r predi cti ons of I lg on human hea lath effec ts. OveralL this study contribute to a
better understandin g of magnitud e in the uncertain mecha ni tic questions of MeH g
ne urotox ic ity in humans.
140
ontribution to knowledge and limitation
ntribution :
•
T
the c n id erati n of M eHg a
neur 1 g i al di
e p
•
rd er . and identi fy ing on the p
ri k fac tor for PD and oth er
ible linkag
between M eHg
ure and n ur deg nerati v di ea e .
To the ide ntifi ati n
f the electi ve effec t of M eH g on pl asm a m embran pr t m s,
particul arl y n prot in
•
a co ntribut r
f ; napti membrane in cerebe llum.
To pro id e furth er in ight into the deve lopment of k y prote ins as bi om arker for
predicti on and treatm ent fo r M eH g int x icati on . T he bi om arker co uld be useful for
future hum an ri k a e m ent and oth er epid e mi o logy studi es.
•
To promote the evidenc e- bas d p li cy makin g in translati on to nv ir nm enta l-heath
managem ent and po licy proce
into protecti on of human from env ironmental and
man-mad e expo sure of M eH g.
Limitations:
o
The question po ed in the Chapter III and IV is wheth er M eH g expo ure and PD
share similar etiopathology . In the normal bi olog ical co nditi on. co mpensatory
processes occur first before damage manifestati ons ( lark on et aL 2007).
hort te rm
and high concentration of M eHg ex pos ure can produ ce acute toxic effect wherea
long term low do se e posure may induce co m pen a to ry respon e
different net tox ic effects.
\\ hich ca use
In thi s tud y, the ce ll culture dos ing ex periments we re
de igned to have a do in g period of 24h -72h and the marmoset ex perim nt \\ a a lso
de igned to stud y the
hort te rm acute effects. Th ere fore, our result , m a) not
141
n ce aril
b refl ecti e
f the 1 ng term 1
do e ituation e perienced by the fi sh
n urn r .
o
Ther are limita ti n in th u e fbi informati c t identify pathway a
chang d pr t in . W e id entifi ed the indi idua l path wa
till la k
f v iden e and kn ovv l dge t
ci ated with
in each of bra in regi n , but
und er tand the ca cade ef-[1 ct /pa ttern and
r lati n hip betwee n all th affec ted pa th wa
. urth r studi e are n eded to confirm
the do e-re p n e effec t vvith a mo re e tab!i hed m e thod .
o
Th
predict d fun cti on and path way
multipl e do e . longe r term anima l d
need to be furth er ve rifi ed by additi onal
ing e pe riment .
Future research
1) The
creemng re ults of th
pre ent proteomi c wo rk prov id e the important bi o logical
pathway and proteins in linking M eHg-affected multi -functi o ns. T he prec ise fun cti ons of
key proteins and regul ated factor id entifi ed including DLG 4 and MIR - 19A/B in cerebe llum
and APO E in occipital lo be w ill need to be further clari fie d .
2) This study identified the connection of M eH g-neurodegenerati ve di sease
thro ugh
pathway enrichment analys is. The detailed underl ying mechani sm s of interacti on of M eH g
w ith these ne urodegenerati ve co nditio ns particul arl y in HD , AD and ALS need to be further
investi gated .
142
Publication and
cademic
ctivitie during PhD.
tud y
In Journal
hao Y, Yam am t M,
mmon Marm
hao Y ,
c 11 .
igcy
ing Z. han I IM. Pr te mic naly i of ere bellum in
et -- xpo ed t Methylmercury . To ic I ci ( ford). 2015, 146(1 ): 43-51
han HM . g ct
[ methylmercur on dopamine relea e in MN9D neuronal
ic I M h M th d ..... 0 15 25( ): 7-44
ing Z. Ryan M . han l-IM . -:ffects of Methylmercury on M 9D
hao Y. 1ge
d paminergic n ur n ell : a genomic and pr teomic ana lysi . Manu script accepted by
c1en . ept. 2015. ublicati n in pr ccs
Journal fT
Shao Y . Yamamoto M. 1gey
ing Z. han HM . Proteome pr filing reveal s regional
protein alteration in cerebrum f c mm n marm et ( Callithrix jucchus) exposed to
methylm rcury . Manu cript ubmitted to rchiv ofT xicology
Shao Y and han HM . Mini-review: Mechani sm
update. Manu cript in preparation
of Methylmercury neurotoxicity
an
Academic A ctivities
'r
Workshop in Pathway and Network Analy is of -omic Data Toronto. June 1-3. 2015
r
Proteomic Analysi of erebellum of Common Marmoset Treated with Methylmercury.
Poster presentation in SOT's 54th Annual Meeting. San Diego. U A. March 24, 2015
r
Effects of Methylmercury on MN9D Dopaminergic Neuron ells: A Proteomic and
Genomic Analysis. Po ter presentation in Society of Toxicology of anada ( TC). 46th
Annual Symposium. Ottawa. Dec 12.2014.
r
Methylmercury Induced Regional-specific Protein Change in the Marmoset Monk ;
Brain. Poster pre entation in the Global Biotechnology Congress. Bo ton. U
. Jun 18.
2014 .
.r
Effects of Methylmercury on Dopamine Relea e in MN9D Neuronal Cell . Po ter
presentation in the 1Oth International onference on Mercury a Global Pollutant
(I M P). H a lifax , anada. Ju ly 20, 2011.
143
Reference
bdul ahid rif. L hmad han, I L . . . 0 10. n ironmenta l t in and Parkin n's di ease:
ico l lnd
putati
r I
f impa ir d el tr n tran port chain and o idati ve tr s.
Health 26, 12 1-L.. .
, M .F .. M r ndini . F .. 8 tt ni . F., Tan gane lli . , ., ezzo la.
iuliani . R.. t imberg.
p t li. P .. M azz le ni .
.. 2002.
nti id ant p tential and gap junction m diated int r ellul ar c mmuni cati n a earl bi o logica l m ark er of m rc uric
hlorid e t ici t in the M
K cell line.
xico l In Vitro 16. 4 57-46 5.
II n. J.W .. Mutku , . ..
chn r, M ...... 0 1. M ethylm rc ur -media ted inhibiti o n of 3H -Da partat tran port in cui tured a trocyte i reve r ed b th e anti oxid ant catala . Brain
re earch 90 2. 9 .... - 100.
Allen. J.W ., hanker.
chner. M .. 200 1. M ethylm ercury inhibits the in v itro uptake of
th glutathi n precur or. cy tine. in a trocyte . but not in ne urons. Brain research
894 . 1 1- 140 .
AI e
osta. J .R ., Me la, M .. da ilva de A is. H ... Pe ll eti er, .. Randi . M .A., de Oli ve ira
Ribeiro.
., 2007 . nzy mati c inhibiti on and m rph ological changes in H opli as
malabaricu fr m di etary e po ure to lead (II ) or m e thylm ercury. Ecotox icol nvi ro n
af 67. 82Asc hner. M .. 2009 . Forewo rd : J M potli ght : m eta l pec iati n related to neuro tox icity in
humans. J Environ Monit 1 L 937-938.
Asc hner. M ., Syversen. T .. o uza. D .O ., Rocha. J .B .. Farina. M .. 20 07 . lnvo lvem nt of
glutam ate and reacti ve o ygen speci e in meth ylm ercury ne urotox ic ity. Braz J Med
Biol R e 40 , 285-291 .
Atchison. W .D. , Hare. M .F .. 1994 . M echani sm of meth ylm ercury- indu ced neurotox ici ty.
F AS B J 8. 622-629.
Bakir. F .. Rustam. H ., Tikriti. S .. A l-Damluji. S.F .. Shihri stani , H .. 1980. Clinical and
epidemiological aspects of m eth ylm ercury poi soning. Postgrad Med J 56, 1-1 0.
Ballatori. N .. 1994. Glutathione m ercaptide as transport fo rm of m etals. A dv Pharmacal 2 7.
27 1-298 .
Bassett. T .. Bach. P .. Chan. H .M .. 20 12. Effec ts of methylmercury on the secretion of proinflammatory cytokines from pnmary microgli a l cell
and astrocyte .
Neurotoxicology 33, 229-23 4 .
Basu N, Klenavic K. Gamberg M. O'bri en M , Evans D. cheuhammer A. Chan H . 2005a.
ffects of mercury on neurochemical receptor-binding characteristic in wild mink.
nviron Toxicol Chern 24, 1444-50.
Basu, N ., Goodrich, J.M ., Head, J .. 20 14 . Ecogeneti cs of mercury: from genetic
pol ymorphi sm s and epi genetics to ri k as es ment and deci ion-making.
Environmental toxicology and chemistry I SET AC 33. 1248 - 1258 .
Basu. N ., Scheuhammer. A .. Grochowina. N .. Klenavic. K., Evans. D .. O'Brien. M .. han. H ..
2005b . Effects of mercury on neurochemical receptors in wild river otter (Lontra
canadensis) . Environ ci Techno! 39, 35 85-.,59 1.
Basu. N., cheuhammer. A.M., Rouvinen-W att, K .. Grochowina. N .. vans. R.D .. O'Brien.
M ., han , 1-I.M ., 2007 . Decreas d N-methyl-D-a partie acid (NMDA) receptor le\ el
144
iat d with mercur
p ur in wild and capti e tnink. N uroto icoJogy 28,
h uhammer, .M., R u inen-Watt, K., r ch wina, ., Kl ena ic, K., vans,
R. .
han, H.M ., 2006 . Meth lm rcur impair component
f th e cholinergi
t m in capti v mink (Mu tela i on). o i 1 ci 9 L 202-209 .
Bei gneu , .P., K in ki ,
a in , B., H rton, J. ., karn , W. ., Y un g, S. ., 2004 .
ATP-citrat l a e d fi ci nc in the m u . J i I ' hem 279, 955 7-9564 .
bbott L. ., 2007 . hang in biochemical
Bellum, ., Ba a, ., Thu tt, K. ., t ica,
in c reb li ar granul cell f mice e po edt methylmercury. Int J Toxicol
pr ce
26,261-2 9.
Berg, K ., Punt rvo iL P.. alder ne , ..
ks r. ., 20 10. R ponses in the brain prote me
of tlantic c d ( adu m rhua) e. po. ed to meth !mercury. Aquat Toxicol I 00, 5165.
Berrid ge, M.J ., 2014 . alcium ignalling and p yc hi atri c di ea e: bip Jar di sord er and
chizophreni a. ell Ti u Re 3 7, 4 77-492.
Beyrout , P., taml er. .J .. Liu. J. ., Loua. K.M .. Kubow, ., ' han, H.M., 2006 . f~ cts of
pr natal meth !mer ury
po ure n brain mon amin e ox ida e acti vity and
n urob ha iour of rat . ur to ico logy and teratology 28, 25 1-25 9.
Bindea,
alon. J. , Mlecnik. B .. 20 1 . ' lu P di a yto cape plugin : path way insights
u ing int grat d e prim ntal and in ilic data. Bi oin fo rm ati c 29, 661 -663.
Bindea, G., Mlecnik, B .. HackL H.. haroent ng. P., Toso lini. M., Kiril ovs ky, A., Fridman,
W.H., Page , F., Trajano ki , Z .. Galon, J., 2009. lueG : a yto cape plug-in to
decipher functionall y gr uped gene ontology and path way ann otati on networks.
Bioinformatic 25, 1091-1 093.
Binns, D., Dimmer, E., Huntley, R., BarrelL D .. O'Donovan, ., Apweiler, R., 2009.
QuickGO : a web-based too l fo r Gene Ontology earchin g. Bi oinforrnati cs 25, 30453046 .
Bjorklund, A., Dunnett, S.B., 2007a. Dopamine neuron system in the brain : an upd ate.
Trends Neurosci 30, 194-202.
Bj orklund , A., Dunnett, S.B., 2007b . Fifty years of dopamine research. Trend N urosci 30,
185- 187.
Bj orklund , G., 1995. Parkinson di sease. mercury and other heavy metals. Tids kr Nor
Laegeforen 11 5, 75 7.
Bogaerts, V ., Theuns, J. , van Broeckhoven, C., 2008 . Genetic findin gs in Parkinson' di ease
and translation into treatment : a leading role for mitochondri a? Gene Brain Behav 7.
129-151.
Bonuccelli , U., Pi ccini, P., Del Dotto, P., Pacifici . G.M., Corsini , G.U .. Muratorio. A .. 1990.
Platelet monoamine oxidase B acti vity in parkinso nian pati ent . J Neurol Neurosurg
Psychi atry 53, 854-8 55.
Boone, M., Deen, P.M., 2008 . Phys iology and pathophy iology of the va opres in-regulat d
renal water reabsorption. Pflugers Arch 456, 1005- 1024.
Burlando, B., Bonomo, M., apri , F., Mancinelli , G., Pons, G., Vi arengo, A., 2004. Different
effects of I-Ig2+ and u2 on musse l (Mytilu galloprovincialis) pla rn a membrane
a2+-ATPase: Hg2+ induction of protein e. pre ion. Comp Bioc hem Ph)siol C
Toxicol Pharmacal 139, 201 -207.
a u,
145
a , B.Y., Yang Y.P., Lu , W.I~., Mao, .J., Han, R., un ,
heng, J., Liu, .F., 2010 .
Paeonifl rin, a p t nt natural c mp und . protect P 12 cells fr m MPP+ and acidic
damag ia aut phagi pathwa . J thn pharmac 1 1 1, 122- 129.
apitanio, J.P ., mb rg, M .. , 200 .
ntributi n of non -human primate to neuro science
re ar h. Lane t 7 L 11 26-11 5.
arocci ,
., R vit ,
ini r pi, M.. ..
enchi .
., 2014 . Mercury t icily and
neur d g nerati ve effect . Re nvi r n on tam T ico l 22 , 1-1 .
t m of humans and animals.
arp nt r, . ., 2001 . f~ ct f metal n th ner ou
lnt rnati nal j urnal f c upati onal medi cine and n ironmental health 14, 209-2 18 .
a t ldi , .F., Johan on. ., ni hchenk . ., ' o cini . T., Roda. E., Vahter, M., eccatelli ,
., Manz , L. . ~ 0 . Human de elopmenta1 neur to icity f methylmercury: impact
f ari abl and ri k modifi er . R gul T , ic I Pharm aca l 51, 201 -2 14.
eccatelli.
ar . J· · Mo r . M .. 20 10. Methylmercury-i ndu ced neuroto icity and
apopto i . hem Bioi Intera t 188 . 30 1- 08.
hen, M .. 2007 . Mechani m and m dul ation of neural
ccat lli . .. Tamm. .. Zhang,
cell damag indue d by idati
tre . Phy iology & behavi r 92, 87 -92.
hakrabarti , .K., Loua. K.M .. Bai.
urham. H .. Panisset J. '. , 1998. Modul ati on of
mon amm o ida
ac ti vit in di fferent brain region and pl atelets following
e po ure frat to m thylm r ury. eurot icology and teratology 20, 16 1-168.
hang, J.Y., 20 11 . Methylmercury-indue d IL-6 relea e requires pho pholipa e C acti viti e .
euro ci Lett 496. 152- 156.
Chapman, L. , Chan, H.M., 2000. The influence of nutriti n on meth yl mercury intox icati on.
nvironmental h alth per pecti es 108 uppl 1, 29-56.
Charle , L. E., Burchfie L C. M .. Fekedul egn. D., Kashon. M.L.. Ro . G.W., Petrovitch, H.,
Sand er on, W.T., 2006 . Occupational exposures and movement abnorm aliti e among
Japanese-Ameri can men: the Honolulu-A ia Ag in g Study. Neuro pidemi ology 26,
130-1 39.
Cheng, Y.F .. Zhu, G. Q., Wang, M. , Cheng, H., Zhou, A .. Wang. N., Fang, N., Wang, X.C ..
