REDU D-R K IGM -POI T KALM FILTER FOR G OPHY I D T IMIL TION Manoj K Kizhakkeniyil . (Ph ' ic , Math malic M. c. ( hy i DI NAT RALR h mi try), Mang I rc Uni er it , 2002 a niv r ity. 2 BMITT D I PAR I L F L ILLM T F M T R TH D R F PHY T R OF PHIL IN R AND ENV IR MENTAL TUDIE UNIV R ITY OF NORTH RN BRITISH COLUMB IA June 20 15 © Manoj K Ki zhakkeniyiL 20 15 Abstract Th main goal )f my rPs •c-ucb was to d ,·plop a pt act 1cal sdwnw for t hC' sigma-1 oint K alm an :filtC'r (c PI\ ) for its npplicrttJon in a n'r listi c limat C' morlC'l. LargC' ('Ol1l p11t i-\tional xp ns has 1 en an obstacl to appl~·ing thP , K to a high-dnnC'nsional sys- t m. I addre. ' d this i. su 1 .\· dew•loping ·u1 ach·anc d . I KF da t a-assimila hon syst rm. ~1~· work also adclressed several oth r factor. - relatPcl to thC' practical implementation of PKF . Th main 1 je ·tives f thi res arch were to: (i ) investigate' two mPthocls to con truct are lucecl-rank igma-point m1sc nted K a lman filter (RR PCKF ): (ii ) propos a localizations heme forth PKF : and (iii ) implement RR ' PCKF in a realistic climate model. I pr ent two methods to approximat the rror covanance by a n' luced-rank ap- proximation. In the first m ethod , truncated singnlar-value d ecomposit ion (TSVD) is applied on th error-covaria n ce matrix calculated in the data : p a e (RR Pl:KF (D)) whil in the second m ethod TSVD is a pplied n th error- covaric nee mat ri..x ·alcu- lc t.<>d in tlw C'nsnnhk. p are' (RR SP KF (E)). T bC' n w i-\lgorithms an' first tC'stC'd on the Lorenz-96 model, a one-climcnsi n al a tmos1 h ric "toy·· m o d el. The pt'rformancc of both r nk-re lu ction m thocls a re clos t o th at of th e full-rank PKF . I propose a lo alization m thod for RR P ' I '~ ( ~ ). The rcsnlts from mmwrical rxperimcuts ou the Lmcuz-< G model showed that wlH'll llH' localizntwn and inflation v:nc implemented. the optlm,d cstmwt c wa:-. s. Thr rrsul t s showc·d 1hat hot h R I\ SPl.' KF ( D nnd ~ ) wPrc able to correctly analyze th pha.<>c' and intPnsJt\' of all major EI\SO c·vpnts during the stud.v period ,~·ith rdatiYc>ly similar estimation accuracv. We c mpared against urtlwrmorP. th' RRSPL'KF ns mbl . quare-mot filter (En ~ RF ). showing that tbr ov('rall analysi skill of RR PCKF and En 'RF arr c·omparahlc> to Pnf'h ot hC'r lmt t hr fornH'r 1s mor robust than th latt r. 11 Conte nts tra t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Li t f a 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Li t of Fig ur . . . VI X A cknow 1 d g 1n nt 2 . V IJ lo a r 1 . . . 1 X ll Introduction . 1 1.1 ompa t Overview 1 1.2 Background 2 1.3 Data assimilation 7 1.4 l\ Iotiva tion . 1~ 1.5 Obj ective. 16 1.6 Outline. 1 A ssimilation m ethods a nd Models used in this study 21 2.1 Introdu ·tion . . . . ~1 2.2 The ret i l r view :.. 2 2.2.1 Th framework [ ~ nKF 2.2.2 ormula tion of n RF . lll 2.2.3 2. 1gma p int uu~ce nt 'd Kalmau fill 'l' ( ' PCKF) 2 31 Iod ls 2 .. 1 2.. 2 model .2 Z0l iak- mw mocl '1 . ;:3. h Lor nz- n 3 p li ati n n an n h r n z- m 1 3 .1 Introclurtion ~35 :3 .2 R duccd-rank ' igmc -pomt I\ alman nlt ('1 (R R . Pt TKF) 3G .2.1 RR PCK (D): T .2.2 RR PCI\ ( "): T,'\'D m th 11li ·ation ..J nth Lornz- .. . .7 n~ •mblP ~pcH ' (' . ,g 41 modPl XJ rim nt 1 set up . . . . .4 .1 3.4.2 3.4.3 3. in th0 data SJHH '(' \ TD 42 4 en ration of truth and observation. Assimilation met hods ancl 1 r J .n clure rror . 44 R ulL and di cus ·i n 44 3 ..5.1 naly ·i tat -stirnation exp nm nts with RRSPCKF(D) and RRSPCKF (E) . . . 3.5.2 3.6 4 S nsiti\it)' exp riment with the RRSPCKF (E) nwtlwcl. Summary .......... . 49 53 Localization in Sig m a Point Kalman Filte r 57 4.1 Introduction . . . . . . . . 57 4 .2 Inbreed ing. filt er divergen c a nd spuriou orr lati on 5 4.3 ovariance lo alization 59 4.4 ovari n e inflation .. 60 4.5 L calization in R R PUKF(E) Gl 4.6 Numerical experiments . . . . G4 lV 4.6.1 "'xp r rim ent al set up .. G4 4 .. 2 R sult s and dis usswn G 4.7 ummary li 5 f RR n 7 . . . . . . . . . . . d 1 Ill e ll 7 5. 1 In t ro clur t 1011 . . 7G .2 :.Iod r l and met hods . 77 r: 5. 5.2. 1 Z hw k- 'anr ).lodPl 5.2.2 :\Id hoc b and PXI t'l llllPntal "'I up R sult s and disc ussiOn D .J \ 'prsJon 77 . 7 . . . . . . . . .. 5 .. 1 r nsiti,·it \' XI rim nts w1t h RR . ' P ' KF (D ) 5.. 2 nnp arison of RR Pl' K (D ) and PCI\:F 5 Forecast skill 5. A 01 omp nrison b t w rn the RR. PCI\:F (D ) and RR. 'I ' KF ( ~) ap- 92 pr aches . . . . . . . . . . . . . . . . . . . . 5.3.5 5 ...1 6 Comparison h tw en the RR . ' PCKF ( ) and Summary' n. 'RF 9G ............ . . 1()() Conclusions and Future direct ions . 103 G.l Introduct ion . . . . 10. 6.2 Gen ral overview . 10..1 6.3 Concluding summary . l OG G.4 Future dir ctions .. . 111 6.4 .1 Implem nt a1ion of RR P KF (E ) f r a G C I . 11 2 6.4 .2 A hybrid as. imihtion by coupling 3D-Var / 4D-Var + SPKF . . 11' 6.4 .3 on- a.ussian st tistics in SP I F . . . . . . . . . . . . . . . . ll.J Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 v List of Tabl .1 ompu tat ion tim in ~P ond~ fnt \'c-lrlOll. dc1 t a as~imila t ion nw! hods 011 c Lmux P with a 2.0 H7 Int PI I en! nnn Dnal 'or' Jnoc · c·s~or. . . . . 7 .J ~3 mP PXJ)('llllH'lll lllllllber for tlw exprnm nts tf grnc>rate Tahl -1.2 and T c1hlr .: lPSpPctivC'ly. GG .J.l Lo alizntlOn -1 .2 h ciqwnd nc of tnn nwan R).I. 'E on tllP lo('ahzatwn nHlins ancl numb r of sigma I omt.. Thr mfintion codficirnt i~ ().():3, . . . . . . . . 72 ..J.. h d p ndence of l irn nwan R.:Vl 'E on t h inflation coefficient and numl r of sigma I oints. The localization radius i~ G. . 74 5.1 E T 0 stat e ·timation: Exi nm nt summary xpPnm nt dPtcub . .J _ cmd Vl 2 List of Figur 1.1 The clrp ncl ncr on tlw nutwl condition fm tlH' LorPn7-- >· modf'l . Hf'n' four f; ri >: of 'r -C'OOUlma t ) of I h ()1('117- ;: nwdPl dl\'(' l g f' markedly over im flom . mall dlff 1 nc · lll th llll 1nl cowlltwn . . . . . . . . l G .1 Th tim m·c' raged r 'latl\'C' R~L . . as c1 fnnrt 1011 of nmnhC'l' of sigma I oints (en. mhl m mb rs ) n:Pd for tlw Lorenz-: G modc'l . . . . . 4G .2 mparison h tw ' 11 the tru, val\! and ::uHllYsis fm \'Hiiahlc' Xl witl1 tim step for (a) the fllll-rank FCKF . (h ) R . I l'KF (D ) with~ l sigma I inL (en , mbl m mh rs ) and (c) RR ' PCKF (E ) vnth 31 sigma pomt s. 47 3.3 The variation of th root mean-. qm1n' d rror v ' I tlw 4() variables with tim :t p for (a) th fnll-rank FCKF . ( b ) RR P ' KF (D ) with 31 sigma 1 oints (en emhl meml rs ). and (c) RR P TKF (E ) v.·ith . 1 sigma point s. 4 3.4 Th time m an of th e R~l E a a function of tnmcated modPs (ensPmbl size) for RR PCKF (E ) m thod . . . . . . . . . . . . . . . . . . . . 50 3.5 ompari on between the true valu and analysis of RRSFCKF (E ) for th variabl Xl. The analysis from th e tnmca ted m des of 3 ..5. anrl. 7 a re hown in Figures 3.5a-3 .. ·.indicating a poor estimation skill in all three cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1 3.6 Comparison between the true valn and analysis of RR PUKF (E) for the vaial le Xl. Th analysis fr m th full-rank PCKF and t run atrcl modes of 41, 1, 21 and 11 a re .' hown in Figur s 3.6a 3.Ge. . . . . . . 3.7 The variation of the RJ\ISE ov r the 40 variablPs with tim stei for the diff rent trun a ted modes (i.e., ensemble siz ) for the RRSP'CKF (E ) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5:3 3. Th varian explained by the truncated mod (ensembles) with re~pect Loth tot al varian for the RR. P KF ( ) method. . . . . . . . . . . 54 Vll .1 h tim mran R .0. I rrror of t lw R l . 'PC I\ ( ) sdwmr R.'i a f1m t 1011 hr r c>snlt s are shown f numlwr of sigma pomt~ ( ns mhl mPmbPrs) . G7 fm drffeH'llt srzc (S.r). ystrm . . . . . . . . . . . J. .2 hr tnn mean R::\ 1 c'rror oftlH' RR.'P1.TK ·( ) sdwnw as a fnnctwn of nnmlwr of . igma points ( C'U~c·mhlc' llH'lll hPr~ ) w lwn localiza t ron 1s llf-iPcl. Tlw r . nlt ~ ar "'hm\·n for drffPI rnt Sl7C' (.YT) ~)·st c>m . . . . . . . . G . J. .3 Th time nwan R::\1 PilCH of tlw RR . T> ' !\: ( ) '->dwmr d:-> a functmn of nmnlwr of ~igma pmnt" ( C'll'-iC'mhlP lllC'mlH'l:-, ) wlwn hot h localrzatwn and inAation c11 e us d . Tlw 1 r~ul s HIP show11 fm diffe1 c' nt SIZP (S,) . 70 ~yst m . . . . . . . . . J. .. J. Th tinw mran R::\ 1 rrror of tlw RR . ' I 'KF( ) :-,dwmP a:-> a fmwtion of localization radm .. Th mflation p,u cUIH'tC'l 1~ 0.03 . . . . . . . . . . . 71 .J: . '- The tim mran R::\ 1 Nror of t lH' R R . ' I · 1\ ( ) f-idwnw a:-; a fnnct iou of inflation co fficiPnt . Tlw loca liza iou r cHllll" 1s . . . . . . . . . . . 5.1 , raphical d 'Pi ·tion of tlw 0:'1iio rc'o wns (from Environm ntal Prediction ( T 'EP)) . . . . ·cltwnal T 'pntPrs for 2 5.2 T h root m an-squared rror (R::\1 ' ) of ' ' T (5°. '-5° 120-170°\\') I et \\'een anal)· is and truth as a fnnct i()n of number of Pnsc•mblPs nsPd . 5. 3 T he R.0. 1 E of T . bet wren the analysis and t rn t h a v<'ra gC'd ovC'r the' pC'riod 1071- 2000 for tlw RR , P\.'KF (D) whC'n diffNPnt nnmlH'r~ of truncat d m de ( l ) are used. Th number of C'nsemblc>s is eqnal to (2 l 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G T h correlation coefficient of S TA between the analysis and truth m·eraged over t h e period 1971- 2000 for t h e RRSPl' K F (D) wh n cliffetcnt numl ers of tru ncated modes ( l ) are us d. The number of nsembles is equ a l to (2l+ 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5. -! T. 5.5 The R 1SE of t h e Nino-3.4 index of t h analysis against t he obser ved counterpa rt. The p a n el (a) is fo r RR P C KF (D ) when -!1 ensembles a re used and p a n el (b ) is fo r th e full-ran k SP KF . . . . . . . . . . . 5.6 The RM SE a nd corr lation coefficient of SS TA b etween t h e a n a lysis and truth for full-r ank SP KF ai d RR PUKF (D) wit h -11 ensembles for th p riod 1971 2000 (a- d ). Figur 5.G( ) an l (f) ar r the <..l if-fcrcn cc in SS T A RM SE a nd condat ion coeHicicnt of PC Kl~ aml RRSP KF (D ) wh ere the s t atist ically signifi cant a reas (at 05 Vc conlid n ee level) a r sh ad cl . . . . . . . . . . . . . . . . . . . . . . . . . . V lll )9 5.7 n -tim st p for ca~t forth T1ii r gJOn (. 0 , -f 0 •• 120- 170°\ \' ). -1 incl.iratrs the 'tiio- .<-1 inclrx of tlw ohservatwn and thr solll hnr mrlicat r. tlw ·tno- A mrlr · of a one month lrnd forrcast of RR . P L' K ( ) \\'it h ..J 1 rnsemhlrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Th ·1iio-' -1 fore cas t R~L ~ and Ct'hH't'll t h :'\ u-w-3 .-! mdPx of t IH• d llctlys is a~rllm,j the ohserv d ount rp art for (a) RR 'PCKF (D ) an d (b) En ' RF wh('ll 41 ens mhles arc n 'eri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.13 TA R~1 E c nd conrlation corfficirnt for En RF and RR PlTKF (D ) m ethod for the p riocl. 1971 2000 \vh n <:1:1 ensembles a rc usrd (a- d ) . . (e) c nd (f ) (U'P the diffPrence in R).L E and conPlatio n c·opffi(iPnt of S TA of EnSRF and RR Pl KF (D ) wh er e the stati. ti cally . ignific a nt areas (at 9 o/c confidenc e leYel) ar shad d. . . . . . . . . . . . . . . . 9 5 .14 Niiio-3.4 index forecast RI\ l SE and correlation with 12 m onth 1 c-l d time for RRSPUKF (E ). RRSP"CKF (D ) and En RF . The vertical error b a rs ar the sampling errors at 95 o/c. confidence inten·al obtainrd u ing bootstrap experiments at ea h 1 ad time. . . . . . . . . . . . . .. _ . . . . 99 lX Glossary 3D-V r Dm1 n. wnal \'anal H nal 4D-Var 4 Dinwnsicmal \ "anat wnal M At mo. ph ric ; rwral 1rculatwn :\Iodf'l BL E Best Lin ar Tnl ia.c>cl :-.timclt E KF En.' mbl cljustmcnt K alman ENSO El Tiiio uth rn Oscillation EnKF Ensembl K alman Filt er EnSRF Ensemll EKF Extended K alman Filt er ESSE Error ETKF Ensembl Tran form Kalman Filt er GCM Global Circulation LDE05 Lamont- Doherty LETKF Local En embl Transform K alman Filtrr iltPr quare-Root Filt r ubspace Stati ti a l Estimation 1od l arth Observatory, mod l version 5 X M cramc -.cnrral hservat ion 1r ulat ion ~ I odrl \'S tem Smnd a t1on Tat 10nal ' put rrs for XJWnm nt 11\'lronm Pnt al Prc,rlict ion WP KF Rrdncrd -R a nk . 1gm a- p omt l Tnsr<'lll d K a lma n Flltrr ( ) Rrdncrd-R a nk . 1gm a- p om l ' nscrnl cl K ellm a n J}(Pr - D e~ ta RR P K RR P KF ( ) R edu · d-1 a nk ' 1gm a- pmnt ' n scqu ent wl Imp ort a nt R ·~a m plin ~ P DKF igm a-p oint ' nt re~l D ifiPr nc<' K a lnw n F ilt c·r PKF i g me~- point K a lm a n PPF igm a-p int P a rticl ' Filt r SPUKF igma-p oint C n sc nt c~ d K alma n Filt r r SSTA a ilt C'r urface Temp ra ture a n o m aly TLM T a ngent Linear l\ Io d el TSVD Trun a t ed Singu la r-Value Decomposition SVD Singu la r-Value D com 1 o ilion TPCA Trun at d P rincipal-Comr on nt Ana lysis zc Zebiak-Cane Xl Acknowledgements irst and for r nwst. I would llkP to <'XIH Pss my d<'<'JH'S( gra t it ud<' t o my sup c>rvrsor Dr. Yc umin a ng and co-: np 1 vism 1 I Pt ' 1 .Jac·kson fo r t h ' 11' gmd a ncP . m ·nt oring, patienc . c mst aut 'nco urag<'lll 'llt . msrght and know]pdg<' mrp m t c•cl to lll <' dmmg my stud)' p eri od a t ' ·B . lw ir k C'C'll and ,·rgorous anH lf'mH' ohs<•r \'(1\ ron <'nlight C'IlS m e not only in this th esis hut al:o gr,·r moi i\'at ton for mv fnt nrP stmh · I would also lik to tak this opp ort um tv to acknowl 'dgP and express m~· gra trtml<' to my gradu ate . lll n ·isorv commrt t <' m m b rs D1. 't <' p hPn Drry. Dr. :\.lich a ·l :1illingham an l r. Li ang lwn for t h 'ir input and suggPs t ions along t lH· Wd,V. as w<'ll c: , f r t a kin g tim t re, ·iew t lus v.:m k. T hi. tlw. i. gr<'a tly 11C'nd1t s h·om Youmin 's conr. c'. at 1: ':\13 '. fro m whi ch J ]('an H'd m an)' h elpf 1l . t ati ·ti ·al m t hocl. an l t o ls . Thanks t o Dr . P Pt <' r .J ackson . Dr. KPn Ott er and Dr. P hil Bur t n forth y O J n d my mind with int 1 stin g sciPilt ifi c topics of ph.vsi ·aL biological and : cia l scienc s dnring m~· conrsr st mly. I h ave ab o b enefi ted fr om t he co ur e of Dr . P t r J ck on a nd Dr . t eplw u Dr ry on dynami cal m t eorology. p ecial thanks t o Dr. Ziwang Den g for his h lpfnl ·omments, sugges ti ons. and disu ion in my m anusc ri1 ts. Iany thanks t o Dr. Yanj ie 'heng ancl Dr. D akP 'hen f r providing m e the la t t Zehi ak- Cane m ocl l. I am grat efu l for the numeri cal ·amput ation SUPI ort of Dr. J ean \\'ang at thC' HP C Lab of BC . A sp ecial word f gra tit ud t o all the m emb ers of m)' research group . D r . Ziwang Deng, Dr. Yanji Cheng, J aison mb aclan , \\'aqa.r Youn a:·, iraj 1 Islam , Xiaoqin Yan and Dejian Yang f r their friendships and cliscu. sions on r search . I\1y deep est th anks go to my wond rful family nd m ar\'elous friend (of wh m th re are simply too m any to m ention by n am ) for their monum nt aL unwavering supp ort and encouragem ent . e Finally it w llcl 1 r emL' [ m e n t to say thank ) 'OU to TB and lllEmb crs of it s st aff for their assistan c in num rous administrative and fin an ial m att rs. , pecial thanks to NB Physi s d pa.rtment for hiring m as a Te·1 'hin g ssist ant. I rrall.v enjoyed my teaching lut ies. Xll his work is sup1 ortrcl 1 ~·. the 'an ad a ( British T atural , c1rn rs and n gmccrin g RrsC'mch onncil of R ') D1~con'ry p1 oguu11 awl Paciiic 'cut \U , . C HH lua1 <' \ holarship by olmnh1a's }.hms1 ry of T cl\'ancPd ~ dn catinn. Xlll Chapter 1 Introduction 1.1 Compact Ove rvie w Th ge phy. ical ~·stem is not a out roll d laborat or,v xperiment. Therdore modC'ls are an imp ort ant tool to understand th m chanisms in gE oph~·sica l systems . Th('~· describ how th comr onent. of the art h syst m changPs nsing mathematical eqnations representing the laws f 1 hysi sand data collect d from obs rvatious. Advanced m dels, such as coupl d general irculation models help to und stand many proc sses and mechanism f the eart h's ·limat system . They ar nsed to simulat th past and pr s nt climat as well as for future proj ect ions. I\ Iodern w ather forecasting is ba d on numerical weather 1 r diction ( V:P ) mod ls. Th mod ls require current state of the aLmosphere/oc an called as the initial futur . The initial conditions are ol t ained from is haoti an l higly s nsiliv t. nclitions to int erp late in to bs rvations. The \\' ather s.\·stnu initial condit ions. Data assimilation helps to pro- 1 lu high quaht.v imtwl oncl1t10n. )rtunallv comhmmg th mod '1 output wtlh lh bscrvat ion. . her' c: r \'a rion~ sdwmrs for data assimilfllwn. filter ( PK 1:-, a uciivati\' '-lcs:-,. dclcllllllllStH. Kalman filt<'l optumd for nouliw'al' stat -. pa st nnatwn. R., imibtion met hods he , 'igma-r oint 1\fllmnn K ~ has manv orh·ant agPs m·er othr1 popular dal a- uch a" cnt..Pmh]P Kalm nn filtPt (Eu KF ) and Em.;PmblP ~qlmrr­ root filter ( n, RF) . Large omputal ional <'XpPnsr has IH'<'ll an ohst adP \\·hilr· apph·mg SP KF I o a highdimensional system ~nch a.<> tlH' <>l (.A ; '~I) lw ()\'('1 clll goal of this chsspr( at ion is to rl.e,·elop adnmced. PKF data-as:-,imilation m·tlwd for its application in a n·alistH· limat d mod l. Th pr sPntation of this clwptPr is orgamz<·d as follows. ,'ect iou 1.2 rib , the broad prol lem domain addre:srcl l v the bod.v of \vork prc>sc>nt rd m this dis. rtati n. Thi ti n 1. reviews th general concC'pts and goals of data assimilation. ect ion aL o contain a compa t lit 1 ture ov ITi w of d1ffer nt data-assimilation m thod . ft r thi ·. the moti,·ation for this st ndy is given in . Pelion 1...1 . Ohj('ctives of my st udy i. given in ction 1.5. Finally. an outline of the dissertation is prm·iclrd in Se tion 1.6. 1.2 Background The realistic model I used in this s t ucly is the LDE0 5 vers10n of th (Zel iak and prediction . El an e, 19 7· Chen et aL, 2004) for El ino ZC moclel outhern Oscillation ( ~ T 0) ino South rn OscillaL ion is the , trongest signal in the ' 'ariahility of the glob l climate sys t em on th int erannual time-scales. It occ ur in the tropi cal Pacific Occ>an irreg;ularly at intervals of 2- 7 y < rs and influences thr global chmatr 2 ). through tel connect ions (\Yang C't al., 1 the strongest in 1 ains < 'l.lld 0 vrars of data r cordin)2; h rv nt m 1 7 1 was 'ri1o-rrlatf'd unpacts indmlrd lwavv fiooclmg al ong t lH' n>pagalc' thC' s.\ ·st m through tim y. t m (Hunt t aL 2007). ns v:ell as knowlPdgc of thP cunC'nt state of thP 11 model are. in general. a simplification of the rc·al- world system, . ).loci ls c re u, e l to refrr to a larg hyp ot h rmmlwr of things . from a srt of e to a seal d replica of the physical-s)·stem. The main fnnct ion~ of modc·ls in lucie understanding and xplaining the m chanism and proces.'es of the> concC'nwd system. predicting t h e futur tate of th S)'Stem even b fore the observation is made a nd cl rivation of new principles. Collected observation. h lp to improve the mo lel structure aHCl fine tun the model (Sh nk and Franklin. 2001). Genernlly. modeL- can be ·lassificd into either thcorcticaJ or i:3tatisti cal models c.lcp 'lldiug on how the:· c-u-e m ade and their inten l cl us . Theoretical mod els are usua lly built either b efore or after th data a re collected although the)' a re m a,iuly u eel as ad h oc m o d ls. The m ain 1 urpose of a theoretical mod el i explan a t or.y, to un l rs t and th mechanism a nd I ro cesses of the concern d system and a lso for pre li ting th futur e state of the' syst em . Stati. ti al models are pos t ho c models; th y ar us d for th e interpret at ion 3 of the data. arc ronstructrd during the anc lYsl~ of !h data rollr ted and the~· ar typically without a m clwnism ( lwnk c nd Ft ankhn, 2001). R Pgrpssion models arc Throrrtira! modP!s nm HI plv to a widr nmg example of statistical modrls of syst rms and oft n gl\'<' in-d 1 th knowl dg ahont tlw sysiPm compcHPd to statistical models. I\ lost of thr th 'Ol'Ptiral modPls nrralh· t lH'OITt iced modd~ that <'On( am ma I hem a I ical equations rrprC'sc>nting tlw ph~·<>1r~ of thr atmo...,phnr and occ'an. .:\ l orP oft c'n tlwy d not havr anal~·tir solut10ns and arc' ~oh· d nunwrically (.J ockPL 2012) . T lw main advantage of1L'ing a th oreticalmodc>l ovPt a statisllC'almodPl is that. tlH' mH lPrlying m h·:mi -m that th former model1s hasrd on doC's not chang' from place to placf' or, m th r v:ord. it i · "intellectual!~· transportahl ,. (.'lwnk and ranklin. 