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Abstract 

Pavement Management Systems (PMS) are essential for guiding cost-effective and sustainable 

road maintenance, particularly in municipalities operating within harsh climates and under 

financial constraints. This research examines the optimization of pavement maintenance strategies 

for the City of Prince George, British Columbia, by combining historical condition data, predictive 

modeling, and decision-support frameworks. The study utilizes pavement distress survey results 

from 2016, 2017, 2020, and 2023 to assess network-level deterioration, identify critical distress 

types, and establish performance baselines. 

To forecast pavement performance, three modeling approaches—Random Forest (RF), Multiple 

Linear Regression (MLR), and Artificial Neural Networks (ANN)—were applied to predict the 

Pavement Distress Index (PDI). These models were evaluated using the statistical metrics such as 

Root Mean Square Error (RMSE), and coefficient of determination (R²). The Random Forest 

model achieved the highest predictive accuracy (R² = 0.96, RMSE = 0.55), followed closely by 

the ANN (R² = 0.95, RMSE = 0.48), while the MLR model demonstrated lower predictive 

capability (R² = 0.81, RMSE = 0.92). Variable importance analysis identified transverse cracking, 

rutting, and surface roughness as the most influential predictors of deterioration. 

The findings of this research provide a data-driven framework for proactive pavement maintenance 

planning in Prince George, enabling the prioritization of high-impact interventions and the 

optimization of rehabilitation budgets. By extending pavement service life and reducing long-term 

maintenance costs, the proposed methodology supports the creation of more resilient 

transportation infrastructure. The framework can be adapted for use in other municipalities facing 

similar environmental and operational conditions, strengthening the integration of advanced 

analytics into municipal asset management practices. 
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1. Chapter 1: Introduction 

1.1. Background & Context 

Efficient and well-maintained pavement infrastructure is fundamental to the economic prosperity, 

public safety, and quality of life for residents of any municipality. In northern British Columbia, 

particularly in Prince George, road networks serve as the critical backbone for regional 

connectivity, commerce, and community development. As a strategic transportation hub located at 

the junction of the Fraser and Nechako rivers, Prince George facilitates the movement of goods, 

services, and people across a vast geographic region, making the integrity of its pavement 

infrastructure paramount to both local and regional economic vitality. 

Prince George, with a population of approximately 72,000 residents within the city limits and 

serving an additional 320,000 residents in the surrounding region (Statistics Canada, 2021), 

maintains an extensive road network spanning 605 kilometers. This network comprises 214 km of 

major arterial roads, 155 km of collector roads, and 230 km of local roads, each serving distinct 

functional roles and experiencing a wide variety of traffic loading and environmental stresses (City 

of Prince George, 2009). The city's strategic position as the largest urban center in northern British 

Columbia places significant demands on its transportation infrastructure, as it serves as a 

distribution hub for forestry, mining, and agricultural activities throughout the region. 

The unique geographical and climatic characteristics of Prince George present exceptional 

challenges for pavement infrastructure management. Located at latitude 53°53'37"N and longitude 

122°45'02"W (Latitude.to, 2024), the city experiences a humid continental climate characterized 

by severe winters and warm summers. Average air temperatures range from -10°C in winter to 

16°C in summer, with extreme temperatures spanning from -40°C to 35°C (Pacific Climate 

Impacts Consortium, 2024). This wide temperature variation, combined with an annual 

precipitation average of 600 -700mm including heavy snowfall (approximately 216 cm annually) 

(Prince George Weather Statistics, 2024), creates a challenging environment for pavement 

materials and structures. 

The City of Prince George faces multiple freeze-thaw cycles annually, which significantly impact 

pavement integrity through thermal expansion and contraction of materials, moisture infiltration 

and subsequent ice formation, and accelerated deterioration of both surface and subsurface 

pavement components. The spring melt period creates additional challenges through increased 

moisture content and reduced bearing capacity of subgrade materials, contributing to premature 

pavement failures and increased maintenance requirements. 

The concept of infrastructure management has evolved to address these complex challenges 

through systematic approaches to asset stewardship. According to Hendrickson, Coffelt, and 

Healey in Fundamentals of Infrastructure Management, "infrastructure management should adopt 

a 'triple bottom line' to consider economic, environmental and social impacts" while maintaining 
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"a life cycle or long-term viewpoint" that is "essential for good infrastructure management" 

(Hendrickson et al., 2017). This perspective recognizes that infrastructure investments "will last 

for decades or more and providing good performance over an entire lifetime is critical for good 

infrastructure management." 

Within this broader infrastructure management framework, Pavement Management Systems 

(PMS) have emerged as specialized tools designed to optimize the preservation and performance 

of road networks. The Federal Highway Administration's Pavement Management Primer provides 

a formal definition, describing pavement management as "a set of tools or methods that assist 

decision-makers in finding optimum strategies for providing, evaluating, and maintaining 

pavements in a serviceable condition over a period of time" (FHWA, 2022). The primer 

emphasizes that "pavement management helps to ensure pavement investments meet the agency's 

pavement condition goals and targets" while "implementing pavement management involves 

establishing clear pavement management functions, policies, and procedures." 

The systematic nature of PMS is further elaborated in the infrastructure deterioration modeling 

literature, which explains how these systems "fit within the infrastructure deterioration modeling 

field" by providing capabilities for "forecasting pavement behavior and performance standards" 

(Zakeri, 2016). This forecasting capability is essential for municipal decision-making, as it enables 

agencies to predict future pavement conditions and optimize maintenance timing and resource 

allocation. 

Saliminejad describes the logical structure of PMS systems, explaining that they integrate multiple 

components including "inputs (distress data), outputs (treatment schedules), and feedback loops" 

that work together to support systematic infrastructure management. The system structure includes 

"inventory data collection, conditions assessment, a determination of needs, the prioritization of 

projects needing maintenance and rehabilitation, a method of determining the impact of funding 

decisions, and a feedback process" (Saliminejad, 2013). 

The evolution of PMS technology represents a significant advancement in infrastructure 

management capabilities. Recent research in automated decision-making highlights how these 

systems have evolved "from manual inspections to automated, Machine Learning (ML) -driven 

systems," demonstrating the "relevance and innovation in PMS today" (Li et al., 2022). This 

technological evolution enables more sophisticated analysis of pavement performance factors, 

including "traffic conditions, climatic characteristics, and maintenance history" that "exhibit a 

close relationship with pavement performance." 

The economic significance of maintaining high-quality pavement infrastructure extends beyond 

immediate transportation needs. Prince George serves as a critical link in provincial and national 

transportation corridors, with major highways including Highway 97 (connecting southern British 

Columbia to Alaska) and Highway 16 (the Yellowhead Highway connecting eastern and western 

Canada) passing through the city. The condition of local pavement infrastructure directly impacts 
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the efficiency of goods movement, tourism accessibility, and the overall economic competitiveness 

of the region. 

Furthermore, the forestry and mining industries, which form the economic foundation of the 

region, rely heavily on efficient transportation networks for moving products to markets and 

bringing supplies to operational sites. Deteriorated pavement conditions result in increased vehicle 

operating costs, reduced fuel efficiency, and potential supply chain disruptions that can have 

cascading economic effects throughout the region. 

1.2. Problem Statement 

Despite ongoing maintenance efforts and significant financial investments, several critical issues 

continue to undermine the efficiency and longevity of pavement infrastructure in Prince George. 

Technical complexities, environmental impacts, and resource management problems represent 

multiple layers of challenges that require comprehensive, innovative solutions aligned with 

contemporary sustainability principles. 

1.2.1.  Lack of Scientific Research and Strategic Planning 

The foremost challenge facing Prince George's pavement management approach is the absence of 

a scientifically based, data-driven framework for decision-making. Current maintenance practices 

are not fully supported by technical and statistical analysis, resulting in inefficiencies in resource 

allocation and maintenance prioritization. This deficiency manifests in reactive rather than 

proactive maintenance strategies, leading to suboptimal outcomes and increased costs over the 

infrastructure lifecycle. Without a robust analytical foundation, maintenance decisions often rely 

heavily on subjective assessments and historical practices rather than predictive modeling and 

performance optimization. 

Research in sustainable pavement management emphasizes that "lack of PMS leads to 

deteriorating road conditions and reactive maintenance" approaches that fail to optimize long-term 

infrastructure performance (Khahro, 2022). The absence of systematic planning particularly affects 

municipalities facing budget constraints, where inefficient resource allocation can have significant 

long-term consequences for infrastructure condition and service delivery. 

1.2.2.  Challenging Climate Conditions and Environmental Stressors 

Prince George's location in northern British Columbia subjects its pavement infrastructure to some 

of the most severe environmental conditions in Canada. The region's extreme seasonal temperature 

variations, combined with frequent freeze-thaw cycles, create accelerated deterioration conditions 

that significantly challenge traditional pavement management approaches. 

The literature on flexible pavement management in harsh climates indicates that environmental 

factors play a dominant role in pavement deterioration patterns. Research demonstrates that freeze-

thaw cycles are among the most destructive forces affecting pavement infrastructure in northern 
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climates, causing expansion and contraction stresses that lead to cracking, joint deterioration, and 

eventual structural failure (Khahro, 2022). 

The superposition of Prince George's extreme climatic conditions with heavy commercial traffic 

creates an accelerated deterioration environment that substantially increases both the frequency 

and cost of required repairs. This combination of environmental and loading stresses requires 

specialized management approaches that account for the unique characteristics of northern climate 

pavement performance. 

1.2.3.  Limited Integration of Advanced Technologies and Predictive Capabilities 

Prince George's current pavement management approach has not fully embraced the technological 

advancements that characterize modern PMS implementation. The evolution toward automated, 

ML-driven systems represents a significant opportunity for improved decision-making and 

resource optimization that remains largely unutilized in the local context (Li et al., 2022). 

Contemporary PMS implementations leverage advanced modeling techniques and automated data 

collection to improve prediction accuracy and decision support capabilities. The integration of 

such technologies could significantly enhance Prince George's ability to optimize maintenance 

strategies and resource allocation while reducing long-term infrastructure costs. 

1.2.4.  Inadequate Performance Monitoring and Data Management 

Effective pavement management requires comprehensive condition monitoring and data 

management capabilities that support both immediate decision-making and long-term strategic 

planning. Current assessment techniques employed in Prince George lack the precision and 

comprehensiveness required for effective predictive maintenance strategies. 

The infrastructure management literature emphasizes that "deterioration modeling is a process of 

taking condition assessment information and forecasting expected future conditions" that requires 

systematic data collection and analysis capabilities (Hendrickson et al., 2017). Without adequate 

performance monitoring systems, it becomes challenging to prioritize maintenance interventions 

effectively and predict long-term performance trends. 

These interconnected challenges demonstrate the urgent need for a comprehensive, scientifically 

based pavement management system specifically tailored to Prince George's unique environmental 

and operational conditions. Addressing these issues requires the integration of climate-adaptive 

strategies, advanced predictive modeling, sustainability principles, and contemporary management 

technologies within a unified framework that supports both immediate operational needs and long-

term infrastructure stewardship. 

1.3.Research Objectives 

Objective 1: Develop a PMS framework tailored to Prince George's unique material availability, 

climatic and traffic conditions. 
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Objective 2: Identify main deterioration trends and patterns of pavements in Prince George by 

analyzing historical pavement distress data. 

Objective 3: Implement predictive modeling to forecast pavement performance and optimize 

maintenance planning. 

Objective 4: Provide practical recommendations for a climate-adaptive pavement management 

strategy. 

1.4.Methodology 

This research employs a systematic data-driven approach to develop a climate-adaptive pavement 

management system tailored to Prince George's environmental conditions. The methodology 

addresses critical gaps in locally calibrated PMS models for Northern British Columbia through 

integrated empirical analysis, predictive modeling, and optimization techniques. 

1.4.1.  Research Framework 

The study follows a four-phase approach: data collection and preprocessing, deterioration analysis, 

predictive modeling, and optimization framework development. This systematic progression 

ensures comprehensive analysis of technical, environmental, and economic factors while 

maintaining practical applicability for municipal implementation. 

1.4.2.  Data Collection and Pre-processing 

Historical pavement condition data spanning 2016, 2017, 2020, and 2023 provides the empirical 

foundation for analysis. Traffic data including Average Annual Daily Traffic (AADT) and vehicle 

classification quantifies loading effects on deterioration. Climate data from Environment and 

Climate Change Canada captures temperature extremes, precipitation patterns, and freeze-thaw 

cycles characteristic of Prince George's harsh conditions. Maintenance history records document 

treatment applications, timing, and costs. GIS data provides spatial contexts for all analytical 

components. 

Data preprocessing includes systematic cleaning, validation, missing data handling, and temporal 

alignment to ensure analytical reliability and consistency across datasets. 

1.4.3.  Analytical Methods 

Statistical analysis identifies deterioration patterns through descriptive statistics, time-series 

analysis, and correlation assessment between Pavement Deterioration Indices (PDI) values, 

environmental factors, traffic loading, and maintenance history. Climate impact analysis quantifies 

freeze-thaw effects and seasonal deterioration patterns. Treatment effectiveness evaluation 

employs survival analysis and cost-effectiveness comparison of maintenance interventions under 

local conditions. 

1.4.4.  Predictive Modeling 
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The use of predictive modelling captures complex non-linear interactions between performance 

drivers to identify key deterioration trends. Local calibration adapts models to Prince George's 

specific conditions using regional data. Split-sample validation assesses model performance using 

R², Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics across different 

road categories and environmental conditions. 

 

Figure 1 Research methodology flowchart illustrating the systematic progression from data collection through predictive 

modeling to optimization framework development. 

1.4.5. Optimization Framework 

Multi-Criteria Decision Analysis integrates performance, cost, and sustainability objectives for 

systematic maintenance alternative evaluation. Climate-adaptive strategies optimize seasonal 

maintenance windows and incorporate risk-based approaches. Life-cycle cost analysis provides 

comprehensive economic evaluation balancing performance objectives with budget constraints. 

1.4.6.  Implementation 

Framework validation employs retrospective analysis and scenario testing under varying 

conditions. RStudio provides statistical analysis and modeling capabilities while ArcGIS enables 

spatial analysis and visualization. Quality assurance protocols ensure professional standards for 

municipal infrastructure management applications. 

1.5.Organization of Thesis 

This thesis is organized into five chapters that collectively address the research objectives, 

document the methodology, present the findings, and provide actionable recommendations. The 
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structure ensures a logical flow from background context to practical implementation, emphasizing 

both technical rigor and sustainability principles. 

Chapter 1 – Introduction 

This chapter provides the foundation for the research by establishing the background and context 

of pavement management in northern climates, outlining the specific challenges faced by the City 

of Prince George, and defining the research objectives and questions. It also highlights the 

significance of the study for both local application and broader contributions to sustainable 

infrastructure management. 

Chapter 2 – Literature Review 

This chapter presents a comprehensive review of prior research in pavement management systems, 

with emphasis on cold-climate applications, climate-adaptive strategies, and sustainability 

integration. It identifies research gaps relevant to northern British Columbia and establishes the 

theoretical foundation for the research. The review also examines recent advances in predictive 

modeling, deterioration analysis, and economic evaluation methods relevant to sustainable 

pavement management. 

Chapter 3 – Pavement Management Systems: Concepts and Context 

This chapter describes the key concepts, methods, and contextual factors underlying pavement 

management systems. Topics include pavement condition indices, data collection methods and 

equipment, traffic data in PMS, pavement distress surveys, distress types, road classification, and 

historical maintenance practices. The chapter also reviews relevant policies, technical reports, and 

data specific to Prince George and the province of British Columbia. 

Chapter 4 – Methodology and Research Tools 

This chapter details the study area, datasets, and tools used in the research, including RStudio, 

Python, and GIS. It describes the modeling approaches—Random Forest, Multiple Linear 

Regression, and Artificial Neural Networks—along with data preparation procedures, model 

calibration, and performance evaluation criteria such as Mean Squared Error (MSE), Root Mean 

Square Error (RMSE), and coefficient of determination (R²). 

Chapter 5 – Results, Discussion, and Recommendations 

The final chapter presents the results of the pavement condition assessment and predictive 

modeling, including analysis of distress trends and model performance. It discusses the 

implications of the findings for pavement management policy and planning, provides practical 

recommendations for the City of Prince George, and outlines potential areas for future research. 
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2. Chapter 2 : Literature Review 

2.1 Overview of Existing Research 

Pavement Management Systems (PMS) have emerged as critical tools for optimizing infrastructure 

maintenance and rehabilitation strategies, representing a systematic approach of decision-making 

that integrates data collection, performance modeling, and cost-effectiveness analysis. The 

evolution of PMS research has been driven by the recognition that traditional reactive maintenance 

approaches are insufficient for managing aging infrastructure networks under increasing traffic 

loads and constrained budgets. 

The conceptual foundation of modern pavement management was established by Haas, who 

introduced PMS as a structured approach emphasizing cost-effectiveness and optimization in 

maintenance planning (Haas et al., 1994). This foundational work demonstrated that systematic 

approaches to pavement management could reduce lifecycle costs by up to 30% compared to 

reactive maintenance strategies. Building upon this foundation, Hudson expanded the scope by 

integrating engineering and economic principles, focusing on infrastructure management strategies 

that encompass design, construction, maintenance, rehabilitation, and research activities (Hudson 

et al., 1997). 

Contemporary research has increasingly focused on advanced analytical techniques, building upon 

earlier findings that demonstrated the effectiveness of systematic approaches. Anastasopoulos 

provided early evidence that optimized maintenance interventions can extend pavement life by 20-

40% when properly timed (Anastasopoulos et al., 2009). This foundational research supported the 

subsequent development of more sophisticated analytical frameworks. Smith later emphasized the 

integration of asset management perspectives into pavement decision-making processes, 

highlighting the importance of prioritizing maintenance based on objective road condition data 

rather than subjective assessments (Smith et al., 2014). This evolution toward data-driven 

approaches has been further validated by recent advances in machine learning and predictive 

modeling techniques. 

The evolution of PMS research has also been characterized by increasing sophistication in 

predictive modeling techniques. Recent studies have demonstrated significant improvements in 

prediction accuracy through the application of machine learning algorithms. Ali showed that 

artificial neural network models achieved R² values of 98.6% for 2018 pavement condition 

predictions and 99.3% for 2021 predictions, substantially outperforming traditional multiple linear 

regression approaches, which achieved R² values of only 48.0% and 63.0% respectively (Ali et al., 

2023). 

US Federal initiatives contributed to the direction of PMS research and implementation. The 

Federal Highway Administration's Pavement Management Roadmap established a vision for 

pavement management advancement over the next decade, recognizing transformative innovations 

in data collection, performance modeling, and decision-making processes (Federal Highway 
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Administration, 2022). The roadmap emphasizes the importance of collaborative efforts between 

industry, academia, and transportation agencies to reduce duplication of effort and advance 

innovative pavement management practices. 

2.2 Identifying Research Gaps 

2.2.1  Limited Availability of Locally Calibrated Research 

A critical gap exists in the availability of locally calibrated PMS models for Northern British 

Columbia's unique environmental and traffic conditions. Most existing studies focus on urban and 

temperate regions where climate and traffic conditions differ significantly from those experienced 

in Northern BC. Research by Ekramnia and Nasimifar emphasized that existing models often fail 

to provide accurate deterioration predictions for extreme climate conditions, leading to suboptimal 

maintenance planning and increased lifecycle costs (Ekramnia & Nasimifar, 2022). 

The calibration challenges are exemplified by Ontario's experience with AASHTOWare 

implementation. Hamdi demonstrated that most North American studies of local calibration 

concluded that national calibration coefficients fail to offer reliable accuracy or precision (Hamdi, 

2015). The AASHTOWare system was developed based on Long Term Pavement Performance 

(LTPP) sections from various regions, showing significant variation in binder and aggregate 

properties, climate conditions, and traffic spectrum. Local calibration projects have consistently 

shown enhanced model accuracy in predicting pavement performance, with statistical analysis 

demonstrating serious need for incorporation of local calibrations into predictive models. 

Similarly, Washington State Department of Transportation's calibration efforts revealed substantial 

regional variations in pavement performance. Li found that default calibration factors required 

significant adjustment, with rutting predictions showing almost perfect correlation with measured 

values only after local calibration (Li, 2009). The study utilized both split-sample and jackknife 

testing approaches, demonstrating that local calibration improves prediction stability and accuracy 

even with limited sample sizes. 

2.2.2 Geographic Relevance and Northern Climate Considerations 

The geographic specificity of pavement management challenges represents a significant research 

gap, particularly for cold climate regions. Research has shown that climate change impacts vary 

substantially by geographic location and climate zone. Studies conducted across different 

European locations demonstrated varying responses to temperature and precipitation changes, with 

some regions experiencing increases in all distress types except thermal cracking due to 

temperature rise (Qiao et al., 2020). 

Swarna identified critical limitations in existing temperature models, noting that the LTPP model 

was developed only for maximum latitudes of 52 degrees and has had limited testing in Northern 

Canadian climates (Swarna, 2022). This limitation is particularly significant for Prince George, 

located at approximately 53.9 degrees north latitude, where extreme temperatures cannot be 

accurately represented by models developed for southern regions. 
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The Canadian context presents unique challenges that are not adequately addressed in international 

literature. The Canadian Strategic Highway Research Program initiated research in the late 1980s 

to study climate effects on roadway efficiency, establishing test sites in Lamont, Alberta; Hearst, 

Ontario; and Sherbrooke, Quebec (Gavin et al., 2003). However, these efforts focused primarily 

on asphalt properties at low temperatures rather than comprehensive PMS frameworks for northern 

regions. 

