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Abstract 

This thesis addresses the challenges of semantic image retrieval and labeled data scarcity 

in Content-Based Image Retrieval (CBIR) by introducing SO-DRCNN, a novel Self-

Optimizing DeepRec Convolutional Neural Network framework. SO-DRCNN leverages 

a hybrid approach, combining the strengths of handcrafted features (Ternion Paradigm: 

HOG, ICH, SERC) and deep learning. A pre-trained ResNet-50 backbone, enhanced with 

Recurrent  Patching  (Bi-LSTM),  Spatial  Pyramid  Pooling  (SPP/ASPP),  and  Attention 

mechanisms,  extracts  high-level  semantic  features.  A  key  innovation  is  the  Siamese-

Driven Feature Fusion, where a Siamese network, trained with a contrastive loss, learns 

to adaptively combine handcrafted and deep features, optimizing the fused representation 

for  similarity.  This  self-supervised  training  strategy  (Auto-Embedder)  eliminates  the 

need for manual image labels. Experiments on benchmark datasets demonstrate that SO-

DRCNN achieves state-of-the-art retrieval accuracy, outperforming traditional methods 

and demonstrating the effectiveness of the learned fusion strategy. The system is also 

integrated  with  Elasticsearch  for  scalable  retrieval.  This  work  contributes  a  robust, 

efficient, and interpretable solution for semantic CBIR. 
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Glossary 

1- Adaptive Histogram Equalization (AHE): A contrast enhancement technique that 

improves local image contrast by applying histogram equalization to localized 

regions, rather than the entire image. Mentioned in the context of image 

preprocessing techniques. 

2- Atrous  Spatial  Pyramid  Pooling: A  module  used  in  deep  convolutional  neural 

networks (CNNs) that captures multi-scale contextual information by applying 

convolutions with different dilation rates (atrous convolutions) to feature 

maps. Part of the SO-DRCNN architecture to enhance feature representation. 

3- Auto-Embedder Architecture: A self-supervised learning framework, based on a 

Siamese  network,  that  trains  a  model  to  generate  embeddings  optimized  for 

similarity comparisons. In this thesis, it refers to the Siamese network used to 

train the Fusion Module for feature fusion, enabling data-driven weight learning. 

4- Bag-of-Visual-Words  (BoVW): A  technique,  adapted  from  text  retrieval,  that 

represents images as histograms of visual word occurrences. Local image features 

(extracted  using  ORB  and  Ternion  descriptors)  are  quantized  into  a  "visual 

vocabulary,"  and  each  image  is  represented  by  the  frequency  of  each  visual 

word. Used in this thesis for handcrafted feature extraction. 

5- Bidirectional Long Short-Term Memory (Bi-LSTM): A type of recurrent neural 

network  (RNN)  that  processes  sequential  data  (like  image  patches  in  SO-

DRCNN) in both forward and backward directions, capturing contextual 

dependencies from both preceding and succeeding elements in the 

sequence. Used in the Recurrent Patching Module of SO-DRCNN. 

6- CBIR (Content-Based Image Retrieval): A technique for retrieving images from 

a  database  based  on  their visual  content (features  extracted  from  the  images 
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themselves), rather than relying on textual annotations or metadata. This is the 

core task addressed by this thesis. 

7- CNN  Embedding: A  feature  vector  representing  an  image,  extracted  from  a 

Convolutional  Neural  Network  (CNN). In  this  thesis,  the  CNN  embedding  is 

generated by the SO-DRCNN model. 

8- Contrastive Loss: A loss function used in self-supervised learning (particularly 

with Siamese networks) that encourages similar inputs to have close embeddings 

and  dissimilar  inputs  to  have  distant  embeddings. This  is  the  core  training 

mechanism  for  the  Siamese  Network  in  this  thesis,  used  to  train  the  Fusion 

Module. 

9- Contrastive Language-Image Pre-training (CLIP): A specific, multi-modal model 

trained with contrastive learning to align visual and textual 

representations. Mentioned  as  an  inspiration  for  the  self-supervised  training 

approach, but not directly used in the methodology. 

10- Convolutional  Neural  Network  (CNN): A  type  of  deep  neural  network  that  is 

particularly effective for processing images. CNNs use convolutional layers to 

automatically learn hierarchical features from raw pixel data. ResNet-50 is the 

CNN backbone used in SO-DRCNN. 

11- Davies-Bouldin Index (DBI): A metric used to evaluate the quality of clustering 

algorithms (like k-means used for BoVW vocabulary construction). Lower DBI 

values indicate better clustering, with compact and well-separated clusters. 

12- Deep  Convolutional  Neural  Network  (DCNN/DRCNN): A  CNN  with  many 

layers, enabling the learning of complex, hierarchical features. SO-DRCNN is a 

specific type of DCNN used in this thesis. 



 xii 

13- DeepRec Convolutional Neural Network (DRCNN): Refers to the deep network 

architecture  used  in  SO-DRCNN,  incorporating  a  recurrent  component  and 

spatial pyramid modules. 

14- Dimensionality Reduction: The process of reducing the number of dimensions 

(features) in a dataset while preserving important information. PCA is used for 

dimensionality reduction in this thesis. 

15- Discrete Wavelet Transform (DWT): A signal processing technique that 

decomposes  an  image  into  different  frequency  sub-bands. Mentioned  in  the 

literature review, but not directly used in the core methodology. 

16- Elasticsearch: A distributed search and analytics engine used in this thesis for 

efficient indexing and retrieval of image feature vectors. It enables fast similarity 

search on high-dimensional data. 

17- Embedding Layer: The final fully connected layer in the SO-DRCNN 

architecture that outputs the visual embedding vector. It transforms the fused and 

processed features into a compact representation suitable for CBIR. 

18- Embedding Space: A vector space where images are represented by their feature 

vectors  (embeddings). In  this  thesis,  the  goal  is  to  learn  an  embedding  space 

where distance corresponds to semantic similarity. 

19- Euclidean Distance: A common metric for measuring the distance between two 

vectors in a multi-dimensional space. Used in the contrastive loss function and 

potentially for similarity search. 

20- Feature Fusion: The process of combining multiple feature representations (e.g., 

CNN embeddings and handcrafted features) into a single, richer feature 

vector. This  is  a  core  component  of  the  proposed  methodology,  implemented 

using a Siamese-trained Fusion Module. 



 xiii 

21- Fusion Module: A neural network module, trained within the Siamese Network, 

that learns to combine CNN embeddings and handcrafted features. This is the key 

component that performs the Siamese-Driven Feature Fusion. 

22- Global  Color  Histogram  (GCH): A  feature  representation  that  quantifies  the 

distribution of colors in an image, disregarding spatial information. Referred to 

as ICH (Inclusive Color Histogram) in this thesis. 

23- Handcrafted  Features: Image  features  that  are  designed  by  humans  based  on 

domain knowledge and intuition, rather than learned automatically from data. In 

this thesis, BoVW histograms with Ternion descriptors (HOG, ICH, SERC) are 

used as handcrafted features. 

24- Histogram of Oriented Gradients (HOG): A handcrafted feature descriptor that 

captures the distribution of gradient orientations in localized portions of an image, 

representing shape and texture information. Part of the Ternion descriptor set. 

25- ICH (Inclusive Color Histogram): The term used in this thesis for a global color 

histogram,  computed  over  the  entire  image,  that  quantifies  the  distribution  of 

colors. Part of the Ternion descriptor set. 

26- Keypoint: A salient and stable point in an image, often associated with corners, 

edges, or other distinctive local features. ORB is used to detect keypoints in this 

thesis. 

27- Mean Average Precision (mAP): A common metric for evaluating the 

performance of information retrieval systems, including CBIR. It measures the 

average precision of retrieval results across multiple queries. 

28- Metric  Learning: A  machine  learning  approach  that  focuses  on  learning  a 

distance  metric  or  similarity  function  from  data. The  Siamese  Network  with 

contrastive loss is a form of metric learning. 



 xiv 

29- Multi-Probe LSH: An enhanced version of Locality Sensitive Hashing (LSH) that 

improves search accuracy by probing multiple hash buckets. Mentioned in the 

context of SERC descriptor matching. 

30- Natural  Language  Processing  (NLP): A  field  of  computer  science  focused  on 

enabling computers to understand and process human language. Mentioned in the 

context of Text-Based Image Retrieval (TBIR) in the literature review. 

31- ORB (Oriented FAST and Rotated BRIEF): A fast and rotation-invariant feature 

detector and descriptor. Used in this thesis for keypoint detection in the BoVW 

framework. 

32- Pairwise Constraints: Training signals used in self-supervised learning, 

consisting  of  pairs  of  images  labeled  as  "similar"  (Can-Link)  or  "dissimilar" 

(Cannot-Link). Used to train the Siamese Network with contrastive loss. 

33- Patch: A small, rectangular region of an image. Used in the Recurrent Patching 

Module of SO-DRCNN. 

34- Principal Component Analysis (PCA): A dimensionality reduction technique that 

finds the principal components (directions of maximum variance) in a dataset and 

projects the data onto these components. Used in this thesis for dimensionality 

reduction of feature vectors. 

35- Recurrent Patching Module: A component of the SO-DRCNN architecture that 

processes image patches sequentially using a Bi-LSTM network to capture spatial 

context. 

36- Region-of-Interest (ROI): A specific region within an image that is of particular 

interest for analysis or processing. Not directly used in your core methodology, 

but mentioned in the literature review. 
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37- ResNet-50: A  deep  convolutional  neural  network  architecture  (50  layers)  that 

uses residual connections to enable effective training of very deep 

networks. Used as the pre-trained CNN backbone in SO-DRCNN. 

38- Self-Supervised Learning: A machine learning paradigm where a model is trained 

on  unlabeled  data  by  generating  its  own  supervisory  signals  from  the  data 

itself. The  Auto-Embedder  framework  with  Siamese  Network  and  contrastive 

loss is a form of self-supervised learning. 

39- SERC  (Slanting  Express  Revolves  Concise): A  handcrafted  feature  descriptor 

designed to capture edges and structural patterns. Part of the Ternion descriptor 

set. 

40- Siamese  Network: A  neural  network  architecture  consisting  of  two  (or  more) 

identical subnetworks (twins) that share weights. Siamese networks are used to 

learn  similarity  metrics  by  comparing  the  outputs  of  the  twins  for  pairs  of 

inputs. Used in this thesis to train the Fusion Module for feature fusion. 

41- Similarity Matching: The process of comparing feature vectors to find images 

that are similar to a query image. The core task in CBIR. 

42- Smooth L1 Loss (Huber Loss): A loss function that combines the properties of 

L1 and L2 loss, making it more robust to outliers. Mentioned in the context of 

SO-DRCNN training. 

43- Spatial Pyramid Pooling (SPP): A technique used in CNNs to capture multi-scale 

information by pooling feature maps at different spatial resolutions. Part of the 

SO-DRCNN architecture. 

44- SO-DRCNN  (Self-Optimizing  DeepRec  Convolutional  Neural  Network): The 

proposed deep learning architecture for CBIR, combining a pre-trained ResNet-
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50 backbone with Recurrent Patching, SPP/ASPP, and Attention modules, and 

trained using a Siamese Network with contrastive loss. 

45- Ternion Paradigm: The combination of HOG, ICH, and SERC descriptors used 

for handcrafted feature extraction in this thesis. 

46- Text-Based Image Retrieval (TBIR): A traditional approach to image retrieval 

that relies on textual annotations or metadata associated with images. Contrasted 

with CBIR in the literature review. 

47- Visual Vocabulary: In the BoVW framework, a set of representative local feature 

patterns  (cluster  centroids)  learned  by  clustering  a  large  collection  of  local 

descriptors. Used to create BoVW histograms. 

 

Key  Terms:  Content-Based  Image  Retrieval  (CBIR),  Text-Based  Image  Retrieval 

(TBIR),  Self-Supervised  Learning,  Feature  Extraction,  Elasticsearch,  Semantic  Gap, 

Embedding Space, Deep Learning, Self-Optimization. 
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Chapter 1 

Introduction 

1.1. Motivation 

Content-Based  Image  Retrieval  (CBIR)  has  become  increasingly  important  across 

numerous  fields,  from  medical  imaging  and  architecture  to  crime  prevention  and 

geographic information systems. However, existing CBIR systems often face significant 

challenges,  including  limited  retrieval  accuracy,  high  computational  demands,  and  a 

strong  reliance  on  manually  labeled  data.  A  key  limitation  is  the  semantic  gap:  the 

discrepancy  between  low-level  image  features  easily  extracted  by  computers  and  the 

high-level semantic concepts that humans use to understand and judge image similarity 

(Smeulders  et  al.,  2000).  Furthermore,  the  need  for  extensive  manual  data  labeling 

creates a bottleneck, hindering the scalability and adaptability of CBIR systems to new 

datasets and domains (Datta et al., 2008). 

This thesis addresses these challenges by proposing a novel Self-Optimizing DeepRec 

Convolutional  Neural  Network  (SO-DRCNN)  framework  for  CBIR,  enhanced  with 

Siamese-Driven Feature Fusion. Our approach makes the following key contributions: 

Hybrid  Feature  Representation:  We  integrate  advanced  feature  extraction  techniques, 

including the Ternion Paradigm (HOG, ICH, and the novel SERC descriptor), to create 

a robust and multi-faceted image representation that combines both interpretable local 

visual cues and high-level semantic features learned by a deep CNN (LeCun et al., 2015).  

This hybrid approach aims to bridge the semantic gap by leveraging the strengths of both 

handcrafted and learned features. 
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Self-Supervised Learning: We employ a self-supervised Siamese network architecture 

(Hadsell et al., 2006), trained with a contrastive loss function (Chopra et al., 2005), to 

learn discriminative image embeddings without relying on manually labeled data. This 

addresses the labeling bottleneck and enables the system to adapt more easily to new 

datasets.  This approach builds upon recent advancements in self-supervised 

representation learning (Chen at Ai., 2020). 

Siamese-Driven Feature Fusion: We introduce a novel feature fusion strategy where a 

Fusion Module, trained within the Siamese network, learns to adaptively combine the 

handcrafted features and deep CNN embeddings, optimizing the fused representation for 

semantic similarity. This data-driven fusion approach goes beyond simple concatenation 

or fixed-weight combinations, allowing for a more nuanced and effective integration of 

heterogeneous feature modalities. 

Scalable Retrieval: We integrate our system with Elasticsearch (Gormley & Tong, 2015) 

to  enable  efficient  and  scalable  image  retrieval  from  large  databases,  addressing  the 

practical challenges of real-world CBIR applications. 
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1.2. Statement of Purpose 

Content-Based Image Retrieval has emerged as a robust alternative to text-based retrieval 

methods,  which  often  rely  on  keyword-driven  annotations  and  may  overlook  the  full 

complexity  of  image  content.  By  analyzing  intrinsic  visual  characteristics—such  as 

texture, shape, and color—CBIR systems automatically compare a user-provided query 

image to database items that share similar features. Despite these benefits, a major hurdle 

is the semantic gap: the mismatch between low-level descriptors (e.g., color histograms) 

and the high-level concepts that users perceive (Vo et al., 2021). 

To address this gap, the present work integrates advanced feature extraction 

approaches—namely  Slanting  Express  Revolves  Concise,  Inclusive  Color  Histogram, 

and Histogram of Oriented Gradients —with a Self-Optimization Deeprec Convolutional 

Neural Network. By combining these methods, the research aims to enhance retrieval 

accuracy, reduce labeling burdens, and capture nuanced image details. Building on three 

decades  of  CBIR  advancements,  this  thesis  examines  the  state-of-the-art  in  feature 

modeling,  similarity  metrics,  and  machine  learning  strategies,  ultimately  seeking  to 

improve real-world image retrieval across large, heterogeneous datasets. 

1.3. Research Objectives  

This research aims to significantly enhance content-based image retrieval by overcoming 

persistent  limitations  of  traditional  retrieval  methods,  such  as  reliance  on  textual 

annotations, inability to fully capture semantic meaning, and inefficient scalability. The 

goal is to create an intuitive, robust, and scalable CBIR framework capable of accurately 

interpreting visual content within extensive image repositories. Specifically, this research 

sets out to: 

1. Identify and Address Limitations in Current Image Retrieval Approaches 
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Systematically  analyze  current  retrieval  methodologies  to  understand  critical 

weaknesses such as the semantic gap (disconnect between pixel-level 

representation and high-level concepts) and over-dependence on manual labeling. 

This analysis will cover traditional methods (e.g., color histograms), conventional 

deep learning models (e.g., VGG-16, ResNet-50), and hybrid systems. 

2. Develop a Self-Optimizing Neural Network (SO-DRCNN) for Autonomous 

Learning 

Design and implement a novel neural architecture, the Self-Optimizing DeepRec 

Convolutional  Neural  Network  (SO-DRCNN),  which  autonomously  learns  to 

identify  visual  patterns  without  explicit  labeling.  This  network  will  integrate 

spatial recurrent networks (SRNs) for spatial reasoning and attention mechanisms 

to prioritize image features that are critical for accurate retrieval. 

3. Implement an Advanced Multi-Descriptor Framework (Ternion Paradigm) 

Combine  three  complementary  feature  descriptors  to  capture  comprehensive 

image characteristics: 

- HOG (Histogram of Oriented Gradients) for detecting edges and textures. 

- ICH (Inclusive Color Histogram) for encoding global color distributions. 

- SERC (Slanting Express Revolves Concise) for identifying distinctive structural 

patterns robust to rotations and transformations. 

This combination aims to effectively bridge low-level visual features and high-

level semantic understanding. 

4. Quantitatively Evaluate the Proposed System’s Performance 

Evaluate the CBIR system rigorously against state-of-the-art benchmarks (e.g., 

CIFAR-10 dataset), with explicit performance goals: 

- Accuracy: Achieve ≥95% Mean Average Precision (MAP). 
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- Efficiency: Retrieval responses in ≤0.5 seconds for databases exceeding one 

million images. 

- Robustness: Maintain high retrieval accuracy under challenging conditions 

(e.g., noisy, rotated, cropped images). 

5. Demonstrate Applicability Across Diverse Real-World Domains 

Validate  system  usability  without  extensive  retraining  for  multiple  practical 

scenarios,  including  medical  diagnostics  (e.g.,  tumor  detection  in  X-rays),  e-

commerce (e.g., fashion item retrieval), and surveillance. Optimize the 

architecture for deployment in both high-performance cloud environments and 

resource-limited mobile platforms. 

6. Establish a Foundation for Future Research and Innovation 

Provide comprehensive documentation and guidelines to enable further system 

enhancement,  addressing  limitations  such  as  specialized-domain  adaptation, 

ultra-large-scale  database  retrieval,  and  extensions  to  video-based  or  dynamic 

image retrieval scenarios. 

1.4. Organization of Thesis 

This thesis is structured into five chapters, systematically addressing the motivations, 

methodologies, experimental evaluations, and implications of advanced CBIR 

approaches: 

Chapter 2: Background 

This chapter introduces the foundational concepts of CBIR, discussing its significance, 

practical  applications,  and  inherent  challenges.  It  presents  an  overview  of  feature 

extraction,  similarity  matching,  and  advanced  retrieval  methodologies,  establishing  a 
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clear  rationale  for  the  research.  Additionally,  this  chapter  specifies  the  objectives, 

motivation, and anticipated contributions of the thesis. 

Chapter 3: Literature Review 

A  comprehensive  review  of  existing  literature  is  conducted,  exploring  foundational 

methods  and  state-of-the-art  advancements  in  CBIR.  The  chapter  critically  examines 

various  feature  extraction  methods,  region-based  retrieval  (RBIR),  semantic-based 

retrieval techniques, and hybrid multimodal systems. Emphasis is placed on identifying 

the  limitations  of  current  methodologies,  thereby  clearly  delineating  how  the  thesis 

advances the field through novel contributions. 

Chapter 4: Methodology 

This chapter details the novel methodologies proposed in this research. It systematically 

describes  the  feature  extraction  processes,  data  augmentation  techniques,  and  the 

integration of advanced deep learning architectures, specifically highlighting the 

proposed  Self-Optimizing  DeepRec  Convolutional  Neural  Network  (SO-DRCNN).  It 

further  elaborates  on  self-supervised  training  frameworks  and  indexing  mechanisms, 

providing theoretical justifications for all methodological choices. 

Chapter 5: Experimental Evaluation 

Experimental validation of the proposed methodologies is presented, covering dataset 

descriptions, experimental setup, and detailed evaluation metrics such as Mean Average 

Precision (MAP), precision-recall analysis, and the Davies–Bouldin Index (DBI). Results 

are thoroughly examined through quantitative assessments, graphical visualizations, and 

comparative studies with established benchmarks, affirming the performance and 

effectiveness of the proposed systems. 

Chapter 6: Conclusion and Future Work 
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The  thesis  concludes  by  summarizing  the  key  research  findings  and  contributions.  It 

highlights the theoretical and practical implications of the developed methodologies and 

clearly  outlines  the  limitations  encountered  during  the  research.  Directions  for  future 

research are proposed, emphasizing potential enhancements and opportunities for 

advancing CBIR further. 
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Chapter 2 

Background 

2.1. Image Processing 

Image processing is a computational discipline that involves the acquisition, 

enhancement, analysis, and retrieval of images using mathematical models and 

algorithms. It plays a fundamental role in computer vision, AI, medical imaging, and 

multimedia retrieval, enabling the extraction of meaningful information from visual data. 

Image processing techniques are designed to improve image quality, facilitate feature 

detection, and enable automated decision-making in scientific, industrial, and 

technological applications (Gonzalez & Woods, 2018). 

Digital image processing consists of several key stages: image acquisition, 

preprocessing,  feature  extraction,  segmentation,  and  recognition.  Image  acquisition 

involves capturing images using cameras, scanners, or remote sensing devices. 

Preprocessing enhances image quality through noise reduction, contrast adjustments, and 

edge enhancement to improve subsequent analysis (Jain et al., 1995). Feature extraction 

focuses on identifying key characteristics such as textures, edges, and color distributions, 

which  are  essential  for  classification  and  retrieval  tasks.  Segmentation  partitions  an 

image into meaningful regions, facilitating object recognition, medical diagnostics, and 

scene understanding (Szeliski, 2010). 

Image  processing  techniques  are  broadly  classified  into  spatial  domain  methods  and 

frequency domain methods. Spatial domain methods operate directly on image pixels, 

applying  transformations  such  as  filtering,  morphological  operations,  and  histogram 

equalization. Frequency domain methods, on the other hand, transform images into the 

Fourier domain to analyze patterns, compress image data, and enhance specific features 
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(Pratt, 2007). Advances in machine learning and deep learning have led to the 

development of automated image processing models, significantly improving 

performance in tasks such as object detection, facial recognition, and CBIR (LeCun et 

al., 2015). 

A  key  application  of  image  processing  is  in  image  retrieval,  where  computational 

techniques  enable  the  efficient  searching  and  indexing  of  visual  content.  Traditional 

image retrieval systems often relied on Text-Based Image Retrieval, where images were 

annotated  with  metadata,  captions,  or  textual  descriptions  to  enable  searchability. 

However,  TBIR  faced  limitations  due  to  manual  annotation  costs  and  semantic  gaps 

(Datta et al., 2008; Smeulders et al., 2000). On the other hand , CBIR leverages computer 

vision and pattern recognition to analyze color, texture, and shape features, allowing for 

more precise and automated retrieval processes (Smeulders et al., 2000).  

With the growing volume of digital images across domains such as medical imaging, 

remote sensing, security, and multimedia archiving, the role of advanced image 

processing techniques in retrieval, classification, and recognition continues to expand. 

Advances in deep learning, particularly through CNN and multimodal AI models, have 

significantly enhanced image retrieval accuracy by learning hierarchical feature 

representations.  These  methods  reduce  the  semantic  gap  between  low-level  visual 

features (e.g., color, texture) and high-level human interpretation (e.g., object categories, 

contextual meaning) by capturing semantically meaningful patterns directly from data 

(He et al., 2016; Radford et al., 2021). While challenges persist in abstract or fine-grained 

retrieval  tasks,  modern  AI-driven  systems  outperform  classical  methods  in  aligning 

machine-extracted features with human perception (Krizhevsky et al., 2012; Smeulders 

et al., 2000). 
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Ongoing  research  in  deep  learning,  CNNs,  and  multimodal  fusion  is  further  driving 

progress in intelligent image analysis and retrieval systems (Goodfellow et al., 2016). 

These image processing advancements have laid the foundation for modern Information 

Retrieval  systems,  enabling  more  efficient  indexing,  classification,  and  retrieval  of 

images. The following section explores specific retrieval strategies that leverage these 

image processing techniques, ranging from traditional TBIR to more advanced content-

based and hybrid retrieval frameworks. 

2.1.1. Image Processing Techniques 
 
This section examines three primary categories of image processing techniques:  

I. Image enhancement 

II. Image segmentation 

III. Object detection & recognition 

which are foundational for extracting meaningful information and improving 

computational analysis. 

I. Image Enhancement  

Image  enhancement  modifies  an  image  to  increase  its  interpretability  and  visibility, 

optimizing it for computer vision applications, medical diagnostics, and feature 

extraction tasks (Pratt, 2007). These techniques work to reduce noise and improve image 

contrast. As a result, critical features become more prominent, making the images better 

suited for analysis and automated processing. 

§ Noise  Reduction:  Noise  reduction  techniques  eliminate  unwanted  distortions, 

such as random intensity variations resulting from sensor limitations or 

environmental factors (Jain et al., 1995). 

o Median filtering: Suppresses salt-and-pepper noise while preserving 

edges. 
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o Gaussian filtering: Smooths intensity variations by applying a 

weighted average of neighboring pixels. 

o Non-local Means filtering: Reduces noise by averaging similar pixel 

intensities across distant regions (Buades et al., 2005). 

§ Contrast Adjustment & Histogram Equalization: Contrast enhancement 

techniques expand an image’s dynamic range, improving the visibility of subtle 

details, which is particularly beneficial for medical imaging, satellite imagery, 

and digital photography (Szeliski, 2010). 

o Histogram  equalization:  Redistributes  pixel  intensities  to  improve 

global contrast. 

o AHE:  Enhances  contrast  in  localized  regions  to  emphasize  finer 

details (Pizer et al., 1987). 

§ Edge  Detection:  Edge  detection  is  crucial  for  feature  extraction  and  object 

recognition, as it identifies boundaries and structural elements within an image 

(Canny, 1986). 

o Sobel operator: Detects edges based on intensity gradients. 

o Canny  edge  detector:  Applies  Gaussian  smoothing  and  gradient 

detection to identify edges with minimal noise interference. 

o Laplacian  operator:  Highlights  regions  of  rapid  intensity  change, 

aiding in object boundary detection. 

II. Image Segmentation  

Image segmentation partitions an image into distinct regions corresponding to objects or 

areas  of  interest,  facilitating  medical  diagnostics,  autonomous  navigation,  and  scene 

analysis (Shi & Malik, 2000). This technique enables more effective object recognition, 

classification, and retrieval by isolating relevant image components.  
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§ Thresholding Techniques: Thresholding converts grayscale images into binary 

representations, distinguishing foreground objects from the background based on 

intensity variations (Otsu, 1979).  

o Otsu’s method: Automatically selects an optimal threshold to 

maximize inter-class variance.  

o Adaptive  thresholding:  Adjusts  the  threshold  dynamically  across 

different image regions, accommodating variations in lighting 

conditions. 

§ Region-Based Segmentation: Region-based methods group pixels with similar 

characteristics to delineate meaningful structures. (Comaniciu, D., & Meer, P. , 

2002). 

o Watershed segmentation: This method treats as a topographic surface 

and identifies object boundaries using gradient-based ridges. 

o Active Contour Models (Snakes): Employs energy minimization to 

refine  object  boundaries  through  iterative  deformation  (Kass  et  al., 

1988). 

§ Deep  Learning-Based  Segmentation:  Deep  learning  models  have  significantly 

advanced segmentation accuracy, particularly in biomedical imaging, 

autonomous vehicles, and satellite image analysis (Ronneberger et al., 2015). 

o U-Net: A CNN designed for precise biomedical image segmentation. 

o Mask  R-CNN:  Extends  Faster  R-CNN  by  incorporating  pixel-wise 

instance  segmentation  for  detecting  multiple  objects  (K.  He  et  al., 

2017). 
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III. Object Detection & Recognition  

Object detection identifies and classifies objects within an image, enabling applications 

in face recognition, autonomous navigation, surveillance, and image retrieval 

(Felzenszwalb et al., 2010). These methods fall into two categories: traditional feature-

based approaches and Deep Learning-Based techniques. 

§ Traditional Object Detection Methods: Earlier methods relied on handcrafted 

features to detect objects based on predefined patterns (Dalal & Triggs, 2005). 

o Haar cascades: Utilizes edge and texture patterns for real-time face 

and object detection. 

o HOG: Captures gradient distributions to recognize shapes and 

contours. 

§ Deep Learning-Based Object Detection: Recent advancements in deep learning 

have led to more robust and scalable object detection frameworks (Redmon et 

al., 2016). 

o YOLO (You Only Look Once): Processes an entire image in a single 

pass, enabling efficient real-time detection. 

o Faster R-CNN: Enhances object detection accuracy by incorporating 

a  region  proposal  network  for  improved  bounding  box  predictions 

(Ren et al., 2016). 

Image  retrieval  systems  rely  on  specialized  image  processing  techniques  to  extract, 

represent, and index visual features, allowing for efficient searching and matching of 

images in large databases. Unlike general image processing, where the goal is image 

enhancement or segmentation, image retrieval techniques focus on identifying distinctive 

image features and organizing them into structured representations for fast and accurate 

retrieval (Smeulders et al., 2000). This section explores: 
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I. Feature extraction 

II. Deep Learning-Based Feature Extraction 

III. Preprocessing for Large-Scale Image Retrieval 

I. Feature extraction 

Where  visual  elements  such  as  color,  texture,  and  shape  are  analyzed  to  create  a 

numerical  representation  of  an  image  (Datta  et  al.,  2008).  These  features  serve  as  a 

compact and discriminative description that allows retrieval systems to compare and rank 

image similarity efficiently. 

§ Color  Features:  Color  is  one  of  the  most  commonly  used  features  in  image 

retrieval, as it provides a straightforward way to differentiate images (Swain & 

Ballard, 1991). Color-based retrieval methods rely on statistical representations 

of  pixel  intensities  rather  than  object  recognition,  making  them  useful  for 

applications such as multimedia search and digital library indexing. 

o RGB histograms: Represent the distribution of red, green, and blue 

intensities in an image. 

o HSV histograms: Capture hue, saturation, and value, offering 

robustness to lighting variations. 

§ Texture Features: Texture describes the spatial arrangement of pixel intensities, 

enabling retrieval systems to differentiate surfaces and patterns that may not be 

easily distinguishable by color alone (Manjunath & Ma, 1996). 

o Local Binary Patterns (LBP): Encode local texture characteristics by 

thresholding neighborhood pixels. 

o Gabor filters: Analyze texture frequencies and orientations, making 

them useful for biomedical image retrieval and fingerprint 

recognition. 



 32 

§ Shape  Features:  Shape-based  retrieval  techniques  are  effective  for  identifying 

images containing specific objects or geometric patterns, particularly in 

biomedical and industrial applications (Zhang & Lu, 2002). 

o Contour descriptors: Extract object outlines to facilitate shape-based 

matching. 

o Fourier descriptors: Convert shape boundaries into frequency 

components for comparison. 

Feature extraction methods allow images to be represented in high-dimensional feature 

spaces, where similarity measures such as Euclidean distance and cosine similarity are 

used for ranking retrieved images. 

II. Deep Learning-Based Feature Extraction 

Traditional  feature  extraction  methods  rely  on  handcrafted  features,  which  may  not 

always capture high-level semantic information. Recent advances in deep learning have 

significantly  improved  image  retrieval  by  enabling  models  to  automatically  learn 

hierarchical feature representations from large datasets (LeCun et al., 2015). 

CNNs  for  Feature  Embeddings:  CNNs  have  become  the  standard  for  image  feature 

extraction, transforming raw pixel values into a structured feature vector (Krizhevsky et 

al., 2012). 

o ResNet and VGGNet extract multi-layer feature embeddings, 

capturing texture, shape, and spatial structure. 

o These embeddings are used in vector search engines for large-scale 

image retrieval. 

§ Self-Supervised  Learning  for  Feature  Representation:  Recent  developments  in 

SSL allow models to learn meaningful feature representations without labeled 

data, making them ideal for scalable retrieval systems (Chen et Ai., 2020). 
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o SimCLR (Simple Contrastive Learning Representation) learns visual 

similarities using contrastive loss. 

o MoCo  (Momentum  Contrast)  stores  large  feature  dictionaries  for 

improved retrieval accuracy. 

o DINO (Self-Distillation with No Labels) enhances feature quality for 

unsupervised retrieval applications. 

§ Vision  Transformers  (ViTs)  in  Image  Retrieval:  ViTs  have  emerged  as  an 

alternative  to  CNNs,  processing  images  using  self-attention  mechanisms  to 

capture long-range dependencies (Dosovitskiy et al., 2021). 

o Unlike CNNs, which extract local features, ViTs model entire image 

patches simultaneously, improving retrieval for complex scenes and 

fine-grained image categorization. 