Xiao, X.Q., Chen, Z. W. , Li, Q.L., 2009 . Involvement of ubiquitin proteaso me system
in protective mechani sm of Puerarin to MPP(+)-e li cited apoptosis. eurosci Re 63.
52-5 8.
Chinta, S.J .. Andersen, J.K., 2005. Dopaminergic neurons. lnt J Biochem Cell Bioi 37, 942946 .
Choi, I--I.K., Won, L.A., Kontur, P.J. , Hammond , D.N., Fox, A. P., Wainer, B.H .. Hoffmann.
P. C., Heller, A., 1991 . Immortalizati on of embryo nic mesencephali c dopaminergic
neurons by somatic cell fu sion. Brain research 552, 67-76.
Cl arkson, T. W. , 1972. The pharmacology of mercury compound . Annu Rev Pharmaca l 12.
375-406 .
Clarkson, T.W., 1987. Metal toxicity in the central nervo us sy tern . nvironm ental health
perspectives 75, 59-64 .
Clarkson, T. W., 1993. Mercury: major issues in environmental health . Environm ental hea lth
perspectives 100, 31-3 8.
larkson , T.W., Magos, L. , 2006 . The toxicology of mercury and its chemi ca l compou nd .
rit Rev Toxicol 36, 609-662.
larkson, .W ., Magos, L. , Myer , G .J. , 200 . ., . The to ico logy of mercury--current exposures
and clinical manife tation s. N Engl.J Med 349, 17 1-1737.
146
lark n, T.W. train, J.J ., 20
utriti nal fact r ma modif the t ic action f methyl
mer ur in fi h-eating populati n . J Nutr 1 , 15 9 -154
lark n, T.W., V a , J . . , allat ri, ._ 2007 . Mechani m f mercury di po iti n in the
bod . mJlndM d 50, 75 7-7 4.
nwa , K., R ch t J., i gan ki , R., Lan bur , P.J., 2001. Kinetic stabili zati n of the
alpha- ynu clein protofibril b a dopamine-alpha- ynu cl in addu ct. cience 294,
1 46-1 49 .
lechta,
hiru chel am, M., a rl o~. B.K., Ri chfi eld , ~ .K., 2005.
v 1 pm ntal
f th Parkin on di ea e ph n typ .
nvironmental health
p ti id mod l
per pecti ve 11 , 126 -1270.
re p -L p z, M. .. Lima de a, ., Hercul an . .M., Rodri guez Burbano, R., Martin do
a iment , J. L., 2007 . Meth ylmercury ge noto icity: a novel effect in human cell
line f th c ntral nerv u y tem. Environ Int , 141 -146 .
re po- opez, M. ~ ., Maced , '. .. Pereira, , .I. , rrifa n , '. P., Pi canco-Dini z, D.L. , do
Na cim nt . J .L. , Hercul an . .M., 2009 . M rcury and hum an genotoxicity: criti cal
c n id rati on and po ibl e m lecul ar mechani m . Pharmaca l Res 60 , 2 12-220.
ui , H., Ye. J. . h n. Y.. h ng. .. heu. F., 200 . Mi cr el ctr de Array Bi ochip : Too l for
In Vitro ru g cr ening Based on the etecti n of a Drug Effect on Dopamine
Relea e fr m P 12 ell . nal hem 78. 6347-6355 .
Cui . W., Li , W., Han, R .. Mak, .. Zhang, H ., Hu, ., Rong. J. . Han, Y., 20 11 . PI 3-K/Akt and
RK pathwa
activat d by V
F pl ay opposite roles in MPP+-induced new·o nal
apoptosi . Neurochem lnt 59, 945-953 .
Danbolt, N . ., 2001. lutamate uptake. Prog Ne urobiol 65 , 1-1 05.
Dantzig, P.L 2006 . Parkin on' di sea e. mac ul ar degenerati on and cutaneo us sign of
mercury toxicity. J Occup nviron Med 48 , 656.
Deng, Y. , Xu, Z., Xu, B., Liu, W .. Wei. Y., Li. Y .. Feng, .. Yang, T., 20 14. xplorin g cross talk between oxidati ve damage and excitotoxicity and th e effect of riluzo le in the rat
cortex after exposure to methylmercury. Neurotox Res 26, 40-5 1.
Denny, M.F., Atchison. W.D .. 1996. Mercuri al-induced alterati ons in neuronal divalent
cation homeostasis. N eurotoxicology 17, 4 7-6 1.
Diez, S., Delgado, S., Aguil era, I. , Astray, J., Perez-Gomez, B., Torrent. M., unye r, J. ,
Bayona, J.M., 2009 . Prenatal and early childhood exposure to mercury and
methylmercury in Spain, a high-fi sh-consumer country.
rch Environ Contam
Toxicol 56, 61 5-622.
Dornbos, P., Strom, S., Basu, N., 201 3. Mercury exposure and neurochemi cal biomarker in
multiple brain regions of Wi sconsin river otters (Lontra ca naden is). cotox icology
22, 469-4 7 5.
Doo, A.R., Kim, S.N ., Park, J.Y., Cho , K.H., Hong, J., Eun -Kyun g. K., Moo n, S. K., Jung,
W.S., Lee, H., Jung, J.H ., Park, H.J ., 2010 . Neuroprotecti ve effect of an herbal
medicine, Yi -Gan San on MPP+/MPTP-induced cytotox icity in vitro and in vivo . J
"' thnopharmacol 13 L 433-442.
Dowd , W.W. , 201 2. hall enges for biological interpr tati on of enviro nmental proteomic
data in non -model organi ms. Integr omp Bioi 52. 705-720.
Dreiem, A. , Seegal , R.F., 2007 . M th ylmercury- induced changes in mitoc hond ria l functi on
in
triatal synapto omes are cal cium -dependent and RO -i ndepen :lent.
Neurotoxicology 28, 720-726.
147
Dr i m,
han. M..
k ni w ki , R.J.. anchez-M rn e .
e gal, R.F., 2009 .
me 111 an ageM th lmer ur inhibit dopaminergic fun ti n in rat pup napt
dep nd nt manner. eur to i ol Teratol 1. 12- 17.
ri coli .T .. Ma n. R .P.. han. H.M .. Ja ob. D.J. . Pirrone, N ., 201 3. M rcury as a global
p llutant: urc . pathwa . and effect . nviron i Techn I 47. 4967 -498 3.
uchen. M.R .. 2 00 . Mit ch ndri a and calcium : from cell ignalling to cell death. J Physiol
529PtL 57-6 .
utczak. W.J.. allatori. .. 1994. Tran port of the glutathi ne-m thylm rcury comple
acr
li er canali ul ar membra ne on r du ced glutathi one carri er . J Bioi hem 269,
9746-975 1.
berhardL
chulz. J.B .. 200...,. poptoti c mechani m and antiapoptoti c th erapy in the
MPTP model f Parkin on' di ea e. Tox ico logy letter 1 9, 135- 15 1.
d n. .. av n. R.. teinfe ld , I.. Lip on. D .. Yakhin i. Z .. 2009.
rilla: a too l for di scovery
and vi uali zati n of enri ched
t rm in ranked gene li ts. BM Bioinformati cs 10. 48 .
dmund . L. R., harm a. ., Kang. .. Lu . J. . V ckley. J. . Ba ' U , , ., ppala, R .. Goetzman .
. .. Beck, M . . , c tt ., Proch wnik. .V., 20 14. c- Myc program fatty ac id
m tab li m and dic tat acetyl- o abun dan e and fa te. J Bi oi ' hem 289, 253 8225 92.
gafia. L.. ueva . R .. Bau t. T., Parra. L.. Leak. R .. I lochendo ner. .. Pefia, K .. Quiroz, M.,
Hong. W .. Doro tkar. M .. Janz. R .. , itt . H .. Torres. G .. 2009. Ph ys ical and functi onal
interaction between th dopamin e tran porter and th e ynapti c ves icl protein
ynaptogyrin-3 . J Neuro ci 29. 4592-4604.
1 worth. J.D .. Roth. R.H .. 1997. Dopamine synthe is. uptake. metabo li sm. and receptors:
relevance to gene therapy of Parkinson' di ease. Exp Ne urol 144. 4-9.
Eto, K., 1997. Pathology of Minamata di sease. Tox icol Pathol 25, 6 14-623.
Eto, K .. Yasutake. A .. Korogi. Y .. Akima. M.. him ozeki. T .. To kunaga. H .. Ku wana. T ..
Kaneko, Y .. 2002. Methylmercury poiso ning in common marm osets--MRI findin gs
and peripheral nerve lesions. Tox icol Pathol 30. 723-734.
Eto, K .. Yas utake. A .. Kuwana. T .. Korogi. Y .. Akima. M .. Shim ozeki. T .. Tokunaga. H ..
Kaneko. Y., 2001. Methylmercury poi oning in common marm oset --a tud y of
selecti ve vulnerability within the cerebral cotiex. Tox icol Pathol 29. 565 -573.
L' Epi scopo. F., Tirolo. C., Testa, N .. Canigli a. .. Mo rale. M.C .. Marchetti. B .. 20 10. Gli a a
a turning point in the therapeuti c strategy of Parkin on's disease. CNS euro l Di sord
Drug Targets 9. 349-3 72.
Farina. M., Avila. D ... da Rocha. J.B .. Aschner. M .. 20 12. Metals. ox idati ve tre and
neurodegeneration : a focu s on iron. mangane e and mercury. Neurochemi try
international 62, 575-5 94 .
Farina. M., Rocha, J .B.. Aschner. M. . 2011 . Mechani sm of m thylm ercury- induced
neurotoxicity: evidence from ex perimental studi es. Life sc ience 89. 555-563 .
Faro. L., do Na cimento , J.L. , Alfonso. M .. Duran. R .. 2002. Mechani m of action of
methylmercury on in vivo striatal dopamine release. Possibl e inYo lvement of
dopamin e transporter. Neurochemi stry internati onal 40. 455-465.
Faro, L .. Duran, R., Do Nascimento. J., Perez-Vences. D .. Alfon ·o. M .. 2003. EfT cts of
success ive intrastriatal methylmercury admini tratio ns on do paminerg ic system.
"" Cotox icology and environmental safety 55, 17 - 177.
148
ar ,
., R dri gue , K ., antana. M ., idaL
l[i n , M ., un1n, R ., 2007 . omparativ
dopamine r lea e in free ly
ffe t of organic and in rganic m r ury on in vi
m ing rat . raz J M d Bi l R 40 , 1 61 - 1 65.
Fi hman-Jacob. T .. Reznich nk , L. , Y udim . M .B., Mand eL .A .. 2009 . A poradic
Parkin n di ea e mode l ia il encing f th ubiquitin -pr l a me/E
liga e
c mp n nt KPI . J iol hem 2 4 , 2 8 5- 2 845.
it anaki , ., A chner, M .. "- 00 5. h imp rlance of glutam ate, glycin , and gammaamm ut ri acid tran p rt a nd regul a ti on in m anganese. m erc ury and lead
neurot i it . T ic I ppl Pharmaco l 204. 4 - 54 .
onnum, F .. L ck. . ....... 004 . T he ontributi n f e c itoto ic ity. glutathi one depl etion and
r pair in h mi cally induced inj ur t neurone : e emplifi ed w ith tox ic effects
n cere bell ar granul e ce ll . J eurochem 8. 5 13-53 1.
interfe re nce-m ediated kn ockd own of alph aF untaine, T .M .. W ade- M artin . R .. 2007. R
nu l in pr teet human dopaminergic neur bl a t rna ce ll s fro m MPP( +) tox icity
and reduce d pamine tran port. J eur c i Re 5. '")5 1- 63.
Fo , D . ., randj an. P .. de roo t, ., Paul e. M . ., 20 1
eve lo pmental ori gin s of adu lt
di ea e
and
n uroto IClty:
epid emi 1 gical
and
experimenta l
studi es.
euroto i o logy '") 3. 81 0- 81 6.
F ranco . .T .L. . Po er. T .. Mi au, F .. Pi zzo latti. M . .. D
antos. .R .,
uza, D .O ., Aschner,
M .. Rocha, J .B .. Da fre. A . . . Farina. M .. 20 10. , tru cture-acti v ity relati o nship of
fl avo no id derived from m edi cina l pl a nt in preventin g m eth ylm ercury- indu ced
mitocho ndrial dysfu ncti on. E nvironm enta l tox ico logy and ph arm aco logy 30, 272 -278.
Frumkin , H ., Letz, R ., Willi m s. P .L.. Gerr. F., Pierce. M .. and ers, A., Jo n, L. , M annin g,
C.C., Wood . J. .. H ertzberg. V . . , Mu ell er. P .. Tay lo r. B.B .. 200 1. H alth effects of
long-term mercury ex posure am on g chlo ra lk ali pla nt workers. Am J Ind M ed 39, 1- 18.
Fujimura, M .. Cheng, J., Zhao. W .. 20 12. Perin ata l expo ure to low-dose meth ylm ercury
induces dysfun ction of m otor coordinati on w ith decrease in synaptoph y in
expression in the cerebellar granul e cell s of rat . Brain re earch 1464, 1-7.
Furieri, L .B .. Fioresi, M ., Junior. R .F .. Bartolom e. M .V .. Fern andes. A. ., ac hofeiro, V ..
Lahera, V .. Salaices, M .. Stefanon, L Vassall o. D .V., 20 11 . Ex pos ure to low merc ury
concentrati on in vivo impair myocardial contrac til e fu nctio n. Tox ico logy and
applied pharmacology 255, 193- 199 .
Gasso, S., CristofoL R .M .. elema. G., R o a, R ., Rodri guez-Farre, E., anfel iu, C .. 200 1.
Anti ox idant compo unds and Ca(2+) path way blockers diffe renti a ll y protect against
m ethylmercury and m ercuri c chlorid e neuroto icity. J Neuro ci Res 66. 135- 145.
Geisler, S., Vo llm er, S., Go lombek, S., Kah le, P.J ., 201 4. T he ubiq uit in-conj ugating enzyme
U BE2N, U BE2 L3 and UBE2D2/3 are essenti al fo r Parkin -dependent mitophagy. J
ell Sci 127, 32 80-3293.
G ibso n, L. A., Lavoie, R .A., Bissegger, S., CampbelL L. M .. Langloi . V . . , 20 14. A po itive
co rre lation between mercury and oxidati ve stress- re lated gene e, pre ion ( GPX3 and
GSTM 3) is measured in female Do ub le-crested Co rmo ra nt blood. Ecotox ico logy 23.
1004- 10 14 .
Gi raul t, J .A., Greengard . P ., 2004. T he neuro bi o logy of do pamine ignali ng. A rch Neurol 6 L
64 1-644.
G itler, A ., hesi, A., eddi e, M L.. trathearn, K ::: ., ll amam ic hi, S., TlilL KJ.. Cald\\ell. KA ..
a ld welL A.. ooper. A., Rochet, JC ., Lindq uist. ., 2009. A lpha- ') nuclein is
149
part fa di r and hi gh! c n er ed int raction n twork that include PARK9 and
mangane t icit . at enet 4L 0 -3 15.
hD ld, M ., 200 .
a e
f m rcur
e p ure, bi a a ilability, and absorption .
oto icolog and env ir nm ntal afet 6, 174- 179.
odfrey, M . ., Wojcik, .P ., Kr ne. . ., 200 . p lipoprotein E ge not ping a a potential
bi marker .G r m ercur neur t icit . J lzheim r Di 5, 189- 195.
olde. T. ., 2009 . The th rapeutic imp rtance of under tanding m echa ni ms of ne ur nal cell
d ath in neur degenerati e di ea e. M I eur degc ner 4 , 8.
orne , ., Kl epD r. H . ., i. ., Ya un o bu , K .T., 1976. The reaction of ulfh ydryl reagents
with bov ine hepati c m on amin
_ id e. Evid ence for th pre ence of tw o cy te ine
eta 4 8, 47 -357 .
re idu
e nti a! [i r ac ti v ity. Bi chim io phy
oodrich, J.M .. W ang.
ill e pie. B .. Werner, R .. Franz bla u, · ., Ba u, N ., 2011 .
lutathi one enzym e and elenoprote in polym orphi sm as cia te w ith m ercury
bi m ark r I ve l in Mi chigan denta l profes i nal . Tox ico logy and applied
pharmaco logy 257 . 30 1- 0 .