2001) . Sta- tistical model , how v r. are based on "'mpirical relat ionsh1ps deri vc'd from the past timement i ries data and th statistical rrlation ma~· not hold wPll heumse the environo variable. For example. th El Tiiio vent of 19 2 3 could not lw prC'clictC'd well becau · at that time stati 'ti a l models w re usecl to predict the seasonal climate. Z hiak and Cane (19 7) clevel peel a th oretical model for E T'0. appl:ving the ba,sic equati ons and t h f physics such a rev.,;ton's laws of motion. the laws of thermodynamics ontinuity equation to demonstrate the air-sea intera tions in the tr pic:al Pa- cific. T h m odel d moust rat ed t he prospects of m aking a long-term sJat-ioual fon: cast (Webster and P almer , 199 7). Modern weather fore asts use num rical weat h r predi ction ( T\i\TP ) mo leis. which are built up on t h e g neral prin cipl of fl uid d yn amics an l t hermodyn amics. T he earth- syst m m odels conta in p artial cliff rential equat ions t h at gov r n t he geop hysical fluid syst ems. These p ar tial diiT r nLial equation do not h m·e an a h ·ti solutions ancl thcv 4 res lv d nnmrri ally (Jo k l. 2012) to ohtam futnr condition clPscrihing th statr. starting from an mitwl rnrrrnt stat' of th sY"'trm (\\'ang rt al .. 2000). B fmr we' obtain the solutiOn. this 1111tial conditiOn nmst lw prondPrl. which . along with tbe equations in the models. rontrob thC' C'\·olntwn of tlw :-;olution t Ul.JE'Clory m space and t im e. The spnsitiv d pendC'nc on lw initial conditwn (Lm<'nl . Hl ·:3) ran lJp SC'C'n in FJgur 1.1 in the model solution of th (Lor nz. 1 Z). th Lmt'll7- . mode·! \\'lwn tlw LorC'llz-G:3 model ) is mitiated from arlnt1auh· cloo.;(' altc·rnatiVC' mitial coll(llt10ns (X. Y . model solution: sprPad cmt from ·ach other aftpr a cPrtaiu llttmhn of stpps. If we ronsidrr tlw mod 1 solut1o11. tMtC'd ftom thr initial condition(:> 0 . !J.O ..J.O) as th s true stat . then the closer the othrr nntial cowlitwns an· to (!J. O. 5.0 .. 0) . the· longer it tak s for thrir soluti ns to :pr ad awav from the lnw stalP. his indicatE's th importan e of I r paring thP initial conditions with high qnalit .Y and accurac.v to pr diet th futur tate of a haot ic s~·stcm such a: w at hc•r. Data assim1lat ion hPlps to prepare high q mlity initial condition . m rging the information from tlw modd as well as the ob rvation. (\\'ang et aL 2000: Kalnay. 2003). Earth-system model simulat climate in detail. hut at thP same time they have limit ations too. The uncertainti . in th model I recliction can arise from the inherent nonlinearity of the atmospheric sy tem that makes t h 1963, 2006). in ompl te 1 hy i system cha ti · (Lorenz. ( .g., cloud phy ics) , errors in sp cifying th bound- a ry condition or due to th errors in the initial condition (Stott and K et tl borough, 2002). Both the mod ls and observations ontain errors. Som of the model limit at ions an' errors in mod lling th dynami s of the earth-system , lineariza tion . errors in numerical a r proximations and errors in the paramet erization of the su h-grid scale ph~·s ical 5 -------- I 20 - 15 I X=5 00 , Y:.5 00 . Z=5 00 X=5 01, Y=-5 01 Z=-5 01 X=505.Y= 505 :Z= 5 05 X:5 20 .Y= 5 20 ;Z= 5 20 10 \ 5 I I )( 0 I I I -5 I - 10 I I -15 I I -20 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time steps --Fignrc 1.1: The dt•p<' n< knc<' on t lw i m t 1a 1 t'OIH h t ion for t lw Lon·n;- ·:J 111< H k I. H <'ll ' four scri o of X -coorcli nat<' of t lw Lorl'llZ- ·:J Ill<" 1e 1 d 1wrJ\<' nHil k<'< lh· owr t llll <' from ~mall diffPn'nC '~ in lw initial concbtwn . procPsses. For applications such ao wm t h<' l fon•c,"' t i11!\ alH I dim at<' 1" c of f wer o hserYa lions than the numher of nw of the' C'rrors in the clyuamicalmocld and obsc'n·ntion~ tlH'r<' \:-; n nc><'d t o 1 c la n th inf rmation ft om t h m p ro p rlv. estima ting the s t at ptnna l rs1Ima t 10n IS th r pro Pss of f a ~)·s t m with mmimal r n or. hy com b inin g o bse rva ti ons a nd a m a th em a ti calmod rl \Ylt h t h I I rrsprc(J\'P stat ist ical nnc<'tl aint .v. lw a ppllca twu s of opt imal ('S timaJ ion r a npps fi 0111 \\"('at lwr fm ('( r\Stmg ( () artifi ial int d h ,!!,('lH'('. Th m os t comm mly nsrd m t hods fm opt 1m ill ('S( 1mat ion mP t h' nwt hod of !C'ast sqn a rPs. tl1P m aximum hkc>hhoo cl and tlw r cnrsl\'P Bm·r~ian f'..,I Jmation . In Pa r t h sciPllCP. thf' purpose of opt im al Psti m a t ion is to providP hPst <'stimaiC's of l lH' stc1tP of tlw OC('Hl1 or a tm osph re . h s prov1d<' 1JC'I(P r <'siimatp · than can 1H' ohtain<'d hy nsing so h,ly bsern1 tiona l d ata or mtmc'ricalmodf'l~ In Pc-lrth ~(H'IH ' P. optnual Pslinw ti ou of th st a t e of t h oc em >r at mosph 'r<' 1. known clS data as~mul(1 t H m W' of I h' main goa h-. of d a t a as. imila t ion in ' \ \'P 1. to pwnde t hC' initial ('OlHll t 10n~ fm wc·al h PJ prPdict ion m od els. 1.3 Data assimilation D a t a assimilati n is used t o op t imall)· stim ate t he st at e of a physical-system using imp rfect num ri a l m od ls a ncl n oisy obs r vat ion:. In gen eral. a d a t a-a,s similation syst em con sist s of three p rt. : a m a th em at i ·a l m od el. a . t of obs(' rvation s and a d at a-a. simila tion m etho l (R obinson a nd Lermusiau x. 200 2). The assimilati o n f the obs r vation int o th num rical m o del h elp t o adj n t th d a t a dyn amically, improving th quality mical syst . of the estima t ed st a te . The m ath m a tical st a te of the dyna . . em a re describ ed by as t of va ri a b les kn own as th st at e vc:tria hles . The dynami cs lin k t h ol ervation s with oth r st at vari c 1 les and influence them . The estimat d . tate or n alysis an b e u s cl as the initial conditions for the for cast . The m ain a pplicat ion s of lat a assimila tion include: (i) estimating th 7 urrent s t at e of the a tmosp h('ric nnd o amc vanabl s. \Vhtch an l ns o as the mttwl conottwn fm th fnt11rc forecast; ano (ii) obtaining a goon tra.Jc tm\ of the past dtm(\tP hv tt. r of all thr ol srrvations available. Tumcncal WC'athcr 1 rPrlJ (IOlllS c111 initial-\·alnC' prohlC'm . Data HSSllllllation plodllC'C'S an am1h·sis. ,,·htch 1s a maximnm-hkPllhood Pst irunt c of atmosplwr1c and oc'<'sPrva ious. I lw f'OS t of th com1 utati m · rPquirC'd h~· t lw assuntlat JOn 1.' t vpH·allv t hf' cost of a 2 -hom [ re ast (Talagrand. 1 - : \\'ang et al.. 2000). In ocPanographv. data assimil(ltion ha be ome an important to 1 for st nd~·ing the ocean ·ircnlatwn . 'omparc>cl to th(' atmosph re we hav mu ·h [ wer observ tion.' m the ocean. and also t hr dirPct nwaurem nts can be d ifficult and exp n. ive in th o f'an. Data assimilation combinc>s o ean model with ol erYation . with th rPsults. callc->d tllP analysis. providing morC' complete and accurate information about the o ·ean compared to \vhat we get from model simu lation or ol servations alone (Talagrand. 1997: Fukumori. 2012). Data assimilat ion is a mathematically rigorous process in whi ·h the or timal stat of t h syst m ise timated as a weighted com! ination of model for casts and obs rYations. T he weight. a r d t er m ined according to th estimated uncert ainti s of both the m odel forecast a nd obser vation data. In g neral. th assim ilation can 1 e grou1 eel into two typ es: (i) t h T alagr and , 19 6; meth dologies used for data variational meth cl (DinlPt and ourtier eL a l. . 1994, 199 ); a nd (ii) th sequ ,ntial method (K alman. 1960; K alman and Bucy, 1961; K alnay, 2003; Auroux an d Blum , 200 ). h variational m thad i, bet don optlmal-controlthror)·. h most popular m tho l in this approach 1, thr adjoint mrthod. It s mam ohjrct1vr 1st tion that mcasUH'S tll<' m1::-.fit IH't\\.l'l'll thl' ob, n·ations (Dim t and assimilation \'l·indov,·. alagu-md. 1 mimm1/jr a rost fnnr- <'llllHH(d s<'l J\'C'r a giVC'll he popnlar \'C.Uia t wna1 mPt hods nsPd iu T\ \ 'P ar<' t hrPC'- and four-dinwnsional \'ariatwnal assmulat1on. ltsnalh· dPnntPd as ~3 1 -Var and ...J:D- ar. r<'sprciively. In the nuiationc l assmul(l(Ion m thod. thP information C'ontanwd in thr data arr I ropagat eel fonvmd 111 t llllC' t hrongh t hr nonlin('Hr rnodf'l (fon•cast modd) and 1 ropagatrd backward m tim' though tlw tangPnl lmcar modd ( L:\1) ( alagrand. 2012). whi ·his compntationally \"Pn· PXJWnsln' h 3D- \'a r m t hod has 1H'en nsPd in many op<'ra t wnal W('cl t lH•r-prC'Clict wn C'Pll t rC's. In 3D-Var. th for ·a-"t and obsrrvatwn 'rror: arC' l1 ·at('(l as tim(•-mvariant and Gaussian. des ri bed h~· stat ionar.\· ~rror-covariancrs (Talagrancl. 1097). Th<· mam limit at 1011 of the 3D-Var i,' that it do ,' not consiclrr the dynaruicall.v clC'pPndPnt errors of the· nonlin ar cl~·nami . and it as~ umes that all oh ·ervations are made at t lw anal.vsis t inw. The 4D-Var. c n. id reel as an advanced vrrsion of the>. D-Var. seeks th init1nl comlition that leads to a for ca t fitting b st "·ith the obsen·ations in a givC'n assimilation window. In 4D-Var. the backgr und stat is compar d to the observation at the exact tim of th observation in the assimilation window and the ha ·kground-covarianc matrix is implicitly evolv d within the given a, similation window. Th nunmuza- tion of th' 4D-Var cost function. which m ca::mrcs the misfit between the temporal scx]UC'ncr of modd . t atrs and o hsC'rvations, rrquirC's finding t hr p;rRcliPnt using t lw adjoint mod 1 (Yang et al., 2007). Th main disadvanta ge of 4D-Var in m teorological and oceanographkal a1 plicatim1s is the om1lexity in the c mputations of the adjoint of Lhe assimilating mocld an l various observation OJ rat ors, their valid at ions an l maintenance (TalagranvH[(' tlw post rior-c'tTor statL ·tics (B rtino PIal. ~OCr ) . I\' nr of the mam fpalnn' of th recnr- , timator. such as the Kalmcln filt<'r is t lu1 tlwv '"'flti'·>fv the :viarkov propC'rt:v. it implies that futur state of the S)'S(Pm is ~olPly based m1tlw pH'sC'nl stale and arP ind p ncl nt of the past stat ,' ( mhadan. 201. ) . Optimal interpolati n ( I) is a fairl)· simpl sPquential data-assimilation mC'thocl ('Ommonly used for operational r\YP (Dale)·. 1991: Kalna:v. 2003). Optimal intPrpolation is a minimum varian e estimator. In OI. similar to . D- Var. the backgronnd covarianc u d is constant in tim and i. obtained fr m a long-term stat is tical mean . One of th main disadvantage of OI is that the tationary 1 ackground-covariance should represent the variability in th whole assimilation domain at all tim (Bertino et al.. 2003). T he K alma n filter is on e of t h m ain sequential data-assim ilation methods. In Kalman filt rs, t h goal is to fi nd t h e best linear unbiased e. timate (BLLJE). which i a sum d as t h e linear combina tions of prior estim ate and obs rva t ions. \\'hen the model is lin ar nd rr rs are assum d to b e Gaussian , I alman fi lters give the optimal solution (Bert ino ct. al. , 2003). For a weakl)·-nonlinear sy Lem . K alma n filt rs can perform 10 qmt '"' ll l ut for a highly n nlinrcr mod 'l thr solutwn of thr K alman not 1 timal ( li~·oslu ....... 00.5) lltrr is The adnmc<'d derrYntrY<'~ of 1\.almcm filtc'l~ han' hc<'n d " lo1 co for tlwir apphcat wn m nonlm m st ima t ion ~uch a~ t h Pnscmhlr I -ahmm fil t C'r (EnKF) ( \Tll. n. 1 -! ). "·h1rh usrs ), l ontc' 'arlo samplmg to estimfiiP tlw prior- Prror. tcrti . tirs . ~ f ore infmm<1 ion ahn11t th ar giYc'n in n altrrnnt e twn 1 1 and K r ~· mrthod i~ nsmg partid filtNs (Yan LPc'll\\'Pll awl ~ ,·c·nsPtL 1 DG : son ami . ndrrson. 1 . ),hllc>r Pt al . 1 lH lrr- .. Krnnan. :wrn: \'all Lc'P II\\'P n . 200. ) . TlH' main ndnllltagc of palt1 lc hltc·r~ 1~ that th<'Y ai<' : ·.tutal)l< · <'\'<'11 wll<'n the· dywunics nn' nonlinrar r nd thr nror statr-, w: nu' non- ; ,ll h~I;m In partH }C' filtc'rs thf'rc' is no n rC'd to linrnrizC' rlw nonlinr compntational cost ( nclcrson. 2001: \Yhitaker and Ham1lL 2002: \'C'll"' n. 200. , n Pxt ensrvP re\'lPW of \ h h t rat u r ' on i u. 200 ) . h n, nd Sn)·dpr. 2007. Lr and n l · F can h found in ~ vc'nsPn (200 . 2009)' o avoid thP nnrlC'r- stnnation of forPcasl-<'llOI co\'nc·asc• lll ensemble> sprc>act th c hs n·atrons rs et al.. 1 : Houtdcalll 'l and ~IJtclwll. 1 c ) Ho\\'P\'C'l. \\'hitakPr and Hannll (20 02 ) found t hal t h 1wrt mlwcl ohsrn·at lOlls can net as cUI r~ddrt mnal -,onn·c· of samplmg error. making the c>stimatP of mwh·..,1. -c·nm covar iancc• ]pss cH cnrai P. ThP\' dPvPlopf'd tlH' ('ll.C'lllhlC' :-;qnarC'-[(JOt fi!tC'l (En TIF ) to cl\'Oid tlH· pPrtmhation of nl>sc•n'rltions. which u.'e' the traditional Kalman gai n to updatP thP rnsc•mhlP mean and tlw reformulated Kalman gain to upclat e t hP dc'\'Ja t wn from t h nwan. For t b ' samP PnsPmhlP ize. En RF can yi ld lwtt r results than tlw ti nal exp ns nl\F withm1t any additional compnta- (\\'hitaker and Hamill. 2002: Tippett t al.. 200. ). ThC're arf' diffr'lPnt formulation of the quare-root filter that hav been p1 oposc>d including an ensPmblf' adjustment Kalman filter (EAKF ) ( nd r:::;on. 2001). an ensembl transform Kalman filt r (ETKF) (Bi hop t aL 2001) apart from the En RF (\\.hitaker and Hamill. 2002). It i not clear if there i any partie 1lar formul a tion of t h . quare'-root filtPr that is better than the others (Tir pett et al.. 2003). A main challeng in EnKF and EnSRF is choosing an ap1 ropriat small ns mble siz ofien results in ina ·curat representation of th ens mble size. rr r-cm·anan · matrix whereas a large ens mble size is not computationally feasil l dimensional sy terns. Therefore, s m how can we g nerat specifi for high- questions are likely to arise such as with a greater degree of ac ·uracy. th finite samples for the optimal estimate of pr diction-error covarianc ? Furthermor , what is t h - percent agp 13 of th . timat l rror van a n th tn1 c unt 1part for a givPn rnsPmhlr m t hod. em rent h· usC'cl fm genPI a t m g pns mhlr m mh ers m t h s tandard h ~ ni\ r le t rl. t are un a ble to a n s wrr thrs qu rs t w n s ().I a n oj Pt ctl.. 201 : T a ng ct a l., not her con fun ctions. wh nth 111 in th tra dition a l s ar gn ed 111 T a ng a nd nl" 1 ~ 1b 01-±a ). t n 'a tnw nt of nonlnwa r mPasurc'm ent mhadan (~ 00 ) (l S wdl a.s mra.s urr m cn! fun ct iO n 1~ non lnwm. tlw C' ll11 P ll1 n l\ ang PI a l. (2 014a ). a lgonthm cont a ins an implicit assumption . th ' fo recas t of tlw m n~ n rc' nH ' lll fnn c! ion is unlna srd or the' m ean of t h r forrca.s t r qu a l. t o t h r fou 'ca.., t of t hP llH'an. Tlw Hnplwit ass tmlptwn ould au s errors in ps tmwting th K ellman gain ( ang a nd mh ad a n . 200!) : ang et al.. 201.±·1). R e ntly. mba d a n a nd T a n g (2 00 ) as wdl a:-. Lno a nd ::\ Joroz (2 009 ) int rodn C'c'd a nrw rn. rmhl e-hast>rl filt r r t o th P fi Pld of Pnrtb . ci n rrc, nsin g tlw si m p!P Lm f' llZ s~·s tf'DJ , whi hi c ll ed th e .igma-p oint 1\:a lm a n filt 1 (. PKF ). Th . PKFs an ' a d Pri vative-]pss K alma n filt er optima l for n onlincc r . t a t -sp ace est im ati on (Jnli Pr et al.. 1995: .Jnlier a nd hlm ann. 2002 . 200-±: Va n ler ).lerwe Pt al. . 2004 ). In . 'PKF the error st a tisti cs and mod 1 . t at e a re an al~·zed using th tr a nsf rma tion of a d et erminis ticall.v ch o- en minimal set of weight ed sample p oint s called sigm a p oint s. which ca pt urc's thr tru e m ean and cova ria nce of the prior random Ya riable com1 let el.v and t h e p os t erior m ean and covariance to the e ond order a nd up t o third order for G au.-sian input s (Julier et al. , 1995 : Juli r , 2002; Va n cler T\1erwe . 2004 ). The PKF famil~· inclu l s sigma-poi11t unscented K alman f-ilter (SPUKF ) lJasccl on ::-;calccl unscented tra nsformation (Juller et al. , 1995 ; Julier , 2002) , sigm a-point rC'ntrn,l diffrr ncr K rtlman filtrr (SPCDKF) based on Stirlings interpolation formulas (N0rgaanl rt al.. 199 . 2000; Ito and Xiong 2000) and th ir sqnar -root variant s (Van ler T\Ierwe a nd \\'an . 2001: Vander T\1erw , 2004). This tudy is only confined to the SPUI\:F . 14 hallcng m implem nting PK omputational xp ns an for a rrahsttr high-dun ns1 mal s)·strmts th larg ( an and You . ... ()() ) or a high -dnnrns1 m a l S)"S tPm snch as an or atmosphe1r global circula tiOn modrl ( ~ ·;..r). it IS n o t compntationallv f as ibl t satiSf)· th rrqmrrm nt th a t th nmuh Pt of s1g m H pmnt s should h r grC'atPr than twir thr numbrr of svs t r m s ta t c>s ( h a ndta...,<'ka r c• t a l.. 200 . H a n a nd Li . 200 : mhadan and a n g. 200 : Lu o a nd ;.. rorn 7. 200 . ). Fm nn pl Pmc'nling SP KF . thc> s tat<' vrrtor i, r clefinrd through sta tr a u gnH' llt a t ion b)· <<>JH<\I C' na tm g tlH' modd s t at s, pro cess n oisr and obsc>r n 1t1 m nm~P. lu~ ,,.111 f111 t lw1 11H' l< 'c1S(' tlw ll1lllilH't of sigma point. an l m ak P l\F nn ~ uit a l>l e fm t ra li:t JC' < lnna t P m o dc· l ~. \\"hc•n tlw p1o cps~ is a ldi t i ,. the comput a ti o n a l co mpl Pxi t)· f'an lw r<'dll ('<•d hv nsm g t}H· non- no is augment d st at ar \ "E' ·tor (\ "a nd ' r ).Icrwr cmd \Yc1n .•JlOl: Fa n a nd ) "e m . 200 ). lwrP om rrdu c d-ord r sigm a-p oint nwthocb usin g snnpl x sigm a p oint s (.J nli Pr. 200 2. 200 ) . whi h can d eer a sigm a p oint s t o L 1 for an L dinwn~wn a l svs t Pm . This numb r i. still comput a tion all:v inf asibl . R ecent!)·. Amba d a n and T a n g (2009) su ggcs tcct a snbs pan- proj ct wn a pproach for tlw dim n ·iona l compr ion l )" th a pplica tion of tnmca t ecl princip a l-comp on C'nt an alysis (T P CA ) on the multidimension a l sigm a-p oint sp ace. In this m ethod th P sigm a p oint s in the princip al-compon nt space. v,·hich will r t a in the m a in feat urc's of th origin al sigm a-point p a e, a re used to a p r roxima t e the error prop agati on . Luo and ). Ioroz (2009 ) suggest ed tha t a sub p a e a pproach b ased on singula r-value d eromposit ion (SVD ) can b e appli d on the rror- ovariance matrix to red u ce th sigm a point s. Anoth er meth od fo r rank-red uction is t h C h lesky b as d d composit ion of th r rrorcovaria n ce m atrix a nd subsequ ent rank-reduct ion of t he squar -root m atrix (St ev:art , 199 · Ch andr as ka r et al. , 200 ) . T h e ensembl formulation of t he l\ a lman filtr r and it s , ·ari a nts h as b en an actiYe a r a 15 of r s arch in data-a~:-.1mila t ion probl'm~ lll gc'o~c H'lH <' b 't a w.;c' of it:-. flow- l 'pcudc'lll rr r structur and ra." of im1l m ntation . hP mam di:-.c-Hh·antagc of adwmcPd I nlmau hltcL hkc 'nKF cUld En RF 1s that SPkctiou of th<' uullcd c·usc·mblc slZ<' lS not detrrmimstic and th' rPqmn'mc•nt of a grc·atPI sJ/P of Pnsc·mhks forth' cHTnralC' a1 proximal10n of th m 'cUl and \'Clllc nc 'of th }HHH' and postPllOl chstrihttllOll h' ._PIllllllation c·omm11111tv To ill\'C:-.t Jgatc the hr:-.t ohjt•ctJ\'C 1 proposC' two uwtlwcb of Ic\Uk rC'dt l dlO!l~ method~ ( of rank rPdnct ion Pmplov tlw t IlllH 'r\ t Pel singular-vahw dC'composit ion \ TD) to factonze th cm·miamr lll<\ttrx cmd n·duC'<' it::; 1ank th1ough tnlllf'H(JOll. In t h th Both firs lw Pll 01 -cm·cu i c\lH c• m;\tux ca leu! n t ('cl 111 met hod. , \ ·D 1. a pp li d on data s1 ace> (RR ' PC K F ( D )) \\·hil • m t lw "'c>c·oud mc·t hod t hP S\' 1~ apphPd on the error-e varian ·' matnx caknh1tc>d m th(' c·n~<>mhlc· :-.pace· (RRSPl'KF ( )). lw r duced-rank. squar -root mat nx is nsrcl to sPlPct t lH' most import aut sigma poir1t s t hat can retain th main statistical fc·HtnrPs of tlw ongmal s1gma pmnt s Oh-;c•n'a- tion simulation xperiment.· (o r prrft>d moclrl rxpNinwnt ~) arc• p ·r fonued nsing t hP L r nz-96 mod l. T o achieve th RRSP se KF and t nd objective. I 1 ropo. e a h~· brid-localization sch •me for th t using th Lor nz- 6 model (Lorc>nz and Emc-muf'l. 190 ) . The exper iments a r e conclucte l in the 1 erfect model setup. ~ I an~· sensitivity experiments are con d u cted with varying parameters to under tand how and why changes in the filter param ter s ( n m l le size. covarian e lo a lization. a nd covariance inflation ) aff ct t h e qu a lity of the anal:vsis. The Lhird objective is r ealiz cl by implem ent ing t h RRSP C KFs to a realist i · climate m od el. The r ealistic climate model emp loye l in this st u dy is t h e LD 05 (LamontD h erty E a rth Obs rvat or y, v rsion 5) ver sion o f the Zebiak-Cane (Z ) mo d el. which 1s a n intermediat e-complexit y oupled E S O 1 redi c tion m o d el. om e important 1 rop r t i sand t h e s LimaLion accuracy of t.h RRS P U KF a re explored . Th p roperties 17 of th RR P TK ~ ar also ompm d \nth c fnll-rank '- PC l\ 1.6 and nSR ~ Outlin This dissrrtatwn addrP~. '!--a jHd( tical clpphc ell lOll of .' I K dP\'doping two rPdmnl- rank RPlroxunation: of ,' P l 'F <-llld mtwdndng alocalllrlliou ~dwnw for tlw SPK · Th reel ur 'cl-rank . Pl\F~ arP appliPd l o a l'Palist H <'d m tlu .. twh·. In ,'('clwn 2.2 tlH· founnlations of n K . En RF am-i En RF . t h m t hod P Tl\F are discus!-> 'd in a -.,plf coni airwd m;-muC'r. In 'uKF and f gen rat ion of nsrmblC' ~iz ' i: not d('l Prmi11isl ic in a ngorons tatistical ense. In contra. t. ation. P TK prPsC'uts a dC>t rminist1c way of c·nsf'mblP gPrH'r- c tion 2.3 contains c hri f introduction to th Lorrn z-0 (Lorenz . 1006: Lorenz and Emanuel. 199 ) moclel as w 11 as the Z modC'l (Zcbiak and 'ane. 19 7). C ha pter 3 aclclresse · the first ol jectiYe and discuss s t h fmnmla t ion of t lw rl:'cl uc<'drauk sigma-p oint un ·ccut 'UK· hmm fi lt er · ancl a rcclucccl-Hmk sigma-p oint UllSCClltccl K alma n filt er b asPd on thP data. pace' (RR SPPKF (D)) is proposC'd c:md d<'rivPd. R <•d in, c'c I ion..., J : ~<'" tll<' tlH'Ol'Ptical formnlntion of thc•lJ\l>IHI-lcH',dJ!cllion sdu•mc• fm HI ,' PL'l\F ( ') .