Deep Learning-Based feature extraction enables more accurate and semantically 

meaningful retrieval, reducing the reliance on manually engineered descriptors. 

III. Preprocessing for Large-Scale Image Retrieval 

Efficient  image  retrieval  requires  optimizing  feature  storage,  indexing,  and  retrieval 

speed. Preprocessing techniques such as dimensionality reduction, feature indexing, and 

compression  improve  scalability  and  search  efficiency  in  high-dimensional  feature 

spaces (Jégou et al., 2011). 

§ Dimensionality Reduction Techniques: High-dimensional feature representations 

can be computationally expensive. Dimensionality reduction improves retrieval 

efficiency while preserving important feature details. 

o Principal Component Analysis (PCA): Reduces feature dimensions by 

identifying principal components in the data. 



 34 

o t-SNE (t-Distributed Stochastic Neighbor Embedding): Projects high-

dimensional data into a lower-dimensional space for visualization and 

clustering. 

§ Feature  Indexing  Methods:  For  real-time  image  retrieval,  indexing  techniques 

allow faster nearest neighbor searches in large-scale databases (Muja & Lowe, 

2009). 

o KD-Trees:  Partition  feature  space  into  hierarchical  subregions  to 

accelerate similarity searches. 

o Hashing methods: Convert feature vectors into compact binary 

representations for fast lookup. 

o Approximate Nearest Neighbor (ANN) search: Balances search 

accuracy and computational efficiency for large-scale datasets. 

§ Compression for Efficient Storage & Retrieval: Storage-efficient retrieval 

systems  require  compression  techniques  to  reduce  memory  footprint  while 

preserving retrieval accuracy. 

o Vector  quantization  compresses  feature  vectors  while  maintaining 

similarity relationships. 

o Product Quantization (PQ) enables fast approximate nearest neighbor 

search in high-dimensional feature spaces. 

These preprocessing techniques ensure that image retrieval systems remain scalable and 

computationally  efficient,  allowing  for  real-time  search  and  indexing  in  extensive 

datasets. 

2.1.2. Relationship Between Image Processing and Image Retrieval 
 
Image processing serves as the foundation for image retrieval, enabling the extraction, 

representation, and indexing of visual features that facilitate efficient search and retrieval 
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operations. While general image processing techniques focus on enhancement, 

segmentation, and object detection, their integration into image retrieval ensures more 

accurate and meaningful search results (Smeulders et al., 2000). This section explores 

how feature extraction, image enhancement, segmentation, and object detection 

contribute to various retrieval approaches.  

§ Feature Extraction  

For instance, CBIR systems, in particular, rely on feature extraction, enhancement, and 

object  recognition  to  improve  retrieval  accuracy  and  search  efficiency  (Datta  et  al., 

2008).  

CBIR, converts images into structured representations based on color, texture, shape, and 

deep learning-based embeddings. 

Depending  on  retrieval  requirements,  CBIR  systems  use  different  feature  extraction 

approaches  based  on  the  task.  Traditional  methods,  such  as  color  histograms,  Local 

Binary Patterns (LBP), and shape descriptors, provide handcrafted feature 

representations  that  capture  essential  visual  attributes  (Swain  &  Ballard,  1991).  In 

contrast, Deep Learning-Based methods utilize CNNs to generate more robust feature 

embeddings, with architectures such as ResNet and VGGNet, as well as self-supervised 

learning models like SimCLR and MoCo, which further improve retrieval performance 

without relying on labeled data (LeCun et al., 2015). By integrating feature extraction 

techniques, CBIR systems significantly enhance retrieval accuracy, ensuring that query 

images return visually similar results based on content rather than textual descriptions, 

making them particularly effective in multimedia search, medical imaging, and large-

scale visual databases. 
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§ Image Enhancement 

Image enhancement plays a vital role in CBIR by improving feature distinctiveness in 

low-quality or noisy datasets, ensuring accurate feature extraction and similarity 

matching (Pratt, 2007). Poor image quality can degrade retrieval accuracy, as retrieval 

systems  rely  on  well-defined  features  to  perform  efficient  indexing  and  ranking. 

Techniques such as noise reduction, contrast adjustment, and edge sharpening improve 

clarity, texture representation, and boundary detection, all of which enhance retrieval 

performance (Buades et al., 2005; Szeliski, 2010). In medical image retrieval, contrast 

enhancement  improves  tumor  and  lesion  visibility,  aiding  in  clinically  relevant  case 

matching (Ronneberger et al., 2015). Similarly, in historical document retrieval, noise 

removal and sharpening refine text extraction, facilitating accurate archival searches. By 

ensuring that images contain well-preserved, high-contrast visual features, enhancement 

techniques  optimize  retrieval  accuracy,  allowing  retrieval  systems  to  perform  more 

precise ranking and similarity comparisons. 

§ Segmentation 

Segmentation is a key image processing step that partitions an image into meaningful 

regions (Shi & Malik, 2000). By isolating specific objects or areas, segmentation bridges 

the gap between raw pixel data and higher-level retrieval tasks. In region-based retrieval, 

only  these  segmented  regions  are  compared,  filtering  out  irrelevant  background  and 

improving precision—a benefit particularly evident in medical imaging, where U-Net-

based segmentation (Ronneberger et al., 2015) helps identify pathologies for targeted 

comparisons, and in satellite analysis, where isolating regions of interest (e.g., 

deforestation  zones)  refines  query  relevance.  Thus,  effective  segmentation  not  only 

enhances object-based retrieval accuracy but also demonstrates how image processing 

techniques are fundamentally tied to more advanced image retrieval strategies. 
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§ Object Detection 

Similarly,  Object  detection  localizes  and  classifies  objects  within  an  image,  allowing 

retrieval systems to focus on relevant content rather than irrelevant background details. 

Models such as YOLO, Faster R-CNN, and Mask R-CNN detect and segment objects 

with high accuracy, eliminating the need for manual cropping (Redmon et al., 2016; Ren 

et  al.,  2016;  He  et  al.,  2017).  By  generating  precise  bounding  boxes  or  masks,  these 

algorithms  streamline  the  retrieval  process—rather  than  comparing  entire  scenes,  the 

system compares only the detected objects. Pervasive use case example: In automotive 

image retrieval, an object detection model can identify vehicles within complex street 

scenes and classify them by make or model. This lets the retrieval system rank images 

based  on  specific  car  attributes  instead  of  irrelevant  background  elements.  In  facial 

recognition, object detection isolates faces within crowded images, allowing the retrieval 

system to match identities more efficiently and accurately. 

Through these targeted detections, object detection ensures more domain-specific and 

precise image retrieval, reducing computational overhead and improving user 

satisfaction. 

scene.  
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2.2. Retrieval Strategies 

Efficient  image  retrieval  plays  a  critical  role  in  academic  research,  digital  archiving, 

medical imaging, surveillance, and multimedia applications. Various retrieval strategies 

have been developed to improve search accuracy, scalability, and relevance by 

leveraging different aspects of image representation (Datta et al., 2008; J. Z. Wang et al., 

2001). These strategies range from traditional text-based retrieval to advanced AI-driven 

content-based and hybrid models. 

2.2.1. Text-Based Image Retrieval (TBIR) 
 
TBIR relies on textual metadata such as titles, descriptions, and manually assigned tags 

to  search  for  images.  This  method  is  widely  used  in  digital  libraries  and  web  search 

engines, where textual annotations are available. However, TBIR suffers from 

subjectivity  and  annotation  inconsistencies,  as  different  users  may  describe  the  same 

image differently, leading to mismatches in search results (Datta et al., 2008). 

A  distinct  contribution  of  TBIR  lies  in  its  suitability  for  structured  archives,  such  as 

museum  databases  and  academic  repositories,  where  detailed  textual  descriptions  are 

readily available. 

2.2.1.1. Challenges and Limitations 
 
Despite its advantages, TBIR faces several challenges: 

- Subjectivity: The subjective nature of textual descriptions can lead to inconsistent 

annotations, affecting retrieval accuracy (Goodrum, 2000). 

- Scalability: Manual annotation of large image collections is not feasible. 

Automated techniques, although helpful, are not always accurate and can miss 

contextual nuances.  
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- Semantic Gap: The gap between textual descriptions and visual content impacts 

retrieval effectiveness. TBIR systems need to bridge this gap to improve accuracy 

(Smeulders et al., 2000). 

- Language  Variability:  Differences  in  language,  spelling,  and  phrasing  affect 

TBIR system’s effectiveness. Multilingual support is crucial for global 

applications (L.-J. Li & Fei-Fei, 2010). 

2.2.1.2. Future Directions 
 
Research in TBIR aims to address these challenges and improve retrieval accuracy. Key 

areas of focus include: 

- Improved NLP Techniques: Advances in NLP can enhance automated 

annotation  and  semantic  analysis,  making  TBIR  systems  more  accurate  and 

context-aware (Brown et al., 2020). 

- Machine Learning: Incorporating machine learning can improve TBIR 

scalability  and  accuracy.  These  technologies  can  learn  from  user  interactions, 

continually refining retrieval results (Khan et al., 2010). 

-  Multimodal  Retrieval:  Combining  TBIR  with  other  retrieval  methods,  like 

CBIR, leverages the strengths of both approaches. Multimodal retrieval systems 

use textual and visual features to enhance accuracy. 

- User Interaction and Feedback: Incorporating user feedback into TBIR systems 

refines  annotations  and  improves  retrieval  accuracy.  Interactive  systems  that 

learn from user behavior are more effective.  

While manual annotation provides high-quality, contextually rich image descriptions, its 

labor-intensive  nature,  high  cost,  time  requirements,  and  issues  with  subjectivity  and 

scalability present significant challenges. These limitations confirm the need for 
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integrating automated and hybrid approaches to enhance the efficiency, scalability, and 

consistency of Text-Based Image Retrieval (TBIR) systems. 
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2.2.2. Content-Based Image Retrieval 
 
A CBIR approach replaces traditional text-driven searches with visual feature analysis. 

In  this  strategy,  images  are  first  preprocessed  (e.g.,  normalized  or  filtered)  to  ensure 

consistent input quality. Next, feature extraction algorithms encode each image into a 

descriptive representation, capturing essential properties such as color, texture, or shape 

(Chopra et al., 2021). These representations are then indexed for rapid comparison. 

 

 

Figure 1- Common CBIR approach 

When a query image is provided, the system repeats the feature extraction process to 

create  a  query  representation,  which  is  subsequently  matched  against  the  indexed 

database using similarity measures. Results are ranked based on their resemblance to the 

query, returning only the most visually similar images (Georgiou, 2021). By focusing on 
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the content itself, CBIR circumvents the need for comprehensive text labeling or manual 

annotations, resulting in a robust, scalable, and efficient retrieval solution. 

CBIR eliminates TBIR’s dependence on text by retrieving images by visual content, such 

as  color  histograms,  textures,  and  spatial  structures  (Smeulders  et  al.,  2000).  CBIR 

systems  extract  these  features  and  visual  descriptors  and  compute  similarity  scores 

between a query image and database images (J. Z. Wang et al., 2001). 

How CBIR Differs from TBIR? 
 

- Uses visual analysis instead of textual annotations. 

- Independent of language barriers – Useful in domains like biomedical imaging 

and forensic investigations, where textual descriptions are insufficient (Rui et al., 

1999). 

 

2.2.2.1. Challenges and Limitations 
 
Despite its strengths, CBIR also faces a number of significant challenges: 

- Semantic Gap: Low-level visual features (e.g., color, shape) often fail to capture 

high-level semantic concepts, creating a gap between the system’s representation 

and the user’s intent (Smeulders et al., 2000). 

- High-Dimensional Feature Space: CBIR extracts feature vectors (e.g., deep CNN 

embeddings),  which  can  be  computationally  expensive  to  index  and  compare, 

especially as databases grow (Datta et al., 2008).  

- Computational  Overhead:  Advanced  feature  extraction  (e.g.,  deep  learning) 

boosts retrieval accuracy but imposes significant demands on processing power 

and storage (Krizhevsky et al., 2012). 
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Domain specificity: Handcrafted features or CNN-based descriptors may need to 

be tailored for specific domains (e.g., medical imaging vs. fashion), limiting the 

generality of a single CBIR system. 

In summary, bridging the semantic gap, managing high-dimensional data, and balancing 

accuracy with computational efficiency are central hurdles for CBIR. Ongoing research 

focuses on improved feature extraction, intelligent indexing, and hybrid approaches (e.g., 

combining text and visual features) to address these limitations and better align retrieval 

results with user expectations. 

 
2.2.2.2. Future Directions 
 
Research in CBIR continues to tackle its core challenges, particularly the semantic gap 

and high computational demands. Key areas of focus include: 

- Advanced Deep Learning Architectures: Building on CNN-based methods 

(Krizhevsky et al., 2012), new architectures (e.g., Vision Transformers) and self-

supervised  frameworks  aim  to  extract  richer,  more  semantically  meaningful 

representations without extensive labeled data (Chen at Ai., 2020). 

- Hybrid Feature Integration: Combining handcrafted features (e.g., color 

histograms) with deep descriptors can yield robust retrieval performance, 

especially in domain-specific contexts like medical or fashion (Smeulders, A. W. 

M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). 

- Efficient Indexing and Similarity Search: As image databases grow, approximate 

nearest-neighbor techniques and hash-based methods help reduce retrieval 

latency and memory usage (He et al., 2018). Ongoing work focuses on scalable 

indexing structures for high-dimensional embeddings. 
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- User-Centric  Enhancements:  Incorporating  relevance  feedback  and  interactive 

interfaces  refine  retrieval  outcomes  over  time,  aligning  system  results  more 

closely with user intent (Torres & Reis, 2008). This iterative process mitigates 

the semantic gap by capturing contextual or personal preferences. 

• Domain Adaptation & Transfer Learning: Tailoring CNN-based CBIR systems 

to specific domains (e.g., remote sensing, forensics) often requires fine-tuning or 

domain adaptation strategies that leverage pre-trained models (Doersch & 

Zisserman, 2017). Research explores how to adapt such models efficiently for 

niche applications. 

 
 
  

  



 45 

2.3. IR Techniques  

The major IR techniques for images can be broadly categorized into two main 

approaches: 

I. TBIR 

II. CBIR 

2.3.1. TBIR 

TBIR is already explained in IR Strategies; this section only focuses on its operational 

techniques. In TBIR, image retrieval is performed using structured metadata indexing, 

allowing images to be searched based on associated textual descriptions rather than their 

visual content. TBIR systems primarily utilize natural language processing (NLP) and 

information retrieval algorithms to improve query matching. 

Advanced NLP techniques, AI-driven annotation, and ontology-based metadata 

expansion  enhance  search  accuracy  and  relevance.  This  section  presents  the  key 

techniques in TBIR. 

2.3.1.1 Advanced TBIR Methodologies  
 

I. Semantic Text Processing & Query Matching 

Traditional keyword-based retrieval is limited when user queries do not match 

stored  metadata  exactly.  Word  embeddings,  such  as  Word2Vec  and  BERT, 

transform words into high-dimensional vector representations, enabling semantic 

similarity-based retrieval (Mikolov et al., 2013). 

§ Mathematical Model for Word Embeddings  

Each word 𝑤 in an image description is mapped to a vector 𝑣! in an 

 −𝑛 dimensional (𝑣!  ∈ 𝑅 " ) space: 

𝑣! =    + 𝑊 ⋅ 𝑤 𝑏  

where: 
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-   𝑊∈ 𝑅 "× |%| is a learned weight matrix encoding semantic 

relationships (analogous to an embedding lookup table), 

-   𝑤 ∈ 𝑅 |%| is a one-hot encoded vector representing the word ( 𝑤 ) in a 

vocabulary ( 𝑉 ), 

-   𝑏 ∈ 𝑅 "  is a bias term refining the vector representation. 

Key Insight: This step converts discrete words into continuous vectors, enabling 

machines to interpret linguistic semantics geometrically (e.g., ”cat” and ”kitten” 

are close in the embedding pace). 

For multi-word queries, an overall query vector 𝑣& is computed as the mean of 

individual word embeddings: 

𝑣& =
1
n

2v ' !

(

)*+

 

The similarity score between a query 𝑄 and an image annotation (represented as 

𝑣, )  is computed using cosine similarity:  

𝑆𝑖𝑚(𝑄, 𝐼) =
𝑣&  ⋅ 𝑣,

|𝑣&||𝑣, |
 

Values range from −1 (dissimilar) to 1 (identical). High scores indicate semantic 

alignment between the query and image annotation. 

Word embeddings improve query relevance by allowing concept-based matching 

rather  than  exact  word  searches.  (Bengio,  Y.,  Ducharme,  R.,  Vincent,  P.,  & 

Jauvin, C. (2003) 

II. Sentiment Analysis 

Sentiment analysis involves determining the sentiment expressed in the textual 

annotations. Understanding the emotional context of descriptions can add another 

layer of relevance in TBIR systems. 
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§ VADER (Valence Aware Dictionary and sEntiment Reasoner): VADER 

is  a  lexicon  and  rule-based  sentiment  analysis  tool  that  is  particularly 

attuned to sentiments expressed in social media. It helps understand the 

emotional tone of the annotations Hutto, C. J., & Gilbert, E. E. (2014) 

§ TextBlob: A simple library for processing textual data, TextBlob provides 

tools for common NLP tasks, including sentiment analysis. It captures the 

sentiment  of  the  textual  descriptions,  useful  for  more  nuanced  image 

retrieval (Loria, 2020). 

III. Automated Image Annotation Using AI 

Manual image annotation is time-consuming. AI-powered models automatically 

generate textual metadata by analyzing image content. These models integrate: 

- CNNs for image feature extraction. 

- Recurrent Neural Networks (RNNs) or Transformer Models for text sequence 

generation. 

§ Mathematical Model for Image Captioning:  

The  AI  model  assigns  a  caption 𝑇  to  an  image 𝐼  by  maximizing  the 

probability of words in 𝑇, given 𝐼: 
𝑇∗ = arg max

.
𝑃 (𝑇|𝐼) 

Where:   

- 𝑃(𝑇|𝐼) represents the probability of generating a description 𝑇 given the 

image 𝐼.   
- The probability is computed using a sequence prediction model: 

𝑃(𝑇|𝐼) = C𝑃 (𝑤/|𝑤+ , … , 𝑤/0+ , 𝐼)1

/*+
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- T = The sequence of words forming the image caption. 

- I = The image input, which provides visual features extracted by a CNN  

𝑃(𝑤/|𝑤+ , … , 𝑤/0+ , 𝐼) =  The probability of generating the next word 𝑤/ , 

given: 

- Previous words in the sequence P(w2|w+ , w3 , … , w20+ , I) 

- The image representation 𝑰, First Word Prediction (Based on the Image 

𝐼): 𝑃(𝑤+|𝐼), Second Word Prediction (Based on 𝒘𝟏  Image 𝐼) : 

𝑃(𝑤3|𝑤+ , 𝐼) 

- This continues until the model generates all 𝑚 words of the caption. 

This approach is used in Recurrent Neural Networks (RNNs) and 

Transformer-based models for image captioning, where the probability of 

each  word  is  computed  sequentially  based  on  previous  words  and  the 

image features. 

IV. Named Entity Recognition (NER) 

NER involves identifying and classifying proper nouns in the text into predefined 

categories such as names of people, organizations, and locations. NER enhances 

the precision of TBIR by extracting specific entities from the annotations. 

• SpaCy: An open-source library for advanced natural language processing 

in  Python,  SpaCy  offers  pre-trained  models  for  NER.  It  effectively  extracts 

entities from image annotations, improving the retrieval process. 

• Stanford NER: This tool uses statistical models trained on labeled data to 

provide  reliable  entity  recognition.  Its  application  in  TBIR  helps  accurately 

identify and classify entities within the textual descriptions. 

V. Metadata Expansion via Ontologies 
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To  enhance  retrieval  accuracy,  TBIR  systems  use  domain-specific  ontologies 

(e.g.,  MeSH  for  medical  images;  U.S.  National  Library  of  Medicine,  n.d.)  to 

expand  queries  with  synonyms  and  related  terms.  This  ensures  that  searches 

retrieve all relevant images, even if the user does not specify the exact metadata 

terms. For example, “X-ray” and “Radiograph” are considered synonymous. This 

broader  search  vocabulary  helps  ensure  that  all  relevant  images  are  retrieved, 

even when a user does not use the exact technical terminology. 

§ Mathematical Model for Query Expansion:  

An ontology can be represented as a graph where nodes correspond to concepts 

(e.g., “X-ray,” “Radiograph”) and edges define relationships between terms (e.g., 

“X-ray → Radiograph (synonym)”). For a given query 𝑄+, the expanded query 

𝑄5 includes all semantically related words: 

𝑄5 =   𝑄 ∪ 𝑤 5  ∣ ∃ (𝑤, 𝑤5)  ∈ 𝐸  

Where: 

-  𝑤5 is a related word from the ontology. 

§ Term Weighting in Expanded Queries (TF-IDF Representation) 

Each term in 𝑄′  is assigned a relevance weight using TF-IDF (Term Frequency–

Inverse Document Frequency) (Salton & McGill, 1983): 

 − 𝑇𝐹 𝑰𝑫𝑭 (𝑡, 𝑑) = 𝑻𝑭 (𝑡, 𝑑) ×  X𝒍𝒐𝒈 𝑁𝑫𝑭(𝑡)Z 

where: 

- 𝑇𝐹(𝑡, 𝑑) = frequency of term 𝑡  in document 𝑑. 

- DF(𝑡) = number of documents containing 𝑡  
- N = total number of documents in the collection. 
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TF-IDF ensures that terms with high descriptive power (i.e., those that appear 

rarely across the collection but are frequent in a specific document) receive higher 

weights. (Salton & Buckley, 1988; Manning et al., 2008) 

Ontology-driven query expansion can significantly enhance retrieval 

performance in text-based image retrieval (TBIR). By incorporating synonymous 

or related terms, expanded queries cover concept-dense domains more 

comprehensively, such as those found in medical imaging. As a result, recall is 

elevated due to broader keyword coverage. Precision often remains stable—or 

even improves—thanks to TF-IDF weighting, which filters out irrelevant results 

by emphasizing contextually critical terms. Empirical findings (X. Li et al., 2021) 

indicate that such expansions accommodate nuanced terminological variations 

without degrading overall result quality. 

Ontologies also function as knowledge graphs that capture key semantic 

relationships  within  specialized  domains.  Leveraging  these  connections  helps 

unify diverse references and mitigates the variability of user queries and metadata 

descriptions. At the same time, TF-IDF weighting ensures that distinctive terms 

retain  prominence,  balancing  comprehensive  retrieval  with  robust  relevance 

ranking. Consequently, combining ontology-based query expansion with TF-IDF 

weighting  is  shown  to  both  increase  recall—through  broader  term  sets—and 

sustain precision—via the strategic weighting of essential concepts. 

2.3.1.2 Application Examples 
 
This section explores real-world applications of TBIR across various domains, 

categorized by the primary approaches used. Each example highlights the techniques 

employed, the specific application, and its significance, supported by references to high-

impact academic literature. 
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• Textual Query-Based Retrieval 

Textual query-based retrieval relies on natural language queries and structured metadata 

to retrieve images. This approach is widely used in domains where user-friendly and 

intuitive search is essential. 

In e-commerce, online marketplaces like Amazon and eBay require efficient retrieval of 

product  images  based  on  user  queries.  Textual  query-based  retrieval  uses  product 

descriptions and metadata to achieve this. Techniques include Natural Language 

Processing  (NLP)  models  like  BERT  to  understand  user  queries  (e.g.,  "red  leather 

handbag") and metadata tagging to annotate product images with attributes like color, 

material,  and  style  (Devlin  et  al.,  2018;  W.  Liu  et  al.,  2011).  For  example,  a  user 

searching for "red leather handbag" retrieves relevant product images, enhancing user 

experience and increasing sales conversion rates. 

On social media platforms like Instagram and Flickr, users rely on user-generated content 

and tags for image retrieval. Textual query-based retrieval uses hashtags and captions to 

improve  search  accuracy.  Techniques  include  user-generated  tags  (e.g.,  "#sunset," 

"mountain hiking") and NLP for semantic analysis of captions (C. Hu, 2021; Z. Wang et 

al., 2018). For instance, a user searching for "#sunset" retrieves images tagged with this 

keyword, improving content discoverability and user engagement. 

• Semantic and Ontology-Based Retrieval 

Semantic  and  ontology-based  retrieval  bridges  the  semantic  gap  by  mapping  textual 

queries to high-level concepts using ontologies and knowledge graphs. This approach is 

critical in domains requiring domain-specific knowledge. 

In healthcare, radiologists and researchers need accurate retrieval of medical images for 

diagnostics and analysis. Semantic-based retrieval uses medical ontologies and 

knowledge  graphs  to  achieve  this.  Techniques  include  NLP  for  medical  terms  using 
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models like BioBERT to extract terms from queries (e.g., "early-stage lung cancer") and 

ontology  development  using  standards  like  SNOMED  CT  to  standardize  terms  and 

relationships (Lee et al., 2020; Rui et al., 1999). For example, a radiologist querying 

"early-stage lung cancer in non-smokers" retrieves relevant X-rays, improving diagnostic 

accuracy and workflow efficiency. 

At Biodiversity Research, researchers and conservationists need to retrieve images of 

species for biodiversity studies. Semantic-based retrieval uses domain-specific 

ontologies to link species names to related concepts (e.g., habitats, conservation status). 

Techniques  include  NLP  for  species  identification  and  domain-specific  ontologies 

(Zhang,  2021).  For  instance,  a  researcher  querying  "endangered  bird  species  in  the 

Amazon  rainforest"  retrieves  relevant  images,  supporting  biodiversity  research  and 

conservation efforts. 

• Multimodal Retrieval (Text + Visual Features) 

Multimodal retrieval combines textual queries with visual features to retrieve images 

using  multimodal  embeddings.  This  approach  is  ideal  for  domains  requiring  context-

aware and semantically rich results. 

The  Search  Engines,  platforms  like  Google  Images  and  Bing  Visual  Search  require 

accurate retrieval of images based on complex queries. Multimodal retrieval uses text 

and visual features to achieve this. Techniques include multimodal embeddings using 

models like CLIP to align textual and visual representations and visual feature extraction 

using CNNs or Vision Transformers (ViTs) (He et al., 2017; Radford et al., 2021). For 

example,  a  user  querying  "red  dress  with  floral  patterns"  retrieves  visually  similar 

images, enhancing retrieval accuracy and user satisfaction. 

In Advertising, Advertisers need to retrieve images for campaigns based on descriptive 

queries. Multimodal retrieval uses text and visual features to achieve this. Techniques 
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include  multimodal  embeddings  to  align  textual  queries  with  visual  features  and 

relevance feedback to iteratively refine results based on user input (Frome et al., 2013; 

W. Wang et al., 2021). For instance, an advertiser querying "diverse team collaborating 

in a modern office" retrieves relevant stock photos, enabling targeted and contextually 

relevant advertising. 

2.3.2. CBIR 

Since CBIR has already been explained in the IR Strategies section 1.3.2, this section 

focuses specifically on its operational techniques, such as feature extraction, similarity 

measurement, and indexing methods. 

CBIR is a technique that searches for images by analyzing visual features (color, texture, 

shape, etc.) rather than relying on textual descriptions. Each image is mapped to a feature 

vector, and retrieval is performed by comparing these vectors with a similarity measure 

(e.g., Euclidean distance, Earth Mover’s Distance). By focusing on the image content 

itself,  CBIR  can  uncover  relevant  results  even  when  textual  labels  are  absent  or 

incomplete. The following subsections introduce the key formulas for feature 

representation, discuss common distance metrics, and highlight both the advantages of 

CBIR (e.g., metadata independence) and its challenges (such as bridging the semantic 

gap). 

2.3.2.1 Advanced CBIR Methodologies 

I. Feature-Based Retrieval 

Feature-based  retrieval  is  a  specialized  subset  of  CBIR  that  extracts  and  compares 

mathematical feature descriptors instead of raw pixel-based properties (Swain & Ballard, 

1991). Unlike general CBIR, which may rely on simple color histograms, feature-based 

retrieval employs advanced descriptors such as: 
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- Scale-Invariant Feature Transform (SIFT) – Detects stable key points for object 

matching (Lowe, 1999). 

- Histogram of Oriented Gradients (HOG) – Useful in object detection and facial 

recognition (Dalal & Triggs, 2005). 

Unique Contribution: Feature-based retrieval is more precise than traditional CBIR since 

it can detect robust object features regardless of lighting, rotation, or scaling differences 

(Lowe, 1999). 

II. Semantic-Based Image Retrieval 

Semantic-based image retrieval bridges the semantic gap in traditional CBIR by inferring 

high-level conceptual meaning rather than relying solely on low-level features like color 

histograms and texture patterns. Unlike classical CBIR, which matches images based 

primarily on pixel-derived properties, semantic-based retrieval employs: 

• Deep Learning: Deep neural networks (e.g., ResNet, Vision Transformers) 

extract  hierarchical  features  that  capture  objects,  scenes,  and  contextual 

relationships (He et al., 2016). 

• Ontological Knowledge: Domain-specific ontologies (e.g., WordNet, 

RadLex) enable query expansion by incorporating synonymous and related 

terms, ensuring broader and more precise retrieval (Miller, 1995). 

• Cross-Modal  Alignment:  Models  such  as  CLIP  align  visual  and  textual 

semantics, allowing natural language queries (e.g., "beach sunset") to retrieve 

contextually relevant images (Radford et al., 2021). 

III. Reverse Image Search 
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Reverse image search is a specialized application of CBIR that focuses on instance-level 

retrieval—identifying near-duplicate or highly similar images to a query image. Unlike 

traditional  CBIR  systems,  which  often  retrieve  semantically  related  images  (e.g., 

"beaches" for a "sunset" query), reverse image search prioritizes visual similarity at the 

pixel or feature level. Key Differentiators:  

• Focus on Near-Duplicates: Reverse image search targets near-identical matches (e.g., 

cropped,  resized,  or  slightly  modified  versions  of  the  query  image).  Example: 

Detecting copyrighted images or identifying fake social media profiles using facial 

recognition. 

• Technology:  While  traditional  CBIR  relies  on  handcrafted  features  (e.g.,  color 

histograms,  texture  descriptors),  modern  reverse  image  search  systems  use  deep 

CNNs  to  generate  high-dimensional  embeddings  that  capture  fine-grained  visual 

patterns (Krizhevsky et al., 2012).Example: Google’s Reverse Image Search employs 

CNN architectures like Inception-v3 (Szegedy et al., 2016) to encode images into 

feature vectors for similarity matching. 

• Applications:  Copyright  enforcement  (e.g.,  identifying  unauthorized  image  use), 

Plagiarism  detection  in  academic/creative  work,  Fact-checking  by  tracing  image 

origins (e.g., debunking misinformation). 

IV. Region-Based Image Retrieval 

RBIR  focuses  on  retrieving  images  based  on  specific  localized  regions  rather  than 

analysing  the  entire  image  (Rui  et  al.,  1999).  Used  in  medical  imaging  –  A  system 

searching for lung tumors focuses only on the lung region rather than matching full-body 

X-rays (J. Z. Wang et al., 2001). 
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Unlike object detection, which localizes and labels objects (e.g., tumors), RBIR retrieves 

images  with  regions  that  are  visually  or  semantically  similar  to  a  query  region.  For 

example, a radiologist can select a lung nodule in a CT scan, and RBIR will retrieve 

studies with analogous nodules, leveraging texture and shape features rather than object 

labels (Litjens et al., 2017). 

V. Sketch-Based Image Retrieval 

SBIR enables users to query image databases using freehand sketches, retrieving images 

that align with the geometric structure and spatial layout of the sketch. Unlike CBIR, 

which  relies  on  low-level  features  like  color  and  texture,  SBIR  prioritizes  structural 

similarity  (e.g.,  edges,  contours,  shapes),  making  it  ideal  for  applications  requiring 

abstract or conceptual matching (Eitz et al., 2012).Distinct from CBIR: 

- Instead of relying on color or texture features, SBIR matches geometric properties. 

VI. Relevance Feedback Mechanisms 

Relevance feedback improves retrieval by iteratively refining search results based on 

user input (Torres & Reis, 2008). 

Example:  A  user  searching  for  “wildlife  photography”  can  mark  relevant  results, 

prompting the system to improve subsequent searches dynamically. 

Distinct Contribution: 

- Unlike fixed retrieval models, feedback-based retrieval adapts over time, 

improving personalized search. 

VII. Hybrid Approaches 
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Hybrid retrieval combines textual, visual, and semantic features to optimize accuracy 

(Bose  et  al.,  2015).  Multimodal  search  engines  use  hybrid  retrieval  by  integrating 

keyword search with CBIR-based visual filtering. 

Distinct from Other Methods: 

- Rather  than  relying  on  a  single  approach,  hybrid  retrieval  balances  multiple 

strategies, ensuring adaptability across different datasets. 

