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Abstract 

The global biodiversity crisis, driven primarily by habitat loss and fragmentation, has 

traditionally led conservation efforts to focus almost exclusively on primary habitats. However, 

the ecological importance of the matrix, defined as areas surrounding primary habitat, has 

remained largely overlooked.  

In this dissertation, I used global-scale spatial analyses coupled with statistical modeling 

to (i) quantify how matrix condition influences the effects of habitat fragmentation on extinction 

risk for terrestrial mammals, (ii) compare the predictive performance of alternative habitat 

intactness models (patch-matrix, continuum, and hybrid models) for assessing extinction risk in 

terrestrial mammals, and (iii) map global patterns of terrestrial mammal species richness within 

the matrix to identify conservation opportunities beyond primary habitats. 

My findings demonstrate that matrix condition plays a key mediating role in the 

relationship between habitat fragmentation and extinction risk, with greater predictive power 

than habitat loss or habitat amount alone. Moreover, I found that the predictive importance of 

fragmentation increases as matrix condition deteriorates, suggesting that managing or restoring 

the matrix represents a strategic conservation action to mitigate the negative effects of 

fragmentation on biodiversity. Additionally, the hybrid habitat intactness model—which 

integrates discrete habitat patches with continuous gradients of habitat quality—consistently 

outperforms traditional patch-matrix and continuum models, regardless of species’ habitat 

specialization. Notably, the magnitude of the relationship between habitat intactness and 

extinction risk was greater when using the hybrid model, highlighting that integrating discrete 

and continuous habitat representations can improve extinction risk analyses and provide valuable 

insights for conservation. My results further reveal that hotspots of species richness within the 
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matrix occupy only about 1% of Earth's terrestrial surface, yet could support more than half of all 

terrestrial mammal species. Matrix areas identified as having high conservation potential—based 

on overlapping richness hotspots—are primarily concentrated in tropical strongholds such as the 

Amazon Basin, Colombian Tropical Andes, Brazilian Atlantic Forest, and Albertine Rift. 

Importantly, many of these matrix areas face intense human pressures and remain inadequately 

represented within existing protected areas and other area-based conservation measures, 

underscoring their value as strategic opportunities for biodiversity conservation. 

Collectively, my results highlight an urgent need for a paradigm shift in conservation 

strategies that explicitly recognize, manage, and restore matrix areas as integral components of 

global biodiversity conservation. Integrating the matrix into conservation planning closely aligns 

with international biodiversity frameworks, particularly Target 2 of the Kunming-Montreal 

Global Biodiversity Framework, which calls for restoring at least 30% of degraded terrestrial 

ecosystems to enhance ecological integrity and connectivity. Such integration could substantially 

improve biodiversity outcomes, ecosystem resilience, and landscape connectivity, ultimately 

making critical contributions toward reversing global biodiversity declines. 
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Chapter 1: Introduction 

Biodiversity—the variety of life forms across genes, species, and ecosystems—underpins 

ecological functions and services upon which human societies depend (Cardinale et al. 2012). 

These ecosystem services include nutrient cycling, climate regulation, pollination, and the 

provision of goods such as food, medicine, and freshwater (Cardinale et al. 2012, Díaz et al. 

2019). Over the past century, however, biodiversity has declined globally at unprecedented rates, 

raising concerns about ecosystem stability and human well-being (IPBES 2019). Current 

extinction rates are estimated to be tens to hundreds of times greater than natural background 

levels, providing strong evidence that the Earth is undergoing its sixth mass extinction event 

(Barnosky et al. 2011, Pimm et al. 2014, De Vos et al. 2015, Ceballos et al. 2015). 

Recent global assessments underscore the alarming magnitude of biodiversity loss. For 

example, vertebrate populations have declined by almost 73% since 1970 (WWF 2024), and 

41% of amphibians, 27% of mammals, 21% of reptiles, and 12% of birds are currently classified 

as threatened on the International Union for Conservation of Nature (IUCN) Red List (IUCN 

2025). These declines reflect profound ecological transformations driven primarily by human-

induced pressures, including habitat destruction, overexploitation, climate change, pollution, and 

invasive species (Newbold et al. 2015, Maxwell et al. 2016, Jaureguiberry et al. 2022). 

 

Terrestrial mammals 

Among vertebrates, terrestrial mammals have been widely prioritized for monitoring 

broad biodiversity trends, given their ecological versatility, cultural significance, charisma, and 

functional roles within ecosystems (Ceballos and Ehrlich 2002, Cardillo et al. 2005, Hoffmann et 

al. 2011, Ripple et al. 2014). Terrestrial mammals contribute to ecosystem functioning by 
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serving as top predators, keystone herbivores, seed dispersers, and ecosystem engineers (Estes et 

al. 2011, Dirzo et al. 2014). Their presence helps regulate vegetation structure, trophic dynamics, 

and ecological connectivity (Ripple et al. 2017, Galetti et al. 2018). For instance, the loss of large 

mammalian herbivores such as elephants (Loxodonta africana) in Africa and tapirs (Tapirus 

terrestris) in South America, as well as apex carnivores like wolves (Canis lupus) in the 

Northern Hemisphere and jaguars (Panthera onca) in the Neotropics, can lead to dramatic 

ecological changes through altered browsing, grazing, and predation dynamics (Estes et al. 2011, 

Ripple et al. 2017, Galetti et al. 2018). These losses can also disrupt trophic cascades by 

removing key predators that control prey populations, and reduce ecological connectivity by 

limiting seed dispersal and animal movement across landscapes (Terborgh et al. 2001, Dirzo et 

al. 2014). 

However, despite their ecological importance, terrestrial mammals are experiencing 

widespread and accelerating declines. Recent global assessments estimate that up to 20% of 

terrestrial mammal species are at risk of rapid extinction (Cardillo et al. 2023), and numerous 

others not formally listed as threatened are already undergoing population declines and range 

contractions (Ceballos et al. 2017, 2020), reflecting broad vulnerability and reduced resilience to 

ongoing environmental disturbances. 

In addition to these alarming trends, much of their remaining high-suitability habitat 

occurs outside the boundaries of protected areas (PAs)—geographical areas designated and 

managed primarily for biodiversity conservation (Dudley 2008)—further elevating their risk of 

extinction (Crooks et al. 2017, Cardillo et al. 2023). Anthropogenic pressures—such as 

agricultural expansion and hunting—have been identified as primary drivers of these trends, with 

the most severe impacts observed in the Indomalayan and Australasian biogeographic realms 
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(Hoffmann et al. 2011). Large-bodied species, characterized by slow reproductive rates, wide-

ranging movements, and specialized habitat needs, have exhibited the most pronounced declines, 

underscoring their susceptibility to multiple forms of human pressure (Ripple et al. 2014, Dirzo 

et al. 2014, Benítez-López et al. 2017). 

 

Habitat loss and fragmentation 

Central to understanding the current biodiversity crisis is recognizing the extensive scale 

of human-induced habitat modification. Human activities have transformed between 75% and 

95% of Earth’s ice-free land surface, primarily through agricultural expansion, urbanization, 

resource extraction, and infrastructure development (Venter et al. 2016, Ellis et al. 2021, Ellis 

2021). Habitat fragmentation—the breaking apart of continuous habitat into smaller and isolated 

patches—further exacerbates biodiversity loss by reducing habitat area, isolating populations, 

disrupting species interactions, and limiting organism movement and dispersal (Haddad et al. 

2015). Consequently, fragmented landscapes can affect genetic diversity, population viability, 

species richness, and ecological resilience, making habitat fragmentation a central challenge for 

global biodiversity conservation (Haddad et al. 2015, Wilson et al. 2016, Pfeifer et al. 2017). 

Terrestrial mammals are particularly vulnerable to habitat fragmentation due to their 

large spatial requirements, ecological specialization, and restricted dispersal abilities (Fahrig 

2003, Crooks et al. 2017, Tucker et al. 2018). Fragmentation disrupts mammalian ecology by 

increasing habitat isolation, which restricts dispersal, limits access to habitat resources, and 

reduces gene flow, potentially leading to genetic bottlenecks and inbreeding depression 

(Cushman et al. 2006, Thatte et al. 2020). Empirical studies have shown that fragmentation 

intensifies edge effects—such as increased predation risk, altered species interactions, and 
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microclimatic changes—that disproportionately affect mammalian populations and accelerate 

their declines (Pfeifer et al. 2017). Moreover, global analyses consistently indicate that terrestrial 

mammals experiencing higher levels of fragmentation within their geographic ranges face an 

elevated risk of extinction (Crooks et al. 2017, Ramírez-Delgado et al. 2022). 

Historically, global conservation responses have predominantly focused on establishing 

PAs to mitigate biodiversity declines (Bruner et al. 2001, Rodrigues et al. 2004, Watson et al. 

2014). Although the global PA network has significantly expanded over recent decades (Watson 

et al. 2014), it currently covers only around 16% of Earth’s terrestrial ecosystems (UNEP-

WCMC and IUCN 2025)—far short of the coverage necessary to effectively protect biodiversity 

(Allan et al. 2022). Furthermore, many PAs lack ecological connectivity and often fail to 

represent critical habitats adequately, particularly in regions experiencing intensive agricultural 

and urban development pressures (Allan et al. 2017, Geldmann et al. 2019). Thus, reliance solely 

on PAs is increasingly recognized as insufficient to halt biodiversity loss (Watson et al. 2014, 

Maxwell et al. 2020, Allan et al. 2022). 

For terrestrial mammals, evidence suggests that existing PAs and targeted conservation 

actions—while critically important for many species (Pacifici et al. 2020)—remain insufficient 

to halt or reverse declining trends (Craigie et al. 2010, Di Marco et al. 2014a, Cardillo et al. 

2023). For instance, previous research has shown that for every mammal species whose 

conservation status improved due to targeted interventions, approximately seven species 

deteriorated, primarily because conservation measures failed to adequately address major threats 

such as habitat loss, habitat fragmentation, habitat degradation, and hunting pressures (Hoffmann 

et al. 2011). 
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Recognizing these critical shortcomings, recent international policy initiatives, such as 

the Kunming-Montreal Global Biodiversity Framework (GBF), aim to conserve at least 30% of 

terrestrial and restore at least 30% of degraded ecosystems by 2030 (Obura 2023). Achieving 

these ambitious global conservation goals requires transformative strategies extending beyond 

traditional PA models (Watson et al. 2018b, Maxwell et al. 2020, Allan et al. 2022). Specifically, 

conservation efforts must incorporate biodiversity within human-modified landscapes, 

recognizing habitats previously considered marginal or unsuitable for conservation (Kremen and 

Merenlender 2018, Ellis 2019, Arroyo‐Rodríguez et al. 2020, Britnell et al. 2023). 

 

The matrix and landscape complexity 

Habitat loss and fragmentation, long recognized as major drivers of biodiversity decline 

(Newbold et al. 2015, Maxwell et al. 2016, Jaureguiberry et al. 2022), have played a central role 

in shaping conservation theory and practice over recent decades (Ricketts 2001, Watson et al. 

2005, Laurance 2008). Early conservation frameworks, informed by classic island biogeography 

theory, viewed fragmented terrestrial habitats as isolated ‘islands’ embedded within uniformly 

hostile ‘matrix’ environments (MacArthur and Wilson 1967, Haila 2002). Under this model, 

species richness and extinction risk were primarily determined by patch size and isolation, 

emphasizing straightforward colonization-extinction dynamics dependent on habitat area 

(MacArthur and Wilson 1967). As a result, traditional conservation strategies predominantly 

emphasized protecting large, intact habitat patches through networks of PAs (Margules and 

Pressey 2000, Martin et al. 2012), often regarding the surrounding matrix as either ecologically 

irrelevant or uniformly inhospitable. 
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However, a growing body of evidence has challenged this simplistic habitat-matrix 

dichotomy, revealing that biodiversity responses to habitat loss and fragmentation are more 

nuanced and context-dependent than previously recognized (Ricketts 2001, Laurance 2008, 

Prugh et al. 2008, Prevedello and Vieira 2010, Watling et al. 2011, Driscoll et al. 2013). These 

insights have inspired theoretical advances in landscape ecology, leading to frameworks such as 

countryside biogeography (Daily et al. 2001, 2003) and the landscape continuum model (Fischer 

and Lindenmayer 2006), which represent habitats within a gradient of ecological suitability 

rather than binary classifications of ‘habitat’ versus ‘non-habitat.’  

Empirical studies increasingly support this continuum perspective, demonstrating that the 

environmental characteristics of the matrix—defined as areas surrounding primary habitat 

patches—play a critical role in shaping species persistence, dispersal, and extinction risk (Prugh 

et al. 2008, Gardner et al. 2009, Prevedello and Vieira 2010, Watling et al. 2011, Driscoll et al. 

2013, Boesing et al. 2018, Ferreira et al. 2018, Ramírez-Delgado et al. 2022). The matrix 

typically comprises landscapes modified or managed by human activities, such as agriculture, 

forestry, settlements, or infrastructure (Fahrig 2001, Franklin and Lindenmayer 2009). Beyond 

simply isolating habitat patches, the matrix provides supplementary resources, facilitates species 

movement and dispersal, and can buffer populations against disturbances depending on its 

composition and quality (Prevedello and Vieira 2010, Driscoll et al. 2013, Fletcher et al. 2024). 

For instance, human-modified habitats, such as secondary forests, agroforestry systems, and 

heterogeneous agricultural mosaics, can sustain substantial biodiversity by providing critical 

supplementary resources and acting as conduits for dispersal (Daily et al. 2003, Prevedello and 

Vieira 2010, Watling et al. 2011, Ferreira et al. 2018). Indeed, such permeable, high-quality 

matrices often reduce edge effects, mitigate extinction thresholds, and sustain viable populations 
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even when habitat patches fall below sizes typically required in landscapes dominated by 

intensive agriculture or urbanization (Perfecto and Vandermeer 2008, Mendenhall et al. 2014, 

Boesing et al. 2018). 

Despite these theoretical and empirical advances, existing conservation frameworks—

such as the Key Biodiversity Area (KBA) approach (IUCN 2016) and the Aichi Biodiversity 

Targets (CBD 2010)—continue to overlook the matrix, often underestimating its potential 

contributions to biodiversity conservation (Prugh et al. 2008, Franklin and Lindenmayer 2009, 

Driscoll et al. 2013, Watson et al. 2018a, Kennedy et al. 2019, Galán-Acedo et al. 2019, Arroyo‐

Rodríguez et al. 2020, Fletcher et al. 2024). This persistent oversight highlights an urgent need 

for comprehensive global-scale research explicitly evaluating the ecological roles and 

conservation potential of matrix areas.  

Overall, my findings contribute to our understanding of the conservation potential of the 

matrix for terrestrial mammals globally. Specifically, my research provides evidence that the 

condition of the matrix can mitigate the impacts of habitat fragmentation on extinction risk. 

Additionally, by comparing alternative conceptual models of habitat intactness, my work 

provides practical guidance on selecting models that more accurately characterize the 

relationship between habitat condition and extinction risk. Finally, by identifying areas within 

the matrix harboring high levels of species richness, my research underscores conservation 

opportunities that exist beyond primary habitats. Collectively, these findings contribute to a 

growing body of evidence highlighting the need to explicitly recognize and integrate the matrix 

into global biodiversity frameworks and management strategies. Such integration could 

strengthen conservation efforts by better supporting the persistence of terrestrial mammal species 

across human-modified landscapes. 
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To fully situate these objectives within the broader context of this research, the following 

subsections clarify the rationale for focusing on terrestrial mammals and outline the conceptual 

framework used to define and operationalize both habitat and the matrix throughout this 

dissertation. 

 

Research objectives 

In this dissertation, I evaluate the ecological role and conservation value of the matrix for 

terrestrial mammals on a global scale. Specifically, my research aims to: 

1. Quantify how the matrix condition influences the effects of habitat fragmentation on 

extinction risk in terrestrial mammals. 

2. Compare the predictive performance of alternative conceptual models of habitat 

intactness (patch-matrix, continuum, and hybrid models) for assessing extinction risk in 

terrestrial mammals. 

3. Map global patterns of terrestrial mammal species richness within the matrix to identify 

conservation opportunities beyond primary habitats. 

Overall, my findings contribute to our understanding of the conservation potential of the 

matrix for terrestrial mammals globally. Specifically, my research provides evidence that the 

condition of the matrix can mitigate the impacts of habitat fragmentation on extinction risk. 

Additionally, by comparing alternative conceptual models of habitat intactness, my work 

provides practical guidance on selecting models that more accurately characterize the 

relationship between habitat condition and extinction risk. Finally, by identifying areas within 

the matrix harboring high levels of species richness, my research underscores conservation 

opportunities that exist beyond primary habitats. Collectively, these findings contribute to a 
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growing body of evidence highlighting the need to explicitly recognize and integrate the matrix 

into global biodiversity frameworks and management strategies. Such integration could 

strengthen conservation efforts by better supporting the persistence of terrestrial mammal species 

across human-modified landscapes. 

To fully situate these objectives within the broader context of this research, the following 

subsections clarify the rationale for focusing on terrestrial mammals and outline the conceptual 

framework used to define and operationalize both habitat and the matrix throughout this 

dissertation. 

 

Why focus on terrestrial mammals? 

In light of their ecological roles, conservation concerns, and ongoing declines, terrestrial 

mammals represent a compelling focal group for global biodiversity assessments (Ceballos and 

Ehrlich 2002, Cardillo et al. 2005, Ripple et al. 2014). Beyond their ecological and conservation 

significance, the decision to center this research on terrestrial mammals was also shaped by 

practical considerations. At the time this work was initiated, they were the only vertebrate group 

for which globally consistent, high-resolution habitat data were available (Rondinini et al. 2011). 

These data offered the spatial resolution, taxonomic coverage, and global consistency required to 

develop the large-scale analyses presented in Chapter 2 of this dissertation. Although comparable 

high-resolution datasets are now available for birds (Lumbierres et al. 2022b), this study was 

designed to take advantage of the best available data at the time. 
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Conceptual definition of habitat 

In this dissertation, habitat refers to the set of resources and conditions that support 

occupancy and, arguably, demographic performance (survival and reproduction) of a given 

species (Hall et al. 1997, Krausman and Morrison 2016). Habitat quality refers to the capacity of 

an environment to support persistence and should ideally be inferred from demographic evidence 

rather than species presence alone. Although habitat is often conceptualized along a continuum 

of suitability (Fischer and Lindenmayer 2006), the global-scale analyses in this work required 

simplifying this gradient into binary classes of “suitable” and “unsuitable” habitat, as defined by 

globally consistent habitat suitability models or Area of Habitat (AOH) maps (Rondinini et al. 

2011, Brooks et al. 2019, Lumbierres et al. 2022b). This binary representation enabled tractable, 

comparable assessments across thousands of species while recognizing that areas classified as 

“unsuitable” may still provide important ecological functions.  

In addition, habitat, as defined here in a species-specific sense, emerges from both abiotic 

conditions and biotic interactions (Morris 2003, Soberón 2007). Predation, competition, disease 

dynamics, and mutualisms can strongly shape realized habitat and demographic performance, 

including via trophic cascades (Paine 1969, Schmitz et al. 2000) and interaction-mediated edge 

effects (Ries et al. 2004). While these processes are central to many local and regional systems, 

they cannot be mapped consistently and comparably for thousands of species at a global scale. 