GorelL J.M .. R ybicki , B. .. o le Jo hn o n, ' ., Peters n, .L ., 1999 . ccupationa l metal
e po ure and the ri k of Parkin n' di ea e . euroe pid emio logy 18 , 303-308.
Gorell , J .M ., John n, . ., Rybi cki , B . ., P ter on, E .L., Kort ha, '. X., Brown,
Richard on. R.J .. 1997 .
cc upati nal expo ures to metal as ri k fac tors fo r
Parkin on' di ea e . Ne uro logy 4 8. 650-65 8.
Grandjean, P.. atoh. H .. Murata. K .. ~ to. K .. 20 10. Adverse effect of m eth y lm ercury:
env iro nm ental health re earch impli cati n . E nv ironmental health per pecti ves 11 8,
11 37- 1145.
Grunblatt, E., M and eL S .. Jaco b-Hir ch. J .. Ze li g on. .. A mari glo. N ., Rechav i, ., Li, J..
Ravid , R .. Roggendo rf. W .. Riederer. P ., Yo udim , M .B .. 2004 . Gene ex press ion
profiling of parkin onian substanti a ni gra pars compacta: a lterati o ns in ubi q uitinproteasome, heat shock protein, iron and ox idative stress regul ated prote in s, cell
adhesion/ce llul ar m atri x and vesicle traffic kin g genes. J Neural T ran sm 111 . 15431573.
Harada, M ., 1995. Minam ata di sease: methylmercury poiso ning in Japan cau ed by
env irorunental polluti on. C rit Rev Tox ic ol 25. 1-24 .
Hare, D.J ., Adlard, P .A .. D o ble, P.A., Finkelstein. D .I.. 20 13 . M eta ll obi o logy of 1 -methy l-4phenyl- 1.2,3.6-tetrahydropyridine neurotox icity. Meta ll omi c 5. 9 1- 109.
H ashimoto. K ., M iyata, M ., Watanabe, M ., Kano. M ., 200 1. Ro les of ph ospho lipase Cbeta4
in synapse eliminati on and pl asti city in develo ping and mature cerebellum. Mo l
Ne urobiol 23, 69-8 2.
Hatters, D .M ., Peters-Libeu, C .A., W eisgraber. K .H ., 2006 . Apo lipoprotein E tructu re :
in sights into function. Trend s Biochem c i 3 1. 445-454.
Hauser, M .A., Li, Y .J ., Xu , H ., No ureddine, M .A., Shao. Y.S .. Gu ll an , .R.. cherzer, C .R ..
Jensen, R .V ., M cLaurin, A .C., Gi bson, J.R., cott. B.L., Jewett. R.M .. teng r. J .E ..
Schm echeL D . . , Hulette, C. M ., Vance, J.M .. 2005 . Expression profiling of
substanti a ni gra in Parkinson di sease, progre sive supranuclear pal y. and
frontotempo ra l deme ntia w ith parkin soni sm . A rch Neuro l 62. 917-921 .
abba t, F., Duvo i in , R., 1984 Protec tion against the
Heikkila, R ., M anzino, L. ,
dopamine rgic neurotox ic it y o f 1-me th yl-4-phe nyl- 1,2,5 ,6-tet ra hydropyridine b)
monoa mine ox idase inh ibitor . Na ture 3 11 , 467-469.
150
H ll r. A. Fr ene ., . He
ill real., W n., L. , 2000 .
ll ular dopamine is
in r a d folio ing e p ure t a fact r dcri ed fr m immortalized triatal neurons in
human . ur i nee L lter 295. 1-4
Heo. J.M., Rutter, J., 201 1. biquitin-depend ent mit chondri al protein degrad ation . Int J
Bi ch m ll Bi l 4 . 1422- 1426.
ami alo, P .. Wall en. A., Benoit, G.,
a tro. .. Lindq i t.
n. L. . Perlmann. T ...... 003. unl reg ul ates dopamine synthesis and
t rage in M 9 d pamine ell . . p ell Re .... 88 24- 4.
Ho. P.W., Ho, J.W.. iu . H.F.. o. .l L T . Z. I .. ' han. K.H., Ram den, D.B., Ho, .L.,
201 2. Mitochond rial n uronal unco upling pr tein : a targe t for potential di easemodifi cati n in Parkin n' di sca e. Tran l eurodegener 1. 3.
Ho rvat. M.. olde. .. Faj n. ., Jereb. .. L gar. M .. Loje n. , ., Jac imovic, R., Falnoga, I..
Li ya. ., aganeli. J. . r bne. D.. 200 . To tal mercury. meth ylmercury and se lenium
in m r ury p !luted area · in the provin c ui zhou. hina. , ci Total Environ 304,
2 1-2 6.
Huang da. W.. herman. B.T.. emp ic ki . R. .. 2009. 'y tcmati c and integrati ve analysi of
large gene li t u ing D
I bi info rmati c re urce . at Pro toe 4, 44 -5 7.
Huang. . .. Liu . .H .. H u. .J .. Lin -.. hia u. .Y .. 20 10. Neurotox ico logical effects of lowdo e methylm rc ury and mercuri c chl oride in developin g offspring mi ce. Tox icology
letters.
Hwang. G.W .. Lee. J.Y .. Ryoke. K .. Mat uyama. F .. Kim. J. M .. Takaha hi, T., Naganum a,
A .. 20 11 . ene ex pre ion pro filin g usi ng DNA mi croarray analy is of the
cerebellum of mi ce tr ated with methylmercury. The Journal of toxico logical sciences
36. 389-39 1.
Hwu. W.L. , Lee, N.C .. Chien. Y.H., Muramatsu. ., Ichinose. II.. 20 13. AAD defi ciency:
occurring in humans. modeled in rodents. dv Pharmaco l 68, 273-2 84.
Jennings, P., 2014 . "The future of in vitro toxico logy". Toxicol In Vi tro S0 88 7-2333, 00 189-1
Jethva, P.N., Kardani. J.R .. Roy. I. . 20 11 . Modulati on of alpha-synu clein aggregati on by
dopamine in the presence of MPTP and its metabolite. FEBS J 278 . 1688-169 8.
Jiang, H .. Wu. Y.C., Nakamura. M .. Liang. Y .. Tanaka. Y .. Holmes. .. Daw on. V.L..
Dawson. T. M .. Ross. C.A .. Smith. W.W., 2007. Parkinso n's di sease geneti c mutati ons
increase cell susceptibility to stress: mutant alpha-synuclein enhances H202- and Sin1-induced cell death . Neurobiol Agin g 28. 1709- 171 7.
Johansson, C., Castoldi, A.F .. Onishchenko, N .. Manzo. L. , Vahter, M .. Ceccatelli . S .. 2007.
Neurobehavioural and mol ecular changes induced by meth ylmercury ex posu re during
development. Neurotox Res 11 . 241 -260.
John son. F.O., Atchi son. W.D .. 2009 . The role of environm ental mercury. lead and pe ti cide
exposure in development of amyotrophi c lateral sc lerosis. Neuroto. i log:J' 30. 76 1765.
Jones, D., Mi ller, G. , 2008 . The effects of environmental neurotoxicants on the dopa minergic
system: A possible rol e in drug addicti on. Biochem Pharm aco l 76, 569-58 1
Jones, D.C., Miller, G.W., 2008 . The effec t of enviro nm ental neurotox icant on the
dopaminergic system: A possib le ro le in dru g addi cti on. Bioc hemi cal pharmaco logy
76, 569-5 81.
Juarez, B.I., Marti nez. M.L. , Montante, M., Dufo ur. L. . arcia, E.. Jimene7-Ca pdev ille, M .. ,
2002. Methylmercury increases glutamate extrace llul ar leve ls in fro ntal cortex of
awake rats. Neurotoxico logy and teratology 24, 767-77 1.
151
Kawa aki, ., Ha a hi. T., akachL K., r k , J. ~ ., ugihara, K .. Kotake, Y., hta,
2009. M dulati n f nn in 4 in r ten ne-indu ed model of Parkin on's di ease.
eur ience 160. 61-6 .
maili- ari, A., hahriarihara i. .. Mahboudi. F.,
K
an h k h.
z1n.
me modification f ju enile beluga (Hu o hu ) brain
M ghadam, M ..... 009. r
a an effect f dietar meth !mercury. omp Bioch m Phy iol Part D
4, 24 -... 4 .
.K .. J ung, l-I.J.. 2011. eur protective ~ [feet of Vani llyl Alcoh l in
Kim.
a trodia lata Blume Thr ugh ~ uppre i n f xidative tre and Anti-Apoptotic
cti it in T • in-Induced
paminergic M 9
ell . Molecule 16, 5349-5361.
King. L. .. gr . P .. 19 6. Pathophy i 1 gy of the aquap rin water channels. Annu Rev
Phy i I 5 . 619-64 .
Ki hi. .. at , K.. a aki. ~.. kano. I L 20 14. ommon marmo et a a new model animal
for neur ien e r earch and geno me edi ting techn logy. ev rowth Differ 56, 5362.
Knob! ch, M.. raun. , .M .. Zurkirchen. L.. von , choultz. ., Zamboni, N., Arauzo-Bravo,
M.J .. Kovac . W.J .. Karalay. .. uter. .. Machado. R.A .. Roccio. M .. Lutolf. M.P.,
emenk vich. .F .. Je berger. .. 20 13. Metabolic control f adult neural stem cell
activity by Fa n-d pend nt lipogenesi . ature 493. 226-230.
Kong. H.K .. Wong. M.H.. han. H.M .. Lo. , ... 20 13 . Chronic exposure of adult rat to low
dos of m thylmercury induced a tate of metabolic deficit in the omato en ory
cortex. J Proteome R 12. 5233-5245.
Kothmann, W.W .. Ma ey. . .. 'Brien. J.. 2009. Dopamine-stimulated depho sphorylation
of connexin 36 mediates Ail amacrine cell uncouplin g. J Neurosci 29, 14903-14911 .
Krey, A., Ostertag, .K .. Chan, H.M .. 2014. Assessment of neurotoxic effects of mercury in
beluga whales (Delphinapteru leucas) . ringed seals (Pu a hi spida), and polar bears
(Ursu maritimus) from the anadian Arctic. ci Total Environ 509-510, 23 7-4 7.
Kuhn. K .. Wellen. J., Link. N .. Maskri. L., Ltibbert. H.. ticheL C .. 2003. The mouse MPTP
model: gene expression changes in dopaminergic neurons. Eur J Neuro ci 17. 1-12.
Kutscher, D.J ., Sanz-MedeL A .. Bettmer, J., 2012. Metallomics investigation on potential
binding partners of methylmercury in tuna fish mu cle tis ue u ing complementary
mass spectrometric techniques . Metallomics 4. 807-813 .
Kwok, K.H., Ho, P.W. , Chu. A.C .. Ho. J.W .. Liu. H.F .. Yiu. D . . , han. K.H .. Kung. M.H ..
Ramsden. D.B., Ho, S.L.. 2010. Mitochondrial UCP5 is neuroprotective by
preserving mitochondrial membrane potentiaL ATP level . and reducing oxidative
stress in MPP+ and dopamine toxicity . Free Radic Bioi Med 49. 1023-1035.
Lamont. M.G. , Weber, J.T .. 2012. The role of calcium in synaptic pla ticity and motor
learning in the cerebellar cortex . Neurosci Biobehav Rev 36. 1 153-1162.
Langston, J.W., Ballard. P., Tetrud , J.W., Irwin. 1.. 1983 . hronic Parkinsoni m in humans
due to a product of meperidine-analog synthe is. Science 219. 979-980.
Lawton, M .. Iqbal , M. , Kontovraki, M. , Lloyd Mills. C .. Hargreave . A.J .. 2007. Reduced
tubulin tyro sination as an early mark r of mercury toxicity in differentiating N2a cell .
Toxicol In Vitro 2 1. 1258-1261.
Lee, ., Soliman, K., harlton, .. 2005 Lysopho phatidylcholine decrease locomotor
activities and dopamine turnover rate in rats. Neuroto. icology 26. 27-38.
152
Le , Y., amaco, R. ., at h l, J .R., hailer,
rr, H.T .. Zoghbi , H. Y., 2008 . miR-19,
' 1
miR-1 01 and miR-1 0 c -regulate TX 1 l l t potentiall y modulate
path gen i . at eur i 11, 11 7- 11 9.
Lee, H.Y., r ene, L. ., Ma on. . ., Manzini , M. ., 2009 . l olati n and culture f postnatal m u e cereb liar granule neuron progenitor cell and neurons. J Vi
p 16.
Le eill e, F .. -- 1 aam uch. .,
uix, ., Lee cq , M., L bn r, D., Nicole, ., Bui sson , A.,
200 .
ur nal iabilit i c ntrolled b a fun cti onal relation betwe n synaptic and
_. B J 22. 425 8-427 1.
M
re ept r . F
L
-Pi t, L , hirl ey. T.L.. Moc kel. L. . Egami . K., Jinnah, H.A., 2008 .
n equenc of impaired purine recycling in dopamin ergic neuron . Neuro ci enc e
152, 761-772.
i. H.. u , M .. 2009. Protein deg radati n in Parkin on di ea e revi ited: it' co mple . J lin
In
t 119. 442-44 .
Li. P .. F ng, X.. iu , .. 20 10. Meth; lm ercury e po ure and health effects from ri ce and fi h
con umption : a revi e\\ . Int J nviron Re Publi c H alth 7, 2666-2691 .
Lim. K .. , Tan . J .M .. 2007. Role of the ubiquitin protea me sy tern in Parkinson's di sea e.
BM Bi h m 8 uppl 1. 1 .
Lim. K.L. , 2007 . biquitin-protea orn e y tern dy fun cti n in Parkinso n's di ea e: current
idence and co ntrove r ie . pert Rev Proteo mi c 4. 769-781 .
Limke, T. L. , H idemann. .R., Atchi on. W.O .. 2004. Di rupti on of intraneuronal di valent
cati on regul ati on by methylmercury: are pec ifi c target in vo lved in altered neuronal
de elopment and cytoto icity in meth ylmercury poi onin g? eurotox icology 25, 741760.
Li s. B .. Roeper, J.. 2008 . Individual dopamine midbrain neuron : fun cti onal di ver ity and
fl exibility in health and di sease. Brain Re Rev 58. 314 -32 1.
Liu. D .. Jin. L., Wang. H .. Zhao. H .. Zhao. C .. Duan. C .. Lu. L .. Wu . B .. Yu . ., ' han. P .. Li .
Y., Yang, H .. 2008 . ilencing alph a-synucl ein gene expression enhances tyro ine
hydroxylase acti vity in MN9D cells. eurochemi cal research 33, 1401 -1409.
Liu, W., Xu, Z .. Deng, Y., Xu, B .. Wei, Y .. Yang. T .. 20 13. Protecti ve effect of memantine
against methylmercury-induced glutamate dyshomeostas is and oxidati ve stress in rat
cerebral cortex. Neurotox Res 24. 320-33 7.
Liu, W., Xu. Z. , Yang, T., Deng. Y .. Xu. B .. Feng. S .. Li , Y .. 20 14. The protecti ve role of t a
polyphenols against methylmercury-induced neurotoxic effect in rat cereb ral cortex
via inhibition of oxidati ve stress. Free Radi c Res 48 , 849-8 63.
