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Abstract 

Treatment wetlands experience significant seasonal temperature variations that affect 

biological treatment processes through complex interactions between plants, microorganisms, 

and environmental conditions. This project employs a dual methodological approach to 

optimize cold-climate treatment wetland design and operation. First, we developed 

interpretable machine learning models using data from 27 published studies and 118 

treatment wetlands to predict effluent temperature (RMSE = 0.7°C) and ammonia (RMSE 2.9 

– 9.3 mg/L) and organic matter (RMSE 11 – 44 mg/L) concentrations in different wetland 

configurations. Model interpretation revealed that influent temperature is the dominant 

predictor of effluent temperature followed by air temperature, with hydraulic loading rate 

modifying this relationship. For contaminant removal, we found that plant species' cold-

temperature benefits are most pronounced in saturated systems, while their impact is 

marginal in unsaturated configurations. 

Building on these insights, we conducted controlled microcosm experiments with Carex 

utriculata in batch-operated wetlands across temperature conditions (23°C and 5°C) and after 

harvesting. C. utriculata maintained superior organic matter removal in cold conditions 

(86±5% versus 73±9% for unplanted systems) and continued to outperform unplanted 

systems even after harvesting. Evapotranspiration-driven water level reduction in warm 

conditions improved porosity maintenance by 2-3% compared to unplanted systems. Our 

integrated approach demonstrates that C. utriculata provides resilient cold-temperature 

treatment benefits while offering operational advantages through reduced clogging potential 

and maintained performance post-harvest, addressing key challenges identified in machine 

learning analysis of published literature.  
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Chapter 1 Introduction 

1.1 Chapter overview 

Constructed treatment wetlands represent a broad range of engineered and purpose-built 

systems for the treatment of wastewater, inspired by natural wetlands. Treatment wetlands 

pass wastewater through (subsurface) or above (free-water) granular or soil media planted 

with wetland species, where biological, chemical, and physical processes treat the water 

(Kadlec & Wallace, 2009). Unsurprisingly this results in a myriad of design and operational 

possibilities, which only increase in complexity once variations in wastewater composure, 

climate, and natural plant growth are considered. This thesis focuses on subsurface treatment 

wetlands using machine learning models trained on data published by others (Chapter 2) and 

experimental microcosms (Chapter 4) to investigate the dynamics between design and 

operation, temperature changes, plant effects, and effluent quality. 

1.2 Background 

As treatment wetlands are outdoor systems taking advantage of natural processes, they can be 

affected by seasonal changes. This thesis focuses on cold climates, defined by the Köppen-

Geiger climate classification system as having a mean air temperature below 0°C for at least 

one month of the year (Cui et al., 2021). In these climates plant dormancy and senescence 

become relevant, and the wetland bed reaches colder temperatures that can lower treatment 

efficiency. 

The impact of water temperature depends on the design and operational parameters which 

determine the environmental conditions within the wetland. Water temperature changes in the 

wetland can impact microbial activity, which is the primary means of treatment (Samsó & 
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Garcia, 2013). Colder temperatures reduce microbial affinity for substrates (Nedwell, 1999), 

however increasing bioavailable reaction-limiting components can compensate for 

temperature decrease (C. R. Allen et al., 2023; Rusten et al., 1995; Salvetti et al., 2006). 

Treatment wetland designs have very different oxygenation abilities (Nivala et al., 2013), 

altering their temperature response. 

Water temperature itself is not directly correlated with seasons or climate but controlled by 

the energy balance (Equation 1) (Kadlec & Wallace, 2009). Influent temperature has shown 

to have the greatest influence (Grebenshchykova et al., 2023). While influent temperature has 

a linear relationship with air temperature in warmer conditions (>10°C) (Mietto et al., 2015) 

this can diverge as air temperatures lower. Outside design elements such as wastewater 

collection system length and snowmelt or groundwater infiltration and inflow (Panasiuk et 

al., 2022; Prost-Boucle et al., 2015a; Rusten & Ødegaard, 2023; Vidal et al., 2023), can all 

alter the influent temperature, requiring it to be considered separately from air temperature or 

season. Further modifying the wetland temperature are design parameters such as the 

hydraulic loading rate (Equation 1), air inflow rate of different designs and operations, and 

insulative cover (Agnieszka & Anna, 2013; Grebenshchykova et al., 2023; Prost-Boucle et 

al., 2015a). 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
�𝑅𝑅𝑁𝑁 + ℎ𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐(𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑒𝑒𝑐𝑐𝑡𝑡 𝑐𝑐𝑒𝑒 𝑏𝑏𝑒𝑒𝑏𝑏) +  𝑇𝑇𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜌𝜌 𝑐𝑐𝑡𝑡𝐻𝐻𝐻𝐻𝑅𝑅 −  𝜆𝜆𝑚𝑚𝜌𝜌 𝐸𝐸𝑇𝑇 −  𝐺𝐺�

