T D ICI Y Yu ctin g , 'ha o B..' '., ( n11an I ethunc l 1ni\ er-. Jt\ r cd 1cinc ,' cicncc. ~ 000 l. .'c . JJ!in l 1li\cr-.it). ~ 00 5 1 RT , BMITT£:0 I P RTIAL FULI· ILLM I: RE IR ME T F R Df:-~ G R EI: r D T RAT F PHI L .'OPT IY ·r OJ· I N T RAL R ~ NIV ~R ITY D - VIRO ME TAL ,' T DI E.' F N RTH RN BRITI H OLUMBIA June 2015 ~·' Yueting hao, 20 15 tra t ~th;lnPr i ·ant hut the di\er~e mcchanisti · e\ents ur) ( 1 Ilg) i a \\cll-knc \\n neurot 1' It\- ha\e -\et heen lulh , soci ted \\ ith e I I 1r d the me ·halll . Ill l r 1cllg neurc t 1 ' It lucid · ted . In this study. we partt ·ularl} ih r 1Ssihle roles in n ur deg ~neratl\ e d1 ea e.., ltke I Mktn on· dt..,ea e (I [ ) u~tng dopaminergic neuronal cells and an n-human pnmate mt d l In the ·ell culture m )del. \\e cc mpared effects ){ Mel lg t tho T indu cd h: 1-meth: 1-.f-phen: lr: ndtn1um ( 1f P ). a \\ell-e~tahli~hed drug that can Parkins ni 'm-like : mpt m indu \ protctmlc appn ach \\as u~ed t identif) and analyl'e Mellg afTe ted pr tein and their ht )]c g1cal function and associated pathwa;s in both the cellular and marmo. et model . )ur re ulh shO\\Cd that Mellg induced changes of gen .. pr tein pr file are imilar to the effects as l 1PP . l· \idence from proteomic results ·ugg t d M llg au d neurc d generati\ e effecb not on!; as~ociatcd with PD but also other neurodegenerati\ rder , uch a Huntington· . di ea e (} ID ). di and amyotrophic lateral l;hcimer · s disease ( D). ler i ( L ). \\'e also found brain regional pecific re ponse to MeHg timuli. ba d on the protein profile affect d in the following order: cerebellum -> occipital lobe (OL) > frontal lob derivative m tabolic proc (FL) of the c rebrum. . ynaptic tran mi ln the ercbellum. carb h;drate ion. cell dev lopment and calcium ·ignaling are dominant functions and path'v\ay contributing to the motor deficit in Mel lg-treated et. Mellg marm a found to electi I target membrane pr t in in the cerebellum particularly in ·ynaptic membranes . MeHg af[i cted protein 1nv lved in energ; metaboli ·m in both the L and F f the cerebrum thr ugh different proteins and biochemical path\\ a) .·. In L, protein were enriched in functions of carbohydrate metabolic proce · . lipid .ii 111 tab li pr 11 ular 111m a id 111 tab li pr c , , . h 111 and regul ti n f b d\ Ouid l " I. In the in" oh d in th m tab li l. diffi rentiall; e 1 re ed pre t ins 'v\ere main! 11 \ lc and ell di \ i. i n. gl; cer li p1d met b li pr pro e.. . cellular ammc pr te I) i . ·1he d) h me ·ta. 1 c. , . . , ul fur mpound cid met b li ' proce"'"'· micr tubule-based pro ess. and r \\ ater tran p 1rt and a ~ 1' iated path'v\a) s 1bscrved in 0 L nd FL \\a fi und t 1 be the under!: mg mechani m f1r brain edema c b. cned in the Mel Ig expo. ed mannc :ct. \Ciprottn . u ·ha II 14(P,' P5)inthc ' erebellumand PCl: in L \\ "re e'hibited to he · re pr tein. in linking multifunction targeted b; Mel Ig. ·r his study pr "ide n ur t xt a ne\\ per. pccti\ e upon under tandtng dcfi it ·. n urod generati\'e di nd . ugge:t potential mechani~ms link . bet'v\ecn behind Mellg mediated Mel lg exposure and rder. in human .iii Table f ntent ppro al page ... ........... ................................................. ................................................. 1 b tract .. ... .......... ... ...................... .............................................................. .... ............. .. 11 Table of ontent ........ .. ........ .. .............................................................. .. ................ ..... 1v Li t f Table ............................................................................. ........... ...... .. .......... ... .. VII Li t of Figur . ............................................................................................................. viii lo ary .. ... ............................................................................................ ................ ..... . xi ckno"'·ledgement .. ............ .................................................... ............. ....................... XII hapter I. lntr ducti on .. .... ........................................................... ............ .................... 1 Rational e ......................... ...... ........ .................................................................................................. 3 Re earc h H yp th e i ...................................................................................................................... 4 Objective a nd tru tur : ............................................................................................................... 4 Chapter II. L itera ture R ev ie"'· .. ... .............. .. ... .............................. ......... ... .. ... ..... .. ...... ... 6 1. Mercury in e nviro nm ent .......................................................................... ................................. 6 2. Toxic Effects a nd Mechani m of M eth ylm e rcury ................................................................. 9 2. 1 Targe t ites, )- mptom and pathologica l chan ge . ....................................................................... ... 9 2 2 Mec hani m of MeHg actio n ............................................................................................................. 11 3. Methylm ercury as a risk factor fo r neur·od ege nerative disea e ......................................... 23 4. MPP+ and its dopaminergic neurotoxicity ............................................................................. 27 Chapter Ill. Effects of Methylm ercu ry on Dopamine Relea e in MN9D Ne uron a l Cell ................ .................................................................................................................... 29 Abstract ........................................................................................................................................ 30 Introduction .................................................................................................................................. 31 Material a nd Method ................................................................................................................. 33 ell lin e and treatm ent ......................................................................................................................... 33 ell viability a ay .............................................................................................................................. 34 IIPL detec ti on o f DA and it · metabolites in MN9 0 ce ll cu ltu re medi um ......................................... 34 erni -reve r e transcript P R ................................................................................................................. 35 Immun obl ot .................................................................................................................................. ...... . 36 An aly i of MA -B ac ti vity ............................................................................................................. 36 Statis ti cal Analy is ....................................................................................................................... 37 Re ults ........................................................................................................................................... 37 . IV Th t I 90 it fM ll g nd PP t th e 9 0 ell 1n d pam111 e and 1t metabo lite re lea e fro m f 1n Jtr e pos ure to cll g and PP on do pamm c )C lin g genes of 1n 1tr . po ure t f Mell g and Oi cu PP on . 37 37 ................................ 38 38 n d pam 1n e C) l111 g pro te1n -Bact I\ 1t_ ............................................................................... 38 ell g and MPP ion ................................................................... .. ................................................................ 45 o nclu ion ................................................................................................................................... 48 ckno\\·ledge m nt .......... ....................... .. ............... .................................................................... 49 hapter IV . ffect of Methylm rcuf! n M 90 do pamin rgic n uron IL : a genomic and pr t omic analy i. .................................................................................. 50 Ab tract .......................................................... .. .... .. ... ... .. .............................................................. 51 lntr d ucti n ........................... .................. ..... ................................................................................ 52 Material and Meth d ............................................................. .................................................... 54 II ulture and hem1cal e p urcs .... .............. .. . . ...... ............ ............................................... 54 PO P R rra) a a) ................................................................................................................ 54 ............................................................................................................... 55 Prot omi nal) 1s e tern blot anal) 1s .................................................................................................................. 57 Re ult ...................................................................................................................... . .................... 58 PO P R rra1 anal] 1 .... 58 The prote 111 abu ndance profiling. ................................................... ....................................................... 59 .. ............................................................................ 59 Path v. ay enrichm nt anal} i ..... Molecu lar function s and on·e lation anal} i ........................................................................ 60 Validatio n of proteomic re sult ................................................................................................................ 61 Discus ion ....................... .............................................. .. .................................................. ... ......... 71 Conclusion ........................................................ ... .... ... .. ... ..... .. .......................... ............................ 76 Chapter V: Proteomic Ana lys is of Cerebellum in Common Marmoset exposed to Methylmercury ........ .................................................................................................... 77 Abstract ........................................................................ .. ........................ ............................ .......... 78 Introduction ..................................................................................................................... ............ . 79 Materials and Method ................................................................................................................ 80 Anim al and meth !mercury trea tm ent ................................................................................... ...... ..... 80 1-M / M ........ ..................................................................................................................... 81 Data anal ysis ....................................................................................................................................... . 83 We tern bl ot analy i ·························································································································· . 85 Result ........................................................................................................................................... 86 Protein id entifi cati on and ce llul ar co mponent di stributi on .......... ...................... ................................. 86 87 0 analy i of differenti all y ex pre ed protein in cerebe llum ...................................... ..... ...... ...... Pathway analysi .. ...................................................................... ................................. ......... ... .. ....... 89 v eri fi at1 n f prot tn 1 n u tn g n alternat1 e method ........................................................... 89 Di cu i n ..................................................................................................................................... 98 hapter VI: Prot me pr fi ling r vea l r gi nal protein a lt ration in cerebrum of common marmo t ( a llithri. jacchu e ·po, ed to m thylm rcury .......................... 103 b tract ...................................................................................................................................... 104 l n tr duction ................................................................................................................................ 105 Material and M th d . ............................................................................................................... 106 penmental an1malc; nd eth) lmer ur: dmtn1c;trat1on ................................................................ 106 amp le Pr parat1011 and Ma . pe trometrt nal: c; 1c, .............................................................. 107 108 11 om ap1cn Databa e ear h nd uantltdtton 108 llular mp nent D1 tnbut1 n Data nal: 1 nd c1p1tal l obe ................................... .. 109 Fun tional nrt hment nal: 1 for I rontal lobe and 110 Path\\ a: 1: nnchment nah 1 and Mapptn g 110 e tern 81 t nal)'il R ult ......................................................................................................................................... Ill eth} Imer ur: -1ndu d Prot 111 bundan e ' han ges 111 th e hontal Lobe and 0 ip1tal Lobe of Marmo t. . . . .... ..... .. .. .... 111 nri hment Funct1 nal nal: i D1ffl rent1all} \pre sed Prote1n s fl r rLand C L .......................... 112 Functional nnotatton et\\Or" of FL and L of Marmose t b] lue ........................................... 113 K 1gnificant PathV\a) 114 Validation of Differential I] xpre ed Prote1n 114 . . D ISC U tOn •••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 129 Co nclu sion .................................................................................................................................. 134 Chapter VII. Conclusions .......................................................................................... 136 Key findings of thi tud y .......................................................................................................... 136 Contributions to knowledge and limitation ........................................................................... 141 Future research .......................................................................................................................... 142 Publications and Academic Activities during PhD. Study ......................................... 143 References ................................................................................................................. 144 Appendix 1: Establishing the Cerebellar Granule Neuron and Astrocytes Primary Culture Model for Methylmercury Toxicity tudy .................................................... 162 Appendix II: Supplementary data ..................................................................... ........ 170 Appendix Ill: Authorship Statements for Published hapter ................................. 185 .VI t f Table hapter Ill: abl 1. L \' I of in ub ti n V\ i th e I Ig r P and I I ( ~l In M cell culture medium after P P .. C r ~ 4 h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 hapter IV: Table l . ignifi nt han ged PI related ge nes in Mcl lg and MI p + treated M cells 62 Tab! -· P related gene: pr tein. \\er " identifi ed in the tV\O ~~ays of P P ' R rray and pr t me r fi I"' .................................................................................... 63 hapter V: Table l . ignificant ( iolo gi al Pre ce. S) term ba, cd se ts or differentiall y e pressed prot in in M ll g-treat d marmo et cerebellum ......................... ... .................... 90 able_. Enriched microR and their target ge n · in th e ' functi n term of synapti tran mi ion ......................................................................................... 91 Table . ompari on between protein quantification re ult u in g We t rn blot and prote mic analy i .................................................................................92 C hapter VI : Tablel. Functional term (BP) differentiall y xpre d protein m Mel-Ig-treated Frontal Lobe ...... .. .... ........................................... ............ . ..................... 115 Table2. Functional GO term (BP) of differentially expre ed protein in MeHg-treated ccipital Lobe ............................... .. ..................................................... 11 7 Table3. K G pathway identified in MeHg e po ed manno et frontal lob ............. 1 19 Table4. K G pathway identifi d in Me l lg e po ed marmo et occipital lobe . . ......... 120 TableS. Proteomics re ult were confitmed by We tern blot in marmo et tV\O brain region s .... ........... .......... ...... ... . ............... ............................................. 121 .VII t f Fi ur hapter III : Figur 1. inM e-re p n un c. 1 ( ) cth; !mer ·ur; ( ell g) and (B) MPP + toto i it ell aftL:r _4 and 4 h L:\.P 1surc ...................................................... .40 igur -· T .. pi I hr mat( gram. fI . I )I ' and I I ............................ ..... 4 1 1gure . c-depcndL:nt efT~ ·t r (A) 1cll g and (I ) 1 I • on the c. pre ·si ns of Tl L T and a- , ; n mR anal; n .:d h; R r -P ' R .................................................. .42 igur 4. e-rL:. p ns ~ ~ fTcct ( f ( cl lg and (B) MPP on the c. press ion s of TIL and a- ) n pr tL:in anal;1 d h\ immun 1hlot ........................................... .4 Figure . Effe t · of I Ig and PP on M ( -B cti\ it; in M JD cells .................. .44 ha pter IV: Figur 1. lean pi t hov. the ge ne ex pr ion in 1.5 -fold change in Mel Ig 2.5 ~M and 5~M ( and B). MPP+40~M ( ) expo ed M 9 cell ....................................... 64 nrichment anal; i of K Pathv..a; in (A) McH g l ~M. (B) M 1lg 5~M and VID ..................................... 66 ( )MPP+ 10~MtreatedM 9 c II analyzedh; igure2. igure3. (A) Heat map f common changed protein for ' 0 molecular functional clas ification in MeHg and MPP treated MN9D cell . Prot ins abundance ratio (treated/control) are compared bet\\oeen (B) MeHgl ~M /Con (I g2) and MPP +l O~M /C n (log2) and ( ) MeHg 5~M and MPP + 10~M .................................................... 67 igure4 . MeHg induced all th prot in abundance change in MN9D ell . Protein abundance wa di splayed a fold chang ........................................................ 68 FigureS . Protein abundance change induced by MeHg ba ed on molecular function classification ......................................................................................... 69 igure6 . We tern blot verified ex pres ion of t\t\IO protein s (V ATI L and BAZ 1B) from M analy i .................................................................................. . ........ 70 hapter V: igure ] . A. I Ieatmap of pro tein abu ndance pattern in difTercntially expressed proteins. B. ellul ar component di tribution fo r the to tal identified protein. (n=998. IPA mapped I ) and differe nti all y e pre ed pro tei n (n- 10-) in marmo ·ct ccrebcllum ................. 93 .VIII igur 2. n nn tati pr t in in M rk nri hm nt ellul r Figure . f thr e fun ti nal gr up [! r differ ntiall pre ed t ereb llum ......... .. .. .. ... .. ........ .......... .... ...... 4 mp nent nal) i u ing Babelomic · .............. .... 95 igur 4. The t p 1 n ni al pathv. ) identified h; th lngenuit Pathvva nal sis rt db their p_, alu , ................................................................ .. 9 Figure . We, t rn bl t 'crificd r ur pr tcin. identi fl d from M.' anal is in marm )Set er b llum ........................ . ......................................... . ......................... 97 hapter V I: igur 1. MeHge u ntifi ati n anal) , i. of identified pr tein s in frontal lohe and occipital lobe in ed marn1 et .............................................................. . ...... ... 122 igur ~. II atmap f pr tein abundant hangc~ in differential!; c. pre ·sed pr tein s in FL ( ) and L ( ' ). nd ellular c mponcnL distribution for identified proteins in frontal 1 b (B) and ccipital I be, ( )......................................... ... ..................... 123 ~ igur 3. -nri hment depletion analy is of differential ex pre ed pr tein for frontal I be and ccipital I b in MeHg-treated marmo. et. on!; the ignificant functional term (P<0.05) are appear in bar chart ................................................................ 125 Figur 4. nnotation network f dif~ r ntiall y ex pre, ed proteins in FL (A) and L (B) were vi ualized by lue Clu pedia ............. .................. .. ........................ 126 FigureS. Validation of the proteomic r ult u ing Vv'B analy i of 4 protein in fr ntal lobe and occipital lobe ................................................................................... 127 Figure6. Va opre in-regulated water reab orption pathwa; wa cia ified by K pathway mapping ystem from uploaded 62 differentially ex pre ed prot in in FL .... 128 A ppendix 1: Figure 1. Diagram of primary cerebellar astrocyt i olation and purification .. . ......... 158 Figure2 . Diagram of cerebellar granule neuron and progenitor cell collection .......... 159 and Nco-culture plating in a ratio of 1:6 for 7 da) · folio\\ ing igure3. Diagram of MeHg expo ure ................................................................................................................ 159 Figure4. Immunofluore cence of Cerebellum Astrocytcs (AS) and erehellar ranule Neur n ( GN) co-c ulture for 10 day · ................................................................ 162 . IX 5. I p tn t 1d ~ igur nd m n reb llum n ur n f taining f m n c r bellar a tr 1 te 4- mi ............................................................................ 16 igur . ll viabilit; f c rebellar granule neur n and a tr te in m n and ultur ~ ll ~ing a .... h . p ur ( and 4 h . po. ure (B) t vari u ncentration of Mel Ig ............................................................................................... . 1 4 pp ndi II: 'upplementary Data hapt r T ble 1. _ identifi ed pr tein. datase t in d Ig- trea tcd ce rebellum ............... 1 6 Li t f 1 2 difTercnti all; e' s_ ~tem. I Ig accumulati r the a ute phase 111 n ~as highest in the cerebellum 1inamata disease case~. 'I he pathological changes of ·h wed that damage pred )minantl) 1ccurred in the calcarine regiOn , the po t entral and pre entral g; ri. and the temp )raJ tran s\ erse gy ru s. The to icity in the c r b llum \\a purkinj hara teri1ed b) I s · c f granu le neuron s hut a relative ~ell maintained c II ( ~ to . 1997). indicating that granule neuron s are specific tartgeted cells for Mel-lg toxicity. Brain ed rna and ub equent i chemic changes were observed in the early tage of acute ca e . In chroni ca e . Hg accumulation ~a . lower in brain ti . ue than the other organ ( kabe and Takeuchi. 1980). A neur logical study of 77 autopsy ca es from Minamata di ea e found 80.5 o/o patient with n ory impairment. 35.8°/o of patient had lo~er e tr mity coordination. patients ~ith con triction of vi ual field retrocochlear hearing lo ccupied 28.8°/o. and was in 15.3°/o ( chino tal.. 1995). Another evere occurrence of MeHg poi oning occuned in Iraq in 1971-1972s with mortality rate of 459 ca e from 6530 record d ho pita! ca e (Bakir et al.. 1980). Patient exhibited imilar ymptom (muscle weakne s. ataxia. dy arthria and tremor, ev r ca e appear visual and hearing impairment) found in Minamata di ea e. Notably, neuro logical deficits such a un teadine · and frequent fa ll , early sign for Mel lg poisoning. were ob erved in the Iraqi patient . There are 3 major fa tor reported to contribute to cause thi tragedy : people ~ ho consumed bread that \\as 10 tr t d c ith M Hg rding t thi fungi id , br eding r ut fr m hang ) mpt m and hi t path v. r par II I v. ith the degree 2.2 Mechani m al o th prin ipl targ t rgan tud; ( Bakir et a!.. 198 ning ba d n th ed m ther. nd prenatal e p ur . f Mel Ig gi al alt ration . . The brain path 1 gical r p is ming nd bloc d mercur le cl. f McHg acti n including Mel lg enter the hod) and c crt their t ), ic ciTe ts in 4 general pha e · a rding t arc ni and I arhicri. 