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Abstract 

Postpartum Depression (PPD) is a mental health condition that is a leading cause of annually 

reported infanticide incidence. Many cases go underdiagnosed due to unawareness, and 

prolonged untreated conditions can lead to psychosis, causing harm to themselves and the 

infant. Hence, identifying the PPD risk has become crucial and has been widely studied in the 

context of traditional risk factors. Only limited research has been conducted addressing chronic 

diseases as the risk factor.  

Predicting PPD by utilizing the power of Machine Learning (ML) algorithms can lead to timely 

intervention and management of the condition. Data obtained from the Center for Disease 

Control and Prevention – Pregnancy Risk Assessment Monitoring System (CDC-PRAMS) was 

used for this thesis to identify the risk factors and forecast the likelihood of depression for 

mothers who suffer from one or more chronic diseases using ML models. The performance 

evaluation of the selected machine learning models—Support Vector Machines (SVM), 

Random Forest (RF), Logistic Regression (LR), and Neural Network (NN) was assessed using 

accuracy and F1-score, which ranged from 76% and 77% for NN to 89% and 88% for LR. The 

impact of each key predictor identified in the SHAP analysis demonstrated close alignment 

across all models and highlighted the significance of chronic disease. The results also highlight 

how chronic diseases potentially interact with other common risk factors to increase the 

likelihood of PPD. An interactive dashboard is created to visualize and present preprocessed 

data using charts and graphs. Also, a diagnostic screening tool developed based on the trained 

models demonstrates the potential of ML as a screening tool to improve diagnostic precision 

and support personalized care for enhanced quality of life.  
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Chapter 1   

Introduction 

Processing large volumes of complex health data with traditional analytics methods often takes 

too long to reveal valuable insights. As a branch of Artificial Intelligence (AI), Machine 

Learning (ML) techniques like Deep Neural Network (DNN) models have gained increased 

attention in extracting hidden patterns, finding relationships within datasets, and other valuable 

information from the massive quantity of health data. ML can enhance focused patient care by 

learning from the patterns and making predictions to improve speed and precision [1]. In 

addition to healthcare, it provides valuable benefits to other industries, such as finance, to 

improve trading strategies and various other sectors to adopt automated systems [2].  

The significance of AI in the medical field has grown as ML techniques are increasingly used 

to diagnose, forecast, and treat various health conditions, including mental illnesses [3]. With 

the help of vast patient datasets, these systems can aid clinicians in making more accurate 

assessments and individualized treatment plans, thereby improving the overall quality of 

mental healthcare delivery [4]. While prior ML research has focused on the benefits of 

improving mental health conditions such as depression, Alzheimer's, and schizophrenia, the 

current research in this area is proving to be increasingly vital in advancing broader mental 

health care and showcasing its impact in the field. Therefore, the impact of ML and big data 

applications is invaluable in mental health care and management advancements for improving 

treatment options and patient support, thus contributing to public health initiatives.  
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Figure 1 presents the global market for mental health apps, expected to grow from $7.03 billion 

in 2024 to $15.95 billion by 2029, with a compound annual growth rate (CAGR) of 18.7% [5]. 

This increase reflects the growing role of ML and digital technologies in mental health, 

enabling more personalized care, enhanced support, and improved accessibility through 

relevant applications. Together, these areas showcase the potential of ML to enhance mental 

health care and address critical challenges in this field, such as identifying risk factors and 

developing individualized treatment plans. 

 

Figure 1. Projected Growth of the Global Mental Health Apps Market (2024-2029) [5]. 

Maternal mental health poses a considerable global challenge. Nearly one in five women will 

encounter a mental health condition during pregnancy or within the year following childbirth; 

of those with perinatal mental health conditions, 20% will also be grappling with suicidal 

thoughts or engaging in acts of self-harm [6]. Postpartum psychiatric disorders typically fall 
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into three categories: baby blues or postpartum blues, postpartum depression (PPD also known 

as postnatal depression), and postpartum psychosis. Unfortunately, these conditions are often 

disregarded and left untreated. Mothers grappling with mental health challenges may also 

experience exacerbated physical health issues, which could potentially impact the well-being 

of their infants. The formation of attachment between mother and infant may be affected by 

the cognitive and emotional challenges faced by mothers with PPD [7]. Timely intervention is 

important to prevent complications. 

Numerous studies have investigated the use of ML techniques for predicting PPD and 

effectively contributing to mental healthcare practices [8], [9], [10]. As machine and deep 

learning methods gain popularity, analyzing existing work to better guide future research 

becomes necessary. A comprehensive literature review is provided in Chapter 2. 

1.1 Utilizing ML in Healthcare: Addressing PPD 

ML has been applied to various areas of mental health, including clinical psychology and 

psychiatry, enhancing research methods, treatments, public health studies, and analysis of 

support community behaviors. It aids in offering automated solutions to enhance predictive 

accuracy and reveal complex patterns in data. The ability of ML to process diverse data types, 

including clinical records, has made it a powerful tool in mental health research. Analyzing 

complex data, predicting risk factors, providing patient-specific treatment approaches, and 

monitoring symptoms enhance the quality of mental health care. Early intervention and 

targeted support could be facilitated for at-risk mothers by this predictive model for PPD, 

potentially resulting in improved outcomes for both mothers and their infants. Overall, ML 



   

 

4 
 

demonstrates the potential to improve the efficiency of clinical and research processes and 

generate new insights into maternal mental health and well-being.  

1.1.1 Postpartum Depression (PPD)  

PPD is characterized by symptoms such as profound sadness, fatigue, anxiety, frequent crying, 

irritability, and alterations in sleeping or eating habits [11] and is highly prevalent among 

women in the first year of delivery. It is influenced by environmental and genetic factors, 

making it a complex, multifaceted condition. While its exact cause remains unknown, it is 

believed to result from physical, emotional, genetic, and social factors. It is also the most 

underdiagnosed obstetric complication globally, including in the United States [12]. Although 

the feelings associated with PPD are often temporary and seen as mild conditions by health 

professionals, they highlight the crucial need for support during the postpartum period to 

manage emotional challenges and maintain well-being. PPD does not go away on its own, and 

it is one of the leading causes of the annually reported infanticide incidence [11].  

Figure 2 illustrates the spectrum of postpartum mood disorders, highlighting postpartum blues, 

PPD, and postpartum psychosis, with their prevalence rates, key symptoms, and severity levels. 

Timely diagnosis and proper identification are expected to largely cure this condition. A very 

different disorder with psychotic symptoms associated with the postpartum period is 

postpartum psychosis. Unknown and untreated diseases lead to prolonged psychosis in severe 

cases. Approximately 1-2 cases per 1000 births result in postpartum psychosis, requiring 

emergency medical attention. As a severe condition, there is an increased risk of suicide and 

https://en.wikipedia.org/wiki/Postpartum_psychosis
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risk of harm to the baby [13]. Hospitalization, psychotherapy, and medication are the usual 

treatments.  

 

Figure 2. Spectrum of PPD [14]. 

Biological elements like reproductive hormones, stress hormones, and thyroid hormones, in 

conjunction with psychological factors, significantly contribute to the onset of PP. Recognizing 

key risk factors enables healthcare providers to identify women who may be at high risk of 

developing PPD, ensuring they receive medical interventions to lower the persistence during 

motherhood [15].  
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Common risk factors for PPD [11] are:  

• A change in hormone levels after childbirth. 

• Previous experience with depression or anxiety. 

• Family or personal history of depression or mental illness. 

• Stresses due to caring for a newborn and managing new life changes. 

• Having a challenging baby who cries more than usual is hard to comfort or whose sleep 

and hunger needs are irregular and hard to predict. 

• Having a baby with special needs (premature birth, medical complications, illness). 

• First-time motherhood, very young motherhood, or older motherhood. 

• Other emotional stressors or stress events, such as the death of a loved one or family 

problems. 

• Financial or employment problems. 

• Isolation and lack of social support. 

Clinical organizations can identify trends and patterns and support personalized interventions 

using data mining, predictive analytics, and ML techniques such as Microsoft Power BI and 

IBM SPSS Modeller. Business Intelligence (BI) platforms provide tools for analysis and 

visualization, transforming data into strategic information to answer specific queries and guide 

decisions and planning [16].  

1.1.2 Predictive Modeling for PPD Detection 

Predictive modeling anticipates future outcomes by utilizing historical and current data and 

applying advanced statistical techniques and ML algorithms to generate accurate forecasts and 
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practical recommendations. It identifies patterns and relationships between independent and 

predicted variables and provides meaningful insights into data [17]. Prediction models play an 

important role in clinical decision-making, helping to improve personalized and targeted 

treatments [18].  

ML models, such as neural networks (NN), logistic regression (LR), and decision trees, are 

widely used for predictive analysis in mental health, especially for screening and diagnosing 

depression. It has also been proven as an effective approach to analyzing PPD, focusing on 

prediction, optimizing risk assessment, and improving clinical outcomes [19], [20]. These 

models use factors such as demographics, medical history, and psychosocial variables to 

improve PPD management [9], [21]. A recent review evaluated the risk of bias and 

applicability of PPD prediction models commonly used in screening and diagnosis [21]. An 

innovative model using deep reinforcement learning to improve the process of identifying PPD 

was proposed in [22]. A scoping review [23] on ML methods for predicting PPD highlights 

the need for further clinical research to fine-tune ML algorithms for improved prediction and 

treatment outcomes.  

The work presented in this thesis examines the relationship between independent variables, 

including chronic disease features, and the target variable PPD using Support Vector Machines 

(SVM), Random Forest (RF), Logistic Regression (LR), and Neural Network (NN) models. 

This approach has proven to be very effective for analyzing PPD by focusing on prediction, 

optimizing risk assessment, and improving clinical decision-making [8], [20], [24], [25].   
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1.1.3 PPD Screening Tools 

Primary screening tools widely used for assessing depressive symptoms postpartum include 

the Postpartum Depression Screening Scale (PDSS) and the Edinburgh Postnatal Depression 

Scale (EPDS). EPDS [26] is a 10-item self-reporting questionnaire designed to screen for PPD. 

Among other variables, it assesses mood, anxiety, and anhedonia experienced by mothers in 

the postpartum period. Each item is scored on a point scale, resulting in a total score ranging 

from 0 to 30. A cut-off score of ≥13 is commonly used to indicate the need for further 

evaluation, while some guidelines recommend ≥10 in primary care settings for broader 

assessment. Likewise, the PDSS [27] is a 35-item self-reporting tool specifically developed to 

identify PPD and assess its severity across seven dimensions: anxiety/insecurity, emotional 

lability, cognitive impairment, loss of self, guilt/shame, sleep/appetite changes, and suicidal 

thoughts. A PDSS cut-off score of ≥9 suggests the need for a formal diagnostic assessment. 

There are web-based tools that utilize screening scales such as EPDS and PDSS. These tools 

allow users to complete the questionnaire digitally, providing immediate scoring and feedback 

to support early detection and further evaluation by healthcare providers. 

The BabyCenter [28] postpartum depression quiz is an online screening tool based on the 

EPDS, featuring 10 multiple-choice questions to assess emotional well-being, mood, and 

anxiety over the past week. Healthy Mom [29] offers a similar online platform with a test based 

on validated tools like the EPDS, allowing new mothers to complete screenings digitally with 

immediate results and guidance. Mental Health America (MHA) [29] provides another online 

test using similar tools to assess PPD risk. This includes questions on general health conditions, 

such as heart disease, reproductive health concerns (e.g., PCOS, endometriosis), diabetes, 
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asthma, and neurological conditions. These screenings combine standard scale-based items 

with contextual questions about health and life factors, providing a score out of 30. These tools 

raise awareness about postpartum mental health, provide quick insights, and encourage users 

to seek professional help if the results indicate potential concerns. Besides EPDS and PDSS, a 

few other innovative tools are explained in Section 2.4.  

1.2 Problem Statement 

PPD is a complex and prevalent mental health condition, often challenging to diagnose and 

treat effectively. Traditional methods in healthcare often fall short of efficiently analyzing 

complex data related to mental health [30], leading to delayed detection. Without detection 

tools and personalized treatment plans, individuals with depression face prolonged struggles, 

affecting their quality of life. 

 In 2019, almost one-quarter (23%) of mothers who recently gave birth in Canada reported 

conditions consistent with either PPD or an anxiety disorder [31]. Although the risk factors for 

PPD have been studied, many potentially critical clinical variables remain unexplored [32]. 

Previous research on mental illness has demonstrated that depression frequently co-occurs with 

chronic diseases [33], [34]. Another study highlighted chronic physical illness as a significant 

predictor of PPD but examined it broadly without focusing on specific types or conditions [35]. 

Further evidence suggests that women with chronic conditions such as diabetes, hypertension, 

heart disease, migraines, and other neurological disorders are at an increased risk for 

peripartum mental illness [36]. Chronic illness may also reduce appetite, leading to amino acid 

deficiencies that hinder serotonin production, a critical factor in depression [35]. Overall, 
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studies specifically investigating the relationship between chronic diseases and PPD are 

limited. 

Following the above insights, the current study presumes that chronic diseases serve as a 

potential risk factor for PPD, warranting further exploration. This research hypothesizes that 

chronic diseases are significant risk factors for PPD and attempts to find evidence for this 

hypothesis using ML models. Further, when chronic disease is identified as a risk factor, it is 

important to know the specific disease that increases the likelihood of PPD.  

1.3 Research Methodology 

A comprehensive literature review established the foundation for this research. The research 

progressed by determining relevant data sources, suitable tools, and modeling techniques to 

ensure compatibility with the dataset and research objectives.  

The ML-based classification was used to build predictive models. This approach helps find 

correlations among variables to analyze the PPD risk factors to aid healthcare providers 

working with chronic disease patient groups. The source data was integrated into a database 

using SQL Server Management Studio (SSMS) 16.0, and relevant variables were selected 

using SPSS Modeler 18.4 in consultation with medical personnel. The preprocessed data was 

used to develop the models and generate results in Python 3.11.11 [37]. The models underwent 

training, testing, and validation stages to ensure their accuracy and reliability in predicting 

outcomes related to the research objectives.  
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Furthermore, an interactive dashboard was developed using Power BI [38] to visually present 

valuable insights in a user-friendly dashboard. Flask 2.3.3 [39] integrated a backend framework 

into the dashboard to offer personalized risk assessment based on user input. Chapter 3 

provides a detailed description of the research methodology. 

