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ABSTRACT 

 

 

Modern digital infrastructures require access control systems that protect sensitive data as well as 

adapt to evolving contexts and user behaviour. While foundational models like Discretionary 

Access Control (DAC), Mandatory Access Control (MAC), and Role-Based Access Control 

(RBAC) provide basic enforcement, they lack flexibility, granularity and real-time responsiveness. 

Attribute-Based Access Control (ABAC) improves granularity by using attribute-driven policies, 

but standard implementations (XACML and NGAC) each have critical limitations. XACML, 

though powerful in static policy expression, lacks real-time contextual awareness, while NGAC 

offers dynamic evaluation but struggles with policy standardization, over-permissiveness and 

transparency. To bridge these gaps, this research proposes DTW-ABAC (Dynamic Trust 

Weighted-Attribute Based Access Control), a hybrid framework that combines XACML's 

structured policy logic with NGAC's dynamic evaluation capabilities. The framework leverages 

Microsoft Entra ID for consistent and secure identity and attribute management, and introduces a 

trust scoring system that adjusts user access based on behavioural consistency and historical risk. 

Weighted attribute evaluation ensures policy flexibility, while scenario-driven testing and detailed 

audit logs increase transparency and accountability. Comparative analysis shows that the hybrid 

model delivers more accurate, adaptive, and explainable decisions than standalone XACML or 

NGAC, making it a strong candidate for enterprise and cloud-scale deployment where contextual 

nuance and high security reliability are essential. 
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GLOSSARY 

 

• ABAC (Attribute-Based access control): The access control method utilizes the subject 

attributes, object attributes and environmental attributes to determine whether a subject can 

perform any action on the requested object. It is a superset of RBAC because roles are just 

one type of attribute in ABAC. 

• Access control (AC): “The process of granting or denying specific requests to 1) obtain and 

use the information and related information processing services and 2) enter specific physical 

facilities (e.g., federal buildings, military establishments [1]) 

• Access control mechanism (ACM): A logical component that receives access requests, 

evaluates access based on the defined architecture and enforces decisions. 

• Attributes: The characteristics of the object, such as file name, application name, application 

ID, security clearance, etc., or subject, such as username, user ID, job location, associated 

project name, etc. or environmental, such as time of request, geographical location, etc. 

Usually, these are defined by security systems. 

• Authentication: The process of verifying a subject's identity by relying on one or more 

factors [2][3], such as: 

o Something you know – A secret such as a password, PIN, or passphrase. 

o Something you have – A physical device, such as a smart card, security token, or 

mobile authenticator. 

o Something you are – Biometric characteristics (e.g., fingerprint, retina scan, or facial 

recognition). 

o Something you do   – Behavioural biometrics, such as keystroke dynamics, typing 

speed, or gait recognition. 
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o Somewhere you are  – Location-based authentication using IP address, GPS, or 

network context. 

Additionally, static authentication typically occurs at the initial stage of the access control 

process (e.g. at login), whereas continuous authentication happens throughout the session 

(e.g., access and behavioural patterns which result in risk/trust). 

• Authorization: The process of determining and granting specific permissions or access 

rights to a subject for one or more objects, ensuring that the subject can only access resources 

they are authorized to use with the approved level of permissions (e.g., Read, Write, etc.). 

• Cloud computing: The delivery of computing services, such as servers, storage, databases, 

networking, software, analytics, and intelligence, over the Internet.  

• Evaluation: The final result after evaluating the access request by the AC model. 

o Positive result: The access request has been granted. From the context of this thesis: 

▪ TP (True Positives) - permitted access for legitimate users. It reduces 

unnecessary alerts. 

▪ FP (False Positives) - permitted access for unauthorized users. It can lead to a 

security breach. 

o Negative result: The access request has been denied. From the context of this thesis: 

▪ TN (True Negatives) - denied access to unauthorized users. It improves the 

security and access management process. 

▪ FN (False Negatives) - denied access to legitimate users. Erroneously 

preventing users from doing their work. 
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• Firewall: A security mechanism designed to regulate network traffic by monitoring data 

transmissions and determining whether to permit or restrict access based on predefined 

security policies. 

• IaaS (Infrastructure-as-a-Service): Provides virtualized computing resources such as 

servers, storage, and networking on a pay-as-you-go basis. 

• Microsoft Azure Cloud: A subscription-based cloud computing solution provided by 

Microsoft that is accessible via the internet dashboard. This is an IaaS and PaaS solution, but 

not SaaS. 

• Microsoft Entra ID (or Entra ID) [4]: A cloud-based identity and access management 

service to manage Microsoft PaaS and SaaS applications. Certain features are license-based. 

• Multi-factor Authentication (MFA): A process of authenticating a user’s identity using two 

or more verification factors (mentioned in the authentication in glossary) to ensure a strict 

identity. For example, users must enter login credentials (something you know) and a one-

time password (OTP – something you have) received on mobile phones, etc. 

• Object: A logical entity or system resources such as devices, files, records, tables, processes, 

programs, networks, or domains containing or receiving information.  

• PaaS (Platform-as-a-Service): Offers a managed environment with development tools, 

frameworks, and infrastructure to build, test, and deploy applications. 

• Performance metrics: To assess how accurately and effectively a system makes decisions, 

such as granting or denying access. 

o Accuracy: Percentage of total predictions that are correct (TP or TN). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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o Precision: Percent of permit accesses that are correct. If precision is low, legitimate 

users will be denied access and unable to do their work. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

o Recall (Sensitivity or True Positive Rate): It shows how well the model identifies 

scenarios where access should be granted. if recall is low, this means the system will 

grant access to illegitimate users, such as attackers. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

o F1-Score or Harmonic mean: Used when both precision and recall are important, 

balancing FP and FN, especially critical in access control where both denial of 

legitimate users and access to unauthorized users are risky. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

• RBAC (Role-Based Access Control): The access control method to restrict access to 

resources based on roles, a logical identity with a set of permissions, and associate it with the 

users. 

• SaaS (Software-as-a-Service): Delivers fully functional applications over the internet, 

eliminating the user’s need for installation or maintenance. 

• Subject: a person or a system process, also known as a non-person entity (NPE), requesting 

access to the files, devices or applications. Also known as the requester. 

• Usage Frequency: The count of how many times an attribute is used in the XACML-defined 

policies and NGAC graphs. 
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NOTATIONS 

• XACML Notations 

• 𝑇𝐹𝑋𝐴𝐶𝑀𝐿 : XACML trust factor. (range: 0 to 100) Note: calculated using a formula. 

• 𝐶𝑋𝐴𝐶𝑀𝐿 : XACML weight constant. (range: 0 to 1), assigned to the XACML trust factor 

to calculate the final trust factor. Note: assigned value derived from experiments. 

• NGAC Notations 

• 𝑇𝐹𝑁𝐺𝐴𝐶𝐵𝑎𝑠𝑒
: NGAC Trust factor (base) without the confidence factor. Note: calculated 

using a formula. 

• 𝐻 : Confidence factor. (range: 1 to 2) Used to adjust the NGAC trust factor (base) 

according to historical success/failure patterns. Note: calculated using a formula. 

• 𝑇𝐹𝑁𝐺𝐴𝐶 : Final NGAC Trust factor. (range: 0 to 100) Note: calculated using a formula. 

• 𝐶𝑁𝐺𝐴𝐶 : NGAC weight constant, assigned to the NGAC trust factor to calculate the final 

trust factor. (range: 0 to 1) Note: assigned value derived from experiments. 

• Common Notations 

• 𝑊𝑖: Weight associated with the attribute 𝑖. Note: assigned value derived from 

experiments. 

• 𝑀𝑖: Multiplication factor for the attribute 𝑖. Either 1 if the attribute value is matched with 

values defined in policies (i.e. incoming attribute value is equal to or in range of expected 

attribute value or range), or 0 if not matched. 

• 𝑇𝐹: Final trust factor to decide the result. (range: 0 to 100) Note: calculated using a 

formula. 

𝑇𝐹 =  
𝐶𝑋𝐴𝐶𝑀𝐿  ×  𝑇𝐹𝑋𝐴𝐶𝑀𝐿 +  𝐶𝑁𝐺𝐴𝐶  ×  𝑇𝐹𝑁𝐺𝐴𝐶

𝐶𝑋𝐴𝐶𝑀𝐿 + 𝐶𝑁𝐺𝐴𝐶
× 100 
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Chapter 1 

Introduction 

A relentless pursuit of information accessibility and operational agility characterizes the 

contemporary business landscape. Over the last few decades, data and applications have 

experienced tremendous growth in different sectors such as information technology, finance, 

healthcare and governance. Enterprises use several information and communication technologies 

(ICT), such as company-wide private networks, industry-specific software, regular information 

exchange over the Internet or cloud computing. Cloud computing has played a significant role in 

this digital transformation due to its remote access features, scaling capability, security and pay-

as-you-go cost model. A 2023 survey published by Statistics Canada [5] shows that cloud 

computing has become the most commonly adopted ICT, as depicted in Figure 1.  

 

 

Figure 1 Information and communication technologies most commonly used by businesses, Canada, 2021 and 2023 [5] 
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In 2023, cloud computing reached a usage rate of 48%. Particularly, businesses in the 

information and cultural industries sector had the highest adoption rate, with 81% using cloud 

computing in 2023. 

 

In traditional perimeter-based security models, companies protected their digital assets by 

keeping them behind firewalls and inside secure data centers. Cloud computing changes this by 

moving assets to internet-accessible services, especially in public cloud environments. Because 

of this shift, businesses can no longer rely only on internal network security and must rethink 

how they protect their systems. As companies spread their workloads across different cloud 

platforms, security is no longer just about firewalls. Instead, protection is now based on identity-

based security, often described as “identity is the new firewall.” This makes authentication and 

access management more important than ever, as they now play a key role in securing cloud 

environments. To further enhance security, Intrusion Detection System (IDS) and Intrusion 

Prevention System (IPS) technologies can be integrated alongside authentication and access 

management, providing real-time detection and automatic prevention of suspicious activities and 

potential breaches. 

 

With this growth, cyber-attacks have also increased, involving malicious traffic from untrusted 

sources, network attacks, unauthorized access and insider threats to enterprise resources and 

services [6]. Strong security systems are required to counter those attacks and provide access to 

only legitimate users. For decades, firewalls have been a crucial safeguard in protecting networks 

from unauthorized access and potential threats. However, the firewall cannot handle 

unauthorized access to data or insider threats, primarily carried out by compromised user/admin 
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accounts. Privileged Access Management (PAM) is a security solution that monitors and controls 

access to critical resources. It limits administrative privileges, tracks user activity during 

privileged sessions, and adds layers of protection to reduce the risk of unauthorized access and 

data breaches. A report published by Netwrix Research Labs, recognized as a visionary in 

Gartner’s 2023 Magic Quadrant for PAM [7], highlighted the most common security incidents, 

with attacks linked to cloud account compromise ranked in second position (Figure 2) [8]. In 

2020, just 16% of respondents reported this kind of cloud incidence; by 2024, that number had 

risen to 55%.  

 

Figure 2 Most common security incidents in the cloud (2020, 2022, 2023, 2024) [8] 

The same report also compares the security incidents in on-premises and cloud-based 

infrastructures in the healthcare sector (Figure 3). The statistics reveal that the user account 

compromise in the cloud environment is higher than on-premises, as well as other most common 

security incidents. The report further links this to contributing factors, including remote access to 

patient records, shared documents, weak authentication and misconfiguration of access 

management policies. Since cloud computing is a shared security model [4], both the cloud 

vendor and organizations are responsible for security and compliance. 
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Figure 3 Most common security incidents: Healthcare [8] 

 

1.1. Access control (AC) levels 

The compromised user identity with legitimate access can still exploit the system, and this is 

where the access control (AC) mechanisms (in the context of logical operations) play a crucial 

role. AC works as the background process when the user initiates an access request, and it 

fundamentally ensures that only a legitimate user can access the authorized resources. In addition 

to the authentication and authorization process, AC performs access enforcement, logging events 

or activities, session management, and adaptive security responses such as multi-factor 

authentication (MFA), temporary account disablement, password resets, or escalation to a 

security help desk. Also, it is necessary to distinguish between static access control and 

continuous access evaluation, especially in modern cloud services and hybrid work 

environments.  
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1) Static Access Control determines permissions at the start of a session and retains them until 

the session ends. This is common in traditional systems but lacks adaptability to real-time 

threats. 

2) Continuous Access Evaluation (CAE), on the other hand, continuously monitors access 

during a session and can adapt decisions based on changing factors, like geolocation, device 

status, risk scores, or user behaviour [9]. CAE enables real-time enforcement, such as 

revoking access mid-session if a risk is detected. 

 

Context in Access Control refers to environmental or situational information that influences 

access decisions. It answers questions about when (such as time of day or day of week), where 

(like IP address or physical location), how (including device type or encryption), and under what 

conditions (such as risk score, threat level, or compliance requirements). By evaluating these 

dynamic attributes, policies can adapt to changing conditions and enforce more precise security 

controls. This shift toward dynamic, context-aware access control is especially important as 

identity threats and session hijacking increase in frequency. These mechanisms can be applied at 

various points and levels in the system, from application-specific controls to enterprise-wide 

policy layers. AC can be applied to multiple places and different levels, such as: 

1) System-level access control [10]: Restricting access to the operating system or computing 

environment through login permissions or administrator access control. It deals mainly with 

the authentication process of verifying identity using credentials, one-time passwords (OTP) 

or Multi-Factor authentication (MFA) to enter the system. 

 

2) Data level access control [11]: Restricting access to files, databases and structured/ 

unstructured data. It ensures that only authorized users can view, edit or delete the data using 
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file permissions, policies and encryption methods. A set of rules known as an Access Control 

List (ACL) is associated with each logical object that defines which users or system 

processes are allowed to access a specific object. It is most commonly used in security 

situations, where an object owner allocates access permissions. 

 

3) Application-level access control [12]: Governs access to multiple applications within a 

specific infrastructure, determining the features and functionalities users can utilize to 

perform certain operations. It typically operates through a role-based access matrix, where 

permissions or privileges are assigned to roles rather than directly to individual users, 

improving scalability and manageability. Each role aggregates a set of access rights, and 

users are mapped to roles based on their responsibilities. Systems such as Customer 

Relationship Management (CRM) software use role-based permissions to provide controlled 

access at this level [13]. Access rules differentiate users (e.g., administrators, managers, 

customer service representatives) by assigning them predefined roles with distinct privilege 

sets. For instance, a sales executive may only view customer contact and deal progression 

data in a CRM environment. In contrast, administrative roles may allow configuration of 

system-wide settings. However, in modern zero trust models, even administrators typically 

do not have unrestricted access to sensitive data by default; instead, elevated access is 

granted only through controlled, time-limited processes that require approval and generate 

audit logs to maintain security and compliance. 

 

4) Network-level access control [14]: Determines whether a user or machine can be connected 

to a specific network and what resources they can access. It prevents unauthorized network 

access and manages incoming and outgoing network activity. Usually, firewalls or virtual 



 7 

private networks (VPN) are used to establish secure, encrypted tunnels over the Internet. 

Traditional VPNs are commonly used to connect remote workers securely to an 

organization’s internal network (intranet). Additionally, site-to-site VPNs have become 

increasingly popular to securely connect multiple office locations over public networks, 

allowing them to operate as a unified private network across geographically distributed sites 

[15]. 

 

5) Cloud-based and IoT-level access control [16] [17]: This emerging solution controls how 

users interact with IoT devices and cloud-based resources, including data, applications and 

networks. This is a custom-designed access control mechanism specific to the vendor to 

manage access to their cloud services by internal or external users of the client organization. 

It involves both the authentication and authorization process. 

 

1.2. Access control (AC) traditional models 

Numerous models have been developed to manage access control for data and applications more 

efficiently. The traditional access control models are as follows [18]: 

1.2.1 Discretionary Access Control (DAC): An access control model where the owner of a 

resource has the authority to grant or restrict access to other users based on defined 

permissions. Access permissions, such as read, write, and execute, are assigned at the 

owner's discretion rather than enforced by a central security policy. However, this 

type of access control comes with some security weaknesses, as follows [18]. 

(1) Transitive Access: A user who is granted read access can copy and share the 

information with others. 
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(2) Trojan Horse Attacks: Malicious programs can inherit user permissions. This can 

lead to unauthorized actions under the user’s identity [19]. 

(3) Lack of Centralized Security Policy: Since individual owners control access, it 

may not align with organization-wide security policies. Standardization is not 

possible across the organization and can create compliance issues. 

 

1.2.2 Mandatory access control (MAC): MAC is a strict security model where access 

decisions are enforced by a centralized authority based on predefined security 

policies. Unlike discretionary models, individual users, including object owners, have 

no control over who can access resources. Instead, both users and data objects are 

assigned security labels, such as classification levels (e.g., Top Secret, Secret, 

Confidential), which are then used to enforce access. This model is widely used in 

environments requiring high assurance, such as military and government systems, 

where maintaining strict confidentiality and data integrity is critical. MAC operates 

on key principles: 

(1) Clearance-based access: Users must possess appropriate security clearance to 

access classified data. 

(2) “No read up, no write down”: A user cannot read data above their clearance level 

(preventing unauthorized disclosure) nor write data to a lower classification level 

(preventing data leaks), known as the Bell-LaPadula model [20]. 

 

1.2.3 Role-based access control (RBAC): It involves creating multiple roles that contain a 

logical identity associated with a set of permissions to resources, and then those roles 

can be assigned to the users (Figure 4). This model differs significantly from the 
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DAC and MAC in terms of who controls the access provision and how access 

decisions are made. It is more structured than DAC since access is determined by 

roles rather than individual users controlling it. Similarly, it is more flexible than 

MAC since the roles can be adjusted without changing the entire security policy.  

 

 

Figure 4 Role-based access control components 

However, despite being flexible and structured, it lacks several essential features as 

described below: 

(1)  It has to deal with the “stronger security vs easier administration” problem [10]. 

To maintain stronger security, the roles need to be more granular, which requires 

creating as many roles as possible per user, which can create challenges in the 

administration. This can also lead to compliance and regulatory hurdles and raise 

the challenge of balancing security with operational costs. 

(2) The rapid growth of web-based applications, which rely on interconnecting 

multiple components over the internet to deliver cohesive services, has 

significantly increased the complexity of access control. In such dynamic 

environments, RBAC often struggles to adapt due to frequent changes in roles and 

permissions, making its implementation challenging and, at times, impractical 

[21]. 
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1.2.4 Attribute-based access control (ABAC): Among all traditional models, ABAC is 

more evolved and flexible and provides more granularity. It revolves around the 

attributes, policies and permissions. The attributes are subject (user) attributes, object 

attributes (application) attributes and environment attributes. Figure 5 shows the 

simplified version of how ABAC connects those attributes with policies and assigns 

permissions instead of predefined roles. Although the administrator controls the 

access policies, the attributes or tags for each user and registered application are 

typically not manually configured. Instead, they are automatically populated from 

upstream systems such as Human Capital Management Systems (HCMS) (e.g., job 

title, department, location). The resulting policy consists of a set of rules that define 

the required attributes and values to access the specific resource. The AC mechanism 

evaluates the attributes against the rules and enforces the policy. ABAC is a superset 

of RBAC since the roles can be defined as attributes in the user profiles or application 

attributes. It can replace RBAC and add more features to the ACM if needed. 

 

While ABAC offers greater flexibility, granularity, and dynamic security control, its 

implementation can lead to complex policies and time-intensive processes. Various approaches 

exist for implementing ABAC, each with its own advantages and limitations. Ongoing 

advancements aim to simplify ABAC frameworks, making them more efficient and easier to 

adopt. 
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Figure 5 Attribute-based access control components 

 

1.3. Comparison of Traditional Access Control Models across System-Level Metrics 

 

Table 1 compares these traditional AC models over metrics such as flexibility, granularity, 

security level, ease of implementation, scalability, dynamic adaptation and use case suitability 

[22], [23].  

 

Metric DAC MAC RBAC ABAC 

Flexibility High Low Moderate Very High 

Security Level Low Very High Moderate Very High 

Granularity Coarse Coarse Moderate Fine-Grained 

Ease of 

Implementation 
Simple Complex Moderate Complex 

Scalability Low Low High Very High 

Dynamic 

Adaptability 
Limited None Limited High 

Use Case 

Suitability 

Small Teams/ 

Personal 

Government/ 

Military 

Enterprises/ 

Organizations 

Cloud/IoT/ 

Dynamic Systems 

Table 1 Comparison of DAC, MAC, RBAC and ABAC models over system-level metrics 
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These metrics are described below: 

i) Flexibility: It defines how the model can adapt to new scenarios and requirements as 

the environment changes. ABAC takes the edge here because it allows dynamic AC 

using multiple attributes.  

(a) For example, the AC can grant access to a resource only if the user with a 

specific role accesses it from a secure device during business hours. The 

attributes include user role, location, device type, and time. ABAC adapts to 

real-time conditions, making it ideal for complex, evolving systems like cloud 

environments and IoT. 

 

ii) Security level: The level of security enforced by the access control (AC) model. 

ABAC enforces fine-grained policies using multiple attributes. This ensures the 

principle of least privilege and reduces the risks of being over-permitted.  

(a) For example, users may access a database only if their risk score is low and 

their department matches the resource sensitivity level. This gives tighter 

control due to the consideration of environmental and user-specific factors. 

Additionally, it minimizes unauthorized access risks. 

 

iii) Granularity: It shows how detailed and precise AC is in specifying who can do what 

under specific conditions. ABAC comes with fine-grained access control as it 

evaluates multiple levels of attributes. Instead of only allowing the “developer to 

access the code files,” ABAC can enforce the rule that the “developer can edit 

sensitive code only when they are part of the specific project in the office network 



 13 

and using a secure device.” This level of control supports complex security needs and 

compliance with British Columbia’s privacy legislation, including: 

(1) The Personal Information Protection Act (PIPA) [24] governs the collection, use, 

and disclosure of personal information by private sector organizations in BC. 

(2) The Freedom of Information and Protection of Privacy Act (FIPPA) [25] 

regulates how public sector organizations handle personal data and ensure 

security controls to prevent unauthorized access. 

(a) By implementing ABAC, organizations in BC can ensure compliance with 

these laws by enforcing strict, attribute-based access policies that align with 

data protection and privacy requirements. 

 

iv) Ease of Implementation: This defines how easy it is to set up and maintain the AC 

model for a specific use case. This is where ABAC takes a backstep. It is complex to 

build since it requires identifying many attributes, writing policies and setting up the 

infrastructure for dynamic evaluation. 

 

v) Scalability and dynamic adaptation: It defines how well the model will perform 

when the system grows in size and complexity. ABAC, not depending on static 

permissions or hardcoded rules, can scale better as it only requires more attributes. 

Similarly, it takes extra effort to make the model completely dynamic. For example, 

ABAC can easily handle user or application growth with cloud computing. 

 

vi) Use case suitability: The specific scenarios and applications where the access control 

model is most effective are highlighted in this criterion. Organizations rapidly shift 

towards cloud computing and IoT services to improve scalability, flexibility, and 
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operational efficiency. This shift necessitates the implementation of fine-grained, 

context-aware access control policies. In response to these evolving security needs, 

attribute-based access control (ABAC) has become an increasingly preferred 

approach and is beneficial for dynamic and large-scale ecosystems where traditional 

role-based models struggle to meet evolving access requirements. Its suitability 

extends to healthcare, finance, and government sectors, where access decisions must 

be highly adaptive and context-driven. 

 

1.4. Relationship of ABAC to Other Models 

1.4.1 ABAC vs. RBAC - ABAC extends RBAC by allowing role-based policies while 

also incorporating additional attributes like user attributes (e.g., department, 

clearance level), environmental attributes (e.g., time of access, device type), and 

object attributes (e.g., file sensitivity). 

 

1.4.2 ABAC vs. MAC - ABAC provides fine-grained control similar to MAC but is 

more flexible by allowing dynamic policies based on various attributes rather than 

predefined security labels. 

 

 

1.4.3 ABAC vs. DAC - Unlike DAC, which relies on the discretion of resource owners, 

ABAC enforces policies centrally and can prevent privilege escalation. 
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1.4.4 Crawl-Walk-Run Approach for ABAC - As mentioned in Table 2, to transition to 

ABAC from simpler models: 

Crawl (Basic) Walk (Intermediate) Run (Advanced) 

Start with RBAC by 

assigning users to roles 

based on their job 

function. 

Introduce context-based 

conditions in addition to roles 

(e.g., access only during 

working hours, device-based 

access). 

Fully implement ABAC with 

dynamic, real-time policies 

considering multiple attributes 

beyond roles (e.g., user 

attributes, environmental 

conditions, object sensitivity). 

Table 2 Crawl-Walk-Run approach for ABAC from other models 

 

1.5. ABAC standard frameworks and the novel hybrid framework 

1.5.1 eXtensible Access Control Markup Language (XACML) 

ABAC is commonly implemented using XACML, an eXtensible Markup Language (XML)-

based standard that defines access control policies. It is a standard defined by the “Organization 

for the Advancement of Structured Information Standards” (OASIS) [26]. The reference 

architecture shown in Figure 6 constitutes the main components of XACML 3.0 (third-

generation model), including the access evaluation and enforcement process [27]. The 

component details are as follows: 
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Figure 6 XACML reference architecture [27] 

 

i. Policy Administration Point (PAP) 

PAP is a repository where resource administrators or owners store policies. These 

policies are used by the Policy Decision Point (PDP) to evaluate access requests, ensuring 

that user requests are checked and matched against the stored policies. 

 

ii. Policy Decision Point (PDP) 

PDP is responsible for evaluating access requests by comparing them to the stored 

policies and determining whether to permit or deny the request. 

 

iii. Policy Retrieval Point (PRP) 

PRP is an optional component that stores and provides policies to the PDP, typically used 

in complex or distributed environments to decouple policy storage from decision-making; 

if absent, the PDP retrieves policies directly from a repository or local database attached 

to the PAP. 
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iv. Policy Enforcement Point (PEP) 

PEP intercepts a user's resource access request and translates it into XACML format with 

the Context Handler. It forwards the request to the PDP for evaluation and enforces the 

decision (permit or deny) provided by the PDP. 

 

v. Context Handler (CH) 

CH acts as a bridge between the PEP and PDP. It translates PEP's native access requests 

into XACML-compliant authorization requests and converts PDP's XACML responses 

back into a format which PEP can enforce. 

 

vi. Policy Information Point (PIP) 

PIP supplies the necessary attribute values (subject, resource, environment, and action 

attributes) required during access evaluation. It responds to queries from the CH when the 

PDP needs external information that is not provided directly in the access request. The 

PIP enables dynamic and context-aware decision-making by integrating real-time 

attribute sources. 

 

vii. Obligations Service 

The Obligations Service handles operations specified in policies, rules, or policy sets. 

These operations, known as obligations, are triggered based on specific event patterns 

during access enforcement [28]. An obligation is defined as a pair (event pattern, 

response), where the event pattern specifies the conditions under which an obligation is 

activated, and the response determines the administrative actions that must be 

immediately executed. PEP is responsible for enforcing both the access decision and any 

associated obligations, ensuring that security policies, such as conflict of interest 
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restrictions, workflow progressions, or data leakage prevention measures, are 

dynamically and contextually applied following access request evaluations. For example, 

if a user successfully accesses a confidential document (event pattern), an obligation may 

trigger the immediate logging of this access into a secure audit system (response), 

ensuring traceability and compliance with organizational security policies. 

 

 

1.5.2 Next Generation Access Control (NGAC) 

 

Although ABAC significantly improves granularity and adaptability, implementing it through 

standalone XACML can present challenges. Most are related to complexity in policy creation 

and management, decision-making performance, and policy evaluation considering context and 

the dynamic nature in large-scale environments [10]. This has driven the need for alternative 

approaches, such as the Next Generation Access Control (NGAC), introduced by the National 

Institute of Standards and Technology (NIST) [28]. NGAC utilizes attribute relationships, which 

offer a framework to simplify policy management and improve access control. This approach 

allows faster context-based adjustments without making policy modifications. As shown in 

Figure 7, NGAC abstracts all low-level data types of different resources and treats them as 

objects. It simplifies the AC decisions through a logical and scalable structure [29] and is 

designed to work across multiple operating environments (OE). 
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Figure 7 NGAC Graph Architecture [29] 

The core components of the NGAC architecture are described below: 

i. Basic elements - Users, Processes (NPE), Operations and Objects. 

ii. Container 

a. User container - Group users by roles, affiliations, or security clearances. 

b. Object container - Group resources by attributes, such as security classifications 

or applications. 

c. Policy Class Containers - Organize related policy elements or services into 

distinct sets. 