2.3.2.2 Application Examples 

There are several academically framed application examples that demonstrate the use of 

advanced CBIR methodologies: 

• Application Examples of CBIR Feature‐Based Retrieval 

In forensic image analysis, advanced feature‐based CBIR systems have proven 

indispensable for matching and retrieving near-duplicate images from extensive digital 

evidence databases. These systems rely on robust local feature descriptors that capture 

invariant image characteristics despite changes in scale, rotation, or illumination. 

For example, a forensic tool may employ the following techniques:  

- Scale-Invariant Feature Transform (SIFT): 

SIFT extracts distinctive keypoints and computes high-dimensional descriptors 

that remain stable under affine transformations. In forensic applications, SIFT is 

used to identify and match local keypoints between a query image and database 

images, allowing investigators to retrieve evidence even if the images have been 

manipulated or captured under different conditions (Lowe, 1999; DOI: 

10.1109/ICCV.1999.790410). 

o Histogram of Oriented Gradients (HOG): Complementing SIFT, HOG captures 

the distribution of edge orientations within localized regions, thereby providing 

structural information about the objects in an image. This descriptor is 
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particularly useful in scenarios where the overall shape and texture are critical for 

verification, such as matching faces or specific objects in crime scene images 

(Dalal & Triggs, 2005; DOI: 10.1109/CVPR.2005.177). 

o Geometric  Verification:After  extracting  features  using  SIFT  and  HOG,  the 

system  typically  applies  geometric  verification  techniques—such  as  Random 

Sample Consensus (RANSAC)—to eliminate false matches. This step ensures 

that  only  spatially  consistent  correspondences  contribute  to  the  final  retrieval 

decision. 

In  a  practical  forensic  scenario,  an  analyst  submits  a  query  image  suspected  to  be  a 

modified  copy  of  illicit  content.  The  system  first  extracts  SIFT  keypoints  and  HOG 

descriptors  from  the  query  image  and  the  entire  database.  A  nearest-neighbor  search 

identifies candidate matches based on descriptor similarity. Subsequently, RANSAC* is 

used  to  verify  the  spatial  consistency  of  the  matched  features.  The  final  ranking  of 

candidate images is determined by the number of inliers matches and the quality of the 

geometric transformation between images. This robust approach significantly narrows 

down the search space and helps investigators pinpoint images that are highly similar, 

even under variations due to cropping, rotation, or scale. 

*RANSAC  (Random  Sample  Consensus)  is  a  robust  model-fitting  algorithm  that 

repeatedly  selects  random  data  subsets  to  estimate  parameters,  discarding  outliers  to 

achieve reliable results even under significant noise. (Fischler, M. A., & Bolles, R. C. 

(1981). 

• Application of RBIR 

RBIR plays a critical role in domains where the retrieval task requires localized analysis 

of image content rather than global image features. In medical imaging, for example, 

precise  retrieval  of  pathological  regions—such  as  tumors  or  lesions—from  a  large 
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database  of  radiological  scans  is  essential  for  accurate  diagnosis  and  comparative 

analysis. A typical RBIR system in medical applications operates as follows: 

- Advanced  Segmentation:  The  system  employs  deep  learning–based  segmentation 

models, such as U-Net, to partition radiological images (e.g., CT or MRI scans) into 

meaningful  regions.  U-Net  has  been  widely  adopted  due  to  its  encoder–decoder 

architecture, which effectively captures both global context and fine-grained details 

(Ronneberger et al., 2015). This step isolates the regions of interest (ROIs) that may 

contain lesions or other abnormalities. ROI is a specified subset of an image—often 

defined by coordinates or masks—that highlights the critical area for focused analysis 

or processing, such as detecting objects or measuring localized features. 

- Region-Specific Feature Extraction:Once the regions are segmented, region-specific 

features  are  computed.  These  features  typically  include  texture  descriptors  (e.g., 

Local Binary Patterns) and shape-based metrics that characterize the morphology of 

the detected region. This targeted feature extraction helps to capture the essential 

properties of the pathology, reducing the influence of irrelevant background 

information. 

- Object Detection and Localization: 

In addition to segmentation, object detection models such as Faster R-CNN can be 

integrated  to  further  refine  the  localization  of  pathological  areas.  Faster  R-CNN 

generates  bounding  boxes  that  highlight  the  precise  locations  of  lesions,  thereby 

complementing the segmentation process (Ren et al., 2016; DOI: 

10.1109/TPAMI.2016.2577031). 

- Similarity Matching and Ranking: 

The  extracted  region-based  features  are  then  used  to  perform  similarity  matching 

across  a  database  of  segmented  images.  The  system  computes  a  similarity  score 
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between the query ROI and each candidate ROI in the database, ranking the images 

such that those with the most similar pathological features appear at the top of the 

retrieval results. 

In  the  real-world  application,  a  radiologist  submits  a  query  image  that  contains  a 

segmented lesion. The RBIR system first isolates the lesion using U-Net segmentation, 

extracts texture and shape descriptors from the lesion area, and applies Faster R-CNN to 

verify the region's localization. The system then computes similarity scores based on 

these  region-specific  features  and  ranks  the  images  accordingly.  As  a  result,  the  top 

retrieved images display lesions that share similar morphological characteristics, thus 

assisting the radiologist in making more informed diagnostic decisions. 

In remote sensing, RBIR is similarly applied by segmenting satellite images to extract 

regions corresponding to specific land-cover types—such as deforested areas or urban 

expansions. 

• Application of Semantic‐Based Retrieval  

In modern medical imaging, semantic‐based retrieval systems have become essential for 

aiding  clinicians  in  diagnosing  and  researching  complex  conditions.  For  example, 

consider a radiology retrieval system designed to assist in the diagnosis of early-stage 

lung cancer. In this application, the system leverages advanced CBIR methodologies that 

integrate deep learning, ontology-driven query expansion, and cross-modal alignment to 

overcome  the  limitations  of  traditional,  low-level  feature  matching.  Techniques  and 

Workflow: 

- Deep Feature Extraction: The system employs a deep CNN—for instance, a ResNet 

architecture (He et al., 2016)—pre-trained on large natural image datasets and fine-

tuned  on  medical  images.  This  network  extracts  high-level  features  that  capture 
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complex  visual  patterns  such  as  tissue  textures,  shapes  of  lung  nodules,  and 

contextual anatomical structures. 

- Ontology-Driven Query Expansion: To bridge the semantic gap, the system integrates 

a  domain-specific  ontology  (e.g.,  RadLex  or  a  customized  medical  ontology)  that 

encodes relationships between diagnostic terms. When a clinician queries the system 

using  a  term  such  as  “early-stage  lung  cancer,”  the  ontology  expands  the  query  to 

include related concepts such as “nodule,” “mass,” and “lesion” (Miller, 1995). This 

ensures that the retrieval process considers a broader, more clinically relevant set of 

features. 

- Cross-Modal  Alignment:  Advanced  models  like  CLIP  (Radford  et  al.,  2021)  are 

employed  to  align  textual  descriptions  from  radiology  reports  with  visual  features 

extracted from images. This cross-modal alignment allows the system to interpret natural 

language queries in the context of the visual data, enhancing the semantic understanding 

of the query. 

- Similarity  Measurement  and  Ranking:  The  deep  features  are  compared  using  cosine 

similarity, which, after normalization, effectively measures the angular distance between 

the  query  and  database  feature  vectors.  Images  with  the  highest  similarity  scores  are 

ranked at the top, ensuring that the retrieved images are semantically and visually aligned 

with the diagnostic query.  

• Application Example of Reverse Image Search 

Reverse  image  search  is  a  specialized  CBIR  application  designed  to  identify  near-

duplicate  or  highly  similar  images,  a  critical  capability  for  enforcing  copyright  and 

detecting unauthorized image reuse. This approach leverages advanced CBIR 

methodologies  to  extract  and  compare  robust  visual  features,  even  when  images  are 

modified by cropping, scaling, or color adjustments. Techniques and Workflow: 
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- Deep Feature Extraction: A state-of-the-art CNN such as Inception-v3 (Szegedy et 

al., 2016) or ResNet (He et al., 2016) is used to generate high-dimensional feature 

embeddings that capture fine-grained visual details and are robust to minor image 

variations. Additionally, neural codes as proposed by Babenko et al. (2014) can be 

extracted to represent image content in a compact form. 

- Instance-Level Matching: The system computes similarity scores between the query 

image's  embedding  and  those  stored  in  the  database  using  cosine  similarity.  For 

normalization and efficient matching, approximate nearest neighbor (ANN) search 

algorithms—such as those based on Hierarchical Navigable Small World (HNSW) 

graphs (Malkov & Yashunin, 2018)—are employed. 

- Ranking:  Images  are  ranked  in  descending  order  based  on  their  cosine  similarity 

scores,  with  the  top 𝐾  matches  displayed  to  the  user.  This  ranking  enables  rapid 

identification of potential copyright infringements or unauthorized usage. 

• Application Example of Hybrid/Multimodal Retrieval  

Hybrid/multimodal retrieval systems integrate visual features with textual metadata to 

enhance product search in e-commerce platforms. In this application, a user may enter a 

natural language query (e.g., “red leather jacket with zipper”) while the system 

simultaneously analyzes product images using deep CNN. The retrieval pipeline fuses 

textual embeddings—generated by models such as BERT (Devlin et al., 2018)—with 

visual embeddings obtained from a state-of-the-art network (e.g., ResNet-50; He et al., 

2016). An attention-based fusion module combines these complementary representations 

into a unified feature vector, which is then used to compute similarity scores via cosine 

similarity.  The  system  ranks  the  products  based  on  the  joint  relevance  of  visual 

appearance and descriptive text, enabling more accurate and context-aware 

recommendations. Key Techniques and Workflow: 
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- Textual Embedding: Text from product descriptions is processed using BERT to 

generate semantic embeddings that capture contextual information (Devlin et al., 2018). 

- Visual Embedding: Images are encoded using a deep CNN, such as ResNet-50, 

to obtain robust visual features that capture fine-grained details (He et al., 2016). 

- Fusion  Strategy:An  attention-based  multimodal  fusion  mechanism—similar  to 

approaches  discussed  by  Ngiam  et  al.  (2011)  and  further  refined  in  recent  works—

integrates the textual and visual embeddings into a single, hybrid feature vector. 

- Similarity Matching and Ranking: The fused representation is compared against 

a database of product embeddings using cosine similarity, and the top 𝐾  matches are 

returned, ensuring that the retrieved products closely align with both the visual style and 

descriptive attributes of the query. 
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Chapter 3 

Literature survey 

3.1. CBIR Evolution 

Information  Retrieval  IR  originated  from  early  library  and  information  management 

systems,  emerging  as  a  formal  academic  discipline  in  the  mid-20th  century  with  the 

advancement of electronic technologies. A landmark event was Vannevar Bush's 1945 

conceptualization of the Memex, establishing fundamental principles for contemporary 

IR  systems  (Bush,  1945).  Further  pivotal  developments,  such  as  Gerard  Salton’s 

probabilistic  retrieval  models,  significantly  shaped  modern  retrieval  methodologies 

(Salton, 1989). 

With technological evolution, digital image databases have grown exponentially, 

impacting fields like medicine, art preservation, and geographic information systems. 

This  rapid  expansion  underscored  the  inadequacies  of  traditional  text-based  retrieval 

methods,  particularly  their  heavy  reliance  on  manual  annotation.  Such  reliance  is 

problematic,  especially  in  domains  requiring  accurate  recognition  of  complex  visual 

content, exemplified by the medical field, where accurately retrieving images depicting 

subtle anomalies or tumors is crucial. 

CBIR,  introduced  in  the  1990s  with  systems  like  QBIC  and  VisualSEEk,  offered 

significant advances by indexing and retrieving images based on their intrinsic visual 

attributes,  such  as  color,  texture,  and  shape  (Faloutsos  et  al.,  1994;  Smith  &  Chang, 

1996).  Despite  these  advancements,  CBIR  continues  to  face  considerable  limitations, 

such as insufficient retrieval accuracy, poor scalability to large image collections, and 

the persistent semantic gap—the disconnect between low-level image features and high-

level semantic interpretation. 
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Recent  developments  leveraging  deep  learning,  especially  CNNs),  have  substantially 

improved feature representation and retrieval accuracy. These networks automatically 

extract hierarchical features, significantly reducing manual intervention and enhancing 

semantic understanding (Krizhevsky et al., 2012; Doersch & Zisserman, 2017). 

However, deep learning methodologies still confront challenges, including high 

computational costs, scalability issues, and dependence on large, annotated datasets. 

Hybrid methods integrating handcrafted and deep-learned features have provided partial 

solutions, combining the advantages of classical image descriptors with deep learning's 

automated  feature  extraction,  resulting  in  improved  retrieval  robustness  (Wan  et  al., 

2014;  Babenko  et  al.,  2014).  Nonetheless,  opportunities  remain  to  further  optimize 

accuracy, computational efficiency, and generalization, particularly through effectively 

leveraging partially labeled datasets. 

Addressing these identified gaps and limitations provides the central motivation for this 

research. Consequently, this thesis proposes the Self-Optimizing DeepRec 

Convolutional Neural Network (SO-DRCNN), an innovative framework integrating the 

Ternion  Paradigm—comprising  Histogram  of  Oriented  Gradients  (HOG),  Inclusive 

Color Histogram (ICH), and Slanting Express Revolves Concise (SERC)—to minimize 

reliance on labeled data, enhance computational efficiency, and significantly improve the 

accuracy and scalability of CBIR systems. 

 

Figure 2 - CBIR Evolution 
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3.2. The Paradigm Shift Toward Learned Features 

CBIR  applications  have  been  built  to  use  various  image  features  depending  on  the 

application area. The practical CBIR application utilizes the elements of visible contents 

known  as  image  features.  The  popular  features  used  in  CBIR  are  color  distribution, 

texture assembly, and shape form. They can practically identify and relate to the contents 

of an image. These features are carefully designed and have proven (A. Kumar et al., 

2021) to work efficiently in most CBIR applications. Such features are generally called 

handcrafted features. 

Even though many different CBIR systems have been developed and put to productive 

use, these systems all have problems with conceptual gaps and valuable features. While 

the  conventional  handcrafted  descriptions  still  show  significant  shortcomings,  they 

perform well in picture retrieval. These challenges must be carefully examined to develop 

a better performance system.  

The following are the main shortcomings of the handmade features:  

- Semantic  gap  remains  the  main  problem  notwithstanding  the  progress 

made in the CBIR. As a result, there is a certain level (Srivastava et al., 

2023) of disintegration among the application's estimated attributes (such 

as texture and colour distribution) and people's cognitive perceptions of 

artefacts and situations.  

- Handcrafted  features  are  inefficient  and  not  adaptable.  It  is  tough  to 

develop and deploy a new CBIR system. A wide range of handcrafted 

features are available, and the chosen features significantly impact 

retrieval results. System developers and end users require comprehensive 

studies to determine the most appropriate attributes.  
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To select appropriate characteristics, one must better understand the domain in which 

CBIR is being employed. The selection of features needs to improve the system's overall 

performance. 

Finally, depending on the images' substance and nature, a set of attributes that performs 

effectively in a particular field may not produce satisfactory outcomes in another. 

As  a  result,  a  requirement  exists  to  develop  characteristics  that  do  not  require  prior 

knowledge of the application domain. The system should automatically generate or learn 

these characteristics based on the input data. Furthermore, the system should outperform 

the standard CBIR system, which uses handcrafted features. To overcome these issues in 

image retrieval, an increasing number of CBIR approaches have been introduced and are 

being investigated. Machine learning approaches allow (Radha et al., 2021) systems to 

derive  substantial  insights  from  incoming  data.  Systems  of  this  kind  will  be  able  to 

recognize similarities and execute autonomous decisions without human involvement. 

Machine  learning  techniques  are  widely  used  in  various  fields,  including  medicine, 

protection, networking websites, data science, and aerospace.  

In addition, artificial intelligence is widely used in traditional image-

processing activities,  including  categorizing  and  recognizing  objects  and  segments. 

Machine  learning  algorithms  can  help  deal  with  the  shortcomings  of  handcrafted 

characteristics regarding image retrieving. 

3.2.1. Image Similarity Measures Used in CBIR 

By  comparing  the  feature  vectors  of  each  image,  we  can  determine  how  similar  two 

images are. Diverging images have a larger difference value than comparable images. 

Various metrics for similarity have been proposed in numerous image retrieval systems. 

To be effective, a similarity measure must meet several criteria (Salih & Abdulla, 2021): 

- Local Consistency: Following the triangular inequality in a neighborhood. 

- Computational Effectiveness: The ability to work in real-time and on a large 

scale. 
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- Durability to Disturbances: Invariant to perturbations. 

- Consensus with Semantics: Consistent with the concept of semantics. 

Categories of Image Similarity Measurements: 

- International, Region-Based, or Amalgamation of Both: Applying similarities based on 

either the whole image, specific regions, or a combination of both. 

-  Handling  Characteristics  as  Matrices  or  Non-Vector  Interpretations:  Features  are 

organized  into  a  matrix  format  where  each  element  represents  a  specific  attribute  or 

relationship in the image. This structure allows for more complex and nuanced 

representations of image features. 

-  Modelling  approaches:  supervised  (monitored),  semi-supervised,  and  unsupervised 

(unregulated) techniques. Supervised modelling uses labelled data to train models for 

high accuracy, semi-supervised combines small labelled with large unlabeled datasets 

for efficient learning, and unsupervised identifies patterns solely from unlabeled data, 

enabling the discovery of hidden structures. Each approach offers distinct advantages 

and challenges tailored to the specific needs of image retrieval tasks. 

- Calculating Commonalities: Across linear space or nonlinear manifolds. Linear space 

methods use straightforward algebraic techniques for simplicity and efficiency, while 

nonlinear manifold approaches capture more complex relationships and structures within 

the data, providing a more nuanced similarity measure. Each method is chosen based on 

the specific characteristics and requirements of the image retrieval task. 

- Significance of Image Portions: Considering the importance of different image parts in 

similarity calculations. 

- Stochastic, Fuzzy, or Consistent Measures: Using different mathematical approaches 

for similarity measures. 

To achieve tailored image searches, visual comparison metrics need to consider 

subjectivity more seriously. Besides terminology, concepts like aesthetics and individual 

preferences for content and style may also be included. Research is ongoing to extend 
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the idea of unpredictable image topologies to cover the entire range of natural visuals 

and enable customization. 

In  brief,  different  distance  measures  vary  in  their  input  type,  computation  method, 

computational  difficulty,  and  metricity.  The  specific  program  and  the  feature  vectors 

created determine which distance metric is employed. By considering various factors and 

incorporating subjectivity, future research aims to improve the effectiveness of image 

similarity metrics, making them more practical and user-centered. 

3.2.2. Important Points Descriptors In CBIR Frameworks 

Key  points  descriptors,  such  as  regions,  objects  of  interest,  edges,  or  corners,  have 

become invaluable in CBIR and various computer vision applications. These descriptors 

offer robustness and invariance to scale and rotation, providing significant advantages 

over traditional global features. 

One  of  the  most  popular  key  point  descriptors  in  recent  years  is  the  Scale-Invariant 

Feature Transform (SIFT). SIFT is well-known for its ability to match different views of 

objects or scenes, making it a key tool in many CBIR systems (Kapoor et al., 2021). 

However,  SIFT's  high  dimensionality  can  slow  down  feature  computation,  especially 

when combined with techniques like Principal Component Analysis (PCA-SIFT) and 

Gradient Location and Orientation Histogram (GLOH). 

To overcome these problems, Speeded Up Robust Features (SURF) was developed as a 

faster and more robust alternative. SURF keeps many of SIFT's advantages but improves 

computational  efficiency.  Another  method,  the  Bag-of-Words  (BoW)  model,  uses 

keypoint-based  descriptors  like  SIFT  to  create  a  visual  vocabulary.  While  BoW  is 

accurate,  it  can  be  computationally  demanding  and  memory-intensive,  making  it  less 

suitable for large image collections (Patil & Kumar, 2013). 
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The Fisher Vector (FV) method, based on a Gaussian Mixture Model (GMM), offers a 

more informative image representation by encoding higher-order statistics. This 

approach leads to better performance compared to BoW. As a non-probabilistic 

alternative, the Vector of Locally Aggregated Descriptors (VLAD) aggregates residuals 

associated with each codeword to represent images, providing a simpler yet effective 

method (Patil & Kumar, 2017). 

Local  Binary  Patterns  (LBP),  introduced  for  texture  classification,  have  shown  great 

utility  in  image  retrieval.  Variations  like  Local  Ternary  Patterns  (LTP)  and  Center 

Symmetric Local Binary Patterns (CSLBP) further enhance performance. Local Tetra 

Patterns (LTrPs) and newer techniques such as Local Mesh Pattern (LMeP) and Local 

Ternary Co-occurrence (LTCoP) continue to push the boundaries in CBIR system design 

(G.-H. Liu & Yang, 2013). 

Additionally, methods like Histograms of Oriented Gradients (HOG) and Compressed 

Histogram of Gradients (CHoG) provide robust feature descriptions. The Differential 

Between Pixels of Scans Pattern (DBPSP) focuses on pixel differences within scanning 

patterns for texture features. ORB (Oriented FAST and Rotated BRIEF), BRISK (Binary 

Robust Invariant Scalable Keypoints), and FREAK (Fast Retina Keypoint) are newer 

binary descriptors inspired by the human visual system, offering efficient alternatives to 

SIFT  and  SURF.  The  Nested  Shape  Descriptor  (NSD)  is  a  recent  development  that 

outperforms SIFT in binary form (Kapoor et al., 2021). 

In conclusion, the evolution of key point descriptors has significantly enhanced CBIR 

systems'  performance,  making  them  more  robust,  scalable,  and  efficient  in  various 

applications.  Their  robustness  and  invariance  to  scale  and  rotation  offer  significant 

advantages over traditional global features. 

1- Popular Key Point Descriptors: 
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o SIFT (Scale-Invariant Feature Transform): 

o Reliable for matching different perspectives of objects or scenes. 

o Widely used in CBIR systems. 

o High dimensionality can be a drawback, leading to slower feature 

computation. 

o SURF (Speeded Up Robust Features): 

o Faster and more resilient to picture alterations than SIFT. 

o Bag-of-Words (BoW) Model: 

o Utilizes keypoint-based descriptors like SIFT to create a visual 

vocabulary. 

o Computationally  intensive  and  memory-heavy,  less  scalable  for  large 

image collections. 

2- Advanced Feature Representations: 

o Fisher Vector (FV): 

o Based on a Gaussian Mixture Model (GMM). 

o Encodes higher-order statistics for better performance. 

o Vector of Locally Aggregated Descriptors (VLAD): 

o Aggregates residuals associated with each codeword to represent images. 

o Enhancements  include  intra-normalization,  residual  normalization,  and 

localized location. 

3- Local Binary Patterns (LBP): 

o Used for texture classification and image retrieval. 

o Variations like LTP, CSLBP, and LTrPs enhance performance. 

4- Histograms and Gradients: 
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o Histograms of Oriented Gradients (HOG): Locally normalized descriptions for 

robust feature descriptions. 

o Compressed Histogram of Gradients (CHoG): Reduced bit-rate characterization. 

5- Binary Descriptors: 

o ORB  (Oriented  FAST  and  Rotated  BRIEF):  Efficient  alternative  to  SIFT  and 

SURF. 

o BRISK (Binary Robust Invariant Scalable Keypoints):Novel key point 

descriptor. 

o FREAK (Fast Retina Keypoint): Inspired by the Human Visual System. 

o Nested Shape Descriptor (NSD): Outperforms SIFT in binary form on the 

VGG-Affine test. 

3.2.3. Distance Metric Utilized In CBIR System 

In CBIR, accurately measuring the similarity or dissimilarity between images is crucial 

for effective retrieval. This process, following feature extraction, hinges on the use of 

distance metrics that can capture perceptual similarity accurately. 

Traditional distance metrics like Manhattan Distance (MD), Euclidean Distance (ED), 

and Vector Cosine Angle Distance (VCAD) are commonly used but often fall short in 

reflecting human perception accurately (Chugh et al., 2021). The Minkowski distance, 

despite its popularity, also struggles with perceptual accuracy. 

Advanced  metrics  such  as  Kullback-Leibler  Divergence  (KLD)  and  Earth  Mover's 

Distance (EMD) provide a more nuanced approach. EMD, based on the transportation 

problem,  has  proven  effective  across  various  applications,  including  color,  contour 

matching, texture, melodies, and visual tracking. These advanced metrics offer better 

perceptual distance representation, but their benefits are maximized only with efficient 

storage and query processing. 
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Detailed assessments have shown that EMD, among others, excels in picture similarity 

searches. However, to leverage its high-quality retrieval capabilities, efficient storage 

and query processing are essential.  

CBIR  systems  often  use  low-level  features  like  color,  texture,  shape,  and  corners  to 

approximate  the  perceptual  representation  of  an  image.  Yet,  these  features  alone  are 

insufficient for capturing the full semantic relationships within an image. 

Innovative learning techniques are being explored to overcome these limitations. For 

instance,  Bian  and  Tao  introduced  the  Biased  Discriminative  Euclidean  Embedding 

(BDEE), enhancing relevance feedback mechanisms by integrating relevant and 

irrelevant  data.  Similarly,  Biased  Maximum  Margin  Analysis  (BMMA)  and  Semi-

supervised BMMA (Semi-BMMA) incorporate feedback and unlabeled data, refining the 

image  retrieval  process  (Ghrabat  et  al.,  2019).  Despite  these  advancements,  active 

learning techniques remain crucial, especially with insufficient training examples. 

To  address  long-term  feedback  challenges,  strategies  like  Case-Based  Long  Term 

Learning  (CB-LTL)  are  proposed,  focusing  on  capturing  user  preferences  over  time. 

Additionally,  graph-based  re-ranking  methods,  such  as  the  random  walker  algorithm, 

offer innovative solutions for ranking images based on user-labeled data. These methods 

calculate ranking scores by determining the likelihood of a random walker reaching a 

relevant seed node before an irrelevant one, thus improving retrieval accuracy. 

3.2.3.3 CBIR with Relevance Feedback 

Since  there  is  currently  no  dependable  framework  for  modeling  high-level  image 

semantics  that  is  unaffected  by  perceptual  subjectivity,  particular  to  the  case, query 

interpretations  can  be  understood  by  looking  at  user  input.  RF  is  a  query  adjustment 

method that aims to extract semantic information particular to the user and the query, 

then adjusts the results accordingly. This CBIR approach requires a significant amount 
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of user interaction along with input on relevance. Systems that are founded on 

subjective requests from users cannot coexist with a completely automated, unsupervised 

system; relevance feedback offers a middle ground. The primary challenge in 

establishing  such  a  paradigm  is  the  increasing  user  interaction,  given  the  highly 

diversified user population. 

Additionally, there's the matter of how well the input can be improved. Although users 

would prefer fewer sessions for feedback (Veselý, 2023), there is a problem with the 

amount of feedback that is necessary for the system to understand the needs of the user. 

While assuming a fixed goal is weaker, a single problem that has been widely overlooked 

in the applicability of feedback-based CBIR research is the possibility that the user's 

demands would change as the assessment phase’s progress. 

3.2.3.4. Color-Based Features in CBIR 

Color is one of the most accessible visual elements in digital images, typically displayed 

as color components or planes. Extracting color-based features involves three main steps: 

selecting  the  color  space  (Garg  &  Dhiman,  2021),  quantizing  the  color  space,  and 

extracting the color features (Muthukkumar & Seenivasagam, 2022). 

Key Techniques in Color-Based Feature Extraction: 

1. Color Histograms: 

- Conventional Color Histogram (CCH): Represents the frequency of each color in an 

image. It is straightforward but may lack robustness against variations in lighting and 

quantization errors. 

- Fuzzy Color Histogram (FCH): Uses a fuzzy-set membership function to record each 

pixel's color similarity to all histogram bins (Giannoulakis et al., 2023). FCH is more 

resistant to lighting variations and quantization errors, but determining the proper fuzzy 

membership function can be computationally challenging. 
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2. Color Correlogram (CC): 

 - Describes how the spatial correlation of color pairs changes with distance. It is indexed 

by color pairs, indicating the likelihood of finding a pixel of color "j" at a distance "d" 

from a pixel of color "i" (Alyosef, 2023). CC captures both local and global spatial data, 

making it effective for coarse-grain color images. However, it has a high computational 

cost due to the quadratic increase in image dimensions. 

3. Color Averages and Block Truncation Coding (BTC): 

 - Color Averages: These methods aggregate an image's color information into feature 

vectors such as row mean (RM), column mean (CM), forward diagonal mean (FDM), 

and backward diagonal mean (BDM) (Warburg et al., 2021). These reduced-dimension 

vectors facilitate more efficient image retrieval. 

 - Block Truncation Coding (BTC): This technique divides an image into non-

overlapping  square  segments  and  applies  color  averaging.  It  has  been  expanded  to 

various  color  spaces,  showing  that  luminance-chrominance  spaces  like  Kekre's  LUV 

provide superior retrieval performance compared to non-chrominance spaces. (Kekre et 

al., 2010) 

Research  has  demonstrated  the  effectiveness  of  different  color-based  techniques  in 

CBIR: 

• Comparative Performance: 

- Shen et al. (2018): Found that 8-color CC outperforms 64-color CCH, highlighting the 

importance of considering spatial information in color feature extraction. 

-  Amitha  et  al.  (2021):  Suggested  new  feature  vectors  based  on  image  partitioning 

combined  with  color  averaging  approaches,  noting  the  superiority  of  techniques  like 

FDM in performance. 
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Future Directions will be continued research in color-based CBIR involves exploring 

hybrid  approaches  that  combine  color  features  with  other  visual  features  to  enhance 

retrieval performance. Additionally, refining existing techniques to reduce 

computational costs while maintaining robustness and accuracy remains a key focus. 

3.2.3.5. Image Retrieval using Transformed Image Content 

Image transforms are essential for altering the representation of an image by projecting 

it  into  a  collection  of  basis  functions,  commonly  referred  to  as  basis  images.  This 

transformation shifts the image representation from one domain (e.g., time domain) to 

another domain (e.g., frequency domain), without altering the intrinsic information in the 

image (Zhuang et al., 2022).  

There are two primary benefits to this transformation: 

I. Separation of Visual Patterns: 

Image transforms effectively separate critical elements of visual patterns, making 

them directly accessible for analysis (C. Hu, 2021). 

II. Efficient Storage and Transmission: 

Transforming visual data into a more compact format facilitates efficient storage 

and transmission.(Datta et al., 2008)  

These benefits make image transforms a vital tool for feature vector size reduction in 

image  retrieval  systems.  Various  CBIR  techniques  exploit  these  properties  of  image 

transformations,  including  fractional  energy,  row  mean  of  columns  converted  image, 

energy compaction, and Principal Component Analysis (PCA). 

Key Techniques and Findings 

a. Fractional Energy: 

Fifteen fractional parameter types, encompassing seven image transforms, are considered 

in CBIR when utilizing the fractional energy of the modified image (Jardim et al., 2022). 
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The Kekre transform with 6.25% fractional coefficients has been found to perform the 

best. Fractional energy-based CBIR outperforms approaches using the entire transformed 

image as the feature vector across all considered image transformations (P. He et al., 

2022). 

b. Independent Cosine Transformation: 

Among the seven visual transformations considered, the independent cosine 

transformation with a DC element has provided the best results for image retrieval using 

the row mean of columns converted image material (Prasomphan & Pinngoen, 2021). 

c. Energy Compaction: 

In  CBIR  with  energy  compaction  in  the  transform  domain,  compressed  energy  for 

converted color averages performs better with a significantly smaller feature vector size. 

The 94% energy Kekre transform has outperformed other methods in cases involving 

row mean, column mean, and row-column mean combinations (Oyewole, 2021). 

d. Discrete Sine Transform: 

The  discrete  sine  transform  provides  superior  image  retrieval  in  both  forward  and 

backward diagonal means. 

e. Principal Component Analysis (PCA): 

When  PCA  is  applied  to  color  averages,  image  retrieval  performance  is  somewhat 

reduced  compared  to  when  PCA  is  applied  to  the  entire  dataset  (Feng  et  al.,  2022). 

However,  combining  PCA  with  other  CBIR  approaches  has  demonstrated  significant 

reductions in computational complexity while maintaining adequate retrieval 

performance. 

In conclusion, Image transforms are crucial in CBIR for enhancing the accessibility and 

efficiency of image feature extraction. Techniques leveraging fractional energy, 

independent cosine transformation, energy compaction, and PCA are pivotal in 
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improving image retrieval performance while effectively managing computational 

demands. 

3.2.3.6. Image Acquisition Employing Textured Information: 

Texture  is  a  crucial  aspect  of  human  vision,  instrumental  in  distinguishing  between 

various regions within an image. Unlike color and shape features, texture features are 

adept at capturing both the macrostructure and microstructure of images by indicating 

the distribution of shapes (Zhuang et al., 2022). Texture is typically identified as a spatial 

pattern with certain homogeneity-related features. 