1 8 ) and Philbert (Philbert ct al., 2000): ( 1) Mar 111 d liv ry pha . entr) re ept r/m tab li )[ action; (2) ph e. bind and rea t \\ith spe iiic cellular targets: ( ) to icodynamic pha e, initiati n fbi and functi n in into orgam ·m and di trihution to the regton h mica] hange : and (4) lead to the alteration of cellular structure (clinical pha e). ince the initial identification of l lg poi oning in 1956, the clinical n urology and the effect of neur toxicit; of Mel lg have been v.idely studied. How ver. the mechani m re p n ible [! r MeHg induced change in neurobehavioral effect and function are till enthu ia tically debat d. number of ·tudie have shov.n that Mel Ig di rupt a number of cellular function including inhibition of prot in ynthe i . microtubule di ruption. and increase of cyto olic and mitochondrial vel and di rupt of neurotran mitter function in the brain, uch a catecholamine (Ro i. et al.. 1997: Fit anaki and Aschner. 2005a: Johan on et al.. 2007: anfeliu et al.. 2003 ). llere. I pre nt a mini review on the mo t commonly proposed m chani m [! r MeHg neurotoxic it) . 2. 2. 1 Oxidal ive stress and Ani ioxidanl defense xidative tre s is a condition of fom1ation of total free radical in a cell that exceeded the anti-ox idant capabi Iity that triggers variet of pathological condition ( Smcyne and Sme\ ne. 11 201 ). Tr nit in r a gcn p 1e ( R , ) are f r a tive I ignall in g. nd ntio. id nt ellul r pr t th red . b ian . I ligh n n/) m ntrati n in b d; mm nl e i t d in n rmal uld rapid! r m e R t f R ,' may cau e o idati e modi f and n rau. tad llir ct al.. ~0 1~ ). ' mentioned abo c. damag f macr m le ule d li ph c. llg enter. the ell. h) binding Jig mL pre. cnt in membrane. whi h include f\' 1n the first thi I gr up. el n gr up. amino. phc sphak and car be x; I. Mcll g can bind t -, ,I I nd - 'e lI ligand in th ) t ine amino acid resulting in the r m1ation of a Mel Ig stcinc c mplc i t a!.. ~ 14 : ' lark on. 19 7 . I hi · is al. o the major c, cretion route for Mel Ig. for ( ar e. ample. Mellg i tran ported th li\er canalicular membrane · into bile in the form of H-Me g c mpl x ( utczak and Ballatori . 1994 ). , 'elen proteins ( ie .Glutathione p roxidasc 1. PX 1) and non-pr t in abundant in -,, 1I (membrane tran sporter . Iipoic acid) are more ·u ceptible target protein f MeHg . .'elenopr tein like ' PXI are also important anti xidative again t MeHg toxicity. In addition. previous tudy ha sho-wn that Mel Ig preferentially bind to high molecular w ight prot in (> 200Kda) uch a ·keletal mu cl myo in heavy chain. which ha. been proved in tuna fi sh mu cle by metallomic approach (Kutscher et al.. 2012). xc ss1ve RO generation 1s a well-document d mechanism of MeHg neuroto. icity demon trated both in vitro (primary cerebellar granul neuron ) ( arafian and Verity. 1991) and in vivo (rat cerebral cort ) tudie (Liu eta!.. 2014). R i an important factor in redox ignalling and maintain cellular oxygen homeo ta is. Imbalance bctv~een R and anti-oxidative repair y tern can lead to <."'~ . idati ve tre production (Shukla et al.. 2011 ). and sub quent damage the cellu lar macromolecule and disturb signa l tran ·duction path\\ a) .·. R formation canal o ind irect! mediate glutamate cxcitoxicity. For example. u ct al (Xu 12 ~ rmati L 2 12) h vv d M I Ig i gn i fi t idati dam g d h m ta i imbalan vva in mit h ndria 111 rt . of rat. The auth r al r bral a re ult of R n. lipid. pr tei n and D dem n tr ted glutamate m diat d inhibiti n of glutamine , nth ase. ' 2+ a b n d a.· ne f th t .· ic mcchani m. ~ r Mel lg-indu ed R ._' generati n f r t brain ·li e. and · ntributcd to the hain effect of mit ch ndrial dy fun ti n nd :idati\e . tre:· ( )ama et al.. 1994). Imp rtantly. R ,' i able t adversely af~ t llular ma r mole ule: thr ugh o. idation . ( u h a I dam g i an thcr m I cular me hani sm )b ·ened in Me l Ig nclll·ot idati n au ·ed icity . C idative D A may n gativel) afT ct n ur de\ ~lopment thr ugh a non-mutation mechani sm to alter gene tran cripti n. fa ilitate formation of ·enobiotic-macromolccular adducts. and di rupt other macromolecular target uch a protein . lipid and ignal tran duction (Well s et al.. 201 0) . repair and ap pto i are normal I) t'v\ re pon e. ~ llo'v\ ing DNA damage which arc initiated by oxidative tre . It wa reported in murin embryonic fibrobla t · that 0 protein oxoguamne glyco yla damage following MeHg 1 ( 1) protect cell repa1 r from D A double strand break po ur . indicated D A repair y t m deficiency ( Gl -- null) and inc rea ed the cellular en itivity to MeHg to icity ( ndovcik et al.. 2012 ). lutathion ( H) is a critical part of cellular anti-oxidant defen e machinery and i required to prot ct c lls from RO induced pero. idation of lipid membrane and D A damage induced by MeHg (Gib on et al.. 2014 ). Anti-oxidative agent/drug can inc rea e G I I level attenuated MeHg-induced n urotoxicity. For example. the antioxidant and (quercitrin and quercetin) have been hown to provide neuron prote tive effect · against Me!Ig induced lipid peroxidation and ROS formation in cortical brain slices of rats (Wagner et al.. 201 0) . Pretreatment f tea polyphenol ( 1mmol/kg) rever ·ed Mellg caused GPX I reduction and 13 glut mat uptak di rupti n 10 f f1 n id Vvith cl lg, \\Cll frat (Liu t al.. 2 14 ). M ri ctin, a member mpl etely inhibited R . brain mit ti on. In additi n. G rmation fa M ll g ; . t me hondrial d · fun ti n (Fran cllg ha. hi gh affinit y f r cysteine a. mcnti ned ab ct al. , c. and mpl c.· . tructure i simil ar to that f the ne utral amin acid . r m thi a. p L methi mn e ma; al. M ll g c. p ure b gcn rati n and lipid ugge. t th at anti -ox idati\ c agent. may . ervc a p t ntial treatment for Me ll g int methi nine . rt nti . idant pr p rti e .. n indu ed b .... 01 ). ~ h e e.· mpl rebral sef\ e a. potential treatm ent ~ r acute mp titi n r r the bind ing . pot of th e Mel lg- ' ys tcin c compl ex (Roos ct al.. _o 11 ). 2.2.2 Calcium hom eo tasi Cal ium and cal ium ignallin g path'v\ a) pl ays an important role in Mcl-I g indu ced tox icity. Alm o t all the id ntifi ed mechani m related to MeJ l g tox icit) 'v\ a initi ated or lead by oth r fac tor to increa f intrac llular calcium conce ntrati on ([ 'a 2 +]i ) (Roo · et al.. 201 2). There are two main way that [ a2 ]i can be affected: one i the regul ati on of intrace llul ar Ca 2 tore, and another is pla ma membrane perm eability to + rupti on of either ource can alter intrace llular calcium concentrati on (Atchi on and Hare, 1994 ). Intrace llular ca lcium signaling i required to timul ate energy production by catalyz the key enzyme in Kreb cycle which can directl y affect mitochondri al re pi ration fun cti on (Roo ct a!. . 20 12 ). acted a a dri ving force in the mitochondri al matri x, and an in crea e o r cytoso li c Ca 2 • ti mu lated a partate-glutamate exchange r ( l 25a 12, part or the malate-a. partate shuttl e). thu s b o ting pyruvate upplicati on to ini ti al Kreb cyc le in co rti ca l neuron · (Li orente-Fo lch et a!., 20 15 ).• akamoto et a!. ( akamoto et al.. 1996) demon. tratcd that ca lcium bl oc k. rs (flun ari zine, nifedipine, ni cardipinc, and erapami l) attenuated the to.· ic effec ts (hod \ \\ ei ght 14 mpt m ) m rat indu e and n ur g1 al gr nular 11 , al ium bl k r Ounari7ine v.a death fr m M I lg t xi it; . b rv d the reducti n ultur b) u ing n ther , tud; [ [ 'a- ]i and · 'a 2 ' a2 nth~ . ' b . u mg pnmar reb llar h v.n t hav pr t ted fleet again t ce ll · ondu ted b; ]a: . t a!. ( ' a o t a!., 2001) h nne! hi ' ker (ben/ami!). and inhibitor (thap ·igargin f ' a 2 •- shO\\ed that Me l lg induced R S [! rmation that a 2 • m hili/ali n fr 1m endoplasmic reti ulum store and e tracellular ther h nd. an earlier stud) puhli . hed h) ( ;ama et al. (Oyama et al., 1994) r p rt d that MeHg (I 0)1 enhancement M ll g. cl Ig ' ) l<. t ·icit; in rat cerebell r granule neuron P e Ill nd pia mic reti ' ulum . I he) al \\>a indep nd nt c f b ) induced increasing le\el~ of [ 'a 2 ]i V\hich resulted in the f R , g n rati n in isolated cerebellar neurons )f rats . .'imilarly. another tudy dem n trat d in rat tri tal ·ynapt ome · that RO ,' formation V\a a downstream event of mit chondrial dy function indue d h) Mellg V\hich ""a dependent on an increas mitochondrial calcium level ( reiem and whether [Ca 2+]i o erload and R of eegal. 2007) . Therefore. it i . till d batable generation indue d h; MeHg are a cau. e-effect or an independent event . However. there i little doubt that r gulation of intracellular calcium level i a critical factor in the n urotoxicity outcome indue d by M Hg. In addition. it wa hown in 57BL/6J mice orally exposed to MeHg ( 1 or 5mg/kg) for 11 day led to R formation. [Ca 2 +]i alteration. decrea e mitochondrial membrane potential and r localization of cytochrome c (Bell um et al.. 2007). The e events did not accompany a ignificant n uronal ce ll (mi c cerebellar granu l ce ll ) death. indicating that ubcellular biochemical chang , occurred without lethal cell inj ury in hort term e. posure to Meiig in mice (Bellum et al.. 2007). Though Me l lg may not direc tl y lead to neurona l death, inhibitio n c r glutamate uptake may cau e ce ll energy d fi cit ( ehinde r et al.. 1996) as a resu lt of mitochondrial d) sfunction, ca lcium dy homeostati and reduced glutathi one leve l. bnormal calcium ·ignalling or 15 al i urn i n d h n1 ultim tel tgn !ling r athv,a; i ~ napti 1 ad t fl f bi n rg ti 1n mit hondrial tn\ h d in man; impc 11ant neur nal function such a pia tici t). the g~nerati n of brain rh) thms and asso iated learning, mem r and c gniti n ( erridg . _o I ). Ph :ph lipa~e ' is knov.n a. initial fact( r of calcium signalling thr ugh ti\ ati n of JP~ In ~ it I tri pho ph ate). a sec md messenger. i capab le of regulate n entration betv.een e'tra and intracellular calcium store ( ' hang, . . . 011 : Venkatachalam et aL ' 2) . Mellg ( ~M) \\as r und to initiate calcium signalling by activation of Pho ph lipa e ' and phosph lipase 111 m u 2 \\hich re . ulted in the release of interleukin-6 (IL-6) c r bra! glia ( 'hang. 2011 ). Ba ·ed on the bsef\ation of Mc11g increasing of [ a2 Ji in pinal motor n uron culture . Ramanathan ct al. (Ramanathan and Atchi son. 2011) + rep rt d that M Hg-induc d calcium alteration v.a. related v..ith the glutamate receptors mediated pathway . pplicati n of NM A receptor blockers ( AP-5 or MK- 01) ignificantly reduced MeHg-induc d calcium influx . In intracellular .., a~ ummary. the con equence level is an important mechani m for th downstream pathway that lead to neurodegeneration or cell death. of increa ing activati n/inhibition of alcium i al o the key ion in linking the proce s of synaptic transmission and neurotran mitt r relea . 2. 2. 3 Synapl ic transmission and Neuro/ransmi//er release Another well-documented mechani m for MeHg to. ic action neurotransmitter (NT) r lea e in the proce the alteration of the of synaptic transmi ssion . xon terminals are distal termination of a on that functioning a storage and release of Ts . rhi · proces: i · aid by opening of vo ltage-gated Ca 2-t channel · when depolari;:ation occurred in the pres) naptic 16 m mbran f [ n a ad lin a ~+ ]i t L l 1 . B th intr - and e tr in n n e t rmin 1 • nd the ignal f fu i n f ;napti \e i le t r lea c t hi . n. 19 n n mpetiti\e m nncr t inhibit ' a2 mflu f al ium th n an evoke a . ignalling ·1 b; e. c;t s1 el Ig \\ he human brain ynap e. The t s napti left (I enn ~ 11 v.ing an acti 1n p tcntiaL but incrca e the I [ a2 ]i in nene terminal (I nn) and n ur tran mitter l ium c ntribut t the high r 'P rtcd t blc k ' a 2 ' channeL in the ncr c terminal 111 a nd n ntrati n ). cllular tchi ·on. 1996) . ·1 h~ ma111 target d f Mel lg arc glutamate ( ' ]u). d paminc (I ). and cholinesterase ( 'hE). ntain · apprc '\imatel; 10 11 neur )n . . and each neuron has ab )Ut 7000 . ;nap · ~ are the · mnccti\c stru ·turc that allov. s "cross talk" between n ur n ( adiq et a!.. 2012 ). It ha · b~en ·ho\'- n that Mel Ig altered the s; naptic transmi ssion by changing either th ndu ti n nene action potential or directly inhibiting synaptic tran mi i n. or both ( tchi acid receptor in non-NMD nand Hare. 1 94 ). Mel Ig particularly inhibits e, citatory amino . Bl eking f ex itatory amino acid receptor of MDA receptor and recept r po tponed th increa e of [ 'a 2 +]i mediated by Mel Ig (Ramanathan and Atchison. 2011 ). The amino acid L-glutamate a mammalian the major e citat ry ignal in the . plays a critical role in neuron development including ynap e induction. elimination, cell differentiation and death. Glutamate i con tantly ecret d from the cells but removed quickly from extrac lluJar fluid. and there are sev raJ thou and-fold gradi nt difference aero plasma membrane . In normal condition. only a mall amount glutamate i ke pt in ex tracellular pace (Danbolt. 200 1). Therefo re. it i importa nt to maintain a ll1\\er level of glutamate in the e tracellul ar fluid . lutamate uptake i the primary mechani m for maint nance of glutamate co ncentrati on whi ch pro tec t the brain from glutamate excitotox icity. There are a number of report prov ing that the inhibition of glutamate uptake an important mechani sm f Mel lg- induced exc itoto:icity. }~ or example . .luare/ et al 17 t aL 2 front l c rt 2 . u d mi r dial f rat p d t Anoth r tud; r ported Mel Ig at uptake 111 a b er e glutamate fluctuati n in the M I Ig and [! und an remark ble increa e glutamat c 11 e11trati n. It \Na al inhibiti 11 of glutamate uptak i t hniqu t f e tra ellular rep rted that Ia tational e p sur t M I Jg caused an 1n cerebellar . lice, f mou e pup ( Manfr i et a!.. 2 04 ). icle glutamate n entrati n: bet\\-een 2-1 011M inhibited ncentrati n dependent manner. the authc r~ als dem 11strated the failure of glutamate upt kc \\a re ulted from inhibition f the proton gradient and I J+- 'I Pa e activity inrat") naptic\~ i le(P rciunculactal..200 ). Cdutamate re ept r ig11alli11g v..a f und t be an thcr ke) target for Mel Ig. (u-ami 11o- -h) dr . ) -5-meth) 1-4-i oxaz lepropionic acid recept r) and MPA receptors M A recept r ( - mdh) 1-d-a partat r cept r ) are glutamate receptor that play vital roles for modulation of . naptic tra11 mi 1011. y11aptic pia ticit; in Leveille et al.. 2008: ' (Danbolt. 2001: Ha himoto et a!.. 2001: ku and Huga11ir. 2013: ' hepherd and Huganir. 2007). motor learning and coordination (Ha himoto t al.. 2001: ku and H uganir. 2013 ). Activation of MD receptor was reported a a mechanism of MeHg-induc d excitator neurotoxicity. An in ' 'ivo c periment studying effect of MeHg on brain developm nt and vulnerability to NMDA r~c.eptors (Miyamoto et aL 2001) found that the mo t ever neuron al damage occurr d in the occ ipital cortex of P 16 rat . and the MeHg-induced neurodegeneration \\a attenuated by an NMDA receptor antagoni t. MK-80 1. ·ignificantl) dount e and Chan r ported in an in nlro study that exposure of MeHg 0.25 and ljlM to human H-SY5Y cells for 4h re ulted in an increa e of NMDA receptor level and ub equ ntl; cau ed cell death ( dount e and han. 2008). Ba u et al. (Ba u et al., 2007) reported a decrease in NMDA receptor leveL in \\ ild mink brain exposed to 0-2ppm Me ll g in dietary . The author. suggc ·ted that the decrea ed 18 M r r ult pt r indi at d ab vc. a tr thu f mp n at r m hani m [! r limiting Me ll g mediat d ; tc arc more su cpti blc t cl lg a cumulate than neurons, and r pre ent an imp 11ant target fc r Mcl lg tox ici t; ( . chn r et al.. ... 007 ). Besides glutamat r uptake. the a. tr c; tic glutamate tran sp rtcr is an ther regulated mechani ·m t balan c glutamate home sta ·is and the le\el of extracellular c. citoto 1c amm J acid . Jut mat a partate tran. p rt r ( i L , ' I) and glutamate tran sporter- ] ( :iL'I- I) are primary glutamat tran port ~r. that are found prcdc minantl; in astrocytcs (Mutku · ct al., 2005). MeHg \\a h \\n t inhibit the tran port of c;stine and c;stcine in astrocytes (A ·chner ct al., 2007). MeHg \\a neur n al o rep rted to affect s dium tran sportation bet\\cen astrocyte and through in hi bi ti n f a tr cyti cy. tine uptake on the ·ystcm X( A ' ) (cysti nc tran port y t m in a trocyte ) ( II n et al.. 200 1b). Treatment of ' II -K 1 cells with Mel Ig ignificantly increa ed the xpre n of LA T tran porter and decrea ed cxprc s1on of LT-1 in protein level (Mutku et al.. 2005). Another stud; al o reported that the mR A level of two lu transporter . LA T and LT -1. \\-ere down-regulated in the cerebral cortex of rat treated with MeHg (Liu tal.. 2013 ). In addition to lu, other NT such a cholinergic and the dopaminergic y t m \\-ere al o reported to be affected by MeHg. Musc le chol ine tera activity was hown to be inhibited in H. malaharicus fo llowing low do e of M Hg e po ure in a fi ·h model ( lve Co ta et al.. 2007). However, Ba u et al. (Bas u et a!.. 2006) reported no significant e ffect of Mellg on bl ood cho line tera c ac tivity in capti ve mink, but hi gh ' hE activit) \\a detected in th e occipital co rtex and basa l ga ngli a of mink brain , also they ob erved a paralleled increased mu carini c cholin rgic rece ptor leve l. The c studies indica ted a potential di ·ruption of 19 h lin rg1 n ur tr n mi m iII b )11 pti tran mi 1 n u h a f~ t fMeHg nth dopamin rg1c el Ig . emingl) targeted multiple fa di e tr n mt. 10n pr he ti n enti tied "M th lmer ur d In the addr n ur d g ner ti\ n regul ted b Me ll g. e .. ri k factor a In ~ r the glutamate ther pr ce .. es affected b; Mel lg invol ed 1n synaptic neuronal p tential and the S)naptic do~n tream . ignal ling ar furth r addre cd a. it i be) ond the C n t pe of thi . re\ leV. . . . . . -1 Effects on C\to.\keleton microtuhuln am/ Other.\ Mi r tubule i ne of th" thr ~e mmn comp ment , ther part Jude mi rofilament (made or pr tein actin) and intermediate filaments . 111 Micr tubule pia; a \ita! r lc in mit 1 · pro r the cyt )Skeleton in eukaryotic cell ·, e ·. including mitotic :pindle in dividing cells, cell cycle arre t at M pha e and Iat ap pto i ( M IIi ned and ' ajate, 2003 ). ' yto ·keletal protein are required for cell movement. mitotic ·pindle fom1ation. organelle and ve icle tran port chromo omal gregati n. cell ignaling and cell divi ·i n. thu any impairment f microtubule would affect th a ociat d function (Cre po-Lopez et al.. 2009) . ffects of Hg pecies on microtubule n twork ~a introduced in the 1970 . mercury preferabl; bind t protein that form the microtubul . tubulin and kine in . Microtubule di ruption ~a reported in a number of MeHg expo ed experimental model . Berget al. (Berget al.. 201 0) conducted a proteomic tudy where they identified the group function of tubulin/di ruption or microtubule in Mel Ig e po ed Atlantic cod brain. An in \'ilro study u ·ing di !Terentia ted N2 neurobla toma cells showed that MeHg perturbed tubulin tyro ·ination. the earl; neuronal biomarker of mercury toxicity, implicating the neurite outgro'v\th 'v\as inhibited (La\\ ton et al.. 2007). Me l Ig i known to di rupt cell c cle through microtubulcs hccau~c the mitotic spindle tructure comprises the most abundant microtuhulcs proteins. In neuronal (mouse 20 n ur bl and 1111 2/ t rna) nd n nn ur nal ( P L.. c 11 , M 1Ig tr atment I d t pt ub equ nt ted ell arre ted ) le p rturbati n thr ugh int rfcring with an imp rtant v nt in th development of ap pt , i in b th ell line , (Miura r tubul t al ., i , indi pha. ). icr tubul e rc riti al fil ament us stru ture t reg ul ate the nset of ap pt , and th p5 independ ent path\\ a): \\ a. in\ olved in the Mel lg m di aled ap pt (Miura t a!.. mi grat r; pr ). sho wn t el lg- indu ed mi crotubul e dis rupti n v., as a! nd di . turb a'\ nal elongatio n in th e cultured embr inhibit nal carcin rna cell s, nd the e path I gi al h nge are important t ) un de rstand )f Mel Ig induced tru turc crash f r b llum and ther brain regi n in the deve l pm ent of utero and postn atal tage (Philb rt t a!.. ~ 0 0 ). ince M Hg hi gh! ; rea t Vv ith sulfh ydr; l gro up in cy tein e re idues of ce llular mi crotubul pr tein (Philb rt t al. . 2000) . Mel Ig can potenti all y inhibit mi crotubul e polymeri zati on, and thi effe t i a um ed thr ugh binding to the free sulfh dry! group at th e end and on th e urface of mi crotubule : thi ha bee n prove n in ''ilro e perim ent (V oge l et al. , 1985 ). In recent year , the role of glial cell e pec iall ; a trocyte . in maintainin g functions of neurons have been bett r defin ed. They not onl y pro\ ide ph y ical structure to upport neuron , but also functi onall y interact with n uron or non-neuro n ce ll in ph y ical and di seas conditions, which include neuronal ynchroni za ti on, ynapti c tran. mi ion regul ati on and controlling blood flow (Volterra and Meldole i, 2005) . li a ce ll infl amm ator; ignaling respon e to MeH g i a n wl y empha ized mechani m in re pon e to M 1-lg neuroto. icit) . In attempt to te t Mel lg on the re pon e of pro-inflamm atory cytokine from gli a cell s. B a ~' ' Ctt et al. (Ba sctt et a!., 201 2) found Mel lg dec rca ed IL-6 relea 'e in a do. e depend ent manner in microglia/a tro yte culture with pre-stimulation with toll -like rece ptor li gand . AI ' O. the ratio 21 f mi r gli 11. m difi nd h tr 111 r ult indi at that eH g inflammat f) r ' I 7. L4. b an 1mp rtant fa t r affe ting l L-6 an a [! ct micr glia ti nth int ra ti nb tvv en m1 cr gli astr h m kine ell ' fun ti n thr ugh lTilCf arra . In an her t ' ' L9 and ti on \\ ere f und tc be , ignifi L 1.... ) that were a tud , ciatcd with ntl ) in ' fCa cd (.... - [! Jd hangc ) in re ponsc erebcllum ( I Omg kg da; for 10 da , ) (II an g ct al. . 20 II) . In eH g timuli 111 m u t [! und t ulture dditi n. gap jun ti n hannel , a nncc ti n . tru turc bet-w een a. tr cytes, play · a vital role in n ur -gli int racti n (R ua h t al. . ~000) . ' nn cx in protein c nditi on , arc important in th [! rmati n f gap JUn ti n 111 n ur n-gli a co mmuni ca ti ns. dj ace nt astr cytes JS connected thr ugh gap juncti on hannel ( ' J ' ).e.g .. '. 4 and hemi chann cls t regul ate A TP relea and glutamate tran mi i n ~ 11 wing intrace llul ar calcium elevati on to respond neur nal glutamat r I a in g (Maragaki and R th tein . 2006: ther i little r earch to inve ti gate th e rol e of J ' fun cti on r Il ana et al. , 2009) . ,' n mercury neuron tox icity (Kawa aki et al.. 2009 : Kothmann t al.. 2009). The arli er publi cati on inhibited the function of J far. howed th at MeHg both in cultur d rat o teo bl a t-like cell (. chirrm acher et al.. 1998) and rat pro imal tubular cell (Yo hid a t al.. 1998 ). Mercury chl oride wa al o reported to affect junctional coupling in epitheli al canine kidney cell ( leo et al.. 2002). Thi literature revtew hi ghli ghted a number of sing! mec hani m re ponsible of Mell g neurotoxicity. It is important to note that there are many potenti al known and unkno\\ n interconnections b tween each of these m chani sms. For exampl e. both the event of ox idat ive tre and glutamate dy homeosta i were m chani m invo lved in M ll g tox ic it) ob en ed in rat c rebral corte , and the potential al provoke m rc RO f lu dy homeo tas i cau cd Ca 2+ overl oad could formation (Liu et al. , ~ OL ). Mell g cxpo ·urc induced .· idati\e 22 H d pl ti n, R ~ rm glut mate tr n p rt r and " rl ad t\.\ 0 e dam g ( 2 14 ). ffl ted h nn h th fll1 t d pr ti n and the it m 111 metal wa m diated b p th a f R ' ( eng rt f intr el lular calcium in the rat t a!., gcnerati n and glutam tc d h meo ta i ellg-indu ed neur t . icit; ( , chn r taL 2007). 3 . Meth y lmercur a a n k fa t r f r ne urod e h it indu ing n ur heha\ i )ral m th lm r ur; and le d ( 'arp nt --r. ~00 1). ), p rkin ne rative di ea e hanges after dcvel pmental c p cure degenerative di · rd r uch a ( rr ) and am) tr phic lateral ·cler n' . di ea ure arc lzheimer' (AL, ) affect v raJ million pe pie V\ rldV\ide (Migli re and 'oppcdc. 2009). The inheritance of m st of n urod g nerativ di · a rar ly [! II "' Mendelian laVv but in ·tead reflect a more complex interacti n V\ith multi pi predi p ing gene and en vir nm ntal factor · ( va t majority of AD. PD and L contribution of comple occur a p radi chner, 2009). The D rm , likely re ulting from th int raction betwe n gen tic and nvironmental pollutants uch a pe ticide and h avy metal . Interacti n between gene and environmental factor is crucial in modulating the vulnerability to PD ( L' Epi copo et a!., 201 0) . Th alteration of tubulin tructur , mitochondrial dysfunction and sub equent biological change in lipid, protein and DNA peroxidation are common change ob erved in AD (Carocci t al.. 2014) and PD patients. These pathological changes are al o often ob erved in MeHg induced neurotoxicit) in different exp rimental model . PD i a commonly occurring neurodegenerati c di order characterized b.} elective lo, · of dopaminergic neuron and progres ive neurodegencrativc movement di ·order that produces mu cular rigidity, bradykinc ia, tremor of re ·ting limbs and loss of po ·turn! balance 23 ( bdulwahid pre rif nd I nt and d hm d Kh n. 2 10: Jiang t 1.. 2 in th br in. nigra. v ntral t gm ntal ar ~a 1· ncur n main! nthc i7 d t v.idel; . tudied s;~tem · in the brain . ince iL di sc 7 : J nc. and in th sub tantia ncur I gical and en do rinol gical diseas s such hi7 phrcnia. and I Iuntingt n · s, d i ca. e ( ' ui et a!.. ~006 ). unn tt. _ pinephrin , nd h; p thalamu. ( i oullon. 