 



 20 

iii. Relationships 

a. Associations - Define permissions between user and object containers (e.g., read, 

write). 

b. Prohibitions - Specify restricted actions for certain users on specific objects. 

 

iv. Dynamic policies - It adapts based on user roles, object attributes, and contextual factors 

like device type, time or location. 

 

v. Obligations – Similar to the XACML model, these are the conditions which should be 

fulfilled before evaluation and the actions that should happen after the decision. These 

conditions enhance control by linking access decisions to specific actions. 

 

Additionally, NGAC enforcement also supports complex functionalities such as usage control, 

history-based constraints and separation of duty (SoD). Usage control manages not only who can 

access a resource, but also how it is used once access is granted. It can enforce limits on how 

long a file can be viewed, how many times it can be downloaded, or which actions can be 

performed. For example, a doctor may access a patient record for only 30 minutes before re-

authentication is required. History-based constraints apply rules based on a user’s past actions. 

They ensure that previous activities influence future access rights. For instance, if a user has 

already approved a document, they might be restricted from approving another related document 

to prevent conflicts of interest. Separation of Duty (SoD) splits critical tasks between different 

users to prevent fraud or mistakes. For example, the employee who submits an expense claim 

should not be the same person who approves it. This ensures independent verification and 

protects sensitive processes. 
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However, even though NGAC is effective for straightforward policy enforcement, it presents 

some challenges when used alone. For instance, it does not provide extensive policy details and 

flexibility for XACML. Furthermore, its lower industry adoption and lack of standardization can 

result in fewer available tools, reduced community support, and limited implementation 

resources. Therefore, although NGAC streamlines the structure for enforcing access control, it 

does not match the level of granularity that XACML offers, making it less suitable for systems 

that demand intricate policy rules. 

 

Despite XACML and NGAC's advancements, neither model fully addresses all the challenges of 

dynamic, scalable, and context-aware access control in complex environments such as cloud 

computing. Combining the flexibility of XACML with the structural advantages of NGAC can 

create a hybrid model that leverages the strengths of both systems. This hybrid approach aims to 

enhance policy expressiveness, simplify administrative management, and improve decision-

making. Developing a hybrid ABAC framework represents a significant step forward in modern 

access control strategies, ensuring robust, context-aware security that meets the evolving 

demands of contemporary business and technology landscapes. 

 

1.6. Motivation 

 

Organizations increasingly rely on collaboration and data exchange to achieve their goals in 

today's interconnected world. This necessitates effective mechanisms for sharing data and 

seamlessly granting access in real-time to authorized users from geographically dispersed teams. 

The shift in data storage from traditional on-premises servers to cloud servers owned by a private 

vendor gave birth to cloud computing access management (CCAM). This encompasses a set of 

policies, procedures, and technologies designed to control access to cloud resources, including 
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data storage, applications, and services. Effective access management is crucial for several 

reasons. It includes authenticating users to verify their claimed identity [based on something they 

know, something they have, something they do, or something they are], authorizing user details 

to provide sensitive data access (or minimum level of access required) and promoting 

compliance with application privacy and security regulations. 

 

Controlling the user authorization comes primarily with a traditional access control mechanism. 

RBAC is deeply integrated into current industry-level access management and is used 

extensively to manage access to resources, applications, and administrative roles. The system 

administrator creates multiple roles based on the required access level for a given position/job (or 

role) and then assigns those roles to registered users. The defined roles are often static and cover 

broader access control, making adapting to changing user needs or security threats difficult. 

Hence, more granular controls are needed to handle an increasingly complex digital landscape 

and improve user experience. As a result, ABAC was introduced to effectively implement access 

management and authorize user access based on the attributes or tags associated with a particular 

user profile, user actions, the hosted resources and environment, such as time of the day or 

location [30]. It is a superset of RBAC since the roles can be defined as attributes in the user 

profiles or application attributes. Although it provides more flexibility, granularity, and dynamic 

security control, implementing it could result in more complex policies or time-consuming 

processes. New models are being developed continuously to use ABAC with less complexity. 

However, it has been observed that access provision efficiency can be improved by combining 

multiple methods [31].  
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Access management should not be limited to static information like user details or fixed policies; 

instead, it should be adaptable, allowing decision patterns to change based on dynamic data. 

Although several methods and applications have been defined to provide such capabilities, they 

prioritize analyzing the most recent access patterns rather than historical data and do not provide 

any customization features per the application design or changes in security requirements [4], 

[32]. Due to this, the results could be less precise and include false-positive scenarios, such as 

flagging normal users, or false-negative scenarios, such as missing high-risk users. Additionally, 

ABAC models do not provide a mechanism to prioritize specific attributes or sets of attributes 

over others during policy evaluation. This limitation makes it difficult to determine whether a 

user holds essential attributes critical for access decisions, such as security clearance, role 

sensitivity, or known risk indicators. As a result, the model treats all attributes equally, which 

may lead to granting access even when key high-impact attributes are absent or potentially 

denying access merely because a less critical attribute is missing. A more granular model is 

needed that can be used to implement user-level policy and that can be customized or tuned over 

time to include historical data and application requirements. To implement this concept, a 

custom security model can be developed with tailored policies based on specific access 

requirements. This model can be integrated with an existing identity and access management tool 

to focus on the dynamic access evaluation while outsourcing the authentication processes and 

user profile management. 
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1.7. Proposed work 

 

This research focuses on application-level access control in a cloud environment, specifically 

evaluating access decisions for simulated user profiles interacting with multiple applications 

hosted on Microsoft Azure. At this layer, access control is implemented using a hybrid 

framework that combines ABAC, which implicitly encompasses RBAC, with the policy logic of 

XACML and the graph-based enforcement of NGAC. Microsoft Entra ID is used as the identity 

provider to manage authentication, user attributes, and conditional access policies, while the 

hybrid model evaluates the authorization using additional dynamic and context-aware decision-

making capabilities beyond standard techniques. 

 

The overall research is carried out in four phases. In the first phase, a test infrastructure is created 

in Microsoft Entra ID, including multiple users, groups, applications and other Entra components 

to mimic the industry-level access management structure. The required privileges to access these 

resources are provided to the test environment, which is used to integrate the hybrid model. The 

complete setup is implemented programmatically to provide a more efficient way to manage the 

infrastructure in future. 

 

In the second phase, ABAC controls are applied using a new hybrid model that includes 

XACML and NGAC models. XACML has been implemented to manage the access policies and 

static attributes. In contrast, NGAC operates at a broader level to manage dynamic and 

contextual conditions, offering improved performance in complex scenarios through efficient in-

memory graph-based computations. The design distributes the access evaluation process by 

combining the complementary strengths of XACML and NGAC, leveraging XACML’s fine-

grained, policy-driven precision and NGAC’s dynamic, context-aware enforcement, while 
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simultaneously reducing their individual limitations, such as XACML’s rigidity and NGAC’s 

over-permissiveness[34]. A development environment is created to test the system using 

provisioned resources and distinct access requests. Access decisions are evaluated not solely on 

attribute values but through an integrated mechanism involving policy checks, graph 

relationships, and runtime context analysis techniques developed as part of this research. This 

hybrid method enables the resolution of conflicts between models and enhances overall decision 

accuracy, precision, recall, as well as the F1-score (a combined metric that balances precision 

and recall). Additionally, the architecture includes a novel risk assessment engine that evaluates 

user behaviour and logs data to compute dynamic risk levels. These risk scores are incorporated 

into policy conditions and attribute checks to influence final access decisions. Considering the 

factors involved in the access evaluation and a new approach, the framework is named Dynamic 

Trust Weighted-Attribute Based Access Control Hybrid Framework (DTW-ABAC). 

 

The third phase generates comprehensive simulated data, including sign-in and risk assessment 

logs. The simulated environment replicates realistic access scenarios by incorporating real-world 

examples, such as applications with domain-specific attributes (e.g., healthcare, education, 

technology), users with varying roles and privilege levels, and permissions aligned to different 

actions or operations. The details about the quality of workloads are discussed further in the 

methodology section. The risk logs are accomplished by programmatically simulating normal 

and suspicious user behaviour during sign-in processes and resource access using registered user 

profiles. As per the NIST publication [33], NGAC’s key advantage is: “The system’s ability to 

tightly restrict access without losing the all-important capability of scalability.”  The high 

volume of access requests will be initiated from various virtual locations to enhance the realism 

of the simulation. This is achieved using Virtual Private Networks (VPNs) and the Tor network 
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(via the Tor browser), thereby introducing dynamic and varied geolocation data into the logs. 

The simulation also includes dynamic role assignments, access from different devices and 

browsers, and sign-ins at times outside of regular working hours. These variations create a 

diverse dataset that captures a range of risk levels, from normal to high-risk behaviours. This 

process generates initial log data that is used to fine-tune and refine the developed model. The 

model iteratively improves over time based on comparisons between its results and the expected 

outcomes. 

 

In the fourth phase, the model parameters are fine-tuned to enhance decision accuracy across test 

scenarios, strengthen the reliability of trust factor evaluations over time, and validate the 

system’s effectiveness in detecting common attack patterns. This includes iterative testing using 

varying model constants, attribute sets, and policy parameters to assess their impact and identify 

optimal configurations. In addition to performance tuning, the model undergoes security 

evaluation through simulated attack scenarios, including unauthorized access attempts, privilege 

escalation, and injection of forged attributes. These tests help assess the robustness of the hybrid 

model against common access control threats and verify its ability to respond to malicious 

behaviours in real-time. The scope for future enhancements is clearly defined. Results are 

analyzed and compared with those of other access control models using statistical confusion 

matrix metrics (TPs, TNs, FPs, FNs) and Performance Metrics for Classification Models 

(Accuracy, Precision, Recall, and F1-Score). A conclusion regarding the hybrid model’s 

effectiveness is drawn, and the thesis is documented with all relevant findings, analysis, and 

references. 
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1.8. Contributions 

 

This research aims to verify the challenges in the current access solutions regarding granular 

access control and find solutions to overcome them. After considering the currently available 

security methods, adding a hybrid access control model with Entra ID and other solutions aims to 

achieve five goals, each answering a specific research question. 

 

1. Hybrid Access Control Framework Combining XACML and NGAC 

Research Question: 

How can the hybrid integration of static and dynamic models improve access correctness 

in terms of Accuracy, Precision, Recall, and F1-score? 

Contribution: 

The research introduces a layered architecture that combines XACML’s rule-based 

evaluation and NGAC’s dynamic context logic into a coordinated decision pipeline. This 

hybrid design allows the decision mechanism to consider both predefined access rules 

and runtime context, such as environment, user state, and application behaviour, ensuring 

higher decision quality and adaptability in authorization decisions. 

 

2. Trust-Based Risk Evaluation with Adaptive Risk Reclassification 

Research Question: 

How can user access history and trust metrics be used to update risk posture 

dynamically? 

Contribution: 

A dynamic trust evaluation model is developed to compute weighted access decisions 

based on attribute relevance and contextual integrity. Users are assigned evolving risk 
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classifications labels (low, medium, high) based on how consistently their access patterns 

align with organizational expectations. The risk labels are quantified with associated 

scores (e.g. Low = 1, Medium = 1.5 and High = 2) that inversely affect the historical 

confidence factor. These risk scores influence future decisions and support proactive risk 

management by continuously adapting access boundaries based on trust loss or 

improvement. 

 

3. Scenario Diversification through FSM-Guided Policy Testing Framework 

Research Question: 

How can realistic and policy-relevant access scenarios be systematically generated for 

robust evaluation? 

Contribution: 

This work proposes a structured methodology for generating high-impact access 

scenarios using finite-state machine (FSM) logic to represent access paths and attribute 

transitions. The approach aims to produce diverse and realistic access attempts, ranging 

from compliant to borderline or adversarial, helping researchers or administrators 

validate policy correctness and system resilience under various operational conditions. 

 

4. Attribute Governance and Weighted Policy Enforcement Strategy 

Research Question: 

How can attribute criticality and governance be embedded within access control 

frameworks? 

Contribution: 

A centralized attribute management strategy is proposed to differentiate between core and 



 29 

supporting attributes, assign weights based on their security impact, and define 

mandatory conditions for access enforcement. This approach is intended to enhance 

compliance, enable fine-grained policy authoring, and ensure that sensitive resources are 

only accessible when high-confidence attribute matches are observed. 

 

5. Explainable Decision Model with Traceable Evaluation Paths and Integration Support 

Research Question: 

How can access control models ensure transparency, auditability, and operational 

applicability? 

Contribution: 

The research outlines a multi-layered decision-making model that supports traceability of 

the whole evaluation process, from attribute collection to policy resolution and trust 

calculation. By structuring policy logic and runtime signals into clearly defined decision 

flows, the model supports policy explainability, eases troubleshooting, and can support 

integration across multiple systems while maintaining consistent governance and risk 

visibility. 
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Chapter 2 

Related Work 

This section presents a detailed review of the current advancements, limitations, and research 

gaps in access control mechanisms, focusing on integrating XACML and NGAC. The review 

draws upon diverse sources, including peer-reviewed journal articles, technical conference 

papers, book chapters, and official National Institute of Standards and Technology (NIST) 

publications. As mentioned in [34], their mission is to  “promote U.S. innovation and industrial 

competitiveness by advancing measurement science, standards, and technology in ways that 

enhance economic security and improve our quality of life.”[35] Special attention is given to 

modern and hybrid access control models, particularly those tailored for dynamic environments 

such as cloud platforms, IoT networks, and multi-domain enterprise systems. The selected 

literature provides theoretical and practical insights into policy expression, enforcement 

techniques, scalability, flexibility, and interoperability challenges. This review also examines the 

possibility of combining XACML’s policy logic with NGAC’s graph-based structure can 

overcome individual shortcomings, leading to more adaptive, fine-grained, and context-aware 

access control frameworks. 

 

2.1. Current Access Control Hybrid Models 

 

Access control is a key part of digital security. It helps decide who can access what information 

and under what conditions. However, as organizations handle more complex and larger amounts 

of data, traditional models like DAC, MAC, RBAC, and ABAC start showing limits, especially 

in systems that are constantly changing or spreading across different domains. The 
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comprehensive survey by M.U. Aftab et al. [18] explore both traditional and hybrid AC models, 

offering critical insights into their strengths, weaknesses, and suitability across domains such as 

IoT, cloud computing, and e-health, as summarized in Table 3. It also explains how traditional 

ABAC suffers from policy specification complexity and high computational overhead. While 

easier to manage in static environments, RBAC struggles with flexibility and scalability. Hybrid 

models are designed to bridge these gaps by taking the strengths from two or more AC 

mechanisms and performing efficiently compared to them. 

 

Model Name Functionality Strength Weakness 

Temporal Role-

Based Access 

Control 

(TRBAC) 

Extends RBAC with 

temporal constraints 

(e.g., time-bound 

access). 

Improves the timeliness 

of access decisions in 

dynamic environments. 

Policy complexity 

increases; it lacks 

fine-grained attribute 

control. 

Attributed Role-

Based Access 

Control 

(ARBAC) 

Combines ABAC’s 

attribute evaluation with 

RBAC role structure. 

Provides flexibility of 

ABAC with the structure 

of RBAC. 

Limited support for 

role hierarchies and 

Segregation of Duties 

(SOD) constraints. 

Fuzzy-Based 

Access Control 

(FBAC) 

Applies fuzzy logic to 

attribute conditions for 

flexible access decisions. 

Handles uncertain or 

imprecise access 

requirements effectively. 

Limited policy 

enforcement strength; 

difficult to audit. 

Emergency Role-

Based Access 

Control (E-

RBAC) 

Adds emergency 

override (Break-the-

Glass) features into 

RBAC. 

Supports emergency 

access scenarios with 

audit trails. 

May conflict with 

standard access 

policies; management 

overhead. 

RBAC with 

Smart Contracts 

(RBAC-SC) 

Implements RBAC using 

blockchain smart 

contracts for auditability. 

Enhances transparency 

and tamper-proof logging 

via blockchain. 

Scalability issues in 

large organizations, 

infrastructure 

dependency. 

Trust-Aware 

Role Assignment 

System (TARAS) 

Dynamically assigns 

roles based on user trust 

scores and behavioural 

patterns in IoT and 

Enhances security in 

dynamic IoT 

environments by 

detecting malicious users, 

Trust score calibration 

is subjective and may 

be difficult to 

standardize across 
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wireless networks. 

Operates at a broader 

role-assignment level 

rather than specific task 

access. 

improving integrity, 

availability, and 

robustness under high 

attack conditions. 

heterogeneous IoT 

systems. Limited 

applicability outside 

wireless networks and 

cloud-based IoT 

systems. 

Trust-Based 

Access Control 

(TBAC) 

Makes fine-grained 

access decisions based 

on calculated trust 

values at the task or data 

access level, particularly 

in online social networks 

(OSN). 

Highly effective in 

distributed, dynamic 

environments like OSNs 

with multi-role 

flexibility, enabling 

collaborative user-based 

access control. 

Susceptible to trust 

value manipulation if 

recalibration is not 

frequent. 

Administrator 

oversight is weak or 

missing, creating gaps 

in moderating 

unethical content. 

Table 3 Comparison of application-specific hybrid access control models 

 

 A similar hybridization concept for IoT applications extends the traditional XACML model to 

better-fit environments that require real-time, context-aware decisions [35]. The authors propose 

a framework called FB-ACAAC (Fog-Based Adaptive Context-Aware Access Control), which 

works in distributed fog environments (an architecture that extends cloud computing to the edge, 

bringing computing resources closer to the data source) with critical latency and responsiveness. 

The system uses contextual inputs like time, user behaviour, device type, and location to decide 

access permissions. The access control logic is deployed at the fog layer (closer to the devices), 

reducing delays and minimizing the load on central cloud servers. Their implementation uses 

standard XACML components and custom logic for dynamic context evaluation, showing 

practical feasibility using Raspberry Pi-based fog nodes. One important contribution of this 

paper is the adaptability of policy enforcement. Unlike traditional XACML, the FB-ACAAC 

model adapts policies based on runtime context without rewriting core rules. While these models 
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demonstrate innovative solutions to evolving access control challenges, they often sacrifice 

manageability, introduce complexity, or rely on specific infrastructures like blockchain or IoT. 

 

With respect to enhancing the traditional model capabilities in the cloud environment, a model 

named Attribute-Based Access Control and Communication Control (ABAC-CC) was developed 

to improve security in Cloud-Enabled Internet of Things (CE-IoT) environments [17]. 

Traditional ABAC models mainly control who can access which resources by using attributes 

like the user's role, the resource type, and environmental conditions. ABAC-CC takes this further 

by also controlling how devices communicate with each other. They add a new layer called 

Attribute-Based Communication Control (ABCC), which applies rules to the messages 

exchanged between users, devices, and services. The model uses several attributes from the 

device, user, application, and message to make access and communication decisions, improving 

context awareness, privacy, and flexibility, especially in smart homes, smart healthcare, and 

transportation networks. Policies in ABAC-CC are designed in a modular way. This implies that 

access control and communication control can be handled separately, which helps make the 

system more adaptable to different types of IoT setups. However, the paper does not include 

real-world implementation or performance results. This leaves concerns about how well the 

model would scale, handle conflicts between rules, or perform in larger systems. Similar layer 

extension can also be seen in two hybrid models, i.e. HyBACRC (Hybrid Attribute-Based 

Access Control with Role-Centric approach) and HyBACAC (Hybrid Attribute-Based Access 

Control with Attribute-Centric approach), to improve access management in smart home IoT 

environments [36]. These models aim to combine RBAC’s ease of use with ABAC’s flexibility. 

In HyBACRC, roles are assigned based on relatively static user attributes. Then, dynamic 

attributes like time, temperature, or device state are used to fine-tune the decision. In contrast, 
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HyBACAC puts attributes first and uses roles only as supporting context, making it more 

suitable for changing environments. The paper presents clear, formal definitions, examples, and 

an AWS-based prototype. The use cases are relevant to real-world IoT setups, such as restricting 

access to a room or device based on context. However, a key limitation is redundancy; since 

ABAC already covers most RBAC functionality, mixing both can complicate policy design and 

lead to policy overlap. Secondly, while the HyBACRC model simplifies role management, it 

risks a "role explosion" when combined with many dynamic attributes, creating administrative 

challenges. Conversely, the HyBACAC model, though more attribute-focused, complicates 

ongoing policy maintenance and auditing due to its highly dynamic structure. Also, these models 

are tightly focused on smart home systems, so their general applicability to large enterprise or 

cloud environments is not fully explored. A broad and systematic survey of different hybrid AC 

models in modern computing environments can be found in [11]. The survey classifies and 

compares over 25 access control models based on various parameters like flexibility, scalability, 

granularity, use of attributes or roles, dynamic behaviour, trust handling, context awareness, 

encryption, workflow support, and more. The models range from traditional ones like DAC, 

MAC, and RBAC to modern hybrid and context-aware approaches like NGAC, TrustBAC 

(Trust-based AC), CBAC (Context-based AC), and Blockchain-based access control. Each 

model is analyzed for its strengths and limitations. For example, RBAC is noted for its simplicity 

and scalability but lacks fine-grained control. ABAC offers attribute-based flexibility and is 

widely adopted in cloud services. NGAC is a scalable model suitable for distributed systems, 

offering real-time policy enforcement in memory. TrustBAC and RiskBAC bring dynamic trust 

and risk evaluations into decisions, which is important for behaviour-based control. The author 

also highlights newer models like PBAC (Policy-Based Access Control) for provenance tracking, 
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SEAC (Situation- and Environment-Aware Access Control) for distributed database systems, and 

CBAC for ubiquitous and IoT environments. Importantly, the paper underscores that no single 

model fits all use cases, and hybrid solutions are increasingly necessary. A side-by-side 

comparison of major access control models with the DTW-ABAC Hybrid model, highlighting 

the presence (X), partial inclusion (P), absence of key features (-), or not mentioned (?), is 

presented in Table 4. 

 

Metrics ABAC RBAC NGAC ReBAC 
Trust-

BAC  
HyBACRC HyBACAC 

DTW-

ABAC 

Hybrid 

Identity 

storage 
X X X X X X X X 

Fine-grained 

policies 
X P X X P X X X 

Dynamic 

decision-

making 

P - X P X X X X 

Workflow 

control 
P X X P ? P X X 

Delegation of 

trust 
- - X X ? P P X 

History-

keeping 
- - X - ? P P X 

Scalability X X X P P P P X 

Encryption/ 

Tokenizatio 
- - - - - P P P 

Attribute-

based access 
X P X P P X X X 

Role-based 

assignment 
- X P - - X P X 
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Risk factor 

evaluation 
P - X - X P P X 

Distributed 

compatibility 
P P X X P P P X 

Artificial 

Intelligence / 

Predictive 

Analysis 

- - - - - - - - 

Time 

constraint 
P P X P - P P X 

Location 

constraint 
P P X P ? P P X 

Table 4 Comparative feature analysis of access control models 

 

2.2. ABAC Standalone Models 

2.2.1. XACML (eXtensible Access Control Markup Language)  

 

XACML is a widely accepted standard developed by OASIS (Organization for the Advancement 

of Structured Information Standards) for implementing ABAC. It provides a flexible, XML-

based framework to define access control policies, evaluate requests, and make decisions [26]. 

As explained in 1.5.1, the XACML model separates the roles of policy definition, decision-

making, and enforcement across distinct architectural components - the Policy Enforcement 

Point (PEP), Policy Decision Point (PDP), Policy Administration Point (PAP), Policy 

Information Point (PIP), Policy Retrieval Point (PRP), Context Handler (CH) and Obligations 

(Figure 6) [27], [29]. XACML policies are organized into rules, policies, and policy sets 

hierarchy. Each rule contains a condition and an effect (permit/deny). For example, a rule could 

state - "Permit access if the user's department attribute is 'HR' and the action is 'read'." Policies 

aggregate multiple rules and specify a combining algorithm (such as permit overrides or deny 
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overrides) to resolve conflicts among them. For instance, a policy could combine several rules to 

allow employees to read their own records but deny access to others’ records, using a 'deny 

overrides' strategy to prioritize denials. A policy set groups multiple policies to manage larger 

collections of related access rules across departments or systems. An example of a policy set 

would be grouping HR, Finance, and IT policies under a single organizational access control 

framework. This makes XACML expressive for describing fine-grained access decisions based 

on attributes of users, resources, actions, and the environment. XACML is used across domains 

such as cloud systems, federated identity environments, government security systems, and 

financial data systems. For instance, many commercial identity providers like WSO2 and Oracle 

Identity Manager integrate XACML to manage authorization across complex enterprise setups 

[30]. Patra et al. propose an innovative approach to enhance performance in ABAC 

implementations based on the standard XACML architecture, specifically within the context of 

electronic healthcare records (EHR) [27]. As healthcare data is highly sensitive, secure and 

efficient access control mechanisms are essential. Their research identifies a common 

performance issue in traditional XACML implementations, where each denied request is 

repeatedly re-evaluated, causing inefficiencies. To address this, they introduce a novel Request 

Denial Cache (RDC) within the XACML reference architecture. This RDC retains the attributes 

of denied requests, preventing redundant policy evaluations for identical subsequent requests, 

thereby significantly reducing processing overhead and improving overall system performance. 

This approach is especially valuable in healthcare settings, where quick and secure access 

decisions are vital due to high concurrent requests. Their model also provides resilience against 

insider flooding attacks, a common vulnerability wherein a legitimate but malicious user 

overloads the server by repeatedly requesting denied access. Additionally, the solution 
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incorporates detailed audit logging of all access requests and their outcomes, which helps in 

retrospective security analyses and compliance verification. However, their research has some 

inherent limitations. Firstly, the Request Denial Cache requires manual maintenance. For 

instance, an administrator must manually remove the outdated entries from the cache whenever 

user privileges change. This manual intervention can be problematic in large-scale or dynamic 

environments, introducing the possibility of human error and delays in updating access 

privileges. Secondly, their proposed solution still adheres strictly to XACML, inherently limiting 

dynamic context-awareness. XACML policies, being predefined, lack the ability to adapt 

dynamically in real-time based on evolving contexts, such as rapid changes in risk or recent user 

behaviour patterns. This static nature could result in persistent false negatives, unintentionally 

denying legitimate requests due to outdated or overly rigid policy evaluations. Another potential 

limitation of their model is its scalability. Although RDC reduces redundant processing, 

continuously growing cache entries could lead to increased memory usage over time, potentially 

requiring complex cache eviction strategies and further administrative overhead. 

 

The following points summarize the primary limitations associated with the XACML access 

control model: 

1) Lack of Real-Time Context Awareness 

XACML evaluates requests against static policy sets and lacks built-in support for real-time 

or historical context (e.g., user’s access history or current risk level). This limits its 

effectiveness in dynamic systems [26], [28]. 

2) Over-Restrictive by Design 

The strict policy evaluation and denial by default can lead to false negatives, where 

legitimate users are denied access due to missing attributes or rigid policy rules. This makes 
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it difficult to adapt to flexible or exception-based scenarios (e.g., emergency access in 

healthcare) [37]. 

3) Scalability Issues 

The use of XML and deep hierarchical policy nesting introduces significant performance 

overhead. Policy evaluation latency increases as policies grow complex or reused across 

domains, particularly in large-scale cloud or multi-tenant environments [26]. 

4) Policy Authoring Complexity 

Writing XACML policies requires technical expertise in XML and an understanding of 

policy-combining algorithms. Administrators must carefully validate and test policies for 

minor changes to avoid unintentional access violations [30]. It cannot fulfill the emerging 

demand for flexible security models. 

5) Limited Policy Conflict Resolution 

While XACML supports combining algorithms, they are insufficient for resolving complex 

policy overlaps or inconsistencies in distributed systems. Manual conflict resolution is still 

required, adding to the maintenance effort. 

 

2.2.2. NGAC (Next Generation Access Control) 

Unlike XACML’s rule-based design, NGAC adopts a graph-based model where users, objects, 

and attributes are represented as nodes and relationships (like assignments or associations) are 

represented as edges, as shown in Figure 7. For example, a user node could represent 

"Nurse_Alice", an object node could represent "PatientRecord_123", and an attribute node could 

represent "Role_Nurse". 
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Assignments link users and objects to attributes, while associations define what actions are 

allowed. For instance, an assignment edge could connect "Nurse_Alice" to "Role_Nurse", and an 

association edge could allow "Role_Nurse" to "read" "PatientRecord_123". As explained in 

1.5.2, NGAC stores policies and access rights in memory as graph objects and evaluates 

decisions by traversing this graph. This structure supports dynamic and history-aware access 

decisions more efficiently than traditional rule evaluation. It can also enforce obligations and 

prohibitions, which makes it suitable for dynamic and context-rich environments such as 

collaborative systems, IoT, and streaming data platforms [38]. Like XACML, the NGAC 

architecture uses the policy administration point, access requestor, decision function 

(conceptually the same as PDP), and policy repository. Enforcement is done in memory, 

enabling high-speed evaluation, and it can support complex policies like separation of duty, 

history-based constraints, or usage control. 