1.4  Data Source 

The primary data source for this research is the Centre for Disease Control and Prevention – 

Pregnancy Risk Assessment Monitoring System (CDC-PRAMS) [40], a population-based 

surveillance system that gathers data on maternal experiences surrounding pregnancy to 

improve maternal and infant health. Sampling from birth certificate registries, PRAMS surveys 

new mothers monthly, providing valuable data for research purposes. This research uses data 

from 202,745 mothers surveyed across all states from 2016 to 2020. The categories of predictor 

variables used by this study are summarized in Table 1. 
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Table 1. Predictor Variables 

Indicator Variable 

Demographic Variables 
Age, gender, race/ethnicity, marital status, education level, 

and income. 

Disease Variables 
Medical history and family history of mental health 

conditions. 

Pregnancy and Childbirth Factors 
Gestational age, delivery mode, prenatal care utilization, 

and complications during pregnancy and childbirth. 

Psychosocial Variables 
Stress levels during pregnancy and postpartum, as well as 

social support networks and relationship status. 

Lifestyle and Behavioral Factors 
Substance use (e.g., smoking) and physical activity during 

pregnancy. 

Postpartum Factors Breastfeeding, sleep patterns, and infant care. 

Geographic Factors Geographic factors, such as regional variations. 

Income and Socioeconomic 

Status 
Income levels and socioeconomic status. 

Infant Health and Development 
Infant health and development, such as birth weight, 

immunizations, and infant feeding practices. 

Parenting and Infant Care 

Practices 

Parenting practices, infant sleep routines, and childcare 

arrangements. 

Healthcare Utilization 

Healthcare utilization during pregnancy and the 

postpartum period, including the number of prenatal care 

visits, healthcare-provider interactions, and access to 

healthcare services 

Social Determinants of Health, 

Communities, and Neighborhood 

Characteristics 

Social determinants of health, such as housing stability, 

food security, and access to transportation. 
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1.5 Contributions 

This research focuses on enhancing PPD care for mothers by developing predictive models, 

creating a diagnostic screening tool, and designing a multi-level dashboard. First, developing 

ML models to forecast the likelihood of depression incorporating multiple risk factors, 

including chronic diseases, provides the following contributions:  

• Detection of key risk factors of PPD to help identify high-risk individuals, enabling 

early interventions, tailored treatment strategies, and improved preventive care. 

• Identification of specific chronic diseases and their interaction with other risk factors 

that impact the onset of PPD in vulnerable populations. 

Second, the developed dashboard visually highlights relationships and patterns in the data, 

which offers the following contributions: 

• Insights into PPD statistics, including prevalence, correlations, and trends. 

• Helps identify gaps in PPD care, enabling experts to create targeted care plans and 

improve support for vulnerable postpartum populations. 

Third, developing a diagnostic screening tool integrating predictive models into an ensemble 

framework to estimate depression probability based on user input demonstrates the potential 

of ML for effective PPD management, timely identification, and customized preventive care.  
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1.6 Organization of Thesis 

This thesis focuses on PPD risk factor identification and prediction, comprising five chapters 

focusing on prediction through various ML methodologies. The first chapter introduces PPD 

and its connection with chronic diseases and explains why this research is important. Chapter 

two reviews existing studies on PPD. Chapter three explains the design of the prediction 

models. Chapter four describes the experimental setup and presents the findings and results of 

the models. Finally, Chapter five provides insights and recommendations for future research. 
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Chapter 2  

Literature Review 

The consequences of untreated or late-detected PPD can be severe, potentially leading to severe 

issues and effects on both the mother and the child or may escalate to postpartum psychosis. 

Thus, prior studies in the field of PPD were primarily aimed at identifying risk factors and 

developing predictive models to facilitate timely intervention and effective management of 

PPD. However, the research on the impact of chronic diseases on PPD is limited. This chapter 

provides an overview of the current knowledge, gaps, and advancements in predicting PPD, 

highlighting the significance of identifying at-risk individuals.  

2.1 PPD Predictive Analysis  

Statistical algorithms and ML techniques have been used in predictive analytics to reveal 

complex patterns and predict future trends based on historical information. This approach is 

especially important in the context of PPD where developing predictive models can assist 

healthcare professionals to identify individuals who are at heightened risk of developing this 

condition and enable proactive measures to be taken. A brief literature review on PPD 

predictive analysis is provided in this section.  

A two-year longitudinal study [41] was conducted with 301 pregnant participants to validate 

the Postpartum Depression Predictors Inventory-Revised (PDPI-R) tool in Turkish women and 

assess its predictive validity for PPD using two standards: the EPDS and the Structured Clinical 
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Interview. Eligible participants for the study were over 18, in gestational weeks 28-32, carrying 

a single fetus, and without psychiatric disorders or medical complications for the baby. 

Statistical analyses conducted in SPSS confirmed the predictive validity of both versions with 

specific cut-off points established for accurate prediction of PPD using EPDS. The study 

identified various predictors of PPD, which included unwanted pregnancy, previous history of 

depression, life stress, self-esteem, social support, and marital satisfaction. The tool examined 

both prenatal and postnatal versions, with accuracies ranging from 64% to 81%. While the 

findings support routine screening with the tool to assess women's susceptibility to PPD, 

limitations in generalizability and interpretation should be addressed through additional 

research. 

A study aimed to utilize ML to develop a predictive model for identifying women at a higher 

risk of PPD [42]. Data from 686 mothers in Sri Lanka collected within six months of childbirth 

was used, and the risk levels for PPD were assessed using the Sri Lankan version of EPDS. 

The questionnaire included multiple factors such as physical disabilities, drug abuse history, 

life stressors, social support, socioeconomic status, family problems, marital status, baby-

related issues, education level, and number of children. The EPDS scores were categorized into 

mild, moderate, severe, and profound PPD. Exploratory data analysis and Spearman 

correlation were performed to identify relevant features for predicting PPD. Four models were 

built using an Adaptive Neuro Fuzzy Inference System with Genetic Algorithm (ANFIS-GA), 

ANFIS, and Feed Forward Artificial Neural Network (FFANN), SVM, and RF. Among these 

models, FFANN with 25 epochs exhibited superior performance compared to other models, 

achieving high accuracy in testing, training, and validating datasets. Researchers identified 

ANFIS-GA performance in running the Genetic Algorithm (GA) for five hundred generations, 
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resulting in the lowest loss and optimal parameters. Despite the promising findings, the study 

did not provide a detailed discussion on the selected features for the predictive models and 

present any identified risk factors for PPD, which could have provided valuable insights into 

the underlying causes of PPD. 

A study in 2021 employed data mining algorithms, specifically J48, Random Tree, RF, and 

Reduce Error Pruning (REP) Tree, in combination with ensemble techniques such as Adaptive 

Boosting and Bagging considering social and demographic factors and identifying common 

symptoms, utilizing non-clinical information and observations [43]. The analysis aim was to 

identify the conditions under which women are more likely to experience PPD by surveying 

ninety-six participants and implementing the algorithms to analyze and predict the risk level 

of PPD. The study examined women who had given birth within the past year, irrespective of 

their depression history, and considered both urban and rural areas to assess the influence of 

quality of life on PPD probability. The collected information focused on social, mental, and 

quality of life aspects as well as 31 attributes of EPDS score to assess different levels of risk. 

The models achieved accuracy in the range of 84 - 94%. The findings highlighted associations 

between unplanned pregnancy, spousal support, delivery method (Caesarean vs. vaginal), and 

urban residence with PPD risk. The study revealed a concerning trend where most women 

facing PPD go unnoticed or undiagnosed. Also, women living in rural areas have had a lower 

prevalence of PPD, indicating a positive impact on lifestyle and living conditions. The 

limitations of this work include a small participant pool and a limited sampling area. This was 

also acknowledged by the authors. 
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A regional study conducted in five Arab countries (Jordan, Palestine, Lebanon, Saudi Arabia, 

and Bahrain) during the COVID-19 pandemic aimed to develop ML models for predicting 

maternal depression and anxiety among pregnant and postpartum women [25]. The data was 

collected through a web-based questionnaire. The dataset included 3569 pregnant women over 

18 who had normal pregnancies during the COVID-19 pandemic. Exclusions applied to those 

conceiving during the pandemic and those with risk factors like miscarriage and chronic health 

issues. ANOVA test was implemented to assess risk factor distributions and the ML models, 

including Gradient Boosting (GB), Random Forest (RF), Extreme Randomized Forest (XRT), 

Naïve Bayes (NB), Support Vector Machine (SVM), Multilayer Neural Network (MNN), and 

Decision Tree (DT) were evaluated for their ability to predict mental health outcomes. Higher 

depression rates were associated with factors such as family problems, inadequate sleep, 

psychological issues, financial challenges, and a COVID-19 diagnosis. Women, with an 

average age of 28.5 years, experienced varying levels of depression and anxiety influenced by 

various factors. The Gradient Boosting and RF models accurately predicted depression and 

anxiety symptoms. In general, all models performed similarly in terms of accuracy. 

PPD risk prediction models were developed using electronic health record (EHR) datasets from 

single and multiple sites [44]. Data from Weill Cornell Medicine and New York-Presbyterian 

Hospital in New York City, USA, focusing on individuals aged 18 to 45, was utilized to 

develop the models. An end-to-end framework was developed to extract features and process 

the data, which included demographics, clinical diagnoses, medication prescriptions, 

laboratory results, and unstructured clinical notes. A PPD diagnosis was defined as using an 

antidepressant within one year after childbirth, based on the Systematized Nomenclature of 

Medicine. ML models, including RF, Decision Trees, Extreme Gradient boosting, Regularized 
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Logistic Regression, and Multilayer Perceptron, were used to train and optimize the model 

using Sequential forward selection separately for women with or without a mental disorder 

history. In the PPD group, higher emergency room visit rates, Caesarean delivery, medication 

prescriptions, past or current mental health conditions, being a single parent, and pregnancy 

complications (e.g., palpitation, diarrhea, vomiting, abdominal pain) were associated with 

increased risk of PPD. While this study incorporated clinical diagnoses, medication 

prescriptions, and laboratory results, it did not consider pre-pregnancy health conditions. 

The need for a more reliable comprehensive tool for identifying mothers at risk of PPD was 

recognized and implemented in a study by Elday Hochman et al. [19]. Longitudinal EHR data 

over a period of eight years from Clalit Health Services (CHS) was utilized to develop a PPD 

risk prediction model. The data excluded non-singleton births, stillbirths, and births ending 

with infant death. After primary and secondary exclusions, the final cohort consisted of 

214,359 individuals, from which the training and validation sets were derived. Out of the initial 

156 (sociodemographic, clinical, and obstetric) potential predictor features in the model 

development, 65 features were identified as having a significant impact on model performance 

due to their nonzero SHAP values. The model was built using XGBoost using the SHAP mean 

absolute values to measure how each feature contributed to predicting PPD. A calibration plot 

showed consistency between predicted and observed risks across different risk scores. The 

model's accuracy was measured using AUROC, and 95% confidence intervals were calculated 

using bootstrapping. The model consistently performed well for age and first-time births but 

less accurately for women without a psychiatric history. Additionally, the birth cohort was 

categorized into "low-risk" and "high-risk" based on PPD risk scores, with the "high-risk" 

group characterized by factors such as prior psychiatric disorders, increased third-trimester 
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healthcare visits, higher BMI, smoking, lower birthweight, and gestational age. This group also 

experienced more pregnancy complications and showed distinct blood test patterns, more tests 

during pregnancy, and earlier gestational tests compared to the "low risk" group. The study 

suggests using symptoms and predictive modeling together makes it more accurate at spotting 

those at risk of or experiencing PPD. 

A PPD detection and prevention study in expectant mothers suggested perinatal (or peripartum) 

interventions [45]. This pilot study used six ML algorithms featuring longitudinal clinical 

information and patients' socio-demographic characteristics. The statistically significant 

variables associated with PPD were selected (71 variables were diagnoses, and 22 were 

medications). This study evaluated each model's performance using the area under the receiver-

operator curve in 10-fold cross-validation by differentiating variables into demographic, 

diagnoses, and medication variables. The SVM model showed the highest AUC whereas 

Decision Tree with least AUC. Race, threatened abortion, prior or prenatal depression disorder, 

anxiety, backache in the 3rd trimester, and muscle pain in the 2nd trimester were significant 

associated factors. Also, antidepressant use across three trimesters was found to be a strong 

predictor of PPD, consistent with previous studies. Though medication variables were included 

in the research, none of the chronic illnesses were included. 

A study was done to diagnose PPD in women and develop appropriate treatment plans using 

demographic, depression, and pregnancy survey data [24]. The ML-based algorithm, including 

decision trees, Naive Bayes, and SVM, and a functional-gradient boosting algorithm were 

implemented to predict PPD. A final classification tree was made, including factors like being 

a first-time mother, finances, age, education, other illnesses, sleeping trouble, and 
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relationships. As this study focused on survey data, the clinical variables were not used in 

predicting PPD. This research examined several stressors before pregnancy and found that 

women with depression before getting pregnant were four times more likely to have PPD. 

Furthermore, the highest prevalence of PPD was observed in women who were younger, 

unmarried, had a lower income, had low education, or had a baby born less than 37 weeks.  

2.1.1 PPD Risk Factors Analysis 

Risk factors refer to identifiable characteristics or conditions that research has shown to elevate 

the chances of experiencing PPD. It is crucial to identify the factors associated with PPD. It 

has been identified that women within the age range of 18-24 and those with pre-existing 

anxiety health conditions are particularly susceptible to receiving PPD diagnoses (Figure 3 and 

Figure 4) [46]. A literature review of studies focusing on identifying risk factors for predicting 

PPD is provided in this section. 

 

Figure 3. PPD Rate Trend in 2014 -2018 [46].  
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Figure 4. PPD and Pre-Existing Health Conditions [46]. 