2002). The dy. function of d paminergic rclat d pathv\ a) . c n pr du am ng them ) i the m st pamine ( um nt d ate h lamin neur tran mitter am ng th h rm ne n r pin phrin . and a 7 . neurons ha c been cry (Bjorklund and iller. _00 :Yo ung et al.. 2011 ). In addition. dopamine rc carch ha b n unique \\ithin the neur . cience in a v.a; that is ahlc to bridge basic science and clinical pra ti (Bj rklund and unnetL 2 7b). ince I is involved in many important a pect of behavi r. uch a m tor controL m od regulation. cognitive ta k . addicti n, Jeep. puni hment and re\1\- ard ( i oull n. 2002) ( Li neurotran mi i n m diat and Roeper. 2008 ). D paminergic through everal linked pr ce es. including sy nthe i . rclea e. torage. r ceptor activation. uptake and metaboli m. Tyro inc hydroxyla (TH). an enzyme that limit DA ynthe i . convert L-tyro ine to L- P . \1\-hich i then decarboxylated to DA. Then DA is tran ported into through the ve icular monoamine ynaptic ve icle tran porter (VMA T). with presynaptic action potentiaL r leased from the cell. nee relea ed, DA activates a variety of po t ynaptic receptor \1\- hich ar Iinked to different c II signaling pathway . DA transmi sion is inactivated by re-uptake the of D tran porter (DAT) into the pre ynaptic neuron where it i metabolized by catechol-0-methyltran ·fera e ( ' MT) and monoamine oxida e (M 0) (.lone and Miller, 2008). Environmental neurotoxicant · are able to depre or enhance dopaminergic n urotran mitter by impacting th proce , leading to pathological alteration add iction (Jon and Mi ller, 2008). in DA-assoc iated disorder D cycling such a PD and nd rslanding the molecular mechani sm or hO\\ those 24 nz m k m th nt n ur d pamm and d pamm rg t lib 'Will fa iii tate identifi ati n or d , 1gn f n a ad path a re pond to I gical targe t to ph arm r lated to dopamine neur tran mi tter di order. pr te t nd treat di e lth ugh the eti 1 g; and path )gene, i. f P 1• p rl; under. tood. interacti n between g ne · nd ~n\ ir nmental fa tc r. haH: been impli a ted a. critical fact rs 111 m dulating the vulnerabilit; t P p llutant t aL. 2000 ).. ' e\ era! ·tudi s ha\ e rerorted that en vir nmental u h as pe. ticide: and hea\; metal ( j rklund, 1 al (I Ieller M i h lk et al.. 200 : R been h 'Wn t link t a\ ariet; lzheim r' di ea e and Parkin f PO s ct a!.. 2006h ). r, posure to heavy metal ha related di ea ·es . uch as ni m (J n ttenti n and Miller. 2008) . eficit isorder. 'hr nic e p ·ur of g n rati n ha h en pr po ed to contri hute to the neurodegenerati n rot n f r0 pia; a ke; role in the pathogenesis neuron ander and r enamyre. 20 l 3 ). ' harle. et al. ( ' harle et al.. 2006) analyzed data collected from L049 men aged het'Ween 7 l to 93 and D und a igni ficant a ociation between occupational e po ure to pe ticide . olvent . metal , mangane . and mercury (during their middle age) and 14 movement abnormalitie . It wa found that high r exposure to any metal , and p cifically mercury, wa a ociated with abnormal fa ial ex pres ion. Dantzig (Dantzig, 2006) tudi d 14 patient with Parkin on' di ea e, and found detectable amou nt of blood Hg in 13 patient who a! o had rover' di a e (tran ient acantholytic dermato i ) and proposed that llg cou ld be involved in the etiolog; or PD and rover's di ease. A di cu ed earl i r. the syndrome cau d by Me ll g poi ·oning is called Minamata di ·ea:e ( eccat IIi et al. , 20 10). The early ign or congenita l Mellg poi ·oning can he mistal-.en for other di ea c and over-looked, especia ll y in mild cases ( randjean et aL 20 I 0) . l--or 25 amp le, th ndr m pi h p the ta , . mt a t a!.. 1 d h aring ( ntr 1 tud; . c e t . 111 ith r m ngan pr du ), v. hi h bar m n) r c pper \\ a. as iatcd 'v\ith P . 1 he ppcr. v.. a. a. iated 'v\ith P cupati nal e po ur als [t und howe r, indi ate that f the th t dual ccupational r nn al n \\ a: n t related t th e n. et f P arl ) ex pc ure t chemi cals in creased th e metab lie ;ndr m lik di ea c and c th er health i ue in later life (F ampl e i f imi I ri tic. t P . In a p pulation -ba cd rell ct al ( J rcll ct al.. 19 9) ~ und that hr 111 p ur t 1r n, m r un doe d in adult during the Minamata and Iraq n r di turban c , tr m r , d arthria, and lo f le d. 1r )n and mbin ti n vid n d b Mel Ig b r u ccptibility to ct al. . 201 ). An p ur t meth; lazo. ymcth anol (a ncuronto in ) from th e ource of fo od or m dical treatm nt potenti all y contributed to th e eti ology of AL,, and PO dementia compl e ndrome in region pecifi c p pul ati n ( ' uam. Kii and W st Papua). ' urrent know! dg indicat that th re are van ou ri. k fac tor leadin g to the dev lopmcnt of PO phenotype. which e pre sed in th in cr a ed odd rati o for PO in epid m1 g1c tu die and characteri tic ofth e ph notype produced in experimental model ( 'ory- , I chta t al. , 2005) . Wh ther MeHg expo ure i a ri sk factor in th e form ati on of PD phenotype i till not kn own. However. th ere are known ynergisti c effe ct of vari ou to in that can re ult in co nditi on like PD. For example. oxidati ve tre is an important factor o curr d in the proce neurod egen rati on ( hukla et al. , 2011 ). Many of the MeHg induced change f uch a oxidati ve stre and di turbance of neurotran smitter functi on have al o been impli ca t d a major factor in PD . Moreover, th ere ar likely other overl apping and/or unknO\\n mechani ms in the etiology of PD . Re earch on the e. pl orati on of envi ro nm ental toxicant · uch as M I lg e po urc and relevant di order ha e trcmcnd ou · impli ca ti o n ~ in prevention 26 and lini al gn m hani m fM MPP ti ( ang n i a m t b lit pr du t id n f MPl P. a \\ell kn 'Wn to icant that el cti ely de troy d pamin rg1 neur n in the uh. tantial ni gra. v.hi h is haractcri ti .... 01 . MPT \\a identifi d b) a n 'vV nth ti th m hani ti drug in anti- P and th n entry ~ th (llarc et al. , imilar hrc nic . ign · of Parkin s n · di ca c n. MPTP MPP ' \\a. \\ide!] used a parkin on m mimic m u1 t al., 20 I 1: Zhang et al.. 2011) and devel pment of new tud; of tal.. 20 l 0: ' a ( of P identl; in 19 ~ fr m pc pic \\h addi ted in admini ster a mpound \\hi h c n induce (Lang t n tal.. 19 . ., ). in need d to larif ll through tal.. 201 0) . MPP + i · c nvert d from MPTP by MA , T. which particularly high e pre · ed in the cytopla m and membrane of ub tantia nigra par ( torch t al.. 2004 ). MPP ' i d liv r d from cytopla m into the mitochondrial matrix by the gradient betwe n inner m mbrane . and then combine with NADH dehydrogena e of complex I to top electron tran port. I ading to The ub equent effect of the energy d ficit cau TP depletion . of extracellular DA level in triatum, and further promote the generation of R S. uch a hydro yl radical ( · H) ( ing r and Ramsay. 1990). Therefore, the important manife tation of MPP+ excert it neurotoxicity is mediated through inhiting respiratory chain compl I in mintochondrial. Intraventricular infu ion of MPP on rat ha been shown to reduce triatal DA level and progr ive lo t of TH-positive neurons. Mitochondrial appear ~ woll n. and conden ed material \\ re found in DA neurons (Yazdani tal., 2006). Mor over. execs ive production of free radical in rea ·e memberane lipid p ro idation thu ace leratc the vulnerability of dopminergic cell death ( bala, 2002) a wel l a ther neuro logical ympotom 'Which featured by PO patient . 27 High-throughput cr emng m th d ha e dem n, tr ted that multiple In ed int MPP indu ed d p mincrgi indu d gen hang in th ateg ric ample, MPP + in 40 ~M n ur f ap pt ignaling pathwa . . id ti ve tr s. and ir n binding n ell . a midbrain d rived d pamincrgic ncur nal cell line (Wang ct aL 2007). ha g n m d pam in rgic hang p pt and mit t al ( ' ha et a!. ~ 15) :tud\. imilarl , in h ndrial PP + 'A a ignaling tran ·du ti n. tran , porter d grad y tem. v. al and iron transport. d\ ·functi n. I paminergic signaling transduction d m n tr ted a th m t affl ct d function affected b; MPP +. MPP n ur t xi it; . . u h hown triggering signifi ant was ther mechani ms related to · ubiqui tin pro tea · me . ; tern (UP ,' ). an intraccll ular protein h 'An a · ciation v.. ith MPP induced d pamincrgic n urotoxicity (Lim. 2007). It ha be n r p rt d that Puerarin. an anti-oxidative c mponent extracted from Pueraria I bata and h'A i Pu raria th m ni i Benth. v..as able t protect , , 11-SYS Y from MPP+ ( 1mM) elicited c ll death through r gulation of UP ' functi n ( ' heng et al.. 2009) . Mor over. MPP e hi bit d neuroto icit; wa reported to be related to the metal m taboli . m in idiopathic Parkin on· di ea e (Hare et al.. 2013 ). In a population ba d ca e-control tud). Gorell et aL ( orell et aL 1997) howed that occupational expo ure (more than 20 year ) of lead-copper. lead-iron and iron-copper ignificantly as ociated 'Aith PD than any of the e metal alone, indicating the e metal may erv a n k factors alone or together to facilitate the d velopmcnt of PD. However. th mechani m underlying the e effect remam to be ill ustrated. 28 hapter III. ffect f M thylmercur eur nal n D pamin Relea e in MN9D ell ame and lffiliation of 1111lor : Yu ting ha 3 , ing Man ' hanh * ur ·c and I·n\ir nm ntal ,' tudie. , Univ r it) Wa). Prin e ' e rge. B ' . ' anada a unb of .... rthern Briti h 4Z9 cpartment f Bi I gy. nivcr ity of )ttawa, 1 6 Fmail : lauri .chan au ttaV\a.ca 0 Mari e ' uri c, 29 b tract len f Parkin. on' di ea e ur t etnir nment l p llutant , but them chani m f path gen si are till _. pid mi l gi al evid n (P ) nd p un lear. he bj d pamin rgi tiv ha, h \\n a f thi . tud L iati n b tV\ en pre t tn\ • tigate effect. and c mpare that t n ur n l ell line. f meth lm r ur (M ll g) on a 1-meth l-4-phen lpyridinium (MPP , a \\ell-e ta li hed agent a.. iatcd \\ith pathogene i of PI . M e p (10-400~tM) ~ r 24 or 4 d to Mellg (1-10)-lM) and MPP h. D elL were ur results . howed that M Hg indu ed ell death v. ith b th time and de e dependently . M J lg al o dccrea ed the r I a of d pamine ( (H ) imilar t th effe t th ame tim . both MeHg and MPP .. de rea ed the ynthc i of tyr ). .4-dihydr x; phcn; !acetic acid (D P ' ).and hom anillic acid f MPP . . There V\a an incrca. e in I ( PA ' I IV AID and dopamine tran p rter (D T) at the mR and pr t in level . ratio . At inc hydroxyla e (Ttl ) Xpre I n f the U.- ynuclein (a- yn). a hallmark neuropathological indicat r of PD. wa al o up-regulat d at the mR A level but not at th oxida e B activity wa The e finding protein level after MeHg and MPP + do ing. Monoamine up pre ed in all MeHg treatment and MPP ( 1).lM )-treated c II . suggest that MeHg can disrupt th ynthe i . the uptake of D and th metaboli m as well as alter the biology of a- yn imilar to MPP . Expo ure to MeHg rna; potentially be a ri k factor for the development of PD. Key word : Heavy metaL Neuroto icity; MP P+; Parkin on· di ea · 30 Introduction Parkin n di ea milli n fp hav r gni7 d a p (J n and (P ) i f th m pie v. rldv. ide. The iti\e t c mm n neur d g n rati ·a t au ·e of P e er. rec nt n. 197 ~). rk ccurren e of PO metal · have ciated '' ith the path gene is f PI (R )OS, ..... 00 : Michalke, 2009). m thylm r ur] (M Hg). and Mag is , till unclear. I I rr lati n bctv.cen indu. trializati )n and the a w 11-knO\\ en' ir nmental neur t M rcur · di ea e that affect iller. _ 0 ). r n' ir nm ntal p )llutants :u h as pesticide and hea b n r p rt d t be a ( lark n re m re t ntral n rv u icant. The orgamc 1c to li,ing organi ms than it ) tem i the mam target of rgam [! rm '. such a 1n rgamc form mercury ( ' lark n . 2 06). M r ury an b accumulated in the c rte , ·triatum. hipp ampu , brain ord . The m t comm n clini al neur I gi al ympt m of t m, cerebellum. and pinal MeHg p i oning ob erved in adult in Japan and Iraq epi , en ory di turbances. trem r . dy arthria. and lo Par the ia i u ually the fir t neurofunctional 2006 ). Pathological re ult central nervou de were hypoesthesia. ata 1a. of hearing ( inomiya et al.. 1995 ). ymptom ob erved ( lark on and Magos. in the victim of Minamata our break al o indicated that the ystem wa th primary it of MeHg poi oning ( ' lark on and Mago . 2006 ). The motor dysfunction caused by MeHg e po ure ar imilar to th ymptoms of Parkin n · disease. The bi ological mechani m of MeHg on central nerv u y tem are ti ll unc lear. ne of the e tabli hed mechani m by whi ch MeHg can e ' ert to. icity i th roug h the di . ruption of neur tran mitter fun cti on (Fitsanaki and A chner. 2005 b). Dopamin e (OA) i the most preva lent catec holamine neurotran mitter co mpared to epinephrine and norepinephrine in the 31 br in. nd h rin di ea di rupti n gi l di a f d pamtn rg1 u h r !at d path a P rkin m ( u i et aL .... 0 . Th re i n 111 1 ' eL (Far P L ... , th intr - ellul ar dopamine M Hg ( tt ri ct al.. _ meth 1- -a artate ( M au neur 1 gi al nd hiz phrenia, and I luntingt n' di vid n e f Mellg affe ting th relea mpl . inje ti n f MeHg int the tri tum in fe ly m dep nd nt in rca n .F r f in g rat indue d a concentrati n- ct a!.. ~002 ). In th rat phc cr m c t rna cell I in ntent v. a. d ·c-dcpend cntl ] decrea cd after po ure t ). Mel Ig can aL o medi ate its nc ur t . icit) by interferin g with ) or d pamine rgi rccept r. . egati e co rr lati on were ~ und betw n t talll g and d paminergic 2 rece ptor den. ity in v.. ild mink (Ba u ct al. , 2005a) and wild ri ver tt r ( a u et al. , 2 05b ). I . Mef Ig wa. reported to in crea e NMDA recept r · both in vitro and in ,.i,·o (Mi yam t et al. . 200 1: d unt and han, 20 8) . The e re ulL ugge ted Me g c uld di rupt d pamin ergic path v..ay in the central ner ou 1-meth yl-4-phen lp ridinium ion MPP+ i a we ll anatomi caL behavioraL and biochemical change y tern . tudi ed comp und th at can induce im ilar to th o e ee n in Parkin on' di ea e, whi ch i characterized by ni gro tri atal dopamin ergic n uro-d ge n rati n (Heikkil a et al. . 1984 ~ Yuan et aL 2008). MPP ha bee n hovvn to cau e a lo of th e stri ata l nerve termi nal a indicated by decrease in tyro ine hydroxylase (TH ) and dopamin e tran porter (OAT) a well a dopamine and its metabolites leve l (Nakai et al. , 2003 ). a- ynuclein (a- yn ). a presynapti c protein closely related to DA regulati on (l· ountain and R., 2007: Fountaine and Wade-Matiin s, 2007: Herm an on et a!.. 200 ~ Zhou et al. . 2006) i a neuropathological hallmark of PD . Pro hibiti ve ac ti vity of DA ha bee n foun d to be high !) rela ted to acc umul ati on of th e a- , yn protofi bri I (C onway et al. , _oo I ). M pp+ has bee n ho\\ n to cause an increa e in a-Sy n aggrega ti on (Jeth va et al. , _o 1 I). In addition, Mo n amine oxidase-B 32 (M 1 a mit h ndrial nz m MPP ~ ( udim and akhl ..... 0 ). M that has b en iatcd ts po i ti inhibit r ha. be n d e ~ c l pcd in th e treatm ent of P and M 2 . rt MPTP 1-meth '1-4-ph n l- L2.. -t trah dr p rid inc) to th a tive n d m n tr t d t m tab lit f M f th n i th PO, (Y udim and Ri dcrcr. 4) . Th mam bj cti\'e f thi it me hani m mpan , n to MPr ·. ~· c meas ured th e rclca. e f 111 with MeHg and M P of ynth h dr izin g yla ·tud ) i. t in\ c. ti ga tc th e cflcc t of M ll g n + • regul ation and and its metabo lites ·p ure u ing a neuronal ce ll Iinc M 9 . whi ch have th e properti es at ch I min e and ex prc. in g ncur n- ·pcc ifi c mark er uch as tyro ·in (Herm an n. _00 ). We hvp th e iz th at Mellg can dec rea ·c th e relca c of by: 1) d cr a in g the limiting nzyme for D A ynthe i 'v\ith dee r a e in l] r in c hydr xy la ·e (T ll ). th e ratei : 2) dec rea in g th e DA re- uptake through th e decrea e ynth f dopamine tran porter (D T). a tran m mbrane protein th at m di ate th e r -uptak of DA; and 3) reducin g DA metabolite by inhibition MA -B ac ti vity. W will al o in e ti gate the effect of MeHg on the synthe i of a- yn in the M 9D cell . Material and Methods Cell line and treatments MN9D cell s ( hoi et aL 199 1) were main tained in DM M ( igma. M . U uppl emented with 1Oo/o (v/v) fetal bovin 100!-lg/mL streptomyc in ( ibco, 2 at 37° erum , 3. 7g/L Nal-JC 1. ) 1OOU /mL penici ll in. and nt. , Canada) in an incubator 'v\ ith an atmosphere or 5° 0 ell s were gr wn in poly-0 -ly ine coa ted lla ·k (BD. NJ, U,, ). MN9D celL w re e p cd to different d c of Mel lg or MPP +. Stoc k so lut ions ( 1mM MeHg or 1OmM 33 MPP ) er pr par d in \\at r. Medi btain d fr m ]fa ar wa r pi ) and d er 48h. Me ll g nd MPP 1 wer igm - ldrich ( nt. ' anada) . ell viabi lity a ay n M a a h \\ 11 ) \\a f arricd -v. 11 plate n entrati n bet\\ all i r ~4h he~ r bout adding the neurot x ]O c lL ere lated in 1n Mellg or MPP + at n I ~tM t l 0 ~tM, r l O~tM t 400 ~M, r ·pe ti vel . , ample treatment ndu t d \\ith fi\ in triplicate . ut t1 '\aluatc ell \iahilit)' . rcpli ate in each , periment and each e, periment wa onductcd ntr I and blank amp! \\ere in luded in all ample plate . Treated ce ll s were r , oluhiliz d MTT ~ nnazan produ t wa ed t gr \\ [! r _4h and 4 h. The am unt determined by p troph t m tf) at 95 nm . ' ell viability \\a e pre ed a percentage of the contr I gr up. HPLC detection of DA and it metabolite in MN9D cell culture medium After 24h incubation with MeHg or MPP +. 200~1 aliquot of m dia from 1 x 10 7 ce ll w re mixed 1:1 with ice-cold 0.5M metaphosphoric acid, and filtered through a 0.22~M centrifuge tube filter ( orning. NY, U A) at 15,000 rpm 15 min at 4° . The flovv parts \\er collected and 20~L ample was then loaded. 0 , 3A-dihydroxyph nylacetic acid (0 P homovanillic acid (HV A) were analyz d by detector (pul ed Water 464, Millipore, M , usmg a IL N HPL ) and y tern with electrochemical ). The isocratic paration was perf rmed 18 rever e-p ha e column ( 150 x 4.6 mm, 4~M: Phenomenex. ' . U A). The mobil e phase was made up of a 0.1 M acetate, 0.1 M citrate butTer at pl-14. cc ntaining 228 mg/L _, OTA tetra odium alt. 200mg/ L sodium octyl sulfate and 10°o methanol a de cribed previously (Vicente-Torr s et al., 2002). The OA, DOP ' and IIV release le\ el 34 ln 11 1 ul t d ba d n a m1 !uti n. nl th r\\-1 tra n ript P R f ( nt. m nti n d. a rding t n n c n ntrati n II reagent \\-er purcha ed from igma- ldrich anada). em1 -rev er V\a i )lated fr m ·e ll , mplc, arter 4 h of e. p sure. vvith th u. e f tal R R d tandard ur a 1 Plu Mini it ( tagen. Ou r m ter ln\·itr gen. c nccntration V\a. mea ·urcd in a nt.. 'anada) . R nt. 'anada). 11g of i ·olatcd total R u ing th T qman Rev r c Tr n. cription Reag nt · kit ( pplied a final\' lum lumn ubit V\a. rever. ed tran cri bed io y ·tem , nt, anada) in f I 00 111 follov, ing the manufacturer's in tructions. Primers (Liu et al.. 2008; Zhang tal.. ~0 I Oa) u ed were T (forvvard 5' -T ' '1 GGT ' ATTC:iT'I 'T ' 'TC- 3'. -...,, ). 1 H (forward 5'- A T 5'-T ynuclein (forward 5'-T A T revrse5'- T T ATAGA T T ' GT TC A A 'TT ACA A-3'),a-3'. rever e 5'- -3'). GAPDH (forward 5'-TTGTTACCA C GG T TTTA CG-3'. G-3')a aninternalcontrol. ycling condition wer 95 ° for 5 min. 0 cycle of 95 ° for 30 ec. 56° - 60° for 30 ec. 72 ° for 30 sec and follow d by a 5 min e ten ion tep at 72 ° . The product w reanalyzed u ing agaro e gel electrophoresi . Band inten itie w redetermined den itom trically u ing ene Tools oftware ( yngen . MD, U A). and the r ult ar hov.n a r lative e. pr 1011 of ratio of target gene to internal c ntrol. 35 lmmun blot fter 4 h f p ur elL \\ere h n ktail nd dium rth \anadate (,' anta h m gent7 d b) · Jni ati n and ·on entrati n \\a pr tein dermin ed b) Bradfl rd as. a) e membrane ·. 1; i buffl r kit vvi th PM. F, pro tea. e ). The cell ru1. ere then entrifugcd at I ~.O OOrpm for _0 mm at 4° ' . Pr te in (_ -60~tg) \\ere . cparatcd nitro ellul t d in Rl Bi -Rad. ll er ulcs, ' ). liqou ls n I 0-15° o a r) !amide ge ls and tran ferred 1emhr ne: \\ere hi< eked \\ith 3° o BS sc lution 111 f nto TBST .·olution befl re incuh tim \\ ith the fl liO\\ ing antihodic. : 'Ill ( ' hem icon. l :500), OAT ( hem icon I : ~ loading ). and u-.') n ( ' hemic< n. 1: 0 ). ' P I I ( ,' anta ntrol. Pr tein hand \\ere dete ted h) a quantifi d b) 1ene T ol anal) ru7 , I: 00) was used a a .3'-Diaminohenzidine (0/\B) kit, and ft\\are (, ;ngenc. MI . US ). A naly i of MAO-B activity ell were collected aft r 48h treatm nt. V\a h d and re- u pended in c ld mM K L 120 mM NaCL 50 mM al--bP 4. pH 7.4 ). then a/K buffer (5 onicated . , upernatant were removed for protein concentration analy i (Bradford a . ay) . MA -B activity was mea ured a de cribed earlier with modification ( tam ler et al.. 2005~ Zhou and Panchuk-Vo lo hina. 1997). Briefly, the reacti on tarted when th M 0- inh ibi tor clorgyline ( 1mM) V\a incubated with ampl e fo r 30 mi n at room temp rature, then 100111 of work ing olution contain ing Am plex Red (20 mM ), hor e radi sh pero, ida e typ IV (200 /mL). tyramine ( 100 mM) and Na/K buffe r we re add ed into the cell ample . Incubation. \\ re continu d for a minimum of 30 min . pecifi c flu ore ce nc of re orufin , the oxidati on produc t of Ample.· Red reage nt, wa m a ured u in g a Multilabel Mi roplatc Reader (Bioscan Inc ., Wa ·hington 36 i th , itati n at Onm and m1 rufin pr du t wa e a pm 1/mg pr t in/minut . pr tati tical nal II d t pre entcd a me n ar 1 analy i V\ith ne-V\ay r t-te t (**) n det cti n at 9 nm. R r tV\ gr up ' . . ,' tati . tical . ignific nee as obtained b te ·t. [! II v.ed b) L,' 0 int r-group mpan n u ing ,' P,',' I .0 ,' ftV\arc . mpan vanance n post ho test , aluc f P<0.05 (*), ? <0.01 r P< . 01 ( *** v. a r garded a . igni fi ant. Re ult T he to icity of Me H g and M PP to th e M 9 0 ce ll v iabi li ty MeHg d crea d c ll viabilit at con ntrati n of 5~-tM, 7 . 5~-tM, and 10~-tM in 24 and 48h ( ig. 1 ). The ~ 8~-tM in 4 50 wa e timated to b h. In contra t MPP + do ing re ulted in a dec rea e of cell viability at all concentration ( 10~-tM -400~-tM) for both 24h and 48h (Fig . 1B) . Changes in dopamin e and it metabolites relea e f rom MN9 D cell Typical HPL chromatogram of the culture m dia after the MN9D cell v..ere xpo ed to MeHg and MPP are hown in Fig 2. The quantitie of e. tracellular DA produced b) the MN9D cell declined with increa ing do es of MeHg (Table L (F(3,8)=, .607, ? =0.065) . The lowest DA relea e was 0 . 1 2 ~-tM when do d with 10~-tM MeHg for 24h compared to 0., 4 ~tM in the co ntrol. MPP+ exerted the stron ge t effec t at 50~tM resulting in 0.04~tM (P 0.0 I) on DA release in the media. here were decrea e tendencies in D PAC and I I A release from ce ll media treated with Mel Ig and MPP+. The DO PAC llV AIDA ratio increased slight!) 37 ith M Hg p ur .P F . ) 0. ) nd ignifi anti wi th MP P+ e p ure P- ro o 8 ~ .:: a-Syn .0 < 04 GAPDH 0 MeHg 0 1 5 7.5 10 0 (~) 1 24 8 I TH ~ 18 -, r t 5 MeHg ( ~M ) 75 10 TH • OAT • a-Syn I J c OAT :::J ~ 1.2 .J ~ a-Syn ~ .0 < 0.6 .J GAPDH 0 MPP• 0 10 50 200 400 (~) 0 10 50 200 400 M PP+( ~ M) Figure4. Dose-re pon e effect of (A) MeHg and (8) MPP + on th e pre ion of TIL DA T and a- yn protein analyz d by immunoblot. MN9D cell were exposed t MeHg or MPP + at diffi rent concentration for 48h. The total homogenate wer prepared from M 9D c II . Data how a typical e periment performed in triplicat . ach band wa quantified b; den itometry and nonnalized to that of GAPDH. Value are mean ± independent xperim nts. *P ...... (.) ~ CD 0 2 ~- 1 -=~ I ~ ~ ~ igure5 . e po 0 ffect of MeHg and MPP ~ on M -B acti\ it} in MN9D cell . M 9 cell were d to a dif:D rent range of M Hg and MPP ~ [! r 48h . A one tep nuorom tric method wa u d t determine M -B activit} . Re rutin pr duct wa e pre ed a protein/minute. perim nt wer run in triplicate . "**P a. 1 E-0 1 7 5 l log 2 Fold Differen c e (MeHg51AM/Control) Log2 Fold Differen c e (MeHg2.51JM /C ontrol ) c 1 E-05 1 E-04 Figure 1. Vo lcano pl ot 1 E-03 ex pre sio n in 1.5 -foJd chan ge in M eH g 2.5 ~M and S ~M (A and B), MPP+ 40~M (C) expo ed MN 9D ce ll s. T he blue Jines indicate the thre hold fo r th e P value of <1.> :J ro > how the gene 1 E-02 a. the /-test. 1 E-01 1 E+OO -7 -5 -3 -1 3 5 7 9 Log2 Fold Differen ce (MPP+401JM/Control) 64 Fatty ac1d metabolism 1 7% Alan1ne . aspartate and glutamate metabolism 17% A Proteasome 17% 2 2rYo * Pyruvate metabolism 2 2% * Propanoate metabolism Alzheimer's disease 28% Ox 1dat1ve phosphorylation 28% Insulin signaling pathway 34%* Parkinson 's disease 3 4% * 3 9%, Regulation of actin cytoskeleton 3 gof<, * Pur1ne metabolism 4 5% * Huntington 's d1sease 0 2 Pyruvate metabolism 1.3% Cit rate cycle (TCA cycle) 1.3% B Fatty acid metabolism 1 8% * Propanoate metabolism 1.8% * Amyot rophic lateral sclerosis (ALS) 2 2% * Glutat hione metabolism 2.2% * Valine, leucine and isoleucine degradation 2.2% * Ribosome 3.6% * Parkinson's disease 4.5% * Alzhe imer's disease 4.9% * Oxidati ve phosp horylat ion Hunt ington's d isease 10 8 4 6 #Protein s/Term 4.9% * _.,",--'II 0 ~"f-./""'~-~ :~~,..,..~~~T'!""'>>~~·~"'~)J"~"-~""!o!'!''j . 3 ' . 