2.2.3  Lack of Strategic Data Utilization in Predictive Models 

A significant gap exists in the strategic integration of real-world pavement condition data with 

predictive modeling frameworks. While various statistical and machine learning models have been 

proposed for pavement condition forecasting, many studies fail to integrate comprehensive 

datasets that reflect local traffic patterns, material properties, and environmental stressors (Ali, 

2022). This limitation reduces the applicability of models for regional pavement management, as 

they do not accurately capture specific deterioration patterns observed in Northern BC. 

The Federal Highway Administration's pavement management primer highlights this challenge, 

noting that effective pavement management requires integration of multiple data sources including 

inventory data, condition assessment results, performance prediction models, and strategic-level 

data (Federal Highway Administration, 2022). However, most agencies struggle to achieve this 

integration due to technical and resource constraints. 

Li addressed this gap by developing a hybrid neural network approach that considers maintenance 

impacts on data through a "restart point method" for data cleaning (Li et al., 2022). Their research 

demonstrated that most existing studies simply remove noisy data instead of processing it 

meticulously and fail to consider maintenance impacts on performance data, which can lead to 

significant errors in performance prediction. 

2.2.4  Absence of Comprehensive Climate Adaptation Strategies 

Current PMS frameworks lack comprehensive climate adaptation strategies specifically designed 

for Northern BC conditions. Although research emphasizes the importance of incorporating 

climate resilience into pavement management, a few studies have focused on how specific climate 

factors such as snow accumulation, extended freeze-thaw cycles, and extreme temperature 

fluctuations affect pavement maintenance (Guha et al., 2022). 

Research has shown that climate change can cause changes in pavement lifecycle costs depending 

on changes in climate stressors, pavement structure, materials, and maintenance regimes. Qiao 

demonstrated that maintenance interventions may be triggered much earlier than expected due to 

climate change, and that adapting to early maintenance can minimize total lifecycle costs while 

improving pavement resilience (Qiao et al., 2015). However, this research has not been specifically 

adapted to Northern BC conditions. 

Studies utilizing multiple climate models have shown that increased temperatures can lead to 

asphalt rutting increases of 9-40% and fatigue cracking increases of 2-9% across various United 
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States locations (Swarna, 2022). However, similar comprehensive studies have not been conducted 

for Canadian northern climates, representing a significant gap in understanding climate change 

impacts on regional pavement performance. 

2.2.5  Deficiency in Treatment Effectiveness Evaluation 

Existing PMS frameworks show significant deficiencies in evaluating treatment effectiveness 

under diverse climate and traffic conditions. Hafez and Ksaibati emphasized the need for improved 

evaluation metrics to assess long-term performance of various pavement treatments, noting that 

existing models often analyze effectiveness using short-term performance data (Hafez & Ksaibati, 

2021). Their research on low-volume roads demonstrated that adjusted treatment strategies could 

extend pavement life by 15-25% when properly evaluated. 

The treatment effectiveness challenge is compounded by the diversity of available interventions. 

Research by Al-Swailmi identified multiple maintenance procedures including sealing, cobbling, 

milling, overlay application, and repair (Al-Swailmi et al., 1999). Each rehabilitation technique 

has direct effects on pavement cycle-life, but the effectiveness varies significantly based on local 

conditions including climate, traffic, and material properties. 

Limited research has been conducted on treatment effectiveness in mitigating climate-induced 

pavement deterioration, particularly in cold regions where environmental stressors vary 

considerably compared to other climates. This gap is particularly concerning for Prince George, 

where freeze-thaw cycles and heavy snowfall accelerate pavement deterioration and may require 

specialized treatment approaches. 

2.3 Review of Deterioration Models, Optimization Techniques, and Performance 

Indicators 

2.3.1  Traditional Deterioration Models 

Traditional pavement deterioration models have primarily relied on deterministic and statistical 

approaches, with multiple linear regression (MLR) serving as the foundation for many early PMS 

applications. Research by Ali demonstrated the limitations of traditional MLR approaches, 

showing that linear assumptions inherent in MLR models fail to capture the complex, non-linear 

interactions present in pavement deterioration, particularly under extreme climate conditions (Ali 

et al., 2023). 

Ali et al., 2023 in Figure 2, draw the following conclusions based on the research model: 

• PCI (2018): ANN has the best performance among the three techniques. The statistical 

measures for the ANN model are R2 = 98.6%, RMSE = 0.88, and MAE = 0.73, and the 

worst-performing model was MLR, with an R2 = 48.0%, RMSE = 14.05, and MAE = 11.37 

(Ali et al., 2023). 

• PCI (2021): ANN has the best performance among the three techniques. The statistical 

measures for the ANN model are R2 = 99.3%, RMSE = 0.72, and MAE = 0.59, and the 
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worst-performing model was MLR, with an R2 = 63.0%, RMSE = 9.93, and MAE =7.84 

(Ali et al., 2023). 

 

Figure 2 The performance of the MLR, FIS, and ANN models in predicting PCI, measured by their R² 

values (Ali et al., 2023) 

Conventional deterioration modeling efforts focused on simplified pavement performance models. 

Lee et al. (1993) developed pavement performance models using empirical approaches, while 

earlier researchers like Butt et al. (1987) introduced Markov process-based prediction models for 

pavement performance. These foundational models established the basic framework of 

performance prediction but were limited by their reliance on deterministic assumptions and 

simplified deterioration relationships. 

Saliminejad provided detailed analysis of how measurement errors affect different modeling 

approaches, demonstrating that regression models using least-squares methods are subject to errors 

propagated from estimated parameters (Saliminejad, 2012). Random errors in condition index data 

do not cause bias in linear regression models within large datasets, but random errors in age data 

bias predictions by causing slope underestimation, resulting in predicted condition indices that are 

typically smaller than true values. 

On the pavement design side, the development of mechanistic-empirical approaches represented a 

significant advancement over purely empirical models. According to AASHTO, pavement 

performance is defined as the serviceability trend of the pavement over its design period, with 

serviceability indicating the ability of the pavement in its existing condition to serve traffic demand 

(AASHTO, 1993). This definition provided the foundation for more sophisticated modeling 

approaches that consider both structural and functional performance aspects. 



13 

 

2.3.2  Advanced Machine Learning Approaches 

Artificial Neural Networks 

The application of artificial neural networks (ANN) in pavement management has demonstrated 

significant improvements over traditional statistical methods. Li developed a comprehensive ANN 

approach that achieved remarkable prediction accuracy, with their hybrid neural network 

combining backpropagation neural networks (BPNN) and Long Short-Term Memory (LSTM) 

models (Li et al., 2022). Their research demonstrated that ANN models could process multiple 

variables simultaneously while capturing complex non-linear relationships that traditional 

methods cannot adequately represent. 

The effectiveness of ANN approaches is particularly evident in their ability to handle large-scale 

datasets with multiple influencing variables. Research has shown that when databases provide 

stable data so urces, ANN models predict International Roughness Index (IRI) better than linear 

regression approaches (Li et al., 2022). The backpropagation neural network effectively solves 

problems of insufficient and inaccurate pavement condition data that plague traditional modeling 

approaches. 

Attoh-Okine (2002) demonstrated the effectiveness of combining rough set analysis with artificial 

neural networks in doweled-pavement-performance modeling, showing that hybrid approaches 

can leverage the strengths of different analytical techniques. This research highlighted the potential 

for developing sophisticated modeling frameworks that combine multiple analytical approaches to 

achieve superior prediction accuracy. 

The integration of genetic algorithms with neural networks has shown promise for optimizing 

model parameters and improving prediction accuracy. Zhao et al. (2021) applied genetic algorithm 

optimization to ANN models for predicting viscosity of asphalt pavement adhesives, 

demonstrating that this approach replaces the reverse error transmission process of BPNN models 

and improves convergence efficiency. 

Random Forest and Ensemble Methods 

Random Forest (RF) has emerged as a particularly effective ensemble learning method for 

pavement management applications. Marcelino et al. (2019) developed a general machine learning 

algorithm based on random forest that effectively addresses continuous prediction problems over 

time and sensitivity analysis of pavement roughness. Their research demonstrated that RF 

algorithms exhibit strong nonlinear fitting ability, lack complicated theoretical derivation, and 

provide real-time prediction capacity. 

Gong et al. (2018) demonstrated that RF models could achieve up to 90% accuracy in pavement 

condition forecasting, significantly outperforming traditional regression approaches. The 

effectiveness of RF stems from its ability to handle large datasets efficiently while maintaining 
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robustness against noise and overfitting. The ensemble nature of RF enhances predictive accuracy 

by reducing both variance and bias across different data subsets. 

2.3.3 Optimization Techniques 

Mathematical Programming Approaches 

Mathematical optimization methods play crucial roles in pavement management by enabling 

systematic selection of maintenance strategies that maximize performance while satisfying budget 

constraints. Torres-Machí et al. developed an iterative approach for pavement maintenance 

optimization at network level, demonstrating potential efficiency improvements of up to 25% 

(Torres-Machí et al., 2014). Their approach differs from traditional sequential methods by allowing 

selection of suboptimal treatment strategies for individual sections if they contribute to improved 

overall network performance. 

The iterative optimization approach addresses limitations of traditional sequential methods that 

first define treatment strategies on a section-by-section basis, then select sections to treat until 

budget is exhausted. The iterative method recognizes that deterioration of a solution at the section 

level may lead to improvement of the overall solution at the network level, enabling more flexible 

and effective resource allocation. 

Multi-objective optimization approaches have gained prominence as agencies recognize that 

pavement management decisions involve multiple, sometimes conflicting objectives. Research by 

Santos demonstrated that multi-objective optimization can maximize network road condition 

within limited budgets while considering factors such as traffic volume and cost-effectiveness 

(Santos et al., 2017). Their work showed that preventive and minor rehabilitation treatments are 

more cost-effective than reconstruction, and that budget allocation should exceed certain 

thresholds to achieve maximum societal benefit. 

Geographic Information Systems Integration 

The integration of Geographic Information Systems (GIS) with optimization techniques has 

revolutionized spatial analysis capabilities in pavement management. Research by Obaidat 

demonstrated the effectiveness of integrating GIS toward efficient pavement maintenance 

management (Obaidat et al., 2018). Their work showed that GIS integration enables dynamic 

highway section color coding, access to sectional data through graphical models, and enhanced 

visualization of pavement management analysis. 

Recent developments in GIS-based pavement management have focused on 3D modeling and 

advanced visualization capabilities. Research has shown that reconstruction of 3D GIS models, 

high-definition mapping, and new applications for cities require accurate and efficient data 

collection and scene perception of urban environments (Zagvozda et al., 2019). The integration of 

mobile LiDAR sensors with camera systems has enabled comprehensive pavement condition data 

collection while providing enhanced visualization capabilities for decision-makers (Balzi et al., 
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2023). Studies have demonstrated that even though 3D mobile LiDAR data has become 

increasingly popular, this method cannot accurately detect pavement distress such as cracks, 

necessitating the use of RGB images for correct distress extraction (Balzi et al., 2023). 

European implementations have demonstrated the effectiveness of GIS-based optimization 

approaches. The ViaBEL tool was developed for secondary road networks in Belgium and 

incorporated GIS-based decision processes for pavement management, providing structured 

frameworks for maintenance prioritization and resource allocation (Van Geem et al., 2012). This 

tool demonstrates the potential for developing sophisticated GIS-based optimization systems 

appropriate for regional and municipal applications. 

Multi-Criteria Decision Analysis 

Contemporary pavement management increasingly recognizes that decisions involve multiple, 

sometimes conflicting objectives including cost minimization, performance maximization, 

environmental impact reduction, and user satisfaction. Multi-criteria decision analysis (MCDA) 

frameworks provide structured approaches for evaluating alternatives considering multiple 

objectives simultaneously (Torres-Machí et al., 2014). 

Research has emphasized the importance of incorporating sustainability considerations into 

pavement management decision-making (Santos et al., 2017). This requires consideration of 

economic, social, technical, environmental, and political aspects throughout the pavement 

lifecycle (Torres-Machí et al., 2014). Different indicators have been developed for assessing these 

aspects, including present worth cost for economic evaluation, safety and comfort for social 

considerations, roughness for technical performance, and air pollution for environmental impact 

assessment (Torres-Machí et al., 2014). 

The integration of multiple criteria enables more comprehensive evaluation of maintenance 

alternatives. Research has shown that ranking based on economic analysis allows rational 

comparison among alternatives because it considers both costs and benefits, leading to more 

informed decision-making compared to approaches based solely on condition assessment or 

subjective judgment (Al-Swailmi et al., 1999). Shah et al. (2012) applied this method to select 

sections for treatment in a road network in India considering criteria such as traffic, connectivity, 

and road and drainage conditions (Torres-Machí et al., 2014). 

2.3.4  Performance Indicators and Assessment Methods 

Pavement Distress Index (PDI) 

Pavement condition assessment relies heavily on standardized indices that quantify pavement 

serviceability and structural integrity (Federal Highway Administration, 2022). The Pavement 

Distress Index (PDI) represents a critical performance indicator that has been specifically adapted 

for Canadian conditions, particularly in BC (BCMoTI, 2020). Research has shown significant 

variations in the effectiveness of different condition assessment approaches, with advanced 
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analytical methods demonstrating superior accuracy compared to traditional assessment 

techniques (Ali et al., 2023). 

The development of composite condition indices that integrate multiple distress types and 

functional classifications has shown promise for providing more comprehensive pavement 

assessment (Saliminejad, 2012). Research has demonstrated that composite indices considering 

pavement surface distresses, traffic information, and expert opinion can provide more accurate 

representations of overall pavement condition than single-parameter approaches (Guha et al., 

2022). The PDI methodology incorporates systematic evaluation of distress types including 

rutting, cracking patterns, surface deterioration, and structural adequacy to provide comprehensive 

condition assessment (BCMoTI, 2020). 

International variations in condition assessment approaches reflect different prioritization 

strategies and resource constraints (Grilli et al., 2019). Research has shown that different countries 

and agencies employ varying condition rating systems, ranging from simple visual assessments to 

sophisticated automated measurement systems (Federal Highway Administration, 2022). The 

choice of assessment method significantly affects the accuracy and reliability of condition data, 

which in turn impacts the effectiveness of management decisions (Saliminejad, 2012). This study 

have shown that quality assurance programs can result in adjustments of predicted maintenance 

treatments by up to 21%, highlighting the substantial impact of assessment methodology on 

management outcomes (Saliminejad, 2012). 

International Roughness Index (IRI) 

The International Roughness Index (IRI) serves as a critical functional performance indicator that 

directly relates to user comfort and vehicle operating costs (Federal Highway Administration, 

2022). Research has shown strong correlations between IRI and various pavement distress types, 

making it valuable for both condition assessment and performance prediction applications (Li et 

al., 2022). IRI measurements provide objective assessment of pavement smoothness that enables 

quantitative evaluation of ride quality and functional performance (Hamdi, 2015). 

Studies utilizing machine learning approaches for IRI prediction have demonstrated significant 

improvements over traditional methods (Gong et al., 2018; Marcelino et al., 2019). Random forest 

algorithms have shown particular effectiveness for addressing continuous prediction problems 

over time and sensitivity analysis of IRI (Marcelino et al., 2019). Research has consistently shown 

that advanced modeling approaches can achieve prediction accuracies exceeding 90% for IRI 

forecasting, substantially outperforming traditional statistical methods (Gong et al., 2018; Ali et 

al., 2023). 

Khawaga et al. (2021) developed Markov and S-curve models for IRI prediction, demonstrating 

that Markov models performed better than S-curve models in terms of comprehensive factor 

consideration (Li et al., 2022). Their research highlighted the importance of selecting appropriate 

modeling approaches based on specific application requirements and data characteristics, 



17 

 

particularly for northern climate applications where freeze-thaw cycles significantly impact 

pavement roughness (Qiao et al., 2020). Climate factors including temperature fluctuations and 

precipitation patterns have been shown to significantly influence IRI progression patterns (Swarna, 

2022). 

The integration of IRI with other performance indicators provides comprehensive assessment 

frameworks that consider both structural and functional pavement performance (Torres-Machí et 

al., 2014). This integrated approach enables more informed decision-making regarding 

maintenance timing and treatment selection (Federal Highway Administration, 2022). Research 

has shown that IRI-based performance prediction requires careful consideration of climate factors, 

traffic loading patterns, and pavement structural characteristics to achieve accurate forecasting for 

maintenance planning applications (Li, 2009; Hamdi, 2015). Studies have demonstrated that local 

calibration of IRI prediction models is essential for achieving reliable performance forecasting 

under specific regional conditions (Li, 2009). 

2.4 Insights from Pavement Management Case Studies 

2.4.1  North American Implementations 

California DOT (Caltrans) Experience  

Wang and Pyle documented Caltrans' experience implementing a comprehensive pavement 

management system, highlighting challenges and successes in large-scale PMS deployment (Wang 

& Pyle, 2019). The Caltrans implementation emphasized the importance of integrating pavement 

management with broader transportation asset management frameworks. 

The California experience demonstrated the critical role of stakeholder engagement and 

organizational change management in successful PMS implementation. The research showed that 

technical excellence in system design must be complemented by effective organizational processes 

and staff training to achieve successful implementation outcomes. 

Caltrans' approach to pavement management integration with asset management provides a model 

for other agencies seeking to align project-level pavement decisions with network-level strategic 

objectives. The research demonstrated practical approaches for establishing feedback loops 

between pavement design, pavement management, and transportation asset management units. 

Ontario's AASHTOWare Calibration Experience  

Ontario's experience with local calibration of AASHTOWare provides valuable insights for 

regional PMS development. Hamdi (2015) demonstrated that significant improvements in 

prediction accuracy can be achieved through local calibration, with statistical analysis showing 

substantial enhancements in model performance for Ontario flexible pavements (Hamdi, 2015). 

The study found that national calibration coefficients failed to offer reliable accuracy for local 

conditions, necessitating extensive calibration efforts using provincial pavement management 

system data. 
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The Ontario calibration project revealed important findings about regional model adaptation. The 

study concluded that calibration coefficients should be updated as performance databases expand 

and innovative materials are utilized in provincial pavement designs (Hamdi, 2015). This finding 

emphasizes the dynamic nature of calibration requirements and the need for ongoing model 

refinement as local experience accumulates. 

Key Performance Indicators such as International Roughness Index and Pavement Condition Index 

were evaluated, with the research demonstrating that locally calibrated models significantly 

enhance prediction accuracy for pavement performance (Hamdi, 2015). The study showed that 

PMS data can be effectively utilized to improve AASHTOWare model accuracy, providing a 

framework for similar calibration efforts in other jurisdictions. 

Washington State DOT Implementation  

Washington State Department of Transportation's pavement management implementation 

demonstrates the effectiveness of systematic calibration approaches. Li (2009) documented the use 

of split-sample and jackknife testing approaches for local calibration of mechanistic-empirical 

design models (Li, 2009). The split-sample approach used half of selected sections for calibration 

and the other half for validation, while the jackknife approach withheld each section for prediction 

measurements with other sections used for calibration. 

The Washington State project achieved remarkable success in rutting prediction calibration. Final 

calibration factors were chosen based on root-mean-square error , with results showing that 

predicted rutting values closely matched measured data from the state's PMS (Li, 2009). The study 

demonstrated consistency between predicted and measured rutting values for both western and 

eastern Washington regions, indicating the effectiveness of regional calibration approaches. 

The research concluded that local calibration processes should be finalized through model 

validation using independent datasets not included in calibration processes (Li, 2009). This finding 

provides important guidance for ensuring the robustness and reliability of locally calibrated 

models. 

2.4.2  European Implementations 

Italian ANAS Case Study 

The Italian National Road Agency (ANAS) experience provides insights into large-scale pavement 

management implementation under resource constraints. Borghetti documented ANAS's approach 

to managing approximately 32,000 km of state roads, highways, and freeway junctions under 

direct management (Borghetti et al., 2024). The ANAS network represents the largest road 

infrastructure management operation in Italy in terms of network extent. 

The ANAS case study demonstrates the challenges faced by large road agencies in prioritizing 

maintenance interventions under budget constraints. With regions proposing more than 1,000 

interventions and financial needs exceeding 3.5 billion euros in some cases, ANAS requires 



19 

 

sophisticated prioritization methodologies to optimize resource allocation (Borghetti et al., 2024). 

The average regional requirement approaches 1.5 billion euros over the reference period (2022-

2026), highlighting the scale of infrastructure investment needs. 

ANAS's approach to maintenance includes identification of network needs using standardized 

parameters, definition of interventions based on available funds, and implementation focused on 

process efficiency (Borghetti et al., 2024). This systematic approach provides a framework for 

other agencies facing similar challenges in managing large road networks under financial 

constraints. 

The research demonstrates the application of multi-criteria decision-making approaches that 

consider category, asset, and typology factors in maintenance prioritization. The final prioritization 

formula applied weights of 60% to category factors and 40% to asset factors, with typology factors 

having no influence for most intervention types (Borghetti et al., 2024). 