A randomized controlled trial (RCT) examining the effectiveness of tranexamic acid in 

preventing postpartum hemorrhage (PPH) after vaginal delivery was conducted as part of the 

Tranexamic Acid for Preventing Postpartum Hemorrhage After Vaginal Delivery (TRAAP) 

[47]. The study was carried out in 15 maternity units in France and included women who were 

18 years or older and planning to give birth vaginally to a single live fetus at 35 or more weeks 

of gestation. Three types of exposure variables were investigated: pre-pregnancy 

characteristics (including psychiatric history), pregnancy and delivery factors, and postpartum 

variables (like neonatal complications and childbirth memories). Factors such as age, 

psychiatric history, and experiences during labor and delivery were found to be linked to PPD. 

PPD was found to be associated with negative childbirth memories, as well as induced labor 

and operative vaginal delivery, with the latter two being significant risk factors. Pre-pregnancy 

characteristics and obstetric events, emphasizing the need for targeted screening and 

intervention strategies, were identified as risk factors. Although the findings provide valuable 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tranexamic-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/lochia
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insights into postpartum care, potential limitations are underestimation and reliance on self-

reported screening. 

The effects of different factors on PPD and post-traumatic stress disorder (PTSD) among 

women in Slovakia who experienced traumatic childbirth were determined in [48]. A multi-

step approach was employed to investigate the impact of sociodemographic factors, maternal 

and child health complications, and childbirth experiences on postpartum well-being. The 

study investigated the postpartum experiences of 437 females, including childbirth satisfaction, 

maternal and child health complications, and overall preparedness. Standardized 

questionnaires assessed PTSD symptoms, PPD risk, birth satisfaction, and perceptions of 

trauma and respect during childbirth. This study found an association between primiparity, 

maternal and child health issues, previous trauma, and PPD/PTSD, with lower birth satisfaction 

levels correlating with higher depression and PTSD symptoms, emphasizing the significance 

of subjective birth trauma perception and perceived birth respect as contributors. The study 

acknowledged limitations in sample representation and the complexity of understanding the 

factors involved while highlighting the high reliability of data collection and analysis which 

enhanced the validity of the research findings. 

In 2021, an online survey involving [49] 3,523 postpartum women in Brazil, South Korea, 

Taiwan, Thailand, and the United Kingdom was conducted to investigate factors related to 

PPD symptoms during the COVID-19 pandemic. The criteria for this study included 

individuals aged 18 to 49 who are within the first six months postpartum. Descriptive 

statistics were performed, including calculating frequencies and percentages for categorical 

variables and means and standard deviations for continuous variables. Chi-square tests and t-
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tests were used to detect associations with PPD symptoms, where PPD was defined as an 

EPDS score exceeding 13. A binary logistic regression model was employed to pinpoint the 

factors explaining the association with PPD. This included calculating crude and adjusted 

odds ratios (OR and AOR) and their corresponding 95% confidence intervals. The 

independent variables that exhibited a p-value below 0.05 in the simple linear regression 

analysis were utilized in the multiple linear regression model. Results indicate that both 

Taiwan and Thailand exhibited a reduced risk of experiencing PPD symptoms compared to 

individuals in Brazil. Furthermore, 29.3% of women exhibited PPD symptoms linked to 

younger age. High-risk factors for PPD include younger women experiencing health 

problems during pregnancy, delivery, or postpartum, no improvement or worsening of food 

security during COVID-19, feeding babies with expressed human milk or complementary 

food, receiving low or medium support, and having low social support. However, this 

research identified health problems as a contributing factor to PPD but did not delve into 

specific details regarding the types or nature of these health problems. 

Several factors were examined, including socio-demographics (age, education, occupation), 

substance use, reproductive characteristics (pregnancy index, inter-delivery interval, live 

children), and maternal social factors (violence, support, gender satisfaction, decision-making) 

in a study conducted in Ethiopia [50]. This study included 479 postpartum mothers, all within 

the first year after childbirth and aged at least 18 years old. Both bivariate and multivariable 

analyses were conducted using a binary logistic regression model. Variables with p < 0.25 in 

the initial analysis were included in a multivariable model to control for confounding, and those 

with p < 0.05 were considered statistically significant. In the results, a prevalence of 23% was 

observed for late PPD, alongside factors such as husband's Khat use, partner dissatisfaction 
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with the baby's gender, difficulty in meeting the husband's sexual needs, postpartum intimate 

partner violence, and low social support. It is noted that being cross-sectional does not 

necessarily establish cause-and-effect relationships. 

A cross-sectional study was conducted involving 1028 women aiming to investigate the link 

between dietary patterns and elevated PPD symptoms among participants in the initial phase 

of the Maternal and Child Health cohort study [51]. The study employed the Food Frequency 

Questionnaire (FFQ) to collect dietary data. Four distinct dietary patterns—prudent, sweet and 

dessert, junk food, and western—were identified using exploratory factor analysis (EFA) and 

EPDS. Data analysis involved various statistical tests, including the chi-square test, Fisher's 

exact test, independent sample t-test, and multiple logistic regression (MLR). The study 

utilized a multiple logistic regression model to examine how high PPD symptoms relate to 

dietary patterns. The study found that 24% of participants experienced high PPD symptoms. 

Compared with the Prudent dietary pattern, high adherence to the Western dietary pattern was 

linked to an increased risk of PPD symptoms. However, no significant association was 

observed between sweet, dessert, or junk food patterns and high PPD symptoms. When 

comparing the two groups based on income, smoking, history of chronic disease, gestational 

diabetes, dietary supplement uses during pregnancy, types of childbirth, and the gender of the 

baby, no significant differences were found. A limitation of this study is that it excluded women 

with prior mental illness or depression, epilepsy, nephropathy, or cancer, and abnormal 

pregnancies. 

In 2019, Smorti et al. [52] analyzed PPD in 161 Italian nulliparous low-risk women to 

investigate multiple risk factors and relate them to labor and birth experience. Socio-
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demographic and clinical measures included age, educational level, work status, marital status, 

information about the number of years of their relationship, and information about a planned 

or unplanned pregnancy. Psychological measures included levels of depression and anxiety 

during pregnancy. Relational measures included the relationship with the mother, father, and 

partner, as well as prenatal attachment to the child. In addition, labor measures and mode of 

delivery were also included. Age, induced labor, prenatal anxiety, and depression were found 

to be significant risk factors for PPD. On the other hand, the length of the relationship with the 

partner, level of education, employment status, and planned pregnancy were not significant. 

The study's limitation lies in its inclusion criteria, as it only encompassed nulliparous women 

aged between 18 and 42 with no risk during pregnancy, excluding those with twins, previous 

miscarriage, or abortion experiences. 

In 2017, G. Palumbo et al. [53] established screening procedures in Italy to identify women at 

risk of PPD as part of the "Prevention and Early Intervention for Risk of PPD" project. A total 

of 1,558 women were screened, with an average age of 32.5 years. The Italian version of the 

EPDS was used to assess symptoms of depression. Information collected included delivery, 

maternal health problems, pre-delivery and pregnancy details, stressful events in the past year, 

mental health conditions before pregnancy, perceived family, and sociodemographic variables. 

Using SPSS, the sociodemographic and psychosocial characteristics of women with and 

without current PPD symptoms were summarized. LR was used to identify the PPD. A 

significant proportion of women (7.1%) in the study tested positive for PPD, and those with 

positive scores showed higher rates of self-harm thoughts, recent stressful events, depressive 

and anxiety symptoms, psychotropic drug use, lower social support, and relationship 

dissatisfaction. The analysis revealed that loss of interest during pregnancy and lack of 
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psychological support from family and friends were the most significant predictors of PPD 

symptoms. Other significant predictors included anxiety or depressive symptoms during 

pregnancy, job loss or change, personal health problems after childbirth, sleep disorders, 

difficult infant temperament, and history of a mental health condition. The study acknowledges 

certain limitations, including using a non-random sample, and it may introduce bias and limit 

the generalizability of the findings, as this group might have had experiences different from 

the broader population.  

A web-based survey using a cross-sectional design analyzed PPD risk factors in U.S. women 

who gave birth to a live infant after COVID-19 was declared a public health emergency [54]. 

Out of the 670 postpartum patients in the study, one in three screened positive for PPD, and 

one in five showed major depressive symptoms. Formula-feeding was associated with a 92% 

higher likelihood of PPD and a 73% higher likelihood of major depressive symptoms compared 

to breastfeeding. In addition, PPD risk increased by 74% with infant NICU admission, 4% per 

postpartum week, and 71% due to COVID-19-related worry. Due to reduced healthcare access, 

changes in peripartum care, and limited early telehealth options, infection concerns for 

themselves or their infants during the COVID-19 pandemic also increased the likelihood of 

screening positive for PPD. This study has limitations due to its reliance on a social media-

based convenience sample, which may not fully reflect the diversity of the postpartum 

population, and it did not consider all potential PPD factors or regional infection rate 

differences.  

A study assessed the probability and the prevalence of diagnosed PPD occurrence among first-

time mothers (primiparous women) and examined how maternal factors associated with PPD 
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differ between adolescent mothers (ages 12–19) and adult mothers (ages 20 and older) [55]. 

An observational design was utilized to analyze data from 61,226 first-time mothers who had 

at least one non-emergency visit within ten years prior to their first live birth. Data were 

obtained from three sources: (1) electronic health records (EHR) from Intermountain 

Healthcare, (2) electronic health records (EHR) from the University of Utah Health, and (3) 

the Utah Population Database (UPDB), which encompassed a wide range of socioeconomic, 

demographic, psychological, and clinical factors. Using multivariable logistic regression, the 

study found that a history of depression or anxiety is a significant factor. A higher rate of PPD 

was diagnosed among adolescents (6.1%) compared to adults (3.8%), and maternal 

demographic factors associated with PPD were more prevalent among adolescents. 

Adolescents also had a more considerable proportion of potential PPD risk factors, such as 

non-White race, Hispanic ethnicity, and various health and lifestyle factors. Moreover, 

adolescent mothers exhibited a greater tendency to postpone prenatal care, with a higher 

occurrence of inadequate prenatal care and a prevalence of tobacco use and infections in 

comparison to adult mothers. It was found that the youngest and oldest individuals among the 

participants had a higher risk. The limitation of the study included a potential misclassification 

of PPD and associated maternal factors due to reliance on diagnostic codes, which may 

underestimate mild PPD cases and the unavailability of clinical records from outside the study's 

health systems. 

A cohort study of all women with singleton births over 11 years in Sweden found that the risk 

of PPD increased with a history of depression, advanced maternal age, and gestational diabetes 

[56]. Poisson regression models estimated the relative risk of PPD using incidence rate ratios. 

Women with a history of depression have a 20-fold higher risk of PPD compared to those with 
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no prior depression. For women with a history of depression, higher PPD risk was associated 

with advanced maternal age (>30 years) and pregestational diabetes. In contrast, among women 

without a history of depression, PPD risk increased with young age (<24 years), older age (>35 

years), and Caesarean or instrument-assisted delivery. Also, moderate preterm delivery (32–

36 weeks) increased PPD risk regardless of depression history. Gestational diabetes raised PPD 

risk for all women, while pregestational diabetes posed an additional risk only for women with 

a history of depression. A shorter gestational age increases PPD risk, particularly for preterm 

births. Although 11 years of data were analyzed, the predictors were limited to obstetric, 

gestational, psychiatric, and demographic factors, excluding other disease factors. 

2.1.2 Summary  

Research analyzing the risk factors for PPD has found that a person's history of depressive 

disorders, such as depression or anxiety, is a significant predictor [4], [53], [55]. Previous 

studies have primarily looked at factors related to maternal and paternal demographics when 

considering potential predictors. Other key factors associated with PPD include health 

problems during pregnancy [49], lack of social support, experiences of violence after giving 

birth, and dissatisfaction in the partner relationship [50]. Some studies have considered 

gestational diabetes as a separate factor, but there is no statistical evidence to confirm a 

significant link [51]. Age is a unique risk factor, with younger age being associated with a 

higher risk [56] and its impact on predicting PPD can vary depending on different combinations 

of factors.  
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In PPD research, statistical methods and ML techniques have been employed to forecast future 

outcomes. By examining historical data, the research seeks to reveal concealed patterns and 

comprehend the factors influencing the onset and severity of PPD. This approach enables early 

detection and precise intervention, enhancing the welfare of postpartum individuals and their 

families. With the utilization of predictive analytics, researchers are refining their capacity to 

identify PPD risk factors and tailor treatments to individual needs. It was found that psychiatric 

history, stress, gestation, and demographic-related variables are reliable predictors of PPD  

[19], [24]. 

2.2 Postpartum Depression Risk Factors: Chronic Illness 

People with chronic illnesses often have a higher prevalence of depression and anxiety [57]. 

This section presents a concise overview of the literature on the relationship between chronic 

diseases and PPD. 

R. D. Björvang et al. [58] aimed to address existing gaps in the literature concerning the 

relationship between Diabetes Mellitus in Pregnancy (DMP) and perinatal depression, 

specifically examining antepartum and PPD separately. They conducted a longitudinal 

investigation within a large prospective cohort study. By including multiple assessment 

methods for depression and adjusting for relevant confounders, the study provided a 

comprehensive understanding of the association between DMP and perinatal depression. The 

findings revealed a significant positive association between DMP and PPD. However, the study 

did not find a statistically significant association between DMP and antepartum depression 

once confounders were considered. Sub-analyses examined specific types of Diabetes Mellitus 
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(pre-gestational, gestational, and unspecified) and found varying associations with perinatal 

depressive symptoms. The study highlights the complexities of metabolic factors, hormonal 

changes, and psychological well-being during this period. The acknowledged limitations were 

low prevalence of DMP which may impact generalizability, and possible biases due to sample 

characteristics such as higher education levels. Also, future research is suggested to investigate 

how different types of DMP are related to depression over time and explore underlying 

biological pathways.  