Consequently, the AOH maps applied in Chapters 2 and 4, together with the habitat intactness 

models developed in Chapter 3, provide standardized and defensible proxies for habitat condition 

but do not explicitly encode interspecific interactions—processes that have been shown to 

profoundly influence habitat structure and ecosystem function (e.g., Terborgh et al. 2001, Estes 

et al. 2011, Ripple et al. 2017). 
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Conceptual definition of the matrix 

In this dissertation, the matrix refers to the land surrounding suitable habitat patches, 

regardless of ecological quality or degree of human modification. While much of the 

fragmentation literature conceptualizes the matrix as human-modified land that may hinder 

movement or reduce suitability (e.g., Fahrig 2003, Haddad et al. 2015, Wilson et al. 2016), 

matrix areas can also be entirely natural and undisturbed and, for some species, may provide 

suitable habitat (Prugh et al. 2008, Prevedello and Vieira 2010, Galán-Acedo et al. 2019). For 

example, in the Brazilian Cerrado, forested gallery patches occur within a natural savanna matrix 

(Oliveira-Filho and Ratter 2002). Although the savanna matrix differs ecologically from the 

forest patches, it can serve as primary habitat for savanna-adapted species while simultaneously 

influencing the persistence and movement of forest-dependent species. In this study, the 

operational focus on terrestrial mammal distributions naturally emphasizes land-based matrices, 

many of which are human-modified. However, this framing does not exclude the broader 

ecological definition in which matrix encompasses any non-focal land-cover type that influences 

species persistence and movement. 

 

Dissertation structure 

The chapters that follow this introduction (Chapters 2–4) are structured as standalone 

manuscripts intended for publication in peer-reviewed journals. Accordingly, these chapters are 

written in the first-person plural to acknowledge the contributions of my collaborators. A version 

of Chapter 2 has been published in Nature Communications, with M. Di Marco, J.E.M. Watson, 

C.J. Johnson, C. Rondinini, X. Corredor Llano, M. Arias, and O. Venter as co-authors (Ramírez-

Delgado et al. 2022). A version of chapter 3 has been accepted for publication in Ecography, 
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with M. Di Marco, C.J. Johnson, J.E.M. Watson, H.L. Beyer, L. de Assis Barros, R. Pillay, and 

O. Venter as co-authors (Ramírez-Delgado et al. in press). A version of chapter 4 has been 

prepared for submission, with M. Di Marco, J.E.M. Watson, C.J. Johnson, and O. Venter as co-

authors (Ramírez-Delgado et al. in prep.). In the concluding chapter, I synthesize the key insights 

from these chapters and discuss their broader implications for conservation and future research. 
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2. Chapter 2: Matrix condition mediates the effects of habitat fragmentation on species 

extinction risk 

Abstract 

Habitat loss is the leading cause of the global decline in biodiversity, but the influence of human 

pressure within the matrix surrounding habitat fragments remains poorly understood. Here, we 

measure the relationship between fragmentation (the degree of fragmentation and the degree of 

patch isolation), matrix condition (measured as the extent of high human footprint levels), and 

the change in extinction risk of 4,426 terrestrial mammals. We find that the degree of 

fragmentation is strongly associated with changes in extinction risk, with higher predictive 

importance than life-history traits and human pressure variables. Importantly, we discover that 

fragmentation and the matrix condition are stronger predictors of risk than habitat loss and 

habitat amount. Moreover, the importance of fragmentation increases with an increasing 

deterioration of the matrix condition. These findings suggest that restoration of the habitat matrix 

may be an important conservation action for mitigating the negative effects of fragmentation on 

biodiversity.  

 

Introduction 

Although habitat loss is the leading cause of the ongoing biodiversity crisis (Newbold et 

al. 2015, 2016, Maxwell et al. 2016, Betts et al. 2017), the degree to which habitat fragmentation, 

defined as the spatial arrangement of remaining habitat for a given amount of habitat loss, 

influences the loss of biodiversity has remained the focus of considerable debate (Haddad et al. 

2015, Fahrig 2017, 2019, Fletcher et al. 2018, Fahrig et al. 2019, Miller-Rushing et al. 2019). 

Central to the debate has been a persistent uncertainty in disentangling the effects of habitat loss 
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on biodiversity from the effects of fragmentation per se, especially relative to the reduction in 

patch size and the increase in patch isolation (Fahrig 2003, 2019). While some studies have 

challenged the assumption of the impacts of fragmentation (Fahrig 2013, 2017, 2019, Fahrig et 

al. 2019), others have demonstrated that the effects of fragmentation are negative and stronger 

for local species (Hanski 2015, Haddad et al. 2015, Pfeifer et al. 2017, Fletcher et al. 2018), 

particularly in the tropics (Betts et al. 2019) and at intermediate (30–60%) levels of habitat 

amount (Pardini et al. 2010, Villard and Metzger 2014). Resolving this debate is critical to not 

just informing efforts to prioritize the protection and management of intact and fragmented 

landscapes with the same total amount of habitat, but also to better understand the role of the 

areas surrounding patches of habitat, commonly referred to as ‘the matrix’, in maintaining 

biodiversity (Prugh et al. 2008, Franklin and Lindenmayer 2009, Miller-Rushing et al. 2019). 

The traditional characterization of landscapes, which views patches of habitat as islands 

embedded in a matrix of ‘non-habitat’, as assumed in classical theoretical models (MacArthur 

and Wilson 1967, Haila 2002), has been strongly criticized (Watson 2002, Watson et al. 2005, 

Prugh et al. 2008, Mendenhall et al. 2014). This characterization has progressively been relaxed 

with approaches based on the premise that the matrix should be treated as a heterogeneous 

mosaic of different land covers (e.g., ‘countryside biogeography’ (Daily et al. 2003), and the 

‘land-sharing’ and ‘land-sparing’ approaches (Green et al. 2005, Perfecto and Vandermeer 2008, 

Law and Wilson 2015, Phalan 2018, Balmford et al. 2019)), as it is recognized that species use 

different matrices for foraging, dispersing, and reproduction purposes (Prevedello and Vieira 

2010, Ferreira et al. 2018). While high-contrast matrices (e.g., intensive agricultural or built 

environments) act as movement barriers or ecological traps with an elevated risk of mortality for 

many species (Battin 2004), low-contrast matrices (e.g., secondary forests or shade-grown low-
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intensive agriculture in forested regions) may act as permeable barriers with a reduced risk of 

mortality for many others, even for those typically considered as habitat specialists (Daily et al. 

2003, Perfecto and Vandermeer 2008). To date, however, conservation and management 

assessments have focused mainly on species’ primary habitat (Martin et al. 2012, Di Marco et al. 

2019), limiting our understanding of their response to the habitat matrix, which may have direct 

implications for the design of functional landscapes (Fahrig et al. 2011) and the prioritization of 

conservation actions in fragmented landscapes (Arroyo‐Rodríguez et al. 2020).  

Comparative extinction risk modelling is an approach for assessing the drivers of 

extinction risk and the change in risk over time. These models are based on the relationship 

between species’ life histories, the habitat pressures within species’ geographic ranges, and their 

threat status (Purvis et al. 2000, Fisher et al. 2003, Cardillo et al. 2005, Davidson et al. 2009, Di 

Marco et al. 2015, 2018b). Built with readily available data, this approach allows for the 

prediction of the risk of extinction of a larger number of species compared with that provided by 

expert-based assessments. This more rapid approach can substantially reduce resource 

requirements, as well as proactively inform conservation and management strategies (Rondinini 

et al. 2014, Bland et al. 2015a). However, despite the fact that the loss and fragmentation of 

habitat are among the main determinants of species extinction risk (Maxwell et al. 2016, Crooks 

et al. 2017, Di Marco et al. 2018b, Lucas et al. 2019), the influence of the matrix condition on 

the effects of fragmentation and its relationship with the risk of extinction has not been well 

evaluated for any animal taxon at a global scale. 

Here, we quantify the relationship between changes in the extinction risk of 4,426 

terrestrial mammals over a 24-year period (1996-2020), the fragmentation of their suitable 

habitat (in terms of the degree of fragmentation and the degree of patch isolation), and the levels 



28 

of human pressure within the associated habitat matrix. Our goal is to test the influence of human 

pressure within the matrix on the effects of fragmentation for determining changes in species 

extinction risk globally. We focus on terrestrial mammals as they have been used as a focal taxon 

in previous extinction risk analyses (Arregoitia 2016), they are known to be sensitive to 

fragmentation (Crooks et al. 2017), and data are available to delineate levels of suitable habitat 

(i.e., high and medium habitat suitability) and unsuitable habitat (i.e., the matrix) within their 

ranges (Rondinini et al. 2011). For each species, we quantify the degree of fragmentation as the 

average Euclidean distance into ‘core’ suitable habitat from the nearest patch edge, the degree of 

patch isolation as the average Euclidean distance between patches of suitable habitat through the 

surrounding matrix, and the matrix condition as the extent of high human pressure levels 

overlapping with areas of unsuitable habitat. Spatial data representing the condition of the matrix 

were obtained from the recently updated human footprint maps (Venter et al. 2016, Williams et 

al. 2020), which provide a single metric of the combined area and intensity of human activities, 

all of which are driving the current biodiversity crisis (Maxwell et al. 2016). We define a human 

footprint threshold of ≥ 3 out of 50 to represent the extent of human-modified habitat within the 

matrix. This threshold was used as it has been shown to be the strongest predictor of transitions 

in extinction risk for terrestrial mammals (Di Marco et al. 2018b). Furthermore, this human 

footprint threshold is associated with the highest declines in mammalian movements (Tucker et 

al. 2018). Following previous studies (Hoffmann et al. 2010, Di Marco et al. 2015, 2018b), we 

classify species into two groups of extinction risk, ‘low-risk’ transitions and ‘high-risk’ 

transitions, based on the first and last Red List category registered between 1996 and 2020. In 

combination with other predictors of extinction risk (see Methods, Table 2.1), we quantify the 



29 

relative importance of the degree of fragmentation, the degree of patch isolation, and the 

condition of the matrix for determining extinction risk transitions in terrestrial mammals.  

Our analyses reveal that the condition of the matrix plays a major role on the effects of 

fragmentation for predicting extinction risk transitions in terrestrial mammals. Our results 

suggest that the negative effects of fragmentation may be somewhat mitigated when the matrix is 

associated with lower levels of human pressure. 

 

Methods 

Habitat suitability models 

We used habitat suitability models developed by Rondinini et al. (2011) to represent the 

extent of suitable habitat patches and the extent of the matrix of 4,426 out of 5,709 extant 

terrestrial mammals, corresponding to ~78% of all species in the group (IUCN 2021). The 

models were limited to occur within the known geographic range of each species (i.e., the current 

“limits of distribution of a species, accounting for all known, inferred or projected sites of 

occurrence”, as defined by the IUCN Red List of Threatened Species (IUCN 2016)), and built 

for the year 2000 at a spatial resolution of 300 m based on species’ elevation range and other 

habitat affinities, including preferred land cover types, tolerance to human impact, and 

relationship to water bodies. Species’ elevation range was incorporated into the habitat suitability 

models when known and recorded in the IUCN Red List. Textual descriptions of other habitat 

affinities for each species, derived from the input of thousands of mammal experts belonging to 

more than 30 specialist groups of the IUCN Species Survival Commission (IUCN/SSC) 

(Schipper et al. 2008), were also extracted from the IUCN database and input as quantitative data 

into the habitat suitability models. The models ranked areas with three levels of habitat 
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suitability: (i) high, representing primary habitat or preferred habitat where the species can 

persist; (ii) medium, representing secondary habitat where the species can occur but not persist 

without nearby high suitable habitat; and (iii) unsuitable, representing locations where the 

species is expected to occasionally or never be found. A subset of the models and their 

associated levels of habitat suitability were validated against available points of known species 

occurrences. Full details on the development of the models are available elsewhere (Rondinini et 

al. 2011). 

When delineating the levels of habitat suitability for each species, small contiguous 

groups of pixels ( < 4 adjacent pixels of the same level of habitat suitability) were removed and 

replaced with the pixel value of the largest and nearest group of pixels, based on eight 

neighboring pixels of the same class. This reduced the influence of isolated groups of pixels of 

the same level of habitat suitability, and improved the computational efficiency of the analysis, 

as also reported in other studies (Crooks et al. 2011, 2017). 

For our analysis, we combined high and medium habitat suitability to represent the extent 

of suitable habitat patches, and used the level of unsuitable habitat to represent the extent of the 

matrix of each species. We also applied a different combination of the levels of habitat suitability 

when representing the extent of suitable habitat patches (high suitability instead of high and 

medium suitability combined) and the extent of the matrix (medium suitability and unsuitable 

combined instead of unsuitable habitat alone) of each species as a sensitivity analysis (see 

Sensitivity analysis section). 
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The degree of habitat fragmentation and the degree of patch isolation as predictors of 

extinction risk transitions 

For each species, we measured the degree of habitat fragmentation by calculating the 

average Euclidean distance of all the pixels of suitable habitat from the nearest edge (Ripple et 

al. 1991), edges demarcated by the boundary between suitable and unsuitable habitat. Large 

values of the average Euclidean distance represented low degrees of habitat fragmentation, 

whereas small values represented high degrees of habitat fragmentation. Additionally, we 

calculated the average Euclidean distance between patches of suitable habitat through the 

surrounding matrix (i.e., the average Euclidean distance of all the pixels of unsuitable habitat 

from the nearest edge) to account for patch isolation (after Crooks et al. 2017). Here, large values 

of the average Euclidean distance represented high degrees of patch isolation, and small values 

represented low degrees of patch isolation. The average Euclidean distance was considered 

because this metric does not require a predetermined distance threshold of what constitutes an 

edge, accounts for different shapes of fragments and landscapes patterns and arrangements, 

accounts for the distribution of habitat area (Li and Archer 1997), is comparable across 

landscapes of different extents, and provides stable and readily interpretable information (Crooks 

et al. 2011). Moreover, average Euclidean distance has been shown to be singularly valuable in 

quantifying the relationship between habitat fragmentation and extinction risk of the world’s 

terrestrial mammals (Crooks et al. 2017), which made it highly suitable for our analyses. 

 

The matrix condition as a predictor of extinction risk transitions 

Spatially explicit data on the condition of the matrix, as represented by the extent and 

change over time of high human pressure levels overlapping with the area of unsuitable habitat 



32 

surrounding patches of suitable habitat (after Di Marco et al. 2018), was obtained from the 

recently updated global human footprint maps (Williams et al. 2020). These maps represent the 

most comprehensive global distribution of changing human pressure on the environment at 1 km 

resolution between 2000 and 2013, based on eight pressure layers (Venter et al. 2016): (i) built 

environments; (ii) intensive agriculture; (iii) pasture land; (iv) human population density; (v) 

night-time lights; (vi) roads; (vii) railways; and (viii) navigable waterways, all of which are 

driving the current extinction crisis (Maxwell et al. 2016). Each human footprint map provides a 

single pressure metric ranging from 0 to 50, where a value of 0 represents areas free of any 

human influence (e.g., terrestrial remaining wilderness), values of 4 or below represent areas of 

low human pressure (e.g., pasture lands), and values above 20 represent areas with very high 

pressure levels (e.g., densely populated semi-urban and urban environments).  

In this analysis, we measured the extent of high human footprint values and the change of 

this extent over time (between 2000 and 2013) within areas of unsuitable habitat, using a defined 

human footprint threshold of 3 or above. This threshold was used as it has shown to be the 

strongest predictor of extinction risk transitions in terrestrial mammals (Di Marco et al. 2018b). 

Moreover, this human footprint threshold is associated with the highest declines in mammalian 

movements (Tucker et al. 2018). Based on previous studies (Di Marco et al. 2013, 2018b), we 

used the extent of high human footprint values within the matrix as the extent of high pressure 

levels within species’ ranges has been shown to be more sensitive to predict extinction risk than 

using mean values of human pressure within species’ ranges. We also considered the change in 

the extent of high human footprint values after discarding areas where the human footprint was 

lower in 2013 than in 2000 (assuming no change in these particular areas), as decreases in human 
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pressure levels are likely to take time before having a measurable effect on species threat status, 

particularly for species with a long generation time period (Di Marco et al. 2018b). 

 

Changes in species extinction risk 

We used the IUCN Red List of Threatened Species (IUCN 2012, 2021), the retrospective 

Red List assessments published in Hoffmann et al. (2010), and the IUCN list of genuine changes 

in the conservation status of mammal species (https://www.iucnredlist.org/resources/summary-

statistics) to represent trends in extinction risk of terrestrial mammals. Following the 

classification of extinction risk transitions developed by Di Marco et al. (2015, 2018), we 

classified the species into two main groups, ‘low-risk’ transitions and ‘high-risk’ transitions (Fig. 

2.1). The low-risk group included species that retained a category of least concern, together with 

those species that moved from any higher category of threat to a lower category assessment 

period. The high-risk group included all species that retained a category of threatened or near 

threatened, together with those species that moved from any lower category of threat to a higher 

category over time.  

For our analysis, we classified species into the two extinction risk groups (low-risk 

transitions and high-risk transitions) based on the first and last Red List category registered 

between 1996 and 2020. In order to test the sensitivity of this classification, we also classified all 

species into the two extinction risk groups based on the last two Red List assessments registered 

between 1996 and 2020 (i.e., the second to last and last Red List categories registered during this 

time period). With this classification, however, only two species (0.05% of 4,426 species in our 

sample) changed their extinction risk transition (from a high-risk transition to a low-risk 

transition) compared to that based on the first and last Red List category registered during the 

https://www.iucnredlist.org/resources/summary-statistics
https://www.iucnredlist.org/resources/summary-statistics
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study period. We thus only reported the main results using the first and last Red List category 

registered between 1996 and 2020.  

We excluded species without a defined level of habitat suitability, those not evaluated in 

the Red List, and those categorized as Data Deficient, Extinct and Extinct in the Wild in the last 

Red List assessment reported during the study period, as long as they have not shown a defined 

transition of extinction risk (see Fig. 2.1) along the study period. 

 

Predicting extinction risk transitions 

We used a multivariate Random Forest model to predict extinction risk transitions in 

terrestrial mammals (Fig. 2.1). Random Forest is a non-parametric, tree-based, machine-learning 

technique that produces multiple decision trees using a randomly selected subset of training 

samples and variables to make a prediction (Breiman 2001, Cutler et al. 2007). Due to its limited 

assumptions on data distributions, its high classification stability and performance, and its ability 

to cope well with a large number of potentially correlated predictors and non-linear responses, 

Random Forest is a highly suitable technique for species threat status classification (Murray et al. 

2014). Furthermore, Random Forest modelling has demonstrated superior performance among 

several machine learning techniques tested for the prediction of global extinction risk of 

terrestrial mammals (Bland et al. 2015b), making it ideal for this study. 

