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Abstract 

My thesis investigates the relationship between snow algae and black carbon from forest fire 

aerosols. In Chapter One, I discuss the motivation and objectives of this thesis, followed by a 

background on the importance of glaciers in Western Canada, processes of glacier surface 

darkening, and a review of the ecology of snow algae and forest fire aerosols. In Chapter Two, I 

describe and analyze the results from a field experiment conducted on Place Glacier, in which I 

fertilized snow with wood ash. I observed no difference in snowmelt from the treatment, and due 

to a loss of data from early snowmelt on the last field visit, the wood ash impact on red snow 

algae growth was inconclusive. At the beginning of the field experiment, I measured snow 

reflectance, which I then converted to instantaneous radiative forcing. The average instantaneous 

radiative forcing for the snow algae at Place Glacier on June 3 was 192 ± 12 W m-2 with a 

maximum of 274 ± 16 W m-2. This radiative forcing translated to a melt potential of up to 27.8 

mm w.e. d-1. In Chapter Three, I use remote sensing data from the Harmonized Landsat Sentinel 

(HLS) project and reanalysis products from MERRA-2 and ERA-5 Land to model the 

occurrence of red snow algae on glaciers in British Columbia and Alberta for the summer 

seasons of 2015 to 2023. I modelled the red snow algae using the random forest regressor and 

XGBoost algorithms, and used the permutation feature importance and SHAP to evaluate the 

variables’ influence on the model output. The model explained 60% of the variance in the data 

and the three most important variables were longitude, black carbon and temperature. These 

results suggest that black carbon may promote red snow algae growth. Finally, in Chapter Four I 

conclude with the major findings, limitations and recommendations for future research.  
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1 Chapter 1: Introduction 

This research sought to improve our understanding of processes of glacier surface darkening 

by investigating the relationship between black carbon from wildfire soot and blooms of red 

algae using a field experiment and remote sensing methodologies. This thesis focuses on fire 

emissions, which are commonly referred to by a range of terms (smoke, ash, soot, etc) and are 

typically made up of a complex mix of constituents, including black carbon, organic carbon, 

char, trace metals, and mineral dust, among others. In this thesis, an assumption is being made 

that black carbon is the dominant aerosol, and the most important fire emission aerosol for 

impacting snow cover, and therefore, for simplicity, is being used as the primary term for 

aerosols originating from fire 

1.1 Motivations and Objectives 

The formation of snow algae blooms and black carbon deposition from forest fire activity 

during the snowmelt season represent two processes that diminish glacier albedo. Yet, the 

interaction between snow algae and forest fire soot remains uncertain. My research objective was 

to examine the interaction between black carbon from forest fires and snow algae on glaciers in 

western Canada. In the following chapters, I: 

A) Describe the field experiment during which I quantify the snow algae response to the 

application of wood ash on the mid-elevation bench of Place Glacier, British Columbia, 

Canada for the 2023 melt season (Chapter two);  

B) Use remote sensing imaging from the Harmonized Landsat Sentinel datasets and 

reanalysis data from MERRA-2 and ERA5-Land to investigate the interaction between 
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snow algae and black carbon and produce a regional analysis of glaciers in BC and 

Alberta using machine learning (Chapter 3), and;  

C) Synthesize and discuss the research limitations and recommendations for future work 

(Chapter 4).  

 

 

1.2 Importance of glaciers 

Snow and ice account for about 70% of the global storage of freshwater (Stephens et al., 

2020). Loss of snow and ice cover will thus have major ramifications on accessibility to water 

worldwide. In western Canada, glacier mass loss has great implications for society and the 

ecosystem, as glacier runoff provides an integral source of freshwater to regional inhabitants 

(Bonsal et al., 2020a), freshwater ecosystems (Moore et al., 2009a; Schoen et al., 2017), and 

supply water for agriculture and hydropower purposes (Hock et al., 2019a). Glaciers deliver 

cold, ample flows to many streams during late summer when conditions are typically hot and dry 

(Bonsal et al., 2020b; Jost et al., 2012). Glacial contributions to streamflow, even for drainages 

with glacier cover as low as 1 or 2%, are crucial during this period (Huss, 2011; Jost et al., 2012) 

as they provide needed inputs of cold water. Yet, due to anthropogenic climate change, glacier 

extents are rapidly declining (Hugonnet et al., 2021). As glaciers shrink and lose mass, runoff 

contributions to streamflow are reduced (e.g. Huss, 2011; Moore et al., 2020; Stahl & Moore, 

2006). For example, Anderson & Radić (2020) models predict unprecedented low streamflow for 

many communities established along glacier-fed rivers in Alberta as glaciers disappear.    
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1.3 Glacier Darkening 

  Since the turn of the twenty-first century, rates of glacier mass loss accelerated (Hugonnet 

et al., 2021). While increased global temperatures are largely responsible for accelerated mass 

loss, there are other factors that may explain regional variations (Cook et al., 2020). Numerical 

models based on increased global mean temperature project Western Canadian and US glaciers 

to lose 60 to 100% of their mass by 2100, supporting that glaciers are highly sensitive to 

temperature changes and that every degree of warming will have significant impacts on glacier 

mass loss (Clarke et al., 2015; Rounce et al., 2023). Recent studies also suggest that changes in 

glaciers’ albedo – the index measuring the proportion of reflected light at the Earth’s surface 

ranging for 0 (full absorbance) to 1 (full reflectance)– is an important factor influencing surface 

melt in the ablation season, along with air temperature (Box et al., 2012; Dumont et al., 2012; 

Skiles et al., 2018). Thus, improving our understanding of the physical processes that drive 

glacier darkening could provide insight into factors that could explain observed accelerated mass 

loss in western Canada.  

The energy balance at a glacier’s surface controls melt (Hock, 2005). Darker surfaces 

absorb more solar radiation, increasing glacier melt (Box et al., 2012). Changes in the density 

and snow grain size of snow and ice during melt season (Warren, 1982) and the deposition of 

light-absorbing particles (LAPs), such as mineral dust, black carbon, and microbial growth, 

darken glacial surfaces. The excess energy absorbed from solar irradiance due to surface 

darkening from LAPs is characterized as radiative forcing and is measured in W m-2. LAPs lower 

the albedo in the visible wavelength, the part of the light spectrum where snow is the most 

reflective (Flanner et al., 2007; Benning et al., 2014; Biagio Di Mauro, 2020; Aubry‐Wake et al., 

2022). During the melt season, LAPs can accumulate on the snow surface if not entrained by the 
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melt runoff, increasing the darkening process and further decreasing the albedo. Similarly, the 

bare ice surface on glaciers accumulates LAPs over the year, contributing to the ongoing 

darkening process (Di Mauro, 2020; Flanner et al., 2007). Dust deposition on glaciers is mainly 

due to the aeolian transport from arid and semi-arid landscapes (Clow et al., 2016), land-use 

changes and from local lithology. Black carbon, the optically absorbing portion of soot, is 

produced by incomplete combustion of fossil and biofuels and is emitted from anthropogenic 

sources and forest fires (Kang et al., 2020). Finally, biological darkening is mainly caused by 

blooms of snow algae (Chloromonas, Chlainomonas and Chlamydomonas sp.) and ice algae 

(Mesotaenium and Ancylonema sp.) (Williamson et al., 2019).  

On average, alpine glaciers albedo is 0.80 in the spring prior to the onset of melt 

(Marshall & Miller, 2020), and typical summer snow albedo is about 0.5 due to changes in snow 

grain sizes (Wiscombe & Warren, 1980). Blooms of red snow algae alone can further reduce the 

albedo to 0.38, increasing snowmelt by 40% (Cook et al., 2017). In Western North America, 

snow algae blooms are estimated to occur on 5% of the total glaciated area (Engstrom & 

Quarmby, 2024). Similarly, on the western margin of the Greenland Ice sheet, studies found 

biological darkening from ice algae to be the main albedo-reducing agent of the conspicuous 

dark area known as the "dark zone" (Ryan et al., 2018; Cook et al., 2020; McCutcheon et al., 

2021). Meanwhile, Williamson & Menounos (2021) show that albedo for Western North 

American glaciers is declining due to rising temperatures and propose that this decline might also 

be linked to an increase in black carbon deposition from forest fires, as suggested by the change 

in aerosol optical depth in MODIS global aerosol product.  
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1.4 Life on Snow 

Glaciers and perennial snow patches worldwide support microbiological life, such as algae, 

bacteria, and fungi (Hoham & Remias, 2020). During melt season, blooms of snow algae colour 

the snow surface red, green and sometimes orange. Blooms of algae have been observed on the 

Greenland Ice Sheet ( Uetake et al., 2010; Williamson et al., 2018; Cook et al., 2020) and 

glaciers in Antarctica (Fujii et al., 2010; Huovinen et al., 2018; Khan et al., 2021), Europe 

(Remias et al., 2009; Di Mauro et al., 2020), Asia (Yoshimura et al., 2000; Takeuchi et al., 2006; 

Tanaka et al., 2016; Nakashima et al., 2021), Chile (Takeuchi & Kohshima, 2004) and North 

America (Painter et al., 2001; Takeuchi et al., 2006; Ganey et al., 2017; Hamilton & Havig, 

2017; Engstrom et al., 2020).  

Organisms that subsist on the cryosphere are restricted to periods when liquid water is 

available (Laybourn-Parry et al., 2012). Thus, algal blooms typically appear following surface 

melt and will remain on the surface for the duration of the ablation season (Ganey et al., 2017). 

Liquid water limits snow algae growth; therefore, algae bloom typically appears near the 

transient snow line (Jones et al., 2001; Takeuchi, 2001; Takeuchi et al., 2013). Some studies 

speculate that snow algal cells, during the incipient of snow melt, undergo a motile, haploid, 

vegetative stage that allows them to 'swim' up to the surface (Laybourn-Parry et al., 2012; Davey 

et al., 2019; Matsumoto et al., 2024). Using a collection of cell types from Chlainomonas 

species, Matsumoto et al. (2024) hypothesized a life cycle for snow algae (Fig. 1.1). The life 

cycle includes large quadriflagellate swarmers (A) in the early season that develop into large 

non-motile red cells (F) that will remain on the snow surface during the melt season and have the 

potential for asexual cell division through a protoplast exclusion process (K). The large red 

immobile cells then transition into spores (I) when in wet snowpacks and will settle in the 
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snowpack or other surface, typically at the end of the melt season. At this stage, sporangia (L, M) 

will develop from the spores. Pill cells (O) are then released from the sporangia and will develop 

as flagellated pill cells (O+) to start the life cycle again.  
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Figure 1-1: Hypothesized Chlainomonas sp. life cycle in Bagley Lake Habitat (Matsumoto et al., 2024). 

Phases denoted with a letter on a white background were observed in the field. Phases not observed in the 

field are denoted with a “?” on a dark background. The dotted lines represent the transition process that 

remains unknown. 
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Snow and ice surfaces present challenging conditions for life as they are subject to high 

levels of irradiance, low nutrients, and freezing temperatures (Laybourn-Parry et al., 2012). 

Organisms that live on snow and ice surfaces require many adaptations to cope with this harsh 

environment. Multiple snow algae species from the genera Chlamydomonas and Chloromonas 

produce secondary carotenoid pigment (mainly astaxanthin) that protects them against strong 

solar radiation, freezing temperatures and as a response to low nitrogen levels (Remias et al., 

2005; Laybourn-Parry et al., 2012).   The algal cells accumulate cytoplasmic secondary 

carotenoids around the chloroplast, which attenuates the light travelling through their internal 

photosynthetic apparatus and protects the cell against damage from overheating and 

photodamage (e.g. Bidigare et al., 1993;  Leya et al. 2009). Healy & Khan (2023) analyzed the 

pigment composition of snow algae collected over an early and late season survey. They 

observed an increase in photoprotective pigment, astaxanthin, to the detriment of photosynthetic 

pigment such as chlorophyll α in snow algae cells in the late survey. The photoprotective 

pigment absorbs part of the solar radiation and dissipates it into radiant energy as heat. The 

added heat melts the surrounding snow and ice crystals and increases the local liquid water 

content, promoting algae growth (Dial et al., 2018; Williamson et al., 2020). Secondary 

carotenoid production also offers protection against freezing temperatures and is linked to 

nitrogen starvation (Bidigare et al., 1993; Remias et al., 2012). When deprived of nitrogen, the 

algae redirect their energy to produce nitrogen-free metabolites, such as fatty acids and 

secondary carotenoids. The increase of production in secondary carotenoids often parallels a 

decrease in cellular chlorophyll and primary carotenoids, leading to the colour change from 

green to red (Müller et al., 1998). The presence of unsaturated fatty acids, which can be esterified 

with astaxanthin, a hydroxyl member of secondary carotenoids (Leya et al., 2009), lowers the 
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water content in the alga cell and reduces damage from crystalline ice formation, providing 

protection against freezing temperatures (Bidigare et al., 1993; Dial et al., 2018).  

The production of secondary carotenoids results in red pigmentation of the snow algal 

blooms, which darkens the snow and ice surface. Snow algae blooms have the potential to 

significantly reduce glacier albedo and, thus, increase melt. A study looking at snow algae 

blooms in all Western North America glaciated areas found that glaciers with blooms covering 

up to two-thirds of their surface have an estimated increase of snow meltwater of 3 cm across the 

entire glacier surface (Engstrom & Quarmby, 2024). On average, glacier and snow algae 

accounted for 9 to 13% of surface melt on the south-western edge of the Greenland Ice Sheet 

(Cook et al., 2020), 17% of snow melt on the Harding Icefield in Alaska (Ganey et al., 2017), 

and 13% of surface albedo reduction in the Arctic (Lutz et al., 2016). 

 A few studies measured the radiative forcing of red snow algal blooms on glaciers. They 

found that red snow algae's maximum instantaneous radiative forcing was 175 W m-2 in Alaska 

(Ganey et al., 2017), 185 W m-2 in Antarctica (Khan et al., 2021), 295 W m-2 in the Purcell 

Mountains, British Columbia (Engstrom et al., 2022), and 235.56 W m-2 in the North Cascade, 

US (Healy & Khan, 2023). The cell density was higher in the Purcells than in Alaska, with a 

maximum algal cross-sectional cell area of 1779 cm2 mL-1 compared to ~360 cm2 mL-1 (Ganey 

et al., 2017; Engstrom et al., 2022), suggesting that high cell density at the snow surface has 

greater impacts on the albedo than low cell density. In addition, higher radiative forcing from 

snow algae in the mid-latitudes suggests that algal blooms' influence on snowmelt is greater in 

the mid-latitudes compared to the high latitudes (Healy & Khan, 2023). 

The parameters controlling snow algal spatial distribution and bloom intensity are poorly 

understood, although the presence of nutrients has been linked to increased algae growth. 
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Previous studies found that nitrogen limitation, among other factors, often triggers the synthesis 

of secondary carotenoids (Muller et al. 1998; Leya et al. 2009). On the Harding Glacier, Alaska, 

snow algae blooms are more predominant on the continental side of the Icefield. Researchers 

speculate that inputs of nutrients from terrestrial aerosols are higher on the continental than the 

coastal side, promoting increased growth of algae blooms on the continental side (Takeuchi et 

al., 2006). Likewise, experiments on red snow show that algae growth increased following the 

addition of nitrogen, phosphorous and potassium (NPK) fertilizer in Alaska (Ganey et al., 2017). 

On the Greenland Ice sheet, phosphorus-rich mineral dust from the local lithology promotes ice 

algae growth (McCutcheon et al., 2021). Another study suggests that algae growth increased in 

the presence of Fe-rich minerals (Phillips-Lander et al., 2020). Finally, photosynthetic activity on 

glaciers from algal blooms was linked to a decrease in nutrient concentration in the meltwater, 

especially nitrogen (Holland et al., 2019; Jones et al., 2001). Those studies suggest that the 

presence of nutrients in the snow and ice is likely to be linked with the spatial distribution of 

snow and ice algae.  

1.5 Remote Detection of Snow Algae 

Previous studies used remote sensing to map the spatial and temporal distribution of red 

snow algal blooms. The first detection of red snow algae from remote sensing used airborne 

hyperspectral images to map the algae distribution from a snowfield in the Sierra Nevada, 

California (Painter et al., 2001). They observed a linear relationship between the spectral 

reflectance depth of the chlorophyll absorption feature at 680 nm and algae abundance collected 

on the field. Painter et al. (2001) created a model using the integral of the scaled chlorophyll 

absorption feature and cell concentration from field observations and applied the model to the 

hyperspectral image to map snow algae. Several studies used satellite optical remote sensing 
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such as SPOT, Landsat and Sentinel to map the extent and duration of red snow algae blooms 

(e.g. Engstrom et al., 2022; Ganey et al., 2017; Takeuchi, 2013). Due to the coarse spectral 

resolution of the sensors, the 680 nm chlorophyll absorption feature cannot be detected by 

satellite. Takeuchi et al. (2006) used satellite images from SPOT-3 and targeted the broad 

carotenoids absorption feature at 400-600 nm to estimate the spatial distribution and abundance 

of red snow algae on the Harding Icefield in Alaska. They found a correlation between snow 

algae abundance and the reflectance ratio of the red (610-680 nm) and green (500-590 nm) SPOT 

satellite bands and used this ratio to estimate the distribution and abundance of algae blooms on 

the icefield. Similarly, Ganey et al. (2017) utilized a normalized-difference spectral index 

between the red and green Landsat-8 bands to target the carotenoid absorption feature to estimate 

algae abundance over the Harding Icefield. The advantage of normalization that ratio is that it 

considers varying light intensity between the different images. Others successfully used the red-

green normalized difference (RGND) index to map the extent of snow algae blooms from 

satellite in Antarctica (Gray et al., 2020) and in British Columbia (Engstrom et al., 2022). Healy 

& Khan (2023) used a multispectral camera mounted on an uncrewed aerial vehicle (UAV) to 

map snow algae near Mt. Baker in Washington, US. They used a principal components analysis 

and an optimized RGND to map the abundance of snow algae under differing bloom states. They 

found that the RGND yields better distinction between snow and snow algae during early season, 

likely due to clean early snowpack being more spectrally distinct from the algae patches than 

aged snow filled with other impurities. A few studies pointed out that mineral dust and dirt have 

a similar spectral signature to snow algae when using a ratio between the red and green bands, 

which can potentially lead to an overestimate of algae abundance if other impurities are present 

in the snow (Di Mauro et al., 2015; Di Mauro et al., 2024; Huovinen et al., 2018). A new spectral 
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index between the green and blue bands was developed to distinguish mineral dust from snow 

algae when both are present (Di Mauro et al., 2024) and could be used to mask mineral 

impurities when using the RGND index. 