<'I ion . n•sults of mult 1plc• sc•nsJ! tnt\' <'XpPl'illH'Ill s ell<' hm\·11 ,mel <'il!'Pcl. Chaptci - adclr SS<'"' mv hnal ohjPctin•. i.<'. t llf' clpplwat 1011 of R H Pl"hFs in a I(' ThP n·ali:t ic modPl 11sPd in I hi~ st11dy is tlH· Z ' nu Hlc·l for alist 1 chmat c mod Pl. prediction. Thi. chaptn contcUll"i mtplc·nH•n!cltiou dP!ails of HH .' J>CI\F (I into ZC modrl . ~I11ltiplP SC'llsitivit \' C'xperimc•nts a re condu ct ed by varying the number of s1gma points. • s timation acntrac.Y and tuan~· import a nt p1 opertics of cliff rent m t h od. a r discussed. In hapt r G, I summari ~ my r rs ult s with a d e tailed disc11ssion and g ive thP conclu- sion of the present r srarch . This chapt r also provid e's som e s11ggcs t ions for f11 t urP work. Throughout Chapt ers 2 through . I use tlw 1s t p e rson phtral to ncknov,.Jc•dgC' 19 the cantri l utwn. f other. 1 to lh1. work . 1 us t he 1st person 1 lura! to acknow ledge t he cont ribut ions of my su pervisor aml co-~upcrvbor to t his work 1 20 Chapter 2 Assimilation methods and Models used in this study 2.1 Introduction Th p urp o of t hi Ch apter is t g1v a th oret ical revi w of data-assimilat ion meth- d in thi dissertation a well as to giv a brief introduct ion to t h e model. nsc>d . The theory and deriva t ion of a Kalman filt er. EnKF . En RF and SP l'KF ar g1ven in this chapt r , and the ad vantages of SP UKF over En RF and EnKF are also discussed . Th theory and derivation of n RF pre. ent d her is mainl.v based on the works by Whitaker and Hamill (2002) and Tip I tt et al. (2 003) wherea · the t h em·~· of SPUKF is m ainly 1 asecl on the works by J ulier t al. (1995). Julier and (1997), J ulier (2002 ), Van d r I\ Ierw (2004) and Van cler 21 hlmann Icrw ei al. (200--! ). The inf rmatwn al out th mod L lvcrlm this "'tndv 1" f!; IYPn in th last srctwn of this hapt er. 2.2 Th r ti 1r . l he data-assin11latwn pwi>lPm i8 an P~tmmtion prohlPin : its o!Jjpc·tivc• 1s to PstimaiP tlw statr ofoc<'ani j ntmo...,ph'll( fi·lds In· f11..,inp. th model. oh..;c•I\'cltillllS with a dvn ctlllH IP...,c·nt thP stat •-sp cl('f> Pqnations of th dynamical . vstem a. hPlm\· (\dwreYPl po .... IhlP. notdtH>ll. an· bm,£>d on ldP PI al. (1 7)): (2 1) ( 2.2) wher f() i the nonlinear m d 1 that takes . tat X ?--- 1 to ..\ 16 and q1 1 is I hr random model error foll wing a Gau .. ian eli. tril uti n v:ith zero mean and covariance Q1 1 . Further h() is the nonlinear observation or measurement function . which maps th model varialle to observational spac . "Csually the dimension of )(t is greater than the dimension of Yt b cause th oh 'ervation i Sl arse and irregular in spac and tim . Furth rmor , 'rt is the observati n noi. , which is also Gaussian with mean zero and covarianc Rt. If we assum that xru is th true staLe of the system th n the forecast error and 22 for "-'c ast -err r CO\ 'Rl l<:l ll ·e can Le d 'llllPd a~ b cl \ ·lntf' =-- • I ' \ -b I ,,·hr rr the (.) is t hr stat r:-,l rcnl rxpc>ctaticm op<'l rllor. Tlw oh:-,Pl \'Hiicm Nro r and obsen ·a t ion-PrTor cm·axrancc> can lw d 'not Pel 1)\· (2.5) (2. G) Our ohj e tivP i. to fi nd t lw np rLltr'd. tn.tP (ra]]('(] anah·s i ) x ;I from t lH' fo r Pcas t s ta i r X tb and obs n ·ati n }/. \\. can \\Ti t .\;1 as (he }mra r wei~ht r d mea n of x:~ a nd } ~: ' ' H'"") X Ia = •'-,.bt + I\ -( 1 1 1•"- t (2. 7) where Hi the linearized m as urem ent op ra lor and 1\ is thew ight. Anal,vsis error and analysis-error covariance can I e represent cl as: (2. ) (2. 9) On olving equ ations (2.3). (2.4), (2.7) and (2. ). th equ a tions for anal)·sis rror and 23 anal~·si - rror ovanancr an h r \\Tl t t rn as E7 ~ c7 + l\." ( 1 t - H --~) Pt - (!- l\ tH )P/'(I whC're I is an id 'lltlty nwt n:x (2. 10) l\-1 H ) 1 f\-, H.l\/ (2.11) lw opt nnal "'oluiH>n JS oht ainPd wlwn t lH' (nH'c' of Pt is a mininmm ancl I hr opt mwl \\"f' lght [\. c nJlf'd t lw I\ cllmall gai n and i ~ d 'finrd as: (2. 12 ) On ·ub. tit u t ing t h \·al uc of ]\. in qun t ion ( 2.11) \\'P gc>t : (2 13) In the traditional Kalman filter th forecast- rror covariance is c akulatf'd using the equation : (2. 14) where !II is the TLJ\1 oft h nonlin a r model. Th larg numb er of degrees of freedom and nonlinearit y res trict th direc t implem entation of K alm an fi lt ers for G 'J\ I . Th en. emble formul at ion of a K alman filter known as ns mble K alman filter (EnKF ) pr po. d by Evensen (1994) i::; a practi cal implement ation of K alma n filt er for th<.-> nonlinear sysi m with large dimension. 24 Th fr n w r 2.2. h fornmlat ion of ~ nK 1. hcl~ 'd on t h' id a a. tocha. ti cliff r ntwl qncltlClll. h a that 1ft lw fm ('( ast modrl is int Npl C'( c·d fmt>Ul"t-etH 1 using ens mhlP intpgrations ( ~\'C'll:-.('11. 1. --1. 1 ~ \'Cns n ( 1 I) \\.Jth tlw ) and Hout kam 1 and ~I1tdH'll ( 1 gratrd [ rward 111 tim ·tcltlsiH'" Crlll b approxilnatPrl n KF introdnrPd h.v ) . 'll"PlllhlP m ·ml H'rs are mt P- and updcllPd (up dat •d <'llSPml>l(•: an· known as analysis rn- s mh} , ) wh llC'\'C'f 11 W oh: n·ation. X 1° = J\'t CUP clYclJlahlP. n<-Ulldy: x:) l\.·~o~ HXt ) = P/>HT (HP/JHT (2. 15) R) I (2. 1 ) P,b = E~(s:~- Xf )( X 1h - Xt )r] (2. 17) P1a = (I- XtH )P/> (2.1 ) wh re Xf i th anal~·zed tate and H is the lin arized measun•mc·nt operator. Tlw sup er ript b indicates the mod l-forecast stat . l\'1 is th K alman gain. P/ i~ tlw for cast- rror covarianc . E [.) repr . nt. th expectation valn e. the overbar denotes the nsemll mean and Pt i the anah·sis-error covanance. I is an identity ma- trix. En. emhlr I< (l,lman filtrr h a,.c; been widrly 11. rei in atm o. plwri r and ocr(tl1!C snrncr. b caus of its algorithmi t al. 2012 · Tang d at a- . imrlicity and it is relativ l.Y easy to implement (Deng t al. , 2014b). There are som . imila1ion syst em . Th size f th lisadvant ages also f r an EnKF nsemble used is ·:t d cisive factor in the p erforma n e of th EnKF . A finit e ensemble size reduces th of th st ati ti al mom nts wl1 r as a larg nscmbl c ura )'of th stimate izc is omputati onall)· not afford- al 1 . h lim1 t d ensrml l , 1z ca usPs t h und 1 Pslmw I H n of I h . _()lJl). n isy corr lat ion (Ho nt kamc'r and :.Iltdwll. 1 nor 'O \ 'Cll wn <' and o solvP tlus prohl 111. co- variam:e mftatton cmd loca ltzatiou 1 ust'd 111 c-H lvmH cd Enl\F'"'. :.Im <' dist uss1o11 a bout tlw covari rtncr mflc1.tinn (And rson and AndPt:--on L and r-ditch ll. 2001) m >thod. can h found in 110tl1Pr disackan\agP of ( mhad an and ) cUHllo< ahzcti 10ll (HoniPka nH'l 'hPr.. ,,·luch is appr oximat<·lv hold trm• ou l.v if: (2.l!J) D tailed d eriva tion can I e se n in T ang et a l. (201 4a) and thr rdc>n'ncc>!::i t hPrP in. In m any real-world sit n at ion · the measurem nt fun ·tion is nonlin ar . For rxample the observation d a t a a re at llit r adia n ·es. but the variabl required for assimilation is t mp erature. Linearizing th m easurem ent function will result in estim a tion errors and the improv m nt du to the as imila tion of orres1 onding ob servatio n~ m ay b e small (Hout eka m er and lit ch ell. 2001). PKF aclclrcsscs this issue Gy using a cliffcrenl approach for calculat ing th K alman gain and err r covarian ces (Amh a cla n and T ang. 2009 ; Tang et al. , 2014a). 2G r 2.2.2 In t lw lassi u l ti r f n nK .. s hc>lllP" . t cHHlomh· 1 ' It urh d oh~c·n·a t ions ar ' nsnally llSC'd to avmd tlw nnd 'r strmntion of th ancdY"lS-Pitol c·m·arimH'(' (B m gc•rs c•t al.. 1. 9 : H ut kamer and )-Irt ch ll. 1(()) Prtn rhmg th' olJ~C'I\'H(J\\'('\''r. w1ll act as a not h r s m CP of sam phng ('lTm cmd d 'C 1 'cl:--P t lw c-H·c·nracy of t lw ana l \"Sls- ' tTor ('CJvanancC' matrix (\\'hrt a kPr and Hamill . 20 l2) . use of unp rturl Pel ohser,·ations. hut d\'OH l. hns c-111 optimlllll approach tlwt makPs "" l<'lllcltic ll1Hlc·r<'stimatwn of ;-mal.vsis- rror cm·arianc . \\'a. clP\'Plop Pd 1)\· \\ 'l11t ak r and Hamill (2002). C'H llf'd the· c·n~PrublP .~ q u ar0-root filt0r (En. R ) For conveni nee. analysi.· stat rquation (_.l.J) can hP rc·\\·trttc·n as th' snm of uH·c-m f anal~·.i ' wher ' tate Xf and the dC'viation from th mean ~tatP x;~: Xt - Xt 1\t (}I - H X {') (2 .20) .\f f = );f 1\t ( 't~' - H x:/) (2.2 1) f (t is the traditional Kalman gam and !1~1 rs th gam used to npdat e thr deviation from the mean . Forth traditional EnKF , J\ 1 = A-1 . Here 1 ~' is the rancloml_v p rturl eel observation EnSRF rrors (\\'hitaker and Hamill. 2002: Burgers t al.. 199 ). In quation (2.20) will l X~ I written a~: = X/ I -- 1 - I ..-- f{t H X 1b = (I - l\.-tH ).:'\.7 I (2.22) J(t i~ d w. ' ' ll ~n ch that it.s uc£initiou will sati ·fy t he t-m al)'~i '-l'rror covariance equation 27 (2.1 ). In h n th , olui10n w1ll l qu al t o: n R . ohsrn ·a t10ns rc n cllso h p roc·pssPd on· l-1 ( a lll lH' R] 1 (2 .. ) lll tha t casP H 1 /' H 1 a nd R rrducr t o scala rs. R ' \\Titmg r qn n t ion ( ..... 22). 1f /\. 1 - n l\'1 . \\'lH·I r n is a cons t a nt. on solving fm n. tlw s >lntion ob ta in •d 1. (\\'l11tak •r Hnd Ha nllll. 2002): -,--R-R) (2.2.J: ) 1 H P/' H 7 2.2.3 In Sign1.a point un nKF . t h nt d K li n srml 1 m mh rs a r us u a lly g<'nPrat Pd r an d o ml ~· nsm g !->Olll P v.:Pll- d esign d r andom p erturb a tion s ·h e m e. (E,· nsPIL 200~ ) . In en semble iz i u su ally d et ermined pl xity of t h e KF ) n filt r ( n KF and E n. 'RF . t h e onsidPrin u t lw lim ita ti ons d ictat ed b~· the corn- imila ti on s~·stem. or cal ulat i n cap acit y. or iu som e casrs b,v sen- sitivity studies ( ~Iit ch ell t al.. 2002 : Lor n c. 2003: Lia ng. 2007: 'u rn e t al.. 201 2). v. hich is not d et rminis tic in a rigo rou s s t a tistical sen se. In contr a.s t. d t erministically chosen s h em FCKF u ses a t o gen r at e ensembl m emb er , ( i. .. sigm a p oints) b~· the seal d unsc nt ed tra nsforma tion formula ( Julier. 2002 ): t V(L + A)P a L . f r i = L 2 ..... L \lJ 1 = X~ + [ 1 \ll ~~ = X t - [ J (L + .\ )P,a ],- L , fori = L + 1. .... 2L 2 (2.2.5) h rc is a, et of wpighL a. o 1at d w1th th "<' s1gma pnmts ,\ L ,\ . for i - 0 and (2.2}) . for i- 1. ... 2L wh r tlw sn1 'rscTlpt. lll <'Oll<'sponcl to t lw lllPad of t lw :ignw points around I lH' m<'an state X f. It ·hould Ideally be , lllctll to nunillllht' t ht• higlw1-o1< lc·1 df<'c·t. wlH'll tlH· IWllllllarities are. tr ng. k is a control param<'t<'l that gwuantc•f's positin· sc·mi-ddinitC'llPSS f th covarian matrix and is an important issue in implemC'nt mg . 'Pl'KF. TllC' valu of k al. o d 1 ends on the valne of n . k c>nsun's that ,\is positive. othC'rwisr the weight f the zeroth sigma point. u·[;' < ()and the non-positiv' \\'C'ights can makP the covariance non-positiv midefinite ( Julier. 2002: \'an d('r ~lC'rwc. 200-J). {j is a non- negativ weighting term introduc d to reduce the approximation error. If the stat distribution i. Gaussian. 8 = 2 is an optimal choice (Van cler ~Ierwe. 200-J: Julier. 2002). In this th is th valu sofa= L k = 0 and 8 = 2 are used. whose rationales and th detailed derivations an he found in Van der ~ I erwe (200.:1) and refer nces therein. SP K F mak s u. of the fo llowing r formulated equation to obtain the Kalman gain f (t and analysis-error covarianc matrix Pt so that it d es not require a TLT\1 or 29 lin arize l mea, urem nt op rat r: (2.27) (2.2 ) P/"Y is t h noss-cm·ananr mat nx of t h ' st (1 t r (11H l oh:-.('1 \'<1 t ion pn•dJCt ion f'rror. I /111 rs t h cm·arianr mat nx of t h o hspr \'<-1 t ron pr PclH t H m c•nor. \ an cler I\Irn\·r (200.-J ) and ml>cHlan <-llld or ;.1 dc•t ni lPd clPll vat 1011 sc•p (mg (_OOD) and H·fc·tC'llCf's thc·n·in. equation (~.2 7 ) and stat s ar updat<'d 11smg, tlw followmg, c'qHation: (2.20) At thi .'tep one can gen rat n w sigma point . hy: (2.30) Th sigma-point vect r rs 1 r 1 agat d through equations (2. 1) and (2.2). Th nwan and covariance ar alculated u ing the following f rmulas : l=2L Xf = L w;n X~~~ (2.3 1) 1=0 l=2L Y. b I - L-t 'U?m,1 rbt ,7 '""' (2.32) 7=0 l=2L pbt = '""' Xb/ ,1 _ X Ib) (-''Kb/ ,1 _ -')(b)T L-t u{( 1 t 1=0 30 (2.33) h ross c van an P/" 11 and proJec t H n m·ati ancP ? 11111 ar n dlw l C'd hy t h P followmg qu a t ions: - ,,\ .h)( '1 ·h - fh)7 1 11 I (2~ cl ) ,r( '1 ·h _ ,1 ·h)( '1 ·h _ fh)I ( .. !) ) ,c ( , .h ll, 1 , \ 11 0 1= 2/ 11, 11 1 11 I lw \\' 'igh t s associa t rd \\' 1t h t lw cm·arian< · ' calcnlat ion is (1 V ing th ') n~ 1) . fm I = [) and PCKF . the S<' oncl ord <'r arcnrac\' can hP p t PSPf\'C'd m t hC' m Pan and C'O- v n an c . Higher- rcl >r inform at ion of t h ' sys t Pm in t h cm·ari ancP can lH' iudndPd hy u ' ing the scaling p a ra m eters o a nd i3 (.Juli r . ~ 002: .Julwr a nd -hlma nn . 200 1). 2.3 Models In thi study. VI e us th Lor nz- 96 m odel (Lor enz. 1996: L renz a nd EmanueL 1 9 ) and the Zebiak-Cane m od l ( h en et al.. 2004). h r aft er ZC m od l). A bri f introdu ction to the models is given in the Subsections 2.3.1 a nd 2.3.2 . m or d et ailed description a l out the Lorenz-96 model can 1 f und in Loren z (1996) and Lor nz a nd Emanuel (199 ); more detail about Lh ZC mod 1 can b e found in Zebia k a nd Cane (19 7). 31 2.3.1 Tl h Lorrnz- L r n z- m m o I '1 (Lor n z, 1 1 o n ' ll7 a nd ~ m a nuPl . 1 l ) 1s a hi ~hly- nonlinr a r model ft r nus d as a I s t-h 'd fm ll C'\\. d a t a-assuml a iHm ;.llgorithms. his modd ha s m a ny comm m asp r t s w1th a tmosph ric m od (+, ' \ 'C'll tho ng h it is n o t nwt 'omlogica lly v r.\· realist 1 Th m odel qu ti on 1. ddi n ' d as. 1 ~ / - .r, 1 ( .r 1 - r 2 ) - .r, 1 (2 ~37 ) F 1 wh re z = 1. - · ....Y.r . r 1 r sen t. clos d c n li e b o und ar\' concb t 1ons TlH' .r, ·s conld h P 1 os ly tr a t ed as a n a tmo,' ph ric va ri a bl a t d iscret r longitnd 'S a ronnd a con s! a ut latitude ir 1 u ch tha t :ro = J.'.Yr· 1'- 1 = .rsr- 1· .l'N:r b e au e the dimen sion is 'm all a nd coulcl. h ., similaritie in cha ti 1 = .rJ. his sy t Pm is 11sPd asily :caled and a lso h rca use of its b eh aviour a nd tim s ·ale of predict a bilit y as found in realisti c weather mod l . Th t erm F i. a n xt rna l fo r ing and h m odel lw h avc's ch aotically when F = The Rung -Kutt a f urth- orcler ,'ch m e is used to solvE tlw mod el equation with time st ep equal to 0.05. P erf rming d at a assimila ti on ever:v time st Pp orr I onds approxim at ely to 6-hours in a gl b a l weather m od 1 (Loren z and Ema nncl. 199 ). A mor d etailed discussion of the model a nd it · h a ract eristi ·scan 1 in Lorenz (1996) and Lor n z and Emanu 1 (199 ). The exp rim nt s a r fmm l conduct ed in th p erfect model s t up: that i . a long-t rm integration fr om an a rl itr ar~· initial condition is u s d as th tru state and synth ti obs rvation i gener a t ed hy a dding normal random errors to the true stat . 2 z 2. .2 h l k- 5 \'('fSiOn of th modP} (ZPl IHk c\ll< lc·l Is a couplc·d oc·c·mlat mosplwrr mod 1 and ha in t ns1 t y lat 1 lw '11 wJdPh· 11 ·pc[ for '\'C'nt · for 1 ot h f Os(\\'·bstrrandialnH'r.l nus d h~· t h ' t iminf!; . phasr and X]Wl im 11 t a 1 awl opPnl t ion al purpos ·s since t lH' -. l .cusp•ckand . ndc'rsmL20()7 ). Th1snwdPlhas 'hf'n Pt al. (:...00 ) for h snc · crs~..fnllcm g- tc · rm IPlwsppr·tivP ptPchctwn of E:\' 0 for 1! \'<'Hr. ( 1 ) - 200. ) Tlu. Wrts t lw fi1 st dvwunir a] r onplf'd nwdr' l lus mode•! has C'Olll])()llPnh of hot b drs('harg('- rr·chargP developed to pr diet and d la~· d JH Pdi<'t ing sc1llator ph,\·:iC's of ~ 0:.'0 . The Z m d 1 i an anomaly modrl that computes anomali s of atmosphPriC' and oceam fi ld. r latin· to asp dynami s follov,· Gill (1 ifi d monthly man dimatolog,v. Tlw atmosplwuc 0). with a ' teacl,v-statr. linPar. shallov:-walC'r Pqnations on an quatorial beta plan . Th circulation is f rePel h.\ ' a hPating an nnaly that dPpends on the Tan mal~· and moi. ture conYerg nc paranwtc>rized in t rrn:-:. of surface wind conYC'rgrncC'. ThC' modd domain is confinC'd to t hC' tropical Pacific (k an ( 101 .2.S 0 E 73.125°W, 29°S- 2 °1\} The grid r solution. for ocean lynamics is 2° longitude=' b:v 0 ..5° 1 titude and for S T physi ·,' and the atmosphere the model grid is 5.625° longitude by 2° latitude. Th ocean d~·namics use the reduced-gravity modC'l. The surface currents ar generated 1 y spinning-up the model with monthly mean climatological \vinds ancl is then u. d for t h current anomaly calculation . Th the SST anomaly a nd h eat-flux tlwrmodynami s describe h ange. The governing equation f thermod~·namics contain thr e-dimensional temp rat ur advection by th calculated anomalous current and Lhe sp cifi d m ean urr nt ( ane et al., 19 G: Zehiak and Cane. 19 7) . The mod l1 ~ gi \ ' Cll b,· gov rnmg qnation of thcrmocl)·namics m th Z aT - ~ = - [. - T - C.\l(T - nT JI (W T) - [J/(Il' (2.:3 ) wh rc the harrccl and nnhanPd quantitH'S H'pt<'~Pnt 11H'a n and anomaliPs lC'SpC'ctl\Tl.v. C and\\. rPptP~cnt hori?oulal smL·HT cmu'nt~ c~ud upwdling \·p]ocily H'~P('C'tivdv awl n i a th rmnl damping odficiPnt. TlH' hmt?ontal cHlvc'ctwu tc'rlll~ mr n ' plPSP ntc'd by th first two trrm. on the right lwnd ~tdC' of tllC' al>OV<' Pcpwt1011 of anomal us ur w lling in th The dfC'cts prPsPncc' of thP llH'an vnt1ull lrmlH'ratnn' gradic·llt. ~~- ancl thr total upwelling in tlw pre's nc of thP mwmc-dous \'f'ttical temprratnrc gradient. ~~. ar rrprr. nt cl in the t h1rd and fonrt h t Pnns rc'srwct ivel.v. lw la s t term is a lin ar damping term that rcprPs nt~ the chcmg of,. 'T dne to tlH' lH'a t exchang 1 tween th ocean and atmosphc>re (Zrbiak and 'anC'. 1 7: Battisti. 19 h ng et al.. 2010). Th fun tion J£ (.1·) i. drfinrd hy : 0. JI (.r) = .r < 0 (2.39) - { I. I> 0 The function !IJ(x) rnsun's that surfr cr tPmprr().tnrr i. ().ffrctrd hy vrrtic().] ;vlvrction only in th presence of upwelling (Zebiak and Can . 19 7). The surface wind-stress anomaly is gen rat d from the background mean winds sp cified by the obs rvation and surfac wind anomalies produced 1 y the atmospheric model. The ocean dynamics time step is 10 clays. Further details about the Z can b f und in ane et al. (19 6) and Zel iak and 34 anc (19 7). mod l Chapter 3 RRSPUKFs: Derivation and applica- tion on the Lorenz-96 model 3.1 Introduction Thi, har ter con ·titutes :ome of the main thror tical contrilmtiun~ of thi~ chs~etta­ tion. he ad\'antag s f th the PCK algorithm compmed to uK and En 'RF m st ima ting t h true m an and cm·ariancr ha\'e alrrad)· bern n•,·i ,,·pd in t lw prPYions ch apters. In PCKF. th sigma point. are generated clctt>rministicall.\· hy the s ·ah•d un cent ecl transf rmati n f rnmla (Julier. ~002). The main limit<:1tion to apply thr P KF to c hi gh r-dimensional syst m su ch as r\ \ ' P is t h rcqnirPm •nt of morr than t wic th number of sigma 1 oints than t h S)'St em stat s. If the S)'St em dimt'nswn is L , thc:r is c requir ment of 2L + 1 sigma points for C'stimating the mran and co- 35 vanan investigat ne of th' 1 oss1hl solutwns IS to <1111 utatwnall.v unf c.Ihl . and that i. if th numb r of s1gma pmnts an h lmvPI d hv takmg tlH' rPdnrrd-rank appro ·imation f thr fnll, rigina1 sigma pomts. Cl\ . wluch cant tHin most of th' main f<•alluPs f th hP possihilit \' of const lllCI lllg a rc>dncPd-umk approximation is invrst igat rd in t h , c>ct ion :3.-. 3.2 R du d-r nk . . 1 1 l1n n filt r (RRSPUKF) Th r du · d-rank ap1 roxnnatwn is mainlv hasPd on the cone 'Pt that most largr-scal gcoph)"ical phcnonH.'ll<:t can b · app1 uxima t'cl bv a hmt <' lllllni>el of d<'gH·t·s of i1 <'<'dom and th ir cl minant variahilit \' can he rxplainc>cl hv a limit Pd mnnl H'r of modPs (Temam. 1991: Lermu ' iaux. 1 97: L rnmsianx and Robin.-on. 1 : Ambadan and Tang. 2009). Icl ·1ll)' these m l · sh ulcl b all to dc>scribP th Pvolving dynamics of the y t m. Comm n t hnique' us<>cl to r ducc> thC' numb r of mode.· to a lim- it d number that is st ill a lle t repr sent th dominant f at ur s of the system are dynamical. ingular vector (P alm rand Zanna. 2013). mpirica1 orthogonal functions (Lor nz. 1965), prin ·ipal oscillation and int ra tion 1 at terns (Penland . 19 9) and radial functions and wavelets (Lermusiaux . 1997; L rmusiaux and Robinson. 1999). Lermu iaux and Robin on (1999) pr pos d the ·oncept of error-sui space stati. tical estimation (ESSE) to find the dominant rror subspa . d scrib cl by err r-subspace singular ve ors and values. In the following section a similar oncept is applied in the case of SPUKF, assuming that most important errors oft he original sigma-point space can be estimated using a fewer number of Lhe dominant . igma points (l\ Ianoj 3 t al.. 2014). r s can hr sr n in t hr quat ion lwlow . 