In this analysis, we optimized the number of trees to grow and the number of predictors 

sampled for splitting at each node from 3 repeats of 10-fold cross-validation, using 75% of the 

data as training data and 25% as test data. Predictors included: (i) the extent of high human 

footprint values in the matrix; (ii) the extent of high human footprint values in patches of suitable 

habitat; (iii) the change over time of high human footprint values in the matrix; (iv) the change 
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over time of high human footprint values in patches of suitable habitat; (v) the degree of 

fragmentation of suitable habitat; (vi) the degree of isolation between patches of suitable habitat; 

(vii) the proportion of suitable habitat; and (viii) the biogeographic realm in which the species 

can be encountered (see Table 2.1 for a description). Because mammals of greater body size 

usually move farther (Jetz et al. 2004), and diet may influence their movements as a result of 

differences in availability of resource types and foraging cost (McNab 1986, Tucker et al. 2014), 

we decided to include body size and dietary breadth as life-history predictors. We also included 

the reproductive traits, weaning age, and gestation length. Other life-history traits were broadly 

captured by including taxonomic orders. Because the levels of habitat suitability are limited by 

the size of species’ geographic ranges, we did not include species’ range size as a predictor in 

order to avoid potential circularity in the estimation of extinction risk (Purvis et al. 2000).  

 

Table 2.1: Description of the selected variables to predict extinction risk transitions in 

terrestrial mammals. 

Class Variable Description Source 

Pressure High human footprint 

extent in the matrix 

Proportion of unsuitable 

habitat overlapping with high 

human footprint values in 

2000. 

Rondinini et al. 

2011, Williams et al. 

2020 

High human footprint 

extent in patches of 

suitable habitat 

Proportion of suitable habitat 

overlapping with high human 

footprint values in 2000. 

Rondinini et al. 

2011, Williams et al. 

2020 
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High human footprint 

change in the matrix 

Difference in the proportion 

overlap between the area of 

unsuitable habitat and high 

human footprint values during 

2000 and 2013. 

Rondinini et al. 

2011, Williams et al. 

2020 

High human footprint 

change in patches of 

suitable habitat 

Difference in the proportion 

overlap between the area of 

suitable habitat and high 

human footprint values during 

2000 and 2013. 

Rondinini et al. 

2011, Williams et al. 

2020 

Environment Degree of habitat 

fragmentation 

Average of the Euclidean 

distance from the edge to the 

‘core’ (i.e., the interior) of each 

patch of suitable habitat. 

Ripple et al. 1991, 

Rondinini et al. 2011  

Degree of patch 

isolation 

Average of the Euclidean 

distance between patches of 

suitable habitat from the edge 

to the ‘core’ (i.e., the interior) 

of each area of unsuitable 

habitat. 

Crooks et al. 2017 

Proportion of suitable 

habitat 

Proportion of suitable habitat 

within the range of each 

species.  

Rondinini et al. 2011  
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Realm Biogeographic realm in which 

the species can be encountered. 

IUCN 2012, 2021 

Life-history Body mass A generic proxy of species life 

history and energetic 

requirements. 

Smith et al. 2003, 

Jones et al. 2009, 

Tacutu et al. 2013, 

Verde Arregoitia et 

al. 2013, Faurby et 

al. 2018  

Diet Dietary categories: vertebrate 

carnivore ( > 90% vertebrate 

matter ingested), invertebrate 

carnivore ( > 90% invertebrate 

matter ingested), omnivore 

(10-90% animal matter 

ingested or 10-90% plant 

matter ingested), herbivore ( > 

90% plant matter ingested).  

Kissling et al. 2014, 

Wilman et al. 2014, 

Faurby et al. 2018 

Weaning age A proxy of species 

reproductive timing. 

Jones et al. 2009, 

Tacutu et al. 2013 

Gestation length A proxy of species 

reproductive output. 

Jones et al. 2009, 

Tacutu et al. 2013 

Order Species taxonomic order. IUCN 2012 
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We measured the predictive importance of each variable using the mean decrease in 

classification accuracy (MDA) metric (Breiman 2001), which reports the model’s ability to 

correctly classify data if the values of a predictor variable are randomly permuted. Based on this 

metric, we then calculated the relative importance of each variable using the model improvement 

ratio (MIR) metric (Murphy et al. 2010), which scales raw importance scores from 0 to 1. Unlike 

the raw importance scores, the MIR metric is not influenced by the total number of variables and 

is comparable among models. MIR is calculated as [In/Imax], where In is the importance of a given 

variable, and Imax is the maximum model improvement score. We also reported the overall 

performance of the Random Forest model through cross-validation in terms of proportion of 

correctly classified species (accuracy), proportion of correctly classified high-risk species 

(sensitivity), proportion of correctly classified low-risk species (specificity), and the true skill 

statistic (TSS = sensitivity + specificity – 1) (Allouche et al. 2006).  

 

Assessing the influence of the matrix on the importance of fragmentation for predicting 

extinction risk transitions 

To measure the influence of the matrix condition on the importance of habitat 

fragmentation (in terms of the degree of fragmentation and the degree of patch isolation) for the 

prediction of extinction risk transitions, we first defined two broad levels of quality of the matrix, 

‘low-quality’ matrices and ‘high-quality’ matrices, based on the proportion of high human 

footprint values within the matrix of each species. When delimiting the two levels of quality of 

the matrix, the extent of high human footprint values in the matrix of each species was 

discretized into two intervals based on the positive and negative effect that the matrix condition 

had on the probability of high-risk transitions (see Fig. 2.3c). We then built separate Random 
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Forest models for species restricted to such levels of quality of the matrix. Using the MDA 

metric (Breiman 2001) and the MIR metric (Murphy et al. 2010), we measured the relative 

importance of the degree of habitat fragmentation and the degree of patch isolation, including the 

other selected predictors of extinction risk (Table 2.1), from the built Random Forest models. We 

used cross-validated measures of accuracy, sensitivity, specificity, and the true skill statistic to 

evaluate the overall performance of the models (Allouche et al. 2006). We also used Wilcoxon 

rank sum tests to test for statistical differences in the degree of fragmentation and patch isolation 

between low-risk and high-risk species restricted to the defined levels of quality of the matrix. In 

order to determine the effect size of the degree of habitat fragmentation and patch isolation 

between low-risk and high-risk species for each of the levels of quality of the matrix, we used 

Cohen’s d statistic (Cohen 1988). 

 

Sensitivity analysis 

To test the sensitivity of our model, we built additional Random Forest models based on a 

different combination of the levels of habitat suitability to represent the extent of suitable habitat 

patches (high suitability instead of high and medium suitability combined) and the extent of the 

matrix (medium suitability and unsuitable combined instead of unsuitable habitat alone). From 

these models, the relative importance of each variable was quantified using the MDA metric 

(Breiman 2001) and the MIR metric (Murphy et al. 2010). The overall performance of these 

models was reported through cross-validation in terms of accuracy, sensitivity, specificity, and 

the true skill statistic (Allouche et al. 2006). 

All spatial analyses were performed in python using the ArcPy processing module from 

ArcGIS Pro 2.8.2 (ESRI 2021). Statistical analyses were performed in R (R Core Team 2021), 
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using the packages ‘randomforest’ (Liaw and Wiener 2002), ‘caret’ (Kuhn 2008), ‘iml’ (Molnar 

and Schratz 2020), and ‘effsize’ (Torchiano 2017). 

 

Results 

Changes in species extinction risk 

We found that 2,984 (67.4%) terrestrial mammals faced a low-risk transition and 1,442 

(32.6%) a high-risk transition between 1996 and 2020 (Fig. 2.1). A total of 4,124 species 

(93.2%) retained the same Red List category, while 302 (6.82%) changed their category through 

time (Appendix A, Fig. A.1).  

 

Figure 2.1: Classification of species extinction risk transitions based on past and present 

IUCN Red List categories. Low-risk transitions included species that retained a category of 

least concern, together with those species that moved from any higher category of threat to a 

lower category between 1996 and 2020 (a). High-risk transitions included all species that 

retained a category of threatened or near threatened, together with those species that moved from 

any lower category of threat to a higher category between 1996 and 2020 (b). Acronyms refer to 

the IUCN Red List categories, including Least Concern (LC), Near Threatened (NT), Vulnerable 

(VU), Endangered (EN), and Critically Endangered (CR). 
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Predicting transitions in species extinction risk 

We used a Random Forest model for classification (Breiman 2001) to measure the 

performance of an array of pressure, environmental and life-history variables (Table 2.1) for the 

prediction of extinction risk transitions in terrestrial mammals. We found that the degree of 

fragmentation of suitable habitat had higher predictive performance than species life-history 

traits, human pressure variables, and other environmental conditions (Fig. 2.2).  

 

Figure 2.2: Relative importance of selected variables for the prediction of extinction risk 

transitions in terrestrial mammals. Variables are colour-coded according to their broad class 

(human pressure, environment, and life-history). The description of each variable can be found in 

Table 2.1. High levels of the human footprint (HFP) included values of 3 or above. 

 

Interestingly, our results show that the degree of fragmentation, the extent of high human 

footprint values in the matrix, and the degree of patch isolation had higher predictive 

performance than the change in high human footprint values (as defined by increases in high 

human footprint values through time) within suitable habitat and the proportion of suitable 

habitat (Fig. 2.2). This result was supported by a sensitivity analysis where a different 
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combination of the levels of habitat suitability was applied (Appendix A, Fig. A.2a,b). This 

suggests that habitat fragmentation and the matrix condition better predict changes in species 

extinction risk than habitat loss and habitat amount at a global scale. 

Partial dependence plots show that the probability of high-risk transitions is higher with 

an increasing degree of fragmentation (Fig. 2.3a), a decreasing degree of patch isolation (Fig. 

2.3b), and an extent of high human footprint values within the matrix of 100% (Fig. 2.3c). 

 

 

Figure 2.3: Partial dependence plots to show the effect of the degree of habitat 

fragmentation, the degree of patch isolation, and the matrix condition on extinction risk 

transitions in terrestrial mammals. The plots show the probability of high-risk transitions as a 

function of the degree of fragmentation (a), the degree of patch isolation (b), and the extent of 

high human footprint values within the matrix (c). Solid red lines and shading represent fitted 

LOESS curves and 95% credible intervals for the relationships between the probability of high-

risk transitions and each explanatory variable. As partial dependence plots for Boolean response 

variables mirror each other, the probability of low-risk transitions as a function of these variables 

are not depicted in the figure. Values of the degree of fragmentation and the degree of patch 
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isolation were ln-transformed for visual purposes. The degree of fragmentation was inverse-

coded so high values represent high degrees of fragmentation. High values of the degree of patch 

isolation represent high degrees of isolation between patches of suitable habitat. The description 

of each variable is given in Table 2.1. High levels of the human footprint (HFP) included values 

of 3 or above. 

 

Our model showed good overall classification ability during cross-validation, with an 

accuracy of 81.2%. The proportion of correctly classified high-risk transitions (sensitivity = 

60.5%) was lower than the proportion of correctly classified low-risk transitions (specificity = 

90.9%), with a true skill statistic of 0.51.  

The predictive performance of our model did not markedly change compared to the 

model built with a different combination of the levels of habitat suitability (Appendix A, Table 

A.1). Thus, the model is robust to changes in the levels of habitat suitability. 

 

The influence of the matrix condition on the importance of habitat fragmentation for 

predicting extinction risk transitions 

In order to measure the influence of the matrix condition on the importance of 

fragmentation (i.e., the degree of fragmentation and the degree of patch isolation) for the 

prediction of extinction risk transitions, we first discretized the extent of high human footprint 

values within the matrix of each species into two broad levels as a proxy for matrix quality: 

‘low-quality’ matrices and ‘high-quality’ matrices. As the global distribution of the matrix 

condition showed to be uneven in both low-risk and high-risk species (Appendix A, Fig. A.3), 

even at the scale of individual biogeographic realms (Appendix A, Fig. A.4), we defined cutoff 
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values for each of the levels of quality of the matrix based on the positive and negative effect that 

the matrix condition had on the probability of high-risk transitions (Fig. 2.3c). Low-quality 

matrices were therefore represented by species with extents > 84.2% of their matrix overlapping 

with high human footprint values (n = 1,815 low-risk species and 1,027 high-risk species), while 

high-quality matrices by those species with extents < 15.8% of their matrix overlapping with 

high human footprint values (n = 60 low-risk species and 29 high-risk species). We then built 

separate Random Forest models for each level of quality of the matrix in order to compare the 

relative importance of the degree of fragmentation of suitable habitat and the degree of isolation 

of patches of suitable habitat between species with a matrix of low-quality habitat and species 

with a matrix of high-quality habitat.  

We found that the degree of fragmentation and the degree of patch isolation had higher 

relative importance for species with a low-quality matrix (Fig. 2.4a) than that observed for 

species with a high-quality matrix (Fig. 2.4b), with a decrease of 33.3% and 62.5%, respectively. 

Notably, the relative importance of the extent of high human footprint values in the matrix was 

markedly higher for those species with a low-quality matrix than for those with a high-quality 

matrix, with a decrease of 116.4%, suggesting that the lower the quality of the matrix, the higher 

the predictive importance of the matrix for predicting extinction risk transition in terrestrial 

mammals. 
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Figure 2.4: Influence of the matrix condition on the relative importance of selected 

variables for the prediction of extinction risk transitions in terrestrial mammals. Relative 

importance of each predictor for species with a low-quality matrix (a), which included 

proportions > 84.2% of the extent of their matrix overlapping with high human footprint values 

(n = 1,815 low-risk species and 1,027 high-risk species). Relative importance of each predictor 

for species with a high-quality matrix (b), which included proportions < 15.8% of the extent of 

their matrix overlapping with high human footprint values (n = 60 low-risk species and 29 high-
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risk species). Variables are colour-coded according to their broad class (human pressure, 

environment, and life-history). The description of each variable is given in Table 2.1. High levels 

of the human footprint (HFP) included values of 3 or above. 

 

When looking at the difference in the degree of fragmentation and the degree of patch 

isolation between low-risk and high-risk species with a low-quality matrix, we found that both 

variables were significantly higher for those species classified as high-risk (p-values < 0.001; 

Wilcoxon rank sum test, one-sided). We also found that the difference in the degree of 

fragmentation and the degree of patch isolation between low-risk and high-risk species with a 

high-quality matrix was not statistically significant (p-values > 0.05; Wilcoxon rank sum test, 

one-sided). The degree of fragmentation and the degree of patch isolation showed a greater effect 

size between low-risk and high-risk species with a matrix of low-quality habitat, with an 

estimated Cohen’s d of 0.23 and 0.32, respectively (Appendix A, Fig. A.5a,b). This indicates a 

greater effect of both the degree of fragmentation and the degree of isolation between patches of 

suitable habitat on the risk of extinction of those terrestrial mammals with a matrix of low-

quality habitat.   

Our results show that the model for species with a matrix of low-quality habitat had 

higher predictive performance (true skill statistic = 0.57) than the model for species with a matrix 

of high-quality habitat (true skill statistic = 0.36). Our results also show that the classification 

ability was higher in the model for species with a low-quality matrix (accuracy = 0.81) compared 

to that shown in the model for species with a high-quality matrix (accuracy = 0.76). Although the 

proportion of correctly classified high-risk transitions was higher in the model for species with a 

low-quality matrix (sensitivity = 68.4%), relative to that shown in the model for species with a 
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high-quality matrix (sensitivity = 42.9%), the model for species with a low-quality matrix had a 

lower proportion of correctly classified low-risk transitions (specificity = 88.7%) than the model 

for species with a high-quality matrix (specificity = 92.9%). This indicates a higher imbalance 

between the proportion of low-risk species and high-risk species correctly classified in the model 

for species with a high-quality matrix. 

 

Discussion 

Understanding the external conditions under which a species is likely to face an increased 

risk of extinction are necessary to inform conservation policies and management strategies (Di 

Marco et al. 2015). We found that the condition of the matrix, as defined by the extent of high 

human footprint values between patches of suitable habitat, strongly influenced the effects of 

fragmentation on extinction risk transitions of terrestrial mammals. Specifically, we found that 

the degree of fragmentation and the degree of patch isolation had a higher relative importance for 

species with a matrix of low-quality habitat compared to those with a matrix of high-quality 

habitat when determining extinction risk transitions in terrestrial mammals. To the best of our 

knowledge, these findings are the first to demonstrate the extent to which human pressure within 

the matrix alters the importance of fragmentation metrics as predictors of extinction risk 

transitions in terrestrial mammals. These findings are in line with previous studies showing that 

the use of the matrix is among the main determinants of the vulnerability of mammalian 

populations to local extinction in fragmented landscapes (e.g., Laurance 1991, Daily et al. 2003, 

Viveiros de Castro and Fernandez 2004), and support recent findings showing that species-area 

relationships are steeper (i.e., more extinction driven) in forested landscapes with a low-quality 

matrix, and shallower (i.e., less extinction driven) in those forested landscapes with a higher 
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quality matrix (Reider et al. 2018). This suggests that the magnitude of the effects of 

fragmentation depends on the structural similarity between suitable habitat patches and the 

matrix, as also suggested by a growing body of evidence across multiple taxa on a local scale 

(Ewers and Didham 2006, Prevedello and Vieira 2010). 

Our results showed that species with a greater degree of fragmentation, a lower degree of 

patch isolation, and a lower quality matrix within their ranges tended to be at greater risk of 

extinction. This indicates that the persistence of terrestrial mammals depends not only on the 

proportion of suitable habitat and its spatial configuration, but also on the quality of the matrix. 

This pattern may reflect the fact that species occurring in regions with low rates of historical 

disturbance are more likely to be sensitive to fragmentation (Betts et al. 2019), and thus more 

likely to face an increased risk of extinction. That would suggest that those species within the 

high-risk group are mainly concentrated in the tropics, particularly in forested landscapes where 

deforestation continues at a rapid rate (Schipper et al. 2008, Tracewski et al. 2016). In our 

sample, the majority of these species (68.4%) were restricted to the Neotropical (32.0%), 

Afrotropical (34.9%), and Indo-Malay (48.0%) biogeographic realms, which is consistent with 

these findings. 

In our global analysis, the degree of patch isolation refers to the average Euclidean 

distance between patches of suitable habitat across a species’ entire range, rather than local 

dispersal distances within a single landscape. High isolation values can indicate widely separated 

patches—sometimes occurring on different continents—rather than fragmentation of a 

continuous habitat. The loss of any single patch does not necessarily elevate extinction risk if 

other distant patches remain intact. While local-scale studies consistently show that greater 

isolation between patches reduces colonization, limits gene flow, and increases extinction 
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probability (Fahrig 2003, Haddad et al. 2015), larger-scale research reveals more complex, scale-

dependent patterns. For example, variation in the arrangement of habitat patches across broad 

areas can enhance regional diversity (Perrin et al. 2025), and networks of small but widely 

distributed patches may support higher species richness even when total habitat area remains the 

same (Riva and Fahrig 2023). Our finding—that high-risk transitions decreased with increasing 

patch isolation—should therefore be seen as a global-scale effect, where broad geographic 

separation between patches can buffer species against synchronized threats, rather than as 

evidence that isolation is beneficial at local scales. 