1.6 Forest Fire & Black Carbon  

Prolonged summer dry seasons and reduced moisture in vegetation due to climate change 

are leading to more frequent forest fires with increased duration, size and severity (Hanes et al., 

2018; Westerling et al., 2006). Forest fires in 2017, 2018, 2021 and 2023 in British Columbia, 

exceeded the 10-year average in hectares of forest and land burned. Notably, over 2,800,000 

hectares were burned in 2023 (Government of British Columbia, 2024). Forest fires release large 

amounts of aerosols into the atmosphere, including black carbon (Kondo et al., 2011). Through 

wet and dry processes, black carbon gets deposited on snow and ice surfaces, accelerating melt 

due to increased radiative forcing and reduced surface albedo (Flanner et al., 2007; Skiles et al., 

2018). Additionally, the excess warmth released by the black carbon particles in snow increases 

snow grain size, further reducing the snow albedo (Hadley & Kirchstetter, 2012a). Williamson 

and Menounos (2021) observed that declining albedo from mountain glaciers in the last two 

decades in western North America correlated with increasing air temperatures and deposition of 

aerosols from forest fires. Similarly, in the North Cascade Mountains, Washington, USA, black 

carbon and dust deposition from the Big Hump forest fire in 2012 was linked to the observed 

increased glacier melt from that year compared to other years (Kaspari et al., 2015). 

As forest fire aerosols can be transported over long distances, the impact of black carbon 

has regional impacts beyond the sources of emission (Kim et al., 2005). On the Greenland ice 

sheet, observations from shallow ice cores (Keegan et al., 2014) and snow pits (Thomas et al., 
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2017) linked black carbon deposition to forest fire activity in North America. In the Himalayas, 

black carbon concentration reached high levels (20-25 ng mL-1) in southeastern Tibetan glaciers 

following episodes of wildfires, increasing melt (You et al., 2016). Glaciers in New Zealand 

experienced unprecedented snow-darkening and melting from smoke plumes from the disastrous 

forest fires in Australia in 2019 – 2020 (Pu et al., 2021).  

Forest fire smoke has been linked to aerosol optical depth (AOD) (Barnaba et al., 2011), 

providing a means for remote sensing detection of atmospheric black carbon flux. The AOD is a 

parameter used to determine the aerosol load distributed within a column of air in the 

atmosphere. In other words, it indicates how much light is blocked by aerosols in the 

atmosphere. Thomas et al. (2017) used the Cloud-Aerosol Lidar with Orthogonal Polarization 

(onboard CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 

instrument to detect aerosols from the forest fires while moving from Canada to Greenland, 

linking black carbon deposition on the Greenland Ice sheet to forest fires. Williamson and 

Menounos (2021) used AOD at wavelengths 550 nm to quantify forest fire-generated aerosols 

from the two MODIS sensors, Terra and Aqua, to assess the importance of black carbon in 

altering glaciers’ albedo.  

NASA’s latest reanalysis dataset, the Modern-Era Retrospective Analysis for Research 

and Applications, version 2 (MERRA-2), uses the Goddard Earth Observing System, version 5 

(GEOS-5), to assimilate field observation and modelled datasets to provide aerosols’ surface 

mass concentration amongst other datasets (Randles et al., 2017). MERRA-2 assimilates bias-

corrected AOD from MODIS and the Advanced Very High-Resolution Radiometer (AVHRR) 

instruments, and non-bias-corrected AOD retrievals from the Multiangle Imaging 

SpectroRadiometer (MISR) over bright surfaces and ground-based Aerosol Robotic Network 
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(AERONET) observations. MERRA-2 then uses the GEOS-5 radiatively coupled to the Goddard 

Chemistry, Aerosol, Radiation and Transport model (GOCART) to simulate five types of 

aerosols, including dust, sea salt, sulphate and black and organic carbon. The black carbon 

aerosol surface mass concentration dataset has been used to characterize the historical trends and 

contributing sources of black carbon in Beijing, China (Qin et al., 2019). The MERRA-2 black 

carbon dataset was also used to analyze the spatiotemporal variation of black carbon over 

Northern Eurasia during the 2016 Siberian forest fires (Sitnov et al., 2020) and to assess and 

quantify atmospheric black carbon contribution from forest fires in the circum-Artic in 2019 and 

2020 (X. Chen et al., 2023). 

 

1.7 Research Gap 

Glaciers are critical sources of freshwater but are rapidly melting due to rising temperatures. 

Several studies found that a reduction in albedo from LAPs, including dust, black carbon and 

snow algae, accelerates melt (Di Mauro, 2020; T. H. Painter et al., 2013; Skiles et al., 2018). 

While the impact of LAPs has been widely studied, as presented above, the interaction among 

them remains poorly understood. In particular, the interaction between red snow algae and black 

carbon from wildfire soot has yet to be studied. The chapters below seek to address this 

knowledge gap through a field experiment and by leveraging remote sensing and machine 

learning techniques. 
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2 Chapter 2: Quantifying the interaction between wood ash and snow algae 

on Place Glacier, British Columbia 

2.1 Introduction 

Western Canada’s glaciers are retreating at an accelerated rate (Bevington & Menounos, 

2022), having consequences on the regional hydrology, ecosystem (Moore et al., 2009b), and 

hydroelectric power generations due to changes in runoff (Hock et al., 2019b). Air temperature 

and albedo - an index measuring the proportion of reflected light at the Earth's surface - largely 

influence glacier surface melt during the ablation season (Box et al., 2012). Albedo reduction 

occurs due to changes in snow and ice grain sizes (Wiscombe & Warren, 1980) and the 

accumulation of LAPs such as mineral dust (Di Mauro et al., 2015), black carbon (Flanner et al., 

2007), and microbial growth (Healy & Khan, 2023). Many studies investigated the impact of red 

snow (e.g. Engstrom et al., 2022), mineral dust (e.g. Di Mauro et al., 2015), black carbon (e.g. 

(Flanner et al., 2007; Hadley & Kirchstetter, 2012b) and the combination of dust and black 

carbon (e.g. Nagorski et al., 2019) on snow and glacier albedo, but research focused on the 

interaction between snow algae and black carbon is lacking. 

Unlike inorganic LAPS, red snow algae forms perennial populations that resurface in the 

spring and summer, following overwintering burial by snow when sufficient interstitial water is 

available (Jones et al., 2001). While snow algae blooms can cover up to 65% of an individual 

glacier surface, they display a high degree of interannual variability in intensity and spatial 

extent (Engstrom & Quarmby, 2024), which is not fully understood. It is well known that snow 

algae are both nutrient- and water-limited (e.g. Anesio & Laybourn-Parry, 2012; Ganey et al., 
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2017; Jones et al., 2001); however, the provenance of these nutrients for Western Canadian 

glaciers remains poorly documented.  

Glaciers are oligotrophic environments, meaning that they have a low nutrient content. 

Most nutrient input on glaciers comes from precipitation and airborne material (Hodson et al., 

2008; Anesio & Laybourn-Parry, 2012). On the ‘Dark Zone’ of the Greenland Ice Sheet, a 

nutrient addition experiment indicates phosphorous from mineral dust from local lithologies to 

be a limiting nutrient for ice algae blooms (McCutcheon et al., 2021). In the Arctic, snow algae 

preferentially grow in the snow with high concentrations of dust, which is believed to provide 

input of nutrients for the snow algae population (Lutz et al., 2015), and on North American 

stratovolcanoes, increased carbon dioxide concentrations promoted snow algae growth 

(Hamilton & Havig, 2020). A field experiment in Alaska demonstrated that adding aqueous 

nitrogen, phosphorous and potassium nutrients increased snow algae concentration by fourfold 

(Ganey et al., 2017). Similarly, snow algae in Antarctica bloomed in greater populations in 

coastal regions than inland regions, likely due to the input of nutrients from local minerals and 

marine fauna on the coast (Hodson et al., 2021). Red snow algae nutrient limitations generally 

stem from local mineralogy and the environment, suggesting that those limitations are not global; 

rather, they are driven by regional geology and environmental processes. 

In Western North America, forest fires are common between spring and autumn, releasing 

large amounts of aerosol and black carbon into the atmosphere (Kondo et al., 2011). Black 

carbon is a light-absorbing particle and short-lived aerosol emitted from the incomplete 

combustion of carbon-based fuels such as fossil fuels, biofuels, and wood. It absorbs solar 

radiation across all wavelengths in the visible spectrum and impacts the radiation budget through 

positive radiative forcing, increasing melt when deposited on snow and ice (Kang et al., 2020). 
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This enhanced radiative forcing is expected to increase liquid water at the glacier surface. Black 

carbon also has the potential to nourish snow algae. In the Arctic Ocean, forest fire aerosol 

deposition was linked to increased summertime phytoplankton bloom in 2014 (Ardyna et al., 

2022). The study suggests that aerosol from Siberian forest fires in the summer of 2014 led to N-

enrichment of the sea surface, resulting in increased phytoplankton activity. 

 The deposition of black carbon on snow and ice can accelerate total glacier melt by up to 

20% and reduce snow cover duration by several days (Kang et al., 2020). Following large forest 

fires and intense forest fire seasons, several field and model observations found an increased 

deposition of black carbon on snow and ice (e.g. Kaspari et al., 2015; Marshall & Miller, 2020; 

Williamson & Menounos, 2021). As forest fire activity and aerosols intensify, increased snow 

water and nutrients from the black carbon may enhance snow algae growth, further impacting 

glacier albedo and melt. However, little is known about the interaction between snow algae and 

black carbon, despite mentions made about this potential feedback (Aubry‐Wake et al., 2022). 

In this study, I conducted a field experiment on Place Glacier, British Columbia, Canada 

[50.42°, -122.6°], where I fertilized snow with wood ash and quantified the treatment effect on 

snow algae growth and melt. I measured snow algae cell abundance, melt and surface spectral 

reflectance in the field during three field visits conducted in the summer of 2023. I estimated the 

radiative forcing and associated snowmelt potential of snow algae using the spectral 

measurements taken on the first field visit and compared it to previous studies.  
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2.2. Methods 

2.2.1 Study Site 

I selected Place Glacier for the field experiment due to its ease of access via helicopter 

from Pemberton and field observation of snow algae blooms in 2022. Place Glacier is a small (3 

km2) glacier located in the southern Coast Mountain range (Fig. 2.1), northeast of Pemberton, 

British Columbia, Canada (50.42°, -122.6°). The glacier extends from ∼2610 m a.s.l. (above sea 

level) in the accumulation zone to ∼1900m a.s.l at the toe (Mukherjee et al., 2022). Winter 

accumulation at Place Glacier results in a deep snowpack that covers the glacier ice late into the 

summer ablation period.  

 

 

A B 

Figure 2-1 A. Map showing the location of Place Glacier in the southern Coast Mountains of British Columbia, 

Canada. Blue polygons are glaciers from the Randolph Glacier Inventory V. 7 (RGI Consortium, 2023). B. 

Hyperspectral mosaic RGB of Place Glacier on 22 August 2022 produced by the Airborne Coastal Observatory. The 

glacier boundary is outlined in red. 
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2.1.1 Snow algae and black carbon experiment 

I conducted a replicated (10 blocks x 4 plots block -1 = 40 plots total), manipulative field 

experiment to quantitatively measure the interaction between snow algae and black carbon from 

wood ash (Fig 2-2). The experiment occurred on the mid-elevation bench of Place Glacier 

(approx. 2000m a.s.l.) from 3 June to 2 July 2023. Each experimental block consists of four 

circular plots, each plot being 2.0 m2 in area. In each block, I selected two plots with an 

established bloom (colonized) and two plots with no visible bloom (uncolonized), spacing the 

plots by at least 2 meters. One of the colonized and one of the uncolonized plots received a 

treatment of 0.4 g of wood ash, with particles filtered to 50 µm, and the other two plots remained 

as control. In the absence of a perfect experimental treatment for emissions from fire, wood ash 

was used as a proxy. I replicated this plot setup ten times, spacing each block by at least 15 m.  
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Figure 2-2: Map of the experiment plots and their location on Place Glacier, BC, Canada. Location for 

P8-2 and P8-1 missing. 

I used three measurements to quantify the effect of wood ash on the snow algae: snow 

melt, algae cell abundance and spectral reflectance. I measured snow melt and algae abundance 

during our three field visits on 3-4 June, 11 June, and 2 July. I only collected optical properties 

on 3-4 June for all plots and for four of the blocks on 11 June due to rapidly changing 

atmospheric conditions. The field logistics on July 2 were not conducive to collecting optical 

properties, as I accessed the glacier by foot. Elemental metal and total carbon and nitrogen 

concentrations were determined for half of the treated and non-treated plots, randomly selected. 

This allowed to understand the metal concentration present in the snow that did not receive 

treatment and in the snow that received the ash treatment. Table 2-1 shows which plots on which 

dates receive reflectance, cell count and nutrient measurements. 
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Table 2-1: Description of measurements conducted per dates on the experiment plots. Snowmelt is not 

included, as each plot on each field visit was measured. No*: Data loss due to human error during 

processing of the sample. 

 

Test Reflectance Cell Count   Nutrient 

ID June 3 June 4 June 11 June 4 June 11 July 2 June 4 

P1-1 Yes Yes Yes Yes Yes No Yes 

P1-2 Yes Yes Yes No Yes Yes No 

P1-3 Yes Yes Yes Yes Yes Yes Yes 

P1-4 Yes Yes Yes No Yes Yes No 

P2-1 Yes Yes Yes Yes Yes Yes No 

P2-2 Yes Yes Yes No Yes Yes Yes 

P2-3 Yes Yes Yes Yes No* Yes No 

P2-4 Yes Yes Yes No Yes No No 

P3-1 Yes Yes Yes Yes Yes Yes No 

P3-2 Yes Yes Yes No Yes No No 

P3-3 Yes Yes Yes Yes Yes Yes No 

P3-4 Yes Yes Yes No No* Yes Yes 

P4-1 Yes Yes Yes Yes Yes Yes No 

P4-2 Yes Yes No No Yes Yes Yes 

P4-3 Yes Yes No Yes Yes No Yes 

P4-4 Yes Yes No No Yes Yes No 

P5-1 Yes Yes No Yes Yes Yes Yes 

P5-2 Yes Yes No No Yes No No 

P5-3 Yes No No Yes Yes No Yes 

P5-4 Yes No No No Yes No No 

P6-1 No Yes No Yes Yes Yes No 

P6-2 No Yes No No Yes Yes Yes 

P6-3 No Yes No Yes Yes No No 

P6-4 No Yes No No Yes No No 

P7-1 No Yes No Yes Yes Yes Yes 

P7-2 No Yes No No Yes No Yes 

P7-3 No  No No Yes Yes No No 

P7-4 No  No  No No Yes No Yes 

P8-1 No Yes No Yes Yes No Yes 

P8-2 No Yes No No Yes No Yes 

P8-3 No  No  No Yes Yes No Yes 

P8-4 No  No  No No Yes Yes No 

P9-1 No Yes No Yes Yes No Yes 

P9-2 No Yes No No Yes No No 

P9-3 No  No  No Yes Yes No Yes 

P9-4 No  No  No No Yes No No 

P10-1 No Yes No Yes Yes No No 

P10-2 No Yes No No Yes No Yes 

P10-3 No  No  No Yes Yes No Yes 

P10-4 No  No  No No Yes No Yes 



22 

 

I measured snow melt in each plot using ablation stakes drilled in the centre of each plot. 

I measured the length of the stake extending above the snow surface, with the depth of snow 

calculated as the difference in the current and previous measured lengths. To avoid introducing 

errors from snow cups and local melt around the stake, I measured the snow height from an ice 

axe set perpendicularly to the base of the stake. On 3 June and 4 June, I also measured the depth 

of the snowpack using an industrial gridded steel probe. Using 3 hours near-surface air 

temperature for Place Glacier collected at 1924 m.a.s.l. shared from the Geological Survey of 

Canada (appendix A), I calculated the melt factor using a simple degree day model as follows: 

𝑀 =  𝐾𝐼𝑃𝐷𝐷 + 𝐾𝑆𝑃𝐷𝐷                                                                                                                           (2.1) 

Where M is the depth of snow melted in millimetres water equivalent w.e., PDD is the positive 

degree day sum for the specific period and KI and KS are the degree day melt factors for ice and 

snow respectively. For this study, I calculated the KS only and converted the height of snow melt 

to mm w. e. using a snow density of 500 kg m-3. I then compared the melt factor (KS) to the 

annual melt factor modeled by Shea et al. (2009) for Place Glacier from 1965 to 1995.  