�𝜌𝜌 𝑐𝑐𝑡𝑡𝐻𝐻𝐻𝐻𝑅𝑅�
 

Equation 1: Effluent temperature as a function of energy balance 

RN:  Net radiation absorbed by the wetland 

hconv:  Convective heat transfer coefficient [MJ/m2/d/°C] 

λm:  Latent heat of vaporization of water 
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ρ:  Density of water 

ET:  Water lost to evapotranspiration 

G:  Net loss to ground 

HLR: Hydraulic loading rate 

Seasonal changes of air temperature more directly affect the plants in the wetland. Nutrient 

uptake (Thorén et al., 2004a), root oxidation (Taylor et al., 2011), and evapotranspiration of 

plants (Beebe et al., 2014) all influence the effluent quality and vary with season. In summer, 

evapotranspiration draws up water from the treatment wetland, altering the hydraulics and in 

some cases drying up part of the treatment wetland if greater than the hydraulic loading rate 

(Beebe et al., 2014; Nivala et al., 2022). As colder temperatures slow evapotranspiration and 

the metabolism of microbial species, radial oxygen loss through plant roots has been found to 

enhance aerobic treatment efficiency, with Carex utriculata more effective than any other 

species at very low hydraulic loading rates in batch operated microcosms (Taylor et al., 

2011). Contrasting with this benefit, there is a need to cut and remove the above ground plant 

stalks periodically, often during fall. The nutrients plants take up into their biomass provide a 

valuable treatment mechanism, but these nutrients return to the treatment wetland if allowed 

to decompose over winter (Vymazal, 2007).  

Wastewater composition, treatment wetland operation and design, and maturation over time 

also alter treatment processes. Hydrolysis of particulate organic matter is reduced in cold 

temperatures (Y. Huang et al., 2005), resulting in particulate matter build up and capture by 

plant roots (Karathanasis et al., 2003; Samsó & Garcia, 2013). Variable water levels brought 

about by evapotranspiration or fill-and-drain batch operation may alter biofilm exposure to 
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air in seasonally varied hydraulic conditions, altering root (J. Zhang et al., 2024) and biofilm 

(Hua et al., 2014a) formation. These all tie into longer term biofilm growth and particulate 

build up that alters the effective porosity and hydraulic conductivity of treatment wetlands 

(H. Wang et al., 2021).  

Studies have worked to integrate these many treatment wetland variables into cohesive 

models. Mechanistic approaches successfully simulate our understanding of the many 

processes within treatment wetlands (Langergraber & Šimůnek, 2012; Samsó & Garcia, 

2013) but can be impractical to use for design purposes due to their complexity and many 

input variables. However, by calibrating these models on several real treatment wetlands, 

simulations have generated many useful general insights about the processes within wetlands 

and how water temperature and other design parameters jointly alter effluent quality (Martí et 

al., 2018; Pucher & Langergraber, 2019). 

As data gets more available, machine learning models have exploded in usage in biological 

treatment (N. K. Singh et al., 2023) and are increasingly being applied to treatment wetlands. 

These models can be trained on individual treatment wetland data (Yang et al., 2023) or data 

from wide ranges of treatment wetlands (Nguyen et al., 2022). Models trained on many 

different treatment wetlands enable the findings of individual studies to be combined in a 

model that uses common design parameters as the input variables (called features in machine 

learning). These models can be interpreted to expose their underlying logic (Molnar, 2024), 

potentially enabling insights such as those from simulations of the mechanistic models. 
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1.3 Problem statements 

Research gaps remain in studies of specific treatment wetland design, operation, and climatic 

instances, as well as how modelling is used for developing a broader understanding of their 

dynamics.  

1.3.1 Limitations of temperature inclusion and model interpretation of treatment 

wetlands 

Treatment wetland machine learning models have not yet sufficiently addressed colder 

temperatures, nor provided an adequate explanation of how their models interpret the 

relationships within the data. Models trained on data from many publications have used air 

and water temperature interchangeably, which is an incorrect assumption in colder weather. 