In our extinction risk model, some variables had higher predictive performance than 

others. For example, the degree of fragmentation of suitable habitat was shown to be the most 

important predictor of changes in species extinction risk when compared with species life-history 

traits, measures of human pressure, and other environmental conditions. This finding is in line 

with previous extinction risk modelling, showing that the inclusion of the degree of 

fragmentation as a predictor increases the explanatory power of the models (Crooks et al. 2017, 

Lucas et al. 2019). In particular, this result supports recent findings showing that terrestrial 

mammals with a higher degree of fragmentation have smaller ranges, lower proportions of 

suitable habitat, and are at greater risk of extinction (Crooks et al. 2017). 

The second most important predictor of extinction risk transitions was the extent of high 

human footprint values within the matrix (i.e., the condition of the matrix). This result contrasts 

with the findings from previous extinction risk modelling exercises for mammals, where the 

predictive importance of human pressure was found to be lower than life-history traits or 

environmental conditions different from fragmentation (Cardillo et al. 2008, Murray et al. 2014, 

Arregoitia 2016). However, it complements the findings of one recent extinction risk modelling 
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exercise for mammals (Di Marco et al. 2018b), where the extent of high human footprint values 

within species’ ranges had higher predictive importance than species life-history traits, 

environmental conditions (without consideration of habitat fragmentation), and other pressure 

variables. Given that species are not homogeneously distributed throughout their ranges 

(Rondinini et al. 2006, 2011), this result specifically suggests that the condition of the matrix 

surrounding patches of suitable habitat is strongly correlated with extinction risk transitions in 

terrestrial mammals. This may in part be explained by the fact that habitat loss and fragmentation 

have opened up the path to a series of other threat mechanisms through the matrix, such as 

hunting, disease spread, and invasive species (Cardillo et al. 2005, Haddad et al. 2015, Betts et 

al. 2017). It may also be related to the fact that species are increasingly obligated to inhabit 

human-modified landscapes (Watling et al. 2011, Galán-Acedo et al. 2019), many of which have 

a matrix that likely prevents their movement (Tucker et al. 2018) and elevates their mortality 

(Battin 2004) (e.g., by roadkill (Fahrig and Rytwinski 2009) or increasing predation (May and 

Norton 1996, Woinarski et al. 2015)).  

Conflicting results on the effects of fragmentation on biodiversity have arisen from 

studies attempting to separate ‘independent’ effects of habitat loss from those of habitat 

fragmentation (Fahrig 2003). Some studies have argued that the effects of habitat loss are greater 

and more negative (e.g., Fahrig 2013, 2017, 2019, Fahrig et al. 2019), while others have 

demonstrated that the effects due to fragmentation (such as declining patch size, increasing 

habitat isolation, and increasing edge effects) are essentially negative and lasting (e.g., Hanski 

2015, Haddad et al. 2015, Pfeifer et al. 2017, Fletcher et al. 2018). However, in real landscapes, 

habitat loss inevitably causes habitat fragmentation, and both act in synergy with other threats to 

biodiversity (Peres 2001, Laurance and Useche 2009, Côté et al. 2016). Thus, there is little 
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practical value in attempting to separate the effects of habitat loss and fragmentation (Didham et 

al. 2012, Ruffell et al. 2016, Morante‐Filho et al. 2018, Fletcher et al. 2018). Our study does not 

attempt to resolve the current debate as to whether and how habitat fragmentation per se (i.e., the 

spatial arrangement of remaining habitat for a given amount of habitat loss) influences 

biodiversity (Haddad et al. 2015, Fahrig 2017, 2019, Fletcher et al. 2018, Fahrig et al. 2019, 

Miller-Rushing et al. 2019), but our results showed that the degree of fragmentation of suitable 

habitat, the extent of high human footprint values within the matrix, and the degree of isolation 

between patches of suitable habitat were more important predictors of extinction risk transitions 

than the change in high human footprint values (as represented by increases in high human 

pressure levels over time) within patches of suitable habitat and the proportion of suitable 

habitat. This suggests that changes in species extinction risk are primarily determined by the 

fragmentation of habitat and the matrix condition, and secondarily by the loss and the amount of 

habitat within species’ ranges. However, there is also the possibility that the loss of most suitable 

habitat patches had already occurred before the beginning of the study period, resulting in the 

degree of fragmentation, the matrix condition, and the degree of patch isolation being more 

important predictors of extinction risk than habitat loss and habitat amount. 

Although biogeography was not a key parameter for determining extinction risk 

transitions in our models, we found some differences in the way the matrix condition was 

distributed in low-risk and high-risk species among biogeographic realms. The Indo-Malay realm 

represented a particular case, with a highly left-skewed distribution (i.e., towards a higher extent 

of high human footprint values within the matrix) in species classified as low-risk, very similar 

to that shown in high-risk species. With ~87% of terrestrial mammals showing a low-quality 

matrix in the Indo-Malayan realm, this might indicate that species living in the Indo-Malayan 
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realm are relatively more resilient to those human activities included in the human footprint, but 

more vulnerable to other threats (such as overexploitation, relevant in Southeast Asia (Sodhi et 

al. 2004)), as also suggested by others (Di Marco et al. 2018b). The Australasia realm also 

represented a particular case, with an approximately bimodal distribution of the matrix condition 

in low-risk species and a less right-skewed distribution in those classified as high-risk relative to 

that shown in other realms. Interestingly, the Australasia realm showed a lower proportion of 

species with a low-quality matrix (37.7%) when compared to other realms, suggesting that 

species restricted to this realm have relatively lower levels of human activity within their matrix. 

This is perhaps unsurprising given the fact that most recent declines of Australian terrestrial 

mammals have occurred in areas with low human population pressures, where native vegetation 

has not been significantly removed, particularly in the interior deserts and tropical savannas 

(Woinarski et al. 2015). In fact, the decline of most Australian species has been directly related to 

predation by introduced species (such as the feral cat, Felis catus, and the red fox, Vulpes vulpes) 

and changes in fire regimes (May and Norton 1996, Woinarski et al. 2015), which are not 

included in the human footprint. 

Our models were better at correctly classifying low-risk transitions than high-risk 

transitions. This suggests that the external conditions leading to a high-risk transition might be 

more difficult to identify than those leading to a low-risk transition, as also indicated in previous 

studies (Davidson et al. 2009, Murray et al. 2014, Bland et al. 2015b, Di Marco et al. 2015, 

2018b). However, it is important to acknowledge that the exclusion of other variables associated 

with pressure (such as overhunting, disease, invasive species, and climate change) and life-

history traits (such as rarity, dispersal mode, and ranging behavior) could have increased the 
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uncertainty of our predictions, and thus influenced the ability of our models to correctly classify 

high-risk transitions.  

An important next step will be to create a global map by weighting the extent of the 

matrix of the world’s terrestrial mammals with the human footprint in order to highlight those 

matrix habitats with a high number of species and low human pressure levels, and those with a 

high number of species and high human pressure levels. If species threat statuses are considered, 

such an analysis could have the potential to identify where conservation actions need to be 

improved. For example, in those locations where species with an increased risk of extinction 

show a low-quality habitat within their matrix, a land-sparing approach could be effective as it 

maximizes conservation actions on the remaining patches of suitable habitat while concentrating 

agricultural production elsewhere (Green et al. 2005, Law and Wilson 2015, Phalan 2018, 

Balmford et al. 2019). Alternatively, in those locations where species with an increased risk of 

extinction show a high-quality habitat within their matrix, a land-sharing approach would work 

better as it minimizes the impact of agricultural production by maintaining or restoring the 

conservation value of the land already farmed (Perfecto and Vandermeer 2008, Law and Wilson 

2015, Phalan 2018, Balmford et al. 2019).  

Our results indicate that species suffering from greater pressure in their matrix require 

particular conservation attention. Among these species, those with smaller ranges require careful 

management of the areas surrounding their suitable habitat, especially in light of the current and 

future effects of climate and land-use change (Segan et al. 2016). Our results also highlight the 

potential of high-quality matrices to mitigate the negative effects of fragmentation on species 

extinction risk, thus suggesting that in addition to efforts to maintain remaining suitable hábitat 
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(Ferreira et al. 2018, Maron et al. 2018, Di Marco et al. 2019), there is a need for restoration of 

habitats in the matrix. 
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3. Chapter 3: Global comparison of habitat intactness models for predicting extinction 

risk in terrestrial mammals 

Abstract 

The effects of habitat condition on biodiversity are primarily investigated using discrete (patch-

matrix) habitat models that consider habitat fragments as islands embedded in an inhospitable 

matrix. Recently, continuum habitat models, which focus on ecological gradients without 

defining habitat or matrix, have emerged. However, no formal comparison between patch-

matrix, continuum, and hybrid habitat models (which combine characteristics of both) has been 

undertaken globally. Here, we compare the ability of patch-matrix, continuum, and hybrid 

models of habitat intactness to explain the risk of extinction for terrestrial mammals on a global 

scale. We discover that hybrid models outperform both patch-matrix and continuum models of 

habitat intactness in predicting extinction risk, regardless of a species’ habitat specialization. 

Moreover, we find that the magnitude of the relationship between habitat intactness and the 

predicted probability of a species being threatened is stronger when employing hybrid habitat 

models. Our results suggest that combining a patch-matrix designation with a continuous 

representation of habitat condition can improve extinction risk analyses and provide valuable 

insights for conservation efforts. 

 

Introduction 

The traditional characterization of habitat, which views habitat patches as islands 

embedded in a matrix of non-habitat, has shaped how habitat condition has been assessed over 

the past five decades (Ricketts 2001, Watson et al. 2005, Laurance 2008). This binary 

representation of habitat, commonly referred to as the patch-matrix model, has progressively 
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been relaxed with the emergence of new approaches (e.g., Daily et al. 2001, 2003, Green et al. 

2005) that recognize the potential of the matrix to provide resources, refugia, and microclimatic 

conditions for sustaining biodiversity (Fischer and Lindenmayer 2007). Rather than defining 

habitat as isolated patches surrounded by an inhospitable matrix, the continuum model represents 

habitat as a gradient of ecological conditions with varying levels of suitability and connectivity 

(Fischer and Lindenmayer 2007, Brudvig et al. 2017). However, despite the argument that 

combining characteristics of patch-matrix and continuum models to represent habitat—often 

referred to as hybrid models—can better explain species diversity and abundance (Price et al. 

2009), formal comparisons between patch-matrix, continuum, and hybrid habitat models remain 

largely unexplored (Brudvig et al. 2017).  

Species vary in their sensitivity to habitat degradation, and understanding how different 

representations of habitat intactness capture extinction risk is critical for effective conservation 

planning (Henle et al. 2004, Ewers and Didham 2006). Habitat condition—including both its 

current state and recent degradation—is increasingly recognized as a key determinant of species 

persistence (e.g., Fahrig 2001, Betts et al. 2017). Yet no study has systematically compared 

patch-matrix, continuum, and hybrid representations of habitat intactness in their ability to 

explain extinction risk for any animal taxon at a global scale. 

Here, we compare the ability of patch-matrix, continuum, and hybrid models of habitat 

intactness, defined as the degree or extent to which a species’ range remains free of human 

activities or significant human alterations, to predict the risk of extinction for terrestrial mammal 

species globally. We focus our analysis on terrestrial mammals as they are known to be sensitive 

to habitat conditions (Crooks et al. 2017, Ramírez-Delgado et al. 2022) and have often served as 

a focal taxon in extinction risk analyses (Arregoitia 2016). We classified species as ‘habitat 
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generalists’ or ‘habitat specialists’ to recognize that specialized species are particularly 

vulnerable to intactness given their discontinuous distributions, reduced local abundance, and 

sensitivities to anthropogenic disturbances (McKinney and Lockwood 1999, Henle et al. 2004, 

Charrette et al. 2006, Devictor et al. 2008). We expected patch-matrix models to outperform 

continuum models in predicting extinction risk for habitat specialists because their food and 

other resources are often patchy in space and time (Devictor et al. 2008, Arroyo‐Rodríguez et al. 

2020). Conversely, we expected that continuum models would be better than patch-matrix 

models at predicting extinction risk for habitat generalists because of their propensity to use a 

broader range of habitat types (McKinney and Lockwood 1999, Henle et al. 2004, Devictor et al. 

2008). Given that hybrid models standardize data inputs across the two model structures, we 

expected hybrid models to provide the most accurate and reliable predictions of extinction risk 

for both habitat generalists and habitat specialists. 

 

Methods 

Species-level data 

We used the International Union for Conservation of Nature (IUCN) Red List (IUCN 

2021) to classify species as threatened or non-threatened. Threatened species included species 

categorized as ‘Vulnerable,’ ‘Endangered’ or ‘Critically Endangered,’ whereas non-threatened 

species included those categorized as ‘Least Concern’ or ‘Near Threatened.’ Species categorized 

as ‘Data Deficient,’ ‘Extinct in the wild,’ and ‘Extinct’ on the Red List were excluded from our 

analyses. Additionally, we classified species as ‘habitat generalist’ or ‘habitat specialist’ based 

on the information available from the Level 1 IUCN Red List habitat classification scheme 

(IUCN 2021). Habitat generalists included species that used more than one habitat type as 
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suitable habitat, whereas habitat specialists included all species that used only one habitat type as 

suitable habitat. Consistent with previous extinction risk analyses (Purvis et al. 2000, Cardillo et 

al. 2008), we used species’ geographic ranges from the IUCN Red List (IUCN 2021) and 

selected range polygons where the presence of each species was classified as ‘Extant’ or 

‘Probably Extant’. Our final dataset retained 4,774 out of 5,787 extant terrestrial mammals, 

representing 82.5% of all species in the group (IUCN 2021). 

 

Human footprint  

We used the recent release of the global human footprint (HFP) maps for the years 2000 

and 2013 (Williams et al. 2020) to represent the extent and trends in habitat intactness for each 

species, using a patch-matrix (Fig. 3.1b), continuum (Fig. 3.1c), and hybrid (Fig. 3.1d) model. 

The HFP maps provide a 1-km spatial resolution measure of cumulative human pressure ranging 

from 0 to 50 based on eight pressure layers (Venter et al. 2016): (i) built environments; (ii) 

intensive agriculture; (iii) pastureland; (iv) human population density; (v) night-time lights; (vi) 

roads; (vii) railways; and (viii) navigable waterways. Areas free of any human influence (e.g., 

terrestrial remaining wilderness) are represented by an HFP value of 0, those with low human 

pressure (e.g., pasture lands) by HFP values of 4 or below, and those with very high-pressure 

levels (e.g., densely populated semi-urban and urban environments) by HFP values above 20. 
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Figure 3.1: An example of habitat intactness models used to predict species extinction risk. 

(a) This example is based on the geographic range size (polygon delimited in black) of the 

western gorilla (Gorilla gorilla). (b) The patch-matrix model illustrates discrete patches of intact 

habitat surrounded by an ‘inhospitable’ matrix. (c) The continuum model depicts a gradient of 

habitat intactness, ranging from intact habitats (in blue) to degraded habitats (in red). (d) The 

hybrid model combines characteristics of patch-matrix and continuum models, representing 

discrete habitat patches and a gradient of habitat intactness within these patches, which is 

influenced by the matrix condition. 
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Patch-matrix model as a predictor of extinction risk 

We represented habitat intactness as patch-matrix models (Fig. 3.1b) by quantifying the 

proportion of each species’ range overlapping with HFP levels lower than 3. This threshold was 

used under the assumption that HFP values < 3 corresponded to intact habitat patches and HFP 

values ≥ 3 to areas of unsuitable or matrix habitat. We used this HFP threshold because the 

extent of low human footprint levels (i.e., HFP values < 3 out of 50) within a species’ range is 

among the strongest predictors of extinction risk in terrestrial mammals (Di Marco et al. 2018b). 

Furthermore, this HFP threshold is strongly associated with the greatest declines in mammalian 

movements (Tucker et al. 2018) and has been used to define intact areas in previous work 

(Watson et al. 2016, Jones et al. 2018, Beyer et al. 2020, Mokany et al. 2020, Ward et al. 2020, 

Williams et al. 2020, O’Bryan et al. 2021). Additionally, we quantified the decrease in the 

proportional overlap between each species’ range and low HFP levels from 2000 to 2013 to 

account for the reduction in habitat intactness. We discarded areas where the extent of low HFP 

values was lower in 2000 than in 2013, assuming no change in these areas. We only accounted 

for increases in HFP values as decreases in pressure levels are likely to take time before having a 

measurable effect on species conservation status, particularly for species with long generation 

times (Di Marco et al. 2018b).  

 

Continuum model as a predictor of extinction risk 

We represented habitat intactness as a continuum model (Fig. 3.1c) for each species using 

the metric of habitat intactness proposed by Beyer et al. (2020). This metric integrates habitat 

area, habitat quality, and habitat fragmentation into a single continuous variable, all of which 

influence the ability of a given habitat to support biodiversity (Ovaskainen and Hanski 2003, 
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Fischer and Lindenmayer 2007, Saura and Rubio 2010, Hanski et al. 2013, Betts et al. 2017). 

This metric provides information about the contribution of each cell to the overall intactness of a 

spatial feature (e.g., a species’ geographic range) based on an exponential function (𝑤𝑖 =

𝑒𝑥𝑝(−𝛾𝐻𝐹𝑃𝑖)) that transforms the HFP to quality (Appendix B, Supplementary methods B.1). 

The habitat intactness metric ranges from 0 to 1, where higher values indicate intact habitats and 

lower values indicate increasing levels of habitat degradation. The contribution of each cell to 

intactness (𝑄𝑖
′) is given by:  

 

𝑄𝑖
′ =

∑ (𝑤𝑖𝑤𝑗)𝑧𝑒𝑥𝑝(−𝛽𝑑𝑖𝑗)𝑗∈𝑀𝑖

∑ 𝑒𝑥𝑝(−𝛽𝑑𝑖𝑗)𝑗∈𝑀𝑖

                                                                                                         (1) 

 

where 𝑑𝑖𝑗 is the distance between cell 𝑖 and 𝑗 (in km), 𝑀𝑖 is the set of cells falling with a radius 

of cell 𝑖 that corresponds to the 99.5% quantile of the exponential distribution (here, 26.5 km), 𝑧 

is an exponent that scales the product to two quantiles, 𝑤 is a measure of the quality of the cell in 

the range 0–1, and 𝛽 is a parameter that determines how the combined value of pairs of cells 

diminishes as a function of the distance between them. Following Beyer et al. (2020), we used a 

value of 𝑧 = 0.5 to ensure that the combined weight (𝑤𝑖𝑤𝑗)𝑧 was directly proportional to the 

weight 𝑤𝑖 when 𝑖 = 𝑗 (i.e., 𝑤𝑖 = (𝑤𝑖𝑤𝑗)𝑧), and a value of 𝛽 = 0.2, which corresponded to a 50% 

penalty at a separation of 5 km and a 95% reduction of 15 km.  

We measured the percentile distribution (i.e., 5th, 10th, 50th, 90th, and 95th percentiles) 

of values from the habitat intactness metric within each species’ range to represent habitat 

intactness as continuum models. We selected the most explanatory percentile of habitat 

intactness for both habitat generalists and habitat specialists to compare the continuum model 

with the patch-matrix and hybrid models in predicting extinction risk (see Statistical analysis; 
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Appendix B, Fig. B.1). Additionally, we measured the change in the selected percentiles of 

habitat intactness between 2000 and 2013. As with the patch-matrix model, we discarded areas 

where habitat intactness values were lower in 2000 than in 2013, assuming no change in these 

areas.  