I sampled snow algae abundance from snow cookies in all plots three times during the 

experiment. At the time of our last visit on 2 July, the snow had already melted out over the 

location of the experimental blocks, but I sampled wet snow when present. I collected snow 

cookies of 7.62 cm (3 inches) in diameter and approximately 2 cm thick in each plot using a 

short segment of PVC tube labelled with a 2 cm depth line. I chose to sample the top 2 cm of the 

snow based on previous studies observing the majority of the red snow algae located at or near 

the snow surface (Engstrom et al., 2022; Ganey et al., 2017) and because the optical properties of 

snow are mainly affected by the top 2 cm layer (Di Mauro et al., 2024). Using a clean spatula to 

cut the snow at the base of the PVC tube, I carefully transferred the snow cookie into a Whirl-
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Pak® bag upon collection. The samples were kept frozen on snow in the field and transported in 

coolers from Pemberton to the University of Northern British Columbia in Prince George, where 

they were stored at -20ºC.  

2.2.3 Cell abundance 

I conducted cell count at the University of Northern British Columbia using a Nikon FN1 

microscope and a hemacytometer. The samples were thawed at room temperature, then preserved 

in glutaraldehyde. The melted samples were homogenized, and a 10 mL aliquot subsample was 

fixed with 50% glutaraldehyde to 1% final concentration. I measured algae abundance as cell 

count per unit of volume via microscopy. I performed algal cell count with an Improved 

Neubauer Hemacytometer cell counting chamber under a 40x objective. I counted individual 

algal cells, measured cell diameter, and cell surface area using the NIS Elements software. All 

nine 1x1 mm grids of the hemacytometer were used for the count. For each algae count, I sub-

sampled 1 mL from the preserved preparation and performed four cell and dimension counts 

over 0.1 mL each. The surface area and diameter of the cells were averaged for each count, and 

the mean of the four counts was retained. All cells were considered in each count due to the low 

population number per 0.1 mL. The averaged cells per volume were scaled per unit of area using 

the following formulas to allow for comparison with other studies. 

𝑁 𝑇𝑜𝑡𝑎𝑙 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 ×104

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑜𝑛 ℎ𝑒𝑚𝑜𝑐𝑦𝑡𝑜𝑚𝑒𝑡𝑒𝑟
( 

𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
 ) × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒  (2.2) 

𝐶𝑒𝑙𝑙𝑠 𝑚−2 =
𝑁 𝑡𝑜𝑡𝑎𝑙

𝑆𝑛𝑜𝑤 𝑐𝑜𝑜𝑘𝑖𝑒 𝑎𝑟𝑒𝑎 (𝑚2)
        (2.3) 
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2.2.4 Empirical measurement of snow reflectance   

I measured spectral reflectance from 350 to 2500 nm over the plots using the Spectral 

Evolution RS-5400 portable spectrometer, which has a spectral resolution of 2.7 nm from 350 to 

700 nm, 5.5 at 1500, and 5.8 at 2100 nm. I collected spectra with the bare optic pointing directly 

downward, held 15 to 30 cm above the snow surface. I conducted the measurements at ±2h from 

solar noon. Reference scans were taken approximately every 15 minutes over a 99% clean white 

5x5 inch Spectralon board to account for changing atmospheric conditions.  

2.2.5 Radiative Forcing and Red Snow Algae Melt Estimate 

To compare with previous studies, I estimated the snow algae instantaneous radiative 

forcing (IRF) from the reflectance data over the visible spectrum on 3 and 4 June for the 

estimated snow grain size, following similar method used by Engstrom et al. (2022), Ganey et 

al.(2017) and Healy & Khan (2023). I calculated the IRF of the snow algae over the visible 

spectrum as follows: 

IRF ≈ ∑ 𝐼( 𝜆) (850
350 𝛼𝑤ℎ𝑖𝑡𝑒(𝜆) − 𝛼𝑟𝑒𝑑(𝜆)) 𝛥𝜆                                                        (2.4) 

Where IRF is calculated as the sum of the spectral solar irradiance (I), multiplied by the 

wavelength interval (𝛥𝜆) and the difference between clean snow albedo (𝛼𝑤ℎ𝑖𝑡𝑒) and the snow 

algae reflectance (𝛼𝑟𝑒𝑑) over the wavelengths 350 to 850 nm. The field spectrometer 

measurements (𝛼𝑟𝑒𝑑) were collected on flat grounds of < 5º slope, and thus, the error due to the 

anisotropy factor is considered negligible (C. Donahue, personal communication, 2024), 

allowing the use of the reflectance data without conversion. Downwelling irradiance was 

measured at Place Glacier on 3 June and 4 June using a calibrated cosine diffuser attached to the 
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field spectrometer. I obtained clean snow albedo (𝛼𝑤ℎ𝑖𝑡𝑒) from SNICAR-ADv3 (Flanner et al., 

2021) using the following parameters. The solar zenith angle was estimated to be 34º for Place 

Glacier on 3 June and 4 June 2023 at 18:30 UTC (11:30 local time) using the ‘pvlib’ open-source 

Python tool (Jensen et al., 2023). The snowpack thickness was derived from the snowpack depth 

measured on the field (~2m), and snowpack density was set to 500 Kg/m3. The snow grain shape 

was set to spheroids. Multiple effective grain sizes were input based on the nearest 50 nm as 

modelled from the measured spectra ice absorption feature centred at λ = 1030 nm (Nolin & 

Dozier, 2000). I calculated the effective snow grain size from the field spectra based on the 

continuum-removed depth rather than integrating the area to reduce uncertainty introduced by 

wet snow, which can shift the location of the continuum minimum (Donahue et al., 2023).   All 

the other parameters in SNICAR were set as the default or zero. The model outputs the albedo at 

10 nm intervals (𝛥𝜆). 

From the IRF calculated for the red snow algae, I calculated a first-order estimate of the 

glacier and snow melt rate by applying a simple energy analysis, similar to the method used in 

Donahue et al. (2023), Kaspari et al. (2015) and Painter et al., (2013). For this calculation, I 

assumed that the snow and ice are at the melting point (0°C) and that the additional energy is 

used entirely for melting and is not contributing to raising the temperature of the snow and ice. 

The assumption that isothermal snow and ice are at 0°C is reasonable, as from the interpretation 

of the air temperature sensor at Place Glacier, the snow temperature is very close to 0°C when 

the snow begins to melt and is isothermal between May 1st and May 15th, 2023, before the 

sensor is snow free on May 17th (Appendix A, Fig. A1). Additionally, I did not consider the 

amount of energy utilized for the photosynthesis process by the algae in this calculation, as 

suggested by Cook et al. (2020), and assumed that all of the absorbed energy is used for melting. 
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I obtained hourly instantaneous radiative forcing (HRF) as described in equation 2.3, using 

incoming irradiance simulated for Place Glacier on June 3rd, 2023 from the PVSystem solar 

irradiance program (https://pvlighthouse.com.au) acquired at hourly intervals from sunrise to 

sunset. The radiative forcing is assumed to remain constant during each 1h time step; therefore, 

the total hourly energy supplied by the radiative forcing is equivalent to HRF multiplied by 3600 

s h-1. To calculate the red snow algae contribution to melting, I divided the total hourly energy by 

the latent heat of fusion of water at 0°C (0.334x106J kg-1), returning melt in terms of millimetres 

water equivalent per hour (mm w.e hr-1). I then summed the hourly melt to obtain the estimated 

daily melt caused by the red snow algae. 

2.2.6 Total metals, carbon and nitrogen content 

The Northern Analytic Laboratory Service (NALS) at the University of Prince George 

tested the wood ash and randomized snow samples for total metals. The randomized snow 

samples represented samples from ten control plots and ten treated plots with the wood ash, all 

without snow algae as per visual inspection. The total metals test conducted by NALS followed 

the United States Environment Protection Agency (USEPA) method 200.7 (U.S. Environmental 

Protection Agency, 1994a) for assessing metals in the snow samples (liquid) and method 200.2  

(U.S. Environmental Protection Agency, 1994b) for digesting the wood ash (solid) with an 

Agilent 5100 ICP-OES on the wood ash digestates. The statistical difference in nutrients between 

the treated plots and control plots was assessed using t-tests.  

To identify which total metals most strongly influence algae growth, I applied a forward 

stepwise feature selection model using linear regression. The forward stepwise feature selection 

is a method that uses machine learning and statistics to build a model in which the most relevant 

https://pvlighthouse.com.au/
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variables, nutrients in this case, are added iteratively until no further improvement is achieved or 

a predetermined number of variables is reached. I used the mlextend Python library to perform 

the algorithm and selected the top three nutrients. I then used the three selected nutrients in an 

ordinary least squares (OLS) regression model to estimate their individual contributions to algae 

cell count from June 11. 

NALS performed a total carbon and nitrogen element test on the wood ash. They used a 

Costech 4010 Elemental Analyzer to combust the samples via the standard sequential 

combustion/reduction setup recommended by Costech with a flow rate of 100 mL min-1 of 

helium 5.0 as the carrier gas. The combustion oven was set to 1000°C, the reduction oven to 

650°C, and the GC oven to 70°C. Gases were then separated on a standard 3m column and 

quantified with the built-in thermal conductivity detector (TCD).  

2.2.7 Statistical Test 

Statistical differences in the snowmelt and snow algae concentration and diameter among the 

different groups were assessed using the ANOVA and Kruskal-Wallis test based on the 

distribution of the dataset. I used the Shapiro-Wilk test to determine the normality of the 

snowmelt and snow algae concentration and diameter data. The Shapiro-Wilk test quantifies how 

well the data fit the normal distribution with the test statistic (W), ranging from 0 (deviation from 

normality) to 1 (normally distributed), and provides a ρ-value that indicates whether the data 

follows a normal distribution. A ρ-value < 0.05 indicates that the data do not follow a normal 

distribution. Based on the Shapiro-Wilk test results (Table 2-2), all the snowmelt data were 

normally distributed (ρ > 0.05), and only part of the cell concentration and diameter data 

followed a normal distribution; therefore, I conducted the ANOVA test on the snowmelt data and 

the Kruskal-Wallis on the cell concentration and diameter data. For test results where the 
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ANOVA or Kruskal-Wallis was significant (p-value < 0.05), I applied a post-hoc test to identify 

which pairs of groups are significantly different through pairwise comparisons. Since only one of 

the Kruskal-Wallis tests indicated a significant difference, I used Dunn’s test with Bonferroni 

correction to determine which group pairs are significantly different. Due to the small sample 

size on July 2 for the cell concentration (n=17) and diameter (n=15), I also applied the non-

parametric Mood’s Median test to compare the cell concentration medians to verify for Type II 

error in the Kruskal-Wallis test (failing to detect a real difference).  

 

 

Table 2-2: Shapiro-Wilk Test results for the snowmelt and cell concentration data and sample size (n). 

    

Colonized 

Treated 

Uncolonized 

Treated 

Colonized 

Control 

Uncolonized 

Control 

Snowmelt June 

11 

W-stats 0.843 0.953 0.889 0.959 

ρ-Values 0.313 0.279 0.744 0.249 

n 10 10 10 10 

Snowmelt July 2 

W-stats 0.914 0.91 0.956 0.905 

ρ-Values 0.313 0.279 0.744 0.249 

n 10 10 10 10 

Cell 

concentration 

June 11 

W-stats 0.859 0.804 0.842 0.791 

ρ-Values 0.0745 0.0163 0.0607 0.0162 

n 10 10 10 10 

Cell 

concentration 

July 2 

W-stats 0.921 0.957 0.75 0.927 

ρ-Values 0.513 0.759 0.000 0.576 

n 6 4 3 4 

Cell diameter        

June 11 

W-stats 0.665 0.899 0.818 0.943 

ρ-Values 0.001 0.406 0.033 0.690 

n 9 5 9 5 

Cell diameter          

July 2 

W-stats 0.942 0.964 NA 0.931 

ρ-Values 0.672 0.807 NA 0.601 

n 6 4 1 4 
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According to the Shapiro-Wilk test, the radiative forcing for clean snow (stat = 0.922, ρ = 0.334), 

snow colonized with snow algae (stat = 0.881, ρ = 0.133), and snow darkened with ash (stat = 

0.946, ρ = 0.674) are normally distributed. I assessed the statistical difference in radiative forcing 

between clean snow with the ANOVA test and used the post hoc Dunn’s test to determine which 

groups are significantly different.  

2.3. Results & Discussion 

2.3.1 Wood ash effect on snow algae abundance and melt 

Snow algae blooms in the Coast Mountains typically appear in late June or early July and 

can last late into the summer (Engstrom & Quarmby, 2024). Snow algae bloomed approximately 

one month early in 2023, with observations in the Olympic Peninsula and on Place Glacier of 

snow algae as early as late May. Temperatures in May 2023 were higher than normal, with 

temperatures in the Coast Mountains near Place Glacier reaching 4-5°C above normal (Zhang et 

al., 2023). Snow algae typically bloom when sufficient liquid water is available within the 

snowpack. Thus, the higher-than-normal temperatures in May likely triggered the early bloom. 

Compounded with snowpack that was 20% below normal for the area around Place Glacier (B.C 

River Forecast Centre, 2023), early snow loss, as observed on 2 July, resulted in a reduced snow 

algal growth season on the Place Glacier bench, providing a short window for the field 

experiment. 

Cell abundance and diameter 

The statistical tests provide no evidence that wood ash had an impact on snow algae cell 

concentration during the experiment (Fig. 2-3). The Kruskal-Wallis test performed on the cell 

abundance on June 11 indicated a significant difference in the data (Stats = 16.93, ρ = 0.0007, n 
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= 40). The post-hoc Dunn’s test, however, showed that the significant differences in algae cell 

median concentration were between the colonized and uncolonized plots, and no significant 

differences were identified between the treated and control plots. The colonized treated cell 

concentration was significantly higher than the uncolonized treated (ρ = 0.0029, n = 40) and the 

uncolonized control (ρ = 0.031, n = 40), and the colonized control cell concentration was 

significantly larger than the uncolonized treated (ρ = 0.0272, n = 40). These results suggest that 

plots that were already colonized during the first field visit support a higher cell concentration 

than the plots that had no visible red snow algae (uncolonized plots). This difference is likely 

because the cells in the colonized plots had undergone cell reproduction during the seven days 

between the two field visits, leading to a higher cell concentration. Whereas the algae cells in the 

uncolonized plots were possibly just starting to emerge. The microscopy, however, provided no 

evidence for this hypothesis. All cells observed in the microscopy were red, and no specific 

observations were conducted to discriminate among the cell types, as presented in Figure 1-1. At 

the end of the experiment, no significant difference was detected among the plots’ concentration 

in the Kruskal-Wallis test (Stats= 3.033, ρ = 0.387, n = 17) and in the Mood's Median test (Stats 

= 0.830, ρ = 0.841, n =17). The cell abundance results, therefore, show that experimental 

additions of wood ash had no effect on cell abundance during the field experiment. 
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Figure 2-3: Mean cells per mL for the 4 plot settings from 4 June, 11 June and 2 July 2023 on Place 

Glacier, British Columbia, Canada 

 

Algal cells per square meter during the field experiment varied from a minimum of 4.9 

×  106 to a maximum of 8.0 × 107 on June 4, and 2.9 × 106 to 8.8 ×  107 on June 11. The algae 

sample collected on 2 July consisted of firn and slushy snow, making it difficult to collect 

consistent volume. For this reason, I did not convert the cells ml-1 to cells m-2. The maximum 

algal cell concentrations are comparable to those previously observed in the Eastern Alaska 

Mountains [5.1 × 107 (Takeuchi et al., 2013) and in the Sierra Nevada Mountains, California [1.3 

× 107 ] (Painter et al., 2001).  

The wood ash treatment did not impact cell diameter during the field experiment. The 

Kruskal-Wallis test on June 11 (Stats = 2.878, ρ = 0.411, n = 28)  and July 2 (Stats = 2.896, ρ = 
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0.408, n = 15) indicated no significant difference in the cell diameter among the plot types. The 

Mood’s Median test indicated the same lack of statistical difference among the cell diameter on 

July 2 (Stats = 2.946, ρ = 0.400, n = 15). The averaged cell diameter during the experiment 

varied from 13 ± 4 µm to 41 ± 3 µm with a mean of 27 ± 9 µm. Cell diameter from algae 

samples collected in the Southern Coast Mountains had similar dimensions, with a diameter 

ranging from 20 to 30 µm (Engstrom et al., 2022).  

Snowmelt over experimental plots 

Snowmelt on Place Glacier over the field experiment from 3 June to 2 July, 2023 

averaged 135.1 ± 7.1 cm or 675.5 ± 35.5 mm w.e (Fig. 2-4). I observed no significant difference 

in the measured melt between the plot treatments and the colonized versus non-colonized plots 

on June 11(ρanova = 0.18) and July 2 (ρanova = 0.23), as calculated by the ANOVA statistical test. 