1ll T h . for t hP com plPt d 'SCript lOll of all the> rrrors we Iwrd to nsr tlw numlwr f s1gma points dc>t<'lllllll d h~· tlw diniC'nsiou of t h rrror-covarian r mat 11x. Pt: ( ~~ 1) (L >.)PnI J I [, by finding the redu Tel-rank a.pJ roxinnJ1011 of • fo1 ; - L 1. .... 2L Pr tlw munlH'r of s1gma point s can hC' reduced. Two methods are proposPd for tlw rank t Pdnction and hotb rln' hasPd on th T VD. The f rmulation of both uH'thod. i. dPscrihPd in .'c'C'(Ion ~3.2.1. 3.2 .1 RRSP U KF (D ): T SVD 1n t h data pac In the RR P KF (D ) m et hod. T \ 'Dis aJ plied n the covariance matrix constructed in the data space. so the filter will bed noted as redu ·ed-rank. sigm -point 1msc nt r d Kalman filter (Data) (RRSP"CKF(D)). As can b cen in equation (3.1) the numbC'r of sigma points is d termined by the dim nsion of the error- ·ovariance matrix . Tlm.·. t h central point of RRSPUK(D ) i , to effcctin~ly reduce the rank of th' enor-covariauc' matrix, which will b achieve l by the TSVD m thod. Th analysis-error ·cn·anance Pt in (2.15) is symmetric and ·an be clecom1 o l as: (3.2) 37 wh r D~ -= dwg (CJf. 1 ... a}d is a dwgonal matnx cons1stmg of thr igf'l1\'Hlu saL. s rted in dcsrf'nciing ordPr. i.r .. al. > ot. ? 0 fori > .J. Er = [ 11· ... J't.d is thr 1 1 matrix consist mg of t hP corr spondmg igPll\'PC t m s c 1,,. or dnce tlw mtmh ,r of sigma point s. a lPdllcC'd-tcmk. 'lTOl'-(m'ari nn c<' matrix. dP- notrd hy P1°. can lw approxnnately ohtainC'd hY thP trllncatmn of Pqnntion (:5. 1). pn- EaII Dn (Ell1,1 )r I 1./ wher list h , tnmca tion1mmlwr The lH'W s1gma pomts a r P gc'lH'I at Pd a."i follows : w1 .o = x,a JU + A) ]CJt,l c for z - 1. 2 ... / '-l! ;l = X il- [ JU A )]CJ~.~-trl.l-1 . for 1 = l + 1. ... .2! w~, , = x,a + [ where o i th . quar root 1,1 . (3.5) (3. G) f the eigen va ht e and c is tlw eigen \'ector. Th new sigma point vector nO\\' b com es: (3. 7) Th numb r of igma- points generat d by equations (3. 4 to 3.6) a re 2l + 1. 3 R 3.2.2 K Inth RR Pl' K ("')nwthod. in t h c'nsc'mhl su hspac v ( ): \ ' ii h If' applJf'd on th cc \'cHl;-Ul P nwlux consl rncl ed hP HRS I l ' K .. ( ) ( nsc'mhl '). de' not Pd a.., 1 can cfTe ti,· 1~· . 8\'P comp11tationallnu thro11gh r •d11cing th s 1g ma pollltf. hom '2L to 2/ + 1. h sa\·ing 1s C'sp< cwll\' signifi ani \\·hc·n t l1C' C'llC>l C'O\'CU ir111c 1 P1n can h cl!l roximat d ,,. ll by a fc'w lc,adin g mod '"' so that a ..,mall/ can haY<' a good lnmcalion cccura ~·. HowC'\'Pr. a large' challcng in RH ,' J l'l\ ( ) 1s th · compnlahon of Pt 1lsPlf. \\'hen th state dim nsion is hug'. 1t IS cmuputalionallv cxp<'nsi\'C' to cornpnt<' such a hig m atr ix and it is <'V<'n more eli Hie nl to . I en c' n th r app roach to sc>C'k the mo.· t Important sigma points . which can avoid thr af r m ntion d hall nge. is through Tang et al.. 2014b ). \\ ~h n the stat dim n ion n. i. \ 'Din th rns •mblr spac (.:\Imwj 't al.. 2014; dimension L.\1 is much grc>ater than the• Pnsc·mhlP L ,\1 >> 11. it i · possibl com1 ul thr , '\ ' on thr nXn coYariancc matrix (v n Star hand Hanno. cho k. 19 4: \\Tilk ·. 2011). which is com 1 utationall.v affordethk for a. syst<'m with la.rgP clinwn. ion . Tlw computettimml COlllpl <'xit~· of thr a lgorithm to find the covaricmrr matrix in th<' data spac<' is O(L~ 1 x n ); however. the m at h 11atical complexity of t h ensemlle subspace is O(n 2 a lgorithm to find t h covaric n · matrix in t h LAJ ). The cliff rene in computational compl exit)· b eh\·c n t h two a lgorit hms is significant when L AI >> n , that i , usually t h N~ P model. One of the main advantage of RR P as for a r c- list ic KF ( ) over RR PCKF (D ) i. that in RRSPUKF (E ) we can calculate th analysi -error covaria n ce explicitly. which is a requirement for gen rating th sigma points, even for a larg -climcnsionalm del. In th RRSPUKF( ) method a ll the ens mhl ar lll dat l according to equation (2.3) and h n from t h cs m mbers find the analysis-error cm·ari a n ce m at rix PtE in 39 the n mblc subs] ac accordmg l o: (3. ) wlwre Xf is l he anal~·s1:-. m 'an. h n , '\'D 1" 1wrfornwc l on tlw 11 X 11 anal~·sis-PlTOr CO\'ariancr mal nx: ( 3. ) wher Ft is thr igc'm ·cctor:-. and ;;1 i:-. d diagonalmalnx of the rigPnvalnP~. Th ig m ·ec l or: of pta I:- and Pt m r diff('l rut. hut 1lw lrading 11 eigrllv(•C( ors of Pt can b mputed from the rig 11\' ctors Ft of PtE: (von torch and Hamw~chock. 10 4: \\'ilks. 2011) using : (3.10) where l = 1.. 11. The role of the denominator is to mak snre t hal the resulting E~ have unit length. The maximum value of l is l = (n- 1) /2. so that the total numb r of ensemhle members is n for every time step. The new igma points are gcn ,rated in the same way as in equation (3.4 to 3.6). i.e. the mean and (n - 1) /2 of positiv and negative pairs of p rturbation to the mean. 40 Appli 3.3 ti n nth z- 6 m r l In thi . eel ion. th 1 n'lcticalit)' of ll'-'ing tlw n dm d-n111k s1gma-pomt I alman filtc·rs alg,ori t hm a::- an dl 'ell n' da t a-e~ss1mi la t 1011 llH'l hod for high!\· w mlin 'H r wo stwl\' 1s tlw LmC'nZ ( 1 G) modc·l. Th' modd quatwn 1s gl\·rn by: d.rl dt - .rl 1 (.rl 1 ,,·her z = F c .11) 1. 2 . ....Y:r . Tbi. model simulate::- tlH' imC' Pvolution of an un rwcifiC'd ~calar atmo 1h ri variahl ..r. at .Y:r 'qnicli~tant grid pomts around a constant latitnclP circle. \\rh n th (Lor nz and valu of rxtPrnal forcing F manueL 1 = . th ' systPm hC'h cwC's chaotically ) . Tlw fonrt h-ord ·r R nng -Kntt a sclH'lll(' i!-> nsed for t h(' time int gration of the mod l with time st p = 0.0.5 . In th fiPld of cl("ta a .. imilation , thi. modPL clong with thP Lorenz (19G3 ) thrC'c- variable model. i. oft n u. d a data- similation m thod a test-b d for examining the properties of varions (~ Iiller et al.. 1994: et al. , 2012) not only because of it mbadan and Tang. 2009: Kalna.v smaller d gree. of freedom. allowing vanous xp rim nts , 1 ut a lso because it includes many d)·namic features of realistic wee-It h -r sy t m (Lorenz 2006). For example, it has those of full rror growth characteristics similar to \iVP model . A more det il d des Tipt ion al out l h model and it ch ar acterist ics can b found in Lorenz an l Emanuel (199 ) . On of the reason s for using t h Lor nz-96 model for data a:-;s imilation xperimcnts is that , if new assimilation algorithm giv unfavourable results for a high!)· iclralizPd 41 g t r asona hl mod l. it ht.[?,hly unllk,ly fn the s(m nH'th d to r snlt s for a lugh-dum'n~wrwl 1 Palu.., t 1c weather model. fnll-scal m d l sn h as t h L rcnz- 1.' exprrim nt using a high-dim 'llS1011c11 mod lrs a time consnmm.[?, and vast 1111dPrt a king. h 'lWrimcn t r snl t ~ fl om ~1mpl modC'b can g1 \'P ~omr dn P< 1ions on gc'nC'r al t rPnds and possihl hcha\'lours. 3.4 Exp rim nt I \\- perform t h tup rl.ata assimilation <'xprrimcut :-.; undf'r t lw ohservmg s.v:-.;1 <'lll simula- tion exp rim nt: ( E). al. 'o known a~ thr rwtfC'ct uw ll c·xprnnH'nts. OSS""'s an' g n rally d , ign d t te, t th p rforme:mcr of liff r nt data assimilation algorithms. Thy may a lso b used to ass ss the potential im1 act of an obsC'rvation array to hP deploy d u 'ing data-c " imilation mrthods (.~ l a~ntani Pt al.. 2010: Hontf'kanHT. 2012). In an 0 . th m rl.cl trajector~· is created 1.v a long integration of thf' m )(lPl forward in tim from a known state. Th mod l traj ctor~' is known as tlw .. trnth''. Synthetic ob 'crvation , arc created by sampling the model tH"tjcctmy at asp ·cifi<'cllocatioll awl interval using an ol s rvat ion forward op rator (for a rral model th frecp1cn ~· an l lo at ions of sampled observations . hould be irl.enti ·al to that of an a ·t ual observing sy tem). In th next step. these s~·nthetic observation. a r assimilated into the model using th state of th art data-a similation method an I th r sultant product is known as the an alysis. The assimilation p rformanc can b e evaluat d comparing Lh a nalysis with th "truth''. 42 n rati n 3.4.1 h f trut rv ti n n x1 ermwn tal set UJ 1s s1milar to that of Lor nz ( 00 ) . w h 'r .. \ ·r- 0 c nd F. the magnit ucle of t h for ing. 1s "''( to . 111 which t hP svst m 1s chaot ir. h nalurr or ohsrrYation sinmlat1 m nm1s cr'atc'd h\· mtc'giclting th' sys <'lll mTl 4000 tim stc'ps by using th fmrlh-orclrr Run gr-1\utta "dH'mr. The' intq:;n1tion ::-;1 pIS S<'l to 0 .05 (i. .. -hours). Th data from t h nat nr<' n m 111 t h tim ' st <'ps 1000 2000 a l'<' I akPn as the truth. ThC' ohs<'n'Htional datc1 s'ls la t i,· R ~ L c>t ror ( R R ~1. ) lwt \\'P n ! h(• anal vsis ns mhlC' llH'clll and th lru stale': (:3 .12) H r e X:r is number of th model dlln 11. '1011 (S r=.JO m this case> ): wh r Tma :r is the numb r of a.·similation cycl and 11.11 2 is the L2 norm . 3.5 Results and discussion 3.5.1 State estimation exp erime nts with RRSP U KF (D ) and RRSPUKF (E) On important. elem nt in the ar p lication of the RRSPUKF method is the size of the truncated m od es of TSVD . or efi'ect ive sigma points. sm all ·iz.e f- il:s to ch ara<:icriz.e important. error st atisti .· an llea ls top r a ·simila lion analysis. whereas <-1 large size is likely computationally unaffonlablc . goo d st r a t egy for det cnuiuiug the siz.e oft he 44 trun atrc1 m d i, s nsitl\'ity Xl eriments. which are oftpn us 'din .. nKF to xanune the anal~·si. rror as a function f the nsPmhlc srz (~ ht chcll C't al.. 002; Liang. 2007: nrn tal.. 2012). m nc. 2003: xpcllllH'llb cUl' condlldl·d llsmg dlff<'l<'llt t1tmcat<•d moo s after th \ "D tving hoth thr RR. r 'I\ (D) and RRSP TI\F( .. ) nwthods and th rcsnlts ar mpar c1 w1t h that of a fnll-r ank SI '1\ . Figure .1 she \\'S th \'Hriation of RR.:\1. used. as a fnndwn of thP llllllliH'I of srgma points s can be seen m Fignre .. 1. h low 21 ..,rgnw points t lw Psi uw1 t 1011 skill is \Try poor for both s lwnw~ lmt as th' mtmlwr of sigma pomh llH 'H'H;.;('s th C'stimatwn err r de reasc~. \\'hen thC'r' arr :31 srgma pomts or more. fm tlwr unprovc'mPnt is minimal . nggcsting that 1 sigma points conlcllw n~('(l for cl~~Jmilk-ttion. lmlanciug tbC' accu ra ~·and computational cost. Figur .2(a) sh ws th assimilation solution for thC' variablr Xl of thf' LorPnz-OG mod 1 f r the full-rank PCKF compared with the truth w1th time' stC'p f . In thC' . e ond a e. the RR PCKF (D) is u cl to r duce thP sigma points. In this casC'. ;31 igma point are . 1 cted that a ·c unt for mor than 3Vc oft he total varicmce (Figur 3.2(b)). The model state can be fairly wPll estimated by the RRSPC'KF(D). although its R:f\1 E i not a mall . the full PKF (Figure 3.3). In the third case, the RRSP KF (E ) algorithm is used to re luce th number of sigma 1 oints. s m these ond ase, 31 sigma points are cho. n. Shown in Figure 3.2( c) is the simulation of variable Xl from the RRSPUKF (E) algorithm comp a r d to th truth. Figure 3.3 compares the stimation error (R 1SE) in the cases of (a) Full-rank SP TKF. (h) RRSPUKF(D) with 31 sigma points. and (c) RRSPUKF (E) vvith 31 sigma points. In the cas of both RRSP KF(D) and RRSPUKF (E), the Rl\ISE is Ycr.v cl se to that of a full-rank SP KF. As the full-rank SP KF ontain more numb er of sigma p ints it Lakes longer time t.o r a h th equilibrium vc lue. Comparison heh"'een Figures 3.3( c) 45 - - RRSPUKF(D) RRSPUKF(E) 0.35 w 0.3 CJ) :E 0:: Q) ....n:s> 0.25 Q) loo.. Q) 0') n:s loo.. 0.2 Q) > <( 0.15 ··· ~~~~~--'I 0.1 10 20 I I 1 I I I I I I I I I I I I I I I I I I I I 40 50 60 70 30 Number of ensemble members 80 90 Figu re .1: Th tim ave rag cl r lati ve RT\I 'E a. a function of number of sigma points ( ensembl m embers) u ed for the Lor nz-96 1110 l l. and 3.3(b) rev als that th RRSP KF (E ) is ·o1111 ara hl with the sam error magnit u le, sugges ting a p ossible solution to ap- approximat plying SPUKF in high-dimensional systems . vvith th RR PCKF (D ) 1\ Iore det ailed discussion a bo 1t the RRSP KF (E ) is given in S ction 3.5.2. Computation Lime for various m thods using a Linn PC with a 2.0GHz Int 1 P ent inm Dual Core pro · sHor is shown in Table .1. Th ·om put at ion time is for 1000 c~·des of an alysis- forecast steps on th Loren z-96 model. This ·ompu tat ion timin g results from 46 Full-rank SPUKF - - - True (a) . X -10 100 0 200 300 400 500 600 700 800 900 1000 1me steps RRSPUKF(O) --- True (b) 10 5 . 0 X -10 100 0 200 300 400 500 600 700 800 900 1000 1me steps RRSPUKF(E) --- True (c) 10 \ 5 I ,.. X 0- -10 '------~-----~----------~ 0 100 200 300 400 500 600 700 800 900 1000 Time steps Figure 3 .2: C ompa rison h ehY<>en tlw t rue \·alne a nd a na l~·s i s for Ya ri ahlc> Xl wi t h tim <' st ep for (a) the full-r a nk P U KF , (h ) RR SPl KF (D ) ,,·ith 31 sigm a p oints (('llsemhl(' m em1w rs) and (c) RR PUKF (E ) wit h 31 sigm a p oints. the exp eriment s on Lor n z- 96 m od el giYP a gC'n era l trend of how RR SP U KF m et h ods p erform compa red to the· full-ra nk SPUKF . RR SPUKF (E ) nncl (D ) nr<' m1wh fas t er tha n the Full-R a nk SPUKF . The timing of RR ,' PUKF (E ) is s li ghtl~· h dkr tha n t h l' RRSPUKF (D ). The timing r<>sults from both the RR , P I\:Fs nrc' cmnp a ra hl< ' 1H'cn ust> of the low-clim<>nHiona lit y of the' Loreu-9G mod('l. For a n 'nliHti c ntmosphcric or oe<' numb r of o bsc>rva t ions w can a ilo rd onl v R P KF ( ) m thod . 3.5.2 n itivit r im WI F( ) h m thod In th ,en,iti,·it)· rxperim nt~ wr us diffe1011t t1mwatc'd moclP~ after the . VD. Figur ...1 cli.'pla)-.' th s0nsit i,·rty C'XI PrimPnt 10snlh of RR . 'PCKF ( ~) mPt hod . and t lH' variation f th timr mean c f th R:.I E wit h tl1C' diffPrPut nmnlwr of sigma point s (i.e., enseml le 'ize). cr a 'es fr m 21 t s shov;n in Figure' :3 ...1 . wlwn the nmnhf'r of s1gma points in- 31. h R\'erage rror quickly dee r 'ases. whC'reas wlwn t hC' nnmiH'r of sigma point. chang from. 1 to ·-11. the im1 ro,·rmc'nt in th ' analysis is not VC'l.V sig- nificant. This suggc ·t , that ;)1 ·igma pomt · aH' most likd~- sufficic11t t o clmradcrize th error statistics in thi ·ase. Figur s 3 ..5 and 3.G shows tlw assimilation solution for a different number of sigm<1 point. <1nd fn ll . Pl"KF in ('om pari son to t hr trnt h . \A/h n the number of sigma points ar 3, .s and 7. the assimilation solution is far away from the truth 1 ut as the number of igma points increas the assimilation solutions ar closer to the truth (Figure 3.5 and 3.6). \\'h n the numl er of sigma points are 1 or abov the assimilation solution is similar to that of a full-rank sigma-point K alman filt r (Figur 3.6). Figure 3.7( ) shows th assimila tion solution for the variation f the Rl\IS "' over thC' 40 varic hl s with tim step l for 1h e full-rank SPKF. Fnll-ran k 49 PK can result in a 4.5 4 3.5 w CJ) :a: a: 3 Q) 0') m m 2.s > <( 2 1.5 1 0.5 ~------~--------~------~------~~------~ 0 20 10 30 40 50 Number of ensemble members Figure 3.4: The time m an of th R1I E as a function of truncaiecl modes (ens ml >lc size) for RRSP TKF (E ) method. very sm 11 RMSE for the es timation of th mod l states after approxim ately· 120 t imr st eps. The RI\1SE of the analyse. om par d to th truth for (b) ..11 sigma points. (c) 31 sigma points (d) 21 sigma points, (e) 11 sigm a point s are also shown as a function of tim step , furth r confirming that th ensemble siz of 31 i imr rovem nt with a lditional points is only uffi ient and t hat the 1htle. Anothrr meLhod for Lh del rmination of the truncatcclmoclcs is based m th \'ari<- nee :l explained by t.he Lruncat.cd m drs with respect to the Lot al variance of a full-rank 20 ~ 7-slgma points True -.,- ,... X -10 0 100 200 300 400 500 600 700 BOO 900 1000 nme steps - b 20 5-sigma pomts True ,.. X -10 0 100 200 300 400 500 600 700 BOO 900 1000 nme steps - 20 - - - - - - - - - - - - - - 3-sigma points True ,.. X 100 200 300 400 SOD Time steps 600 700 BOO 900 1000 Figure 3.5: Comparison brtwePn the trnP nllm-' and anal~·sis of RR SPl KF (E) for the variable Xl. The anal:vsis from tlw truncated nwcl('~ of :3. 5. and 7 an' shown in Figures 3.5a :3.5 ·. indicating a poor Pstimation skill in all thn'e casPs . covarian cP matrix Pt. For RR SPUKF (E). hmvew'r. the total Ynriance P/' is unknown b ecause RR SPUKF ( ) onl:v calculates the coYariancc P1al:. of the ('nsemhh' spact>. which is relatPcl to the mnnb er of initial p<'rt urbations. Therefon' . one challengp in using RRSPUKF (E ) is cletennining thP tnmcat<'d modes. An npproxinwh' solntion is to explore' the expla inC'cl vari<:mC'P with res1wd to the' total , ·c.- uiancP of / )1a£ (Fi gnrc :~ "' ). 51 ---Full-rank SPUKF --- True ta' ,.. X -10 0 100 200 300 400 500 T1me steps 600 700 800 900 - lb 1000 41-sigma points - - - True 10 ,.. )( -10 0 100 200 300 400 500 T1me steps 600 700 800 900 - 1000 31-slgma points - - - True ,.. X 100 200 300 400 500 T1me steps 600 700 800 900 - d 1000 21-s1gma pomts - - - True 10 ,.. X -to ~- 0 100 200 300 400 500 T1me steps 600 700 800 900 - tOOO 11-s1gma points - - - True 10 ,.. X 100 200 300 400 500 T1me steps 600 700 BOO 900 1000 Figure 3.6: Comparison b etween the true Yalue and anal~·sis of RRSP KF ( ) for the vaiable Xl. The analysis from the full-rank SPUKF and tnmcated mode's of ~11. :31. 21 and 11 are shown in Figures 3. Ga 3. 6<' . The vanance explai ned increaRes with thr ensemble size, hut the rate is not mn ·h hi gh er, especially beyond tlw SlZ(' of 11. Howc'YPr. the assimilation C'XIWrinwnt with 11 ensemble memlwrs 1s poor , indicating that such a stratC'g~· ma.\' not ])(' usdul (Figure :3 A) . (a) 100 200 300 400 600 700 800 900 1000 600 700 800 900 1000 500 1me steps (d) 600 700 800 900 1000 500 Time steps 600 500 Time steps ) 100 200 300 400 500 1me steps (c) 100 100 200 200 300 300 400 400 - 700 BOO 21-sigma points 900 1000 Figure 3. 7: The variation of th RJ\1 E over th 40 variables with time step for the different truncated modes (i.e .. cu Tmblc size) fur the RH PCKF (E ) method. 3.6 Summary In this chapter, we eli ussed th formulation of redu ed-rank ell proximations of SPUKF. The redu eel-rank approximation was mainly based on the m st large-seal g 01 hysical pr cesses can b 53 oncept that appr ximated by a limited munl er of 86 -. 84 ~ 0 _.. Q) 0 ~ 82 loo.. C'a > "'C ~ 80 C'a a. >< w 78 76 74 ~------~--------~------~--------~------~ 0 10 20 30 40 50 Number of ensemble members Figur 3. : The varianc xplain cl by the truncatrd mod ( nsemhl s) with respect to the total variance for the RR PCKF (E) method. d gr s of fr eedom and their dominant Yariahilit:v patt rns can be cl scrib ed b:v a fi nit e numb r of modes (Tem am , 1991 · Lermu. ia uc. 1997; Lermusiaux and Robinson. 1099: Ambadan and Tang. 2009). Wear pli d a similar c nc 1 t as in error-subspa ·e statislical estimation (Lermusiaux nd Robin 'On, 199 ) for the redu eel-rank ar proximati n of the SP KF , ssuming that the most imp ort a nt st a tistical features of the original sigma-1 oint sr ace can b e stimat d using ·1 f '"'er number f the l minant sigma poinLs (Man j t al., 2014). Tw methods: (i) r duced-rank sigma-1 oint unscented 54 l alman filter (Data) (RR p Kalman filt c1 (En Tmbl , ) ( RI 1 1 F(D)). and (ii) U'dllted-lallk ~igma-point \lllSC'llted P TI\F ( ) ) \\TH' lll\T~t 1gat ed to find the red Heed-tank apr roximation of th PCK ~. In RR P ' K ( ). \ 'D wa~ apphrd on thr cm·ariRIH'<' mnltix P1n. construclf'rl in the data sr ac . he rrclnccd-Iank. ~quarr-wot matrix \\·a~ n~ed to ~Plc'C't lhr most import ant sigma points t lwl can rrt am the main stat i...,t leal fpa tun's of t lw origmal igma point.. Th' RI I CKF(D) can dfrctin'ly san' computational time lhrcJilgh approximating the rrror covariance P1n hv a fr,\· l<'ading mode's tlw1ehv rPdncing I he numl er of , igma-p int s from 2L + 1 to 2/ 1. \YhPn the state dinwnsion is large. it i. computCLtionally cxprn.·in' to compnt and cllfficnlt 1o st mr Pt itsPlf. That is on of th large ·hallenges of RR P TKF (D) fort hr applJCal iou in a larg<'-dmwnsional mod 1 In RR PCKF (E). T \ ' D v;as applird on the ·ovariancP matrix P1nf:_. constrnctPd in th en, mble subspace. Th comr utational complexity of th RR 'PCKF (E) algorithm (O (n 2 x LM )) i mu h smaller than that of the RR PCKF (D) a lgorithm (O(L~ 1 x n)). The difference in computational complcxi ty l C't WC('ll the two algm it lnus is ~ignificcmt when th model dim nsion is much gr ater than the en. emile dimension. that is u. ually the ·ase for a reali ti c N\YP model. Data-assimilation exp riment s w re condu ·t ed usmg the LorPnz-96 moclPl. Three different data-assimilation methods (S PUKF , RRSP Irf >rman c or rst imat 1011 . kill of hot b t h H P rK m thods were I oor wh n the numb r of ~ i gma I omt s \\' rP 21 or lwlow. hut wlwn the numlwr >f sigma pmnt s incr a;;ed th ' rstnnatwn accnu-1cy abo mcH'asrd . \Vh rn the nnmhPr of sigmFI point s was 1 or lll OH'. f11rl lwr nnp1 m·c•mpn( wn:-. Sill> t le Sltg;- g;rsting that ' 1 sigma points conld he usrd for a:-.sm1ilation . balancing tlw accuracy and com i utational cost. ompnn~on lH'(\\'PPll the• lC'sult s from RR ' P\.: KF (~) all(! RR P ' K (D ) showed that RR ' PCI\F ( ) was compsting a poss1blP solution to applying PCKF in high-dimensional s~·stcms. 