12 6 9 # Protein s/Term 6 3% * 15 18 65 Fatty ac1d metabolism 08% Pyruvate metabolism 08% c Propanoate metabolism 1 1% * Parkinson 's d1sease 13% Ox1dat1ve phosphorylation 1 3% Arginme and prol1ne metabolism 1 3%. Proteasome 1 3%. Pynm1d1ne metabolism 16% Ubiquitin mediated proteol ysis 1 8% Cell cyc le 2 1% * Ribosome 3 2% * Spliceosome 7 4% * 0 6 18 24 12 #Protein s /Term 30 36 Figure2. nrichment analy i of KE G Pathwa; in (A) MeHg 111M. (B) MeHg S11M and (C) MPP+l 011M treated MN9D cells analyzed by D VID . Th elected 12 enriched categories were applied in the figure . 66 l oxidoreductase activity B 4 .0 BRIX l structural const itu en t of cytoskel eton DY N LL2 STOM T U BB3 T U BB 4A 1\PRT ;;; QJ iii c.. n ........ 0 ::I 0 O'Q N 0 :::1. ..... 0'1 .... CD ~ transf erase activity :::E -2 0 -40 r- hel icase activity 1 -40 -2 0 1 r 0.0 2.0 r 4 .0 6.0 MPP+10~M/ Con (log2) ~ SLTM PI\BPC 4 nucleic acid binding c r- RNA splicing fa ctor activity RB M 28 RB M 39 STX12 TFG receptor and signal tran sducer activity IT PI\ SMC4 FI\F1 GI\T 1\4 N u ll2 M EPCE M TC H 2 N CI\PG OSB PL1A PLRG1 RN H1 SSSC/\1 c ::t XRCCl EIF3H SDPR GL01 51001\6 PS M G1 I\P1 61 I\P2 M 1 ARPP19 .. :::E DDXl DDX18 DDX191\ DHX30 H2AFY HIST1H1D I\BCF2 M E M 01 NAPl L4 N UP50 TI M M BA EIF2B4 :. !2 0 0 AS3MT BI\ZlB PIGK SDF2L 1 TBL2 M I\P2K1 -I \ cg; 2. g ~ hydrolase activity ....J prote in binding transporter activity translation initiation factor activit)/ lyase activity calcium ion binding chaperon l 4 oI ~ 201 c 80 ~ i-"iI ... -4 .0 I -4 .0 others I -2.0 I 0.0 I 2.0 4 .0 MPP+10~M /Con (log2 ) Figure3 . (A) Heat map of common changed proteins for GO molecular functional classification in MeHg and MPP+ treated MN9D cells. Protein abundance ratio (treated/contro l) are compared between (B) MeHgl1-1M/Con (log2) and MPP +l 01-1M/Con (log2) (Spearman correlation coefficient rs=0.504 with a p-va1u <0.0001) and (C) MeHg S1-1M and MPP+101-1M (Spearman correlation coefficient r.,=0.525 with p-value <0.000 1). 67 liJM MeHg • 51JM Mc Hg u . ~ 0 ~ £ "C :2 0 ,~ ~- ~ _,.~ "' . ,.. ~ ~-0 ~~ ,(:- "' ~ ' ..~ .::-~ r,"> <" ~ ~ ~ ,., •• ..1- ~., .,~ ..... #' ~.. (' .? ..,, ,~ " .t "' .,~ ~· ~· ~.. .t! ¢" *' •" ...~ y ._, .p .;,' ._, "' ,r ~~ ~.,. "./': ,..::' ._.." .;;~ v ~ • +'',--'"'.,~;..~·~~:f~J?.;'l>~iifJI.fl."'~~~~"J. 18 and o/o of term ge ne 2:. 15o/o) were appli ed to reduce the related term redund ancy. Onl y 0 te m1 s w ith P va lue Ie , than 0.05 were accepted a nd prese nted . Cytoscape Cl ue Pedi a plug- in (Bindea et a!.. 20 13) wa used to visuali ze the known interactions (from STRING 9.0) betwee n the GO term s and the associated prote in s. 84 Two nlin b t aL 2009), ere u ed D r than 0.05 r er oftware, a u ed a ab I m1 4 .2 (M dina t al.. 20 10) and ellular c mp nent nrichment anal ori lla ( den P value les ut ff. In rder t explore the p tential regulated tran cri ption factor o [ Me l-Ig on ion tran port, Web talt (WE -ba ed Ene ._ eT identify enrichment of miR naLy i Toolkit) (Wang et aL 2013) wa used t targe ted ge nes in the GO term of ynaptic tran mi 1 n. Pathway enrichment anu/ysi.\ Pathway enrichm nt analy i on the differentially e pressed protein u ing IP and Web talt onlin ource . were conducted li t of 102 differentially expressed protein in marmo et cerebellum wa uploaded into the IPA database. identified and were eligible for generating Canonical ne hundred proteins were ignaling pathways . Web e talt online source was also u ed for pathway analy is which provided the direct connection to biological pathway from Kyoto Encyclopedia of Hypergeometric test was u ed to calculat ene and Genomes (KEGG ). P value from the differentially expressed proteins against the identified 1000 proteome . Bonferroni method wa applied to correct the P-value for KEGG pathway analysis. Western blot analys is To validate the results from the proteomic analysi , four proteins, Disks large homolog 4 (DLG4), Sodium/calcium exchanger 1 (SLC8A 1) Vesicular glutamate transporter 1 ( L l 7A7) and T-complex protein 1 subunit zeta (C T6A) were quantified u ing western blot. Protein extraction and concentration determination were the same as 85 rib d in tion 2. 1. Pr t in ampl (1 0-401-lg) ere 1 ad d and eparated by 10-12°/o ). Membrane er block d for lhr with 5o/o kim aline +Tw en-20), and incubated with . . anou pnmary antib di 50. ab 1825 ). , L 17 7 ( 1: 00. ab 104 98), and L ' 8 1 ( 1:800, ab 1779 2) ( beam. ambridge, M ), and T6 Biot chnolog anta overn ight. milk in B (Tri Buffered Inc. ruz. ' ) at 4° ( I :200, sc-1 896) ( anta ruz fter wa hing by TB T, membrane wer incubated \\ith llor radi h peroxidase-conjugated (liRP) eco ndary antibodi ruz ( an ta iotechnolog; In . anta Cruz. C ). goat anti-rabbit lgG-1 IRP ( 1:12000. c-2004) or mou e anti-goat Ig -HRP ( 1:12000. sc-235 4) for 1 hr at room temperatur . The blot were tained b; Iarity We tern ECL Sub trate (Bio-Rad, Mi i auga, ON). and target band vvere vi ualized by using Chemidoc imaging system (B io-Rad , Hercul es, CA). The target band wa quantifi d by using image J software and the density of each band wa normalized against GAPDH . Results Protein identification and cellular component distribution Proteomic analysis across the 6 cerebellum sample in control and the MeHg-treated groups resulted in the identification of 2563 proteins (TabS.l ). Representative MS/MS spectra for two proteins DLG4 (P78 52, Di sks large homolog 4) and L 17A 7 (Q9P2U7. Vesicular glutamate tran sporter 1) are shown in FigureS .1. Only proteins identified in all 6 samples in control and MeHg- treated mamoset cerebellum were included in our analysis, which resulted in 1000 proteins. total of 102 proteins -were found to be 86 differ ntiall e pr d ( d crea ed and 16 increa ed) in the M Hg tr ated ample c m ared t th c ntr l (Tab, .2 ). th f di fferenti all y changed protein abundance chang between the ig. 1 h w contr and M Hg-tr ated manno. et cer bellum ampl e . Th tripli cate sampl e in th e c ntr 1 gr up and the the MeHg treatmen t group ~e re clearl y eparated and a good y in the pr tei n patt rn wa. fou nd ~ ithi n each gr up . Re ults of IPA gene ont log ( ) analy i f c llular compo nent are abundance f id ntifi d pro tein wa a. foll owin g d ho\\. n in Fig. ! B. The relative ciated \\. ith vario us cellul ar co mponents in th e endin g ord er: cyto pla m (62o/o) > nucl eu ( 16o/o) > plasma membrane (1 5o/o) > extrace llular space (3o/o). organell es. The relativ The remainin g 4°/o w re a oc iated with oth er percentage of di fferenti all y ex pres ed proteins di stribution fo llowed the ord er of cytopla m (55o/o) > pl asma membrane (27o/o) > nucl eu (14°/o) > extracellular space (1 o/o), and other organell es co mprising 3o/o. There was a signifi cant difference in organell e di tributi on between all th e identifi ed proteins and th e differentially expressed protei ns conducted by Fisher's exact te t (P=0.046). GO an alys is of differentially ex pressed proteins in cerebellum The functional enri chm ent analysis results showed that 62 out of the 102 differentially expressed proteins were included in 24 significant GO terms (P<0.05) (Tabl e 1). All the proteins associated with each of th ese 24 signifi ca nt GO term s are hown in Table These signifi cant GO term s we re grouped into three groups and th .1. key biological fun cti ons of these groups includ e: 1) ca rbohydrate derivative meta bolic proce s and purine as oc iated nucleotid e metaboli c process; 2) ion tra nsport inc luding vesicle- 87 m diat d tran p rt and ynapti m rph gen i in ol tran mi wn: and ) cell de el pment a well a d in n ur n differentiation. Ba d functi nal annotati n net vvork analy i clu tered the different bi gical function group differential! e. pre ed protein (Fig. 2 ). It 11 n the pr tein imilarity, the ignificant , hovv n tenn into three i ually that 1110 t of the are a ociatcd vvith the carbohydrate derivativ m tabolic proce , and purine and ribonu leotide m tab lie proce se . ~o re proteins uch a D 4. TP2 2 and PL 1 \\ere found to be important m linking biological functi n m arbohydrate deri\'ative metabolic proces . synaptic transmi s10n and cell development. Web e talt miR A enrichment analy i res ult showed th e top 10 enriched miRNA targetting the 20 proteins included in the GO function term of ynaptic tran mi ssion (Table 2). MIR-19A and MIR-19B were the only significant miRNA that targeted five down-regulated protein (NAPB, PLCBl, SYTl, BSN, ATP2B2 and NAPB) in th process of synaptic tran mission (Table 2). Results of the GO cellular component enrichment analysi showed the differentiall y expressed proteins was significantly enriched in pia rna membrane (46.1 o/o). pia rna membrane part (33.3o/o). membrane fraction (21.6%) and cell junction (15.7o/o) (Babelomics, Fisher's exact test, P w I () 0 :::> () 0 =. B 70 • Identi fied proteome 60 - ~ • Differential expression 50 ~ 40 ~ ~ 30 ~ ~ 20 10 0 Cytoplasm Plasma Membrane Nu cleus Extracellu lar Space Other F igure 1. A. H eatmap of prote in a bund ance pattern in di ffe renti all y ex pressed protein s. B. ellular component di stributi on fo r the tota l identifi ed protei ns (n=99 8, IPA mapped ID ) and diffe renti ally expre ed protein s (n= l 02) in marm o et cerebe ll um . There was a significant diffe rence in the di stribution of subce llul ar locali zation between total id entifi ed proteins and signifi cantl y changed prote ins (F isher's exact test P =0.046). 93 f8X02 Bt VRB PSMC3 SR VCP car GNB5 2 A hydrate de nva ~ve calaboltc process }11trogen compound ca[?' procass punfllH:Ontalntng comP9unQ_ _,....--metabolic Prt>ClY • SPTANI RUVBL2 C,MPS ( GBAS nbose ONMI cell morphogenesiS Involved 1n neuron d1fferenhat10n PHGOii carbohydrate .AP derivative metabolic nucteotrde metabolic process process ...,e metabolic procass • ...At. PIP4K2V IIRF~ I • L1CAM c II pari morphogenesiS cell prOJeChon morphogenesrs cell morphogenesiS rnvolved 1n ATP6V10 GNA.ORASI d1fferentratron SPTBN2 OLG4 • ANK2 PAKI SRCINI ~ ·K3A Stde ohosphate metabolic RAB3A NTNAP ' NRCAM procass 111 • punne nucteotrde metabolic p puMe nbonucleol!de ~ VPS4A A P2B2 cell development PLCB1 ATP6V1H ANKI • LGII HANK1 co TB organophosphate metabohc proce~ nbonu ~de metabolic proces:s- GNAS • KCNJIO GLIJ0 1 • nucteobase-contarnrng small molecule metabolic process lC8At f) • BSN SUB ! • SCNlA synaphc transmiSSIOn ion transport LRPI PPIP SNAP2~ r t\2 SYT' NAPB Ar ::Z112 AMPH S(P $ CAM~ 2A • SlC17A7 • SLCGAI Figure2. An annotation network of three functional group for differentially expressed proteins m MeHg-treated marmoset cerebellum. The network was generated by ClueGO+Cluepedia, the GO "Biological Process" was selected, GO term connection restriction (Kappa score2:0.3 ). Colour nodes represent the functional groups of GO term, and the size of node indicates the significance of the terms. The identified changed proteins associated with each term are high lighted in red . 94 • Identified proteome Cell junction • Differential expression * Plasma membrane part Plasma membrane * Membrane fraction * 0 10 20 30 40 50 Percentage (%) Figure3. G enrichment cellular components analysi u ing Babelomics. The a teri ks indicate ignificant enrichment (P0 180 :r GAPOH a.. * 20 05 0 90 :r • a.. •• Cl 0 a.. • • 0 45 • • • • •• • 08 ~ ~ a.. •• 04 0 < • 0.6 c( X • 00 ** AQP4 0 02 •• •• •••• 00 0 00 Control MeHg Control Me Hg FigureS. Validation of the prot om1c re ult u ing WB analy is of 4 proteins in frontal lobe and occipital lobe . . Representative blot of 4 protein from control and MeHgtreated marmo et occipital lobes. B. emi-quantitative mea urement of target proteins as indicated by 6-7 WB analysi . Target proteins were first normalized by against their corresponding housekeeping proteins-GAPDH (n= 6. 2 replicates/sample) . 127 VASOPRESSIN REGULATED WATER REABSORPTION T~ght June n ) ---!) .,0 Renal in ten titiwn flu..il (b d) Co Bet~ duct p rinc~ al cell urinary lumen F-acb.n A~ Basolaterel membrane derolyme117.11. membrane V2R AVP Mlcrotubule AC E.xoc ytos IS ~ I AQP2 I \ l \ Rec hng\ l -------~-------,-- ~ \ l \ I AQP2 I I AQP2 I --.. Unnary excrebon / I Degradabon I Reb5 I I AQP2 I I I I I I - - • Water homeostasiS 0 H;P I + Earl endosome Tight junction I AQP3 I 04962 7121/10 (c) Kanelusa Laboretones Figure6 . Vasopress in-regulated water reab orption pathway was clas ified by K G pathway mapping system from upload d 62 differentially expressed proteins in FL. Protein hi ghli ght with red were the one mapped in Vasopre in-regulated \\later reabsorption path\\a). 128 Di cu ton er brum, e p iall in fr ntal 1 b (F ) and ccipital 1 b n f th main targ t r gi n (cal arine and ( ) ha been h wn to b f M Hg neur to i ity ( t . 1997) . With tw d ep fi sure ylvian) in cer brum. marmo et ha e more imilar neuroanat my to human than rodent Vvhich lack de p fi ure. in the erebrum . Therefore , mann good model [! r n uro human databa [! r pr 1 n et i a e tudy relevant to human (Eto e/ a!. 2001 ). We searched tein id ntifi ati n from marmo et M , /M data, and us d human originat d antib die in We tern bl t for validation . There ults (Fig.5) further proved the genom imilarity f the two pecie . and the trategie vve used in thi appropriat . MeHg treatment cau d m r ury accumulati n in FL and tudy were L. The average concentration of total m rcury in OL (31.41Jg/g) wa higher than FL (26.71Jg/g) in the MeHg treated marmo et (Yama1noto et al.. 2012).The e results agree with other studies howing that OL were more usceptible to MeHg effects compared to other cortical regions in Minamata disease patient (Okabe and Takeuchi 1980) and in common marmoset (Eto et al., 2001 ). The global proteome of FL and OL in the cerebrum of the MeHg expo ed manno et wa examined. A total of 877 proteins were identified in both FL and OL regions. The number of the identified proteins was similar to those reported by We seling et al (Wesseli ng el a!., 20 13) using similar label-free LC-MS methods in rat frontal cortex . Out of the 151 differentially expres ed protein identified in FL and OL, only 3 proteins (DYNCI LI2, HISTI H2BH and PC) were common! af[i cted in both region (Fig.1). Thi s indi cated that the effec ts of Me l fg on pro tein abundance change Vvere regionally 129 p iii in the t f c rebrum. hi ob rvation i further upported by the re ults lob of the h at map anal 1 that h wed hi gh d gre f con i tenc of protein e pre ion ithin th tr atment and c ntr 1 group but a clear di fferen c in protein pattern betwe n th t gr up protein in th e and ). Ther were more differ ntially xpressed L ( 6) than in the L (5 9). he majorit pr tein were di tributed in the and 111 cyt pia min both L and location betw n th ( ig.2 L ( ig.2 and her wa al differenti ally e. pre ed protein prot in in the t\\ region . T he e re ult cellular organ ll e within th FL and ur re ult ). no difference in subcellul ar and that f the t tal id entifi ed ugge t that Mel lg did not target parti cul ar sub - L of ce r brum . how that the effect of M J-I g in th e FL we re not very specifi c and were medi ated primaril y through the di rupti on of c II di vi ion, decrease in key anti ox id ant protein , and interference in the proce ses of energy generati on. These are refl ected by the protein affected by MeHg in the FL are mainl y in vo lved in cell cyc le and cell di vision, microtubul e-based process, cellul ar metaboli c proces in cludin g cellul ar amin o acid metabolic process and sulfur compound metaboli c proce , proteolys is, and growth development (Fig.3A). The e findin gs are similar to those reported in a previo us proteomics stud y (Keyvanshokooh et a/.. 2009) that proteins in ce ll metabolism, cell division and signal transducti on were affected in juvenil e belu ga brain with 0.8ppm MeHg exposure for 70 day . Among the significant changed functions, su lfur compound metaboli c process acco unted fo r the highest percentage (20o/o) of proteins compared to other functions in FL (Fig3 .A). As MeHg is known to react particularl y with ulfhydryl group (-S H) and elenohydryl group to form MeHg amino ac id or protein complex ( arocci et a/. , 2014 ), the signifi cant change in protei ns invo lved in ulfur compound 130 m tab lie m hani tic tr idati elen nz m M H g. b e p (BPNTl , pr c id en e [i r u h pr b d h e N, P , TXNRDl ) pr I o. the mi r tubul ba ed proce u h a T wa ided the ugge t th at Mel Ig can au e re ul t al RDl , a major antio idant ll c cle and ce ll di i i n wa the large t ategor f ce ll di vi i n in mit ob N rea ing ulfl1 dr I prote in ure ( abl e I ). microtubul e MTHFDl , f function affected identifi ed n itive to Mell g mi cr tubul e i, imp rta nt c. to ke lento n tructure in manipula tion i . M ll g \\a like ly d i rupting ce ll di vi i n pr ce s thro ugh d p lym eri zati o n (C lark on. 199 : Miura et al., 1999 ). M o reove r, we rved functi onal enrichment in th e glyce r lipid metab li e process a oc iated w ith 4 di f£ r nti all y chang d pr te in (A LY , BP NT 1, F S , PPPl ACLY and FASN are key enzy me parti ularl B ) in the FL (Tab 1 ). fo r lipogene i and chole terogenesis w hich are important for the ge nerati on of acetyl- oA for ace tylcholine ynth esis (Beigneux e/ al. . 2004 ), and de novo fatty acid synthe is (Kn o bloch e/ a/. . 20 13 ). A acetyl- oA is the core enzym e connectin g fatty acid m etabo li sm enter into Krebs cyc le (Edmund s e/ a!. . 2014 ). M eH g can target the processes of energy generati o n and interrupt nutrition support in FL of mannoset brain . In parall eled w ith the biological functi on analy is. we al so identifi ed specific path ways in pyrin1idine m etabo li m and pyru vate metaboli sm in FL (Tab.3 ), which act as the essential energy source in Kreb cycl e (Prasad e/ a/. , 201 1; Schroder e/ a!. . 200 5). In comparison, th e effect of M eHg on the OL protein s were more x ten ive but ap peared to target some key prote in s uch a apolipoprotein (APOE ), G luta thi o ne Perox idase- ] (GPXl ) and Aquaporin 4 (AQP4). MeH g wa o bse rved impa irin g the function in li pid metabo li c process (A LDHSA l , APO E, CMAS, D LAT, GPX l , LAMTORI, LRPl, 131 OX Tl , P , PP 1, E R) and llular lipid metab li MA , D AT, GP 1 L MTORl tal.( ndre ll et a/ .. 200 7 ) a l nz m in the e p nthe i of neura l lipid . wa impa irment s ( LDHS 1, PO , Tl, PPTl , TE R) ( ab2). Vendr ll rep rt d that -ketoacid - d to 60nM M eHg ~ r 10 da In dditional t RPl , 0 proc enz m tran ferase L a k y d crea cd in cer be liar g ranule cell . f lipid meta b li m . encrg gen rati o n wa di rupted in th e a evide nced by functi n alterati n of carb hydrate deri vati ve m etabo li c process and ing l - rgani m arbohydrate m etabo li c proc . M oreo er, the o b erved change in butanoate metabo li m (Tab.4 ), an important pathway und e r carbohydrate m etabo li sm provide further evid ence that M eH g indirec tl y influ enced th e energy meta bo li sm . T h se results agree w ith our previou prot omi c tudy (K ong et a/.. 20 13) bowin g th at 25o/o of their protein changed in the m eta boli c of carbo hydrates and energy generati on associated m eta boli m in the om atosensory cortexes of rats dosed wi th M eHg. Our results also confirm that APOE is a key protein in mercury neurotoxicity (Godfrey e / a!. , 2003). APOE was fo und to be the mo t intense interacti on hub in O L n etwork (Fig.4B) w ith 3.7-fo]d increase. A PO is a famil y member of apolipoprotein functioning as regulate lipid transport in the bod y (Hatters e/ a/. , 2006 ). n epid mio logy stud y showed a significant correlati on between APOE 4 genotyping and 465 pati ent diagnosed with chronic mercury to icily (Woj cik el a/. . 2006 ). APO ~ and other a ltered proteins in lipid assoc iated categorie in OL indi cated that different pro tein s and separated biochemical processes in the two region contribute to the en rgy uppl y deficit. These type of prote ins and associated function s ugge ted that chan ge in energy derived 132 carb h drate and lipid metab li m are a c re featur of M Hg neur to icity in both F and L. B id carb h drat and lipid metabolic pr c e , Me l Ig al ar~ ct transport, intracellular ignal tran duction, prot oly i , multicellular organismal development, cellular amin a id and nucle tide metabolic proce were r pot1ed previou 1; t K be related t th L. PX1 1 11 of the e function lutathi ne Per xidase-1 (G PXl ) was [the total identified 19 functional term a family member of elenoprotein hydrogen pero ide . We tern blot) ut L. Mel Ig into ication (Allen et al., 2001 a; an hoko h t al.. 2009: Kong et a!., 2013 ). invol ed in 12 MeHg affected functi n in the 111 which catalyze the reduction of he down-regulation of GPXl (2.5-folds in both LC-M /MS and ugge ted glutathion depletion occurred in M Hg affected multiple functions, and the decrea e in anti-oxidant capacity could also be one of th of MeHg toxicity in the OL. We observed the brain edema occurred in MeHg treated marmoset (Yamamoto et al., 2012). The identification of water transport related pathway in the vasopressin-regulated water reabsorption in the FL (Tab.3) provides the biological pathway evidence to the observed effects of the brain edema. Vasopression regulate water reabsorption by secreting A VP (antidiuretic hormone vasopressin) through neurons projection to regulate water reabsorption in kidney (Boone and Deen, 2008). This pathway is one of the main ystems to maintain water homeostasis in our body. A total of 4 differentially expressed prote ins (DYNClLil , DYNC1LI2, NSF, RABll A) can be mapp d in pathwa; of Vasopre sion-regulated water reabsorption (Fig.6 ). In contrast, we found a ignificant 133 alter d functi n in regulati n of b d AQP4, A TPl 83, DGKB, G ( ab2). In th previ u tudy, al rep rted t be clo el ith 9 protein r p rted the p relat d t ver- d marm set blot analy i (Tab. te t . The re ult QP4 \\a aL olved (APOE, pre ion of L QP4 and it (Yamam t et aJ., 20 12). the reablorption of m r gulati n and r gulati n of brain edema (King and ignificant up-regulation 111 M, PRK B, R BSA, WDRl ) in th Y1A2, PI r lati n hip with brain edema in MeHgP4 wa fluid 1 el erebr pinal 0 uid , gre, 1996). In this stud y, b erved in MS results, th ugh not in We tern and Fig. ). and thi may due to technical variation between the two f P4 activati n indicat d that MeHg can increase permeability of AQP4 channel to enhance brain wat r flu , with other 8 protein resulting in brain edema. 1 aken together identified in functi nal group of regulation of body f1 uid levels itnplied a water transport dy hom o ta i occurred in the L of Mel-Ig- treated mamoset. These re ults offered the mechani tic explanations of observed edema in both FL and OL of the cerebrum in the MeHg exposed manno et . Conclusion This is the first report of whole proteome alteration in primate cerebrum region with MeHg exposure. Occipital lobe was more susceptible to MeHg effects than the frontal lobe. We demonstrated the importance of energy diminish (carbohydrate and lipid metabolic processes), anti-oxidant depletion, and dysfunctions of water transport as a conseq uence of MeHg exposure. The two brain regions showed imilar endpoint effect in energy metabolism but acting through different proteins and biological pathways . Disruptions of regulation of body fluid levels including pathway in vasopression- 134 r gulat d ater reab brain edema. rpti n are th Imp rtant mechani m f MeHg cau ing marmoset PO E wa the re pr t in linking multi functi n in Meilg-treated occipita! lob . Th id ntifi d bi I gical functi n and pathwa f MeHg-indu pr vide the po sible 1nechani m d neur nal dcfici t in frontal! be and ccipi tal lob . Acknowledgement W appr ciat Fr d li ma for hi profc nal advice and help in bioinformatics analysis . 