The melt factors for snow from June 3 to June 4, June 4 to June 11 and June 11 to July 2 are 

respectively 3.5, 4.5 and 3.7 mm w.e +ºC-1 d-1, and is 3.8 mm w.e +ºC-1 d-1 for the entire 

experiment period. In comparison, Shea et al. (2009) modelled a melt factor of 2.71 mm +ºC-1 d-1 

for Place Glacier.  
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The average melt consistently trends higher for the treated colonized plots during the 

experiment. However, the difference is not large enough to be significant and only varies by a 

few centimetres from the other averages. I expected to observe higher snow melt in the treated 

and colonized plots from the increased radiative forcing and reduced albedo from the algae and 

ash. A few factors may explain why no significant difference was observed between the plot 

settings. First, I recorded snowmelt as a point measurement taken in the middle of the plot, as 

described in section 2.2.2. The algae blooms typically did not cover the entire plot area and were 

rather concentrated in heterogeneous snow cup patches. Therefore, it is possible that the 

measurement did not capture melt induced by the algae if they were not taken directly within the 

Figure 2-4: Snowmelt and temperature trends on Place Glacier, British Columbia, Canada. A. Daily 

temperature, average measure melt and positive degree day melt model (PDM) from Shea et al. (2009) B. 

Melt per plot setting from 4 June and 11 June 2023. C. Melt per plot setting from 11 June and 2 July 

2023. 
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immediate bloom area. Second, the melt caused by the algae during the 30-day experiment in 

June was possibly too little to be detected by statistical tests. Engstrom et al. (2022) estimated 16 

cm of melt from snow algae over a two-month period (July and August) for two glaciers in the 

Purcell Mountains. Based on this estimate, the bloom observed on Place Glacier during our 30-

day field experiment would have produced approximately half the melt (8 cm). Compared to an 

average total melt of 137 cm, the melt induced by the snow algae might have been too small to 

be detected in statistical tests and may explain the lack of statistical differences between the 

colonized and non-colonized plots.  

In comparison to the Shea et al. (2009) melt model, the calculated melt factor for the field 

experiment was 3.6 mm w.e +ºC-1 d-1, compared to 2.71 mm w.e +ºC-1 d-1. This discrepancy 

could be explained by the fact that the melt factor calculated for the field experiment is over a 

much shorter period compared to Shea et al. (2009), which was modelled for the entire ablation 

seasons (May 15 to September 30) from 1965 to 1995. In contrast, the melt factor measured 

during this experiment was calculated from June 3 to July 2, around peak insolation. The 

difference between the two melt factors may also be due to surface albedo, as glaciers in the 

decades have become darker (Williamson & Menounos, 2021). This difference supports the 

concept that sensible heat alone is not the only factor that enhances melt on glaciers and that 

radiation heat from aging snow grain and light absorbing particles contribute to glacier melt via 

radiative forcing. 

2.3.3 Wood ash Nutrients 

Previous field studies and laboratory observations suggest that algae's response to 

nutrients is study-dependent. For example, a study on North American volcanoes (Hamilton & 
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Havig, 2017) and in the Arctic (Lutz et al., 2015) found no correlation between nutrient and 

snow algae abundance, whereas several other studies linked nutrients to algae abundance. In 

Alaska, for example, a field addition of nitrogen-phosphorous-potassium fertilizer promoted 

algae growth (Ganey et al., 2017). On Harding Glacier, Alaska, researchers observed more 

prominent algae blooms on the continental side than on the coastal side of the glacier. They 

speculated that the input of terrestrial nutrients from aerosols is higher on the continental side 

than on the coastal side, promoting the algae bloom (Takeuchi et al., 2006). On the Greenland Ice 

Sheet,  McCutcheon et al. (2021) found that phosphorous from the local mineral dust increased 

algal blooms, and Holland et al. (2019) observed a decrease in nutrient concentration in the 

glacier meltwater surrounding areas of algal blooms. 

 In this study, nutrient levels of aluminium, barium, calcium, chromium, iron, potassium, 

magnesium, manganese, nickel and phosphorous were significantly higher in the treated plots 

with wood ash than in the control plots (Appendix B: Table B.1). The wood ash contains 0.05% 

of total nitrogen and 5.7% of total carbon. The forward stepwise feature selection indicates that 

Chromium, Iron and Lead have the most significant impact on snow algae abundance. Overall, 

the OLS model is statistically significant (F statistic = 7.138, ρ = 0.0076), and explains about 

58.6% of the variation, as per the adjusted R-squared, indicating a moderately strong model. All 

three nutrients have a statistically significant influence on algae abundance. Iron (coefficient = 

16 170, ρ = 0.001) has a positive impact on algae abundance and chromium (coefficient = -

1631000, ρ = 0.033) and lead (coefficient=-1199000, ρ = 0.048) have a negative impact on algae 

abundance. This suggests that red snow algae are likely inhibited by heavy metal contamination, 

such as chromium and lead, and iron may be a limiting nutrient that supports algae growth. This 
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supports the relationship observed in Phillips-Lander et al. (2020) which observed that Fe-rich 

minerals increased red snow algae growth.  

2.3.4 Reflectance and Radiative Forcing 

Spectral reflectance 

Spectral reflectance from the different plot settings varied consistently according to the 

plot composition, but the ash treatment did not impact the spectral reflectance (Fig 2-5. A-D). 

The reflectance of the uncolonized plots (‘clean snow’ and ‘clean snow + ash’) is spectrally flat 

in the visible wavelengths with values above 75% reflectance, as expected for white snow and 

decreases in the near-infrared typical for snow spectra (Wiscombe & Warren, 1980). The 

colonized plots (‘red snow’) reflectance varies between 40% and 80% in the visible wavelength, 

in accordance with other observations of red snow algae reflectance (e.g. Khan et al., 2021; 

Painter et al., 2001). The red snow spectra depict the uniquely biological chlorophyll absorption 

feature located around 680 nm used by Painter et al. (2001) to map snow algae from 

hyperspectral images, and the concave carotenoid absorption feature from 400 to 600 nm used in 

the RGND to map snow algae extent from satellite multispectral sensors (e.g. Ganey et al., 2017; 

Takeuchi et al., 2006).  
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Figure 2-5: Spectral reflectance measured on 3 and 4 June coloured according to the different plot 

settings A. Uncolonized and untreated [Clean snow], B. Colonized and untreated [Red snow], C. 

Uncolonized and treated [ Clean snow with wood ash], and D. colonized and treated [Red snow with 

wood ash]. The green lines point out to the chlorophyll absorption feature (680 nm), and the red 

rectangles point out to the carotenoid absorption feature (400-600 nm) 

 

To assess the impact of ash and red snow algae on snow reflectance value, I computed the 

statistical difference with the ANOVA and post hoc Dunn’s test among the radiative forcing of 

the respective groups. The ANOVA test and Dunn’s test conducted on the radiative forcing 

values for the clean snow, and treated snow (ash) reveal no significant difference between the 

clean snow and the snow with ash (ρ = 1.000). The colonized and untreated snow radiative 

forcing (red snow), however, was significantly different than the clean snow (ρ = 0.000094) and 

the treated snow (clean snow + ash), ρ = 0.004684), with the red snow having a mean radiative 
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forcing statistically higher. Despite adding wood ash in amounts about a hundred-fold of what is 

observed in snowpacks in North America following forest fires, I did not detect an increase in 

radiative forcing pre- and post-treatment. The lack of difference can be attributed to black carbon 

lowering snow albedo by approximately 2-6% only (Wang et al., 2020). Additionally, the actual 

proportion of black carbon particulate matter contained in the wood ash from the bioenergy plant 

is likely less than 50% of the total wood ash added to the plot, as characterization of wood ash 

composition from small-scale residential wood combustion of mixed hard- and softwood 

determined that black carbon comprised approximately 40% of the total particulate emission 

(Meyer, 2012). 

Radiative Forcing  

I calculated instantaneous radiative forcing (IRF) using the field-measured reflectance 

values collected under blue sky conditions on 3 and 4 June 2023 and modelled clean snow 

albedo from SNICAR (Whicker et al., 2022). The average IRF for the ‘clean snow’ is 38 ± 2 W 

m-2, 192 ± 12 W m-2 for the red snow algae and 54 ± 4 W m-2 for the snow with wood ash (Fig. 

2.6). The maximum IRF is respectively 88.6 ± 5.4, 274.2 ± 16.7 and 111.8 ± 7.44 W m-2 for the 

clean snow, red snow and snow with wood ash. The average estimated melt from the red snow 

algae is 27.8 mm w.e d-1 as calculated for June 3rd, 2023. This melt assumed clear skies 

conditions for the entire day and is calculated for the area measured directly under the field 

spectrometer.  
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Figure 2-6: Instantaneous radiate,ve forcing or wood ash, clean snow and red snow as measured on June 

4 and July 11 from the field spectrometer reflectance data. 

 

In previous studies of snow algae, calculated radiative forcing varied from an average 

IRF of 21.6 W m-2 in Alaska (Ganey et al., 2017) and 88.0 W m-2 in Antarctica (Khan et al., 

2021) to a peak bloom IRF of 235.56 W m-2 in the North Cascades, US (Healy & Khan, 2023) 

and 295 W m-2 in the southern Coast Mountains, BC (Engstrom et al., 2022). The average 

calculated IRF of snow algae in this study is comparable to the IRF calculated from peak algae 

blooms, even though the spectra used in this study were obtained during the early bloom. The 

IRF translate to a melt estimate of up to 27.8 mm w.e. d-1. While this value represents the 

maximum potential red snow algae can melt under clear skies conditions, it shows that the snow-

darkening effect from snow algae bloom, even during early blooms, can have great implications 

on snowmelt. As explained above, no difference in melt was measured between the colonized 

and non-colonized plots, which is in part attributed to the method. Nonetheless, those results 
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demonstrate that the potential melt contribution from snow algae on glaciers is non-negligible 

and should be considered when modelling glacier melt.  

 The wood IRF was on average 54 ± 4 W m-2 compared to 38 ± 2 W m-2 for the clean 

snow, but was not statistically different according to the ANOVA and Dunn’s test. Field 

observations of black carbon in snow in the United States suggest radiative forcing can vary 

from 1 W m-2 for low black carbon concentration to above 100 W m-2 (Kang et al., 2020). 

Measured black carbon from surface snow samples in the Olympic Peninsula, US, post forest 

fire, totalled 3120 µg/L, corresponding to a radiative forcing of 37 – 53 W m-2 (S. Kaspari et al., 

2015). On the Juneau Icefield, they estimated a median radiative forcing of 40 W m-2 in July 

from black carbon only. Those values are comparable to the calculated IRF values of 54 ± 4 W 

m-2 for the wood ash. However, compared to the calculated IRF for the ‘clean snow’ plot, the 

increased IRF from the wood ash is lower than those observed in the previous study. 

Additionally, a visual inspection of airborne imaging spectroscopy of Place Glacier from before 

and after the wood ash was added failed to identify an increase in radiative forcing when 

integrated over a 2m pixel size (Chris Donahue, personal conversation). Such a small response 

was likely too weak to induce an increased melt or darkening effect and may explain why no 

significant difference was observed in the measured snowmelt.  

2.4 Conclusion 

The field experiment is inconclusive regarding wood ash treatment effects on snow algae growth. 

The nutrient analysis suggests, however, that iron may increase red snow algae growth while 

heavy metals such as chromium and lead may inhibit their growth. Iron and chromium were both 

found to be significantly more elevated on snow treated with wood ash. Due to limited data from 
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the last field visit, further studies are needed to assess the relationship between snow algae and 

forest fire ash. As forest fires in Western North America are predicted to increase in frequency 

and intensity, it is imperative to understand the feedback between snow algae and black carbon. 

Here, I showed that snow algae have the potential to increase radiative forcing to up to 274 ± 16 

W m-2 and 192 ± 12 W m-2 on average during the early bloom stage, translating to a melt 

potential of 27.8 mm w.e. d-1. Those results support the need to include bio-albedo reduction in 

predictive models of glacier change. In addition, this study suggests that higher-than-normal 

spring temperatures can shift snow algae bloom timing, which can have an exacerbating impact 

on seasonal snow cover on glaciated terrain and lead to early exposure of bare ice. 

  



42 

 

3 Chapter 3: Satellite and airborne remote sensing of snow algae in relation 

to black carbon deposition from forest fires in Western Canada 

3.1 Introduction 

Glaciers represent important sources of freshwater in western North America (Bonsal et 

al., 2020b). Yet, rates of glacier mass loss accelerated in the last decades (Bevington & 

Menounos, 2022; Hugonnet et al., 2021), leading to important impacts on stream flow and 

aquatic ecosystems due to changes in runoff (Huss & Hock, 2018). Seasonal and long-term 

decreases in albedo, or glacier darkening, represent one factor that could explain the accelerated 

mass loss from Western North America’s glaciers in the last two decades, as surface albedo is an 

important factor controlling energy balance processes and melting at the surface of glaciers (Box 

et al., 2012). The formation of snow algae blooms and black carbon deposition from wildfire 

activity during the snowmelt season represent two processes that diminish glacier albedo. 

However, the interaction between snow algae and black carbon from forest fires remains 

uncertain.  

Systematical mapping of snow algae blooms in North America from 2019 to 2022 shows 

that blooms occur on 5% of the total glaciated area (Engstrom & Quarmby, 2023) and can cover 

up to 60% of a glacier surface. Blooms of red snow algae appear on glaciers at the onset of 

snowmelt and remain on the surface until the end of the melt season (e.g. Engstrom et al., 2022). 

The algae produce carotenoid pigments to cope with the harsh glacial environment (Laybourn-

Parry et al., 2012). The photoprotective carotenoid pigment, primarily astaxanthin, colours the 

snow red, reducing the albedo by up to 20% (Chevrollier et al., 2022; Ganey et al., 2017; Lutz et 

al., 2014). The excess energy absorbed by the pigment increases snowmelt on glaciers, which 
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can lead to earlier exposure of bare ice, thus further decreasing glacier albedo as ice is darker 

than snow. Previous studies used satellite imagery to study snow algae on snow and ice. Satellite 

imagery from Sentinel-2, SPOT and Landsat OLI combined with band ratios, as explained in 

section 2.1, have been widely used to map and quantify red snow algae bloom over glaciated 

terrain (e.g. Takeuchi et al., 2006. Engstrom et al., 2022; Ganey et al., 2017; Khan et al., 2021). 

Others have used Uncrewed Aerial Vehicles (UAV) surveys to analyze the impact of red snow 

algae blooms (Healy & Khan, 2023) on snow radiative properties. These studies provide 

evidence of the powerful potential of remote sensing techniques to study the distribution and 

impacts of red snow algae blooms on glaciated terrains. 

Black carbon deposition on glacier surfaces from forest fires decreases glacier albedo and 

increases the absorption of shortwave radiation, accelerating melt. The excess energy absorbed 

by black carbon further decreases the albedo due to increased snow grain size (Hadley & 

Kirchstetter, 2012c). In the last two decades, forest fires in Western Canada increased in size, 

severity, duration and frequency (Hanes et al., 2018), leading to the deposition of black carbon 

over many glaciated areas downwind of the forest fires. In regions adjacent to frequent forest fire 

activities in British Columbia and Alberta, decadal decreasing trends in the glacier surface albedo 

were linked to changes in aerosol optical depth attributed to forest fire aerosols (Williamson & 

Menounos, 2021). Likewise, the albedo at Haig Glaciers, located in the Canadian Rocky 

Mountains, decreased to around 0.12 during years of heightened regional wildfire activity, like 

those observed in 2003 and 2017 (Marshall & Miller, 2020). The analysis of an ice core extracted 

from the South Cascade Glacier in Washington State, US, also indicated a high deposition of 

black carbon during wildfire events (S. D. Kaspari et al., 2020). As the severity and frequency of 

wildfires are expected to increase in western Canada (Coogan et al., 2019), the deposition of 
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black carbon over glaciers will also increase. While the distribution of light-absorbing particles 

like mineral dust on glaciers has been studied from space, identifying black carbon deposition 

over glaciers from multispectral satellites was deemed unlikely (Warren, 2013). The average 

amount of black carbon found in remote areas of the Northern Hemisphere reduce the visible 

albedo by approximately 1 to 6%, depending on the snow type (Warren & Wiscombe, 1980). 

Satellite measurements typically have errors of a few percent making the reduced albedo signal 

from black carbon challenging to detect from satellites (Warren, 2013). Moreover, black carbon 

has the same spectral signature as thin snow, making it difficult to detect in patchy areas. 

Therefore, atmospheric aerosol products such as the MERRA-2 black carbon flux provide a 

useful alternative method to track black carbon over glaciated areas, assuming part of the 

suspended black carbon gets deposited. 

Recent studies combined available data from satellite imagery and data-driven models 

such as machine learning algorithms to automate the mapping of light-absorbing particles and 

snow and ice algae. Cook et al. (2020), for example, used a random forest classifier trained on 

spectra collected in the field to classify ice surfaces and map the albedo from UAV and Sentinel-

2 images over the Greenland Ice sheet. Similarly, Engstrom & Quarmby (2024) developed a 

random forest classifier to systematically map red snow algae using Sentinel-2 satellite images 

over Western North America. Remote sensing observations and machine learning algorithms 

helped to improve our understanding of the distribution of mineral dust and algae on snow and 

ice and their impact on radiative forcing and albedo. However, despite the increasing interest in 

surface darkening processes on glaciers, to date, I am aware of no studies that examined the 

interaction between black carbon and snow algae using remote sensing data and machine 

learning methods.  
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 The objective of this paper is to investigate the interaction between snow algae and black 

carbon from forest fires using remote sensing and machine learning. Since black carbon is not 

only emitted from forest fires, an assumption is being made in this chapter that it dominates the 

aerosol load, given the frequency and intensity of fires in the studied area. Here, I model the 

occurrence of snow algae blooms on glaciers in the Canadian Cordillera below 60ºN using 

satellite imagery from the Harmonized Landsat Sentinel 2.0 from 2015 to 2023 in conjunction 

with black carbon flux and dust flux from MERRA-2, and meteorological data from ERA-5 

Land. Modelling red snow algae using machine learning helped to understand how the different 

variables affected the blooms and provided insight into interactive surface darkening processes.  