 

Recent research has shown that NGAC can be extended for multi-policy evaluation, risk-aware 

access, and trust integration [21], [38]. However, NGAC still lacks formal standardization and is 

primarily used in research or controlled prototypes. [40]A framework to build NGAC policies 

automatically from natural language was introduced in [39]. Using Natural Language Processing 

(NLP) tools like spaCy, extracts access control elements such as users, actions, and objects from 

written policy rules. These are then mapped into NGAC graph structures within a Neo4j 

database. The authors also propose methods to validate the generated policy graphs using NGAC 

correctness checks such as consistency, completeness, and minimality. The system allows both 

access permissions and obligations or prohibitions to be defined. This makes the NGAC structure 

more expressive and usable in real-world security policy enforcement. This paper reinforces the 
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importance of using NGAC’s graph-based policy structure. However, NGAC also comes with 

some limitations, such as: 

 

1. Lack of Standardization and Adoption 

Despite being recognized as an official standard, mainstream identity and access 

management solutions do not support NGAC, unlike XACML. This leads to interoperability 

gaps and complicates integration with existing enterprise systems [38]. 

2. Over-Permissiveness 

NGAC’s flexibility can backfire when policy graphs are poorly designed or not tightly 

constrained. False positives may occur when users gain access due to transitive relationships 

or implicit associations in the graph structure [28], [37]. 

3. Complex Graph Management 

Policy administration in NGAC requires understanding and managing complex graph 

structures. Graph bloat can make performance tuning and debugging difficult as the number 

of users, objects, and policies increases [21]. 

4. Harder Migration from Legacy Systems 

Organizations with legacy XACML-based infrastructure may struggle to upgrade to NGAC 

due to a lack of tooling or migration support. This creates resistance to adoption even when 

NGAC may be more suitable in theory. Rather than requiring a complete overhaul, this 

situation highlights the need for a hybrid framework that can integrate XACML with NGAC, 

providing a gradual transition and easier adoption for security administrators. 

5. Limited Tooling and Visibility 

Few development tools or GUIs are available for NGAC. Visualizing policies, detecting 
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misconfigurations, or performing audits remains challenging. This limits its usability in real-

world operational settings. 

 

2.3. Combining NGAC and XACML 

 

XACML is rigid, less scalable, and lacks context awareness, while NGAC is flexible but 

immature and complex without proper design. Combining XACML's structured policies and 

NGAC's dynamic evaluations into a hybrid model addresses these issues by reducing false 

decisions, improving interoperability, and managing policy complexity. Inspired by existing 

NGAC approaches, the proposed hybrid framework utilizes relational tables, using Structured 

Query Language (SQL), to connect users and applications to their attributes and permissions, 

incorporating historical access data for real-time trust scoring. This design enables deeper 

context evaluation and adaptability suited to dynamic environments such as cloud and enterprise 

systems. While standalone models are often evaluated qualitatively, quantitative metrics such as 

True Positives (TP), False Positives (FP), True Negatives (TN), False Negatives (FN), and 

related performance measures (e.g., precision, recall and F1-score) offer a clearer understanding 

of decision accuracy. This becomes especially relevant when comparing static policy models like 

XACML with dynamic ones like NGAC. A hybrid model can optimize the trade-offs, reducing 

FP and FN rates across diverse scenarios. 

 

2.4. Trust factor-based access control and common vulnerabilities 

 

A growing body of research explores how fuzzy logic can compute trust in access control in 

cloud environments. Trust is a quantitative measure of a cloud service provider's and user's 

reliability, security, and behaviour over time. This trust score helps access control decisions or 
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service selection in dynamic environments. Kesarwani and Khilar propose a dual-layer fuzzy 

logic-based access control model to assess both users and Cloud Service Providers (CSPs) using 

behavioural and Quality of Service (QoS) parameters [40]. Their model for user trustworthiness 

factors in HTTP status code metrics, such as bad requests (HTTP 400), unauthorized access 

attempts (HTTP 401), forbidden access (HTTP 403), and not found errors (HTTP 404). These 

codes help indicate abnormal or suspicious user behaviour during access attempts. The frequency 

and severity of such requests result in a negative trust score. This score is then interpreted using 

weighted fuzzy inference rules, logical constructs that map input factors (e.g., severity levels) to 

qualitative trust levels (e.g., low, medium, high) through fuzzy logic reasoning. For CSP trust 

evaluation, they use performance and elasticity, quantified using attributes like workload, 

response time, availability, scalability, security, and usability. The model uses Mamdani fuzzy 

logic with Gaussian membership functions for fuzzification and triangular functions for 

defuzzification. The AR-ABAC (Attribute Rules-ABAC) model by Riad et al. introduces a 

flexible attribute-weighting mechanism where each attribute is assigned a numeric weight, and 

attribute sets are classified into power groups (G1 to G5) based on average weight [41]. 

However, the weights are not considered to take the weighted sum or confidence calculation, but 

rather the attribute group influence the user role and object sensitivity level assignment. G1 

represents the low weight, so used to assign basic rules, whereas G5 has a high weight, used to 

assign sensitive roles. Also, a subjective call is used to assign static weight to attributes and with 

no provision to update them dynamically. An enhancement can be made to find the optimal 

weights based on rigorous experiments and observations. Then, a logic can be written to update 

them dynamically based on previous patterns after specific days or request count. While the AR-

ABAC model provides a scalable and fine-grained access mechanism, the model also lacks 
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explicit mechanisms for marking attributes as "essential" or "mandatory". It relies on zero-weight 

exclusion. This static assignment of weights might limit adaptability to dynamic contexts or user 

behaviour trends. Another prominent approach is the Parameter-Based Trust Calculation (PBTC) 

model, which uses fuzzy inference systems to compute a final trust score from multiple input 

factors [42]. The system applies rule-based reasoning, with triangular membership functions that 

convert crisp values into fuzzy linguistic terms like "low" or "high" and back again via 

defuzzification. A fuzzy rule-based model that includes user behaviour tracking and resource 

specifications like response time was discussed in [43]. Their trust management system includes 

distinct modules for users and service entities. The model evaluates trust for both users and 

CSPs, using monitoring logs and behaviour analysis, with fuzzy logic applied to assess elasticity 

and performance. Table 5 shows the key factors often used to calculate user trust across these 

models. 

 

Factors Definition Importance Example 

Security 

Protection against 

unauthorized access, data 

breaches, and malicious 

actions. 

Indicates how 

responsibly users 

behave during access 

attempts. 

A user consistently 

accessing only permitted 

data shows high security 

behaviour. 

Privacy 

Compliance 

Adherence to data usage, 

storage, and sharing 

policies. 

Shows respect for 

handling sensitive 

data, reducing 

privacy risk. 

A user never tries to 

export or misuse personal 

information fields. 

Performance 

Consistency in response 

time, query efficiency, 

and workload handling 

during access. 

Reflects efficient and 

non-disruptive user 

interactions with the 

system. 

A user whose queries 

execute within normal 

processing time is trusted 

more. 

Reliability 

Frequency of successful 

versus failed or abnormal 

access attempts. 

Higher reliability 

builds trust over time 

by showing stable 

behaviour. 

A user rarely causing 

access errors (e.g., no 

400 or 401 codes) is 

more reliable. 
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Dynamicity 

Ability to maintain 

trustworthy behaviour 

even when roles, 

environments, or 

conditions change. 

Evaluates if the user 

remains consistent 

under varying 

contexts. 

A user shifting to a new 

department still follows 

policies properly. 

Data 

Integrity 

Compliance 

Ensuring no 

unauthorized 

modification or 

tampering with data. 

Protects system 

integrity by 

maintaining correct 

data usage. 

A user who edits only 

authorized fields and 

does not corrupt records. 

Behavioral 

Monitoring 

(HTTP 

Errors) 

Tracking frequency of 

bad requests (400), 

unauthorized (401), 

forbidden (403), and not 

found (404) errors. 

Helps detect 

malicious or 

suspicious users 

based on request 

patterns. 

A user repeatedly 

causing 403 forbidden 

errors may have low 

trust. 

Table 5 User trust factors details 

While several models also evaluate trust at the cloud service provider level (e.g., based on SLA 

or infrastructure reliability), this study focuses exclusively on user trust derived from behavioural 

patterns, access logs, and rule-based analysis. 

 

Regarding common attacks, ABAC faces unique vulnerabilities, particularly attacks involving 

attribute manipulation or policy exploitation. Rubio-Medrano et al. introduce a specific type of 

vulnerability in ABAC systems: attribute-forgery attacks [44]. In such attacks, malicious actors 

compromise the sources responsible for generating or managing attributes, intentionally altering 

attribute values to bypass ABAC policies. These attribute-forgery vulnerabilities can allow 

unauthorized access to sensitive resources if the ABAC model lacks effective mechanisms to 

verify attribute integrity or source reliability. The authors propose a risk assessment tool called 

RiskPol, which dynamically assigns trust scores to attribute sources, thus mitigating forgery risks 

by proactively identifying and addressing vulnerability in attribute generation and delivery 

processes. Further, Morisset et al. [45] identify vulnerabilities for evaluating missing attributes in 

ABAC systems, highlighting attribute-hiding attacks. In such scenarios, users or attackers 
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deliberately conceal attribute values that lead to unfavourable authorization decisions. Standard 

ABAC systems might incorrectly interpret incomplete attribute data, potentially granting 

unwanted access. So, an extended evaluation method is proposed, which examines all possible 

query extensions. This approach counters attribute-hiding by thoroughly exploring attribute 

presence or absence, thus reducing the chance of exploitation through incomplete or misleading 

attribute information. However, a major drawback of their method is the computational 

complexity and the overhead introduced by examining extensive attribute query spaces. In a 

broader analysis, Policy Gap vulnerabilities also emerge in complex ABAC scenarios. These 

occur when authorization policies fail to account adequately for domain-specific constraints or 

environmental contexts, making them vulnerable to exploitation. For instance, overly permissive 

or inadequately constrained ABAC rules can lead to unintended policy conflicts or implicit 

attribute dependencies, potentially enabling indirect unauthorized access.  

 

Insider threats can also pose vulnerabilities in ABAC, as described in [46]. Insiders, leveraging 

knowledge of internal policies and attribute assignments, manipulate or forge attributes, create 

unauthorized attribute-to-entity assignments, or deliberately alter policy rules. The proposed 

framework dynamically mutates ABAC policies by identifying and substituting correlated 

attributes from new access requests, making insider attacks harder by ensuring attackers cannot 

predict the altered policy logic [46]. This Moving Target Defense (MTD) strategy leverages 

attribute variability to continuously evolve the policy set. The authors combine ABAC with 

MTD and deception techniques, such as “honey attributes,” to mislead malicious insiders and 

increase the attacker's operational costs. Their method effectively addresses insider threats but 

may inadvertently complicate legitimate access management due to the constant modifications of 

access policies. This dynamic nature, while powerful, introduces administrative overhead and 
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could inadvertently affect legitimate access workflows, complicating auditing and compliance 

tracking in regulated industries.  

 

Similarly, Abduhari et al. present a comparative analysis of vulnerabilities and gaps in three 

access control mechanisms: RBAC, Multi-Factor Authentication (MFA), and Strong Passwords 

[47]. Although strong passwords are widely used, current best practices recommend moving 

towards passphrases and passwordless methods due to risks like reuse and brute-force attacks. 

Multilingual passphrases offer improved security through increased complexity [48], while 

modern systems adopt passwordless authentication, such as biometrics and passkeys, for 

enhanced resilience [49]. It uses both literature support and simulation through the Access 

Control Simulation Environment (ACSE). The study evaluates how each mechanism performs 

against common attacks such as phishing, brute force, and privilege escalation, as detailed in 

Table 6. Their findings show that MFA offers the strongest defence, particularly against brute 

force and phishing, by requiring multiple verification steps. RBAC performs moderately, 

especially in internal role misuse, but is less effective against external threats and privilege 

escalation when roles are overly broad. Strong passwords are the least reliable, as they can be 

compromised through reuse, weak patterns, or dictionary-based brute-force attacks. Although the 

paper does not directly cover ABAC (Attribute-Based Access Control), it notes the need for 

more flexible, adaptive models that consider context and real-time factors, which are the core 

strengths of ABAC. This encourages innovative solutions such as attribute trust, which can be 

evaluated using assigned weights and “isEssential” flags to validate critical attributes. It can also 

reduce policy overload by separating logic, i.e., XACML handles fixed rules, and NGAC handles 

dynamic trust-based evaluation. Brute force attacks are managed via historical context tracking 

and optimal model constants. 
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Access Control 

Mechanism Key Strength Typical Vulnerabilities / Attacks 

RBAC Role-based structure 

Role misuse, Privilege escalation, Static 

roles, No context-awareness. 

MFA Multi-layer verification 

SIM swapping for SMS-based 

authentication, MITM (man-in-the-

middle) attacks, and device compromise. 

Strong Passwords Basic identity check Brute-force, Reuse, Dictionary attack. 

ABAC [44], [45], 

[46] 

Contextual, fine-grained 

control 

Attribute forgery and hiding, Policy or 

attributes overload, Evaluation delay, 

Privilege escalation by insider threats. 

Table 6 Vulnerabilities in access control mechanisms [47] 

 

2.5. Industry Applications based on ABAC access control 

 

As identity management becomes increasingly central to secure access in distributed systems, 

cloud-based platforms like Microsoft Entra ID (formerly Azure Active Directory) have gained 

importance for integrating attribute-based and context-aware access control mechanisms. 

Microsoft Entra ID supports Conditional Access (CA) policies, which apply real-time contextual 

parameters, such as user identity, device compliance, location, session risk, and sign-in 

behaviour, to determine access decisions [4], [32]. These features enable organizations to enforce 

adaptive policies that go beyond static role assignments, aligning access control with dynamic 

security postures. Microsoft's platform evaluates “user risk” and “sign-in risk” using signals 

aggregated from numerous sources, including atypical sign-in patterns, anonymous IP addresses, 

malware-linked infrastructure, and leaked credentials. Based on these factors, risk levels are 

categorized as low, medium, or high. A low risk signifies routine activity, while medium and 

high risks indicate potential anomalies or compromise. Although this approach enhances real-

time threat mitigation, the underlying logic for risk scoring remains opaque and non-
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customizable, raising concerns regarding auditability and explainability of access decisions. This 

is partly due to proprietary considerations, i.e. designed to protect Microsoft's competitive edge 

and, potentially, to prevent reverse engineering or misuse. However, this lack of transparency 

hinders auditability and explainability. As shown in Figure 8, Entra ID's strengths are highlighted 

by its position as a leader in the Gartner Magic Quadrant for Access Management, maintaining 

this status for eight consecutive years, as of 2024 [50]. Its widespread adoption is recognized for 

strong identity governance features, including role-based access control (RBAC), privileged 

identity management (PIM), and application-level access control via Access Packages [4]. These 

features simplify identity lifecycle management and reduce manual administrative overhead, 

particularly in hybrid and multi-cloud environments. The platform also facilitates integration 

across a range of Microsoft services (e.g., Microsoft 365, Azure App Service, Logic Apps) and 

third-party applications, offering single sign-on and centralized policy enforcement. 

Furthermore, attribute-based conditions are leveraged to dynamically add or remove users from 

security groups, supporting granular access control configurations. 



 50 

 
Figure 8 Magic Quadrant for Access Management [50] 

 

Despite recent advancements, Microsoft Entra ID continues to exhibit several limitations. While 

Conditional Access policies and Continuous Access Evaluation (CAE) now offer improved 

session-level enforcement, they are still tied to predefined triggers and vendor-controlled logic. 

Although dynamic role assignment via user or device attributes has been introduced, Entra ID 

lacks native support for delegation, customizable trust scoring, or extensible risk evaluation. 

These limitations reduce its effectiveness in environments requiring continuous, context-

sensitive, and domain-aware access decisions, particularly when factoring in dynamic changes 

such as temporary location shifts, behavioural anomalies, or evolving organizational policies.  
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In identity governance scenarios, third-party tools like DynamicSync by FirstAttribute AG help 

bridge hybrid environments by synchronizing on-premises Active Directory group memberships 

with Entra ID based on real-time directory attributes [32]. This allows dynamic group updates 

without manual intervention and simplifies administrative overhead in enterprises where on-

premises AD remains the primary identity source. However, these tools manage directory state 

rather than enforce runtime access decisions. Group membership is usually evaluated at token 

issuance, not continuously during a session. In environments requiring highly dynamic or 

context-sensitive decisions, such solutions may lack the necessary granularity and 

responsiveness in environments requiring highly dynamic or context-sensitive decisions. Given 

these observations, Platforms like Microsoft Entra ID and DynamicSync serve primarily as 

identity orchestration and policy enforcement layers rather than full-fledged access control 

engines. While they offer robust tools for identity lifecycle management, such as group 

automation, risk-based signals, and compliance checks, they operate within fixed policy 

evaluation frameworks. Furthermore, Entra’s Conditional Access policies already support 

resource targeting such as cloud apps, actions, and authentication contexts. However, it is 

underutilized in dynamic risk alignment because the CA policy, while it can target dynamic 

groups based on Entra attributes, remains limited in flexibility and focused purely on supported 

user attributes. It also lacks either fuzzy logic or trust weighting. Customization of internal 

scoring models is limited, making it difficult to align risk-based decisions with domain-specific 

contexts. There is also a lack of support for evaluating partial policy matches, assigning attribute 

weights, or enforcing essential attribute conditions. Furthermore, decision transparency is 

minimal: access logs indicate outcomes but do not explain which attributes influenced the result 
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or how risk levels were computed. This constrains auditing, debugging, and fine-tuning access 

control, particularly in sensitive domains like healthcare, finance, or academic research.  

 

The Open Policy Agent (OPA) introduces a more flexible “policy-as-code” framework through 

its Rego language, enabling cloud-native, microservice-driven environments to enforce custom, 

fine-grained access control [51]. OPA allows developers to inject external data sources for 

dynamic evaluation, making it well-suited for stateless and decentralized applications. All 

attributes are treated equally unless additional logic is hand-coded. Furthermore, OPA lacks 

built-in visualization or simulation capabilities, which limits its ability to model and tune access 

strategies over time.  

 

Enterprise tools like ForgeRock Access Management and the Auth0 Rules Engine provide more 

extensive policy scripting and dynamic context integration [52], [53]. They support adaptive 

authentication, device fingerprinting, and risk-based flows. However, these platforms are often 

infrastructure-heavy, require complex setups, and rely on a black-box approach to dynamic 

signal evaluation. That is, while administrators can define rules and scripts, the internal logic 

used to interpret signals (such as how risk levels are computed or how multiple conditions are 

weighted) is not exposed or explainable. These systems typically return only the final access 

decision without revealing how each input contributed, making it difficult to debug, audit, or 

optimize decisions.  

 

In contrast, white-box models offer transparent evaluation pipelines, exposing intermediate 

computations, scoring breakdowns, and attribute-level contributions, which are essential for 

policy debugging and iterative improvements. While ForgeRock and Auth0 offer high scripting 

flexibility, they do not offer multi-model policy structures (e.g., ABAC + graph-based NGAC 
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logic) nor provide the internal scoring analytics necessary for system transparency and iterative 

improvements.  

 

Amazon Web Services (AWS) offers Identity and Access Management (IAM), which supports 

ABAC via tag-based access control and allows organizations to restrict access based on resource 

or user tags [54]. However, its policy structure is static and declarative and lacks prioritization of 

attributes or integration with real-time behavioural signals. IAM policies cannot distinguish 

between critical and optional attributes and don’t offer mechanisms to incorporate permit/deny 

history, contextual thresholds, or trust-based adaptation over time. Like other systems, AWS 

ABAC lacks any notion of attribute scoring, decision explainability, or hybrid policy integration.  

 

Tall and Zou proposed an innovative ABAC framework to manage the security of big data 

systems, specifically designed for environments like Hadoop and Spark and often used in AWS 

[55]. Their main goal was to handle data from diverse sources and have multiple sensitivity 

levels, particularly important in healthcare and social media domains, where privacy and security 

are critical. They argued that existing cloud platforms typically adopt a "castle wall" security 

approach. It grants complete access once users enter the perimeter without enforcing strict data-

level security measures. To address this vulnerability, Tall and Zou's ABAC framework 

integrates detailed metadata (attributes) that describe both users and datasets, such as sensitivity 

levels, origins, and processing history. They demonstrated the feasibility of their framework 

using open-source tools (Apache Ranger and Apache Atlas) on AWS, providing a practical 

approach to manage fine-grained security policies dynamically across large datasets. One of their 

primary contributions is the integration of metadata-driven security policies, where metadata 

tracks the history and sensitivity of data as it undergoes transformations and anonymization 
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procedures. This approach ensures security rules remain relevant, even when data characteristics 

change over time, enabling dynamic decision-making. Furthermore, they highlighted several 

security risks inherent in big data environments, such as credential hijacking, job submission 

attacks, and unauthorized access due to misconfigured permissions. The proposed framework 

addresses these challenges in several ways. For example, unauthorized access is mitigated 

through the continuous synchronization of attributes between data repositories and the central 

policy management service, ensuring policies are consistently enforced even during data 

transformations or analyses. Despite its strengths, the framework also has some limitations. 

While the model effectively integrates metadata-based decision-making, it heavily relies on 

correctly defined and accurately maintained attributes, which can be complex and error-prone. 

The authors acknowledged that poorly defined or overly complex attribute models could lead to 

inaccuracies in security policy enforcement and cause either overly restrictive access (false 

negatives) or unintended access permissions (false positives).  

 

Data Access Governance (DAG) tools are useful for spotting overly shared data and helping 

clean up access permissions. However, according to Atlan, they have limitations with ABAC 

systems, especially in dynamic, cloud-based setups [56]. While these tools aim to improve access 

decisions by using metadata and rules, they often can't keep up with the real-time and flexible 

needs of ABAC. Many DAG tools still rely on fixed role-based models, ignore important context 

like data history and sensitivity, and don’t handle audit logs well. They also struggle to connect 

smoothly with other governance tools like data catalogues and compliance systems. So, even 

though DAG tools are helpful for basic governance tasks, they fall short when it comes to 

supporting the advanced, context-aware decisions that modern ABAC systems require.  
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Moreover, the practical implementation within ecosystems like Hadoop often requires extensive 

manual configuration and continuous synchronization, which could increase administrative 

overhead and vulnerability to human errors. Another weakness is the operational complexity, 

where each dataset and process requires continuous metadata management. Without robust 

automation, maintaining accurate and relevant metadata becomes difficult, especially in large-

scale environments, potentially leading to delays or inaccuracies in policy evaluation and 

enforcement. Additionally, the authors pointed out that the existing security standards, such as 

XACML, although widely cited, are not directly implemented within Hadoop-based tools, which 

may limit interoperability and standardization across platforms. 

 

2.6. Summary 

 

Traditional access control models face limitations in dynamic environments such as cloud 

computing, IoT, and large-scale enterprise systems. They often lack scalability, adaptability, and 

contextual awareness. Hybrid access control models have emerged to overcome these 

shortcomings by integrating the strengths of multiple approaches, offering fine-grained, adaptive, 

and flexible access control with context-aware mechanisms. However, hybrid models can 

introduce redundancy and complexity, or be too domain-specific. Enhancements like Request 

Denial Cache (RDC) can reduce evaluation time but require manual updates and still lack 

dynamic context awareness. 

 

XACML’s primary issues include over-restrictiveness, policy authoring complexity, scalability 

challenges, and insufficient conflict resolution mechanisms in distributed systems. These 

constraints limit its usability in dynamic domains like healthcare, where rapid, real-time access 

to decisions is crucial. For instance, a doctor may be denied urgent access to a patient’s record 
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because the policy wasn’t updated for emergency roles, highlighting XACML’s static nature. 

NGAC addresses these gaps using a graph-based structure by adding history-aware decisions and 

can enforce constraints like obligations or usage control. For example, NGAC can ensure that 

once a nurse has approved a medication, they cannot also dispense it, enforcing separation of 

duty through graph associations. NGAC is more adaptable than XACML but has its drawbacks, 

mainly a lack of industry adoption, limited tooling, and complexity in graph administration. 

Poorly designed graphs can result in over-permissiveness, and migration from legacy systems 

remains difficult. For example, if a user is mistakenly linked to a high-privilege attribute in the 

graph, they may gain unintended access. In another case, maintaining thousands of user-object 

relationships manually can lead to policy inconsistencies or gaps. Trust-based models use fuzzy 

logic and behavioural data to compute trust scores for users and cloud providers to enhance 

decision quality. These scores guide access control in uncertain or rapidly changing 

environments. While effectively refining access decisions, they often face subjective rule 

settings, scalability concerns, and data dependency issues. 

 

ABAC systems face evolving threats. Attribute forgery and hiding can manipulate access 

outcomes by altering or omitting attribute values. Tools like RiskPol and extended query 

evaluation methods help detect such attacks, but often increase computational costs. Insider 

threats are another concern; users may exploit knowledge of policies or manipulate attribute 

assignments. Solutions like honey attributes and deception-based defence techniques can 

mitigate these risks, but add management complexity. Industry platforms incorporate ABAC-like 

logic, often layering risk signals or tag-based policies over static evaluation engines. These 

systems lack transparency, real-time adaptability, and support for weighted or essential attribute 
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logic. Similarly, big data environments offer fine-grained control but depend heavily on 

consistent metadata and manual configuration, limiting scalability. 

 

The literature clearly supports hybrid approaches. A layered model combining XACML for static 

policies and NGAC for dynamic evaluation, enhanced by trust scoring, offers the adaptability 

and precision needed in modern systems. Such integration reduces false decisions, improves 

scalability, and aligns access control with real-world behaviour, making it suitable for domains 

like healthcare, cloud platforms, and enterprise security. 
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Chapter 3 

Methodology 

This chapter presents the methodological foundation for designing and evaluating a hybrid 

attribute-based access control framework intended for enterprise environments. The system is 

designed specifically for internal users, such as employees, faculty, staff, and system 

administrators, who access applications and services within a controlled organizational 

infrastructure. These users are not general members of the public, but authorized personnel 

operating across various internal systems, including cloud services, institutional databases, 

administrative tools, and secure file-sharing platforms. The nature of their responsibilities often 

demands fine-grained, dynamic, and context-aware access decisions that go beyond traditional 

static models like RBAC or simple rule-based ABAC. 

 

To meet these needs, the proposed framework integrates and extends concepts from existing 

models such as XACML and NGAC, while introducing several key innovations that address the 

limitations of prior approaches. The central logic is the introduction of Attribute-Rule Weighting, 

where each subject or object attribute is not only defined by its presence or absence (match) but 

is also assigned a weight representing its criticality or influence on access decisions. These 

weights help determine how strongly a given attribute influences the trustworthiness or 

sensitivity classification of a request. While models like AR-ABAC propose grouping attributes 

by average weights to map them to roles or sensitivity levels [41], the hybrid framework 

advances this idea by directly integrating these weights into runtime decision logic. Instead of 

merely assigning a role based on attribute grouping, the system computes a trust factor that 

reflects both attribute match constraint and behavioural history. Another important part is the use 
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of a risk-adjusted access score, which combines historical access outcomes with contextual risk 

levels. It penalizes users differently based on their recent access behaviour and associated risk 

classification. Here, permitted and denied access attempts are tracked over time, and denials are 

weighted more heavily for high-risk users using a risk multiplier. This ensures that two users 

with the same historical access patterns can still be treated differently based on their risk posture, 

so adding a dynamic layer of accountability and precaution to the access control process. This 

research introduces original formulas (from Equations (1)-(9)) derived at various stages of the 

evaluation process; each developed specifically to support and justify the decision-making logic 

proposed in this work. These step-by-step calculations guide the access evaluation and ensure 

each phase can be transparently validated. Further, the model’s effectiveness is evaluated using 

four performance metrics: accuracy, precision, recall, and F1-score, which collectively assess 

decision correctness and reliability. Their detailed calculation and application are presented in 

Chapter 4 (section 4.4.2). 