135 hapter VII. Ba ic life c1en r ar h i t onclu ion d t rmme the prec1 e tep f the compl c scade and p t ntiall target m le ul and bi logical pathv.ay involved in different functi n or di ea es. The g al i to devel p n v l therapj t target these proc under tanding important f the neur e or promote health. hemical and fun ti nal circuitry deficits 1 trategy particularly for neur degenerati e di ea e eviden e h v.ing that envir nmcntal p llutant can be linked with neur degenerative di interaction se and impr an ( olde, 2009) . There are uch a methylmercury (MeHg) potentially a e . H wever, very I ittle i known of the f to i ant-di ea e uch a M I-Ig and PD . The entry and di tribution of MeHg in organi m i a com pi , proc of MeHg poi oning, it i . In pite of progre in under tanding of the initiating factor till no cure so far to remove mercury/MeHg even in the early stage of mercury poi oning (Farina et al., 2011 ). How to prevent MeHg-caused neuron dysfunction as well as the sub equent cell death i the key point to treat or prevent the MeHg-cau ed pathological progress. In this respect. a strategy which aims at systematic identifying sensitive molecular targets of MeHg as well as the association with neurodeg nerative disease posed a critical role in prevention and treatment of mercury poisoning and other type of neurodegenerative conditions. Key findings of thi tudy Thi s the is has two aims: o ne was to investi gate the assoc iation of MeHg toxicity with PD . MPP+, a well -known neurotox icant that can induce PO like symptoms i used a the positive contro l. T he second a im was to systemati call y tudy the protein profi le in respon e to Mel Ig, 136 a ell a identifi ati n th planati n fl r Th d ffl ct indu ed b M I lg. P 1 manu cript pr nted 1n g ne /pr tein for d pamin hapter III nz m r gulat d by th content . nz 'm re p n ible ~ r D e, p he e re ~ ult ure h w d th c mparative changes of key induced b MeH g and MPP ~ using a dopaminergic ) c cl n ur n cell model. The rat -limiting DAT, and in bi 1 gical fun lion and pathway to seek ub equ nt chang T I I [! r nthesis metaboli m M , dopamine transporter -B were ignificantly down- f both toxicant , re ulting in a decrea e in extracellular DA ugge ted MeHg c uld affect many c mm n key gene /protein in regulation dopamine dynamic imilar t MPP +. To further explore the underlying mechani m of the effl ct of MeHg and MPP +, a gen mic and proteomic approach was used to study their effects on key PD gene and on the total proteome u ing the same MN9D cell model in the 2nd manu cript pre ented in hapter IV . A total of 6 genes including TH in dopaminergic transduction signaling pathway were found to be affected by both MeHg and MPP+ treated MN9D cells. This result further confirmed our ob ervations that the two toxicants can induce similar pathophysiological vulnerability to DA and dopaminergic associated signaling. Proteins in energy metabolism including propanoate metaboli sm, pyruvate metabolism and fatty acid metabolism, oxidative pho phorylation were altered with treatment of MeHg and MPP+. The disruptions of these cellular functions in the dominergic celJs can be the underlying mechanism of PD . In addition, we also found that MeHg interrupted pathways involved in other neurodegenerative diseases including AD, ALS and especially in HD. Resu lts from these two chapters clearly sho\\- that MeHg can b a potential risk factor for PD by affecting imilar biochemical pathway and endpoint effect uch a 137 en rg d fi it that ar affl t d b MPP +. M re er, MeHg rna al involve m other n ur d g nerati e condition . Th yd and 4 111 manu ript pre ented in c mpr hen i hapt r and VI h wed for the first time the prote me change 1n di f[i rent brain rcg1 n (cere bell urn , fr ntal lobe and cipital l be) f marm . t e. po ed t McHg. Th re wa a clear regi nal difference in the number and profil e chang in th identified in th f pr tc in affec ted b; MeHg leadin g to th e differenti al functional thre brain region . Ba ed on the number of differ ntiall y ex pre ed protein r g10 n , w h V\ ed th e r lative vuln erabl e sites in res ponse to Mell g timuli in the following order: er bellum ( 102) > ccipital lobe (89) > frontal lobe (62). Moreo er, MeHg affect d protein as ociated with th e most di ver e cellular fun ction s and number of biological pathway in th e cerebellum and occipital lobe. Th se results support previous observati on that cerebellum and occipital lobe were the primary target of MeHg (Eto, 1997). alcium signalin g and ion transport espec iall y ynaptic transmi ssion were identified as the main affected pathway and function in the cerebellum of MeHg expo ed marmoset. Corresponding to the biological functi on alterati on , MeHg wa fo und mainl y to target organelle di stributed in pl asma membranes e peciall y in synaptic membrane in cerebellum . One of the most important findin g of our tud y is the identifi cati on of DLG4 and MIR-19A/MIR-19B as the key targets leading to multipl e effect of MeHg in the cerebellum. In the frontal and occipital lobes of the cerebrum of MeHg treated marmo et APOE was identifi ed as a key affected protein that serve as a hub linkin g mul ti-functio n . Thi s direct cause-effect relationship provide e cell ent mechani tic upport for the previou ~ reported correlati on between the APO 4 genotype and pati ent with chroni c mercury toxicity (Wojcik et al. , 2006), and furth er support the proposed usc of APOE a a potentia l clinical 138 icit bi n1arker [! r n1 r ur ith and in an u neur degenerati e di ea tudi e ith P , we al o id ntifi d interaction of he pr teomic re ult of both the in vitr sh wed tha t M H g indu ced a Parkin n 's di ea e, 111 pr teins ass ciated with and ugge ting that M H g can be a ri k fac tor in the deve lopment of patho gen is of di ea uch hange di ea e neur degen rati e lzh imer ' et aL 200 ). In a ditional to the evidence that MeH g i a ociated upp rting ur h p th M Hg ( odfr Huntin gton 's van u n urodegene rati ve co nditi n . Th ultimate g a l of mechani ti c tud y i t id entify the molecul a r, bi ochemi cal or ph iol ogical change that can ex pl ain the fun cti o na l or behav ioral changes o b erved . In thi s study, we demon trat d the foll owing mech ani m s: i ) Me l lg impaired energy ge neration in m armoset brain by affecting key prote in invo l ed in carbohydrate deri ved metaboli m and lipid metaboli sm in all three region of marm o et brain ; i i) ignificant alterati ons of syna ptic tran mi ion, carboh ydrate derived m ta bolic process and neuro nal mo rpho logy in the cerebellum may explain the motor dy function sign presented in MeH g-d o ed mam1 o et: iii ) M eH g caused brain edema by altering the key protein A QP4 as well a its associated water tran sport pathway. In sun1mary, our results suggest that M eH g can be a risk factor for multiple neurological disorders (PD , HD , AD, ASL) . The present res ults (Chap Ill and IV) speci all y foc u ed on the compari sion of biological pathway and molec ul ar changes o f MeHg and MPP + in the context of PD pathogenes i , whi ch not onl y provided the ev idence in the a sociat ion of MeHg with PD but also gave the additiona l hints for other dopaminergic r lated di order . such as I ID , schi zophreni a and dru g addiction . furth erm o re, the re ult of C hap ter V and VI demon strated a compreh nsive overview of the mo lec ul ar change and targets across the 139 c r b llum, target L, and L r gion m M Hg e p uld p t ntiall bee m g d ph rmarc 1 gi al target :D r tr atment d marm chapter , tran mi 4 and P id entified mo lecul ar andida tc :D r de el ping biomarker in diagn f Me ll g int m clini c per pecti v or icati n. Particularl y, the e tudi e are 1mp rtant in prov iding th ba i .G r the d ve l pm nt of pre mi tigate the e ad ve r e effl ct et. The nti ve and treatment trategie to e ampled candidates in previous ar c r protein in linkin g and m aintaining fun cti ons of synaptic n and lipid m eta bo li m in the phy ical conditi n. ignifi cant changes of these two protein c uld be pr mi ing m ark er. or a the candid ate targe t in predi ction/ treatm ent for M eHg p i 10nmg. M reover, the "omi c " appr ac h wa pr ved as a re li abl e and powerful method to id enti fy k y targe t prot in . and provi ded a n ve l way to 1uc idate th e r gionalspecifi c bi ologica l fun cti on and pathway a oc iated w ith M eHg n urotox ic ity. T herefore, L -M S/MS i apprope rate t chnique and t st me thodo logy to evalu ate th e effects of M e H g exposure on hum an nervo us y tern. Finally, results of thi s stud y provid e th e indirect guid ance to policy deci sion -makin g in the deve lopment of regulati on fo r MeHg emi ss ions and exposure advisori es to protect the health of sen itive popul ati ons. Hg is a glo ba l i ue encountered in various countries including Canada. In term s of potential tox ic effects of Hg in the ai r, food, w ild life and human health, there is still far too littl e to know the e act toxic m echanisms of MeH g p arti c ular on hum ans, the top chefs in the food chain. T he present data provides the dose effects of M eH g that co ul d be reffe red for safety evalua tio n, and for further fac ilitate o ur understandi ng of the pathogenesi changes of MeHg toxicity from laboratory anim als to peopl e. Partic ulary, the primate m ode l used in th is study provided the more direct proofs fo r predi cti ons of I lg on human hea lath effec ts. OveralL this study contribute to a better understandin g of magnitud e in the uncertain mecha ni tic questions of MeH g ne urotox ic ity in humans. 140 ontribution to knowledge and limitation ntribution : • T the c n id erati n of M eHg a neur 1 g i al di e p • rd er . and identi fy ing on the p ri k fac tor for PD and oth er ible linkag between M eHg ure and n ur deg nerati v di ea e . To the ide ntifi ati n f the electi ve effec t of M eH g on pl asm a m embran pr t m s, particul arl y n prot in • a co ntribut r f ; napti membrane in cerebe llum. To pro id e furth er in ight into the deve lopment of k y prote ins as bi om arker for predicti on and treatm ent fo r M eH g int x icati on . T he bi om arker co uld be useful for future hum an ri k a e m ent and oth er epid e mi o logy studi es. • To promote the evidenc e- bas d p li cy makin g in translati on to nv ir nm enta l-heath managem ent and po licy proce into protecti on of human from env ironmental and man-mad e expo sure of M eH g. Limitations: o The question po ed in the Chapter III and IV is wheth er M eH g expo ure and PD share similar etiopathology . In the normal bi olog ical co nditi on. co mpensatory processes occur first before damage manifestati ons ( lark on et aL 2007). hort te rm and high concentration of M eHg ex pos ure can produ ce acute toxic effect wherea long term low do se e posure may induce co m pen a to ry respon e different net tox ic effects. \\ hich ca use In thi s tud y, the ce ll culture dos ing ex periments we re de igned to have a do in g period of 24h -72h and the marmoset ex perim nt \\ a a lso de igned to stud y the hort te rm acute effects. Th ere fore, our result , m a) not 141 n ce aril b refl ecti e f the 1 ng term 1 do e ituation e perienced by the fi sh n urn r . o Ther are limita ti n in th u e fbi informati c t identify pathway a chang d pr t in . W e id entifi ed the indi idua l path wa till la k f v iden e and kn ovv l dge t ci ated with in each of bra in regi n , but und er tand the ca cade ef-[1 ct /pa ttern and r lati n hip betwee n all th affec ted pa th wa . urth r studi e are n eded to confirm the do e-re p n e effec t vvith a mo re e tab!i hed m e thod . o Th predict d fun cti on and path way multipl e do e . longe r term anima l d need to be furth er ve rifi ed by additi onal ing e pe riment . Future research 1) The creemng re ults of th pre ent proteomi c wo rk prov id e the important bi o logical pathway and proteins in linking M eHg-affected multi -functi o ns. T he prec ise fun cti ons of key proteins and regul ated factor id entifi ed including DLG 4 and MIR - 19A/B in cerebe llum and APO E in occipital lo be w ill need to be further clari fie d . 2) This study identified the connection of M eH g-neurodegenerati ve di sease thro ugh pathway enrichment analys is. The detailed underl ying mechani sm s of interacti on of M eH g w ith these ne urodegenerati ve co nditio ns particul arl y in HD , AD and ALS need to be further investi gated . 142 Publication and cademic ctivitie during PhD. tud y In Journal hao Y, Yam am t M, mmon Marm hao Y , c 11 . igcy ing Z. han I IM. Pr te mic naly i of ere bellum in et -- xpo ed t Methylmercury . To ic I ci ( ford). 2015, 146(1 ): 43-51 han HM . g ct [ methylmercur on dopamine relea e in MN9D neuronal ic I M h M th d ..... 0 15 25( ): 7-44 ing Z. Ryan M . han l-IM . -:ffects of Methylmercury on M 9D hao Y. 1ge d paminergic n ur n ell : a genomic and pr teomic ana lysi . Manu script accepted by c1en . ept. 2015. ublicati n in pr ccs Journal fT Shao Y . Yamamoto M. 1gey ing Z. han HM . Proteome pr filing reveal s regional protein alteration in cerebrum f c mm n marm et ( Callithrix jucchus) exposed to methylm rcury . Manu cript ubmitted to rchiv ofT xicology Shao Y and han HM . Mini-review: Mechani sm update. Manu cript in preparation of Methylmercury neurotoxicity an Academic A ctivities 'r Workshop in Pathway and Network Analy is of -omic Data Toronto. June 1-3. 2015 r Proteomic Analysi of erebellum of Common Marmoset Treated with Methylmercury. Poster presentation in SOT's 54th Annual Meeting. San Diego. U A. March 24, 2015 r Effects of Methylmercury on MN9D Dopaminergic Neuron ells: A Proteomic and Genomic Analysis. Po ter presentation in Society of Toxicology of anada ( TC). 46th Annual Symposium. Ottawa. Dec 12.2014. r Methylmercury Induced Regional-specific Protein Change in the Marmoset Monk ; Brain. Poster pre entation in the Global Biotechnology Congress. Bo ton. U . Jun 18. 2014 . .r Effects of Methylmercury on Dopamine Relea e in MN9D Neuronal Cell . Po ter presentation in the 1Oth International onference on Mercury a Global Pollutant (I M P). H a lifax , anada. Ju ly 20, 2011. 143 Reference bdul ahid rif. L hmad han, I L . . . 0 10. n ironmenta l t in and Parkin n's di ease: ico l lnd putati r I f impa ir d el tr n tran port chain and o idati ve tr s. Health 26, 12 1-L.. . , M .F .. M r ndini . F .. 8 tt ni . F., Tan gane lli . , ., ezzo la. iuliani . R.. t imberg. p t li. P .. M azz le ni . .. 2002. nti id ant p tential and gap junction m diated int r ellul ar c mmuni cati n a earl bi o logica l m ark er of m rc uric hlorid e t ici t in the M K cell line. xico l In Vitro 16. 4 57-46 5. II n. J.W .. Mutku , . .. chn r, M ...... 0 1. M ethylm rc ur -media ted inhibiti o n of 3H -Da partat tran port in cui tured a trocyte i reve r ed b th e anti oxid ant catala . Brain re earch 90 2. 9 .... - 100. Allen. J.W ., hanker. chner. M .. 200 1. M ethylm ercury inhibits the in v itro uptake of th glutathi n precur or. cy tine. in a trocyte . but not in ne urons. Brain research 894 . 1 1- 140 . AI e osta. J .R ., Me la, M .. da ilva de A is. H ... Pe ll eti er, .. Randi . M .A., de Oli ve ira Ribeiro. ., 2007 . nzy mati c inhibiti on and m rph ological changes in H opli as malabaricu fr m di etary e po ure to lead (II ) or m e thylm ercury. Ecotox icol nvi ro n af 67. 82Asc hner. M .. 2009 . Forewo rd : J M potli ght : m eta l pec iati n related to neuro tox icity in humans. J Environ Monit 1 L 937-938. Asc hner. M ., Syversen. T .. o uza. D .O ., Rocha. J .B .. Farina. M .. 20 07 . lnvo lvem nt of glutam ate and reacti ve o ygen speci e in meth ylm ercury ne urotox ic ity. Braz J Med Biol R e 40 , 285-291 . Atchison. W .D. , Hare. M .F .. 1994 . M echani sm of meth ylm ercury- indu ced neurotox ici ty. F AS B J 8. 622-629. Bakir. F .. Rustam. H ., Tikriti. S .. A l-Damluji. S.F .. Shihri stani , H .. 1980. Clinical and epidemiological aspects of m eth ylm ercury poi soning. Postgrad Med J 56, 1-1 0. Ballatori. N .. 1994. Glutathione m ercaptide as transport fo rm of m etals. A dv Pharmacal 2 7. 27 1-298 . Bassett. T .. Bach. P .. Chan. H .M .. 20 12. Effec ts of methylmercury on the secretion of proinflammatory cytokines from pnmary microgli a l cell and astrocyte . Neurotoxicology 33, 229-23 4 . Basu N, Klenavic K. Gamberg M. O'bri en M , Evans D. cheuhammer A. Chan H . 2005a. ffects of mercury on neurochemical receptor-binding characteristic in wild mink. nviron Toxicol Chern 24, 1444-50. Basu, N ., Goodrich, J.M ., Head, J .. 20 14 . Ecogeneti cs of mercury: from genetic pol ymorphi sm s and epi genetics to ri k as es ment and deci ion-making. Environmental toxicology and chemistry I SET AC 33. 1248 - 1258 . Basu. N ., Scheuhammer. A .. Grochowina. N .. Klenavic. K., Evans. D .. O'Brien. M .. han. H .. 2005b . Effects of mercury on neurochemical receptors in wild river otter (Lontra canadensis) . Environ ci Techno! 39, 35 85-.,59 1. Basu. N., cheuhammer. A.M., Rouvinen-W att, K .. Grochowina. N .. vans. R.D .. O'Brien. M ., han , 1-I.M ., 2007 . Decreas d N-methyl-D-a partie acid (NMDA) receptor le\ el 144 iat d with mercur p ur in wild and capti e tnink. N uroto icoJogy 28, h uhammer, .M., R u inen-Watt, K., r ch wina, ., Kl ena ic, K., vans, R. . han, H.M ., 2006 . Meth lm rcur impair component f th e cholinergi t m in capti v mink (Mu tela i on). o i 1 ci 9 L 202-209 . Bei gneu , .P., K in ki , a in , B., H rton, J. ., karn , W. ., Y un g, S. ., 2004 . ATP-citrat l a e d fi ci nc in the m u . J i I ' hem 279, 955 7-9564 . bbott L. ., 2007 . hang in biochemical Bellum, ., Ba a, ., Thu tt, K. ., t ica, in c reb li ar granul cell f mice e po edt methylmercury. Int J Toxicol pr ce 26,261-2 9. Berg, K ., Punt rvo iL P.. alder ne , .. ks r. ., 20 10. R ponses in the brain prote me of tlantic c d ( adu m rhua) e. po. ed to meth !mercury. Aquat Toxicol I 00, 5165. Berrid ge, M.J ., 2014 . alcium ignalling and p yc hi atri c di ea e: bip Jar di sord er and chizophreni a. ell Ti u Re 3 7, 4 77-492. Beyrout , P., taml er. .J .. Liu. J. ., Loua. K.M .. Kubow, ., ' han, H.M., 2006 . f~ cts of pr natal meth !mer ury po ure n brain mon amin e ox ida e acti vity and n urob ha iour of rat . ur to ico logy and teratology 28, 25 1-25 9. Bindea, alon. J. , Mlecnik. B .. 20 1 . ' lu P di a yto cape plugin : path way insights u ing int grat d e prim ntal and in ilic data. Bi oin fo rm ati c 29, 661 -663. Bindea, G., Mlecnik, B .. HackL H.. haroent ng. P., Toso lini. M., Kiril ovs ky, A., Fridman, W.H., Page , F., Trajano ki , Z .. Galon, J., 2009. lueG : a yto cape plug-in to decipher functionall y gr uped gene ontology and path way ann otati on networks. Bioinformatic 25, 1091-1 093. Binns, D., Dimmer, E., Huntley, R., BarrelL D .. O'Donovan, ., Apweiler, R., 2009. QuickGO : a web-based too l fo r Gene Ontology earchin g. Bi oinforrnati cs 25, 30453046 . Bjorklund, A., Dunnett, S.B., 2007a. Dopamine neuron system in the brain : an upd ate. Trends Neurosci 30, 194-202. Bj orklund , A., Dunnett, S.B., 2007b . Fifty years of dopamine research. Trend N urosci 30, 185- 187. Bj orklund , G., 1995. Parkinson di sease. mercury and other heavy metals. Tids kr Nor Laegeforen 11 5, 75 7. Bogaerts, V ., Theuns, J. , van Broeckhoven, C., 2008 . Genetic findin gs in Parkinson' di ease and translation into treatment : a leading role for mitochondri a? Gene Brain Behav 7. 129-151. Bonuccelli , U., Pi ccini, P., Del Dotto, P., Pacifici . G.M., Corsini , G.U .. Muratorio. A .. 1990. Platelet monoamine oxidase B acti vity in parkinso nian pati ent . J Neurol Neurosurg Psychi atry 53, 854-8 55. Boone, M., Deen, P.M., 2008 . Phys iology and pathophy iology of the va opres in-regulat d renal water reabsorption. Pflugers Arch 456, 1005- 1024. Burlando, B., Bonomo, M., apri , F., Mancinelli , G., Pons, G., Vi arengo, A., 2004. Different effects of I-Ig2+ and u2 on musse l (Mytilu galloprovincialis) pla rn a membrane a2+-ATPase: Hg2+ induction of protein e. pre ion. Comp Bioc hem Ph)siol C Toxicol Pharmacal 139, 201 -207. a u, 145 a , B.Y., Yang Y.P., Lu , W.I~., Mao, .J., Han, R., un , heng, J., Liu, .F., 2010 . Paeonifl rin, a p t nt natural c mp und . protect P 12 cells fr m MPP+ and acidic damag ia aut phagi pathwa . J thn pharmac 1 1 1, 122- 129. apitanio, J.P ., mb rg, M .. , 200 . ntributi n of non -human primate to neuro science re ar h. Lane t 7 L 11 26-11 5. arocci , ., R vit , ini r pi, M.. .. enchi . ., 2014 . Mercury t icily and neur d g nerati ve effect . Re nvi r n on tam T ico l 22 , 1-1 . t m of humans and animals. arp nt r, . ., 2001 . f~ ct f metal n th ner ou lnt rnati nal j urnal f c upati onal medi cine and n ironmental health 14, 209-2 18 . a t ldi , .F., Johan on. ., ni hchenk . ., ' o cini . T., Roda. E., Vahter, M., eccatelli , ., Manz , L. . ~ 0 . Human de elopmenta1 neur to icity f methylmercury: impact f ari abl and ri k modifi er . R gul T , ic I Pharm aca l 51, 201 -2 14. eccatelli. ar . J· · Mo r . M .. 20 10. Methylmercury-i ndu ced neuroto icity and apopto i . hem Bioi Intera t 188 . 30 1- 08. hen, M .. 2007 . Mechani m and m dul ation of neural ccat lli . .. Tamm. .. Zhang, cell damag indue d by idati tre . Phy iology & behavi r 92, 87 -92. hakrabarti , .K., Loua. K.M .. Bai. urham. H .. Panisset J. '. , 1998. Modul ati on of mon amm o ida ac ti vit in di fferent brain region and pl atelets following e po ure frat to m thylm r ury. eurot icology and teratology 20, 16 1-168. hang, J.Y., 20 11 . Methylmercury-indue d IL-6 relea e requires pho pholipa e C acti viti e . euro ci Lett 496. 152- 156. Chapman, L. , Chan, H.M., 2000. The influence of nutriti n on meth yl mercury intox icati on. nvironmental h alth per pecti es 108 uppl 1, 29-56. Charle , L. E., Burchfie L C. M .. Fekedul egn. D., Kashon. M.L.. Ro . G.W., Petrovitch, H., Sand er on, W.T., 2006 . Occupational exposures and movement abnorm aliti e among Japanese-Ameri can men: the Honolulu-A ia Ag in g Study. Neuro pidemi ology 26, 130-1 39. Cheng, Y.F .. Zhu, G. Q., Wang, M. , Cheng, H., Zhou, A .. Wang. N., Fang, N., Wang, X.C .. Xiao, X.Q., Chen, Z. W. , Li, Q.L., 2009 . Involvement of ubiquitin proteaso me system in protective mechani sm of Puerarin to MPP(+)-e li cited apoptosis. eurosci Re 63. 52-5 8. Chinta, S.J .. Andersen, J.K., 2005. Dopaminergic neurons. lnt J Biochem Cell Bioi 37, 942946 . Choi, I--I.K., Won, L.A., Kontur, P.J. , Hammond , D.N., Fox, A. P., Wainer, B.H .. Hoffmann. P. C., Heller, A., 1991 . Immortalizati on of embryo nic mesencephali c dopaminergic neurons by somatic cell fu sion. Brain research 552, 67-76. Cl arkson, T. W. , 1972. The pharmacology of mercury compound . Annu Rev Pharmaca l 12. 375-406 . Clarkson, T.W., 1987. Metal toxicity in the central nervo us sy tern . nvironm ental health perspectives 75, 59-64 . Clarkson, T. W., 1993. Mercury: major issues in environmental health . Environm ental hea lth perspectives 100, 31-3 8. larkson , T.W., Magos, L. , 2006 . The toxicology of mercury and its chemi ca l compou nd . rit Rev Toxicol 36, 609-662. larkson, .W ., Magos, L. , Myer , G .J. , 200 . ., . The to ico logy of mercury--current exposures and clinical manife tation s. N Engl.J Med 349, 17 1-1737. 146 lark n, T.W. train, J.J ., 20 utriti nal fact r ma modif the t ic action f methyl mer ur in fi h-eating populati n . J Nutr 1 , 15 9 -154 lark n, T.W., V a , J . . , allat ri, ._ 2007 . Mechani m f mercury di po iti n in the bod . mJlndM d 50, 75 7-7 4. nwa , K., R ch t J., i gan ki , R., Lan bur , P.J., 2001. Kinetic stabili zati n of the alpha- ynu clein protofibril b a dopamine-alpha- ynu cl in addu ct. cience 294, 1 46-1 49 . lechta, hiru chel am, M., a rl o~. B.K., Ri chfi eld , ~ .K., 2005. v 1 pm ntal f th Parkin on di ea e ph n typ . nvironmental health p ti id mod l per pecti ve 11 , 126 -1270. re p -L p z, M. .. Lima de a, ., Hercul an . .M., Rodri guez Burbano, R., Martin do a iment , J. L., 2007 . Meth ylmercury ge noto icity: a novel effect in human cell line f th c ntral nerv u y tem. Environ Int , 141 -146 . re po- opez, M. ~ ., Maced , '. .. Pereira, , .I. , rrifa n , '. P., Pi canco-Dini z, D.L. , do Na cim nt . J .L. , Hercul an . .M., 2009 . M rcury and hum an genotoxicity: criti cal c n id rati on and po ibl e m lecul ar mechani m . Pharmaca l Res 60 , 2 12-220. ui , H., Ye. J. . h n. Y.. h ng. .. heu. F., 200 . Mi cr el ctr de Array Bi ochip : Too l for In Vitro ru g cr ening Based on the etecti n of a Drug Effect on Dopamine Relea e fr m P 12 ell . nal hem 78. 6347-6355 . Cui . W., Li , W., Han, R .. Mak, .. Zhang, H ., Hu, ., Rong. J. . Han, Y., 20 11 . PI 3-K/Akt and RK pathwa activat d by V F pl ay opposite roles in MPP+-induced new·o nal apoptosi . Neurochem lnt 59, 945-953 . Danbolt, N . ., 2001. lutamate uptake. Prog Ne urobiol 65 , 1-1 05. Dantzig, P.L 2006 . Parkin on' di sea e. mac ul ar degenerati on and cutaneo us sign of mercury toxicity. J Occup nviron Med 48 , 656. Deng, Y. , Xu, Z., Xu, B., Liu, W .. Wei. Y., Li. Y .. Feng, .. Yang, T., 20 14. xplorin g cross talk between oxidati ve damage and excitotoxicity and th e effect of riluzo le in the rat cortex after exposure to methylmercury. Neurotox Res 26, 40-5 1. Denny, M.F., Atchison. W.D .. 1996. Mercuri al-induced alterati ons in neuronal divalent cation homeostasis. N eurotoxicology 17, 4 7-6 1. Diez, S., Delgado, S., Aguil era, I. , Astray, J., Perez-Gomez, B., Torrent. M., unye r, J. , Bayona, J.M., 2009 . Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fi sh-consumer country. rch Environ Contam Toxicol 56, 61 5-622. Dornbos, P., Strom, S., Basu, N., 201 3. Mercury exposure and neurochemi cal biomarker in multiple brain regions of Wi sconsin river otters (Lontra ca naden is). cotox icology 22, 469-4 7 5. Doo, A.R., Kim, S.N ., Park, J.Y., Cho , K.H., Hong, J., Eun -Kyun g. K., Moo n, S. K., Jung, W.S., Lee, H., Jung, J.H ., Park, H.J ., 2010 . Neuroprotecti ve effect of an herbal medicine, Yi -Gan San on MPP+/MPTP-induced cytotox icity in vitro and in vivo . J "' thnopharmacol 13 L 433-442. Dowd , W.W. , 201 2. hall enges for biological interpr tati on of enviro nmental proteomic data in non -model organi ms. Integr omp Bioi 52. 705-720. Dreiem, A. , Seegal , R.F., 2007 . M th ylmercury- induced changes in mitoc hond ria l functi on in triatal synapto omes are cal cium -dependent and RO -i ndepen :lent. Neurotoxicology 28, 720-726. 