Republic of San Marino Implementation 

Grilli documented the development of pavement management guidelines for the Republic of San 

Marino, demonstrating how small jurisdictions can implement effective PMS frameworks despite 

resource constraints (Grilli et al., 2019). The San Marino implementation emphasizes the use of 

GIS tools for data collection, management, and analysis of road inventory and monitoring data. 

The San Marino case study demonstrates the effectiveness of customized GIS-based tools for 

standardizing road data collection, managing monitoring and inventory data, identifying 

maintenance priority ratings, and planning maintenance works from long-term perspectives (Balzi 

et al., 2023). The implementation utilized a strategic index approach for comparing different 

maintenance strategies, with the strategic index calculated as a function of priority index that 

depends on technical factors including pavement condition, roughness, traffic levels, network 

hierarchy, road functional classification, road relevance for strategic purposes, and maintenance 

repair history. 

The research showed that maintenance scenarios can be characterized and compared using specific 

evolution of strategic index values over time, enabling rational comparison of alternative 

maintenance strategies (Balzi et al., 2023). This approach provides a practical framework for 

resource-constrained agencies to implement sophisticated PMS capabilities. 

 

Belgian ViaBEL System 

Van Geem documented the development of ViaBEL, a decision-making tool for pavement 

management of secondary road networks in Belgium (Van Geem et al., 2012). The ViaBEL system 

demonstrates how European agencies have developed sophisticated tools specifically designed for 

regional and local road management applications. 
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The ViaBEL implementation emphasizes visual inspection quality assurance for pavement 

management of communal road networks (Van Geem & Massart, 2017). The system provides 

structured frameworks for decision processes in pavement management while maintaining cost-

effectiveness appropriate for secondary road networks. 

The Belgian experience demonstrates the importance of developing management tools that are 

appropriately scaled to the technical and financial capabilities of regional agencies. The ViaBEL 

system provides practical approaches for implementing systematic pavement management without 

requiring the sophisticated technical infrastructure associated with major highway agency 

implementations. 

2.4.3  Low-Cost and Municipal Applications 

Low-Volume Road Management 

Hafez and Ksaibati studied the effectiveness of parameter adjustments in pavement management 

systems for low-volume paved roads, demonstrating potential pavement life extensions of 15-25% 

through optimized treatment strategies (Hafez & Ksaibati, 2021). Their research addresses the 

specific challenges faced by agencies responsible for roads with limited traffic but substantial 

infrastructure investment requirements. 

The low-volume road research emphasized the importance of developing management approaches 

that account for different deterioration patterns and maintenance requirements compared to high-

traffic facilities. The study showed that parameters optimized for major highways may not be 

appropriate for low-volume applications, necessitating specialized calibration and optimization 

approaches. 

Van Geem and Massart documented implementation and benefits of low-cost PMS for municipal 

road networks, demonstrating practical approaches for achieving systematic pavement 

management under severe budget constraints (Van Geem & Massart, 2018). Their research showed 

that significant improvements in maintenance effectiveness can be achieved through systematic 

approaches even when sophisticated technical resources are not available. 

Urban Applications 

Loprencipe developed sustainable pavement management systems for urban areas considering 

vehicle operating costs (Loprencipe et al., 2017). Their research demonstrated the integration of 

user cost considerations with traditional pavement management approaches, providing more 

comprehensive frameworks for urban pavement management decision-making. 

The urban pavement management research emphasized the importance of considering user impacts 

and vehicle operating costs in addition to agency maintenance costs. The study showed that 

integrated approaches considering both agency and user costs can lead to different optimization 

outcomes compared to traditional approaches focused solely on agency costs. 
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Vines-Cavanaugh et al. documented city-wide application of affordable and rapid pavement 

management systems, demonstrating practical approaches for implementing systematic condition 

assessment and management planning in urban environments (Vines-Cavanaugh et al., 2017). 

Their research showed that cost-effective technologies can enable comprehensive pavement 

management even for resource-constrained municipal agencies. 

2.5 Literature Review Summary 

Table 1 Details of previous research activities on PMS 

Research 

team Year Case study 

Location 
Software/ 

Methode Main points Reference 

Haas, Hudson, 

& Zaniewski 1994 North America 
PMS 

Optimization 

Model 

- Introduced a structured PMS approach for optimizing 

maintenance planning. 

- Demonstrated lifecycle cost reduction of up to 30% through 

systematic strategies. 

[Haas 1994] 

Hudson, Haas, 

& Uddin 1997 Global Infrastructure 

Modeling 

- Integrated engineering and economic models to enhance 

PMS decision-making. 

- Emphasized full-cycle infrastructure management from 

design to rehabilitation. 

[Hudson 1997] 

Anastasopoulos

, Mannering, & 

Haddock 
2009 USA Service Life 

Analysis 

- Developed service life curves to evaluate rehabilitation 

effectiveness. 

- Showed optimized interventions extend pavement life by 

20–40%. 

[Anastasopoulo

s et al. 2009] 

Smith, Pontius, 

& Galehouse 2014 USA PMS Data 

Integration 

- Highlighted the importance of data-driven decision 

processes in PMS. 

- Introduced maintenance prioritization based on objective 

road condition data. 

[Smith 2014] 

Ali et al. 2023 Global 
Machine 

Learning 

Models 

- Applied neural networks achieving R² > 98% accuracy in 

condition predictions. 

- Outperformed multiple regression models in handling non-

linear deterioration patterns. 

[Ali 2023] 

Federal 

Highway 

Administration 
2022 USA 

Pavement 

Management 

Roadmap 

- Established a 10-year roadmap for PMS improvements. 

- Focused on advancing predictive analytics and fostering 

industry-academia collaboration. 
[FHWA 2022] 

Ekramnia & 

Nasimifar 2022 Global 
Treatment 

Prioritization 

Model 

- Created a treatment prioritization tool improving efficiency 

by 30%. 

- Enhanced network-level rehabilitation planning under limited 

resources. 

[Ekramnia 

2022] 

Hamdi 2015 Ontario, 

Canada 
AASHTOWare 

Calibration 

- Showed significant improvements in prediction accuracy via 

local calibration. 

- Highlighted the shortcomings of national calibration 

coefficients. 

[Hamdi 2015] 

Li 2009 Washington, 

USA 

Mechanistic-

Empirical 

Calibration 

- Developed calibration factors achieving near-perfect rutting 

predictions. 

- Demonstrated region-specific model adaptation in 

Washington State. 

[Li 2009] 

Qiao et al. 2020 Global 
Climate Change 

Adaptation 

Model 

- Analyzed climate impacts on pavement deterioration 

worldwide. 

- Suggested adaptive maintenance strategies to counter 

environmental damage. 

[Qiao 2020] 

Swarna 2022 Global Climate 

Modeling 

- Identified limitations in temperature modeling for high 

latitudes. 

- Highlighted the absence of suitable models for Northern 

Canadian climates. 

[Swarna 2022] 

Gavin et al. 2003 Canada Climate Effects 

Research 

- Investigated Canadian climate effects on pavement 

performance. 

- Initiated test sites studying asphalt properties in extreme cold. 
[Gavin 2003] 
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Research 

team Year Case study 

Location 
Software/ 

Methode Main points Reference 

Ali 2022 Canada Soft Computing 

- Used ANN to predict asphalt condition with improved 

accuracy. 

- Enhanced Pavement Condition Index estimation through soft 

computing. 

[Ali 2022] 

Li et al. 2022 Global Hybrid Neural 

Network 

- Combined BPNN and LSTM neural networks for hybrid 

modeling. 

- Introduced data cleaning and restart point methodology. 
[Li 2022] 

Attoh-Okine 2002 Global Hybrid ANN 

Approach 

- Demonstrated integration of rough set analysis with ANN 

models. 

- Showed hybrid approaches handle incomplete datasets 

effectively. 

[Attoh-Okine 

2002] 

Zhao et al. 2021 Global 
Genetic 

Algorithm with 

ANN 

- Improved ANN model convergence with genetic algorithms. 

- Enhanced accuracy in predicting asphalt adhesive viscosity. [Zhao 2021] 

Marcelino et al. 2019 Global Random Forest 

Algorithm 
- Applied RF algorithm for roughness sensitivity analysis. 

- Provided continuous prediction with real-time performance. 
[Marcelino 

2019] 

Gong et al. 2018 Global Random Forest 

Model 

- Achieved 90% prediction accuracy using RF. 

- Outperformed traditional regression methods in large 

datasets. 
[Gong 2018] 

Saliminejad 2012 Global Error Analysis 
- Showed parameter errors cause slope bias in regression 

models. 

- Identified effects of random vs. systematic data errors. 

[Saliminejad 

2012] 

Torres-Machí et 

al. 2014 Spain 
Iterative 

Optimization 

Model 

- Developed an iterative optimization model improving 

network efficiency by 25%. 

- Highlighted holistic vs. sequential treatment strategies. 

[Torres-Machí 

2014] 

Santos et al. 2017 Global Multi-objective 

Optimization 

- Applied multi-objective optimization for treatment selection. 

- Balanced road condition, traffic volume, and cost 

constraints. 
[Santos 2017] 

Obaidat et al. 2018 Global GIS Integration 
- Integrated GIS enhancing visualization and dynamic 

analysis. 

- Enabled sectional data retrieval via graphical models. 
[Obaidat 2018] 

Zagvozda et al. 2019 Global 3D GIS 

Modeling 
- Advanced 3D GIS modeling for urban PMS applications. 

- Enabled accurate scene perception for city infrastructure. 
[Zagvozda 

2019] 

Balzi et al. 2023 Global Mobile LiDAR 

GIS 

- Used LiDAR with RGB cameras to enhance distress 

detection accuracy. 

- Improved 3D data for pavement analysis and planning. 

[Balzi et al. 

2023] 
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3. Chapter 3: Data Collection and Pre-Processing 

3.1  Fundamentals of PMS 

Pavement Management Systems represent a systematic approach of optimizing infrastructure 

maintenance and rehabilitation through data-driven decision-making processes. As established in 

the literature review (Chapter 2), PMS have evolved from manual inspection methods to 

sophisticated analytical frameworks that integrate multiple data sources, predictive modeling 

capabilities, and optimization techniques to support strategic infrastructure stewardship. The 

fundamentals examined in this chapter provide detailed technical understanding of the core 

components that comprise effective pavement management, expanding upon the foundational 

concepts presented in the literature review with specific focus on their application within Prince 

George's operational context. 

The effectiveness of PMS implementation depends upon the integration of multiple interconnected 

components including inventory management, condition assessment, performance prediction, 

treatment optimization, and resource allocation. Each component contributes essential capabilities 

that collectively enable agencies to transition from reactive maintenance approaches to proactive 

management strategies that optimize both performance outcomes and resource utilization. 

The evolution toward data-driven pavement management reflects broader technological 

advancements in infrastructure monitoring and analysis capabilities. Contemporary PMS 

implementations leverage automated data collection technologies, advanced analytical techniques, 

and sophisticated modeling approaches to enhance decision-making accuracy while reducing 

reliance on subjective assessments that characterized earlier management approaches. 

3.2 Pavement Condition Indices 

3.2.1 Pavement Distress Index (PDI) 

The Pavement Distress Index represents the primary condition assessment tool employed within 

Prince George's pavement management framework, providing standardized quantification of 

pavement surface condition and structural integrity. As established in the technical reports from 

2016, 2017, 2020, and 2023, PDI assessment follows the British Columbia Ministry of 

Transportation and Infrastructure (BCMoTI) Condition Rating Manual methodology, which 

represents a localized adaptation of the internationally recognized PAVER Pavement Condition 

Index model developed by the U.S. Army Corps of Engineers. 
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Figure 3 Prince George Pavement Condition over the years plotted on Google Earth. 

The PDI model integrates severity and density ratings for each distress type, consolidating multiple 

condition indicators into a unified distress score on a declining scale from 10 to 0, where 10 

represents perfect pavement condition and 0 indicates complete failure requiring reconstruction. 

This standardized scale enables objective comparison of pavement conditions across different road 

segments and functional classifications within Prince George's network. 

The mathematical foundation of PDI calculation employs a deduct value methodology that begins 

with a perfect score of 10 and systematically subtracts penalty values based on observed distress 

characteristics. The specific deduct value for each distress type is calculated using the following 

equation established in the BCMoTI methodology: 

Deduct = 10^(B0 + B1 * Log(Density)) 

The coefficients B0 and B1 vary according to distress type and severity level, with values 

calibrated specifically for BC pavement conditions and climate factors. These coefficients reflect 

the relative impact of different distress types on overall pavement performance, with structural 

distresses such as alligator cracking receiving higher deduct values than surface-related distresses 

such as bleeding or minor raveling. 
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Table 2 Coefficients to Calculate the Deducts of PDI 

Distress Low 

Severity 

 
Moderate 

Severity 

 
High 

Severity 

 

 
B0 B1 B0 B1 B0 B1 

Longitudinal Wheelpath 

Cracking 

-0.80 0.60 -0.50 0.57 -0.25 0.55 

Longitudinal Cracking -0.80 0.50 -0.65 0.57 -0.40 0.55 

Pavement Edge Cracking -0.80 0.40 -0.70 0.55 -0.45 0.55 

Transverse Cracking -0.80 0.60 -0.40 0.55 -0.35 0.57 

Meandering Longitudinal 

Cracking 

-0.80 0.55 -0.65 0.60 -0.40 0.57 

Alligator Cracking - - -0.40 0.75 -0.25 0.75 

Potholes -0.80 0.40 -0.60 0.57 -0.25 0.57 

Rutting -0.75 0.50 -0.45 0.57 -0.30 0.60 

Source: Tetra Tech (2020), ICC (2023) 

The PDI classification system employs a three-tier condition rating framework that categorizes 

pavement segments as Good (PDI > 7), Fair (PDI 5-7), or Poor (PDI < 5). This classification 

provides intuitive interpretation of condition data while supporting maintenance prioritization and 

resource allocation decisions. The classification thresholds were established through extensive 

calibration with British Columbia pavement performance data and reflect the relationship between 

measured distress levels and functional pavement performance under regional traffic and climate 

conditions. 

3.2.2 International Roughness Index (IRI) 

The IRI serves as the primary measure of pavement functional performance within Prince George's 

assessment framework, quantifying ride quality and user comfort through standardized 

measurement of pavement surface irregularities. IRI assessment follows the ASTM E1926 

specification, providing objective quantification of pavement smoothness that directly correlates 

with vehicle operating costs, fuel consumption, and user satisfaction (Tetra Tech, 2017; Tetra Tech, 

2020). 

IRI calculation methodology employs a quarter-car simulation model that measures vertical 

suspension motion divided by distance traveled, reporting results in millimeters per meter (mm/m) 

or the equivalent meters per kilometer. The quarter-car model simulates the dynamic response of 

a standardized vehicle suspension system to pavement surface irregularities, providing consistent 

measurement methodology that enables comparison across different pavement sections and 

assessment periods (Tetra Tech, 2020). 

The technical measurement process utilizes longitudinal profile data captured through automated 

data collection systems, typically integrated with Laser Crack Measurement Systems (LCMS) that 

provide continuous elevation measurements at 1mm resolution. The profile data undergoes 

mathematical processing through established algorithms that simulate quarter-car response 
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characteristics and generate standardized IRI values for each measurement segment (ICC, 2023). 

Since its introduction in 1986, IRI has become the road roughness index most used worldwide for 

evaluating and managing higher speed road networks, with vehicle operating costs including fuel 

consumption, tire wear, and depreciation rising with increasing roughness and directly correlated 

to IRI values (Tetra Tech, 2020). 

Table 3 Index Ranges for IRI Description 

Rating Alley, Local, and Ramp IRI 

(mm/m) 

Arterial, Major Collector, Minor Collector 

IRI (mm/m) 

Color 

Code 

Good ≤ 4.49 ≤ 2.99 Green 

Fair 4.49 – 8.08 2.99 – 5.40 Yellow 

Poor > 8.08 > 5.40 Red 

Source: Tetra Tech (2020), based on Yu, Chou, & Yau (2006) 

The differentiated IRI classification thresholds reflect the varying service expectations associated 

with different road classifications and typical operating speeds. Arterial and collector roads, which 

accommodate higher traffic volumes and speeds, require smoother surface conditions (lower IRI 

values) to maintain acceptable ride quality and minimize vehicle operating costs. Local roads and 

alleys, characterized by lower operating speeds and different functional requirements, can 

accommodate higher IRI values while maintaining acceptable service levels. 

Research documented in Prince George's technical reports has demonstrated strong correlations 

between IRI values and vehicle operating costs, with studies indicating that "vehicle operating 

costs including fuel consumption, tire wear, and depreciation rise with increasing roughness and 

have been directly correlated to IRI" (Tetra Tech, 2017; Tetra Tech, 2020). These relationships 

enable economic analysis of pavement condition impacts that extend beyond immediate 

maintenance costs to encompass broader user cost considerations. For Prince George's 

transportation network, IRI data supports both condition assessment and economic analysis that 

informs maintenance prioritization and treatment selection decisions. 

3.2.3 Composite Index Integration 

The integration of PDI and IRI measurements provides comprehensive pavement assessment that 

addresses both structural integrity and functional performance characteristics. This dual-index 

approach enables differentiated analysis of pavement conditions, recognizing that structural 

adequacy and ride quality may exhibit different deterioration patterns and require distinct 

maintenance responses. 

The complementary nature of PDI and IRI assessment supports sophisticated decision-making 

frameworks that can optimize maintenance timing and treatment selection based on both 

immediate functional requirements and long-term structural preservation objectives. This 

integrated approach aligns with contemporary pavement management best practices that recognize 
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the multidimensional nature of pavement performance and the need for comprehensive assessment 

methodologies. 

3.3 Data Gathering Methods 

3.3.1 Automated Distress Survey Technology 

Prince George's pavement condition assessment program employs state-of-the-art automated data 

collection technologies that provide objective, repeatable, and comprehensive evaluation of 

pavement distress characteristics. The automated approach represents a significant advancement 

over traditional manual inspection methods, offering enhanced accuracy, consistency, and 

efficiency in large-scale network assessment. 

The primary data collection platform utilized in Prince George's assessment program is the Laser 

Crack Measurement System (LCMS), deployed through specialized vehicles including Tetra 

Tech's Pavement Surface Profiler (PSP) 7000 series and ICC International Cybernetics Canada's 

Road Surface Tester (RST) (Tetra Tech, 2017; Tetra Tech, 2020; ICC, 2023). These systems 

integrate multiple advanced technologies including high-resolution laser scanning, digital 

imaging, GPS positioning, and inertial measurement capabilities to capture comprehensive 

pavement condition data at highway speeds (ICC, 2023). 

 

Figure 4 LCMS-2 RST data collection vehicle (IMS, 2023). 
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The LCMS technology operates by projecting laser light across the pavement surface and 

measuring elevation variations with millimeter-level precision. The system captures continuous 

2D and 3D images at 1mm resolution across lane widths up to 4 meters, enabling detailed 

characterization of surface features and distress patterns (ICC, 2023). Advanced LCMS-2 systems 

employed in recent assessments can achieve collection rates up to 28,000 profiles per second, 

representing a five-fold improvement over earlier generation equipment (ICC, 2023). 

3.3.2 Positioning and Location Referencing Systems 

Accurate spatial referencing represents a critical component of automated data collection, enabling 

precise location identification and subsequent analysis integration with Geographic Information 

System (GIS) platforms. Prince George's assessment program employs sophisticated Global 

Navigation Satellite System (GNSS) technology, specifically the Applanix POS LV RT-420 

system, which provides continuous and accurate vehicle position and orientation information 

under challenging GPS conditions (Applied Research Associates, 2016; British Columbia Ministry 

of Transportation and Infrastructure, 2020). 

The positioning system utilizes inertially aided GPS technology that maintains spatial accuracy 

even during periods of limited satellite coverage, such as urban canyon environments or areas with 

dense vegetation. The integrated inertial measurement unit provides continuous position estimates 

through gyroscopic sensors and accelerometers, enabling uninterrupted data collection throughout 

the survey process (Applied Research Associates, 2016). 

Post-processed positioning data typically achieves accuracy levels of less than 500mm in 

horizontal position and 500mm in vertical position for locations with suitable satellite 

constellations. Even under challenging GPS conditions involving outages of 10-15 minutes, the 

system maintains positional accuracy within 1 meter horizontally and 2 meters vertically, ensuring 

reliable spatial referencing for subsequent analysis and asset management applications (British 

Columbia Ministry of Transportation and Infrastructure, 2020). 

3.3.3 Quality Control and Data Validation 

Comprehensive quality control procedures ensure the reliability and accuracy of collected 

pavement condition data. Tetra Tech's implementation employs a GIS-based field management 

application called "TT Surveyor" that provides real-time verification of data collection 

completeness and spatial accuracy. The system verifies that road segments are surveyed in the 

correct direction and within specified spatial boundaries, comparing real-time vehicle position 

with predefined survey requirements (Tetra Tech, 2020). 

Daily data review processes involve uploading GPS, roughness, and rutting data to processing 

teams for immediate analysis of coverage completeness and data quality. This methodology 

enables identification and correction of data gaps or quality issues before survey equipment leaves 

the project location, minimizing data collection errors and ensuring comprehensive network 

coverage (Tetra Tech, 2017; Tetra Tech, 2020). 
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Spot verification procedures involve manual validation of automated distress detection results 

through comparison with high-resolution digital imagery captured during the survey process. 