3.2 Study area  

The study area focused on glaciers in the Canadian Cordillera south of 60ºN and north of 

49ºN, comprising all of Alberta and British Columbia glaciers, excluding the Insular mountains 

from Vancouver Island (Fig. 3-1). This mountainous region covers roughly 1,000,000 km2 and 

can be subdivided into three main systems: the Western, Interior, and Eastern (Bolch et al., 

2010). The Western System comprises the Insular, Coast and St. Elias Mountains. The Interior 

systems encompass the Purcell, Selkirk, Cariboo and Monashee in the south of the region and the 

Hazelton, Skeena, Cassiar and Omineca mountains in the north. The Canadian Rocky Mountains 

define the Eastern System. For this study, I excluded the Insular mountains due to the limited 

number and size of glaciated areas and subdivided the other mountain ranges into nine regions, 

as suggested by Schiefer et al. (2007). Each of these regions defined in figure 3-1 has a similar 

climate and glacier characteristics.  
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Figure 3-1: The glaciated region of the Canadian Cordillera below 60ºN is divided into nine regions. The 

small glaciers of the Insular Mountains on Vancouver Island are omitted in this study. Details about the 

regions are found in Table 3.1. 
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Table 3-1: Glaciated area, and elevation of the nine regions 

Region 

Number 

Region Name 

Glaciated 

Area 

(km2) 

Mean 

Elevation 

(m) 

Max 

Elevation 

(m) 

Min 

Elevation 

(m) 

1 Southern Coast 

Mountains 6535.35 2065 3444 521 

2 Central Coast 

Mountains 1698.27 1620 2550 411 

3 Northern Coast 

Mountains 8619.02 1650 2940 200 

4 St. Elias 3199.29 1373 4297 136 

5 Interior North 535.58 1884 2411 1167 

6 Interior South 1929.01 2468 3239 1353 

7 Northern 

Rockies 352.19 2249 2819 1604 

8 Central Rockies 422.32 2362 3279 1532 

9 Southern 

Rockies 1350.75 2629 3438 1630 

            
 

3.3 Data  

3.3.1 Harmonized Landsat Sentinel 

For this study, I use surface reflectance data from NASA’s Harmonized Landsat Sentinel 

(HLS) version 2.0. The HLS dataset combines and harmonizes Landsat8/9 Operational Land 

Imager (OLI) and Sentinel-2A/B Multi-Spectral Instrument (MSI) through a set of algorithms, 

including atmospheric correction, cloud and cloud shadow masking, geographic co-registration 

and common gridding, bidirectional reflectance distribution function (BRDF) normalization, and 

bandpass adjustment (Claverie et al., 2018). The HLS produces a seamless surface reflectance 

record with near-global coverage and revisits intervals every three days at the equator, increasing 

in frequency with increasing latitude. HLS data consists of two products, S30 (30m spatial 

resolution) derived from Sentinel-2 imagery and L30 (30m spatial resolution) derived from 
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Landsat 8-9/OLI, acquired since April 2013 (Landsat-8), November 2015 (Sentinal-2A), July 

2017 (Sentinel-2B) and October 2021 (Landsat-9). In this study, I utilized L30 and S30 products 

from June 1st to September 30th from 2015 to 2023 inclusive.  

3.3.2 Aerosol Optical Depth 

The black carbon and mineral dust used in this chapter originates from NASA’s Global 

Modeling and Assimilation Office (GMAO) Modern-Era Retrospective analysis for Research 

and Applications, Version 2 – MERRA-2 – reanalysis data (Gelaro et al., 2017). MERRA-2 is a 

reanalysis dataset that assimilates aerosol optical depth (AOD) from ground- and space-borne 

remote sensing platforms and meteorological observations from radiosondes and aircraft 

(Randles et al., 2017). The model is based on the Goddard Earth Observing System Model 

Version 5 (GEOS-5) and includes bias-corrected AOD datasets of Moderate Resolution Imaging 

Spectrometer (MODIS), Advanced Very High-Resolution Radiometer (AVHRR) instrument, 

AOD from Multi-Imaging Spectroradiometer (MSR) and direct measurements of the ground-

based Aerosol Robotic Network (AERONET). 

MERRA-2 models the spatial distribution of black carbon and mineral dust concentration 

since 1980 at a spatial resolution of 0.5º×0.625º and time scales of 1-hourly, 3-hourly and 

monthly. The data is available online through NASA’s Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC). I acquired all hourly black carbon and mineral dust grid 

cells that covered the glaciated regions from 2015 to 2023. Based on the hourly dataset, I 

obtained monthly mean and max from June 1st to September 30th of each year.  
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3.3.3 ERA5-Land – Climatic parameters 

Weather and long-term monitoring stations are sporadic in mountainous landscapes and at 

high elevations where glaciers exist in Western Canada, preventing the use of climatic variables 

collected at discrete locations. Instead, I used the global climate reanalysis dataset of ERA5 Land 

(Muñoz-Sabater et al., 2021) to obtain climatic parameters over the study area from 2015 to 

2023. I used the 2 m air temperature, snow density, snowfall, snowmelt, temperature of snow 

layer, and surface net solar radiation from ERA-5 Land hourly data produced at 9 km resolution 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview) 

resampled to a monthly average and monthly maximum. Previous studies suggest that climatic 

parameters and snow’s physical conditions, such as snowmelt, snowfall and surface solar 

radiation and liquid water, impact snow algae abundance (Ganey et al., 2017; Onuma et al., 

2016, 2022). Snow algae first appear on the snow surface when temperatures are above freezing 

(≥ 0 ºC) (Jones et al., 2001). The ERA5 Lands grids that covered the tile areas as per the HLS 

images from my glaciated region were aggregated into averages for each tile of the nine glacier 

regions.  

3.4 Data Acquisition and Methods 

In this study, I developed a framework to assess the interaction between red snow algae 

and black carbon. This framework consists of developing a dataset of red snow algae occurrence 

over the study area, referred to as the algae ratio, along with the predictor variables. Once the 

dataset was established, I assessed and preprocessed the data (section 3.3.4), then hypertuned and 

trained the machine learning models consistent with top machine learning practices (section 

3.3.6). Next, I evaluated the model outputs and finally identified the key variables controlling the 

prediction of red snow algae (section 3.3.7). I explained the steps involved in acquiring and 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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preparing the red snow algae occurrence dataset in sections 3.3.1 to 3.3.3. The flow chart (Fig. 3-

2) illustrates the process utilized to generate the red snow algae ratio dataset.  

 

Figure 3-2: Flow chart of the workflow used to acquire the algae ratio from the HLS image collection. 

The section mentioned in the workflow corresponds to the next three sections.  

 

3.4.1 Image acquisition 

I used the HLS surface reflectance data to create eight melt-season (June- September) 

time series of algae blooms over the glaciated regions of British Columbia and Alberta from 

2015 to 2023. I obtained all available HLS images filtered at 70% cloud coverage over the 

glaciated regions from June 1st to September 30th, which I assume to be the snow algae 

blooming season based on observations of blooms in Western North America (Engstrom & 

Quarmby, 2024). I used a high cloud cover filter in this first step to include as many images as 

possible that covered the glaciated regions. I processed entire HLS scenes, which can contain 
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less than 10% coverage of glaciers, and therefore, keeping a high cloud filter allowed me to 

include more images that may contain partial cloud coverage over glaciated areas, which 

otherwise would not have been included. From the HLS images collection, I loaded S30 B2, B3, 

B4 and B11 bands and L30 B2, B3, B4 and B5 bands in memory corresponding to the blue, 

green, red and SWIR bands. I used the glacier polygons from the BC Glacier Inventory 2021 

(available here: https://catalogue.data.gov.bc.ca/dataset/glaciers) and Randolph Glacier Inventory 

7.0 (RGI Consortium, 2023) Western Canada inventory (available here: 

https://nsidc.org/data/nsidc-0770/versions/7) to constrain the workflow to glacier polygons of 

British Columbia and Alberta only. The HLS bands were clipped to the glacier polygons, 

excluding all the data outside of the polygons. I then scaled the bands to a 0.0001 factor to bring 

the band values to a 0 to 1 scale as the HLS band data is provided in a 0 to 10000 scale.  

3.4.2 Mask and threshold 

Once the bands were loaded in memory, I applied a series of masks and thresholds to 

clean and prepare the data for the algae time series. I masked pixels with B3 < 0.5 to exclude 

bare ice. I used the green band to differentiate snow from ice rather than the Normalized 

Difference Snow Index (NDSI), as the NDSI overestimated snow coverage by including bare-ice 

pixels (A. Bevington, personal conversation). Since the images were already clipped to the 

glacier polygon, the need to apply an index to eliminate non-snow and ice surfaces was not 

necessary. I then applied the Green Blue Normalized Difference index (GBND) > 0.05 to mask 

rock fall and mineral debris on snow. The GBND (
𝐵3−𝐵2

𝐵3+𝐵2
) is a newly developed index by Di 

Mauro et al., (2024). The index is useful to differentiate mineral dust from algae blooms, as at 

low cell concentrations, the RGND index used to map snow algae can confound mineral dust to 

algal bloom (T. Painter et al., 2001).  

https://catalogue.data.gov.bc.ca/dataset/glaciers
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3.4.3 Snow Algae Index 

Finally, using the clean glacier image, I calculated the snow algae index for each pixel. I 

used the Red Green Normalized Difference (RGND), as explained in section 1.4, as it considers 

varying light intensity between the different images rather than the ratio between the red and 

green bands, as proposed by Takeuchi et al. (2006). RGND values above 0.02 were assigned as 

algal snow, and values below as algal-free snow. I chose to set a threshold of 0.02 as per my 

observations from hyperspectral data for Place Glacier. The snow samples with RGND values 

below 0.02 either had a very low concentration of cells or no cells. From the RGND pixel values, 

I quantify the occurrence of the algae blooms using the ratio of algal snow pixels over the total 

cloud-free pixels for a given glacier. Before calculating the ratio, I performed a second cloud 

mask utilizing the SWIR band, as clouds, compared to snow and ice surfaces, have high 

reflectance values in the SWIR band (A. Bevington, personal conversation). I applied a threshold 

of 0.05 on the SWIR band to mask clouds. I kept images with cloud coverage below 20% only 

for the analysis. The pixel ratio was determined for each tile based on the naming convention 

from the HLS image collection.  

3.4.4 Data aggregation 

The data used in this study comes from three spatially gridded products, the HLS, MERRA-2 

and ERA5-Land, which all have different resolutions. To account for the difference in grid size, I 

spatially aggregated the data based on the HLS tile naming convention, where one tile is 

approximate 109 Km by 109 Km. Each glacier region contains from 6 (St.-Elias) to 18 tiles 

(Southern Coast Mountains), and on average, 9 tiles depending on the size of the region 

(Appendix C, Table C1). I averaged the ERA5-Land and MERRA-2 values that covered each tile 

when multiple grids covered the area of the HLS tile. Due to the MERRA-2 large grid size, 
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multiple HLS tiles were assigned to be the same value. Likewise, an HLS tile may be present in 

multiple regions, depending on where the boundary of the region versus the tile fell. In that case, 

the algae index contains a different value, but the ERA-5 Land and MERRA-2 values are the 

same. To account for the difference in spatial resolution, I extracted monthly values. I created 

two datasets for each HLS tile: the monthly mean and the monthly maximum values.  

3.4.5 Trend analysis 

I used ‘linregress’ from the Scipy stats library in Python to calculate the linear 

relationship between the algae ratio (dependent variable Y) and black carbon flux (independent 

variable X) for each mountain region. I calculated the Pearson correlation coefficients to assess 

the variation in the linear relationship amongst the different regions of the study area. I 

performed the linear regression calculation on the monthly max and monthly mean values. A 

correlation score of > 0.5 indicates a moderately positive linear relationship, and < 0.3 indicates 

a weak relationship. Furthermore, I obtained the ρ-value using a <0.05 confidence level for each 

correlation to determine the significance of the trend.  

Additionally, I obtained the correlation matrices of the monthly mean and max of the nine 

predictors and one target variable to be used in the models. The correlation matrices provided 

insight into the data structure and collinearity of the predictor variables and the algae ratio. I 

utilized correlation matrices to identify multicollinearity within the predictor variables and guide 

which of the nine predictors provided redundancy in the model. 

3.4.6 Data Preprocessing  

Before performing the models, I preprocessed the data to address inconsistency and 

missing values in the datasets. The first preprocessing step involved cleaning the missing data 
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(NaNs) associated with the algae ratio. The data conversion to obtain the algae index from the 

HLS bands created NaNs values when the band values were infinite, or both the red and green 

band values were equal to zero. Additionally, the algae ratio calculation introduced NaNs if the 

cloud coverage over the glacier was above 20% (step 3.4.3). In that case the values were dropped 

due to the heterogenous distribution of algae bloom, making it difficult to use interpolation to 

infill values where clouds masked most of the glacier. The regions near the coast contained the 

most NaN values due to increased cloud coverage. Next, upon assessing the variable’s 

distribution, I applied the log-scaling method to normalize variables with a skewed distribution. 

The algae ratio, the black carbon flux and snowmelt were transformed to the logarithmic scale. 

Finally, I conducted data normalization for the dependent and independent variables. Data 

normalization is a technique that transforms values on a similar scale, improving the model’s 

performance and training stability. I used the min-max normalization method on all of the 

independent variables as follows: 

𝑥′ =  
𝑥−min (𝑥)

max(𝑥)−min (𝑥)
                            (2.1) 

 This method is preferred over the z-score for data that does not follow a Gaussian or normal 

distribution. The data was then ready for the machine learning models.  

3.4.7 Models 

To assess how red snow occurrence responds to every variable, I applied a Random 

Forest and XGBoost model.The predictor variables are black carbon flux, dust flux, longitude, 

latitude, surface air temperature, surface net solar radiation, snowmelt, temperature of the snow 

layer and snowfall. I then used permutation feature importance and Shapley Additive 

exPlanations (SHAP) to explain the output of the models and assess the relationship between 
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each variable and red snow algae. I applied the model to the entire datasets, years separately and 

using the previous year data for the black carbon to assess lag effect.   

Random Forest Regressor 

A Random Forest Regressor is an ensemble-based algorithm that combines the 

performance of multiple decision trees to predict the outcome value (Breiman, 2001). Random 

Forest Regressor is a non-parametric model, meaning it can deal with data that do not follow a 

normal distribution and can detect higher-order relationships between the predictors and the 

target data. The algorithm splits the data into multiple subsets of training data using the bootstrap 

aggregating or bagging technique, in which multiple subsets of the original training data are 

created. Decision trees have three main parts: root, internal and leaf nodes. The algorithm starts 

at the root node (the training dataset), followed by the internal node, where decision-making 

occurs. The leaf node is at the end and holds the final decision. At each node, a subset of the 

dataset is drawn at random. When the decision tree is finalized, a simple regression is performed 

on each leaf node to obtain the predicted dependent value. The Random Forest algorithm uses 

the bagging approach to aggregate multiple decision trees, in which each tree runs in parallel, 

meaning there are no interactions between individual trees. I utilized the random forest regressor 

from the Scikit-Learn Python library (Pedregosa et al., 2011) to determine the influence of the 

environmental and climatic variables on the monthly ratio of red snow algae from 2015 to 2023. 

I tuned the hyperparameters with the GridSearchCV from scikit-learn (Table 3.2). GridSearchCV 

uses all specified hyperparameter combinations to calculate and maximize the model 

performance.  
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Table 3-2: Parameters description and best value used for the Random Forest Regressor models 

 

Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a powerful machine learning algorithm based 

on decision trees introduced by Chen & Guestrin (2016). It is similar to the Random Forest 

model as it is based on decision trees, although the XGBoost algorithm learns by boosting, 

whereas the Random Forest learns by bagging. Boosting is an ensemble learning technique that 

combines multiple weak learners in sequence, where each subsequent model tries to correct the 

errors of its predecessor to improve the overall prediction accuracy. XGBoost utilizes the 

gradient boosting ensemble technique (Friedman, 2001) in which each new model reduces the 

residual error by optimizing a loss function using gradient descent, learning incrementally from 

previous iterations. This technique results in a model with low variance and low bias. The 

gradient boosting algorithm generated decision trees sequentially, learning from the last model 

until no more improvements occur or a threshold is reached. The algorithm utilizes a learning 

rate to scale the contribution of each tree. The learning rate leads to each tree having a more 

minor impact, increasing the total number of trees to reach the same level of accuracy. Using 

empirical evidence, Friedman (2002) showed that using multiple trees that point in the right 

Parameter Description Monthly Mean Monthly Max 

n_estimators The number of decision trees in the forest 100 2500 

max_depth The maximum depth of the tree 20 50 

min_samples_split 

The minimum number of samples needed to split an 

internal node. 2 3 

min_samples_leaf 

The minimum number of samples needed to create 

new leaves. 1 1 

max_feature 

The number of features to consider when seeking the 

best split. sqrt' sqrt' 

bootstrap 

Define if bootstrap samples are used when creating 

the decision trees FALSE FALSE 



57 

 

direction yields better prediction and lower variance than using a few decision trees with low 

bias and high variance. XGBoost builds on the gradient boosting model, improving its 

performance and speed. To improve computational efficiency, XGBoost enables parallel 

processing. The algorithm utilizes regularization techniques to improve the overall performance, 

constraining the model’s complexity by penalizing overfitted models. Common regularization 

techniques include the Least Absolute Shrinkage and Selection Operator (Lasso/L1) and the 

Ridge (L2). 