Llinas, R. , Steinberg, I.Z., Walton , K. , 1981 . Relationship between pre ynapti c calc ium
current and postsynaptic potential in squid giant synap e. Bioph ys J "'3, 323-35 1.
Llorente-Folch, I. , Rueda, C. B., Pardo, B., Szabadkai , G., Duchen. M.R., Satrustegui . J.,
201 5. The regulation of neuronal mitochondri al metaboli sm by alci um . J Phy iol.
Luber, .A., ox, J., Lauterbach, H., Fanck e. B .. Selbach, M., Tschopp, J .. Akira,
Wi egand , M., Hochrein, H., O'Keeffe. M., Mann, M., 20 10. Quantitati ve proteo mic
reveal s subset-specific viral recogniti on in d ndriti c ce ll s. Immunity 2. 279-2 89.
Manfroi , C.B ., Schwalm, F.D., Cerese r, V., Abreu, F., Oli ve ira. A., Bi zarro. L., Rocha. J.B ..
Fri zzo, M. ., ouza, D.O., Farina, M .. 2004 . Maternal milk as methylmercury ource
for suck ling mice : neurotoxic effects invo lved with the cerebellar glutamatcrgic
system. Toxicol ci 81 , 172- 178.
Mangano, .N., Peters, ., Litteljohn, D .. So, R., Bethune. C., Bobyn. .1 ., Clarke. M .. Ha) !e).
S., 20 11 . Granu locyte macrophage-colony stimul ating l~1 c to r pro tec ts again t
153
ub tantia mgra d
cell
m an en ir nm ntal to in model f
Parkin on' di a e.
.J ., R th t m,
bani m
f Di ea e: a trocyte m
Marag ki ,
n ur
g nerati e di a e.
lin Pract eurol 2, 679- 89.
Marek, R., aru , M., Ro tami .
rin pan, J.B ., a anna, J ., 200 . Magnetic cell
orting: a fa t and ffe ti
m th d of c ncurrent i lation of high purity viabl e
a tr c te and n1i cr gli a fr m ne natal m u e brai n ti sue. J eur ci M thod 175,
108-11 .
Margineantu , D.H.. mer n. .B.. iaz. D .. H ckenber . .M .. 2007 . H 90 inhibition
d crea e mit chondri I pr tein tun1over. PL , ne 2. e 1066.
l gical indicator
f neuroto icity in central and
Mar ni , M.. Barbi ri .
peri ph ral t ic n uropathi e . urotoxico log and teratology 10, 4 79 -484 .
Mazzio. .. oliman. K.F .. ~0 1 2. Wh le gen me e pres ion profi le in neur bl a toma cells
d to 1-methyl-4-phenyJpyridine. euroto. ic logy 3, 11 56-1169.
Medina,
arb n l L J. . Pulido. L.. Madeira. ~ . '. . oe tz. ,'., ' nesa, A., Tarraga, J .,
Pa cual-M ntan .
gale - adena , R., , antoyo, J., ' arci a, F., Marba, M.,
Montan r,
paz . J. . 20 10. Babel mi c : an integrati ve pl at[! rm for th e analy is
of tran cript mic . pr t omi and gen mi c data with advanced functi onal profiling.
ucl ic cid R
. W210-2 1 .
Mergler, D.. nd er on, H.A.. han. L. IL. Mahaffey. K.R .. Murray, M ., akamoto, M ., tern ,
A. H., 2007. M th _lmercury expo ure and health effect in hum ans: a world wide
concern. mbi o 36. 3- 11 .
ML H., Muruganuj an,
a agrand . J. T .. Thomas. P.D .. 20 13. Large- cale gene fun cti on
analy is with the PANTH R cia ifi cati on sy tem. Nat Protoc 8. 155 1-1566 .
Michalke, B., Halbach. .. Nisch witz, V ., 2009. JEM spotli ght: metal speciati on related to
neurotoxicity in humans. J nviron Monit 11 . 939-954.
Migliore, L ., Coppede. F., 2009 . Geneti cs, environm ental fac tors and the emergin g role of
epigenetic in neurodegenerati ve di ea es. Mutat Res 66 7, 82-97.
Miura, K., Koide, N., Himeno, S.. Nakagawa, I.. Imura, N .. 1999. The invo lvement of
microtubular disruption in methylmercury-induced apoptosis in neuronal and
nonneuronal cell lines. Toxicology and applied pharmaco logy 160. 279-288 .
Miyamoto , K .. Nakani shi, H., Mori guchi. ., Fukuyama. N., Eto. K., Wakami ya, J., Murao,
K., Arimura, K., Osame. M .. 2001 . Involvement of enhanced se nsitivity ofN-meth ylD-aspartate receptors in vulnerability of developing corti cal neurons t
methylmercury neurotoxicity. Brain Res 901. 252-25 8.
Mizuno , Y., Yoshino, H., Ike be, S., Hattori , N ., Kobayashi , T., himoda-Mat ubayashi , S ..
Mat umine, H., Kondo , T., 1998 . Mitochondrial dysfun cti on in Parkin son's disea e.
Ann NeuroJ 44, S99-1 09 .
Mollinedo , F., Gajate, C., 2003. Microtubules, microtubul e-interferin g age nt and apopto i .
Apoptosis 8. 41 3-450.
Monnet-Tschudi, F., Zurich. M.G., Boschat,
orbaz, A., Honegge r, P., 2006.
Invo lvement of environm ental mercury and lead in the eti ology of neurodege nerative
di seases. Rev -< nviron Health 21, 105-117 .
Moran, L.B., Duke, D. ., Deprez, M., De ter, D.T., Pearce. R.K .. Graeber. M.B .. 2006.
Whole genome ex pre sion profiling of the medial and lateral sub tantia nigra in
Parkin son's di ea e. Neurogenctic 7, 1- 11 .
154
Mork n, . .,
ald ,
chner, M ., yve r en, T ., 2 05 . f[i ct f m th lmercury n
pnmar
n - and co-culture. T i ol ci 87, 169- 175.
Mutku , .,
er n, .,
chn r. M ., 200 5. M th lm ercury alte r the in vitro
uptak of glutamate in
T - and L T - 1-tran fee t d mutant H -K 1 cells. Bioi
ra
_. lem Re 107, 2 1-24 .
Mutter, J. , aumann, J. , uethlin , ., 2007. ' omm ent on the articl e "the to icol gy of
m rcur and it chemi ca l c mp und " b
' lark on and Mag s (2006) . rit Rev
o ic 137,5 7-5 49 : di cu i n 55 1-5 2.
aOI , M ., Taka ha hi , T., aga t u, T., 198 . Effec t f 1-me thyl-4-phenylpyridinium ion
(MPP+ ) n cat h !amin e leve l and ac tiv it of related enzy me in cl nal rat
ph chr m cyt ma P 12h ce ll . L i~ cicnce 4 , 1485- 149 1.
a h, J. .. J hn t n. T. H .,
llingridge,
arner. '. ' .. Brotchie, J .M ., 200 5.
ubce llul ar r di tributi on f the ynap e-a oc iated pro te in P D-95 and AP97 in
anim al m del of a rk in n' di ea e and LP -induced dyskinesia. FA. EB J 19,
5 3-5 5.
dount e, L.. ha n, H ., 200 8. Meth y lmercury in crea e N- methyl-D -a partate recepto rs on
human H- Y SY n urob la toma ce ll leading to neur toxicity. Tox ico logy 249,
25 1-2 5.
ieo ull on, ., 2002. D pamine and the regul atio n of c gniti on and a ttenti on. Prog Ne uro bi ol
67, 53-83.
N in omi ya, T.,
hmori , H ., Ha him o to. K .. T uruta, K., Ek in o. , ' ., 1995. Ex pansio n of
M ethylmercury Poi oning Out id of M in amata:
n pid e mi o logical tud y on
Chroni c M ethylmercury P i ning o utsid e of Mina mata Env iro n Re 70, 4 7-50
Obata, T .. 2002. Dopamin e efflu by MPTP and hydroxy l radi cal ge nerati on . J Ne ural
Transm 109, 11 59-118 0.
Oehmichen. M ., R. N. Auer. , H. G. Koni g .. 2006. pec ific Types of Ne urotox in s. Forensic
N europatholo gy and As oc iated Ne urol ogy. Springer-Ve rl ag Ber lin Heid elbe rg New
York. p. 345.
Okabe, M ., Takeuchi , T., 1980. Distributi on and fate of mercury in ti ss ues of human organ
in Minamata disease. Neurotoxicology L 607 -624 .
Okano , H ., Hiki shima, K ., Iriki , A., Sasaki . E., 20 12. The co mmon ma rn1oset as a nove l
animal model system for biomedi cal and neuroscience research appli cati on . emin
Fetal N eonatal M ed 17, 33 6-340.
Oku, Y ., Huganir, R .L ., 20 13. A GAP3 and Arf6 regul ate traffi ckin g of A MP A receptor and
synapti c plasticity. J Neuro sci 33, 125 86-1 25 98 .
Ond ovcik, S.L. , Tamblyn, L. , McPherson, J .P ., W ell s, P.G ., 20 12. Oxog uanine glyco ylase 1
(OGG 1) protects cells from DNA doubl e-strand brea k dam age fo li o ~ ing
methylmercury (MeH g) expo sure . Toxicol Sci 128, 272-2 83.
Ore llana, J .A ., Saez, P.J ., Shoji , K .F ., Schalper, K .A., Palac ios-Prado, N., Ve larde, V.,
Giaume, C., Be nnett, M .V ., Saez, J . ., 2009 . Modul ati o n of brain hemi chann Is and
gap junction channels by pro-inflammatory agents and their po sibl e ro le in
neurod egeneration. Antiox id Redox igna l 1 L , 69-3 99.
Ostertag, S.K., Stern, G .A. , Wang, F ., Lemes, M ., ha n, H.M ., 20 13. M ercury d i ·tri bution
and speciation in differe nt brain region s of beluga ~ha l e ( Delphinapteru leuca ).
Sci Total "" nviron 456-457, 278-286 .
155
ama, Y ., T m1
hi. F .,
no . ., ~ uruka a, K ., hikahi a, L ., 1994 . M ethy lm ercury induced au gm ntati n f
idati
m etaboli m in cerebe llar neuron di ociat d from
th rat : it dependence on intrace llular a2+. rain re earch 660, 154 - 157.
1- gna f.
.M ., 200 5.
lpha- nuclein aggregation in
Pal log u, K . ., Ir ine,
di ea e and it inhibiti n a a potential th rap utic trategy.
ne urodegenerati
i ch m
c Tran
, 11 0 - 1110 .
Parra,
nzalez, ., Mugueta, .. M artinez, .. Monreal, 1., 200 I . Lab rato ry approach
ndri al di a . J Phy i l Bi ochem 57. 267-2 84 .
Pa
ilva, . .. Lemir . M .. F illi on. M ., uimarae , J .R ., L uco tte, M ., M erg ler,
ail y merc ur) intake in fi h-eating popul ati n in th e Brazili an A mazon . J
p
i n ir n pid emi I 18 . 76- 87.
Per z. R ., W a mire. J. . Lin. .. Liu. J. . JU O, • ., Z igm ond , M .. 2002.
role fo r alphanucl e in in th e regul ati o n of d pamine bi ynthe i . J Ne uro ci 22. 3090-3099 .
P tit-P ait L .. Brau. F., azar th . J. , habry, J ., 2009. lnvo lv ment of cyto o li c and
mit h ndri al , K- beta in mit ch ndri a l dy functi on and neuro na l ce ll death of
MPT P/MPP-treat d ne uron . PL
ne 4. 549 1.
Philbert. M . ., Billing ley. M .L.. R uhl. K.R .. 2000. M ec hani m of inj ury in th e central
n rv u y t m . o ico l Path I 28. 43-5 .
Po rciuncul a, L. ., Rocha. J .B .. Tavare . R. .. hi leni . G .. Re is. M ., o uza, D . . , 2003.
M eth !mercury inhibit glutama te uptak by sy napti c vesic les from rat brain .
eurorep rt 14. 77 -580.
Po rras. .. Berthet .. Dehay, B ., Li. Q., Ladepec he. ., arm and . E .. Dovero. S., Ma rtin ez,
A., D oudnikof[ E., M artin-N gri er. M.L.. hu an. Q.. Bloch. B ., C hoqu t, D ., Bo ueGrabot E., Groc. L .. Bezard.
.. 20 12. P D -95 ex pre sion contro l L- DOPA
dyskinesia thro ugh dopamine 01 receptor traffi ckin g. J C lin ]nve t 122, 3977- 398 9.
Prasad, .. Rupar, T ., Prasad, A. .. 20 11 . Pyru vate dehydroge nase defic iency and epil ep y.
Brain Dev 33, 856-86 5.
Radonj ic , M ., Cappaert . N. L. . de Vri e . E.F., de Esc h. C . . . Kuper. F. .. van W aarde. A ..
Dierckx , R. A., W adm an, W.J ., W olterbeek. A. P .. Sti erum . R .H .. de Groot D .M ..
201 3. D elay and impairment in bra in development and functi o n in rat offspring after
maternal exposure to meth ylmercury. Toxico l ci 133, 11 2- 124 .
R amanathan, G ., Atchi son. W .O .. 20 11 . Ca2+ entry path ways in mo use spina l moto r neuron
in culture foll owing in vitro ex posure to meth ylm ercury. Ne urotox icology 32. 742750.
Reddy. R .S., Jinna, R .R ., Uzodinma. J. E ., Desaiah, D ., 1988 . In v itro effect of mercury and
cad1nium on brain Ca2+-ATPase of the catfish lcta luru s punctatu s. Bull etin of
enviromnental contamination and tox icology 41 . 32-+-32 8.
Roos, D. , Seeger, R ., PunteL R ., Vargas Barbosa. N .. 20 12. Ro le of calcium and
mitochondri a in M eHg-m edi ated cytotox ic ity. J Bi o med Bi otec hno l 20 12. 248 764 .
Roos, D .H. , Puntel, R.L. , Farina. M. , A schner, M .. Bohrer, D., Rocha, J.B .. de Varga
Barbosa, N.B ., 2011 . Modulation of meth ylm ercury upta ke by methi onine: prevention
of mitochondrial dy function in rat li ver sli ce by a mimi cry mec hanism . Toxico log)
and appli ed pharmacology 252, 2 8-35.
Roo s, P.M ., Ve terberg, 0 ., Nordberg. M ., 2006 . M eta l in mo tor neuro n di ease . Exp Bioi
M ed 23 1, 1481 - 1487 .
156
R
A .D .,
hlb m , ... ,
gren,
ic t ra. P., 1997. Prenatal e posure to
meth lm r ur alt r
mot r act1 It of mal but n t female rat . .. perimental
brain re earch .. p rimentelle Hi111for chung 117, 428-4 6.
Rouach,
1 in ki, J ., iaum . ., 200 .
ti ity-d pendent neuronal ontrol of gapjunctional c mmuni ati n in a tr cyte . J ell Bioi 149, 15 1 - 1526.
adiq, ., hazala, Z., h wdhur , ., Bu e lberg, D ., 20 12 . Metal to icity at the ynapse:
pr
naptic, po t napti . and l ng- tenn effec ts. J To icol 20 12, 1 2671 .
akam to, M ., Ik gami
akano, .. 1996 . Pr tec ti c effect of a2 channel blockers
again t meth yl mercury to icit;. Pharmaco l o. icol 78. 193- 199 .
ander , .H ..
r enamyre, J. T .. 20 1 . , idativ damage to macrom lecule in human
Parkin on di ea e and th e roten ne m odel. Free Radi c Bi I Med 62, 111 - 120.
e urotox icity of
anfeliu.
ba ti a, J.. ' ri tofo L R .. Rodri guez-Farre. E., 200 .
rgan mer uria1 compound .