To our knowledge, no machine learning models have been trained to predict wetland water 

temperature either, despite its importance in design. Finally, machine learning results are 

often limited to prediction accuracy, which does not progress the understanding of treatment 

wetlands, or are limited to showing the average relationship of a single algorithm, which does 

not show potential variability or uncertainty. 

1.3.2 Batch operation of C. utriculata treatment wetlands through seasonal changes 

Studies of the wetland plant C. utriculata show better cold temperature performance than any 

other plant species but have been largely conducted with batch microcosms in unrealistic 

conditions, leaving a gap in understanding for more practical design. Long hydraulic 

retention times were used to emphasise the impact of the plants, made possible by continually 

adding water to compensate for evapotranspiration (W. C. Allen et al., 2002a). In real 

applications these retention times would dry out the treatment wetlands in summer, 
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potentially killing the plants or changing the dominant species. If retention time is shortened, 

the roots would have less time to deliver oxygen through their roots, potentially lowering 

their beneficial effect in more applicable conditions (Taylor et al., 2011). Neither 

evapotranspiration-caused water level reduction throughout each batch nor the impact of 

shorter batch times in colder temperatures have been studied to our knowledge. Finally, we 

do not know if cutting the above ground stalk would eliminate the cold-temperature benefit 

over unplanted beds. 

1.4 Objectives 

General objective: develop an integrated understanding of the dynamic relationships 

between design, operational, and environmental factors affecting cold-climate treatment 

wetland performance through complementary machine learning analysis and controlled 

experimentation. 

Specific objectives: 

1) To quantify relationships between temperature, design parameters, and treatment 

efficiency through interpretation of machine learning models trained on published treatment 

wetland data, with specific emphasis on factors influencing cold-climate performance. 

2) To experimentally validate and extend machine learning insights by evaluating C. 

utriculata's treatment capabilities under more realistic batch operation conditions, including 

quantification of:  

a) Evapotranspiration effects on bed hydraulics and treatment efficiency  

b) Cold-temperature organic matter removal mechanisms  
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c) Post-harvest treatment resilience in cold conditions 

1.5 Thesis organization 

This thesis is composed of four chapters. Chapter one presented background theory, problem 

statements, and the objectives of this thesis. Chapter two presents the results of collecting 

published data on cold climate constructed wetland dynamics and training and interpreting 

machine learning models which predict effluent temperature and quality. Chapter three 

discusses insights and research gaps generated from the machine learning research, and how 

they can be addressed using microcosm experiments. Chapter four presents my experiments 

with batch constructed wetland microcosms using the plant species C. utriculata and 

discusses the results. Chapter five concludes the thesis and discusses potential future research 

directions. 

1.6 Scientific outcomes and outputs 

Presenting various stages of this work while it was in progress allowed sharing and receiving 

information with the wider scientific community. These presentations included: 

• UNBC - Three-minute Thesis 2023: Wetland designs for wastewater treatment in cold 

climates  

• UNBC - Three-minute Thesis 2024: Treating wastewater through seasonally cold 

climates 

• UNBC - Faculty of Science and Engineering Poster Competition 2024: Planting Sedge to 

Improve Wastewater Treatment at Cold Temperatures 

• International Water Association - World Water Congress 2024: Seasonal Performance 

Dynamics for Subsurface Treatment Wetlands in Cold Temperatures 
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I also intend to publish this masters work through two manuscripts: 

• Manuscript 1: Interpretable Machine Learning Reveals Cold Climate Dynamics of 

Treatment Wetlands 

• Manuscript 2: Carex utriculata Improves Treatment in Three-Day Batch Operated 

Treatment Wetlands in Warm, Cold, And Harvested Conditions 
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Chapter 2 Interpretable Machine Learning Reveals Cold Climate Dynamics of 

Treatment Wetlands 

2.1 Introduction 

Subsurface flow treatment wetland adoption in cold climate regions (mean temperature <0°C 

during coldest month) (Cui et al., 2021) has been hindered by the potential for temperature-

driven freezing and performance reduction (M. Wang et al., 2017). There are successful 

strategies in cold climates (Grebenshchykova et al., 2020; Kadlec & Wallace, 2009), but 

additional research is required for robust designs which combine previously researched 

strategies (Ji et al., 2020). Comparing and combining the results from cold climate 

constructed wetlands can be complex due to differing temperature and design factors. In 

colder conditions water temperature is primarily determined by the influent temperature 

(Muñoz et al., 2006) which has been rarely reported or considered in constructed wetland 

studies (Grebenshchykova et al., 2023). Cold-climate studies reporting similar air 

temperatures may experience different water temperatures. Furthermore, the effect of water 

temperature on microbial activity is a function of both the microbial community and the 

availability of substrates (Nedwell, 1999), which vary by design. Both water temperature and 

characteristics of the wetland design and operation must be known and accounted for to 

compare study results.  