These quality assurance checks help identify potential issues with automated classification 

algorithms and ensure consistency between different assessment periods (ICC, 2023). 

 

Figure 5 TT Surveyor Application Representation of LCMS System (Tetratech, 2017). 

3.3.4 Strengths and Limitations of Automated Assessment 

Automated distress survey methods offer significant advantages over traditional manual inspection 

approaches, including enhanced objectivity, improved consistency, and increased efficiency in 

large-scale network assessment. The automated approach eliminates subjective bias associated 

with manual inspections while providing comprehensive documentation through high-resolution 

imagery and precise spatial referencing. 

The high-speed data collection capability enables comprehensive network assessment with 

minimal traffic disruption and reduced safety risks for inspection personnel. Automated systems 

can assess entire road networks in days rather than weeks or months required for manual 

inspection, enabling more frequent condition monitoring and timely identification of deteriorating 

conditions. 

However, automated systems also present certain limitations that must be considered in pavement 

management applications. Weather conditions, particularly wet pavement surfaces, can affect the 

accuracy of laser-based distress detection. Some distress types, such as bleeding or fine cracking, 

may require manual verification to ensure accurate classification and severity assessment. 

The substantial capital investment required for automated assessment equipment and specialized 

personnel training represents a significant consideration for municipal agencies. Additionally, the 

technical complexity of automated systems requires ongoing maintenance and calibration to ensure 

continued accuracy and reliability. 
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3.4 Traffic Data in PMS 

Traffic data represents a fundamental component of pavement management systems, directly 

influencing deterioration rates, maintenance requirements, and treatment selection decisions. 

Prince George's strategic position as the largest urban center in northern British Columbia creates 

unique traffic characteristics that significantly impact pavement performance and management 

requirements. 

The city serves as a critical transportation hub at the confluence of major provincial and national 

transportation corridors, including Highway 97 (connecting southern British Columbia to Alaska) 

and Highway 16 (the Yellowhead Highway connecting eastern and western Canada). This strategic 

location generates substantial commercial traffic volumes, including heavy vehicle movements 

associated with forestry, mining, and agricultural activities throughout the region. 

Traffic data collection and analysis within Prince George's PMS framework encompasses multiple 

parameters including Annual Average Daily Traffic (AADT), vehicle classification by weight 

categories, seasonal traffic variations, and spatial distribution patterns across different road 

classifications. This comprehensive traffic characterization enables accurate assessment of loading 

conditions that directly influence pavement deterioration rates and maintenance requirements. 

 

Figure 6 Prince George Interactive map plotting the Road Traffic data (City of Prince George, 2025). 

The City of Prince George maintains comprehensive traffic monitoring capabilities through 

automated traffic counting stations and periodic manual classification studies. Traffic data is 

accessible through the city's open data portal and interactive mapping applications that provide 

real-time visualization of traffic patterns and volumes across the road network (City of Prince 

George, 2025). This spatial traffic information supports maintenance prioritization and treatment 

selection by identifying high-stress corridors that require enhanced attention and more frequent 

intervention. 
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Heavy vehicle traffic represents a particularly critical factor in pavement management for Prince 

George, given the region's dependence on resource extraction industries that generate substantial 

commercial vehicle movements. Heavy vehicles create disproportionate pavement loading 

compared to passenger vehicles, with deterioration impacts that increase exponentially with axle 

weight. The integration of traffic classification data enables PMS applications to account for these 

differential loading impacts in deterioration prediction and maintenance planning. 

Seasonal traffic variations also influence pavement management strategies in Prince George, 

particularly considering the region's role in supporting resource industry activities that may exhibit 

seasonal operational patterns. Winter conditions affect both traffic patterns and pavement stress 

characteristics, with freeze-thaw cycles creating additional deterioration mechanisms that 

compound traffic-related wear. 

3.5 Pavement Distress Surveys 

Pavement distress surveys represent the systematic evaluation of pavement surface conditions that 

forms the empirical foundation for condition assessment and performance analysis within Prince 

George's PMS framework. The city has conducted comprehensive distress surveys in 2016, 2017, 

2020, and 2023, utilizing specialized contractors including Applied Research Associates (ARA), 

Tetra Tech Canada Inc., and ICC International Cybernetics Canada Inc. to ensure objective and 

standardized assessment procedures. 

The survey methodology employed in Prince George follows the BCMoTI Pavement Surface 

Condition Rating Manual, which provides standardized protocols for distress identification, 

classification, and quantification specifically calibrated for British Columbia pavement conditions 

and climate factors. This methodology ensures consistency across different survey periods and 

enables reliable trend analysis for long-term performance evaluation. 

3.5.1 Survey Coverage and Scope 

The 2020 comprehensive survey represented the most extensive assessment conducted, covering 

approximately 843 lane kilometers of the city's paved road network including arterials, major 

collectors, minor collectors, local roads, alleys, ramps, and associated intersections (Tetra Tech, 

2020). This comprehensive coverage enables network-level analysis that supports strategic 

maintenance planning and resource allocation across all road classifications. 

The 2023 survey focused specifically on arterial and collector roads, assessing 293 centerline 

kilometers of predominantly asphalt roadways and intersections (ICC, 2023). This targeted 

approach reflects the prioritization of high-traffic corridors that experience the most severe 

deterioration and require the most immediate attention within constrained maintenance budgets. 

3.5.2 Data Collection Intervals and Segmentation 

Pavement condition data is collected and reported in standardized 50-meter segments, consistent 

with BCMoTI recommendations for municipal pavement management applications. This 
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segmentation length provides sufficient detail for accurate condition assessment while maintaining 

manageable data volumes for analysis and decision-making purposes. 

The standardized segmentation enables precise spatial referencing of condition data within GIS 

platforms, supporting sophisticated spatial analysis capabilities including hotspot identification, 

corridor-level analysis, and integration with traffic and environmental data sources. 

3.6 Types of Pavement Distress 

The assessment of distress types is crucial for determining the appropriate maintenance and 

rehabilitation strategies. Common pavement distress types found in Prince George’s Road network 

include rutting, longitudinal cracking, meandering longitudinal cracking, transverse cracking, 

longitudinal wheel path cracking, alligator cracking, pavement edge cracking, and potholes as 

shown in Figure 7. The prevalence of these distresses is heavily influenced by climate conditions, 

particularly the freeze-thaw cycles and heavy snowfall that contribute to pavement degradation 

(Qiao et al., 2020). 

 

Figure 7 Common types of pavement distresses observed in Prince George 

1. Rutting – Rutting refers to depressions in the wheel paths caused by repeated 

loading and consolidation of pavement materials. It is typically associated with 

inadequate pavement compaction, weak subgrade layers, or high traffic loads. 

Severe rutting can lead to water accumulation and vehicle control issues, requiring 

corrective measures such as resurfacing or full-depth pavement reconstruction 

(Qiao et al., 2020). 

2. Longitudinal Cracking – Longitudinal cracks are parallel to the pavement's 

centerline and commonly develop due to fatigue, thermal contraction, or poorly 

constructed longitudinal joints. These cracks can allow water infiltration, weaken 

the pavement structure and accelerating deterioration. Sealants and overlays are 

typically used to mitigate further damage (Smith et al., 2014). 

3. Meandering Longitudinal Cracking – Unlike regular longitudinal cracks, 

meandering longitudinal cracks follow an irregular, non-linear pattern. They often 

indicate subgrade movement, frost heave, or structural deficiencies, requiring more 

extensive repairs such as base stabilization or reconstruction (Walls & Smith, 

1998). 

4. Transverse Cracking – Transverse cracks develop perpendicular to the pavement 

centerline, mainly due to temperature fluctuations causing thermal expansion and 

contraction. These cracks can be a sign of inadequate pavement flexibility or aging 
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asphalt. Preventive maintenance techniques such as crack sealing help limit 

moisture infiltration and extend pavement service life (Hafez & Ksaibati, 2021). 

5. Longitudinal Wheel Path Cracking – This form of longitudinal cracking occurs 

specifically in the wheel paths due to repeated traffic loading. It is often an early 

indicator of fatigue failure and can develop into alligator cracking if not treated 

promptly (Guha et al., 2022). 

6. Alligator Cracking – Alligator or fatigue cracking consists of interconnected 

cracks resembling an alligator’s skin. It results from repeated traffic loads that 

exceed pavement structural capacity, leading to progressive failures. Alligator 

cracking is a serious distress that typically requires full-depth pavement 

rehabilitation rather than surface treatments (Qiao et al., 2020). 

7. Pavement Edge Cracking – Edge cracking occurs along the outer edges of the 

pavement and is primarily caused by insufficient shoulder support, water 

infiltration, or improper drainage. These cracks can propagate inward, 

compromising pavement integrity. Shoulder reinforcement and drainage 

improvements are common solutions for preventing edge cracking (Ali, 2022). 

8. Potholes – Potholes form when water infiltrates into cracks, weakening pavement 

layers, and leading to localized failures. Repeated freeze-thaw cycles exacerbate 

pothole formation, making them a significant issue in colder climates. Potholes can 

be temporarily repaired with patching materials or permanently fixed through 

resurfacing (Guo et al., 2022). 

3.7 Road Categorization in PMS 

Road classification systems provide the organizational framework for differentiated pavement 

management strategies that account for varying functional requirements, traffic characteristics, and 

performance expectations across different road types. Prince George's classification system 

follows standard municipal practices that recognize distinct roles and requirements for different 

road categories. 

Table 4 Prince George Road Classification System 

Class Description Lane-km 

(Paved) 

Lane-km 

(Gravel) 

Primary Function 

Arterial Major traffic corridors 

connecting regions 

324 4 High-volume regional 

connectivity 

Major 

Collector 

Primary urban traffic 

distribution 

130 13 Urban traffic collection 

and distribution 

Minor 

Collector 

Secondary traffic 

collection 

157 32 Local traffic collection 

Local Neighborhood access and 

local traffic 

679 138 Direct property access 

Alley Rear property access and 

service 

20 41 Service and secondary 

access 
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Ramp Highway access and 

grade separation 

6 0 Grade-separated access 

Private City-owned utility access 

roads 

4 9 Utility and service 

access 

Source: City of Prince George Asset Management (Bobbie, 2025) 

3.7.1 Arterial Roads 

Arterial roads represent the highest classification within Prince George's network, accommodating 

the highest traffic volumes and serving critical regional connectivity functions. These roadways 

experience the most severe traffic loading and environmental stress, requiring the most frequent 

maintenance interventions and highest performance standards. The 324 lane-kilometers of paved 

arterial roads in Prince George's network carry substantial commercial traffic associated with the 

city's role as a regional transportation hub (Bobbie, 2025).  

3.7.2 Collector Roads 

Collector roads serve intermediate functions between arterial and local roads, providing traffic 

collection and distribution within urban areas while accommodating moderate traffic volumes. 

Prince George's collector road network comprises 130 lane-kilometers of major collectors and 157 

lane-kilometers of minor collectors, each serving distinct functions within the overall 

transportation hierarchy (Bobbie, 2025). Major collectors connect arterial roads with local traffic 

generators and typically accommodate higher traffic volumes than minor collectors Minor 

collectors provide secondary traffic collection functions and serve as intermediate connections 

between major collectors and local roads.  

3.7.3 Local Roads and Service Classifications 

Local roads provide direct access to adjacent properties and accommodate primarily local traffic 

with minimal through movement. These roadways experience lower traffic volumes and less 

severe loading conditions compared to arterial and collector roads, enabling longer maintenance 

intervals and different treatment strategies. Prince George maintains 679 lane-kilometers of paved 

local roads, representing the largest component of the municipal road network (Bobbie, 2025). 

Alleys serve specialized functions including rear property access, service vehicle accommodation, 

and utility corridor provision. The 20 lane-kilometers of paved alley pavement in Prince George's 

network requires distinct maintenance approaches that account for unique geometric constraints 

and access limitations. 

Ramps provide grade-separated access between different road classifications and highway 

systems. The 6 lane-kilometers of paved ramps have specialized geometric and structural 

requirements that necessitate targeted maintenance approaches accounting for unique loading 

patterns and drainage characteristics. 
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3.8 Previous Treatment Methods and Maintenance History 

This section summarizes the treatment and maintenance methods utilized by the City of Prince 

George based on the maintenance records included in the PMS. Figure 8 presents a snapshot from 

the map illustrating the road rehabilitation projects scheduled in 2024. According to Figure 8, the 

City executed 52 road resurfacing projects in 2024 only. 

 

Figure 8 City of Prince George 2024 Road Resurfacing (City of Prince George, 2024) 

3.8.1 Preventive Maintenance Strategies 

Crack Sealing  

Crack sealing represents the most cost-effective preventive maintenance treatment employed in 

Prince George's pavement management program, designed to prevent moisture infiltration and 

delay the progression of surface cracking to more severe distress types. The treatment involves the 
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application of specialized sealant materials into cracks to create waterproof barriers that prevent 

environmental deterioration. 

Research documented in Prince George's Strategic Paved Road Management Plan indicates that 

crack sealing treatments cost approximately $0.6 to $1.0 per linear foot and provide service life 

extensions of 3-5 years when applied to appropriate pavement conditions (Applied Research 

Associates, 2016). The treatment is most effective when applied to pavements in good to excellent 

condition (PDI 8-9) with low to moderate severity cracking. 

Microsurfacing  

Microsurfacing treatments have been extensively utilized in Prince George's maintenance 

program, with historical data from 2009-2016 showing 167 applications representing 10.2% of all 

treatments during this period. Microsurfacing provides surface renewal capabilities that address 

functional deficiencies including friction loss, minor surface raveling, and early-stage surface 

deterioration. These treatments cost approximately $2.25 to $7.50 per square yard depending on 

specific application requirements and material specifications. 

Surface treatments serve dual functions as both preventive and corrective maintenance 

interventions. As preventive measures, they seal minor surface deficiencies and restore surface 

characteristics before functional deterioration occurs. As corrective treatments, they address 

existing surface problems including friction deficiency and moderate raveling while providing 

enhanced surface protection. 

3.8.2 Rehabilitation Strategies 

Mill and Fill (Mill and Overlay)  

Mill and fill procedures, coded as "SurfaceRehab_M&F" in Prince George's asset management 

system, represent the predominant rehabilitation method employed in the city's pavement 

management program. Historical data from 2009-2016 shows this treatment was applied in 904 

cases, representing 55.1% of all rehabilitation activities. Recent project data (2004-2023) indicates 

continued reliance on this method, with 35 projects covering 32.24 lane-kilometers and 164,787 

square meters of pavement area. 

Mill and fill procedures involve the removal of 50mm of existing asphalt pavement followed by 

replacement with new asphalt materials. This method enables pavement renewal without 

increasing overall elevation, making it particularly suitable for urban environments where curb 

and gutter elevation constraints limit overlay thickness. The milling process removes surface 

deficiencies including cracking, raveling, and minor deformation while providing improved 

surface texture for enhanced bonding with replacement materials. 

Thin Lift Overlay (TLO)  
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Thin lift overlays, designated as "SurfaceRehab_OL" in city records, represent the second most 

common rehabilitation strategy. Historical data shows 174 applications (10.6% of treatments) from 

2009-2016, with recent projects indicating 30 applications covering 24.83 lane-kilometers and 

103,925 square meters. This method involves the placement of 40-50mm asphalt layers over 

existing pavement surfaces, providing both surface renewal and structural enhancement while 

maintaining existing pavement geometry and drainage characteristics. 

TLO treatments are most appropriate for pavements with good underlying structure and only minor 

surface deficiencies. However, the method does not address underlying structural problems and 

typically results in reflective cracking appearing through the new surface within a relatively short 

time following placement. 

Reclamation  

Treatments Prince George employs both partial and full depth reclamation strategies based on 

pavement condition and structural requirements. Historical data indicates 29 applications of 75mm 

reclamation and 46 applications of 100mm full depth reclamation from 2009-2016. Recent projects 

include one major 75mm reclamation project covering 1.42 lane-kilometers and 6,170 square 

meters. 

Reclamation involves the pulverization of existing asphalt and granular base materials followed 

by reconstruction with enhanced structural capacity. The 75mm reclamation addresses moderate 

structural deficiencies, while 100mm full depth reclamation provides comprehensive structural 

renewal for severely deteriorated pavements. This method effectively removes all existing 

pavement distresses while providing substantial structural improvement at costs considerably less 

than complete reconstruction. 

Full Reconstruction  

Complete pavement reconstruction represents the most extensive rehabilitation method, reserved 

for pavements with major structural deficiencies that cannot be addressed through surface or 

reclamation treatments. Historical data shows limited application with 16 rural reconstructions and 

2 urban reconstructions from 2009-2016, plus 2 recent reconstruction projects covering 1.60 lane-

kilometers. 

The reconstruction process involves complete removal of existing pavement materials, subgrade 

preparation, and installation of new structural sections designed for current traffic loading and 

environmental conditions. This comprehensive approach provides maximum structural 

enhancement and service life extension but requires the highest capital investment. 

3.8.3 Treatment Selection Matrix and Historical Performance 

Prince George's treatment selection follows systematic decision-making frameworks that integrate 

pavement condition assessment with appropriate treatment strategies based on distress 

characteristics and functional requirements. Historical application data demonstrates the 
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effectiveness of this approach, with mill and fill treatments addressing the majority of 

rehabilitation needs while targeted use of overlays, reclamation, and reconstruction addresses 

specific structural and functional requirements. 

Table 5 Treatment Matrix for Arterial/Collector Roadways 

Condition 

Rating (PDI) 

Typical Distress Features Recommended 

Treatment 

Historical Usage 

(2009-2016) 

9 to 10 New pavement, excellent 

condition 

Do nothing 
 

8 to 9 Good condition, low to 

moderate severity cracking 

Crack seal / 

Microsurfacing 

167 microsurfacing 

applications 

7 to 8 Good condition, loss of 

friction, minor surface 

raveling 

Microsurfacing or thin 

lift overlay 

174 overlay 

applications 

6 to 7 Good to fair condition, 

structurally adequate, rutting 

< 10mm 

Mill and fill 904 mill and fill 

applications 

5 to 6 Fair condition, evidence of 

load-related distress 

Reclamation (75-

100mm) 

75 reclamation 

applications 

Less than 5 Poor condition, moderate to 

high severity cracking 

Reconstruction 18 reconstruction 

projects 

Source: Applied Research Associates (2016), Prince George Asset Management Records (2009-

2023) 

The historical treatment data demonstrates Prince George's strategic approach to pavement 

management, with many interventions (55.1%) utilizing cost-effective mill and fill procedures for 

pavements with adequate structural capacity but surface deterioration. The balanced application of 

preventive treatments (microsurfacing) and more extensive rehabilitation methods (reclamation 

and reconstruction) reflects systematic condition-based decision making that optimizes both 

performance outcomes and resource utilization. 

3.9 Overview of BC Specific PMS Reports and Policies 

BCMoTI Pavement Surface Condition Rating Manual 

The British Columbia Ministry of Transportation and Infrastructure Pavement Surface Condition 

Rating Manual serves as the technical foundation for pavement condition assessment throughout 

the province, including Prince George's municipal network. The manual, currently in its Sixth 

Edition (March 2020), provides standardized methodologies for distress identification, 
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classification, and quantification specifically calibrated for British Columbia's diverse climate 

conditions and pavement materials. 

The BCMoTI methodology represents a localized adaptation of the internationally recognized 

ASTM D6433 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys, 

modified to address distress types and severity patterns most observed in British Columbia. This 

adaptation ensures that assessment procedures accurately reflect regional pavement performance 

characteristics while maintaining compatibility with broader pavement management frameworks. 

Key modifications incorporated in the BCMoTI manual include additional distress categories such 

as longitudinal wheel path cracking, pavement edge cracking, and longitudinal joint cracking that 

reflect specific deterioration patterns observed in BC's climate 
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4. Chapter 4: Results and Analysis 

This chapter presents the comprehensive findings from the pavement condition assessment and 

predictive modeling analysis conducted for Prince George's road network. Building upon the 

methodology established in Chapter 4, the analysis encompasses four survey periods (2016, 2017, 

2020, and 2023) and provides critical insights into pavement deterioration patterns, distress 

evolution, and predictive modeling performance. The results directly address the research 

objectives established in Chapter 1. 

4.1 Pavement Distress Condition Assessment 

The systematic evaluation of pavement distresses across Prince George's road network reveals 

significant patterns in deterioration mechanisms, spatial distribution, and temporal evolution. This 

comprehensive assessment provides the empirical foundation for understanding pavement 

performance under harsh northern climate conditions and establishes the basis for developing 

targeted maintenance strategies. 

4.2 Overall Network Condition Evolution 

The pavement condition assessment program employed automated laser survey technology to 

systematically document distress characteristics across multiple survey periods. The temporal 

distribution of data collection demonstrates varying coverage strategies, with the most 

comprehensive assessment conducted in 2020 covering 31,084 data points, while targeted surveys 

in 2016, 2017, and 2023 focused on specific road classifications and high-priority corridors. 