• Methods for Extracting Texture Features 

To  obtain  texture  information  from  images,  several  directional  feature  extraction 

techniques are employed: 

I. Steerable Pyramid: 

Produces a multi-scale, multi-directional representation of an image, consisting of one 

decimated  low-pass  sub-band  and  several  un-decimated  directional  sub-bands.  The 

breakdown is iterated at the low-pass sub-band (Gayathri & Mahesh, 2022). This method 

results in a representation with 4K/3 times as many coefficients as the original image due 

to un-decimated directional sub-bands. 

II. Contourlet Transform: 

Decomposes an image into multiple scales and directions by combining a directional 

filter bank (DFB) and a Laplacian pyramid. The DFB processes band-pass images from 

the Laplacian pyramid to obtain directional data. This method results in a redundancy 

ratio of less than 4/3 due to decimated directional sub-bands (Sain, 2023). 

III. Gabor Wavelet Transform: 

 Utilizes a bank of Gabor filters, which are adjusted by dilating and rotating the Gabor 

functions to produce a filter bank with K orientations and S scales. The image is then 
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convolved with each Gabor function, providing detailed texture retrieval outcomes (Tena 

et al., 2021). However, this method leads to a highly redundant representation of the 

original image. 

• Texture Representation Techniques 

Three  main  types  of  texture  representation  techniques  are  utilized  to  develop  unique 

image retrieval strategies based on texture content: 

1. Statistical Techniques: 

-  Employ  non-deterministic  features  to  analyze  the  spatial  distribution  of  grayscale 

values.  First-order  statistics  consider  individual  pixel  values,  while  second-order  and 

higher-order statistics account for spatial interactions between pixels. The Co-occurrence 

Matrix is a commonly used method for second-order statistical texture analysis 

(Rayavaram, 2023). 

2. Model-Based Techniques: 

- Represent an image using models like the Markov model and fractal model, which 

describe textures as combinations of fundamental functions or probability models. These 

techniques  are  useful  for  texture  analysis,  discrimination,  and  representing  natural 

textures with statistical roughness and self-similarity. 

3. Transform-Based Techniques: 

-  Aim  to  find  a  compact,  lower-dimensional  representation  of  texture  features  by 

transforming the image into a space where most data energy is concentrated in a few 

coefficients. Examples include Fourier, Gabor, Curvelet, and wavelet transforms. These 

methods enhance feature extraction efficiency by eliminating unnecessary coefficients 

(Yang et al., 2024). 
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Applications and Advancements 

Texture features have significant applications in various domains such as aerial imagery, 

medical imaging, and more. They offer valuable insights into the surface granularity and 

recurring  patterns  within  an  image,  making  them  crucial  for  domain-specific  image 

retrieval  tasks  (Imbriaco,  2024).  Recent  advancements  include  the  development  of 

texture thesauruses for aerial image retrieval (Uddin Molla, 2021) and affine-invariant 

texture feature extraction techniques for texture recognition (Kanwal et al., 2021). 

In summary, Texture features are vital in CBIR for providing a detailed and nuanced 

understanding of image content. By leveraging statistical, model-based, and transform-

based techniques, researchers can develop robust image retrieval systems that effectively 

utilize texture information. 

3.2.3.7. Image Retrieval using Shape Content 

Shape  representation  is  a  critical  element  in  image  discrimination  and  serves  as  an 

effective  feature  vector  for  image  retrieval.  There  are  two  primary  methods  of  shape 

representation: region-based and boundary-based.  

1. Boundary-Based Shape Representation: 

This method utilizes the external boundaries of objects. Gradient operators and 

morphological procedures are typically used to extract a shape's border from an image. 

Gradation operations produce the image's first-order derivatives, enabling the 

identification of boundaries in horizontal, vertical, or diagonal directions (Majhi et al., 

2022). A gradient amplitude approach with gradual regulators is applied to obtain the 

entire border of the shape in the image as connected edges. 

2. Shape Representations and Design Commonalities: 

Shape representations benefit greatly from effective and reliable depiction, especially in 

segmented picture areas. The representation of shapes often involves geometric 
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representations paired with one another (Chan, 2021). Over time, there has been a shift 

from  global  form  descriptions  to  more  regional  descriptors.  Simplifying  the  contour 

through discrete curve evolution helps eliminate unimportant or noisy shape elements 

(V. Kumar et al., 2022). 

3. Shape Context and Shape Matching: 

 A novel shape descriptor called shape context is suggested for similarity matching. It is 

small but resilient to several geometric modifications. For effective form matching and 

shape-based  picture  retrieval,  curves  are  represented  by  segments  or  tokens,  whose 

feature representations (curvature and orientation) are grouped into a metric tree (Liao et 

al., 2024). Dynamic programming (DP) methods are also used for shape matching, where 

shapes are represented as sequences of concave and convex segments. 

4. Fourier Descriptors for Shape Matching: 

- An accurate form-matching strategy using Fourier descriptors utilizes both amplitude 

and phase, along with dynamic temporal warping (DTW) distance rather than Euclidean 

distance.  This  approach  retains  rotational  and  starting  point  invariance  by  adding 

compensating terms to the original phase, enhancing shape discrimination (Aboali et al., 

2023). 

5. Edge Detection Methods: 

-  Several  edge  detection  techniques  are  employed  for  shape  content-based  image 

retrieval. These include the Sobel mask with slope magnitude method (Sobel-SMEI), 

Robert mask (Robert-SMEI), Prewitt mask (Prewitt-SMEI), Canny operators (Canny-

SMEI), morphological operations (Perez, 2021), top hat transformation (Top-Hat-EI), 

and bottom hat transformation (Bot-Hat-EI). Edge images obtained from these methods 

are used as feature vectors in CBIR. 

6. Block Truncation Coding (BTC): 
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  - BTC on edge image content is used in novel image retrieval algorithms. Shape-edge 

images  processed  with  BTC  have  shown  outstanding  accuracy.  The  row  average  of 

columns converted edge pictures further improves performance, with Kekre transforms 

combined with Robert slope amplitude edge images providing excellent effectiveness 

(Zhang, 2021). 

7. Walsh Texture Pattern Image Retrieval Techniques: 

- Recently proposed shape Walsh texture pattern image retrieval techniques, combined 

with even picture parts augmentation, demonstrate exceptional performance. Applying 

Walsh texture patterns to original plus even image sections with Robert slope amplitude 

boundary photos produces significant results. 

It can be seen that shape features play a vital role in CBIR, offering detailed and robust 

representations for effective image retrieval. By leveraging various shape representation 

techniques, including boundary-based methods, shape context, Fourier descriptors, and 

edge detection methods, researchers can enhance the accuracy and efficiency of CBIR 

systems. 

3.2.3.8. Metric Learning: 

In  practical  applications,  mastering  a  good  feature  space  distance  metric  is  essential. 

Every problem has a unique semantic concept of similarity, which common metrics (such 

as  Euclidean  distance)  frequently  fail  to  represent.  Learning  a  metric  that  allocates  a 

modest distance between pairs of examples that are semantically similar (as opposed to 

dissimilar) is the fundamental principle behind learning. A subfield of machine learning 

called Distance Metric Learning (DML) seeks to extract distance information from data. 

In addition to applications in dimensionality reduction, distance metric learning can be 

utilized to enhance similarity learning algorithms realistically.  
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Figure 3 - Taxonomy of Distance Metrics 

Taxonomy of Distance Metrics 

The taxonomy of distance metrics is displayed in Figure 3. Depending on the features of 

distance,  metrics  can  be  categorized  into  linear  and  non-linear  metrics.  For  many 

artificial  intelligence  tasks,  including  image  classification  and  CBIR  systems,  good 

distance  measures  are  important.  For  instance,  the  criterion  used  to  determine  the 

comparable nature of images has a substantial impact on the retrieval quality of CBIR 

systems  (Papakonstantinou,  2023).  This  has  led  to  extensive  research  on  learning 
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effective  distance  parameters  through  training  data.  Linear  Metric  Learning  includes 

similarity  learning  and  Mahalanobis  distance  learning.  Non-linear  metric  learning 

includes  the  kernelization  of  linear  approaches  as  well  as  nonlinear  and  local  metric 

learning. 

Applications of Metric Learning 

Metric  learning  finds  applications  in  various  fields,  including  medical  informatics, 

computer vision, and text recognition. For example, in image retrieval, the Conventional 

Color Histogram (CCH) method shows how frequently each color appears in an image. 

Using  the  three  color  histograms—Conventional  Color  Histogram  (CCH),  Inclusive 

Color Histogram (ICH), and Fuzzy Color Histogram (FCH)—Song et al. (2018) have 

suggested  color  identification  and  comparisons.  Challenges  encountered  include  the 

CCH's high dimensionality, lack of support for rotation and translation, and susceptibility 

to noise-related issues like quantization mistakes and variations in light. Color gradients 

and the Fuzzy Linking Color Histogram (FCH) address these problems. 

A  new  and  quick  method  for  content-based  image  retrieval  using  color  histogram 

representation, known as the Fuzzy Colour Histogram (FCH) system, was proposed by 

Ju Han and Kai-Kuang Ma in 2002. It consists of an SVM classifier and an overview of 

the  MPEG-7  Edge  Histogram  Descriptor  (EDH),  used  to  extract  information  from 

images. By integrating features like color correlogram, color instances, Gabor texture 

attributes, and boundary histogram descriptors, (Breznik, 2023) created CBIR systems. 

The SVM classifier is used to compare experimental findings with the CBIR system. 

Graph-Based Query-Specific Fusion Strategy 

Researchers  have  explored  ways  to  increase  retrieval  precision  without  sacrificing 

scalability by fusing ordered retrieval sets, or the ranks of images provided by several 

retrieval  algorithms.  (Shen  et  al.  2018)  proposed  a  graph-based  query-specific  fusion 
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strategy,  in  which  various  graphs  are  combined  and  re-ranked  by  performing  a  link 

analysis  on  a  fused  graph.  They  characterized  retrieval  ranks  as  graphs  of  candidate 

photos.  Using  local  or  holistic  features,  this  method  can  combine  the  best  aspects  of 

retrieval algorithms for various query photos. This approach is simple to use, has few 

parameters, and doesn't require any supervision. 

(He  et  al.  2018)  similarly  investigated  ways  to  increase  retrieval  specificity  without 

sacrificing scalability by combining ordered retrieval sets. They proposed a graph-based 

query-specific  fusion  strategy  that  re-ranks  combined  graphs  through  link  analysis, 

enhancing retrieval precision. 

Neural Network-Based Approaches 

Neural networks have shown significant promise in CBIR systems. Techniques such as 

feed  forward  back  propagation  networks  and  Splines  Neural  Network  based  Image 

Retrieval  (SNNIR)  systems  leverage  the  power  of  deep  learning  to  model  complex 

feature relationships. For instance, a Deep Auto Encoder (DAE) combined with wavelet 

transformation has been proposed to process images and extract wavelet coefficients for 

improved retrieval performance (Kim et al., 2019). 

Several combinations of distance and directional angles have been provided by 

(Kostelecká, 2022) for the GLCM computation, which is examined to identify specific 

patterning  visuals  based  on  their  textural  qualities.  Testing  was  done  on  checkered, 

irregular, right- and left-diagonally striped, vertically striped, and horizontally striped 

designs. 

A feed forward back method for CBIR image retrieval has been proposed by Srivastava 

et  al.  (2023).  A  feed  forward  back  propagation  neural  network-based  CBIR  image 

retrieval system has been proposed by Adil, (2021). The neural network is first trained 

with respect to the attributes of the database's photos. The color histogram serves as the 
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color  descriptor,  the  GLCM  serves  as  the  texture  descriptor,  and  the  edge  histogram 

serves  as  the  edge  descriptor  for  the  training  set  of  image  features.  The  image  that 

matches and is pertinent to the query input is obtained from the database. It is possible 

to attain an average recall rate (ARR) of roughly 78% and an average retrieval precision 

(ARP) of roughly 88%. 

In order to extract the characteristics from the image, (Almohammed, 2021) presented a 

method that combines edge information with a median filtering technique. The method 

of Self Organizing Maps (SOM) is applied to group retrieved features from images. To 

obtain a smooth image, the original image is subjected to the median filtering process. 

The Bi-directional Empirical Mode Decomposition (BEMD) technique can be used to 

recover the edge-related data regarding the image. In order to determine which cluster 

the query image belongs to, the neural network is fed features from the image. 

A  new  design  for  a  CBIR  system  utilizing  the  Splines  Neural  Network  based  Image 

Retrieval (SNNIR) system has been developed by ( Kumar et al. 2021). SNNIR uses an 

activation function of cubic splines in a fast and accurate network model. The nonlinear 

link between picture features is ascertained by the suggested method. Comparing the 

suggested  approach  to  other  CBIR  systems,  experimental  results  demonstrate  that  it 

achieves excellent accuracy and efficacy in terms of ARP and ARR. 

3.2.3.9. Current state-of-the-art CBIR techniques: 

Different methods and attributes of images are employed for image retrieval in the CBIR 

system. The CBIR system is primarily composed of two steps:  

(i) Extracting features from the photos, and  

(ii) Retrieving images a (Sedmidubsky et al., 2021) from the database.  

Visual or content features were taken out of every database images and saved during the 

feature extraction stage. The following stage involved extracting features from a query 
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image and retrieving from the dataset photographs that shared those features. The two 

main  techniques  used  in  the  CBIR  system  are  transform  domain-based  methods  and 

spatial methods. Techniques that are based on space make (Loria, 2020) use of an image's 

color,  texture,  geometry,  and  other  characteristics.  The  characteristics  of  frequency-

transformed color images are used by transform-based techniques. The efficient CBIR 

system uses spatial as well as transform features in contemporary approaches. 

• Techniques for Spatial-Based CBIR: 

I. Texture Property Analysis and Feature Extraction: 

In  2021,  Ghazouani  &  Barhoumi,  developed  a  CBIR  system  grounded  in  a  detailed 

statistical  analysis  of  texture  properties.  They  combined  Feature  Extraction  (FE)  and 

Similarity  Measurement  (SM)  through  a  classification  algorithm.  By  employing  a 

consistent  estimator,  they  extracted  texture  parameters  and  computed  the  Kullback-

Leibler Distance (KLD) between estimated models during the SM stage. Their approach 

utilized Generalized Gaussian Density (GGD) modeling of wavelet coefficients. Tests 

on the VisTex database, with its 640 textured images across 40 classifications, showed 

retrieval rates improving from 65% to 77% compared to traditional methods. Despite its 

effectiveness, the method was time-consuming. 

II. Visual Content Descriptors: 

In 2024, Xun examined the visual content descriptors of the PicSOM system provided 

by MPEG7 against a Vector Quantization (VQ)-based reference system. The study found 

that PicSOM’s descriptors were less effective and slower at locating relevant photos than 

those in the VQ-based system. Nevertheless, PicSOM’s robust relevance feedback (RF) 

operation  enhanced  data  retrieval  efficiency.  The  research  also  highlighted  that  color 

descriptors performed better than other types, with scalable color descriptors yielding 

superior results for certain image classes, such as planes and horses (Saikia, 2021). 
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III. Wavelet-Based Retrieval Techniques: 

Ghazouani and Barhoumi (2021) also contributed a wavelet-based retrieval approach. 

This technique employed Generalized Gaussian Density (GGD) modeling to improve 

retrieval rates significantly. Although effective, the method required considerable 

processing  time.  Testing  with  the  VisTex  database  demonstrated  that  their  approach 

outperformed conventional wavelet frames and pyramid wavelet transform techniques. 

IV. Histogram-Based Description and Metric Learning: 

In  2022,  Zhang  et  al.  introduced  an  automated  method  for  image  retrieval  using 

histogram-based descriptions and metric learning algorithms. This technique used textual 

distances  from  scan  reports  to  identify  exam  similarities  without  human  interaction. 

Applying this method to interstitial lung disease patients' CT scans, the study utilized 

multiple medical annotation levels and various image descriptors. Validation through 

60/40  cross-validation  (CV)  and  Leave  One  Patient  Out  (LOPO)  methods  showed 

promise in efficiently categorizing and retrieving relevant medical images 

(Jaruenpunyasak & Duangsoithong, 2021). 

V. 3D Active Shape Model and SURF: 

In 2021, Salih & Abdulla, proposed an innovative method leveraging the Proactive Shape 

Model  in  a  3D  environment  combined  with  the  Speeded  Up  Robust  Feature  (SURF) 

methodology. This approach applied a 3D model to 2D images to extract specific parts, 

enhancing the accuracy and efficiency of picture retrieval. Local features were removed 

using the 3D active shape model and SURF technique. 

3.2.3.10. Comparative Analysis of Methods and Techniques in CBIR Systems 

In the field of CBIR, various methods and techniques have been developed and refined 

to enhance image retrieval accuracy, efficiency, and scalability. This analysis presents a 
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comparison of these state-of-the-art methods, focusing on their unique features, 

advantages, and limitations. 

Visual Content Descriptors 

One  of  the  foundational  approaches  in  CBIR  involves  the  use  of  visual  content 

descriptors. For instance, a study examined the visual content descriptors of the PicSOM 

system provided by MPEG7 and a reference system based on Vector Quantization (VQ) 

for image retrieval. The research findings revealed that the PicSOM system's descriptors 

were not as effective as those in the VQ-based reference system, and they located relevant 

photos more slowly. However, the data retrieval efficiency of PicSOM surpassed that of 

the  reference  system  due  to  its  robust  RF  operation.  It  was  also  found  that  color 

descriptors  performed  superior  compared  to  other  descriptors,  with  different  image 

classes yielding varied retrieval results (Saikia, 2021). 

Dictionary Creation Techniques 

Another significant advancement in CBIR is the use of dictionary creation techniques. 

This method involves creating a unique dictionary for every group of images. The results 

from experiments demonstrated improved categorization and picture retrieval using this 

approach. Additionally, the use of local image descriptors, which can accomplish image 

retrieval in two ways—local descriptors of picture reflecting global image and descriptor 

by descriptor matching—has shown promise. A CBIR system based on the probability 

distribution of local descriptors for every image in the database was created, achieving 

global  picture  representation  by  modeling  the  image  using  Probabilistic  Principal 

Component Analysis (PPCA)(Kabir et al., 2022). 

Machine Learning Algorithms 

Machine learning algorithms play a crucial role in modern CBIR systems. Techniques 

such as Online Multi-modal Distance Metric Learning (OMDML) utilize a unified two-
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level online learning strategy to tune the distance measure for each distinct feature space. 

This approach improves learning accuracy while lowering costs. Similarly, the use of the 

Support Vector Machine (SVM) classifier to calculate the similarity between the query 

image and the database image using various characteristics and distance measures has 

shown promising precision in classification (Ghazouani, 2023). 

Multimodal Feature Extraction 

Multimodal feature extraction involves characterizing photos by their visual aspects and 

other  features.  This  approach  addresses  the  challenge  of  weak  relationships  between 

semantics and visual features by adding a click feature to close the semantic gap. For 

instance, deep multimodal Distance Metric Learning (Deep-MDML) techniques utilize 

hierarchical ranking to investigate both click and visual features, thereby improving the 

retrieval accuracy and efficiency of CBIR systems (Hooda, 2022). 

Relevance Feedback Mechanisms 

Relevance feedback mechanisms are employed to enhance CBIR systems by allowing 

users to interactively refine their search results. Long-term Relevance Feedback (LRF) 

with  hidden  annotation  (HA)  has  been  proposed  to  improve  retrieval  accuracy  and 

efficiency. This method involves autonomously choosing images for annotators using 

semi-supervised  learning  and  a  multilayer  semantic  image  representation,  leading  to 

improved efficiency as accuracy improves over time (Tsai et al., 2020). 

The comparative analysis of methods and techniques in CBIR systems reveals that each 

approach has its unique strengths and weaknesses. Visual content descriptors, dictionary 

creation  techniques,  machine  learning  algorithms,  multimodal  feature  extraction,  and 

relevance feedback mechanisms all contribute to the advancement of CBIR technologies. 

By leveraging these diverse methodologies, CBIR systems can achieve higher retrieval 
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accuracy,  better  efficiency,  and  greater  scalability,  making  them  more  effective  in 

various applications. 

3.2.4. Multimodal Fusion in Image Retrieval (MFIR): 

Multimodal fusion describes a retrieval approach where a query is given as a synthesis 

of multiple media types. This includes illustrations, written content, plain text 

(unorganized,  e.g.,  sentences),  visuals,  video  content,  and  combinations  of  these,  all 

supported by multimedia retrieving and annotating systems. Numerous methods have 

been proposed for retrieving images and their accompanying text, as well as for text, 

video,  music,  and  speech  retrieval  independently.  However,  when  a  user  requires  a 

multimedia-based search, most current techniques designed for specific media types fall 

short.  Multidisciplinary  integration  is  deemed  necessary  to  address  these  types  of 

customer inquiries (Z. Hu, 2022). 

Combining  the  effective  retrieval  techniques  of  two  distinct  media  for  simultaneous 

retrieval can be challenging, even if they are accessible separately. The goal of fusion 

research on learning for multimodal inquiries is to discover the best combination models 

and tactics. Unfortunately, there has been limited effort put into multimodal integration 

regarding image queries and annotations. This gap creates opportunities to investigate 

new  user  interfaces,  querying  models,  and  visualization  strategies  relevant  to  picture 

retrieval when combined with other media. For instance, video retrieval can be 

considered a rare application of these multidimensional retrieval techniques (da Silva, 

2023). 

Real-time utilization of fusion techniques is analytically affordable, but fusion learning 

is generally an offline process. Therefore, multimodal fusion is an excellent method for 

improving retrieval effectiveness instantly. However, further caution must be employed 

to prevent the fusion rules from overfitting the validation set used to train them.  

In the realm of CBIR, multimodal fusion can significantly enhance retrieval performance 

by integrating various modalities such as text descriptions, audio annotations, and video 

content (Jiang et al., 2022 ; Ngiam et al., 2011).  
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Recent advances in deep learning and neural networks have facilitated more 

sophisticated  fusion  strategies,  leading  to  better  semantic  understanding  and  more 

accurate retrieval results (Baltrusaitis et al., 2019). Moreover, user studies indicate that 

multimodal  interfaces  improve  user  satisfaction  and  engagement,  highlighting  the 

importance of developing robust multimodal retrieval systems (Atrey et al., 2010). 

3.2.5. Semantic-Based Image Retrieval (SIBR): 

Numerous  uses  for  it  exist,  including  fast  image  file  searching,  commercial  business 

programs, online learning, virtual attractions, and academic purposes. One limitation of 

the CBIR is the semantic gap that might arise between an image's high level features and 

low level features. The qualities of an image and what individuals (Ammatmanee, 2022) 

interpret from it are not the same. There are two phases to semantically based image 

retrieval  systems:  the  "building  stage"  and  the  "query  stage."  The  construction  stage 

involves using semantic-based image retrieval algorithms to extract low-level features 

from  images  in  order  to  find  interesting  and  meaningful  patterns,  regions,  or  objects 

based on shared visual feature qualities. These object/region properties serve as the input 

for the semantic image extraction procedure, which produces the conceptual 

representation of imagery. Following that, a database has the semantic features. 

 

Figure 4 - SBIR framework 

!
!"#$%&

!'EF*&+I-*&&

.$*/0&
!'EF*&

1*E%$/*&
*2%/E3%IQ"&
5ES*T&Q"&
8*2%$/*&&

9S%I'E%IQ"&Q+&
+*E%$/*&
:*3%Q/&&

;*'E"%I3&
I"%*/#/*%E%IQ"&

;*'E"%I3&
'E##I"F&

!'EF*&
/*%/I*:E-&&

1*E%$/*&
*2%/E3%IQ"&
5ES*T&Q"&
8*2%$/*&&

9S%I'E%IQ"&Q+&
+*E%$/*&
:*3%Q/&&

;*'E"%I3&
I"%*/#/*%E%IQ"&



 93 

3.3. Summary 

In the digital realm of the Internet, image retrieval is crucial. Technologies for retrieving 

images  include  evidence-based  medicine,  tele-surgery,  computer-aided  diagnostics, 

medical education, and more. Every potential algorithm for the picture retrieval system 

is  examined  in  this  chapter.  The  Text  Based  Image  (Pospíšil  et  al.,  2021)  Retrieval 

(TBIR) method is labour-intensive, time-consuming, and sensitive to human perception. 

A more significant consideration is given to global and local information in the CBIR 

technique, including an image's color, shape, region, and texture. The primary limitation 

of CBIR is its incapacity to discern the attributes of diverse pictures. It could occasionally 

be challenging to identify a particular image from an enormous collection based alone 

on its content. 

In this study, we propose a self-supervised, general-purpose image retrieval 

framework—termed SO-DRCNN—that addresses both the semantic gap and the data 

labeling  bottleneck.  Our  solution  learns  image  embeddings  without  human-provided 

labels by integrating handcrafted feature descriptors with deep neural network 

architectures. Central to this design is a “Ternion Paradigm” of feature extraction that 

fuses  HOG,  a  color  histogram,  and  a  novel  SERC  descriptor,  collectively  capturing 

edges, color distributions, and structural patterns. 
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Chapter 4 

Methodology 

4.1. Introduction 

This chapter details the methodology of the proposed research, presenting the systematic 

development  and  implementation  of  the  Self-Optimizing  SO-DRCNN  framework  for 

CBIR.  The core objective is to address critical limitations in existing CBIR systems, 

specifically the semantic gap between low-level visual features and high-level human 

understanding,  and  the  dependence  on  extensive  manual  data  labeling.    This  work 

proposes a novel hybrid approach that combines the strengths of interpretable 

handcrafted features with the semantic representation power of deep learning, all within 

a self-supervised learning framework. 

The SO-DRCNN framework integrates the following key components: 

1.    Ternion  Paradigm  Feature  Extraction:    A  robust,  multi-faceted  feature  extraction 

routine that combines HOG, ICH, and the novel SERC descriptor to capture a 

comprehensive  range  of  visual  information,  including  edges,  color  distributions,  and 

structural patterns. This forms the handcrafted feature representation. 

2.  SO-DRCNN Embedding Generation: A deep neural network architecture, building 

upon a pre-trained ResNet-50 backbone, designed to extract high-level semantic features.  

The SO-DRCNN incorporates Recurrent Patching (with Bi-LSTMs), Spatial Pyramid 

Pooling (SPP/ASPP), and Attention mechanisms to capture local details, spatial context, 

and multi-scale information. 
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3.    Siamese-Driven  Feature  Fusion:  A  novel,  data-driven  feature  fusion  strategy  that 

employs a Siamese network, trained with a contrastive loss function, to learn an optimal 

combination  of  handcrafted  features  (from  the  Ternion  Paradigm)  and  deep  CNN 

embeddings (from the SO-DRCNN model). This adaptive fusion mechanism learns to 

balance the contributions of each feature type based on the data itself, maximizing the 

discriminative power of the fused representation for semantic similarity. 

4. Self-Supervised Metric Learning (Auto-Embedder): A self-supervised training 

framework,  based  on  a  Siamese  network  and  contrastive  loss,  that  enables  the  SO-

DRCNN  to  learn  effective  image  embeddings  and  fusion  weights  without  relying  on 

manually labeled data. This addresses the labeling bottleneck and enhances the system's 

adaptability to new datasets. 

5.    Scalable  Retrieval  via  Elasticsearch:  Integration  with  Elasticsearch,  a  distributed 

search engine, to enable efficient indexing and retrieval of images based on their fused 

feature vectors, facilitating large-scale CBIR applications. 

This hybrid approach, by unifying robust feature extraction, a carefully designed deep 

neural network architecture, self-supervised metric learning, and scalable retrieval, aims 

to deliver an effective CBIR system that generalizes across diverse image domains and 

scales to large datasets, all while minimizing the need for human annotation. 
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4.1.1. Research Design and Experimental Approach 

The research utilizes an experimental approach, carefully structured to facilitate rigorous 

testing and validation of the Self-Optimizing SO-DRCNN framework for CBIR. This 

methodological framework enables systematic validation of hypotheses, precise 

measurement of performance indicators, and empirical verification of theoretical 

assumptions. 

An experimental research design was selected due to its rigorous structure, which allows 

clear,  quantifiable  assessment  of  the  CBIR  system’s  performance.  By  employing 

controlled  experimentation,  the  methodology  objectively  assesses  retrieval  accuracy, 

computational  efficiency,  robustness,  and  scalability.  It  is  particularly  suitable  for 

addressing  key  issues  identified  in  existing  literature,  notably  the  semantic  gap  and 

reliance  on  extensive  labeling.  This  approach  ensures  that  the  effectiveness  of  each 

feature extraction technique, similarity measure, and retrieval strategy can be empirically 

tested and validated. 

• Overview of Iterative System Development and Validation Process 

The  iterative  system  development  and  validation  process  comprises  clearly  defined 

stages: 

1- Design Phase: Conceptualize the overall architecture, feature extraction 

techniques (color, texture, shape), and neural network strategies. 

2- Implementation Phase: Develop and implement the algorithms for feature 

extraction,  image  processing  modules,  indexing  mechanisms,  and  similarity 

metrics. 

3- Testing Phase: Conduct structured experiments utilizing standard datasets such 

as  CIFAR-10  and  CLIP  to  evaluate  system  performance  using  well-defined 
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metrics including precision, recall, Mean Average Precision (MAP), and 

computational efficiency indicators. 

4- Refinement Phase: Analyze experimental outcomes, identify areas for 

improvement, and systematically refine algorithms, parameters, and methods to 

enhance overall performance and efficiency. 

 

 

Figure 5 - Research Design Phase 

 

4.1.2. System Architecture 

The Hybrid CBIR system employs a multi-stage architecture to combine the benefits of 

classical and Deep Learning-Based feature extraction for robust and semantically-driven 

image retrieval. 

1. Handcrafted Feature Extraction (Local Cues): 

Function: Detects salient keypoints in the input image and extracts interpretable, 

handcrafted  descriptors at  these  keypoints.  This  stage  captures  local  visual  patterns, 

texture, color, and structural information, providing human-understandable visual cues. 

Output: Handcrafted Feature Vector (BoVW Histogram) – a compact representation of 

local visual feature distributions within the image. 

2. Deep Semantic Feature Extraction (High-Level Semantics): 

This stage employs a pre-trained ResNet-50 backbone integrated with the SO-DRCNN 
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architecture to extract deep semantic embeddings. The SO-DRCNN enhances ResNet-

50 by incorporating recurrent patching (modeling spatial-contextual relationships via Bi-

LSTM), spatial pyramid pooling (multi-scale feature aggregation), and attention 

mechanisms (emphasizing salient channels). These modules refine the network’s ability 

to capture hierarchical semantics, including object categories and contextual 

relationships, transforming raw images into abstract, high-dimensional representations. 

The  output  is  a CNN  Embedding  Vector—a  compact,  discriminative  feature  vector 

encoding high-level visual semantics. 

3. Siamese-Driven Feature Fusion (Adaptive Combination): 

A learned Fusion Module, trained within a Siamese network framework, dynamically 

integrates  handcrafted  BoVW  features  with  deep  CNN  embeddings.  By  optimizing 

contrastive  loss  on  pseudo-pairs  (similar/dissimilar  image  pairs),  the  module  learns 

adaptive weights to balance local interpretability (BoVW) and global semantics (CNN). 

This results in a Fused Feature Vector that synergizes the strengths of both modalities, 

enhancing  robustness  to  scale  variations,  occlusions,  and  domain  shifts.  The  fused 

representation is optimized for semantic similarity, enabling precise retrieval by 

encoding both low-level patterns and high-level context. 

4. Elasticsearch Indexing (Scalable Search Database): 

The  fused  feature  vectors  are  indexed  in Elasticsearch,  a  distributed  search  engine 

optimized for high-dimensional similarity search. Using the efficient k-nearest neighbor 

(k-NN) queries. This scalable indexing framework supports rapid retrieval across large 

datasets, minimizing computational overhead while maintaining accuracy. The output is 

a searchable Elasticsearch index, allowing real-time similarity comparisons and ranking 

based on cosine distance, critical for deploying the CBIR system in practical, resource-

constrained environments. 
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Figure 6 - CBIR Architecture 

4.2. Proposed CBIR Pipeline 

The  proposed  SO-DRCNN  Hybrid  CBIR  system  operates  in  two  primary  phases:  an 

offline indexing phase for preparing the image database and an online query phase for 

real-time image retrieval. This two-phase structure is designed to optimize both system 

efficiency and retrieval accuracy. 

Offline Indexing Phase (Preparation): 

This preparatory phase focuses on pre-processing and indexing all images in the database 

to enable fast and efficient retrieval during the online query phase. The following steps 

are performed: 

1. Handcrafted Feature Extraction: For each image in the database, extract handcrafted 

features using the BoVW framework with Ternion descriptors (HOG, ICH, and SERC), 

as  detailed  in  Section  4.3  This  results  in  a  Handcrafted  Feature  Vector  (BoVW 

histogram) for each image. 
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2.  Deep Semantic Feature Extraction (SO-DRCNN): For each image, pass it through the 

trained SO-DRCNN model as detailed in Section 4.5 to generate a CNN Embedding 

Vector. This vector captures high-level semantic features learned by the deep network. 