5G Chapter 4 • Localization 1n Sigma Point Kalman Filter 4.1 Introduction In this chapter th pot ntial problem s within th RRSP TKF (E) are inv stigated along with their possible solutions so that R R PCKF (E) can be implement ed for r alist ic atmospheric and oceanic mo lels. As w have alre ely se n in Charter 3. th compntatioual co!:lt limits th' si:tc of ·igma poiuhi we can afford. On the other hand. too small a numl er of sigma points may cause problems such as spurious correlation, inhre cling 8.nd filtrr cbvrrgrncC' (Hamill ct. al., 2001; \iVhit akrr and HamilL ~002: Loren , 2003: P tri , 2008 ; Deng et al., 2010, 2011. 2012; Tang et al., 201--!a). Thus , it is interesting t.o xplor Lhe 1 ossihili!.y f implementing a lo alization strategy for RRSPLTKF ( ). 57 ction .J. In w Rr p1 1 osmg t1 h~·hnd-locc hzatl n sch me for RR P rK ~ ( ) so that thr problem. v,·itll in\nc 'chug, filter dn·ngclH C' ami sptuwus coudntwn wlll IH' minimiz d. Tumcri al xprrmwnt.' arr rondnct C'd usmg LorPnz-. > moclC'l with ( hrC'r rl.iffrrrnt munhrr of~ atr va1 inhk 4.2 Inbr . Ill filt r . IV r n an . pur1ou r lation \\'hen the hackgrouu l- 'rror cm·arimH 'C' is nndPlP~timatC'd tlwrP is grPater c<·rtaint,v in th forcca.st pstimate and the iilt('l' will give' mon-' vwight to th' fon•c·ast compau•d to oh.ervations. On th oth r hand. if th backgronncl co\·;.uiancc> is too large. the filtrr will givr lrss wright to t hr forrrn,:-.t . l' ndrrsampling will lc'a.cl to a. plwnmUC'llOll known as inbree ling, w hrre t h forecast -error covarianc is unclerest ima t eel ( Lon'llC'. 2003; P trie. 200 ). If tlw ha.ckgrmmcl covariance is too smalL th filtPr si m ts giving maller weight to th observational data. Ignoring th<" observation information by the n eml l memb rs in the successive assimilation )'des will lracl to t1 process known as filt er divergenc (H outekamer and Iit chelL 199 : Hamill et al.. 2001: Ehrenclorfer. 2007). The 1 ackground ·ovanance g nerated nsing a limit ed number f ensemble members often produces sp uri usly large correla tions b et ween grid points, which arc at grrat clistan es a part (Hout ka mrr and I\ Iitchcll, 199 ; Hamill t al., 2001) . Th( spurious correlation bet ween indep endent. gr at l~· distant gricl points that arc not ph~·sicall.Y rela t cl can cxaggerat e Lhr fore cas t -error covariance. may in (rocluce err )r in i he analysis. and can cRusr filter livergencr (Honirkanwr and lit dwll, 190 ; Hu d al., 2010). 5 Itha b nalso bsrvdi~·Houl kamrand:\Iit hrll(1 ) an 1 Hamill rl al. (2001) that avoiding throbs rvation that ar at remotr locations fromthr analysis p;rid can abo im] rov th analysis. Thr errors in the ron1rianc stimatPd f1om a finite numhn of c'nsf'mhl<'s can oftf'n cHIS a biased mean Hncl in~uifiu nt vmwm f' in t hC' analysis . In the following fon'ca~t st c>p.' . t hr chaot 1c d nun nics of tlw mo ld mav t akr the' c•nsc>mhl<' h1rl hrr away from the tnH' stHlr of lh' svstc>m In thP snc'C' •ssi\'f' assilllilation cydPs. lhP forPcaslC'rror cm·ariancr 1s fnrther nnclrrPstmwtPd. and comparativC'l~· rvpn mon' disrPgard lbe ol sen·ation mformation. resulting in dPgra led c>nsemhle of forecasts (Hcllnill 'I al.. 2001). Tlw met hods to emu bat t llC' problems of nndc>rsampling indnde covariance lo alization. cm·ariancC' inAation iUld ]oC"C1lizC1tion a.<., in tlw ]o('a] rn . C'llllJlr hausform Kc lman filtPr (LETEF) (Ott et al.. 200.J. ~liyoshi. 2005: zunyogh c>t al.. 2005). 4 .3 Covariance localization There are variou , methods developed to ov r om or lessen the unclersampling problem in EnKF. One good method i ovariance localization pror oscd by Gaspari and Cohn (1999) and by Houtekamer and I\Iitchell (2001). In this method. the backgroundcovariance matrix P1b is localized by applying a multiplication) with a distance cle1 nclent chur product (an element by elrmrnt orrelation function p. The valu of the correlati n function varies from a valu of unit.Y at the observation lo aticm to 0.0 at some pr leterminecl listances: (.J.1) 59 h re. ult ant pr dn t iH als an rna t rix is f e c covanan matrix (Horn. 1 0) awl t hP n finpJ co vari- f. or has mmimal errors d n e to . spnri m s noise. i udirs on nI con lu tccll .\' Hmnill t al. (200 1) ancl H utrkamcr ancl i\Iiichell (2001 ) su gg 'S teel that CUlFI.ly. <'. wrr . moot hrr mul c losrr to t lw tr111 h wlwn t hr inflnrncrs of ohsrr a1 ions hp~·o ncl a . JWrifi Pd ch. t a n cl' Wl'r 4.4 C vari n mmt tl'd infl ti n On met hod for a dclrrs. ing the unclc>rcst imat ic n of t lw hackgr mmd nror-covariancc· matrix i cm·ari n c inflat ion ( n lPrson and ndnson. 1 : Li et al.. 200 : D eng et al.. 2010). Ther a re variou: methods to do that. One method a d ls a positi ve semidefinit matrix to t h coYari a n c matrix. Th r i no unique vva:v. h owever , of ch oosing th mi-d finit inflation matrix t add to th coYaria nc m atrix. This process, of finding the ~ uit ab l p osit ive. mi-definite m atrix. is treat d as R p art of mod l tllning. cluing a po ·itivc scmi-Jdinit c m atr ix to the backgiouncl-covcuiallcc m at1 ix i:-, also one of the ways to account for the model rrors in EnKF (Hunt et a l.. 2007). Several diffrrrnt mo lrl rrror schc>mrs h cwr hrrn propo. rd for t h r covarian r inflation (Li et al., 2009 ). Th mo. t common . lwmf's <'Hf' additivf' inflation ( Corazza ei a l., 2007). multiplicativ inflation (Anderson and nd erson. 1999) a nd hybrid m thods (Li et al. . 2009). In the additive-inflation m ethod an id ntity matrix scaled by a small r eal r nd m vector is added to the raw covari·::m · matrix P1~e· clcling a random vector can act as an additional ource of noise and destroy the correlation st ruct ur of the covariance matrix. In t.hr nmltiplicfltivr-iuflflJion :·whrmr the raw covnriculCr matrix is nmltipliccl b~, a sm< ll m unhf'r grf'< trr than onf'. This dirl'd inflation of hackgrmmrl-rrror cnYminn< ·r GO 'qwva l 'll( to th<' inflati Hl of mod<'l stal<'s d tlH' llHHl<'l 1s Jl OporiJOnal to th I ackgronnd- fl()l to lw (Lr <'I al.. 200. ). In tlns nl<'lhod. tlH' rmv I/ IS lllfia {'d hv ct ia< I 01 ( 1 J). wlwr <' (J Js I h<' inti at ion I ac+gwnnd 0\'allHlH' ( 'l'l'Ols Hl<' asst llll<'d 11 H factm abo call<'d as tlw t tlllclhl' pautm<'IC'r. ...,o tlw nP\\' h<1C'kground cm·arianc \:vill h: I I> I (1 o) P/', ( .2) h sr;,' oft h' pau-unPt <'r c,J wav change' n rm ted based on t lw globa l ana lysis-c>rror ovariance. As w have al- r ady disc ussed the glol al ana lysis wit hont locali zation for a largr- dimrnsional mod l wonlrl a usr t hr follm\'ing problems: (i) it would hr compnl a t iona1ly exp ensive Lo upd Rle equa tion (3.7): and (ii ) tlw anal_ysis will h r drgrad ed h anse of the spurious correlation h rtwc'c'u the rc'mote grid points . In tlm; Secl.ion (4.") we propose a h_yhridlocalization S('hc>mC' for thr RRSP ' KF (E ). in whi ch mocld stale's are analyze lloca lly at each modd grid bnl the sigma poiuls a rc g<'uera t cd globally. The 8l m os1 h ric or ocPcl by X 8 , 1 , \Vh ere s is t lw location of t lw grid in t hr mmwrical mmlrls a nrl is nsually fixrcl etncl clis r te. In generaL s(lnt.lon . .::) bet:-; three compcnwnts. the geographi cal lati tude (lo t ). longitude (!on) cmlll1C' altitude(.::). For simplicity we discnss the loce:1 lizat ion in the case of a une-climensional model that can l>C' easil_y ex t ended to a l wo or three dim nsionRl model. Therefore . in ou r cases has onl.v onr coordinate, sa_y s(lon). To perform the analysis locally. first the local vector containing the information from the localization r gion is definrcl (Patil ei aL 20()1 ; Ott et al.. 2004). If the analysis grid p oints are centred at the grid point l' with the location coordinate s( lon) ancl the lo calization radius is d. then the grid points inside the loca l region are X s10 , rt 1 to X Stan rl• 1 . There is a total 2d + 1 gri l points centred a t t'. The eqn al ion for the local an a lysis at grid point u is : (-± .3) where th subscript l ac in ibc <'qtwtion above denotes tlH' local snbspacC'. s to,,l arC' the local vecl ors from the model forecast . A toc,t is t be I\ aluwu gain en kula t cd in the G2 loca l sn bspacr: J\.to< · .I -_ pry ( p!!Y ) - 1 /111 I In< .t ( 4.4) \\'lwrP P1 ~~. 1 and Pt~,;. t <-HP t lw cross cm·nrHmcP and projPct ion covariance in t hP local snhspa C' respPcti\'d)'. and nllculat('cl qnal Jmls given in SPction 2.2.3 of hapter ~ · sinular opC'l n t ion 1:-. 1H'r fonu eel 011 ('Pt of PXJWrinwnt s, diffrrC'll( din)('n siona.l SIZC' of t }JC' s~·stC'lll ( 1 . 40 . 0 cmd 1-0 ) a rc' consider ed a nd assnuilatC' lhP synthC'Iic obsnvations nsmg RR , PCh.F (E ). Here no locali zati on is a ppli r d ancl tlw analysis is pc'rformed on the g,l )hal dom a in us ing a \'arying numb er of sigm a point s. The n ew sigma point s are g n erat ed follov: ing <' 1na tioni'> (:3...! ) to (3. 10). There' is no cova riance' inflatiou usrd ( i. .. 0 = 0). In t lw :-.rcoml set of exp erimc>nt s the localiza h on r a di ns is fi xed CI S d = G, whi his th '-' d r fa nlt va ln r used for the Lorcn z- OG sys t<'m (Ott P( a L 2004 ) . The infi a tion p a ranwt cr is fix<'u t o zero (o = 0) and how m a n.v ensembles a rc required t o rea ch th minimum RI\1 SE is ch ecked in the cases of sys t em s with differ ent dim n. ion (N x = 40. 0 a nd 120). In the thiru se t of experime11t s. the iuflation parm11et er is set t c/J = 3% a nd the lo a lizcttion radius d = G. In the fourth schem e. the imp cd of th e localization r a dius (d) on th assimila tion an alysis is explored . For this. the following p a ram t er values a re u sed. N am el.v. the numb er of m o lel varia bles ( ·.r = .JO ). numb er of ensemble m emb ers ( k = 7), c:m d inflati on pa r a m et er ( r:p = 3<;/(). As I h e LorC'n z- 96 model h as only one sp a tia l dimension . the lo ca l r egion is d cnotC'd h~· a single :-:~p ati a l index (d ). For a localization radius (d ), th e observations from ... r/ + 1 grid p oint s ceutrecl at th ana lysis point a re used . Var ying d from 2 to 7 is u sC'd in thi s expninwnt. In the fifth set of exp criment s. the va hlC's of d = G. <'mhlc G' ) r.. mean against the 1rue stat C' . Tl1 C' cle t a1·1s o r· t 1H-' specJ·1·1c experiments are summarized lll (\ hl ~1.1. ahlc 4.1: Lornlllal 1011 C'XIWlimcnt cl<'1 mls. T 1.2 and T.J .. are rxpPrimrnt munlwrs for 1lw Pxprrinwnts to grm'lHI<' Tahl<' 12 and T1hle .-J ..3 rrsprctively ~lode! Localiznt ion Inflation NmnlH'r of ~ xpt. Assimila t i< m \'1-HHli>J 'S rmlins par am 'I C'r ensrml)lC'S n 1unl wr nwt hod ( ,\'7 ) (d) (cj;) (k) () 1 HRSf>CJ\f(E) .-JO. 80 ;-md 120 () 3 to 91 () RRSPtTKF(E) -!0. &l c\lld 120 G 2 3 Lo 31 ().()3 RHSPl , 1\F(E) ..!(). R() ;-wd 1:20 G 3 3 to 31 (J.(r) 2 t () 7 -! RRSPCI\F (E) .-J() 7 r: () t () 0.07 7 RHSPL'I\F (E) <-!() G f).(n 2 1() 7 3 to 31 RRSPCKF (E) .-J() T ·1.2 () t () 0.07 3 to 31 1D G T -1 .3 RR~SPC I\F (E) ( 4.6 .2 R In this ecticm the lH'rformancc' of thC' byl>rid-localiz<'l'llll<'ll t (Figure 4.1) it can bC' sC'en hm\· t lw R lSE \ 's as <1 fnuct ion of <'nscmhl<' llH'mh<'rs for diffPrPnt dinwnsional sizes of tlH' s~·s t<'m (Sr - .J.O . 80 and 120). It rnn nlso lw sC'en that the Rl\lSE cmlV<'rg<'s to approxJm<' r.) w]H'll ]oca li ;m lion is IIS<'d for diff<'r<'lll :-.i7<' (Sr) sysl<'lllS JS shown in Fig(i7 s arC' d0snih rl. by th lh lo cal vc tors. Figur 4 .2 shows ur 4.2 . HC'r th covarian Localization 5.5 Nx=40 - Nx=80 ·" "" Nx=120 5 \ 4.5 ' \ ' \ ' ', \ 4 ' ·. \ ' \ ' \ 3.5 \ \ w (/) :2 \ 3 \ a: \ \ 2.5 \ \ \ 2 \ \ \ 1.5 \ \ 1 0.5 0 \ 5 -- ~ . ~ .~. ~ . ~ .~. ~ . ~ .· 25 20 15 10 Number of ensemble members 30 35 Figure 4 .2: Th e time mean RtiS error of the RRSPeKF (E) sch lll<' as a function of number of sigma point s (ensemble mcmlwrs) when lo ca li zation is used . Th<' results a re sh own for differf'nt size ( Sr) system. t h at introducing the loca li zat ion signifi c in p arallel for each local n 'gicm in clep eml<>n1 of th e sys t Pm dimen sion , m aking the m th d snit ahlc for p a ra lld comp ntation. The tim e llH'
    d . Th R:i\1 E read w cl t h e minimu m \'a lur at a sigm a p oin ts size of scvc'n for alllhr 1hrPr ca, wit h diffe rent s)·stem d imen si n (1\ rJ = 40. 80 a nd 120) and d octl not ch a nge furth er v, ith increase in t h e num b er of sigma p oint s uscd (Figure 4 .3). This result h as imp ort ant implications v,·hen we use t he ' PKF on a high-dimension al sys tem . b ecc:w . e it addr sse the imp orta nce of loca lization and coYa rian ce inflation . In t h r a bsen ce of p ar all l com puta h n . t he 1im e reqnired for th e local analysis incr rases linearly hut if w can use p a r a ll l algorit hms t he local analysis can b e d on e simult aneously. One of the very import ant highlight s is the 1ime used fo r local a u alysis is indepen dent of t he dim n sion of l he sys t em ..VJ. and the R l\ ISE is indep endent of sys t em dimension for a simple m od el su ch as the Lorrnz-9G m udel. Therefore. S .r = 40- \·aria ble s~·s t cm is used for furth r exp erimeuts. The result s of (he four! h se t of exp erim ent s (Fig nrC' -1.4) slww h ()\\' R l\ [SE cbangPs wit h localization radius when thC' nmuh cr of t' ll SC' lllhk ll H'lllh C'r s (k 7), nnd th e inll ntinn Localization + Inflation 2.8 Nx=40 - Nx=80 · · · · · · · Nx=120 2.6 2.4 \ \ 2.2 \ 2 \ \ w ~ 1.8 \ a: 1.6 1.4 1.2 1 0.8 0 ' 5 ' 20 25 15 10 Number of ensemble members 30 35 Figure 4.3: The time mean RI\I error of the RR PCKF(E) sdwmc as a function of uumLer of sigma point~ (eusemLle member~) when both louilizatiou c\llU iuflHtion clr<' uscJ. The results arc shown for Jiitcrcnt size ( N.r) s.vst em. pcramet r (cp = 3o/c ). and the mm1l>er of model variahlrs (}Yr - 40) arc fi>::cd ThC' minimum RI\1SE is ol>tainccl wlwn the localization radius is d - G. suggesting that it may be a good choice for the furl hrr data-assimilation experinH'lll s with LmTnz-90 system (Figure 4.4). This result indica t C'S that the backgrouud llllC'<>rt nint)· can ht' wdl approximated iu a low-dimensional (d - G) local space pr<)\'id<'d tlwt th ' \'HhH's \lS('d for ext rna l forcing (F) . nmnlH'r of ('llS('lllhlt' llH'llllH'rs (k) and th<' inflntinllJMr;ull<'l<'r ( ~) arc , 7, alHI :3. n·spcctivel.\'. \\\, hcl as 0.0:3. lmt the localizntion radius (d) varic>cl from 2 9 an l the munb r of rnsc>mhle nH'mlwrs ( k) from 3 31 and th results are summarized in the THhle --!.2. Iu e~ll Ci:ls<'s. wlwn tlw size's of sigma p oints ar < 7 rC'sultecl in lcugc> Rl\ISE irrespC'ctivc> of the locnlihk sii';C' of 7 riments arc cotHluctecl to clwc k the influen cr of i11flation whC'll a differ 'nt number of sigma points are usPd and the results arr s1m1marized in Table' L1.3. In this set of exp riments. the localization radius d = 6 is kept as a constant and other pan1met ers (dJ and k) are Yariecl. The inflation parametC'r ¢ is variC'cl from 0.0 to 0.07 at an increment of 0.01. and nnmber of C'nseml k mrmbers (k ) from 3 31 The results are summarized in Table --1: .3. \ \ 'lH'll the infle~tion parameter CfJ = 0 results in large Rr-. ISE, ·w hich shows the importance of inflation. to cope with thr inbreeding nncl filter divergence . It can he also sren from th e TahlC' --1: ..3 that as the mtmlwr of ensembles in creases , t.hc , ·,due of 1he inflatioll < oc'Hicicut ll<'Cded 1o reach the miniunu11 H}.lSE oC'crC'asC's . ThC' optimnm inflc tion codfici<'nr fm diff<'n'nt C'l1S<'mh](' si7c's may not be the same (Table 4.3). For example, \\' he'll thr <'nsc'mhlr SIZ<' is I tbP minimum R ISE obtai11ed whrn t lw inftnt ion paramct n is O.CU, wh<'n'n:-1 wh<'n t h<' numlH'r of sigm a points is 11 the minimum R\TSE is oi>LlinC'd whe11 the m[Jntiuu parc\uH't<'r i~ 0.01. 72 2.8 2.6 4~ 2.4 2.2 2 I.J.J en ~ 1.8 cr 1.6 1.4 1.2 7 0 - - o.o3 o.o4 - 0.8 -1.. 0.07 0.02 - o.os Inflation coefficient 4. 7 ... ....- o.o6 0.07 Sununary I n Ihis chapter. " hylJrid-loc,]izat ion ·'<·heme """" in! rodllr·r·d for llJr• illl.c;p l "I\P(E:) data-assimilation ll](•/ hort. comiJininR lor·aJ ilnaJ ·.sjs '"" J RloiJ,i] gc'll('tnt i( 1 Points. The 1ocali>-Cli io11 sc]l< 'll)(• was IJ, "'"J u I/Jr, '"'"'llJ > r 111 0 o[ .'>iglll a 11 . .11 1· lllodeJ, Ihe sl a/ 11 1 ' ' ( (' 0 llliJc1I SJIJa//, '1' Tabl --1.3: Th dcp ncl nee of timr m an R~I Eon the inilat.ion efiicicnL and numb r f sigma 1 in( s. h loc alization radius' is 6 Inflati n Nmnlwr of sigma points ocfiiC'i nt ..!- 3 11 7 27 15 19 23 31 4.3628 2.G7r:.s 1.1--1<-!6 0 .9831 0.9922 0.9412 0.9466 0.9543 0 0.01 3.1660 1.00<-!3 0.9266 0.9592 0.9732 0.9823 0.9908 0.9915 0.02 2 .3'-181 0~539 0.9699 0.9950 0.9990 1.0000 0.9991 1.0018() . 0~3 1.7910 [) .9:3()0 0.991.S 1.oo.r. 1 1. 0072 1.005.5 1.0061 1.0059 1.r:470 0.98<-!6 1.0097 1.0082 1.0103 1.0106 1.0089 1.0073 0.04 o .or: 1.-1610 1.0028 1.()1;3() 1.0170 1.0127 1.0101 1.0090 1.0084 1.3 105 1.0116 1.0220 1.ff201 1.0133 1.0111 1.0081 1.0039 0.06 1.2880 1.0132 1.0224 1.0233 1.0136 1.0100 1.0084 1.00'16 0.07 dimension than that of the full state vc'ctor in lhC' global clomain (Ott E'l aL 2004). The localiza.tlon was importallt lwc <\ llSC' it makC's tlw fi.]tf'I mon' cnuqmtatimmlly fC':-tsihlC' and mew mak the analysis estimate optimal by red ncing l he problems of spurious COlT lation, inbrcC'cliug ancl fi ltf'I diYC'I geneT. The localization v;a,· performed h.v updating the analysis at racb modd grid point using the ob .rnttion within a predeiinr 1 local subspace cc'nlred at that grid point . Combining the local analysis at each grid point the global-analysis vector is constru cted. Th global anal)·sis-covariance matrix was cons! ruct ed in the ensemble space and the global sigma points were gencrat eel as in HR PCKF(E). CoYariancr inflation wets etl. o etpplird for the' RRSPlrKF (E) tn oYerrome illC' nmlNC'stimation of covariance mal rix beca nsc of th e l oo small m1mlwr of sigma points . Numerical experiments of onr met hods nt ilizrd the LorC'nz- 96 model. ThE 1wrformnnce of the hybrid-localization scheme was nssrsscd in the' presc'ncr of \'arying pnramdt'rs 1 su ·h c:ts thr ll1lllll wr of sigma points (k) , inDntioll fndor (~ l). locali za tion nHlius (d) and th m1mher of model varinhles (.V,) . \\' hen !hC' locah 7.nt ion \\'as impl('l1H'lltl'cl. tlw 1mmlwr of sigma point s H' qniiTd !o aclll<'Y<' t lw minimum Til\lSE was s igmfi.ca nt]y 71 of m d l va ria bles ( :r). introrl.uced , th 01 timal \ Vhen b oth the' lo calization and in ilat ion sch em : :; wer e s tima t o h!.ainecl wa~ mu ch less t han the cas wher only localizatiou was mtwduccd . . :_\.not hc'l iutclC'St ing findin g from t hC' same cxperi mcut was th a t the acT nra t e ;.m a h ·sis o ht a inr d was indep nclr nt of t lw sys t em dimension of X r in t h casf' of a simple' s.vst em hke Lor C'n z;- 9G . If t lw rpsnlts can h gen er a lized , thi s will h e a p ositivP s t Pp tc wards !h C' pot enli <-1 l a pplica tion of R RSPUKF (E ) for a n ocranic or a lmosplwric 7 ·~ I. Tlw sC'n si t 1vi l y expninwnt s a lso provid , suit a h lc> p a r a nwt 'r ch oic<'s fo r the a.-;sn n ila t ion C'Xp <'rimPnl u sing t hC' Loren z- G modc>l. For th e Lor en z X .r = -!0- \·ari a hlC' syst C'm . a ch oice of k = 7 . C/J - 0 .03 and d = G ga vC' the minimum R~l . . TlH' nnm N icnl c'xprrim r n tnl rrs ult s incli ca t r l t h at loca li ;m t ion a nd infl a ti on in RR PeKF (E) wa!-. vP ry pffpctin' in imp1 m·i ng its p r rforn uu1 cP. K e~· pract ical as- p ct s of the locaJizn tio n sch em e in RR . 'PCKF (E ) d a t a-assimil a ti on m c> thod were: (i) a high dimen sion a l estima t e of t h e hackgronud covaria n ce was calcnla t eel in a local subsp a e mu ch sm allr r t h an t h e glob a l d om a in u sing a sm Rll numb er of en semble; (ii ) the an al~·!::l is a t each local : :; ubsp ace can h e d on e indep enden tly m a king it suita ble for p a r a llel comput a tion: (iii ) only low- lc>vel m ?tt ri.x op er a tions wC' re req u ired: a nd (iv) th r was p ot enti a l t o obt a in t h e optima l es timat e at a very m o d es t os t comp a red to Lhe case where there was no localizatiOn u sed . One of the limit a tion of this s tudy was tha t . the Lo renz-9G m o d el. U!::led as t h e> a~simil a tio n pla tform , was a ·· t o.