 

Figure 9 Distresses All Years - Bar chart showing number of distresses vs. number of points analyzed across 2016, 2017, 2020, 

and 2023 

Analysis of distress frequency relative to survey coverage reveals that 2023 exhibited the highest 

distress-to-data-point ratio, indicating targeted surveying of road segments with elevated 
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deterioration levels. From 2016 to 2023, the year characterized by the most extensive distresses 

compared to points analyzed was 2023, which demonstrated that the analysis for 2023 was efficient 

as it analyzed certain roads with high distress frequency. However, this targeted approach resulted 

in reduced overall network coverage compared to the comprehensive 2020 assessment. 

The spatial analysis of Pavement Distress Index (PDI) distribution demonstrates that pavement 

condition improvements were achieved between 2020 and 2023, with the best overall pavement 

condition recorded in 2023. Conversely, the worst pavement conditions were documented in 2017 

and 2020, corresponding to periods of intensive maintenance 

intervention requirements. The poor pavement condition distribution 

analysis indicates that deteriorated segments are dispersed throughout 

the city rather than concentrated in specific zones, necessitating 

network-wide maintenance strategies. 

 

Figure 10 Overall PDI condition maps for all years (2016-2023) showing spatial distribution showing Good/Fair/Poor 

categories across all survey years 

The temporal progression shows that the best overall pavement condition was achieved in 2023, 

while the most deteriorated conditions were observed in 2017 and 2020. This improvement 

demonstrates the effectiveness of comprehensive rehabilitation strategies implemented between 

2020 and 2023, particularly mill-and-fill operations and overlay applications that successfully 

addressed structural deficiencies identified in earlier assessments. 

The survey coverage varied significantly across assessment periods, with the 2020 survey 

representing the most comprehensive network evaluation at 31,084 data points, while 2023 

focused specifically on arterial and collector roads with 8,942 data points. The 2016 baseline 

survey covered 9,328 data points primarily on arterial and collector roads, while the 2017 

expanded assessment included 12,475 data points covering local roads and alleys. This variation 

in coverage reflects strategic prioritization of high-traffic corridors in later assessments while 

maintaining analytical depth for critical infrastructure. 
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Figure 11 Survey coverage comparison showing data points and network coverage by year 

The concentration of poor pavement conditions throughout the city without geographic clustering 

suggests that deterioration mechanisms result from systematic factors affecting the entire network 

rather than localized issues. This distribution pattern validates the research approach of developing 

network-level management strategies that address fundamental climate and material performance 

relationships. 

4.3 Comprehensive Distress Type Analysis 

4.3.1 Transverse Cracking Analysis 

Transverse cracking emerged as the most prevalent and significant distress type across all survey 

periods, demonstrating substantial impact on overall network condition. The distress exhibits 

distinct temporal patterns reflecting both environmental influences and maintenance intervention 

effectiveness. 

 

Figure 12 Transverse Cracking condition Trend (Photo credit to Mr. Alireza Noory) 
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Transverse Cracking Severity Analysis 

Transverse cracking in Prince George overall demonstrates moderate to high severity 

characteristics and may be considered highly severe in some years throughout the analysis period. 

The severity analysis reveals that transverse cracking was most severe in 2020, when the 

combination of high network coverage (78.2%) and substantial high-severity occurrences (29.5%) 

created the most challenging conditions for network management. The temporal severity 

progression shows that transverse cracking severity was increasing significantly in 2017 and 2020, 

with 2017 representing the peak of high-severity deterioration at 39.9% of affected segments. 

However, severity patterns began decreasing substantially in 2023, demonstrating the effectiveness 

of targeted maintenance interventions and strategic rehabilitation programs implemented between 

the peak deterioration period and the most recent assessment. 

 

Figure 13 Transverse Cracking Severity in percentages All years - Comprehensive table and bar chart showing severity 

distribution across all years 

Transverse Cracking Extent Analysis 

Transverse cracking demonstrated its most frequent occurrence in 2020 and 2017, when network 

coverage reached 78.2% and 77.2% respectively, representing the peak periods of extensive 

deterioration across Prince George's road network. Overall transverse cracking in Prince George 

is extensive, consistently affecting most surveyed segments throughout the analysis period and 

requiring comprehensive management strategies to address the widespread nature of this 

deterioration pattern. The temporal extent progression shows that transverse cracking was 

increasing substantially in 2017 and 2020, with these years representing the peak of network-wide 

deterioration requiring intensive intervention. However, extent patterns began decreasing 

significantly in 2023, with network coverage reducing to 62.4% and marked improvements in the 

distribution toward lower extent categories, demonstrating the effectiveness of systematic 

maintenance programs in reducing the widespread nature of transverse cracking across the 

municipal road network. 
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Figure 14 Transverse Cracking Extent in percentages All years - Comprehensive table and bar chart showing Extent distribution 

across all years 

4.3.2 Meandering Longitudinal Cracking Analysis 

Meandering longitudinal cracking represents the second most significant distress category, 

demonstrating consistent presence across all survey periods with evolving severity characteristics 

indicating progressive structural deterioration influenced by traffic loading and environmental 

factors. 

 

Figure 15 Meandering Longitudinal Cracking condition Trend (Photo credit to Mr. Alireza Noory) 

Meandering Longitudinal Cracking Severity Analysis 

Meandering longitudinal cracking in Prince George overall demonstrates low to moderate severity 

characteristics but reached moderate to high severity levels in 2017 and 2020. The severity analysis 

reveals that meandering longitudinal cracking was most severe in 2017 and 2020, when high-

severity occurrences peaked at 19.2% and 13.2% respectively, combined with substantial moderate 

severity coverage exceeding 40% in both years. The temporal severity progression shows that 

meandering longitudinal cracking severity was increasing throughout the years from the baseline 

31.6% coverage in 2016 to peak levels in 2017-2020, before stabilizing in 2023 with improved 

severity distribution despite expanded network coverage. 
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Figure 16 Meandering Longitudinal Cracking Severity in percentages All years - Comprehensive table and bar chart showing 

Extent distribution across all years 

Meandering Longitudinal Cracking Extent Analysis 

Meandering longitudinal cracking demonstrated its most extensive coverage in 2023, reaching 

79.5% of the network, followed closely by 2017 and 2020 with 76.0% and 74.8% coverage 

respectively. Overall meandering longitudinal cracking in Prince George is extensive and 

widespread, consistently affecting most surveyed segments since 2017 and representing one of the 

most prevalent distress types across the municipal road network. The temporal extent progression 

shows that meandering longitudinal cracking was dramatically increasing from 2016 baseline 

levels (31.6%) to peak coverage in 2017, maintaining extensive coverage through 2020, and 

continuing to expand in 2023, indicating persistent and growing deterioration patterns requiring 

comprehensive long-term management strategies. 

 

Figure 17 Meandering Longitudinal Cracking Extent in percentages All years - Comprehensive table and bar chart showing 

Extent distribution across all years 
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4.3.3 Longitudinal Wheel Path Cracking Analysis 

Longitudinal wheel path cracking maintained relatively stable presence across all survey periods, 

representing traffic-load-related deterioration patterns with consistent network coverage and 

manageable severity levels demonstrating effective management of heavy vehicle loading impacts. 

 

Figure 18 Longitudinal Wheel Path Cracking Trend 

Longitudinal Wheel Path Cracking Severity Analysis 

Longitudinal wheel path cracking in Prince George overall demonstrates stable and manageable 

severity characteristics throughout the analysis period. The severity patterns remained relatively 

consistent across all survey years, indicating effective management of traffic-load-related 

deterioration factors through appropriate maintenance timing and intervention strategies. The 

temporal severity progression shows that longitudinal wheel path cracking maintained stable 

severity distribution without significant peaks or deterioration phases, reflecting successful long-

term management of heavy vehicle loading impacts and appropriate pavement design adequacy 

for anticipated traffic conditions. 

 

Figure 19 Longitudinal Wheel path Cracking Severity in percentages All years - Comprehensive table and bar chart showing 

Severity distribution across all years 
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Longitudinal Wheel Path Cracking Extent Analysis 

Longitudinal wheel path cracking demonstrated relatively stable extent coverage throughout the 

analysis period, with minor fluctuations indicating effective traffic-load management strategies. 

The distress maintained consistent network presence around 16-20% of total distresses across all 

survey years, representing manageable and predictable deterioration patterns. The temporal extent 

progression shows that longitudinal wheel path cracking experienced a decrease in 2017 followed 

by recovery to baseline levels in 2020 and 2023, indicating resilient pavement performance under 

traffic loading with effective maintenance intervention when required, demonstrating appropriate 

long-term management of wheel path deterioration across the municipal road network. 

 

Figure 20 Longitudinal Wheel path Cracking Extent in percentages All years - Comprehensive table and bar chart showing 

Extent distribution across all years 

4.3.4 Alligator Cracking Analysis 

Alligator cracking demonstrated the most significant improvement among all distress types, 

reflecting successful structural rehabilitation interventions and strategic maintenance targeting of 

areas with advanced structural deterioration. 

 

Figure 21 Alligator Cracking Trend 
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Alligator Cracking Severity Analysis 

Alligator cracking in Prince George demonstrated the most successful severity management 

among all distress types, achieving near-complete elimination through systematic structural 

rehabilitation interventions. The severity analysis reveals that alligator cracking peaked in 2017, 

particularly affecting older local roads and areas with inadequate structural capacity for current 

loading conditions. The temporal severity progression shows that alligator cracking severity 

decreased systematically from 2017 peak conditions through 2020 and 2023, representing highly 

effective structural rehabilitation program implementation and demonstrating that comprehensive 

maintenance strategies can successfully resolve advanced structural deterioration challenges when 

properly targeted and executed. 

 

Figure 22 Alligator Cracking Severity in percentages All years - Comprehensive table and bar chart showing Severity 

distribution across all years 

Alligator Cracking Extent Analysis 

Alligator cracking demonstrated the most dramatic extent reduction among all distress types, 

achieving near-complete elimination from 4.85% of network distresses in 2016 to only 0.39% in 

2023. The extent analysis reveals that alligator cracking peaked in 2017 with localized but 

significant coverage patterns, followed by systematic reduction through comprehensive structural 

rehabilitation programs. The temporal extent progression shows that alligator cracking extent 

decreased consistently and substantially from peak levels in 2017 through 2020 and 2023, 

representing exceptionally successful structural maintenance program implementation and 

demonstrating that targeted rehabilitation strategies can effectively eliminate advanced structural 

deterioration when properly planned and executed across the municipal road network. 
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Figure 23 Alligator Cracking Extent in percentages All years - Comprehensive table and bar chart showing Extent distribution 

across all years 

4.3.5 Rutting Analysis 

Rutting exhibited the most dramatic emergence pattern among all distress types, transitioning from 

complete absence to widespread network presence and representing the most significant emerging 

maintenance challenge requiring immediate strategic attention and intervention development. 

 

Figure 24 Rutting Trend 

Rutting Severity Analysis 

Rutting in Prince George represents the most dramatic emergence pattern among all distress types, 

transitioning from complete absence in 2016 to near-universal network presence by 2023. The 

severity analysis reveals that rutting development followed a systematic progression from initial 

emergence in 2017 through widespread low-severity manifestation by 2023, with 92.9% of 

affected segments exhibiting low severity conditions. The temporal severity progression shows 

that rutting severity was systematically increasing from zero baseline in 2016 through progressive 

development in 2017 and 2020 to comprehensive network coverage in 2023, representing the most 

significant emerging maintenance challenge requiring immediate strategic intervention 

development and comprehensive treatment program implementation. 
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Figure 25 Rutting Severity in percentages All years - Comprehensive table and bar chart showing Severity distribution across all 

years 

Rutting Extent Analysis 

Rutting demonstrated the most dramatic extent emergence among all distress types, progressing 

from complete absence in 2016 to the most extensive single distress challenge by 2023, affecting 

98.4% of the surveyed network. The extent analysis reveals that rutting development followed an 

accelerating pattern from initial manifestation in 2017 (55.7% coverage) through progressive 

expansion in 2020 (54.8% coverage) to comprehensive network penetration in 2023. The temporal 

extent progression shows that rutting extent was systematically and dramatically increasing from 

zero baseline through progressive development phases to near-universal coverage, with 2023 

showing the highest concentration in intermediate to frequent extent categories, representing the 

most critical emerging infrastructure challenge requiring immediate comprehensive intervention 

strategy development and implementation across the entire municipal road network. 

 

Figure 26 Rutting Extent in percentages All years - Comprehensive table and bar chart showing Extent distribution across all years 
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4.3.6 Pavement Edge Cracking Analysis 

Pavement edge cracking demonstrated irregular survey coverage with significant data collection 

gaps, complicating comprehensive trend analysis but revealing substantial deterioration when 

measured, representing critical infrastructure edge integrity challenges. 

 

Figure 27 Pavement Edge Cracking Trend 

Pavement Edge Cracking Severity Analysis 

Pavement edge cracking in Prince George demonstrates irregular assessment patterns due to data 

collection gaps but reveals significant severity emergence when measured. The severity analysis 

shows that edge cracking was most severe and extensive in 2023, becoming the dominant distress 

type after being absent from 2020 data collection. The temporal severity progression indicates that 

pavement edge cracking severity was increasing from moderate baseline levels in 2016-2017, 

followed by a data collection gap in 2020, and dramatic emergence in 2023 to become the most 

severe and frequent distress type, suggesting accelerated edge deterioration possibly related to 

drainage issues, frost action, or traffic loading patterns requiring immediate comprehensive 

assessment and intervention strategy development. 

 

Figure 28 Pavement Edge Cracking Severity in percentages All years - Comprehensive table and bar chart showing Severity 

distribution across all years 
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Pavement Edge Cracking Extent Analysis 

Pavement edge cracking demonstrated the most dramatic extent emergence among measured 

distress types, transforming from manageable coverage levels (18.9% in 2016, 28.4% in 2017) to 

the most extensive single distress challenge (85.4% in 2023). The extent analysis reveals that edge 

cracking was completely absent from 2020 data collection, creating a critical assessment gap, 

followed by explosive extent expansion to become the dominant network distress by 2023. The 

temporal extent progression shows that pavement edge cracking extent was gradually increasing 

from baseline levels through 2017, followed by unmeasured conditions in 2020, and dramatic 

comprehensive emergence in 2023 to represent the most extensive infrastructure deterioration 

challenge requiring immediate strategic intervention development and comprehensive 

rehabilitation program implementation across the municipal road network. 

 

Figure 29 Pavement Edge Cracking Extent in percentages All years - Comprehensive table and bar chart showing Extent 

distribution across all years 

4.3.7 Longitudinal Cracking Analysis 

Longitudinal cracking maintained moderate network presence with relatively stable patterns 

throughout the analysis period, representing manageable structural deterioration with effective 

maintenance strategies maintaining consistent network impact levels. 

 

Figure 30 Longitudinal Cracking condition Trend (Photo credit to Mr. Alireza Noory) 
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Longitudinal Cracking Severity Analysis 

Longitudinal cracking in Prince George demonstrates stable and manageable severity 

characteristics throughout the analysis period, with effective maintenance strategies maintaining 

consistent network impact levels. The severity analysis reveals that longitudinal cracking 

maintained moderate severity patterns without significant peaks or deterioration phases, indicating 

appropriate intervention timing and technique selection. The temporal severity progression shows 

that longitudinal cracking severity was stable with minor fluctuations from baseline 2016 levels 

through slight improvement in 2017, followed by consistent management through 2020 and 2023, 

representing successful long-term maintenance effectiveness and demonstrating that systematic 

preventive strategies can effectively control structural deterioration progression when 

appropriately implemented. 

 

Figure 31 Longitudinal Cracking Severity in percentages All years - Comprehensive table and bar chart showing Severity 

distribution across all years 

Longitudinal Cracking Extent Analysis 

Longitudinal cracking demonstrated stable and manageable extent coverage throughout the 

analysis period, maintaining consistent network presence around 9-15% of total distresses across 

all survey years. The extent analysis reveals that longitudinal cracking coverage decreased 

moderately from 2016 baseline levels (14.73%) through effective maintenance intervention in 

2017 (9.16%), followed by stable management at approximately 10.5% coverage in 2020 and 

2023. The temporal extent progression shows that longitudinal cracking extent was effectively 

managed with initial reduction followed by consistent stability, indicating successful maintenance 

strategies and demonstrating that appropriate preventive intervention can maintain manageable 

deterioration levels while preventing expansion of structural cracking across the municipal road 

network. 
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Figure 32 Longitudinal Cracking Extent in percentages All years - Comprehensive table and bar chart showing Extent 

distribution across all years 

4.3.8 Pothole Analysis 

Pothole occurrence remained limited throughout all survey periods but demonstrated variable 

patterns requiring ongoing monitoring for safety considerations, representing critical localized 

surface failure requiring immediate response protocols. 

 

Figure 33 Pothole condition Trend (Photo credit to Mr. Alireza Noory) 

Pothole Severity Analysis 

Potholes in Prince George demonstrate variable severity patterns with successful long-term 

management achieving near-elimination by 2023. The severity analysis reveals that pothole 

conditions peaked in 2017 with elevated surface failure rates requiring enhanced maintenance 

response, representing the most challenging period for emergency surface maintenance. The 

temporal severity progression shows that pothole severity was increasing from baseline 2016 

levels to peak conditions in 2017, followed by systematic reduction through 2020 and near-

elimination in 2023, demonstrating highly effective reactive maintenance strategies and 

emergency response protocol implementation for surface failure management across the municipal 

road network. 
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Figure 34 Pothole Severity in percentages All years - Comprehensive table and bar chart showing Severity distribution across all 

years 

Pothole Extent Analysis 

Potholes demonstrated successful extent management with systematic reduction from peak levels 

to near-elimination, representing effective emergency response and surface maintenance 

strategies. The extent analysis reveals that pothole coverage was most extensive in 2017 (8.37% 

of network distresses), indicating peak surface failure conditions requiring intensive reactive 

maintenance response. The temporal extent progression shows that pothole extent was increasing 

from baseline 2016 levels (4.38%) to peak coverage in 2017, followed by systematic reduction 

through 2020 (3.57%) and near-elimination in 2023 (0.78%), demonstrating highly successful 

surface failure management and emergency response protocol effectiveness for maintaining safe 

driving conditions and preventing localized surface deterioration across the municipal road 

network. 

 

Figure 35 Pothole Extent in percentages All years - Comprehensive table and bar chart showing Extent distribution across all 

years 
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4.4 Model Results and Performance Analysis 

This section presents the comprehensive analysis of three predictive modeling approaches 

developed for Pavement Distress Index (PDI) forecasting: Multiple Linear Regression (MLR), 

Random Forest (RF), and Artificial Neural Network (ANN). The comparative evaluation 

demonstrates the effectiveness of advanced machine learning techniques for pavement 

performance prediction under northern climate conditions, providing essential foundation for 

strategic maintenance planning and resource allocation optimization. 

4.4.1 Model Development Framework 

The predictive modeling framework incorporated comprehensive variable selection including 

distress severity and extent measurements for all eight distress types, climatic parameters 

encompassing maximum, minimum, and mean temperature values, precipitation data, traffic 

loading information, rutting depth measurements, and International Roughness Index values. The 

modeling approach employed systematic 80-20 train-test data splitting with rigorous performance 

evaluation using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and coefficient 

of determination (R²) metrics. 

The comprehensive modeling framework addresses the complex relationships between 

environmental factors, traffic loading, and pavement deterioration patterns. Variable selection 

procedures incorporated domain expertise with statistical significance testing to ensure optimal 

predictor inclusion while maintaining model parsimony and interpretability requirements. 

4.4.2 Random Forest Model Performance 

The Random Forest ensemble learning approach demonstrated superior performance 

characteristics among the three modeling techniques, achieving optimal balance between 

prediction accuracy, model robustness, and practical implementation requirements for municipal 

pavement management applications. 

Performance Metrics: 

• Mean Squared Error (MSE): 0.30 

• Root Mean Squared Error (RMSE): 0.55 

• Coefficient of Determination (R²): 0.96 

The Random Forest model achieved 96.16% explained variance in PDI prediction, representing 

exceptional accuracy for pavement performance forecasting applications under challenging 

northern climate conditions. The ensemble learning approach effectively captured complex non-

linear relationships between predictor variables and pavement condition while maintaining robust 

performance across varying data conditions and environmental scenarios. 
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Figure 36 Random Forest variable importance plot showing key contributing factors to PDI prediction 

Variable importance analysis revealed that rutting measurements, temperature parameters, and 

specific distress types contribute most significantly to PDI prediction accuracy. The model's 

superior handling of complex interactions between climatic factors and pavement deterioration 

mechanisms makes it particularly suitable for northern climate applications where freeze-thaw 

cycles, temperature fluctuations, and precipitation patterns significantly influence infrastructure 

performance. 

The ensemble methodology combines multiple decision trees to reduce overfitting risk while 

improving prediction stability across different data subsets. This robustness characteristic proves 

essential for municipal applications where data quality and availability may vary across different 

survey periods and network sections, giving it a practical advantage over the more complex ANN 

approach.  
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Figure 37 Random Forest actual vs. predicted PDI scatter plot with performance statistics 

4.4.3 Artificial Neural Network Model Performance 

The Artificial Neural Network approach achieved the highest prediction accuracy among all 

modeling techniques, demonstrating sophisticated pattern recognition capabilities for complex 

pavement deterioration relationships and non-linear interaction effects characteristic of 

infrastructure performance under variable environmental conditions. 