3.   Siamese-Driven Feature Fusion:  Combine the Handcrafted Feature Vector and the  

CNN  Embedding  Vector  using  the  trained  fusion  module  (extracted  from  the  trained 

Siamese Network). This module performs weighted concatenation (or another learned 

fusion strategy) with weights learned during the Siamese training process (as detailed in 

Section 4.4.3). This results in a Fused Feature Vector for each image. 

4.    Dimensionality  Reduction  (PCA):  Apply  Principal  Component  Analysis  (PCA) 

(Jolliffe,  2016)  to  the  Fused  Feature  Vector  to  reduce  its  dimensionality,  improving 

indexing efficiency and potentially reducing noise. This results in a PCA-Reduced Fused 

Feature Vector. 

5.  Indexing in Elasticsearch: Index the PCA-Reduced Fused Feature Vectors (along with 

image metadata like ` _ `𝑖𝑚𝑎𝑔𝑒 𝑖𝑑 and ` `𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒  ) in Elasticsearch. Configure 

Elasticsearch for efficient k-Nearest Neighbors (k-NN) search using cosine similarity (or 

Euclidean distance) as the distance metric. 

Online Phase (Real-Time Query):  

This phase handles user-submitted queries and retrieves similar images from the indexed 

database in real-time. 

1.  Query Image Input: The user provides a query image to the CBIR system. 

2.    Query  Feature  Extraction  and  Fusion  (Identical  to  Indexing):  The  query  image 

undergoes the same feature extraction and fusion process as the database images: 

Handcrafted  Feature  Extraction  (BoVW):  Extract  the  Handcrafted  Feature  Vector 

(BoVW histogram). 
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Deep Semantic Feature Extraction (SO-DRCNN): Generate the CNN Embedding Vector 

using the trained SO-DRCNN model. 

Siamese-Driven Feature Fusion: Fuse the features using the trained Fusion Module. 

Dimensionality  Reduction  (PCA):  Apply  PCA  (using  the  same  PCA  transformation 

learned during indexing) to reduce the dimensionality of the fused vector. 

 Output: PCA-Reduced Fused Query Vector. 

3.  Similarity Search: Formulate a k-NN query in Elasticsearch using the PCA-Reduced 

Fused Query Vector to find the top-K most similar images in the index. 

4.  Result Ranking and Presentation: Elasticsearch returns a ranked list of image IDs and 

similarity scores (based on cosine similarity or Euclidean distance between the fused 

feature vectors). The system then retrieves and displays the corresponding images to the 

user, ranked by similarity. 

This  two-phase  pipeline,  with  offline  indexing  and  online  query  processing,  ensures 

efficient and scalable image retrieval. The use of a trained Fusion Module, driven by the 

Siamese Network, enables data-driven and adaptive feature fusion, optimizing the system 

for  semantic  similarity.  The  integration  with  Elasticsearch  provides  fast  and  scalable 

search capabilities for large image databases. 
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Figure 7 - CBIR Pipeline 

4.2.1. Ternion Paradigm Feature Extraction Routine 

To build a robust image representation, we extract three different types of features from 

each image – capturing texture/shape, color, and specialized patterns – which together 

form a ternion (triple) of descriptors. These are:  

(a) HOG: As introduced in the literature study chapter 3, referred to by Dalal and 

Triggs  (2005),  HOG  captures  the  local  shape  and  texture  of  an  image  by 

computing histograms of gradient orientations within small cells and 

normalizing over larger blocks. In our system, HOG is used to represent the 

structural and edge information of an image, which is critical for 

distinguishing objects. 

(b) GCH: The Global Color Histogram (GCH) is a feature representation that 

quantifies the distribution of colors in an image while disregarding spatial 

information. This method involves quantizing image colors (e.g., in RGB or 

HSV color space) into a fixed number of bins and counting the frequency of 

pixels in each bin, producing a histogram vector that captures the image’s 

overall color composition (IJCA Online, n.d.). Color histograms are 
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computationally  efficient  and  invariant  to  object  translation  or  rotation,  as 

they  do  not  rely  on  positional  data  (IJCA  Online,  n.d.).  Swain  &  Ballard, 

(1991) foundational research demonstrated that coarse color histograms are 

highly  effective  for  image  retrieval  and  object  indexing.  In  the  proposed 

framework,  ICH—a  global  color  histogram  computed  across  the  entire 

image—serves as the color descriptor. Here, we use the term ICH to indicate 

that the histogram encompasses all pixels of the image—effectively serving 

as a global color descriptor. ICH is computed by converting the image into a 

chosen color space (e.g., RGB or HSV), quantizing the color channels into 

fixed  bins,  and  concatenating  the  resulting  histograms.  (Swain  &  Ballard, 

1991). For consistency, we use “ICH” throughout this chapter; it is equivalent 

to what is commonly known as the global color histogram (GCH) in CBIR 

literature.  

(c) SERC: SERC is a computationally efficient feature descriptor designed to 

capture  slanting  edges  and  structural  patterns  in  images  while  ensuring 

rotation invariance and compact representation. It combines FAST keypoint 

detection, Harris corner refinement, multi-directional edge extraction, and a 

binary descriptor (rConcise) optimized via greedy search. The descriptor is 

integrated into a Bag-of-Visual-Words (BoVW) framework for holistic image 

representation. 

4.3. Bag-of-Visual-Words Framework for Image Representation 

To create a robust and efficient image representation for CBIR, we adopt the BoVW 

framework. BoVW is a widely used technique in computer vision, inspired by the Bag-

of-Words model from natural language processing (NLP) (Manning, C. D., Raghavan, 
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P., & Schütze, H. (2008) Introduction to Information Retrieval. Cambridge University 

Press., Sivic, J., & Zisserman, A. (2003). Video Google: A text retrieval approach to 

object  matching  in  videos.  In Ninth  IEEE  International  Conference  on  Computer 

Vision (pp.  1470-1477  Vol.2).  IEEE.).  In  NLP,  a  document  is  represented  as  an 

unordered collection (a "bag") of words, where the frequency of each word's occurrence 

is used to characterize the document's content. Similarly, BoVW treats an image as an 

unordered  collection  of  visual  words,  representing  local  image  features.  The  BoVW 

approach,  inspired  by  text  retrieval  models  (Sivic  &  Zisserman,  2003),  represents  an 

image as a histogram of visual word occurrences, where visual words are representative 

local feature patterns learned through clustering. 

BoVW Pipeline 

Our BoVW implementation consists of the following key steps: 

1. Keypoint Detection: We employ the ORB algorithm (Rublee, E., Rabaud, 

V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT 

or SURF. In 2011 International Conference on Computer Vision (pp. 2564-

2571). IEEE.) for keypoint detection. ORB is chosen for its computational 

efficiency and invariance to image rotation, making it suitable for large-scale 

image retrieval. ORB identifies salient points in the image, such as corners 

and edges, which are likely to be stable and repeatable across different views 

of the same object or scene. It is important to note that we utilize 

ORB solely for  its  keypoint  detection  capabilities;  the  binary  descriptors 

generated  by  the  BRIEF  component  of  ORB  are not used  in  our  BoVW 

framework. 

2. Local Descriptor Extraction: At each keypoint location detected by ORB, 

we extract a local image patch centered on the keypoint. Within this patch, 
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we compute three types of feature descriptors, collectively referred to as the 

"Ternion" descriptors in previous passage. 

- Histogram of Oriented Gradients (HOG): HOG captures local shape 

and texture information by computing histograms of gradient 

orientations within the patch. 

- Inclusive Color Histogram (ICH): ICH, equivalent to a global color 

histogram  but  computed  locally  on  the  patch,  quantifies  the  color 

distribution within the patch. We use the HSV color space for ICH 

computation. 

- Slanting  Express  Revolves  Concise  (SERC): SERC  is  descriptor 

designed  to  capture  structural  patterns  and  edges  within  the  patch, 

while maintaining rotation invariance.  

These three descriptors capture complementary visual information, 

providing a richer representation of the local image patch than any single 

descriptor alone. 

3. Visual Vocabulary Construction (Clustering): To create a visual 

vocabulary,  we  gather  a  large  collection  of  these local Ternion  descriptors 

(HOG, ICH, and SERC) from a representative set of training images. We then 

apply the mini-batch k-means clustering algorithm ( Sculley, D. (2010)) to 

group these descriptors into k clusters. Mini-batch k-means is chosen for its 

scalability to large datasets, as it processes data in batches rather than loading 

the entire dataset into memory. We use a batch size of 64 and set k = 400. The 

choice  of  400  visual  words  represents  a  balance  between  representational 

power and computational efficiency, and is consistent with values used in 

prior BoVW-based image retrieval works. The centroids of these k clusters 
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define our "visual words," and the set of all cluster centroids constitutes the 

visual vocabulary. Each visual word can be thought of as a representative 

local feature pattern. 

4. Image  Representation  (Histogram  Generation): For  each  image  (both 

training and query images), we perform the following steps: 

- Detect ORB keypoints. 

- Extract local HOG, ICH, and SERC descriptors at each keypoint. 

- Assign each local descriptor to its nearest visual word (cluster 

centroid) in the vocabulary, using Euclidean distance as the distance 

metric. 

- Construct a histogram with k bins (one for each visual word). 

Increment the bin corresponding to the assigned visual word for each 

local descriptor. This histogram represents the frequency of 

occurrence of each visual word in the image. 

- L2-normalize  the  histogram.  This  normalization  ensures  that  the 

histogram represents a probability distribution and prevents images 

with  more  keypoints  from  having  disproportionately  large  feature 

vectors. 

5. Feature  Fusion: The  L2-normalized  BoVW  histogram,  representing  the 

distribution of local features, is then fused with L2-normalized global HOG, 

ICH,  and  SERC  descriptors  computed  over  the entire image.  This  fusion 

combines the strengths of both local and global feature representations. 

A  handcrafted  feature  vector  is  the  output,  typically  a  BoVW  histogram 

potentially fused with global descriptors, representing local visual patterns 

and interpretable image characteristics. 
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6. Vocabulary Quality Evaluation: 

The quality of the visual vocabulary (i.e., the effectiveness of the clustering) 

is assessed using the Davies-Bouldin Index (DBI) . The DBI measures the 

ratio  of  within-cluster  scatter  to  between-cluster  separation.  A  lower  DBI 

value (ideally below 0.5) indicates better clustering, with compact and well-

separated clusters, suggesting a more effective visual vocabulary. 

The next approach to structure our CBIR system is generating deep visual embeddings 

using the Self-Optimized Deep Recurrent SO-DRCNN model, enhanced with Siamese-

Driven Feature Fusion. This stage leverages the power of deep learning to capture high-

level  semantic  features  and  intelligently  combine  them  with  handcrafted  features  for 

enhanced CBIR performance and interpretability. 

4.4. SO-DRCNN Model 

4.4.1. Utilize Pre-trained ResNet-50 CNN Backbone 

Pre-trained  ResNet-50  Architecture  (He,  Zhang,  Ren,  &  Sun,  2016):  Employ  a  pre-

trained ResNet-50 CNN architecture, initialized with weights pre-trained on the 

ImageNet  dataset  (Deng  et  al.,  2009),  as  the  foundational  backbone  for  deep  feature 

extraction. ResNet-50 is chosen for its proven efficacy in image representation learning, 

its  balance  of  performance  and  computational  efficiency,  and  the  well-established 

benefits of transfer learning. 

Transfer Learning Advantages:  

Initializing with ImageNet pre-trained weights offers significant advantages, including 

encoding generalized visual features, which leverage a rich and generalized set of visual 

features  learned  from  a  vast  corpus  of  natural  images,  capturing  fundamental  visual 

primitives and hierarchical representations. 
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Facilitating faster convergence during subsequent fine-tuning and self-supervised 

training  and  accelerating  training  convergence  reduce  the  need  for  extensive  training 

epochs and computational resources. 

 Improving the generalization capability of the learned embeddings, making the model 

more robust to unseen images and diverse datasets. 

4.4.2. Enhancing ResNet-50 Features for Contextual Semantic Understanding  

I. The  Recurrent  Patching  Module  employs  a four-layer  bidirectional  Long  Short-

Term Memory architecture to model hierarchical spatial-contextual relationships in 

images.  By  processing  image  patches  (e.g.,  3x3  grid)  sequentially  in row-major 

order, the network interprets spatial arrangements as temporal sequences. Each Bi-

LSTM  layer  (64  hidden  units)  processes  patches  bidirectionally—forward  and 

reverse—capturing  dependencies  from  both  preceding  and  succeeding  regions. 

This  dual-directional  context  propagation  enables  the  encoding  of  part-whole 

relationships  (e.g.,  object  components  in  natural  scenes).  The  stacked  design 

progressively abstracts features across layers, with higher layers learning complex 

compositional patterns (e.g., global scene structure from local edges).  

To ensure stable training and mitigate potential vanishing or exploding gradients 

common in recurrent architectures, specific initialization strategies were employed: 

orthogonal  initialization  [Saxe  et  al.,  2013]  was  used  for  the  recurrent  weight 

matrices (connecting hidden states across time steps), while Xavier/Glorot 

initialization [Glorot & Bengio, 2010] was applied to the input weight matrices. 

Furthermore, to enhance robustness and prevent overfitting during training, two 

regularization techniques were applied specifically to this module: Gaussian noise 

(with  standard  deviation σ  =  0.1)  was  added  to  the  input  sequence  vectors  (the 
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2048-D patch representations), and Dropout (with probability 𝑝 = 0.3) [Srivastava 

et al., 2014] was applied within the Bi-LSTM layers.  

The final hidden states from the forward and backward passes of the top Bi-LSTM 

layer  are  concatenated,  yielding  a  128-dimensional  context  vector  representing 

spatially enriched features. This context vector captures part-whole relationships 

and spatial dependencies across the image grid. 

This approach bridges convolutional and sequential learning paradigms, 

demonstrating that spatial context in static images can be modeled via temporal 

recurrence. By capturing spatial-contextual dependencies, the module transcends 

isolated feature detection, encoding images as compositions of interrelated visual 

elements. This enhances robustness to viewpoint variations and occlusions, which 

is  critical  for  semantic  retrieval  in  CBIR.  The  Bi-LSTM  architecture  ensures 

sensitivity  to  local  coherence  (e.g.,  texture  continuity)  and  global  layout  (e.g., 

object  positioning),  outperforming  unidirectional  or  shallow  recurrent  models. 

Theoretically, it advances interpretable deep feature extraction, offering a 

framework for spatially aware representation learning in vision tasks. 

To facilitate the Recurrent Patching Module's capture of spatial context, the feature 

maps  from  the  ResNet-50 conv5_x layer  are  divided  into  a  3x3  grid  of  non-

overlapping patches. This design choice, while heuristic, is academically grounded 

in  the  established  principles  of  spatial  subdivision  for  image  representation,  as 

exemplified  by  SPP  [He  et  al.,  2015]  and  Spatial  Pyramid  Matching  (SPM) 

[Lazebnik et al., 2006]. A 3x3 grid offers a balanced approach, providing sufficient 

granularity to capture meaningful spatial relationships between image regions for 

sequential processing by the Bi-LSTM network, while maintaining computational 

manageability.  
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Figure 8 - Recurrent Patching Module 

II. SPP and ASPP Modules for Multi-Scale Context Aggregation: 

The Spatial Pyramid Pooling (SPP) and ASPP modules enhance CNN’s ability to 

capture multi-scale contextual information, addressing scale variance in image 

retrieval.  SPP  applies  multi-resolution  pooling  (e.g.,  1×1,  2×2,  4×4  grids)  to 

feature maps, generating fixed-length representations invariant to input 

dimensions. This ensures robustness to object size variations (e.g., small vs. large 

instances) by hierarchically aggregating local-to-global features. ASPP extends 

this  with dilated  convolutions,  probing  feature  maps  at  multiple  dilation  rates 

(e.g.,  rates  1,  6,  12)  to  capture  context  across  scales  without  resolution  loss. 

Parallel dilated convolutions and global average pooling branches are 

concatenated,  preserving  fine  details  while  integrating  wide-field  contextual 

cues. These pooled and dilated features are down sampled and fused with the 

original CNN outputs, combining multi-scale richness with base feature fidelity 

through concatenation or additive fusion. 

The fused features are refined via a channel attention mechanism, inspired by 

Squeeze-and-Excitation  Networks  (Hu  et  al.,  2018).  This  module  recalibrates 

feature  channel  weights,  amplifying  discriminative  dimensions  (e.g.,  object-

specific patterns) while suppressing noise (e.g., irrelevant background context). 

The attention block employs global average pooling to model channel 
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interdependencies, followed by learnable transformations to generate excitation 

signals. These signals rescale input features, enhancing semantic selectivity. The 

refined output is processed through a final convolutional layer (64 filters) and 

global  pooling,  producing  a  compact  feature  vector.  By  integrating  spatial 

pyramids with attention-driven recalibration, the model achieves scale-invariant, 

context-aware representations critical for robust CBIR. 

 

Figure 9 - Spatial Pyramid 

III. Dimensionality Reduction: A Component Analysis for Efficiency and Noise 

Reduction 

Apply  Principal  Component  Analysis  (PCA)  (Jolliffe,  2016)  to  reduce  the 

dimensionality of the CNN embedding vector to a target dimension (e.g., 2000 

dimensions) for efficiency and indexing constraints. PCA is performed on a set 

of  training  image  embeddings  to  identify  principal  components  that  capture 

maximum variance, and projecting embeddings onto these components results in 

a  lower-dimensional  representation  that  can  improve  retrieval  speed,  reduce 

storage  requirements,  and  potentially  mitigate  noise  while  retaining  the  vast 

majority of the salient semantic information. PCA is recommended to be applied 

to  the  fused  feature  vector  in  next  section  4.5.3  for  optimal  dimensionality 

reduction of the combined representation. 
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4.4.3. Siamese-Driven Feature Fusion  

This stage introduces the core innovation of our methodology, Siamese-Driven Feature 

Fusion. This approach combines the handcrafted feature vector (Stage 1) and the CNN 

embedding  vector  (Stage  2)  into  a  single,  fused  feature  vector,  leveraging  a  Siamese 

Network to learn an adaptive and data-driven fusion strategy that optimally balances the 

complementary strengths of these heterogeneous feature modalities. 

Static and Heuristic Combination Strategies as traditional feature fusion techniques, such 

as simple concatenation or fixed-weighted combinations, often fall short in optimally 

integrating heterogeneous feature modalities. These methods treat feature combination 

as a static, pre-defined operation, lacking the crucial adaptability to learn data-driven 

fusion strategies that can dynamically balance the contributions of CNN embeddings and 

handcrafted descriptors based on the specific characteristics of the dataset and the desired 

notion of image similarity. This static nature hinders their ability to fully leverage the 

complementary  strengths  of  these  diverse  feature  representations  and  achieve  truly 

optimized semantic CBIR. 

Siamese Networks, with their inherent capability for learning similarity metrics through 

pairwise  comparisons  (Hadsell,  Chopra,  &  LeCun,  2006),  provide  a  robust  and  data-

driven mechanism to achieve optimal feature fusion. 

Siamese Network for Fusion Training 

In our context, we are using the Siamese network concept to learn how best to combine 

two types of features—CNN embeddings which capture high-level semantic information 

and  handcrafted  features  which  provide  interpretable  local  details.  Instead  of  directly 

performing feature extraction, the Siamese setup is used to learn adaptive fusion weights. 

Essentially, we use it to determine the optimal way to mix these features so that, for 
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similar images, the fused feature vectors are close together, and for dissimilar images, 

they are far apart. 

So,  while  the  Siamese  network  is  traditionally  about  similarity  comparison,  in  our 

approach, its principles are applied to both: 

- Assessing similarity by comparing fused vectors using contrastive loss 

- Optimizing the fusion process by learning the best weights to combine the 

two feature types. 

This dual role enhances the final feature representation, ensuring that the fusion process 

is both effective for retrieval and interpretable in terms of the relative contributions of 

CNN and handcrafted features. 

The Siamese Network is not the measuring instrument itself; it's the calibration system 

that makes the measuring instrument (the Fusion Module) more accurate and effective. 

Siamese Networks are beneficial given these feature natures as it adaptive balancing of 

heterogeneous feature scales and contributions. Learning to Bridge the "Semantic Gap" 

with Complementary Features, 

Handcrafted  features  and  CNN  embeddings  capture  complementary  types  of  visual 

information. The Siamese Network can learn to intelligently combine these 

complementary features to create a fused representation that is more effective at bridging 

the  semantic  gap.  It  can  learn  to  use  handcrafted  features  to  refine  or  augment  the 

semantic information captured by CNN embeddings, especially for fine-grained 

distinctions or texture-based similarity. 

Imagine we have two images want to compare: Image X and Image Y. 

Step 1: Feature Extraction Before the Siamese Network: 

Here is an example of the approach:  

For Image X: 
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Extract  CNN  Features: It  runs  Image  X  through  the ResNet-50.  This  gives  us 

a CNN Feature Vector for Image X. Let's call it CNN_Features_X. 

Extract Handcrafted Features: System process Image X using the BoVW 

framework.  This  gives  a Handcrafted  Feature  Vector  for  Image  X.  Let's  call 

it Hand_crafted_Features_X.  

For Image Y: 

Extract CNN Features: It runs Image Y through ResNet-50. This gives a CNN 

Feature Vector for Image Y. Let's call it CNN_Features_Y. 

Extract Handcrafted Features: it processes Image Y using BoVW/Ternion. This 

gives a Handcrafted Feature Vector for Image Y. Let's call 

it 𝐻𝑎𝑛𝑑_ _ _𝑐𝑟𝑎𝑓𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑌 . 

Important: we do this feature extraction step before even feed anything into the 

Siamese Network. We are preparing the "twins" first. 

Feature Vector Concatenation (Baseline Fusion - Simple Combination for 

Comparison): As a foundational baseline fusion method for comparison and to 

establish  a  performance  reference  point,  consider  simple  concatenation  of  the 

CNN embedding vector and the handcrafted feature vector to create the fused 

feature vector. This provides a basic, unweighted combination of the two feature 

types: 

𝐹𝑢𝑠𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟  =  [𝐶𝑁𝑁 ,  − 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐻𝑎𝑛𝑑 𝑐𝑟𝑎𝑓𝑡𝑒𝑑 ]𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
Step 2: Normalization:  

Essential refinement for feature scaling, stability, and distance metric 

effectiveness. L2-normalize both the CNN embedding vector and the handcrafted 

feature vector before feeding them into the Fusion Module and concatenation. 

This normalization step is not merely optional but essential to ensure that both 
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feature types, originating from vastly different extraction processes and 

potentially having different scales and magnitudes, are placed on a comparable 

scale. This prevents features with larger magnitudes from unduly dominating the 

fused representation and facilitates a more balanced and stable fusion process. 

Crucially,  also  L2-normalize  the  final  fused  feature  vector  after  the  Fusion 

Module's processing to standardize the output representation, ensuring unit length 

vectors that are ideally suited for distance-based similarity comparisons in the 

CBIR system and for efficient indexing in vector databases like Elasticsearch. 

Step 3: Feeding the Features into the Siamese Network (Twin1 and Twin2): 

Siamese Twin 1 gets the Features for Image X: 

Input to Siamese Twin 1: We feed both feature vectors for Image X into Siamese 

Twin 1: CNN_Features_X , Hand_crafted_Features_X 

Siamese  Twin  2  gets  the  Features  for  Image  Y,  Input  to  Siamese  Twin  2: 

CNN_Features_Y , Hand_crafted_Features_Y.  

The  Fusion  Module mixes or combines these  two  input  feature  vectors  using 

weighted concatenation. It outputs a Fused Feature Vector for Image X. Let's call 

it Fused_Features_X. 

Inside Siamese Twin 2 (for Image Y): 

It outputs a Fused Feature Vector for Image Y. Let's call it Fused_Features_Y. 

Step 4: The Siamese Network Compares the Fused Feature Vectors: 

Siamese Network Output: The Siamese Network now has two outputs: 

- Fused_Features_X (from Siamese Twin 1) 

- Fused_Features_Y (from Siamese Twin 2) 

Weighted Concatenation (Siamese-Driven Adaptive Fusion with Learnable 

Weights):  To  implement  Siamese-Driven  Feature  Fusion  and  enable  adaptive 
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balancing,  employ  weighted  concatenation  within  the  Fusion  Module  of  the 

Siamese  Network.  This  allows  the  network  to  learn  optimal  weights  for  each 

feature type, dynamically adjusting their contributions to the final fused 

representation based on the training data and the contrastive loss objective: 

 

 𝐹𝑢𝑠𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟 = [𝑤1 × , 2 × 𝐶𝑁𝑁𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑤 𝐻𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ] 

 

Determine  optimal  weights  (w1,  w2)  through  the  Siamese  network  training 

process,  guided  by  the  contrastive  loss  function  and  rigorous  validation  set 

performance optimization. While equal weights (w1, w2 = 1) can serve as an 

initial  baseline  for  experimentation,  the  Siamese  network  is  designed  to  learn 

data-driven weights that are expected to outperform such heuristic settings by 

adaptively tailoring the fusion strategy to the specific dataset and retrieval task. 

Step 3: Similarity Comparison: 

Compares the refined embeddings from the twin branches using a distance metric 

(e.g., Euclidean, cosine). 

Optimizes the distance to be small for similar pairs and large for dissimilar pairs. 

For a pair of images, A and B: 

- Compute embeddings 

 𝒆𝑨 = q𝑆𝑖𝑎𝑚𝑒𝑠𝑒𝐵𝑟𝑎𝑛𝑐ℎ 𝐹𝑢𝑠𝑒 (𝐶𝑁𝑁7 , 𝐵𝑜𝑉𝑊7 )r 

- Compute embeddings 

 𝒆𝑩 = q𝑆𝑖𝑎𝑚𝑒𝑠𝑒𝐵𝑟𝑎𝑛𝑐ℎ 𝐹𝑢𝑠𝑒 (𝐶𝑁𝑁9 , 𝐵𝑜𝑉𝑊9 )r 

- Calculate similarity:  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 − 𝑐𝑜𝑠𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒7 , 𝑒9 ) 

Contrastive Loss: The contrastive loss function is then applied to this 

Euclidean  distance.  Based  on  whether  Image  X  and  Image  Y  are 

supposed to be "similar" (Can-Link) or "dissimilar" (Cannot-Link). 
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Step 4: Contrastive Loss Function for Data-Driven Fusion Weight 

Optimization: 

The contrastive loss function is applied to this calculated distance, based on the 

pre-defined  similarity  label  (Can-Link  or  Cannot-Link)  for  the  Image  X  and 

Image Y pair. This loss function serves as the driving force for training the Fusion 

Modules within the Siamese Network, guiding the optimization of fusion weights 

and parameters. The Contrastive Loss encourages the Siamese Network to: 

- Minimize the distance between 𝐹𝑢𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 :  

and 𝐹𝑢𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ;  for similar (Can-Link) image pairs, effectively pulling 

embeddings of semantically similar images closer in the fused feature space 

and reinforcing the desired notion of visual similarity. 

-   Maximize the distance between 𝐹𝑢𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 :  

-   and 𝐹𝑢𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ;  for dissimila r(Cannot-Link) image pairs, enforcing 

a margin of separation and pushing embeddings of semantically dissimilar 

images further apart in the fused feature space, ensuring discriminative power 

of the learned fused representations. 

The  Siamese  Network,  through  this  rigorous  and  data-driven  training  process 

driven by the contrastive loss, empowers the Fusion Module to learn an optimal, 

adaptive,  and  context-aware  strategy  for  combining  CNN  embeddings  and 

handcrafted features. This learned fusion strategy results in fused feature vectors 

that are demonstrably more effective for measuring semantic image similarity 

and achieving enhanced performance and interpretability in CBIR. 

Step 5: Backpropagation  

Contrastive Loss Value can propagate the "Error Signal" backwards through the 

network that tells the Siamese Network how "wrong" it was in its current fusion 
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strategy. A high Loss Value indicates a "bad" fusion (similar images are not close 

enough, or dissimilar images are too close), while a low Loss Value indicates a 

"good" fusion. 

Gradients for Weight Adjustment: The Weights within the Fusion Modules are 

the  most  crucial  weights  being  learned  in  the  Siamese-Driven  Feature  Fusion 

approach. Backpropagation tells how to adjust the weights in the Fusion Modules 

to improve the fusion strategy. 

Potentially Weights in Other Parts of SO-DRCNN : If we are not freezing the 

weights of the ResNet-50 backbone or other SO-DRCNN modules, gradients will 

also be calculated for their weights, allowing the entire SO-DRCNN architecture 

to be fine-tuned for the CBIR task. 

4.4.4. Self-Optimizing Fusion Module in SO-DRCNN 

In the SO-DRCNN framework, the fusion weights w1 and w2  are treated as trainable 

parameters that are learned end-to-end. During training, a contrastive loss (or similar task 

loss) is computed on the fused output, and back-propagation computes gradients with 

respect to 𝑤1 𝑎𝑛𝑑 2𝑤. In each training iteration, the model updates these weights by 

gradient descent to minimize the loss (Li et al., 2024; Sait & Nagaraj, 2025). In other 

words, the network automatically discovers the optimal values of w1, w2 for the given 

data  and  objective.  This  mechanism  is  identical  to  standard  neural-network  training 

(stochastic  gradient  descent  on  all  parameters)  but  applied  specifically  to  the  fusion 

coefficients.  For  example,  Wang  et  al.  (2024)  explicitly  note  that  adaptive  fusion 

coefficients (denoted α, β, γ) are “optimized through gradient descent” during training. 

Likewise, recent multi-modal networks use contrastive or cross-entropy losses to drive 

the learning of feature-fusion weights (Li et al., 2024; Wang et al., 2024). 
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Back-propagation of fusion weights: The fusion weights enter the computational graph 

(often implemented as a small sub-network or linear layer) so that the loss gradient flows 

into  them.  Concretely,  if  the  fused  feature  is  𝐹 = 1𝑤 1 + 2𝐹 𝑤 2𝐹,  then 𝜕𝐿/ 1 =𝜕𝑤
(𝜕𝐿/𝜕𝐹 )    (and  analogously  for 𝑤2).  These  gradients  drive  the  updates 𝑤< ← 𝑤< −

  ∂ / ∂η 𝐿 𝑤<. This exactly parallels any other trainable weight in a deep network (Li et al., 

2024; Wang et al., 2024). Thus the fusion module “self-optimizes” by tuning its weights 

via the same back-propagation procedure used for the rest of the network. 

Removal of manual tuning: Because 𝑤1, 2𝑤  are learned, there is no need to hand-select 

or grid-search these values. In a conventional linear-fusion scheme (fixed weighted sum), 

one might manually set 𝑤1, 2𝑤  based on heuristics or cross-validation. By contrast, the 

trainable fusion automatically finds the balance that best suits the task. Prior work has 

shown that incorporating adaptive, learnable weights yields more optimal fusion than 

equal or fixed weights (Liang et al., 2021; Yu et al., 2023). For instance, an adaptive 

Feature-Pyramid Network was improved by introducing “learnable weight parameters” 

for  each  scale’s  feature  map,  under  the  observation  that  contributions  should  not  be 

equally distributed (Wang et al., 2024). Similarly, Su et al. describe a fusion block that 

aligns channel dimensions and then uses learnable weights to fuse features, optimizing 

these weights via contrastive learning so “each part of the features is fully utilized” (Yu 

et al., 2023). 

Data-driven,  task-specific  optimization:The  optimization  of 𝑤1 , 2𝑤  is  completely 

driven by the training data and objective. The contrastive loss ensures that positive pairs 

of examples (or other supervised signals) are pulled together in the fused representation. 

As a by-product the fusion weights adjust to emphasize the most informative features. In 
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practice, this means 𝑤1, 2𝑤  become implicit functions of the data distribution for the 

specific task. Such data-driven adaptation is in stark contrast to a heuristic weighting 

rule. As noted in Yu et al. (2023), by optimizing the weights with the contrastive criterion 

the fusion module “ensures that each part of the features is fully utilized” and “reasonably 

fuse[s] various features, enabling each part of the features to maximize their 

effectiveness.” In effect, the model learns the best fusion strategy for the data, making 

the fusion inherently task-specific. 

Literature on adaptive fusion: Numerous studies support this paradigm of trainable 

fusion. For example, Liang et al. (2021) propose an adaptive-weighting feature-fusion 

strategy (akin to attention) in a GAN framework, in which pixel-wise fusion weights are 

learned rather than fixed. Yu et al. (2023) describes a multimodal network whose feature-

fusion module can “learn the adaptive fusion weights” from each input stream via small 

fully connected layers. In all these cases, the fusion weights are automatically updated to 

improve performance. These approaches emphasize that adaptive fusion—where weights 

are learned jointly with the model—eliminates the need for manual tuning and yields 

better, data-driven integration of heterogeneous features (Li et al., 2024; Liang et al., 

2021; Wang et al., 2024). Calling the fusion module self-optimizing underscores that its 

weights are self-tuned by learning. The module does not rely on fixed heuristics; instead, 

it  continuously  adjusts  w1    and  w2  via  gradient-based  training.  This  yields  a  fusion 

customized to the data and objective, as supported by prior work on adaptive, learned 

weighting mechanisms (Liang et al., 2021; Yu et al., 2023). The result is a fusion scheme 

that optimally balances the input features without manual intervention. 