 

The framework adopts a layered architecture in which static attributes (such as department, job 

role, or assigned project) are handled using conventional XACML policy rules, while dynamic 

context (such as device, time, or geolocation) is evaluated using graph-based relationships from 

the NGAC design. These relationships are stored and managed within a relational database 

structure that represents graph edges and hierarchies, allowing us to dynamically compute 

permissions based on indirect or inherited associations. For example, an attribute such as 

“assigned to project X” may grant access not only to Project X resources but also to related 

datasets, if permitted by contextual policy rules or relationship mappings. This hybrid structure 

enables both direct and inferred authorizations to be processed efficiently and transparently. 
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To ensure that the model is not only theoretically sound but also practical for deployment and 

testing, a comprehensive framework for scenario generation and categorization was developed. 

Access scenarios are generated using structured techniques rather than simple cross-product 

combinations. The process begins with policy-driven filtering to ensure only users with plausible 

attribute-policy matches are considered. From there, FSM (Finite State Machine) based path 

logic simulates transitions from attribute assignment to trust evaluation to permission requests, 

forming realistic access flows. Negative cases are programmatically injected by mutating key 

attributes in otherwise valid scenarios, mimicking adversarial behaviour. Additionally, trust 

scores are varied across users to simulate contextual changes and behavioural history, allowing 

dynamic evaluation through a risk-weighted trust formula. Scenarios are categorized into valid 

access, attribute violations, contextual drift, adversarial mutations, ambiguous overlaps, and 

behavioural anomalies. These diverse, high-impact cases are then used to test the model’s 

correctness and consistency. In particular, the trust-weighted access factor serves as a continuous 

variable that reflects the system's confidence in a given access request. Decisions are logged 

alongside this score for auditing purposes and can be visualized in dashboards to help 

administrators understand why certain access was granted or denied. Over time, this enables 

feedback loops and trust recalibration based on longitudinal patterns, further enhancing the 

adaptiveness and intelligence of the access control system. 

 

Unlike static rule-based models, this framework supports fine-grained differentiation even 

among users who share identical roles or attributes. Since the evaluation logic incorporates a 

combination of attribute weights, behavioural data, and contextual risks, access decisions adapt 

to changing internal operations. For example, a staff member working remotely under a known 

low-risk profile may be granted access to certain sensitive files, while another staff member with 
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similar attributes but elevated risk and recent denial patterns may be restricted or flagged for 

secondary review. 

 

Figure 9 illustrates the core components of the complete proposed model described in the 

following sections. It integrates with Microsoft Entra ID as the authentication and identity 

provider and third-party tools for policy administration and environment hosting. 

 

 

Figure 9 Dynamic trust weighted-attribute based access control architecture 

Based on the architecture diagram in Figure 9, here is a concise summary of Steps 1 to 10 with 

their corresponding components: 

1. Access request (Web access point → Entra ID) – User initiates request to access a 

protected application. 

2. Redirect link to ABAC model with auth token (Entra ID → Web app) – Entra ID 

authenticates and returns a token to the application (OAuth 2.0 protocol). 
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3. Authorization request (Web access point → DTW-ABAC) – Application forwards the 

request to the ABAC engine for authorization. 

4. Request/response (PEP ↔ PDP) – Policy Enforcement Point (PEP) and Policy Decision 

Point (PDP) exchange the access request and final decision. 

5. Policy and attribute requests (PDP ↔ PIP) – PDP queries the PIP for required policies and 

attributes specific to the user and application IDs (details retrieved from Entra ID token). 

6. Attribute and log transfer (Entra ID ↔ PIP) – PIP retrieves user attributes and logs from 

Entra ID for evaluation using assigned permissions to the DTW-ABAC application. 

7. Static evaluation (PDP: CH ↔ XACML) – Context Handler evaluates static rules using the 

XACML policy engine. 

8. Dynamic evaluation (PDP: CH ↔ NGAC) – Context Handler evaluates real-time, context-

aware policies via NGAC. 

9. Trust factor and risk evaluation (PDP: CH ↔ Trust/risk engine) – The Trust engine 

computes a risk score to refine the access decision based on multiple formulas. 

10. Final decision (PEP → Web access point → redirect to app or deny) – Based on 

evaluation, the user is granted and redirected to the application or denied access. 

 

The next part deep dives into the proposed research framework, including the hybrid model 

architecture, software tools, research dataset, and key challenges encountered.  

 

3.1. Entra ID custom configuration for authentication and attributes source 

 

Dynamic Trust Weighted-Attribute Based Access Control (DTW-ABAC) is built along with the 

foundation provided by Microsoft Entra ID, which offers advanced user identity and access 

management features, eliminating the need to develop a new registration and authentication 
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process. Although it provides data control for Azure resources and application control features, 

this research will be limited to securing access for registered applications developed by the 

organization, any Microsoft 365 applications (can be added as enterprise applications) or third-

party enterprises. The required licenses (P2 or formerly known as AAD P2 premium license) 

were purchased to use the admin portal and governance features. P2 was necessary because the 

hybrid model relies on dynamic risk-based decisions, access reviews, and identity protection 

signals, all of which are not available in the P1 license [4]. Features like user risk evaluation, 

sign-in risk, and conditional access behaviour based on behaviour or trust are critical for the 

hybrid model’s real-time enforcement logic, and these are only included in Entra ID P2. P1 

supports basic conditional access but lacks the advanced context and automation required. P2 

license is user-specific, which means an organization needs to purchase the same number of 

licenses as the number of users and administrators. It creates a new user account and tenant 

domain for an active Azure account during registration. The new account credentials were used 

to perform access control operations on the admin portal and integrate them into the 

programming code to access the resources from an executable environment. Although this 

research utilizes Entra ID, it can be integrated with any platform that offers authentication and 

user registry capabilities.  



 64 

 

Figure 10 Entra ID test infrastructure with simulated data 

Figure 10 shows the detailed infrastructure in Entra ID. Multiple users were created in the user 

management section, and simulated profile data and licenses were assigned. This follows 

multiple user group creation in the group management section based on conditional expressions, 

also called dynamic membership rules. Each conditional expression consists of multiple user 

attributes and defined values for evaluation. These expressions are then used to build dynamic 

Microsoft 365 groups, which are further organized using the “memberOf” attribute to form 

nested group hierarchies that mimic real-world organizational structures. However, this approach 

is constrained by key limitations: only up to 500 dynamic groups can use the “memberOf” 

attribute, each group can include up to 50 member groups, and nesting is not recursive, limited to 

a hierarchy depth of two levels. Additionally, indirect members are not resolved, and backups or 

advanced management require third-party solutions to flatten or replicate the nesting structure 

reliably. Similarly, enterprise and custom-built applications were registered in the application 

management section with properties, such as homepage URL, visible to user flag, enabled for 
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sign-in flag, etc. Those applications are considered the target resources for which the overall 

access control environment is created. In the same section, an application named ‘DTW-ABAC 

integrate’ was registered to connect with the hybrid framework, with associated permissions as 

described in Table 7 to access the attributes and provisioned resources using the Microsoft Graph 

API [4]. Usually, Entra ID allows you to set the permissions as either delegated access or the 

application context. The delegated access (user context) is where the application acts on behalf 

of a signed-in user, and it is used in web apps or mobile apps where a user is present and signed 

in. The application access (app context) is where the app acts as itself, without a user and is used 

in the background services, automation scripts or APIs that run without user interaction. Hence, 

in this architecture, the permissions are assigned at the application access level. 

 

Scope Permission name Used For 

Read user info User.Read.All Pulling identity/profile attributes 

Read custom attributes Directory.Read.All 

Accessing organization-wide directory 

data such as users, groups, roles and 

custom security attributes 

Read app metadata Application.Read.All App-based policy or attribute links 

Read app role assignments AppRoleAssignment.Read.All User-to-app mappings 

Read audit logs AuditLog.Read.All NGAC context from logs 

Read the sign-in context SignInActivity.Read.All Trust factor/risk condition evaluation 

Table 7 Microsoft Graph permissions for the “DTW-ABAC Integrate” application 

The integration with Entra ID is strictly read-only, i.e., no write permissions are granted to avoid 

introducing additional risk to the identity source. The dynamic state (e.g., session risk, 

behavioural drift, NGAC graph assignments, trust scores) is maintained entirely outside of Entra, 
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within the custom application database designed for the DTW-ABAC model. Static attributes 

such as roles, group memberships, and custom security attributes are fetched from Entra and 

cached if needed, but not modified. The external database is fully encrypted at rest using 

Transparent Data Encryption (TDE), which encrypts the entire database, including backups and 

transactional logs. The framework relies on a rich and diverse set of attribute data to evaluate the 

access request with high context and granularity. The assigned properties for users and 

applications are considered standard attributes during the access evaluation. They also support 

assigning the custom attributes created in the attribute sets. Table 8 shows the user (subject), 

application (object) and Environmental attributes with sample values imported from Entra ID 

using Graph API access. This model uses custom security attributes in Microsoft Entra ID to 

support fine-grained access control and trust evaluation. These attributes are not part of the 

default user schema and are managed under the Custom Security Attributes feature in Entra ID, 

allowing tenant-specific definitions. They follow the camel case style and are used to represent 

application-specific roles (e.g., devRole, projectAccessLevel), contextual metadata relevant to 

decision logic (e.g., isRemoteEnabled, regionAffinity) and support trust factor calculations based 

on historical or environmental conditions (e.g., lastPolicyViolation, loginConsistencyScore). The 

Attribute type includes string, integer, date, floating number, or Boolean values. 

 

Entity 
Attribute 

type 
Attribute name Sample values 

User 

(Subject) 
Standard 

Object ID 9abc098e-4546-4d92-95fd-567fcd51d9f9 

User principal name (Email) user1@birg.onmicrosoft.com 

User type (Member, Guest) Member 

Job title Associate Engineer 

Company name UNBC 

Department Computer Science 

Employee type (Part-time, 

Full-time, Temp-contract) 
Full-time 



 67 

Office location COPG 

Manager 

{"jobTitle": "Engineer","mail": 

"kulkarnis009@gmail.com","officeLocation": 

"Prince George"} 

City Prince George 

State or Province BC 

Country Canada 

Usage location CA 

Custom 

devExperience 3 

isRemoteEnabled TRUE 

appWriteStatus Approved 

projectName DTW-ABAC 

projectClearance Confidential 

subRole PDP-designer 

Application 

(Object) 

Standard 

Application ID b636f32f-c36b-4756-8251-6747539a0688 

appRoles 

{"allowedMemberTypes": ["User"],"description": 

"User","displayName": "User","id": "18d14569-

c3bd-439b-9a66-3a2aee01d14f","isEnabled": 

true,"origin": "Application”, "value": 

"Survey.Create"} 

web/redirecturi "uri": "https://localhost:9001/api/access/authorize", 

publisherDomain birgsk.onmicrosoft.com 

Custom 

appCofidentialLevel (High, 

Medium, Low, NA) 
High 

isRemoteEnabled TRUE 

accessDepartment Computer Science 

appEnvironment (Prod, Test, 

QA, Dev) 
Prod 

securityClearance Confidential 

Environmental (fetched 

from Token, Sign-in logs) 

ipAddress (User) 142.207.116.128 

createdDateTime Fri Jan 3 2025 13:10:08 GMT-0700 

deviceDetail.isCompliant TRUE 

deviceDetail.isManaged TRUE 

deviceDetail.deviceType Mac 

deviceDetail.browser Chrome 

Table 8 Subject, object and environmental attributes with sample values 

During the authentication process, conditional policies are configured to be applied before 

routing it towards the hybrid model. These policies enforce an enterprise-level wide access rule, 
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such as network-related and device-related restrictions, and grant or deny the request with 

additional steps like MFA or password change requirements. Once passed through these steps, 

the user can see all the assigned applications in the MyApps portal (Figure 11). At this step, the 

authentication process is completed. 

 

Figure 11 Entra ID apps dashboard 

Upon selecting a particular application to access, the JWT (JavaScript Object Notation Web 

Token) is issued by Microsoft Entra ID, which carries essential information (claims) about the 

user and the authentication context. The process is similar, even if the user directly opens the 

application (e.g. myServiceNow) instead of using the MyApps portal; the redirect link to DTW-

ABAC is added to the application level. The dashboard is just a medium to see all the available 

applications (based on the Entra ID CA policies and assignments). The token structure consists 

of three parts: a header with RSA256 (Rivest-Shamir-Adleman algorithm using SHA-256, a 256-

bit hash function) as a signing algorithm, a payload containing claims (such as user identity and 

roles), and a digital signature that ensures the integrity and authenticity of the token. The token 

ensures both identity validation and secure API access by parsing and validating on the server 

side before granting or denying access to protected resources. Table 9 shows the decoded 

structure of a custom JWT issued during the configured authentication setup of this research, 

reflecting key claims and signature metadata. Its critical properties like aud, iss, and exp are 
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validated to ensure the token is intended for the correct API, issued by a trusted authority, and is 

within the valid time window. The preferred_username and oid claims map the user's identity to 

the internal application user database for authorization. The token is passed to the redirect link 

set to the selected application. In this setup, the redirect link is set to 

http://loclhost:9001/api/access, which is basically routing to the DTW-ABAC model running on 

the localhost (port 9001). In the production environment, it can route to the model hosted in the 

cloud environment. 

 
Claims Key Values Explanation 

JWT 

Header 

(Decoded) 

typ JWT Type of token, indicating it is a JSON Web 

Token. 

alg RS256 Signing algorithm used – RSA with SHA-256. 

kid CNv0OI3RwqlHFEVnaoMAshCH2

XE 

Key ID used to select the correct public key 

for signature validation. 

JWT 

Payload 

(Decoded 

Claims) 

aud b0383a20-1483-4bfb-b67f-

5dffd4e578b3 

Audience – identifies the application for 

which the token is issued. 

iss https://login.microsoftonline.com/e3d

59969-60f3-4913-adf4-

5c1983159829/v2.0 

Issuer – confirms Microsoft Entra ID issued 

the token. 

iat Fri Apr 25 2025 13:10:08 GMT-0700 Issued At – timestamp when the token was 

generated. 

nbf Fri Apr 25 2025 13:10:08 GMT-0700 Not Before – token is valid from this 

timestamp onwards. 

exp Fri Apr 25 2025 14:15:08 GMT-0700 Expiration – token becomes invalid after this 

time. 

name User1 Display name of the authenticated user. 

preferred

usernam

e 

user1@birgsk.onmicrosoft.com Primary login identifier for the user. 

oid 9abc098e-4546-4d92-95fd-

567fcd51d9f9 

Object ID – uniquely identifies the user in 

Entra tenant. 

sub j9dw5qOlf3uwLEN4lI8hoIX8SmK8

YZGNjUPFBSHOC_k 

Subject – unique principal for which the token 

was issued. 

tid e3d59969-60f3-4913-adf4-

5c1983159829 

Tenant ID – identifies the Entra tenant 

(organization). 

ver 2 Token version – confirms this is version 2.0 

format. 

kty RSA Key type – RSA encryption used. 
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Public 

Key (Used 

to verify 

signature) 

n hz6fUSCSAuiyQz6L1nQj4za8kItevJ

zxhVbecMigTIl9pXZSHZa3gzMgtap

nb1q96CG5qvR78dH6ZvTKL8MzN

4VfGgZhvLEv5LJKeo0tGgBIS65wx

IiJYj9ExEDqFkw9RdhW1nN8IN9e

O76PbC-

fdEPtDekA2BaITY2DARISKN4Ke0

RLBEWNrKeEjjOzrygS2e3Q9NVzE

51ZGGQAGHau7atHy8M_qA1nnd2

dMUgUMnEYIMzDBTSKz17G6itJ

OdanGvG3wXvdpndKffnDppaPkyW

bnybdMI4IP7q6WsCqnt3Gtg-

baG6GDqZQQEBp9C9gLAFv4ORT

RlpD3w0gCMh7xw 

Public modulus – a large base number used in 

RSA encryption; part of the public key, 

combined with e to verify signatures. 

e AQAB Public exponent – typically a small, fixed 

number (e.g., 65537). AQAB is the Base64 

encoding of 65537, commonly used in RSA. 

Table 9 Decoded structure of a custom JWT configured in Microsoft Entra ID with key claims and signature metadata 

3.2. Dynamic Trust Weighted Attribute-Based Access Control hybrid framework (DTW-

ABAC) 

 

The proposed framework aims to combine static attribute checks (XACML-based) and dynamic 

context-aware logic (NGAC-based) with historical access patterns, along with introducing 

attribute weights and trust scoring mechanisms. The design follows a RESTful design, which 

enables the scaling capability, higher security, easy integration and maintainability [57]. This 

hybrid approach enables more adaptive and trustworthy access decisions, especially suited for 

sensitive domains such as healthcare and education. The framework is composed of multiple 

distinct modules designed to perform specific operations and is built using different 

programming frameworks and third-party tools. The modular architecture includes PAP (Policy 

Administration Point), PIP (Policy Information Point), PDP (Policy Decision Point), CH 

(Context Handler), final trust factor, risk level calculation engine and PEP (Policy Enforcement 

Point) as shown in Figure 9. The methodology introduces formulas developed in this research 
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(from Equations (1) - (9)) to systematically support and justify the proposed decision-making 

logic. These calculations guide access evaluation while ensuring each stage remains transparent 

and verifiable. 

 

3.2.1 Policy Administration Point (PAP) 

 

PAP is responsible for managing access control policies that form the foundation of static 

attribute evaluation in the DTW-ABAC framework. These policies follow the XACML standard 

and are consumed by the XACML engine to validate attribute-based access rules. In this 

implementation, policy creation and updates are carried out using the Postman tool, which serves 

as an external administrative interface. Postman is used to manually design and send HTTP 

requests that define and manage policy domains and their associated rules. These requests are 

sent to the PIP, specifically, the AuthzForce XACML engine, which is containerized and hosted 

using Docker. The process typically involves two steps: 

1. Domain Creation: 

An HTTP POST request is made to the AuthzForce endpoint to create a new policy 

domain. This domain acts as a container for one or more policy sets. The request 

includes: 

• Request URL and Headers: This request initiates domain creation (Post) by calling 

the domains endpoint running in a Docker container (localhost, port 8080) with the 

required XML headers. 

Post -> http://localhost:8080/authzforce-ce/domains 

Headers -> Accept: application/xml Content-Type: application/xml 
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• Body: The XML body includes the domain ID (DTW_ABAC_Domain) via the 

externalId property and complies with the expected schema. 

1. <?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<!-- Creates a new policy domain in AuthzForce with the ID 'DTW_ABAC_Domain' --> 

2. <domainProperties xmlns="http://authzforce.github.io/rest-api-model/xmlns/authz/5" 

externalId="DTW_ABAC_Domain"/>  

• Response: It returns a unique internal domain ID (href), i.e. 

hRDKOyleEfCe1AJCrBEAAw, which is used to upload policies to the domain. 

1. <?xml version='1.0' encoding='UTF-8'?> 

<!-- Link to the created policy domain in AuthzForce --> 

2. <ns4:link xmlns:ns6="http://authzforce.github.io/pap-dao-flat-file/xmlns/properties/3.6" 

xmlns:ns5="http://authzforce.github.io/rest-api-model/xmlns/authz/5" 

xmlns:ns4="http://www.w3.org/2005/Atom" xmlns:ns3="urn:oasis:names:tc:xacml:3.0:core:schema:wd-

17" xmlns:ns2="http://authzforce.github.io/core/xmlns/pdp/8" rel="item" 

href="hRDKOyleEfCe1AJCrBEAAw" title="hRDKOyleEfCe1AJCrBEAAw"/> 

2. Policy Upload: 

Once the domain is created, another HTTP PUT or POST request is sent to attach a 

policy document with the domain ID, e.g. hRDKOyleEfCe1AJCrBEAAw. 

Post -> http://localhost:8080/authzforce-ce/domains/hRDKOyleEfCe1AJCrBEAAw/pap/policies 

Headers -> Content-Type: application/xml 

• The body of the request is an XACML-compliant XML structure containing Rule 

definitions, Target conditions (based on subject, resource, action, and environment 

attributes) and Effect (Permit or Deny). 

 1. <?xml version="1.0" encoding="UTF-8"?> 

 

    <!-- PolicySet: top-level container defining access control scope --> 

 2. <PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" 

 3.            PolicySetId="root" 

 4.            Version="1.0" 

 5.            PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-

permit"> 

 

 6.     <!-- Description of the policy set --> 

 7.     <Description>PolicySet to manage access to EngineeringApp using static attributes</Description> 

 

        <!-- Target of the PolicySet is empty = applies to all requests --> 
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 8.     <Target/> 

 9.   

        <!-- Begin individual policy --> 

10.     <Policy PolicyId="EngineeringAppAccessPolicy" 

11.             Version="1.0" 

12.             RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-unless-

permit"> 

13.   

            <!-- Policy applies only when the resource matches 'EngineeringApp' --> 

14.         <Target> 

15.             <AnyOf> 

16.                 <AllOf> 

17.                     <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

18.                         <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">EngineeringApp</AttributeValue> 

19.                         <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:resource-

category:resource" 

20.                                              AttributeId="urn:oasis:names:tc:xacml:1.0:resource:id" 

21.                                              DataType="http://www.w3.org/2001/XMLSchema#string" 

22.                                              MustBePresent="true"/> 

23.                     </Match> 

24.                 </AllOf> 

25.             </AnyOf> 

26.         </Target> 

27.   

            <!-- Rule to permit access if action is 'access' and role is 'Engineer' --> 

28.         <Rule RuleId="PermitIfEngineerRoleAndAccessAction" Effect="Permit"> 

 

                <!-- Target: applies only to action = access --> 

29.             <Target> 

30.                 <AnyOf> 

31.                     <AllOf> 

32.                         <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 

33.                             <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">access</AttributeValue> 

34.                             <AttributeDesignator Category="urn:oasis:names:tc:xacml:3.0:action-

category:action" 

35.                                                  AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 

36.                                                  DataType="http://www.w3.org/2001/XMLSchema#string" 

37.                                                  MustBePresent="true"/> 

38.                         </Match> 

39.                     </AllOf> 

40.                 </AnyOf> 

41.             </Target> 

42.   

                <!-- Condition: subject-role must be 'Engineer' --> 

43.             <Condition> 

44.                 <Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-of"> 

45.                     <Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"/> 

46.                     <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string">Engineer</AttributeValue> 

47.                     <AttributeDesignator Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-

subject" 

48.                                          AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-role" 

49.                                          DataType="http://www.w3.org/2001/XMLSchema#string" 

50.                                          MustBePresent="true"/> 
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51.                 </Apply> 

52.             </Condition> 

53.         </Rule> 

54.   

55.     </Policy> 

56. </PolicySet> 

57.   

The response confirms that the policy with ID root version 1.0 was successfully created and 

registered within the specified domain. 

1. <?xml version='1.0' encoding='UTF-8'?> 

<!-- Link to the uploaded XACML policy with ID 'root' and version 1.0 in AuthzForce --> 

2. <ns4:link xmlns:ns6="http://authzforce.github.io/pap-dao-flat-file/xmlns/properties/3.6" 

xmlns:ns5="http://authzforce.github.io/rest-api-model/xmlns/authz/5" 

xmlns:ns4="http://www.w3.org/2005/Atom" xmlns:ns3="urn:oasis:names:tc:xacml:3.0:core:schema:wd-

17" xmlns:ns2="http://authzforce.github.io/core/xmlns/pdp/8" rel="item" href="root/1.0" title="Policy 

'root' v1.0"/> 

The XML-based policies are then stored within the corresponding domain and become active for 

any subsequent access request evaluations made through the framework.  

 

Additionally, the attributes are categorized as either high-level (static) or low-level (dynamic) 

based on their modification frequency and scope of impact by the administrator. The goal is to 

avoid duplicate attribute evaluations and take advantage of XACML (restrictiveness) and NGAC 

(flexibility and permissiveness) frameworks, as discussed in the section 2.2. It plays a critical 

role in determining the efficiency and flexibility of access decisions. High-level attributes are 

those that remain relatively static over time and are essential for strategic access control policies. 

Since modifying XACML policies requires XML restructuring, domain redeployment, and 

potential policy evaluation disruptions, these attributes are selected with caution. Examples 

include a user’s job title, department, or an application’s Application ID and AppCriticality. 

Low-level attributes represent contextual, behavioural, or session-specific information. These 

attributes are more volatile and are updated frequently based on user behaviour, device posture, 

access location, or audit-derived risk states. Managed by NGAC’s graph layer, their inclusion or 
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exclusion from access logic can be changed by simply updating the graph’s edge relationships or 

attribute nodes. Examples include riskLevel, devExperience, webRedirectUri, or 

ComplianceCheck.  

 

While PAP does not handle dynamic or real-time environmental data, it plays a critical role in 

maintaining the baseline access logic based on static attribute verification. Once the policies are 

authored and uploaded by PAP, they become accessible to the Policy Information Point (PIP) for 

repeated access evaluations.  

3.2.2 Enhanced Policy Information Point (PIP) 

The Enhanced PIP coordinates attribute resolution and policy retrieval tasks in the DTW-ABAC 

framework, working across both XACML- and NGAC-based logic layers. Figure 12 shows the 

components and connections of an entire operation of the modified PIP block. Although these 

components are stored separately for security and efficient management, a centralized service 

called the Policy Retrieval Point (PRP) is referenced from traditional XACML to facilitate 

repeated access during policy evaluation. The designated storage mechanisms include the 

AuthzForce server for XACML policies and a Microsoft SQL Server for attribute data and 

NGAC structures. Specifically, attributes are stored in tabular format, while NGAC graphs are 

captured using a unified node table and a relation table representing edges. 
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Figure 12 PIP components and connections 

The attribute information is primarily sourced from Microsoft Entra ID. To enable access to this 

data, the PRP service is developed using the .NET Core (an open source and cross platform 

development framework) and configured with the necessary credentials, including the instance 

URL, Tenant ID, Client ID, Client Secret, and Graph API URL, credentials belonging to the 

DTW-ABAC integrated application (as detailed in section 3.1). A master attribute list is 

maintained in the SQL database to store all unique attribute names encountered during access 

evaluations. The table structure of user and application attributes, along with other parameters, is 

shown in Figure 13. This list is dynamically updated when new attributes appear in user or 

application profiles. In addition to the attribute name, the source classification (standard or 

custom) is maintained with a constraint that the custom attributes should be unique and different 

from standard attributes. Each attribute record also includes a ‘last_updated’ timestamp to 
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support future administration in terms of audit and compliance. To enhance access evaluation, 

two critical fields are appended to each entry: 

1. attribute_weight: An integer between 1 and 10 indicating the security criticality of the 

attribute, where 10 represents the highest criticality and 1 represents the lowest. 

2. is_essential: a boolean flag indicating whether the attribute must be present and match for 

granting access. The request is denied immediately without further evaluation if an 

essential attribute is missing or mismatched. 

The exact values in these properties depend on the administrator and access scenario. Multiple 

experiments were performed to determine the critical attributes and weightage for each attribute 

used in the simulated environment. 

 

Figure 13 Standard attributes with properties 

The XACML access control policies are stored in the AuthzForce component hosted in a 

containerized environment. When an access request is triggered, the PIP retrieves the applicable 

policy domain and forwards the received attributes to the PDP for evaluation. The PIP does not 
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perform any evaluation logic itself but plays a critical role in orchestrating the data flow to and 

from the XACML engine. It ensures that: 

1. The correct policy version is referenced using domain IDs. 

2. Attribute values are correctly formatted and complete. 

3. The request context complies with XACML schema expectations. 

In addition to static attribute evaluation, the PIP supports dynamic context-aware logic through 

the NGAC layer. Figure 14 shows the NGAC graph topology, which is stored in SQL using two 

relational tables: 

1. NGAC_Nodes: This table represents all atomic elements of the policy graph, including 

Entities (e.g., users e.g., Alice, applications, e.g., Health_App), Attributes - standard (e.g., 

singinLocation, webRedirectUri) and custom (e.g., devExperience, AppCriticality), 

Attribute values (e.g., Low, 3, EmergencyOverride) extracted from Entra ID or derived 

from logs, Permissions (e.g., Read patient data) and Policy logic nodes, such as 

compliance checks and override triggers 

 

2. NGAC_Edges: This table captures directed relationships between nodes. While inspired 

by classic NGAC components, such as assignments and delegations, this implementation 

also extends to include real-time associations inferred from the underlying relational data. 

These represent dynamic links between users and attributes, attribute-based permission 

conditions, and behavioural constraints from user access logs. 
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Figure 14 NGAC graph topology diagram 

Upon receiving an access request, the PIP prepares a scoped subset of this graph, filtered by user 

ID, application ID, and permission type, ensuring that only relevant and recent attributes and 

edges are sent to the PDP. It also retrieves supporting metadata, such as weight values, deny 

thresholds, and historical access logs from the last 30 days. Although PIP does not perform any 

traversal or access path resolution, it ensures that PDP has all the necessary input to conduct a 

fully contextual and behaviour-informed NGAC evaluation. 