A systematic review and meta-analysis [59] of longitudinal studies investigated the association 

between thyroid autoimmunity during pregnancy and the weeks after childbirth and the risk of 

developing PPD. Women with and without anti-thioperoxides antibody-Thyroid Peroxidase 

Antibodies (TPOAb) positivity were specifically focused. The analysis involved five studies, 

encompassing data from 449 TPOAb-positive women and 2483 TPOAb-negative women. It 

revealed a significantly higher risk of developing PPD in the TPOAb-positive group, although 

there was some heterogeneity. The study indicates that thyroid autoimmunity during pregnancy 

and postpartum is linked to a higher risk of PPD. However, more rigorously designed studies 

are needed to verify this association and to better understand the underlying pathophysiological 

mechanisms, which was a limitation of this research. Additionally, only one specific disease 

was explored in this study. 

A multinational study was conducted during the COVID-19 pandemic [60] aimed to assess the 

mental health of pregnant and breastfeeding women (9041) in Ireland, Norway, Switzerland, 

the Netherlands, and the UK. Descriptive statistics were used to analyze women's 

characteristics and mental health scores. Associations between depressive symptoms, anxiety, 
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and stress were assessed using logistic and linear regression models, with significant covariates 

retained in the final adjusted model, including country, maternal age, professional status, 

smoking, chronic somatic and mental illness, planned pregnancy, and breastfeeding status. 

Among the pregnant women, 15% exhibited major depressive symptoms, while 11% had 

moderate to severe generalized anxiety symptoms. In the breastfeeding cohort, 13% had major 

depressive symptoms, and 10% experienced significant generalized anxiety. Pregnant and 

breastfeeding women who reported chronic mental illness, smoked, or lived in the UK or 

Ireland were likelier to experience major depressive symptoms. These symptoms were also 

linked to not breastfeeding, having an unplanned pregnancy, and having a chronic physical 

illness after childbirth. This study has a limitation related to potential selection bias, as the 

survey was distributed via social media and did not assess whether depressive symptoms were 

linked to postpartum status. 

The prevalence of PPD was high in an institutional-based cross-sectional study conducted in 

Ethiopia [61]. All mothers who had delivered within the last 12 months and followed up for 

PPD were selected for this study. The PPD outcome variable was measured by using the EPDS. 

This study uses the SPSS statistical package, and bivariate analysis was done to find the 

association between the independent and dependent variables. Among the 408 participants, 

7.4% had chronic medical illnesses. The result demonstrated that about 33.82% had PPD, and 

those who had other chronic physical illnesses were 7.7 times more likely to develop PPD. In 

addition, unstable marital status, infant death incident, unplanned pregnancy, and age greater 

than 30 had increased probability for PPD. Even though this research explored chronic physical 

illnesses, the prediction of specific chronic illnesses was not determined. 
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A review examined the prevalence of PPD in three populations: women who use substances, 

women with current or experience of abuse, and women with chronic illness [62]. No matter 

the direct or indirect effect, this review found that PPD increased among women with substance 

use and those who experienced abuse, and these women are more likely to seek treatment. 

Additionally, this review found an increased risk of PPD in only one of the four reviewed 

studies involving women with chronic illness. The combined effect of multiple chronic health 

problems over a single or specific chronic illness increases the risk of developing PPD. The 

main limitation acknowledged in this review was the failure to confound depression in 

pregnancy in most of the studies.  

A study in Lebanon analyzed the determinants and prevalence of PPD [63] in 369 women from 

two locations, Beirut and Bekaa Valley. The chosen women were screened using EPDS, and 

scores above a threshold of 12/13 were considered as PPD. Bivariate analyses were performed 

using chi-square tests and identified covariates were adjusted to predict the PPD using multiple 

LR analyses. In both areas, the study determined the significant factors of PPD as the lack of 

support and prenatal depression. Also, women with prenatal depression and multiple chronic 

health problems were more likely to develop PPD. The prevalence of PPD was significantly 

higher in Bekaa Valley (21%) than in others. At the same time, the pattern of having more than 

one chronic illness was seen as a significant predictor for PPD in both regions. However, this 

study did not reveal or classify the chronic diseases that act as risk factors for PPD. In addition, 

the limitation mentioned in this study was that rather than psychiatric evaluation or other 

objective measures the potential risk factors were based on self-reports and retrospective 

information. 
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2.2.1 Summary  

Considering chronic diseases as the risk factor for developing PPD, only limited studies have 

been conducted. Among those, researchers found out that women with chronic illnesses had a 

higher chance of having PPD, and those having more than one chronic physical illness had an 

increased risk for PPD. In addition, the data used in those studies was on a minimal population 

or a concise period. Moreover, none of the studies had determined the specific chronic illnesses 

impacting PPD. 

2.3 CDC-PRAMS Data PPD Analysis 

Researchers have previously utilized the PRAMS dataset for studies exploring various aspects 

of PPD, including its prevalence, significant risk factors, and the impact of health, maternal 

behaviors, and experiences on postpartum mental health. Below is a brief overview of selected 

research articles that have utilized PRAMS data to analyze PPD, shedding light on significant 

findings and their implications for maternal and infant health. 

A. Paul et al. [8] used 28,755 records of PRAMS data and utilized different ML algorithms, 

including RF and SVM, to predict PPD using metrics such as AUC values, accuracy, precision, 

recall, F1 score, specificity, and sensitivity. Health factors such as pre-pregnancy BMI, 

nutrition status, and health problems while ignoring demographic and socioeconomic factors 

were considered. The analysis of different models revealed that SVM performed the best 

overall, achieving an accuracy of 74% and highest precision and F1 score. TabNet showed the 

highest AUC value, while the Gradient Boosting Machine (GBM) had the highest specificity, 
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and KNN had the highest sensitivity. While integrating ML models into remote monitoring 

systems for early detection of PPD was suggested, the dataset's state-specific nature and limited 

diversity may pose challenges to maintaining accuracy across varied populations. Also, no risk 

factors were analyzed since this research focuses on the ML model evaluation.  

PPD risk factors and prevalence were assessed using general-purpose statistical software 

(STATA) on PRAMS data [64]. This study highlighted the need for evaluating the 

epidemiology of PPD detection, prevention, and control strategies. A Chi-square test was 

conducted to assess the difference between the PPD and non-PPD groups, and LR models were 

created to analyze the risk factors. The evaluation showed that 12% of the 4,022 mothers had 

PPD, with prevalence fluctuating over the years. PPD was also common among unmarried 

mothers, those with lower education, low income, preterm births, low birth weight babies, and 

those receiving WIC during pregnancy. Additionally, mothers with prior depression or 

hypertension had the highest prevalence, while no significant differences were observed based 

on delivery type. Sociodemographic factors such as younger age, being Black, unmarried, or 

having a lower income were associated with higher odds of PPD. Depression before pregnancy, 

abuse before or during pregnancy, job loss, extended time away from husband/partner due to 

work-related travel, husband/partner not wanting the pregnancy, or arguing more than usual 

with a husband/partner were the key risk factors determined. Clinical factors like hypertension, 

unintended pregnancies, preterm births, and low birth weight babies also increased the risk. 

Additional stressors, such as divorce, homelessness, financial difficulties, substance abuse in 

someone close, and the death of a loved one, further elevated the risk of PPD. The sample data 

for this study was limited in size and was chosen only from a single state.  

https://www.cdc.gov/prams/index.htm
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In 2014, Sundaram S et al. [65]  investigated the relationship between maternal health issues 

and PPD using PRAMS data. A Hierarchical Linear Modeling (HLM) approach was used to 

explore various maternal morbidities and their potential association with PPD. A total of 13 

medical and obstetric issues were examined that can occur during pregnancy within two 

distinct samples: women from all states and women specifically from Alaska and Maine. 

Approximately 13.8% of participants showed symptoms of PPD, while 7.6% had a formal 

diagnosis of PPD. Five statistically strong significant maternal morbidities identified with both 

PPD symptoms and PPD diagnosis are vaginal bleeding, kidney/bladder infection, nausea, 

preterm labor, and bed rest. Hypertension and blood transfusion emerged as strong predictors 

for the diagnosis of PPD. The main findings reveal that both PPD symptoms and diagnosis are 

associated with preterm labor and nausea in Alaska and Maine. Additionally, vaginal bleeding, 

kidney/bladder infection, blood transfusion, and bed rest were associated with PPD symptoms 

only, whereas pre-existing diabetes was associated with PPD diagnosis only. The study 

acknowledges several limitations, including the potential for recall bias and underreporting of 

PPD symptoms due to the self-reported nature of PRAMS data. Discrepancies between self-

reported symptoms and PPD diagnosed by a healthcare provider were also noted. Limited 

generalizability was highlighted due to the state-specific nature of the data. Furthermore, the 

study points out the potential for bias due to uncontrolled variables and the exclusion of 

observations with missing data.  

The prevalence of PPD using PRAMS data was analyzed considering the effects of different 

stressful life events  [66]. The overall prevalence of self-reported PPD was 14.8%, which was 

higher in teen mothers, unmarried mothers, and low-income mothers, lower in mothers with 

graduate degrees, and among those with stressful life events. There was no significant 
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difference in prevalence by race or parity. This study conducted Chi-square tests, t-tests, and 

logistic regression analysis by categorizing 13 stressors into four groups: financial, relational, 

trauma-related, and emotional. The results found the highest probability of PPD in mothers 

who experienced severe relationship problems with low financial and high trauma-related 

stresses. Interaction effects showed the highest PPD likelihood with high relational and trauma 

stresses but low financial stress. Married teens were also more likely to experience PPD than 

married mothers aged 30 or older. The limitations highlighted include the inability to establish 

causal inference due to the cross-sectional design and potential biases from the self-reported 

nature of the data. The generalizability of the findings was restricted to states with similar 

demographics, such as higher proportions of low-income, less educated, and unmarried 

mothers. Additionally, key factors like pregnancy complications, birth outcomes, stress 

perception, past depression history, biological factors, and paternal support were not examined. 

Shin et al. [20] developed predictive models utilizing the PRAMS 2012-2013 dataset. Nine 

ML algorithms, including k-nearest neighbor (kNN), recursive partitioning (RPART; a 

decision tree-based method), support vector machine (SVM), stochastic GBM, Random Forest 

(RF), Neural Network (NN), Naïve Bayes (NB), Logistic Regression (LR), and AdaBoost were 

used in this study. The study revealed that among those tested, RF emerged as the most 

effective in predicting PPD, followed by SVM. Random Down-Sampling and The Synthetic 

Minority Over-Sampling Technique (SMOTE) were used to address the imbalance, and a 10-

fold cross-validation strategy was used to evaluate the classification models and the area AUC 

as the performance metrics. The study results showed that women of younger age, lower 

education, small-for-gestational-age infants, smoking reduction during pregnancy, and 

unmarried status are more likely to have PPD. Other important key predictors were stress 
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during pregnancy, prior depression, weeks of breastfeeding, income, dental hygiene, and infant 

gender. Self-reporting bias and the likelihood of limiting generalizability due to missing data 

were recognized as limitations. 

2.3.1 Summary  

The research on CDC-PRAMS data primarily focused on maternal, relationship, and 

psychiatric variables to predict PPD and its risk factors. However, current studies in this field 

often rely on data from specific locations (states) or limited time periods. Additionally, no 

comprehensive study has considered chronic illnesses as potential predictors of PPD. SVM 

was identified as a high-performing model [8], [20]. Key factors consistently identified across 

studies include a history of depression [20], [64], [67], younger age [20], [64], [66] and stress 

[20], [64], [66]. The predictors identified in these studies were consistent with findings from 

other research using different datasets.  

2.4 PPD Tool 

Section 1.1.3 discussed standard PPD screening tools, including EPDS and PDSS. 

Advancements in PPD screening have introduced new tools that assess a broader range of 

factors, such as psychosocial and cognitive risks. Details of these tools are outlined below. 

AJ Bjertrup et al. [68] examine how negative thinking about infant distress during pregnancy 

relates to PPD and provide a proof of concept to test the practicality of measuring negative 

neurocognitive bias using an online risk screening tool, REDCap. Eighty-seven participants in 
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their second or third trimester completed the online screening via a webpage on infant distress 

reactivity and psychosocial risk questionnaires. Bivariate associations were analyzed, followed 

by LR and multiple LR for PPD and post-birth depressive symptoms as outcome variables. 

The predictor variables included Affective Neurocognitive Processing of Infant Stimuli 

(emotional reaction to an infant distress video) and psychosocial factors. Other factors included 

age, depressive symptoms during pregnancy, education level, pregnancy week, parental 

bonding, attachment to the unborn child, job status, financial worries, income level, social 

support, family history of psychiatric disorders, personal history of psychological illness, loss 

of a parent, and childhood trauma. Key findings showed that negative emotional reactivity to 

an infant distress video and negative interpretations of infant cries during pregnancy led to 

PPD and symptom severity. The practicality of the online screening tool was less than ideal. 

The low response rate suggests the need for a shorter, more optimized screening tool. As 

mentioned in the paper, the key limitation indicated that the tool is not feasible in its current 

form, and validation is required on large-scale data. 

In 2012 McDonald S et al. [69] developed and validated a prenatal screening tool to identify 

women at risk of postpartum distress. A longitudinal cohort data from the All Our Babies 

(AOB) study was used to develop the tool based on regression coefficients. The independent 

variables selected to derive the screening tool are depression in late pregnancy/4 months 

postpartum, anxiety in late pregnancy/4 months postpartum, stress in late pregnancy, history 

of depression, history of abuse, and social support in late pregnancy, and relationship tension. 

The tool demonstrated higher sensitivity and broader focus compared to the EPDS, effectively 

identifying women at risk of both depression and anxiety. However, it showed lower specificity 

and performed better in women with middle to high socioeconomic status groups. Limitations 
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include reliance on self-reported measures instead of standard psychiatric diagnoses, missing 

data, and underrepresentation of ethnic minorities and low-income households. Despite these 

challenges, the tool provides a comprehensive approach to psychosocial risk assessment during 

pregnancy.  