147 Dr i m, han. M.. k ni w ki , R.J.. anchez-M rn e . e gal, R.F., 2009 . me 111 an ageM th lmer ur inhibit dopaminergic fun ti n in rat pup napt dep nd nt manner. eur to i ol Teratol 1. 12- 17. ri coli .T .. Ma n. R .P.. han. H.M .. Ja ob. D.J. . Pirrone, N ., 201 3. M rcury as a global p llutant: urc . pathwa . and effect . nviron i Techn I 47. 4967 -498 3. uchen. M.R .. 2 00 . Mit ch ndri a and calcium : from cell ignalling to cell death. J Physiol 529PtL 57-6 . utczak. W.J.. allatori. .. 1994. Tran port of the glutathi ne-m thylm rcury comple acr li er canali ul ar membra ne on r du ced glutathi one carri er . J Bioi hem 269, 9746-975 1. berhardL chulz. J.B .. 200...,. poptoti c mechani m and antiapoptoti c th erapy in the MPTP model f Parkin on' di ea e. Tox ico logy letter 1 9, 135- 15 1. d n. .. av n. R.. teinfe ld , I.. Lip on. D .. Yakhin i. Z .. 2009. rilla: a too l for di scovery and vi uali zati n of enri ched t rm in ranked gene li ts. BM Bioinformati cs 10. 48 . dmund . L. R., harm a. ., Kang. .. Lu . J. . V ckley. J. . Ba ' U , , ., ppala, R .. Goetzman . . .. Beck, M . . , c tt ., Proch wnik. .V., 20 14. c- Myc program fatty ac id m tab li m and dic tat acetyl- o abun dan e and fa te. J Bi oi ' hem 289, 253 8225 92. gafia. L.. ueva . R .. Bau t. T., Parra. L.. Leak. R .. I lochendo ner. .. Pefia, K .. Quiroz, M., Hong. W .. Doro tkar. M .. Janz. R .. , itt . H .. Torres. G .. 2009. Ph ys ical and functi onal interaction between th dopamin e tran porter and th e ynapti c ves icl protein ynaptogyrin-3 . J Neuro ci 29. 4592-4604. 1 worth. J.D .. Roth. R.H .. 1997. Dopamine synthe is. uptake. metabo li sm. and receptors: relevance to gene therapy of Parkinson' di ease. Exp Ne urol 144. 4-9. Eto, K., 1997. Pathology of Minamata di sease. Tox icol Pathol 25, 6 14-623. Eto, K .. Yasutake. A .. Korogi. Y .. Akima. M.. him ozeki. T .. To kunaga. H .. Ku wana. T .. Kaneko, Y .. 2002. Methylmercury poiso ning in common marm osets--MRI findin gs and peripheral nerve lesions. Tox icol Pathol 30. 723-734. Eto, K .. Yas utake. A .. Kuwana. T .. Korogi. Y .. Akima. M .. Shim ozeki. T .. Tokunaga. H .. Kaneko. Y., 2001. Methylmercury poi oning in common marm oset --a tud y of selecti ve vulnerability within the cerebral cotiex. Tox icol Pathol 29. 565 -573. L' Epi scopo. F., Tirolo. C., Testa, N .. Canigli a. .. Mo rale. M.C .. Marchetti. B .. 20 10. Gli a a a turning point in the therapeuti c strategy of Parkin on's disease. CNS euro l Di sord Drug Targets 9. 349-3 72. Farina. M., Avila. D ... da Rocha. J.B .. Aschner. M .. 20 12. Metals. ox idati ve tre and neurodegeneration : a focu s on iron. mangane e and mercury. Neurochemi try international 62, 575-5 94 . Farina. M., Rocha, J .B.. Aschner. M. . 2011 . Mechani sm of m thylm ercury- induced neurotoxicity: evidence from ex perimental studi es. Life sc ience 89. 555-563 . Faro. L., do Na cimento , J.L. , Alfonso. M .. Duran. R .. 2002. Mechani m of action of methylmercury on in vivo striatal dopamine release. Possibl e inYo lvement of dopamin e transporter. Neurochemi stry internati onal 40. 455-465. Faro, L .. Duran, R., Do Nascimento. J., Perez-Vences. D .. Alfon ·o. M .. 2003. EfT cts of success ive intrastriatal methylmercury admini tratio ns on do paminerg ic system. "" Cotox icology and environmental safety 55, 17 - 177. 148 ar , ., R dri gue , K ., antana. M ., idaL l[i n , M ., un1n, R ., 2007 . omparativ dopamine r lea e in free ly ffe t of organic and in rganic m r ury on in vi m ing rat . raz J M d Bi l R 40 , 1 61 - 1 65. Fi hman-Jacob. T .. Reznich nk , L. , Y udim . M .B., Mand eL .A .. 2009 . A poradic Parkin n di ea e mode l ia il encing f th ubiquitin -pr l a me/E liga e c mp n nt KPI . J iol hem 2 4 , 2 8 5- 2 845. it anaki , ., A chner, M .. "- 00 5. h imp rlance of glutam ate, glycin , and gammaamm ut ri acid tran p rt a nd regul a ti on in m anganese. m erc ury and lead neurot i it . T ic I ppl Pharmaco l 204. 4 - 54 . onnum, F .. L ck. . ....... 004 . T he ontributi n f e c itoto ic ity. glutathi one depl etion and r pair in h mi cally induced inj ur t neurone : e emplifi ed w ith tox ic effects n cere bell ar granul e ce ll . J eurochem 8. 5 13-53 1. interfe re nce-m ediated kn ockd own of alph aF untaine, T .M .. W ade- M artin . R .. 2007. R nu l in pr teet human dopaminergic neur bl a t rna ce ll s fro m MPP( +) tox icity and reduce d pamine tran port. J eur c i Re 5. '")5 1- 63. Fo , D . ., randj an. P .. de roo t, ., Paul e. M . ., 20 1 eve lo pmental ori gin s of adu lt di ea e and n uroto IClty: epid emi 1 gical and experimenta l studi es. euroto i o logy '") 3. 81 0- 81 6. F ranco . .T .L. . Po er. T .. Mi au, F .. Pi zzo latti. M . .. D antos. .R ., uza, D .O ., Aschner, M .. Rocha, J .B .. Da fre. A . . . Farina. M .. 20 10. , tru cture-acti v ity relati o nship of fl avo no id derived from m edi cina l pl a nt in preventin g m eth ylm ercury- indu ced mitocho ndrial dysfu ncti on. E nvironm enta l tox ico logy and ph arm aco logy 30, 272 -278. Frumkin , H ., Letz, R ., Willi m s. P .L.. Gerr. F., Pierce. M .. and ers, A., Jo n, L. , M annin g, C.C., Wood . J. .. H ertzberg. V . . , Mu ell er. P .. Tay lo r. B.B .. 200 1. H alth effects of long-term mercury ex posure am on g chlo ra lk ali pla nt workers. Am J Ind M ed 39, 1- 18. Fujimura, M .. Cheng, J., Zhao. W .. 20 12. Perin ata l expo ure to low-dose meth ylm ercury induces dysfun ction of m otor coordinati on w ith decrease in synaptoph y in expression in the cerebellar granul e cell s of rat . Brain re earch 1464, 1-7. Furieri, L .B .. Fioresi, M ., Junior. R .F .. Bartolom e. M .V .. Fern andes. A. ., ac hofeiro, V .. Lahera, V .. Salaices, M .. Stefanon, L Vassall o. D .V., 20 11 . Ex pos ure to low merc ury concentrati on in vivo impair myocardial contrac til e fu nctio n. Tox ico logy and applied pharmacology 255, 193- 199 . Gasso, S., CristofoL R .M .. elema. G., R o a, R ., Rodri guez-Farre, E., anfel iu, C .. 200 1. Anti ox idant compo unds and Ca(2+) path way blockers diffe renti a ll y protect against m ethylmercury and m ercuri c chlorid e neuroto icity. J Neuro ci Res 66. 135- 145. Geisler, S., Vo llm er, S., Go lombek, S., Kah le, P.J ., 201 4. T he ubiq uit in-conj ugating enzyme U BE2N, U BE2 L3 and UBE2D2/3 are essenti al fo r Parkin -dependent mitophagy. J ell Sci 127, 32 80-3293. G ibso n, L. A., Lavoie, R .A., Bissegger, S., CampbelL L. M .. Langloi . V . . , 20 14. A po itive co rre lation between mercury and oxidati ve stress- re lated gene e, pre ion ( GPX3 and GSTM 3) is measured in female Do ub le-crested Co rmo ra nt blood. Ecotox ico logy 23. 1004- 10 14 . Gi raul t, J .A., Greengard . P ., 2004. T he neuro bi o logy of do pamine ignali ng. A rch Neurol 6 L 64 1-644. G itler, A ., hesi, A., eddi e, M L.. trathearn, K ::: ., ll amam ic hi, S., TlilL KJ.. Cald\\ell. KA .. a ld welL A.. ooper. A., Rochet, JC ., Lindq uist. ., 2009. A lpha- ') nuclein is 149 part fa di r and hi gh! c n er ed int raction n twork that include PARK9 and mangane t icit . at enet 4L 0 -3 15. hD ld, M ., 200 . a e f m rcur e p ure, bi a a ilability, and absorption . oto icolog and env ir nm ntal afet 6, 174- 179. odfrey, M . ., Wojcik, .P ., Kr ne. . ., 200 . p lipoprotein E ge not ping a a potential bi marker .G r m ercur neur t icit . J lzheim r Di 5, 189- 195. olde. T. ., 2009 . The th rapeutic imp rtance of under tanding m echa ni ms of ne ur nal cell d ath in neur degenerati e di ea e. M I eur degc ner 4 , 8. orne , ., Kl epD r. H . ., i. ., Ya un o bu , K .T., 1976. The reaction of ulfh ydryl reagents with bov ine hepati c m on amin _ id e. Evid ence for th pre ence of tw o cy te ine eta 4 8, 47 -357 . re idu e nti a! [i r ac ti v ity. Bi chim io phy oodrich, J.M .. W ang. ill e pie. B .. Werner, R .. Franz bla u, · ., Ba u, N ., 2011 . lutathi one enzym e and elenoprote in polym orphi sm as cia te w ith m ercury bi m ark r I ve l in Mi chigan denta l profes i nal . Tox ico logy and applied pharmaco logy 257 . 30 1- 0 . GorelL J.M .. R ybicki , B. .. o le Jo hn o n, ' ., Peters n, .L ., 1999 . ccupationa l metal e po ure and the ri k of Parkin n' di ea e . euroe pid emio logy 18 , 303-308. Gorell , J .M ., John n, . ., Rybi cki , B . ., P ter on, E .L., Kort ha, '. X., Brown, Richard on. R.J .. 1997 . cc upati nal expo ures to metal as ri k fac tors fo r Parkin on' di ea e . Ne uro logy 4 8. 650-65 8. Grandjean, P.. atoh. H .. Murata. K .. ~ to. K .. 20 10. Adverse effect of m eth y lm ercury: env iro nm ental health re earch impli cati n . E nv ironmental health per pecti ves 11 8, 11 37- 1145. Grunblatt, E., M and eL S .. Jaco b-Hir ch. J .. Ze li g on. .. A mari glo. N ., Rechav i, ., Li, J.. Ravid , R .. Roggendo rf. W .. Riederer. P ., Yo udim , M .B .. 2004 . Gene ex press ion profiling of parkin onian substanti a ni gra pars compacta: a lterati o ns in ubi q uitinproteasome, heat shock protein, iron and ox idative stress regul ated prote in s, cell adhesion/ce llul ar m atri x and vesicle traffic kin g genes. J Neural T ran sm 111 . 15431573. Harada, M ., 1995. Minam ata di sease: methylmercury poiso ning in Japan cau ed by env irorunental polluti on. C rit Rev Tox ic ol 25. 1-24 . Hare, D.J ., Adlard, P .A .. D o ble, P.A., Finkelstein. D .I.. 20 13 . M eta ll obi o logy of 1 -methy l-4phenyl- 1.2,3.6-tetrahydropyridine neurotox icity. Meta ll omi c 5. 9 1- 109. H ashimoto. K ., M iyata, M ., Watanabe, M ., Kano. M ., 200 1. Ro les of ph ospho lipase Cbeta4 in synapse eliminati on and pl asti city in develo ping and mature cerebellum. Mo l Ne urobiol 23, 69-8 2. Hatters, D .M ., Peters-Libeu, C .A., W eisgraber. K .H ., 2006 . Apo lipoprotein E tructu re : in sights into function. Trend s Biochem c i 3 1. 445-454. Hauser, M .A., Li, Y .J ., Xu , H ., No ureddine, M .A., Shao. Y.S .. Gu ll an , .R.. cherzer, C .R .. Jensen, R .V ., M cLaurin, A .C., Gi bson, J.R., cott. B.L., Jewett. R.M .. teng r. J .E .. Schm echeL D . . , Hulette, C. M ., Vance, J.M .. 2005 . Expression profiling of substanti a ni gra in Parkinson di sease, progre sive supranuclear pal y. and frontotempo ra l deme ntia w ith parkin soni sm . A rch Neuro l 62. 917-921 . abba t, F., Duvo i in , R., 1984 Protec tion against the Heikkila, R ., M anzino, L. , dopamine rgic neurotox ic it y o f 1-me th yl-4-phe nyl- 1,2,5 ,6-tet ra hydropyridine b) monoa mine ox idase inh ibitor . Na ture 3 11 , 467-469. 150 H ll r. A. Fr ene ., . He ill real., W n., L. , 2000 . ll ular dopamine is in r a d folio ing e p ure t a fact r dcri ed fr m immortalized triatal neurons in human . ur i nee L lter 295. 1-4 Heo. J.M., Rutter, J., 201 1. biquitin-depend ent mit chondri al protein degrad ation . Int J Bi ch m ll Bi l 4 . 1422- 1426. ami alo, P .. Wall en. A., Benoit, G., a tro. .. Lindq i t. n. L. . Perlmann. T ...... 003. unl reg ul ates dopamine synthesis and t rage in M 9 d pamine ell . . p ell Re .... 88 24- 4. Ho. P.W., Ho, J.W.. iu . H.F.. o. .l L T . Z. I .. ' han. K.H., Ram den, D.B., Ho, .L., 201 2. Mitochond rial n uronal unco upling pr tein : a targe t for potential di easemodifi cati n in Parkin n' di sca e. Tran l eurodegener 1. 3. Ho rvat. M.. olde. .. Faj n. ., Jereb. .. L gar. M .. Loje n. , ., Jac imovic, R., Falnoga, I.. Li ya. ., aganeli. J. . r bne. D.. 200 . To tal mercury. meth ylmercury and se lenium in m r ury p !luted area · in the provin c ui zhou. hina. , ci Total Environ 304, 2 1-2 6. Huang da. W.. herman. B.T.. emp ic ki . R. .. 2009. 'y tcmati c and integrati ve analysi of large gene li t u ing D I bi info rmati c re urce . at Pro toe 4, 44 -5 7. Huang. . .. Liu . .H .. H u. .J .. Lin -.. hia u. .Y .. 20 10. Neurotox ico logical effects of lowdo e methylm rc ury and mercuri c chl oride in developin g offspring mi ce. Tox icology letters. Hwang. G.W .. Lee. J.Y .. Ryoke. K .. Mat uyama. F .. Kim. J. M .. Takaha hi, T., Naganum a, A .. 20 11 . ene ex pre ion pro filin g usi ng DNA mi croarray analy is of the cerebellum of mi ce tr ated with methylmercury. The Journal of toxico logical sciences 36. 389-39 1. Hwu. W.L. , Lee, N.C .. Chien. Y.H., Muramatsu. ., Ichinose. II.. 20 13. AAD defi ciency: occurring in humans. modeled in rodents. dv Pharmaco l 68, 273-2 84. Jennings, P., 2014 . "The future of in vitro toxico logy". Toxicol In Vi tro S0 88 7-2333, 00 189-1 Jethva, P.N., Kardani. J.R .. Roy. I. . 20 11 . Modulati on of alpha-synu clein aggregati on by dopamine in the presence of MPTP and its metabolite. FEBS J 278 . 1688-169 8. Jiang, H .. Wu. Y.C., Nakamura. M .. Liang. Y .. Tanaka. Y .. Holmes. .. Daw on. V.L.. Dawson. T. M .. Ross. C.A .. Smith. W.W., 2007. Parkinso n's di sease geneti c mutati ons increase cell susceptibility to stress: mutant alpha-synuclein enhances H202- and Sin1-induced cell death . Neurobiol Agin g 28. 1709- 171 7. Johansson, C., Castoldi, A.F .. Onishchenko, N .. Manzo. L. , Vahter, M .. Ceccatelli . S .. 2007. Neurobehavioural and mol ecular changes induced by meth ylmercury ex posu re during development. Neurotox Res 11 . 241 -260. John son. F.O., Atchi son. W.D .. 2009 . The role of environm ental mercury. lead and pe ti cide exposure in development of amyotrophi c lateral sc lerosis. Neuroto. i log:J' 30. 76 1765. Jones, D., Mi ller, G. , 2008 . The effects of environmental neurotoxicants on the dopa minergic system: A possible rol e in drug addicti on. Biochem Pharm aco l 76, 569-58 1 Jones, D.C., Miller, G.W., 2008 . The effec t of enviro nm ental neurotox icant on the dopaminergic system: A possib le ro le in dru g addi cti on. Bioc hemi cal pharmaco logy 76, 569-5 81. Juarez, B.I., Marti nez. M.L. , Montante, M., Dufo ur. L. . arcia, E.. Jimene7-Ca pdev ille, M .. , 2002. Methylmercury increases glutamate extrace llul ar leve ls in fro ntal cortex of awake rats. Neurotoxico logy and teratology 24, 767-77 1. 151 Kawa aki, ., Ha a hi. T., akachL K., r k , J. ~ ., ugihara, K .. Kotake, Y., hta, 2009. M dulati n f nn in 4 in r ten ne-indu ed model of Parkin on's di ease. eur ience 160. 61-6 . maili- ari, A., hahriarihara i. .. Mahboudi. F., K an h k h. z1n. me modification f ju enile beluga (Hu o hu ) brain M ghadam, M ..... 009. r a an effect f dietar meth !mercury. omp Bioch m Phy iol Part D 4, 24 -... 4 . .K .. J ung, l-I.J.. 2011. eur protective ~ [feet of Vani llyl Alcoh l in Kim. a trodia lata Blume Thr ugh ~ uppre i n f xidative tre and Anti-Apoptotic cti it in T • in-Induced paminergic M 9 ell . Molecule 16, 5349-5361. King. L. .. gr . P .. 19 6. Pathophy i 1 gy of the aquap rin water channels. Annu Rev Phy i I 5 . 619-64 . Ki hi. .. at , K.. a aki. ~.. kano. I L 20 14. ommon marmo et a a new model animal for neur ien e r earch and geno me edi ting techn logy. ev rowth Differ 56, 5362. Knob! ch, M.. raun. , .M .. Zurkirchen. L.. von , choultz. ., Zamboni, N., Arauzo-Bravo, M.J .. Kovac . W.J .. Karalay. .. uter. .. Machado. R.A .. Roccio. M .. Lutolf. M.P., emenk vich. .F .. Je berger. .. 20 13. Metabolic control f adult neural stem cell activity by Fa n-d pend nt lipogenesi . ature 493. 226-230. Kong. H.K .. Wong. M.H.. han. H.M .. Lo. , ... 20 13 . Chronic exposure of adult rat to low dos of m thylmercury induced a tate of metabolic deficit in the omato en ory cortex. J Proteome R 12. 5233-5245. Kothmann, W.W .. Ma ey. . .. 'Brien. J.. 2009. Dopamine-stimulated depho sphorylation of connexin 36 mediates Ail amacrine cell uncouplin g. J Neurosci 29, 14903-14911 . Krey, A., Ostertag, .K .. Chan, H.M .. 2014. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapteru leucas) . ringed seals (Pu a hi spida), and polar bears (Ursu maritimus) from the anadian Arctic. ci Total Environ 509-510, 23 7-4 7. Kuhn. K .. Wellen. J., Link. N .. Maskri. L., Ltibbert. H.. ticheL C .. 2003. The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neuro ci 17. 1-12. Kutscher, D.J ., Sanz-MedeL A .. Bettmer, J., 2012. Metallomics investigation on potential binding partners of methylmercury in tuna fish mu cle tis ue u ing complementary mass spectrometric techniques . Metallomics 4. 807-813 . Kwok, K.H., Ho, P.W. , Chu. A.C .. Ho. J.W .. Liu. H.F .. Yiu. D . . , han. K.H .. Kung. M.H .. Ramsden. D.B., Ho, S.L.. 2010. Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potentiaL ATP level . and reducing oxidative stress in MPP+ and dopamine toxicity . Free Radic Bioi Med 49. 1023-1035. Lamont. M.G. , Weber, J.T .. 2012. The role of calcium in synaptic pla ticity and motor learning in the cerebellar cortex . Neurosci Biobehav Rev 36. 1 153-1162. Langston, J.W., Ballard. P., Tetrud , J.W., Irwin. 1.. 1983 . hronic Parkinsoni m in humans due to a product of meperidine-analog synthe is. Science 219. 979-980. Lawton, M .. Iqbal , M. , Kontovraki, M. , Lloyd Mills. C .. Hargreave . A.J .. 2007. Reduced tubulin tyro sination as an early mark r of mercury toxicity in differentiating N2a cell . Toxicol In Vitro 2 1. 1258-1261. Lee, ., Soliman, K., harlton, .. 2005 Lysopho phatidylcholine decrease locomotor activities and dopamine turnover rate in rats. Neuroto. icology 26. 27-38. 152 Le , Y., amaco, R. ., at h l, J .R., hailer, rr, H.T .. Zoghbi , H. Y., 2008 . miR-19, ' 1 miR-1 01 and miR-1 0 c -regulate TX 1 l l t potentiall y modulate path gen i . at eur i 11, 11 7- 11 9. Lee, H.Y., r ene, L. ., Ma on. . ., Manzini , M. ., 2009 . l olati n and culture f postnatal m u e cereb liar granule neuron progenitor cell and neurons. J Vi p 16. Le eill e, F .. -- 1 aam uch. ., uix, ., Lee cq , M., L bn r, D., Nicole, ., Bui sson , A., 200 . ur nal iabilit i c ntrolled b a fun cti onal relation betwe n synaptic and _. B J 22. 425 8-427 1. M re ept r . F L -Pi t, L , hirl ey. T.L.. Moc kel. L. . Egami . K., Jinnah, H.A., 2008 . n equenc of impaired purine recycling in dopamin ergic neuron . Neuro ci enc e 152, 761-772. i. H.. u , M .. 2009. Protein deg radati n in Parkin on di ea e revi ited: it' co mple . J lin In t 119. 442-44 . Li. P .. F ng, X.. iu , .. 20 10. Meth; lm ercury e po ure and health effects from ri ce and fi h con umption : a revi e\\ . Int J nviron Re Publi c H alth 7, 2666-2691 . Lim. K .. , Tan . J .M .. 2007. Role of the ubiquitin protea me sy tern in Parkinson's di sea e. BM Bi h m 8 uppl 1. 1 . Lim. K.L. , 2007 . biquitin-protea orn e y tern dy fun cti n in Parkinso n's di ea e: current idence and co ntrove r ie . pert Rev Proteo mi c 4. 769-781 . Limke, T. L. , H idemann. .R., Atchi on. W.O .. 2004. Di rupti on of intraneuronal di valent cati on regul ati on by methylmercury: are pec ifi c target in vo lved in altered neuronal de elopment and cytoto icity in meth ylmercury poi onin g? eurotox icology 25, 741760. Li s. B .. Roeper, J.. 2008 . Individual dopamine midbrain neuron : fun cti onal di ver ity and fl exibility in health and di sease. Brain Re Rev 58. 314 -32 1. Liu. D .. Jin. L., Wang. H .. Zhao. H .. Zhao. C .. Duan. C .. Lu. L .. Wu . B .. Yu . ., ' han. P .. Li . Y., Yang, H .. 2008 . ilencing alph a-synucl ein gene expression enhances tyro ine hydroxylase acti vity in MN9D cells. eurochemi cal research 33, 1401 -1409. Liu, W., Xu, Z .. Deng, Y., Xu, B .. Wei, Y .. Yang. T .. 20 13. Protecti ve effect of memantine against methylmercury-induced glutamate dyshomeostas is and oxidati ve stress in rat cerebral cortex. Neurotox Res 24. 320-33 7. Liu, W., Xu. Z. , Yang, T., Deng. Y .. Xu. B .. Feng. S .. Li , Y .. 20 14. The protecti ve role of t a polyphenols against methylmercury-induced neurotoxic effect in rat cereb ral cortex via inhibition of oxidati ve stress. Free Radi c Res 48 , 849-8 63. Llinas, R. , Steinberg, I.Z., Walton , K. , 1981 . Relationship between pre ynapti c calc ium current and postsynaptic potential in squid giant synap e. Bioph ys J "'3, 323-35 1. Llorente-Folch, I. , Rueda, C. B., Pardo, B., Szabadkai , G., Duchen. M.R., Satrustegui . J., 201 5. The regulation of neuronal mitochondri al metaboli sm by alci um . J Phy iol. Luber, .A., ox, J., Lauterbach, H., Fanck e. B .. Selbach, M., Tschopp, J .. Akira, Wi egand , M., Hochrein, H., O'Keeffe. M., Mann, M., 20 10. Quantitati ve proteo mic reveal s subset-specific viral recogniti on in d ndriti c ce ll s. Immunity 2. 279-2 89. Manfroi , C.B ., Schwalm, F.D., Cerese r, V., Abreu, F., Oli ve ira. A., Bi zarro. L., Rocha. J.B .. Fri zzo, M. ., ouza, D.O., Farina, M .. 2004 . Maternal milk as methylmercury ource for suck ling mice : neurotoxic effects invo lved with the cerebellar glutamatcrgic system. Toxicol ci 81 , 172- 178. Mangano, .N., Peters, ., Litteljohn, D .. So, R., Bethune. C., Bobyn. .1 ., Clarke. M .. Ha) !e). S., 20 11 . Granu locyte macrophage-colony stimul ating l~1 c to r pro tec ts again t 153 ub tantia mgra d cell m an en ir nm ntal to in model f Parkin on' di a e. .J ., R th t m, bani m f Di ea e: a trocyte m Marag ki , n ur g nerati e di a e. lin Pract eurol 2, 679- 89. Marek, R., aru , M., Ro tami . rin pan, J.B ., a anna, J ., 200 . Magnetic cell orting: a fa t and ffe ti m th d of c ncurrent i lation of high purity viabl e a tr c te and n1i cr gli a fr m ne natal m u e brai n ti sue. J eur ci M thod 175, 108-11 . Margineantu , D.H.. mer n. .B.. iaz. D .. H ckenber . .M .. 2007 . H 90 inhibition d crea e mit chondri I pr tein tun1over. PL , ne 2. e 1066. l gical indicator f neuroto icity in central and Mar ni , M.. Barbi ri . peri ph ral t ic n uropathi e . urotoxico log and teratology 10, 4 79 -484 . Mazzio. .. oliman. K.F .. ~0 1 2. Wh le gen me e pres ion profi le in neur bl a toma cells d to 1-methyl-4-phenyJpyridine. euroto. ic logy 3, 11 56-1169. Medina, arb n l L J. . Pulido. L.. Madeira. ~ . '. . oe tz. ,'., ' nesa, A., Tarraga, J ., Pa cual-M ntan . gale - adena , R., , antoyo, J., ' arci a, F., Marba, M., Montan r, paz . J. . 20 10. Babel mi c : an integrati ve pl at[! rm for th e analy is of tran cript mic . pr t omi and gen mi c data with advanced functi onal profiling. ucl ic cid R . W210-2 1 . Mergler, D.. nd er on, H.A.. han. L. IL. Mahaffey. K.R .. Murray, M ., akamoto, M ., tern , A. H., 2007. M th _lmercury expo ure and health effect in hum ans: a world wide concern. mbi o 36. 3- 11 . ML H., Muruganuj an, a agrand . J. T .. Thomas. P.D .. 20 13. Large- cale gene fun cti on analy is with the PANTH R cia ifi cati on sy tem. Nat Protoc 8. 155 1-1566 . Michalke, B., Halbach. .. Nisch witz, V ., 2009. JEM spotli ght: metal speciati on related to neurotoxicity in humans. J nviron Monit 11 . 939-954. Migliore, L ., Coppede. F., 2009 . Geneti cs, environm ental fac tors and the emergin g role of epigenetic in neurodegenerati ve di ea es. Mutat Res 66 7, 82-97. Miura, K., Koide, N., Himeno, S.. Nakagawa, I.. Imura, N .. 1999. The invo lvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicology and applied pharmaco logy 160. 279-288 . Miyamoto , K .. Nakani shi, H., Mori guchi. ., Fukuyama. N., Eto. K., Wakami ya, J., Murao, K., Arimura, K., Osame. M .. 2001 . Involvement of enhanced se nsitivity ofN-meth ylD-aspartate receptors in vulnerability of developing corti cal neurons t methylmercury neurotoxicity. Brain Res 901. 252-25 8. Mizuno , Y., Yoshino, H., Ike be, S., Hattori , N ., Kobayashi , T., himoda-Mat ubayashi , S .. Mat umine, H., Kondo , T., 1998 . Mitochondrial dysfun cti on in Parkin son's disea e. Ann NeuroJ 44, S99-1 09 . Mollinedo , F., Gajate, C., 2003. Microtubules, microtubul e-interferin g age nt and apopto i . Apoptosis 8. 41 3-450. Monnet-Tschudi, F., Zurich. M.G., Boschat, orbaz, A., Honegge r, P., 2006. Invo lvement of environm ental mercury and lead in the eti ology of neurodege nerative di seases. Rev -< nviron Health 21, 105-117 . Moran, L.B., Duke, D. ., Deprez, M., De ter, D.T., Pearce. R.K .. Graeber. M.B .. 2006. Whole genome ex pre sion profiling of the medial and lateral sub tantia nigra in Parkin son's di ea e. Neurogenctic 7, 1- 11 . 154 Mork n, . ., ald , chner, M ., yve r en, T ., 2 05 . f[i ct f m th lmercury n pnmar n - and co-culture. T i ol ci 87, 169- 175. Mutku , ., er n, ., chn r. M ., 200 5. M th lm ercury alte r the in vitro uptak of glutamate in T - and L T - 1-tran fee t d mutant H -K 1 cells. Bioi ra _. lem Re 107, 2 1-24 . Mutter, J. , aumann, J. , uethlin , ., 2007. ' omm ent on the articl e "the to icol gy of m rcur and it chemi ca l c mp und " b ' lark on and Mag s (2006) . rit Rev o ic 137,5 7-5 49 : di cu i n 55 1-5 2. aOI , M ., Taka ha hi , T., aga t u, T., 198 . Effec t f 1-me thyl-4-phenylpyridinium ion (MPP+ ) n cat h !amin e leve l and ac tiv it of related enzy me in cl nal rat ph chr m cyt ma P 12h ce ll . L i~ cicnce 4 , 1485- 149 1. a h, J. .. J hn t n. T. H ., llingridge, arner. '. ' .. Brotchie, J .M ., 200 5. ubce llul ar r di tributi on f the ynap e-a oc iated pro te in P D-95 and AP97 in anim al m del of a rk in n' di ea e and LP -induced dyskinesia. FA. EB J 19, 5 3-5 5. dount e, L.. ha n, H ., 200 8. Meth y lmercury in crea e N- methyl-D -a partate recepto rs on human H- Y SY n urob la toma ce ll leading to neur toxicity. Tox ico logy 249, 25 1-2 5. ieo ull on, ., 2002. D pamine and the regul atio n of c gniti on and a ttenti on. Prog Ne uro bi ol 67, 53-83. N in omi ya, T., hmori , H ., Ha him o to. K .. T uruta, K., Ek in o. , ' ., 1995. Ex pansio n of M ethylmercury Poi oning Out id of M in amata: n pid e mi o logical tud y on Chroni c M ethylmercury P i ning o utsid e of Mina mata Env iro n Re 70, 4 7-50 Obata, T .. 