R 5, 28 -305 .
arafian. T ., Verit , M. ., 1991 .
idative m chani sm s und erl yin g m th y! m ercury
n uroto icity. Int J ev euro ci 9, 147-1 5 .
chinder. .F ., I on. . .. pitzer. . .. MontaL M .. 1996. Mitochondrial dy function i a
primar eve ntin glutama teneur t x icity . J eur sci 16.6 125-6 133.
chirrmacher. K .. Wie mann . M .. Bingmann.
.. Bu e lb rg,
.. 1998 . .. ffects of lead.
m rcury. and methyl mercur; n gap j un ct ion and [ 'a2 + ]i in b ne cell . alcif
Ti ue lnt 63. 134-139.
chroder. M .. i rmann. N .. Zrenn r. R .. 2005 . Functional anal y i of th e pyrimidin e de
novo ynthe si pathway in so lanaceo us pecie . Plant Phys io l 138. 1926- 1938.
elin.
.E., und rland. .M .. Knighte . C .D .. Ma on. R .P .. 20 10 . Source
f m ercury
exposure for U. . afood con umer : implication for policy. nvironm enta l health
perspectives 118. 137-143 .
hao. Y .. Yan1amoto. M .. Figey . D ., ing. Z., Chan, 1-I.M ., 2015. Proteo mic Analy is of
Cerebellum in Common M armoset Ex posed to M ethylm ercury. Toxicol ci 146. 4351
Shao, Y., Figeys, D ., Ning, Z., Mailloux R .. Chan, 1-I.M., 20 15 . Methy lm ercury can induce
Parkinson 's-like neuroto xicity similar to 1-methyl-4- phenylpyridinium : a genomic
and proteomic analysis on MN9D dopmninergic ne uron cells . Toxi Sci, E-pubJish
ahead
Shaw. C.M .. Mottet. N.K .. Bod y, R.L .. Luschei, E.S., 1975. Variability of neuropathologic
lesions in experimental methylmercurial encephalopathy in primates. Am J Pathol 80,
451-470.
Shepherd, J.D ., Huganir. R .L. . 2007 . The cell biology of ynaptic p]a ticity : AMPA receptor
trafficking. Annu Rev Cell Dev Biol 23. 613-643.
Shimshack, J.P .. Ward . M.B .. 2010 . M r ury advisories and household health trade-off's. J
llealth con 29. 674-685.
Shukla. V .. Mi shra. S.K .. Pant, H .C., 20 11 . Oxidative tress in neurodegeneration. Adv
Pharmacol Sci 201 1. 572634.
ilva, R .F .. Falcao. A . . , Fernandes. A., Gordo, A .C .. Brito. M.A., Brite , D ., 2006 .
Di ssociated primary nerve cell cultures a model for a sessment of neurotoxicity.
Toxicology letters 163, 1-9.
Singer, T.P., Ram say, R.R ., 1990. Mec hani sm of the neuroto icity of MPTP . An updat .
F B Lett 274. 1-8.
1,
157
me n , M ., m n R.J ., 2 1 . lutathi ne me tab li m and Parkin on' di ea e. Free
Radic Bi I M d 62, 1 -25.
pittau ,
h u, X ., Ming, M ., Krieg! t m, K ., 201 2. IL6 pr t ct MN9D cells and
midbrain
d paminergi
neuron
from
MPP -induced
neurod egeneration .
eur m lecular M ed 14, 17- 27.
.J .. Abd louaha b.
amer,
han , I I.M ., 2006 . Relation hip
tam!
bet een plat let m on amine o, id a c-B (M
- ) acti ity and m ercury e p ur in
fi h o n umer fr m th e Lake , t. Pi erre region f Que., an ada . Ne uro tox icolo gy 27,
429-4 6 .
taml r. .J .. Ba u. .. M a n Chan, I L 2005 . ioc hemi cal markers o f ne uroto xicity in
wildlife and human popul ati n : con id erati on for m ethod deve lopm e nt. J Toxicol
nviron ll ealth
6 . 141 - 142 .
t rch, .. Ludolph. . .. chwar?. J. . 2004. opamine tran po rter: invo lve ment in lecti ve
d pamine rgic neur t . i it; a nd dege nerati n. J cur a! T ran m 11 1. 126 7- 12 86.
train. J.J .. Y ate . .J.. va n Wij ngaarden. .. Thur t n. .W .. Mulhern , M .S., M e orl ey,
~ .M .. W at n.
ove, T. M .. , mith . T. ll.. Yost. K ., Harrin gto n. D., Sham lay ,
.F .. Hend e r o n. J ., M yer . .J .. av id n, P. W., 20 15. Prenata l ex pos ure to meth yl
mercury from fi h c n umpti n and po lyun aturated fatty acid s: a
c ia tions w ith
child deve lopm nt at 20 m o of age in an o b ervati onal stud y in th Republi c of
eych ell e . mJ lin utr 10 1, 5 0-537.
europath o l gy of childh oo d ca es of meth ylm erc ury
Takeuchi T , E. ., E to K 1979.
poi oning (Minam ata di ea e) with pro longed ymptom , w ith pa rti cul ar refe rence to
th decorticati on syndrom e. eurotox icology 1. 1-20.
Tak euchi , T .. Eto, K . ( d .) . 1999. T he Path ology f Min am ata Di ease - a Tragic Story of
Water Pollution . Kyushu ni v r ity Pre . Fukuoka, 226-2 82 pp .
Tehranian, R ., M ontoya, S., V an Laar. A .. Ha ting . T .. Perez. R ., 2006. A lpha-syn uclein
inhibits arom atic amino ac id decarboxyla e ac ti vity in dopaminergic eel Is. J
Neurochem 99 , 1188- 11 96.
T hiffault, C., Langston, J.W ., Di M onte, D .A., 2000. In creased stri atal dopamin e turnover
fo llowing acute admini strati on of roteno ne to mice. Brain research 88 5, 283-288.
Tra ustadottir. T ., D avies, S.S., Su, Y .. C hoi, L. , Brown-B org. H .M ., Robert , L.J .. 2 nd,
Harman, S.M., 201 2. Oxid ati ve stress in older adults: effects of physical fi tn ess. Age
(Dordr) 34, 969-98 2.
Uchino, M ., Okajima, T. , Eto, K .. Kumamoto , T., Mi shim a, L And o, M .. 1995. Neuro logic
features of chronic Minamata di sea e (o rgani c mercu ry poi oning) certified at
autopsy. Intern M ed 34, 744-747.
UniProt onsortium (Coll aborators 128) .. 201 5. U niPro t: a hub for protein information.
N ucleic cid s Res 43, 0 204-2 12.
Vendrell , I., Carra caL M ., ampos, F., Ab ian. J. , SunoL C., 20 I 0. Methylmercury di rupt
the balance between ph osphorylated and no n-phosphory lat d cofilin in primary
cultures of mi ce cerebell ar granule cell s. A proteo mi c study . Toxico logy and applied
pharm acology 242, 109- 118 .
Vendrell, l. , arrascal. M ., Vil aro, M .T., A bian, J. . Rodriguez-Farre, I:., SunoL C ., 2007 . Cell
v iability and proteo mi c analy is in cultured neurons expo ed to methylm rcury. Hum
xp Tox ico l 26, 263-272.
158
V nkata halam , K ., an Ro urn , .B ., Patter n, R .L. , M a, H .T ., ill, D .L. , 2002. The
cellular and mol cular ba i f tore- p rated alcium ntr . Nat ell Bioi 4 , 263272.
V ttori , M .,
Jdoni . M ., agli e rL ., P li ,
., eccate lli , ., Mutti , ., 2006 .
ntagoni tic e f[i ct f m eth 1-m rcur and P B 15
n P 12 c 11 after a combin ed
and imuJtan u e p ure. . ood hem To ico l 44 , 1505- 15 12
Vicente-TotTe , M ., il -Lo zaga, P ., arri ond , F., Bart l m ·, M ., 2002. imultaneou s
HPL quantifi ati n f m n amin and m tab lite in the blood - free rat cochlea. J
euro ci M ethod 11 , 1- 6.
ila, M ., uk avi c. ., Jac k n-L Vvi .
ey tat, M ., Jakowec, M ., Prz db r ki , ., 2000 .
lpha - nu le in up-regul ati n in sub tanti a ni gra dopaminergic neuro ns fo ll owing
admini trati n f the parkin nian to in MP T P. J eurochem 74, 72 1-729.
ge L D . ., M arg li , R .L. , M ttet. .K .. 1985. T he effec t of m eth yl m rcury bindin g to
mi r tubul . T , ic I gy and appl i d ph armaco logy 80. 4 73-48 6.
tr cyte , fr m brain glu e to co mmunicati n e lem ent : the
o lterra, ., M eldo le i. J .. 200 .
euro ci 6, 626-640.
revoluti n continue . at Re
W agner, ., V arga . .P .. R
.II.. M o re l. .F .. arina, M ., ogu ira, C. W ., A chner, M. ,
mparati ve tud y f qu ercetin and it two glycosid e deri vati ves
R ocha, J .B., 20 10.
qu rcitrin and rutin again t meth ylm erc ury (M eHg)- induced R
producti on in rat
brain li ce.. rchi e of to ico logy 84 . 89-97.
Wang. J ., Xu, Z. , Fang, H .. Duhart. H.M .. Patter on, T.A .. A li , .F., 2007. ene expressiOn
profiling of MPP+ -treated MN9D c II : a mechani sm of tox ic ity
tud y.
Neuroto xico logy 2 8. 979-987 .
Wang, J. , Duhart, H .. Xu. Z .. Patterson. T.. ewpo rt. G .. A li. .. 2008. Co mpari o n of the
time courses of se lecti ve gene ex pres ion and dopaminergic depl eti on induced by
MPP+ in MN9D ce ll s. Neurochem Int 52 . 103 7- 1043.
Wang, J. , Duncan. D ., Shi. Z., Zhang, B., 20 13. W B-based GEne SeT A naLysi Too lkit
(W ebGestalt): update 201 3. N ucleic Ac id Re 4 L W77- 83.
Wayne A. Fenton., R .A. G ., D avid S. Rosenbl att, 200 1. The online M etabo li c and Molecular
Bases of Inherited Di sease.
Wells. P .G. , McCallum. G. P .. Lam , K .C .. Hend er on. J .T .. O nd ovc ik. S.L., 2010. 0 idative
DNA damage and repa ir in teratogenesis and ne urodeve lopm enta l deficits . Birth
Defects Res C Embryo Today 90. 103- 109.
Wersinger, C., Prou , D .. V ernier. P ., Sidhu, .. 200 3. M odul ation of dopamine transporter
function by alpha-synuclein is altered by impai rment of cell adhesion and by
induction of oxidative stress. FAS~ B J 17.2 15 1-2 153.
W esseling, H ., Chan , M .K ., Tsang, T .M., Em st, A ., Peter , F., Guest. P.C .. Holmes, E .. Bahn,
S., 20 13. A combined metabonomic and proteomic approac h identifie frontal ortex
changes in a chronic phenc yclidine rat model in relation to human schizophrenia
brain pathology. Neuropsychopharmacology 38. 2532-2544.
Wojcik, D .P ., Godfrey, M . . , hri ti e, D ., Hal ey, B . . , 2006. Mercury toxicity pre ntin g a
chronic fati gue, memory impai rment and depression : diagno i . treatment.
susce ptibility, and outcome in a New Zealand g nera l practice setting ( 1994-2006).
N euro Endocrinol Lett 27, 415-423 .
Wu , B., Liu , Q., Duan.
., Li , Y., Yu , S., C han, P., Ueda, K., Yan g, I 1., 2011.
Phosphorylation of alpha- ynucl e in upregulatcs t rosine hydmx) Ia e actiYit) tn
MN9D cells. Acta I listochem 11 '"', 32-35.
159
l l., hang, M., Hu , X., Wang, D.. ian, M., Li . ., Jiang, H., Wang, Y., D ng, Z.,
Zhang, Y., Hu , L., 2011. Proteo mic anal
f MPP+-induced apopto i in Hur 1 ci . ., 2, 22 1-22 8.
Y5Y cell .
., W i, Y. ., 201 2. Pr t cli ve ffecls of MKXu, B., Xu, Z.F., Deng, Y., Liu, W., Yang,
0 1 n m th ln1 r ury-induc d n ur nal inj ur in rat c r bral corte : in olvement of
idati
tre and glutamate metab li m dy fun cti n. To icol g 00, 11 2- 120.
Xu, L. , h ng, J., ang, Z., Wu . ., Yu. Y., u . II.. hen, Y., Zh u. ., Paraoan, L. , Zhou,
1. , 2005.
tat in prevent d ge n rati n frat nigra! d pam in rgic neuron : in vitro
tudi e . eur bi 1Di 18. 152-165 .
and in i
Xu, Z., awthon, D .. Me a tl ain . K., , li kkcr. W.J .. li . ,'. , 2005 , electi ve alterati ons f
gene e pre ion in mi indue d by MPTP . ynap e 55 , 45-5 1.
Yallapragada, P.R .. Rajanna. .. Fai L , ., Rajanna. B .. 1996 . Inhibiti on of calcium tran port
b mercury alt in rat ce rebe llu m and ce rebra l co rtex in vitro . J Appl Toxico l 16,
...,25- 0.
Yamamoto, M .. Takeya. M .. lk hima- Kataoka. H .. Ya ui , M., Kawa aki , Y., hirai hi , M.,
Maj im a. ., hirai hi . .. ezo n . Y.. a aki . M.. to, K., 20 12. lncrca ed expression
of aquap rin-4 'v\ ith methylmercur
p ure in the brain of th e co mm on marmoset.
The Journal of to ic I gical cienc
7. 749-763 .
Yang. Y.J .. Wang. .M .. Hu. L. .. un. X.L.. Ding. 1.11. , Hu . G., 2006 . Iptakalim ali viated
of e trac llul ar dopamine and glutamate induced by 1-meth yl-4the increa
phenylpyridinium ion in rat stri atum . Ne uro ci Lett 404. 18 7- 190 .
Yazdani , ., Germ an. D.C .. Liang, .L.. Manzin o. L.. ' on ali a. P.K., Zeevalk. G. D .. 2006.
Rat model of Parkinso n's di ea : chr ni c ce ntral deli ve ry of 1-meth yl-4phenylpyridinium (MPP+). xp Neurol 200. 172- 183
Yin. Z., lbrecht J. . yversen. T .. Ji ang, H., ummar, M .. Rocha, J.B., Farin a, M.,
chner,
M .. 2009 . Comparison of alterati ons in amino ac ids content in cultured astrocyte or
neurons expo ed to methylmercury separately or in co-c ulture. Neurochem i try
internati onal 55, 136- 142.
Yin. Z., Lee, E., Ni, M .. Jiang, H., Milatov ic. D ., Rongzhu. L. . Farina, M .. Rocha. J .B.,
Aschner. M., 2011. Meth ylmercury-induced alterati ons in astrocyte fu nction are
attenuated by ebselen. Neurotox ico logy 32. 29 1-299 .
Yin, Z., Milatovic, D ., Aschner, J. L.. Syversen. T .. Rocha. J.B., ouza, D .O., idoryk, M.,
Albrecht. J. , Aschner. M .. 2007 . Methylmercury induces ox idati ve inj ury. alteration
in penneability and glutamine transport in cultured astrocyt s. Brain research 1131. 110.
Yoshida, M., Honda, M., Watanabe. C., Satoh, M .. Yasutake, A .. 2011 . Neurobehavioral
changes and alteration of gene express ion in the brain of metallothionein-1/Il null
mice exposed to low levels of mercury vapor during postnatal development. Th
Journal of toxicological sciences 36. 539-54 7.
Yoshida, M., Kujiraoka, T., Hara, M., Nakazawa, H., Sumi. Y .. 1998 . Methylmercury
inhibits gap j uncti onal interce llul ar communication in primary culture, of rat
prox imal tubu lar cell s. Archi ves of toxico logy 72, 192- 196 .