In summary, beyond traditional scales like the EPDS, innovative tools provide a broader 

perspective by incorporating emotional reactivity, psychosocial variables, and personal 

histories. While these tools show promise, low response rates and limited generalizability 

highlight the need for optimization to create more reliable and effective solutions. Additionally, 

there are limited studies focused on developing new tools for screening or calculating the 

likelihood of PPD, emphasizing the need for further research in this area. 

2.5 Summary 

In the field of developing predictive models for PPD, research commonly considers a range of 

variables related to mental health, such as psychiatric history (during pregnancy, before 

pregnancy, history of PPD, other depression or psychiatric illnesses, and family history of 

depression). Furthermore, identified risk factors for PPD encompass financial aspects (such as 

low income), age, mode of delivery, gestational medical conditions or illnesses (including 

gestational diabetes), unplanned pregnancies, preterm births, and lower levels of education. 

These models also incorporate factors associated with the gestational period, maternal factors, 

and variables related to the family environment. However, it is essential to acknowledge that 

there has been a relatively limited focus on investigating the potential impact of pre-gestational 

health, disease, and specific conditions as predictive factors for PPD in the current literature.  
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While research has shed some light on the relationship between chronic illnesses and PPD, it 

remains a relatively understudied area. Significantly, the existing literature has not identified 

specific diseases that can be definitively classified as predictors for the onset of PPD. It has 

been identified depression as a potential risk factor for developing chronic diseases, 

particularly cardiovascular disease [12]. Also, Thyroid autoimmunity during pregnancy was 

identified as a risk factor for PPD  [59]. Further exploration and investigation are needed to 

better understand the potential role of these diseases in predicting PPD. It is crucial to 

emphasize that the understanding of predictive models integrating chronic diseases as potential 

risk factors for PPD prediction is still in its early stages and lacks comprehensive insight. 
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Chapter 3 

 Methodology 

This chapter provides a comprehensive overview of the research methodology. The proposed 

framework includes analytical methods for predicting PPD and identifying risk factors, a 

dashboard for enabling data exploration, and a web-based tool to find the likelihood of PPD 

based on user input. The research methodology comprises several components ranging from 

data collection to the visualization and final web-based tool (Figure 5). These components are 

explained in this section.  

 

Figure 5. Proposed Research Model. 
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3.1 Data Collection 

The primary data source, PRAMS has undergone several phases of questionnaires, starting 

from Phase 1 (1988–1989) and continuing to Phase 9 (2023–present). The questionnaire is 

periodically updated and includes three parts: 

• Core questions: Used by all sites, covering topics like maternal pre-pregnancy status, 

prenatal care, smoking, and alcohol use. 

• Standardized questions: Optional questions for sites to choose from. 

• Site-developed questions: Unique questions used by individual sites. 

The PRAMS contains a standard set of variables in five categories, as given below [40]: 

• Birth Certificate: Provides information primarily on maternal and infant demographics. 

• Operational Variables: Indicate the mode used to complete the questionnaire, such as 

by mail or phone. 

• Weighting Variables: Account for the PRAMS survey design and ensure statistical data 

weighting. 

• Questionnaire Data: Represents the responses collected from the PRAMS survey. 

• Analytic Variables: Pre-calculated variables derived by combining different variables 

within the dataset. 

The anonymized dataset obtained for this study comprised 950 fields which includes maternal 

and paternal demographics, infant- and family-related factors, chronic diseases, postpartum, 
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gestational, and obstetric variables. The collected records had a valid PPD symptom variable 

‘PP_DEPRESS1’ with values 1 and 2 (False and True). The data was provided as a SAS file 

containing detailed records, which was then exported to an SSMS database for processing. 

SSMS was chosen for its robust data management capabilities. 

3.1.1 Ethics Approval  

The Research Ethics Board (REB) of the University of Northern British Columbia (UNBC) 

reviewed the ethics approval application and determined that REB approval was not required. 

3.2 Data Preparation  

Data preparation (Figure 6) is a critical step in the data analysis process, involving procedures 

that make raw data suitable for consumption by ML models [70]. These procedures include 

cleaning, transforming, and organizing data. Adequate data preparation ensures optimal 

outcomes by enhancing the efficiency and reliability of ML models. 

 
1 PP_DEPRESS refers to the target variable "Post-Partum Depression," which was used to predict the likelihood 

of post-partum depression in mothers. 



   

 

45 
 

 

Figure 6. Data Preparation Process [70]. 

3.2.1 Data Collection  

The primary focus of this research was to identify potential high-risk chronic diseases 

contributing to PPD. So, in addition to the risk factors described in Section 1.1.1, disease-

related variables were included in the input features. Specifically, variables such as diabetes 

and asthma were added to address the research question. 

3.2.2 Data Preprocessing  

Data preprocessing involves broader tasks such as handling missing values, feature 

engineering, and handling imbalances in labeled data to improve data quality and relevance, 

making the analysis more effective and valuable [71]. Proper execution of these tasks ensures 

reliable results from predictive models. 
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Identifying the relevant variables that affect the outcome of interest poses many challenges. 

Sometimes, unrelated variables indirectly influence the outcome, making it crucial to consider 

all potential variables carefully. The initial dataset obtained was overly complex, leading to 

model overfitting. This required extensive preprocessing to make the data suitable for analysis. 

Identifying and handling issues in the dataset includes several tasks, which are explained 

below. 

Missing value treatment 

Handling missing values is vital to reduce the impact of poor data quality on the model’s 

performance. Issues such as biased predictions, reduced model reliability, and compromised 

decision-making often stem from unclean data [71]. Dealing with missing data primarily 

involves two major methods: imputation and row deletion. The underlying factors for missing 

values in PRAMS data include item-non-response (explained in Section 3.2.6) and skipping 

patterns. Item non-response occurs when individuals choose not to answer certain questions. It 

significantly increases the risk of developing bias, leading to inaccurate or unreliable 

predictions. Since PRAMS data is survey-based, records with missing data were removed to 

address item non-response bias. Imputation was applied in cases involving skip patterns. For 

example, in PRAMS’ Phase 5 survey, if a mother reported that her infant was still in the 

hospital, she was instructed to skip the question about whether her infant was alive. It is 

reflected in the variable INFLIVE5, where responses were coded as missing for mothers whose 

infants were still hospitalized. Missing values for INFLIVE5 were imputed by referencing the 

variable LTH_HOSP, where a response of "7" indicated that the baby was still in the hospital. 
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Challenges arose when analyzing subgroups within the PRAMS dataset. The primary issue 

was sample size constraints, with limited entries for certain features in specific states. 

Additionally, when state-specific features were excluded from surveys, the results became 

skewed, reducing the reliability of specific analyses. 

Irrelevant and redundant information 

Knowledge discovery becomes more complicated when there are a lot of irrelevant and 

duplicative details or noisy and unreliable data. This difficulty arises for the following reasons: 

• Multifaceted questioning: The survey may ask similar or nearly identical questions in 

different sections. It can lead to repeated or conflicting information if participants 

answer these questions again. 

• Incomplete updates: Updating the survey may change or remove questions, but their 

old versions might remain. It can result in redundant questions in the survey. 

For instance, the dataset comprised MH_PPDPR, MH_PPINT (these questions are adapted 

from PHQ-2 - Phase 2 Questionnaire), and PP_DEPRESS variables which are defined as 

follows: 

MH_PPDPR:  Since your new baby was born, how often have you felt down, depressed, or 

hopeless? 

MH_PPINT: Since your new baby was born, how often have you had little interest or pleasure 

in doing things you usually enjoy? 
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PP_DEPRESS:  Coded as “yes” for PPD symptoms if mother responded “always or often” to 

MH_PPDPR or MH_PPINT and coded as “no” if mother responded “sometimes, rarely, or 

never” for MH_PPDPR and MH_PPINT. 

The PP_DEPRESS is an analytic variable composite of two variables, MH_PPDPR and 

MH_PPINT. In the context of composite target variable PP_DEPRESS, MH_PPDPR and 

MH_PPINT primarily serve as building blocks and there was no specific need to analyze them 

separately. Here, removing the variables MH_PPDPR and MH_PPINT was considered. 

Similarly, instances of redundancy can arise, such as the features INFQ_AGE and 

INFQ_AGE_MOD, both representing infant age in days whereas the latter was identified as 

being the cleaned version. 

In addition, capturing different phases of the questionnaire in varying formats may lead to 

similar variables. For example, starting from Phase 5, the INFLIVE5 variable reflects a change 

in the survey skip pattern, where mothers with infants still in the hospital were instructed to 

skip the question, "Is your baby alive now?" This case is coded as missing in INFLIVE5. In 

earlier phases (Phase 4 or before), mothers were required to respond to this question, and their 

responses were recorded in the INF_LIVE variable for comparability. While both variables 

record the same frequencies for deceased infants, INFLIVE5 has fewer entries for alive infants 

due to the enforced skip pattern. Additionally, the INFLIVE5_RAW variable captures 

responses from mothers who did not follow the skip instructions and answered the infant alive 

question. This response was coded as missing in INFLIVE5 to align with the enforced skip 

pattern. Since this research focuses on Phase 5 to Phase 8 survey data, INFLIVE5 is selected, 
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and other similar variables, such as INF_LIVE and INFLIVE5_RAW, are removed during 

preprocessing. 

3.2.3 Feature Selection  

Feature selection is necessary to choose the most relevant features (input variables) from the 

original set of features for building a predictive model. Its purpose is to boost the performance 

of the model, mitigate overfitting, and enhance the interpretability of the model [72]. 

Variable inclusion and exclusion 

Input variables in predictive models were carefully selected to include only relevant factors, 

ensuring model simplicity and improved accuracy. All the chronic diseases and health-related 

variables available in the dataset were added to the input features to address the research 

question. Variables deemed irrelevant to the predictive goals were removed to minimize errors 

caused by unnecessary information. For instance, the variable "PRE_STI," which captures 

discussions about sexually transmitted infections (STIs) such as chlamydia, gonorrhea, or 

syphilis occurring before pregnancy was determined to be irrelevant and was removed. This 

step ensured that the model focused solely on meaningful predictors and excluded irrelevant 

features. 

Another example of irrelevant variables is the PRE_CKD, which refers to standard question 

L26, (Did you do any of the following things at any time during the 12 months before you got 

pregnant with your new baby?) and (option d: A health care worker checked me for diabetes). 
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This question asks whether a healthcare provider conducted tests to check for diabetes, 

regardless of the mother’s diabetes status, were removed, recognizing its irrelevancy.  

In addition, the inclusion and exclusion of variables were based on data completeness and 

relevance to the thesis objective. Only eight states with complete and reliable data for key 

chronic disease variables were retained. Participant records were filtered to include mothers 

aged 15–55, focusing on the most relevant demographic. Variables critical to the study were 

prioritized, while redundant or less impactful features were removed using the feature selection 

algorithm, which is explained in Section 0. 

3.2.4 Feature Engineering and Derived Variables 

 

Feature engineering involves transforming and creating features to make data suitable for 

modeling. Correcting irregularities, enhancing feature relevance, and meaningful 

transformations of raw data are the main processes involved in feature engineering [71]. 

Feature engineering was conducted to create new variables such as ABUSE and CHRONIC 

(Flag type). Derived variables from existing features were introduced to the dataset by 

transforming or combining existing variables. Thus, additional features, such as MOM_AGE 

from MDOB_YR4 and ID and YEAR from ID, were created. Creating these new features helps 

reveal hidden patterns in the data, enhancing the accuracy and performance of the model's 

prediction. All these processes resulted in a final dataset comprising 23,855 records and 42 

features. A nurse practitioner reviewed and confirmed the selection of these final variables, 

ensuring the clinical relevance and validity of the data used for analysis. 
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3.2.5 Data Encoding and Scaling 

Data transformations and scaling are vital to address issues arising from disparate data ranges 

and categorical representations, which can otherwise result in biased predictions or 

inefficiencies in model performance [71]. Encoding categorical data and scaling numerical 

values makes the data more suitable for analysis, fostering accurate and reliable predictive 

outcomes. 

Encoding such as one-hot or label encoding involves converting categorical variables into 

numerical formats which can be interpreted by the model. Tree-based models, such as Random 

Forests (RF), natively handle such data through their tree-splitting mechanism allowing them 

to evaluate categories directly without assuming specific relationships between data types, thus 

eliminating the need for encoding. Pre-processed data was scaled for features such as maternal 

and paternal race and month of birth to be utilized in the LR, NN, and SVM. These ML models 

are further explained in Section 3.4. 

Scaling ensures that numerical variables are standardized to a consistent range or distribution, 

improving model convergence and performance. Variables such as infant age were scaled for 

NN and SVM because of their sensitivity to feature magnitude or distribution. Similar to 

encoding, tree-based models such as RF do not require scaling. 
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3.2.6 Challenges 

Unbalanced data 

Conducting thorough exploratory data analysis (EDA) is essential to identify imbalances in 

datasets, which can severely affect the performance of ML models. Unbalanced data can skew 

the model predictions toward the majority class. SMOTE was applied to handle imbalances in 

data. SMOTE generates synthetic samples for the minority class to balance the dataset and 

improve the model's generalization ability across classes. 

Item non-response 

When individuals choose not to respond to survey questions, it can result in a biased survey. 

PRAMS relies on surveys that are sent to new mothers. Not all mothers who receive the 

questionnaires opt to participate and provide their responses due to a variety of reasons, such 

as time constraints, privacy concerns, or a lack of interest. This non-response can introduce 

bias, as non-respondents may have different characteristics or experiences than respondents, 

posing a significant challenge. It affects the quality and representativeness of the data. With 

this bias, the data accurately reflects only part of the population, impacting the validity of 

research findings and decisions based on the data. To address this, biased records were 

removed, and subgroup analyses were conducted to assess whether non-response bias varied 

across different demographic groups. 
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3.3 SPSS Modeler 

Although previous research on PRAMS data has relied heavily on SAS (Statistical Analysis 

System), SPSS (Statistical Package for Social Science), and STATA as the primary analysis 

software, data mining and ML techniques have gained attention. As a result, some researchers 

have started to explore open-source software such as IBM's SPSS Modeler, which offers robust 

analytical capabilities. The reason behind choosing this tool is its following capabilities: 

1. The software itself finds the appropriate model for given data. 

2. Automated feature selection and classification model selection. 

3. Easy to use with a simple drag-and-drop interface. 

4. Easy to add source data from multiple sources. 

A node in SPSS Modeler represents a specific operation or analysis and is interconnected to 

other nodes to form a stream that sequences data analysis process steps from input to output. 