Performance Metrics: 

• Mean Squared Error (MSE): 0.23 

• Root Mean Squared Error (RMSE): 0.48 

• Coefficient of Determination (R²): 0.95 

The ANN model achieved 95.11% explained variance with the lowest MSE and RMSE values, 

indicating superior prediction precision for individual pavement segment condition forecasting. 

The neural network architecture effectively captured complex non-linear interactions between 

input variables, providing high accuracy forecasting capabilities essential for detailed maintenance 

planning and intervention timing optimization. 
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Figure 38 ANN model actual vs. predicted PDI scatter plot with trend line and performance statistics 

The neural network's sophisticated pattern recognition capabilities enable accurate modeling of 

complex deterioration mechanisms characteristic of northern climate conditions, including freeze-

thaw cycles, temperature fluctuations, moisture-related damage patterns, and traffic loading 

interactions. The six-neuron hidden layer architecture provides optimal balance between model 

complexity and computational efficiency for municipal pavement management applications. 
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Figure 39 ANN model architecture diagram showing input variables, hidden layer, and output structure 

The neural network approach demonstrates particular effectiveness in capturing threshold effects 

and non-linear deterioration patterns where pavement condition changes rapidly under specific 

environmental or loading conditions. This capability proves valuable for identifying critical 

intervention timing and predicting accelerated deterioration periods. 

4.4.4 Multiple Linear Regression Model Performance 

The Multiple Linear Regression approach served as the baseline modeling technique, providing 

interpretable coefficient relationships while demonstrating acceptable prediction accuracy for 

linear deterioration patterns and establishing foundation analysis for comparison with advanced 

modeling approaches. 

Performance Metrics: 

• Mean Squared Error (MSE): 0.85 

• Root Mean Squared Error (RMSE): 0.92 

• Adjusted Coefficient of Determination (Adjusted R²): 0.81 

The MLR model achieved an adjusted R² of 81.65%, representing acceptable performance for 

linear relationship modeling while accounting for the model's 15 predictor variables. The adjusted 

R² provides a more conservative estimate of explained variance compared to standard R² by 

penalizing model complexity, ensuring that the reported performance reflects genuine predictive 
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capability rather than overfitting. This adjusted metric is particularly relevant for MLR given its 

parametric nature and the substantial number of input variables, providing valuable insights into 

individual factor contributions to pavement deterioration. While demonstrating lower accuracy 

compared to machine learning approaches, the MLR model maintains high interpretability for 

stakeholder communication and regulatory compliance requirements. 

 

Figure 40 MLR model actual vs. predicted PDI scatter plot with regression line 

The linear regression approach effectively identified significant predictor variables and provided 

foundation analysis for understanding basic relationships between environmental factors, traffic 

loading, and pavement condition. Coefficient analysis reveals that temperature parameters, 

specific distress measurements, and traffic data contribute most significantly to linear deterioration 

patterns. 
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Figure 41 MLR coefficient significance plot showing predictor variable contributions 

Residual analysis confirmed appropriate model behavior without systematic bias or 

heteroscedasticity issues, validating the linear modeling assumptions for baseline performance 

evaluation. The straightforward implementation requirements and computational efficiency make 

MLR suitable for routine monitoring applications where interpretability outweighs maximum 

prediction accuracy requirements. 

4.4.5 Model Comparison and Selection Criteria 

Comparative analysis reveals distinct performance characteristics among the three modeling 

approaches, each offering specific advantages for different pavement management applications 

and decision-making requirements. The evaluation framework considers prediction accuracy, 

computational requirements, interpretability needs, and practical implementation constraints. 

The performance metrics presented utilize adjusted R² for the MLR model to ensure fair 

comparison across modeling approaches. While Random Forest and ANN models report standard 

R², the MLR adjusted R² accounts for the 15 predictor variables included in the linear model, 

providing a more conservative and rigorous assessment of model fit. This methodological 

distinction is important because adjusted R² prevents overestimation of MLR performance that 

could occur from including multiple predictors, whereas machine learning approaches employ 

different internal validation mechanisms (out-of-bag error for Random Forest and validation loss 

for ANN) that inherently guard against overfitting. 
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Figure 42 Model performance comparison chart showing MSE, RMSE, and R² values across all three models. 

The ANN model achieved the highest prediction accuracy with MSE of 0.23 and R² of 0.95, 

followed closely by the Random Forest model with MSE of 0.30 and R² of 0.96. The MLR model, 

while providing lower accuracy (MSE of 0.85, adjusted R² of 0.81), offers superior interpretability 

and computational efficiency for routine applications. Notably, the adjusted R² for MLR provides 

a conservative estimate appropriate for parametric models with multiple predictors, ensuring the 

comparison fairly represents each model's true predictive performance. 

For practical pavement management applications, the Random Forest model provides an optimal 

balance between prediction accuracy, model interpretability, and computational requirements. The 

ensemble learning approach maintains robust performance across varying data conditions while 

providing variable importance insights essential for maintenance decision-making and resource 

allocation optimization. 

The machine learning approaches demonstrate superior capability for capturing complex 

interaction effects between environmental factors, traffic loading, and deterioration patterns 

characteristic of northern climate infrastructure performance. However, the interpretability 

advantage of linear regression maintains value for regulatory reporting and stakeholder 

communication requirements. 
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4.4.6 Three-Dimensional Relationship Analysis 

To further understand the complex interactions between pavement condition indices and distress 

characteristics, advanced three-dimensional visualization techniques were employed to examine 

multivariable relationships that traditional two-dimensional plots cannot adequately capture. The 

International Roughness Index (IRI), serving as the primary measure of functional performance, 

demonstrates significant correlations with both PDI values and distress severity levels, reflecting 

the interconnected nature of structural and functional pavement deterioration. 

The three-dimensional analysis reveals critical insights into how roughness progression relates to 

overall pavement condition while simultaneously considering the influence of distress severity 

patterns. This multidimensional perspective provides essential understanding for maintenance 

decision-making, as it demonstrates how functional performance degradation (measured through 

IRI) correlates with structural condition decline (quantified through PDI) under varying distress 

severity scenarios characteristic of northern climate conditions. 

 

Figure 43 Three-dimensional relationship visualization between IRI, PDI, and distress severity levels showing the complex 

interactions between functional performance, structural condition, and distress intensity 

The complementary analysis of distress extent relationships provides equally important insights 

into pavement performance patterns, as extent measurements quantify the spatial distribution of 

deterioration across pavement surfaces. Research has demonstrated that distress extent often 

exhibits different correlation patterns with functional performance compared to severity 

measurements, reflecting the complex mechanisms through which pavement deterioration 

manifests under varying traffic and environmental conditions. 
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The three-dimensional visualization of IRI-PDI-Extent relationships reveals how widespread 

distress distribution affects both ride quality and overall condition ratings. This analysis is 

particularly valuable for understanding threshold effects where extensive but low-severity 

distresses may significantly impact functional performance while having different implications for 

structural integrity. The extent analysis supports strategic maintenance planning by identifying 

conditions where surface treatments may be more appropriate than structural interventions, or 

conversely, where extensive distress patterns indicate underlying structural issues requiring 

comprehensive rehabilitation. 

 

Figure 44 Three-dimensional relationship visualization between IRI, PDI, and distress extent measurements demonstrating how 

spatial distribution of distresses influences both functional and structural performance indicators 

These three-dimensional visualizations provide comprehensive understanding of the multifaceted 

relationships governing pavement performance under northern climate conditions. The analysis 

demonstrates that both distress severity and extent contribute significantly to the relationship 

between functional performance (IRI) and structural condition (PDI), but through different 

mechanisms that require distinct maintenance approaches. 

The combined severity and extent analysis supports the Random Forest model's superior 

performance by illustrating the complex, non-linear interactions that ensemble learning methods 

can effectively capture. Traditional linear regression approaches cannot adequately model these 

multidimensional relationships, explaining the substantial performance differences observed in the 

comparative analysis. The three-dimensional perspectives validate the importance of considering 

multiple distress characteristics simultaneously when developing predictive models for municipal 

pavement management applications. 
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5. Chapter 5: Discussion, Conclusion and Recommendations 

5.1 Interpretation of Findings 

5.1.1 Distress Evolution and Network Performance Insights 

The comprehensive analysis of Prince George's pavement network from 2016 to 2023 reveals 

profound shifts in distress patterns that fundamentally challenge traditional maintenance 

approaches. The research demonstrates that climate-adaptive pavement management requires 

dynamic strategies responsive to evolving deterioration mechanisms rather than static, condition-

based interventions. 

Emergence of Rutting as the Dominant Challenge 

The most noticable finding is rutting's transformation from complete absence in 2016 to affecting 

98.4% of the network by 2023. This unprecedented emergence pattern suggests systematic changes 

in pavement response mechanisms, likely attributed to the combination of climate change effects, 

evolving traffic patterns, and material aging characteristics specific to northern environments. The 

progression from zero baseline through 55.7% coverage in 2017 to near-full presence demonstrates 

accelerating deterioration that traditional predictive models fail to anticipate. 

The severity distribution in 2023, with 92.9% of affected segments exhibiting low severity 

conditions, indicates that rutting emergence follows a consistent pattern across the network rather 

than isolated failure mechanisms. This finding suggests that current pavement structural designs 

and asphalt mixture designs may be inadequate for evolving environmental and loading conditions, 

necessitating fundamental reassessment of design standards and material specifications for 

northern climate applications. 

Pavement Edge Cracking as a Critical Infrastructure Integrity Issue 

The dramatic emergence of pavement edge cracking from manageable levels (18.9% in 2016, 

28.4% in 2017) to the most extensive single distress challenge (85.4% in 2023) represents a critical 

infrastructure integrity crisis. The absence of edge cracking data in 2020 creates a significant 

analytical gap, but the explosive expansion documented in 2023 suggests systematic deterioration 

mechanisms affecting pavement-curb interfaces, drainage effectiveness, and structural continuity. 

The severity distribution in 2023, with 63% of segments exhibiting low severity and 17% showing 

moderate to high severity conditions, indicates that edge deterioration affects both functional and 

structural pavement performance. This pattern suggests that current construction practices for 

pavement edge details, joint sealing procedures, and drainage management require comprehensive 

revision to address harsh northern climate conditions. 

Successful Management of Traditional Distress Types 

The research demonstrates exceptional success in managing traditional structural distresses, 

particularly alligator cracking, which achieved near-elimination from 4.85% of network distresses 

in 2016 to only 0.39% in 2023. This achievement validates the effectiveness of systematic 
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structural rehabilitation programs when properly targeted and executed, demonstrating that 

comprehensive mill-and-fill strategies, reclamation procedures, and reconstruction programs can 

successfully address advanced structural deterioration. 

Similarly, the management of transverse cracking, while remaining the most prevalent distress 

type, shows systematic improvement from peak severity conditions in 2017 and 2020 to 

manageable levels in 2023. The complete elimination of high-severity transverse cracking in 2023 

demonstrates that targeted intervention strategies can effectively control thermal-related 

deterioration mechanisms characteristic of northern climate conditions. 

5.1.2 Advantages of Implementing Predictive Modeling  

Superior Performance of Machine Learning Approaches 

The comparative analysis reveals that advanced machine learning techniques substantially 

outperform traditional statistical methods for pavement condition prediction under northern 

climate conditions. The Random Forest model achieved 96.16% explained variance (R² = 0.96, 

MSE = 0.30), while the Artificial Neural Network demonstrated (R² = 0.95, MSE = 0.23), both 

significantly exceeding Multiple Linear Regression performance (R² = 0.81, MSE = 0.85). 

The superior performance of ensemble learning and neural network approaches validates the 

complex, non-linear nature of pavement deterioration under northern climate conditions. The 

Random Forest model's variable importance analysis identified rutting measurements, temperature 

parameters, and specific distress characteristics as primary prediction drivers, confirming the 

critical role of climate-pavement interactions in deterioration progression. 

Practical Implementation Considerations 

Despite the ANN model's superior accuracy, the Random Forest approach provides an optimal 

balance between prediction performance, interpretability, and computational requirements for 

municipal applications. Randon Forest is the most suitable modeling tool supporting maintenance 

decision-making and resource allocation optimization due to its consistency across varying data 

conditions .. 

The substantial performance difference between machine learning approaches and traditional 

linear regression (approximately 15% improvement in explained variance) demonstrates the 

inadequacy of simplified deterioration models for northern climate applications. This finding 

supports the necessity of implementing advanced analytical techniques to capture the complex 

interactions between environmental factors, traffic loading, and material performance 

characteristic of harsh climate conditions. 
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5.2 Lessons Learned and Limitations 

5.2.1 Research Methodology Insights 

Data Collection Temporal Alignment Challenges 

The analysis revealed significant challenges in aligning pavement condition data collected at 

different intervals with corresponding climate and traffic information. The variation in survey 

coverage across assessment periods, ranging from full network evaluation (31,084 data points in 

2020) to targeted assessments (8,942 data points in 2023), created analytical complexities that 

required careful consideration in model development and validation procedures. 

The absence of pavement edge cracking data in 2020 created a critical gap in trend analysis that 

limited understanding of edge deterioration progression patterns. This limitation emphasizes the 

importance of maintaining consistent distress type coverage across all assessment periods to enable 

comprehensive deterioration modeling and strategic planning. 

Variable Selection and Model Calibration Learnings 

The research demonstrated that effective predictive modeling for northern climate conditions 

requires extensive variable preprocessing and careful selection of climate parameters that capture 

both acute environmental events and cumulative exposure effects. The integration of distress 

severity and extent measurements proved essential for capturing the multidimensional nature of 

pavement deterioration under harsh environmental conditions. 

The superior performance of machine learning approaches validates the complex, non-linear 

nature of pavement-climate interactions but also highlights the importance of maintaining 

sufficient training data to ensure model robustness across varying environmental and operational 

conditions. 

5.2.2 Research Limitations and Constraints 

Temporal Data Scope Limitations 

The research is constrained by the 7-year analysis period (2016-2023), which may not capture the 

full range of climatic variability or long-term deterioration cycles. The limited scope restricts 

assessment of treatment longevity and effectiveness under varying environmental conditions, 

particularly for newer rehabilitation techniques and climate-adaptive materials. 

The irregular survey intervals (2016, 2017, 2020, 2023) create gaps in deterioration trend analysis 

that may affect the accuracy of predictive model calibration and validation. More frequent 

condition assessment would enable enhanced understanding of seasonal deterioration patterns and 

treatment timing optimization. 
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Treatment Effectiveness Assessment Limitations 

The limited availability of detailed construction specifications, material properties, and quality 

control data restricted assessment of factors contributing to treatment success or failure, limiting 

the ability to provide specific material and construction recommendations. 

5.2.3 Methodological Considerations for Future Research 

Enhanced Data Integration Requirements 

Future research should incorporate more sophisticated environmental monitoring including 

subsurface temperature measurements, moisture content assessment, and detailed freeze-thaw 

cycle documentation to enable enhanced understanding of climate-pavement performance 

relationships. 

The development of comprehensive treatment effectiveness databases that document intervention 

timing, material specifications, construction conditions, and subsequent performance would enable 

enhanced evaluation of maintenance strategy optimization under varying environmental 

conditions. 

Advanced Modeling Framework Development 

The research demonstrates the potential for developing more sophisticated modeling frameworks 

that integrate machine learning approaches with mechanistic-empirical principles to capture both 

empirical performance relationships and fundamental deterioration mechanisms. Such approaches 

could enable enhanced prediction accuracy while maintaining interpretability for practical 

management applications. 

5.3 Conclusion 

This research provided a comprehensive analysis of pavement deterioration patterns, predictive 

modeling capabilities, and management strategy optimization for northern climate conditions 

through systematic evaluation of Prince George's road network from 2016 to 2023. The findings 

demonstrate that effective pavement management in harsh northern environments requires 

fundamental shifts from traditional maintenance approaches to climate-adaptive strategies that 

account for unique deterioration mechanisms, emerging distress patterns, and complex 

environmental interactions. 

The wide emergence of rutting throughout the network and presence of pavement edge cracking 

as the most extensive single distress type represents paradigmatic shifts in pavement performance 

that demand immediate strategic response and long-term management framework revision. The 

research validates that advanced machine learning techniques provide superior prediction 

capabilities compared to traditional statistical methods, enabling enhanced decision-making and 

resource optimization for municipal pavement management applications. 



71 

 

The development of climate-adaptive pavement management frameworks informed by 

comprehensive data analysis, predictive modeling, and systematic treatment evaluation provides 

Prince George with evidence-based foundations for addressing current infrastructure challenges 

while establishing resilient management capabilities for future environmental and operational 

conditions. The transferable insights and methodological approaches developed through this 

research contributed to broader understanding of northern climate infrastructure management and 

provide frameworks for similar municipalities facing comparable challenges. 

The integration of technical analysis with practical implementation considerations ensures that 

research findings translate into actionable strategies that can improve infrastructure performance, 

optimize resource utilization, and enhance municipal capability for systematic pavement 

stewardship under challenging northern climate conditions. The comprehensive recommendations 

for treatment selection, strategic planning, and advanced technology implementation provide 

roadmaps for transitioning from reactive maintenance approaches to proactive, data-driven 

management systems that optimize both performance outcomes and sustainability objectives. 

This research establishes that successful pavement management in northern climates requires 

systematic integration of climate science, advanced analytical techniques, and strategic resource 

allocation within comprehensive frameworks that balance immediate operational needs with long-

term infrastructure resilience and sustainability goals. The methodological approaches and 

analytical findings provide foundations for continued advancement of northern climate 

infrastructure management practice and academic research. 

5.4 Recommendations for City of Prince George 

5.4.1 Immediate Strategic Priorities 

Rutting Management Crisis Response 

Prince George faces an immediate infrastructure crisis with rutting affecting 98.4% of the road 

network by 2023. The city must implement emergency intervention protocols targeting the most 

severely affected arterial and collector roads to prevent further structural deterioration and 

maintain transportation system functionality. Immediate actions should include: 

1. High-Priority Corridor Identification: Conduct urgent assessment of arterial roads and 

major collectors experiencing moderate to severe rutting to prioritize intervention 

sequencing based on traffic volume, economic importance, and safety considerations. 

2. Emergency Funding Mobilization: Develop business case documentation demonstrating 

the critical nature of rutting emergence to secure additional capital funding for 

comprehensive rehabilitation programs that address systematic network deterioration. 

Rutting represents a crucial safety hazard as it results in hydroplaning during storms 

leading to elevated accident rates. 

3. Advanced Material Implementation: Transition immediately to high-modulus Hot Mix 

Asphalt (HIMA) mixtures and experimental fiber-reinforced HMA for all rutting 

remediation projects. Scientific transition to Superpave asphalt mixture designs and 
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experimenting Balanced Mix Design (BMD) would definitely enhance the asphalt 

mixture’s rutting resistance without significant reduction in the mixtures’ crack resistance.  

Pavement Edge Integrity Restoration 

The explosive emergence of pavement edge cracking affecting 85.4% of the network represents a 

critical structural integrity challenge requiring immediate systematic intervention: 

1. Construction Procedure Revision: Comprehensively review and revise construction 

procedures for joints between HMA lanes and concrete curbs, incorporating enhanced 

sealing techniques, improved drainage details, and climate-adaptive joint materials. 

2. Drainage System Enhancement: Implement systematic drainage improvements along 

pavement edges to prevent moisture infiltration and freeze-thaw damage that accelerates 

edge deterioration under northern climate conditions. 

3. Edge Rehabilitation Program: Develop dedicated edge rehabilitation procedures that 

address both functional and structural aspects of edge deterioration, including partial 

reconstruction where necessary to restore structural continuity. 

5.4.2 Treatment Selection Strategy Optimization 

Climate-Adaptive Treatment Matrix 

Based on the research findings and analysis of historical treatment effectiveness, Prince George 

should implement a revised treatment selection framework that accounts for the unique 

deterioration patterns observed in the northern climate analysis: 

For Rutting-Dominated Conditions (PDI 4-8, Rutting Severity 1-3): 

• Primary Treatment: Mill and Overlay (50-75mm) using high-modulus (HIMA) asphalt 

mixtures  

• Alternative Treatment: Full-depth reclamation (100mm) for areas with underlying 

structural deficiencies 

• Timing: Execute during optimal temperature windows (late spring/early summer) to 

ensure proper compaction and curing 

For Edge Cracking Conditions (Edge Extent 2-5): 

• Primary Treatment: Edge reconstruction with enhanced joint sealing and improved 

drainage integration 

• Preventive Treatment: Systematic joint sealing optimization for early-stage edge 

deterioration 

• Design Enhancement: Implement wider shoulder specifications and improved edge 

support details 
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For Transverse Cracking Management (Severity 1-2, Extent 1-3): 

• Primary Treatment: Crack sealing during optimal seasonal windows (fall application) 

• Progressive Treatment: Microsurfacing for moderate coverage areas to prevent 

progression 

• Rehabilitation Treatment: Mill and fill for extensive coverage areas showing progression 

potential 

For Alligator Cracking (Maintained Success): 

• Continue Current Strategy: Maintain aggressive mill and fill approach that achieved 

near-elimination 

• Monitor: Implement enhanced monitoring for early detection to prevent recurrence 

• Preventive Focus: Emphasize preventive treatments in areas showing early fatigue 

indicators 

5.4.3 Implementation Framework for Advanced Management 

Systems 

Predictive Modeling Integration 

The research demonstrates that Random Forest modeling provides optimal balance between 

accuracy and practicality for municipal implementation. Prince George should implement the 

following framework: 

1. Annual Model Calibration: Establish procedures for annual model recalibration using 

current condition data to maintain prediction accuracy as network conditions evolve. 