 XGboost also uses a more sophisticated pruning strategy based on a maximum depth of 

tree and minimum loss reduction (gamma). The minimum loss reduction calculates the gain at 

each split as follows: 

𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+ 𝜆
+  

𝐺𝑅
2

𝐻𝑅+ 𝜆
−  

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+ 𝜆
] −  𝛾                                 (2.2) 

Where G and H are the gradients and second-order gradients, L and R define the left and right 

child nodes, λ is the regularization term, and 𝛾 is the minimum loss reduction. If the gain 

(reduction in the loss) is less than gamma, then the split is pruned (discarded). Using this 

method, XGboost prunes the trees while in the building process rather than after the trees are 

fully grown. The final prediction from the algorithm is a weighted sum of all the weak predictive 

models.  

I implemented XGBoost using the xgboost library in Python (Chen & Guestrin, 2016) 

and used GridSearchVC from Skikit-learn to tune the parameters described above. The 

parameters used in this study are outlined in Table 3.3. Once the model was tuned and trained, I 

evaluated the feature importance and SHAP values (Lundberg & Lee, 2017), as explained in 
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section 3.4.3, to gain insight into which input variables yield the best estimate of the predicted 

values. 

 

Table 3-3: Parameters description and best value used for the XGBoost models 

Parameter Description 

Monthly 

Mean Monthly Max 

max_depth The maximum depth of the tree 9 8 

min_child_weight 

The minimum weight needed to create a new node in the 

decision tree. A large min_child_weigth leads to a more 

conservation algorithm. 1 5 

gamma 

The minimum loss reduction required for a node to make 

a split. 0 0 

subsample 

Specifies the ratio of observation to subsample for each 

iteration. 0.6 0.6 

colsample_bytree The ratio of variables to be used. 0.8 0.8 

reg_alpha 

L1 regularization term on weights. Can reduce the 

number of features to create a more interpretable model. 0.01 0.1 

learning_rate 

Specifies the step size used to scale the contribution of 

each new tree. A small learning rate reduces the impact 

of each tree. 0.01 0.01 

n_estimators The number of decision trees in the forest 1000 1000 

 

I ran the Random Forest and XGBoost models on the monthly mean and monthly max 

datasets. To assess whether years of high forest fire activity influenced the models’ performance, 

I ran the models on the monthly mean datasets for each year. Due to a lack of data from the 

monthly mean dataset in 2016, I ran 2016 with the monthly max dataset. Lastly, I applied the 

model to the monthly mean dataset, using the black carbon flux from the previous year, such as 

the 2016 dataset used the 2015 black carbon flux, to evaluate the lag-year effect from the black 

carbon. All the models’ variable importance was assessed with the permutation feature 

importance and the Shapley Additive Explanation as described below. 
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3.4.8 Evaluating Variables Importance 

Once the models were tuned and trained, I evaluated the feature importance of each 

variable using the permutation feature importance and SHapley Additive explanation (SHAP) 

values (Lundberg & Lee, 2017) to gain insight into which input variables yield the best estimate 

of the predicted values.  

Permutation Feature Importance 

The permutation feature importance uses a model inspection technique to measure how 

much each feature contributes to the model’s statistical score. The model inspection is done by 

randomly shuffling the values of a feature and measuring how much it decreases the resulting 

model’s score. The advantage of the permutation feature importance technique is that it is model-

agnostic and is particularly helpful when using non-linear predictors (Breiman, 2001). The one 

downside of the permutation technique is when two features are strongly correlated. If one of the 

correlated features is permuted, the model can still access the latter from its correlated feature, 

resulting in a lower reported importance value for the two features than it might be. One way to 

counter this issue is to cluster highly correlated features and retain only one feature from the 

cluster (Scikit Learn, 2024). The permutation feature importance provides insight into which 

features have the most impact on the model’s score. 

Shapeley Additive Explanation 

The SHAP (Shapley Additive exPlanation) is a method introduced by Lundberg and Lee 

(2017) to interpret predictions from complex models, such as ensemble models like the one used 

in this study. SHAP values are based on cooperative game theory in that they measure a player's 

individual contribution (or variable) to the model's output for each set of observations. The 
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SHAP values are computed by evaluating the impact on the model’s prediction when including 

or excluding each feature across all possible variable combinations. The larger the SHAP value, 

the higher the contribution of a variable to the model’s outcome. The SHAP technique indicates 

whether a predictor has a positive, negative or neutral relationship with the target value, as 

visualized through the SHAP beeswarm plots. 

3.5  Results 

3.5.1 Correlation 

Region Correlation 

The correlation between black carbon and red snow algae occurrence is generally weak to 

moderate, with interior and southern regions exhibiting stronger relationships than coastal and 

northern regions. Overall, the correlation coefficient between black carbon and snow algae 

indicates weak [0.1 to 0.3] to moderate [0.3 to 0.5] positive linear relationships, except for the St. 

Elias subregion, which indicates a weak negative linear relationship (Fig. 3-3). The Central 

Rockies subregion has the strongest relationship with R scores of 0.55 and 0.47 for the monthly 

mean and monthly max values, followed by the Interior South with R scores of 0.37 and 0.43, 

respectively. The correlation coefficient is generally higher for the interior regions than the 

coastal regions, and stronger for the southern regions than the northern regions. The Northern 

Coast Mountains, Northern Interior and St. Elias subregion depict the weakest relationship with 

R-score varying from -0.12 to 0.17. 
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Variables Covariance  

The correlation between red snow algae ratio and environmental variables varies in 

strength and direction, with temperature, black carbon flux, and solar radiation showing 

moderate positive relationships. The monthly mean temperature at 2 m (t2m), black carbon flux, 

mean longitude, and monthly mean surface solar radiation (ssr) have the highest positive 

correlation with the monthly mean algae ratio with R-scores of 0.361, 0.348, 0.336 and 0.305, 

respectively, indicating a moderate positive correlation (Fig. 3-4). Both the monthly mean 

latitude and dust flux have a weak negative correlation with the monthly mean algae ratio with r-

score values of -0.214 and -0.131, respectively. Similarly, the max longitudes and monthly max 

temperature at 2 m (t2m), black carbon flux and surface solar radiation (ssr) have the strongest 

correlation coefficient with the monthly-max algae ratio, albeit at lower scores than the monthly 

A B 

Figure 3-3: Pearson correlation coefficient between black carbon flux and red snow algae ratio for the nine subregions A. 

Monthly mean correlation and B. Monthly max correlation 
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mean values. The r-scores are respectively 0.281, 0.259, 0.188 and 0.138. Likewise, the max 

latitude [-0.172] and monthly max dust flux [-0.207] show a weak negative correlation with the 

monthly max algae ratio. I calculate the p-value to assess the significance of the correlation (ρ ≤ 

0.05). The mean dataset has 2 non-significant correlations (sf – snow algae and rsn – tsn), and 

the max dataset has four non-significant correlations (tp – lat, tp – algae ratio, tp, rsn and ssr – 

dust flux) (Appendix E, Table E1 & E2). Based on the correlation matrix, I selected which 

predictors to be used in the model. 

 

 

Figure 3-4: Correlation matrices of the A. Monthly mean and B. Monthly max predictors and target 

(algae ratio) values. 
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Correlation among the predictor variables ranges from weak to high. Predictors with high 

correlation coefficients indicate collinearity and can lead to redundancy in the random forest and 

XGboost model despite their robustness against multicollinearity. The surface solar radiation 

(ssr) and temperature at 2 m (t2m) have a very high correlation for both the monthly mean 

(0.866) and monthly max (0.851), as expected, indicating that areas with high surface solar 

radiation tend to have high temperatures. Snow density (rsn) and snowmelt (smlt) show high 

correlations with each other for the monthly mean (0.752) and monthly max (0.790), suggesting 

that they capture related snow dynamic processes. Dense snow has reduced air content and 

increased liquid water content, bringing it closer to the “ripe” state and making it more 

susceptible to melting, as it requires less energy for melting to occur. Based on manual iterations 

of the model with different combinations of the highly correlated pairs and their resulting 

importance, I removed snow density (rsn) from the predictor list as it decreased the models’ 

performance. Removing surface solar radiation and/or temperature at 2m did not improve the 

model's robustness; therefore, both predictors were kept in the final models. The latitudes and 

longitudes had a strong negative correlation, likely because they were geographic coordinates, 

and a shift in one typically correlated to a specific shift in the other. The final retained variables 

for the model based on the correlation matrices were longitude, latitude, black carbon flux, dust 

flux, surface air temperature, net surface solar radiation, snowmelt, the temperature of the snow 

layer and snowfall. 

3.5.2 The relation between Algae Ratio and the Environmental, Climatic and Geographic 

Variables 

I calculated the feature importance from the Random Forest and XGBoost model using 

SHAP feature importance techniques and the permutation feature (Fig. 3-5 & 3-6). The different 
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models reveal similar patterns of feature importance. The most important variables for all model 

iterations are the longitude, then black carbon flux, followed by the two-metre air temperature, 

and the least important variable is snowfall.  

SHAP features importance 

The SHAP values range approximately from -0.2 to 0.3, implying that the variables 

moderately impact the final predictions. Furthermore, the relatively small SHAP values indicate 

that the prediction of the model outcome, the algae ratio, is not dominated by a single variable 

but is rather influenced by all variables, with increased contribution from higher-rated variables. 

The beeswarm plots (Fig. 3-5) order the variables by their importance, suggesting that 

longitudes, black carbon flux and 2-metre air temperatures have the most impact on predicting 

the algae ratio, as they are the top three variables in all four model iterations. The x-axis of the 

beeswarm plots indicates the impact of a variable on the model output, and the colour map is 

associated with the value of the variable, where blue indicates a high value and brown is a low 

value. Dust flux, latitude and snowmelt typically follow in the middle of the order, and surface 

solar radiation, the temperature of the snow layer and snowfall are generally the least impactful 

variables in the models, sitting at the bottom of the list.   

When assessing the relationship between the predictors and target variable, the SHAP 

values for the Random Forest and XGBoost, using the monthly mean datasets, show that four 

predictors depict a clear linear relationship between the predictor values and their impact on the 

algae ratio (Fig. 3.5). Those are the longitude, 2 metres air temperature, black carbon flux, and 

the snowmelt. The other predictors do not have a clear impact on the model outcome. High air 

temperature values and black carbon flux are linked to a positive impact on the algae ratio value 



65 

 

and vice versa. Low longitude values indicate an eastward location or a large distance from the 

coast and are associated with a high predicted algae ratio. Similarly, low surface melt values 

result in a high model output. The model results from the monthly max datasets depict a slightly 

different outcome. While the longitudes and 2-metre air temperature still show a relatively clear 

linear relationship to the algae ratio, the monthly maximum black carbon flux does not indicate a 

clear linear relationship with the predicted algae ratio. The latitude, on the other end, has a 

positive linear impact on the algae ratio when using the maximum values. 



 

 

 

Figure 3-5: Beeswarm plots for the SHAP variable importance for the algae predictors with the Random Forest and XGBoost models. 

 



 

 

 

Permutation feature importance 

The permutation feature importance calculates on the model predictors indicate their 

contribution to the model outcome (Fig. 3-6). According to the permutation technique, the 

longitude is the strongest predictor of red snow algae occurrence. The R2 for the Random Forest 

and XGBoost models will decrease by respectively 45.6% and 37.0% for the monthly mean 

values and 38.9% and 41.3% for the monthly max values when the longitude is not included in 

the model. The second most important predictor is the black carbon flux. The Random Forest 

scores will decrease by 38.4% and 35.2% for the monthly mean and monthly max and the 

XGBoost, respectively, by 31.1% and 23.6%. The 2-metre air temperature has the third highest 

permutation scores for the two models, contributing on average to 23.4% of the model outcome 

values. The other predictors, the dust flux, surface solar radiation, the latitudes, the snow and the 

temperature of the snow layer, contribute to less than 20% of the model and are not consistently 

rated among the Random Forest and XGBoost iterations. The snowfall has the least impact on 

the model, with a permutation score of 4.9% and 8.9% for the Random Forest monthly mean and 

monthly max and a score of 2.4 and 5.7% for the XGBoost monthly mean and monthly max.  
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Figure 3-6: Permutation feature importance scores for the Random Forest and XGBoost for the A. 

Monthly mean dataset and B. Monthly max dataset 
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3.5.3 Main Model Performances Evaluation 

The Random Forest and XGBoost performed moderately well, with R-score values 

ranging from 0.546±0.028 to 0.613±0.027 (Fig. 3-7). The Random Forest models have a mean 

R-scores of 0.600, RMSE of 0.0453 and MAE of 0.0795 for the monthly mean and an R-scores 

of 0.533, RMSE of 0.0861 and MAE of 0.131 for the monthly max. For the XGBoost model, the 

average R2 are 0.604 and 0.564, the RMSE are 0.0455 and 0.0827, and the MAE are 0.0793 and 

0.127 for the monthly mean and max. The Random Forest regressor and the XGBoost models 

performed similarly, and they both performed slightly better when executed on the monthly mean 

versus the monthly max values. All models have a slightly higher MAE than RMSE, indicating 

that most of the model’s errors are small, with a few large errors.  
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A 

B 

C 

Figure 3-7:  Boxplot representing the A. Coefficient of determination (R2) B. Root Mean 

Squared Error (RMSE), and C.  Mean Absolute Error (MAE) for each of the models using the 

mean and max dataset. The scores were calculated for 50 training and testing dataset 

iterations. 
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Comparing the predicted value to the test datasets provide information on the fitting of 

the models. The plots for the Random Forest and XGBoost for the monthly mean dataset (Fig. 3-

8 A & C) depict a similar trend in that the main cluster of points follows the x = y line 

moderately well. The monthly mean models show outliers on both sides of the x = y line, with a 

minor trend towards underfitting the actual algae ratio for values above 0.2. The monthly max 

plots (Fig. 3-8 B & D) show a slightly worse fit than the monthly mean plot, with larger residual 

errors as implied by the larger RMSE. The cluster of points for the monthly max plots trend 

lightly steeper than the x = y line, suggesting a light overfitting model. All four models indicate 

that the bulk of the monthly algae ratio values are within 0.0 to 0.1 for the monthly mean and 0.0 

to 0.2 for the monthly max. 
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Figure 3-8: Plots of actual vs predicted algae ratio value for A. Random Forest Monthly Mean, B. 

Random Forest Monthly Max, C. XGBoost Monthly Mean and D. XGBoost Monthly Max. The dash line 

is a 1:1 line and the red lines are linear regression model. 
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3.5.4 Annual Models Performance and Feature Importance 

The annual models’ R2 score range from 0.043±0.239 to 0.703±0.094 for the random 

forest and 0.064±0.160 to 0.706±0.118 for the XGBoost (Fig. 3-9). The random forest performed 

slightly better than the XGBoost on the annual datasets. The 2019 model yield the lowest 

performance in the models and 2018 the best performance. The 2015 XGBoost model has the 

largest variation in model performance, with a standard deviation of 0.63. In general, the annual 

model's R2 score is lower than the one obtained for the models run on the entire dataset, and 

there are no differences in the model performance between the low fire seasons (2016, 2019, 

2020 and 2022) and high fire seasons (2015, 2017, 2018, 2021 and 2023).  

 

 

 

Figure 3-9: Random Forest (teal) and XGBoost (brown) R2 Score when applied to the model run 

on a singular year. All models were run on the mean dataset except for 2016, which was run on 

the max dataset. 
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Regarding the variable importance, the permutation feature value ranges from 0.007 to 0.370 for 

the random forest and 0.011 to 0.487 for the XGBoost. The SHAP values range from 0.0009 to 

0.0424 and 0.0008 to 0.0389 for the random forest and XGBoost, respectively. When averaged 

across the annual models, the dust flux is the most important variable, followed by the longitude 

(Fig. 3-10). While the dust flux is ranked first in the XGBoost, it has the largest value range 

among the nine predictor variables. Although the black carbon flux and 2-metre air temperature 

ranked in the top three variables in the overall model, they have a much lower impact on the 

model output when assessed with the annual model. The permutation feature importance value is 

less than 0.1 for the surface air temperature and black carbon and less than 0.01 for the SHAP 

values. The variable importance amongst the nine annual models is inconsistent, as shown in the 

permutation feature and SHAP plots (Appendix F & G, Fig F 1-18 & Fig G 1-18). 
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Figure 3-10: Feature importance for the model run annually. A. Random Forest Permutation Values, B. 