 

Hybrid model as a predictor of extinction risk 

We represented species’ habitat intactness as hybrid models by calculating the percentile 

distribution of values from the habitat intactness metric within relatively intact habitat patches 

(i.e., HFP values < 3) across each species’ range (Fig. 3.1d). We selected the most explanatory 

percentile for both habitat generalists and specialists to compare the hybrid model’s performance 

with the patch-matrix and continuum habitat models in predicting extinction risk (see Statistical 

Analysis; Appendix B, Fig. B.1). Additionally, we measured the change in the selected 

percentiles of the hybrid model between 2000 and 2013. As with the continuum model, we 

discarded areas where habitat intactness values were lower in 2000 than in 2013, assuming no 

change in these areas. 

The patch-matrix, continuum, and hybrid models of habitat intactness were obtained 

through geospatial analyses conducted in Python, using the ArcPy processing module from 

ArcGIS Pro (ESRI 2022). 

 

Statistical analysis 

We used mixed-effects logistic regression to model extinction risk (threatened or not 

threatened species) as a function of habitat intactness derived from the patch-matrix, continuum, 

and hybrid models. Measures of habitat intactness were highly correlated (r > |0.7|; Appendix B, 
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Fig. B.2); thus, each regression model tested one model of habitat intactness while controlling 

for the effects of other variables (Table 3.1) known to influence extinction risk (Cardillo et al. 

2005, 2008, Di Marco et al. 2014b, Arregoitia 2016). Consistent with other extinction risk 

analyses (Betts et al. 2017, Pillay et al. 2022), we fit separate regression models to assess 

differences in habitat specialization (i.e., habitat generalists versus habitat specialists). Following 

previous work (Betts et al. 2017, Ripple et al. 2017, Lucas et al. 2019), we included taxonomic 

orders as random effects to broadly control for phylogenetic non-independence of the 

observations. All extinction risk models were fit using the generalized linear mixed-effects 

model (glmer) function from the lme4 package in R (Bates et al. 2015, R Core Team 2023). 

These models included the same number of predictors (see Table 3.1) to ensure a consistent basis 

for comparison.  

 

Table 3.1: Description of variables used to predict species extinction risk. We selected the 

most explanatory percentile from our continuum and hybrid models of habitat intactness to 

compare how patch-matrix, continuum, and hybrid models predict species extinction risk. 

 (see Appendix B, Fig. B.1). 

Variable Description Source 

Patch-matrix model Proportion of a species’ range overlapping with 

areas of low human footprint (HFP < 3) in 

2000. 

Di Marco et al. 2018, 

Williams et al. 2020 

Reduction in the 

patch-matrix model 

Reduction in the proportional overlap between a 

species’ range and areas with low human 

footprint (HFP < 3) from 2000 to 2013. 

Di Marco et al. 2018, 

Williams et al. 2020 
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Continuum model Percentile distribution (5th, 10th, 50th, 90th, 

and 95th percentiles) of habitat intactness 

values within a species’ range in 2000. 

Beyer et al. 2020, 

Williams et al. 2020 

Reduction in the 

continuum model 

Reduction in the percentile distribution (5th, 

10th, 50th, 90th, and 95th percentiles) of habitat 

intactness values within a species’ range 

between 2000 and 2013. 

Beyer et al. 2020, 

Williams et al. 2020 

Hybrid model Percentile distribution (5th, 10th, 50th, 90th, 

and 95th percentiles) of habitat intactness 

values within relatively intact habitat patches 

(HFP < 3) across a species’ range in 2000. 

Beyer et al. 2020, 

Williams et al. 2020 

Reduction in the 

hybrid model 

Reduction in the percentile distribution (i.e., 

5th, 10th, 50th, 90th, and 95th percentiles) of 

habitat intactness values within relatively intact 

habitat patches (HFP < 3) across a species' 

range from 2000 to 2013. 

Beyer et al. 2020, 

Williams et al. 2020 

Order A species’ taxonomic order. IUCN 2021 

Range size Area in square kilometers of a species’ 

distribution. 

IUCN 2021 

Gestation length A proxy for a species’ reproductive output. Soria et al. 2021 

Weaning age A proxy for a species’ reproductive onset. Soria et al. 2021 
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Assessing model performance 

We used the area under the receiver operating characteristic curve (AUC) metric to assess 

the predictive performance of our extinction risk models. This metric reflects true positive rates 

as a function of false positive rates for a binary classifier (Swets 1988, 2014). We used a 

spatially blocked cross-validation scheme to calculate AUC values for models of extinction risk 

for both habitat generalists and habitat specialists. We used this method because it accounts for 

entire regions as hold-out datasets, reducing the positive effects of dependency on model 

performance metrics (Bahn and McGill 2013, Cazalis et al. 2022). Additionally, we utilized a 

ten-fold cross-validation scheme for comparison. For the spatial blocking approach, the 

probability of a species being threatened was predicted for each of six biogeographic realms 

(Afrotropic, Australasia, Indomalayan, Nearctic, Neotropic, and Palearctic), with the model fit 

from all other realms. We only retained those species with the majority (>50%) of their 

distributions within a realm based on the biogeographic classification of the world proposed by 

(Dinerstein et al. 2017). We pooled species from the Oceania realm into the Australasia realm 

because the Oceania realm contained only eight species in our dataset. Following Swets (1988), 

we considered models with AUC values of 0.5–0.7 as being ‘low accuracy,’ those ranging 

between 0.7 and 0.9 as ‘useful applications’, and those with values greater than 0.9 as being 

‘high accuracy.’ 

 

Sensitivity analysis 

Species designated as threatened due to small geographic range (i.e., those assessed 

solely under IUCN Red List Criterion B) can introduce circularity in extinction risk analyses 

(Cardillo et al. 2005). Thus, we conducted a sensitivity analysis in which we excluded only 
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species classified as threatened under Criterion B alone. This resulted in the exclusion of 242 

habitat generalists and 281 habitat specialists. We then compared results from this reduced 

dataset to those obtained using the full dataset, which included 744 habitat generalists and 486 

habitat specialists classified as threatened, and 2,667 habitat generalists and 877 habitat 

specialists classified as non-threatened. 

 

Results 

Overall, our extinction risk models performed well for both habitat generalists and habitat 

specialists (Appendix B, Fig. B.3). Under a spatially blocked cross-validation scheme, models 

that included hybrid representations of habitat intactness—along with their temporal decline—

demonstrated the highest predictive performance, with an average AUC of 0.83 (95% CI: 0.78–

0.88) for habitat generalists and 0.82 (95% CI: 0.75–0.89) for habitat specialists. Ten-fold cross-

validation yielded similar results, with hybrid-based extinction risk models achieving an average 

AUC of 0.85 (95% CI: 0.82–0.87) for habitat generalists and 0.83 (95% CI: 0.81–0.86) for 

habitat specialists.  

Our results were not substantially altered after excluding threatened species assessed 

solely under Criterion B (Figs. B4, B5), indicating the robustness of extinction risk models to 

this sensitivity analysis. However, for habitat generalists, models using patch-matrix and 

continuum representations of habitat intactness, as well as their temporal decline, showed 

increased AUC values with non-overlapping confidence intervals. This suggests that the 

exclusion of threatened species assessed solely under Criterion B may partially influence model 

performance when habitat condition is represented using patch-matrix or continuum approaches. 



67 

In contrast, extinction risk models based on hybrid representations remained consistent across all 

analyses, highlighting their value for extinction risk assessments. 

We found a statistically significant negative association between the risk of extinction 

and the patch-matrix, continuum, and hybrid models of habitat intactness for both habitat 

generalists (Fig. 3.2a) and habitat specialists (Fig. 3.2b). This association was stronger when 

habitat intactness was represented by hybrid models, followed by continuum models. 

Additionally, we found that, regardless of the habitat model, the effect of intactness on the risk of 

extinction was stronger for habitat specialists. These results remained consistent when we 

excluded threatened species that met IUCN Red List criterion B alone (Appendix B, Fig. B.6), 

demonstrating that a simple circular relationship between predictor and response variable did not 

influence our findings. 
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Figure 3.2: Effects of three habitat intactness models (a, b) and their temporal reduction (c, 

d) on extinction risk for terrestrial mammals classified as habitat generalists and habitat 

specialists. Each variable is colour-coded according to the habitat model (patch-matrix, 

continuum, or hybrid model) it represents. Effect sizes were estimated while holding other 

variables known to influence extinction risk (see Table 3.1) at their mean. All variables were 

standardized (z-transformed) before analysis to ensure comparable results. Error bars represent 

95% confidence intervals. The statistical significance of the coefficients is indicated by the 

absence of overlap between their confidence intervals and zero (dashed green line). Acronyms: 

patch-matrix model (PMM), continuum model (CM), hybrid model (HM), reduction in the 
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patch-matrix model (RPMM), reduction in the continuum model (RCM), and reduction in the 

hybrid model (RHM). 

 

Our results reveal a statistically significant association between extinction risk and the 

reduction in habitat intactness over time, exclusively when using continuum models for habitat 

generalists (Fig. 3.2c) and patch-matrix models for habitat specialists (Fig. 3.2d). This 

association lost significance for habitat generalists but remained statistically significant for 

habitat specialists after excluding threatened species meeting IUCN Red List criterion B alone 

(Appendix B, Fig. B.6). These findings support our initial expectations, indicating that habitat 

specialists are particularly at risk when the size of intact habitat patches decreases over time. 

Notably, our results show that the decline in the predicted probability of being threatened 

was steepest under hybrid models (Fig. 3.3a,b). This suggests that hybrid models of habitat 

intactness more accurately reflect how small reductions in intactness can lead to rapid increases 

in extinction risk. This result was consistent for both habitat generalists (Fig. 3.3a) and 

specialists (Fig. 3.3b), although specialists showed a comparatively greater probability of being 

threatened when their ranges contained patches with the lowest intactness. 
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Figure 3.3: Predicted probabilities of a species being threatened as a function of three 

habitat intactness models for both habitat generalists (a) and habitat specialists (b). 

Predicted probabilities were estimated while holding other variables known to influence 

extinction risk (see Table 3.1) at their mean. Variables representing patch-matrix, continuum, 

and hybrid models were back-scaled to improve results interpretability. Shaded portions 

represent 95% confidence intervals. 

 

Discussion 

Habitat models are fundamental for understanding the impact of human activities on 

biodiversity, and for informing conservation policies and management strategies (Fischer and 

Lindenmayer 2006, Brudvig et al. 2017). We found that, regardless of a species’ habitat 

specialization, hybrid models most accurately predicted extinction risk for terrestrial mammals 
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when comparing patch-matrix, continuum, and hybrid representations of habitat intactness on a 

global scale. These results underscore the untapped potential of conceptual habitat models— 

particularly hybrid approaches—for improving extinction risk assessments at broad spatial 

scales. Our findings are consistent with a previous study showing broad support for hybrid 

approaches (Brudvig et al. 2017), which reinforces the suitability of hybrid models for 

conceptualizing and interpreting the effects of habitat intactness on biodiversity. 

Although these frameworks have often been described as conceptual landscape models 

(e.g., Price et al. 2009, Brudvig et al. 2017), we apply them in a species-specific context and 

refer to them as models of habitat intactness. This distinction reflects our focus on quantifying 

the condition of habitat within each species’ range, rather than characterizing landscape structure 

more broadly. Our interpretation aligns with Fischer and Lindenmayer (2006, 2007), who 

conceptualized these models as tools to understand how species use habitat across modified 

environments. Given that species differ widely in their sensitivity to habitat degradation (Henle 

et al. 2004, Ewers and Didham 2006), understanding how different representations of intactness 

influence extinction risk is critical for anticipating biodiversity loss. 

Contrary to our expectations, we found that continuum models were better than patch-

matrix models at predicting extinction risk for habitat specialists. One plausible explanation for 

this finding is that some human-modified areas can provide suitable habitats and act as a buffer 

mechanism against extinction not only for habitat generalists but also for habitat specialists, 

particularly when these areas exhibit structural similarities to their preferred habitat. This notion 

is supported by previous studies demonstrating the conservation potential of well-managed 

production landscapes, where many habitat specialists can persist (e.g., Daily et al. 2001, 2003, 

Benton et al. 2003, Hole et al. 2005). 
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In our study, using the HFP and its associated metrics of habitat intactness provided a 

unique opportunity to test the relationship between conceptual habitat models and extinction risk. 

However, the exclusion of variables associated with pressure not captured by the HFP—such as 

biological invasions, overexploitation, and climate change—could have limited the predictive 

success of our models. Considering the inherent challenge of accurately mapping these 

influential variables (Belote et al. 2020), we acknowledge this limitation. 

Our results suggest that the choice of habitat model can influence the empirical 

relationship between habitat intactness and extinction risk. For example, we found that the 

probability of a species being threatened was notably greater under conditions of lower habitat 

intactness when represented by the hybrid model rather than the patch-matrix model, regardless 

of a species’ habitat specialization. This finding suggests that conservation priorities should be 

focused not only on minimizing human disturbances within relatively intact habitat patches but 

also on enhancing the structural similarity between intact habitat and the surrounding matrix. 

This approach to managing the matrix habitats aligns with a recent study showing that high-value 

biodiversity habitats in both intact and highly modified regions require focused conservation 

commitments and actions to halt ongoing extinctions (Mokany et al. 2020). 

Our results indicate that habitat specialists were especially vulnerable to the reduction in 

intactness when modeled using the patch-matrix approach, even after excluding threatened 

species assessed solely under criterion B. This suggests that including the temporal reduction of 

habitat intactness as a patch-matrix model has the potential to enhance model performance when 

predicting extinction risk, particularly for habitat specialists.  

Our findings reveal a statistically significant negative relationship between habitat 

intactness and extinction risk across our patch-matrix, continuum, and hybrid models, with non-
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threatened species likely to become threatened if current rates of the HFP persist into the future 

(Williams et al. 2020, Mu et al. 2022). These results point toward the possibility of future work 

to use our habitat models to predict extinction risk under alternative global scenarios of 

socioeconomic growth (Watson and Venter 2019). However, undertaking such an endeavor 

would require generating future projections of the HFP and predicting shifts in species 

distribution in response to climate and land-use changes (Visconti et al. 2016, Beyer and Manica 

2020). 

Regardless of a species’ habitat specialization, we found that terrestrial mammals are 

more likely to be threatened if their ranges contain habitat patches with decreasing structural 

intactness. These results may be attributed to the combined impact of habitat loss and 

degradation, which indirectly give rise to additional threats such as hunting, disease spread, 

selective logging, wildfires, and invasive species (Barlow et al. 2016, Betts et al. 2017). This 

indicates that the ability of intact habitat patches to support biodiversity gradually decreases with 

the increasing intensity of human pressure around them, highlighting that in addition to efforts to 

minimize human disturbance, there is a need for targeted management strategies in the 

surrounding matrix. 
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4. Chapter 4: Mapping the conservation potential of the matrix for terrestrial 

mammals 

Abstract 

Conservation strategies have long prioritized primary habitats, often overlooking the matrix—the 

surrounding areas of lower habitat suitability—where many species may still persist. This 

oversight can compromise species persistence and ecological connectivity, potentially 

undermining long-term biodiversity conservation. Here, we present the first global assessment of 

species richness within the matrix for terrestrial mammals. Using high-resolution habitat maps 

for 5,439 species, we identify species-rich matrix areas, where species richness is greater than in 

suitable habitats, and delineate matrix-based richness hotspots—defined as the top 5% of grid 

cells with the highest richness values within these areas—for all mammals, declining mammals, 

and threatened mammals. We found that species-rich matrix areas cover 12% of Earth’s 

terrestrial surface, yet matrix hotspots occupy just 1%. Importantly, over half of terrestrial 

mammals potentially occur in these matrix hotspots. Notably, hotspots defined solely by 

threatened mammals contain nearly as many species as all hotspot types combined. Matrix areas 

identified as having high conservation potential—based on overlapping richness hotspots—are 

primarily concentrated in tropical strongholds such as the Amazon Basin, Colombian Tropical 

Andes, Brazilian Atlantic Forest, and Albertine Rift. Nearly half of these areas face intense 

human pressure and remain outside protected or conserved area networks, suggesting they 

represent important opportunities for biodiversity conservation. Our results highlight the critical 

importance of integrating the matrix into global biodiversity conservation strategies. 
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Introduction 

Industrial-scale human activities have transformed between 75% and 95% of Earth’s ice-

free land surface (Venter et al. 2016, Ellis et al. 2021, Ellis 2021), leading to increasingly 

fragmented landscapes where natural ecosystems are embedded within human-modified 

environments (Perfecto and Vandermeer 2008). As a result, many species are now confined to—

or must frequently move through—landscapes dominated by agriculture, urbanization, and other 

forms of human land use (Tucker et al. 2018, Kremen and Merenlender 2018, Galán-Acedo et al. 

2019, Torres-Romero et al. 2020, Britnell et al. 2023, Zhang et al. 2024). These large-scale 

transformations have been widely recognized as the primary drivers of an accelerating 

biodiversity crisis (Newbold et al. 2015, Maxwell et al. 2016, Jaureguiberry et al. 2022), with 

extinction rates estimated to be tens to thousands of times higher than historical background 

levels (Barnosky et al. 2011, Pimm et al. 2014, De Vos et al. 2015, Ceballos et al. 2015). As 

habitat loss and fragmentation continue to intensify, the capacity of species to survive beyond 

primary habitats—natural and semi-natural areas characterized by minimal human disturbance 

and high ecological integrity—is emerging as a key determinant of biodiversity persistence in the 

Anthropocene (Gardner et al. 2009, Prevedello and Vieira 2010, Watling et al. 2011). 

The areas surrounding primary habitats—often referred to as the matrix—have 

traditionally been treated as unsuitable or ecologically irrelevant (MacArthur and Wilson 1967, 

Haila 2002). However, a growing body of research challenges this view, demonstrating that the 

matrix can either buffer or exacerbate the impacts of habitat loss and fragmentation, depending 

on their quality, structure, and spatial configuration (Ricketts 2001, Prugh et al. 2008, Prevedello 

and Vieira 2010, Watling et al. 2011, Driscoll et al. 2013, Ramírez-Delgado et al. 2022). High-

contrast matrices, such as intensive agriculture or urban development, can increase isolation and 
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mortality risk (Battin 2004), whereas low-contrast matrices, like agroforestry systems or 

secondary forests, can facilitate movement, reduce edge effects, and supplement habitat 

resources (Daily et al. 2003, Perfecto and Vandermeer 2008). Despite this growing recognition, 

global conservation strategies remain largely focused on primary habitats (Margules and Pressey 

2000, Brooks et al. 2006, Gibson et al. 2011, Martin et al. 2012, Watson et al. 2018a, Di Marco 

et al. 2019), often overlooking the ecological value and conservation potential of the surrounding 

matrix (Prugh et al. 2008, Franklin and Lindenmayer 2009, Prevedello and Vieira 2010, Kremen 

and Merenlender 2018, Arroyo‐Rodríguez et al. 2020). This narrow focus limits our ability to 

identify conservation opportunities, particularly in human-modified landscapes where many 

species now persist (Tucker et al. 2018, Kremen and Merenlender 2018, Galán-Acedo et al. 