3.2.3 Policy Decision Point (PDP) and Trust Factor (TF) formula Derivation 

The Policy Decision Point (PDP) is the central intelligence unit of the DTW-ABAC architecture. 

It processes the structured access request forwarded by the Policy Enforcement Point (PEP). 

During this process, it requests the applicable policies and attributes through the Policy 

Information Point (PIP), and evaluates them using both static (XACML) and dynamic (NGAC) 
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engines coordinated by the Context Handler (CH). The PDP produces a final trust-weighted 

access decision, along with traceable metrics and logs for future evaluation. 

a) Context Handler (CH) and Task Division 

Context Handler is referenced from the traditional XACML framework; however, it is modified 

to act as the orchestrator between XACML and NGAC engines within the PDP. Based on the 

incoming request parameters such as user ID, application ID and permissions set, it identifies the 

application XACML policy sets and coordinates with PIP to extract attributes relevant to the 

decision (e.g., role, clearance, MFA device, Risk level). It delegates the request to the XACML 

engine with an appropriate list of domain ID and policy set ID (as described in the section 3.2.1, 

with the required attribute name-value pairs, and NGAC engines with previous access history 

simultaneously. Once the evaluation is completed, CH combines the evaluation results using a 

normalized trust factor. Additionally, override logic is applied if a delegation or critical threshold 

is received by either model. 

b) Enhanced XACML evaluation 

In the traditional XACML system, the evaluation result is typically a binary result, either 

“Permit” or “Deny”, based on whether the access request fulfills the rules within the policy. 

However, the enhanced version supports a quantitative trust factor (TF) evaluation and attribute-

weighted scoring, which enables a much more expressive and nuanced decision-making process. 

This modified engine still follows the XACML semantics, i.e. target, rule, effect and combining 

algorithm, but extends the output model to consider the matched attributes count with weight, 

and decision explanation for transparency. Upon receiving the request from the CH, the XACML 



 81 

engine starts evaluating one or more relevant policy sets received from PIP. Each policy set may 

contain one or more relevant policies, and each policy contains a set of rules that specify match 

conditions for subject, object, action, and environment attributes. The evaluation flow is detailed 

in Figure 15. 

 

Figure 15 The XACML evaluation flow 
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The evaluation begins at the lowest level, i.e. per rule inside a policy. For each rule that applies 

(i.e., matches the target), the engine iterates through its attribute conditions. Each attribute (high-

level only) is associated with: 

• A match indicator 𝑀𝑖 ∈ {0,1} where 1 indicates that the attribute in the request matched 

the condition in the rule, and 0 otherwise. 

• An attribute weight 𝑊𝑖, assigned by the administrator in the master list, reflecting the 

criticality of that attribute in enforcing secure access control. 

• A boolean flag isEssential, which, if set to true and unmatched, triggers an immediate 

denial of the rule, policy, and policy set. 

 

c) XACML Trust Factor Calculation 

The rule-level contribution, i.e. 𝑇𝐹𝑟𝑢𝑙𝑒 is computed in Equation (1), where 𝑖 represents each 

attribute from 1 to 𝑁. 

 𝑇𝐹𝑟𝑢𝑙𝑒 =  
∑ 𝑊𝑖  × 𝑀𝑖

𝑁
𝑖=1

∑ 𝑊𝑖
𝑁
𝑖=1

 (1) 

If any essential attribute fails to match (i.e., 𝑀𝑖 = 0 for any isEssential = true), the rule is 

invalidated (TF score is set to 0) regardless of its previously calculated TF score. If no essential 

failure is detected, the TF score of the rule is recorded. Rules within a policy are then combined 

using the configured rule combining algorithm, such as deny-overrides, first-applicable, or 

weighted-match. Once all applicable rules in a policy are evaluated, their combined score 

contributes to the policy-level trust as computed in Equation (2) where 𝑗 represents each rule 

from 1 to 𝑅 and an optional parameter, i.e. 𝑅𝑢𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑗 represented as a weight associated with 
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each rule if the administrator wants to prioritize the rules (e.g., “department must match” > 

“location proximity”). By default, the 𝑅𝑢𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡 is set to 1 in case no rule prioritization is 

needed for the specific scenario.  

 𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦 =  ∑ 𝑇𝐹𝑟𝑢𝑙𝑒𝑗 

𝑅

𝑗=1

× 𝑅𝑢𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑗 (2) 

Further, across multiple policies within a policy set, a similar aggregation is performed in 

Equation (3). Each policy contributes a trust factor to the policy set’s final score, where 𝑘 

represents a specific policy ranging from 1 to the total policies 𝑃. However, this calculation is 

ignored in case the applicable policy count is 1. 

 𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑡 =
1

𝑃
 × ∑ 𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦𝑘 

𝑃

𝑘=1

 (3) 

Combining algorithms for policies also applies here, e.g., deny-overrides would force a zero 

score if any sub-policy issues a deny or fails an essential match constraint. The process is 

repeated for all policy sets returned by the PIP for the given request context. These sets can be 

domain-specific (e.g., one for HR, one for Finance) or application-specific. The final XACML 

trust factor is then computed by aggregating the TFs of each evaluated policy set, as mentioned 

in Equation (4), where 𝑙 represents each policy set, ranging from 1 to the total number of policy 

sets 𝑆 applied to the current context. 

 𝑇𝐹𝑋𝐴𝐶𝑀𝐿 =
1

𝑆
 ×  ∑ 𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑡𝑙 

𝑆

𝑙=1

 (4) 
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d) Enhanced NGAC evaluation 

While the XACML engine evaluates the access request based on static policy rules, the NGAC 

logic within PDP simultaneously evaluates access using contextual attributes and relationship 

mappings provided by PIP. As shown in Figure 16, it includes relevant low-level attributes and 

graph data, such as session state, recent activity history, and attribute-to-permission mappings. 

 
Figure 16 NGAC graph structure 

This modified NGAC evaluation does not consider high-level declarative attributes or roles 

specified earlier in Table 8. Instead, it operates on concrete, low-level attributes such as login 

frequency (rate of successful login per specific day, like a month), device compliance, risk level, 

and MFA usage. These attributes are modelled in a SQL-based graph structure, where users, 

attributes, and permissions are represented as nodes, and their associations as directed edges. 

Unlike traditional NGAC, which emphasizes static graph traversal, this enhanced model 
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integrates real-time behavioural signals and trust-based scoring, allowing access decisions to 

reflect both current conditions and recent user behaviour. For each attribute relevant to the 

permission being requested, compute: 

1. Match indicator 𝑀𝑖 ∈ {0,1}, where 1 indicates that the user satisfies the attribute 

condition (e.g., MFA enabled, login frequency threshold met). 

2. Assigned weight 𝑊𝑖, indicating the criticality of this attribute in dynamic risk 

evaluation. 

 

e) NGAC Trust Factor Calculation 

The base NGAC trust factor is then computed in Equation (5). This is conceptually identical to 

XACML’s weighted match score, except that it operates over contextual and behavioural 

attributes, not declarative identity claims. 

 𝑇𝐹𝑁𝐺𝐴𝐶𝑏𝑎𝑠𝑒
= (

∑ 𝑊𝑖 × 𝑀𝑖
𝑁
𝑖=1

∑ 𝑊𝑖
𝑁
𝑖=1

) (5) 

Further, each user–application–permission tuple is associated with a deny threshold (𝑇𝑑), which 

defines the maximum number of allowed denials for the same action within a recent time 

window. This mechanism is designed to penalize repeated access failures for a specific operation 

on a given application, regardless of improvements in attribute matching. Let: 

1. 𝐷Δ𝑇𝐻
 : denote the number of access denials in the last Δ𝑇𝐻 (as known as Historical 

period) days for a specific user–application–permission combination. Further work on 

finding the specific value of Δ𝑇𝐻 is presented in Equation (8). 

2. 𝑇𝑑 : represents the threshold for allowed denials for that same combination. 
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Then, if the user has reached or exceeded the denial threshold within the Δ𝑇𝐻 period (assuming 

Δ𝑇𝐻 = 30) day window, access is immediately rejected, and the NGAC trust factor is overridden; 

that is, 

𝐷30  ≥ 𝑇𝑑  ⇒  𝑇𝐹𝑁𝐺𝐴𝐶  = 0 

This logic ensures that even if the user’s current contextual attributes are favourable, repeated 

recent access failures for the same application-permission pair result in conservative denial, 

reinforcing risk-sensitive behaviour enforcement. In such a situation, the current setup stores an 

entry in the alert table with the obligation logic, but in a production environment, an email alert 

to the administrator can be configured. 

To capture a user’s historical behaviour, the enhanced NGAC engine incorporates a historical 

confidence (H) as shown in Equation (6), which is used to adjust the base trust factor according 

to previous success/failure counts within the applicable historical window (Δ𝑇𝐻). The key 

component in the formula is the deny factor, i.e. 𝐷𝑓𝑎𝑐𝑡𝑜𝑟, and the reason it has been multiplied by 

the deny count is to introduce a penalty weight for denied requests based on the user's risk level. 

This ensures each denied request has more damage to trust for high-risk users. So, it encourages 

high-risk users to improve both, the quantity and quality of their behaviour. Currently, the last 30 

days of interaction logs are considered to ensure that the evaluation remains sensitive to current 

user behaviour and to prevent outdated historical data from skewing trust results. These numbers 

can be recalculated using the Equation (8) and modified easily, but require careful observation 

with respect to user traffic. 

 H = 
𝐴 −  (𝐷 × 𝐷𝑓𝑎𝑐𝑡𝑜𝑟)

𝑇
 (6) 
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where, 

• 𝐴 : Total number of permitted requests per user per application 

• 𝐷 : Deny request count application 

• 𝐷𝑓𝑎𝑐𝑡𝑜𝑟 : Deny factor based on previous risk level. i.e., for Low=1.0, Medium=1.5, 

High=2.0 

• 𝑇 : Total requests received per user per application 

For example, let’s consider three scenarios as below. 

1. User with Medium Risk (𝐷𝑓𝑎𝑐𝑡𝑜𝑟 = 1.5, 𝐴 = 30, 𝐷 = 10, 𝑇 = 40) 

H = 
30 − (10 ×  1.5)

40
 = 0.375  

2. User with High Risk (𝐷𝑓𝑎𝑐𝑡𝑜𝑟 = 2, 𝐴 = 30, 𝐷 = 10, 𝑇 = 40) 

H = 
30 − (10 ×  2)

40
 = 0.25  

3. User with High Risk with a better permit ratio (𝐷𝑓𝑎𝑐𝑡𝑜𝑟 = 2, 𝐴 = 35, 𝐷 = 10, 𝑇 = 45) 

H = 
35 − (10 ×  2)

45
 = 0.33  

Based on the above calculation, it can be stated that two users with the same historical permit 

ratio will have different H factors due to different risk levels. Medium-risk users will have more 

H factor than a high-risk user with the same parameters, as well as another high-risk user with 

slightly better numbers. After calculating H, the final NGAC trust factor is: 

 𝑇𝐹𝑁𝐺𝐴𝐶 =  𝑇𝐹𝑁𝐺𝐴𝐶𝑏𝑎𝑠𝑒
 ×  H (7) 
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As derived in the Equation (7), the model continuously re-evaluates access outcomes and 

incorporates them into future calculations, which results in improved decisions over time. Users 

with consistent successful behaviour (e.g., repeated successful logins with compliant devices and 

MFA) will gradually build higher confidence scores through the H factor. On the contrary, users 

who accumulate frequent denials will see their access sharply penalized, either through a lower H 

value or full override via the denial threshold. 

As part of this research, a custom formula was developed to calculate the historical period (in 

days), i.e. Δ𝑇𝐻, as shown in Equation (8). This formula considers multiple factors that may affect 

security requirements. It helps determine how many past days should be considered relevant 

when evaluating historical access behaviour or trust levels. 

 Δ𝑇𝐻 = min(𝑇𝑚𝑎𝑥, max(𝑇𝑚𝑖𝑛, 𝑊1 × 𝐸 + 𝑊2 × 𝑅 + 𝑊3 × 𝑈 + 𝑊4 × 𝐴 + 𝑊5 × 𝐶 + 𝑊6 × 𝐹)) (8) 

 

where, 

• 𝑊1, … 𝑊6 are tunable admin weights (default all = 10), 

• 𝑇𝑚𝑖𝑛 is a minimum history period (e.g., 7 days), 

• 𝑇𝑚𝑎𝑥 is a maximum allowed period (e.g., 180 days), 

• Other factors, as described in Table 10. 

 

Symbol Meaning Example Scaling (0–1) 

𝐸 Environment weight: Prod = 1, QA = 0.6, Test 

= 0.3 Deployment criticality 

𝑅 

Risk factor of industry + app visibility: e.g., 

Banking_public = 0.6, Banking_private = 1, 

Retail = 0.6 NIST/ISO risk categorization [58] 
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𝑈 

User base scale (normalized): 

𝑙𝑜𝑔10(𝑁𝑢𝑠𝑒𝑟𝑠)

𝑙𝑜𝑔10(𝑁max_𝑢𝑠𝑒𝑟𝑠)
 

(max_users is an organizational upper bound.) 

Assuming max_users = 100K, so 

for, 10 users → 𝑈 = 0.2, for 100K 

→ 𝑈 = 1 

𝐴 

Application base scale (normalized): 

𝑙𝑜𝑔10(𝑁𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

𝑙𝑜𝑔10(𝑁max _𝑎𝑝𝑝𝑠)
 

(max_apps is an application upper bound.) More apps = more variance 

𝐶 
Criticality score of the resource (0–1) 

Manually defined or inferred from 

policy 

𝐹 Audit frequency factor: 1 / audit cycle in 

months 

E.g., monthly audit → F = 1, 

annual → F = 1/12 

Table 10 Historical period factors 

For example, 

• Environment = Production → 𝐸 = 1 

• Industry = Healthcare → 𝑅 = 0.9 

• 10000 users → 𝑈 =
𝑙𝑜𝑔10(10000)

5
=

4

5
= 0.8 

• 50 applications → 𝐴 =  
𝑙𝑜𝑔10(50)

5
 ≈ 0.34 

• Resource criticality → 𝐶 = 0.8 

• Audit every 3 months → 𝐹 =
1

3
 ≈ 0.33 

• Assuming all weights =10, 𝑇𝑚𝑖𝑛 = 15, 𝑇𝑚𝑎𝑥 = 90 

• Hence, Δ𝑇𝐻 = 41.7 ≈ 42 days 

 

f) Final Trust Factor and Risk Level Calculation Engine 

Once both XACML and NGAC scores are computed, the CH combines them using a weighted 

average as computed in Equation (9). It uses the constants for each model, i.e. 𝐶𝑋𝐴𝐶𝑀𝐿 and 

𝐶𝑁𝐺𝐴𝐶, where the latter is set higher than the former. This prioritizes dynamic context (NGAC) 
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with a higher model constant. Multiple experiments are conducted as detailed in Section 4.5 to 

find the optimal values for the model constants. 

 𝑇𝐹 =  
𝐶𝑋𝐴𝐶𝑀𝐿  ×  𝑇𝐹𝑋𝐴𝐶𝑀𝐿 +  𝐶𝑁𝐺𝐴𝐶  ×  𝑇𝐹𝑁𝐺𝐴𝐶

𝐶𝑋𝐴𝐶𝑀𝐿 +  𝐶𝑁𝐺𝐴𝐶
× 100 (9) 

The trust factor groups can be configured by the administrator based on the criticality of the 

application and its security requirements. In this framework, a trust factor threshold of 70% is 

considered the minimum for access approval. Anything below is denied. Hence, based on this 

factor, PDP assigns a risk level to a user as below, which is updated over time. 

• Low risk: 𝑇𝐹 ≥ 85% 

• Medium risk: 70% ≤ 𝑇𝐹 < 85% 

• High risk: 𝑇𝐹 < 70% 

Finally, the decision is logged in SQL with all the details captured during the evaluation for 

future review, testing, and experiments. Table 11 shows the log information stored during the 

multiple results generated at different levels of the evaluation, including the trust scores, attribute 

weights, failed attributes or evaluation details. 

Column Name Type 

result_id  INT IDENTITY (1 1) 

scenario_id  INT 

resourceID  INT 

userID  INT 

model_type  NVARCHAR (20) 

result_date  DATETIME 

xacml_threshold  DECIMAL (10 2) 

xacml_constant  DECIMAL (10 2) 

ngac_constant  DECIMAL (10 2) 

xacml_result  BIT 
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failedAttributes  NVARCHAR (MAX) 

policyScore  FLOAT (53) 

failedPolicyID  INT 

policySetScore  FLOAT (53) 

failedPolicySetID  INT 

subjectWeightedScore  INT 

subjectTotalWeight  INT 

objectWeightedScore  INT 

objectTotalWeight  INT 

xacmlTrustFactor  FLOAT (53) 

unmatchedEssentialCount  INT 

ngacTrustFactor  FLOAT (53) 

denyCount  INT 

denyThreshold  INT 

permitCount  INT 

accessCount  INT 

final_trust_factor  DECIMAL (5 2) 

final_result  BIT 

assignedPermissionName  NVARCHAR (25) 

test_run_id  INT 

risk_level  NVARCHAR (50) 

is_active  BIT 

test_run_id INT 

risk_level NVARCHAR (50) 

is_active BIT 

Table 11 Evaluation results log table structure 

The trust and confidence scores in the hybrid model were designed using new equations directly 

linked to user history, instead of standard modelling techniques. One of the research questions 

was how access decisions can be made transparent and traceable, and these equations answered 

that need. Trust-based access control literature (section 2.4) shows the value of using observable 

evidence such as compliant actions, violations, and contextual risks. Unlike complex models, the 

equations make the calculation process clear and repeatable, so administrators can see and verify 
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how decisions are reached. By weighting positive and negative behaviours, the model adjusts 

trust dynamically while staying lightweight and easy to audit. 

The trade-off is that standard modelling techniques may capture more detailed patterns, but they 

are harder to explain and heavier to run. The approach was focused on novel formulas that can be 

directly integrated into the existing XACML and NGAC design. Rather than introducing a 

separate engine, the intention was to show how trust scoring can be naturally embedded and 

aligned with the established XACML and NGAC framework. Whether this should be the new 

norm depends on the use case, i.e. for systems that need clarity, audit, and smooth integration, 

equations are a strong option, while in other cases, advanced models may still be useful. 

 

g) Policy Enforcement Point (PEP) and history reset switch 

The PEP is responsible for initiating the request and also enforcing the decision. Once the PDP 

evaluates the request based on defined policies and returns a decision, the PEP interprets the 

HTTP response, containing the decision status (Permit/Deny), applicable permissions, and any 

redirect or notification URL, and enforces the appropriate action. This may include granting 

access, denying access with a reason, or redirecting the user to an application-specific page (e.g., 

login, error, or application dashboard). The PEP also logs the interaction for auditing and 

compliance. Figure 17 shows the final response for a scenario where the access was granted, and 

the time counter shows that it will be redirected to the application dashboard. Other information, 

like trust scores or risk levels, is hidden from the end user. This message with redirect timeout is 

only for the development mode; as soon as the framework is hosted in a production environment, 

it will directly redirect the user to the application URL when permitted or display the Access 
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denied message. The development and production modes are managed by the dotnet 8.0 

framework properties, which automatically switch the application to production mode after build 

and deploy. 

 

Figure 17 DTW-ABAC final decision with redirect URL 

 

Users with high risk may experience repeated denials until they contact an administrator to reset 

their access. This process may involve additional user actions such as resetting the password, 

enabling multi-factor authentication (MFA), or applying device restrictions, depending on the 

organization's policy and the administrator’s decision. To support this, the administrator can use 

the history reset switch to disable the user's prior access history by toggling the is_active boolean 

flag (associated with each log entry) for a specific user. The framework is designed to consider 

only active history entries, so this feature enables the user to start with a clean history post-reset. 

Hence, even if the disabled history falls under the historical period (Δ𝑇𝐻) defined in Equation (8), 

the model will not consider it. Importantly, it avoids permanent deletion of historical records, 

thereby preserving audit integrity. 
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h) Production deployment option to manage the framework 

Since the model components follow a RESTful design and use dotnet 8.0 framework and SQL 

Server, it can be easily deployed as an API (Application Programming Interface) and managed 

database in the cloud environment[59] [57]. The DTW-ABAC components, which do not need 

internet access (e.g. PDP and PAP), can be deployed in the private subnet, and others, such as 

PEP and PIP, can be deployed in the public subnet of the virtual private cloud (VPC) [60]. A 

custom JWT token and a VPC gateway service will transfer the data flow to the public subnet 

securely. The integration with an authenticator such as Entra ID or any other tool can be done 

with the PEP and PIP. The framework design enables the use of PAAS (platform as a service) 

deployment model services, such as AWS Lambda and RDS (Relational Database Service), to 

reduce maintenance and manage scalability. 

 

3.3. Example Access Request 

 

This section provides a concrete example which illustrates how the hybrid model (XACML + 

NGAC) evaluates access through weighted attribute policies and context-aware NGAC logic, 

including the full calculation flow that results in a permit decision (TF ≥ 70%). 

 

Assume a software engineer (Alice) attempts to access the source code repository from a 

managed company laptop during outside working hours. Her recent behaviour and login history 

indicate that the user is low risk. The model will now evaluate her access using both XACML 

(static policies) and NGAC (contextual trust factors). 
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• The XACML evaluation: It consists of one policy set, two policies and three rules in 

total. 

 

Policy 1: Enforces a combination of identity and context-aware access control, ensuring 

that access is granted only when both user attributes and environmental conditions align 

with policy requirements. 

 

Policy 1 => Rule 1 (p1r1): Enforces access based on the user profile details (static), 

ensuring only properly assigned users can proceed. 

Attribute & Value Weight (Wᵢ) Essential 

Match 

(Mᵢ) 

role=Engineer 5 1 1 

department=Design 3 1 1 

projectCode=ABC123 2 0 1 

shift=day 1 0 0 

 

𝑇𝐹𝑝1𝑟1 =  
(5 × 1 + 3 × 1 +  2 × 1 +  1 × 0)

(5 + 3 + 2 + 1)
= 0.909 

 

Policy 1 => Rule 2 (p1r2): Enforces access based on physical location and device 

compliance, ensuring that requests originate from secure and approved environments. 

Attribute & Value Weight (Wᵢ) Essential 

Match 

(Mᵢ) 

device=Compliant 4 1 1 

Location=Vanderhoof 3 1 1 
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Region=North 2 0 0 

 

𝑇𝐹𝑝1𝑟2 =  
(4 × 1 + 3 × 1 +  2 × 0)

(4 + 3 + 2)
= 0.778 

Hence, Policy1 trust factor: 

• Rule 1 weight = 0.4 

• Rule 2 weight = 0.6 

𝑇𝐹𝑝1 =  (0.909 × 0.4) + (0.778 × 0.6) = 0.8304 

 

Policy 2 => Rule 1 (p2r1): Enforces resource-level access control, focusing on data 

sensitivity and access intent, specifically to ensure that only authorized users can access highly 

classified or confidential documents, and only under permitted operations (e.g., read-only). This 

prevents unauthorized disclosure or misuse of sensitive information based on the document’s 

classification level, access type, and purpose. 

Attribute & Value Weight (Wᵢ) Essential 

Match 

(Mᵢ) 

docType=Confidential 4 1 1 

accessLevel=read 3 1 1 

Classification=high 3 1 1 

 

𝑇𝐹𝑝2𝑟1 =  
(4 × 1 + 3 × 1 +  3 × 1)

(4 + 3 + 3)
= 1.0 

Hence, Policy 2 trust factor: 

𝑇𝐹𝑝2 =  1.0 
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The policy set (combining policy 1 and policy 2) trust factor: 

𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑡1 =  
𝑇𝐹𝑝1

+ 𝑇𝐹𝑝2

2
=  

0.8304 + 1.0

2
= 0.915 

Final XACML Trust Factor: 

𝑇𝐹𝑋𝐴𝐶𝑀𝐿 = 𝑇𝐹𝑝𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑡1 = 0.915 

 

• The NGAC evaluation: Primarily enforces dynamic and behavioural attributes, including 

user clearance, current risk profile, and historical trust factors (confidence). The base 

trust factor comes from frequently changing attributes, while the final trust factor 

incorporates historical access records (permits/denies) and a risk factor. 

Attribute and match case: 

Attribute & Value Weight (Wᵢ) Essential 

Match 

(Mᵢ) 

role=Engineer 4 1 1 

team=SecureAccess 4 1 1 

clearance=High 5 1 1 

riskProfile=low 2 1 1 

projectAccess=true 3 1 1 

 

𝑇𝐹𝑁𝐺𝐴𝐶𝑏𝑎𝑠𝑒
=  

(4 × 1 + 4 × 1 +  5 × 1 +  2 × 1 +  3 × 1)

(4 + 4 +  5 + 2 + 3)
=  

18

18
= 1.0 

 

Denial and threshold check: 

𝐷30 = 1 (Only 1 denial in past) 

𝑇𝑑 = 5 (deny threshold) 
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𝑆𝑖𝑛𝑐𝑒 𝐷30 < 𝑇𝑑  ⇒  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑤𝑖𝑡ℎ 𝑇𝐹𝑁𝐺𝐴𝐶  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Historical period:  Δ𝑇𝐻 = 42 as explained in the Table 10. 

Confidence Factor (H): 

H = 
𝐴 −  (𝐷 × 𝐷𝑓𝑎𝑐𝑡𝑜𝑟)

𝑇
  

  Let, 

• The previous acceptance count (𝐴) = 5 

• The previous deny count (𝐷) = 1 

• Deny factor for low risk (𝐷𝑓𝑎𝑐𝑡𝑜𝑟) = 1 

• The previous total request count (𝑇) = 6 

So, 

H = 
5 −  (1 ×  1)

6
= 0.66 

Hence, final NGAC Trust Factor: 

𝑇𝐹𝑁𝐺𝐴𝐶 =  𝑇𝐹𝑁𝐺𝐴𝐶𝑏𝑎𝑠𝑒
× 𝐻 = 1 × 0.66 = 0.66 

 

• Final Trust Factor Calculation: 

Let, 𝐶𝑋𝐴𝐶𝑀𝐿 = 0.65, 𝐶𝑁𝐺𝐴𝐶 = 0.85 

𝑇𝐹 =  
𝐶𝑋𝐴𝐶𝑀𝐿  ×  𝑇𝐹𝑋𝐴𝐶𝑀𝐿 +  𝐶𝑁𝐺𝐴𝐶  ×  𝑇𝐹𝑁𝐺𝐴𝐶

𝐶𝑋𝐴𝐶𝑀𝐿 + 𝐶𝑁𝐺𝐴𝐶
× 100 

𝑇𝐹 =  
0.65 × 0.915 + 0.85 × 0.66

0.65 + 0.85
× 100 

 

TF = 77.058 % 

 

• Final Decision: PERMIT 
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o TF = 77.058 % 

o Meets permit threshold (TF ≥ 70 %) 

o Risk level updated: Medium (previously it was low) because “70 ≤ TF > 85 %”. 

 

Based on the above example, it can be clearly seen how the framework has permitted the access 

request since all the mandatory and high-weighted attributes matched with a good historical record, 

but it has updated the user risk level to medium since a few optional attributes did not match, and 

there was a previous denial on record. Further, the updated risk level will affect the result next 

time if the optional attributes continue to fail. 

 

3.4. Challenges 

The development and evaluation of the DTW-ABAC framework posed several challenges, 

including policy modelling, real-time evaluation, data integration, and system scalability. The 

biggest challenge was to come up with an accurate attribute weight, which is inherently 

subjective. Since administrator-defined weights reflect organizational policies, they can 

introduce potential bias and lack empirical evidence. Similarly, deciding which attributes are 

marked as essential involves policy-specific knowledge and may lead to overly rigid denials if 

not calibrated carefully. Several experiments were conducted (see Section 4.5) to determine the 

essential attributes in this setup. 

Although the enhanced XACML engine reduced the burden of frequent updates due to high-level 

attributes, it still faced the computational overhead when multiple policies or policy sets were 

involved. Additionally, hybrid scoring and penalty rules (e.g., 10% penalty for missed attributes) 

made debugging and policy validation harder. In order to solve these issues, additional logic for 



 100 

simulation and visualization was developed as described earlier. With respect to NGAC, the H 

Factor changes the result significantly but also introduces challenges. The model considers the 

last 30 days as a history, which may not be enough to stabilize trust for low-traffic users. 