4.4.5. Weight Optimization - Adjusting Network Parameters to Minimize Loss 

Backpropagation and weight optimization act as "Learning by Trial and Error". 
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Minimizing the Loss Function: The optimizer's goal is to adjust the weights in a direction 

that minimizes the Contrastive Loss Value. This is like the Siamese Network trying to 

"learn from its mistakes" and improve its performance over time. It is repeated 

iteratively over  many  training  examples  (image  pairs)  in  many epochs.  With  each 

iteration, the Siamese Network (and especially the Fusion Modules) gradually adjusts its 

weights  to  minimize  the  Contrastive  Loss,  learning  to  create  better  and  better  Fused 

Feature Vectors for measuring visual similarity. 

Mini-Batch Iteration - Processing the Next Batch of Image Pairs 

In our training procedure, the entire dataset of can-link and cannot-link image pairs is 

first  randomly  shuffled  at  the  start  of  each  epoch  to  ensure  diversity  and  to  prevent 

overfitting. The shuffled data is then divided into mini-batches (e.g., 32–64 pairs), and 

for each mini-batch, we repeat the following process: 

Step  1:  Feature  Extraction  Before  the  Siamese  Network: Extract  CNN  and 

handcrafted features for each image in the mini-batch. 

Step 2: Feeding Features into Siamese Network: Feed the extracted features into 

the Siamese Twins. 

Step  3:  Fusion  Module  Combines  Features: The  Fusion  Modules  within  the 

Siamese Twins combine the features. 

Step 4: Siamese Network Compares Fused Feature Vectors: The Siamese 

Network compares the Fused Feature Vectors. 

Step 5: Contrastive Loss Calculation: The Contrastive Loss is calculated based 

on the distances between Fused Feature Vectors and similarity labels. 

Step 6: Weight Optimization: The weights of the Fusion Modules (and 

potentially other parts of SO-DRCNN) are updated using backpropagation and 

the optimizer to minimize the Contrastive Loss for this mini-batch. 
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4.5. Feature Extraction for the CBIR Database - Preparing the Index 

 
In the final phase, we begin by extracting the essential components of our trained model. 

First, we isolate and save the weights of the Fusion Module from one of the Siamese 

twins; this module now encapsulates the data-driven strategy for combining features. 

Simultaneously, we extract one complete SO-DRCNN twin—which includes the 

ResNet-50 backbone and the subsequent modules (such as the Bi-LSTM, SPP/ASPP, and 

attention  layers)  up  to,  but  not  including,  the  Siamese-specific  contrastive  loss.  This 

extracted SO-DRCNN model serves as our fixed feature extractor for generating CNN 

embeddings.  

Next, for every image in the CBIR database, we perform a three-stage feature extraction 

process.  In  Stage  1,  we  extract  a  handcrafted  feature  vector  by  applying  our  BoVW 

pipeline, which utilizes ORB for keypoint detection and computes Ternion descriptors 

(HOG, ICH, and SERC) to generate an L2-normalized histogram. In Stage 2, each image 

is  passed  through  the  trained  SO-DRCNN  embedding  model  to  produce  a  CNN 

embedding  vector  that  captures  high-level  semantic  features.  In  Stage  3,  both  the 

handcrafted  feature  vector  and  the  CNN  embedding  are  fed  into  the  trained  Fusion 

Module, which applies the learned weighted concatenation (or similar fusion strategy) to 

output  a  unified  Fused  Feature  Vector.  Optionally,  this  fused  vector  may  be  further 

refined  using  Principal  Component  Analysis  (PCA)  to  reduce  its  dimensionality  and 

enhance indexing efficiency. The output of this process is a Fused Feature Vector for 

each  image  in  the  database,  which  is  subsequently  indexed  in  the  search  engine  for 

efficient similarity-based retrieval. 

4.6. Indexing and Retrieval Implementation 
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To translate the proposed SO-DRCNN framework into a practical and scalable CBIR 

system, we implemented a robust indexing and retrieval pipeline leveraging 

Elasticsearch as the core search engine.  This section details the implementation choices 

and  procedures  for  indexing  the  database  and  performing  efficient  similarity-based 

retrieval at runtime. 

4.6.1. Elasticsearch Setup  
 
We configure a local Elasticsearch instance as a single-node cluster (sufficient for our 

experimental setup). We created a custom index for images with the following fields: 

• image_id: a unique identifier for the image. 

• filename or filepath: metadata to locate or display the image. 

• features: a dense vector field that stores the image’s embedding.  

We chose Elasticsearch because it supports k-NN search on dense vectors through plugins 

or  built-in  features.  Specifically,  we  use  the  cosine  similarity  function  for  scoring 

documents  relative  to  a  query  vector.  In  Elasticsearch’s  query  DSL,  this  is  done  by 

providing  the  query  vector  and  asking  for  the  similarity  score  with  each  document’s 

feature vector (Elasticsearch computes an inner product or cosine similarity under the 

hood, after appropriate normalization). We multiply cosine by 1.0 (which is neutral) as 

noted before, to ensure it’s treated as a positive scoring (this detail is minor – essentially, 

Elasticsearch expects a similarity metric where higher is better, and cosine fits that as-is) 

The index is created with number_of_shards = 30 and number_of_replicas = 0 for efficiency. 

Thirty shards means the dataset is partitioned into 30 segments, and search queries will 

be distributed across those segments in parallel. This significantly improves search speed 

for large datasets because each shard only searches its portion of data. Since this is a 
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single-node  cluster,  shards  reside  on  the  same  machine,  but  they  still  allow  parallel 

processing by multiple CPU cores. 

4.6.2. Indexing Procedure 
 
The database indexing process, performed offline to minimize real-time query latency, 

involves the following steps for each image within the CBIR dataset: 

1.  Feature Vector Computation: The 2000-dimensional Fused Feature Vector is 

computed for each image using the trained SO-DRCNN model, encompassing 

the  Ternion  Feature  Extraction,  deep  CNN  embedding  generation,  Siamese-

Driven Feature Fusion, and subsequent PCA dimensionality reduction pipelines 

detailed in Sections 4.4.2 and 4.4.3. 

2.  JSON Document Creation: A JSON document is constructed for each image, 

incorporating the `image_id`, `filename`, and the computed `features` vector 

represented as an array of floating-point numbers. 

3.  Document Indexing: This JSON document is then indexed into the configured 

Elasticsearch index. 

This indexing procedure results in a comprehensive, searchable index of image vectors, 

enabling efficient content-based retrieval. The offline nature of this process ensures that 

the computational overhead of feature extraction and indexing does not impact real-time 

query performance. 

4.7. Evaluation Methodology 

Rigorous empirical evaluation is essential to definitively assess the effectiveness of the 

proposed Siamese-Driven Feature Fusion approach and to quantify its performance gains 

compared  to  baseline  methods  using  CNN  embeddings  or  handcrafted  features  in 
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isolation.    To  achieve  this,  we  employ  a  comprehensive  evaluation  methodology 

comprising standardized metrics and controlled comparative experiments. 

4.7.1 Evaluation Metrics 

We  utilize  the  following  standard  Content-Based  Image  Retrieval  (CBIR)  evaluation 

metrics to quantitatively assess the performance of our system: 

Precision and Recall: These metrics measure the accuracy of retrieval at varying rank 

positions, providing insights into the system's ability to retrieve relevant images early in 

the ranked list and across the entire retrieved set. 

Mean  Average  Precision  (mAP):  mAP  provides  a  consolidated,  single-value  metric 

representing the overall ranking quality across all relevant images for a set of queries 

[Manning, Raghavan, & Schütze, 2008]. Higher mAP scores indicate superior ranking 

performance. 

Recall@K: Recall@K measures the proportion of truly relevant images retrieved within 

the  top 𝐾   retrieved  results.  This  metric  specifically  evaluates  the  system's  ability  to 

retrieve relevant images within a defined top-ranked subset. 

4.7.2 Comparative Experiments 

To isolate and quantify the performance contribution of feature fusion, we conduct a 

series of comparative experiments, systematically evaluating the retrieval performance 

of the following configurations: 

CNN  Embeddings  Only:  CBIR  performance  using  solely  the  SO-DRCNN  generated 

CNN  embedding  vectors  for  indexing  and  retrieval,  effectively  isolating  the  deep 

learning component. 
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Handcrafted Features Only: CBIR performance using solely the Bag-of-Visual-Words 

(BoVW)  histograms  (incorporating  Ternion  descriptors)  for  indexing  and  retrieval, 

isolating the handcrafted feature component. 

Fused Features: CBIR performance using the Fused Feature Vectors, demonstrating the 

effectiveness of the proposed Siamese-Driven Feature Fusion approach. 

4.7.3 Results Analysis and Impracticality Considerations 

The evaluation results are rigorously analyzed to determine whether feature fusion yields 

a statistically significant improvement in retrieval performance compared to relying on 

either feature type alone. We will specifically investigate scenarios and dataset 

characteristics where feature fusion proves particularly beneficial or, conversely, where 

its impact is less pronounced. 

Furthermore,  we  acknowledge  and  address  potential  practical  implications  associated 

with feature fusion, including: 

Increased  Computational  Cost:  Feature  fusion  inherently  increases  feature  extraction 

time due to the computation of both CNN embeddings and handcrafted features. We will 

analyze and discuss the computational overhead and propose mitigation strategies such 

as two-stage retrieval or feature extraction pipeline optimization, particularly relevant for 

real-time applications or very large datasets. 

Increased  Feature  Vector  Dimensionality:  The  fused  feature  vectors  exhibit  higher 

dimensionality,  potentially  increasing  storage  requirements  and  distance  computation 

time.    We  will  assess  the  impact  of  dimensionality  and  evaluate  the  effectiveness  of 

dimensionality reduction techniques like Principal Component Analysis (PCA) applied 

to the fused vectors. 

Complexity  of  Implementation:  Implementing  and  managing  dual  feature  extraction 

pipelines  and  the  fusion  mechanism  introduces  system  complexity.  We  will  discuss 
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strategies for managing this complexity, such as starting with simpler fusion methods 

(e.g., concatenation) and iteratively refining the fusion strategy based on thorough testing 

and validation at each stage. 

This rigorous evaluation methodology, employing standardized metrics and controlled 

comparative  experiments,  is  designed  to  provide  a  comprehensive  and  quantifiable 

assessment  of  the  proposed  Siamese-Driven  Feature  Fusion  approach  within  the  SO-

DRCNN framework. By analyzing the results and addressing potential practical 

considerations, we aim to demonstrate the effectiveness and practical viability of our 

proposed CBIR system for real-world image retrieval tasks. 

4.8. Querying Process and Retrieval at Runtime 

The  top  results  (image  IDs  and  similarity  scores)  are  returned.  We  then  fetch  those 

images or their metadata for display. 

1. Query Image Input: When a user provides a query image, receive this image as input 

to the CBIR system. 

2. Query Feature Extraction (Same as Indexing): Perform Steps 1-3 of the methodology 

on the query image to generate its Fused Query Vector. This ensures that the query 

image is represented in the same feature space as the database images. 

3. Similarity  Search  in  Elasticsearch: Formulate  an  Elasticsearch  k-NN  query  using 

the Fused Query Vector as the query vector. Specify the desired number of top-K 

results to retrieve. 

4. Elasticsearch Query Execution: Elasticsearch efficiently executes the k-NN query on 

the index of Fused Feature Vectors, finding the top-K most similar images based on 

cosine similarity (or chosen distance metric). 
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5. Ranking and Result Presentation: The cosine similarity score provided by 

Elasticsearch is directly used to rank images. Cosine similarity ranges from 0 to 1 for 

non-negative  vectors  (or  -1  to  1  in  general,  but  our  embeddings  being  outputs  of 

ReLUs  and  such  are  likely  non-negative  or  at  least  not  strongly  negative,  plus 

normalized).  A  score  of  1  means  the  query  and  database  image  have  identical 

embeddings  (very  likely  the  same  or  very  similar  content),  while  lower  scores 

indicate less similarity. By sorting by this score in descending order, we produce the 

ranked list from most similar to least similar (among the top K). 

We experimentally set K = 100 for evaluation, meaning we consider the top 100 

retrieved images to compute metrics like precision, recall, and MAP. In a user-facing 

scenario, one might show only the top 10 or 20, but for evaluation, top 100 gives a 

fuller picture of the ranking quality. 

This integration with Elasticsearch provides us with a scalable and production-ready 

retrieval system. If the dataset were to grow, we could add more nodes to the cluster 

and the shards would distribute, maintaining performance. The use of a search engine 

also allows adding filtering, metadata-based querying, etc., if needed (though in our 

pure CBIR scenario, we focus on the feature vector similarity). 

4.9. Data Collection and Analysis 

The  SO-DRCNN  Hybrid  CBIR  system,  with  its  Siamese-Driven  Feature  Fusion,  is 

designed to be trained primarily in a self-supervised manner, leveraging unlabeled image 

data for learning visual similarity. However, for rigorous evaluation and to demonstrate 

the potential benefits of incorporating limited labeled data, we utilize a combination of 

unlabeled and labeled datasets, along with synthetic data augmentation. 
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4.9.1. Unlabeled Data for Self-Supervised Training: 

Data Source and Scale: We collected a substantial, diverse, and general-purpose image 

dataset comprising approximately the CIFAR-10 dataset consists of 60000 32x32 colour 

images in 10 classes images.  

This dataset was sourced from https://archive.ics.uci.edu/dataset/691/cifar+10 . 

Dataset Characteristics: The dataset covers a wide range of visual categories, including 

the  dataset  is  divided  into  five  training  batches  and  one  test  batch,  each  with  10000 

images. The test batch contains exactly 1000 randomly-selected images from each class. 

The training batches contain the remaining images in random order, but some training 

batches  may  contain  more  images  from  one  class  than  another.  Between  them,  the 

training batches contain exactly 5000 images from each class. The classes are completely 

mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" 

includes  sedans,  SUVs,  things  of  that  sort.  "Truck"  includes  only  big  trucks.  Neither 

includes pickup trucks. This diversity is essential to ensure that the learned embeddings 

capture a broad spectrum of visual features and semantic concepts, promoting 

generalizability. 

Purpose: This unlabeled dataset forms the primary training corpus for the self-supervised 

Siamese Network training (Auto-Embedder framework). It is used to generate the Can-

Link and Cannot-Link image pairs that drive the contrastive learning process, enabling 

the model to learn visual similarity without manual annotations. 

No Labels Used During Training: Importantly, no class labels or other manual 

annotations are used during the self-supervised training process. Each image, along with 
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its augmented versions, is effectively treated as its own distinct "class" for the purpose 

of contrastive learning (instance discrimination). 

4.9.2. Labeled Data for Evaluation and (Optional) Semi-Supervised Enhancement: 

To further assess the generalization and semantic understanding capabilities of our SO-

DRCNN  system,  we  conducted  a  comparative  evaluation  against  OpenAI's  CLIP 

(Contrastive Language-Image Pre-training) model (Radford et al., 2021). CLIP, trained 

on a massive dataset of 400 million image-text pairs, has demonstrated remarkable zero-

shot performance on various image understanding tasks.  While our system is designed 

for image-to-image retrieval and does not utilize text, we compared its performance in 

image-similarity search to what CLIP's image embeddings can achieve on a subset of its 

evaluation tasks. This comparison serves as a challenging benchmark against a state-of-

the-art model trained with significantly more data and resources 

Purpose of Labeled Data: The class labels in these datasets are used solely for evaluation 

purposes to provide a ground truth for measuring retrieval accuracy (Precision, Recall, 

mAP). They are not used during the primary self-supervised training of the SO-DRCNN 

model or the Siamese Fusion Module. 

Pre-training the CNN backbone on the labeled subset: Before self-supervised training, it 

could pre-train the ResNet-50 backbone on the small labeled subset using a standard 

classification loss. 

Adding a classification loss term to the contrastive loss: During Siamese training, it could 

add a small classification loss term (e.g., cross-entropy loss) that uses the available labels 

to guide the learning process. 
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4.9.3. Data Augmentation for Self-Supervised Pair Generation: 

Augmentation Techniques: As detailed in Section 3.5.3 Siamese-Driven Feature Fusion 

we employ a range of data augmentation techniques to create Can-Link (similar) image 

pairs for self-supervised training. These augmentations include: 

- Random Cropping: Cropping random regions of the image (e.g., 85% scale). 

- Rotation: Randomly rotating the image within a specified range (e.g., ±15°). 

 - Color Jitter: Adjusting brightness, contrast, saturation, and hue within specified 

ranges (e.g., Δbrightness=0.2). 

Purpose of Augmentation: Data augmentation serves two crucial purposes: 

-    Generating  Similar  Pairs:  Creates  variations  of  the  same  image  that  are 

considered semantically similar for the contrastive learning process. 

-  Enhancing  Robustness  and  Generalization:  Exposes  the  network  to  a  wider 

range of image variations during training, making the learned embeddings more 

robust to transformations and improving generalization to unseen images. 

4.9.4. Analysis of Results and Trends: 

During  the  evaluation  and  analysis  of  our  SO-DRCNN  Hybrid  CBIR  system,  we 

observed several key trends and findings: 

• Effectiveness  of  Self-Supervised  Training:  Our  self-supervised  SO-DRCNN 

model, trained with the Siamese-Driven Feature Fusion approach, significantly 

outperformed traditional methods like global color histograms or basic 

BoVW+SVM  classification  pipelines  in  retrieval  tasks.  This  demonstrates  the 
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effectiveness of the self-supervised learning strategy in learning discriminative 

and semantically meaningful image representations without manual labels. 

• Impact of Handcrafted Descriptors (Ternion): Experiments with different 

combinations  of  Ternion  descriptors  (HOG,  ICH,  SERC)  revealed  that  the 

combination  of  all  three  (HOG  +  Color  +  SERC)  generally  yielded  the  best 

retrieval  performance,  confirming  that  each  descriptor  contributes  unique  and 

complementary visual information. Excluding HOG (shape/texture) typically had 

a more significant negative impact on performance than excluding color, 

highlighting  the  importance  of  shape  and  texture  information  for  the  retrieval 

tasks. 

• Importance of Deep Features (SO-DRCNN Embeddings): Comparisons between 

retrieval  using  only  BoVW  histograms  and  retrieval  using  only  SO-DRCNN 

embeddings consistently showed the superiority of the deep embeddings, 

especially for images with complex backgrounds, intra-class variation, or when 

semantic  similarity  was  crucial.  This  validates  the  effectiveness  of  the  SO-

DRCNN architecture in capturing high-level semantic features. 

• Benefits  of  Feature  Fusion  (Siamese-Driven):  The  Siamese-Driven  Feature 

Fusion approach, combining SO-DRCNN embeddings and BoVW histograms, 

consistently outperformed both handcrafted features alone and CNN embeddings 

alone, demonstrating the synergistic benefits of combining these complementary 

feature modalities. The learned fusion weights allowed the system to adaptively 

balance  the  contributions  of  each  feature  type,  leading  to  improved  retrieval 

accuracy. 

• Regularization and Generalization: The use of regularization techniques during 

training (Gaussian noise, dropout in the Bi-LSTM) and the strategic freezing of 
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earlier  layers  in  the  pre-trained  ResNet-50  backbone  contributed  to  improved 

generalization performance and prevented overfitting to the training data. 

• Benefit of Limited Supervision: Experiments with incorporating a small 

percentage of labeled data (e.g., 10-20%) during training, using a soft 

classification loss in addition to the contrastive loss, further improved retrieval 

performance,  demonstrating  the  ability  of  our  framework  to  leverage  limited 

supervision when available. 

• System  Analysis  (Efficiency  and  Failure  Cases):  Measurements  of  retrieval 

response time confirmed the scalability and efficiency of the system, with query 

times on the order of tens of milliseconds for a database of 10,000 images, thanks 

to Elasticsearch and vector indexing. 

Qualitative analysis of failure cases (where the top retrieved images were not 

semantically similar to the query) revealed that complex scenes with multiple 

objects  or  ambiguous  visual  content  posed  challenges  for  the  system.  This 

suggests potential future research directions, such as multi-query approaches or 

region-based retrieval. 

The data collection, analysis, and experimental results demonstrate that the SO-DRCNN 

Hybrid CBIR system, with its Siamese-Driven Feature Fusion approach, is an effective, 

efficient, and robust solution for CBIR. The system's ability to learn from unlabeled data, 

its integration into a working search engine (Elasticsearch), and its strong performance 

on standard benchmarks validate its practical value and contribution to the field of CBIR. 

The  findings  highlight  the  importance  of  self-supervised  learning,  the  benefits  of 

combining deep learning and handcrafted features, and the effectiveness of the Siamese 

Network for adaptive feature fusion. 
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4.10. Implementation 

 
Experimental Hardware & Software Environment: 

All model training, self-supervised fine-tuning, and Elasticsearch indexing were 

performed on a single workstation equipped with an NVIDIA RTX 3090 GPU (24 GB 

GDDR6X), an Intel Xeon Silver 4214 CPU (12 cores, 2.2 GHz), and 128 GB DDR4 

RAM running Ubuntu 20.04 LTS. 

The  deep-learning  stack  consisted  of  Python  3.9,  PyTorch  1.13.1,  CUDA  11.6,  and 

cuDNN 8.4. Indexing and similarity search used Elasticsearch 8.7.0 with the k-NN plugin 

enabled. 

Key scientific libraries included NumPy 1.23, SciPy 1.9, scikit-learn 1.2, scikit-image 

0.19, and OpenCV 4.5. 
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Appendix A: Detailed Algorithmic Description of SERC 
 
This appendix provides a detailed, step-by-step description of the SERC feature 

descriptor algorithm, including all formulas, parameter settings, and all the parameter 

values  (FAST  threshold,  Harris  threshold,  Gabor  filter  parameters,  grid  size,  PCA 

dimensions, etc.) are consistent. There are two phases SERC that will be applied, the 

Training phase and the runtime phase. 

Training Phase: 

The  training  phase  learns  reusable  components  from  a  corpus  of  annotated  image 

patches:   

1. PCA Basis Computation: Aggregates features from 16×16 patches partitioned into a 

3×3 spatial grid (yielding ≈900D vectors). Principal Component Analysis (PCA) retains 

the top 64 eigenvectors, reducing dimensionality while preserving 95% variance.   

2. Binary Test Optimization: Evaluates candidate pixel pairs q𝑝<, 𝑝=r across all patches. 

Tests are greedily selected to maximize variance |(σ 3 = +

>0+
∑ (𝑏? − µ )3>

?*+ )€ , 

minimize  Pearson  correlation |(  =ρ cov(A" ,A#)

D" D#
)€  ,  and  balance  responses ((µ ≈ 0.5) ) . 

The top−( )𝐾 uncorrelated tests are stored for runtime.   

Runtime Phase:  

The runtime phase extracts SERC descriptors for a new image using pre-trained models:   

1. Keypoint Detection:   

   - FAST-9 Detector: Identifies candidate keypoints. 

   - Harris Corner Refinement  

2. Feature Extraction:   

   - Gabor Filtering: Convolves patches with quadrature filters  

   - Rotation Alignment: Computes dominant  
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3. Descriptor Encoding:   

   - Spatial Grid: Partitions 16×16 rotated patches into 3×3 non-overlapping sub-  

regions (≈5×5 pixels each).   

   - PCA Projection: Applies the pre-trained PCA matrix to reduce concatenated 

edge responses to 64D.   

   - rConcise Binary Tests: Generates compact descriptors via pre-optimized pixel 

pair comparisons.   

 
Figure 10 - SERC Training Phase 
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1. Keypoint Detection 

FAST Detector: 

- Objective: Identify candidate keypoints using the FAST-9 algorithm (Rosten & 

Drummond, 2006). 

- Mechanism:  For  a  pixel  For  a  pixel 𝑰𝒑 ,  compare  intensities  of  16  Bresenham 

circle pixels. 𝑰𝒑 is a keypoint if 𝒏 contiguous pixels are brighter/darker than 𝐼F ±

𝜏, where 𝜏 is a threshold (default:  𝑛 = 9,  = 10𝜏 ). 

- Output: A sparse set of candidate keypoints. 
 

Harris Corner Refinement: 

- Objective:  Filter  unstable  FAST  keypoints  using  the  Harris  corner  measure 

(Harris & Stephens, 1988). 

- Mechanism: Compute the Harris response: 

 

- Where: 

𝑤(𝑥, 𝑦) is a Gaussian window, 𝐼G 𝑎𝑛𝑑 𝐼H are gradients,  

- Output: Top 𝑁 keypoints with highest 𝑅.  

- ( )𝑅is the Harris response value. Higher values of ( )𝑅  indicate stronger corners. 

- ( )𝑘  is a sensitivity parameter, empirically set to a small value (𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 (𝑘  =

0.04) - as used in the default setting). 

-  ( )𝑀  is the 2x2 structure tensor, which captures information about the local image 

gradients around the keypoint.  The structure tensor ( )𝑀  is computed as: 
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where:  

  𝑤(𝑥, 𝑦) is a Gaussian window function applied to average the gradient products 

over a local neighborhood around the keypoint. This windowing function, often 

a  Gaussian  kernel,  smooths  the  gradient  information  and  makes  the  corner 

detection more robust to noise. 

  (𝐼G) (𝑎𝑛𝑑 𝐼H)  are the image derivatives (gradients) in the x and y directions, 

respectively, at each pixel within the window. These are typically computed using 

Sobel operators or similar gradient filters.  (𝐼G3), (𝐼H3), (𝑎𝑛𝑑 𝐼G𝐼H) are the products 

of these gradients. 

the convolution, implying that the Gaussian window (𝑤(𝑥, 𝑦)) is convolved with 

the gradient product matrices. In practice, this convolution is implemented as a 

summation over the window: 

 𝐴 = 2 𝑤 (𝑥, 𝑦)𝐼G(𝑥, 𝑦)3

G,H J∈

 

 𝐵 = 2 𝑤 (𝑥, 𝑦)𝐼H(𝑥, 𝑦)3

G,H J∈

 

 𝐶 = 2 𝑤 (𝑥, 𝑦)𝐼G(𝑥, 𝑦)𝐼H(𝑥, 𝑦)
G,H J∈

 

Where ( )𝑊  represents the window region centered at the keypoint. 

de t(𝑀) is the determinant of the matrix ( ):𝑀  𝑑𝑒𝑡 (𝑀) =  − 𝐴𝐵 𝐶 3trace (𝑀) the 

trace of the matrix ( ):𝑀  

trace (𝑀 )=  + 𝐴 𝐵  

After computing the Harris response ( )𝑅  for each FAST keypoint, keypoints are 

filtered based on their ( )𝑅  values. Typically, only the top ( )𝑁  keypoints with the 
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highest ( )𝑅  values are retained, representing the strongest and most stable corners 

in the image. 

Output: A refined set of top ( )𝑁  keypoints, representing stable and well-defined 

corners in the image, filtered based on the Harris corner measure. 

 

Figure 11 - Keypoint Detection and Refinement 

2.  Multi-Directional Edge Extraction 

- Gabor Filters: 

- Objective: Detect edges at orientations  𝜃 = 0 ∘ , 45∘ , 90∘ , 135∘  (Daugman, 
1985).  

 
- Mechanism: For each refined keypoint, extract a local image patch centered 

on the keypoint. Convolve the image with Gabor kernels: 

 

 

Where  𝛾 = 0.5,  = 10,  = 2.𝜆 𝜎 
 

- Output: Edge maps for each orientation. 
 

 
Figure 12 - Multi Directional Edge Extraction 
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3. Rotation-Invariant Encoding 

Dominant Orientation Detection: 

- Objective:  Align  descriptors  to  a  reference  angle  (e.g., 0∘)  for  rotation 

invariance. This rotation-invariant encoding ensures that the SERC descriptor 

is  robust  to  variations  in  object  orientation,  making  it  more  effective  for 

retrieving similar images regardless of their rotation. 

- Mechanism: Compute a radial histogram of edge orientations within a circular 

patch (radius 𝑟). Identify the peak orientation 𝜃FLM? . 

- Circular Shifting: Rotate the patch by−𝜃 FLM?  to align 𝜃F𝑒𝑎𝑘  with 0∘ . 

4. Concise Feature Summarization 

i. Spatial Grid Partitioning: 

Objective: Retain global shape context. 

Mechanism: Spatial Grid Partitioning: Divide the 16x16 rotated patch into 

a 𝟑𝒙𝟑  grid of non-overlapping sub-patches.  This results in 9 sub-patches. 

The  size  of  each  sub-patch  will  be  approximately 5 5𝑥   pixels  (16/3  ≈

5.33, rounded down). 

ii. Feature Vector Concatenation: 

For each of the 9 sub-patches: Concatenate the edge responses from the four 

Gabor  filter  orientations  into  a  single  vector.  Each  sub-patch  will  have 

approximately 5   ∗ 5   ∗ 4  = 100values (assuming 5 5𝑥  sub-patches).  

Note: It will need to handle the non-integer sub-patch size. 

Concatenate  the  9  sub-patch  vectors  into  a  single  vector  representing  the 

entire  patch.  This  results  in  a  vector  of  approximately 9   ∗ 100  = 900 

dimensions. 
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iii. Dimensionality Reduction: 

Apply Principal Component Analysis (PCA) to the concatenated vector 

(approximately 900-dimensional) to reduce its dimensionality to 64 

dimensions. (Confirm the 64 dimensions). 

Retain the top 64 principal components, capturing the directions of maximum 

variance in the data. 

Output: A 64-dimensional PCA-reduced feature vector, representing the SERC 

descriptor for the local image patch. This is the vector used as input to the BoVW 

framework. 

- Objective: Compress features while preserving discriminability. 

- Mechanism:  Apply  Principal  Component  Analysis  (PCA)  (Jolliffe,  2002)  to 

reduce concatenated grid features from 𝐷 𝑡𝑜 𝑑 𝒅imensions (default:  𝒅 = 64 ). 

 

Figure 13 - Spatial Grid Partitioning and PCA-based dimensionality reduction 

 
5. Binary Descriptor (rConcise) 

Greedy Test Selection: 
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- Objective:  Optimize  binary  tests  for  uncorrelated,  high-variance  pixel 

pairs. 

- Mechanism: Define a pool of candidate pixel pairs q𝑝<, 𝑝=r. 

Select pairs that maximize variance 𝜎3, minimize correlation 𝜌, and 

have mean  ≈ 𝜇 0.5 : 

𝜎!
" =

1
 − 𝑁 1

& '𝑏 !,$ − 𝜇 ! *
"

%

$&'

 

,  

 
where 𝑏? is the binary test result (0 1𝑜𝑟 ). 
 
rConcise  binary descriptor in SERC is built by greedily selecting a set of 

the  "best"  binary  tests  from  a  larger  pool  of  candidate  tests.  "Best"  is 

defined by three criteria: 

High Variance (𝝈𝟐 ): The test should produce results that vary 

significantly across different training image patches. 

Low Correlation (ρ): The test should be as uncorrelated as possible with 

previously selected tests, ensuring each new test adds unique information. 

Mean  Close  to  0.5  (μ≈0.5): The  test  should  have  a  balanced  output 

(approximately equal numbers of 0s and 1s) across the training data. 

 
Correlation ( )𝝆  between Binary Tests:  

It is needed to define how the correlation between two binary tests (say, 

test 𝑘 and test 𝑙)  is calculated. The formula for the Pearson correlation 

coefficient 𝛲𝑘𝑙  is used to measure the linear 

dependency or redundancy between two binary tests, say test k  and test l 
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. A lower correlation is better because it indicates that the two tests are 

providing more independent information. 

 

Purpose: Covariance measures how much the results of binary test k 

 and binary test l vary together across the training dataset. 

Breakdown: 

𝑏? 𝑖: This is the binary outcome (0 or 1) of applying the  

 − 𝑘 𝑡ℎ  binary test to the  − 𝑖 𝑡ℎ  training image patch. Imagine have a set 

of training patches (e.g., patches extracted around keypoints from many 

training images). For each patch 𝑖 , perform binary test 𝑘, and the result is 

either 0 or 1. 

𝑏O, 𝑖: Similarly, this is the binary outcome (0 or 1) of applying the  − 𝑙 𝑡ℎ  

binary test to the same  − 𝑖 𝑡ℎtraining image patch. 

: This is the mean (average) value of the results of binary 

test 𝑘 across all 𝑁 training patches. It tells the average output of test 𝑘 

 over the entire training set. It counts how many times the test outputted 

'1' (and implicitly, 𝑁 minus this sum is how many times it outputted '0'). 

𝟏𝑵 Dividing by 𝑁 gives the average value, which is the mean. 

 : This is the mean (average) value of the results of binary 

test 𝑙 across all 𝑁 training patches.  

Why Aim for Mean Close to 0.5? 
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The  greedy  search  seeks  binary  tests  with  a  mean 𝜇_𝑘   close  to  0.5 

because: 

Balanced  Responses: A  mean  of  0.5  indicates  that  the  test  outputs 

approximately equal numbers of 0s and 1s across the training data. This 

is desirable because it suggests the test is sensitive to variations in both 

directions (presence and absence of a feature). 