Youdim . M.B., Bakh le, Y.S ., 2006 . Monoa mi ne ox ida e: isoform and inhibitors in
Parkin so n's di sease and dcpres ive illness. Br J Pharmaca l 14 7 upp l 1, 287-296.
Youdim , M.B., Riederer, P.F., 2004. A review or the mec hani sms and role or monoamine
ox idase in hibitors in Parkinson' disea c. Neuro logy 63. 32-35 .
1 ,
160
Y ung,
.Z ., a lo r, M .M ., Borde , ., 20 11 . euro tran mitt r couple brain acti vity to
ub ve ntri cular zone n ur gene i . ur J euro 1 , I 12 - I 1 2.
Yu , X ., Robin on, J .F., idhu , J .. , II ng, ., Fau tman. E. M ., 2010 .
y t m -ba ed
c mpari n of gene
pre ion reveal alt rati n in o id ati ve stress, di srupti on of
ubiquitin-pr tea orne y tem and alt red ce ll cycl e regul ati o n after e po ure to
cadmium and m ethy lm ercury in mo u e mbr onic fib ro bl ast. To ic 1 ci 114, 35 6377.
Yuan, Y., Jin, .1 .• Yang. B .. Zhang, W .. II u. J. . Z hang. Y .. ' hen. ., 200 8. ve rexpres d
alpha- nucl in reg ul ate d the nu clear fac tor-kappaB ignal path way .
ell Mo l
euro bi ol 2 . 2 1Zahir, F., Ri z i. .J ., Haq. , .K .. Khan. R .I-L 2006 . Effec t of meth y l m ercury indu ced free
radi al tr
n nuclei aci d and pro tei n : Im p licat io n on cogniti ve and motor
functi on . Ind ian J ' lin Bi oche m 2 1. 149-152 .
Zhang. K ., M a, Z .. Wang. J .. X ie. .. Xie. J.. 2011. Myricctin attenua ted MPP( )- induced
cytoto icity by anti- ida ti n and inhi bi tion of M KK4 and JN K acti vati on in
M 2 .5 ce ll . e ur pharm ac logy 61. 329- 35.
Zhou. M .. Panchuk- V 1 hi na. N .. 1997 . - one- tep f1u orome tric meth od fo r th e continu o us
mea urement f monoamin e o id a e activity. A nal Bi oc hem 253, 169- 174.
Zhang. T. .. Pl acze k. . .. Dani. J. .. 20 10. In vi tr iden ti fication and electroph ysiolog ical
charac terizati on
f dopamin
ne uron
m the ventral tegmental area.
Neuro pharmaco logy 59, 43 1-436.
Zhang. X., Zhou, J.Y .. hin. M .H .. chepmoe . A.A .. Petyuk. V.A ., W e itz, K .K .. Pctriti s.
B .O ., M onroe. M .E., Camp. D .G .. Wood. .A .. Me lega. W .P .. Bi ge low. D.J ., Smi th,
D.J ., Qi an. W.J .. mi th. R .D .. 20 10. Region - pecific prote in abund ance change in
the brain of MPTP-induced Parkinso n' di sea e mo use model. J Proteo me Res 9,
1496- 1509.
Zhang, Y., Jam es. M .. Middl eton. F.A .. D avis. R .L.. 2005 . Transc ripti o nal analy is of
multipl e brain regions in Parkinson's di sease supports the invo lvement of specific
protein proce sing. energy metabo lism, and signaling pathways. and sugge t novel
di sease mechanism s. Am J M ed Genet B Neuropsyc hi atr Ge net 1378 . 5- 16.
Zhou, Y .. W ang, Y., K ovacs. M ., Jin . J. . Zhang. J. . 2005 . M icrogli al acti vati on induced by
neurodegeneration : a proteomic analysis. Mol Ce ll P roteo mi cs 4, 14 7 1-14 79.
Zhou, Z., Yap, B .. Gung, A .. Leong. S .. Ang. S., L im . T .. 2006. Dopam ine-related and
caspase-independ ent apoptosis in dopaminergic neuron induced by overexpre sion
of human w ild type or mutant a-sy nuc!e in. Exp Ce ll Res 3 12. 156-170 .
161
Appendix 1: E tabli hing the
Primary
erebellar Granule Neuron and A trocyte
ulture Model for Methylmercury Toxicity
tudy
Background
r wth factor
(F ' ,
F and B
F) have be n
hoVvn t
alter tatu
n gap junction
intra ellular ( J ) communi ation betw en a trocytcs and neur n. There i little rc earch to
in e tigat the role
J
f
functi n on mercury neuron to icity.
erebel lum is known as a
target regi n for mercury to , icit . The objective of this study is to develop primary
erebellar
trocyte (
) and ' erebellar
m del for furth r tudy of th
Junction Channel
Until now, w
Cerebellar
ranule Neurons (
groVv1.h factor F F2 ( Fi br blast
N) -mono and co-cultures
rowth Factor 2) on
ap
onne in4.., ( x4 ) communication in respond to Methylmercury (McH g) .
have
ucce fully e tabli hed th
ranule Neuron
co-culture
(Fig.4)
model
f mou e
r bellar Astrocytes,
and mono culture (Fig.5 ), which were
e timated by ingle IF (immunofluorescence) and double IF staining a say for MAP-2 (for
neurons) and GF P proteins (for astrocytes).
erebellar A
and
GN mono and co-cultures
were expo ed to MeHg (0-20!-lM) for 24h or 48h. The results of the cell viability assay
demonstrate that MeHg induced a time and dose dependent decrease of the cerebellar A
GGN in both mono and co-cultures (Fig.6 ). The mono-cultures are more sensitiv
lower doses of MeHg than the co-culture. These results indicate that cer be liar A
and
to the
and CGN
cu ltures are appropriate cell models to study MeHg toxicity. The primary cell viability a ay
provides the range of concentration to be used to further study the effects of FGF -2 on the
regulation of Cx43 in the cerebell ar AS and CGN co-culture.
T he protocol of c -culture AS and CGN modeL results of IF staining and cell viability a sa;
in AS and
GN cultures are present as fo llows. The animal experimental de ign and
m ethodo logy were app roved by th e U ni ve rs ity of Ottawa Animal Care and U e committee
(J une, 20 12).
162
Protocol of Co-culture Astrocytes and Ce rebella Granule Neuron
Astrocytes preparation was based on Marek eta!. paper
(Marek et al., 2008) with modification. Cerebellar Granule
Neuron (CON) culture protocol was referred from Hae Young
Lee etal. video article (Lee et al., 2009). Below is the
procedure of preparation co-culture of CGN and AS.
Primary astrocyte cultures were collected from the cerebella
of post-natal day 4-6 mice.
1)
Remove meninges and mince cerebellar ti ssues,
incubate in rocking water bath/ or MACSmix™ Tube Rotator
at 3 7°C for 30 minutes in 1OmL HBBS + 300jlg/mL Dnase I
and 0.25% trypsin (I0011L)
6)
Add 1OuL of Anti-ACSA-2 Micro Bead per 10011L
buffer. incubate for 30min at 4°C with gentle mixing every
5min
7)
Wash once with separation buffer: re-suspend m
500j1L buffer I 1X 108 cells
8)
Prepare MS columns by adding 5mL of buffer, wash
with buffer 3mL x 3
""
Post-natal day 4-6
Balb-c m1ce
2)
Triturate digested cells with 0.25% FBS, wash and
spin (300 x g for 1Omin)
Cerebellum dissection
and trypsm
diSSOCiatiOn
Smgle cell
suspension
M1crobead
(Ant1-Giast)
3)
Re-suspend pellet in HBBS and pass through 70~tm
nylon mesh screen. wash and spin
~
Astrocyte
4)
Re-suspend dislodged cells in 1OmL of MACS
separation buffer. pass suspension through a 40!-lm sc reener
into a 15mL tube
Purified cerebellar
astrocytes
5)
Spin (300 x g for 5min at 4°C). wash with buffer and
re-suspend at 1x 10 7 cells / 1OOuL buffer
Figure 1. Diagram of primary cerebellar astrocytes isolation
and purification
Elut1on on MS
magnet1c column .
Ant1-GLAST
Microbead Kit
163
9)
Place column in fresh 15ml tube and add cells, use
plunger to flush with 5mL buffer
Spin 15ml tube and dilute astrocytes enriched
10)
suspension with MEM medium to obtain the desired density
(l x l0 5/w in a 12-well plate. ~ 100,000 cells/mL, depending on
the time required to reach confluence)
Place AS enriched cultures into C02 incubator for 2
11)
weeks. medium was changed twice per week
16)
If culture remained beyond 7 days, add 500 ~1
SFM/MEM+ once per week of incubation thereafter to
compen sate for evaporation, resume incubation.
Cerebellum
d1ssect1on
Post-natal day 4-6
Balb-c mice
12)
When glial cells reached confluence and form a
uniform monolayer on the cover slips, add FUDR so lution
(ex.12.5 1-11 FUDR per petri dish)
2-weeks old purified AS ( +) were pre-seeded 1-2 days before
CGN and progenitor cells collection.
13)
After collection of CGN, count cell density with a
hemacytometer and trypan blue and add SFM to reach the
desired cell density (100,000 to 350,000 cells/mL). For 12
well plates. plate 2.5-3.5 x l 0 5 cells/well
14)
For cerebellar CGN and AS co-culture, seed CGN (5 6 folds density as AS) on top of pre-plated monolayer of
astrocytes (2 weeks old) with SFM/MEM+medium.
Add cytosine arabinoside to a final concentration of
15)
51-!M in SFM/MEM+ medium to reduce the proliferation of
glial cells
•
~
J;><
Papam Dissociation
System .
b-1
Enri ched
cere bellar
neurons.
Neurons collected
m culture
supernatant
Suspension plated on
POL coated plate .
Figure2. Diagram of cerebellar granule neuron and progenitor
cells collection
2-3 days
1n-v1tro
Plate
cerebellar
astrocytes
7 days
m-v1tro
Plate CGN on
astrocyte monolayer
(80% confluency)
Co-culture.
Figure3. Diagram of AS and CGN co-culture plating in a ratio
of l :6 for 7 days following MeHg exposure
164
Li t of chemical and reagent :
HB
,n
alcium, n Magne ium, n Phenol Red (In itrogen, 14175-095)
Minimum
ential Medium (M M) (In itr gen. 110 50 0)
ur ba al
-Medium (lnvitr gen. 12 49-015)
Penicillin- tr pt mycin/ P
luti n (lnvitr gen. 15140-122)
B-27 erum re
upplement (50. ) (lnvitr gen. 17504-044)
Tr pin- ~ DT
Jution (Invitrogen. R-001-100)
H at-Inactivated F
(Invitrogen, 1~4 4028)
lutaM X (lnvitrog n,
050061)
MA
mi TM Tube Rotator (Miltenyi Biot , 130-090-753)
MA
B A tock olution (Miltenyi Bi tee. 130-091 -376)
Anti-AC
-2 MicroBead, Mou e (Milten i Biotec, 130-097-6 78)
orning 15m1 graduated plastic tube PET (Fisher Scientific, 05-538-51 A)
Cell Strainer (Fi her cientific. 40~-tm 22-363-547: 70~-tm 22-363-548)
Characterized FBS SOOml (Fisher Scientific, H3039603Hl)
lOOmM sodium pyruvate solution (Sigma-Aldrich, 8636-1 OOml)
Cytosine ~-D-arabinofuranoside (Sigma-Aldrich, C 1768-1 OOmg)
45o/o (w/v) D-glucose (Sigma-Aldrich, G8769-l OOml)
MITO + Serum extender ( orning, 355006)
165
Prepare culture media and
lution:
erum-free medium ( FM) and 10% FB medium
4 ml of
ur ba al
500 !J.l 1OO x
-Medium
lutaM
500 !J.l 1OO x P ni illin- tr pt myc m
6.25 !J.l 2 M K 1 (final ... 50 !J.M).
plit in 2 aliqu t f9 ml and 4 ml. T pr pare 10°/o FB medium, add lml fh eatinacti ated
to the 9 ml aliqu t. T prepare FM, add 800 !J.I of th e erum -free
uppl m nt -27 t the 40 ml aliqu t. Filt r teriliz d and tore at 4° for a rna imum of 2
w ek .
MEM+ (MEM/1 0% FBS medium 1OOml) * an be t red at 37°( ~ r 1week
87 .6ml
nditi ned M ~ M ( vlinimal e enti a! medi a with Earl salt and without Lglutamine) + lml P (100 )
1. 33 ml
45 o/o (w/v) D-gluco e
lml
1OOmM sodium pyruvate oluti n
MITO (5ml H2
in 1 vial of MIT + erum E tender)
Filtered using a 0.22 !J.M nylon mesh bottle filt er
lOml
FB
SFM + MEM( +) solution
66ml
SFM
33 ml
conditioned MEM+
FUDR solution *Prepare lml aliquots and store up to 1 year at -20°(
203 m! MEM (with Earl e's salts, without L-glutamine and phenol red)
1OOmg 5-flu oro-2' -deoxy uridine
198mg uridine
Filter using a 0.2!J.M nylon mes h bottl e filter
Cytosine arabinoside * tore up to 6 month s at - 20oC.
To mak e 2mM
water.
ytosine arabinos ide, di sso lve 2mg c tosi nc-l-f3-D-arabino-furano ide in 5ml
166
Figure4. Immunofl uorescence of Cerebellum Astrocytes (AS) and Cerebellar
ranule
Neurons (CGN) co-culture for 10 day . Astrocytes are tained with GFAP, repr ented in
green (A), and neurons are stained with MAP-2, repre ented in red (B). Nucleus stained with
DAPI represented in blue (C). D is a merged image of AS and CGN in co-culture, E i a
phase contract image of AS+ GN co-culture (A-E, object ive lens 40 x), and F is AS and
GN co-culture (objective lens 1Ox).
167
A
B
c
D
FigureS. Immunofluorescence of mono cerebellar a trocytes and mono cerebellar granule
neurons of postnatal day 4-6 mice. Immunocytochemi try again t MAP-2 with DAPI (A) and
without DAPI (B) staining in
GN enriched cultures (1 Ox). Merged
FAP and D Pl
staining (C), and GF AP ingle taining (D) in i olated cerebellum astrocytes ( 1Ox). Boxe
indicated the expression of mono CGN and a trocytes under 40 x obj ctive len .
168
A
-
CGN 24h
Co-culture 24h
A 24h
140
120
100
0
80
!:
c
0
60
~
40
u
20
0
-20
M e H g( ~M )
B
--- CGN 48h
Co-eulture 48h
A
48h
120
100
80
-...
0
c
60
0
u
~
40
20
0
-20
MeHg ( ~M )
Figure6. Ce ll viability of cerebellar granule neurons and astroc ytes in mono and co-cu lture
fo ll owing a 24h exposure (A) and 48h expos ure (B) to various concentrations of MeH g.
169
Appendi II:
upplementary data
hapter V:
Table
1.