However, this challenge was resolved by creating a new equation to find the optimal historical 

period (as derived in Equation (8)).  

Similarly, for the new users, the confidence may become low in a scenario where a few attributes 

are missing due to a lack of history or a previous approval-to-deny ratio. To tackle this issue, the 

framework provides flexibility to balance the model constants. The complete decision pipeline 

highly depends on timely and accurate data from Entra ID, which is an external entity. An 

incorrect attribute naming or incomplete values cause failed matches. The permission errors 

before purchasing the Entra ID P2 license affected the results initially. However, following the 

defined structure when adding simulated data helped resolve these issues. Since the framework 

can be connected with any authentication and identity management tool with minor changes, it 

reduces the dependency on Entra as well. 

3.5. Summary 

 

In summary, the methodology outlined in this chapter is designed to be both principled and 

extensible. It draws from existing formal models like XACML, NGAC and AR-ABAC but 

enhances them with numeric trust evaluation, risk-sensitive scoring, and dynamic policy 

enforcement. It also incorporates practical tools and data structures, such as SQL-based NGAC 

graphs and scenario simulation suites which ensure the model can be realistically deployed in 

real-world enterprise environments. This hybrid methodology also ensures that access decisions 

are correct according to rules and appropriate according to risk, trust, and historical behaviour. 
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Chapter 4 

Experiments and Results 

This chapter presents the experimental setup designed to validate the proposed hybrid access 

control model, as well as to compare results with standalone XACML and NGAC systems. The 

aim is to assess the model’s correctness (e.g., accuracy, precision, recall, F1-score), adaptability 

to real-world access dynamics, robustness against attacks, and performance scalability. 

Additionally, this chapter outlines the design evolution from the initial model through iterations 

based on observed outcomes, contributing to the validation of the research objectives. The 

experiments are not only intended to test core access decisions (Permit/Deny) but also to 

measure trust factor behaviour, consistency of decisions, and responsiveness under varying loads 

and adversarial attempts. The hybrid model’s internal components, such as attribute weight 

consideration, essential attribute enforcement, and dynamic NGAC context updates, are tested 

and fine-tuned under different input patterns and validated with the scenario results. 

 

It is crucial to define how access scenarios were generated and how they were categorized into 

meaningful testing groups. These preliminary steps ensure that the experiments reflect realistic, 

security-relevant conditions rather than synthetic combinations that would not arise in practice. 

Although the categorization does not change the results patterns, it adds confidence to the model 

results. 

 

4.1. Real-World Motivated Scenario Foundation 

 

Recognizing the real-world operational needs that inspired the design of this hybrid model is 

essential before proceeding to the automated generation and evaluation of access scenarios. Each 
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scenario represents a single access request tested under any model. Table 12 presents ten 

manually crafted access scenarios drawn from diverse security-sensitive domains such as 

engineering, healthcare, financial systems, and international collaboration. These examples 

highlight both static policy reasoning, typically captured by XACML (e.g., role, time, location, 

and rule-based evaluation), as well as dynamic relationship or history-based decisions handled 

more effectively by NGAC (e.g., past access history, graph-structured role linkage, contextual 

emergency triggers). Each scenario is categorized by its access type and then mapped to 

contributions made by the hybrid framework, demonstrating how the hybrid architecture resolves 

complex conditions not fully manageable by either model alone. These scenarios serve two 

purposes, i.e. ground the system design in realistic operational settings and serve as benchmarks 

when validating programmatically generated scenarios that follow. 

 

# Scenario Summary Access Type 

DTW-ABAC Hybrid framework 

XACML Role NGAC Role 

1 
Engineer with low risk 

requesting app (limit 

based on denial history) 

Risk-aware 

Logs 

Handles user/app 

risk level attributes 
Tracks denial history 

2 Project file access by 

role and location 

Hierarchical 

+ Context 

Policy for location 

and sensitivity 

Graph links role-

location 

3 Critical access override 

for managers 

Emergency 

Overrides 
Rule exceptions 

Propagates changes 

graph-wise 

4 

Access is allowed based 

on request patterns, 

time, and device 

compliance 

Dynamic 

Time-Based 

Enforces usage & 

compliance 
Tracks historical access 

5 Emergency action by 

trained staff only 

Emergency 

Action Rules 

Training-based 

access control 

Links users to training 

nodes 

6 Access denied if risk 

score exceeds threshold 

Risk 

Behaviour 

Decision 

Risk evaluation 

rule 
Looks up risk history 
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7 
Edit denials for 

documents authored by 

other team members 

Fine-Grained 

with 

Relationships 

Team-only 

modification policy 

Manages team-author 

relationships 

8 
Dept A is requesting 

DNA data from Dept B 

for collaboration 

Cross-

Department 

Dynamic 

Access 

Defines inter-

departmental 

conditions 

Reflects org structure + 

updates seamlessly 

9 
Emergency patient 

access by doctor (e.g., 

during cardiac arrest) 

Emergency 

for 

Healthcare 

Ensures revocation 

post-emergency 

Applies emergency 

overrides via graph 

10 
Access to sensitive 

project files while 

travelling 

Context-

Aware in 

International 

Operations 

Enforces relaxed 

travel-aware policy 

Evaluates the project 

and location graph 

nodes (new countries 

are added easily) 

Table 12 Access scenario summary table 

 

4.2. Programmatic Access Scenario Generation 

 

The manually crafted scenarios in the previous section represent critical access control 

challenges that inspired the system design and informed the attribute sets used in subsequent 

automated testing. However, in order to conduct rigorous testing, it is necessary to generate 

hundreds of diverse access scenarios programmatically. In real-world environments, access 

requests are not random but are influenced by organizational policies, contextual conditions, and 

user roles. Therefore, to reflect this complexity, the experiments began with the creation of a 

comprehensive access scenario dataset. 
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4.2.1 Cross-Product-Based Initial Dataset 

 

Based on different access types, an initial pool of scenarios was generated by computing the 

cross-product of Users × Applications × Permissions. Each scenario tuple consisted of user ID, 

application ID and permission name. The different users and applications are distinct from each 

other in terms of attribute names and their values. A total of 760 scenarios were generated using 

this technique. This exhaustive combination ensures that the model is exposed to both typical 

and edge-case inputs. Table 13 shows the sample test scenario generated using the cross-product 

method. 

 

User ID Risk Level App ID Permission Location Time Device Type 

User1 Low AppA Read Office 9:00 AM Laptop 

User1 Low AppA Write Home 9:00 AM Mobile 

User2 Medium AppA Read Remote 2:00 PM Desktop 

User2 Medium AppB Write Remote 2:00 PM Desktop 

Table 13 Test scenarios using cross-product 

 

4.2.2 Filtering Techniques for Realism 

 

Since not all combinations are realistic or policy-relevant, a structured programmatic generator is 

developed to filter realistic and security-sensitive test scenarios that mimic finite state machine 

(FSM) transitions [61], [62], [63]. However, instead of modelling a full FSM for the entire policy 

engine, the research uses logical scenario paths inspired by FSM-based model testing strategies. 

These paths are composed of semantic transitions capturing the behavioural flow of access 

control decisions in the following chain: 

Attribute Assignment → Trust Evaluation → Permission Request 
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Each unique sequence through this chain simulates a logical path in an abstract FSM. By varying 

the attribute values and structural context at each stage, a wide range of possible evaluation states 

is covered, similar to achieving state and transition coverage in classical FSM testing. The 

following strategies were implemented within this path-diversification framework to ensure 

scenario relevance and impact: 

 

a. Policy-Driven Filtering - Only combinations where user, resource, or context attributes 

plausibly satisfy at least one XACML policy rule were retained. This eliminates invalid 

or irrelevant permutations from the cross-product results and ensures meaningful scenario 

paths. 

 

b. FSM-Based Path Diversification - The test generator simulates logical transition-like 

sequences (assignment → evaluation → decision), enabling scenario coverage across the 

access decision landscape, without explicitly generating full FSM diagrams. Each 

scenario path is structurally different, improving APFD (Average Percentage Fault 

Detection) as observed in studies mentioned in [63] which compared XACMET 

(XACML Testing and Modelling Environment) and Multiple Combinatorial strategies for 

XACML-based access control testing using a controlled experiment and demonstrated 

that scenario diversity (through path variation) can positively impact early fault detection 

rates. 

 

c. Mutation-Based Negative Case Injection - For every positive scenario, a “near miss” 

version is programmatically created by mutating one attribute, such as altering role, 

removing required attributes, or falsifying location. This mirrors FSM mutation operators 

like CO (Change Output), which induces denial where the original was permitted and 
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CTS (Change Tail State), which changes attribute-based path transitions. These mutations 

are used to simulate adversarial, misconfigured, or incomplete access attempts. 

 

Using these techniques, a total of 280 scenarios were selected from the initial pool of 760 

scenarios. The generated scenarios are not merely Cartesian outputs but strategically enriched 

cases reflecting both standard and edge-case access situations. They are used to test the decision 

stability, trust responsiveness, and error detection capability of the hybrid access control model. 

 

4.3. Scenario Categorization 

To enable structured evaluation and metric comparison (e.g., TP/TN/FP/FN breakdowns), the 

scenarios were grouped into six well-defined categories. This taxonomy allows focused analysis 

on specific behaviour classes and was inspired by both real-world policy deployments and prior 

evaluation studies. Each category is designed to assess a specific attack vector as well, such as 

direct ("front door") and indirect ("back door") attempts, as well as other sophisticated 

adversarial strategies. An example scenario, with attribute details and evaluation process per 

category, is added in the Appendix 1. Although even if the model executes all 280 access 

scenarios exactly once, scenarios across different categories share the overlapping user-app 

combinations. This overlap is intentional and beneficial, allowing the model to leverage 

comprehensive access histories. Thus, when evaluating any given scenario, the system considers 

contextual information from scenarios in other categories as well. This interconnected evaluation 

ensures robust testing coverage, accurately reflecting realistic attack patterns and enabling the 

detection of nuanced adversarial behaviours that span multiple attack vectors. The details about 

each category are as follows. 
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4.3.1. Baseline Valid Access 

This category includes legitimate, correctly authorized access requests that should be granted 

(True Positives), and a small set of benign but unauthorized requests that should be denied (True 

Negatives). The large number of True Positives ensures the system is well-tested for normal, 

intended use cases that must be reliably permitted. Only 2 TNs are included here since most real 

traffic is expected to succeed, and other categories more fully test TN cases involving adversarial 

or hidden attacks. This balance reflects real-world expectations where most legitimate traffic 

should succeed, but basic denial handling is still validated. 

 

4.3.2. Adversarial or Malicious Attempts 

This category covers deliberately crafted or spoofed access requests designed to defeat security 

controls. Examples include falsified or forged attributes, hidden or manipulated context, or other 

forms of attack simulation. These scenarios stress-test the system’s ability to detect, block, and 

handle hostile or deceptive attempts intended to bypass policies or exploit vulnerabilities. 

 

4.3.3. Behavioural or Historical Influence 

The scenarios in this category simulate changes in access patterns based on a user’s historical 

behaviour. For instance, it tests how the system reacts when a user who usually accesses 

resources during business hours suddenly attempts access at odd times or from unusual locations. 

It reflects adaptive, history-aware control policies that consider past behaviour to influence 

decisions. 

 

4.3.4. Contextual or Temporal Drift 

This category includes access requests where contextual attributes (like time of day, location, 

device type, or session expiry) deviate from the norm. For example, an employee accessing from 
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an unfamiliar country at midnight or an uncompliant device. These tests check if the system can 

handle changing and potentially risky situations. 

 

4.3.5. Policy Conflict and Ambiguity Handling 

This group includes situations where multiple policies apply simultaneously but have conflicting 

effects (e.g., one policy permits access while another denies it). These situations challenge the 

system to handle unclear situations using conflict resolution strategies. This ensures that 

decisions are predictable and easy to explain, even when policy rules are in conflict. 

 

4.3.6. Structural Attribute Violations 

This category targets cases where static attributes required for access decisions are missing, 

incorrect, or malformed. Examples include missing role assignments, department mismatches, or 

other identity and attribute errors. It ensures the system can detect and deny requests when 

essential identity data is invalid or incomplete, maintaining policy integrity. 

 

To avoid confusion during results analysis, category-to-scenario follows a one-to-many 

relationship, as shown in Table 14. It also shows the total TP and TN (expected decisions) counts 

that were determined manually to maintain an independent evaluation benchmark. In cases 

influenced by organizational context, such as conflicting rules, time-based conditions, or 

environmental attributes, reasonable assumptions based on common practices were applied to 

ensure fairness and reproducibility across all evaluations. 
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No. Category 

# Scenario 

count (out of 

280) 

TP 

(Grant 

Access) 

TN 

(Deny 

Access) 

1 Baseline Valid Access 40 38 2 

2 Adversarial or Malicious Attempts 45 10 35 

3 Behavioural or Historical Influence 50 40 10 

4 Contextual or Temporal Drift 48 31 17 

5 Policy Conflict and Ambiguity Handling 47 32 15 

6 Structural Attribute Violations 50 21 29 

Table 14 Access scenario categories 

The motivation behind categorization was to add clarity in the evaluation of metrics for each 

category, revealing model strengths and weaknesses. 

 

4.4. Core Functional and Comparative Tests 

 

To evaluate the overall effectiveness of the proposed hybrid model, a comprehensive set of core 

tests was conducted. These are divided into two primary segments: Hybrid vs. Standalone 

Models (XACML and NGAC) Evaluation and Hybrid Model Parameter Impact Evaluation 

(Tuning). Each group includes targeted metrics and tuning techniques designed to assess 

decision quality, trust dynamics, and attribute influence. Together, they provide a structured 

framework to validate the model across realistic, adversarial, and dynamic access scenarios. 

 

4.4.1. Hybrid vs Standalone Models Confusion Matrix Comparison 

 

This component compares the hybrid model performance with the standalone XACML and 

NGAC implementations under identical test conditions. The objective is to determine the added 

value and behaviour of the hybrid logic, especially in situations involving contextual and 
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temporal variation. The result for any scenario is defined as either TP (True Positives, i.e. 

correctly permitted access for legitimate users), FP (False Positives, i.e. incorrectly permitted 

access for unauthorized users), TN (True Negatives, i.e. correctly denied access to unauthorized 

users), or FN (False Negatives, i.e. incorrectly denied access to legitimate users) [64]. All three 

models (DTW-ABAC, XACML and NGAC) were tested for the access scenarios in each 

category, and the performance was evaluated using the confusion matrix. In the Hybrid model, 

the internal constants were set as 𝐶𝑋𝐴𝐶𝑀𝐿 = 0.65 & 𝐶𝑁𝐺𝐴𝐶 = 0.85 (the rationale for choosing these 

values is explained later in Section 4.5.1), as well as set the maximum denials depending upon 

the application present in the specific scenario. The Risk factors in the hybrid model remain as 1 

(Low risk), 1.5 (Medium Risk) and 2 (High Risk) as explained in Section 3.2.3. 

 

1. Baseline Valid Category 

 

In the Baseline Valid Access category, 38 scenarios involved straightforward, legitimate access 

requests that should have been granted without exception, and 2 scenarios were a small set of 

benign but unauthorized requests that should be denied, as explained in the section 4.3.1.  

 

 

Figure 18 Baseline valid access category results 
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Analyzing the results presented in Figure 18 revealed that XACML produced false negatives due 

to its strict policy evaluation semantics. Specifically, three access requests (8%) were denied 

because the policies included complex target and condition structures that required exact 

attribute matches. In several cases, although the user had the correct role or permissions 

conceptually, minor mismatches or missing optional attributes, such as slight variations in role 

naming or the absence of time or environment attributes, caused the request to fall outside the 

applicable policy scope. These were not policy errors by themselves but reflected how XACML's 

default-deny behaviour, coupled with deny-overrides combining algorithms, failed to account for 

expected flexibility in baseline access. On the other hand, NGAC exhibited false positives in this 

category, which, upon analysis, were traced to its attribute-based graph traversal mechanism, 

allowing access via broader propagation paths than originally intended. Users accessed 

permissions through inherited or higher-level attribute associations without adequate contextual 

filters. This led to access, which bypassed the finer constraints expected by the scenario 

definitions despite being technically valid under the graph structure. The Hybrid model 

successfully avoided both types of errors by integrating XACML’s precision in attribute 

evaluation with NGAC’s flexible propagation, applying trust-layer filtering and essential 

attribute validation to ensure that valid requests were neither unjustly denied nor too broadly 

permitted. 

 

2. Adversarial or Malicious Attempts Category 

 

In the Adversarial or Malicious Attempts category, the goal was to simulate illegitimate access 

scenarios, including intentional misuse, privilege escalation, or requests that violated defined 

constraints. It also includes simulated access requests using VPN (virtual private network) to 

generate geolocation variance. 
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Figure 19 Adversarial or malicious attempts results 

During the investigation, it became evident in Figure 19 that XACML produced zero false 

positives, reflecting its conservative nature and default-deny stance; its fine-grained, rule-based 

enforcement mechanism rigidly blocked all access attempts that did not match well-defined 

conditions. However, this rigidness came at a cost: XACML also recorded five false negatives 

(FN), meaning it incorrectly denied legitimate access requests. These FN cases occurred because 

the requests were structurally valid but lacked certain contextual elements (such as time, risk, or 

behavioural indicators) not fully accounted for in the policy logic. This limitation arose from its 

rule-based matching, which did not flexibly accommodate variations in contextual attributes. 

NGAC reported 5 FPs due to a lack of integrated evaluation for request intent, temporal 

conditions, and anomaly signals, resulting in access being granted through structurally valid but 

contextually inappropriate paths, particularly in scenarios involving lateral movement or role 

abuse. Additionally, it recorded two false negatives, where legitimate user requests were wrongly 

denied because the policy lacked sufficient granularity to handle contextual variations and 

resolve graph-based conflicts. The Hybrid model outperformed both by recording only one false 

positive and one false negative. It successfully blocked most adversarial attempts by layering 
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contextual trust assessments, such as access history deviation, session state, and anomaly 

indicators, on top of NGAC’s structural enforcement. At the same time, it avoided XACML’s 

rigidity by relaxing strict match conditions when broader patterns clearly indicated a malicious 

attempt, thus reducing false negatives. The single FP arose in a case where NGAC’s propagation 

briefly superseded the hybrid filter due to attribute misclassification, while the only FN was tied 

to a borderline case where contextual deviation was insufficient to trigger the denial threshold. 

Overall, the Hybrid model’s combined reasoning, precise rule validation, dynamic relationship 

tracking, and threshold-based filtering enabled it to distinguish between subtle adversarial intent 

and legitimate patterns in general, while recognizing that tuning these parameters could prioritize 

stricter security or user convenience depending on organizational risk tolerance. 

 

3. Behavioural or Historical Influence Category 

 

In the Behavioural or Historical Influence category, the scenarios were designed to capture 

deviations from typical user behaviour, usage history, or long-term access patterns. These 

include situations where a user’s prior actions, assigned roles, or past access decisions, whether 

permitted or denied, should influence current access control decisions. 

 

 



 114 

 

Figure 20 Behavioural or historical influence results 

From the observed results in Figure 20, XACML recorded a notably high number of false 

negatives (25), far exceeding NGAC’s 6 and Hybrid’s 1. This indicates that XACML 

consistently failed to permit access in cases where deviations were legitimate but misclassified as 

suspicious. The primary reason lies in XACML's static policy design: it lacks native support for 

stateful or temporal reasoning, and its rules are generally unable to incorporate behavioural 

metrics such as frequency of access, anomaly scores, or past violations. Consequently, unless the 

policy explicitly encodes all historical edge cases, XACML remains blind to context shifts over 

time, leading to a sharp drop in responsiveness to the legitimate behavioural changes and a 

corresponding spike in FNs. NGAC fared moderately better, with 6 false negatives, indicating it 

blocked a few legitimate requests due to failing to recognize fewer common patterns in user 

attributes. It also showed 2 false positives, where unauthorized access was incorrectly permitted. 

These FPs occurred when NGAC failed to identify an unfamiliar context as risky, allowing 

access even though the user’s attribute configuration had abruptly changed, highlighting its 

vulnerability to certain structural anomalies. The Hybrid model again achieved the best balance, 

recording just 1 FN and 0 FPs. It captured behavioural anomalies by integrating historical data 
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layers, such as access frequency thresholds, recent activity logs, or deviations from typical usage 

patterns, into its decision process, which neither XACML nor NGAC handled effectively on 

their own. By combining NGAC’s graph-based dynamism with XACML’s conditional 

constraints and incorporating adaptive weight factors, Hybrid was able to distinguish legitimate 

variation from true violations with high precision, significantly reducing both types of errors in 

this category. 

 

4. Contextual or Temporal Drift Category 

 

The Contextual or Temporal Drift category differs fundamentally from the Behavioural or 

Historical Influence category in that it focuses not on long-term user behaviour patterns, but on 

real-time environmental and situational variables that can change between sessions, such as time 

of day, device used, network location, risk levels, or session states. While the Behavioural category 

evaluates user consistency over time, the Contextual category evaluates situational appropriateness 

at the moment of access. Since these conditions are highly dynamic and volatile, policies must 

adapt in real-time to subtle shifts that may indicate elevated risk or misuse. While both the 

Contextual and Behavioural categories deal with variable factors, the Behavioural category often 

incurs more FPs and FNs due to its reliance on patterns that may be noisy, inconsistent, or 

anomalous. In contrast, the Contextual category, though complex because it looks at the user’s 

identity, history, and environment, it usually results in fewer errors. This is because the models are 

typically more accurate at capturing and responding to contextual or temporal shifts than to 

unpredictable behavioural anomalies. 



 116 

 

Figure 21 Contextual or temporal drift results 

As presented in Figure 21, XACML shows a high number of false negatives (15), significantly 

more than NGAC (3) or Hybrid (1). This sharp underperformance is due to XACML’s limited 

capacity to process dynamic runtime context. Although XACML supports environment attributes 

in its model, its policies are often written with static thresholds or assumptions, which become 

ineffective when dealing with unpredictable shifts in session variables or risk indicators. Without 

real-time feedback or policy adaptation, XACML fails to permit many access attempts that are 

contextually appropriate (such as those from trusted devices at unusual times or from atypical 

locations) simply because they do not match predefined static rules, resulting in a high number of 

false negatives. NGAC, with 3 false negatives and 7 false positives, performs slightly better in 

recognizing contextual violations but struggles with overgeneralization. Its attribute graph allows 

flexible policy application across varying contexts, but the absence of tight contextual binding or 

real-time evaluation (e.g., no native tracking of risk scores, time windows, or device fingerprints) 

causes it to either over-block legitimate access when an unfamiliar session context arises 

(leading to FN), or under-detect nuanced threats that fall within structurally permitted paths 

(leading to FP). The 7 false positives in NGAC suggest that access was incorrectly granted when 
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unfamiliar contextual combinations (such as unusual networks or atypical login times) went 

undetected, which failed to trigger cautious access decisions. The Hybrid model, with just 2 false 

positives and 1 false negative, effectively mitigates both types of errors by fusing the strengths of 

its components. It leverages NGAC’s structural adaptability while embedding real-time 

contextual verification layers, such as current session parameters, time-based constraints, and 

device trust scores, into the access evaluation pipeline. It avoids XACML’s rigid 

overdependence on static context and compensates for NGAC’s lack of contextual specificity by 

injecting environment-aware checks and deviation thresholds into its policy decisions. As a 

result, Hybrid identifies inappropriate access under shifting contextual conditions while still 

recognizing legitimate variation, achieving a superior balance in this highly dynamic category. 

 

5. Policy Conflict and Ambiguity Handling Category 

 

The Policy Conflict and Ambiguity Handling category addresses scenarios where multiple policies 

apply simultaneously, often with overlapping conditions, contradictory decisions, or ambiguous 

outcomes. These conflicts arise when, for example, one policy permits access based on role, while 

another denies it based on department, or when policies differ in how they prioritize attributes such 

as clearance level, context, or resource sensitivity. Effective conflict resolution requires not just 

evaluating individual policy rules but also understanding how to reconcile them through 

combining algorithms, precedence rules, or structural hierarchies. Errors in this category typically 

indicate a failure to resolve such ambiguities correctly, leading to unjustified access grants (false 

positives) or unnecessary denials (false negatives).  
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Figure 22 Policy conflict and ambiguity handling results 

As per the results shown in Figure 22, NGAC recorded the highest number of false positives (6), 

followed by XACML with 5, while the Hybrid model avoided any false positives entirely. 

NGAC’s graph-based model is powerful for flexible permission propagation but lacks fine-

grained policy resolution mechanisms. When multiple attribute paths provide access, NGAC 

does not inherently resolve which path should dominate. This leads to situations where 

conflicting permissions are both accessible, and in the absence of explicit precedence, NGAC 

tends to default toward permission propagation, resulting in over-permissive outcomes. 

XACML, despite its strict enforcement model, also encountered false positives due to 

inconsistent application of combining algorithms, such as permit-overrides or first-applicable. In 

certain cases, it misprioritized a permissive rule over a more restrictive one, particularly when 

multiple overlapping policies evaluated to conflicting results and no clear precedence was 

defined or enforced, leading to access being granted where it should not have been. False 

negatives in this category further highlight the models' weaknesses in ambiguity handling. 

XACML again shows the most significant count, with 12 FNs, indicating that it often denied 

access unnecessarily due to unresolved conflicts or conservative evaluation. This happens when 
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policies are overly strict, and the combining algorithm defaults to deny in case of uncertainty or 

partial matches, especially when policy scopes overlap but do not fully agree. NGAC, with 4 

false negatives, performed better but still failed to detect certain allowable access paths due to 

ambiguity in attribute inheritance and when intermediate nodes conflicted in role-based access 

versus contextual overrides. The Hybrid model, with only 2 false negatives and zero false 

positives, achieved a more accurate balance by introducing an explicit conflict resolution 

mechanism that synthesizes NGAC’s structural flexibility with XACML’s rule-based specificity. 

It not only evaluates the decision outputs of overlapping policies but also incorporates a 

resolution layer that checks for model constants (𝐶𝑋𝐴𝐶𝑀𝐿 & 𝐶𝑁𝐺𝐴𝐶), attribute weight, prior risk 

level, and trust score alignment. The model constants assign final weighting to the model, 

helping to resolve conflicts and produce a clear, quantified result. This allowed Hybrid to permit 

access when legitimate but avoid over-granting, and to block access only when conflicts truly 

indicated risk, resolving ambiguity both structurally and semantically with higher precision than 

either model alone. 

 

6. Structural Attribute Violations 

 

The Structural Attribute Violations category refers to scenarios where access decisions depend on 

the correct configuration, assignment, and hierarchical relationships of user and resource 

attributes, such as roles, departments, clearance levels, or access tiers. These violations typically 

involve misuse, misassignment, or manipulation of attribute values to bypass access restrictions. 

For example, a user may be incorrectly assigned to a senior role, or a resource may be 

misclassified, leading to access that should not be permitted. Detecting such violations requires 

the access control model not only to validate attribute presence but also to assess attribute 

correctness, essentiality, and structural integrity within the policy graph or rule logic. 
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Figure 23 Structural attribute violations results 

In this category, the results in Figure 23 show that both NGAC and XACML performed poorly, 

each recording 13 false negatives, highlighting a substantial failure to grant access to structurally 

valid requests. For NGAC, the issue stems from its flexible attribute propagation model, where 

users inherit permissions through graph-based relationships. Without mechanisms to explicitly 

enforce structural integrity (such as mandatory attribute presence checks, uniqueness constraints, 

or hierarchical role validation), NGAC misinterpret valid configurations as incomplete or 

inconsistent, leading to unjustified denials. For instance, a user correctly assigned to a role like 

“project_manager” is denied access if their supporting associations (e.g., “staff” or 

“department_member”) are not clearly reinforced in the graph. XACML, in contrast, lacks 

structural awareness entirely. While it evaluates individual attribute values against static rules, it 

does not interpret or enforce relational dependencies among those attributes. As a result, it may 

deny access even when the attribute set is logically valid but doesn’t match the exact static 

condition, for example, rejecting access where a user has “project_lead” but the policy expects 

an exact combination like “project_lead” plus “region_member.” Without explicit modelling of 

attribute dependencies or structural rules, both models fail to recognize legitimate access 
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requests, resulting in a high number of false negatives. Both models also recorded 4 false 

positives each, meaning they incorrectly permitted access when attribute structures were in fact 

invalid. In XACML, this typically occurred when policies lacked structural depth, causing the 

model to approve access based on superficial attribute matches without verifying their intended 

relationships. For example, a user assigned the attribute “manager” has been granted access even 

if their supporting attributes (such as “employee” or “department_member”) were missing, 

simply because the rule matched the top-level label. NGAC’s false positives were often the result 

of permissive attribute propagation, where access was allowed through indirect or unintended 

paths in the graph. For instance, a user linked to a general “staff” node traverses to a privileged 

resource via intermediate roles like “project_lead” without satisfying structural requirements, 

such as being part of the specific project group. In both cases, the lack of strict enforcement over 

attribute hierarchy and dependency allowed structurally flawed access to be incorrectly granted. 