This tool was selected for this thesis for specific tasks such as feature selection and selecting 

the best predictive models for classification using nodes explained below [73]: 

Feature Selection Node: 

The most significant predictors for a given analysis are identified using this node. It evaluates 

input fields relative to a specified target, ranking them based on importance. This process 

involves: 
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• Screening: Eliminate inputs such as those with excessive missing values or 

minimal variation that are unimportant or outliers. 

• Ranking: Sort and assign ranks. 

• Selecting: identifies the subset of features to utilize in the selected models. 

Auto Classifier Node: 

It compares multiple predictive models for nominal or binary targets and selects suitable 

models for the given dataset and target. It allows users to: 

• Select Algorithms: Choose from various modeling methods, such as decision trees, 

neural networks, or support vector machines. 

• Experiment with Options: Test multiple combinations of algorithm parameters to 

identify the optimal configuration. 

• Rank Models: Evaluate and rank each candidate model based on criteria such as 

accuracy or F1 score. 

3.4 Predictive Model 

Once the data is prepared and cleansed, the next step is to use it for predictive modeling. The 

four models used for this study are NN, LR, RF, and SVM. The rationale for selecting these 

models is based on their demonstrated superior performance in predicting PPD, as identified 

in the literature. Model-specific reasons are provided in Section 4.3.  

  



   

 

55 
 

Input data  

The preprocessed dataset was imported from the SQL server to Jupyter Notebook in the Visual 

Studio environment and read using pandas' data frame. Considering the target variable 

'PP_DEPRESS,' the dataset was partitioned into training and testing sets. Better results are 

achieved when 20–30% of the data is allocated for testing, with 70–80% used for training [74]. 

Therefore, a 70:30 split ratio was selected for training and testing to ensure sufficient data for 

model training while reserving enough data to evaluate the trained model's performance on 

unseen data.  

Model Training (Learning) 

The ML models were trained on the prepared dataset. In this phase, the models learned the 

underlying patterns and associations between the input features and the target variable 

'PP_DEPRESS.' The models were retrained by tuning hyperparameters, which are configurable 

settings influencing the learning process and model performance. A stratified fold cross-

validation was applied to ensure that each fold maintains the same proportion of each class as 

the original dataset, which is important given the imbalanced nature of the data.  

Model Testing (Decision-Making) 

After training, the model's effectiveness was assessed using a separate, smaller test dataset 

without the target variable. Accuracy and F1 scores were calculated from test results to evaluate 

how well the models learned to predict PPD. This is described in detail in Section 4.2. 
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3.4.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) are advanced ML models inspired by the human brain's 

neural structure. Models learn and recognize the patterns by designing the network to process 

the data in layers [75]. The structure of these layers can solve complex, non-linear problems. 

Mainly, an ANN consists of three components: 

Input Layer: Accepts raw input data and forwards it to the neurons of another layer in 

the network for processing. 

Hidden Layers: This layer applies weights, biases, and activation functions to uncover 

relationships within the data. An activation function introduces non-linearity to an NN and 

learns complex patterns and relationships in data. Deeper networks use multiple hidden 

layers. 

Output Layer: Final predictions or classifications are produced in the output layer. 

The data flows from the input layer to the output layer through the hidden layer, and each 

layer's neurons are interconnected. ANNs learn by adjusting weights during training using 

backpropagation to compute error gradients. Optimization methods such as gradient descent 

utilize the gradients to reduce prediction errors and enhance model performance. Figure 7 

shows the schematic diagrams of ANN. 
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n  

Figure 7. a) ANN (b)Structure of ANN for a Neuron in a Hidden Layer with One Output  [76]. 

The output of a neuron in an artificial NN is evaluated as 

hj = f (∑ wijxi 

n

i=1

+ bj) 

Equation 1. Output of the Neuron 

where 

xi : Input values 

wij: Weight connecting input xi  to neuron hj 
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bj: Bias term for neuron hj 

f: Activation function 

hj: Output of the j-th neuron 

The versatile characteristics of ANN make it suitable in fields such as image recognition, 

language processing, predictive modeling, handwriting recognition, fraud detection, and 

speech-to-text systems. A Multi-Layer Perceptron (MLP) NN classifier was chosen due to its 

ability to balance complexity and flexibility, making it well-suited for binary classification 

tasks.  

3.4.2 Logistic Regression 

Logistic regression (LR) is the most commonly used regression model that creates a linear 

relationship between the independent variables and the logarithm of the odds for the target 

variable. This method is designed for binary classification problems where the target variable 

has two possible outcomes (e.g., success/failure, yes/no, or 0/1). Its straightforward 

implementation and efficiency make it a reliable choice for classification tasks, predicting the 

probability of a target class using the sigmoid function, which outputs values between 0 and 1 

[77] 

The logarithmic odds are transformed into probabilities using the sigmoid function. A 

threshold (commonly 0.5) is applied to these probabilities to classify the outcomes. Each 
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coefficient in the model reflects the predictor's impact on the log-odds of the target, aiding in 

understanding its effect on the outcome. Figure 8 is a visualization of the sigmoid function 

used in LR, illustrating how LR transforms input features into a probability distribution suitable 

for binary classification. 

 

Figure 8. The Sigmoid Curve in LR [78] 

The sigmoid function, also known as the logistic function, is a mathematical function that maps 

any real-valued number into a value between 0 and 1, producing an S-shaped curve. This 

characteristic makes it particularly useful in LR for modeling probabilities. The function is 

defined as: 

σ(x) =
1

1 + e−x
 

Equation 2. Sigmoid Function 
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In this equation, e represents the base of the natural logarithm, and x is the input value. The 

sigmoid function effectively compresses input values into a range between 0 and 1, which can 

be interpreted as probabilities in the context of binary classification. LR is widely recognized 

for its practical healthcare, social sciences, and finance applications [77]. 

3.4.3 Random Forest Tree 

RF is a powerful ensemble learning model used for classification and regression tasks. It 

constructs multiple decision trees during training and combines them to make predictions to 

improve accuracy and reduce overfitting. Unique trees are built by selecting random data and 

features. Robust and accurate models are created with a reduced likelihood of overfitting, with 

the diverse nature of the randomly constructed trees in the forest [79]. This makes it a popular 

choice for ML tasks for its robustness and reliability of results. Figure 9 shows the RF 

algorithm, which combines the results of multiple decision trees by majority voting or 

averaging to produce robust and accurate predictions. Structure and Functioning of RF: 

1) Ensemble of Decision Trees: Each decision tree is trained on multiple random subsets 

of the data (with replacement, known as bootstrapping). 

2)  Feature Selection: A random selection of attributes is made at each division in a tree, 

promoting variety among the trees. 
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3)  Prediction Aggregation: For classification tasks, the final prediction is determined by 

a majority vote, where the class predicted by most trees is chosen. For regression tasks, 

the final prediction is the average of all individual tree predictions. 

 

Figure 9. RF: An Ensemble Learning Algorithm [80]. 

These ensemble characteristics reduce the overfitting that generalizes better than individual 

decision trees, making it suitable for applications such as medical diagnosis, fraud detection, 

and customer segmentation.  
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3.4.4  Support Vector Machine 

SVM is one of the most robust prediction methods and a powerful supervised ML models 

primarily used for classification and regression tasks. It identifies support vectors, which are 

the closest data points to the hyperplane, and uses them to maximize the margin between 

classes and ensure the best possible separation of classes. This makes SVM improve 

generalization, reduce misclassification, and handle high-dimensional spaces and complex 

datasets [81]. 

SVM can effectively handle non-linear relationships by transforming data into a higher-

dimensional space using kernel functions (e.g., linear, polynomial, radial basis function). For 

example, a radial basis function kernel allows SVM to create flexible decision boundaries for 

complex datasets. Figure 10 presents a simple SVM with a linear kernel. 

 

Figure 10. Linear SVM [82]. 
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SVM is widely used in applications such as image recognition, spam detection, and 

bioinformatics [82]. It is robust to overfitting, especially in cases where the number of 

dimensions exceeds the number of data points.  

3.5 Dashboard 

A business intelligence (BI) dashboard allows users to analyze and report on key performance 

indicators and other metrics. Many health organizations have online visualization tools 

available for the public to explore trends of incidence, mortality, demographics, and other 

statistics etc., to intuitively visualize vast amounts of data. BI dashboards are effective as they 

reduce the time needed to visualize data in charts, graphs, and maps. 

 A dashboard was built using Power BI for several reasons such as its capability to connect to 

various data sources, built-in insights with drag-and-drop features, and the creation of a 

shareable and customizable wide range of visuals. Power BI also offers a free standalone 

desktop application. It offers a user-friendly platform that integrates data cleaning, statistical 

analysis, and interactive visualizations, enabling seamless collaboration, cost-effective 

solutions, and powerful insights backed by Microsoft’s robust support and extensive ecosystem 

[83]. 
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3.6 Summary 

This chapter outlined the methodology used in this research, describing various components 

ranging from data sources to visualization techniques. The experiments and outcomes are 

explained in the following chapter. 
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Chapter 4   

Experiment and Results 

This chapter outlines the data visualization, evaluation of selected ML models that predict the 

risk of PPD, and a PPD web-based tool. The post-training analysis section identifies key 

predictors, focusing on the relationship between chronic diseases and the risk of PPD. The 

predictive modeling sub-section presents results from various ML models and provides a 

comparative performance evaluation. The post-training analysis examines the selected chronic 

diseases to demonstrate the validity of the hypothesis. Finally, the functionality of a tool that 

predicts PPD based on user inputs is presented. 

4.1 PPD Dashboard 

A dashboard created using Power BI is presented in this section, which supports EDA in 

exploring the data to gain insights and identify trends along multiple key performance 

indicators (KPIs) (Figure 11). The dashboard showcases data segmented across various 

dimensions, including maternal age groups, PPD prevalence, disease variables, maternal 

education groups, prenatal variables, and infant factors over the years and states. Of the 23,855 

individuals in the cleaned dataset, 3,259 (13%) were identified as having PPD, and 11,000 

were reported to have chronic diseases. 
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Figure 11. PPD Dashboard 

The Key Influencers 

 The Key Influencers functionality in Power BI uses statistical methods along with odds ratios 

to identify and rank factors that most influence the target outcome. Figure 12 reveals the factors 

that significantly influence the likelihood of depression during postpartum. Individuals having 

a history of depression in specific maternal age groups are 2.2 times more likely to experience 

PPD. Being married and belonging to paternal race group 1 (Asian, excluding Indian, Japanese, 

Filipino, or Chinese) increases the likelihood of PPD by 1.75 times, whereas having a chronic 

disease raises the probability by 1.74 times. Additional factors such as having a history of 
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hypertension increase the probability by 1.51 times, and Type 1 or Type 2 diabetes diagnosis 

raises the likelihood by 1.23 times. These insights provide valuable information for 

understanding the drivers of PPD in the population. 

 

Figure 12. PPD Key Influencers 

Demographic Features 

Figure 13 and Figure 14 highlight the prevalence of PPD across maternal age groups and 

education levels. The 25-29 age group (978 cases) has the highest number of cases, followed 

by the 30-34 (820 cases), and the lowest in the 15-18 (53 cases) group. PPD prevalence also 

increased with education levels, with the highest cases in women with 13-15 years of education 

(1,071 cases) and the lowest in those with 0-8 years (66 cases). Marital status shows more 
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married individuals with PPD in higher education categories, particularly among those with 

12-15 years of education (1,165 married). 

 

Figure 13. PPD and Maternal Age Group 

 

Figure 14. PPD by Maternal Education Level and Marital Status (Married) 
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Disease Factors 

 

Figure 15. PPD by Disease Factors  

Figure 15 depicts the trends in various health conditions among patients from 2016 to 2020, 

including heart disease, thyroid dysfunction, asthma, seizures, chronic disease, anemia, and 

PCOS. Anemia and Asthma exhibit moderate increases over the years, while the remaining 

diseases remain relatively stable with minimal fluctuations. All features with PPD show similar 

trends in their increase, which could have an impact on PPD. 

Prenatal Factors 

Figure 16 illustrates the trends in the prevalence of PPD, with gestational diabetes, depression, 

and high blood pressure (HBP) from 2016 to 2020. Though gestation diabetes shows the 
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highest and depression the lowest, all factors show a steady increase throughout the period. 

These patterns indicate a potential relationship between prenatal health conditions and PPD. 

 

Figure 16. PPD by Prenatal Factors. 

4.1.1 Summary 

The dashboard provides a concise overview of PPD prevalence. The Key Influencers tool 

identifies critical factors impacting PPD, such as history of depression, maternal age, chronic 

disease, and marital status, enabling data-driven insights that are consistent with the important 

predictors identified by ML models. Visualization helps ensure accurate insights into patterns 

and relationships between features and the target variable and helps identify imbalances in the 

data. 
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4.2 Evaluation Metrics: Accuracy and F1 Score 

The accuracy of the model is determined by dividing the number of instances where the 

predicted values match the actual values by the total number of predictions [84],  

Accuracy (%) = (
Number of Correct Predictions

Total Number of Predictions
)  × 100 

Equation 3. Accuracy by Percentage 

In addition, the F1 score, the harmonic mean of precision and recall, provides a more detailed 

evaluation, which is especially useful in imbalanced datasets. It helps to balance the trade-off 

between false positives and false negatives, ensuring a thorough assessment of the model's 

predictive capabilities. Accuracy and F1 [87] scores provide a complete view of the model's 

effectiveness in accurately classifying observations. 