25 6 id ntified pr tein
Tabl
2. Li t [ 102 di f~ renti all y e pre ed protei n in MeHg-treated manno t cer bellum
Gen e ymb ol
Protein Na m e
14o rfl 59
y
I
RY B
PP IA
K NJI O
PH GDH
- IF2 2
081
LUDl
FBX02
TUBB
GNAQ
CYF lP2
CKB
VCP
TU BAl A
CCT3
ATP2A2
RAB J A
SPTAN1
PSMC 3
ATP6VlH
DNM I
SNAP25
RABIIA
NTNAPI
IMMT
HBB
T rea t/ ontrol (log2)
I. 75
lycoge nin - 1
lph a-c ry tall in
hain
Peptid) 1-prol) I ci -tran i omera e
P- en iti ve in v.a rd rectifi er p ta ium chann el I0
D-3-ph o ph oglyce rate dehyd r ge na e
Eukar oti c translat i n initi ati on fac tor 2 ub unit 2
CD81 anti ge n
Glutamate deh drogena e
F- bo onl y protein 2
Tubulin beta chain
Guanin e nu cleotide- binding protein G( q) ubunit
alph a
Cytopl a mi c FMR !-interactin g protein 2
Creatine kinase 8 -ty pe
Tran iti onal end opl as mi c reti culum ATPa e
Tubulin alph a- ! A chain
T-compl ex protein 1 subunit ga mma
arco pl as mi c/endopla mi c reti culum ca lcium
ATPase 2
Ras- re lated protein Rab-3 A
Spectrin alpha chain , non-e rythrocyti c I
26S protease regulatory ubunit 6A
V-type protonATPa e ubunitH
Dynamin - 1
Synaptosomal-a soc iated protein 25
Ra -related protein Rab- 1 I A;Ra -related protein
Rab- 11 B
ontactin-as oc iated protein I
Mitochondrial inn r membrane protein
Hemog lobin ubunit betaJ lemoglobin subun it delta
1.27
1.22
1. 10
1.09
0.86
0.84
0.75
0.7 0
0.60
0.55
0.49
0.45
0.42
0.3 1
0.2 1
-0.30
-0.3 I
-0.3 6
-0.42
-0.43
-0.45
-0.47
-0.47
-0.50
-0.54
-0.55
-0.60
170
VP 29
H
p
yp
PB
R 4
PIP4 K2B
XR 5
TP2BI
EPT9
R
M
M PR 3
R VBLI
AMPH
AT P6V ID
R YBL2
GBA
YTI
TLN2
NONO
CA MK2A
RPL26
SLC6A I
SGTA
HOM ER3
AN K2
IF3A
HUW I
LTB
ATP28 2
B N
SL 17A7
SU B I
/\ P I
MRPS3 6
acu Jar protein rtin g-a ciated prot in 29
Beta-addu in
erin e/thre nin e- pr t in kin a e P K I
p trin beta chain , non- th rocyt ic 2
5-o. pr I in a e
ual pec ificity pr tein pho. ph ata e
ynaptophy in
B ta- olubl
, F attac hm ent pro tei n
Protein DR 4
Ph o ph atid y I in ito! 5- ph o ph ate 4-kin a c ty pe-2
b ta
-ra; repatr cro -c mplementin g pro tein 5
Pi a ma m mbrane ca lcium -tran port in g A TPa c I
eptin -9
ur nal c II ad h ion molec ul e
Mi crotu bul e-a ocia ted pro tein RP/[: 8 fa mil y
me mbe r 3
RmB -lik I
Amphiph y in
V-type proton AT Pa ·e ubunit D
Ru vB-like 2
Protein ip nap homolog 2
ynaptotagmin - I
Tal in -2
No n-POU domain -containin g octamer-b in ding
protein
Cal cium/ca lm odulin -depend ent protei n kinase ty pe
II subunit alpha
60S ribo omal protei n L26
Sodium- and chl orid e-dependent GA BA transporter
-0.6
-0.6
-0.68
-0.7 1
-0.74
-0.75
-0.76
-0.7 8
-0.7 8
I
-0.94
Small glutamin e-ri ch tetratr ico peptide repeatcontainin g protein alph a
Homer protein homolog 3
Ankyrin-2
Eukaryo ti c translati on initiati on fac tor 3 ubun it A
E3 ubiquitin -pro tein l iga HUWE I
Clathrin li ght chain B
Pl as ma membrane ca lcium -tra nsporti ng ATPa e 2
Protein bassoo n
Ves icular glutamate transporter I
Acti va ted RN A polymerase II transcri ptio nal
coacti va tor p 15
Adenylyl cyc la e-a oc iated pro tei n I
28S riboso mal protein SJ6, mitoc hondria l
-0.7 8
-0.79
-0.8 I
-0.82
-0. 84
-0. 84
-0. 87
-0. 87
-0. 88
-0. 88
-0. 88
-0.89
-0.90
-0.91
-0.91
-0.92
-0.97
-0.98
-0 .99
-1.00
-1 .05
-1.06
-I .07
-1.09
-1 .09
-I .I 0
-I . I 4
-I . 14
171
85
PrLZ
Kl
p 4
A
P K2
PITRM 1
P2
VRB
L ll
OL 4
RF5
G K3
LGA L L
RCI 1
N2 A
MBL
AMKK2
HNRPOL
Ll CAM
SNRNP70
LRPl
SLC8Al
CS PG 3 variant
protein
C2C 0 5
RBM1 4
LSAMP
SHANKl
JTPKA
GMP S
OMXL2
MAPRE2
PL 81
uan1n nu I tid -binding pr t 111 ubunit b ta-5
Tum r pr tein 0 52
nk rin- 1
acuolar pr tein rtin g-a oc iat d protein 4
uanine nucl otide- binding protein ( ) ubunit
a lph a i o:D rm hort
[P) rll\ ate d h) dr gena e [lipoamid e] ] kin a e
i 7 me 2. mitochondri a I
Pre equen protea e. mitoc hondri al
Mitofu in -2
LIT-R
Rh o - Pase-ac ti atin g protein 2
Fl a\ in redu cta
OPH )
dium/ca lcium e;\.c hange r 2
EL
-I i" prot in I
eu ine-ri ch gli oma- in ac ti\ ated protein
Oi k large homo I g 4
OP-rib ylati on fac tor 5
lycoge n ynth a e "in a e-3 alph a
alectin -relat d protein
R kin a e ignalin g inhi bitor I
odium chann el protein t) pe 2 ubunit alpha
Carboxymethylenebut no li da e homolog
alcium /ca lmodulin -dependent protein kin a e ki na e
- 1.1 7
- 1.18
- 1. 18
- 1.19
2
-1 .74
-1.74
- 1.74
- 1.93
Heteroge neo u nuclea r ri bonucl oprotein 0- like
eural ce ll adhe ion molecul e L I
Ul small nu clea r ribonu cleo prote in 70 kDa
Lo\\ -density lipoprotein rece ptor-related prote in 1
5 15 kOa ubunit
Sodium/ca lcium exc hanger I
Neurocan core protein
C2 domain-containin g protein 5
RNA -binding protein 14
Limbi c system-assoc iated membrane protein
H3 and multipl e ankyrin repeat domai n protein I
In os itol-tri sphos phate 3- ki nase A
GMP synthase [glutamine- hydro lyzing]
Om X- 1ike protein 2
Mi crotubu le-as oc iated protein RP/EB fami I)
member 2
1-pho ph atidylin o itol 4.5-b i pho ph ate
ph o ph odi e tera e beta- I
- 1. 19
- 1.25
- 1.26
- 1.29
- I .3 9
- 1.40
- 1.42
- 1.42
- 1.4 8
- 1.49
- 1.49
- 1.50
-I .5 I
-1.59
- 1.60
- 1.70
-1 .93
-1 .95
-2 .0 I
-2.05
-2 .06
-2 .07
-2 .31
-2.43
-2.46
-2.57
-3. 14
-3.33
172
TableS3. Enriched GO Biological Process term based sets of differentially expressed proteins in MeHg-treated marmoset cerebellum
GOlD
GO:OOOI50 8
G0:0001558
GO:OOOI701
GO Term
regulatio n of acti on
potential
regulation of cell
growth
in utero embryonic
development
Nr.
Genes
o;o
Associated
Genes
Term P-value Corr.
Bonferroni
Associated Genes Found
5
21.7
2.75E-03
ANK2, CNTNAPI, GNAQ. KCNJ 10, SCN2A
5
15.2
1.35E-IO
CRY AB, GSKJA, LGII. NRCAM, RAB II A
5
17.9
4.07E-15
EIF2S2, LICAM. MFN2. PSMCJ, SLC8AI
G0:0006184
GTP catabolic process
10
21.3
9.33E-09
G0:0006811
ion transport
21
15.8
I. 71 E-1 04
G0:0006816
calcium ion transport
cellular calcium ion
homeostasis
5
15.2
2.53 E-08
ARF5. DLG4. DNM I. GNAQ. GNAS. GNB5. PLCB I,
RAB II A, RABJA. SRGAP2
ANKI. ANK2, ATP2A2, ATP2BL ATP282, ATP6VIO,
ATP6V I H. CAMK2A. DLG4, HBB. KCNJ 10, RABJA.
SCN2A, SHANK I. SLCI7A7. SLC6AI, SLC8AI,
LC8A2 . SNAP25. SYTL VPS4A
ANK2. ATP2A2. ATP2B2. CAMK2A, SLC8A I
6
17.1
6.77E-09
ANK2, ATP2A2. ATP2B2. DLG4. IMMT, SLC8A I
G0:0006874
G0:0006887
exocytosis
12
21.8
3.38E-05
G0:0007268
syna ptic tran smission
20
15.5
3.93E-34
G0:0007409
axonogenes1s
15
16.0
8.46E-19
G0:0007411
axon guidance
13
20.0
1.76E-08
G0:0007611
learning or memory
6
19.4
6.49E-03
G0:0009117
nucleotide metabolic
process
''
17.2
4.52E-94
L. ' -
ANKL CAPI, DLG-t NAPB. PAKI, PLCBI. PPIA.
RABJA. SNAP25. SRCIN I, SUB I. SYT I
AMPH . ATP2B2. BSN. CAMK2A. C NTNAPI , DLG_.,
ITPKA , KCNJIO , LGII , NAPB, NCAN, PLCBJ ,
RABIIA , RABJA , SHANKt , SLCI7A7, SLC6AI ,
SNAP25, SYP. SYTJ
ANKL ANK2. CAPL CNTNAPI, DLG4. LICAM. LGII,
NCAN, NRCAM. PAKI. RABIIA. RABJA. SPTANI.
SPTBN2. SRGAP2
ANKI. ANK2. CAPI. CNTNAPI. DLG4, LICAM. LGII,
NCAN, NRCAM. PAKI, SPTANI. SPTBN2. SRGAP2
AMPH. DLG4. PLCBI. SHANKI. SLC17A7. SLC6AI
ARF5. ATP2B2, ATP6V I H, CAP I. DLG4, DNM I, GBAS,
GLUD I, GMPS. GNAQ. GNAS. GNB5. GSKJA, PHGDH,
PLCB I. PSMCJ. RAB II A. RABJA, RUVBL2, SRGAP2.
VCP, VPS4A
173
G0 :0009 150
pur ine ribo nucleotide
metabo lic process
20
19 .4
1.93£-31
ARFS, ATP2S2, A TP6V I H, CA P l, DLG4, DNM I, GS AS,
GMPS. GNAQ. GNAS, GN S S, GS K3A, PLCS I, PSMC3,
RAS I I A, RAS 3A, RUV S L2, SRGA P2, VCP, VPS4A
G0 :0009 152
purine ribonucleotide
bi osynthetic process
5
15.2
3.7 8£-05
CA P !, GS AS, GM PS, GNAS. GS K3A
G0 :0009 154
purine ribo nucleotide
catabo lic proce ss
15
20 .5
2.02£-11
G0 :0009 166
nucleotide catabolic
process
16
20 .3
1.41 E-15
G0:0009205
purine ribo nucleos ide
triph osphate metabo lic
process
16
18 .8
2.94£-12
G0:0009790
e mb ryo deve lo pme nt
10
18.9
9 .62£-120
G0:0015711
o rganic a ni on tran spo rt
7
21.9
8.43£-11
G0:0016192
vesic le-medi ated
transport
23
15.1
1.29E-1 00
G0:0016570
histone modificat ion
5
29.4
2 .7 1E-1 0
G0:0019226
transmission of ne rve
impulse
22
15.9
9.30£-56
G0:0019637
organophos phate
metabolic process
25
15.9
2.74E-99
G0:0023061
signal release
9
15.5
3.05£-09
G0:0030097
hemopoiesis
regulation of cel lular
catabolic process
secretion by ce ll
6
15. 8
1.35£-35
8
17.0
6.21 E-26
17
16.5
1.17£-54
G0:0031329
G0:0032940
ARFS, ATP6V I H. DLG4. DN M I, GNAQ, GNAS, GN BS,
PLCS I, PSMC3. RAS II A RAS3A, RUV S L2, SRGA P2,
VCP. VPS4A
ARFS, ATP6V I H. DLG4. DNM I, GNAQ, GNAS, GN BS,
GS K3A, PLCS I, PSMC3, RAS II A, RAS3A, RUV BL2,
SRGAP2. VCP. VPS4A
ARFS, ATP6V I H. DLG4, DNM I, GSAS, GNAQ, GNAS,
GNSS. PLCB I, PSMC3, RAS II A, RAB3A, RUVBL2,
SRGAP2, VCP, VPS4A
ATP282, EJF2S2, GNAQ, GNAS, LICAM, MFN2,
PHGDH. PLCB I. PSMC3, SLC8A I
HBS. KCNJIO. RAS3A, SLCI7A7. SLC6Al, SNAP25,
SYTI
AMPH, ANK I, ARFS, ATP6V I H, CAP I, CL TB, CYFIP2,
DLG4. DNM L LRP I, NAPS, PAK I, PLCB I, PPIA,
RASIIA. RAB3A. SNAP25. SPTSN2. SRCINI, SUB I,
SYP. SYT I, VPS4A
HUWE I, PAK I, RSM 14, RUVSL I. RUVBL2
AMPH. ATP2S2, BSN. CAMK2A, CNTNAPI, DLG4,
ITPKA, KCNJ 10, LGII, NAPS, NCAN, N RCAM. PLCB I,
RASIIA RAB3A. SCN2A. SHANKl, SLCI7A .,
SLC6A I. SNAP25, SYP, SYTI
ARFS. ATP2S2, ATP6VIH, CAP!, CD81. DLG4, DNMJ,
GSAS, GLUD I. GMPS, GNAQ. GNAS, GNBS, GSK3A
lTPKA, PHGOH, PIP4K28, PLCB I, PSMC3, RA B IJA,
RAS3A. RUVBL2. SRGAP2, YCP, VPS4A
CA MK2A. GLUDI, GNAS, NAPS. RAB3A. SLC17A.,
SLC6AL SNAP25, SYTI
ADD2, ANKJ, GNAS, LICAM, TPD52, XRCCS
DLG4. GNAQ, GNAS, GSK3A, PLCB I, RBMI4,
SRGAP2. VCP
AN K I, CAMK2A, CAP!. DLG4, GLUDI, GNAS. NAPB,
174
PAKI, PLCBI, PPIA, RAB3A, SLCI7A7, SLC6AI.
SNAP25, SRCIN I, SUB I, SYTl
G0:0032970
regulation of actin
filament-based process
7
17.9
1.98E-05
G0:0035637
multicellular
organismal signaling
24
16.7
5.39E-68
G0:0040008
regulation of growth
8
17.4
2.08E-29
G0:0042060
wound healing
12
15.4
5.67E-39
9
19 .6
1.21 E-08
7
20.0
3 . 13E-35
5
27.8
1.02E-02
G0 :0042391
G0:0043009
G0 :0043547
G0:0044057
G0:0044708
G0:0045936
regulation of membrane
potential
chordate embryonic
development
positive regulation of
GTPase activity
regulation of system
process
s ingle-organism
behavior
negative regulation of
phosphate metabolic
process
ADD2. ANK2, LRPI, PAKI, SHANK!, SPTANI, SPTBN2
AMPH. ANK2. ATP2B2, BSN. CAMK2A, CNTNAPI,
DLG4, ITPKA, KCNJ I 0, LGI I, NAPB, NCAN, NRCAM,
PLCBI, RABIIA, RAB3A , SCN2A, SHANK!, SLC17A .,
SLC6A I, SLC8A I, SNAP25, SYP, SYT I
CRYAB. GSK3A. LGII, NRCAM, PLCBI, RABIIA,
RUVBLI, RUVBL2
ATP2A2. ATP2B I, ATP2B2, CAP I, GNAQ, GNAS, HBB,
LICAM , MFN2. PAKI. PPIA, SLC8A2
ANK2, ATP2A2 . CNTNAPI, DLG4 , GNAQ, KCNJIO ,
SCN2A, SHANK!, SLCI7A
EIF2S2, GNAS, LICAM, MFN2 , PHGDH, PSMC3 ,
SLC8AI
DLG4. GNAQ. GNAS, PLCB I, SRGAP2
15
19.7
1.42E-16
8
16 .3
6 .08E-I 0
ANK2, ATP2A2. ATP2B2, CAMK2A, DLG4. GSK3A,
ITPKA, KCNJIO, LGII, NAPB, RABIIA, RAB3A .