The Hybrid model, in contrast, dramatically reduced both types of errors (registering only one 

false negative and one false positive) by implementing mechanisms that explicitly addressed 

structural attribute integrity. A key factor in this success was attribute weighting and essentiality 

checks, which allowed the system to differentiate between core, trust-critical attributes (e.g., 

primary role, department) and peripheral or optional ones (e.g., project tags). The Hybrid model 

prevented circumvention through partial or misconfigured attributes by assigning higher weights 

to essential attributes and verifying their presence and structural alignment before granting 

access. Additionally, it applied trust-based reasoning to detect anomalies in attribute 

combinations, thereby blocking violations that passed unnoticed in XACML or NGAC. This 

structured, layered evaluation enabled the Hybrid model to uphold both policy semantics and 

structural correctness, ensuring high assurance in attribute-based access enforcement. 
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Overall, the visual comparison demonstrates that the Hybrid model consistently achieves the 

most reliable, balanced, and context-sensitive access decisions across all evaluated categories. 

Figure 24 shows a comparative summary of the confusion matrix and results from this 

experiment. 

 

 

Figure 24 XACML, NGAC, and Hybrid models results comparison summary 

Additionally, how each model behaves differently for categories than the Baseline Valid Access 

is illustrated in Figure 25. This split view highlights model performance in normal (Baseline) 

versus challenging (Other) scenarios. While Baseline Valid Access shows near-perfect results 
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with minimal errors for Hybrid, NGAC, and XACML categories, the Other Categories 

(Adversarial or Malicious Attempts, Behaviour or Historical Influence, Contextual or Temporal 

Drift, Policy Conflict and Ambiguity Handling and Structural Attribute Violations) reveal 

significant FPs and FNs. The volume of real-world observed aggregate correctness (TP, TN) 

hides the relatively small volume of incorrectness (FP, FN). 

 

 

Figure 25 XACML, NGAC, and Hybrid models results comparison summary (baseline vs other categories) 

 

Unlike NGAC, which tends to be overly permissive due to attribute propagation without 

sufficient contextual checks, and XACML, which often suffers from excessive rigidity and static 

rule limitations, the Hybrid approach manages to mitigate both extremes. It does so by 

combining precise attribute validation with dynamic evaluation of risk, trust, and contextual 

relevance. This enables the model to minimize both false positives and false negatives even in 

complex scenarios involving temporal drift, structural violations, or policy conflicts. The results 

affirm the Hybrid model’s strength in resolving ambiguity, enforcing structural integrity, and 

adapting to both historical patterns and real-time environmental factors, making it a 
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comprehensive and robust framework for addressing the nuanced demands of modern access 

control environments.  

 

4.4.2. Classification Model Performance Comparison (Hybrid vs Standalone) 

 

Further, based on evaluation metrics, the overall performance can be derived using the formulas 

well-known in the literature [65], which are presented below, along with the implications of 

having low or high values in the model’s decisions. 

 

1. Accuracy: It is useful for evaluating overall performance.  

a. High: Most access decisions are correct overall. 

b. Low: Many decisions (grant/deny) are wrong, reducing trust in the system. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
 (10) 

Note: Although accuracy is mathematically valid, the nearly 2:1 ratio of positives (172) 

to negatives (108) means errors on negatives (e.g., false positives) contribute less to the 

overall score. This can make accuracy appear high even if the model fails to reliably deny 

unauthorized access. Therefore, accuracy alone may be misleading in this security 

context and should be analyzed along with other metrics. 

 

2. Precision: Measures how many permit decisions were correct. This is critical when the 

cost of false positives is high, as in potential unauthorized access or breaches, which can 

have severe and hard-to-remediate consequences.  

a. High: When access is granted, it’s rarely to unauthorized users (low false 

positives). 

b. Low: Many granted accesses are actually unauthorized (security risk). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(11) 

3. Recall (Sensitivity or True Positive Rate): Measures how well the model identifies 

scenarios where access should be granted. While important, it is typically a secondary 

concern here, since false negatives mainly delay legitimate work and can often be 

mitigated with measures like step-up authentication. 

a. High: Most authorized users are granted access (few false negatives). 

b. Low: Many authorized users are wrongly denied (poor usability). 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(12) 

4. F1-Score or Harmonic mean: This metric is useful when both precision and recall are 

important and a balance is needed between FPs and FNs. It becomes especially relevant 

in AC systems where denying legitimate users (FN) or granting unauthorized users (FP) 

both carry risk. 

a. High: Good balance between precision and recall. 

b. Low: Trade-offs exist-either too many unauthorized grants or too many denied 

legitimate users. 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (13) 

Note: In high-security scenarios, however, reducing FPs (security breaches) is often 

prioritized, even at the cost of increasing FNs. This trade-off can be mitigated by 

introducing secondary checks like step-up authentication or delayed re-evaluation to 

recover from initial denials. 
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The performance comparison shown in Figure 26 reinforces and validates the trends previously 

observed in the detailed error analysis. While all models achieve reasonably high accuracy in 

simpler or static scenarios, the nuanced differences become evident when examining precision, 

recall, and F1-score collectively, metrics that better reflect real-world robustness in access 

control systems. 

 

Figure 26 XACML, NGAC, and Hybrid models performance comparison 

 

The Hybrid model stands out across all categories, not simply because it performs well in 

isolation, but because it does so consistently without compromising one metric in favour of 

another. This balanced performance highlights its ability to generalize across both static and 
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dynamic access contexts, a capability that is essential in environments where security, usability, 

and adaptability must be simultaneously preserved. 

 

Precision, in this case, reflects how confidently the model can distinguish legitimate access from 

potential attacks without triggering excessive false positives. High precision in the Hybrid model 

indicates that it avoids over-permissiveness (Scenarios where an attacker can successfully breach 

the system and are counted in FPs), particularly in scenarios where access paths may appear 

valid structurally but are contextually inappropriate. In contrast, NGAC’s flexible attribute 

propagation lowers precision. While it helps avoid unnecessary denials that hinder users and add 

remediation costs, it can also lead to granting access when essential context is missing or 

unclear. On the other hand, XACML tends to perform better in precision but drops significantly 

in recall, especially in categories involving behavioural variation or contextual changes. This 

points to its tendency to over-restrict access when input conditions deviate even slightly from 

static policy expectations.  

 

The drop in recall means that XACML, although cautious, fails to accommodate legitimate 

variation in real-world usage, leading to frequent false denials. The Hybrid model’s recall, 

however, remains consistently strong. This indicates its superior ability to recognize valid but 

non-obvious access requests, those shaped by historical patterns, dynamic trust, or attribute-

derived context. This is further affirmed by its high F1-scores, which combine both precision and 

recall, measuring overall effectiveness. A strong F1-score across categories confirms that the 

Hybrid model does not trade off between security and accessibility but instead adapts to each 

scenario with contextual intelligence. Importantly, accuracy, while a useful general metric, can 

be misleading if viewed in isolation, particularly in imbalanced datasets or systems where 
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permitted and denied cases are not evenly distributed. The Hybrid model maintains high 

accuracy alongside strong precision and recall, suggesting that it isn’t merely relying on dataset 

balance but is genuinely making better decisions across a broad range of conditions. This reflects 

its layered structure, where structural matching (from XACML), contextual adaptability (from 

NGAC), and trust-weighted evaluation (from both) come together to support precise and risk-

aware access control.  

 

4.4.3. Performance comparison  

In this experiment, the performance of XACML, NGAC, and DTW-ABAC was compared based 

on the execution time required to evaluate access. The key definitions used in the following 

sections are:  

• Runs: A single run is defined as an access request or a group of independent access 

requests that are evaluated once. Hence, the runs (a plural form) is a process of running 

access scenarios multiple times, implying multiple requests by users over time. As the 

runs increase, the DTW-ABAC evaluation process uses previous decision history to make 

future decisions more precise and helps the model to be progressively aware. 

• Trust Factor: It is a calculated field described in Chapter 3 and used at every level of 

evaluation. Trust Factor (TF) shows the confidence in the subject, object, or environment 

attributes matching the policy definitions, considering the attribute weights (priority). 

 

The 280 scenarios were executed over 20 runs for each model on a local machine, i.e. MacBook 

Pro (2023 model) with an M2 chip, 16 GB RAM, and a 10-core processor. The machine was 

restarted before testing each model to clear out CPU load and memory cache. Furthermore, the 

communication time with Entra ID has been excluded from the analysis, as it is common for all 
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models and was conducted only once. Figure 27 shows the overall sum of execution time  over 

multiple runs for all three models; however, the lines for DTW-ABAC and NGAC are blended 

since the numbers are the same. Figure 28 shows the execution time taken for an individual run. 

At individual runs, the minor fluctuation appears due to the underlying infrastructure, e.g. CPU 

and operating system scheduling, connection stack, etc., and not due to the model components. 

 
Figure 27 Performance testing of XACML, NGAC, and DTW-ABAC over 20 runs (Total time) 

 

 
Figure 28 Performance testing of XACML, NGAC, and DTW-ABAC over 20 runs (Each run) 

• XACML (standalone): 

XACML generally took longer than the other models (20-25%), which is significant in 

execution. Since each request contains only a limited set of attributes and policies, the 

XML-based parsing, rule combining, and condition evaluation overheads were noticeable 
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but not excessive per scenario. Literature also supports that XACML can be heavier than 

alternatives, especially at larger scales, due to its policy evaluation mechanisms. 

• NGAC (standalone): 

NGAC performed faster than XACML. NGAC relied on graph operations (set 

membership and relationships), which were computationally lighter than XML parsing 

and rule combining. Studies have highlighted that NGAC scales more efficiently as the 

number of attributes and policies grows. 

• DTW-ABAC (hybrid): 

Its performance was very close to NGAC (± 3-5%), with negligible differences: 

1) It divided the evaluation tasks across the two engines and ran them in parallel, so 

execution time was closer to the maximum of the two partial tasks, not the sum. 

2) It included an essentiality check (short-circuiting early when critical attributes 

failed), sometimes saving time. 

3) It performed additional trust factor and risk calculations, sometimes cancelling 

part of the parallelism advantage. 

4) The net effect was that DTW-ABAC usually ran at nearly the same time as 

NGAC, occasionally faster (short-circuits and divided tasks), and occasionally 

marginally slower (trust computation). 

The analysis confirmed that DTW-ABAC did not introduce any execution overhead compared to 

NGAC. While XACML showed relatively higher times, this difference remained modest in the 

tested setting. 
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In summary, the Hybrid model’s consistent superior performance across all metrics indicates a 

well-rounded, context-sensitive enforcement capability. Its strength lies in how it handles both 

static rules and dynamic attributes, integrating them into a unified decision engine. This results in 

more accurate and contextually correct access decisions, along with greater operational stability, 

reduced user friction, and stronger resistance to both over-blocking and policy permissiveness. 

 

4.5. Hybrid Model Parameter Impact Evaluation (Tuning) 

 

This section will show how multiple tests were performed to tune the parameters configured 

in the hybrid model. Parameters include the constants or weights assigned to integrated 

models (𝐶𝑋𝐴𝐶𝑀𝐿 & 𝐶𝑁𝐺𝐴𝐶) used in chapter 3, the progressive evolution in the decision 

process, and an ablation study to observe the model variations by including/excluding the 

attribute weights and essentiality factors.  

4.5.1. 𝐶𝑋𝐴𝐶𝑀𝐿 & 𝐶𝑁𝐺𝐴𝐶 constants tuning impact on trust factor (Objective: Measure trust 

and decision stability across constant values.) 

 

Figure 29 presents the impact of different tuning configurations on the trust factor dynamics of 

the Hybrid access control model over a series of evaluation runs. Unlike experiments involving 

standalone NGAC or XACML models, this analysis specifically examines how the Hybrid 

model’s internal blending constants (𝐶𝑋𝐴𝐶𝑀𝐿 & 𝐶𝑁𝐺𝐴𝐶) influence the rate and stability of trust 

factor convergence, as mentioned in the equation (9). These constants control the relative weight 

assigned to the outcomes of XACML and NGAC engines during access decisions within the 

Hybrid framework (Figure 9). Importantly, all other variables across these tuning runs, including 

attribute weights, essential attribute settings (isEssential flags), policy definitions, graph 

topologies, and node configurations, were held constant to ensure that only the isolated effect of 
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the tuning constants was observed. Additionally, for each model variation, the history was 

cleared (permit = 0, deny = 0 and total previous requests = 0) to observe the result in a cold start 

or fresh start setup. The graph shows 5 different values assigned to the model constant; those 

values were derived by performing an iterative test with different constant values and then 

selecting the ones which made a significant impact on the results. The optimal numbers are based 

on the number of scenarios tested, and they can be improved in future with a larger dataset. 

 

 

Figure 29 Hybrid tuning effect on trust factor stabilization 

Each run on the x-axis refers to the complete evaluation of the access scenario, executed once 

per run. In the actual setup, all 280 scenarios were tested with different model weights. The 

patterns were the same for all scenarios since only the model weights were changing, and other 

parameters were kept constant. Notably, the trust factor computation includes historical data, i.e., 

the trust value at any point in a run is influenced by the current scenario's decision correctness as 
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well as by cumulative past performance, which includes both permits and denials. This history-

aware design ensures that the system captures not just momentary decisions, but the overall 

consistency and risk sensitivity of the Hybrid model across evolving access conditions. 

 

The phases indicated in the background shading of the plot denote distinct behavioural 

transitions observed in the trust factor evolution: 

• Initial Access Phase (Runs 1–3): The model is exposed to the first few batches of access 

scenarios. Trust levels begin high, as no prior negative behaviour is recorded, but they 

decline rapidly as the model begins encountering and adapting to complex or risky requests. 

• Transition Phase (Runs 4–8): The system enters a critical learning phase, where the trust 

factor experiences continued drops, reflecting both accumulated false decisions and 

increasing policy conflicts or drift cases. This is a phase of adaptation and convergence 

where the model learns to balance risk and permissiveness. 

• Stable Phase (Runs 9–13+): By this point, the model’s decisions have mostly aligned with 

expected access patterns, though the pink line lags behind due to heavier reliance on 

XACML.Trust stabilizes (remains steady), with minimal fluctuations, indicating a mature 

balance between correct permissions and denials. 

 

Among the different configurations tested, the curve labelled as 𝐶𝑋𝐴𝐶𝑀𝐿 = 0.65 & 𝐶𝑁𝐺𝐴𝐶 = 0.85 

(marked as Optimal) demonstrates the fastest and most stable convergence toward a low, yet 

steady trust factor (not too high and not too low). This indicates that this tuning best supports 

effective risk discrimination, i.e., the model correctly penalizes uncertain or adversarial access 

attempts early while avoiding excessive harshness that could destabilize the trust score in later 

runs. In contrast, configurations like 𝐶𝑋𝐴𝐶𝑀𝐿 = 1 & 𝐶𝑁𝐺𝐴𝐶 = 0.5 maintain a much higher trust 
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factor throughout, reflecting a lag in penalizing risky or ambiguous access. This setup 

overweights the XACML component and underutilizes the dynamic responsiveness of NGAC, 

leading to prolonged optimism and reduced sensitivity to behavioural or contextual anomalies. 

Meanwhile, configurations with 𝐶𝑋𝐴𝐶𝑀𝐿 = 1 & 𝐶𝑁𝐺𝐴𝐶 = 1 or lower XACML weights (e.g., 0.5 or 

0.7) show moderate convergence behaviours. However, without appropriately calibrating the 

NGAC contribution, some configurations either become too reactive, dropping sharply into over-

restrictiveness, or too lenient, failing to distinguish well between legitimate and suspicious 

trends. In the transition phase, especially, the slope of decline reflects how quickly the hybrid 

model adjusts its decisions in response to evolving scenario patterns. Configurations with 

balanced or NGAC-favoured weights exhibit a smoother, more strategic descent, suggesting 

improved adaptability. 

 

In summary, this graph illustrates not only the impact of Hybrid model tuning on trust factor 

dynamics but also how different weightings influence the model's learning trajectory through 

historical scenario exposure. It confirms that precise tuning of blending constants is essential to 

achieving optimal performance in dynamic, context-rich environments, where access permission 

is not just a matter of static policy matches but of sustained behavioural intelligence and adaptive 

enforcement. 

 

4.5.2. Trust factor change effects on the functional metrics 

 

To evaluate the Hybrid access control model’s ability to learn from access history and adapt to 

dynamic access contexts, a controlled multi-run experiment was conducted. The goal was to 

assess how well the model could refine its trust-based decision-making over time, without 

altering any core parameters. By repeatedly exposing the system to a consistent set of scenarios 
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across multiple runs, the test aimed to reveal the model’s capacity for behavioural memory, risk 

recalibration, and improved discrimination between valid and malicious access attempts. Figure 

30 illustrates how the Hybrid access control model adapts and improves over time when 

evaluated across ten sequential runs of 280 scenarios each. At the beginning of the first run: 

• No prior behaviour or decision history was considered: This mimicked a cold-start or 

first-time evaluation scenario. 

• All attribute weights, policy rules, and thresholds (such as trust score thresholds for 

allow/deny) were held constant and defined as per the configuration outlined in Section 

3.2.3. 

• No manual interventions or heuristic modifications were applied during the runs; changes 

in performance metrics were entirely the result of adaptive risk re-evaluation based on 

accumulated behaviour patterns. 

 

 

Figure 30 Hybrid model performance over multiple runs 
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When examining True Positives (TP) and False Negatives (FN) together (the metrics that 

represent how the model handles valid access requests), it can be observed that TP gradually 

increases from 157 in the first run to 166 by the tenth run, while FN decreases from 15 to 6. This 

inverse relationship highlights the Hybrid model’s strengthening ability to correctly identify and 

permit legitimate access while reducing incorrect denials. The gains are modest but significant, 

particularly because the model was already tuned to avoid over-blocking valid users. It results in 

a slight enhancement to the recall formula, i.e. (
𝑇𝑃

𝑇𝑃+𝐹𝑁
), which indicates the minor adjustments 

the model makes as it gathers historical trust data and fine-tunes its assessment of borderline 

situations. 

 

On the other side, the combination of False Positives (FP) and True Negatives (TN) reveals how 

the model improves in denying inappropriate access. FP declines steeply from 36 to 4, while TN 

rises from 72 to 104 over the same sequence of runs. This trend shows that as the model 

undergoes testing with more runs, it becomes more effective at identifying and rejecting 

malicious or structurally invalid requests. The trust mechanism plays a key role here, i.e. as the 

system detects patterns of misuse, it lowers trust factors for those users or contexts, leading to 

more confident denials in subsequent runs. This results in a higher number of true negatives and 

a significant reduction in mistakenly permitted risky accesses. 

 

Together, these shifts show that the Hybrid model becomes more discriminative and reliable over 

time. It preserves access for legitimate users while also actively learns to block inappropriate 

access based on behavioural patterns and cumulative experience. Even without altering any core 

parameters, the trust-aware, history-driven adaptation allows the system to optimize its decisions 

dynamically, achieving a more stable and secure balance between permissiveness and control. 
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4.5.3. Ablation study on model components such as attribute weighting and essentiality 

 

In cybersecurity research and access control system design, an ablation study serves as a critical 

diagnostic method for understanding the individual contribution of each model component to the 

system’s overall effectiveness. Within the context of the DTW-ABAC model, which integrates 

layered evaluation through both structural rule-based logic (XACML) and contextual dynamic 

trust computation (NGAC), the ablation study becomes especially relevant. DTW-ABAC 

introduces two central enhancements beyond traditional ABAC approaches: the incorporation of 

attribute-specific weights and the designation of certain attributes as essential for access to be 

permitted. These two components (weights and the isEssential flag) influence how trust factors 

are computed and fundamentally shift how decisions adapt to partial matches, uncertainty, and 

contextual drift. 

 

In traditional ABAC systems, attributes are evaluated in a binary fashion: they either match or do 

not. This rigid structure treats all attributes as equally important and offers no mechanism to 

differentiate between a missing low-impact attribute (e.g., location) and a missing critical one 

(e.g., clearance level). The DTW-ABAC model attempts to overcome this limitation by 

introducing numerical weights to indicate the relative importance of each attribute. A higher 

weight increases an attribute’s contribution to the rule’s trust factor, thereby amplifying its 

influence on the access decision. Similarly, the isEssential flag allows designers to specify 

attributes that must match for access to ever be considered, regardless of the cumulative trust 

score from other attributes. This dual mechanism introduces granularity as well as resilience, 

permitting the system to reason through uncertainty in a principled way. 
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To test whether these enhancements actually contribute to model performance or simply add 

complexity, an ablation study was conducted by systematically removing or altering them. 

Figure 31 shows the performance results of several access scenarios (mostly edge cases) tested 

under different model conditions. The baseline is the full DTW-ABAC model, which uses both 

weights and essential flags across a hybrid structure combining XACML and NGAC. 

 

 

Figure 31 Classification metrics ablation study for DTW-ABAC variants 

 

In the first variation, attribute weights are removed, and all attributes are treated equally. This 

means the trust factor calculation becomes a simple average of matched attributes, and there is 

no distinction between high-impact and low-impact attributes. As a result, the model permits 

access even when only superficial, non-critical attributes match, leading to higher false positives. 

Conversely, the model also blocks access if low-weighted but unmatched attributes drag down 

the overall trust factor, thus creating false negatives. 
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In the second variant, the attribute weights are retained, but the isEssential logic is disabled. This 

scenario evaluates whether weights alone are sufficient to prioritize important attributes or if 

explicit essentiality is required to enforce hard constraints. Results here often show that while 

weighting helps balance the decision mathematically, it lacks the decisiveness required in high-

stakes scenarios, such as preventing access when clearance or authentication attributes are 

missing. Without the isEssential gatekeeping, access might still be granted based on high 

matches in other areas, even though a core requirement has failed, creating a potential 

vulnerability. 

 

Another variant disables both weights and essential flags, reverting to a flat trust model similar to 

naive ABAC, where each attribute contributes equally and all attributes are treated as optional. 

This model performs the weakest, confirming that the system loses precision and adaptability 

without the ability to differentially score or require attributes. 

 

This ablation study gives a clear picture of the necessity of both attribute weights and essentiality 

enforcement in real-world access control. When both components are active, the model 

demonstrates higher F1-scores, improved recall for context-aware access, and lower rates of both 

false positives and false negatives. It is particularly effective in edge cases, such as partially-

matched requests during temporal drift or in dynamic environments where users have fluctuating 

trust scores. 

 

4.5.4. Attribute-weights tuning (Manual changes and observations) 

 

Multiple independent test runs were performed by assigning different weights to the attributes 

used in the research to find out the optimal weights and essentiality property, based on which 
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weights result in higher TP and TN. After every test run, the results were moved to different 

locations so that the historical factor would not influence future runs. Initially, the attribute 

weight was set to 1 (default) for all the attributes and captured the hybrid model’s results. 

Further, started increasing the attribute weight based on the usage frequency (number of times it 

was used in the XACML policies and NGAC graphs) and policy impact (if the attribute was 

referenced in the critical policy rule), as well as changing the isEssential flags and observed 

different results. Thus, the process of adjusting attribute weights was guided by analyzing 

iterative test results, suggesting a direction for future work to develop a measurable method. 

Table 15 shows some of the important attributes with weight, isEssential property (1 or 0) and 

summary to provide the reason behind the weights. High-weighted attributes include role, 

clearance, deviceCompliance, trustScore, accessPriority, whereas low-weighted attributes 

include shift, regionAffinity and location. However, the weights will change depending on the 

attribute usage frequency and position in the XACML policy and NGAC graphs.  

 

Attribute Name Weight (Wᵢ) isEssential Reasoning Summary 

role 5 1 Core determinant of user function and 

access eligibility 

clearance 5 1 Security tiering is required for high-risk 

or sensitive resources 

projectTag 3 0 Useful for narrowing access, but not 

critical alone 

department 3 1 Required in tightly scoped policies (e.g., 

HR vs. Engineering access separation) 

location 2 0 Contextual, relevant for policy drift or 

geographic restrictions 

deviceCompliance 4 1 Crucial for verifying secure endpoint 

access 
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environmentType 3 0 Adds temporal or operational nuance, 

but not mandatory 

shift 1 0 Helpful for time-sensitive access, low 

enforcement criticality 

accessLevel 4 1 
Determines read/write/admin 

permissions; critical for authorization 

boundaries 

accessPriority 5 1 
Priority indicator for emergency access 

regionAffinity 2 0 Often, a soft preference or fallback 

condition 

team 3 0 Indicates lateral group identity; helpful 

but not always enforced 

docType 3 1 Required for policies tied to data 

classification levels 

classification 4 1 Indicates document/resource sensitivity; 

critical in access limitation 

loginPatternScore 3 0 Supports behavioural analysis, but is 

considered adaptive and supplementary 

Table 15 Optimal weights and “isEssential” property for the attributes 

 

4.6. Risk Level changes over multiple runs 

 

This test was conducted using a refined subset of 160 access scenarios, selected from the initial 

pool of 280. The selected batch was intentionally curated to stress-test the Hybrid model under 

varied and challenging conditions. Specifically, the subset included: 45 adversarial or malicious 

attempts, 50 structural attribute violations, 45 contextual or temporal drift scenarios, and 20 valid 

baseline requests. These proportions were chosen to increase the representation of ambiguous or 

high-risk scenarios, allowing the model’s dynamic adaptability to be evaluated across multiple 

iterations. 
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The experiment was run over 20 sequential evaluation cycles (runs). Each run executed all 160 

scenarios in the same order and configuration to maintain consistency and allow the model to 

evolve based on historical access patterns. The trust and risk evaluations in each run were 

updated per user scenario, using the Hybrid model's trust-based scoring formula outlined in 

Equation (6) in Chapter 3. This formula dynamically adjusts a user’s trust score based on past 

behaviour, attribute matching, and decision outcomes. The resulting score determines a user’s 

risk classification: low, medium, or high. 

 

Experiment Setup Details: 

• Initial State: All users were treated as new during the first run. Their historical trust 

scores were initialized to a neutral baseline, implying no prior positive or negative 

behaviour. This ensures that initial decisions were purely based on attribute matching and 

policy structure. 

• User and Application Simulation: The 160 scenarios were distributed across 8 

simulated user profiles. Those users were included in unique access scenarios across 10 

applications covering deviant behaviours to emulate real-world adversity. These users 

persisted across runs, accumulating a trust history. 

• Scenario Design: Scenarios were manually labelled and categorized (e.g., malicious, 

structural, contextual drift) during preprocessing. No random reshuffling was done 

between runs to ensure repeatability. 

• Trust Score Parameters: The scoring formula incorporated penalties for critical 

attribute mismatches and gradual decay for trust scores. Essential attributes contributed 

more weight to the risk score than optional ones, and repeated violations increased the 
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risk factor. While exact constants (e.g., Model constants, Attribute weights) are 

determined in other experiments, no manual adjustments were made between runs to 

preserve fairness. 

 

As illustrated in  Figure 32, the progression of risk classification shows a clear trend: 

• Run 1: Users are primarily classified as low-risk, as no behavioural history exists yet. No 

users fall into the medium-risk or high-risk category at this point. 

• Runs 2–5: The medium-risk category begins to emerge, capturing users whose access 

patterns are borderline or inconsistent. 

• Runs 6–15: The low-risk population declines steadily as early signs of policy violations 

are detected. Users with repeated violations shift toward high-risk. 

• Runs 16–20: Risk distribution stabilizes. Most users are now in either the high or 

medium risk categories, with the low-risk group limited to consistently authorized users 

across all runs. 
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Figure 32 Hybrid model risk level changes over multiple runs 

 

This dynamic evolution of user classification demonstrates the model’s ability to self-adjust risk 

estimates without manual intervention. It starts optimistically but becomes more cautious over 

time as it learns from behaviour. This shifting risk landscape directly influences future access 

decisions by adjusting the confidence factor (H) in Equation (6), thereby strengthening the 

model’s capacity for long-term trust calibration. 
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4.7. Result sensitivity in different real-world datasets 

 

The hybrid access control model was not validated on a proprietary dataset because no openly 

available dataset could be found that included both policies, graphs and user-level attributes 

together. Such datasets are typically restricted due to intellectual property and security concerns, 

as enterprises do not release sensitive access control information. Instead, the official documents 

and published standards mentioned in the literature review were referred to as design 

representative policies, graph structure, and attribute lists, as mentioned in the methodology and 

appendix sections. 