2. Seasonal Prediction Updates: Develop quarterly prediction updates that incorporate 

current climate data to optimize maintenance timing and resource allocation decisions. 

3. Decision Support Integration: Integrate predictive modeling capabilities with existing 

pavement management system to provide real-time decision support for maintenance 

prioritization and budget allocation. 

Enhanced Data Collection Protocols 

The analysis reveals critical data collection gaps that limit analytical capabilities. Implement 

enhanced protocols including: 

1. Consistent Distress Coverage: Ensure all distress types are assessed during every survey 

period to prevent analytical gaps like the 2020 edge cracking omission. 

2. Climate Integration: Establish systematic integration of climate data with condition 

assessment to enable enhanced understanding of environmental deterioration relationships. 

3. Treatment Documentation: Implement comprehensive documentation of treatment 

specifications, timing, and performance to enable enhanced effectiveness evaluation. 
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5.5 Recommendations for Future Academic Research 

5.5.1 Advanced Material and Treatment Research 

Northern Climate Material Development 

The research identifies critical needs for material innovations specifically designed for harsh 

northern climate conditions. Future research should focus on: 

1. High-Modulus Asphalt Mixtures (HIMA) Utilization: Comprehensive laboratory and 

field testing of high-modulus asphalt mixtures (HIMA) under controlled northern climate 

exposure conditions to optimize mixture design parameters, aggregate specifications, and 

binder selection criteria. Production of HIMA mixtures could be facilitated by high 

polymer-modified binders using Styrene-Butadiene-Styrene (SBS) modifiers.  

2. Fiber-Reinforced Asphalt Performance: Long-term performance evaluation of various 

fiber reinforcement types (synthetic, natural, recycled) in HMA mixtures under freeze-

thaw cycling, temperature extremes, and heavy loading conditions characteristic of 

northern environments. 

3. Climate-Adaptive Binder Technologies: Development and testing of modified asphalt 

binders specifically formulated to maintain performance across extreme temperature 

ranges while providing enhanced resistance to moisture damage and thermal cycling 

effects. 

Advanced Treatment Technique Development 

Research opportunities exist for developing innovative treatment approaches that address the 

unique deterioration patterns identified in this research: 

1. Edge Rehabilitation Technologies: Development of specialized edge rehabilitation 

techniques that address the joint interface between asphalt pavement and concrete 

infrastructure while providing enhanced resistance to freeze-thaw damage and moisture 

infiltration. 

2. Rutting Prevention Strategies: Investigation of preventive treatments that can be applied 

to delay or prevent rutting emergence, including surface modifications, structural 

enhancements, and traffic management approaches. 

3. Climate-Responsive Treatment Timing: Research into optimal treatment timing based 

on seasonal climate patterns, material temperature requirements, and long-term 

performance optimization under northern climate conditions. 

5.5.2 Enhanced Modeling and Prediction Research 

Multi-Scale Deterioration Modeling 

The research demonstrates the effectiveness of machine learning approaches but identifies 

opportunities for enhanced modeling frameworks: 
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1. Mechanistic-Empirical Integration: Development of hybrid modeling approaches that 

combine machine learning pattern recognition capabilities with mechanistic-empirical 

principles to enhance prediction accuracy while maintaining physical interpretability. 

2. Real-Time Adaptive Modeling: Research into dynamic modeling frameworks that can 

adapt prediction parameters based on real-time environmental monitoring, traffic data, and 

emerging condition trends to maintain accuracy as conditions evolve. 
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Appendix I. Detailed Distress Analysis 

I.1. Transverse Cracking Severity Analysis 

2016 Severity Analysis: Transverse cracking affected 65.4% of surveyed segments with a severity 

distribution demonstrating 34.6% of segments with no distress (Severity 0), 46.4% exhibiting low 

severity conditions (Severity 1), 14.7% showing moderate severity deterioration (Severity 2), and 

4.3% displaying high severity cracking (Severity 3). The predominance of low severity conditions 

in 2016 established baseline deterioration patterns requiring preventive maintenance strategies. 

 

FIGURE I. 1. 2016 Transverse Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: The network experienced significant deterioration with 77.2% of 

segments affected by transverse cracking. Severity distribution shifted dramatically to 22.8% with 

no distress (Severity 0), only 9.6% remaining at low severity (Severity 1), 27.7% progressing to 

moderate severity (Severity 2), and a concerning 39.9% reaching high severity conditions 

(Severity 3). This substantial increase in high-severity transverse cracking indicated accelerated 

deterioration mechanisms requiring immediate intervention. 

 

FIGURE I. 2. 2017 Transverse Cracking Severity pie chart and spatial distribution map 
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2020 Severity Analysis: Network coverage reached 78.2% with severity distribution showing 

21.8% segments with no distress (Severity 0), 18.8% at low severity (Severity 1), 30.0% at 

moderate severity (Severity 2), and 29.5% at high severity (Severity 3). The persistence of 

extensive high-severity cracking demonstrated ongoing structural challenges despite maintenance 

efforts. 

 

FIGURE I. 3. 2020 Transverse Cracking Severity pie chart and spatial distribution map 

2023 Severity Analysis: Significant improvement achieved with 62.4% network coverage and 

severity redistribution to 37.6% with no distress (Severity 0), 38.5% at low severity (Severity 1), 

23.9% at moderate severity (Severity 2), and complete elimination of high-severity occurrences 

(0.0% at Severity 3). This dramatic improvement reflects successful maintenance interventions 

implemented between 2020 and 2023. 

 

FIGURE I. 4. 2023 Transverse Cracking Severity pie chart and spatial distribution map 
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I.2. Transverse Cracking Extent Analysis 

2016 Extent Analysis: The extent distribution demonstrated 34.6% of segments with no transverse 

cracking (Extent 0), 30.1% with few occurrences affecting less than 10% of segment length (Extent 

1), 23.4% with intermediate extent covering 10-20% (Extent 2), 8.7% with frequent cracking 

affecting 20-40% (Extent 3), 2.1% with extensive coverage of 50-80% (Extent 4), and 1.1% with 

throughout coverage exceeding 80% (Extent 5). 

 

FIGURE I. 5. 2016 Transverse Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Extent distribution shifted to 22.8% with no cracking (Extent 0), 31.2% 

with few occurrences (Extent 1), 24.3% with intermediate extent (Extent 2), 12.5% with frequent 

cracking (Extent 3), 6.8% with extensive coverage (Extent 4), and 2.4% with throughout coverage 

(Extent 5). The increase in higher extent categories indicated expanding deterioration patterns. 

 

FIGURE I. 6. 2017 Transverse Cracking Extent pie chart and spatial distribution map 
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2020 Extent Analysis: Distribution showed 21.8% with no cracking (Extent 0), 28.9% with few 

occurrences (Extent 1), 26.7% with intermediate extent (Extent 2), 14.2% with frequent cracking 

(Extent 3), 5.9% with extensive coverage (Extent 4), and 2.5% with throughout coverage (Extent 

5). 

 

FIGURE I. 7. 2020 Transverse Cracking Extent pie chart and spatial distribution map 

2023 Extent Analysis: Improved distribution with 37.6% showing no cracking (Extent 0), 35.2% 

with few occurrences (Extent 1), 19.8% with intermediate extent (Extent 2), 5.4% with frequent 

cracking (Extent 3), 1.7% with extensive coverage (Extent 4), and 0.3% with throughout coverage 

(Extent 5). 

 

FIGURE I. 8. 2023 Transverse Cracking Extent pie chart and spatial distribution map 

I.3. Meandering Longitudinal Cracking Severity Analysis 

2016 Severity Analysis: The distress affected 31.6% of the network with severity distribution 

showing 68.4% of segments with no distress (Severity 0), 19.7% exhibiting low severity conditions 

(Severity 1), 10.1% displaying moderate severity (Severity 2), and 1.8% reaching high severity 
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levels (Severity 3). The relatively limited network impact suggested early-stage deterioration 

patterns requiring monitoring and preventive intervention. 

 

FIGURE I. 9. 2016 Meandering Longitudinal Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: Network coverage expanded dramatically to 76.0% with severity 

distribution shifting to 24.0% with no distress (Severity 0), 6.3% at low severity (Severity 1), 

50.4% at moderate severity (Severity 2), and 19.2% at high severity (Severity 3). This substantial 

increase in moderate and high severity levels indicated rapid progression of longitudinal 

deterioration mechanisms related to structural loading and environmental exposure. 

 

FIGURE I. 10. 2017 Meandering Longitudinal Cracking Severity pie chart and spatial distribution map 

2020 Severity Analysis: Coverage reached 74.8% with severity distribution of 25.2% with no 

distress (Severity 0), 20.7% at low severity (Severity 1), 40.9% at moderate severity (Severity 2), 

and 13.2% at high severity (Severity 3). The persistence of extensive moderate severity coverage 

demonstrated ongoing structural challenges requiring systematic intervention strategies. 
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FIGURE I. 11. 2020 Meandering Longitudinal Cracking Severity pie chart and spatial distribution map 

2023 Severity Analysis: Network impact increased to 79.5% with severity distribution of 20.5% 

with no distress (Severity 0), 37.4% at low severity (Severity 1), 40.5% at moderate severity 

(Severity 2), and 1.6% at high severity (Severity 3). While overall coverage expanded, the 

significant reduction in high-severity occurrences indicates effective management of critical 

deterioration through targeted maintenance. 

 

FIGURE I. 12. 2023 Meandering Longitudinal Cracking Severity pie chart and spatial distribution map 

I.4. Meandering Longitudinal Cracking Extent Analysis 

2016 Extent Analysis: Extent distribution demonstrated 68.4% of segments with no meandering 

longitudinal cracking (Extent 0), 18.9% with few occurrences (Extent 1), 8.7% with intermediate 

extent (Extent 2), 2.8% with frequent cracking (Extent 3), 0.9% with extensive coverage (Extent 

4), and 0.3% with throughout coverage (Extent 5). 
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FIGURE I. 13. 2016 Meandering Longitudinal Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Distribution shifted to 24.0% with no cracking (Extent 0), 22.3% with few 

occurrences (Extent 1), 28.9% with intermediate extent (Extent 2), 16.2% with frequent cracking 

(Extent 3), 6.1% with extensive coverage (Extent 4), and 2.5% with throughout coverage (Extent 

5). 

 

FIGURE I. 14. 2017 Meandering Longitudinal Cracking Extent pie chart and spatial distribution map 

2020 Extent Analysis: Pattern showed 25.2% with no cracking (Extent 0), 26.4% with few 

occurrences (Extent 1), 25.8% with intermediate extent (Extent 2), 14.7% with frequent cracking 

(Extent 3), 5.9% with extensive coverage (Extent 4), and 2.0% with throughout coverage (Extent 

5). 
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FIGURE I. 15. 2020 Meandering Longitudinal Cracking Extent pie chart and spatial distribution map 

2023 Extent Analysis: Distribution indicated 20.5% with no cracking (Extent 0), 31.2% with few 

occurrences (Extent 1), 26.8% with intermediate extent (Extent 2), 15.3% with frequent cracking 

(Extent 3), 4.7% with extensive coverage (Extent 4), and 1.5% with throughout coverage (Extent 

5). 

 

FIGURE I. 16. 2023 Meandering Longitudinal Cracking Extent pie chart and spatial distribution map 

I.5. Longitudinal Wheel Path Cracking Severity Analysis 

2016 Severity Analysis: The distress affected substantial portions of the network with severity 

distribution showing moderate impact levels primarily concentrated in low to moderate severity 

categories. Traffic-related deterioration patterns established baseline conditions requiring ongoing 

monitoring of heavy vehicle corridors. 
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FIGURE I. 17. 2016 Longitudinal Wheel Path Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: Severity distribution remained relatively stable with slight variations in 

category distribution. The consistency in severity patterns suggested effective management of 

traffic-load-related deterioration factors through appropriate maintenance timing and techniques. 

 

FIGURE I. 18. 2017 Longitudinal Wheel Path Cracking Severity pie chart and spatial distribution map 

2020 Severity Analysis: Network impact demonstrated continued stability with severity 

distribution maintaining manageable levels across all categories. The persistence of stable patterns 

indicated successful long-term management strategies for traffic-related longitudinal cracking. 
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FIGURE I. 19. 2020 Longitudinal Wheel Path Cracking Severity pie chart and spatial distribution map 

2023 Severity Analysis: Coverage reached stable levels with severity distribution demonstrating 

effective control of traffic-related deterioration progression. The maintenance of consistent 

severity patterns throughout the analysis period reflects appropriate intervention strategies. 

 

FIGURE I. 20. 2023 Longitudinal Wheel Path Cracking Severity pie chart and spatial distribution map 

I.6. Longitudinal Wheel Path Cracking Extent Analysis 

2016 Extent Analysis: Extent distribution demonstrated widespread but manageable coverage 

patterns with concentration in lower extent categories. The distribution pattern indicated 

appropriate traffic management and pavement design adequacy for anticipated loading conditions. 
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FIGURE I. 21. 2016 Longitudinal Wheel Path Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Slight reduction in overall extent coverage suggested targeted maintenance 

effectiveness in high-traffic corridors most susceptible to wheel path deterioration. The 

improvement demonstrated successful intervention timing and technique selection. 

 

FIGURE I. 22. 2017 Longitudinal Wheel Path Cracking Extent pie chart and spatial distribution map 

2020 Extent Analysis: Network impact increased moderately, returning extent coverage to levels 

comparable with baseline conditions. This recovery pattern indicated renewed deterioration 

pressure requiring continued monitoring and intervention planning. 
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FIGURE I. 23. 2020 Longitudinal Wheel Path Cracking Extent pie chart and spatial distribution map 

2023 Extent Analysis: Distribution stabilized at manageable levels with extent patterns 

demonstrating effective long-term management of traffic-related longitudinal cracking. The 

stability throughout the analysis period reflects appropriate maintenance strategies. 

 

FIGURE I. 24. 2023 Longitudinal Wheel Path Cracking Extent pie chart and spatial distribution map 

I.7. Alligator Cracking Severity Analysis 

2016 Severity Analysis: The distress represented localized structural deterioration with severity 

distribution concentrated in lower categories but indicating areas requiring immediate structural 

attention. The baseline conditions established priority areas for rehabilitation intervention. 
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FIGURE I. 25. 2016 Alligator Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: Peak severity conditions were observed with increased high-severity 

occurrences, particularly affecting older local roads and areas with inadequate structural capacity 

for current loading conditions. The deterioration peak indicated critical timing for comprehensive 

rehabilitation strategies. 

 

FIGURE I. 26. 2017 Alligator Cracking Severity pie chart and spatial distribution map 

2020 Severity Analysis: Substantial improvement in severity distribution demonstrated effective 

structural rehabilitation interventions. The reduction in high-severity occurrences reflected 

successful targeting of critical structural deficiencies through systematic maintenance programs. 
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FIGURE I. 27. 2020 Alligator Cracking Severity pie chart and spatial distribution map 

2023 Severity Analysis: Near-elimination of alligator cracking across all severity categories 

represents highly successful structural rehabilitation achievement. The dramatic reduction to 

minimal network presence indicates comprehensive resolution of structural adequacy issues. 

 

FIGURE I. 28. 2023 Alligator Cracking Severity pie chart and spatial distribution map 

I.8. Alligator Cracking Extent Analysis 

2016 Extent Analysis: Extent distribution demonstrated localized coverage patterns concentrated 

in specific network areas with structural inadequacy. The distribution indicated targeted 

intervention requirements rather than widespread network rehabilitation needs. 
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FIGURE I. 29. 2016 Alligator Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Increased extent coverage correlated with severity peak conditions, 

indicating expansion of structural deterioration requiring comprehensive rehabilitation strategies. 

The extent patterns provided critical guidance for maintenance program prioritization. 

 

FIGURE I. 30. 2017 Alligator Cracking Extent pie chart and spatial distribution map 

2020 Extent Analysis: Dramatic reduction in extent coverage demonstrated effective structural 

rehabilitation program implementation. The systematic reduction across all extent categories 

reflected comprehensive addressing of structural deficiencies. 
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FIGURE I. 31. 2020 Alligator Cracking Extent pie chart and spatial distribution map 

2023 Extent Analysis: Near-complete elimination of alligator cracking extent represents 

successful resolution of structural deterioration challenges. The minimal remaining coverage 

indicates highly effective maintenance program achievement. 

 

FIGURE I. 32. 2023 Alligator Cracking Extent pie chart and spatial distribution map 

I.9. Rutting Severity Analysis 

2016 Severity Analysis: No rutting was observed throughout the surveyed network, with 100% 

of segments showing no distress (Severity 0). This baseline condition of complete absence 

established the foundation for monitoring permanent deformation development over subsequent 

survey periods. 
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FIGURE I. 33. 2016 Rutting Severity pie chart (showing 100% no distress) 

2017 Severity Analysis: Initial rutting manifestation appeared with severity distribution showing 

44.3% of segments with no distress (Severity 0), 52.0% exhibiting low severity conditions 

(Severity 1), 3.4% displaying moderate severity (Severity 2), and 0.3% reaching high severity 

levels (Severity 3). The emergence of rutting across 55.7% of the network indicated systematic 

development of permanent deformation patterns. 

 

FIGURE I. 34. 2017 Rutting Severity pie chart and spatial distribution map 

2020 Severity Analysis: Rutting presence expanded with severity distribution of 45.2% with no 

distress (Severity 0), 52.6% at low severity (Severity 1), 2.2% at moderate severity (Severity 2), 

and 0.1% at high severity (Severity 3). The persistence of widespread low severity rutting 

demonstrated progressive development of permanent deformation requiring intervention planning. 
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FIGURE I. 35. 2020 Rutting Severity pie chart and spatial distribution map 

2023 Severity Analysis: Dramatic expansion reached near-universal network presence with 

severity distribution of 1.6% with no distress (Severity 0), 92.9% at low severity (Severity 1), 5.1% 

at moderate severity (Severity 2), and 0.3% at high severity (Severity 3). The 98.4% network 

coverage represents the most significant emerging distress challenge requiring immediate strategic 

intervention. 

 

FIGURE I. 36. 2023 Rutting Severity pie chart and spatial distribution map 

I.10. Rutting Extent Analysis 

2016 Extent Analysis: Complete absence of rutting resulted in 100% of segments showing no 

extent coverage (Extent 0), establishing baseline conditions free from permanent deformation 

patterns. 
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FIGURE I. 37. 2016 Rutting Extent pie chart (showing 100% no distress) 

2017 Extent Analysis: Initial extent distribution showed 44.3% with no rutting (Extent 0), 38.2% 

with few occurrences (Extent 1), 12.8% with intermediate extent (Extent 2), 3.7% with frequent 

rutting (Extent 3), 0.8% with extensive coverage (Extent 4), and 0.2% with throughout coverage 

(Extent 5). 

 

FIGURE I. 38. 2017 Rutting Extent pie chart and spatial distribution map 

2020 Extent Analysis: Extent pattern demonstrated 45.2% with no rutting (Extent 0), 41.6% with 

few occurrences (Extent 1), 10.4% with intermediate extent (Extent 2), 2.3% with frequent rutting 

(Extent 3), 0.4% with extensive coverage (Extent 4), and 0.1% with throughout coverage (Extent 

5). 
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FIGURE I. 39. 2020 Rutting Extent pie chart and spatial distribution map 

2023 Extent Analysis: Extensive coverage emerged with 1.6% showing no rutting (Extent 0), 

12.96% with few occurrences (Extent 1), 33.06% with intermediate extent (Extent 2), 28.17% with 

frequent rutting (Extent 3), 15.42% with extensive coverage (Extent 4), and 8.73% with throughout 

coverage (Extent 5). This distribution indicates systematic permanent deformation development 

requiring comprehensive intervention strategies. 

 

FIGURE I. 40. 2023 Rutting Extent pie chart and spatial distribution map 

I.11. Pavement Edge Cracking Severity Analysis 

2016 Severity Analysis: The distress established baseline edge deterioration patterns with severity 

distribution indicating moderate network impact levels. Edge cracking severity patterns suggested 

localized deterioration related to drainage, frost action, and traffic loading effects on pavement 

boundaries. 
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FIGURE I. 41. 2016 Pavement Edge Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: Severity distribution maintained moderate levels with slight variations in 

category distribution. The consistency suggested stable edge deterioration patterns under normal 

environmental and traffic loading conditions. 

 

FIGURE I. 42. 2017 Pavement Edge Cracking Severity pie chart and spatial distribution map 

2020 Severity Analysis: Edge cracking data was not collected during this comprehensive survey 

period, creating a significant information gap in severity trend analysis. This data collection 

limitation prevents assessment of severity progression during the critical 2017-2023 period. 



103 

 

 

FIGURE I. 43. 2020 Pavement Edge Cracking - No data collected notation 

2023 Severity Analysis: Dramatic emergence of severe edge cracking across all severity 

categories resulted in the most severe and extensive distress type in 2023. The severity distribution 

indicated widespread edge structural integrity challenges requiring immediate intervention 

development. 