\·.. model: a fnll a tmosr h eric or ocea ni c GC I is m u ch more' com p lrx. <:1 lld t h (' result s fr om Lorrnz-9G m o d el can , at b es t . only indicat e som e general trends a nd p ossihk lw luwionrs. Chapter 5 Application of RRSPUKF in an ENSO Model 5 .1 This Introduction ha1 ter fo uses on the investigation of the pos~ihility of applying a reclucecl-rank SPUKF to a realistic climate model. Th important pror <:'r!i ~ and th cstimHtion accur cy of the recluc d-rank SPUKF are explored. Emphasis is plc-1cecl on the implementation of the reduced-rank SPUKF ancl on il~ com1 arison against a full-rank SP KF using a realistic climate moclel. whi h has not h en rt>ported before . The model usecl is the LDEO r: (Lamont-Doherty Earth Ohscrnrlor.v. version 5) version of the z biak- 'ane El- Niilo prediction model, wbi ch is nn in l<'rmedin t P c·ompl('xit y model. The RR SPUKF rc'snlts Hrc' also comparc'cl with the' EuSRF n'sults . 7G 5.2 Mod 1 and m thod 5.2. Z bi k- an M d 1 LDE 0 5 V r Ion Thr rC'alisi ic mod l w<' nsc' m t hi:-, study is the LD "05 vC>rsion oft hf' Z ' modr>l ( 'h n C't al.. 200-J). \\'hicb is an ', '() ]Hc>cliction nwdcl (Zc hiak and 'anc. 19 7). NS Is the stronges sigwd in lh<' n1rialnlity of thf' global climate' system em the interannual time-:t ales. It occm:-, in t lw twpwal Pacific OcC'all in C'gnlarly a ! intnvab of 2- 7 y0ar. ( nrl. infinc'nc<'.' the global < linJatC' 1hrongb tclrconnC'ctions (\1\'ang <'1 al. , 1999). In C'auadil. thr largrst internnnnal vmiation in \\"illt('l trrnpcratnr<' is inft11<'1lr<'d ·hy E r 0. Dnring the \\·arm pha~e of I'\ SO. most of anada experiences cl hove 11ormal wint r t mpC'ra t nrc's and bC'low normal summer precipitation (HsiC'h et al.. 1999). Dery and \Y od (:...005) found a corrclat ion lJC'twr<'n large-scalE tc>lccmmC'ct ions snrh as ENSO to the total annual freshv:at 'l' chschargr iu G4 rivrrs in northrrn CanacL·l. tudi s condn ted h)· Ch n et al. (200-1) suggest that model-based E T, 0 predict ion depends more on the initial conclit ions than on unpredictable at mosphcric noise. In this st ud)· we use the intermediate-complex ZC model as a represented ive of a realistic climat model to assess the perfonnancf' of SPKF algorithms. The ZC modrl has b 'Cn widely used for predicting the timing. pha.s e and intPnsity of ENSO events for both experimental and operational purposes since the late 19 Os (\\'chstPr all< l Palm<'r. 1997; K a rspeck and AndPrson. 2007). nother n1timwk for using tlH ZC nwdd is that we can afford the full signw points rC'quirccl 1>.\· 1he full-rank SP1. 'I\.F met hod for assimi lation ancl cmnpar their pcrformanc<' ,,·ith RHSPPI\J~ mcthocl. The z is an anomaly nw< kL wb ich com putt'S Ulimilar to that of ill (Hl 0), using a stc'ad)·-state. linPnr. shallow-\\'a(c'r 'quat ion on an cqwtlorial b '(a plan . he atmo- sp lwri c rirculatiou i~ fmrNl hy n h<'al ing anomah· thnt dqwncls on th<' h<'at-flu x dn<' to '. anomah· and mcnst nr c·om·c'rg<'nce paramC't erizC'd in t c>nus of surface wind cmn·C'rgPilCC'. Tlw at 1110~phnic modPl genf'ratc•s the wind fip)rJs which arc then conVC'rtC'd to stlTs~ cmomnlie's that force ' thC' oc·e'e:m mod '1. ThP dyuamics of thP ocean compon 'lll of Z ' 11~<' t lw redu <'d-gnl\'ily nHHlC'l. The dynamics arC' modelled as a single haroclinic mode• oft hC' s hallm\·-wa t <'r c•qua t ions acting 1H' lH'H t h a shallow snrfac<' mixC'd let \'<'r ( Kars pc·ck awl Anderson . 2007). The snr facC' curn·n (s arc gC'nf'ra l cd b.Y spinning-up l h<' modd with nwut hl~· m<'an dinwt ologinll wind . h<' t lwnnodynmnic equ a ti ons clc>scri lw the ~· 'T e:m omc-d y and lwRt -flux chan g<'. Th<' model tinH' slc'p i:-; 10 clelys. Thl' wodd clonwin i:-; CO lliiiH'd to tlw tropical Pa('ihc o('('(lll (10l.:r 0 E- 7 .12 \\' . 29 '). The grid fen oct'clll dynamics is 2r longitmle h.v 0.5° latitude and for ' T physi cs and the at mosphcre the mo lcl grid is 5.G25o longitude hv 2r latitucl . Further details about the ZC model can h e fonnd in Section 2.3.2 . 5.2.2 Methods and experime ntal setup \Ale apply 1he R R SPUKF (D and E) cia t a-assimilation met hods to assimilat <' SST anomali int 0 the ZC model. The ckt mlcd deri\·a lion of 1>ot h t lw clnt <1-a:-;similat ion methods is xplained in Chapter 3 (RRSPl'l\F (D) 111 SC'ction :3.2. 1 cl h.Y tuning <>xpennwnts (also callC'd tunable param<'IC'r) . In this study. thr vahw 9 is s<'l to 0.1.'>. wlllch \\'a~ fmmd to rPsnlt in th<' l> C's l analysis ba.s rd on a trial and c>rror method (md the' literatnr<' (I\arspC'ck an d 5.2 .2 .3 o an an ndC'rson. 2007 ). 1 ali zat i n To avoid th possible impa ·t of spurious corrc>lation on the ana lysis , w a P}ly covari an c l calization in this stud~· (Ham ill C'l aL 2001: Hout cka uwr an d The 1 ackground crror-cm·ariance matrix P111 is multipliecl ( l h r Iit ch cll . 2001). clmr product) by a clist an e dependent localization correlat ion matrix p. an d t h<'ir prodn t will a lso lw a covarianc matrix (Horn. 1990: Gaspari and Cohn. 1999). T h e m odified conlriCl iKe matrix h as Leen defined in ection 4.j a:-. p o Pt (5.2) with the members of tlw correla tion matrix : (.l.:3) where p 1 a lo calize t ion funr11on that 1las a va 1ue of unity a t the analysis grid point and 1t ,·alm' d 1 C'cl....,P:-. a"' the di~t a ncr from t lw c'l llcl, 1.\sis .. ·. gn·d p omt · m · creases, d rs · the decondatwn 1 ngth amt1 is tlw ch~tancP hctwc""'ll .· l pomt · s 1 and j. The · ' tl1r gr1c l caliza t ion wdw~ used in t hi~ ~ t 1H h· h 'C"lsuc 1t '"'" • is 4."' ( n~· fOltll(1 t 0 1)e a gooci value based on th '-'Pll"'ltl\·it~· te·t: and Parlic>r studH'~ (.Jiang et a l.. 2012) . ~. in1i lc t i . 2.2. 11 In our C'Xprrmwnt s \\T assunH' that t lw (lh~erYa t ion Prrors and model nrors are uncorrelated in "'PrlCP cL the sla t e VC'C'(Or is reclc- fined a. t h C' cone a Pna wn of lw lll<)(lPl stat<'~. modPl Prrors a nd rnPas11rrment Prrors, thu ' the augmc nt <'d stat P dinwnswn \\·ill hC'com<' 3 x 540. Consequently. the number of a full PCEF ~ignw pnints i:-. (:2 x(3 Y ."'40)) + 1. In our study. to decrease the numb r of sioma p oinh. rank reductions arc applied. In RRSPCKF(D) th TSVD is applied t the anal_,·sis error-conuiance mat nx constructed in the clat a sp ace. Pr and in RR PCKF (E) T YD is applied in the anal~·si~ error-covariance matrix con st ruct ed in th en embl pace. PtE. Th e total number of sigma points 2L + 1 is thus rcclucccl to 2l + 1. The e timate accurac~· of the truncated covaricmce matrix depends on the choice of l. The select ion of l should be chosen cautiously in such a way that it should not be too small nor too large. If l is too small. some of the information from the pta will be lost and a la r ge l '"'·ill create a computational burden. The Nil-10-3.4 index. defined as the average SST anomaly in the eqnatorial Pacific (.:JoS-.5oN. 120-170°\\'). is u sed as an indicator to track the phase and intensity of the El'\SO ('\'C'llt s. Tlw riiio3.4 region (Figure 5.1 ) h as large variability 011 ENSO t imc scnks. The expnimeut details are summa rized in Ta hle 5 .1. Bl 30N 20N 10N EQ Nino 4 10S 20S 30S L 120E 150E 180 150W 120W 90W Fignrc 5. 1: ~rnphical dq>i ction of tlw :\iiio r q?, icm~ (from :'\ational C'PntcTs for ElwiromlH 'Il1 nl Pn,clidiou (:'\ ' _Jr )). TahlP .. 1. £:'\'.' () stat<' <'stimation : Expc•riuwut S1llllllwr~· . ssimila t ion I TimC' 0 hs<'rY<-\ I ional ltal.\ ·sis nwthOll ll ~lnltiplica tivC' Co,·arimH '<' nont L~· I inftatiou localizatiou y ---r--K inltiplicativ<' mont 111~· · . Hat ]()11 . m Covariance~ loca lizatio11 Forth(' sensiti,·it~· expPrim<'nt s with RRSPlTKF (D ) clifi<'r<'nl muul)('rs of sigma point s ranging from 5 to 101 nre tc•st ed and tlw rC'snlts Hr<' ('Xplnin<'cl ill Sc'C'tl<>ll s .: ~ . l. To furthPr explore ' the imp;H'i of tlw RRSPUKF (D ) assimilation method with diff'crcnt f'llSPmhl(' siz<' on :\SO prc •clictiou . the • SSTA hinckas ts of the d111ntion uf 12 months. ini t ializ<'d frolll the first d<1y of each cnklH lm 111011 t h. an ' IH'r fonu <'d ht't W<'<'ll t l1<' p l'ri <)(I 1971 2000 . TlH' Kapl a n ' combin ed t o form a p a ir sample ovrr 1971 2000 ; 2) 95rX of the p a ir . a mple'. arr r a nd o m]~ · ch nsrn to calcnl a t r t h r cnrr r la1ion cor ffi cir nt and R ~L 'E h twc n a na lysis ancl uhse n ·ation: 3) procrss (2) is rep f'Cl 1ed 10000 times to prodncr 10000 correla tion s a nd R~I S Es. from which th r st a nda rd d evia li on is obt ain d : and 4) the 9.5o/r con fi d n ee int erval i, used as thf' thresh old valu f' of sampling rrors . 5.3 R esults and discussion 5 .3.1 Sens itivity exp erime nts with RRSPUKF(D) In this sec1ion the p erfon mm c of RR SP UKF (D). as n fnu c t ion of the 1111ml wr of tr uncat ed m od es of the SVD . is exa mi n< d. A comp arison among rliffl'rcnt t nnwJ t ('d mo d es is shown in t erms of t oo t m c is considerable' increa,c.; in th RI\I ' E . ne of t hr rPasons for higlwr R~l ' whC'n t hP rnsPm hlr nnmh er is sm all is du e to unct erPstim a t ion of thr cm·miancc> mat rix h~· t hC' fi nit e> trun cat.C'd mode's. 0 . 25 ~----~------~----~------~----------~ • Analysis 0.2 - ( .) 0 ; 0.15 (J) ~ a: or::t M g 0.1 z 0.05 O L_----~----~----~----~------~--~ 0 20 40 60 80 100 120 Number of ensemble members Figur .. 2: Th roo t mc>an-sqnar<'d ('rror (RI\ ISE) of SST (5°S-G I'\. U0-110°\\') b tween analysis and trut h ns a function of m1mlH'r of ('llSC'lll hies w·wcl. Thr R I\1. . . cmd cor rrla t ion skill for t lH' 1H'riod J!JI 1 '2000 O\'<'r t h(' <'11 tin' hn:-~m acJ of th forecast clist ri hut ion as wr ll as to char act crizc t hP coherC'nt st rnct ure hd WPC'n the mcasurenwn t and th pri r statc>. Different ensemble sizc>s fro m 31 .J 1 ca n lC'acl to similar behaviour in b oth R~I ' E and corn'lation. hut lwlmv 21 PnsPmhlPs the skill is vrry poor (Figurrs . .3 anc1 5...!). This indicates that if the basic ch aracteris ti cs can b r captnred by tlw minimum truncat 'd modes . thP sensiti\·it)' of the <-:tssimilalion pr rfonn ancc t o furthN in reasing the tnmcat rd modes is not hi gh . 5.3 .2 Comparison of RRSPUKF(D) and SPUKF Based on sensit ivity experiments of thr analysis error to the trnncation modt's /. it a ppears that 4:1 sigma points (i.e., l 20) arc suffici<'nt to estim ate t h e llll' 2 o 2(o 2s( SN ,.(", -- v E J 2 I J 1 'JQ 3 ) ( EO L r 7 f 55 '1 0 2 ' 1OS l OS 155 130[ 150E 17 0 W 170£ !SOW 130W !lOW 95W ~? '-',.)2~> 0 2 ) o( ·)s 150[ ( ~ '( (__: ) }01)1/:::-v 3 (0 s', '- 0 3 ...----0 , -0.25 -v--. J~c .) J o 1", 170[ 025 _.-_()/ ' >- 2 'r:O \ J 0 / ~ 7') Q ~ ,) 0.75 0 2 (0 o2 \ _\ 0 2 ~ j ,~ ~ o.~)o 2 cp5_j 3 · / 0 3 ( ') 130E 1 025\. 0 , L '"'0 1 ') 1 \ t 0 2 ') 15 ) l 'I) 25 ::J r ...- f l \o J "'- !SOW j r l 170W - E J (l 11 2~ \j\ \ I I ~ ') j 130W 11OW 95W IJO W 11OW 95W 31 Ensembles 2 1 En semb les ( - ISN ION EO 55 lOS ISS 150E 130E 170W 170E !SOW 130W !lOW 95W 170[ 150[ 130[ ISN ,.,----;:----=:-;:-:~----------~..,.., 11 0 .\.> 12N 0 ' C'J----> '--- ~ U 05 c 0 OS J') 0 85-)~ C 05 v .) I'- / o o_5)',\::'( .1 ? 1 / ~"0 /,I - \ \I \0 1 0 ')')I 12S ~ 15 IS~ 3~0~E~~~~50~E-~17~0~E--1~70-W--1-S~OW--13~0-W--1-10~W-~95W :: ~~ c:_,; ' ) \ ~ I SS 130E J 150E 170E 170W 150W 130 W 11 OW 95W (? 1 ') Figure .5 .3: The RI\ISE of SSTA lwt ween the anal:vsis nncl l ruth Q {fl t'" , 170E ') 95 1:; ) !JOE 95W 150E 170E ) 130W 11 OW 95 W 130W 110W 95 W (' 95 : ~ gs!() Q.C,~ 095'..) 0 95/ ~ 3N :: ~ Leo~'," Eo J5 ~ ~ 0 95 o es >' ) 170W 150W 130W 110W I.J \ 09 0- q ) /""'\..:: o ·:J:::. ~o 95 95 0 95 ( 170[ I 65 155 {_ 9 5 150E 150W -, 12N JSN 130E 170W 5 1 En semble s 15N lOS 95 W \ EO 41 En semb le s SN 0 7 5N \(\ 150E JON 11 OW ION ) 8':> 130E 13,0W ( ~/'rJq09'1 g r J 150W 15N 0 y~ !"\"0 -'\ '1 ) 155 ) 0 9 \. (''l g / (0 f c, O Cj r (0 8 31 En sembles -~ r 5N 55 _ 0 9'1 J 170 W ro 9 / ~--'>..'\.....-,JD::l....D-0~~-,--.1...._(~ 2 1 En semble s 15N 0 9~ 0 9"J 0 9'1 ( 1JOE 95 W 0 95 / G 1,----L....-,- 170 W 0 8 (._) SN 0 130[ >~ 0 g g 125 ' 95 W 155 130E ( °" -,"'150E 170E 170W 150W Figure 5 .4 : The correlat ion coeHicient of SSTA b et ween tlw ana lysis and t ru t h aYcragcd over the p eri od 107 1- 2000 for the RR SP VKF (D) vdH'll diil('l Cllt umn b c1:-. of truncat ed m odes ( 1 ) a re nsrd . Th numb er of ensemhlrs is eqm"tli o (21+ 1). be seen in Fig ure 5 .5. t he R l\ ISE of RR SP V KF (D ) is similar to th n1 of thr full-r ank SP KF in m os t of th e assimilation \\'iwl ov:. This r e-m also br s<'rn in F igun' 5.G wlwn' the Rl\1SE a nd correlation between the n m1l~·si s nncl ohser\'s G .)(' nnd 0 .Gf :-.how 7 (a) 0.12 - RRSPUKF(D) 1995 2000 ,..., 0.1 (.) 0 ...... w 0.08 1/) ~ a: 0.06 ~ C") 0 0.04 . c: z 0.02 1975 1980 1985 Years 1990 (b) 0.12 -Full-rank SPUKF ,..., 0.1 (.) 0 ...... w 0.08 1/) ~ a: 0.06 ~ C") 0 0.04 c: z 0.02 1975 1980 1985 Years 1990 1995 2000 Figure 5.5: The Rl\ISE of the ino-3 .--1 index of the analysis against the ohsc'rYcd counterpart. The panel (a) is for RRSP KF (D) whrn 41 C'nsc•mhles are nsed and p anel (h) is for the full-rank SP KF . the diff renee of Rl\ISE EO 9S IS N -, (/ ... 0 JS 35 r 0 0') 65 { (l) 95 0 0'1 ISOE \70W 170E 1SOW 1JOW II OW 9SW (.' 12N EO nor,., 35 I' 1S5 IJOE r 01 1s ( ,- (' 1 ) \ ,. 01 ;\ ---~~ 0 1~ J 1 \ \ ;(_ 1 ( 1 ~ c J< 0 1' l l ) f)' 6S 125 \ 0 96 \_/ Gog 150E ISOE \70W 170E IJOW I SOW 110W 9SW \ J 0 1 (Q 1 ) ) )\ 0I ') c 1 0 1I 0' 170E 170W I SOW -· 9')) 9N (r ,J 0 '.l 12N 6N 0 C.fl JN EO 35 65 ~ 9') :\/ 0 g) ('J')jl) ( , n 3~ I 0 90 \ 95 J <)', ) 0 Q~ / __,~o 1JOW I lOW 95W ISS 130E 9, C- f\ _/ 0 99 "" )'H) J gg/ ( 150E 170E - 0 99 \ 125 ~ / ISS IJOE ISN l [, 0 1 0 ' 01 0 1 ~ 0 1" 6N l ' \ )" ) 1 95 g (d) Correlalton (c) RMSE ISN 3N \0 gg \ 125 I ISS !JOE 9N f~ ':-J '\.J~ EO l p os -o I 0 O'J JN (b) Co rre latiOn Coef fi ctent SPUKF 170W 150W 130W / r- 0 CJ6 0 9~ 110W 95W 12N 9N 6N JN EO 35 65 95 0 0.:' I?S Figure 5.G: The Rf\ISE ancl corrdaticm codiicicut of SSTA bet ween the cuwlysi~ aml truth for full-rank SPUKF and RRSPCKF (D ) with --11 ensembles for ihe prriocll071 2000 ( a-o} Fignrr :J.G( r) ctnd (f) l) are shadP(L domain as shown in Fignre 5.Gc. This is mainly lwc<&ns<' tht' HI\ISE itself is vc'r.\· smnll in both mel hods. leading to vC'r.v small cri t C'ria valn<'s . Tlms. it nm lw nrgHPd t hnl the RRSPUKF could fairly wcll simula!c t lH' pcrfonwmce oft bt' fnll-nmk SPl_TI\F m L rms of thP llH'asnrc' of coJor<'ln!ion skilL and . •_;: c- :. 120-170 \\'). + inclicatc>s th<' ' iil.o-:3 .-1 ilHl<'x of the ohsC'rvation and the' solid lmc' indicate's tlH' .l\iiio-3 .4 indc>x of a one month lc>cHl forPcast of RR.'Pl'KF (D ) \\'itb 11 C'llSC'lllhlC's. Figure ;:_7 shm\·s the one step forecast (mH'-mouth lead forc>cas t ) of ' iiio-:3 .-1 ''TA index from the RR 'Pl'KF (D ) '"·ith 41 sigma point s during the> time JWriod 1971 2000 . Th solid line is the mode 1stat r bdorc assimilation ( i.C' .. t lw prC'dict ion ini t ializ<'d from the analysis of last step analysis) and + dPnotcs the> ohsnnltmns. The RRS I l'KF (D ) fi ltrr has a good capability for f'Stllnating thr phase' and intf'nsit~· of all nm.im E::'\. () vents during the ent irP p c>riod (Fig nre 5.7). The' la rgc' nrors occurs at a f<'\\" t im<' stc>ps when thPrC' 1s high frl'CJUC'llC.\' \'ariahility in SSTA . which is r<'Hsonahl<' gi\Tll tlwt th observation used for assimih1tion can also contain 111H'<'ltnintiC's . !)() 5.3.3 kill r ca t he qualit~· of t lw ~ :\'" , 0 hindcaf,t of 12-mont h lc>ad initializf'd from an PllSf'mblP of analysis ohtaiw'd nsiug t lw RR . Pl. K (D ) is c'\'HlnatC'd in tC'rms of thP RI\L corrdn tion skill of pn'diC't <'cl , , and against t lw ohs<'ITC'd f'onnt c'rpart . Fig nrC'S. shows (a) 0.8 ,.... (.) 0 0.6 UJ (/) ~ a: 0.4 - ~ C') 5 sigma points 11 sigma points 21 sigma points 31 sigma points 41 sigma points 51 sigma points 0 z 0.2c 0 0 ---~ 2 4 6 Lead time (months) 8 10 12 (b) - 5sigma points 11 sigma points 21 sigma points 31 sigma points 41 sigma points 51 sigma points c: 0.90 ...m - ~ 0.8r'- - 0 (.) ~ 0.7 r- C') 0 c: z 0.6 0.5 0 2 4 6 Lead time (months) 8 10 12 ignre 5. : Th<' Ni1-10-:~ -1 forPcH st RI\~SE a11d <'nd t illH' fur RR SPUKF(D) for tlw case's with diff< 'n'lll 111 1111l><'r of <'llS<'Jllhl<' l!H'lllh<•rs tlH' RI\IS and co 1 n ·lnt ion ski ll of :\u-tu :~. 1 SSTA. Hs n f'tuwt Jon of l<' ~ an l dw1 L 1 (.J in ct aL 1 ; Pc>uland and arrs and corrC'la t ion skill increase's as t h C'llSC'mhlC' size increasrs. ThC' predict ion skill sLar Ls Lo lC'vrl off and haYr litt l improvC'm 'llt ''"h 11 the numhrT of C'llS mbles is approximately ah n·e 20. in his resnlt 1s consistent with thos<' obtained in the sensitivity cxp ('rimrnts C'ct ion r-.: .1. Compari on 5.3.4 b tw th n RRSPUKF(D) and RRSPUKF(E) approach s An alternate method for finding the dominant sigma points i through TS \ rD in the ensemble subspa · as introduced in Chapter 3. This method is compntationall.v feasibl ven for a high-dimensional model. analyzed Tino-3.4: SST Fignr 5.9 compares the Rt\ ISE skill of index oht ained hy I he RRSP( KF(D) and RRSPl'KF (E ) methods, respectively. for the period from 1971 2000. against the ohservat ions. The RRSPl:KF(D) is better than RRSP KF(E) when the C'ns mble size is small. inclicating thaJ thr lattrr is morr indficirnt in using small rnsc'mhlrs to capt1u·c' the' main feat nres of the full covariance matrix. This is because the n RL PCI\F (D) dirrctly decomposes the full covariance> whereas the R RSPCKF(E) uses t hP <'nst>mhle to a p proximHt.c> (he covariance uw t rix . s the' <'nsemhlC' size increases. bm\'t' \ 'C'L the d iffer 11 e hrtw<'('ll t lw t-wo mrt hods I>C"COllH'S \'('I'~' small . Figure !) .10 shows t lH' n ~IS E (a an l c) ancl the cmrdrn the twn methods . Similar to Figure .S.G ancl as discussed in Section r: .3, thr hootstrnp mctlwd is nst'd to perform th statistical s1gnil1cancr tt'st ton 9.) o/t conlidt lH'P h' \'t'l. Tht>u' is no signihcal11 diHcn·w·<· of em rdal iou awl H l\lSE skdl hd '''t't'll t lw t \\'u m<'l hot 1:-; fot ) 'J g(;l 96 ) ;.), 12S ISS ' 130[ 170W 170E II OW 130W I SOW 95W RM S E RRSPUKF(O) 15N t: 12N 9N 1 { .( I J 1 - 6N 3N EO 3S /" ) " ) -~ 0 1~ no~s I\ 0 1 6S ISS 130E (I 0 ' ( ( J 1:: <:.. 'J ' 1 1,'-> 0 1 • r --' 'Cl1(01 I 1\'- (d) r ' 6N {) <)') ") I (, ' ,- r '•£) 3N E \ 0 65 > \ J 95 c" 1 0 1 J 1 170E 170W 150W II OW _) r 99 I SOW I tOW 130W 0 a:) "-'r'" 9 _/ qc,_ -o gg \ /c _j ( 170[ 150E o' ~ 'J CJ9' .0 J ./0 y t) 130W I co gg f ('1'=:!'~) ( ~ (1 '> I 0 • < 0 g' ' . 3S 170W J9~) 9N I\ I l C orreia t1on Coefflc1ent Q T I ) 0 ') l f 12N l) 1 (< I ) \ 150E 1 <( ) ~- 125 r ) I Gl 01 9S 0 1 170E 150E ISN - f Y9 ) ( \ ISS 130E ( {l 86 "C Q) c: ro 84 a. >< w 82 80 78 76 - - RRSPUKF(D) RRSPUKF(E) 0 20 40 60 80 100 120 Number of ensemble members Figure .5.11: The explained variancr (%) for the RRSPCKF (D and E ) met hods as n fun ·tion of number of ensrmhles nsecl . RRSPCKF (E ) than in the RRSPCK (D) (FigmP 5.11) . This is mtC'rrsting IH'cm1sc the RRSP1_T KF (D ) usually has hettC'r pnfonmmcr than the RRSPCKF (E ) for tlw same ensrmhlr size (FignrC' 5.9) . One possih!C' reason is that both lllC'thods lwvc' diffrrent total variances (dC'nominntors ), lll <-1king them incmnpnrahle . It shonld l>C' nntccl that th RR SPUKF (E) only usc's lwlf of tlw c·nseml>l<' (i.e'., throwin g out the• uthC'r half ) to caknlate the c·m·arimH·c' watnx to kc'c'p !h<' s;mH' C'llS<'lllhlC' silt' of:!./ 1, givPn a presC'ril>C'd nmuhC'r of /. Fur! hc •nuon>, IH'< elliS<' t lw <'nsc'mh lc' siz<' 1s not lmgl' . r un d errs t 1ma t1. n f or t }1e pre d iction co- nough, t h rc IS lll c'l (' llr·a (- rn) \I rrsrn (a 1.wn variance. Th lead t \' that is perform d on su ch an inarcnratc> covarian e matrix can s ub-optunal sigma I oints. suggrs ting tha t explained varian as the single rnt it)· to clcciclE' the numb r of sigma points t 5.3.5 C 1npar1 on b tw n th cann L b taken b , used . RR PUKF(D) and En- RF ssimil ation <'Xp('rimcnt s arC' a lso pf'rfornwd nsing the En.'RF algorithm with the sam" expNinH•ntal sC'tnp as those in RR. ' P KF (D ) . In all exp riment s both the RR PCKF (D ) and En.'RF start from the s<:mH' initi<-11 conditions. Shown in Fig- ure .5.12(a) is the R~L E of the I'\iiio-3.4 incl x <:mRlys is hy RR .' PCKF (D ) a nd (b ) En RF . b oth ·with enscm1J le size of ell and agains t the obsNvation connt rrp a rt . Thr a n aly is from two cliffrrcnt data-assimilation nwtlwds can diYergr from each ot h er at cert ain as. ·imilatwn steps along ! h a bilit. v assimilat ion track. It can 1w ba.">e l on the f the assimila lion algorithm in cap turing the obse rvat ion informH tion and mix with th model in the transit ioning st ates If one part icnlar cia t a-assimih t ion method an approximate the rror covariance' hett cr t h;:lt met h od can h et t er est inw t e the stat at phas transition steps. Thus Figure G.l2 suggests that RRSPl'I\.F(D) is probably hct t er than EnSRF in t be assimi lation of some ! nmsit ion states using noisy observations. The Rl\ISE and corrc>lation over tlw cnt ire hnsi11 is <-llso compc-ucd in Figure 5.13, showing that thr RR SPU KF (D) resu lt s in the smaller Hl\ISE and slightl.\· high er correlation skill than EnSRF, although thrir diHc'rc'nce::-. arc nnt statistical!~· significant for most of the domain (Figure's !