 

To strengthen realism, simulated scenarios were generated through structured methods such as 

policy-driven filtering and FSM-based modelling. These scenarios incorporated conditions 

reported in prior research, i.e. benign, adversarial, contextual drift, and structural violations, 

ensuring that the evaluations aligned with known real-world access control challenges. 

 

The evaluation framework itself is mathematical and independent of workload size. Trust factor 

calculations and policy evaluations apply consistently, whether the dataset is small or large. 

However, the accuracy depends on attribute richness: sparse or poorly structured attributes 

weaken reliability, while richer datasets strengthen the evaluation precision. 

 

The model was tested under varied conditions, including changing request volumes, shifting 

attribute weights, behavioural drift, and adversarial cases, and the results remained stable and 

repeatable. This provides evidence that the framework, even when built on reconstructed 

datasets, reflects a wide range of real-world access control conditions. 
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4.8. Summary 

 

The testing and experimentation chapter was grounded in a real-world access control context, 

simulating scenarios commonly found in enterprise environments such as data classification, 

role-based access, contextual restrictions, and dynamic trust assessments. The foundation began 

with the manual design of a controlled product suite, where users, roles, resources, and policies 

were constructed to reflect practical organizational structures. To enhance realism and reduce 

static bias, a finite state machine (FSM)-based generation mechanism was then developed to 

programmatically produce access requests with varying attribute patterns, behavioural histories, 

and contextual shifts. These synthetic requests captured a wide spectrum of access scenarios, 

including benign, risky, and adversarial patterns. 

 

To ensure meaningful interpretation, generated access attempts were then categorized into six 

distinct types, i.e. valid baseline, adversarial, behavioural drift, contextual drift, policy conflict, 

and structural violations, allowing clearer grouping of results and stronger external validity. The 

comparative evaluation of XACML, NGAC, and the hybrid DTW-ABAC model was conducted 

by logging true positives, false positives, true negatives, and false negatives across each 

category. This classification helped discover the strengths and weaknesses of each model, 

revealing how over-blocking in XACML or over-permissiveness in NGAC manifests in 

quantifiable decision failures. 

 

Beyond categorical accuracy, the study measured key performance metrics such as precision, 

recall, F1-score, and accuracy to highlight trade-offs in enforcement behaviour. These metrics 

were further examined across different model configurations by tuning hybrid parameters like 

the weight constants for XACML and NGAC and observing their impact on the overall trust 
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factor output. By adjusting the hybrid’s internal constants, trust factor distributions shifted, often 

resulting in changes to the assigned risk level of access requests. This illustrated the hybrid 

model’s capacity to adapt its decision boundary based on risk sensitivity or policy intent. 

Finally, an ablation study was performed to evaluate the specific contributions of attribute 

weighting and the use of isEssential flags. Removing or flattening these components degraded 

the model’s contextual intelligence and weakened its ability to prioritize critical attribute 

matches, reaffirming their necessity. Together, the experiments validate DTW-ABAC as not only 

a high-performing model but also one rooted in practical, auditable, and interpretable access 

control logic. 

 

4.9. Future Experimental Opportunities   

 

While the current experiments thoroughly validated the hybrid framework's effectiveness, 

several experimental avenues remain open for future exploration: 

 

4.9.1 Larger and More Diverse Datasets: 

The present experiments were performed over a controlled set of 280 scenarios, 

providing detailed insights into system behaviour. However, future research could expand 

this analysis by applying the framework to larger, real-world datasets. This would enable 

evaluation of performance, scalability, and decision accuracy under conditions more 

reflective of enterprise-scale deployments. 

 

4.9.2 Balanced Dataset for True Positive and True Negative Scenarios: 

The current test scenarios had specific distributions of legitimate versus malicious access 

attempts. Future experiments could develop and evaluate more balanced datasets, 
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containing evenly distributed true positives and true negatives. Such an approach would 

better assess the model’s performance under varying conditions. 

 

4.9.3 Red Teaming and Adversarial Simulations: 

Further validation could include comprehensive red-teaming exercises, simulating 

sophisticated real-world adversaries attempting to bypass or manipulate the access 

controls. These exercises would provide deeper insights into system robustness and 

expose any subtle weaknesses not captured by the current scenarios. 

 

4.9.4 Ablation study at the attribute level 

Future work should include conducting an ablation study by systematically removing one 

attribute at a time, rather than removing one model component (such as attribute weight 

or isEssential flags). After removal of each attribute, the model's performance should be 

evaluated using performance metrics. The results should then be ranked based on the 

primary evaluation metric, such as Precision, which is critical for minimizing false 

positives in security breach prevention, and secondarily by F1-score to balance Precision 

and Recall without significantly penalizing either. 
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Chapter 5 

Conclusion and Future Work 

In today’s dynamic and distributed digital environments, traditional access control mechanisms 

are increasingly falling short. Systems that rely solely on predefined rules or static user-role 

mappings often fail to respond appropriately to real-time changes in user behaviour, 

environmental conditions, or evolving organizational risks. This has created a critical gap in 

ensuring secure, context-aware, and trust-sensitive access to sensitive data and services. This 

research began by identifying the shortcomings in current access control solutions, particularly in 

their inability to dynamically adapt to runtime factors or leverage past user behaviour to evaluate 

future decisions. To address these gaps, a practical implementation of a novel hybrid access 

control framework named DTW-ABAC has been developed that unifies the strengths of two 

existing access protocols, XACML and NGAC, and has been evaluated through a series of 

comprehensive experiments. The research questions presented in Chapter 1 (Section 1.8) are 

addressed as follows. 

 

1. Hybrid Access Control Framework Combining XACML and NGAC 

Research Question: 

How can the hybrid integration of static and dynamic models improve access correctness in 

terms of Accuracy, Precision, Recall, and F1-score? 

Findings: 

XACML provides the ability to express detailed, rule-based policies, while NGAC 

introduces graph-based structures that enable reasoning over dynamic user-resource 

relationships and evolving system contexts. The layered integration of these two paradigms 
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resulted in a robust and adaptive decision engine that evaluates dynamic environmental and 

behavioural contexts in addition to static rules. For instance, access decisions could now be 

influenced by conditions such as previous access history, risk level and accumulated trust 

metrics, alongside the standard subject-object-environment triad. This hybrid structure 

proved especially effective in resolving the tension between the restrictiveness of XACML’s 

predefined rule sets and the over-permissiveness of NGAC’s context-aware graph evaluation. 

While identity providers such as Microsoft Entra ID offer robust authentication mechanisms, 

they lack the fine-grained, context-driven authorization models required for truly adaptive 

security. Entra ID was used in this research for identity verification and user attribute 

provisioning, but the decision-making framework is deliberately designed to remain 

independent of Entra or any specific identity provider. This ensures portability, vendor-

neutral integration, and long-term flexibility for future migrations to other ecosystems. 

 

2. Trust-Based Risk Evaluation with Adaptive Risk Reclassification 

Research Question: 

How can user access history and trust metrics be used to update risk posture dynamically? 

Findings: 

The second major contribution of this research is on Trust-Based Risk Evaluation. 

Traditional access control often treats all authenticated users as equal, ignoring their 

historical behaviour or contextual trustworthiness. This work introduced a trust computation 

model that continuously updates user risk posture based on their access consistency and 

alignment with organizational standards. The calculations were supported by introducing 

new mathematical formulas, which are used at each step of the evaluation. The system 

classifies users into dynamic risk bands (low, medium, high), and these classifications 
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influence future access decisions. For instance, a user who begins to access unfamiliar 

resources at unusual hours or from anomalous locations might be flagged for elevated 

enquiry. This approach empowers proactive scrutiny, allowing access boundaries to shift 

dynamically in response to deteriorating trust rather than reacting post-incident. The model 

ensures that access control is not just rule-bound but behaviorally intelligent. 

 

3. Scenario Diversification through FSM-Guided Policy Testing Framework 

Research Question: 

How can realistic and policy-relevant access scenarios be systematically generated for robust 

evaluation? 

Findings: 

To ensure that the hybrid access control framework is tested under realistic and meaningful 

conditions, this research combined both manual and programmatic scenario generation. 

Manually crafted cases, inspired by real-world domains like healthcare and engineering, 

highlighted how XACML and NGAC respond in different ways. These served as 

benchmarks for validating the broader dataset. A larger set of access requests was generated 

by combining users, applications, and permissions. This raw pool was then filtered using 

FSM-inspired logic to create structured access scenarios. Each scenario followed a logical 

path, i.e. attribute assignment, trust evaluation, and decision-making. To increase test depth, 

small changes were introduced to create “near-miss” cases that simulate errors or adversarial 

behaviour. In total, 280 scenarios were selected and grouped into six independent categories, 

each representing a unique class of access behaviour. This helped measure how the model 

performed across different conditions. The categories also supported more focused analysis 

of fault detection and decision accuracy. This approach ensured the system was not just 
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functionally correct but resilient to edge cases, unpredictable behaviour, and evolving 

contexts. It demonstrated the practical benefits of the hybrid model’s design choices, 

including attribute weighting strategies, trust evaluation mechanisms, and the integration of 

XACML and NGAC for more reliable access control. 

 

4. Attribute Governance and Weighted Policy Enforcement Strategy 

Research Question: 

How can attribute criticality and governance be embedded within access control 

frameworks? 

Findings: 

In addition to dynamic evaluation, this research emphasized the importance of Attribute 

Governance and Weighted Policy Enforcement. Not all attributes carry equal significance in 

access decisions, yet many existing systems treat them uniformly. The proposed governance 

framework differentiated between critical (e.g., role, clearance level) and supporting 

attributes (e.g., department, device type), assigning them varying weights based on their 

security implications. Policies could now be written with attribute prioritization in mind, 

requiring that certain high-weight attributes match before others are even considered. This 

added layer of precision made the framework more secure, transparent and easier to manage. 

It allowed policy authors to enforce more nuanced access rules while maintaining clarity in 

how decisions were derived. 
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5. Explainable Decision Model with Traceable Evaluation Paths and Integration Support 

Research Question: 

How can access control models ensure transparency, auditability, and operational 

applicability? 

Findings: 

The research addressed a common criticism of modern access systems, i.e. the lack of 

transparency and traceability in decision-making. Security decisions often appear opaque to 

users and even administrators, making it difficult to understand why access was granted or 

denied. To counter this, an explainable decision model was designed, where each access 

evaluation followed a traceable path from attribute collection to the final authorization 

decision. This structured flow supports detailed audit logs, rule-level justifications, and clear 

visibility into the logic behind each decision. Additionally, the model is designed for 

integration across varied systems, ensuring consistent governance while enabling policy 

refinement through post-decision analysis. 

 

In summary, this thesis offers a comprehensive solution to the modern access control problem. 

The implemented framework sets a new benchmark for adaptive authorization systems by 

combining policy expressiveness, contextual adaptability, trust-awareness, governance clarity, 

and explainability. The design choices made, such as keeping the model identity-provider 

independent (Entra ID) and enabling test and production modes, make it both practical and 

forward-compatible for real-world deployment in enterprise, healthcare, education, and 

government sectors. This work not only validates the feasibility of a hybrid access control model 

but also demonstrates its necessity in a world where security must be both rigid enough to 

prevent abuse and flexible enough to adapt to change. With the rising complexity of access 
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environments that are driven by remote work, cloud adoption, and identity integration, such an 

approach is no longer a bonus but a strategic necessity. 

 

5.1. Future work 

 

While the DTW-ABAC hybrid framework presented in this research successfully demonstrates 

adaptive and trust-aware access control, there are several promising directions to extend its 

capabilities and real-world applicability. 

 

First, future work should focus on ensuring that the data feed from Entra ID to the DTW-ABAC 

model operates on a regular schedule or, ideally, in near-real time. Delays or inconsistencies in 

this synchronization introduce security risks, such as the potential for a disgruntled employee or 

a compromised account to exploit stale or cached elevated permissions. Maintaining a timely 

feed is also essential to reducing the volume of attribute and policy requests sent from DTW-

ABAC to Entra ID, thereby improving system efficiency and minimizing latency in access 

decision-making. 

 

Second, the current framework design must be validated under enterprise-level scalability. While 

the DTW-ABAC follows a RESTful, stateless architecture that supports horizontal scaling 

behind a load balancer [57], and the evaluation engine developed in .NET 8.0 offers lightweight 

hosting and high concurrency [66], these remain theoretical assurances. SQL Server provides 

well-established scaling patterns, including read replicas, partitioning, and in-memory features 

[67], yet the framework has not been empirically tested under large-scale workloads. Future 

work should therefore involve controlled experiments and large-dataset benchmarks to provide 

rigorous, statistically valid evidence of performance and resilience in enterprise environments. 
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Third, the framework's layered architecture generates extensive access logs, capturing attribute 

evaluations, policy decisions, contextual inputs, and trust reclassifications over time. Currently, 

these logs are primarily used for traceability and audit. However, they present a rich opportunity 

for building a comprehensive reporting and analytics layer. Future work can focus on designing 

Key Performance Indicators (KPIs) to summarize trends in user risk posture, frequency of policy 

conflicts, access denials by category, or drift in contextual attributes. Visualization dashboards 

can help security teams proactively detect anomalies, evaluate policy effectiveness, and refine 

trust thresholds. Integration with SIEM (Security Information and Event Management) platforms 

could further streamline operational oversight and incident response. 

 

Fourth, although the testing has been done to find out the attribute weights and essentiality, the 

process of setting it in the environment is currently manual and static, thus requiring several 

iterations to set up. Future improvements can leverage AI (Artificial Intelligence)/ML (Machine 

learning) algorithms such as feature importance models, reinforcement learning, or unsupervised 

clustering to dynamically adjust the attribute weights based on access history, policy 

performance, or emerging risks. This will enhance accuracy and reduce administrative burden in 

evolving environments. For instance, attributes frequently appearing in false negative outcomes 

(where access is wrongly denied) may indicate misalignment with policy intent and could be 

reassessed or decreased in weight. In contrast, attributes consistently associated with true 

positive decisions and low-risk access may be considered strong indicators of legitimate 

behaviour and assigned greater importance. Such self-tuning capability aligns with the broader 

trend of autonomous policy optimization. 
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Finally, future research can also explore interoperability with decentralized identity frameworks, 

built around decentralized identifiers (DIDs) and cross-domain attribute verification. This can be 

implemented where the attributes are issued and verified across organizational or governmental 

boundaries. Combined with fog and AI enhancements, this could enable a scalable, self-learning, 

and geographically aware access control infrastructure. 

 

Together, these enhancements would increase the intelligence, performance, and scalability of 

the DTW-ABAC model in addition to positioning it as a viable candidate for next-generation 

adaptive access control in critical, distributed, and high-risk domains.  
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Appendix 1 
 

This section provides a detailed description of an access scenario for each category, including 

XACML policy rules and NGAC graph structures in the hybrid model and the attributes used 

with assigned weights. The scenarios were created based on the FSM-based transitions [61], 

[62], [63], as explained in Chapter 4 (Section 4.2.2). 

 

Category 1: Baseline Valid Access 

User1 (ClinicalResearcher) initiates a routine access request to view patient records via the 

registered app "HealthDataPortal". This request represents a legitimate, typical access aligned 

with standard authorization rules and historical user behaviour. 

• High-level Attributes evaluated (stable, rarely changed): 

o Role: ClinicalResearcher (Essential, Weight=5) 

o Department: Research (Essential, Weight=3) 

o Clearance_Level: 4 (Essential, Weight=5) 

o Document_Type: PatientRecords (Essential, Weight=3) 

o Classification: Confidential (Essential, Weight=4) 

• Hybrid Evaluation (XACML Engine in PDP Policy Rule): 

o Permit if: all or Essential matches or in range with a weight percentage 

(e.g. Clearance_Level >= 3) 

o Else: Explicitly Deny. 

 

• Low-Level, Dynamic Attributes (frequently changed) & NGAC Graph Checks: 

o DeviceCompliance: True (Essential, Weight=4) 

o AccessLevel: Read (Essential, Weight=4) 

o LoginPatternScore: Normal (Non-essential, Weight=3) 

o Location: On-Premises (Non-essential, Weight=2) 
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• Hybrid Evaluation (NGAC Engine in PDP Policy Rule): 

o Permit if all or essential attributes with a weight percentage 

o Else: Deny. 

 

• Final outcome (with Historical Context in NGAC Evaluation): 

o User1 has consistently accessed "HealthDataPortal" from compliant devices and 

recognized locations, maintaining stable, anomaly-free access patterns. 

 

 

Category 2: Adversarial or Malicious Attempts 

User2 (EngineeringIntern) attempts to access confidential financial reports through the app 

"FinanceSecure" by spoofing high-level and contextual attributes. The request is crafted to 

appear legitimate, but underlying indicators suggest a malicious attempt. Standalone XACML 

incorrectly permits the request (False Positive) due to spoofed high-level attributes. Hybrid 

model correctly denies access by validating dynamic context and historical behaviour. 

• High-Level and Stable (rarely changed) Attributes Evaluated: 

o Role: EngineeringIntern (Essential, Weight=5, falsely asserted as 

FinanceAnalyst) 

o Department: Engineering (Essential, Weight=3) 

o Clearance: Level 2 (Essential, Weight=5) 

o Document Type: FinancialReports (Essential, Weight=3) 

o Classification: Confidential (Essential, Weight=4) 

• Hybrid Evaluation (XAML Engine in PDP): 

• Permit only if all: 

o Role is "FinanceAnalyst" or "FinanceManager" 

o Department matches "Finance" 

o Clearance is Level 4 or higher 
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o Document Type matches "FinancialReports" 

o Classification is at or below "Confidential" 

• Else: Explicitly Deny. 

 

• Low-Level and Dynamic Attributes (Frequently changed): 

o DeviceCompliance: False (Essential, Weight=4; spoofed as True) 

o AccessLevel: Write (Essential, Weight=4; spoofed) 

o LoginPatternScore: Suspicious (Non-essential, Weight=3) 

o Location: External VPN (Non-essential, Weight=2; unusual location) 

• Hybrid Evaluation (NGAC Engine in PDP): 

• Permit only if all: 

o Device compliance verified as True (actual device state) 

o Appropriate access level matches legitimate user assignments 

o Historical login patterns within normal thresholds (no anomalies) 

o Location consistent with legitimate historical access 

• Else: Explicitly Deny (flagging request as adversarial). 

 

• Final outcome: 

User2 has no history of accessing financial systems and typically accesses only engineering 

resources. The spoofed high-level attributes may fool XACML, but NGAC detects anomalies, 

unverified device compliance, elevated access level, and access from an unfamiliar external 

VPN. The hybrid model correlates these signals and correctly denies the request, identifying it as 

malicious and unauthorized. 
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Category 3: Behavioural or Historical Influence 

User3 (HRManager) requests access to employee performance records via the registered app 

"EmployeeInsights". This scenario tests adaptive historical evaluation. Although some 

contextual attributes slightly deviate (e.g., late-evening access, minor device compliance 

irregularities), the user's strong historical access pattern and high-weight attribute matches lead 

to permission through weighted policy evaluation in the hybrid model. (whereas standalone 

XACML and NGAC result in denial (FN)). 

• High-Level and Stable (rarely changed) Attributes Evaluated 

o Role: HRManager (Essential, Weight=5) 

o Department: HR (Essential, Weight=3) 

o Clearance: Level 4 (Essential, Weight=5) 

o Document Type: EmployeePerformance (Essential, Weight=3) 

o Classification: Confidential (Essential, Weight=4) 

• Hybrid Evaluation (XAML Engine in PDP): 

o Permit if all: all or Essential matches or in range (e.g. Clearance >= Level 3) 

o Else: Explicitly Deny. 

 

• Low-Level and Dynamic Attributes (Frequently changed): 

o DeviceCompliance: Partially Compliant (Essential, Weight=4; minor issue) 

o AccessLevel: Read (Essential, Weight=4) 

o LoginPatternScore: Slightly Abnormal (Non-essential, Weight=3) 

o Location: Home Network (Non-essential, Weight=2; unusual but previously 

allowed occasionally) 

o EnvironmentType: AfterHours (Non-essential, Weight=3) 

• Hybrid Evaluation (NGAC Engine in PDP): 

• Calculate total weighted attribute score: 

o Essential attributes strongly satisfied (Role, Clearance, AccessLevel) 
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o Minor deviations in non-essential attributes (DeviceCompliance, 

LoginPatternScore, Location, EnvironmentType) 

• Check historical access pattern: 

o User3 historically has strong compliance, routinely accesses similar data with no 

security violations. 

o Occasional minor deviations are historically permitted without negative 

outcomes. 

• Permit if: Historical access baseline is strong and total attribute weight meets required 

threshold despite minor contextual deviations. 

• Else: Deny or trigger additional verification. 

 

• Final outcome: 

• User3 has repeatedly accessed "EmployeeInsights" successfully from a partially 

compliant device during late-evening hours from their home network. Due to this positive 

historical context and strong essential attributes (high-weight role and clearance), the 

NGAC policy permits this request despite minor contextual deviations. 

 

 

Category 4: Contextual or Temporal Drift 

Scenario Description: 

User4 (SupportEngineer) requests emergency after-hours access to technical incident reports via 

the registered app "IncidentTracker" from an unfamiliar remote location. This scenario tests 

policy adaptation to contextual and temporal deviations. Standalone XACML and NGAC deny 

the request (False Negative). Despite unusual time and location, the request is permitted via 
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Hybrid model due to the elevated "accessPriority" attribute, flexible international access policy 

and verified access history, compensating for contextual drift. 

XACML (High-Level, Stable Attributes & Policy): 

• Attributes evaluated (stable, rarely changed): 

o Role: SupportEngineer (Essential, Weight=5) 

o Department: ITSupport (Non-Essential, Weight=3) 

o Clearance: Level 3 (Essential, Weight=5) 

o Classification: Confidential (Essential, Weight=4) 

• XACML Policy Rule: 

o Permit if: all or Essential matches or in range with a weight percentage 

o Else: Explicitly Deny. 

NGAC (Low-Level, Dynamic Attributes & Graph Checks): 

• Attributes evaluated (dynamic, frequently changed): 

o DeviceCompliance: True (Essential, Weight=4) 

o AccessLevel: Read (Essential, Weight=4) 

o AccessPriority: Emergency (Essential, Weight=5) 

o EnvironmentType: AfterHours (Non-essential, Weight=3; deviation) 

o Location: Remote InternationalRemote (Non-essential, Weight=2; unusual 

location) 

• NGAC Policy Rule: 

o Evaluate attribute weights and contextual conditions: 

▪ Device is fully compliant. 

▪ Emergency access priority is explicitly set (high-weight, essential). 

▪ After-hours and remote international location represent contextual drift 

from typical access patterns. 

o Historical baseline evaluation: 
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▪ User4 typically accesses from office locations during regular hours but has 

previously performed emergency accesses successfully. 

o Permit if: Essential attribute "AccessPriority" = Emergency is present, compliant 

device verified, and historical baseline includes prior successful emergency cases, 

overriding contextual drift. 

o Else: Deny or trigger additional verification. 

Historical Context (NGAC Evaluation): 

• User4 has successfully conducted emergency access sessions in the past, creating a 

trusted baseline. Despite unusual current contextual factors (international location, after-

hours), NGAC permits access due to the explicitly elevated emergency priority attribute, 

verified device compliance, and historically proven capability in handling emergency 

situations responsibly. 

 

 

Category 5: Policy Conflict and Ambiguity Handling 

Scenario Description: 

User5 (ProjectConsultant) attempts to access strategic project documentation via the app 

"StrategyDocs". Two XACML policies conflict, i.e., one permits consultant access to project 

files, another denies external consultants from accessing sensitive documents. Simultaneously, 

NGAC applies dynamic contextual restrictions based on location and document sensitivity. 

XACML and NGAC may produce conflicting or reinforcing Denial results, but the Hybrid 

model resolves the ambiguity and delivers the correct final decision by evaluating overall risk 

and context. 

Hybrid Evaluation (XACML and NGAC Rules Applied Separately): 
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XACML Engine in PDP (High-Level, Stable Attributes & Policies): 

• Attributes evaluated (stable, rarely changed): 

o Role: ProjectConsultant (Essential, Weight=5) 

o Department: ExternalConsulting (Non-Essential, Weight=3) 

o Clearance: Level 4 (Essential, Weight=5) 

o Document Type: ProjectStrategy (Essential, Weight=3) 

o Classification: Sensitive (Essential, Weight=4) 

• Policy Rule A (Allowing Consultants): 

o Permit if all: Permit if essential attributes with a weight percentage 

• Policy Rule B (Restricting External Consultants): 

o Deny if any: 

▪ Department matches "ExternalConsulting" AND 

▪ Document Classification = "Sensitive" 

 

Policy rule B clearly conflicts with Policy rule A decision in this scenario. 

 

NGAC Engine in PDP (Low-Level, Dynamic Attributes & Graph Checks): 

• Attributes evaluated (dynamic, frequently changed): 

o DeviceCompliance: True (Essential, Weight=4) 

o AccessLevel: Read (Essential, Weight=4) 

o EnvironmentType: RegularHours (Non-essential, Weight=3) 

o Location: PartnerNetwork (Non-essential, Weight=2) 

• NGAC Policy Rule (Contextual Restrictions): 

o Deny if: Location is "PartnerNetwork" AND classification is "Sensitive" (high-

risk context). 

o Permit if: DeviceCompliance = True, AccessLevel ≥ Read, and Location = 

InternalNetwork. 
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• Conflict between NGAC and XACML: 

NGAC denies sensitive access from PartnerNetwork, conflicting with XACML Permit 

(Policy rule A), but reinforcing XACML Deny (Policy rule B). 

Final Policy Decision (XACML and NGAC Resolution in Hybrid model): 

• XACML policies conflict: 

o Policy rule A permits access based on Role, Clearance. 

o Policy rule B denies due to ExternalConsulting department and sensitive data. 

o Hybrid considers both policies and weighs essential attributes; although one 

permits, the restrictive policy rule carries a higher risk weight, resulting in Deny. 

• NGAC outcome: Contextual evaluation flags external location + sensitive classification 

as high-risk, enforcing Deny based on real-time conditions. 

• Final outcome: Deny 

 

 

Category 6: Structural Attribute Violations 

Scenario Description: 

User6 (MarketingAssociate) attempts to access confidential marketing analytics reports through 

the registered app "MarketAnalyticsPro". This scenario simulates structural violations, where the 

role attribute is not updated due to propagation delay (because the user is recently promoted), but 

the device is compliant, access level is correct (read-only), and other critical attributes match. 

Standalone XACML or NGAC will deny (causing False Negative), but Hybrid permits with the 

correct result based on total trust score and attribute weight. 

 

Hybrid Evaluation (XACML and NGAC Rules Applied Separately): 
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XACML Engine in PDP (Stable High-Level Attributes & Policy Rule): 

• Attributes evaluated: 

o Role: (Missing assignment) (Non-Essential in Hybrid, Weight=3) 

o Department: Marketing (Essential, Weight=4) 

o Clearance: Level 2 (Essential, Weight=5) 

o Document Type: MarketingAnalytics (Essential, Weight=3) 

o Classification: Confidential (Non-Essential, Weight=3) 

 

• Policy Rule: 

o Permit if: Clearance, Department, Document Type (essential) are satisfied and 

weighted score ≥ threshold. 

o Deny if: Any essential attribute above is missing or invalid, and weight threshold 

not met. 

 

NGAC Engine in PDP (Dynamic, Low-Level Attributes & Trust Rule): 

• Attributes evaluated: 

o DeviceCompliance: True (Essential, Weight=5) 

o AccessLevel: Read-only (Essential, Weight=4) 

o LoginPatternScore: Normal (Non-essential, Weight=2) 

o Location: Internal Network (Non-essential, Weight=2) 

o Access History: Positive (H is more than 1) 

 

• Policy Rule: 

o Permit if: 

▪ DeviceCompliance is True 

▪ AccessLevel matches scope (read-only) 

▪ Historical access to similar resources from the same device and user is 

positive 

▪ Total weighted score ≥ required threshold 
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o Deny if: DeviceCompliance is False or AccessLevel is mismatched or trust score 

is too low 

Note: Since the major attributes include DeviceCompliance, Clearance, Department, 

Classification, and Document Type, the overall attribute weight compensates for the missing 

role. The positive access history further increases trust. Standalone models may deny due to rigid 

role checks (False Negative), but Hybrid correctly permits access using holistic evaluation. 

 