The impact of design and operational variables have been previously investigated through 

supervised machine learning algorithms (Lam et al., 2024; Nguyen et al., 2022). In contrast 

to more traditional modelling techniques such as the P-K-C* model developed by Kadlec and 

Wallace (2009) or more complex mechanistic models such as BIOPORE (Samsó & Garcia, 
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2013), machine learning models can be trained with variables available prior to construction, 

rather than those measured or calculated afterwards. Machine learning models of constructed 

wetlands have also shown greater accuracy than more basic linear regression methods 

(Nguyen et al., 2022, 2024a).  

Despite their benefits, there are issues with the transparency of machine learning models 

which need to be addressed using interpretable machine learning methods (Hassija et al., 

2024). As machine learning models are often black boxes, the lack of transparency in their 

logic necessitates distrust of the results (Moraffah et al., 2020). Interpretable machine 

learning is an active field of development which allows the models understanding of the 

relationships and importance of variables to be visualized (Molnar, 2024). These are valuable 

as model relationships do not necessarily match causation (Molnar et al., 2022), and equally 

accurate models can form different relationships (Fisher et al., 2019). To increase the 

robustness and value of modelling results, multiple models can be compared to each other 

(Gunasekaran et al., 2024) and established theory.  

Significant gaps remain in the use of machine learning for understanding how temperature, 

design, and operational dynamics affect constructed wetlands. The only machine learning 

studies found which used water temperature as a predictive variable (as opposed to air or a 

mixture of the two) were limited to data from individual studies (Akratos & Tsihrintzis, 

2007a; Nivala et al., 2019). To our knowledge machine learning has never been used for 

predicting constructed wetland effluent temperature, despite the importance of knowing 

water temperature for design (Nedwell, 1999). Finally, interpretation of machine learning 

models has so far been limited. Algorithms have only been compared using their prediction 

performance (Yang et al., 2023), and interpretation plots have been limited to single 
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algorithms (Lam et al., 2024; Nguyen et al., 2022). This work fills the existing gaps in 

literature by: (i) using water temperature data from across published literature as a predictive 

variable for treatment performance, (ii) training models to predict effluent temperature, and 

(iii) comparing the interpretation of multiple algorithms to each other and the literature. By 

filling these gaps, we take another step towards understanding how temperature, design, and 

operational dynamics affect the performance of treatment wetlands, and how machine 

learning can further this goal. 

2.2 Methods 

2.2.1 Data collection 

Data was obtained from peer reviewed published articles; both directly from the published 

papers as well as wider or more detailed datasets shared directly by the authors of those 

articles where available. To be included, data was required to be from subsurface treatment 

wetland systems and have information on features considered critical based on previous 

studies. Features are any individual variables, characteristics, or properties of a system used 

by a machine learning model to make predictions. Critical features were media diameter, 

media depth, plant status (unplanted, planted, harvested), flow direction (horizontal, vertical), 

saturation (unsaturated/free draining, permanently saturated, tidal/alternating/reciprocating, 

aerated, and single-fill-and-drain), loading interval (hours between intermittent doses), 

hydraulic loading rate (HLR, L/m2/d), and effluent temperature (Kadlec & Wallace, 2009; 

Langergraber et al., 2020). Where systems were small scale, not buried, and did not report 

excessively warm influent the effluent temperature was assumed to be equal to the air 

temperature due to the high rate of heat transfer (Ouellet-Plamondon et al., 2006). 
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Data was split into temperature and treatment datasets to train machine learning models to 

predict effluent temperature and treatment performance respectively. For the treatment 

dataset, measurements of organic matter and ammonia influent and effluent were also 

required. For the temperature dataset, systems had to be outside buried systems (Ouellet-

Plamondon et al., 2006) and have data on air and influent temperature (Prost-Boucle et al., 

2015a). In the few cases where air temperatures were not reported, these were obtained 

where possible from historical weather data for the location and time period of the study. In 

cases of multi-stage constructed wetland systems, each stage was considered a separate 

system, and data collection was further limited to stages where influent and effluent data 

were available for each stage. All temporal variables were required to be reported as 

individual data points or be the mean or median over a maximum of one season in order to 

preserve meaningful relationships between variables.  