Maximize Information Entropy: In information theory, a binary variable 

has maximum entropy (maximum information content) when the 

probability of it being 0 and 1 is equal (i.e., probability of 0.5 for each). 

A mean close to 0.5 implies a more balanced and information-rich binary 

test. 

Avoid Bias: A mean far from 0.5 (e.g., close to 0 or 1) might suggest a 

biased test that is less sensitive to certain types of input variations and 

might  not  be  as  effective  at  discriminating  between  different  image 

patterns. 

 

Figure 14 - Binary Test Correlation Matrix 
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Result Visualization 
 
Performance Comparison 
 

Table 1: Performance Comparison 

Method Accuracy (%) Time/Image (ms) 

SERC 82.4 12 

HOG 76.1 18 

SIFT 78.9 48 

SURF 79.5 35 

 
Aggregate performance: 
 

Table 2: Aggregate performance 

Algorithm Avg. Keypoints Avg. Matches Avg. Extract Time (s) Avg. Match Time (s) 

SERC 50.2 ± 12.3 25.1 ± 9.8 1.45 ± 0.32 0.001 ± 0.002 

ORB 158.7 ± 45.6 40.3 ± 15.2 0.003 ± 0.001 0.0001 ± 0.0001 

BRISK 172.4 ± 63.1 42.8 ± 18.6 0.035 ± 0.012 0.0003 ± 0.0002 

 

Summary 

This workflow demonstrates how SERC’s components synergize to achieve high 

accuracy, rotation robustness, and real-time efficiency. The implementation is 

reproducible  using  standard  libraries,  and  results  are  validated  through  systematic 

benchmarking. 
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Appendix B: Detailed Algorithmic Description of BoVW Pipeline 

This appendix provides a detailed, step-by-step implementation guide for the Bag-of-

Visual-Words  (BoVW)  pipeline  used  for  handcrafted  feature  extraction  in  the  SO-

DRCNN Hybrid CBIR system. 

1. Keypoint Detection: 

Algorithm: ORB (Oriented FAST and Rotated BRIEF) (Rublee et al., 2011). 

Note: We are using ORB only for its keypoint detection capabilities, not 

for its descriptor. 

Implementation (Conceptual - Adapt to the chosen library): 

      import cv2  # Assuming we're using OpenCV 
 
def detect_orb_keypoints(image, nfeatures=500): # Example: limit to 500 keypoints 
    """ 
 Detects ORB keypoints in a grayscale image. 

 
    Args: 
        image: The input grayscale image (NumPy array). 
        nfeatures: The maximum number of keypoints to retain. 
 
    Returns: 
        keypoints: A list of cv2.KeyPoint objects. 

   """ 
   orb = cv2.ORB_create(nfeatures=nfeatures) # We can adjust parameters here 
    keypoints = orb.detect(image, None) 
    return keypoints 
 
# Example Usage: 
# image = cv2.imread("image.jpg", cv2.IMREAD_GRAYSCALE)  # Load image in grayscale 
# keypoints = detect_orb_keypoints(image) 
     

• Parameters: 

o nfeatures: The maximum number of keypoints to retain. It is needed to 

choose a suitable value (e.g., 500, 1000, or even more, depending on the 
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image size and content). Experimentation is key. More keypoints 

generally mean more local features, but also higher computational cost. 

o Other  ORB  parameters:  We  can  adjust  other  ORB  parameters  (see 

OpenCV documentation) to fine-tune the keypoint detection process. 

• Output:  A  list  of  keypoints  (e.g.,  cv2.KeyPoint  objects  in  OpenCV),  each 

representing a salient point in the image. 

2. Local Descriptor Extraction (Ternion Descriptors): 

• Input: Grayscale image and the list of ORB keypoints. 

• Action: For each keypoint: 

1. Extract  Patch:  Extract  a  16x16  pixel  patch  centered  on  the  keypoint. 

(Confirm  the  16x16  patch  size.)  Handle  boundary  cases  appropriately 

(e.g., by padding the image or ignoring keypoints too close to the edge). 

2. Compute HOG Descriptor: 

§ Use a library function (e.g., skimage.feature.hog in scikit-image) 

to compute the HOG descriptor for the patch. 

§ Parameters: It is needed to specify parameters like: 

§ orientations: Number of orientation bins (e.g., 9). 

§ pixels_per_cell: Size of each cell (e.g., (8, 8)). 

§ cells_per_block: Number of cells per block (e.g., (2, 2)). 

§ block_norm: Normalization scheme (e.g., 'L2-Hys'). 

§ Output: A HOG feature vector for the patch. 

3. Compute ICH Descriptor: 

§ Convert the patch to HSV color space. 

§ Create a histogram of the HSV values. We’ve specified 16 bins. 
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§ Parameters: 

§ bins: Number of bins for the histogram (e.g., 16). 

§ range: Range of HSV values (typically [0, 180] for H, [0, 

256] for S and V in OpenCV). 

§ Output: An ICH feature vector (16-dimensional histogram) for 

the patch. 

4. Compute SERC Descriptor: 

§ Follow the detailed SERC algorithm (as described in Appendix 

A), including: 

§ Gabor filtering (4 orientations). 

§ Rotation-invariant encoding. 

§ Spatial grid partitioning (3x3 grid). 

§ PCA dimensionality reduction (to 64 dimensions). 

§ Output:  A  64-dimensional  PCA-reduced  feature  vector  for  the 

patch. 

5. Combine into Ternion Descriptor: For each keypoint, we now have: 

§ HOG feature vector. 

§ ICH feature vector. 

§ SERC feature vector (64-dimensional). 

§ Combine  these  into  a  single  "Ternion  descriptor"  for  the 

keypoint. The simplest way is to concatenate them. It is on the 

order [HOG, ICH, SERC]  

6. Output: For each image, we have a list of Ternion descriptors, one for 

each keypoint. 
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3. Visual Vocabulary Construction (Clustering): 

• Input: A large collection of Ternion descriptors extracted from a representative 

set of training images. 

• Algorithm: Mini-batch k-means clustering (Sculley, 2010). 

Implementation: 

      from sklearn.cluster import MiniBatchKMeans 
 
def create_visual_vocabulary(descriptors, k=400, batch_size=64): 
    """ 
  Creates a visual vocabulary by clustering descriptors. 

 
    Args: 
        descriptors: A list/array of Ternion descriptors (from multiple images). 
        k: The number of visual words (clusters). 
        batch_size: The batch size for mini-batch k-means. 
 
    Returns: 
        kmeans: The trained MiniBatchKMeans object.  The cluster centers are the visual words. 
    """ 
    kmeans = MiniBatchKMeans(n_clusters=k, batch_size=batch_size, random_state=0, n_init=10) # 
Added n_init 
    kmeans.fit(descriptors) 
    return kmeans 
 
# Example Usage: 
# all_descriptors = []  # Collect Ternion descriptors from many training images 
# for image in training_images: 
#     keypoints = detect_orb_keypoints(image) 

#          descriptors  =  extract_ternion_descriptors(image,  keypoints)  #  **We  Explained  it  the 
Appendix A** 

#     all_descriptors.extend(descriptors) 
 
# all_descriptors = np.array(all_descriptors) # Convert to NumPy array 
 
# vocabulary = create_visual_vocabulary(all_descriptors) 

     

• Parameters: 

o k: The number of visual words (clusters). We have chosen 400. 

o batch_size: The batch size for mini-batch k-means (e.g., 64). 
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• Output: The trained MiniBatchKMeans object. The cluster centers of this object 

represent our visual vocabulary (400 visual words). Each visual word is a vector 

with the same dimensionality as our Ternion descriptor. 

4. Image Representation (Histogram Generation): 

• Input: An image, its ORB keypoints, and the trained visual vocabulary (k-means 

object). 

• Action: For each image: 

1. Extract Ternion Descriptors: Detect ORB keypoints and extract 

Ternion descriptors (HOG, ICH, SERC) at each keypoint, as in Step 2. 

2. Assign to Visual Words: For each Ternion descriptor, find the nearest 

visual  word  (cluster  centroid)  in  our  vocabulary.  It  uses  the  predict 

method of the trained MiniBatchKMeans object and Euclidean distance. 

3. Construct  Histogram:  Create  a  histogram  with  k  bins  (one  for  each 

visual word). For each Ternion descriptor, increment the bin 

corresponding to the assigned visual word. 

4. L2-Normalize: L2-normalize the histogram. This means dividing each 

element of the histogram by the square root of the sum of the squares of 

all elements. This makes the histogram represent a probability 

distribution. 

• Output:  An  L2-normalized  BoVW  histogram  (a  vector  of  length  k  =  400) 

representing the image. 

5. Feature Fusion (Combining Local BoVW with Global Descriptors): 

• Input: 
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o L2-normalized BoVW histogram (from Step 4). 

o Global HOG descriptor (computed over the entire image). 

o Global ICH descriptor (computed over the entire image). 

o Global SERC descriptor (computed over the entire image). Note: For the 

global SERC, we would likely skip the keypoint detection and apply the 

SERC processing to the entire image directly, then do PCA. 

• Action: Concatenate these vectors: 

  Handcrafted Feature Vector = [L2-normalized BoVW Histogram, Global HOG, Global ICH, 

Global SERC] 

• Output: The final Handcrafted Feature Vector for the image. This is what we 

will fuse with the CNN embedding in the later stages. 

6. Vocabulary Quality Evaluation: 

• Davies-Bouldin Index (DBI): Calculate the DBI for our trained visual 

vocabulary (using the clustered Ternion descriptors from our training set). Lower 

DBI values indicate better clustering. 

Code Example (Conceptual - Combining the Steps): 

      import cv2 
import numpy as np 
from sklearn.cluster import MiniBatchKMeans 
from skimage.feature import hog  # Example - we'll need our SERC and ICH functions 
 
# ... (Assume we have functions for: detect_orb_keypoints, extract_hog, extract_ich, extract_serc) ... 
 
def extract_ternion_descriptors(image, keypoints): 
    descriptors = [] 
    for kp in keypoints: 
        x, y = int(kp.pt[0]), int(kp.pt[1]) 
        # Extract 16x16 patch (handle boundary conditions!) 
        patch = image[max(0, y-8):min(image.shape[0], y+8), 
                      max(0, x-8):min(image.shape[1], x+8)] 
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        if patch.shape != (16, 16): #padding 
            patch = cv2.resize(patch, (16,16)) 
 
        # Compute HOG, ICH, and SERC for the patch 
        hog_features = extract_hog(patch)  # Our HOG function 
        ich_features = extract_ich(patch)  # Our ICH function 
        serc_features = extract_serc(patch)  # Our SERC function (outputting 64D PCA vector) 
 
        # Concatenate into Ternion descriptor 
        ternion_descriptor = np.concatenate((hog_features, ich_features, serc_features)) 
        descriptors.append(ternion_descriptor) 
    return descriptors 
 
def create_bovw_histogram(image, keypoints, vocabulary): 
    descriptors = extract_ternion_descriptors(image, keypoints) 
    if not descriptors: #if no keypoints 
        return np.zeros(vocabulary.n_clusters) #return zero vector. 
 
    descriptors = np.array(descriptors) 
    visual_words = vocabulary.predict(descriptors) 
    histogram, _ = np.histogram(visual_words, bins=range(vocabulary.n_clusters + 1), density=False) 
    histogram = histogram.astype(np.float32)  # Convert to float32 for L2 normalization 
    histogram = cv2.normalize(histogram, histogram, norm_type=cv2.NORM_L2).flatten() 
    return histogram 
 
def extract_global_descriptors(image): 
  # Global HOG, ICH, SERC 
  global_hog = extract_hog(image) 
  global_ich = extract_ich(image) 
  global_serc = extract_serc(image) # Apply SERC to the *entire* image, then PCA 
 
  global_hog = cv2.normalize(global_hog.astype(np.float32), global_hog, 
norm_type=cv2.NORM_L2).flatten() 
  global_ich = cv2.normalize(global_ich.astype(np.float32), global_ich, 
norm_type=cv2.NORM_L2).flatten() 
  global_serc = cv2.normalize(global_serc.astype(np.float32), global_serc, 
norm_type=cv2.NORM_L2).flatten() 
  return global_hog, global_ich, global_serc 
 
def create_handcrafted_features(image, vocabulary): 
    keypoints = detect_orb_keypoints(image) 
    bovw_histogram = create_bovw_histogram(image, keypoints, vocabulary) 
    global_hog, global_ich, global_serc = extract_global_descriptors(image) 
 
    # Concatenate BoVW histogram and global descriptors 
    handcrafted_features = np.concatenate((bovw_histogram, global_hog, global_ich, global_serc)) 
    return handcrafted_features 
 
 
# --- Example Usage (Conceptual) --- 
 
# 1. Build Vocabulary (Offline) 
# all_descriptors = []  # Collect Ternion descriptors from many *training* images 
# for image_path in training_image_paths: 
#     image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) 
#     keypoints = detect_orb_keypoints(image) 
#     descriptors = extract_ternion_descriptors(image, keypoints) 
#     all_descriptors.extend(descriptors) 
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# all_descriptors = np.array(all_descriptors) 
# vocabulary = create_visual_vocabulary(all_descriptors) # vocabulary is our trained MiniBatchKMeans 
 
# 2. Indexing (Offline) 
# for image_path in database_image_paths: 
#     image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) 
#     handcrafted_features = create_handcrafted_features(image, vocabulary) 
#     # ... (Store handcrafted_features in our database/index) ... 
 
# 3. Querying (Online) 
# query_image = cv2.imread("query_image.jpg", cv2.IMREAD_GRAYSCALE) 
# query_handcrafted_features = create_handcrafted_features(query_image, vocabulary) 
# # ... (Use query_handcrafted_features for similarity search) ... 
     

Key Points and Reminders: 

• Complete Code: This is a conceptual outline. We'll need to fill in the details of 

our extract_hog, extract_ich, and extract_serc functions, and adapt the code to 

our specific libraries and data structures. 

• SERC  Output:  Output  of  extract_serc  function  outputs  the  64-dimensional 

PCA-reduced vector, as this is what we'll be using within the BoVW framework. 

• Global  Descriptors:  The  extract_global_descriptors  function  shows  how  to 

compute global HOG, ICH, and SERC. Make sure you implement these correctly. 

• Normalization: L2 normalization is crucial for both the BoVW histogram and 

the global descriptors. 
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Appendix C: Detailed Implementation of SO-DRCNN and Siamese Training 
 

This appendix provides a detailed description of the SO-DRCNN model architecture, its 

integration within the Siamese network, and the self-supervised training process using 

contrastive loss. 

1. SO-DRCNN Model Architecture: 

The  SO-DRCNN  model  is  designed  to  extract  rich,  semantically  meaningful  image 

embeddings by combining a pre-trained CNN backbone with modules for recurrent patch 

processing, multi-scale feature aggregation, and attention-based feature refinement. This 

deep  embedding  is  subsequently  fused  with  handcrafted  features  within  a  Siamese 

network framework. 

1.1. Pre-trained CNN Backbone (ResNet-50): 

• Architecture:  We  utilize  the  ResNet-50  architecture  (He  et  al.,  2016),  pre-

trained  on  the  ImageNet  dataset  (Deng  et  al.,  2009).  ResNet-50  is  a  deep 

convolutional neural network known for its residual connections, which enable 

the training of very deep networks. 

• Pre-trained Weights: The ResNet-50 backbone is initialized with weights pre-

trained on ImageNet, providing a strong foundation of general-purpose visual 

features. 

• Feature Extraction Point: We extract feature maps from the output of 

the conv5_x layer  (e.g.,  7x7x2048  dimensions  for  typical  inputs),  balancing 

semantic depth and spatial resolution. 
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• Freezing Early Layers (Optional): During initial training stages (e.g., first 5 

epochs),  weights  of  earlier  ResNet  layers  (e.g., conv1 through conv3_x)  are 

frozen to preserve learned low-level features, while higher layers are fine-tuned. 

All layers are subsequently fine-tuned. 

1.2. Recurrent Patching Module: 

• Objective:  To  capture  spatial  context  and  sequential  dependencies  between 

different regions of the image. 

• Mechanism: 

- Patch Extraction: The feature maps from the conv5_x layer of ResNet-50 are 

divided into a 3x3 grid of non-overlapping patches. This results in 9 patches. 

(Implementation Note: Handling the 7x7 dimension requires padding or a stride 

strategy to yield 9 patches. Each patch retains the full channel depth, e.g., 2048). 

- Sequence Modeling: Patches are flattened into 2048-D vectors and treated as a 

9-step sequence, ordered row-major. 

- Bidirectional LSTM (Bi-LSTM): A stack of four Bi-LSTM layers processes the 

sequence. Each layer has 64 hidden units per direction. Orthogonal initialization 

is used for recurrent weights, and Xavier for input weights. Dropout 

(p=0.3) and Gaussian  Noise  (std=0.1  applied  to  input  sequence) are  used  for 

regularization during training. 

o Bidirectional Processing: Each Bi-LSTM layer processes the sequence 

in both forward and backward directions, capturing contextual 

information from both preceding and succeeding patches. 
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o Stacked Layers: The output of each Bi-LSTM layer is fed as input to the 

next Bi-LSTM layer, allowing the network to learn increasingly complex 

and abstract spatial relationships. 

- Output: The final hidden states from the forward and backward passes of the top 

Bi-LSTM layer are concatenated, yielding a 128-dimensional context 

vector representing spatially enriched features. 

 

Figure 15 - Bi-LSTM 

1.3. Spatial Pyramid Pooling (SPP) and Atrous Spatial Pyramid Pooling (ASPP): 

• Objective: To capture multi-scale information and context from the image. 

• Mechanism: Applied in parallel to the conv5_x feature maps. 

• SPP:  Spatial  Pyramid  Pooling  (SPP)  is  applied  to  the  feature  maps  from  the 

conv5_x  layer  of  ResNet-50.  We  use  a  4-level  pyramid  with  the  following 

pooling regions: 1x1, 2x2, 3x3, and 6x6.  Max pooling is typically used within 

each region. The outputs from each pooling level are then concatenated. 

• ASPP:  Atrous  Spatial  Pyramid  Pooling  (ASPP)  is  also  applied  to  the  feature 

maps from the conv5_x layer of ResNet-50. ASPP uses dilated (atrous) 

convolutions with different dilation rates to capture multi-scale context without 
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reducing resolution. We use the following dilation rates: [Specify our dilation 

rates, e.g., 1, 6, 12, 18]. 

• Concatenation: The outputs of the SPP and ASPP modules are concatenated to 

create a multi-scale feature representation. 

1.4. Attention Mechanism: 

• Objective: To refine feature responses and emphasize important feature 

channels. 

• Mechanism: A channel attention mechanism inspired by Squeeze-and-

Excitation Networks (SENet) (Hu et al., 2018) is applied to the combined features 

from the SPP and ASPP modules (and potentially also the original ResNet-50 

feature maps). 

§ Global  Average  Pooling:  Global  average  pooling  is  applied  to  each  feature 

channel to obtain a channel-wise descriptor. 

§ Fully  Connected  Layers:  The  channel-wise  descriptor  is  passed  through  two 

fully connected layers with a reduction ratio (to reduce dimensionality) and a 

ReLU activation function in between. 

§ Sigmoid Activation: A sigmoid activation function is applied to the output of the 

second fully connected layer to produce channel-wise attention weights (values 

between 0 and 1). 

§ Feature  Re-weighting:  The  original  feature  maps  are  multiplied  by  these 

attention weights, effectively re-weighting the feature channels based on their 

importance. 

§ Output Compression: The attention-refined tensor is passed through a final 1x1 

convolution, reducing channels to 64. 
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1.5.  Embedding Head and Final Deep Embedding: 

• Objective: To integrate features from the parallel pathways (Recurrent Patching 

and Multi-Scale/Attention) and distill them into a compact vector representation. 

• Mechanism: 

Integration: The 128-D context vector from the Bi-LSTM module (Section 1.2) is 

concatenated with the 64-D vector obtained after applying Global Average Pooling 

to the output of the Attention Mechanism (Section 1.4), resulting in a 192-D 

integrated feature vector. 

Projection Head: This 192-D vector is processed by a two-layer MLP: 

FC : ₁ Fully connected layer (192 → 256 dimensions) with He normal initialization, 

followed by BatchNorm and ReLU activation. 

FC  (Embedding Layer): ₂ Linear fully connected layer (256 → 512 dimensions) 

with Xavier initialization. 

L -Normalization: ₂ The 512-D output vector is L -normalized. ₂

Output: The final CNN Embedding Vector |q   𝒆 ∈ 𝑹 𝟓𝟏𝟐 r€ , representing the deep 

semantic features. 

2. Siamese Network Architecture (Auto-Embedder): 

Structure: The SO-DRCNN model is utilized within a Siamese Network architecture 

for self-supervised training. The Siamese Network comprises two identical SO-DRCNN 

model instances (twins) that share all parameters. 

Input: The Siamese Network takes pairs of images (e.g., Anchor, Positive/Negative) as 

input. 
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Processing (within each twin): 

• Deep Feature Extraction: Each image is processed independently by its 

corresponding twin through the ResNet-50 backbone and enhancement modules 

(Recurrent Patching, SPP/ASPP, Attention, GAP) up to the point before the final 

512-D  Fully  Connected  Embedding  Layer,  producing  an  intermediate  deep 

feature representation (e.g., the 192-D concatenated vector or the output of the 

first projection layer FC ). Let this be denoted ₁ (𝑑<). 

• Handcrafted  Feature  Extraction: The  Handcrafted  Feature  Vector   (ℎ<)  is 

computed separately using the BoVW/Ternion pipeline. 

• Feature Fusion: The Fusion Module takes the intermediate deep feature 

representation (𝑑<) and the Handcrafted Feature Vector (ℎ<) as input. It combines 

these features using weighted concatenation with learnable weights (𝑤1, 2𝑤 ) to 

produce a Fused Feature Vector (pre-final embedding).  

• Final  Embedding  Layer: The  Fused  Feature  Vector  is  then  passed  through 

the final Embedding Layer (the linear FC layer producing 512 dimensions) of the 

SO-DRCNN twin. 

• Normalization: The 512-D output is L -normalized. ₂

• Output: The Siamese Network outputs two final, L -normalized Fused Feature ₂

Vectors 𝑓final  ∈ 𝑅 Q+3 , one from each twin. These final vectors are used for the 

contrastive loss calculation 

3. Self-Supervised Training with Contrastive Loss: 

• Training  Data:  The  Siamese  Network  is  trained  on  a  dataset  of  unlabeled 

images. 
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• Pair Generation: Training pairs are generated using two heuristics: 

o Can-Link  Pairs  (Similar):  An  image  is  paired  with  an  augmented 

version of itself (using random cropping, rotation, color jitter, etc.). 

o Cannot-Link Pairs (Dissimilar): An image is paired with a randomly 

selected different image from the dataset. 

• Contrastive Loss Function: The Siamese Network is trained using a contrastive 

loss function, which encourages similar images to have close embeddings and 

dissimilar images to have distant embeddings. The contrastive loss is defined as: 

      𝐿q𝐼<, 𝐼=r = q1 − 𝑌 <=r  q∗ 𝑑 𝐹<, 𝐹=r
3

+ 𝑌<=   ∗𝑚𝑎𝑥 |0,  − q𝑎 𝑑 𝐹 <, 𝐹=r€
3
 

 
    where: 

        𝐼< and 𝐼=   are a pair of images. 𝐹< and  𝐹= are the Fused Feature 

Vectors produced by the Fusion Modules in the Siamese twins for images 

𝐼<  and 𝐼=     , respectively. 

 𝑑q𝐹<, 𝐹=r = ¢£𝐹< − 𝐹=£¢
3
 

       

is the Euclidean distance between the Fused Feature Vectors. 

𝑌<= is the similarity label: 1 if the pair is Can-Link (similar), 0 if Cannot-
Link (dissimilar). 

a is a margin parameter (set to 1.0 in our experiments). 

• Training Process: 

1. Forward Pass: A mini-batch of image pairs is fed through the Siamese 

Network.  Each  image  in  the  pair  is  processed  by  its  respective  twin, 

including feature extraction (ResNet-50 + SO-DRCNN modules), feature 

fusion (Fusion Module), and final embedding generation. 
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2. Loss Calculation: The contrastive loss is calculated based on the 

Euclidean distances between the fused feature vectors and the similarity 

labels. 

3. Backpropagation: The gradients of the contrastive loss with respect to 

the network weights (including the weights of the ResNet-50 backbone, 

the SO-DRCNN modules, and the Fusion Module) are computed using 

backpropagation. 

Weight Optimization: The network parameters, including the fine-tuned 

ResNet-50 layers, SO-DRCNN enhancement modules, and the learnable 

Fusion Module weights (𝑤+ , 𝑤3), are updated using the AdamW 

optimizer [Loshchilov & Hutter, 2017]. A learning rate of 3 × 10 0R  

 
 and a weight decay of  1 × 10 0Q    were employed throughout the training 

process. 

4. Iteration: This process is repeated for multiple mini-batches and epochs 

until  the  network  converges  (validation  loss  plateaus  or  a  predefined 

number of epochs is reached). 

o Regularization: 

o Gaussian Noise: A Gaussian noise layer (standard deviation of 0.1) is 

added  to  the  input  of  the  Bi-LSTM  module  during  training  to  prevent 

overfitting. 

o Dropout: Dropout (p=0.3) is applied in the Bi-LSTM layers to further 

regularize the network. 
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o (Optional) Freezing Early Layers: The weights of the earlier layers of 

the pre-trained ResNet-50 backbone can be frozen during the initial stages 

of training to preserve general-purpose features. 

4. Fusion Module (Detailed Implementation): 

• Input: 

o CNN Embedding Vector (from SO-DRCNN twin). 

o Handcrafted Feature Vector (BoVW histogram + global Ternion 

descriptors). 

• Mechanism: Weighted Concatenation. 

  Fused Feature Vector =[w1  CNN∗ Embedding$ ector, w2  Hand − crafted∗ FeatureVector] 
 
     

where w1 and w2 are learnable scalar weights. 

• Initialization: w1 and w2 are initialized (e.g., w1 = 0.6, w2 = 0.4, or with random 

values). 

• Training: w1 and w2 are learned during the Siamese Network training process, 

guided by the contrastive loss. 

PyTorch Implementation: 

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
 
class FusionModule(nn.Module): 
def __init__(self, cnn_dim, handcrafted_dim): 
 super().__init__() 

  self.w1 = nn.Parameter(torch.tensor([0.6]))  # Initialize w1 
        self.w2 = nn.Parameter(torch.tensor([0.4]))  # Initialize w2 
        self.cnn_dim = cnn_dim 
        self.handcrafted_dim = handcrafted_dim 
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    def forward(self, cnn_embedding, handcrafted_features): 
        # Ensure inputs are float32 
        cnn_embedding = cnn_embedding.float() 
        handcrafted_features = handcrafted_features.float() 
 
        # L2 Normalization 
        cnn_embedding = F.normalize(cnn_embedding, p=2, dim=1) 
        handcrafted_features = F.normalize(handcrafted_features, p=2, dim=1) 
 
        # Weighted Concatenation 
        weighted_cnn = self.w1 * cnn_embedding 
        weighted_handcrafted = self.w2 * handcrafted_features 
 
        fused_features = torch.cat((weighted_cnn, weighted_handcrafted), dim=1) 
 
        #Final L2 Normalization 
        fused_features = F.normalize(fused_features, p=2, dim=1) 
        return fused_features 

     

5. Using the Trained Model for CBIR: 

• After Training: 

• Extract the trained Fusion Module from one of the Siamese twins. 

• Extract  one  of  the  trained  SO-DRCNN  models  (including  the 

ResNet-50 backbone) from one of the Siamese twins. This will be 

our feature extractor. 

• Indexing: 

For each image in our database: 

1. Extract the Handcrafted Feature Vector (BoVW + global 

Ternion). 

2. Extract the CNN Embedding Vector using the trained SO-

DRCNN model. 

3. Fuse the features using the trained Fusion Module. 

4. (Optional) Apply PCA to the fused vector. 
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5. Index the resulting fused feature vector in Elasticsearch. 

• Querying: 

For a query image: 

1. Extract the Handcrafted Feature Vector (BoVW + global 

Ternion). 

2. Extract the CNN Embedding Vector using the trained SO-

DRCNN model. 

3. Fuse the features using the trained Fusion Module. 

4. Apply PCA (using the same PCA transformation learned during 

indexing). 

5. Query Elasticsearch using the fused feature vector. 
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Chapter 5 

Findings 

In order to create a CBIR network to validate it on a new benchmark database, we have 

thoroughly examined in this chapter the coupling of classification with a different kind 

of secondary feature representation based on various transformation. This is carried out 

in order to determine which feature representation techniques, given a specific set of 

parameters and pre-classification, may produce the best outcomes for specific categories 

of images in the various benchmark databases. 

5.1. Performance metrics 

Performance  metrics,  which  are  typically  calculated  in  comparison  to  a  ground-truth 

value, such as specified labels of a particular dataset, are commonly used in information 

retrieval  systems  to  assess  the  quality  of  the  data  retrieved.  Evaluating  performance 

metrics can be difficult in situations like this one, where working with fully unlabelled 

data and haven't done any training steps on the network that we are using. When assessing 

image  retrieval  systems,  the  precision,  recall,  F-Score,  and  mean  average  precision 

(MAP)  metrics  are  typically  employed.  The  defined  precision  is  the  proportion  of 

accurately  retrieved  images,  or  true  positives  (𝑇𝑃),  relative  to  the  total  number  of 

retrieved images, which is determined by adding the total number of false positives (𝐹𝑃) 

and true positives (𝑇𝑃).  

The  evaluation  metrics  listed  below  are  used  to  assess  the  rival  models'  efficacy:  

•  MAP,  or  Mean  Average  Precision:  The  most  widely  utilized  statistic  for  assessing 

retrieval systems' performance is MAP. The method by which the metric determines the 

order of the precisely chosen results is as follows:  
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   (4.1) 

 

In this case,  is the number of correctly returned images, and  is the size of the query 

set. The precision of the  correct image over the  query image is represented by  

Precision/Recall  @  N:  Based  on  the  number  of  retrieved  image  samples  (N)  as  a 

threshold, the metric expresses the precision and recall rate. For a collection of recovered 

photographs, the correct images would often appear first. As a result, lower values of N 

have less significance in the precision/recall outcome than higher values of N. 

     (4.2) 

Equation (5) defines recall as the fraction of successfully recovered images (𝑇𝑃) relative 

to the overall number of images that are relevant in the dataset, which is calculated by 

adding the true positives (𝑇𝑃) as well as false negatives (𝐹𝑁). 

   (4.3) 

The F-score, which expresses the image-retrieving technique's accuracy, can be defined 

as the harmonic mean of precision and recall. 

   (4.4) 

The  average  precision  (AP)  of  each  query  is  calculated  as  Mean  Average  Precision 

(MAP), where AP is defined as follows for the  query: 

   (4.5) 

where N is the total number of images in the search set,  is the number of relevant 

retrieved images within the n top results,  is the total number of relevant images for the 
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ith  query,  and   is  an  indication  function  that  equals  1  if  the  nth  acquired  image 

corresponds to the ith query and 0 otherwise. 

5.2. Comparative Analysis of SO-DRCNN, CLIP, and DINO 

This section compares three paradigms for image representation and retrieval:  

i. A hybrid Siamese network based on the SO-DRCNN model 

from the thesis (adapted from Liu et al. 2019) 

ii. OpenAI’s CLIP vision-language model 

iii. The self-supervised DINO Vision Transformer. Each 

approach operates in a different domain (specialized RGB-D 

vs. multi-modal vs. self-supervised vision) and uses distinct 

training strategies. We examine their architectures, objectives, 

datasets, performance, and limitations in a formal comparative 

context.  

SO-DRCNN: Adaptive Saliency-Based Model for Hybrid CBIR 

SO-DRCNN was originally an RGB-D object detection model by Liu et al. (2019) that 

this thesis adapts for content-based image retrieval. The original model is a single-stream 

CNN (built on VGG-16) taking a four-channel RGB-D image as input. It first produces 

a coarse saliency map from the deepest CNN features, then refines object localization 

through  a DRCNN applied  at  each  convolutional  layer  level.  Saliency  prediction  is 

done hierarchically  from  deep  to  shallow:  the  deeper  layers  capture  high-level  object 

likelihood, and each shallower layer receives as guidance the deeper-layer output, the 

raw depth cue, and the coarse prediction, enabling it to better delineate object boundaries 

and  details  finally,  saliency  maps  from  all  levels  are  fused  into  the  final  output  This 
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design allowed Liu et al. to leverage depth information and multi-level features to detect 

salient objects of various scales accurately. 

Adaptation for CBIR: 

In  this  thesis,  the  SO-DRCNN  architecture  is  repurposed  into  a Siamese  network for 

image retrieval. Instead of predicting a saliency map, each branch of the Siamese SO-

DRCNN acts as a deep feature extractor that produces an embedding for an input image. 