SLC6A I. SLC8A I. SYP
AMPH. DLG4. KCNJ I0, PLCB I, SHANK I, SLC 17 A
SLC6A I, SPTBN2
5
15 .6
1.69E-12
DUSPJ. GNAQ. GSKJA, LRP l, SRCIN I
G0:0046128
purine ribonucleoside
metabolic process
17
18 .3
6 .3 0E-18
G0:0046130
purine ribonucleos ide
catabolic process
15
20.5
1.16E-IO
G0:0046903
sec reti o n
19
17.1
6 .39E-99
G0:0048468
cell devel opment
28
15.2
1. 12E-102
ARFS. ATP6V l H. DLG4. DNM l. GBAS, GMPS, GNAQ,
GNAS, GNBS, PLCB I. PSMC3. RAB II A, RAB3A,
RUVBL2, SRGAP2, VCP , VPS4A
ARFS. ATP6VIH. DLG4. DNMI. GNAQ, GNAS, GNBS,
PLCB I. PSMCJ , RAB ll A. RABJA. RUVBL2, SRGAP2,
VCP. VPS4A
ANK I. ATP2B2. CAMK2A. CAP I, DLG4, GLUD I,
GNAS. NAPB, PAKI, PLCBl. PPIA, RAB3A, SLCI7A
SLC6A I. SNAP25, SRCIN I, SUB l, SYT I. TPD52
ANKI. ANK2, ATP2B2. CAPL CNTNAPL CRYAB.
DLG4. GNAQ, GSK3A. KCNJIO , LICAM, LGII,
175
MAPRE3, NCAN, NRCAM, PAKI, PHGDH, PLCBl,
RAB I I A, RAB3A, SHANK I, SLC8A I, SPTAN l,
SPTBN2 , SRCIN I, SRGAP2, SUB I, XRCCS
ANKI, ANK2, ATP282, CAP!, CNTNAPI, DLG4,
LICAM, LGII , NCAN, NRCAM, PAKI, RABIIA,
RAB3A, SHANK I, SPTAN I, SPTBN2, SRCIN I, SRGAP2
ANKI, ANK2, CAP!, CNTNAPL DLG4, LICAM, LGII,
NCAN, NRCAM, PAKI, RABIIA, RAB3A , SHANKl,
SPTAN I, SPTBN2 , SRCIN l, SRGAP2
ANKI. ANK2, ATP6VID, CAP!, CNTNAPl, DLG4,
LICAM, LGII. MAPREJ, NCAN, NRCAM, PAKI,
RAB II A, RABJA , SHANK I, SPTAN I, SPTBN2,
SRCIN L SRGAP2
ANK2 , ATP2A2 , ATP2B2. ATP6V I 0, ATP6V I H, CKB,
DLG4, IMMT, KCNJ 10, PDK2 , SLC8AI
CAMK2A, GLUD L GNAS, NAPB, PLCB I, PPIA,
RABJA , SLC6A I, SNAP25. SRCIN L SYT I
ANK2, ATP282 , CAMK2A, CRYAB, DLG4, GLUDI ,
GNAQ. GNAS. GSKJA, LRP I, NAPB , PLCB I, PPIA,
RAB II A. RABJA. SHANK I, SLC6A I, SLC8A I, SNAP25 ,
SRCIN I. SYT I
G0:0048667
cell morphogenesis
involved in neuron
differentiation
18
17.0
7.02E-22
G0:0048812
neuron projection
morphogenesis
17
15.7
4.29E-24
G0:0048858
cell projection
morphogenesis
19
16.4
1.29E-45
G0:0050801
ion homeostasis
II
15.9
I .0 I E-25
G0:0051 046
regulation of secretion
II
21.6
7.08E-17
G0:0051 049
regulation of transport
21
15 .3
1.09E-I 03
G0:0051276
chromosome
organization
6
15 .0
3 .22E-83
G0:0051640
organelle localization
9
17.6
6 .67E-05
10
15.9
3.14E-22
6
18 .2
2 .63E-21
CAMK2A, CAP I, GSK3A. LICAM, PLCBI, TUBAIA
6
15.4
3A5E-09
ATP6VID, ATP6VIH. GNAS. GSK3A, PAKL PDK2
7
23.3
2.31E-14
CAPL DLG4, GNAQ, GNAS. GSKJA PLCBL SRGAP2
11
21.6
2.68E-09
ARF5, DLG4, DNMl, GMPS. GNAQ, GNAS, GNB5,
PLCB I, RAB I I A, RABJA , SRGAP2
G0:0055082
G0:0071345
G0:0071375
G0:1900542
GO: 1901068
cellular chemical
homeostasis
cellular response to
cytokine stimllllus
cellular response to
peptide hormone
stimulus
regulation of purine
nucleotide metabolic
process
guanosine-containing
compound metabolic
HUWEI. PAKI. RBMI4 , RUVBLI, RUVBL2, XRCC5
AMPH , DLG4. MFN2, NAPB, RABIIA, RAB3A ,
SNAP25, SYP. SYTI
ANIC , ATP2A2, ATP282, ATP6V I D. ATP6V I H. CKB,
DLG4 , IMMT, L ICAM. SLC8A I
176
process
GO: 1901135
carbohydrate derivative
metabolic process
22
15 .7
2 .26E-I 08
G0 : 1901136
carbohydrate derivative
catabolic process
18
22.0
8 .9 7 E-2 1
8
15 . 1
1.05 E-48
18
15 .8
5. 3 5 E-6 5
7
15. 9
3. 03 E-22
G0 : 1901137
GO: 1901565
G0 :2000145
carbohydrate derivative
bi osynthetic process
organon itrogen
compound catabolic
process
regulation of cell
motility
ARF5, ATP28 2, ATP6VIH , CAP!. DLG4, DNMI ,
FBX02, GBAS, GMPS. GNAQ, GNAS, GNB5 , GSK3A,
NCAN . PLCB I. PSMC J. RAB II A, RAB J A. RUVBL2 ,
SRGAP2, VCP, VPS4A
ARF5. ATP6VIH . DLG4 . DNMI . FBX02. GNAQ, GNAS.
GNB 5. GSKJ A. NCAN . PLCB I, PSM CJ, RAB II A,
RAB J A. RUVBL2. SRGAP2. VCP, VPS4A
CAP I. GBA S. GMPS. GNAS, GSK 3A, NCAN , PLCB I.
VCP
ARF5, AT P6Vl H, BLVRB, DLG4 , DNM I, GL UDI ,
GNAQ, GNA S, GN8 5, NCAN , PLCB I, PSMC3, RAB II A,
RAB J A. RUVBL2. SRGAP2, VCP, VPS4A
LRP I. PAK I. PLC BI , RBM I4, SLC8AI , SRCINI ,
SRGA P2
177
TableS4. Significant GO Cellular Component terms and the associated differentially expressed proteins
in MeHg-treated marmoset cerebellum by GOrilla
GOlD
6
GO Term
P-value'
Protein
Count
Associated Proteins
G0:0044459
plasma membrane
part
3.60E-03
34
SYP. SPTAN I. ATP2B I. DLG4 . ATP2B2. SCN2A. ATP2A2. LRP I. SLC8A I.
SYTI. CNTNAPI. CAMK2A . SNAP25. C2CD5. HOMERJ . CLTB . SHANKI ,
CD81 . GBAS. NDRG4 . AMPH . GNAS. SRCIN I. KCNJ I 0, SRGAP2. GNAQ.
SPTBN2. L ICAM. PAK I. DUSP J . SLC6A I. ANK2 . ANK I. NRC AM
G0:0060076
excitatory synapse
2.68E-03
6
SYP. DLG4. BSN . SHANK I. SYT I. SLC 17A
G0:0097060
synaptic membrane
1.62E-02
12
SNAP25 . SYP. Ll CAM . HOMERJ . DLG4 . SRCIN I. SHANK I. ANK2. SYT I.
SRGAP2. ANK I. CAMK2A
P-value corrected using the Benjamini and Hochberg method
178
A
DLG4 (Disks large homolog 4) : P78352
LQAAHLHPIAIFIRPR
B~ Ions
L
0
A A
Y~ Ions
R
P
B Ions 1 - L - t
H
R
L
H
P -l
-1-t-F
F -f
+A+-
H
A +-A-+
R
P-l
t A-l A ~ 0--1
p
H
H
Y Ions J - R ---+-P --1-R --+-- --t--F - t
A-+--1-
A
1-f
P
-F-
-H-
L-
1 -i- R - - ! - - P
H-
A
A
0
+
"'
Sequence
LOAAHLHPIAIFIRPR
.. .
I
+
~
c
a.•
"'
c
,f...
""
.,.
"....
"'
')
~
~,
""
"
'I
0
100
~00
C"l
,,
00
X.
.....
,...,
300
r
,_
'
400
500
600
700
BOO
900
0
1000
1100
1 ~00
1 300
1400
1500
1600
MIZ
179
8
SLC17 A7 (Vesicular glutamate transporter 1 ): Q9P2U7
ILQGLVEGVTYPACHGIWSK
8::' Ions H
L
Q
Y:' Ions 1-V.
s
W
8 Ions
I
GI-L
V
E Gi-V T
HGI-H
C
H
V~G~
v
L-t-0
G
S
W-----!-1
Y Ions f-V
P ~A
Y
C -!AI ~+
E
l
H
G
p
A
p
y
T
G-+ V
-C
A
H
-Y-+-T
G
1-t--W-
E-t-V-!-L
G
0
100
Sequence
MH+
90
ILOGLVEGVfYPACHGIWSV
::'::'::'8
53
Charge= 3+
Score= 1 ::'1 '21
80
"
.[
.
..,.+
0
100
::'00
300
400
500
600
700
BOO
900
1000
1100
1 .00 1 300
1400
1500 1600
1700
1 BOO
M/Z
igure l.Repre entative M /M
spectra from (A) DLG4 (P78352) and (8) SLC17A7
(Q9P2U7) in marmo et cerebellum
180
Cell adhesion molecules (CAMs)
Chagas disease (American trypanosomiasis)
Vascular smooth muscle contraction
Wnt signaling pathway
Dilated cardiomyopathy
l ATP2A2, ATP2B2,
l ATP2B 1, CAMK2A,
Malaria
i GNAS, GNAQ, ITPKA,
i PLCBl , SLC8A2 and
i SLC8Al
Alzheimer's disease
Gap junction
L- - - - - - - - - - - - - - - - - - - - - •
Pancreatic secretion
Calcium signaling pathway
------------------------
t
-------*
0
2
4
6
8
10
# of Genes/ Term
Figure 2. KEGG pathway enrichment analysis of differentially expres ed proteins tn
MeHg-treated mannoset cerebellum using WebGestalt
181
12
r
CALCIUM SIGNALING PATHWAY 1
SLC8A1 and SLC8A2
Nt
1
I
I
J MLCK J
j-
Con~bon
[:1lliU f --• Metabolism
Newotrucsl!Utlet,
au!¥:old
Newotrucsnul"'et
h:mrone,
aul¥:old
Grow1h fact>t
ITPKA
NAADP
SIP
'·- - - - - - - - - - - - - - - - - _. ExocytJsJS
Sembon
04J20 4115114
(c) Kanelusa l.!boratooes
FigureS3 . Calcium s ignaling pathway was classified by K EGG pathway ma pping system
from uploaded 102 differentially expressed proteins. Protein s with red labels were the
one mapped in calcium signaling pathway.
182
hapter VI:
A
APEO (Apolipoprotein E): P02649
8 Ions f - -
L
R
Y Ions t--- - R -
v
-!-A-+
I
+A+G
Al
A-+---l ~
0
- - 1 - A - t - G - t - A - + - - - 0 - - + ---Y-----1r---V- -t -
tr.)
>
100Sequence= RLAVYQAGAR
MH+ = 110 4 6~63
90-
L£ 1
.....
Charge= :? +
(X)
""
(J)
80-
Score= 1 :?6 07
en
.....
Expectvalue = 0 01 4 035
70r-
0 ;:
<.C '
(..,
601-
r""
cr
M
~
....
VI
M
~501-
C)
J
c
(IJ
0
....
("'")
-
L['
r '
401-
--;:;:;
I
'""
~
r 1
~
=
>-
301-
>
100
Sequence= OAVFIPAGWDNHV
MH+ = 1 589 7966
90
Charge=~+
Score= 1 ~5 03
80
Expectvalue = 0 00 4 9~13
")
,...,
~
0
1 00
~00
300
(~J
0
~
(T'}
(T'}
..,.
400
+
C"'J
~
y
C'
+ ..,.
T >.C
500
...c
T
+
+
600
700
800
900
1000
11 00
1 ~00
1300
1400
1500
M/Z
Figure l .Repre entative MS /MS pectra from (A)
lobe and (B) DYN 1LI2 (04323 7) in frontal lobe
PO
(P02649) in marmoset occipital
184
Appendix III: Author hip
tatement for Publi bed
hapter
Statement of Authorship (Chapter III)
The manu cript in hapter III titled on " ffect of Methylmercury on Dopamine Release in
MN9D Neuronal ell "i author d by Yueting hao and lling Man han.
Dr. Laurie han provid d guidanc in the overall tudy design of the manu cript. Yueting
hao design and conducted the experiments, performed the data analysis and drafted the
manu cript. Dr. Laurie han pro id d the comments based on hi expertise knowledge in
toxicology. Yueting hao updated the manuscript based on Laurie's feedback, and Dr. Laurie
Chan made a fmal approval of this article and submitted it to the publisher.
Yueting Shao
Hing Man Chan
185
Statement of
ut ho ., hip ( bapter
Th manu ript in hapter \ titled on 'Pro\ omic
eth) lmer ury" is uth re,d
1annosc c ·posed t
an han.
D ·el ·i ey . lhibin
)
naJ..·sis of Cerebellum 1
ammon
'uetin
hao, tc mi Yamamoto,
stud cerebellar prote me in meUl)lmercun.
Yuetin
bao developed the conception
xpo d common mann se and utline of e ·periment nHcr initial al ·· n" "'1th her upcrvi or
Dr. u ic Chan C mmon manna t samples " r collec ed b... r. 1cgu i Yamamoto i
~auonal In itute fo . 1inamata Dise se, Japan. Dr Zhibin . ing in Onawa In tHute o
) ~1em Biolo
ondu ted LC- 1 , f ru 1) Js and pru\'lded lbc advice for u ing Per ·u
hao performed data analy 1 and conducted the validation say. Dr
ftw . Yu tin
Damel fige.: ( nawa In titute of y ems Biology provided he critical comment on
analyzing method Wld data interpretation. and 'ueting h updated th r suits based o
Daniel Figeys· omments. and Titten thi manuscript. I urie Chan provided tlu: irnportan
revisi n or thi raft. and Yueting hao re-organized the dr t based on Launc 'han'
feedback. ThL draft was then reviewed by other co-au tho : D . Megurni Yamamoto. Daniel
I i y an Zhibin ing. Yueting ·ha integrated the commcn from the co-authors. upd ted
manu ript and finall) approv d y Lauri\: Chan for ubrni sion.
ueting hao
I aniel Figey
llin
1e um1 'amam t
/hi bin
an h n
186