XGBoost Permutaiton values, C. Random Forest Shap values and D. XGBoost Shap values. 
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3.5.5 Lag-year model performance and feature importance 

The model R2-score performed with the lag-year black carbon flux dataset is 0.606 ± 

0.043 for the random forest and  0.603 ± 0.049 for the XGBoost. The RMSE and MAE are 

respectively 0.069 ±  0.006 and 0.039 ±  0.003 for the random forest and 0.070 ± 0.006 and 

0.049 ±  0.003 for the XGBoost. The random forest XGBoost performed very similarly on the 

lag-year dataset. According to the permutation feature importance and SHAP value (Fig. 3-11 & 

3-12), longitude and dust flux are the most important variables when using the lag-year dataset. 

The SHAP beeswarm plots (Fig. 3-12) indicate that low longitude value, thus eastward location, 

and low dust flux value positively influence the red snow algae. The temperature of the snow 

layer (tsn) is the third most important variable according to the permutation feature importance 

and the SHAP value for the XGBoost. It ranked fourth for the random forest SHAP beeswarm 

plot (Fig. 3-12.A.). The next most important variable is the surface air temperature (t2m). The 

black carbon flux has less impact on the red snow algae ratio for the model ran on the lag year 

dataset. The snowfall and latitude remain among the weakest variables for the lag-year models. 
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Figure 3-11: Permutation feature importance for the lag-year model for A. the random 

forest and B. the XGBoost. 
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Figure 3-12: Beeswarm plots of SHAP values performed on the lag-year dataset for the A. 

random forest and B. XGBoost model. 
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3.6 Discussion 

3.6.1 Variables Influence from the Main Models 

The models’ variable importance provides valuable knowledge on the influence of each 

variable on the occurrence of red snow algae. The combination and comparison of the two 

machine learning models consolidate the results. The section below explains the variables’ 

influence and implication with previous studies.  

Influence of Longitude  

The models’ feature importance indicates that the longitude is the most important 

predictor explaining the monthly red snow algae ratio, with low longitude values (eastern 

location) positively related to the bloom occurrence. In this study area, eastern longitudes 

indicate glaciers located further away from the coast, such as the Interior and Canadian Rocky 

Mountains. Previous studies observed a similar pattern in the distribution of red snow algae. 

Takeuchi et al. (2006) found that red snow algae were more predominant on the inland side of 

the Harding Icefield, Alaska than on the coastal side. They hypothesized that this spatial pattern 

was due to geographic effect on snow chemistry, such as higher sea salt content inhibiting snow 

algae propagation on the coastal side of the range and/or greater nutrient input from terrestrial 

aerosols on the continental side than the coastal side promoting algae growth. Similarly, Enstrom 

and Quarmy (2024) found that snow algae bloom preferentially grew on the lee side of the 

southern Coast Mountains. They associated the high concentration of algae blooms on the 

continental side with lower cloud cover and higher summer air temperatures than the coastal side 

of the range.  
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The SHAP value indicates that the red snow algae ratio increases along the eastern 

longitudes, suggesting that continental glaciers support a greater proportion of red snow algae in 

this study. The Interior and Rocky Mountains are the easternmost regions of the study area. Both 

regions depict a continental climate, with warm and dry summers and low cloud coverage. 

Additionally, because westerlies are the prevailing wind direction in Western Canada, the Interior 

and Rocky Mountains may receive greater amounts of terrestrial aerosols due to their inland and 

downwind location. The permutation feature importance indicates that the models’ ability to 

predict red snow algae occurrence can decrease by up to 40% when longitude is removed as a 

predictor. 

Influence of black carbon flux 

The second most important variable in this study explaining red snow algae occurrence 

on glaciers is the black carbon flux, with increased black carbon flux contributing positively to 

the red snow algae ratio. Interestingly, the regions located directly downwind from the Interior 

Plateau, such as the southern Interior, central Rocky and southern Rocky Mountain, where most 

of the large forest fires occurred between 2015 and 2023, as depicted in Fig. 3-13, have the 

highest correlation coefficient between the red snow algae and black carbon flux. Due to their 

downwind location from frequent large forest fires, those three regions likely received high 

concentrations of black carbon during years of high fire activity, as observed by other studies 

(e.g. Marshall & Miller, 2020; Williamson & Menounos, 2021). Those three regions are also the 

most eastward locations from the study area, suggesting that the black carbon flux and longitude 

variables are co-related. In contrast, the eastern location may have the greatest influence on snow 

algae occurrence because they are the most impacted by black carbon.    
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It is not currently known if black carbon directly induces red algae growth. The results 

from this study indicate a positive relationship between the two. An explanation of the positive 

relationship between black carbon flux and the ratio of red snow algae is that the decrease in 

albedo from the black carbon increases liquid water content throughout the snowpack, which was 

found to be a limiting growth factor for red snow algae (Ganey et al., 2017). An alternative 

explanation is that black carbon provides a source of nutrients for the red snow algae, thus 

promoting growth.  

 

Figure 3-13: Burned area from 2015 to 2023 from MODIS Burned Area Monthly Global 500m. 
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Black carbon flux had a clear positive relationship with the red snow algae occurrence for 

the model performed on the monthly mean dataset only. The monthly max plots indicate that the 

lowest black carbon flux tends to have a negative impact on the red snow algae; however, the 

relationship for the rest of the black carbon flux is unclear. Likewise, the correlation between 

monthly max black carbon flux and red snow algae was generally lower than when calculated on 

the monthly mean dataset. This could be explained by the fact that the maximum value may 

introduce a bias in the dataset by representing a single event of rapid but intense duration 

releasing a high amount of black carbon over a short period into the atmosphere. Such events 

may not lead to significant black carbon deposition over glaciated terrain due to its brief 

duration, explaining the unclear relationship between large black carbon flux and red snow algae 

for the maximum dataset. In comparison, a large monthly mean black carbon flux likely 

represents a consistent input of black carbon in the atmosphere over a month, which is more 

likely to deposit black carbon on glaciers.  

Influence of 2-metre air temperature 

According to the Random Forest and XGBoost models, the 2-metre air temperature is an 

important variable explaining red snow algae occurrence on glaciers. This finding accords with 

previous studies that found red snow algae experience more growth or will expand under warm 

conditions (e.g. Onuma et al., 2022; Healy & Khan, 2023). One of the challenges, however, is 

the covariance between black carbon and surface air temperature, where years of high 

temperatures tend to be years with high forest fire activity. The SHAP beeswarm plots (Fig. 3-5) 

for the four models show that higher temperatures positively impact the red snow algae 

occurrence. This positive relationship can be explained by the fact that red snow algae require 

liquid water to bloom (Labourn Parry et al., 2000). Thus, warmer average air temperatures will 
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likely promote growth via increased meltwater and suitable areas for red snow algae. Cold 

temperatures, on the other side, can prevent snow algae bloom, such as in the St-Elias 

Mountains, where sparse algae blooms were linked to below-freezing average summer 

temperatures (Engstrom & Quarmy, 2024) or at high elevations where snow remains dry during 

the summer. Air temperature is also linked to other factors that may influence the occurrence of 

red snow algae bloom, such as the duration of the growth period and the precipitation type. 

Onuma et al. (2022) found that one of the main factors affecting snow algae growth was 

interruption from new snow covers, which is linked to cold air temperatures. Overall, the result 

suggests that warmer air temperature is positively related to the occurrence of red snow algae   

Influence of dust flux 

Dust flux contributes less than 20% of the model outcome. Its low explanation for the red 

snow algae ratio in the models from this study indicates that atmospheric dust flux is not a good 

predictor for red snow algae occurrence. These findings differ from previous studies that found 

snow algae growth is promoted by mineral dust from the local lithology. For example, in 

Greenland, phosphorous-rich mineral dust promotes ice algae growth (McCutcheon et al., 2021), 

and on stratovolcano in the Pacific Northwest, US, snow algae utilized Fe, Mn and P leached 

from local rocks (Hamilton & Havig, 2017). The dust flux used in the model was obtained from 

MERRA-2, which mainly captures dues aerosol from large barren and arid land regions such as 

the Sahara Desert and the North American desert, where strong winds transport soil particles into 

the atmosphere (Global Modeling and Assimilation Office (GMAO), 2015). Therefore, it is 

possible that global and regional dust flux patterns do not have a significant impact on snow 

algae. However, localized mineral dust, which may not be captured in MERRA-2, still provides 

the nutrients for snow algae. This process, however, was not captured in the model. 
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Predictors with low influence 

The results show that surface net solar radiation, latitude, snowmelt, snow layer 

temperature, and snowfall have the lowest impact on snow algae occurrence with the lowest 

contribution to the model outcome. The model indicates that surface solar net radiation has 

minimal impact on the algae ratio. While red snow algae are photosynthetic microbes, net solar 

radiation does not negatively or positively impact growth in this study. Red snow algae blooms 

occur in Antarctica (e.g. Huovinen et al., 2018), in the Arctic (e.g. Lutz et al., 2017), and in 

alpine areas worldwide (e.g. Engstrom et al., 2020; Yoshimura et al.,1997). Yet, snow algae 

blooms do not differ between areas that receive additional solar radiation during the summer, 

such as the poles and at high elevations, versus lower latitudes and elevation areas where net 

solar radiation is lower. To adapt to the change in solar radiation and other environmental factors, 

studies observed a change in the red snow algae community structure with altitude (Takeuchi, 

2013; Yoshimura et al., 1997) and locations (Engstrom et al., 2020; Lutz et al., 2016) instead.  

Latitude was a variable of low importance overall. The model made no distinction 

between the north and south distribution of snow algae. Red snow algae blooms have been 

observed from the Sierra Nevada, California US (Painter et al., 2001) to the Eastern Alaska 

Mountains. While those two locations extend from 37.55 °N to 64°N along the North American 

Cordillera system, their maximum algae cell concentration in cells per meter square are both in 

the order of 107, supporting that latitude does not impact snow algae bloom. 

The results show that snowmelt has a weak negative relation with red snow algae. In a 

previous study, the duration of snow cover throughout the summer season was noted to impact 

the bloom extent (Engstrom & Quarmby, 2024). Years with summer snowpack that persisted late 

into the season resulted in a large bloom extent. In contrast, in 2021, during the Pacific 
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Northwest heat wave, early snow loss over Western Canada and the Pacific Northwest US was 

linked to a weak snow algae bloom. The snowfall, which was moderately to highly correlated 

with snowmelt, is a variable with a low or no explanation for the red snow algae occurrence in 

the models. In Onuma et al. (2022) snow algae model, snowfall events impacted the timing of 

red snow algae appearance and could temporarily reduce snow algae growth. In this study, 

snowfall is not an important variable for red snow algae. An explanation for the lack of 

importance of snowfall can be related to the differences in the temporal resolution of the 

datasets. Daily snowfall may impact red snow algae growth; however, when averaged over the 

month, the snowfall effect is likely too small to be picked up by the model. The temperature of 

the snow layer is also of low importance for the algae occurrence in the models. Red snow algae 

blooms are restricted to periods when liquid water is available (Laybourn-Parry et al., 2012). 

Liquid water content in the snowpack decreases rapidly when the snow temperature drops below 

0°C (Pomeroy & Brun, 2010). In this study, snow layer temperature was not a good proxy for 

liquid water availability.  

3.6.2 Annual models and black carbon lag year models 

Annual models 

I ran the annual models to assess whether the years of high fire activity yield better 

predictions. The models’ performance did not vary accordingly and explained about 40% of the 

results except for 2018 and 2019. The 2018 model performed relatively well, with an R2 score of 

0.7 and the 2019 performed poorly, with an average R2 of 0.1. The 2019 dataset, compared to the 

other years, has more noise, outliers and extreme values, making it hard for the model to capture 

meaningful relationships and thus create an accurate prediction. This explains why the 2019 

model performed poorly. As for 2018 performance, it may be due to a higher correlation between 
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variables, greater variation in the predictor variables or clean patterns in the 2018 data compared 

to the other datasets. The 2018 season was a high forest fire year in British Columbia, however, it 

is the only year with high forest fire activity with an elevated R2 score. Therefore, it does not 

provide an explanation for high forest fire season leading to better predictions. 

The overall lower performance compared to the main model may be explained by the 

small dataset used to run the annual model. The size of the dataset can also influence the 

variables’ importance. The annual models were run on datasets with approximately 150 data 

points. Such low data points can lead the model to rank irrelevant variables as important because 

those variables are the best at explaining noise in the dataset. Small datasets can also influence 

the ranking of variable importance due to the limited examples of certain relationships between 

the different predictors and the target variable, leading to incorrect attributes of variable 

importance. While most variables varied in importance among the nine annual models, the dust 

flux and longitude consistently ranked as the top two variables with the most influence on the 

algae ratio. The SHAP beeswarm plots (Appendix G, Fig G.1-18) indicate that low dust flux and 

eastward longitude are linked to high algae ratio, agreeing with the findings from the main 

models.  

Lag year model 

I perform the lag year model to assess whether a lag year relationship exists between 

black carbon and algae, in which red snow algae are more predominant in years following high 

forest fire season. The lag year model performed similarly to the main model. However, the 

variable importance differs slightly compared to the main model. In the lag year model, black 

carbon is not among the top predictors, and the dust flux and temperature of the snow layer 

became more important. The black carbon is likely not an important predictor in the lag year 
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model as it refers to the monthly black carbon from the previous year. In the main model, black 

carbon is one of the strongest predictors and is positively related to the red snow algae ratio. 

Thus, using the monthly black carbon from the previous year likely leads to irrelevant patterns or 

correlations with the current red snow algae, explaining why it is not rated as an important 

predictor for that model. The dust flux, then, likely becomes more important to fill the gap 

introduced by the lag year black carbon data points. The lag year model does not provide 

evidence that years following high fire season lead to strong red snow algae bloom. The lag year 

model likely performs similarly to the main model as both random forest and XGBoost rely on 

aggregating multiple weak trees, making those models less sensitive to removing individual 

variables. The model may also find some level of relationship between the lag year black carbon 

and red snow algae, thus resulting in an unchanged performance score.  

3.6.3 Models Performance and Associate Limitations 

The performance of the random forest and XGBoost models was evaluated using 

independent test datasets. The main models performed moderately well, with the best 

performance attained on the monthly mean datasets in both models. This is likely because the 

maximum datasets capture the monthly extreme, which may not provide a good proxy for 

modelling the red snow algae occurrence, as the extremes are not representative of the general 

trend over the month and can bias the model. While both models provide similar performance, 

utilizing multiple machine-learning algorithms improves the robustness of the performance and 

interpretability of the models’ results. While the models did not fully capture all the variables 

that contribute toward the occurrence of red snow algae blooms, they contributed to improving 

our understanding of the relevant drivers to model red snow algae bloom and suggest that black 

carbon may positively influence red snow algae.  
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The annual models’ performed on average moderately weak. Those models were run on a 

much smaller dataset, as explained above; therefore, it is not surprising to observe a lower 

performance. Since small datasets contain fewer data points, the diversity and variability in the 

data are generally lower than for large datasets. Moreover, since random forest and XGBoost rely 

on the data to capture patterns and relationships, the small dataset may not provide enough 

information to the model to result in accurate predictions or trends among the data may be too 

weak for the model to detect. Small datasets can also lead to higher model bias because there is 

less data to approximate the true relationship. This would explain why the main and lag-year 

models performed better, as they were run on much larger datasets. 

The uncertainties and biases associated with the predictor variables and target value 

ultimately affect the models' performance. In terms of target value, although the RGND has been 

widely used in previous studies to map and quantify snow algae (e.g. Ganey et al., 2017; 

Huovinen et al., 2018), it can overestimate the extent of red snow algae bloom. For example, 

Healy & Khan (2023) found that their optimized red/green band index applied to the MicaSense 

bands tends to overestimate the extent of the algae bloom in the late season when debris-covered 

snow is more common. However, they found that the red/green index had the most success at 

mapping snow algae in their study compared to a machine learning method. To minimize the 

uncertainty related to the index, I followed the approach suggested by (Di Mauro et al., 2024) to 

mask rockfall and debris prior to applying the RGND index.  

The use of meteorological reanalysis data such as ERA5-Land can result in bias, 

especially in mountainous locations where ground stations are sporadic. Zhao & He (2022) 

report through correlation and RMSE analysis that while ERA5-Land properly captured the 

temperature trends over the Chinese Qilian Mountains, the value scale is not adequately 
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represented. Similarly, in a study evaluating ERA5-Land reanalysis as an input dataset for 

surface energy balance modelling over mountain glaciers in Western Canada, Draeger et al. 

(2024) found that ERA5-Land simulated the mean melt energy well if the temperature is 

corrected through a lapse rate. While accurate magnitudes in temperature value are needed to 

simulate daily melt energy, the monthly trend likely provides sufficient information for 

modelling the occurrence of red snow algae as it is not based on energy balance calculation. As 

for the snow variables, a study evaluating the snow cover properties of ERA5-Land found that 

the snow cover extent is accurately represented compared to satellite-based datasets (Kouki et 

al., 2023). Due to ERA5-Land being a relatively new product, evaluation of the net surface solar 

radiation, snowmelt, and temperature of the snow layer has yet to be conducted. 

The coarse resolution of the ERA5-Land dataset introduces some limitations as 

meteorological values vary widely spatially and vertically. In terms of snow data in the model, 

snowmelt and snow temperature vary with elevation, which is not captured in the current model. 

The current grid size generally covers the entire glacier surface for the small-scale glaciers, or a 

small aggregate of grid points covers the large icefields. Resolving this lack of resolution in the 

dataset could help increase the accuracy of the model overall. 