2002. Dopamin e efflu by MPTP and hydroxy l radi cal ge nerati on . J Ne ural Transm 109, 11 59-118 0. Oehmichen. M ., R. N. Auer. , H. G. Koni g .. 2006. pec ific Types of Ne urotox in s. Forensic N europatholo gy and As oc iated Ne urol ogy. Springer-Ve rl ag Ber lin Heid elbe rg New York. p. 345. Okabe, M ., Takeuchi , T., 1980. Distributi on and fate of mercury in ti ss ues of human organ in Minamata disease. Neurotoxicology L 607 -624 . Okano , H ., Hiki shima, K ., Iriki , A., Sasaki . E., 20 12. The co mmon ma rn1oset as a nove l animal model system for biomedi cal and neuroscience research appli cati on . emin Fetal N eonatal M ed 17, 33 6-340. Oku, Y ., Huganir, R .L ., 20 13. A GAP3 and Arf6 regul ate traffi ckin g of A MP A receptor and synapti c plasticity. J Neuro sci 33, 125 86-1 25 98 . Ond ovcik, S.L. , Tamblyn, L. , McPherson, J .P ., W ell s, P.G ., 20 12. Oxog uanine glyco ylase 1 (OGG 1) protects cells from DNA doubl e-strand brea k dam age fo li o ~ ing methylmercury (MeH g) expo sure . Toxicol Sci 128, 272-2 83. Ore llana, J .A ., Saez, P.J ., Shoji , K .F ., Schalper, K .A., Palac ios-Prado, N., Ve larde, V., Giaume, C., Be nnett, M .V ., Saez, J . ., 2009 . Modul ati o n of brain hemi chann Is and gap junction channels by pro-inflammatory agents and their po sibl e ro le in neurod egeneration. Antiox id Redox igna l 1 L , 69-3 99. Ostertag, S.K., Stern, G .A. , Wang, F ., Lemes, M ., ha n, H.M ., 20 13. M ercury d i ·tri bution and speciation in differe nt brain region s of beluga ~ha l e ( Delphinapteru leuca ). Sci Total "" nviron 456-457, 278-286 . 155 ama, Y ., T m1 hi. F ., no . ., ~ uruka a, K ., hikahi a, L ., 1994 . M ethy lm ercury induced au gm ntati n f idati m etaboli m in cerebe llar neuron di ociat d from th rat : it dependence on intrace llular a2+. rain re earch 660, 154 - 157. 1- gna f. .M ., 200 5. lpha- nuclein aggregation in Pal log u, K . ., Ir ine, di ea e and it inhibiti n a a potential th rap utic trategy. ne urodegenerati i ch m c Tran , 11 0 - 1110 . Parra, nzalez, ., Mugueta, .. M artinez, .. Monreal, 1., 200 I . Lab rato ry approach ndri al di a . J Phy i l Bi ochem 57. 267-2 84 . Pa ilva, . .. Lemir . M .. F illi on. M ., uimarae , J .R ., L uco tte, M ., M erg ler, ail y merc ur) intake in fi h-eating popul ati n in th e Brazili an A mazon . J p i n ir n pid emi I 18 . 76- 87. Per z. R ., W a mire. J. . Lin. .. Liu. J. . JU O, • ., Z igm ond , M .. 2002. role fo r alphanucl e in in th e regul ati o n of d pamine bi ynthe i . J Ne uro ci 22. 3090-3099 . P tit-P ait L .. Brau. F., azar th . J. , habry, J ., 2009. lnvo lv ment of cyto o li c and mit h ndri al , K- beta in mit ch ndri a l dy functi on and neuro na l ce ll death of MPT P/MPP-treat d ne uron . PL ne 4. 549 1. Philbert. M . ., Billing ley. M .L.. R uhl. K.R .. 2000. M ec hani m of inj ury in th e central n rv u y t m . o ico l Path I 28. 43-5 . Po rciuncul a, L. ., Rocha. J .B .. Tavare . R. .. hi leni . G .. Re is. M ., o uza, D . . , 2003. M eth !mercury inhibit glutama te uptak by sy napti c vesic les from rat brain . eurorep rt 14. 77 -580. Po rras. .. Berthet .. Dehay, B ., Li. Q., Ladepec he. ., arm and . E .. Dovero. S., Ma rtin ez, A., D oudnikof[ E., M artin-N gri er. M.L.. hu an. Q.. Bloch. B ., C hoqu t, D ., Bo ueGrabot E., Groc. L .. Bezard. .. 20 12. P D -95 ex pre sion contro l L- DOPA dyskinesia thro ugh dopamine 01 receptor traffi ckin g. J C lin ]nve t 122, 3977- 398 9. Prasad, .. Rupar, T ., Prasad, A. .. 20 11 . Pyru vate dehydroge nase defic iency and epil ep y. Brain Dev 33, 856-86 5. Radonj ic , M ., Cappaert . N. L. . de Vri e . E.F., de Esc h. C . . . Kuper. F. .. van W aarde. A .. Dierckx , R. A., W adm an, W.J ., W olterbeek. A. P .. Sti erum . R .H .. de Groot D .M .. 201 3. D elay and impairment in bra in development and functi o n in rat offspring after maternal exposure to meth ylmercury. Toxico l ci 133, 11 2- 124 . R amanathan, G ., Atchi son. W .O .. 20 11 . Ca2+ entry path ways in mo use spina l moto r neuron in culture foll owing in vitro ex posure to meth ylm ercury. Ne urotox icology 32. 742750. Reddy. R .S., Jinna, R .R ., Uzodinma. J. E ., Desaiah, D ., 1988 . In v itro effect of mercury and cad1nium on brain Ca2+-ATPase of the catfish lcta luru s punctatu s. Bull etin of enviromnental contamination and tox icology 41 . 32-+-32 8. Roos, D. , Seeger, R ., PunteL R ., Vargas Barbosa. N .. 20 12. Ro le of calcium and mitochondri a in M eHg-m edi ated cytotox ic ity. J Bi o med Bi otec hno l 20 12. 248 764 . Roos, D .H. , Puntel, R.L. , Farina. M. , A schner, M .. Bohrer, D., Rocha, J.B .. de Varga Barbosa, N.B ., 2011 . Modulation of meth ylm ercury upta ke by methi onine: prevention of mitochondrial dy function in rat li ver sli ce by a mimi cry mec hanism . Toxico log) and appli ed pharmacology 252, 2 8-35. Roo s, P.M ., Ve terberg, 0 ., Nordberg. M ., 2006 . M eta l in mo tor neuro n di ease . Exp Bioi M ed 23 1, 1481 - 1487 . 156 R A .D ., hlb m , ... , gren, ic t ra. P., 1997. Prenatal e posure to meth lm r ur alt r mot r act1 It of mal but n t female rat . .. perimental brain re earch .. p rimentelle Hi111for chung 117, 428-4 6. Rouach, 1 in ki, J ., iaum . ., 200 . ti ity-d pendent neuronal ontrol of gapjunctional c mmuni ati n in a tr cyte . J ell Bioi 149, 15 1 - 1526. adiq, ., hazala, Z., h wdhur , ., Bu e lberg, D ., 20 12 . Metal to icity at the ynapse: pr naptic, po t napti . and l ng- tenn effec ts. J To icol 20 12, 1 2671 . akam to, M ., Ik gami akano, .. 1996 . Pr tec ti c effect of a2 channel blockers again t meth yl mercury to icit;. Pharmaco l o. icol 78. 193- 199 . ander , .H .. r enamyre, J. T .. 20 1 . , idativ damage to macrom lecule in human Parkin on di ea e and th e roten ne m odel. Free Radi c Bi I Med 62, 111 - 120. e urotox icity of anfeliu. ba ti a, J.. ' ri tofo L R .. Rodri guez-Farre. E., 200 . rgan mer uria1 compound . R 5, 28 -305 . arafian. T ., Verit , M. ., 1991 . idative m chani sm s und erl yin g m th y! m ercury n uroto icity. Int J ev euro ci 9, 147-1 5 . chinder. .F ., I on. . .. pitzer. . .. MontaL M .. 1996. Mitochondrial dy function i a primar eve ntin glutama teneur t x icity . J eur sci 16.6 125-6 133. chirrmacher. K .. Wie mann . M .. Bingmann. .. Bu e lb rg, .. 1998 . .. ffects of lead. m rcury. and methyl mercur; n gap j un ct ion and [ 'a2 + ]i in b ne cell . alcif Ti ue lnt 63. 134-139. chroder. M .. i rmann. N .. Zrenn r. R .. 2005 . Functional anal y i of th e pyrimidin e de novo ynthe si pathway in so lanaceo us pecie . Plant Phys io l 138. 1926- 1938. elin. .E., und rland. .M .. Knighte . C .D .. Ma on. R .P .. 20 10 . Source f m ercury exposure for U. . afood con umer : implication for policy. nvironm enta l health perspectives 118. 137-143 . hao. Y .. Yan1amoto. M .. Figey . D ., ing. Z., Chan, 1-I.M ., 2015. Proteo mic Analy is of Cerebellum in Common M armoset Ex posed to M ethylm ercury. Toxicol ci 146. 4351 Shao, Y., Figeys, D ., Ning, Z., Mailloux R .. Chan, 1-I.M., 20 15 . Methy lm ercury can induce Parkinson 's-like neuroto xicity similar to 1-methyl-4- phenylpyridinium : a genomic and proteomic analysis on MN9D dopmninergic ne uron cells . Toxi Sci, E-pubJish ahead Shaw. C.M .. Mottet. N.K .. Bod y, R.L .. Luschei, E.S., 1975. Variability of neuropathologic lesions in experimental methylmercurial encephalopathy in primates. Am J Pathol 80, 451-470. Shepherd, J.D ., Huganir. R .L. . 2007 . The cell biology of ynaptic p]a ticity : AMPA receptor trafficking. Annu Rev Cell Dev Biol 23. 613-643. Shimshack, J.P .. Ward . M.B .. 2010 . M r ury advisories and household health trade-off's. J llealth con 29. 674-685. Shukla. V .. Mi shra. S.K .. Pant, H .C., 20 11 . Oxidative tress in neurodegeneration. Adv Pharmacol Sci 201 1. 572634. ilva, R .F .. Falcao. A . . , Fernandes. A., Gordo, A .C .. Brito. M.A., Brite , D ., 2006 . Di ssociated primary nerve cell cultures a model for a sessment of neurotoxicity. Toxicology letters 163, 1-9. Singer, T.P., Ram say, R.R ., 1990. Mec hani sm of the neuroto icity of MPTP . An updat . F B Lett 274. 1-8. 1, 157 me n , M ., m n R.J ., 2 1 . lutathi ne me tab li m and Parkin on' di ea e. Free Radic Bi I M d 62, 1 -25. pittau , h u, X ., Ming, M ., Krieg! t m, K ., 201 2. IL6 pr t ct MN9D cells and midbrain d paminergi neuron from MPP -induced neurod egeneration . eur m lecular M ed 14, 17- 27. .J .. Abd louaha b. amer, han , I I.M ., 2006 . Relation hip tam! bet een plat let m on amine o, id a c-B (M - ) acti ity and m ercury e p ur in fi h o n umer fr m th e Lake , t. Pi erre region f Que., an ada . Ne uro tox icolo gy 27, 429-4 6 . taml r. .J .. Ba u. .. M a n Chan, I L 2005 . ioc hemi cal markers o f ne uroto xicity in wildlife and human popul ati n : con id erati on for m ethod deve lopm e nt. J Toxicol nviron ll ealth 6 . 141 - 142 . t rch, .. Ludolph. . .. chwar?. J. . 2004. opamine tran po rter: invo lve ment in lecti ve d pamine rgic neur t . i it; a nd dege nerati n. J cur a! T ran m 11 1. 126 7- 12 86. train. J.J .. Y ate . .J.. va n Wij ngaarden. .. Thur t n. .W .. Mulhern , M .S., M e orl ey, ~ .M .. W at n. ove, T. M .. , mith . T. ll.. Yost. K ., Harrin gto n. D., Sham lay , .F .. Hend e r o n. J ., M yer . .J .. av id n, P. W., 20 15. Prenata l ex pos ure to meth yl mercury from fi h c n umpti n and po lyun aturated fatty acid s: a c ia tions w ith child deve lopm nt at 20 m o of age in an o b ervati onal stud y in th Republi c of eych ell e . mJ lin utr 10 1, 5 0-537. europath o l gy of childh oo d ca es of meth ylm erc ury Takeuchi T , E. ., E to K 1979. poi oning (Minam ata di ea e) with pro longed ymptom , w ith pa rti cul ar refe rence to th decorticati on syndrom e. eurotox icology 1. 1-20. Tak euchi , T .. Eto, K . ( d .) . 1999. T he Path ology f Min am ata Di ease - a Tragic Story of Water Pollution . Kyushu ni v r ity Pre . Fukuoka, 226-2 82 pp . Tehranian, R ., M ontoya, S., V an Laar. A .. Ha ting . T .. Perez. R ., 2006. A lpha-syn uclein inhibits arom atic amino ac id decarboxyla e ac ti vity in dopaminergic eel Is. J Neurochem 99 , 1188- 11 96. T hiffault, C., Langston, J.W ., Di M onte, D .A., 2000. In creased stri atal dopamin e turnover fo llowing acute admini strati on of roteno ne to mice. Brain research 88 5, 283-288. Tra ustadottir. T ., D avies, S.S., Su, Y .. C hoi, L. , Brown-B org. H .M ., Robert , L.J .. 2 nd, Harman, S.M., 201 2. Oxid ati ve stress in older adults: effects of physical fi tn ess. Age (Dordr) 34, 969-98 2. Uchino, M ., Okajima, T. , Eto, K .. Kumamoto , T., Mi shim a, L And o, M .. 1995. Neuro logic features of chronic Minamata di sea e (o rgani c mercu ry poi oning) certified at autopsy. Intern M ed 34, 744-747. UniProt onsortium (Coll aborators 128) .. 201 5. U niPro t: a hub for protein information. N ucleic cid s Res 43, 0 204-2 12. Vendrell , I., Carra caL M ., ampos, F., Ab ian. J. , SunoL C., 20 I 0. Methylmercury di rupt the balance between ph osphorylated and no n-phosphory lat d cofilin in primary cultures of mi ce cerebell ar granule cell s. A proteo mi c study . Toxico logy and applied pharm acology 242, 109- 118 . Vendrell, l. , arrascal. M ., Vil aro, M .T., A bian, J. . Rodriguez-Farre, I:., SunoL C ., 2007 . Cell v iability and proteo mi c analy is in cultured neurons expo ed to methylm rcury. Hum xp Tox ico l 26, 263-272. 158 V nkata halam , K ., an Ro urn , .B ., Patter n, R .L. , M a, H .T ., ill, D .L. , 2002. The cellular and mol cular ba i f tore- p rated alcium ntr . Nat ell Bioi 4 , 263272. V ttori , M ., Jdoni . M ., agli e rL ., P li , ., eccate lli , ., Mutti , ., 2006 . ntagoni tic e f[i ct f m eth 1-m rcur and P B 15 n P 12 c 11 after a combin ed and imuJtan u e p ure. . ood hem To ico l 44 , 1505- 15 12 Vicente-TotTe , M ., il -Lo zaga, P ., arri ond , F., Bart l m ·, M ., 2002. imultaneou s HPL quantifi ati n f m n amin and m tab lite in the blood - free rat cochlea. J euro ci M ethod 11 , 1- 6. ila, M ., uk avi c. ., Jac k n-L Vvi . ey tat, M ., Jakowec, M ., Prz db r ki , ., 2000 . lpha - nu le in up-regul ati n in sub tanti a ni gra dopaminergic neuro ns fo ll owing admini trati n f the parkin nian to in MP T P. J eurochem 74, 72 1-729. ge L D . ., M arg li , R .L. , M ttet. .K .. 1985. T he effec t of m eth yl m rcury bindin g to mi r tubul . T , ic I gy and appl i d ph armaco logy 80. 4 73-48 6. tr cyte , fr m brain glu e to co mmunicati n e lem ent : the o lterra, ., M eldo le i. J .. 200 . euro ci 6, 626-640. revoluti n continue . at Re W agner, ., V arga . .P .. R .II.. M o re l. .F .. arina, M ., ogu ira, C. W ., A chner, M. , mparati ve tud y f qu ercetin and it two glycosid e deri vati ves R ocha, J .B., 20 10. qu rcitrin and rutin again t meth ylm erc ury (M eHg)- induced R producti on in rat brain li ce.. rchi e of to ico logy 84 . 89-97. Wang. J ., Xu, Z. , Fang, H .. Duhart. H.M .. Patter on, T.A .. A li , .F., 2007. ene expressiOn profiling of MPP+ -treated MN9D c II : a mechani sm of tox ic ity tud y. Neuroto xico logy 2 8. 979-987 . Wang, J. , Duhart, H .. Xu. Z .. Patterson. T.. ewpo rt. G .. A li. .. 2008. Co mpari o n of the time courses of se lecti ve gene ex pres ion and dopaminergic depl eti on induced by MPP+ in MN9D ce ll s. Neurochem Int 52 . 103 7- 1043. Wang, J. , Duncan. D ., Shi. Z., Zhang, B., 20 13. W B-based GEne SeT A naLysi Too lkit (W ebGestalt): update 201 3. N ucleic Ac id Re 4 L W77- 83. Wayne A. Fenton., R .A. G ., D avid S. Rosenbl att, 200 1. The online M etabo li c and Molecular Bases of Inherited Di sease. Wells. P .G. , McCallum. G. P .. Lam , K .C .. Hend er on. J .T .. O nd ovc ik. S.L., 2010. 0 idative DNA damage and repa ir in teratogenesis and ne urodeve lopm enta l deficits . Birth Defects Res C Embryo Today 90. 103- 109. Wersinger, C., Prou , D .. V ernier. P ., Sidhu, .. 200 3. M odul ation of dopamine transporter function by alpha-synuclein is altered by impai rment of cell adhesion and by induction of oxidative stress. FAS~ B J 17.2 15 1-2 153. W esseling, H ., Chan , M .K ., Tsang, T .M., Em st, A ., Peter , F., Guest. P.C .. Holmes, E .. Bahn, S., 20 13. A combined metabonomic and proteomic approac h identifie frontal ortex changes in a chronic phenc yclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 38. 2532-2544. Wojcik, D .P ., Godfrey, M . . , hri ti e, D ., Hal ey, B . . , 2006. Mercury toxicity pre ntin g a chronic fati gue, memory impai rment and depression : diagno i . treatment. susce ptibility, and outcome in a New Zealand g nera l practice setting ( 1994-2006). N euro Endocrinol Lett 27, 415-423 . Wu , B., Liu , Q., Duan. ., Li , Y., Yu , S., C han, P., Ueda, K., Yan g, I 1., 2011. Phosphorylation of alpha- ynucl e in upregulatcs t rosine hydmx) Ia e actiYit) tn MN9D cells. Acta I listochem 11 '"', 32-35. 159 l l., hang, M., Hu , X., Wang, D.. ian, M., Li . ., Jiang, H., Wang, Y., D ng, Z., Zhang, Y., Hu , L., 2011. Proteo mic anal f MPP+-induced apopto i in Hur 1 ci . ., 2, 22 1-22 8. Y5Y cell . ., W i, Y. ., 201 2. Pr t cli ve ffecls of MKXu, B., Xu, Z.F., Deng, Y., Liu, W., Yang, 0 1 n m th ln1 r ury-induc d n ur nal inj ur in rat c r bral corte : in olvement of idati tre and glutamate metab li m dy fun cti n. To icol g 00, 11 2- 120. Xu, L. , h ng, J., ang, Z., Wu . ., Yu. Y., u . II.. hen, Y., Zh u. ., Paraoan, L. , Zhou, 1. , 2005. tat in prevent d ge n rati n frat nigra! d pam in rgic neuron : in vitro tudi e . eur bi 1Di 18. 152-165 . and in i Xu, Z., awthon, D .. Me a tl ain . K., , li kkcr. W.J .. li . ,'. , 2005 , electi ve alterati ons f gene e pre ion in mi indue d by MPTP . ynap e 55 , 45-5 1. Yallapragada, P.R .. Rajanna. .. Fai L , ., Rajanna. B .. 1996 . Inhibiti on of calcium tran port b mercury alt in rat ce rebe llu m and ce rebra l co rtex in vitro . J Appl Toxico l 16, ...,25- 0. Yamamoto, M .. Takeya. M .. lk hima- Kataoka. H .. Ya ui , M., Kawa aki , Y., hirai hi , M., Maj im a. ., hirai hi . .. ezo n . Y.. a aki . M.. to, K., 20 12. lncrca ed expression of aquap rin-4 'v\ ith methylmercur p ure in the brain of th e co mm on marmoset. The Journal of to ic I gical cienc 7. 749-763 . Yang. Y.J .. Wang. .M .. Hu. L. .. un. X.L.. Ding. 1.11. , Hu . G., 2006 . Iptakalim ali viated of e trac llul ar dopamine and glutamate induced by 1-meth yl-4the increa phenylpyridinium ion in rat stri atum . Ne uro ci Lett 404. 18 7- 190 . Yazdani , ., Germ an. D.C .. Liang, .L.. Manzin o. L.. ' on ali a. P.K., Zeevalk. G. D .. 2006. Rat model of Parkinso n's di ea : chr ni c ce ntral deli ve ry of 1-meth yl-4phenylpyridinium (MPP+). xp Neurol 200. 172- 183 Yin. Z., lbrecht J. . yversen. T .. Ji ang, H., ummar, M .. Rocha, J.B., Farin a, M., chner, M .. 2009 . Comparison of alterati ons in amino ac ids content in cultured astrocyte or neurons expo ed to methylmercury separately or in co-c ulture. Neurochem i try internati onal 55, 136- 142. Yin. Z., Lee, E., Ni, M .. Jiang, H., Milatov ic. D ., Rongzhu. L. . Farina, M .. Rocha. J .B., Aschner. M., 2011. Meth ylmercury-induced alterati ons in astrocyte fu nction are attenuated by ebselen. Neurotox ico logy 32. 29 1-299 . Yin, Z., Milatovic, D ., Aschner, J. L.. Syversen. T .. Rocha. J.B., ouza, D .O., idoryk, M., Albrecht. J. , Aschner. M .. 2007 . Methylmercury induces ox idati ve inj ury. alteration in penneability and glutamine transport in cultured astrocyt s. Brain research 1131. 110. Yoshida, M., Honda, M., Watanabe. C., Satoh, M .. Yasutake, A .. 2011 . Neurobehavioral changes and alteration of gene express ion in the brain of metallothionein-1/Il null mice exposed to low levels of mercury vapor during postnatal development. Th Journal of toxicological sciences 36. 539-54 7. Yoshida, M., Kujiraoka, T., Hara, M., Nakazawa, H., Sumi. Y .. 1998 . Methylmercury inhibits gap j uncti onal interce llul ar communication in primary culture, of rat prox imal tubu lar cell s. Archi ves of toxico logy 72, 192- 196 . Youdim . M.B., Bakh le, Y.S ., 2006 . Monoa mi ne ox ida e: isoform and inhibitors in Parkin so n's di sease and dcpres ive illness. Br J Pharmaca l 14 7 upp l 1, 287-296. Youdim , M.B., Riederer, P.F., 2004. A review or the mec hani sms and role or monoamine ox idase in hibitors in Parkinson' disea c. Neuro logy 63. 32-35 . 1 , 160 Y ung, .Z ., a lo r, M .M ., Borde , ., 20 11 . euro tran mitt r couple brain acti vity to ub ve ntri cular zone n ur gene i . ur J euro 1 , I 12 - I 1 2. Yu , X ., Robin on, J .F., idhu , J .. , II ng, ., Fau tman. E. M ., 2010 . y t m -ba ed c mpari n of gene pre ion reveal alt rati n in o id ati ve stress, di srupti on of ubiquitin-pr tea orne y tem and alt red ce ll cycl e regul ati o n after e po ure to cadmium and m ethy lm ercury in mo u e mbr onic fib ro bl ast. To ic 1 ci 114, 35 6377. Yuan, Y., Jin, .1 .• Yang. B .. Zhang, W .. II u. J. . Z hang. Y .. ' hen. ., 200 8. ve rexpres d alpha- nucl in reg ul ate d the nu clear fac tor-kappaB ignal path way . ell Mo l euro bi ol 2 . 2 1Zahir, F., Ri z i. .J ., Haq. , .K .. Khan. R .I-L 2006 . Effec t of meth y l m ercury indu ced free radi al tr n nuclei aci d and pro tei n : Im p licat io n on cogniti ve and motor functi on . Ind ian J ' lin Bi oche m 2 1. 149-152 . Zhang. K ., M a, Z .. Wang. J .. X ie. .. Xie. J.. 2011. Myricctin attenua ted MPP( )- induced cytoto icity by anti- ida ti n and inhi bi tion of M KK4 and JN K acti vati on in M 2 .5 ce ll . e ur pharm ac logy 61. 329- 35. Zhou. M .. Panchuk- V 1 hi na. N .. 1997 . - one- tep f1u orome tric meth od fo r th e continu o us mea urement f monoamin e o id a e activity. A nal Bi oc hem 253, 169- 174. Zhang. T. .. Pl acze k. . .. Dani. J. .. 20 10. In vi tr iden ti fication and electroph ysiolog ical charac terizati on f dopamin ne uron m the ventral tegmental area. Neuro pharmaco logy 59, 43 1-436. Zhang. X., Zhou, J.Y .. hin. M .H .. chepmoe . A.A .. Petyuk. V.A ., W e itz, K .K .. Pctriti s. B .O ., M onroe. M .E., Camp. D .G .. Wood. .A .. Me lega. W .P .. Bi ge low. D.J ., Smi th, D.J ., Qi an. W.J .. mi th. R .D .. 20 10. Region - pecific prote in abund ance change in the brain of MPTP-induced Parkinso n' di sea e mo use model. J Proteo me Res 9, 1496- 1509. Zhang, Y., Jam es. M .. Middl eton. F.A .. D avis. R .L.. 2005 . Transc ripti o nal analy is of multipl e brain regions in Parkinson's di sease supports the invo lvement of specific protein proce sing. energy metabo lism, and signaling pathways. and sugge t novel di sease mechanism s. Am J M ed Genet B Neuropsyc hi atr Ge net 1378 . 5- 16. Zhou, Y .. W ang, Y., K ovacs. M ., Jin . J. . Zhang. J. . 2005 . M icrogli al acti vati on induced by neurodegeneration : a proteomic analysis. Mol Ce ll P roteo mi cs 4, 14 7 1-14 79. Zhou, Z., Yap, B .. Gung, A .. Leong. S .. Ang. S., L im . T .. 2006. Dopam ine-related and caspase-independ ent apoptosis in dopaminergic neuron induced by overexpre sion of human w ild type or mutant a-sy nuc!e in. Exp Ce ll Res 3 12. 156-170 . 161 Appendix 1: E tabli hing the Primary erebellar Granule Neuron and A trocyte ulture Model for Methylmercury Toxicity tudy Background r wth factor (F ' , F and B F) have be n hoVvn t alter tatu n gap junction intra ellular ( J ) communi ation betw en a trocytcs and neur n. There i little rc earch to in e tigat the role J f functi n on mercury neuron to icity. erebel lum is known as a target regi n for mercury to , icit . The objective of this study is to develop primary erebellar trocyte ( ) and ' erebellar m del for furth r tudy of th Junction Channel Until now, w Cerebellar ranule Neurons ( groVv1.h factor F F2 ( Fi br blast N) -mono and co-cultures rowth Factor 2) on ap onne in4.., ( x4 ) communication in respond to Methylmercury (McH g) . have ucce fully e tabli hed th ranule Neuron co-culture (Fig.4) model f mou e r bellar Astrocytes, and mono culture (Fig.5 ), which were e timated by ingle IF (immunofluorescence) and double IF staining a say for MAP-2 (for neurons) and GF P proteins (for astrocytes). erebellar A and GN mono and co-cultures were expo ed to MeHg (0-20!-lM) for 24h or 48h. The results of the cell viability assay demonstrate that MeHg induced a time and dose dependent decrease of the cerebellar A GGN in both mono and co-cultures (Fig.6 ). The mono-cultures are more sensitiv lower doses of MeHg than the co-culture. These results indicate that cer be liar A and to the and CGN cu ltures are appropriate cell models to study MeHg toxicity. The primary cell viability a ay provides the range of concentration to be used to further study the effects of FGF -2 on the regulation of Cx43 in the cerebell ar AS and CGN co-culture. T he protocol of c -culture AS and CGN modeL results of IF staining and cell viability a sa; in AS and GN cultures are present as fo llows. The animal experimental de ign and m ethodo logy were app roved by th e U ni ve rs ity of Ottawa Animal Care and U e committee (J une, 20 12). 162 Protocol of Co-culture Astrocytes and Ce rebella Granule Neuron Astrocytes preparation was based on Marek eta!. paper (Marek et al., 2008) with modification. Cerebellar Granule Neuron (CON) culture protocol was referred from Hae Young Lee etal. video article (Lee et al., 2009). Below is the procedure of preparation co-culture of CGN and AS. Primary astrocyte cultures were collected from the cerebella of post-natal day 4-6 mice. 1) Remove meninges and mince cerebellar ti ssues, incubate in rocking water bath/ or MACSmix™ Tube Rotator at 3 7°C for 30 minutes in 1OmL HBBS + 300jlg/mL Dnase I and 0.25% trypsin (I0011L) 6) Add 1OuL of Anti-ACSA-2 Micro Bead per 10011L buffer. incubate for 30min at 4°C with gentle mixing every 5min 7) Wash once with separation buffer: re-suspend m 500j1L buffer I 1X 108 cells 8) Prepare MS columns by adding 5mL of buffer, wash with buffer 3mL x 3 "" Post-natal day 4-6 Balb-c m1ce 2) Triturate digested cells with 0.25% FBS, wash and spin (300 x g for 1Omin) Cerebellum dissection and trypsm diSSOCiatiOn Smgle cell suspension M1crobead (Ant1-Giast) 3) Re-suspend pellet in HBBS and pass through 70~tm nylon mesh screen. wash and spin ~ Astrocyte 4) Re-suspend dislodged cells in 1OmL of MACS separation buffer. pass suspension through a 40!-lm sc reener into a 15mL tube Purified cerebellar astrocytes 5) Spin (300 x g for 5min at 4°C). wash with buffer and re-suspend at 1x 10 7 cells / 1OOuL buffer Figure 1. Diagram of primary cerebellar astrocytes isolation and purification Elut1on on MS magnet1c column . Ant1-GLAST Microbead Kit 163 9) Place column in fresh 15ml tube and add cells, use plunger to flush with 5mL buffer Spin 15ml tube and dilute astrocytes enriched 10) suspension with MEM medium to obtain the desired density (l x l0 5/w in a 12-well plate. ~ 100,000 cells/mL, depending on the time required to reach confluence) Place AS enriched cultures into C02 incubator for 2 11) weeks. medium was changed twice per week 16) If culture remained beyond 7 days, add 500 ~1 SFM/MEM+ once per week of incubation thereafter to compen sate for evaporation, resume incubation. Cerebellum d1ssect1on Post-natal day 4-6 Balb-c mice 12) When glial cells reached confluence and form a uniform monolayer on the cover slips, add FUDR so lution (ex.12.5 1-11 FUDR per petri dish) 2-weeks old purified AS ( +) were pre-seeded 1-2 days before CGN and progenitor cells collection. 