2019, Torres-Romero et al. 2020, Britnell et al. 2023, Zhang et al. 2024). 

Here, we present a global assessment of terrestrial mammal species richness within the 

matrix, defined as areas within a species' geographic range but outside its suitable habitat. We 

focused on terrestrial mammals because of the availability of consistent, species-level habitat 

data (Lumbierres et al. 2022b). Using Area of Habitat (AOH) maps at 100-m spatial resolution 

for 5,439 species (Lumbierres et al. 2022b) and geographic range maps from the International 

Union for Conservation of Nature (IUCN 2024), we mapped species richness across suitable 

habitats and the matrix. AOH maps delineate suitable habitat by combining species-specific 

ecological requirements, such as elevation range, land-cover type, and known habitat 

associations (Rondinini et al. 2011, Brooks et al. 2019, Lumbierres et al. 2022b). However, AOH 

maps assume that species distributions strictly align with areas identified as suitable, potentially 

overlooking occurrences in suboptimal or transitional habitats, microhabitat variations, or 

species’ ecological plasticity (Rondinini et al. 2011, Lumbierres et al. 2022b). This limitation 
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may underestimate the actual extent of species’ habitat use and their ability to persist in or utilize 

areas classified as unsuitable or marginal. We therefore identified species-rich matrix areas, 

defined here as locations with disproportionately greater richness of terrestrial mammals 

compared to suitable habitats. Based on IUCN Red List assessments (IUCN 2024), we delineated 

richness hotspots within these species-rich matrix areas for three groups: all mammals, mammals 

with declining population trends, and mammals with threatened status. By overlapping these 

hotspots, we classified matrix areas as having high, moderate, or low conservation potential and 

further assessed them in terms of human pressure (Gassert et al. 2023) and conservation 

coverage (UNEP-WCMC and IUCN 2023). Through this mapping, we identified matrix areas as 

critical yet underrecognized components of global conservation strategies, where habitat 

restoration or requalification efforts could deliver significant benefits to terrestrial mammal 

conservation. 

 

Methods 

Species area of habitat 

The extent of suitable habitat and matrix areas for each terrestrial mammal was derived 

from AOH maps developed by Lumbierres et al. (2022b). These maps, created at a 100-m spatial 

resolution for the year 2015, delineate suitable habitat areas within each species’ geographical 

range by integrating species-specific habitat preferences and elevational limits from IUCN Red 

List data, as well as high-resolution land cover data (Lumbierres et al. 2022a, b). Validation 

against known occurrence points was possible for only a subset of terrestrial mammal species 

(8% of those mapped), owing to the limited availability of high-accuracy point locality data 

(Lumbierres et al. 2022b). Within this subset, ~95% of AOH maps performed better than random 
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within species’ ranges, indicating broad consistency between mapped suitable habitat and 

observed occurrences. While this performance threshold represents a minimum benchmark rather 

than a high predictive accuracy metric, the maps provide a consistent and spatially explicit basis 

for global-scale biodiversity assessments, making them well suited for the aims of this study. 

Given that AOH maps only capture suitable habitat for each species, the extent of the 

matrix was defined using species range maps from the IUCN Red List (IUCN 2024). Following 

established criteria (IUCN 2020, Lumbierres et al. 2022b), we selected polygons classified as 

‘Extant’ or ‘Probably Extant’ and labeled as ‘resident,’ ‘Reintroduced (resident),’ or ‘Assisted 

Colonisation (resident)’. Pixels outside suitable habitat (as defined by AOH maps) but within the 

selected range polygons were classified as unsuitable or matrix areas. 

To ensure consistency between the AOH maps and the range data, we excluded 41 AOH 

maps from the initial dataset of 5,481. These exclusions resulted from taxonomic updates, spatial 

mismatches between AOH maps and range maps, changes in species range classifications, and 

cases where AOH maps lacked corresponding range data. As a result, our final dataset included 

5,439 species, representing about 94% of the world’s extant terrestrial mammals (IUCN 2024). 

From this final dataset, we then delineated suitable habitat and matrix areas within each 

species’ range. To minimize the influence of potential inconsistencies in the AOH data, small 

contiguous groups of pixels (<4 adjacent pixels of the same class) that may have resulted from 

inconsistencies in the underlying datasets of the AOH maps were removed. These small groups 

were replaced with the value of the largest and nearest contiguous group, determined using the 

eight-neighbor rule. In line with previous work (Crooks et al. 2011, 2017, Ramírez-Delgado et 

al. 2022), this process minimized the influence of isolated pixel groups and enhanced the 

computational efficiency of our analyses. 
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Species richness maps 

We generated species richness maps for matrix areas by aggregating pixels classified as 

‘unsuitable’ for each species of terrestrial mammal. Richness maps were created for three 

groups: all mammals (Appendix C, Fig. C.1a), mammals with declining population trends 

(Appendix C, Fig. C.1b), and mammals with threatened status (Appendix C, Fig. C.1c). 

Conservation status and population trend data were sourced from the IUCN Red List (IUCN 

2024). Species listed as ‘Vulnerable,’ ‘Endangered,’ or ‘Critically Endangered’ were categorized 

as threatened, while those with a population trend labeled ‘Decreasing’ were categorized as 

declining. 

In addition to the matrix richness maps, we generated a suitable habitat richness map for 

the all-mammal group (Appendix C, Fig. C.4). This map served as a broad reference for 

identifying species-rich matrix areas, as detailed in the following section. 

 

Species-rich matrix areas 

Using the all-mammal group, we calculated pixel-level species richness separately for 

matrix areas (Appendix C, Fig. C.1a) and suitable habitats (Appendix C, Fig. C.2), generating 

two global richness maps. For each pixel, we computed a richness ratio by dividing the matrix 

richness value by the suitable habitat richness value at the same spatial location. Pixels with 

richness ratios greater than 1, indicating greater richness in the matrix relative to suitable 

habitats, were classified as species-rich matrix areas. These areas represented locations in the 

matrix with disproportionately greater species richness compared to suitable habitats. We then 

extracted species richness values within these species-rich matrix areas from matrix-based 
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richness maps for each species group (i.e., all mammals, mammals with declining population 

trends, and mammals with threatened status). 

 

Hotspots of species richness 

Following previous studies (e.g., Orme et al. 2005, Ceballos and Ehrlich 2006, Jenkins et 

al. 2013), we identified hotspots of species richness within species-rich matrix areas by selecting 

the top 5% of pixels with the highest richness values for each species group. Pixels were 

classified as hotspots only if they formed contiguous clusters with a minimum area of 10 km2, a 

conservative threshold broadly aligned with generalized minimum-area guidelines suggested to 

support mammal assemblages in global biodiversity assessments (Verboom et al. 2014). We used 

an iterative threshold optimization process to systematically refine the richness threshold, 

ensuring that the final hotspot coverage closely approximated 5% for each species group while 

meeting clustering requirements. To test the sensitivity of our results, we also evaluated 

alternative thresholds using the top 2.5% and top 10% of pixels. 

 

Levels of conservation potential within matrix areas 

Levels of conservation potential within matrix areas were identified based on spatial 

overlap among hotspot types. Areas with high conservation potential corresponded to locations 

where all three hotspot types (all mammals, mammals with declining population trends, and 

mammals with threatened status) overlapped, areas with moderate conservation potential where 

any two overlap, and areas with low conservation potential where only a single hotspot type was 

present with no overlap. 
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Species-level hotspot representation 

To assess species representation across hotspot types, we identified species whose matrix 

area spatially overlapped with any of the three hotspot types. We considered a species to occur in 

a hotspot if its matrix (defined as areas within the species’ range but outside its suitable habitat) 

intersected or overlapped hotspot boundaries. For each species, we determined whether its matrix 

area intersected one, two, or all three hotspot types, based on spatial overlays. Each species was 

assigned to a single overlap category corresponding to the unique combination of hotspot types 

its matrix intersected. These species-level assignments were then used to quantify representation 

across individual hotspot types and their combinations. 

 

Human pressure in matrix hotspots 

We used the human footprint (HFP) dataset (Gassert et al. 2023) to quantify the influence 

of human pressures within matrix areas identified as having conservation potential. Built on 

previous HFP mapping efforts (Venter et al. 2016, Williams et al. 2020), this dataset provides a 

standardized measure of human pressure on terrestrial environments by integrating data on eight 

anthropogenic pressures: (i) built environments, (ii) cropland, (iii) pastureland, (iv) human 

population density, (v) night-time lights, (vi) roads, (vii) railways, and (viii) navigable 

waterways. Developed at a 100-m spatial resolution for the years 2015–2019 and 2020, the maps 

in this dataset assign HFP scores ranging from 0 (minimal human influence) to 50 (maximum 

human influence).  

For our analysis, we used the 2015 HFP map to ensure temporal consistency with the 

AOH maps. Following previous studies (Di Marco et al. 2018b, Mokany et al. 2020, Ramírez-

Delgado et al. 2022, Gassert et al. 2023), HFP scores from this map were classified into three 
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categories to represent varying levels of human impact: intact (HFP ≤ 1), low disturbance (1 < 

HFP < 3), and highly modified (HFP ≥ 3). We specifically applied a threshold of HFP ≥ 3 to 

identify highly modified areas, as this threshold has been shown to be the strongest predictor of 

extinction risk transitions in terrestrial mammals (Di Marco et al. 2018b). To quantify human 

influence within matrix areas with conservation potential, the HFP categories were spatially 

overlaid on these zones. 

 

Conservation coverage of matrix hotspots 

We used spatial data from the World Database on Protected Areas (WDPA) and the 

World Database on Other Effective area-based Conservation Measures (WD-OECM) (UNEP-

WCMC and IUCN 2023) to assess conservation coverage within matrix hotspots. 

Following established guidelines (Butchart et al. 2015, Runge et al. 2015, Protected 

Planet 2025), we excluded protected areas (PAs) and other effective area-based conservation 

measures (OECMs) entries that did not meet international definitions of PAs or OECMs. 

Specifically, we removed sites with unknown status, proposed designations, marine-only sites, 

the marine portions of coastal sites, and sites lacking defined boundaries. Sites represented only 

by point data were converted into circular polygons based on reported area size. Each dataset 

(PAs and OECMs) was processed independently and then combined to create a third, integrated 

layer representing all conserved areas (PAs + OECMs). 

All three datasets were rasterized at 100-m spatial resolution to match the resolution of 

the AOH and HFP datasets. We then generated binary raster layers classifying land as either 

protected, OECM-designated, or conserved (PAs + OECMs), and overlaid these layers with the 

matrix conservation potential map stratified by human footprint category (intact, low-
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disturbance, and highly modified). For each level of conservation potential—defined by spatial 

overlap among hotspot types, where high corresponds to overlap of all three types, moderate to 

overlap of any two types, and low to only one—we calculated the proportion of area under 

protection, OECM designation, or both combined, overall and within each footprint category. 

All spatial data were initially processed in the WGS 1984 coordinate system and 

reprojected to the Mollweide equal-area projection for consistent area calculations. Geospatial 

analyses were performed using ArcPy (ESRI 2024) and the wdpar package in R (Hanson 2022, 

R Core Team 2023). 

 

Results 

Global patterns of terrestrial mammal concentration in the matrix 

We found that species-rich matrix areas covered approximately 12% of the global 

terrestrial area (excluding Antarctica) and were predominantly located in tropical and subtropical 

regions (Fig. 4.1a–c). This pattern was evident across all mammals (Fig. 4.1a), mammals with 

declining population trends (Fig. 4.1b), and those with threatened status (Fig. 4.1c), with the 

highest concentrations occurring in parts of Central and South America, West and Central 

Africa, and Southeast Asia. 
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Figure 4.1: Global distribution of species richness within species-rich matrix areas for 

terrestrial mammals. Species richness is shown for all species (a), species with declining 

population trends (b), and species with threatened status (c).  
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Hotspots of species richness, defined as the top 5% of grid cells with the highest richness 

values within species-rich matrix areas, revealed even more pronounced patterns of species 

concentration (Fig. 4.2a–c). For all mammals, hotspots were primarily located in tropical regions 

of South America and Africa, with particularly high concentrations in the Tropical Andes, the 

Colombian Caribbean, and the Llanos (Fig. 4.2a). In contrast, hotspots for mammals with 

declining population trends were more scattered and broadly distributed across South America, 

sub-Saharan Africa, and Southeast Asia, extending into the Eastern Himalayas and Indo-Burma 

(Fig. 4.2b). Hotspots for threatened mammals overlapped in part with those for mammals with 

declining population trends and showed a wider distribution across tropical and subtropical 

regions, including parts of Central America, Madagascar, and eastern Australia (Fig. 4.2c). 
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Figure 4.2: Hotspots of species richness within species-rich matrix areas for terrestrial 

mammals. Hotspots are shown for all mammals (a), mammals with declining population trends 

(b), and mammals with threatened status (c). Dark red represents the top 2.5% of grid cells with 

the highest richness values for each species group, red (including dark red) represents the top 
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5%, and pink (including both red and dark red) represents the top 10%. All hotspots were 

aggregated into contiguous clusters with a minimum area of 10 km². 

 

A total of 3,419 species—approximately 59% of all extant terrestrial mammals—had 

matrix areas that overlap with at least one of the three hotspot types (Table 4.1). Collectively, the 

three hotspot types spanned 1.65 million km², representing 10% of the global extent of species-

rich matrix areas and just 1% of the Earth’s total terrestrial surface (excluding Antarctica). 

Notably, hotspots based solely on threatened species captured nearly as many species as the 

combined total across all three hotspot types, differing by only 3%. This pattern held true across 

alternative hotspot thresholds (Appendix C, Table C.1), suggesting that threatened species 

hotspots could serve as effective surrogates for broader conservation efforts within species-rich 

matrix areas. 

 

Table 4.1: Geographic coverage and species representation of hotspot types. The table 

shows the total area of each hotspot type and the number of species whose matrix area 

overlapped with each hotspot type. Numbers in parentheses indicate the percentage of each 

hotspot type relative to the global extent of species-rich matrix areas (15,922,965 km²), or the 

percentage of overlapping species relative to the total number of extant terrestrial mammals 

(5,808 species worldwide). Slight differences in area across hotspot types reflect clustering 

requirements and the threshold optimization process (see Methods). 

Hotspot type Area (km²) Number of species 

All species 799,277 (5.0)  1,918 (33.0) 

Declining trend 818,964 (5.1)  2,836 (48.8) 
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Threatened status 702,029 (4.4)  3,255 (56.0) 

Total in all hotspots  1,655,469 (10.4)  3,419 (58.9) 

 

Matrix areas with conservation potential 

The spatial overlap among the three hotspot types was low overall (Fig. 4.3a,b). Areas 

with high conservation potential—where all three hotspot types overlapped—accounted for only 

7% of the total hotspot extent. Moderate conservation potential areas, defined by overlap 

between two hotspot types, accounted for 26%, while low conservation potential areas, identified 

by only a single hotspot type, accounted for the majority (67.1%). 
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Figure 4.3: Overlap of hotspot types and conservation potential in matrix areas. The map 

shows the global distribution of species-rich matrix areas, categorized into levels of conservation 

potential based on spatial overlap among three hotspot types: all mammals, mammals with 

declining population trends, and mammals with threatened status (a). Venn diagrams show the 

spatial overlap among hotspot types (b) and the number of species whose matrix habitat 

overlapped one, two, or all three types (c), respectively. Each species was counted only once, 

based on the unique combination of hotspot types overlapping its matrix habitat (e.g., one, two, 
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or all three types), and was assigned to the corresponding category. Areas of high conservation 

potential corresponded to overlaps among all three hotspot types, moderate conservation 

potential to overlaps between any two types, and low conservation potential to areas identified 

by a single hotspot type. 

 

Areas with high conservation potential harboured 53% of all mammals whose matrix 

habitats overlapped hotspot areas, while areas with moderate and low conservation potential 

accounted for 29% and 18%, respectively (Fig. 4.3c). Notably, 18% of species with matrix 

habitat in hotspots occurred exclusively within a single hotspot type, with the majority (14.8%) 

found only in hotspots for species with threatened status. A total of 932 species occurred in both 

hotspots for species with declining populations and those for threatened species, suggesting that 

these categories frequently overlap and that many threatened species are already experiencing 

ongoing population declines. These patterns were consistent across different hotspot thresholds 

(Appendix C, Fig. C.3), further highlighting the strong association between population declines 

and threat status. 

Our map of conservation potential in matrix areas showed that areas of high conservation 

potential were primarily concentrated within a few tropical strongholds, including parts of the 

Amazon Basin, the Colombian Tropical Andes, the Brazilian Atlantic Forest, and the Albertine 

Rift (Fig. 4.3a). Areas of moderate conservation potential were more widely distributed but still 

predominantly located in tropical regions across South America, Central Africa, and Southeast 

Asia. In contrast, areas of low conservation potential were the most extensive, spanning Central 

and South America, sub-Saharan Africa, the Eastern Himalayas, Indo-Burma, and eastern 

Australia. 
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Human footprint and conservation coverage in matrix areas with conservation potential 

When we mapped the conservation potential of matrix areas against human footprint 

categories (Gassert et al. 2023)—‘intact’, ‘low-disturbance’, and ‘highly modified’—we found 

that these areas were predominantly highly modified, although notable subregional variations 

existed (Fig. 4.4a–d). In parts of Brazil’s Amazon (Fig. 4.4a) and Atlantic Forest (Fig. 4.4b), 

matrix areas with high, moderate, and low conservation potential were widespread and 

predominantly highly modified. However, scattered remnants of intact and low-disturbance 

matrix persisted, creating a mosaic of conditions. In the Western Congolian forest–savanna 

region (Fig. 4.4c), matrix areas with low conservation potential remained largely intact, though 

interspersed with more disturbed areas. In Sumatra’s forests (Fig. 4.4d), matrix areas with 

moderate conservation potential dominated and were almost entirely highly modified, with only 

small patches of intact and low-disturbance matrix remaining. 
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Figure 4.4: Human footprint within matrix areas with conservation potential. The map 

shows the global distribution of matrix areas with high, moderate, and low conservation 

potential, categorized by human pressure levels: intact, low-disturbance, and highly modified. 

Insets show examples from Brazil’s Amazon (a) and Atlantic Forest (b), the Western Congolian 
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forest-savanna mosaic (c), and Sumatra’s forests (d). Human pressure levels were derived from 

the 2015 global HFP map developed by Gassert et al. (2023) at a 100-m spatial resolution. For 

details on thresholds used to define each human pressure level, see Methods. 

 

Across all levels of conservation potential, matrix areas remained predominantly 

unprotected and highly modified (Appendix C, Fig. C.4a). PAs covered only a fraction of matrix 

areas with high conservation potential, with 49% of this land unprotected and highly modified, 

and just 7% both protected and intact. Matrix areas with moderate and low conservation potential 

showed similar patterns, with unprotected, highly modified conditions accounting for 58% and 

54%, respectively. OECMs offered only limited additional coverage (Appendix C, Fig. C.4b), 

and the matrix areas they covered were predominantly highly modified. 