Another limitation of the models is related to the MERRA-2 black carbon aerosol 

datasets and the assumption that most black carbon aerosols are emitted by forest fires rather 

than anthropogenic sources. No studies have characterized the provenance of aerosols deposited 

over glacier surfaces in western Canada. A study from the Pacific Northwest, US, however, 

found that radiative forcing from black carbon over snow and ice was generally low except for 

regions that are being impacted by forest fires (Skiles et al., 2018), suggesting that forest fire 

aerosols likely dominate black carbon deposition in mountainous areas in Western Canada. 
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Moreover, previous studies investigating black carbon concentration produced during forest fires 

in 2019 in Indonesia (Julian Sari et al., 2022) and from forest fires in Siberia between 2000 and 

2016 (Sitnov et al., 2020) found a good positive correlation between BC aerosols from MERRA-

2 and forest fire hot spot. 

3.7 Conclusions 

Here, I assessed the interaction between black carbon, red snow algae and multiple other 

environmental, climatic and geographical variables using decision-tree-based random forest 

regressor and XGBoost machine learning models. The two main algorithms performed 

moderately well at predicting the occurrence of red snow algae when compared to the testing 

dataset. The models' performance suggests that the predictor variables explained part of the red 

snow algae distribution but that other variables likely played a role in this complex phenomenon. 

Due to the limited availability of widespread datasets of snow wetness covering all Western 

Canada, the models did not include a predictor for snow liquid water content. Previous studies 

identified snow wetness as a limiting factor controlling snow algae growth and appearance; thus, 

integrating a value to quantify snow-liquid water would likely increase the model accuracy. In 

this study, the data was constrained to the coarse spatial resolution from freely available satellite 

imagery, meteorological reanalysis, and aerosol datasets, as well as the intermittent temporal 

availability of multispectral satellite imagery. Applying the model to a finer spatial and temporal 

resolution would capture subtle localized and seasonal effects that were missed in this model.  

The most important variables that explained red snow algae occurrence in the models are 

longitudes, black carbon and surface air temperatures. The positive relationship between snow 

algae and air temperatures aligns with previous studies that suggest that the red snow algae range 

is likely to expand with warming temperatures. Based on the geographical location of the study 
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area, the easternmost location had the strongest impact on the red snow algae. Those eastern 

regions also have the strongest correlation between snow algae and black carbon, likely due to 

their location downwind from the major forest fires that happened between 2015 and 2023. 

Therefore, those results suggest that black carbon may induce snow algae growth, although 

further studies observing the direct relationship are needed to confirm the interaction. 

This study shows that leveraging machine learning can further our understanding of the 

factors controlling the distribution of red snow algae blooms. It also shows that machine learning 

is a powerful tool for investigating the interactions between glacier-darkening processes such as 

snow algae and black carbon. Understanding the different factors influencing the distribution and 

occurrence of red snow algae bloom enhances our ability to simulate glacier albedo and predict 

glacier melt. 
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4 Chapter 4: Thesis Conclusions 

This thesis investigated the relationship between red snow algae and black carbon via two 

methodologies. First, I described and presented the findings from the field experiment I 

conducted on Place Glacier during the summer of 2023, where I fertilized snow with wood ash 

and compared snow algae growth and snow melt from a control and treated group. Second, I 

applied random forest and XGBoost models using data from the Harmonized Landsat Sentinel 

dataset, Merra-2 aerosol product and ERA5-Land climate reanalysis dataset to assess the 

importance of various variables, including black carbon in modelling red snow algae occurrence. 

Understanding interactions between glacier surface darkening agents such as red snow algae and 

black carbon from forest fires provides insight into glacier albedo processes. Since, surface 

glacier ablation is controlled mainly by surface air temperature and albedo, understanding the 

interaction between surface darkening processes helps to improve our ability to predict glacier 

albedo and surface melt. The significant findings of this study are as follows: 

• The field experiment presents no statistical evidence that wood ash enhances red snow 

algae growth. 

• During the early bloom stage, the instantaneous radiative forcing of red snow algae in the 

southern Coast Mountains of British Columbia I calculated was, on average, 192 ± 12 W 

m-2 with a maximum of 274 ± 16 W m-2. This increase in radiative forcing translates to a 

melt potential of 27.8 mm w.e. d-1. Those results support previous studies that found that 

snowmelt induced by red snow algae is sufficient to increase glacier melt rates. 

• The random forest and XGBoost models suggest that black carbon flux from forest fire 

positively influences red snow algae blooms. The models also imply that the occurrence 
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of red snow algae bloom is a complex phenomenon and that other factors likely influence 

the distribution and occurrence of the blooms.  

•  Red snow algae bloom in British Columbia and Alberta preferentially grows on 

continental glaciers. Those regions are adjacent to the main area affected by large forest 

fires in British Columbia supporting the idea that black carbon may promote red snow 

algae growth. 

A few main limitations inherently constrain the findings from this study. First, the temporal 

resolution of the data from the field experiment and the remote sensing analysis limits the quality 

of the results as the two analyses relied on temporally fixed data points. The field experiment 

relied on three field visits, making a small dataset despite having multiple replicates, limiting the 

statistical power of the analysis and the ability to capture the natural variability in the trends. 

Moreover, with only three field visits, the dataset is more sensitive to human errors and 

incidents. For instance, on the third field visit, the snow had melted in most of the plots, 

significantly reducing the representativeness of the data and complicating trend analysis. To 

mitigate these challenges, using automated instruments such as automated ablation stakes, 

temperature sensors, and time-lapse cameras would help to supplement the in-person data 

collection. On the other end, the remote sensing analysis was limited by the availability of 

satellite imagery. Satellite imagery from the Harmonized Landsat Sentinel dataset is constrained 

by the re-visit time and obstruction from clouds. Consequently, cloud-free images are not 

available at regular time intervals, especially when acquired over a large study area as used in 

this study, making it difficult to create time series. The use of monthly datasets instead of a 

continuous time series limits the ability of the analysis to capture short-term environmental 

variations or trends that could be significant for red snow algae growth. Moreover, identifying 
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precise timing and sequence of ephemeral factors driving algae bloom growth, such as summer 

snowfall, becomes challenging when using monthly data.  

Second, red snow algae are an intricate phenomenon, and while machine learning models 

such as random forest and XGBoost are great tools for capturing complex patterns, the 

performance and accuracy of the models are limited by the data inputs. Utilizing remote sensing 

and reanalysis datasets allowed me to apply the model to a large study area; however, it limited 

the variable inputs to readily available datasets. For example, the black carbon and dust flux 

datasets refer to aerosol rather than deposited aerosols over glaciers, leading to the assumption 

that high concentrations of atmospheric black carbon and dust lead to large deposition rates over 

glaciers. Previous studies found that red snow algae are limited by the availability of liquid water 

(eg. Ganey et al., 2017); however, identifying snow wetness over glaciers is challenging. 

Therefore, the model did not include snow wetness even though it has been found to influence 

snow algae distribution and growth.  

To conclude, here are a few suggestions that can be undertaken from this thesis for future 

research. First, the interaction between black carbon and red snow algae could be further 

analyzed via a nutrient addition incubation experiment as conducted by McCutcheon et al. 

(2021). While snow algae cultivation generally targets one species, such an experiment would 

allow complete control of exterior factors and directly investigate the interaction between the 

algae and the black carbon. This experiment, however, would only assess whether the algae 

utilized the black carbon as a source of nutrients and would not evaluate if the increased liquid 

water from the black carbon radiative forcing led to increased algae growth. A second 

recommendation is to increase the temporal and spatial resolution of the dataset used in the 

machine learning models by applying the model to multiple small regions, or target regions 
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adjacent to frequent forest fire activity. By doing so, the model could capture fine-scale 

variations in environmental factors such as snowpack characteristics, microclimate or terrain 

conditions that may influence snow algae blooms. Increasing the temporal resolution would help 

to capture short-term changes in the weather and extremes such as snowfall and heatwave events 

or rapidly changing snowpack conditions. Finally, glacier melt models should quantify albedo 

change with respect to biological LAPs and inorganic LAPs. As Chapter two findings indicate, 

red snow algae snowmelt contribution is substantial and needs to be considered in the glacier 

melt rates. Considerations should also be taken for the interactions between red snow algae and 

inorganic LAPs.
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6 Appendices 

6.1 Appendix A: Spring surface air temperature at Place Glacier  

 

Figure A.1: Surface air temperature at Place Glacier in April and May 2023 from HOBO temperature 

sensor, elevation 1924 m. a.s.l. The red arrow indicates the approximate date when the air temperature 

sensor is uncovered and above the snowpack/ice surface.  
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6.2 Appendix B: Elemental metal concentration of the wood ash, control and treated 

samples. 

Table B 1: Elemental metal concentration for the wood ash, control and treated samples. Rows in 

bold represent elements with significantly higher concentrations in the treated samples. 

 

  
Metals Wood Ash 

(mg Kg-1) 

Control Sample 

(mg L-1) 

Treated Sample 

(mg L-1) 

Ρ - Value 

Aluminum 10395 0.208 0.311 0.00579 

Arsenic <20 <0.02 <0.02 NaN 

Boron 321 <0.001 <0.001 0.329 

Barium 3054 0.002 0.033 0.0 

Calcium 246384 0.072 2.064 0.0 

Cadmium 19 <0.0004 <0.0004 NaN 

Cobalt 9 <0.001 <0.001 NaN 

Chromium 66 <0.001 0.001 0.0 

Copper 110 <0.002 <0.002 NaN 

Iron 12092 0.228 0.345 0.00328 

Potassium 29355 0.132 0.271 0.00118 

Magnesium 25205 0.093 0.374 0.0 

Manganese 15000 0.004 0.140 0.0 

Molybdenum 8 <0.003 <0.003 NaN 

Sodium 6184 0.078 0.098 0.391 

Nickel 59 <0.001 0.001 0.00455 

Phosphorus 12298 0.009 0.108 0.0 

Lead 13 <0.004 0.001 0.155 

Sulfur 10327 <0.08 <0.08 NaN 

Antimony 42 <0.01 <0.01 NaN 

Selenium <20 <0.02 <0.02 NaN 

Tin 79 <0.01 <0.01 NaN 

Uranium 35 <0.01 <0.01 NaN 

Vanadium 25 <0.001 <0.001 NaN 

Zinc 3550 0.064 0.059 0.0106 
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6.3 Appendix C: HLS tile names per Mountain Regions 

Table C 1: HLS tile names per Mountain Regions 

Region Number Region Name HLS Tile Name 

1 Southern Coast 

Mountains 
T09UXS 

T09UXT 

T09UXU 

T09UYR 

T09UYS 

T09UYT 

T09UYT 

T09UYU 

T10UCA 

T10UCB 

T10UCC 

T10UCD 

T10UDA 

T10UDB 

T10UDC 

T10UEA 

T10UEB 

T10UEV 

2 Central Coast 

Mountains 
T09UVA 

T09UVB 

T09UVV 

T09UWA 

T09UWB 

T09UWU 

T09UWV 

T09UXU 

T09UXV 

3 Northern Coast 

Mountains 
T08VML 

T08VMM 

T08VNK 

T08VNL 

T08VNM 

T08VPH 

T09UVB 

T09VUC 

T09VVC 

T09VVD 

4 St. Elias T07VEG 
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T07VFF 

T07VFG 

T08VLL 

T08VLM 

T08VMM 

5 Interior North T+C45:C6009UWA 

T09UWB 

T09UXA 

T09UXB 

T09VVC 

T09VVD 

T09VVE 

T09VWC 

T09VWD 

T09VWE 

T09VWF 

T09VXC 

T09VXD 

T09VXE 

T10VCH 

T10VCJ 

6 Interior South T10UFD 

T10UFE 

T10UGB 

T10UGC 

T10UGD 

T11ULS 

T11ULT 

T11ULU 

T11UMR 

T11UMS 

T11UMT 

T11UNR 

T11UNS 

7 Northern 

Rockies 
T09VXE 

T09VXF 

T10VCJ 

T10VCK 

T10VC 

T10VDJ 

T10VDK 

8 Central 

Rockies 
T10UEF 

T10UFE 
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T10UFF 

T10UGD 

T10UGE 

T11ULU 

T11ULV 

9 Southern 

Rockies 
T10UGD 

T10UGE 

T11ULT 

T11ULU 

T11ULV 

T11UMT 

T11UMU 

T11UMV 

T11UNS 

T11UNT 

T11UNU 

T11UPR 

T11UPS 
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6.4 Appendix D: Parameters used for Random Forest and the XGBoost models for the 

Annual and lag year model 

Table D 1: Random forest parameters used for the annual models and the lag model. The ‘F’ and “T’ 

stands for True and False. Table 3.2 describes the parameters. 

Parameters 2015 2016 2017 2018 2019 2020 2021 2022 2023 Lag Year 

n_estimators 1000 200 100 100 2500 500 500 300 200 100 

max_depth 60 40 40 100 40 60 40 100 200 80 

min_samples_splits 3 2 3 3 5 3 2 3 3 5 

min_samples_leaf 1 5 3 3 2 1 1 1 1 2 

max_feature sqrt' log2' sqrt' sqrt' sqrt' log2' log2' log2' log2' log2' 

Bootstrap F T T F F T T T F F 

 

 

Table D 2: XGBoost parameters used for the annual models and the lag model. Table 3.3 describes the 

parameters. 

Parameters 2015 2016 2017 2018 2019 2020 2021 2022 2023 Lag Year 

learning_rate 0.2 0.01 0.01 0.2 0.01 0.01 0.1 0.01 0.01 0.01 

n_estimator 300 100 100 300 100 100 100 300 100 1000 

max_depth 4 6 9 7 6 5 5 3 7 7 

min_child_weigth 5 1 1 2 3 4 1 1 1 4 

gamma 0 0 0 0 0 0 0 0 0 0 

subsamble 0.6 0.6 0.9 0.8 0.6 0.9 0.9 0.6 0.7 0.9 

colsample_bytree 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.9 0.8 0.6 

reg_alpha 0 0 1E-05 0 0 0 0.01 1 0 0.1 
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6.5 Appendix E: Correlation matrix significance values 

 

 

Figure E 1: Mean variables correlation’s significance for the correlation matrix. The green indicates a 

correlation with ρ< 0.05, thus significant. 
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Figure E 2: Max variables correlation’s significance for the correlation matrix. The green indicates a 

correlation with ρ< 0.05, thus significant. 
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6.6 Appendix F: Annual model permutation feature importance 

 

 

Figure F 1:Permutation feature importance for the random forest on the annual model 2015 

 

 

Figure F.2: Permutation feature importance for the XGBoost on the annual model 2015 
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Figure F.3 : Permutation feature importance for the random forest on the annual model 2016 

 

 

Figure F.4: Permutation feature importance for the XGBoost on the annual model 2016 
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Figure F.5: Permutation feature importance for the random forest on the annual model 2017 

 

 

Figure F.6: Permutation feature importance for the XGBoost on the annual model 2017 
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Figure F.7: Permutation feature importance for the random forest on the annual model 2018 

 

 

Figure F.8 : Permutation feature importance for the XGBoost on the annual model 2018 
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Figure F.9: Permutation feature importance for the random forest on the annual model 2019 

 

 

 

Figure F.10: Permutation feature importance for the XGBoost on the annual model 2019 
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Figure F.11: Permutation feature importance for the random forest on the annual model 2020 

 

 

 

Figure F.12: Permutation feature importance for the XGBoost on the annual model 2020 
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Figure F.13: Permutation feature importance for the random forest on the annual model 2021 

 

 

 

Figure F.14: Permutation feature importance for the XGBoost on the annual model 2021 
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Figure F.15: Permutation feature importance for the random forest on the annual model 2022 

 

 

 

Figure F.16: Permutation feature importance for the XGBoost on the annual model 2022 
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Figure F.17: Permutation feature importance for the random forest on the annual model 2023 

 

 

 

Figure F.18: Permutation feature importance for the XGBoost on the annual model 2023 
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6.7 Appendix G: Annual model SHAP Value 

 

Figure G 1: SHAP Values for the random forest on the annual model 2015 

 

Figure G 2: SHAP Values for the XGBOOST on the annual model 2015 
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Figure G 3: SHAP Values for the random forest on the annual model 2016 

 

Figure G 4: SHAP Values for the XGBOOST on the annual model 2016 

 



132 

 

 

Figure G 5: SHAP Values for the random forest on the annual model 2017 

 

Figure G 6: SHAP Values for the XGBOOST on the annual model 2017 
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Figure G 7: SHAP Values for the random forest on the annual model 2018 

 

Figure G 8: SHAP Values for the XGBOOST on the annual model 2018 
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Figure G 9: SHAP Values for the random forest on the annual model 2019 

 

Figure G 10: SHAP Values for the XGBOOST on the annual model 2019 
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Figure G 11: SHAP Values for the random forest on the annual model 2020 

 

Figure G 12: SHAP Values for the XGBOOST on the annual model 2020 
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Figure G 13: SHAP Values for the random forest on the annual model 2021 

 

Figure G 14: SHAP Values for the random forest on the annual model 2021 
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Figure G 15: SHAP Values for the random forest on the annual model 2022 

 

Figure G 16: SHAP Values for the XGBOOST on the annual model 2022 
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Figure G 17: SHAP Values for the random forest on the annual model 2015 

 

Figure G 18: SHAP Values for the random forest on the annual model 2015 