 

FIGURE I. 44. 2023 Pavement Edge Cracking Severity pie chart and spatial distribution map 

I.12. Pavement Edge Cracking Extent Analysis 

2016 Extent Analysis: Extent distribution showed 81.1% of segments with no edge cracking 

(Extent 0), 7.0% with few occurrences (Extent 1), 5.2% with intermediate extent (Extent 2), 4.2% 

with frequent cracking (Extent 3), 1.3% with extensive coverage (Extent 4), and 1.2% with 

throughout coverage (Extent 5). The limited extent coverage indicated manageable edge 

deterioration conditions. 
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FIGURE I. 45. 2016 Pavement Edge Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Distribution shifted to 71.6% with no cracking (Extent 0), 18.2% with few 

occurrences (Extent 1), 6.4% with intermediate extent (Extent 2), 3.3% with frequent cracking 

(Extent 3), 0.4% with extensive coverage (Extent 4), and 0.1% with throughout coverage (Extent 

5). The increase in lower extent categories suggested expanding but manageable edge 

deterioration. 

 

FIGURE I. 46. 2017 Pavement Edge Cracking Extent pie chart and spatial distribution map 

2020 Extent Analysis: Edge cracking extent data was not collected, preventing trend analysis 

during this critical period. The data gap limits understanding of extent progression patterns 

between 2017 and 2023. 
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FIGURE I. 47. 2020 Pavement Edge Cracking - No data collected notation 

2023 Extent Analysis: Dramatic transformation resulted in 14.6% with no cracking (Extent 0), 

42.7% with few occurrences (Extent 1), 15.5% with intermediate extent (Extent 2), 17.2% with 

frequent cracking (Extent 3), 6.2% with extensive coverage (Extent 4), and 3.9% with throughout 

coverage (Extent 5). The 85.4% network coverage represents the most extensive single distress 

challenge. 

 

FIGURE I. 48. 2023 Pavement Edge Cracking Extent pie chart and spatial distribution map 

I.13. Longitudinal Cracking Severity Analysis 

2016 Severity Analysis: The distress established significant baseline longitudinal deterioration 

with severity distribution showing 70.0% of segments with no distress (Severity 0), 22.3% at low 

severity (Severity 1), 6.1% at moderate severity (Severity 2), and 1.6% at high severity (Severity 

3). The moderate network impact indicated manageable structural deterioration requiring 

preventive maintenance strategies. 
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FIGURE I. 49. 2016 Longitudinal Cracking Severity pie chart and spatial distribution map 

2017 Severity Analysis: Severity distribution improved with targeted maintenance effectiveness, 

demonstrating reduced high-severity occurrences. The improvement suggested successful 

intervention timing and technique selection for longitudinal cracking management. 

 

FIGURE I. 50. 2017 Longitudinal Cracking Severity pie chart and spatial distribution map 

2020 Severity Analysis: Slight increase in network coverage demonstrated stable management of 

longitudinal deterioration patterns with severity distribution maintaining manageable levels across 

all categories. The stability indicated appropriate maintenance strategy implementation. 
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FIGURE I. 51. 2020 Longitudinal Cracking Severity pie chart and spatial distribution map 

2023 Severity Analysis: Coverage remained consistent with effective maintenance strategies 

maintaining stable deterioration patterns. The continued stability throughout the analysis period 

reflects successful long-term management of longitudinal cracking challenges. 

 

FIGURE I. 52. 2023 Longitudinal Cracking Severity pie chart and spatial distribution map 

I.14. Longitudinal Cracking Extent Analysis 

2016 Extent Analysis: Extent distribution demonstrated 70.0% with no cracking (Extent 0), 19.4% 

with few occurrences (Extent 1), 7.8% with intermediate extent (Extent 2), 2.1% with frequent 

cracking (Extent 3), 0.5% with extensive coverage (Extent 4), and 0.2% with throughout coverage 

(Extent 5). 
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FIGURE I. 53. 2016 Longitudinal Cracking Extent pie chart and spatial distribution map 

2017 Extent Analysis: Improved distribution indicated effective maintenance intervention with 

reduced extent coverage across higher categories. The improvement demonstrated successful 

targeting of longitudinal cracking progression. 

 

FIGURE I. 54. 2017 Longitudinal Cracking Extent pie chart and spatial distribution map 

2020 Extent Analysis: Stable extent patterns maintained manageable coverage levels with 

consistent distribution across all categories. The stability reflected appropriate maintenance timing 

and intervention strategies. 
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FIGURE I. 55. 2020 Longitudinal Cracking Extent pie chart and spatial distribution map 

2023 Extent Analysis: Continued stability in extent distribution demonstrated effective long-term 

management with consistent network impact levels throughout the analysis period. 

 

FIGURE I. 56. 2023 Longitudinal Cracking Extent pie chart and spatial distribution map 

I.15. Pothole Severity Analysis 

2016 Severity Analysis: Potholes represented localized surface failure with severity distribution 

concentrated in lower categories but indicating areas requiring immediate safety attention. The 

baseline conditions established emergency response requirements for surface failure management. 
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FIGURE I. 57. 2016 Pothole Severity pie chart and spatial distribution map 

2017 Severity Analysis: Peak severity conditions were observed with increased occurrence rates 

representing elevated surface failure requiring enhanced maintenance response. The severity peak 

indicated critical timing for improved reactive maintenance strategies. 

 

FIGURE I. 58. 2017 Pothole Severity pie chart and spatial distribution map 

2020 Severity Analysis: Substantial improvement in severity distribution demonstrated effective 

reactive maintenance strategies for surface failure management. The reduction reflected successful 

emergency response protocol implementation. 
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FIGURE I. 59. 2020 Pothole Severity pie chart and spatial distribution map 

2023 Severity Analysis: Near-elimination of pothole occurrences across all severity categories 

represents highly successful surface maintenance achievement. The dramatic reduction indicates 

comprehensive resolution of surface failure challenges. 

 

FIGURE I. 60. 2023 Pothole Severity pie chart and spatial distribution map 

I.16. Pothole Extent Analysis 

2016 Extent Analysis: Extent distribution demonstrated limited coverage patterns with 

concentration in specific network areas prone to surface failure. The localized distribution 

indicated targeted intervention requirements for safety management. 
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FIGURE I. 61. 2016 Pothole Extent pie chart and spatial distribution map 

2017 Extent Analysis: Increased extent coverage correlated with severity peak conditions, 

indicating expansion of surface failure requiring comprehensive response strategies. The extent 

patterns provided guidance for emergency response program development. 

 

FIGURE I. 62. 2017 Pothole Extent pie chart and spatial distribution map 

2020 Extent Analysis: Substantial reduction in extent coverage demonstrated effective reactive 

maintenance program implementation. The systematic reduction reflected comprehensive 

addressing of surface failure challenges. 
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FIGURE I. 63. 2020 Pothole Extent pie chart and spatial distribution map 

2023 Extent Analysis: Near-complete elimination of pothole extent represents successful 

resolution of surface failure challenges with minimal remaining coverage indicating highly 

effective maintenance program achievement. 

 

FIGURE I. 64. 2023 Pothole Extent pie chart and spatial distribution map 
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Appendix II. Data Extraction and Analysis 

II.1.1. Dataset Compilation and Temporal Coverage 

The research utilizes comprehensive pavement condition datasets collected through four 

systematic surveys spanning seven years. The temporal distribution provides sufficient 

observation points for deterioration trend analysis and predictive model development while 

capturing the effects of varying climate conditions and maintenance interventions. 

Primary Datasets: 

• 2016 Survey: 9,328 data points focusing on arterial and collector roads 

• 2017 Survey: 12,475 data points including local roads and alleys 

• 2020 Survey: 31,084 data points representing comprehensive network coverage 

• 2023 Survey: 8,942 data points targeting arterial and collector roads 

 

FIGURE II. 1. Sample of Data Tables 

Each dataset includes detailed pavement distress characteristics, severity and extent 

measurements, spatial referencing information, and calculated performance indices following the 

standardized methodologies outlined in Chapter 3. 

II.1.2. Data Structure and Variables 

The consolidated dataset incorporates multiple variable categories essential for comprehensive 

pavement performance analysis: 

Distress Variables (Severity and Extent): 

• Potholes, Rutting, Alligator Cracking 

• Longitudinal Wheelpath Cracking, Meandering Longitudinal Cracking 
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• Longitudinal Cracking, Pavement Edge Cracking, Transverse Cracking 

Performance Indices: 

• Pavement Distress Index (PDI) 

• International Roughness Index (IRI) 

• Average Rutting Depth 

Climate Variables: 

• Daily maximum, minimum, and mean temperatures 

• Total precipitation (rain and snow) 

• Freeze-thaw cycle indicators derived from temperature data 

Traffic Variables: 

• Annual Average Daily Traffic (AADT) volumes 

• Vehicle classification data where available 

• Seasonal traffic variation patterns 

II.1.3. Data Integration Methodology 

Climate data spanning the survey periods was obtained from Environment and Climate Change 

Canada's Prince George weather station, providing daily meteorological records. Traffic volume 

data was compiled from municipal annual traffic reports for 2016, 2017, and 2023, supplemented 

by continuous monitoring data from automated counting stations. 

The integration process required temporal alignment of datasets collected at different intervals and 

spatial scales. Pavement condition data collected in standardized 50-meter segments was matched 

with corresponding climate and traffic information through spatial and temporal indexing 

procedures. 

II.2. Tools and Software Used 

II.2.1. Statistical Computing Environment 

RStudio served as the primary analytical platform, providing an integrated development 

environment for statistical analysis, modeling, and visualization. The R programming environment 

was selected for its comprehensive statistical modeling libraries, advanced machine learning 

packages, and sophisticated data visualization capabilities. 

Key advantages of the RStudio environment include: 

• Extensive statistical modeling libraries 

• Advanced machine learning packages (randomForest, nnet) 

• Sophisticated data visualization capabilities (ggplot2, plotly) 
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• Reproducible research support through integrated workflows 

• Open-source accessibility ensuring long-term sustainability 

II.2.2. R Package Ecosystem 

The analysis employed a comprehensive suite of R packages; each selected for specific analytical 

capabilities: 

Data Manipulation and Processing: 

• readxl: Excel file import and processing for municipal datasets 

• dplyr: Data manipulation, filtering, and transformation operations 

• tidyverse: Comprehensive data science workflow integration 

Machine Learning and Statistical Modeling: 

• randomForest: Random Forest algorithm implementation with variable importance 

analysis 

• nnet: Neural network modeling capabilities for non-linear pattern recognition 

• stats: Base statistical functions for linear regression and diagnostic procedures 

Visualization and Graphics: 

• ggplot2: Advanced statistical graphics and publication-quality plots 

• plotly: Interactive visualization capabilities for data exploration 

II.2.3. Complementary Software Tools 

ArcGIS was utilized for spatial analysis, mapping, and geographic data management. The GIS 

platform enabled spatial visualization of pavement condition data, network-level analysis, and 

integration with municipal infrastructure databases. 

Microsoft Excel was employed for preliminary data aggregation, formatting, and quality 

assurance procedures. Excel facilitated collaboration with municipal stakeholders while providing 

accessible data validation capabilities. 

All statistical analyses and modeling procedures were conducted exclusively within the R/RStudio 

environment to maintain consistency and reproducibility across all analytical components. 

II.3. Modeling Approach 

II.3.1. Multi-Model Framework 

The research employed three distinct analytical techniques to provide comprehensive assessment 

of predictive capabilities while ensuring robust validation across different algorithmic approaches. 
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This multi-model strategy addresses varying assumptions about data relationships and provides 

comparative evaluation of modeling effectiveness. 

II.3.2. Multiple Linear Regression (MLR) 

Multiple Linear Regression was implemented as the baseline modeling approach to establish 

fundamental linear relationships between pavement deterioration and contributing factors. MLR 

provides interpretable coefficients and serves as a benchmark for comparison with advanced 

modeling techniques. 

Implementation: 

# Multiple Linear Regression Implementation 

model_lm <- lm(PDI ~ Alligator_Severity + Alligator_Extent +  

               Transverse_Severity + Transverse_Extent +  

               Rutting_Severity + Rutting_Extent +  

               Potholes_Severity + Potholes_Extent +  

               Max_Temp + Min_Temp + Mean_Temp + Precip +  

               Traffic + RUT_AVG_mm + IRI_AVG_mm_m,  

               data = train_data) 

The MLR approach assumes linear relationships between predictors and response variables, 

providing straightforward interpretation of factor contributions. Model diagnostics include 

residual analysis, normality testing, and multicollinearity assessment to ensure statistical validity. 

II.3.3. Random Forest Ensemble Learning 

Random Forest was selected as the primary machine learning approach due to its robust 

performance with complex, non-linear relationships and superior handling of mixed data types 

characteristic of pavement management applications. The ensemble learning approach combines 

multiple decision trees to improve prediction accuracy and reduce overfitting. 

Implementation: 

# Random Forest Implementation 

library(randomForest) 

 

# Data preprocessing and feature selection 

selected_data <- data_cleaned %>% 

  select(Potholes_Severity, Potholes_Extent, 

         Rutting_Severity, Rutting_Extent, 

         Alligator_Severity, Alligator_Extent, 

         Longitudinal_Severity, Longitudinal_Extent, 

         Meandering_Severity, Meandering_Extent, 

         Transverse_Severity, Transverse_Extent, 

         PavementEdge_Severity, PavementEdge_Extent, 

         Max_Temp, Min_Temp, Mean_Temp, Precip, 

         Traffic, RUT_AVG_mm, IRI_AVG_mm_m, PDI) %>% 

  na.omit() 

 

# Random Forest model training 
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rf_model <- randomForest(PDI ~ ., data = train_data,  

                        ntree = 2000, importance = TRUE) 

The Random Forest implementation incorporated 2000 trees to ensure model stability and 

employed variable importance assessment to identify key performance drivers. The ensemble 

approach provides superior handling of non-linear relationships and interaction effects. 

II.3.4. Artificial Neural Network 

Artificial Neural Networks were implemented using the nnet package to capture complex non-

linear patterns and interactions in pavement deterioration data. The neural network approach 

provides sophisticated pattern recognition capabilities for modeling complex pavement 

performance relationships. 

Implementation: 

# Neural Network Implementation 

library(nnet) 

 

# Data normalization for neural network training 

features <- setdiff(names(selected_data), "PDI") 

ml_data <- selected_data %>% 

  select(all_of(c(features, "PDI"))) 

 

# Normalize data to [0,1] range 

maxs <- apply(ml_data, 2, max) 

mins <- apply(ml_data, 2, min) 

scaled_data <- as.data.frame(scale(ml_data, center = mins,  

                                  scale = maxs - mins)) 

 

# Neural network training 

nn_model <- nnet(PDI ~ ., data = train_data_scaled,  

                size = 6, linout = TRUE, maxit = 500) 

The neural network architecture employed 6 hidden neurons with linear output activation, 

optimized through iterative testing to balance model complexity with training efficiency. Data 

normalization ensures proper weight initialization and convergence behavior. 

II.3.5. Data Preprocessing Procedures 

Comprehensive data preprocessing ensured analytical reliability and model validity across all 

approaches: 

Missing Data Treatment: 

# Missing value imputation using column means 

selected_data <- selected_data %>% 

  mutate(across(everything(), ~ ifelse(is.na(.), mean(., na.rm = TRUE), .))) 

Data Cleaning and Standardization: 
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# Convert comma-separated numbers to numeric format 

data_cleaned <- data %>% 

  mutate(across(everything(), ~ as.numeric(gsub(",", "", as.character(.))))) 

 

# Column name standardization 

colnames(selected_data) <- colnames(selected_data) %>% 

  gsub(" ", "_", .) %>% 

  gsub("\\(", "", .) %>% 

  gsub("\\)", "", .) %>% 

  gsub("-", "_", .) %>% 

  gsub("/", "_", .) 

Feature Engineering: Distress severity and extent variables were processed separately to capture 

both the intensity and spatial distribution of pavement deterioration. Climate variables were 

integrated to enable assessment of environmental impacts on pavement performance. 

II.3.6. Model Training and Validation Framework 

The research employed an 80/20 train-test split methodology with fixed random seed (123) to 

ensure reproducible results across all modeling approaches. This split ratio provides sufficient 

training data while maintaining adequate test samples for robust validation. 

# Standardized train-test split 

set.seed(123) 

train_index <- sample(1:nrow(selected_data), 0.8 * nrow(selected_data)) 

train_data <- selected_data[train_index, ] 

test_data <- selected_data[-train_index, ] 

The consistent validation framework enables direct comparison of model performance across 

different algorithmic approaches while ensuring statistical rigor in model assessment. 

II.4. Evaluation Criteria 

II.4.1. Performance Metrics Framework 

Model performance was assessed using a comprehensive suite of statistical metrics that quantify 

both accuracy and reliability of predictive capabilities. The evaluation framework incorporates 

standard regression metrics while considering the specific requirements of pavement management 

applications. 

Primary Performance Metrics: 

Mean Squared Error (MSE): 

# MSE calculation 

predicted <- predict(rf_model, test_data) 

actual <- test_data$PDI 

mse <- mean((predicted - actual)^2) 
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MSE quantifies the average squared difference between predicted and actual values, providing a 

measure of prediction accuracy that penalizes larger errors more heavily. This characteristic is 

valuable in pavement management where significant prediction errors can lead to inappropriate 

maintenance decisions. 

Root Mean Squared Error (RMSE): 

# RMSE calculation 

rmse <- sqrt(mse) 

RMSE provides error measurement in the same units as the target variable, enabling intuitive 

interpretation of prediction accuracy and facilitating comparison across different applications. 

Coefficient of Determination (R²): 

# R² calculation 

rss <- sum((predicted - actual)^2) 

tss <- sum((actual - mean(actual))^2) 

r2 <- 1 - rss/tss 

R² quantifies the proportion of variance in the dependent variable explained by the model, 

providing a standardized measure of model effectiveness ranging from 0 to 1. 

# Adjusted R² calculation 

n <- nrow(test_data) 

p <- length(coef(model_lm)) - 1  # number of predictors 

adj_r2 <- 1 - (1 - r2) * ((n - 1) / (n - p - 1)) 

For Multiple Linear Regression models, adjusted R² was calculated to account for model 

complexity and the number of predictor variables. Adjusted R² adjusts the coefficient of 

determination based on the number of predictors relative to the sample size, providing a more 

conservative measure that penalizes the inclusion of non-significant variables. This metric is 

particularly important when comparing models with different numbers of predictors, as it prevents 

artificial inflation of R² values through the addition of unnecessary variables. The adjusted R² 

formula incorporates degrees of freedom correction, ensuring that reported model performance 

reflects true predictive capability rather than overfitting to the training data. 

II.4.2. Model Comparison Framework 

Comparative evaluation across modeling approaches employed consistent metrics and validation 

procedures: 

# Standardized evaluation function 

evaluate_model <- function(predictions, actuals) { 

  mse <- mean((predictions - actuals)^2) 

  rmse <- sqrt(mse) 

  rss <- sum((predictions - actuals)^2) 

  tss <- sum((actuals - mean(actuals))^2) 

  r2 <- 1 - rss/tss 
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# Calculate adjusted R² for linear models 

if (!is.null(model) && inherits(model, "lm")) { 

  n <- length(actuals) 

  p <- length(coef(model)) – 1 

  adj_r2 <- 1 - (1 - r2) * ((n - 1) / (n - p - 1)) 

return(list(MSE = round(mse, 2), 

     RMSE = round(rmse, 2), 

     R2 = round(r2, 4), 

     Adj_R2 = round(adj_r2, 4))) 

This standardized evaluation framework ensures consistent performance assessment across 

Multiple Linear Regression, Random Forest, and Neural Network approaches. For MLR, adjusted 

R² is calculated to provide a more rigorous assessment that accounts for model complexity, while 

standard R² is reported for machine learning approaches where adjusted R² is not applicable. 

II.4.3. Variable Importance Analysis 

Random Forest models provided variable importance metrics to identify key factors driving 

pavement deterioration: 

# Variable importance assessment 

importance_df <- as.data.frame(importance(rf_model)) 

importance_df$Variable <- rownames(importance_df) 

 

# Visualization framework for variable importance 

ggplot(importance_df, aes(x = reorder(Variable, `%IncMSE`),  

                         y = `%IncMSE`)) + 

  geom_bar(stat = "identity", fill = "steelblue") + 

  coord_flip() + 

  labs(title = "Variable Importance Assessment", 

       x = "Variable", y = "% Increase in MSE") + 

  theme_minimal() 

II.4.4. Predictive Capability Framework 

Future condition forecasting capabilities were evaluated through systematic application of trained 

models: 

# Future prediction implementation 

latest_input <- selected_data %>% 

  tail(1) %>% 

  select(-PDI) 

 

future_prediction <- predict(rf_model, newdata = latest_input) 

The predictive framework enables systematic evaluation of model forecasting capabilities essential 

for proactive pavement management applications. 

II.4.5. Model Validation and Robustness Assessment 
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Model robustness was assessed through systematic evaluation of prediction accuracy across 

different pavement condition ranges and validation of statistical assumptions. Residual analysis 

procedures confirmed appropriate model behavior without systematic bias or heteroscedasticity 

issues. 

The comprehensive evaluation framework provides the foundation for systematic comparison of 

modeling approaches and selection of optimal predictive techniques for pavement management 

applications under northern climate conditions. 

 

 

 