13) After collection of CGN, count cell density with a hemacytometer and trypan blue and add SFM to reach the desired cell density (100,000 to 350,000 cells/mL). For 12 well plates. plate 2.5-3.5 x l 0 5 cells/well 14) For cerebellar CGN and AS co-culture, seed CGN (5 6 folds density as AS) on top of pre-plated monolayer of astrocytes (2 weeks old) with SFM/MEM+medium. Add cytosine arabinoside to a final concentration of 15) 51-!M in SFM/MEM+ medium to reduce the proliferation of glial cells • ~ J;>< Papam Dissociation System . b-1 Enri ched cere bellar neurons. Neurons collected m culture supernatant Suspension plated on POL coated plate . Figure2. Diagram of cerebellar granule neuron and progenitor cells collection 2-3 days 1n-v1tro Plate cerebellar astrocytes 7 days m-v1tro Plate CGN on astrocyte monolayer (80% confluency) Co-culture. Figure3. Diagram of AS and CGN co-culture plating in a ratio of l :6 for 7 days following MeHg exposure 164 Li t of chemical and reagent : HB ,n alcium, n Magne ium, n Phenol Red (In itrogen, 14175-095) Minimum ential Medium (M M) (In itr gen. 110 50 0) ur ba al -Medium (lnvitr gen. 12 49-015) Penicillin- tr pt mycin/ P luti n (lnvitr gen. 15140-122) B-27 erum re upplement (50. ) (lnvitr gen. 17504-044) Tr pin- ~ DT Jution (Invitrogen. R-001-100) H at-Inactivated F (Invitrogen, 1~4 4028) lutaM X (lnvitrog n, 050061) MA mi TM Tube Rotator (Miltenyi Biot , 130-090-753) MA B A tock olution (Miltenyi Bi tee. 130-091 -376) Anti-AC -2 MicroBead, Mou e (Milten i Biotec, 130-097-6 78) orning 15m1 graduated plastic tube PET (Fisher Scientific, 05-538-51 A) Cell Strainer (Fi her cientific. 40~-tm 22-363-547: 70~-tm 22-363-548) Characterized FBS SOOml (Fisher Scientific, H3039603Hl) lOOmM sodium pyruvate solution (Sigma-Aldrich, 8636-1 OOml) Cytosine ~-D-arabinofuranoside (Sigma-Aldrich, C 1768-1 OOmg) 45o/o (w/v) D-glucose (Sigma-Aldrich, G8769-l OOml) MITO + Serum extender ( orning, 355006) 165 Prepare culture media and lution: erum-free medium ( FM) and 10% FB medium 4 ml of ur ba al 500 !J.l 1OO x -Medium lutaM 500 !J.l 1OO x P ni illin- tr pt myc m 6.25 !J.l 2 M K 1 (final ... 50 !J.M). plit in 2 aliqu t f9 ml and 4 ml. T pr pare 10°/o FB medium, add lml fh eatinacti ated to the 9 ml aliqu t. T prepare FM, add 800 !J.I of th e erum -free uppl m nt -27 t the 40 ml aliqu t. Filt r teriliz d and tore at 4° for a rna imum of 2 w ek . MEM+ (MEM/1 0% FBS medium 1OOml) * an be t red at 37°( ~ r 1week 87 .6ml nditi ned M ~ M ( vlinimal e enti a! medi a with Earl salt and without Lglutamine) + lml P (100 ) 1. 33 ml 45 o/o (w/v) D-gluco e lml 1OOmM sodium pyruvate oluti n MITO (5ml H2 in 1 vial of MIT + erum E tender) Filtered using a 0.22 !J.M nylon mesh bottle filt er lOml FB SFM + MEM( +) solution 66ml SFM 33 ml conditioned MEM+ FUDR solution *Prepare lml aliquots and store up to 1 year at -20°( 203 m! MEM (with Earl e's salts, without L-glutamine and phenol red) 1OOmg 5-flu oro-2' -deoxy uridine 198mg uridine Filter using a 0.2!J.M nylon mes h bottl e filter Cytosine arabinoside * tore up to 6 month s at - 20oC. To mak e 2mM water. ytosine arabinos ide, di sso lve 2mg c tosi nc-l-f3-D-arabino-furano ide in 5ml 166 Figure4. Immunofl uorescence of Cerebellum Astrocytes (AS) and Cerebellar ranule Neurons (CGN) co-culture for 10 day . Astrocytes are tained with GFAP, repr ented in green (A), and neurons are stained with MAP-2, repre ented in red (B). Nucleus stained with DAPI represented in blue (C). D is a merged image of AS and CGN in co-culture, E i a phase contract image of AS+ GN co-culture (A-E, object ive lens 40 x), and F is AS and GN co-culture (objective lens 1Ox). 167 A B c D FigureS. Immunofluorescence of mono cerebellar a trocytes and mono cerebellar granule neurons of postnatal day 4-6 mice. Immunocytochemi try again t MAP-2 with DAPI (A) and without DAPI (B) staining in GN enriched cultures (1 Ox). Merged FAP and D Pl staining (C), and GF AP ingle taining (D) in i olated cerebellum astrocytes ( 1Ox). Boxe indicated the expression of mono CGN and a trocytes under 40 x obj ctive len . 168 A - CGN 24h Co-culture 24h A 24h 140 120 100 0 80 !: c 0 60 ~ 40 u 20 0 -20 M e H g( ~M ) B --- CGN 48h Co-eulture 48h A 48h 120 100 80 -... 0 c 60 0 u ~ 40 20 0 -20 MeHg ( ~M ) Figure6. Ce ll viability of cerebellar granule neurons and astroc ytes in mono and co-cu lture fo ll owing a 24h exposure (A) and 48h expos ure (B) to various concentrations of MeH g. 169 Appendi II: upplementary data hapter V: Table 1. 25 6 id ntified pr tein Tabl 2. Li t [ 102 di f~ renti all y e pre ed protei n in MeHg-treated manno t cer bellum Gen e ymb ol Protein Na m e 14o rfl 59 y I RY B PP IA K NJI O PH GDH - IF2 2 081 LUDl FBX02 TUBB GNAQ CYF lP2 CKB VCP TU BAl A CCT3 ATP2A2 RAB J A SPTAN1 PSMC 3 ATP6VlH DNM I SNAP25 RABIIA NTNAPI IMMT HBB T rea t/ ontrol (log2) I. 75 lycoge nin - 1 lph a-c ry tall in hain Peptid) 1-prol) I ci -tran i omera e P- en iti ve in v.a rd rectifi er p ta ium chann el I0 D-3-ph o ph oglyce rate dehyd r ge na e Eukar oti c translat i n initi ati on fac tor 2 ub unit 2 CD81 anti ge n Glutamate deh drogena e F- bo onl y protein 2 Tubulin beta chain Guanin e nu cleotide- binding protein G( q) ubunit alph a Cytopl a mi c FMR !-interactin g protein 2 Creatine kinase 8 -ty pe Tran iti onal end opl as mi c reti culum ATPa e Tubulin alph a- ! A chain T-compl ex protein 1 subunit ga mma arco pl as mi c/endopla mi c reti culum ca lcium ATPase 2 Ras- re lated protein Rab-3 A Spectrin alpha chain , non-e rythrocyti c I 26S protease regulatory ubunit 6A V-type protonATPa e ubunitH Dynamin - 1 Synaptosomal-a soc iated protein 25 Ra -related protein Rab- 1 I A;Ra -related protein Rab- 11 B ontactin-as oc iated protein I Mitochondrial inn r membrane protein Hemog lobin ubunit betaJ lemoglobin subun it delta 1.27 1.22 1. 10 1.09 0.86 0.84 0.75 0.7 0 0.60 0.55 0.49 0.45 0.42 0.3 1 0.2 1 -0.30 -0.3 I -0.3 6 -0.42 -0.43 -0.45 -0.47 -0.47 -0.50 -0.54 -0.55 -0.60 170 VP 29 H p yp PB R 4 PIP4 K2B XR 5 TP2BI EPT9 R M M PR 3 R VBLI AMPH AT P6V ID R YBL2 GBA YTI TLN2 NONO CA MK2A RPL26 SLC6A I SGTA HOM ER3 AN K2 IF3A HUW I LTB ATP28 2 B N SL 17A7 SU B I /\ P I MRPS3 6 acu Jar protein rtin g-a ciated prot in 29 Beta-addu in erin e/thre nin e- pr t in kin a e P K I p trin beta chain , non- th rocyt ic 2 5-o. pr I in a e ual pec ificity pr tein pho. ph ata e ynaptophy in B ta- olubl , F attac hm ent pro tei n Protein DR 4 Ph o ph atid y I in ito! 5- ph o ph ate 4-kin a c ty pe-2 b ta -ra; repatr cro -c mplementin g pro tein 5 Pi a ma m mbrane ca lcium -tran port in g A TPa c I eptin -9 ur nal c II ad h ion molec ul e Mi crotu bul e-a ocia ted pro tein RP/[: 8 fa mil y me mbe r 3 RmB -lik I Amphiph y in V-type proton AT Pa ·e ubunit D Ru vB-like 2 Protein ip nap homolog 2 ynaptotagmin - I Tal in -2 No n-POU domain -containin g octamer-b in ding protein Cal cium/ca lm odulin -depend ent protei n kinase ty pe II subunit alpha 60S ribo omal protei n L26 Sodium- and chl orid e-dependent GA BA transporter -0.6 -0.6 -0.68 -0.7 1 -0.74 -0.75 -0.76 -0.7 8 -0.7 8 I -0.94 Small glutamin e-ri ch tetratr ico peptide repeatcontainin g protein alph a Homer protein homolog 3 Ankyrin-2 Eukaryo ti c translati on initiati on fac tor 3 ubun it A E3 ubiquitin -pro tein l iga HUWE I Clathrin li ght chain B Pl as ma membrane ca lcium -tra nsporti ng ATPa e 2 Protein bassoo n Ves icular glutamate transporter I Acti va ted RN A polymerase II transcri ptio nal coacti va tor p 15 Adenylyl cyc la e-a oc iated pro tei n I 28S riboso mal protein SJ6, mitoc hondria l -0.7 8 -0.79 -0.8 I -0.82 -0. 84 -0. 84 -0. 87 -0. 87 -0. 88 -0. 88 -0. 88 -0.89 -0.90 -0.91 -0.91 -0.92 -0.97 -0.98 -0 .99 -1.00 -1 .05 -1.06 -I .07 -1.09 -1 .09 -I .I 0 -I . I 4 -I . 14 171 85 PrLZ Kl p 4 A P K2 PITRM 1 P2 VRB L ll OL 4 RF5 G K3 LGA L L RCI 1 N2 A MBL AMKK2 HNRPOL Ll CAM SNRNP70 LRPl SLC8Al CS PG 3 variant protein C2C 0 5 RBM1 4 LSAMP SHANKl JTPKA GMP S OMXL2 MAPRE2 PL 81 uan1n nu I tid -binding pr t 111 ubunit b ta-5 Tum r pr tein 0 52 nk rin- 1 acuolar pr tein rtin g-a oc iat d protein 4 uanine nucl otide- binding protein ( ) ubunit a lph a i o:D rm hort [P) rll\ ate d h) dr gena e [lipoamid e] ] kin a e i 7 me 2. mitochondri a I Pre equen protea e. mitoc hondri al Mitofu in -2 LIT-R Rh o - Pase-ac ti atin g protein 2 Fl a\ in redu cta OPH ) dium/ca lcium e;\.c hange r 2 EL -I i" prot in I eu ine-ri ch gli oma- in ac ti\ ated protein Oi k large homo I g 4 OP-rib ylati on fac tor 5 lycoge n ynth a e "in a e-3 alph a alectin -relat d protein R kin a e ignalin g inhi bitor I odium chann el protein t) pe 2 ubunit alpha Carboxymethylenebut no li da e homolog alcium /ca lmodulin -dependent protein kin a e ki na e - 1.1 7 - 1.18 - 1. 18 - 1.19 2 -1 .74 -1.74 - 1.74 - 1.93 Heteroge neo u nuclea r ri bonucl oprotein 0- like eural ce ll adhe ion molecul e L I Ul small nu clea r ribonu cleo prote in 70 kDa Lo\\ -density lipoprotein rece ptor-related prote in 1 5 15 kOa ubunit Sodium/ca lcium exc hanger I Neurocan core protein C2 domain-containin g protein 5 RNA -binding protein 14 Limbi c system-assoc iated membrane protein H3 and multipl e ankyrin repeat domai n protein I In os itol-tri sphos phate 3- ki nase A GMP synthase [glutamine- hydro lyzing] Om X- 1ike protein 2 Mi crotubu le-as oc iated protein RP/EB fami I) member 2 1-pho ph atidylin o itol 4.5-b i pho ph ate ph o ph odi e tera e beta- I - 1. 19 - 1.25 - 1.26 - 1.29 - I .3 9 - 1.40 - 1.42 - 1.42 - 1.4 8 - 1.49 - 1.49 - 1.50 -I .5 I -1.59 - 1.60 - 1.70 -1 .93 -1 .95 -2 .0 I -2.05 -2 .06 -2 .07 -2 .31 -2.43 -2.46 -2.57 -3. 14 -3.33 172 TableS3. Enriched GO Biological Process term based sets of differentially expressed proteins in MeHg-treated marmoset cerebellum GOlD GO:OOOI50 8 G0:0001558 GO:OOOI701 GO Term regulatio n of acti on potential regulation of cell growth in utero embryonic development Nr. Genes o;o Associated Genes Term P-value Corr. Bonferroni Associated Genes Found 5 21.7 2.75E-03 ANK2, CNTNAPI, GNAQ. KCNJ 10, SCN2A 5 15.2 1.35E-IO CRY AB, GSKJA, LGII. NRCAM, RAB II A 5 17.9 4.07E-15 EIF2S2, LICAM. MFN2. PSMCJ, SLC8AI G0:0006184 GTP catabolic process 10 21.3 9.33E-09 G0:0006811 ion transport 21 15.8 I. 71 E-1 04 G0:0006816 calcium ion transport cellular calcium ion homeostasis 5 15.2 2.53 E-08 ARF5. DLG4. DNM I. GNAQ. GNAS. GNB5. PLCB I, RAB II A, RABJA. SRGAP2 ANKI. ANK2, ATP2A2, ATP2BL ATP282, ATP6VIO, ATP6V I H. CAMK2A. DLG4, HBB. KCNJ 10, RABJA. SCN2A, SHANK I. SLCI7A7. SLC6AI, SLC8AI, LC8A2 . SNAP25. SYTL VPS4A ANK2. ATP2A2. ATP2B2. CAMK2A, SLC8A I 6 17.1 6.77E-09 ANK2, ATP2A2. ATP2B2. DLG4. IMMT, SLC8A I G0:0006874 G0:0006887 exocytosis 12 21.8 3.38E-05 G0:0007268 syna ptic tran smission 20 15.5 3.93E-34 G0:0007409 axonogenes1s 15 16.0 8.46E-19 G0:0007411 axon guidance 13 20.0 1.76E-08 G0:0007611 learning or memory 6 19.4 6.49E-03 G0:0009117 nucleotide metabolic process '' 17.2 4.52E-94 L. ' - ANKL CAPI, DLG-t NAPB. PAKI, PLCBI. PPIA. RABJA. SNAP25. SRCIN I, SUB I. SYT I AMPH . ATP2B2. BSN. CAMK2A. C NTNAPI , DLG_., ITPKA , KCNJIO , LGII , NAPB, NCAN, PLCBJ , RABIIA , RABJA , SHANKt , SLCI7A7, SLC6AI , SNAP25, SYP. SYTJ ANKL ANK2. CAPL CNTNAPI, DLG4. LICAM. LGII, NCAN, NRCAM. PAKI. RABIIA. RABJA. SPTANI. SPTBN2. SRGAP2 ANKI. ANK2. CAPI. CNTNAPI. DLG4, LICAM. LGII, NCAN, NRCAM. PAKI, SPTANI. SPTBN2. SRGAP2 AMPH. DLG4. PLCBI. SHANKI. SLC17A7. SLC6AI ARF5. ATP2B2, ATP6V I H, CAP I. DLG4, DNM I, GBAS, GLUD I, GMPS. GNAQ. GNAS. GNB5. GSKJA, PHGDH, PLCB I. PSMCJ. RAB II A. RABJA, RUVBL2, SRGAP2. VCP, VPS4A 173 G0 :0009 150 pur ine ribo nucleotide metabo lic process 20 19 .4 1.93£-31 ARFS, ATP2S2, A TP6V I H, CA P l, DLG4, DNM I, GS AS, GMPS. GNAQ. GNAS, GN S S, GS K3A, PLCS I, PSMC3, RAS I I A, RAS 3A, RUV S L2, SRGA P2, VCP, VPS4A G0 :0009 152 purine ribonucleotide bi osynthetic process 5 15.2 3.7 8£-05 CA P !, GS AS, GM PS, GNAS. GS K3A G0 :0009 154 purine ribo nucleotide catabo lic proce ss 15 20 .5 2.02£-11 G0 :0009 166 nucleotide catabolic process 16 20 .3 1.41 E-15 G0:0009205 purine ribo nucleos ide triph osphate metabo lic process 16 18 .8 2.94£-12 G0:0009790 e mb ryo deve lo pme nt 10 18.9 9 .62£-120 G0:0015711 o rganic a ni on tran spo rt 7 21.9 8.43£-11 G0:0016192 vesic le-medi ated transport 23 15.1 1.29E-1 00 G0:0016570 histone modificat ion 5 29.4 2 .7 1E-1 0 G0:0019226 transmission of ne rve impulse 22 15.9 9.30£-56 G0:0019637 organophos phate metabolic process 25 15.9 2.74E-99 G0:0023061 signal release 9 15.5 3.05£-09 G0:0030097 hemopoiesis regulation of cel lular catabolic process secretion by ce ll 6 15. 8 1.35£-35 8 17.0 6.21 E-26 17 16.5 1.17£-54 G0:0031329 G0:0032940 ARFS, ATP6V I H. DLG4. DN M I, GNAQ, GNAS, GN BS, PLCS I, PSMC3. RAS II A RAS3A, RUV S L2, SRGA P2, VCP. VPS4A ARFS, ATP6V I H. DLG4. DNM I, GNAQ, GNAS, GN BS, GS K3A, PLCS I, PSMC3, RAS II A, RAS3A, RUV BL2, SRGAP2. VCP. VPS4A ARFS, ATP6V I H. DLG4, DNM I, GSAS, GNAQ, GNAS, GNSS. PLCB I, PSMC3, RAS II A, RAB3A, RUVBL2, SRGAP2, VCP, VPS4A ATP282, EJF2S2, GNAQ, GNAS, LICAM, MFN2, PHGDH. PLCB I. PSMC3, SLC8A I HBS. KCNJIO. RAS3A, SLCI7A7. SLC6Al, SNAP25, SYTI AMPH, ANK I, ARFS, ATP6V I H, CAP I, CL TB, CYFIP2, DLG4. DNM L LRP I, NAPS, PAK I, PLCB I, PPIA, RASIIA. RAB3A. SNAP25. SPTSN2. SRCINI, SUB I, SYP. SYT I, VPS4A HUWE I, PAK I, RSM 14, RUVSL I. RUVBL2 AMPH. ATP2S2, BSN. CAMK2A, CNTNAPI, DLG4, ITPKA, KCNJ 10, LGII, NAPS, NCAN, N RCAM. PLCB I, RASIIA RAB3A. SCN2A. SHANKl, SLCI7A ., SLC6A I. SNAP25, SYP, SYTI ARFS. ATP2S2, ATP6VIH, CAP!, CD81. DLG4, DNMJ, GSAS, GLUD I. GMPS, GNAQ. GNAS, GNBS, GSK3A lTPKA, PHGOH, PIP4K28, PLCB I, PSMC3, RA B IJA, RAS3A. RUVBL2. SRGAP2, YCP, VPS4A CA MK2A. GLUDI, GNAS, NAPS. RAB3A. SLC17A., SLC6AL SNAP25, SYTI ADD2, ANKJ, GNAS, LICAM, TPD52, XRCCS DLG4. GNAQ, GNAS, GSK3A, PLCB I, RBMI4, SRGAP2. VCP AN K I, CAMK2A, CAP!. DLG4, GLUDI, GNAS. NAPB, 174 PAKI, PLCBI, PPIA, RAB3A, SLCI7A7, SLC6AI. SNAP25, SRCIN I, SUB I, SYTl G0:0032970 regulation of actin filament-based process 7 17.9 1.98E-05 G0:0035637 multicellular organismal signaling 24 16.7 5.39E-68 G0:0040008 regulation of growth 8 17.4 2.08E-29 G0:0042060 wound healing 12 15.4 5.67E-39 9 19 .6 1.21 E-08 7 20.0 3 . 13E-35 5 27.8 1.02E-02 G0 :0042391 G0:0043009 G0 :0043547 G0:0044057 G0:0044708 G0:0045936 regulation of membrane potential chordate embryonic development positive regulation of GTPase activity regulation of system process s ingle-organism behavior negative regulation of phosphate metabolic process ADD2. ANK2, LRPI, PAKI, SHANK!, SPTANI, SPTBN2 AMPH. ANK2. ATP2B2, BSN. CAMK2A, CNTNAPI, DLG4, ITPKA, KCNJ I 0, LGI I, NAPB, NCAN, NRCAM, PLCBI, RABIIA, RAB3A , SCN2A, SHANK!, SLC17A ., SLC6A I, SLC8A I, SNAP25, SYP, SYT I CRYAB. GSK3A. LGII, NRCAM, PLCBI, RABIIA, RUVBLI, RUVBL2 ATP2A2. ATP2B I, ATP2B2, CAP I, GNAQ, GNAS, HBB, LICAM , MFN2. PAKI. PPIA, SLC8A2 ANK2, ATP2A2 . CNTNAPI, DLG4 , GNAQ, KCNJIO , SCN2A, SHANK!, SLCI7A EIF2S2, GNAS, LICAM, MFN2 , PHGDH, PSMC3 , SLC8AI DLG4. GNAQ. GNAS, PLCB I, SRGAP2 15 19.7 1.42E-16 8 16 .3 6 .08E-I 0 ANK2, ATP2A2. ATP2B2, CAMK2A, DLG4. GSK3A, ITPKA, KCNJIO, LGII, NAPB, RABIIA, RAB3A . SLC6A I. SLC8A I. SYP AMPH. DLG4. KCNJ I0, PLCB I, SHANK I, SLC 17 A SLC6A I, SPTBN2 5 15 .6 1.69E-12 DUSPJ. GNAQ. GSKJA, LRP l, SRCIN I G0:0046128 purine ribonucleoside metabolic process 17 18 .3 6 .3 0E-18 G0:0046130 purine ribonucleos ide catabolic process 15 20.5 1.16E-IO G0:0046903 sec reti o n 19 17.1 6 .39E-99 G0:0048468 cell devel opment 28 15.2 1. 12E-102 ARFS. ATP6V l H. DLG4. DNM l. GBAS, GMPS, GNAQ, GNAS, GNBS, PLCB I. PSMC3. RAB II A, RAB3A, RUVBL2, SRGAP2, VCP , VPS4A ARFS. ATP6VIH. DLG4. DNMI. GNAQ, GNAS, GNBS, PLCB I. PSMCJ , RAB ll A. RABJA. RUVBL2, SRGAP2, VCP. VPS4A ANK I. ATP2B2. CAMK2A. CAP I, DLG4, GLUD I, GNAS. NAPB, PAKI, PLCBl. PPIA, RAB3A, SLCI7A SLC6A I. SNAP25, SRCIN I, SUB l, SYT I. TPD52 ANKI. ANK2, ATP2B2. CAPL CNTNAPL CRYAB. DLG4. GNAQ, GSK3A. KCNJIO , LICAM, LGII, 175 MAPRE3, NCAN, NRCAM, PAKI, PHGDH, PLCBl, RAB I I A, RAB3A, SHANK I, SLC8A I, SPTAN l, SPTBN2 , SRCIN I, SRGAP2, SUB I, XRCCS ANKI, ANK2, ATP282, CAP!, CNTNAPI, DLG4, LICAM, LGII , NCAN, NRCAM, PAKI, RABIIA, RAB3A, SHANK I, SPTAN I, SPTBN2, SRCIN I, SRGAP2 ANKI, ANK2, CAP!, CNTNAPL DLG4, LICAM, LGII, NCAN, NRCAM, PAKI, RABIIA, RAB3A , SHANKl, SPTAN I, SPTBN2 , SRCIN l, SRGAP2 ANKI. ANK2, ATP6VID, CAP!, CNTNAPl, DLG4, LICAM, LGII. MAPREJ, NCAN, NRCAM, PAKI, RAB II A, RABJA , SHANK I, SPTAN I, SPTBN2, SRCIN L SRGAP2 ANK2 , ATP2A2 , ATP2B2. ATP6V I 0, ATP6V I H, CKB, DLG4, IMMT, KCNJ 10, PDK2 , SLC8AI CAMK2A, GLUD L GNAS, NAPB, PLCB I, PPIA, RABJA , SLC6A I, SNAP25. SRCIN L SYT I ANK2, ATP282 , CAMK2A, CRYAB, DLG4, GLUDI , GNAQ. GNAS. GSKJA, LRP I, NAPB , PLCB I, PPIA, RAB II A. RABJA. SHANK I, SLC6A I, SLC8A I, SNAP25 , SRCIN I. SYT I G0:0048667 cell morphogenesis involved in neuron differentiation 18 17.0 7.02E-22 G0:0048812 neuron projection morphogenesis 17 15.7 4.29E-24 G0:0048858 cell projection morphogenesis 19 16.4 1.29E-45 G0:0050801 ion homeostasis II 15.9 I .0 I E-25 G0:0051 046 regulation of secretion II 21.6 7.08E-17 G0:0051 049 regulation of transport 21 15 .3 1.09E-I 03 G0:0051276 chromosome organization 6 15 .0 3 .22E-83 G0:0051640 organelle localization 9 17.6 6 .67E-05 10 15.9 3.14E-22 6 18 .2 2 .63E-21 CAMK2A, CAP I, GSK3A. LICAM, PLCBI, TUBAIA 6 15.4 3A5E-09 ATP6VID, ATP6VIH. GNAS. GSK3A, PAKL PDK2 7 23.3 2.31E-14 CAPL DLG4, GNAQ, GNAS. GSKJA PLCBL SRGAP2 11 21.6 2.68E-09 ARF5, DLG4, DNMl, GMPS. GNAQ, GNAS, GNB5, PLCB I, RAB I I A, RABJA , SRGAP2 G0:0055082 G0:0071345 G0:0071375 G0:1900542 GO: 1901068 cellular chemical homeostasis cellular response to cytokine stimllllus cellular response to peptide hormone stimulus regulation of purine nucleotide metabolic process guanosine-containing compound metabolic HUWEI. PAKI. RBMI4 , RUVBLI, RUVBL2, XRCC5 AMPH , DLG4. MFN2, NAPB, RABIIA, RAB3A , SNAP25, SYP. SYTI ANIC , ATP2A2, ATP282, ATP6V I D. ATP6V I H. CKB, DLG4 , IMMT, L ICAM. SLC8A I 176 process GO: 1901135 carbohydrate derivative metabolic process 22 15 .7 2 .26E-I 08 G0 : 1901136 carbohydrate derivative catabolic process 18 22.0 8 .9 7 E-2 1 8 15 . 1 1.05 E-48 18 15 .8 5. 3 5 E-6 5 7 15. 9 3. 03 E-22 G0 : 1901137 GO: 1901565 G0 :2000145 carbohydrate derivative bi osynthetic process organon itrogen compound catabolic process regulation of cell motility ARF5, ATP28 2, ATP6VIH , CAP!. DLG4, DNMI , FBX02, GBAS, GMPS. GNAQ, GNAS, GNB5 , GSK3A, NCAN . PLCB I. PSMC J. RAB II A, RAB J A. RUVBL2 , SRGAP2, VCP, VPS4A ARF5. ATP6VIH . DLG4 . DNMI . FBX02. GNAQ, GNAS. GNB 5. GSKJ A. NCAN . PLCB I, PSM CJ, RAB II A, RAB J A. RUVBL2. SRGAP2. VCP, VPS4A CAP I. GBA S. GMPS. GNAS, GSK 3A, NCAN , PLCB I. VCP ARF5, AT P6Vl H, BLVRB, DLG4 , DNM I, GL UDI , GNAQ, GNA S, GN8 5, NCAN , PLCB I, PSMC3, RAB II A, RAB J A. RUVBL2. SRGAP2, VCP, VPS4A LRP I. PAK I. PLC BI , RBM I4, SLC8AI , SRCINI , SRGA P2 177 TableS4. Significant GO Cellular Component terms and the associated differentially expressed proteins in MeHg-treated marmoset cerebellum by GOrilla GOlD 6 GO Term P-value' Protein Count Associated Proteins G0:0044459 plasma membrane part 3.60E-03 34 SYP. SPTAN I. ATP2B I. DLG4 . ATP2B2. SCN2A. ATP2A2. LRP I. SLC8A I. SYTI. CNTNAPI. CAMK2A . SNAP25. C2CD5. HOMERJ . CLTB . SHANKI , CD81 . GBAS. NDRG4 . AMPH . GNAS. SRCIN I. KCNJ I 0, SRGAP2. GNAQ. SPTBN2. L ICAM. PAK I. DUSP J . SLC6A I. ANK2 . ANK I. NRC AM G0:0060076 excitatory synapse 2.68E-03 6 SYP. DLG4. BSN . SHANK I. SYT I. SLC 17A G0:0097060 synaptic membrane 1.62E-02 12 SNAP25 . SYP. Ll CAM . HOMERJ . DLG4 . SRCIN I. SHANK I. ANK2. SYT I. SRGAP2. ANK I. CAMK2A P-value corrected using the Benjamini and Hochberg method 178 A DLG4 (Disks large homolog 4) : P78352 LQAAHLHPIAIFIRPR B~ Ions L 0 A A Y~ Ions R P B Ions 1 - L - t H R L H P -l -1-t-F F -f +A+- H A +-A-+ R P-l t A-l A ~ 0--1 p H H Y Ions J - R ---+-P --1-R --+-- --t--F - t A-+--1- A 1-f P -F- -H- L- 1 -i- R - - ! - - P H- A A 0 + "' Sequence LOAAHLHPIAIFIRPR .. . I + ~ c a.• "' c ,f... "" .,. ".... "' ') ~ ~, "" " 'I 0 100 ~00 C"l ,, 00 X. ..... ,..., 300 r ,_ ' 400 500 600 700 BOO 900 0 1000 1100 1 ~00 1 300 1400 1500 1600 MIZ 179 8 SLC17 A7 (Vesicular glutamate transporter 1 ): Q9P2U7 ILQGLVEGVTYPACHGIWSK 8::' Ions H L Q Y:' Ions 1-V. s W 8 Ions I GI-L V E Gi-V T HGI-H C H V~G~ v L-t-0 G S W-----!-1 Y Ions f-V P ~A Y C -!AI ~+ E l H G p A p y T G-+ V -C A H -Y-+-T G 1-t--W- E-t-V-!-L G 0 100 Sequence MH+ 90 ILOGLVEGVfYPACHGIWSV ::'::'::'8 53 Charge= 3+ Score= 1 ::'1 '21 80 " .[ . ..,.+ 0 100 ::'00 300 400 500 600 700 BOO 900 1000 1100 1 .00 1 300 1400 1500 1600 1700 1 BOO M/Z igure l.Repre entative M /M spectra from (A) DLG4 (P78352) and (8) SLC17A7 (Q9P2U7) in marmo et cerebellum 180 Cell adhesion molecules (CAMs) Chagas disease (American trypanosomiasis) Vascular smooth muscle contraction Wnt signaling pathway Dilated cardiomyopathy l ATP2A2, ATP2B2, l ATP2B 1, CAMK2A, Malaria i GNAS, GNAQ, ITPKA, i PLCBl , SLC8A2 and i SLC8Al Alzheimer's disease Gap junction L- - - - - - - - - - - - - - - - - - - - - • Pancreatic secretion Calcium signaling pathway ------------------------ t -------* 0 2 4 6 8 10 # of Genes/ Term Figure 2. KEGG pathway enrichment analysis of differentially expres ed proteins tn MeHg-treated mannoset cerebellum using WebGestalt 181 12 r CALCIUM SIGNALING PATHWAY 1 SLC8A1 and SLC8A2 Nt 1 I I J MLCK J j- Con~bon [:1lliU f --• Metabolism Newotrucsl!Utlet, au!¥:old Newotrucsnul"'et h:mrone, aul¥:old Grow1h fact>t ITPKA NAADP SIP '·- - - - - - - - - - - - - - - - - _. ExocytJsJS Sembon 04J20 4115114 (c) Kanelusa l.!boratooes FigureS3 . Calcium s ignaling pathway was classified by K EGG pathway ma pping system from uploaded 102 differentially expressed proteins. Protein s with red labels were the one mapped in calcium signaling pathway. 182 hapter VI: A APEO (Apolipoprotein E): P02649 8 Ions f - - L R Y Ions t--- - R - v -!-A-+ I +A+G Al A-+---l ~ 0 - - 1 - A - t - G - t - A - + - - - 0 - - + ---Y-----1r---V- -t - tr.) > 100Sequence= RLAVYQAGAR MH+ = 110 4 6~63 90- L£ 1 ..... Charge= :? + (X) "" (J) 80- Score= 1 :?6 07 en ..... Expectvalue = 0 01 4 035 70r- 0 ;: <.C ' (.., 601- r"" cr M ~ .... VI M ~501- C) J c (IJ 0 .... ("'") - L[' r ' 401- --;:;:; I '"" ~ r 1 ~ = >- 301- > 100 Sequence= OAVFIPAGWDNHV MH+ = 1 589 7966 90 Charge=~+ Score= 1 ~5 03 80 Expectvalue = 0 00 4 9~13 ") ,..., ~ 0 1 00 ~00 300 (~J 0 ~ (T'} (T'} ..,. 400 + C"'J ~ y C' + ..,. T >.C 500 ...c T + + 600 700 800 900 1000 11 00 1 ~00 1300 1400 1500 M/Z Figure l .Repre entative MS /MS pectra from (A) lobe and (B) DYN 1LI2 (04323 7) in frontal lobe PO (P02649) in marmoset occipital 184 Appendix III: Author hip tatement for Publi bed hapter Statement of Authorship (Chapter III) The manu cript in hapter III titled on " ffect of Methylmercury on Dopamine Release in MN9D Neuronal ell "i author d by Yueting hao and lling Man han. Dr. Laurie han provid d guidanc in the overall tudy design of the manu cript. Yueting hao design and conducted the experiments, performed the data analysis and drafted the manu cript. Dr. Laurie han pro id d the comments based on hi expertise knowledge in toxicology. Yueting hao updated the manuscript based on Laurie's feedback, and Dr. Laurie Chan made a fmal approval of this article and submitted it to the publisher. Yueting Shao Hing Man Chan 185 Statement of ut ho ., hip ( bapter Th manu ript in hapter \ titled on 'Pro\ omic eth) lmer ury" is uth re,d 1annosc c ·posed t an han. D ·el ·i ey . lhibin ) naJ..·sis of Cerebellum 1 ammon 'uetin hao, tc mi Yamamoto, stud cerebellar prote me in meUl)lmercun. Yuetin bao developed the conception xpo d common mann se and utline of e ·periment nHcr initial al ·· n" "'1th her upcrvi or Dr. u ic Chan C mmon manna t samples " r collec ed b... r. 1cgu i Yamamoto i ~auonal In itute fo . 1inamata Dise se, Japan. Dr Zhibin . ing in Onawa In tHute o ) ~1em Biolo ondu ted LC- 1 , f ru 1) Js and pru\'lded lbc advice for u ing Per ·u hao performed data analy 1 and conducted the validation say. Dr ftw . Yu tin Damel fige.: ( nawa In titute of y ems Biology provided he critical comment on analyzing method Wld data interpretation. and 'ueting h updated th r suits based o Daniel Figeys· omments. and Titten thi manuscript. I urie Chan provided tlu: irnportan revisi n or thi raft. and Yueting hao re-organized the dr t based on Launc 'han' feedback. ThL draft was then reviewed by other co-au tho : D . Megurni Yamamoto. Daniel I i y an Zhibin ing. Yueting ·ha integrated the commcn from the co-authors. upd ted manu ript and finall) approv d y Lauri\: Chan for ubrni sion. ueting hao I aniel Figey llin 1e um1 'amam t /hi bin an h n 186