F1 Score = 2  × (
Precision × Recall

Precision + Recall
) 

Equation 4. F1 Score Formula. 

where 

Precision is the ratio of correctly predicted positive observations to the total predicted 

positives, given by [85]: 
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Precision =
True Positives

True Positives + False Positives
  

Equation 5. Precision Formula 

Recall (or Sensitivity) is the ratio of correctly predicted positive observations to all the actual 

positives, given by [85]: 

Recall =  
True Positives

True Positives + False Negatives
 

Equation 6. Recall Formula 

4.3 Predictive Modeling: An Analysis of Four Models to Predict PPD  

During the training phase, the performance of the models was improved by tuning the 

hyperparameters. This section presents the selected parameters for each model and compares 

the corresponding performance metrics. 

Hyperparameter optimization was conducted on NN and SVM using RandomizedSearchCV to 

efficiently explore a wide range of hyperparameter combinations, while LR and RF employed 

GridSearchCV to search for the best configurations. The search was performed in parallel to 

enhance computational efficiency. Each model's decision threshold was optimized to improve 

the balance between precision and recall. The models were trained using sample weights to 

account for class imbalances. 
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4.4 Model Comparison 

Figure 17 illustrates the performance of models on selected features, showing their influence 

on the probability of PPD. The models were evaluated based on their accuracy and F1 scores 

defined earlier. 

 

Figure 17. Model Comparison: Accuracy and F1 Score. 

Table 2. Precision, Recall, and F1 Score 

Model Precision Recall F1 Score 

NN 0.75 0.79 0.77 

LR 0.90 0.86 0.88 

RF 0.79 0.85 0.82 

SVM 0.79 0.81 0.80 
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The model comparison reveals that LR attained 89% accuracy and an 88% F1 score. The RF 

model achieved 83% accuracy and 82% F1 score, followed by the SVM model with 83% 

accuracy and 80% F1 score. The NN model demonstrated 76% accuracy and 77% F1 score. 

The close similarity between accuracy and F1 scores across models suggests balanced 

performance across the majority and minority classes. This balance indicates that the models 

are not biased toward one class, effectively managing the trade-off between precision and 

recall, as presented in Table 2. 

4.4.1 Performance Metrics: Discussion 

This section discusses the performance metrics observed during the model evaluation, with a 

particular focus on the influence of parameter tuning. The results were analyzed to understand 

how different tuning approaches influenced the selected models' overall accuracy and F1 score. 

A stratified cross-validation was applied to test if the model was biased or overfitted. 

Neural Network  

o An initial 75% F1 score was achieved using Python's MLPclassifier with default 

parameters. 

o Tuning the parameters to two layers with a ReLU (Rectified Linear Unit) activation 

function, an Adam optimizer, and L2 regularization set at 0.001, along with a 

sigmoid (output layer), improved the F1 score to 77%.           
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 Logistic Regression  

o Tuning the solver parameter for liblinear, saga, and lbfgs resulted in varying 

accuracy scores. The saga solver achieved around 65% accuracy, while the other 

two solvers—liblinear and lbfgs (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno)—each achieved approximately 89% accuracy, finding the optimal 

threshold value of 46 instead of 50. 

o LR achieved 89% and 88% accuracy and F1 score, respectively, using 

GridSearchCV with a maximum of 5000 iterations, an L2 penalty, liblinear solver, 

and a regularization strength (C) of 0.01. 

Random Forest  

o The basic RandomForestClassifier configuration with default parameters—100 

trees, a minimum of 2 samples required to split an internal node, no maximum tree 

depth, and at least 1 sample per leaf—achieved an F1 score of 80%. 

o Tuning hyperparameters with GridSearchCV, the RF model was configured with 

300 trees, a minimum of 2 samples required to split a node, no maximum tree depth, 

and max_features set to 'sqrt' yielded an F1 score of 82%. 

Support Vector Machine  

o The SVM model, initially configured with parameters such as enabling probability 

estimation and setting the random state to 42, achieved an F1 score of 77%. 

o Tuning the 0.01 RBF (Kernel Coefficient) and adjusting the C (regularization 

parameter) improved the F1 score to 80%. 
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The performance achieved by LR is likely due to its ability to effectively model linear 

relationships between features and the binary target, as well as the use of optimized 

hyperparameters that balance precision and recall. The ensemble learning approach in RF 

effectively captures complex nonlinear relationships in the data by creating multiple decision 

trees, likely resulting in robust classification performance. Likewise, capturing complex 

nonlinear relationships through the RBF kernel in SVM might have resulted in enhanced 

predictions. Stratification ensures that each fold reflects the class imbalance in the dataset, 

forcing the model to learn from both classes, which may slightly reduce accuracy but improve 

generalization.  

4.5 Post-Training Analysis: Identify Key Predictors  

This section identifies key predictors, focusing on the relationship between chronic diseases 

and the risk of PPD. SHAP (Shapley Additive exPlanations) [86], a game theoretic approach, 

was utilized in this post-training model analysis. Other model-explaining techniques, including 

the Permutation Importance and Partial Dependence plots, allow us to understand the 

importance of features but lack local interpretability. Since the SHAP can be model-specific 

or agnostic, it has the flexibility to adapt to various ranges of models. 

The SHAP value was calculated to interpret the impact of input features on the target 

PP_DEPRESS. The 'SHAP' Python package enabled the creation of various plots to understand 

the key predictors and how the values of each predictor impact the target. Plots were based on 

the mean absolute SHAP values of each critical feature. The Beeswarm plots in Figure 19,  

Figure 21, Figure 23, and Figure 25 show a deeper insight into each value of every significant 
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predictor, whether it has a positive or negative impact. Each dot corresponds to an individual 

prediction, shifting the color gradient from blue for lower feature values to red for higher ones. 

The positive SHAP value for a feature value indicates that it has a strong positive contribution 

to predicting PPD, and the negative value indicates the reverse. Table 3 shows the key features 

and their predictive strength by selected models with label information. The SHAP values for 

significant features using each model are presented below. 

Neural Network  

Figure 18 demonstrates the key features identified by the NN model using SHAP. The bars 

show the absolute SHAP value, meaning a more critical feature with a higher SHAP value on 

the top. The feature CHRONIC was on the top, having a SHAP value of 1.33, followed by 

other selected chronic diseases, anxiety, anemia, and asthma, which are consistent (except 

anxiety) with other models described later. 

Key chronic predictors of PPD identified are anxiety, anemia, heart disease, PCOS, epilepsy, 

thyroid dysfunction, and pre-pregnancy diabetes. Other features such as length of stay at the 

hospital, infant sex, high blood pressure, both father's and mother's race, paternal education, 

and Kessner Index2 are also underscored as key predictors. 

 

 
2 The Kessner Index measures the adequacy of prenatal care by evaluating when prenatal care began, 

the total number of visits, and the length of the pregnancy [87]. 
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Figure 18. Feature Significance Using SHAP on NN Model 

Figure 19 displays the contribution of the feature CHRONIC towards PPD with a higher value 

(1- presence). Chronic diseases such as heart disease, anxiety, anemia, asthma, PCOS, 
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epilepsy, thyroid dysfunction, and pre-pregnancy diabetes had lower SHAP value for their 

presence. The other vital features identified are infant sex and place of birth. Having high blood 

pressure during pregnancy had a significant influence on predicting PPD. 

 

Figure 19. SHAP Summary: Visualizing Feature Impact and Distribution Using NN Model 
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Logistic Regression  

Figure 20 shows the key predictors of PPD. The feature CHRONIC comes after paternal and 

maternal race and the infant’s birth month. CHRONIC and MH_PGDX8 (Health problems 

during pregnancy – Depression) got the same SHAP value of .29.  

 

Figure 20. Feature Significance Using SHAP on LR Model 
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The SHAP analysis across each feature is shown in Figure 21. Considering the feature 

CHRONIC, a red marker (1-presence of chronic disease) falls in the positive SHAP value 

region, indicating that the mother with chronic disease had a higher chance of getting PPD.  

 

Figure 21. SHAP Summary: Visualizing Feature Impact and Distribution Using LR Model 
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In addition to the presence of chronic disease, depression during pregnancy, younger age of 

mother, lower Kessner Index, having high stress, "Other" marital status, history of depression, 

smoking behavior, and lower paternal education level have been identified as the key factors 

in predicting risk of depression. When considering specific chronic diseases, epilepsy emerges 

as a strong contributor, while the presence of asthma, anxiety, and anemia show a lesser impact. 

Random Forest  

The key features identified by the RF model using SHAP are shown in Figure 22. Similar to 

LR and NN, the feature CHRONIC is indicated as one of the key predictors of PPD. In addition, 

other similar features such as Kessner Index, depression during pregnancy, paternal and 

maternal race, paternal education, asthma, and anemia are found in the top predictors. 
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Figure 22. Feature Significance Using SHAP on RF Model 

The SHAP plot in Figure 23 shows the detailed effect of each feature value in predicting PPD, 

highlighting that the feature CHRONIC has a positive contribution, consistent with both the 

LR and SVM models. 
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Figure 23. SHAP Summary: Visualizing Feature Impact and Distribution Using RF Model 

It is noted from the above chart that depression during pregnancy, younger maternal age, high-

stress levels, older infant age, being of a race such as Chinese, Japanese, Filipino, or Hawaiian, 

and lower paternal and maternal education levels are strong contributors to predicting PPD 

risk. Additionally, diseases such as asthma and anemia show lower SHAP values, which are 

consistent with LR and SVM. Having depression (prenatal and before pregnancy), younger 
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maternal age group, "Other" marital status, lesser prenatal care visit, and a lesser Kessner Index 

aligns with LR results. Not being breastfed emerges as an additional vital contributor to the 

feature importance analysis.  

Support Vector Machine  

Figure 24 illustrates the key features identified by the SVM model using SHAP. The feature 

CHRONIC was at the top, with a SHAP value of more than 0.90, followed by other selected 

chronic diseases, such as anxiety, anemia, and asthma. Further down, thyroid dysfunction is 

also identified as an essential feature in predicting PPD.  
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Figure 24. Feature Significance Using SHAP on the SVM Model 

The beeswarm plot in Figure 25 visualizes a detailed overview of how individual feature values 

affect the target PP_DEPRESS. The distribution reveals that when the binary feature 

CHRONIC is 1 (presence), it gives a positive SHAP value, thus contributing positively to the 

PPD prediction. Consistent with the LR model, the mother's depression during pregnancy 

(MH_PGDX8) holds similar significance in predicting PPD. In contrast to LR, marital status 
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(MARRIED) shows mixed values in both directions, making it difficult to determine which 

category of this feature is a vital contributor. 

 

Figure 25. SHAP Summary: Visualizing Feature Impact and Distribution Using SVM Model 

Features like maternal age group, stress level, and maternal education level exhibit effects 

similar to LR. The SHAP value indicates that mothers in the younger age group or with lower 
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education are more strongly linked to PPD. Other key chronic disease predictors, such as 

anxiety, anemia, asthma, and thyroid dysfunction, exhibit lower SHAP values, indicating a 

diminished influence on predicting PPD. In comparison with RF, the SHAP plot for 

breastfeeding shows a similar pattern, with non-breastfeeding being denser in the positive 

direction. 

4.5.1 Summary: Post-Training Analysis 

Table 3 presents key features that strongly contribute to predicting PPD across selected ML 

models. Features such as CHRONIC, asthma, anemia, maternal race, paternal education, and 

history of depression are consistently presented as key features with comparable SHAP values. 

Additionally, stress level, maternal age, maternal education, paternal race, marital status, 

Kessner Index, depression during pregnancy, infant age, and anxiety were identified as key 

features among at least three out of the four models. Diabetes before pregnancy is common in 

both RF and NN, breastfeeding is common in both RF and SVM, and length of stay in the 

hospital is common in both NN and SVM. Only a few additional vital features emerged 

uniquely in each model. Notably, LR and RF show a presence of a history of depression, while 

SVM shows an absence of a history of depression, indicating variability in its influence across 

models. 
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Table 3. Key Features and Their Predictive Strength by Model 

Feature Label NN LR RF SVM 

CHRONIC Chronic disease Presence Presence Presence Presence 

MH_PGDX8 
Depression during 

pregnancy (binary) 
NA Presence Presence Presence 

KESSNER 

Kessner Index – 

number of prenatal 

care (ordinal) 

Uneven 

effect 
Lower Lower NA 

STRS_T_G 
Stress level group 

(ordinal) 
NA Higher Higher Higher 

INFQ_AGE_MOD Infant age (days) 
Uneven 

effect 
NA older older 

MAT_AGE_NAPHSIS 
Maternal age group 

(ordinal) 
NA Younger Younger Younger 

MAT_ED 
Maternal education 

group (ordinal) 
NA 

Medium-

Lower  
Medium 

Medium-

Lower  

PAT_ED 
Paternal education 

group (ordinal) 

Uneven 

effect 

Medium-

Lower 
Medium  Uneven effect 

HTH_ASMA Asthma (binary) Absence Absence Absence Absence 

HTH_IRON Anemia (binary) Absence Absence Absence Absence 

HTH_ANX Anxiety (binary) Absence Absence NA Absence 

MARRIED 
Marital status 

(binary) 
NA Married Married Uneven effect 

MAT_RACE 
Maternal race 

(nominal) 

Uneven 

effect 

Uneven 

effect 

Other 

Asian, 

White, 

Black, 

Indian, and 

Chinese 

Uneven effect 

PAT_RACE 
Paternal race 

(nominal) 

Uneven 

effect 

Other Asian, 

White, Black, 

Indian, 

Chinese, 

Japanese, and 

Filipino 

Other 

Asian, 

White, 

Black, 

Indian, and 

Chinese 

NA 

BPG_DEPRS8 
History of 

depression (binary) 

Uneven 

effect 
Presence Presence Absence 
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The identified key predictors contributing to PPD are greatly consistent across all models. 

Moreover, deeper individual feature value analysis revealed that the strength of these features 

in predicting PPD is also closely aligned across the models. Any minor differences between 

the models are likely due to the handling of nonlinearities and interactions. 

Additionally, the feature CHRONIC was consistently identified in all models and showed 

similar strength in predicting PPD. However, the SHAP values for the presence of individual 

chronic diseases were low, indicating a need for further interaction analysis. Such patterns 

often occur when models see these features as part of broader interactions rather than as strong 

individual predictors. 