Combining PAs and OECMs—hereafter referred to as conserved areas—slightly 

improved overall conservation coverage but did not substantially alter the broader pattern 

(Appendix C, Fig. C.4c). Non-conserved and highly modified matrix areas remained the most 

common condition, accounting for 48% of matrix areas with high conservation potential, 57% 

with moderate conservation potential, and 52% with low conservation potential. Even where 

matrix areas were conserved, they were predominantly within highly modified landscapes. 

Among matrix areas with high conservation potential, 8% were both conserved and highly 

modified, while only 7% were both conserved and intact. These trends were consistent across 

other levels of conservation potential, with the majority of conserved matrix areas situated in 

areas of high human pressure. 
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Discussion 

Our study presents a global framework for identifying conservation opportunities within 

the matrix, offering new insights into global patterns of the species richness of terrestrial 

mammals within these areas. We find that species-rich matrix areas cover approximately 12% of 

Earth’s land surface (excluding Antarctica), yet richness hotspots—largely concentrated in 

tropical and subtropical regions—cover just around 1%. Importantly, more than half of all 

terrestrial mammal species may occur within at least one of these hotspot types, with hotspots 

identified solely by threatened species containing nearly as many species as all hotspot types 

combined. Matrix areas with high conservation potential, defined by the overlap of all three 

hotspot types, are limited in extent but potentially support disproportionately high species 

richness, particularly in regions such as the Amazon Basin, the Colombian Tropical Andes, the 

Brazilian Atlantic Forest, and the Albertine Rift. However, nearly half of these matrix areas 

remain highly modified and poorly represented within existing protected or conserved area 

networks, underscoring the urgent need to explicitly integrate matrix areas into global 

biodiversity conservation strategies. 

While our analysis partially covers regions traditionally recognized as biodiversity 

hotspots (Myers et al. 2000, Ceballos and Ehrlich 2006, Jenkins et al. 2013), it offers a novel 

perspective by focusing on species richness within the matrix. Rather than relying solely on 

species range maps, we used AOH data (Lumbierres et al. 2022b) to differentiate between 

suitable habitat and matrix areas within species’ ranges, an approach known to provide more 

refined and ecologically relevant representations than estimates derived from geographic ranges 

alone, particularly in extensively modified regions (Rondinini et al. 2011). This distinction 

allowed us to identify conservation opportunities that might otherwise be overlooked if 
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biodiversity value is assumed to be confined solely to suitable habitats. By integrating HFP 

(Gassert et al. 2023) and conservation coverage data (UNEP-WCMC and IUCN 2023), our 

analysis offers a more nuanced picture of where biodiversity is not only concentrated but also 

under pressure and poorly represented within existing formally recognized conservation 

networks. Together, these elements position our framework as a complement to existing hotspot 

analyses, extending their value by identifying overlooked components of the landscape that are 

critical for biodiversity representation and long-term resilience (Brooks et al. 2006, Kremen et al. 

2008, Mokany et al. 2020). 

Our study advances global conservation assessments by applying a finer spatial grain 

(100 meters) for AOH maps (Lumbierres et al. 2022b). This resolution represents a substantial 

increase in spatial detail compared to influential global studies (Myers et al. 2000, Ceballos and 

Ehrlich 2006, Jenkins et al. 2013), which typically relied on coarser spatial data, often ranging 

from 10 to 100 km in grain size. We recognize, however, that finer spatial resolution alone does 

not inherently guarantee greater ecological accuracy or realistic habitat suitability. Indeed, AOH 

maps are simplified representations of habitat suitability, primarily suited for global biodiversity 

assessments rather than detailed, species-specific management planning. Nevertheless, the high-

resolution analysis presented here provides enhanced localization of global species richness 

patterns, revealing spatial details likely missed by coarser analyses. While this resolution is 

particularly valuable for identifying general patterns in fragmented or rapidly changing 

landscapes—where conservation strategies often depend on spatially explicit information 

(Rouget 2003, Kremen et al. 2008, Tanhuanpää et al. 2023, Pla et al. 2024, Carruthers-Jones et 

al. 2025)—we emphasize caution in interpreting these results as directly indicative of fine-scale 

ecological processes or habitat suitability at local scales. 
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Empirical validations highlight that, although broadly accurate, AOH maps do not 

capture all species occurrences. For terrestrial mammals, validation against known occurrence 

points was possible for only a subset of species (8% of those mapped), owing to the limited 

availability of high-accuracy point locality data (Lumbierres et al. 2022b). Within this subset, 

~95% of maps performed better than random within species’ ranges—a minimum performance 

benchmark rather than a high predictive accuracy metric. Consistent with these limitations, our 

analyses reveal that matrix areas can contain high mapped species richness, reinforcing their 

ecological relevance and underscoring the value of incorporating these areas into global 

conservation planning beyond traditional habitat suitability boundaries. 

Our findings challenge the expectation that species richness peaks exclusively in intact 

habitats, suggesting instead that many highly modified matrix areas can also support relatively 

high levels of terrestrial mammal richness. This pattern aligns with the well-established ‘winners 

and losers’ framework, which highlights how some species benefit from human-driven landscape 

changes due to increased resource availability, altered predation dynamics, and species filtering 

(Fisher and Burton 2018, Kremen and Merenlender 2018, Tucker et al. 2021). Moreover, the 

relationship between human footprint and ecological intactness is not always straightforward 

(Belote et al. 2020). Many areas with a high human footprint still support high species richness 

and retain relatively intact mammal assemblages, particularly in highly productive environments 

or regions with a long history of human-wildlife coexistence (Belote et al. 2020, Torres-Romero 

et al. 2020, Zhang et al. 2024). For example, in the Peace–Moberly region of northeast British 

Columbia, Nitschke (2008) found that across an extensively developed landscape, 22% of 

species experienced declines in modelled habitat while the remainder demonstrated increases, 

indicating that while some species experienced habitat loss, others were able to persist or even 
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benefit under substantial human modification. Proximity to intact habitats may also play a role, 

as species can spill over into adjacent matrix areas when habitat boundaries are permeable, 

enabling temporary use or colonization of suboptimal but accessible habitats (Cook et al. 2002, 

Brotons et al. 2003, Ewers and Didham 2006). These findings suggest that certain modified 

habitats, particularly those embedded within heterogeneous or productive landscapes, can play a 

significant role in sustaining terrestrial mammal biodiversity, challenging conventional 

assumptions that equate human modification with low ecological value. 

Our approach identified hotspots within the matrix based on species richness for all 

terrestrial mammals in the database, mammals with declining population trends, and mammals 

with threatened status. We acknowledged that these categories were not mutually exclusive, as 

declining and threatened mammals constituted subsets of the broader ‘all terrestrial mammals’ 

group. In practice, a substantial proportion of threatened species are also experiencing population 

declines, particularly those listed under IUCN Criterion A (population reduction) and, in many 

cases, Criteria B or C, both of which require evidence of continuing decline. This close 

alignment in listing criteria contributes to considerable overlap between these groups. 

Nevertheless, this multi-faceted strategy allowed us to highlight matrix areas with the potential to 

support overall biodiversity as well as species of conservation concern. While our analysis did 

not aim to compare responses between these overlapping groups directly, we recognized that 

future analyses intended to explicitly distinguish differences among these categories might 

benefit from using mutually exclusive groups to enhance analytical clarity and interpretability. 

Our results reveal limited spatial overlap among hotspot types—a trend consistent with 

previous studies on biodiversity prioritization (Orme et al. 2005, Grenyer et al. 2006, Ceballos 

and Ehrlich 2006, Jenkins et al. 2013). This suggests that different hotspot types reflect distinct 
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ecological patterns and conservation opportunities, reinforcing the value of multi-criteria 

approaches in conservation planning (Marchese 2015). Building on this, previous studies have 

shown that incorporating functional and phylogenetic diversity helps capture species’ ecological 

roles, evolutionary history, and contributions to ecosystem resilience (Cadotte et al. 2011, Brum 

et al. 2017, Stevens et al. 2019). Including these complementary dimensions could further refine 

hotspot identification within matrix areas, supporting conservation strategies that prioritize not 

only high species richness but also long-term ecological stability and evolutionary 

distinctiveness. 

Our results indicate that hotspots based on threatened species capture the largest 

proportion of terrestrial mammal diversity within matrix areas compared to any other hotspot 

type. Despite their smaller spatial extent, these hotspots encompass over half of all extant 

terrestrial mammals, underscoring their disproportionate conservation value. This aligns with 

previous studies highlighting the importance of threat-based prioritization to efficiently direct 

conservation efforts toward species at the highest risk of extinction (Brooks et al. 2006, Allan et 

al. 2019, Wolff et al. 2023, Huais et al. 2025), particularly in human-modified landscapes where 

biodiversity loss is most acute (Newbold et al. 2015). While focusing on overall species richness 

remains valuable, our findings suggest that threatened species hotspots within matrix areas 

represent especially strategic targets for guiding restoration efforts, potentially yielding 

substantial conservation returns for terrestrial mammal diversity. 

Although our analysis focused on terrestrial mammals, the framework we developed is 

readily transferable to other taxonomic groups. The growing availability of AOH maps (e.g., 

Nania et al. 2022, Lumbierres et al. 2022b, Neugarten et al. 2024) offers new opportunities to 

assess species richness within matrix areas across broader components of biodiversity. Applying 



99 

this approach to additional taxa could reveal whether patterns of richness and conservation value 

within matrix areas are consistent across groups, supporting more integrative and taxonomically 

inclusive conservation strategies. 

While our study underscores the importance of matrix areas for biodiversity conservation, 

the extent to which these areas actively support species persistence remains a critical knowledge 

gap. The ecological value of matrix areas depends fundamentally on their habitat structure, 

resource availability, and species-specific ecological requirements (Prevedello and Vieira 2010, 

Driscoll et al. 2013). Although species richness is frequently employed as a primary metric for 

biodiversity assessments (Marchese 2015, Di Marco et al. 2018a), richness alone does not 

necessarily reflect the functional capacity of matrix habitats to sustain viable populations or 

distinguish whether these habitats primarily serve as corridors facilitating species dispersal. 

Future research should thus complement our findings through detailed species-specific studies 

examining population viability, habitat selection, and dispersal patterns within matrix areas. 

Additionally, empirical validations leveraging independent observational datasets, such as 

citizen-science platforms (e.g., iNaturalist), could confirm the actual usage of matrix habitats by 

terrestrial mammals, providing critical evidence beyond predictions based solely on habitat 

suitability models (e.g., AOH maps). 

We acknowledge an inherent methodological scale mismatch between fine-scale 

empirical studies, such as telemetry tracking, occupancy modelling, and camera trapping (e.g., 

Bassing et al. 2023), and broad-scale, global biodiversity analyses such as ours. Detailed studies 

typically provide nuanced insights into habitat selection, species-specific ecological responses, 

and fine-scale habitat dynamics, but are limited to smaller geographic extents or subsets of 

species. Conversely, global-scale biodiversity assessments typically rely on broader proxies, 
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such as habitat suitability and species richness (e.g., Cohen and Jetz 2025), facilitating analyses 

across extensive spatial scales and diverse taxonomic groups. Given this mismatch, future efforts 

could strategically integrate insights from localized studies with global analyses to better 

understand species persistence in matrix areas, ultimately refining global conservation strategies. 

A further potential limitation of our global analysis is that geographic variation in species 

diversity within matrix areas may partly reflect underlying natural variation in terrestrial 

mammal richness across regions. In this study, we intentionally did not standardize or control 

explicitly for these baseline regional differences, as our primary objective was to provide a 

straightforward global assessment of species richness within matrix areas. Future research could 

extend this framework by explicitly incorporating regional mammal richness patterns as 

covariates or through other standardization methods. Such an approach would provide additional 

insights into whether observed patterns in matrix areas differ meaningfully from general patterns 

of regional biodiversity. 

As primary habitats continue to be lost or modified, species may increasingly depend on 

matrix areas for survival, making it necessary to reassess conservation priorities under dynamic 

environmental conditions (Powers and Jetz 2019). However, the extent to which matrix areas 

will serve as refugia or become further degraded remains uncertain. Predictive modeling 

approaches that integrate climate-driven habitat shifts, landscape connectivity, and land-use 

change could help identify matrix areas most likely to support species persistence under future 

scenarios (Carvalho et al. 2011, Bateman et al. 2013, Guisan et al. 2013, Powers and Jetz 2019). 

Such forward-looking strategies would enable more adaptive conservation efforts, allowing 

decision-makers to anticipate species responses to environmental change rather than relying 

solely on current biodiversity patterns. 
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Integrating matrix areas into conservation strategies aligns closely with global 

biodiversity targets, notably the Kunming-Montreal Global Biodiversity Framework’s Target 2, 

which calls for effective restoration of degraded ecosystems to enhance biodiversity, ecological 

integrity, and connectivity (Maxwell et al. 2020, Allan et al. 2022, Obura 2023). Given that 

expanding formal protected areas faces substantial socioeconomic and political constraints 

(Watson et al. 2014, Schleicher et al. 2019, Sandbrook et al. 2023), matrix areas offer 

complementary opportunities to achieve biodiversity restoration targets (Kremen and 

Merenlender 2018, Galán-Acedo et al. 2019, Mokany et al. 2020). Conservation actions within 

matrix areas inherently involve balancing biodiversity conservation with human land-use 

demands, directly reflecting the ongoing debate between land-sharing approaches, which 

integrate biodiversity conservation within human-dominated landscapes, and land-sparing 

approaches, which intensify land use in some areas to allow strict biodiversity protection 

elsewhere (Phalan et al. 2011, Fischer et al. 2014, Grass et al. 2019, Williams et al. 2021). 

Critically, this perspective moves beyond the oversimplified dichotomy of habitat versus non-

habitat, recognizing that multi-use and managed landscapes frequently retain significant 

ecological value and can actively sustain biodiversity (Tscharntke et al. 2005, Fischer et al. 2006, 

Kremen and Merenlender 2018). Our findings thus support an adaptive combination of land-

sharing and land-sparing strategies, highlighting that even highly modified landscapes can retain 

substantial biodiversity, particularly when strategically managed or restored (Daily et al. 2001, 

2003, Benton et al. 2003, Hole et al. 2005, Gardner et al. 2009, Arroyo‐Rodríguez et al. 2020). 

This integrated perspective emphasizes context-specific management interventions that leverage 

the ecological realities and socioeconomic conditions of fragmented, multi-use systems (DeFries 
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et al. 2007, Gardner et al. 2009, Perfecto and Vandermeer 2010, Kremen and Merenlender 2018, 

Mokany et al. 2020).  

Our findings suggest that matrix areas—often overlooked in conservation planning—can 

support substantial terrestrial mammal diversity. By identifying species-rich matrix areas and 

mapping hotspots of species richness within them, our study expands the spatial scope of 

conservation opportunities beyond traditional habitat boundaries. As habitat loss and 

fragmentation continue to reshape ecosystems worldwide, prioritizing conservation action in 

matrix areas offers a practical and urgently needed strategy to complement existing conservation 

networks and help achieve global biodiversity targets. Integrating matrix areas into spatial 

planning, habitat management, and restoration will be essential for building resilient, connected 

landscapes that sustain biodiversity in a human-dominated world. 
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Chapter 5: Conclusions 

In this dissertation, I investigated the role and conservation potential of the matrix for 

supporting terrestrial mammal diversity. Specifically, I quantified how matrix condition mediates 

the effects of habitat fragmentation on extinction risk, compared the predictive performance of 

alternative habitat intactness models (patch-matrix, continuum, and hybrid models), and 

identified hotspots of species richness within matrix areas. Despite long-standing conservation 

paradigms prioritizing primary habitats (Margules and Pressey 2000, Brooks et al. 2006, Gibson 

et al. 2011, Martin et al. 2012, Watson et al. 2018a, Di Marco et al. 2019), my findings clearly 

demonstrate the profound and indispensable ecological value of the matrix. 

Matrix condition emerged as a key driver of extinction risk for terrestrial mammals 

globally, demonstrating greater predictive power than either habitat loss or habitat amount alone 

(Chapter 2). Importantly, the negative effects of habitat fragmentation intensified under 

conditions of high human pressure within the matrix, underscoring the critical need for 

conservation strategies that enhance matrix quality alongside traditional conservation approaches 

focused on primary habitats. Additionally, the hybrid habitat intactness model (Chapter 3) 

consistently outperformed traditional patch-matrix and continuum models in predicting 

extinction risk. By integrating continuous gradients of habitat quality with discrete habitat 

patches, the hybrid model better captures ecological complexity, representing an important 

methodological advancement for extinction risk assessments. 

Moreover, my research provides a robust global assessment of species richness within the 

matrix, identifying previously unrecognized hotspots that may disproportionately represent 

global terrestrial mammal diversity (Chapter 4). Remarkably, these hotspots occupy only about 

1% of Earth's terrestrial surface, yet potentially sustain over half of all terrestrial mammal 
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species. Matrix areas with the highest conservation potential—identified by the overlap among 

hotspot types—are primarily concentrated in tropical strongholds such as parts of the Amazon 

Basin, the Colombian Tropical Andes, the Brazilian Atlantic Forest, and the Albertine Rift. This 

geographic concentration underscores the strategic value of targeted conservation in these areas, 

where action could yield disproportionately high returns for global biodiversity conservation. 

Furthermore, many of these areas with high conservation potential occur in landscapes facing 

intense human pressure yet currently lack adequate protection through formal PAs or recognition 

as OECMs, highlighting a critical conservation gap with substantial global implications. 

 

Conservation implications 

Given the current biodiversity crisis highlighted by recent landmark assessments (IPBES 

2019, Obura 2023), effective conservation strategies must embrace multifunctional landscapes 

(Mokany et al. 2020). My work demonstrates that matrix areas can buffer species from extinction 

pressures and thus serve as valuable reservoirs of mammalian diversity (Chapters 2 and 3). These 

findings directly align with Target 2 of the Kunming-Montreal Global Biodiversity Framework, 

which aims to restore at least 30% of degraded terrestrial ecosystems by 2030 (Obura 2023). 

Because improving matrix quality can yield higher conservation returns than solely manipulating 

the size and configuration of remnant habitat patches (Donald and Evans 2006, Prugh et al. 2008, 

Franklin and Lindenmayer 2009, Ruffell et al. 2017, Ramírez-Delgado et al. 2022), targeting 

matrix areas identified as hotspots of species richness (Chapter 4) for restoration and improved 

management can represent an effective and efficient strategy to partially achieve this ambitious 

global restoration target, contributing to broader global biodiversity objectives. Moreover, the 

spatially explicit nature of my approach provides opportunities for further refinement to 
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prioritize specific areas within these hotspots, enabling even more focused and effective 

conservation action. 

 

Limitations and future directions 

While this dissertation advances global understanding of the ecological role and 

conservation potential of the matrix for terrestrial mammals, certain methodological and 

conceptual limitations offer clear opportunities for future research. 