> .1:3e ;md .r; .nf). The hPtt<•r performl 1 \} JS 6S 0 .. r , ') r 150£ 0 (\ 0l~ 0 Nc ~ r 0 1 / I 01 \ /'n ( 170£ 170W 3N o 1 '> ro 1 c; 1c) .., I 9S 12S r 6N Yr (1 1 ' r f ,n • c, JN )('1 I 130W II OW 95W \ { nf r (\ 1SOW ') gg 150( 170£ 170W I SOW ( () 130W 11 OW 9S W (c ) RM SE. RRSPUKF ( D) 15N ,u 12N 9N )" '1 , . C1 6N r r ) 3N (0 ( 35 . 1 ' - )( 1 r \0 ( 1 r: J o. 1 I -.J ')1 ) 1 ') ( 1' () ()1 G 1 (0 1 65 r. • I •c 95 f 1 r::, ~ ISS 130£ 150[ 170[ 170W 150W uow 110W 95 W 9N ~ · ) ') 6N () 0 J' 3N 12N r----1 ')1' r I 3N _J b'r 3S ~~ 3S 03 (--:! !_r '"~ 65 r / r.' 1ss~~~l~---~-~~~~~~----~~~ 150£ 130W 110W 95W 1 10 W qsw ) 0 '")2 95 " v 130£ 150W 6N ~ EO 65 I ~ 170W 9N o'l• ( 9S / I 15N I 0 J 5 12N 155 J,L.-.ll.L~--~ 170£ 130£ 150£ ') :JC (f) Co rre lo 10 n difference d1fference ( En SRF -RR SPUKF ( D)) 15N c' 12S "1 I ') qg 95 I ' 12S r 170£ 170W 150W 130W 110W 95W ) 125 150W 130W Figme ~.1:3: ''T \ H~ISE and coru·l . . Figure' 5.1 •1 shows tll<' hiudc.L l3ootstmp <'XJH'rinH'lliS ;m• ]><'IfotllH'd to t<•o.;t tlw ::;t:lti~ti - C'al si g nificanc <'for hot h H\fSE ,\llrl c oJ n·bt ion ..;kill. I'll<' <'XJH'IIIlH'JJ( :-.1't tin .~ jo.; "llllil.u time's l('ss than Ll_r: months. s tlw lC'ad timP iucr('asc's tlw R I. .. of RR P rKF ( ) and HH 'I 'KF(E) llH·thod, (Ut' signihcnntlv lm\Tl th;.Ul th at of En 1 F UH'thod but cmrdation sklll mP still c·ompa rahlP for all till <' nwthods. indicatmg th(' fU.L' .. ski ll mm ' s 'nsr t 1\ 'C' to the assrmrla t Hlll 111<'( hod. 1. (a) 0.8 ---- ........... u ._ 0.6 w 0 (J) :E a: 0.4 . ~ ("') - 0 c 0.2 ·z ~ 0 0 2 4 6 RRSPUKF(D) RRSPUKF(E) EnSRF 10 8 12 Lead time (months) (b) 1 - RRSPUKF(D) RRSPUKF(E) - - - EnSRF c -0 nl 0.9 Q) I.. I.. 0 0.8 u . 0.7 ~ ("') 0 ---- c 0.6 ·-z 0.5 0 2 6 4 8 10 12 Lead time (months) Hf\ISE nne! c·mr<'it' KF(D ) mHI b1SlU. Ihc· \'<'rtw,d !'IIcllll. <)~~ ·; r· 1. c·c· intc·rYnl ClhtniJl<'d \ISIIlg lHHlfstrnp <'XJH'IIIll<'lll:-. at<',\( h phng C'ITOIS a( , ·>I< ( <>ll H -.1 · 111 '· l<·ad t inw . !l!l 5. umm ry ln tlus 'hnpter. both H'dun'd-rank stgmR-pomt llllSC<'ntcd JC'r of truncated nwdc •s aftc•t th<' .' \ 'D ou th<' c·m·ari;-llH'< matrix Th<' tc'slllts showPd that \\·lwn the' llllllliH'l of sigma pomt s llH'l'C'Hsc·s thf' R?\1. 'E of ' iil0-:3.-1 S 'T c·om parcel to o hsPr\'Cl t tons dPnc·asc·s \ \'lH·n the llllml H'l of sigma points wcr<' a hm·c• 10 . howf'\'<'l'. the' estnnat ion skill kvds off. v.: hcn t h C'llSC'lll hle 1111111 hc>r \\·as small analysis On<' of t lw rc'asou:-. for higll<'l 1\:\ISE was clllP to nndc•n •s tmw t ion of the cm·aruuH'<' matrix by t hc> fin it <' t iunc itt c>cl mod<•s. Th<' R -:\L E and coJ rclat ion skill of t lH' <'lll in• basin were compared as a function of tlH' nmnher of signw points used . TlH' n 's ult s showe l that the> c•stimatc had mon• C'rror whC'n the' llllllliH'l of sigma pomts '''<' n ' small as C'vidPnc<'d fwm the highc·r R~L E nnd lmn'r c·ackgrmmd cm·m i,nH'<' 1s nnderestimat<'d lH•cnnsc' of tlH' snw ll lltlllllH'l of <'lls<'lllhl<'s \\'ll<'n tlw l>nckgwund covariance 1s nudC'r<'s t ima t P d t lH'r<' is g1<'cl t c•r c·<'rt a !Ill\' 111 t lH ' f< >1 <'('il!'\l <'Sl imn t <' :ut< I the filt er will gi \'<' lllOlC' \Wight to tlw fmc•c;tst ilr< 'd to oh:-~<'t'\'il!H>ll:-. ThP c•stinwtio 11 s kills of HHSPt ' J\:F (lJ ) ;uul HHSPCh.F (E) \\ <' t< ' tompan'd to <'cl< h o (hC'l' . \VlH'llth<' (11!1lCCiti o tl n•adH':-1 i\ ti ad<-o fllH'I\Yt '!'ll <'I>S( 1'\.}H'IlS!' ,\lid 1':-;lillldlilr Pstimation accuracy. For small r c·nsrmhlP Sit tlw R l ,'1 "KF (D) pC'rform •d hPtt<'r than HR P , Kl~ ( ~ ). suggrsting that thC' lat- t r1 wa~ 11101 r> mdticiC'nt ll1 11 ing slllall rnsc'mhlc'~ to capt 1m' t hr main fC'atnrC'~ of t ll~ fnll cm·arimH'P llHltllx . lns was lJC•causP the• HR.' l L'K I' (D) dirrctly decomposes thP full cm·arimH ·c• nwtux wlH•n•a;.; thC' HH. 'P ·1\ ' ( ~) llSC's thP c•nsc•mhlC' to approximate· t h' cm·anm1c ' lllcl t IJX . ~ t lw llllllll H'r of ~tgma pomt s tucrc•asPcl. howpv 'r. t lH' chf- fpr ' 11<" ' lwt wc•c•n t he• two lllC't hod~ 1JC 'C'HllH' llltmuwl. \ \ '11<'11 Lll sigma points wPn' usPcl thc' l was 110 Slt?,lltticant drffc'IC'll<"C' of coltC'lation ami R~l. method~ for almo~t skill lwtwc•cn t hC' two thC' c•ntac• donwin of tlH' assimih1tion . indicatin g that tlw skill of RR .' Pl"K • (·) \\·a~ c•utHC'lY compmal>lC' to thC' RRSPl"l\F (D ). hP maiu <-Hh·anlcl gP of RR PCKF ( ) llH'tlwd m·c·t RR . 'P "1\F (D) m<'thod i~ that tlH' formN mC'Ihod ~1gnificant }~ · rPdu cPs the· com put at Hlll cll cost and lllPmory st or age• and makc•s t hC' . '] L'KF mC't hod ff'H:-il hlC' fm a lugh-dinwnsJowd syst C'lll . The pstimation sk1lls of RR. 'Pl "KF wJth ~11 ~i gnw pomts \\'C'l<' \'C'ry close to that of a full-rank . igma-pomt UllS( PntPcl Kalman tiltr>r (. PCKF ). ThP RR . P"CI\F could fauh· well sim ula t (' t hP per formancP of t hC' fnll-rank . 'I l "I\F iu t C'rms of t lw llH'HSl m ' of correlation skill. and al so can g<'lH'l'lliC' snwll R~ISE . ThC' IC'S lllt~ slH>\\'C'd tlwt both the RR PCKF ~ \\'C' H ' mon' computnliOiwll_v dfi.cic•nt the1n the' full-r.lllk SPL 1\.F . iu spite of losi11g ~ ollH ' c•st inw t ion acc·mH cy. ThP estimatioll skill of C'llSC'lllhlc• sqwm•-wot hit C'r ( Eu~H F ) h;tcl also < mnp,u c·cl In R R 'P K . ;.mel t h<' resnl t s shm\'C'd t l1<1 t H HSPl' l\F wns 111o1 <' robu st t h;m t lH' In t t <'r. Jw JwttPl IH·dornwuc<' of HHSPL'J\F mTr tlH' EnSHF \\'< lS pwb;1bh lH'<s is rxpr ·ted to producC' n more' rf'liahle cstiuwtl• of thl' stat<' of tl](' oc<'Ssil>lc· rut llf<' dirP<'I lOllS indmled at t lw <·ud. 6.2 In n r . 1 v rv1 w 'hapt<'r 2. l dlstical fmmulntion of th' l alman filt r , Pnsrm- IJ)p Kalmm1 filt<'l (EnKF). ('llsc•mhl' :-.qtwn·-wot filt<'l (Eu 'HF) aud sigma-point tlll- :-.ccntcd l 'a luwn hlt('l ( '1 l'l\.F). The· c·us<'lllhl<--lmsed 1 alumu Iilt<'lS s uch as Eu HF luwe suCT'ssfHll\' ci<'monstullC'cl tlH'ir ah1llty m occ'cllll<' and atmosphc·ric data assimilatHJn ( ·ng <'t al.. 2010. 2011). Til<' main disadvantage's of th sc• m •thods arC' tllC' uncPrtaintv m constructmg thr c>usc•tuhlc•s and the r<'qnir<'llH'llt of th' grc•at<'r size of C'llscmhlc's fo1 th<> cH·cmatc• appwxiuwtion of the lll<'Hil and variance' of the• prior and post Prior cl!:-.t ul mt ion of llHHIPl stat Ps (Kim c•t al.. 2007: ~00 : . mhadan nnd 'handtasPkar <'t al.. ang. 200 ). The' , 'I l'KF is rC'lativc·h· lH'W iu atmosplH'ric and oc anograplnc data assimilat iou. which dC'l c•tminist ically dwosPs c•nsc•mhlc• nH•mhC'rs and thC'rc by rPducPs uw ·c•rtainty in p,C'nc•rating <'llsc•mhl<>s (.Julin . 2003). !so. the P TKF make's liS<' of a deri,·a ti,·c•-lC'ss optimal C'stimatiou tC'dmicpH' that nsc•s a mmimal nnmlwr of statistically \\'eight c•d sam piPs calle-d sigma points to calcnla t <' t h<' c•rrm statistics. \\'hen t ransformPd t hro11gh t lH' 111mlinear mode•} t ll<',\' capt m <' t h<' true llH' so t lu-tt t lH'H' is no lH't>d to calcnlat e• t lu• .lHcohian or t <•d the• dc'll\'H(ioll of two l<' computntional constraints of full-ordc>r Prror-covariancc •stnnatlOn. tlH' data-assmnlation commtuJJt~· 1s \'Cry intC'rPsted in the dc>v lopmPnt of a INhH·c·d mdn sdH'nH' fm tlH' statP c•stJmntJon. lH' main ol ,]C'ctiv of this tlH'sis was to dc'\'C'Iop cl l <'d llcC'd-!ctllk sJgllla-J> rC'dtHC'd-Jank hltc•t to a n'a!Js(H· clnnct!<' modC'l In the· JPclucPd-rank mPthnds, t lw challc•nge' of t ll<' c·ompu t ;-\1 ional r·oust 1 aint fot Sl l TKF is succ·c•ssfnlly ov<'lTOllH' hy mplo\·mg n ll111H'C1tPd smgulm-\'nlu<' cle•c·omJH>sitHJll ( 'VD) tc•clmicplC' for dinH'll- swnal com Jn·c'ssHlll or rank tPdu ct tml of tlH' c'tTor-c·m·arianc·<' matrix . 1 applic·d both lllt'thods on t hP Lmc•nz- G mod<'l (Lor c·nz cllHl "'llH\111H'L 1r 0 ) in t bC' pC'rfe'C't nwdC'l .cc>mlno. Tht> n'sttlts slwwC'd thc~t thC' r<'cli!Ce'cl-lank m<'lhods s ign ificantly dc'C'lC'asc' thP mnnlwr of sigma pomt s and t h<'il <'st im,ll ion ac·cuuH·y is clos<' to t bat of a fnll-rank , PCKF . In Chapte1 4. I clJscussNl t hC' common pwhlems in PllS<'mhl<'-hasc>d filt <'1S such a~ inhr cling. filtc>r dJvC'rgC'nCC' and spnuons cmTc>lation. I impkmC'utc>cl pcaus<' ,,·ith that lll('thod tlw anal~·sis <'lTor-cm'l<' space. which ;woids t h<' est inw t 1on of a ua lvsis t'rror-e ·u,·arimH 't' matrix of modPl stale' spaC'C' glo lwll~·. lu th<' localiz,ltion sclH'llH'. thC' spac<' whose' dmH'llSH>ll lllil\' IH' gn'C\1 h· Jm,·e·r t h as<'d on t lw gloh;ll doma111. 1 hl' llll c' :we 111 :1 t <'h.' r <'d\l( ·ing tlu' "Jllllloll~ c orr ]at ion lH'f\\'C'C'll I<'!IIO(<' gnd JH>II!ts . · In rm· <'XJH'llliH'll ls I 11'-'<'d difl<'(('lll systl'lll allptirnal . ( ,1\~' .t - J() • tX() cIJH] 1'>0) ~ ( l lllH' llS lOllS stimat (m tc•nus of minuuum HI\lS ). th number of sigma 1 oints n 'E' led to incrras a.· th :-.ystPm dmwnswn mcre•as sin tlH' ahsc'nc of localization. But wh nth locall-"ation wa:-. mtmdtH·c•cl. tlw munlH•r of s1gma points rPquirC'd to achi v th minimum Prrm nwmh· dC'p<'IHb on IIH' local dmH'nsion and is mdC'p<'ndPnt of the climrnswn of tlw glohal domain . hC' te•:-.nlts of ll1tllH'ncal <' ·rwrimC'uls provide• a good trst-lH'd for th appbcal1on of tlw ll\·lnHl-locab6alion sdH'lll' in an aetna! at mospheric 01 oce•cuJic In 'lwpiC'r 0. I clpplH'd both th<' HR.SI rKF (D) and HR.SI l TKF ( ) sdH'llH's to H rc'alisllC" dnnatC' mode'! . I nsC'd tllC' LD '05 of IIH' Zehiak- 'anC' (:0 ')mode'! and assimilaiC'd s•a surfacC' t<'lllj)<'rallll<' anomc-dv (S.'TA) data . The JH'Jfonllanc-P of rc•chwc•cl-rank sch me:-. wa:-. compme•d w1th that of th<' fnll-umk .'P TKF . ThC' sc•nsiti\'ity c•xp<'nm nt: t<'stdts shm\·Pd that both the· HI SPCKF (D and ') :-.c!H·mc•s. c•vc•n \\' Ith a lllinimum nmnl ><'l of sigma points as low as ~11. w<'J <' snffic i<'nt I o g<'l an analysis ll<'ar to the full-rank 'PCKF analvsis. ThC' alnlit \'of R.RSPCKF (D and ) am! 'nS I . in rms of R).I. E and conPlation coefucJC'llts was cmnpa1Pd. \\'hen tlw smn<' ntulllH'l of ens mbles W<'l (' usPd. the pPrfonwmc<' of RR. PCKF \\'IHin more' accurnt<' <'stimates becansP of its bel t<'r algorithmic prop<'rties. ;-.r_v lC'snlts showC'd that whc·n I hc· pns mble size 1s clS small as ..J.l. th<' pc•rfonumH'<' of both sdH'llH'S HHSI l ' KF (D ]<' 1"11 f<>IIIJrvation is sparse' ~uch n;.. tlH' dC'<'P layc•r. of t hP CH"C'Hll Data as~Imilat Jon is an PssC'ntial comiHHH'nt of tlw 11\llllPrical \\'PHllH'l prC'clJc t 1011 ( ' \\'P ) JHOC'('SS . v,·h ·r, rc•asoning mH!c>r nncntaintv Js a u•cp!ac'llH'Ill. \'aluc\hl ).lc•thod~ hcl~c·d 011 u·cur~ivc> 13a.\'C'sian C'stimation provide':-. a tool for t lH' S<'quc·nt 1al stat P-opt inuzat ion pwhiPms. Kalman filtPI:-. give' t h h '~l liJH'Hl nn1wt:-.c•cl \·tinwl<' (13Lr") for lnwm s~·stc•ms. howc•vc•r. its dirC'ct implf'- nwntation 1~ not pln of tllC' I\:ahnnn filtf'I. E11KF and ib dnivati\'C'S arc' widc·lv us d in lltlllH'l ems gc•ophv~H al dat a-as~uuilat ion ptohlC'm:-. 1H'<"HIIS<' oft lwir algorithmic simplicity and tlwy arC' C'as_,. to illlplC'11H'llt. The> main prohlc•m with nKF and its ach·anc ,d ,·arinnts such a:-. En. 'HF rs that tll<'rP is 110 we'll dc•sig11<'d tPch11ique to choose' t h optimal c>nspmhl<' si;c'. TlH'Y also calllH>t prm·ide mformal ion about t h<' 1wu·c•nt ag<' of the st inw t C'd prrm ,·aria11cc reb t Pd to t h<' t me em mt <'I pmt for a gi \'('11 c·n~<·mh 1<' size. Th , P"CKF IS a dC'tPnuimstic. dc•tJ\'lll<'llts of the• wmlitH',ll uwdPl Iu "J>ll<' of all tllc ];<'ndit s of SPl.Tl\.F. th<' t<'qttiH llWill of llH>l<' th:111 twit<' tlw Iltlllllwr of :-.ignw points than th<' S\St<'lll stale's milk<'" it impractical for tii<'ll kms in m<'! emol ogy or oc-<'<11 ll >gnt p hy. This rwn•ssi t <1 t <'S t lH' 1 <•q llll<'llH'll t of dt '\'<'I oping a practicl<' I<>.·i tuCltion f
  • r!Clti<>ll hns 1 lllatll .\' fO('l\S<'C 't lld ill\'('s tig I<>XilllI I (l ll tll <·tt issll<' • • ' • · 1 1 ']>I.<>'".·lllldtil!l]H>:--<'<1 covaru-HH'P >.V n•c 1w< - ' \ ' ·'" ]()/ PI ' .. can hP ap1h l t a r absti high-dim nsiona l climate mo ll. that h mam contulntwn of tlns diss<'rtatwn IS dPscriiH'd in tlw fo llov;ing paragraphs. I intloclu('(cl <1 11d in\'C'stigat 'd (\\'o emuputationall:v rfficiC'nt algorithms for sigma-point I\:alman filt e' rs. makiu g t lH'm Ylahle candidates for a pphcat ion in 1 C'alistic at mosphC'l ic and occ'anic modds The' te'chtcC'd-rauk apptoximation is nwin ly hasPcl on t lw con- <' <'pt thcll most lPt of dPg LC'Ps of frc•e•dom and tlH'ir dominant \'ariahil!ty C'Hll lw <'xplainPd l>y a l11m t eel mnnl H' l' of nwdc':-.. • ssmmng that most important e'J rors of the original sigmapomt spac<' can he' PSI ima t C'd usin g a fe·wc'r nnmhn of the' clonnmmt sigma points . two reduced-tank approximaiH>ll lll<'lhods Hr<' propose'd lll tlu s wmk. The' sdH'llH'S nr<' IC'dtiCc'd-umk :-.tgma-pmnt uu...,cc'lll('(l I\a llllnll filtc'l (Data ) (RR .' P1 ' KF (D )) awl I C'd 1J( Pcl-I ,m k sigma- point t msc-c' ll t Pel I\: aim, m fi I tc'I ( Ensc'Jll hie ) ( R R . P1 ' K F (E)) Bot h nwt hods arc' ha:-.Pd em the t rtlllCd , 'VD to fact omw the> cm·;.uimH'<' matrix and n 'ducc its rank through trnucation . Iu th<' first tc'dmiqu<' . th<' VD is a pplH'd 011 th<' Prror cm·c-uianC'<' matrix calculat<'d Ill the' data space' (HHSPl' KF (D )) wlwrPa:-. Ill tlH· sp ·ond t pchnicpH' the . '\ 'D is applied on t lw C'JTOl cm·arimH'P matrix cakula t <'d m t lH' PnsPmhl spac<' (R RSPCKF ( ) ) . Tlw 1 ed ucPd-ra nk. square'- root m ,1t nx IS usC'd to S<'- 1'd th most 1mportaut sigma poiiLt s that can retain the' main statistical f<'nlun's of t lw original sigma pmnt s. ThC' RRSP"l'KF (D ) ca n C'ff<'c lt\'<'1~· SIlH'llls \\'ith thl' PllOl l'ovcuian ·e in thl' data spcH'l' l'V<'n diilicult t.o compute and store such a hig mat11x . \\"hen th s tate duu ns1on LA! is much gr atC'r than thr C'llsrmblr dun ' llSlOll n. i.(' L" >> 11. it IS 1 OSSihle t () C'O lllput mat nx const n I<·t <'d in t hr tlw ' D 011 t h 11 r n covarianc ns<'mhlP sn hsp> n . that is usuallv tlH' casC' for <'c a us<' \\'<' arC' a pproxima ting t hC' full- rnn k ('O\'ari a ncr w11h its tC'dncC'd-nmk apJn oxi nw ti on. Lon1!Jwtion uwk<'-.. lh<' filtl'I uwn' comput atimwll.\' fc'asih l<' and makc•s tlH' anah·sis c•stimnt<' uptmwl ln· u·clu('ing the' pioblcn 1s of spUli<>liS condatwu. whi<'<'dlllg am l filt<'r dl\Tig<'IH'C' lH'< nns<' of -..JJllP SlZ<'. Th<' uwiu dwll<'ll).!,C' for imph'llH'ntmg tlw loC'a]izatiou iu th<' ,' Pl\F Is that th<' signw poiuts an• g<'ll<'mtc•d hnsc•cl ou the• gluh;d ;1nnh·s1s c·nm c·m·ailHll<'<'. In this dissC'llatioll I dc•vc•lop<'cl aloc·il li;.;ltiduccd. thc> optimal Pstimatr ohtanwd is indq cnde'nt of thC' syst. m li mrnsi n. 'I h<' ~ell~1(1\ It V <'XP<'l'illl<'Ut l<'~ults ~uggc·~t<'d poss1bk wnys to llllJHOVC' the hlt<'l p '!formane '. lw locahzat 1011 sch 'Ill<' gave' ·m·onraging r<'snlts making thr RH 'P rK ( ~) method a smtahl ' cawbdatc' fm assnnilatiou in a lugh-dimc'usional systc·m. I xplou'cl tlw c1pplication of .'Pl ' l\ · and 1 1 .'Pl"KF(D and ~ ) in a realistic clinH1( C' modd of int '1lllC'dwt <' com ph xll ,. To t h<' l><'st of mv kw>wlc•dg<' . this was t lH' first tmH' IK \\' H;.. apph •d to a rc'ah~tH · llHHld 111 th · HtniosplH'ric / oC'c>anic scic'1H'C's . The• 1C'ahst1 · modc'l ttsc>d m tlus stmly \\'< lS the LD ~ Y VCTSIOIJ of thC' Z 'modrl fm I\. '0 pr<'< he t ion. • m pha.'·Ds \\'as pia ce'd on t h<' im pl<'llH'nt at ion of H HSP l' KF for the> LD ~ 5 with thC' assimilHtion of .'.'T . Both the' HHSPCKFs cmtld analyze' \\'Cll thP pha,'-><' and int ·nsity of all majm '"' ·. '0 P\'C'1Jts dmin g tlw st mlv !H'Jiod with comparable' 'stimation accuwc.\·. mthrnnm<'. the' RH. ' I CKF is c·cmlpmwl against th<' '"' IL ' R • . shm,·ing that t h<' m·c·t all anal.\ ·si~ ~k1ll of RH 'PC KF and E11SHF arP compmahlc• to ach othrr lmt th • form<'r is more• robust than th<' lattC'r . ThC' sC'nsitivity PxpnmH'll( r 'snlt shov;C'd that RH.'PCKF with 41 c•use'ml>ks can helVe' c•stimat1on Hccnracy close' to that of a full-rank 'I 'KF. mal·ing it a potC'ntial cmHlidat<' for dc-1ta assnuilntion in large-dimPnsional at nwsphf'nc or ocC'an : ').Is. Th<' n.clYCtnt nf!_(' of R H. 'P'l ' KF (E) O\'C'I' R RSP'l TT\:F (D) Js in it s aflo1 dal >IC' cnn lput ,ttional cost and low<'l llH' lllOI y nsag<' . Th<' lllain dwllc•nge of HHSPl' 1\:F (I ) Is to 1 <'PU'Sl'llt t lH· full anal~·s i s-covm icmcc· nwt rix Pxp!IcJt 1~·. \\·hich is still com put at ion,t!Jy nnaft()Jcl.thlt• for high chnH'llsicmalmodc'ls . lu tlH ' cas<' of HHSPl.l\F (l<..) tlH• c•nsc'mhh's me' llsC'd to approximat<' th<' covarimH·c• matrix . cnlcnlatl'd 111 th<' n •dlwc•d clinH'nsiou (t'llsl'lllhll' space). TlH' localizatioll sclwuH' Illakc's HHSPl' I\:F (E ) lll<>l<' c onlput.\1 ion,dh dll ci c'lll IH·cmlse• Jt 11 w~· rPdnc ·c· t ll<' Y for tbC'ir a pplication in high- t lw I\: alman fi lt <'l' <'CJI Iat ion. nsc•d m , PKFs bavr lH't t <'l <'S( imat ion ac ura C)' wh ' 11 t h' m 'Hs lll <'lll<'llt fmlC't 1011 is uonlin<·a r c·ompnrPcl to t IH' mH' usC'cl in "' nK and "' n- 'R ·s. The· clnPct application of tlH• nmthlH'H l llH'asur<'nH'll( function in ' nKF and • n,' F 1111pospo..; <111 nupbc it liiH'<1lllll JHOCC'ss usmg <'llS<'mhlc' nH•mlH'rs. The• pn- fornHUH '<' of HI . 'PCI\Fs \\'<'H' more' robust tlwu ' 11. 'HF whC'n a ppli<'d for assimila ting ' T mto Z ' modd ().lallo.J Pt al.. 2(Jl·1). Iu HHSI rK •s thC' Pnsc'mhks arc gc'n- <'ratPd d 't<'llllillJ"iiHcdh· ( ~lmw.i c·t a!.. 2()1 .1: Tang d a l. . 20 llh ) c-ompm Pd to tlH' arllltrary natut<' of 111Jtwl 'llsPmhlc· g<'lH'ration in • nKFs (Lwu g. 2007: 'uru •t al.. 2012). RR. PC1\:Fs c,tll g<'lH'Jat<' finit<' llllllliH' l of sigma points fm thP optnnal <'Stimate of prc·cliction-<' tTor cm·a nnncc ·(~ l ano.i l't al.. 2014: Tang <'t al., 201 ~1> ). TlH' imll<'m r nt ation of lo calizatiou and infiatwn sell m s in RR . P"CKF(E) l C'sul tC'd in it s h '( tcr p rfornHmcc> m The R~lS was md< 'lH'lH lc•nt of systc•m clmH'nsiou for a si111plc' 1 1 , uch as t lw Lol<'!lz-OG mockl si mil;u to the finclmgs of Ott <'( ell. (200--1). Snllllctr t o th LETKF clata-assnmlatiou s\·st<'lll (~ ll.\ ·oshi. 2005: Li <'I al.. 2009) HI .' PCI\:F ( ·) has an advantage for parallel computHtiounwkmg it thP lH•st cnllCll<'llllal nppli<':llion ()f HHSPl'h.F(l·-) 111 .111 . <'<'"' · c· ('('~ l Tlw S<'<"c'lTat ions. uot ht>r issu<' is t hr ass1 llll pt 1011 of ; a nsswn dist ul m t ion for t h<' ohsprva t ion and background <'rrors in PKF Iu the followm g sub.<'< t 1011s I bndl,v chsc 11":-. t 1l<'S<' I::>su-. and also ::;omc· po::;sib1e ways t bat t lwv mm· I w addrPss<'d. . .1 Itnpl nt n fRR KF (E) £raG M In th1s chss<'Itation I <'xplm<'d puH'tiC'al a1gonthms fm SI Kl~ to makP It s uit a h1<· for applicatiOn Ill an atmosp1H'nc or oc·Pmuc· ~ '~I. The RR SJ CKF("') m •thod with tlH' h.Y hrid-1ocah;,atmn sdH'llH' propos<'d in t1us dissc'rlalion show<'cl c·stimalion cH·c· nuH·y clos<' to that of a fnll-umk 'PC l\:F making it au idC'a1 c·c-llldidat' for impl 'nH'll(Htion mto a ; '). 1 In this stwh· HR~I l'KF (E) is app1wcl 011 Cl munlH'r of modds with ,·;u~· iug complc'xit~· and tlH' I<'sults indicated that th <' method is Y<'I.V <'fl <'ctiY<' in assimihltiug dnta . How('\'<'r. thC' lll<'thod ha!-1 some limitations as wdl for application into a ; '). 1 in an oprraticma1 sC'tling. \\'lwn \\'(' dC'vc•lop au optim ..ll n' mnch lnrg<'r for a ;c;.. r 1h;m what \\'C' hcWC' <'lH 'OlUlt PrC'd so fm . Dc'slgn ing I hP modd C'l ror . ol>sc'n·nt ion <'I rm nnd initial pert nrhe~t icm will l>f' much hm dc•r in I he• cas<' of n GC).l. .\ not hn impm tcmt fac·tor is tllC' dfici<'ll1' HH~Pt ' h.F (E) inn comp1c•x C:CI\1. ll~ ..2 l rid imil· ti n up ling 3D- Var / 4D-V r + h ' main adnmt agP of aclvmH'<'d PllS<'mhl<' hasc'd lllC'I hods such as , 'P 1 .. ov<'r v;.ma t imwl nwt lwei~ 1~ I lw I. in I lH' fmnH'l I lH' Pstima t <' of t lH' l>ackgronnd-cova rimH ·<' matrix i:-. flow-dC'p<'ndc'nt 01 1t ':-.1mwl<'s I lw ··errors of I lw cia~·". On<' of tlH' primar y ad,·antag' of 1 -\ 'm ,\ssumlaiH>ll lll('thod 1s 1ts ahtht~· to assimila te' asynchronou s ohs<'lTaltolls. lH' c·onplmg of ~C'(pl <'lllllll C'\'olntion of c·ovarimH'<' matric<'S with varia- tional data-asstnulatiou lll<'thods is m1 active' a r<'a of n'sc·arch in tlw dclla-assimllation comm1mitv (Zhang al}(l Zhang. 2012: Zha11g Pt al. 20n). Hc·c<'lll stndic·s lW\'C' shown that thC' d e:l t Sllllilntioll svst<'lll c·cnnl>ining nKF with .JD-\'m pC'rfornJPd hc·ttc•r thannncoupl<'d lD-\ 'a r or "n KF (Zhang aw l Zlumg. ~01:2) I\ lost oft hP st udiP~ on cmtpling <'llS<'ml>le-hasC'd d ata-assimi lation mC'thods \\·it 1J \'arin tionalmcthods ns<' "nl\ as a lC'pr<'S('nlali\'C' of thP c>nS('mhlc•-l>asC'd dHt cl. As discnssC'd in thi~ chssC'rtation .. 'PKF has Sll]WlH>r matlH' matical ptop<'ltiC's over EnKF and It will llC' int<'n's tmg to explor<' n hybrid data-clSsJmilatJoll ~.