4.6 Identifying and Analyzing Interactions Among Key Predictors 

The low SHAP values for individual chronic diseases indicated the likelihood for these features 

to contribute more significantly through interactions rather than as standalone predictors. New 

features were generated to assess the combined effect of features identified as important 

through SHAP analysis. The following steps involve extracting the combination and analyzing 

the interaction for all selected models. 
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Step 1: Generating Interaction Features 

Interaction features were developed by combining selected input features. Since the nominal 

features were encoded, the selected features had Boolean and ordinal datatypes. A bitwise 

"AND" operation was performed between feature pairs. Each new feature was given a 

meaningful name and added to the original dataset as a new column. 

Step 2: Data Preparation and Modeling with Interaction Features 

After creating interaction features, they were filtered to retain only those identified as 

significant in the feature selection node in SPSS Modeler [73]. Figure 26 shows the feature 

selection node for interaction features. 

 

Figure 26. SPSS Feature Selection Node 
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Figure 27. Feature Selection Results 

The generated features were loaded using the Excel data source node of the SPSS Modeler. A 

Merge node was used to merge the data, which was connected to a Type node. The Type node 

helped define each feature, including its type and target. The measurement column describes 
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the datatypes, and the least key features were ignored due to their large single category. These 

results were then used to filter and create a final dataset with relevant input features. Finally, 

the dataset used in the model to identify the significant interaction.  

Step 3: Post-Training SHAP Analysis of Interactions 

SHAP analysis was conducted to identify the most impactful interactions and provided insights 

into how feature combinations influence the predictions. The following results of SHAP values 

highlight significant feature interactions for each model. 

Neural Network 

Figure 28 illustrates the key interaction features of the NN model identified using SHAP. 

Maternal education is found at the top as a significant feature, along with other features, such 

as ‘No medical risk factors,’ high blood pressure and gestational diabetes, number of perinatal 

care visits, chronic diseases, anemia, and asthma. Similarly, the number of prenatal care visits, 

along with factors such as the absence of medical risk factors, high blood pressure, and diabetes 

during pregnancy ranks top on the chart. 
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Figure 28. Interaction Feature Significance Using SHAP on NN Model 

The feature Chronic emerges as a key predictor for PPD when interacting with factors such as 

maternal education level, gestational diabetes, hypertension during pregnancy, Number of 

perinatal care visits, and paternal racial background. Also, two chronic diseases, asthma, and 

anemia, interacted similarly with the maternal education level. 
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Logistic Regression  

Figure 29 highlights the key interaction predictors for PPD using LR. Similar to NN, maternal 

education is shown at the top of the chart. Maternal age groups are the most common significant 

interaction features with maternal and paternal education and marital status. Additionally, the 

number of perinatal care visits interacts with the history of depression, abuse, maternal 

education, and the Kessner Index.  
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Figure 29. Interaction Feature Significance Using SHAP on LR Model 

Maternal and paternal education features were identified with a SHAP value of 0.18. 

Considering the chronic feature, the analysis found a moderate interaction with the maternal 

age group (SHAP value 0.017) and paternal education (SHAP value .012). No other relevant 

interactions were found between specific chronic diseases and any other feature. Other key 

interaction predictors include paternal and maternal race, abuse and maternal education, and 
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the Kessner Index with the number of perinatal care visits, paternal education, and number of 

perinatal care visits with a history of depression, maternal education, and abuse. 

Random Forest  

Figure 30 shows the key interaction features identified by SHAP in the RF model. The 

significance of paternal education and maternal education are found to resemble the LR model. 

In addition, other similar inactive features include paternal education with ‘No medical risk 

factors,’ maternal age, maternal education, asthma and stress level. The interaction of Chronic 

disease with paternal education and maternal age were identified as key predictors of PPD, 

which is similar to the LR model. In contrast to NN and LR, maternal education with ‘No 

medical risk factors’ was found to be the top predictor of PPD. Additionally, the feature 

Chronic shows interactions with the infant age, history of depression, paternal and maternal 

education, and stress level. Finally, one of the chronic diseases, asthma, interacts with the 

maternal age group, paternal education, and infant age. 
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Figure 30. Interaction Feature Significance Using SHAP on RF Model 

Support Vector Machine 

The key interaction features for predicting PPD using the SVM are presented in Figure 31. In 

alignment with NN, paternal education is found at the top of the chart, with diabetes, high 
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blood pressure during pregnancy, and the absence of medical risk factors. Similarly, the 

maternal age group with maternal education, ‘No medical risk factors,’ and paternal education 

are aligned with RF. Paternal education and maternal education are similar to those of the LR 

model. 

 

Figure 31. Interaction Feature Significance Using SHAP on the SVM Model 
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Key interaction predictor features identified in the SHAP plot include paternal education 

interacting with the number of perinatal care visits, infant sex, Kessner Index, and abuse. 

Kessner Index, together with high blood pressure and diabetes during pregnancy, paternal 

education, infant sex, and the absence of medical risk factors, also show significant 

interactions. Hospital length of stay also interacts notably with high blood pressure, the absence 

of medical risk factors, and maternal education in predicting PPD. No relevant interactions 

were found with the feature Chronic.  

4.7 Summary: Interaction Analysis 

Rather than examining features individually, interaction analysis captures the combined 

influence of multiple features. This approach enhanced the model's interpretability in the 

prediction process. Table 4 presents common key interaction features identified in the selected 

models. 

Each model captures distinct interaction features for predicting PPD. In the SVM model, 

features such as infant sex and length of hospital stay showed interactions with other variables 

and were uniquely significant to this model. Similarly, in the NN model, interactions involving 

anemia were uniquely significant. 

Features such as high BP, gestational diabetes, maternal age group, ‘No medical risk factors,’ 

number of perinatal care visits, chronic disease, and maternal and paternal education frequently 

interact with other predictors, emphasizing their roles in PPD prediction modeling. Notably, 

paternal education and maternal education appear across all models, while chronic disease  
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appears in three models: NN, LR, and RF. 

Table 4. Top Common Key Interactive Features Identified by the Selected Models 

Feature Models 

Chronic_AND_Maternal_Education NN and RF 

Chronic_AND_Paternal_Education LR and RF 

Chronic_AND_Maternal_Age_Group LR and RF 

No_Med_Risk_Factor_AND_Maternal_Education NN and RF 

No_Med_Risk_Factor_AND_ #Perinatal_Care_Visit NN and SVM 

No_Med_Risk_Factor_AND_ Maternal_Age_Grpd RF and SVM 

No_Med_Risk_Factor_AND_Paternal_Education RF and SVM 

Preg_Diab_AND_ #Perinatal_Care_Visit_ Grpd NN and SVM 

Preg_High_BP_AND_ #Perinatal_Care_Visit_ Grpd NN and SVM 

Maternal_Age_Grpd_AND_Paternal_Education  LR, RF, and SVM 

Maternal_Age_Grpd_AND_Maternal_Education  LR, RF, and SVM 

Maternal_Education_AND_Paternal_Education LR, RF, and SVM 
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4.8 PD Screening Tool 

An interactive machine-learning-based tool was developed to predict the likelihood of PPD for 

mental health assessment. The backend of this tool incorporates pre-trained models and 

associated scaling and encoding mechanisms necessary for preprocessing the user input. The 

front end, shown in Figure 32 and Figure 33, allows users to input values for a reduced set of 

critical features identified during feature selection, while non-critical features are automatically 

assigned default values based on insights from post-training analysis. 

Once the user submits their input, the backend processes the data, applying the necessary 

transformations based on the trained models, and predicts the probability of PPD using multiple 

machine learning models. An ensemble model aggregates predictions from the individual 

models, with weights assigned based on the F1 scores of each model to ensure accurate and 

reliable results. The final output, expressed as a percentage likelihood of PPD, is sent back to 

the front end for user interpretation. For instance, a 74.90 % likelihood of PPD was identified 

for the sample inputs (Figure 34). This result is consistent with the patient’s disease history 

and related factors observed in the training dataset. This personalized assessment of PPD risk 

will aid healthcare professionals in assessing and predicting PPD risks more effectively, 

showcasing the practical use of ML techniques in improving PPD care. 
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Figure 32. PPD Screening Tool - Front End 

 

 

Figure 33. PPD Screening Tool - Front End 
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Figure 34. PPD Screening Tool - Prediction 

4.9 Conclusion 

The ML models exhibited a range of performance scores, from NN achieving 77% accuracy 

and 76% F1 score to LR reaching 89% accuracy and 88% F1 score. Overall, the results 

underscore differences in how each model captures and interprets the underlying patterns in 

the data. LR's optimized parameters would have enabled effective classification of the target, 

balancing precision, and recall. Additionally, RF's robust ensemble learning and SVM's 

effective margin optimization with the RBF kernel likely contributed to their performance 

scores. The NN might have faced challenges in capturing complex data patterns. 

In conclusion, all models demonstrate a close alignment in their SHAP analysis in identifying 

key predictors. The SHAP summary plots reveal similar positive and negative SHAP values 

for multiple key features across the models. Disease features such as CHRONIC, asthma, 
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anemia, and a history of depression were consistently identified as key predictors across all 

models, with comparable SHAP values. Demographic features such as younger maternal age, 

lower education, race, infant age, and being married were found to be strong predictors. In 

addition, variables such as depression during pregnancy and higher stress levels contributed to 

the prediction of PPD. 

When identifying the key features, CHRONIC is consistently presented among the top four 

predictors across all models, supporting the research hypothesis that CHRONIC is a significant 

predictor. Furthermore, the positive SHAP values across all models confirm that the presence 

of CHRONIC is a vital contributor to PPD. 

Integrating interaction features offered valuable insights into influential factors of PPD. When 

considered together, the SHAP analysis highlights that certain demographic, health, and 

situational factors significantly predict PPD risk factors. A few interaction features appeared 

as the key predictors across all models, while a few other features were distinct. These results 

indicate that chronic disease, paternal and maternal education, maternal age group, high BP, 

gestational diabetes, ‘No medical risk factors,’ and number of perinatal care visits are key 

predictors. This consistency highlights their significance in predicting PPD. 

Chronic disease was once again identified as an important predictor in three models (NN, LR, 

and RF), frequently interacting with other features and highlighting its vital role in predicting 

PPD. Identifying independent chronic diseases, asthma, and anemia are repeatedly found as 

key predictors, along with other features in the analysis using interaction features, reinforcing 

the hypothesis. Thus, results show that chronic diseases play a significant role in PPD risk. 
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Chapter 5   

Conclusion and Future Work 

PPD is a significant global concern that affects both new mothers and their infants. Despite its 

prevalence, awareness and understanding of PPD remain limited, leading to many cases being 

undiagnosed and untreated. When left unaddressed, this condition can escalate into severe 

psychosis over time. Early detection is crucial, as untreated PPD can lead to self-harm. 

Recognizing key risk factors allows healthcare professionals to identify women who are at a 

higher risk of developing PPD. This research presents a comprehensive process designed to 

prepare, analyze, visualize, and calculate PPD probabilities to identify PPD risk factors, 

specifically when chronic diseases are present. 

Five years of data (over 200,000 records) obtained from CDC_PRAMS was used to 

demonstrate the predictive power of ML models. The research methodology started with 

implementing various preprocessing techniques such as encoding, scaling, and balancing data 

using SMOTE on the raw data. Subsequently, the most relevant variables, such as asthma, 

heart disease, diabetes, and thyroid dysfunction, were selected to address the hypothesis. Power 

BI was utilized to visualize the prepared data along various dimensions. The dashboard 

highlights a higher prevalence of postpartum depression among young mothers aged 25-29 and 

those with higher education levels (13-15 years of education). Key Influencer functionality on 

the dashboard highlights factors such as history of depression, being married, paternal race, 

and having a chronic disease that increases the likelihood of PPD. These insights offer a 

valuable understanding of the population, feature relationships, and underlying patterns. 
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Four predictive models, NN, LR, RF, and SVM, were implemented to predict the risk factors 

of PPD. The evaluation was based on accuracy and F1 scores, ensuring the model predicts 

accurately and handles class distributions appropriately. All models achieved over 75% 

accuracy and F1 scores, demonstrating satisfactory predictive performance across the test 

dataset. The metrics revealed that accuracy and F1 scores were closely aligned, indicating that 

the model performs well across both majority and minority classes. The predicted risk factors 

are mostly consistent across all models, and the feature CHRONIC was highlighted as a 

significant predictor, thereby supporting the research hypothesis. Also, key predictors such as 

depression (during and before pregnancy), higher stress, and maternal age are consistent with 

other findings [20], [24], [42], [60], [64]. Additionally, the SHAP analysis provided an in-

depth understanding of each contributing factor of PPD. It further indicated the potential for 

feature interactions, particularly with those that showed a low SHAP value. The interaction 

analysis revealed factors such as high blood pressure, gestational diabetes, maternal age group, 

number of prenatal care visits, chronic disease, and maternal and paternal education interacting 

with other predictors frequently. 

 A web-based tool utilized the developed model as the backend for generating individualized 

predictions, allowing users to input relevant data and calculate the probability of PPD. This 

tool provides proof of concept for PPD screening in real-world scenarios. 

In summary, the objective of this thesis was to identify the risk factors, particularly focusing 

on chronic diseases. These findings aim to support timely identification and intervention, 

reduce the risk of prolonged mental health challenges for mothers, and enhance their overall 

well-being. 



   

 

108 
 

5.1 Future Work  

Although the PRAMS dataset provides valuable insights, its state-specific focus may limit the 

applicability of the model to more diverse populations. Also, a deeper investigation of 

interaction features, and incorporation of additional disease variables and clinical features is 

recommended to enhance the understanding of predictor impacts. Developing interaction 

features and including them in ML models has shown the importance of how input features 

interact. A detailed analysis of these interactions could help optimize the models to improve 

their performance and make them more valuable as a backend for the PPD prediction tool, 

providing more reliable screening results. 

Also, the use of a broader dataset could improve the evaluation of predictive models and PPD 

calculation tool. Furthermore, the study can apply a longitudinal approach to identify how risk 

factors and symptoms change over time. Time-series data from longitudinal studies could 

capture these trends and make more accurate predictions.   
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