The global-scale analyses presented in Chapters 2 and 3 primarily relied on metrics 

derived from human footprint data to predict extinction risk. While informative, these analyses 

excluded other pressures influencing extinction risk, such as overhunting (Ripple et al. 2016, 

Benítez-López et al. 2017), invasive species (Bellard et al. 2016, Doherty et al. 2016), disease 

outbreaks (Daszak et al. 2000, Scheele et al. 2019), climate change (Urban 2015, Foden et al. 

2019), and pollution (Hernández et al. 2016, McCune et al. 2019). The omission of these factors 

likely increased uncertainty in extinction risk classifications, particularly for species at the 

greatest risk of extinction. Future extinction risk analyses could benefit from integrating these 

additional pressures, despite the methodological challenges associated with accurately mapping 

and quantifying them at global scales (Joppa et al. 2016, Di Marco et al. 2018b). 

While changes in habitat intactness and human pressure levels have been explicitly 

considered (Chapters 2 and 3), extending these analyses to incorporate future dynamics, such as 

climate-driven changes in habitat quality, shifting species distributions, and evolving land-use 

pressures, also represents a compelling opportunity for future research. Incorporating dynamic 

scenario modeling, including climate change projections and future land-use scenarios,  would 
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allow researchers to better anticipate future shifts in extinction risk (Bateman et al. 2013, Powers 

and Jetz 2019). 

The global hotspots of species richness identified in Chapter 4 relied primarily on global-

scale spatial analyses. Although robust and informative in identifying broad patterns of 

mammalian richness within matrix areas, these global-scale assessments inherently cannot 

capture detailed ecological processes such as local population viability, demographic dynamics 

(e.g., survival and reproduction), species behavior, or fine-scale ecological interactions. As such, 

the identified hotspots do not directly provide evidence of demographic persistence or ecological 

stability of mammal populations within these areas. Empirical studies at finer ecological scales 

typically involve more nuanced data and methods, evaluating habitat quality along continuous 

gradients rather than simple patch-matrix distinctions, and focus on detailed habitat use and 

interactions among a limited set of species (e.g., Bommel et al. 2022, Koetke et al. 2025). Future 

research efforts should thus incorporate targeted empirical studies within selected hotspots, using 

high-resolution data and detailed ecological assessments. Such focused research would 

complement global findings, yielding deeper ecological insights that can refine conservation 

strategies and improve their effectiveness at local and regional scales. 

While this dissertation focused on terrestrial mammals for both ecological and practical 

reasons, the scope could be expanded to other taxa in future work. At the time this research was 

initiated, mammals were the only vertebrate group for which globally consistent, high-resolution 

habitat data were available, making them the most suitable choice for large-scale analyses 

(Rondinini et al. 2011). Comparable high-resolution datasets are now available for birds 

(Lumbierres et al. 2022b), whose generally greater mobility and, in many cases, higher 

sensitivity to habitat edges (Schmiegelow et al. 1997, Batáry and Báldi 2004, Laurance et al. 
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2011, Bregman et al. 2014) could produce different spatial patterns and conservation priorities. 

Applying the analytical framework developed here to birds and other taxa would provide a 

valuable test of the generality of these results and could yield complementary insights for global 

conservation planning. 

My global-scale analysis of species richness hotspots focused on taxonomic diversity 

(species richness), without incorporating functional or phylogenetic dimensions of biodiversity. 

Functional diversity, which captures ecological roles, resource-use strategies, and trait variation 

among species, and phylogenetic diversity, which reflects evolutionary distinctiveness, are 

increasingly recognized as critical for ecosystem resilience and adaptive capacity under 

environmental change (Cadotte et al. 2011, Brum et al. 2017). Integrating these additional 

biodiversity dimensions into hotspot analyses could provide more comprehensive ecological 

criteria, helping identify matrix areas that can not only support high numbers of species but also 

sustain critical ecosystem functions and evolutionary heritage. 

Another limitation relates to practical considerations around restoration. Not all matrix 

areas identified as hotspots (Chapter 4) may realistically become suitable for all mammal species 

through targeted restoration efforts. Structural mismatches—such as attempting grassland 

restoration for forest-dependent species—as well as economic and logistical constraints, could 

limit the feasibility and effectiveness of restoration. Future analyses and management 

interventions should thus carefully evaluate restoration potential by explicitly considering 

species-specific habitat requirements alongside realistic socioeconomic and ecological 

constraints. 

Additionally, my global assessment of species richness within matrix areas (Chapter 4) 

did not explicitly account for baseline regional variations in terrestrial mammal diversity. Thus, 
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the patterns identified may partially reflect inherent regional differences rather than solely 

ecological responses to matrix conditions. Future global analyses would benefit from 

standardizing or explicitly controlling for regional richness patterns, thereby enhancing the 

interpretability and robustness of findings regarding the conservation potential of matrix areas at 

a global scale. 

Translating the global-scale biodiversity insights from this dissertation into practical 

conservation outcomes demands bridging global analyses and local management actions. Global-

scale conservation recommendations often face practical challenges in implementation at local 

and regional scales, where ecological, socioeconomic, governance, and political contexts differ 

widely (Knight et al. 2006, Watson et al. 2014, Di Minin and Toivonen 2015, Guerrero et al. 

2018). Future research could help bridge this gap by establishing targeted, carefully designed 

adaptive management experiments within selected hotspots of species richness in matrix areas 

identified in this dissertation. Such adaptive experiments could aim to integrate ecological 

monitoring, socioeconomic assessments, and governance analyses, potentially involving 

approaches such as habitat restoration trials (Rey Benayas and Bullock 2012, Suding et al. 2015), 

agroforestry practices (Bhagwat et al. 2008, Jose 2009), sustainable land-use initiatives 

(Tscharntke et al. 2005, Kennedy et al. 2016), and community-based conservation interventions 

(Berkes 2007, Koricha and Jemal Adem 2024). Although logistically challenging, rigorous 

evaluation of these integrated management approaches could generate valuable, evidence-based 

insights to support effective, contextually adapted, and scalable biodiversity conservation actions 

in matrix areas globally. 

The findings presented in this dissertation make a compelling case for revisiting and 

revising conservation frameworks globally, embracing matrix areas as critical ecological assets 
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rather than marginal landscapes. Such integration would represent a transformative shift in 

global biodiversity conservation strategies, better reflecting ecological realities in the 

Anthropocene. As the global biodiversity crisis intensifies, recognizing and strategically 

managing matrix areas presents one of the most promising pathways for maintaining 

biodiversity, ecological connectivity, and ecosystem resilience in increasingly human-modified 

landscapes. 
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A. Appendix A: Supplementary material for “Chapter 2: Matrix condition mediates 

the effects of habitat fragmentation on species extinction risk” 

 

Figure A.1: Transition matrix of extinction risk categories for terrestrial mammals between 

1996 and 2020. The plot shows the transition matrix of the first and last Red List category 

reported between 1996 and 2020. The colour scheme represents the relative frequency of 

individual species in each transition. Acronyms refer to the IUCN Red List categories, including 

Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically 

Endangered (CR). The relative frequency was arcsine square-root-transformed for visual 

purposes and to avoid variance instability when handling proportions close to zero. 
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Figure A.2: Sensitivity analysis of selected variables for the prediction of extinction risk 

transitions in terrestrial mammals. Relative importance of each predictor when the extent of 

suitable habitat is represented by high and medium habitat suitability combined, and the extent of 

the matrix by unsuitable habitat alone (a). Relative importance of each predictor when the extent 

of suitable habitat is represented by high habitat suitability, and the extent of the matrix by 

medium habitat suitability and unsuitable habitat combined (b). Variables are colour-coded 

according to their broad class (human pressure, environment, and life-history). The description of 
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each variable is given in Table 2.1 of the main manuscript. High levels of the human footprint 

(HFP) included values of 3 or above. 

 

Table A.1: Cross-validation results of the Random Forest models for the prediction of 

extinction risk transitions in terrestrial mammals. *Cross-validation results when the extent 

of suitable habitat is represented by high and medium habitat suitability combined, and the extent 

of the matrix by unsuitable habitat alone. †Cross-validation results when the extent of suitable 

habitat is represented by high habitat suitability, and the extent of the matrix by medium habitat 

suitability and unsuitable habitat combined. The cross-validation was performed in terms of 

proportion of correctly classified species (accuracy), proportion of correctly classified high-risk 

species (sensitivity), proportion of correctly classified low-risk species (specificity), and the true 

skill statistic (TSS = sensitivity + specificity – 1). 

Model Accuracy (%) Sensitivity (%) Specificity (%) TSS 

Extinction risk transitions ~ High and 

medium suitability combined* 

81.2 60.5 90.9 0.51 

Extinction risk transitions ~ Medium 

suitability and unsuitable combined† 

82.0 61.1 91.7 0.53 

 

 

 

 

 

 



138 

 

Figure A.3: Distribution of the matrix condition in low-risk and high-risk species at a 

global scale. The plot represents the frequency distribution of the extent of high human footprint 

values within the matrix of 4,329 species (68% low-risk species and 32% high-risk species). 

Species with ranges that did not overlap with the human footprint (2% of 4,426 terrestrial 

mammals in our sample) were excluded from the calculations. Blue and red lines refer to low-

risk and high-risk species, as reported in legend. Dashed lines denote mean of distributions. High 

levels of the human footprint (HFP) included values of 3 or above. 
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Figure A.4: Distribution of the matrix condition in low-risk and high-risk species at the 

scale of individual biogeographic realms. The plots represent the frequency distribution of the 

extent of high human footprint values within the matrix of 1.109 species in the Neotropical realm 

(68% low-risk species and 32% high-risk species), 990 species in the Afrotropical realm (65% 

low-risk species and 35% high-risk species), 596 species in the Indo-Malay realm (52% low-risk 

species and 48% high-risk species), 552 species in the Australasia realm (58% low-risk species 

and 42% high-risk species), 498 species in the Palearctic realm (79% low-risk species and 21% 

high-risk species), and 286 species in the Nearctic realm (83% low-risk species and 17% high-

risk species). The Oceania realm included a total of 4 species only (17% low-risk species and 

83% high-risk species), which are not depicted on the map. Species with ranges that overlapped 

with two or more realms (9% of 4,426 terrestrial mammals in our sample) were excluded from 

the calculations. Blue and red lines refer to low-risk and high-risk species, as reported in legend. 
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Dashed lines denote mean of distributions. High levels of the human footprint (HFP) included 

values of 3 or above. 

 

 

Figure A.5: Effect size (Cohen’s d statistic) of the degree of habitat fragmentation and the 

degree of patch isolation between low-risk and high-risk species with a low-quality matrix 

and a high-quality matrix. Effect size of the degree of fragmentation and the degree of patch 

isolation between low-risk and high-risk species with a matrix of low-quality habitat (a). Effect 

size of the degree of fragmentation and the degree of patch isolation between low-risk and high-

risk species with a matrix of high-quality habitat (b). Green and yellow points represent the 

effect sizes or the standardized difference of mean values (Cohen’s d statistic) of the degree of 
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fragmentation and the degree of patch isolation between low-risk and high-risk species, 

respectively. Error bars represent 95% confidence intervals for each effect size calculated. Low-

quality matrices included species with proportions > 84.2% of the extent of their matrix 

overlapping with high human footprint values (n = 1,815 low-risk species and 1,027 high-risk 

species). High-quality matrices included species with proportions < 15.8% of the extent of their 

matrix overlapping with high human footprint values (n = 60 low-risk species and 29 high-risk 

species). High levels of the human footprint included values of 3 or above. 
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B. Appendix B: Supplementary material for “Chapter 3: Global comparison of habitat 

intactness models for predicting extinction risk for terrestrial mammals” 

 

Supplementary methods B.1: Transformation of the human footprint (HFP) to habitat 

quality. Following previous work (Beyer et al. 2020), we transformed the HFP maps to quality 

using an exponential function (𝑤𝑖 = 𝑒𝑥𝑝(−𝛾𝐻𝐹𝑃𝑖)), such that habitat quality is 1 when the HFP 

is 0, and habitat quality is 20% when the HFP is 4. We applied this transformation based on the 

assumptions listed below: (i) A HFP value of 0 represents areas free of any human influence (i.e. 

the remaining wilderness areas on land) and the highest habitat quality; (ii) A HFP value of 4 

represents areas of low human pressure, such as pasture lands with other human disturbances 

nearby (e.g., roads), and habitat quality should have declined to lower levels at this point; and 

(iii) HFP values above 8 represent areas of high human pressure levels, such as intensive 

agriculture and urbanized areas, and habitat quality should be approaching values of 0 at this 

point. We achieved these criteria using a value of 𝛾 =  0.4023595.  
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Figure B.1: Effects of the 5th, 10th, 50th, 90th, and 95th percentiles of the continuum and 

hybrid habitat intactness models on extinction risk for terrestrial mammals classified as 

habitat generalists and specialists. Each variable is colour-coded according to the habitat 

model (continuum or hybrid model) it represents. Effect sizes were estimated while holding other 

variables known to influence extinction risk (see Table 3.1) at their mean. All variables were 

standardized (z-transformed) before analysis to ensure comparable results. Error bars represent 

95% confidence intervals. Confidence intervals not containing zero (dashed green line) 

indicate statistical significance. 
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Figure B.2: Correlation between variables used to predict extinction risk for terrestrial 

mammals classified as habitat generalists and habitat specialists. Pearson’s correlation 

coefficient (r) was used to quantify relationships between variables. Acronyms: patch-matrix 

model (PMM), reduction in the patch-matrix model (RPMM), continuum model (CM), reduction 

in the continuum model (RCM), hybrid model (HM), reduction in the hybrid model (RHM), 

range size (RS), gestation length (GL), and weaning age (WA). Detailed descriptions of these 

variables are provided in Table 3.1. 
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Figure B.3: Predictive performance of extinction risk models for both habitat generalists 

and habitat specialists as a function of three habitat intactness models and how they 

decrease over time. AUC values were estimated from mixed-effects logistic regression models 

using a spatially blocked cross-validation and a ten-fold cross-validation scheme (see Methods). 

AUCs above 0.5 (dashed green line) indicate that model performance is better than random 

chance. All extinction risk models accounted for the effects of other variables known to 

influence extinction risk (see Table 1). Error bars represent 95% confidence intervals. Acronyms: 

extinction risk model (ER), patch-matrix model (PMM), continuum model (CM), hybrid model 

(HM), reduction in the patch-matrix model (RPMM), reduction in the continuum model (RCM), 

and reduction in the hybrid model (RHM). 
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Figure B.4: Predictive performance of extinction risk models for both habitat generalists 

and habitat specialists as a function of three habitat intactness models and their temporal 

decline, before and after excluding threatened species assessed solely under IUCN Red List 

Criterion B. AUC values were estimated from mixed-effects logistic regression models using a 

spatially blocked cross-validation scheme (see Methods). AUCs above 0.5 (dashed green line) 

indicate that model performance is better than random chance. All extinction risk models 

accounted for the effects of other variables known to influence extinction risk (see Table 1). 

Error bars represent 95% confidence intervals. Acronyms: extinction risk model (ER), patch-

matrix model (PMM), continuum model (CM), hybrid model (HM), reduction in the patch-

matrix model (RPMM), reduction in the continuum model (RCM), and reduction in the hybrid 

model (RHM). 

 



147 

 
Figure B.5: Predictive performance of extinction risk models for both habitat generalists 

and habitat specialists as a function of three habitat intactness models and their decline 

over time, before and after excluding threatened species assessed solely under IUCN Red 

List Criterion B. AUC values were estimated from mixed-effects logistic regression models 

using a ten-fold cross-validation scheme (see Methods). AUCs above 0.5 (dashed green line) 

indicate that model performance is better than random chance. All extinction risk models 

accounted for the effects of other variables known to influence extinction risk (see Table 1). 

Error bars represent 95% confidence intervals. Acronyms: extinction risk model (ER), patch-

matrix model (PMM), continuum model (CM), hybrid model (HM), reduction in the patch-

matrix model (RPMM), reduction in the continuum model (RCM), and reduction in the hybrid 

model (RHM). 

 
 



148 

 

Figure B.6: Effects of three habitat intactness models and their decline over time on 

extinction risk for terrestrial mammals classified as habitat generalists and habitat 

specialists, before and after excluding threatened species assessed solely under IUCN Red 

List Criterion B. Effect sizes were estimated while holding other variables known to influence 

extinction risk (see Table 3.1) at their mean. All variables were standardized (z-transformed) 

before analysis to ensure comparable results. Error bars represent 95% confidence intervals. The 

statistical significance of the coefficients is indicated by the absence of overlap between their 
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confidence intervals and zero (dashed green line). Acronyms: patch-matrix model (PMM), 

continuum model (CM), hybrid model (HM), reduction in the patch-matrix model (RPMM), 

reduction in the continuum model (RCM), and reduction in the hybrid model (RHM). 
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C. Appendix C: Supplementary material for “Chapter 4: Mapping the conservation 

potential of matrix habitats for terrestrial mammals” 

 

 

Figure C.1: Species richness in matrix areas for terrestrial mammals. Maps show species 

richness within matrix areas for all species (a), species with declining population trends (b), and 
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species with threatened status (c). The dataset includes 5,439 species in the all-mammal group, 

1,765 in the declining population trend group, and 1,212 in the threatened status group. 

 

Figure C.2: Species richness in suitable habitats for terrestrial mammals. The map shows 

species richness within suitable habitats for the all-mammal group. 

 

Table C.1: Geographic coverage and species representation of hotspot types under 

different hotspot definitions. The table includes the total area and number of species whose 

matrix area overlap with each hotspot type, based on two different thresholds: the top 2.5% and 

the top 10% of pixels with the highest richness values. Numbers in parentheses indicate the 

percentage of species-rich matrix areas (out of 15,922,965 km² globally) or the percentage of 

extant terrestrial mammal species (out of 5,808 species worldwide). 

 2.5% criterion 10% criterion 

Hotspot type Area (km²) Number of 

species 

Area (km²) Number of 

species 

All species 393,255 (2.5)  1,431 (24.6) 1,613,280 (10.1) 2,410 (41.5) 
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Declining trend 358,140 (2.2)  2,529 (43.5) 1,728,984 (10.9) 3,175 (54.7) 

Threatened status 396,109 (2.5)  2,906 (50.0) 1,381,567 (8.7) 3,631 (62.5) 

Total in all 

hotspots  

864,005 (5.4)  3,078 (53.0) 2,852,778 (17.9) 3,792 (65.3) 

 

 

Figure C.3: Overlap of hotspot types and conservation potential in matrix areas across 

different hotspot definitions. Venn diagrams illustrate the spatial overlap of hotspot types (a, c) 
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and species richness overlap across these hotspot types (b, d) under two different thresholds: the 

top 2.5% and the top 10% of pixels with the highest richness values for each species group (all 

mammals, mammals with declining population trends, and mammals with threatened status). 

 

Figure C.4: Conservation status and human footprint within matrix areas with 

conservation potential. The figure shows the proportion of matrix hotspots classified as high-, 

moderate-, and low-priority that fall within protected areas (PAs) (a), other effective area-based 
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conservation measures (OECMs) (b), and the combined coverage of PAs and OECMs (c). Bars 

are categorized by human footprint level: intact, low-disturbance, and highly modified. 

 