\·s tc•m coupling the advall<·ed SP KF such as RHSI CKF ( .. ) \·n th th(' lD-\ 'nr lll<'lhod . Following Zhang lll 1 della-a~ nmlation lll<'lhods gin' thP optimal PstimatC'. BL E. whPn thC' modds a~ \\'Pll cls tlw llH'asm<'llH'llt opnatm that rdatc·s mode·! stale's to ohsc•rvations me' lmC'ai and tlH' nssoc1nt 'd background ami ohsc'n·at ion C'rrors arC' 'anssian ( m- hadan and Tang. 2011. \·au L<'<'U\\'C'll. 2012 .. \mhadan. 2()1:~). \\.hc'n \\'<' move• away fmmtlw as....,umption of liiH'aritv . and ;,111ssiamtv. . that Js oftc·n tlH' case' with !llC' n'alwmld pwh!C'm~. the' opt1maht \' of the· c·st mw t C' oht nmC'd from the' Pnsc•mhlC' lH'C'OllH'S qu 'Stionahlc' (vC' usC'd to accmmt fm thC' inte'rncll (dn1c-uniC'al and nunH'ncal) and <'Xtcrnal (ohsc•n·ation) C'Imrs and th<'ll associat 'd dc'\'i<1tions from ;aussmn probability clistrilmtious (Amhadan and Tang. 2011: Sma and llmmachi . 2011) . hP challC'ngc's of nmltiplicatin• 1101se• can he sohTd \\'Jth <1 ll\·hrid dJH'rt iC's of hot h t hC' part icl<' filtC'r and , PT\F l-nlike tlw I\,llnwn tiltc•rs. th<' partilOhcll>JlJt\·-dc•usJ(,V fllll<"(i()ll is I'llli\' j)!()pClgc1l<'d Ill lllll<'. FnrthPnrHHC'. a particle' filt<'r do<'s not ll<'<'d mtihsnuil atwn commmtit v ts vPry intPrPs tcd in d cv loping a hy hnd pcutHlc filt '1. wludt (ctlll lS(' the RR r TI\F (E ) sdH'lll(' fm the I l.'"i IR . Bibliography .\mhndan . .J . (201:3 ). Et'rduoi/On of 'forho.c.,/1( Kmrltc EneTg.lJ Back.c.,co/t('r. J h t h 'SIS. Int <'mat Jnt. Jounwl of Adt 'O'rltf'.'i m !tfodf!tn_(J Eorth y.c.,fr m ..,. :3.1 lG. wlnsou . .J. L. (2 0()1 ) Au <'l!S<'Illhl<' ad.Jnstnl<'ut kalm a u filt<'t for d Hta ass1milatiot1. !t!onthly \froth( r R r t'tru·. 12 2 1 2!)():3. nderson . .J . L. ~:mel wl<'rson . S. L. (l!JD!J ). mont(' carlo mtpl<•meut at iou of the' nonlinear Lilt <>ring p10 hlPm to pmd 1tC< ' c·nsPmbk <:lssimila t ions a ncl force as t s. ,U on Ihly Vt'ealh rr Rr II/( 11'. 121:21 n 27S uroux . D. awl Blmn . .J. (200 ). A uud ging- lHIS<'d dat ::~O.r> 1 . Batt 1St 1. D. ~. (1 D D.\ 'Wllllics cllld t lH ' lllJ( >d.VJJCllllJ( 'S of a \\ clllll iug ('\'('11 t Ill Cl conpl<'cl trop]('a} at 1uosph<>r<' li\'('Sl< ' (I ctll sl'o llll k,dlllilll hlt (') P.u ( I. J'lwon·t I< nl HsC'cl dC'composition . fnltnwlwno/ J ()II T'll ol () 'on I rnl. 1 117 17( :... r ' h<'ll. D . 'mH'. ~ 1 ,\ . Kaplm1. ,\ . Z<·l>iak. ' .. and ll wmg. D . (2001 ). di cta lnlrtv of El 'mo 0\'('l tlw pas t 11 \'<'ars . olun. 12 :7:n 7:3G. I r<'- 'h<'ll. Y . and . 'nn lc•r. ' (20!)7). ssunila t ing vorl C'X posit iou wr t h an <'IJS<'Jnl>lC' kalnw u filt ('l. 1Honlhly I\'uJ! lu r Rf l'lf w. 1: 5·1 2 1 lS. 'h ng. Y .. Tar1g. Y .. Zhon. X . .J ackson . I .. and 'he'll. D . (2010). Fnrt hPr llity iu t hP lmuout mod<•l - P a rt 1: sin gular \'C'ctor and tlw cm1trol factors. C/uno lf Dynonur . . :)5 : 07 2G . orazza. I\1.. K a h w~·. E .. and Yang. S . '. (20 07). n implC'llH'lltation of th<' locn l C'l1. <'mhl<' knl!n,w hltC' l in ,, qnas1 gc'ostJ ophi c nwdC'l a nd co ntpm ison wit It :~d-vm . onlzneor Prou ~ws m Gropln;.~/( .'>. 1..J.(l): 101. ourticr. I .. Andnsson. E .. HC'cklP.\·. \\' .. \ 'asil.w,·ic. D .. ll amru d . ).I . Hollings\\'OI t h . .. RabiC'r. F .. Fish<'r. ~I.. and P aillc>nx . .J . (199 ) ThP E '~ 1\\ ' F llllpl<'llH'll(<\IH>ll of thrrr-dimPnsional \'ariatioual nssmulation (3d-,·m). i: FonnnlHticm . Quru/('1/y Journal of /h (' Royo/ 1\ ]('{ ('()m/o,r;u·o/ 8or 1r fy. 121:17 ':) 1c 07 . onrtier. P .. Th0pa ut . .J .-::\ .. a nd Hollings\\'ort h. A ( 19~J-1) A st ra tq!,~· for <>JH'I ,\t ronal implPmPntat wn of -lcl-\·ar. usmg snvation nm s<' usi ng n P,C'Il<' Ja!tsC'cl <'llSC'llthlc• k;\lm;ul filtc•r In Hohotu and S 7180 n, Enu!l ·o nml'/11 .'> (ROSE) . ,J()JJ JEI·n.; lnl 1molwno/ ,<.,'IJIIIJIO~IIIlll . png('s ~r> !Hl. Iagdr 1mrg C<'tllHlll\' Dal<'y. I . (lDDl) . AIIIIO~Jihll/1 Dolo .tlnolt;~1~ \llnhridgc• t ' nt\<'I"Jt\· P I<·ss . C.un- hridg<'. lnrt c·d Klll gclotll D<'llg, z. all< I Tmtg . Y (:2()()!)) Hc ·c ·ou-.;t nwt iug t h<' p<~st "lltd ,:.;t 1 <'sS<'" I(O/Rcsrorch: Otrons.ll :dm:l0 .102 /20 11.) '()() 12. eng. Z.. ang. Y. and \\'aug. ;, (2010) . . ssnnilation of rgo trmperatn r<' an d saluut v p10Iil 's usmg a bl<:lS-Cl\\'a 11. Ouon ,\Iodf 1/mq. : ~s . 1 l 7 _O!J . .. .J . and \ Yood. rr~· . F. (200.'J) . D ·nrasing ri\'C'l dischmg<' in nort h rn Cauada. Gcophy.'>tcal Rf .'>uurh Lr ftc rs. :32 .doi:l0 .102!)/20().) ; L022 ·15. inwt. F .-X . Land Talagrand. 0. (1< G). \ ariatiomd algorithllls for ana lysis aiHl assimilation of mC'lC'orological ohsC'n·ations: tlworeticcd aspc·c·t~ Trllus A .. A: 7 110 . hr ndorfcr. ).1. (_007) . A rc'\'i<'v\' of issm•s in <'nsPmbl('-hased kalman filtering . !l!rtrorologt.c-.c hr Zclf'>r hn.ft. 1G:7!).'J 1 . £,·ens n. -r. ( JfJD2). "('smg th c•xtP IHl<'d kalman fih<' I with a nmltila.\'PI quasigc>ostrophic oc<'anmodd . Journal of Grophys1co1 Rc.c.,rouh : Orum'>. 7:17905 1792-1 E\·c>nsen . ~ . (1 0!)-!). SPquPnt ial data a~similat ion \\'lt h <1 uonlilH'm qwlSi-g<'ost topluc model using nwnt<' carlo lllPthod~ to for<'C'ast Prror statistics . .lournnl of Gfoph.tJ.~Iml Rr. aTrh: Ocean.'>. !):101-!3 101G2. vc>nsen . G. (19!)7) . ch·anced data assiuulaiHm for strongh· nonlm<·m dnwnucs 1\Ionthl.lJ lrrothf 1 Rr l'lf 1u. 12!): 1:3-12 1:3G.J . E\'(•nsrll c;. (200 : ~) 'Ill<' <'llS<'lllhle kahnan tilt <' 1.. t hc•o1 C'tH ,t] fmnmlnt lnwutal]()ll. Ouon D,l;nonuc ·.c., .r'): :31:3 :3G7. (:WO~J) . Dolo os.c.,111ulot10n . T/1( En .c.,r 111h1( l\.ol111on Fdtc r. J nr/ rd. Sp ring<'l - c•tl!"> / 20()!) !">07:3 70 . uknm ri, I. (2012). ml inmg mod •ls and rl.ata in larg<>-scal o e nography: r'Xc-u nile · from the' consortium for e'stimating thr circnl ation and dimat of the oce•an (e•cc·o). In Blayo. ~ .. ocqnC't. ~I.. 'osnH'. ~ .. and ugliandolo. L. .. editors . AduanrC'd Data A smu/otwn for ,uJ.' lru ncr. page's 5~ .s .r::;: 1. xford. nitrd l ingdom . xford ' mver~tty 1 1 C'ss. Fmr r. R . and BPngtsson. . (2007 ). ~s tmwtion of lugh-diuwusional prior an d posl<'rior cm·mian«' mat tier's in kcdman filtN variant s. Jounw/ of !11vlf17JOTWI Ana/ys/,S, :22 7 25::. 1aspari. ; .a nd 'olm .. '. ~ (1 ). 'onsttuctionofcotT('lationfnnC'tJonsintwoand t hn'e' dmwnstmts. (juo1f r/y Journo/ of lht Royo/ !Iff ltoro/og!to! oc1 ty. 125:72: 7.5 7. 1c111thier. P .. 'om(H'r. P .. awl ).lolL P. (1 (3) . ssimilation ofsinmlatNl wiud lidar d a ta \\·ith a kalm a n filtrr !lfonth/y lrm!hfr Revww. 121:1 o: 1 20. rilL ' . E . (HJ 0 ). ,'() 111( ' simpk soliiiH>llS for lH'HI -indw·('c] tropical Clrcnlation. Quortcr/y Journo/ of thc Royal !lfrlroro/o_r;!(o/ 'on( /,l/. 10G : 117 1G2 . Hamill. T . (200 '). .. nsPmhle• has('d at mosplH·ric data assimilation. In Prwlictolnltly of li 'ro th C'r and '/nnolr. page's 12-1 l!JG . 'mnhridg<' Cni\'e'rsit~· I rc•ss. 'ambridge•. C nit d Kingdom . Hamill. T . ~1. and \\' hit akci . J. '. (:... OO.r> ). ccmmting forth<' cnor due to unn•soh·Pd scctlc!:1 ill cnsctubk data stinwt t'S in em c•nsc·mhl<' kahnan filter . !l!ontlily H' alhC'7" R eu1cw. 129:277G 2790. ) 11 C'\'aln,tt 1011 of thr' nonlm<'r ~ H an. X . ,t 11 cl I 1. ' " ('1()0 thr scqu<'ntwl d r_\' mi< 1 n pphca t to us ln 4 /Ill' r1,can fl!othelnofttol MH ' it/,11 . Prortf'dtn qs of Sympo.~1a 111 . lpp/1( d !I loll/( mot ll ~- pngc•s 7 1G9 . Provide•uc-<'. rllll<'d StntPs. Ilout<'katuc•r. P. (20 1:2). ShoJt mug<' c•nm stntistics in rd . l 'uitl'd 1\.mgdmu 0 f<>rd Uuivc'Islt v Pu·ss. llD llout kcm<'r. l . L. and Iit ch 11. H. L. (1 kalmnn hlt c1 t('duuquc . ). Data assimilation using an ens<'mll !onthfy li'rofhf'r R cllrw. 12 :7 11. Bout kanH'r. P. L. and :\lit h 11. II. L. (2001 ). s('qtwntial ns('mbl<' kalman filtPr fm atmosplH'lJC data assnmlat1011. Jonthly Weo th r Rc u/ r'W. 12 :12 1. 7. II.ich . \\' \\ . Tanf!. . l3. and ,auH'tt. E (l((!J) 'fp]c'comuctions h('t\~:('(' 11 P tco D: onlmror I hr nornr no. 2:30: 11 2 12G . Id('. K .. 01lltic•J . P . ,hi!. ).1 . and Loi<' llC. A '. ( J<)CJ7) 1' nifiC'd notrtt ion for dat a assimila ti on : )p C'ratwnal. seqw•nt ial al}(l \'a ria t ional. .lou mol of th r Afr{('omlogleol ocu ty o.f.lopnn. ' rr . II. 75:1 1 1 Ito . K . cmd Xiong . K . (2 000 ). ; ,1\ls~ian filt <'rs for nonlin<'ar filt<'ring problC'ms. Au - f omo l zc C'ontml. IEEE Tmnsorlwns. 45 :010 ~ 27. Ji ang. :illC'. S. .. Sprintall. .J .. Yoshimura. 1\ .. am l 1\:anmn it su. :.1. (:201:.. ) patial \'ariation m t mlmh' nt lH'a t flu x<'s 111 Dwkc' passag<' . .lou mal of Clnno/(. ~.r::l.J:/0 1..! ' . .Jin . F .-F .. I\PC'lin ..J. D .. and Ghil. I. (l!J!J~l ). Tiii.o on tlw dc·Yil's staitTns<'. nnnal sul>harnwuic stPps to f'ha os. S('l( ' l/( ' ( ' . 2G.J :70 72 . .J ockel. P . (2012). Earth s)'stc•m modC'lmg. In Schumann. l ' .. Pditor . . ll rno . . pl/(1'/r Phys 1n. Rc•sC'77 :>00. Sp1ingc•r l3<•rlm H<•Jd<•i lH'lf!.. Bc·rlin . Gnnwm· .JulH'r. S. (2002 ). C'ontro1 he• scalC'd unsc<• nt c•d tnmsformation l) /0((((/lllq.., o.f flu . l n/( neon 'o7i.ff'n ·nr·(', G: 1:):)!) ·lGG!l .JnliN . S. (2 00 :~) Tlw spll<'ll('n l sunph·x llllSC'<'lll<•d trnnsl'ollll clliou . th f' Arnr nton ('ontml ( 'onfr n nc(. :{ .2 l:m 2 U 1. PU)(f({llllg .... of .JuliPl , .. and l.'hhll lls J>ronld/1/(/'• of flu 1:20 m nran onfrol on} rrnr . 2: 7 2. Juli<' t .,. and l'hlmann . .J. (200·1). 1.·nsc nt<'cl filtc'ring and nonl inC'ar f'stimat ion . Pro('((dmq of thr IEEE. 2.401 -122. J~tllcl. ' .. ·hlma1111. .J., and Dtulaut- \\'h_,·(<'. l l. (lc c j). A ll<'W app10ach fm iilt <·liug nonlinPar s_n.;tf'ms . Pronedmg. of thr .1m nton Control 'rm.frr nc .. :1G2 1G32. JuliPr. , . J. and l'hlmann . .J. K . (1 1 ( 1) . .:\C'w 'X(Pnsion of t h<' kalman filtC'l to nonlnH'm ~ \'~ t <'ms . Pmc . PIE IOU' '. 'u; n a1 1)ror e.., c; m q, 'en MJT Fuswn. on d Tor:qr I Ru ·oqruf wn \ '!. :3()G 1 2 1 : . Ealman. R . E . (1 ~)(iO) A ne\\" app1 oac h to lin<'. ~1. A .. Kuslmi1 . Y . C'kmC'nt. BlunH'lll hal. ~I. B . nud Raj agopalan . B . (1 00 ) . Anal~·sps of global st>a surface' t C'lllJH'l'H t urc' h !}(j 1D91. Journal of C:fophyslcol RrMarch : Oc('Oll .'> . 1():3:1 r:G7 1 ' S 0. Karsp'ck. A . R awl Ancl<'rson . .J . L. (:200/) . "'XJWnnwntal mlph'nH'll(ation of r:·J ·>r:t} lmror Pror·r '>'if.., 111 ( ,fofJ .)" ~ · L . 1~1 (1 /1- Lernmsianx. P. "' . .J . (1 7) . Error subspac data as.nm7.la l10n m I hods .for ocran .fl('/d <.·tnnnlton Tluory uo{((/otwn mul npp{(('oftons. Ph thrsis. Ha rvard nivnsit.\', 'amhridgr. l'mt d , tatc•s . ). Data assimilati m via rrror subLPilllllSlHllX , I . . .J . and Rohmson . . 1 . (1 and En,r;mtr'rmg. 1 7:: . 71 : .JL:3 ,' tocha:-.!Ic :\Iod<'lmg of :\ lul!Jscalc· and :\ lul tiphysics Prohlc•ms. Liang. B. (2007) . An r nscmblc Kohncm .fdt er module .for outmnoltc luslory match mg. I h t hPsis . Tlw lll \'Prsi tv of TPxa..., at ust iu . T Lorc•nc .\ ' ( 200 : ~ ) The• pot r ut ial oft lw <'llSC'lllhlc· kcdlllrUl hlt <' l fm • T\YP-a ( 'Ol1l]Mlison with .JD-\'Hl. Quorlrrfy .Journof of the Ro .lfo{ /1/(/(oro/oglcof onety. 12!J::H :3 . 20 ' . Lor nz. E . :"\ . (UJU:3). DC'I<'rministic 11011pniodic flow . Journo{ of the Atmo .~phcnc nr nee . . 20 :1:30 111 . Lor<'nz . (1(GG ). stwl)' of th<' ptedictahilit~· of a 2 -\'Hrial>le atmosplH'nc model. Trllu .. 17::321 :333 . T LorPnz. E. I\ . (10 G). Pr<'dictahilit .\·: a prohl('m partl.\· soh·Pcl. 1n Pmc . S'1nuno r on P1 Pdu·tabtfily (EC!Iflf'F. Rmdmg . B c rk.~lurl'. CK). 1:1 1 . Lorenz . . (200G ). Pr('dictal>ilit .\' : c1 prohlPm partl)· soh'('(]. lu P n di r l olu fi l .lf of 11'rathrr and Cfmw/1 . pa gPs -10 r- . 'cuuhridgP l'lll\Trstl .\ ' Prc'ss . 'a mhridg('. l'nit('d T. Kingdom . Lor<'llZ . E . N. alHl mamwL K. . (1 1 1 l ). Optmwl s tl<'s for s Hppl<'llH' nt n n · \\'('n tlH' t observations: Simulation wtth a smallmc>l< • kcdllHill filt< •t \\'Ill! th<' llll!"<'<' tllc•d t ww·d'ortll . f hys/('0 D . on!tii(O/' 1)/u no1111 no . 2:) !i J!) !i(i2 1\ l ano.J . K . K . Tang. Y . l <'ll g. Z . C'll<'n . 1 . plwnt ion Ill E;..;~o tnodl'l . .lot/111!/l of , l fnlo~JIIit Jlt' l22 ond Orromr ~ rhno/ogy . . 1:2:3~0 2' G ·. :\ Ia.sutam. l\1.. \\'oollc'IL .J . meL ,' . .J .. ~mmitt. ; . D .. KlrrspiPs. . .J .. \\'oocl. :rc•co. .. , 1m. H.. <'rl)' . .J . Kapoor. .. T rC'adon. R .. and ampana. K . . (2010). )h~c't\' ing ~\'~IC'm sum!lat10n PXpC'rinH'll!s at !lH' national C'lltPrs fm pm·uonmc'ntal prrchctwn . Journal o.f Geophy.•nca/ Rtseorch : Atmosphert.'i. 1F:doi:l0 .102 j ... OOO.JD01252 . 007101. :\ lllln . H. •.. 'art<'l. "'. F. and Blllc' .. ' T . (10< e) . D<1!H a~s nni l ation into nonlinc'm ~ t ochast ic modc·ls. Tr II u ~ :1. 51 1G7 U ·1. ~lillPr. H. ;}uL :\1. . and ;<11ItbH•;,. F. (lrC'se'ntntiou man <'ll~Pmb!C' kalman hlte'l. 1\Ionthly li 'rotlwr Rr uzr w. 1:3():_7< 1 2 0 . .:\ li)·oshi. T. (2005) . En..,rmhlr f·(olmon -~l l1r rrJHTilllnlfc., uuth o ]JTmllfi/Jr-r quo/l(m glob(J/ modrf. I h tlH•sis. l'lll\'C'1~1t\' of :\lmdaud. 'ollC'gC' Park. ' mtPd Statc•s. erg cr. L. ( _()():3) . Po m II r I F 1/ I r r ..11 r;o ,., I fun .'> for Do I o A .~.~ mul o I 10 n m Ot('(J n o.r;m ph y. PhD t lwsi~. Cni\'C' t ~ity of Bn'llH'll. Brc·nH'll. CPrmauy. r ::\'orgaa1d, ),I., Poubc'll. \" . K. and RaYll . 0 . (1CJ0 ). Ach·ancc's in clc>ri\·atin•-frc·c' state' stimation for nonlinC'm svstc·m~. InljU/1/- Ttr·hr11ml Rr port-199 -15. l uformatJC·s and .:\ I at hematical .:\ Iodc·llmg. T<'dmH·;.d L' m \'<' l'~i t )' of D<'nmm k. L.\ ·nghy. DPumm k. 0cw d<'\TlopllH'llt~ 111 st<1tv f'stimation for nonlinC'ar S)'St C'lllS. A ulrJ/1/(/flr·rL :3G: 1G27 1G:3 . :\mgamd Y.l .. Poulseu, ::\' . 1\:. clllCl Hctvu. 0 . (2000). Ok . P .. , akov. P .. and Corne'\'. S. (2!Hl7). llllpacts of locnlisal iou iu t lw EnKF nne! "n I: expnimC'nts with a suwllnwcle•l ()((oll Dynonur "· .S7::32 ..J..S . OkP . P. R . 8wssington . C: fL C:nffin D 1\ . alHI Sclnllc•J ..\ (200 ) Tlw hllwlink ocC'c-m clc1ta Hssinnlatwu sys!C'm (l)()d;-ls). Ocmn /\Iorlrl/lli_(J. 21.1G 70. OkC'. P. H .. S<'hillc•t. A (;uffiu. D .'\ .. and Bw~stngton . ; B (2 005). Eusc'mhlc dntn assimilatiou f01 m1 e•dcl\'-lC'soh·mg 1 11:3/ 1 / 25 / 25-Hll . .. Hunt. B .. Kalna.\·. . .. YorkC' . .J .. and t t. " . (200 1) . Local low dimrnsionalit~· of atmosph 'nc· dynmmcs . Ph,i;.~lr·al Rr·u1r w L('tfers. G:5 7 5 1. Pat il. PC'ula nd. '. ( 1 ) . Random fm cmg and fm <'cast mg using priuci pal oscilla t 1011 patt rn anal_vs1s . !lfonthly lf'rothrT Rrt•lr'w. 117:2165 21 5. P 'nland. '. and .'m deshmukh. P. 1 . (1 r .r:). The' opt imt-11 grow( h of tropical sc'a snrfacc' tC'mp 'rat mc a11omaliC's . .Jounwl of Clmwtr. :1 202~1. Pctlic. H. E . (:200 ). Locahzation in the c·us< 'lllblc kalumn hlt<'r. J\Ia.'>t<'l ·s thesis , CniYrrsit _\' of RPading. HC'adiug. CnitPd Kmgdom . Robert. ' .. Blayo. .. and \'erron . .J . (200G ). 'omparison of rc>ducc'd-order. scqnrnt ial and ,-ariational da ta assimilation methods in the tropical Pacific OcC'an. Ocean Dynarmrs. 5G :G2-l G. 3. Hohinson. A . R. and L<'nnusianx. I . (2002 ). Data assimilation for moclt'ling and predicting ·ouplr l physical - hwlogical intNactions in the sC'a. In I ohinson. I arth_v. J .. anci Rothschild . B .. editors . Th f Sro. volume 12. page's 475 53G . "<'w York. Vnited tat s . .John \\'ilC'y and Sons. Inc . henk. T. 1. and Franklm. . B . (20()1 ). !lfoddmg m no/ural l'('sour·ce mnnogrm nt: d veloprn('n/ . m!Nprtfotwn and oppl1catwn . Island PrC'ss . \\'ashingt 011. l'nitC'd Stat cs . Stewart. G. (199 ). ll!otn.r Alqonthms : l 'of 1. Bos1r· Dr'< 'Olllpoqfwn.~ . So c i<'t~· for Industrial and ppli<'d .0-latlH'matics. Philad<'lphia . L'nilc'd State's. Stott. P. A. and Ket tlC'horough .. J. A . (:..002). Ongms cmd Pstinwl<'s of lllH '('rtnint y in predictions of twC'nt~·-hrs t c< 'lltm~· t<'lllJ><'rn(mC' ri :-,(' . Sotun . JlG .72:3 72(} . Sura, 1 . and Ilnunachi. (2011) . 1 ('rspt'Ch\'('S of non-g72 .1. S;~,nuyogh , 1.. Kosl<'lich . E . .J .• C.\'C\nnntL G . Pntil. 1:2 1 D .J . llnnt B H . 1'-. I. Tcllu .c; A. :-= 7:52 ::.J.s. ssc•ssiug a local t ll:)C'lllbh• kn lmau LiltC'r: p erf('d ational 'ent<'rs for ll\'ironmPnta l P rediction global alagrand. . (1 97). ssinulatwn of ohs<·n·ations. an introduction. Journal of thr I fcoro/oqlco/ 'oc /( fy of Japan . 75:191 20 alagrawl. . (2012 ). Fonr-dim('nsional variational a~simil ation ( ld-var) . In Blayo. ~ .. Bocqu 't. ~ 1 . 'osnH'. . .. and 'ngliandolo. L. F .. C'di tors. Ad uon ced Dat o Assmu/afwn fm ,fo'>r'/( nee. page's :3 2G. Oxford. 'nit •d Kingdom. xford Lruivprsity 1 [('SS. ang. Y. and .\mlmdan ..1. GG ::3.r)01 :350:3. . (200D ) Hc·ph·. Journal of th Atmosph nc Se1cnc .c;, Tang. Y .. Aml>adHn .J . . . and 'hc•IJ. l . (201<-J.a ). I'\ouliJH'mnH·aslin'llH'lll fnnction in th ('llSC'lllblC' kalmau fill('l'. Adt•(JT/('('> If/ AtmosphrT'/(' s('/(l/('(.'>. :3l:.r)51 .').'). practical sdwnw of ang. Y .. DL'ng . Z .. ~lano.J . K K. and 'he'lL D. (2 0111>). thr sigmn-point kalm a n hl1c'J fm hi gh-dllllC'llS!Oll fr 11/.'>. G:21 :37 Tang. Y .. Dcng. Z .. Zlwu. X.. 'hC'ug. Y .. cmd ChC'n. D. (200 ). Inlc'ldC'cadHl variation of E ' predictalnlit .\· in mult ipl<' llJC)(i<'ls. .Joumol of Clnnoft. 21:1 11 4 ;n. TPixeira . .J .. RPynolds. '.A .. awl .Judd . 1\ (:200 7). TinH' siC'p S<'llSJti\·ity ofnonlmc'clr at mosphrnc mod<> ls: I\ mn<>rical cc >ll\'Pl gPlH'C'. t lllll<"H t ion <'rror gwwt h. and <'ns<'mhlC' design . Journol of lhr Atmo-.JJ!ultr Sr·trnr£-.. G-!:175 1~9. Temam. R. (1991). ppwximatiou of Hltrnctms. larg<' <·del~· sinmL-l tions awlnmltiscale methods . ProcrC'dmgs : !lfofl/('mollta1 and Phy.-.1eo l Snr ncr s. 131::2:3 :39. Tim t t. i\1. K .. uclC'rson .. J L . Btsbop. ' H .. Hamill. T . l\1.. and \\'lnt nkn . .1 (2003). Ensrmhl<• sqnm<' root hltc'rs. 11/onthfy \\'(o/h( 1 R( 1'/( II'. 1:31 1 ! L5 1-!!Hl Van dc'r l\lcTW<'. H. (200-! ). Si(J711n-JW!nl Kolmon .fi/tr ~'·" .frn Jlmhnlnfl-.t/( · //If( n /1('( m dynrmuc .'> tot£ -'>fJOCf' mod( Is. PhD t lH'SlS. OrC'gon llC'mn~~/11!1 . Pro('(edtnq.-.. (J('.LC..,','.,'/) 01 )..l()(Jl !FrH fnlc 1 nofwnol ('onfr n 1/( 1. (i.:) Hil ') tbl. Van dc>1 \1C'lWC' , H . \\'an , E .. and .Juli<'l . S 1. (:.Jl() 1) l .)~·>r: SJgllJ,\ JH>Jut k,dman 11lt<·r~ for n nlinrar s tlmation clHi srnsor fusion : 1 plications to int egrated navigation . AI 111dan r , aV1 gal10n and ontml onf. Pro 11d nr , RI. m nran In s f1h11 r of A ro nauh r, and strorw u fl r . . 200 :.5 120 .51 2. van Lr<' mwn . P .J . (200 ). P articl e' filtPrinf!, in g ophysical s:vs tC'ms. !lfonthly IVealh rr R 111rw. 1. 7·..J.O 411-1 . Va ll LC'('\1\\"(' 11 . r .l . (2 01 2) . Pmt w]C' filtrrs fm tlH' P,f'O~·W i(' lH ' f'S. In T3la~·o. E ., Bocqw:t , }.1.. ~ .. T and ' uglicuHiolo . L .. ('(htors. Aduon ced Dolo A s.c., mulo/l(m fo r (() ,C.,( ' /( Tl ('(. JHlges 2 1 : 1 . xfou l. lll ( C'd 1\ mgd om ) xford lllVC'rsi t y Prc•ss. 'osnw . r e Lreuw<' n . I . .1 and \'C'llS<'Il. : (l!J!J G). Da t d assnuilati on and iuvc•rs<' m<'thods in l<'lms of a proba bilisti c fmmul a twn. !l! on tld y W r olh r'T Rr' /1/(' /li, 12'-1:2 2 1:3. \ 'all von ' torch . H . and Il a nnosd wck . ; . (10 1). 'mnm <'nt s on c·mpiri cal orthogona l fnn cti on- an al~·s t. · of wind V<'C tm s m'('r the' t wpi c,tl Pacific rC'gion . Bullelm of th r Am r7·1ran !If troro loq7trd , ocu ty. G.'J :l G2 \\'ang, B .. Zou . X .. and Zhu . .J . (2000 ). Da t a ass imila tion audit s a ppliC'a ti ons. Procrcdm gs of th e .r-·/ot umo l A torh rny of '('lrnr·r·s. 7:111 ··1:3 111..!-1 . \\'ang. H.-.J .. Zh ang. R .-H .. 'ol . .J .. and 'ha \'('Z. F . (l !JO ). El ' iiio and th e r<'la t ecl phenJm enon South c'rn Oscilla tion (c'llso) : ThP hu gPs t sigm1l in int na nnu a l climat e \'a n a tion . P roc . of th e /\'ot w nol A ('(J r/r my of Srtr·nr·cs C S A . OG ·ll0/1 11072. 105001 2 [pmicl]. \\'chst er. P. J. and P a lmer. T . ' . (1 07 ). ThC' past and the fnt nrC' of E l 1\iiio. So tun. 390 :5G2 5G4 . \\.hit a ker, J.,. and Ha milL T ).1. (2 002). EnsPmhl e da t a assimilation without I crtnrb d obs rva tions. !lfrmthly ri'ratlu r R rl'l(ll' . 130.1013 102..! . \\'ilks, D . (2 011 ). Principal compcnwnt (EO F ) mw lvsis . In \\' llks. D . S . <•ditor. S toll sl? cal flirt hods m th r A t mo .~ plu nc Sn1 nc1 ~ . \'ohmH' 100 of fnf1 nwt w nul C:t ophys?cs. pages 519 .r: G2. caclC'mi c Press , Sa n Drego . l' llll<'d St al<'s . Ya ng. S.- '., 'onlzza. I\1.. 'arrassi. .. 1\a lna.v. E .. Jillr'n. () ('(ans. nnd Land ,<,' uifon .. . \ tlmtl.22(i:.? :.?27~ 1:2(i A tu od(•l El 'mo Sout lH'm O:-.nllt1t !tlll. Zhang. ~., Zhang . l\L and I ot r rjov . .J . (2 0 1' ) . 3 Var : 'onpling an rnsrmhlP kalmcm filte1 wJth tluc<'-dlllH'JJswual \'Hllntwnal data nssmulntiou iu a limitcd-cu<'a w ath r prrdi ction modrl and compan~on to ~lD\' ar. Ionth/y Wr·ath r R rmrw. 1 !1 : 00 17. Zhang . .:\I and Zhfln~. F (2012 ) E.J.D m oupling an <'nsc•mblc· kalmcm fill cr ·w ith fcmr- dimPn~Joual vmwt1onal dntn c\ssullllntJon in a lnmtc•d-a r<'c1 wrathc>r prrcllctiou nwdPl. Ionthl_z; lrrotlu 1 Rr 1'/r ll'. l ·lO :S 7 GOO. .),.... l ~I