The CNN backbone and multi-level feature fusion are retained to exploit both coarse and 

fine image features. These deep CNN features are then augmented with a handcrafted 

"Ternion" descriptor – a custom global image descriptor (composed of three 

complementary feature components) designed to capture additional invariant 

information. The deep features and the Ternion descriptor are fused (e.g. via 

concatenation or a learned fusion layer) to form a hybrid feature vector for the image. A 

parallel Siamese branch processes another image in the same way. The network is trained 

with  a contrastive  loss on  paired  images  to  optimize  their  feature  distance;  matching 

image  pairs  (e.g.  images  of  the  same  object  or  class)  are  pulled  together  in  the  joint 

feature space, while non-matching pairs are pushed apart. This Siamese-driven training 

encourages the model to produce discriminative embeddings that reflect image content 

similarity.  Notably,  the  contrastive  learning  objective  does  not  require  explicit  class 

labels, only a notion of which image pairs should be similar, making it well-suited for 

retrieval settings. By integrating handcrafted descriptors, the model injects prior domain 

knowledge  (e.g.  color-texture  features)  to  complement  the  CNN’s  learned  features, 

which can be beneficial given limited training data. The result is a hybrid CBIR system 

that combines the strengths of deep learning and traditional features.  
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Limitations: 

A key limitation of the original SO-DRCNN design is its reliance on depth data and 

pixel-level  saliency  labels.  It  was  developed  for  RGB-D  inputs,  so  its  full  power  is 

realized only when depth maps are available. In the absence of depth for standard 2D 

photo collections (as in this thesis's CBIR task), the model cannot leverage this modality 

directly  (though  the  Ternion  descriptor  partly  serves  to  capture  related  structural 

information). Moreover, training the adapted network for retrieval still requires curated 

similar/dissimilar  image  pairs,  typically  generated  via  data  augmentation  in  our  self-

supervised  approach.  Finally,  as  a  model  adapted  for  instance-level  similarity  via 

contrastive loss, the resulting embedding may not capture high-level semantic categories 

as effectively as models explicitly trained with language supervision (like CLIP) and may 

require further training on diverse data to achieve broad generalization. Nonetheless, the 

underlying principle of fusing learned deep features with complementary handcrafted 

information offers a tailored solution for hybrid CBIR (Liu et al., 2019). 

CLIP:  

CLIP  by  Radford  et  al.  (2021)  represents  a  very  different  paradigm:  a  large-scale 

foundation model learning a joint image-text embedding space. CLIP’s core objective is 

to  connect  images  and  natural  language  descriptions  through  cross-modal  contrastive 

learning. It was trained on a web-scale dataset of 400 million (image, text) pairs scraped 

from the internet (Radford et al., 2021). The training task maximizes the cosine similarity 

of the correct image-text pairs while minimizing it for incorrect pairings within a batch, 

using a symmetric cross-entropy loss over similarity scores (Radford et al., 2021). By 

learning  to  align  visual  features  with  textual  concepts  across  millions  of  diverse 

examples, CLIP acquires high-level visual representations linked to language. It uses a 

dual encoder architecture: an image encoder (CNN or Vision Transformer) and a text 
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encoder  (Transformer)  whose  outputs  are  projected  into  a  common  embedding  space 

(Radford et al., 2021). After training, this shared space enables zero-shot transfer: one 

can embed any image and any text and measure their similarity, allowing classification 

without task-specific training. 

Capabilities: CLIP  demonstrated  remarkable  zero-shot  performance  across  over  30 

vision datasets (Radford et al., 2021). Its zero-shot classifier matched the accuracy of a 

fully  supervised  ResNet-50  on  ImageNet  classification  (Radford  et  al.,  2021).  This 

generalization stems from its learned visual-language associations. CLIP is effective for 

image-text retrieval and few-shot learning, possessing a broad visual understanding from 

its diverse training data. Its flexibility allows application to new tasks via text prompts, 

often eliminating the need for fine-tuning (Radford et al., 2021). 

Limitations: CLIP's training requires massive data and compute resources, making it 

difficult to train from scratch. Its performance and potential biases are heavily influenced 

by the quality and biases inherent in the uncurated web-scale training data (Radford et 

al., 2021). While strong on semantic tasks, its embeddings may be less optimal for fine-

grained perceptual similarity compared to models trained specifically for that purpose. It 

excels  at  high-level  concept  recognition  rather  than  precise  geometric  or  appearance 

details. 

DINO:  

DINO (Caron et al., 2021) employs self-supervised learning using Vision Transformers 

(ViTs) without manual labels or text. It uses self-distillation with no labels, training a 

student network to match the output distribution of a teacher network (an exponential 

moving  average  of  the  student)  given  different  augmented  views  of  the  same  image 

(Caron et al., 2021). Centering and sharpening of teacher outputs prevent representational 

collapse.  DINO  avoids  large  batches  or  explicit  negative  sampling  required  by  many 
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contrastive methods (Caron et al., 2021). The architecture is typically a ViT backbone 

for  both  teacher  and  student.  DINO  ViTs  learn  rich  visual  features,  spontaneously 

exhibiting object segmentation capabilities in their attention maps (Caron et al., 2021). 

The features achieve high performance on downstream tasks with linear probes or k-NN 

classifiers.  For  instance,  a  ViT-Small  with  DINO  reached  78.3%  top-1  ImageNet 

accuracy with k-NN, and a ViT-Base achieved 80.1% with linear evaluation (Caron et 

al., 2021). 

Capabilities: DINO can leverage unlimited unlabeled images for training. It learns an 

open-ended visual representation unbiased by predefined class taxonomies. Its emergent 

segmentation  properties  indicate  structured,  locality-aware  features  useful  for  various 

downstream  tasks  after  fine-tuning.  Training  is  computationally  intensive  but  more 

accessible  than  CLIP  (Caron  et  al.,  2021  report  ViT-Base  training  in  ~3  days  on  16 

GPUs). 

Limitations: DINO still requires significant compute and large datasets (like ImageNet) 

for optimal performance. Its ViT architecture can have high memory usage, especially 

with multi-crop augmentation (Caron et al., 2021). Unlike CLIP, DINO's features are not 

inherently  grounded  in  human-interpretable  language  or  categories,  requiring  task-

specific heads or fine-tuning for most applications. While label-free, it can still inherit 

biases from the unlabeled training data distribution. Its linear probe accuracy, while high 

for  self-supervised  methods,  remains  slightly  below  fully  supervised  state-of-the-art 

(Caron et al., 2021). 

5.2.1 Comparative Summary and Future Directions 

Table 3 summarizes the domains, goals, training data, and primary evaluation metrics of 

the adapted SO-DRCNN, CLIP, and DINO. This highlights their distinct niches: SO-

DRCNN as a specialized hybrid model for CBIR leveraging handcrafted features and 
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potentially multimodal inputs (if adapted back to RGB-D); CLIP as a generalist cross-

modal semantic learner excelling at zero-shot tasks; and DINO as a state-of-the-art self-

supervised vision model generating high-quality features without labels. 

Table 3: Overview of SO-DRCNN (Adapted for CBIR), CLIP, and DINO 

Model 
Domain / 
Task (Primary 
Use) 

Core 
Objective 

Training 
Data 

Primary 
Evaluation 
Metric 

 
 

SO-DRCNN 
(Thesis 

Adaptation) 

 
Content-Based 
Image 
Retrieval 
(CBIR) 

Fuse deep 
CNN & 

handcrafted 
features via 

Siamese 
contrastive 
learning for 

image 
similarity 

Unlabeled 
images + 

augmentation 
(Self-

supervised 
pair 

generation) 

Retrieval 
performance 
(e.g., mAP) 

 

CLIP 

Vision-
Language 
Understanding 
(Zero-shot 
classification, 
Image-text 
retrieval) 

Learn joint 
image–text 
embedding 
space via 
large-scale 
contrastive 
learning 

Web-scale 
image–text 
pairs 
(≈400M) 
[Radford+ 
2021] 

Zero-shot 
classification 
accuracy 
(e.g., 
ImageNet 
top-1); 
Cross-modal 
retrieval 
recall 

 

DINO 

Unsupervised 
Vision 
Representation 
Learning 

Learn 
semantic 
image 
features via 
self-
distillation 
(no labels) 
using ViTs 

Large 
unlabeled 
image 
collections 
[Caron+ 
2021] 

Linear probe 
/ k-NN 
classification 
accuracy 
(e.g., 
ImageNet 
top-1) 

 
Looking at the comparison, we see that CLIP and DINO are “foundation models” learned 

on generic internet or ImageNet data, whereas SO-DRCNN is a specialized 

model incorporating domain-specific inputs (depth, engineered features) and objectives 

(pairwise similarity for retrieval). Each has advantages suited to different scenarios. For 

instance, CLIP’s rich semantic knowledge (from language supervision) may allow it to 

recognize concepts that SO-DRCNN, trained only to match images, might miss. DINO’s 

dense localized features might capture fine object details useful for retrieval, potentially 

complementing  CLIP’s  higher-level  semantic  embedding.  On  the  other  hand,  SO-
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DRCNN’s fusion of handcrafted descriptors could encode invariances (like illumination 

or rotation invariance) that pure learning-based models might need additional data to 

grasp. 

Future  Work: Combining  these  approaches  presents  a  promising  research  direction. 

Initializing the SO-DRCNN backbone with DINO-pretrained ViT weights could inject 

robust unsupervised features, potentially enhancing generalization. Integrating CLIP-like 

objectives by training against text descriptions alongside the contrastive loss could yield 

embeddings  suitable  for  both  instance  matching  and  semantic  search.  Such  hybrid 

strategies,  leveraging  foundation  models  within  task-specific  architectures  like  SO-

DRCNN, may lead to more robust and versatile CBIR systems. 

5.3. Data Analysis and Examples 

As  a  way  to  showcase  the  system's  capabilities  in  this  section,  we  designed  an 

experimental  phase  that  involved  running  the  algorithm  on  a  number  of  different 

photographs  and  recording  the  outcomes  at  each  execution  block.  The  data  that  is 

extracted or used in each documented step is labelled in the aforementioned figure. In 

order to determine the optimal comparison formula weights, the system first verifies that 

the image fits perfectly within the convolutional neural network's input layer. It then uses 

predetermined metadata to make initial assumptions about the image's contents, such as 

the likelihood of containing textual features rather than stylized visuals. 
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Figure 16 - Input image 1-Preprocessing 

 

Figure 17 - Input image 2-Preprocessing 

 

Figure 18 - Input image 3- pre-processing 
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Figure 19 - Input image 4-Preprocessing 

 

Figure 20 - Input Image 5-Preprocessing 

 

Figure 21 - Input Image 6-Preprocessing 

 

Figure 22 - Input Image 7-Preprocessing 
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Figure 23 - Input Image 8-Preprocessing 

 

Figure 24 - Input Image 9-Preprocessing 

 

Figure 25 - Input Image 10-Preprocessing 

Figure 26 demonstrates the images of the food and drinks, which describe the original 

and pre-processed images with a resultant image.    
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Figure 26 - Retrieval Image Belongs To Food And Drinks 

This image illustrates the 98.58 % confidence while retrieving the system. Similarly, 

Figure 27 demonstrates images that belong to art and culture and attain 98.58 confidence. 

In addition, travel and adventure belonging images are illustrated in Figure 28 to Figure 

30.    
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Figure 27 - Retrieval Image of Art And Culture Belonging 

 

Figure 28 - Retrieval Of Travel And Adventure Belonging Image 
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Figure 29 - Retrieval Of Travel And Adventure Belonging Image 

 

Figure 30 - Retrieval Of Travel And Adventure Belonging Image 
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A histogram is a visual representation of a digital image's tonal distribution used in image 

retrieval. For every tonal value, the number of pixels is displayed. A graph having the x- 

and y-axes as its two axes is called a histogram. The event with the frequency that needs 

to be counted is shown on the x-axis, and the frequency is shown on the y-axis. Usually, 

the higher signal levels are shown on the right side of the graph, while the lower signal 

values  are  shown  on  the  left.  In  image  retrieval,  a  color  histogram  is  employed  for 

comparing a picture's content instead of its metadata. Color, forms, textures, and even an 

image's semantic significance can all be considered forms of information. One of the 

earliest CBIR approaches that let us explore across photos was color histograms.  

 

Figure 31 - 1st Iterated Histogram 

One of the original CBIR methods is the color histogram, which enables us to search 

through photos using their color profiles as opposed to their metadata. Based on their 

color profiles, the work presents the top five most comparable images containing the 

search query image. 
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Figure 32 - 2nd iterated histogram 

 

Figure 33 -  3rd Iterated Histogram 
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Figure 34 - 4th Iterated Histogram 

 

Figure 35 - 5th Iterated Histogram 

Figures 31 to 35 describe the allocation of the image's pixel values, which is depicted by 

the  histogram.  The  x-axis  and  each  pixel's  values  (which  range  from  0  to  8000)  are 

equivalent. Each pixel value's frequency is shown on the y-axis. Blue, red, and green are 

the three wavelengths of color that make up the histogram. The geographic distribution 

of value pixels for that particular color is displayed in every channel.  
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Table 4: Comparative Analysis of Accuracy With HOG+ICH 

Methodologies HOG+ ICH 

VGG16 0.841 

ResNet-50 0.847 

Inception v1 0.852 

Proposed SO-DRCNN 0.959 

 

The  highest  frequencies  for  smaller  numbers  (about  0  to  2,000)  are  on  the  left  side.  

Mid-Range of the plot described precipitous drop in frequency between 2,000 and 6,000 

values.  

A  tiny  bar  on  the  right  side  that  seems  to  be  pointing  toward  9,000  indicates  the 

possibility of more values. There is probably a large variety of pixel brightness in the 

image, most of which are in the lower end of the spectrum.  The sudden decrease implies 

a change in characteristics or image regions.  Certain bright regions or highlights may be 

represented by the tiny peak at the upper end. 
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Figure 36 - Illustration Accuracy of HOG+ICH Features 

Figure 33 shows the precision of HOG+ICH features using various machine learning 

methods, as displayed in this bar graph.  

Table 5: Comparative Analysis of Accuracy With HOG+SERC 

Methodologies HOG+ SERC 

VGG16 0.843 

ResNet-50 0.849 

Inception v1 0.855 

Proposed  SO-DRCNN 0.961 

 

The  many  machine  learning  methods  used  are  represented  on  the  x-axis.  VGG16, 

ResNet-50, Inception v1, and the Suggested SO-DRCNN are the four methods that are 

illustrated. The accuracy that every approach achieves is shown on the y-axis. Figure 37 
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provides a comparative analysis of model accuracy when using the combined 

HOG+SERC feature set. The results clearly demonstrate the superior performance of the 

proposed SO-DRCNN framework, which achieves an accuracy of approximately 96%. 

This represents a notable improvement over the established baseline models: Inception 

v1  (≈86%),  ResNet-50  (≈85%),  and  VGG16  (≈84%).  While  all  methods  perform 

strongly, the proposed SO-DRCNN model's distinct advantage highlights the 

effectiveness of its architecture and the self-optimizing fusion strategy in leveraging the 

HOG+SERC features. 

 

Figure 37 - Illustration Accuracy Of HOG+SERC Features 

The precision of four distinct machine learning methods using HOG+SERC features is 

represented graphically in Figure 34.  

Table 6: Comparative analysis of accuracy with HOG+ICH+SERC 

Methodologies HOG+ICH+SERC 
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VGG16 0.845 

ResNet-50 0.851 

Inception v1 0.857 

Proposed  SO-DRCNN 0.963 

 

 

Among these methods are:  The suggested SO-DRCNN is the VGG16, ResNet-50, and 

Inception v1. Each of the four techniques is represented by a vertical bar in the graph. 

"Accuracy" is the label of the y-axis, which has a range of 0 to 100.  Every bar crosses 

the 80-point on the y-axis, signifying that all four methods attain identical accuracy levels 

when utilizing HOG+SERC characteristics. 

 

Figure 38 - Illustration Accuracy of HOG+ICH+SERC Features 

Figure 38 describes the illustration of the accuracy of HOG+ICH+SERC features with a 

comparison of existing techniques such as VGG 16, Resnet-50, inception V1, and the 
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proposed SO-DRCNN. The illustration described the proposed strategy well performed 

in the accomplishment of accuracy metrics effectively.    
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Table 7: Comparative Analysis of Precision With HOG+ICH 

Methodologies HOG+ ICH 

VGG16 0.838 

ResNet-50 0.846 

Inception v1 0.849 

Proposed SO-DRCNN 0.958 

 

 

Figure 39 - Illustration Of Precision With HOG+ICH Features 

The  precision  scores  attained  by  several  machine  learning  methods  using  HOG+ICH 

features  are  displayed  in  the  diagram  in  Figure  39.  A  colored  bar  is  employed  to 

symbolize each technique, and the height of the bar reflects the technique's precision 

score.  
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Table 8: Comparative Analysis of Precision With HOG+SERC 

Methodologies HOG+ SERC 

VGG16 0.840 

ResNet-50 0.848 

Inception v1 0.851 

Proposed SO-DRCNN 0.960 

The  five  examined  methods  are  listed  on  the  x-axis:  net,  Proposed  SO-DRCNN, 

Inception v1, ResNet-50, and VGG16. The accuracy values span from 0 to 400 and are 

represented by the y-axis. VGG16: Gets an 83.8 precision score. ResNet-50: Achieves 

an accuracy score of 84.6. Inception v1: Shows an accuracy obtained of 84.9. Proposed 

SO-DRCNN: Convinces with an accuracy achievement of 95.8. ResNet-50: Achieves an 

accuracy score of 84.6. Inception v1: Shows an accuracy achieved of 84.9. Suggested 

SO-DRCNN: Imposes with an accuracy score of 95.8.  
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Figure 40 - Illustration Of Precision With HOG+SERC Features 

 

 

Figure 41 - Illustration of precision with HOG+ICH +SERC features 

Similarly,  the  work  analyzed  the  precision  performance  based  on  HOG+SERC  and 

HOG+ICH+SERC with existing and proposed techniques, which are shown in Figures 

41 and 40.  
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Table 9: Comparative Analysis of Precision With HOG+ICH+SERC 

Methodologies HOG+ICH+SERC 

VGG16 0.841 

ResNet-50 0.850 

Inception v1 0.853 

Proposed SO-DRCNN 0.962 

 

The  existing  works,  such  as  Inception  v1,  ResNet-50,  and  VGG16,  thus  attains  the 

precision value based on HOG+SERC features have been 0.840, 0.848, 0.851, and the 

proposed  achieves  0.960.  Along  with  precision  value  based  on  HOG+ICH+SERC 

features obtains 0.841, 0.850, 0.853, and 0.962. Hence, from the illustration described 

the proposed work outperformed the performance based on precision. 

 

Figure 42 - Comparative Analysis Of Training Accuracy 
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Figure 42 illustrates the comparative analysis of training accuracy with proposed and 

existing work. Here the existing techniques such as BOVW, VGG-16, SPQ, SGSH and 

proposed SO-DRCNN.  

Table 10: Testing And Training Accuracy Analysis 

 

Techniques 
Accuracy 

Train Test 

Bag of visual words (BOVW) 81% 79% 

VGG-16 83% 81% 

SPQ 85% 84% 

SGSH 87% 85% 

Proposed SO-DRCNN 95% 93% 
 

Hence  it  attains  the  training  accuracy  has  been  81%,  83%,  85%,  87%,  and  95%, 

correspondingly.  Thus it elaborates the proposed work proficiently attains the 

performance based on training accuracy.  
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Figure 43 - Comparative Analysis of Testing Accuracy 

The comparative study of testing accuracy with suggested and existing work was shown 

in  the  figure  40.  The  suggested  SO-DRCNN  and  other  currently  used  methods  like 

BOVW, VGG-16, SPQ, and SGSH are used here. As a result, the corresponding testing 

accuracy rates have been 79%, 81%, 84%, 85%, and 93%. As a result, it clarifies the 

suggested task and successfully achieves the performance depending on testing 

correctness. 
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Figure 44 - A Comparative Analysis Of Training Precision Score 

The  training  precision  score  comparison  between  the  intended  and  existing  work  is 

shown in Figure 41.  

Table 11: Training And Testing Precision Analysis 

Techniques Precision  

Train Test 

Bag of visual words (BOVW) 81% 79% 

VGG-16 84% 81% 

SPQ 85% 84% 

SGSH 87% 86% 

Proposed SO-DRCNN 95% 93% 
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The suggested SO-DRCNN and other currently used methods like BOVW, VGG-16, 

SPQ, and SGSH are used here. As a result, the corresponding training precisions have 

been 81%, 84%, 85%, 87%, and 95%. It expands upon the suggested work and skillfully 

achieves an outcome dependent on training precision. 

 

Figure 45 - Comparative Analysis Of The Testing Precision Score 

The comparison of the testing precision score with the suggested and current work is 

shown in Figure 45. The suggested SO-DRCNN and other currently used methods like 

BOVW, VGG-16, SPQ, and SGSH are used here. As a result, the corresponding testing 

precisions  have  been  79%,  81%,  84%,  86%,  and  93%.  As  a  result,  it  clarifies  the 

suggested task and successfully achieves the performance determined by testing 

precision. 
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Figure 46 - Comparative Analysis Of MAP 

A comparison of the suggested with four different backbones is shown in Figure 46. The 

comparative  analysis  clarifies  why  VGG  16  outperforms  the  BOVW  framework. 

Furthermore, the retrieval performance is significantly enhanced by including SPQ in 

both baselines.  

Table 12: MAP analysis 

Techniques MAP 

BOVW 0.6832 

VGG16 0.6941 

SPQ 0.7052 

SGSH 0.7581 

Proposed SO_DRCNN 0.8971 
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The margin of improvement on the dataset for SGSH is typically more significant than 

that of the SPQ technique. Low-resolution photos in the dataset have been up-sampled 

to 128 × 128 to feed the network. As suggested, it offers a wider field of view and boosts 

confidence  in  low-resolution  photos.  Consequently,  it  may  be  said  that  SO-DRCNN 

works  better  with  low-resolution  pictures.  As  a  result,  the  suggested  SO-DRCNN 

performs better when used with baselines. 

Table 13: Performance Analysis of Proposed Work 

Parameters Proposed SO-DRCNN 

True positive 433 

True negative 425 

False positive 11 

False negative 13 

Sensitivity 0.94 

Specificity 0.93 

Precision 0.93 

Recall 0.95 

Accuracy 0.96 

F-measure 0.95 
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Figure 47 - Proposed TP, TN, FP And FN Validation 

Figure 47 describes the performances of the proposed work such as true positive, true 

negative, false positive, and false negative analysis with the values of 433, 425, 11, and 

13. Hence, it described the proficiency of the proposed work in an effective manner.  

 

Figure 48 - Proposed Sensitivity, Specificity, Precision, Recall, Accuracy And F-Measure Validation 
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The proposed work's performances, including sensitivity, specificity, precision, recall, 

accuracy, and F-measure, are depicted in Figures 0.94, 0.93, 0.93, 0.95, 0.96, and 0.95. 

As such, it effectively described the proposed work's proficiency.  

5.3. Key Findings 

The suggested model has outperformed the other current model, as was to be expected. 

This  is  because  the  SO-DRCNN  model  can  more  effectively  identify  photos  and 

distinguish between the many dataset classes because it has learned complex 

characteristics that are indicative of the data. In contrast, the current methodology relies 

on feature engineering; the machine learning model's predictive capability increases with 

the quality of the handcrafted features. A portion of the features generated by the current 

model  are  local  features,  which  means  they  include  particular  information  about  the 

original images from which they were taken. This means that our machine learning model 

is  unable  to  generalize  because  just  a  small  percentage  of  the  collected  features  are 

indicative of the data. As previously mentioned, the best MAP results are obtained by the 

IR system, which is dependent on the proposal. The work IR system will be more precise 

because the suggested method can identify the dataset classes more effectively. As a 

result, more true positives relevant photos related to the query are found during retrieval, 

which leads to the collection of recovered articles. It is possible to argue that sorting 

based on the similarity function in our example, the cosine is preferable. An improved 

option would be to utilize contrasting loss, which drives examples from other classes far 

away and maximizes the training target by pushing all comparable class instances to 

move infinitesimally closer to one another in the output embedding field. Triplet loss is 

a phenomenon that accounts for both positive and negative pair distances at the same 

place, favouring data points within the same class to be closer to one another than to a 
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data point from a different class. Assuming that triplet loss is our loss function of choice. 

In  that  scenario,  to  increase  training  convergence  and  computational  complexity,  we 

should  also  take  into  account  a  suitable  strategy  for  mining  informative  points.  To 

increase  accuracy,  common  sampling  techniques  include  batch  all,  batch  hard,  batch 

weighted, and batch sample. 

5.4. Summary 

Key Findings and Results: Experiments on the CIFAR-10 dataset, along with 

comparisons to other methods, yielded several key findings superior retrieval 

performance The SO-DRCNN system with Siamese-Driven Feature Fusion achieved a 

mAP of 0.8971, significantly outperforming baseline methods such as BoVW (mAP = 

0.6832), VGG-16 (mAP = 0.6941), SPQ (mAP = 0.7052) and SGSH (mAP=0.7581). 

This demonstrates the effectiveness of our hybrid approach and learned fusion strategy. 

High Accuracy and Precision: Our system achieved a testing accuracy of 93% and a 

training accuracy of 95% on CIFAR-10.  Furthermore, the system demonstrated high 

precision (0.93), recall (0.95), sensitivity (0.94), specificity (0.93), and F-measure (0.95), 

with 433 true positives, 425 true negatives, 11 false positives, and 13 false negatives. 

Effectiveness  of  Ternion  Descriptors:  Experiments  with  different  combinations  of 

Ternion  descriptors  showed  that  using  all  three  (HOG  +  ICH  +  SERC)  consistently 

yielded the best results, with accuracy reaching 96.3% and precision reaching 96.2% in 

our best configuration. This confirms the complementary nature of these descriptors. 

Siamese-Driven  Fusion  Outperforms  Baselines:  The  learned  fusion  weights  in  our 

Siamese-Driven Feature Fusion approach demonstrably improved performance 

compared to simple concatenation or using individual feature types alone. 
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Efficient  Retrieval:  The  system  achieved  an  average  retrieval  time  in  the  tens  of 

milliseconds for a database of 10,000 images, demonstrating its scalability and suitability 

for real-time applications. 

Robustness  to  Noise  and  Variations:  The  use  of  data  augmentation,  regularization 

techniques  (Gaussian  noise,  dropout),  and  the  inherent  robustness  of  the  ResNet-50 

architecture  contributed  to  the  system's  ability  to  generalize  well  to  unseen  data  and 

variations in image appearance. 
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Chapter 6 

Conclusion 

This thesis has presented the  SO-DRCNN CBIR, a novel approach designed to address 

the limitations of existing CBIR systems, particularly the semantic gap and the reliance 

on extensive manual labeling.  The core innovation is the Siamese-Driven Feature Fusion 

mechanism, which leverages a self-supervised Siamese network to learn an adaptive and 

data-driven strategy for combining handcrafted features BoVW with Ternion descriptors: 

HOG, ICH, SERC and deep CNN embeddings (from a ResNet-50 backbone enhanced 

with Recurrent Patching, SPP/ASPP, and Attention). 

6.1. Key Findings and Results 

Experiments  conducted  on  the  CIFAR-10  dataset,  a  standard  benchmark  for  image 

classification and retrieval, demonstrated the effectiveness of the proposed SO-DRCNN 

Hybrid CBIR system: 

Superior Retrieval Performance: The SO-DRCNN system with Siamese-Driven Feature 

Fusion achieved a mAP of 0.8971, significantly outperforming several baseline methods. 

This demonstrates the synergistic benefits of combining handcrafted and deep features 

through a learned fusion strategy. 

High Accuracy and Precision: The system achieved a training accuracy of 95% and a 

testing  accuracy  of  93%  on  CIFAR-10,  showcasing  its  ability  to  learn  discriminative 

features  and  generalize  well  to  unseen  data.  High  precision  (0.93),  recall  (0.95), 

sensitivity  (0.94),  specificity  (0.93),  and  F-measure  (0.95)  values  further  validate  the 

system's effectiveness. 

Comparison to Baselines: The proposed SO-DRCNN significantly outperformed 

alternative approaches, including: 
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Handcrafted Features Only (BoVW): Demonstrated the limitations of relying solely on 

handcrafted features for capturing complex semantic similarity. 

CNN Embeddings Only (VGG-16, ResNet-50, Inception v1): Showed the added value 

of incorporating handcrafted features and the SO-DRCNN architectural enhancements. 

Other Methods (SGSH, SPQ): Outperformed these methods, highlighting the 

effectiveness of the Siamese-Driven Feature Fusion and self-supervised training. 

Summary: 

This research makes the following key contributions to the field of Content-Based Image 

Retrieval: 

Novel  Siamese-Driven  Feature  Fusion:  Introduces  a  novel  and  effective  approach  to 

feature fusion that leverages the power of Siamese networks and contrastive learning to 

optimize the combination of handcrafted and deep features for semantic similarity. 

Self-Supervised  Training  for  Hybrid  CBIR:  Demonstrates  the  effectiveness  of  self-

supervised learning for training a hybrid CBIR system, reducing the reliance on labeled 

data and enhancing domain adaptation. 

Enhanced  SO-DRCNN  Architecture:  Presents  an  enhanced  SO-DRCNN  architecture 

that integrates Recurrent Patching, SPP/ASPP, and Attention mechanisms to capture rich 

and contextualized semantic image representations. 

Empirical Validation and Benchmarking: Provides rigorous empirical validation of the 

proposed  approach  on  standard  benchmark  datasets,  demonstrating  its  performance 

advantages over existing methods and establishing a strong baseline for future research. 

Limitations: 

While  the  SO-DRCNN  system  demonstrates  strong  performance,  it's  important  to 

acknowledge certain limitations: 
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Dataset Dependence: The experiments were primarily conducted on CIFAR-10. While 

CIFAR-10  is  a  standard  benchmark,  further  evaluation  on  larger  and  more  diverse 

datasets is necessary to fully assess the system's generalization capabilities to real-world 

image distributions. 

Computational Cost of Feature Extraction: Although the Siamese-Driven Fusion aims 

for efficiency, the overall feature extraction process (including both CNN and 

handcrafted  features)  still  has  a  computational  cost.    Further  optimization  might  be 

needed for extremely large-scale or real-time applications. 

Interpretability  of  Fusion  Weights:  While  the  Siamese-Driven  Fusion  offers  some 

interpretability through the learned weights, further research into visualizing and 

understanding the fusion process could enhance transparency. 

6.2. Future Work 

This research opens up several promising avenues for future work: 

Exploring  More  Advanced  Fusion  Techniques:  Investigate  more  sophisticated  fusion 

methods  beyond  weighted  concatenation,  such  as  attention-based  fusion  or  learned 

fusion layers, to further improve the integration of handcrafted and deep features. 

Domain-Specific Adaptation: Apply and adapt the SO-DRCNN framework to specific 

image domains, such as medical imaging, remote sensing, or satellite imagery, to explore 

its effectiveness in specialized retrieval tasks. 

Incorporating Additional Modalities: Extend the system to incorporate additional 

modalities,  such  as  text  descriptions  or  user  feedback,  to  create  a  multimodal  CBIR 

system. 
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Real-Time Implementation and Optimization: Further optimize the system for real-time 

performance, potentially through model compression techniques or hardware 

acceleration. 

Enhanced Interpretability Methods: Develop and integrate more advanced 

interpretability techniques (e.g., Grad-CAM, feature visualization) to better understand 

the decision-making process of the SO-DRCNN model and the Fusion Module. 

Addressing Failure Cases: Investigate and address the limitations identified in the failure 

case analysis, such as complex scenes with multiple objects, by exploring techniques like 

multi-query approaches or region-based retrieval. 

6.3. Implications 

The proposed SO-DRCNN Hybrid CBIR system has significant implications for various 

real-world applications.  Its ability to learn from unlabeled data, achieve high retrieval 

accuracy, and incorporate interpretable features makes it a valuable tool for: 

Medical  Image  Retrieval:  Assisting  medical  professionals  in  diagnosing  disorders  by 

retrieving similar medical images and comparing instances. 

Crime Scene Investigation: Matching crime scene photos with pre-existing databases to 

identify suspects or locate pertinent evidence. 

Art History Research and Restoration: Helping galleries and museums find related art 

pieces or antiques. 

Remote Sensing: Supporting scientists in tracking changes in land cover, deforestation, 

and natural disasters by analyzing satellite photos. 

Video Surveillance: Improving video surveillance systems by facilitating the detection 

of questionable activity and tracking individuals across video streams. 



 206 

E-commerce:  Enabling  users  to  quickly  find  visually  similar  products  (e.g.,  clothing, 

furniture). 

Overall, the SO-DRCNN Hybrid CBIR system, with its Siamese-Driven Feature Fusion 

and self-supervised training, represents a significant advancement in the field of content-

based  image  retrieval.  It  offers  a  robust,  efficient,  scalable,  and  potentially  more 

interpretable solution for searching and retrieving images based on their semantic visual 

content, paving the way for more powerful and user-friendly image search systems in a 

wide range of applications 
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