Non-critical values shown to have theoretical importance in literature were also collected 

where available, but their absence did not exclude new data sources from being added. These 

included anodes (W. Liu et al., 2022), rest time between batch operations (Jia et al., 2010), 

and insulative properties such as depth and presence of snow (Grebenshchykova et al., 2020), 

detritus, and insulation (Kadlec & Wallace, 2009). 

Unbalanced, high cardinality, correlated, or dependant features were removed from the 

resultant datasets where possible. Highly imbalanced design modifications shown to have a 

large impact on the target variable (e.g. anodes) prompted exclusion of treatment wetlands 

with the minority category. Highly correlated features were identified using Spearman’s rank 

correlation matrix (Liebetrau, 1983) and minimised to prevent obscuring the interpretability 

of the model (Farrar & Glauber, 1967; Molnar et al., 2022). Correlated features were kept if 
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both features had unique and potentially theoretically valuable information. In these cases, 

potential importance misattribution issues were subsequently investigated using accumulated 

local effect plots after model generation.  

2.2.2 Model construction 

Data was processed in R and modeled using the R tidymodels framework (Kuhn & Wickham, 

2020). Text-based factors were converted to dummy variables, all values were normalized, 

and a near-zero variance filter was applied to ensure highly unbalanced or sparse features did 

not exist. Data was divided into training (80%) and test (20%) datasets as done with similar 

studies (Nguyen et al., 2024b), stratified by 5°C increments of effluent temperature to ensure 

equal representation of temperature ranges within the training and test datasets. Five-fold 

stratified cross-validation was used for tuning to reduce the risk of overfitting while 

maximizing the use of all available data (S. Singh et al., 2022a). Post-cross validation, the 

best tuning parameter combination was automatically selected based on the optimal RMSE 

value across a twenty-point grid of tuning values. 

Models used were chosen according to their success in other publications which modelled 

subsurface constructed wetland performance (Nguyen et al., 2024a; S. Singh et al., 2022b), 

with the addition of a gradient boosting model (XGBoost) not yet tested for treatment 

wetlands which has outperformed other models for modelling denitrification of sludge (S. 

Liu et al., 2025). Non-linear models were used exclusively due to the established non-linear 

nature of relationships between design variables and both treatment rate and effluent 

temperature in constructed wetlands (Kadlec & Wallace, 2009). Boosted trees via the extreme 

gradient boosting (XGBoost) R package (GBM) is a sequential tree building model for sparse 

data that excels at complex, nonlinear interactions and attempts to generalize and reduce 
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overfitting (Chen & Guestrin, 2016; Sarker, 2021). Random forests via the Ranger R package 

(RF) aggregates multiple decision trees that averages independent predictions, increasing 

robustness but reducing sensitivity to more subtle relationships (Wright & Ziegler, 2017; R. 

Xu et al., 2016). Polynomial support vector machines with the radial basis function via the 

kernlab R package (SVM) transform data to a higher dimensional space, where it forms a 

hyperplane that can capture complex non-linear relationships (Bonaccorso, 2018; 

Karatzoglou et al., 2004) but can perform less well for noisy data (Sarker, 2021). Cubist via 

the cubist_rules R package (Cubist) is a rule-based tree model followed by regression models 

to increase flexibility. Each model brings a different approach to the table, increasing the 

value of comparing each model. 

2.2.3 Interpretation 

To determine the impact of each feature within each model and algorithm, SHAP (SHapley 

Additive exPlanations) values were generated using the fastshap package in R (Greenwell, 

2024). To provide a more robust assessment of feature importance, the median SHAP value 

across each of the four algorithms was plotted (Fisher et al., 2019). 

Key strong interactions between features were identified using Friedman’s H-statistic method 

(Friedman & Popescu, 2008). The H-statistic method measures the average fraction of 

variance explained by interaction with a feature and was calculated using the iml R package 

(Molnar et al., 2018). Interactions with values above 0.1 and/or standard deviations below 0.1 

were targeted for interpretation.  

To visualize the impact of features which were not inherently correlated with other features, 

partial dependence plots (PDPs) and individual conditional expectation (ICE) plots were 

used. ICE curves each show how different individual random combinations of feature inputs 
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would respond to varying a chosen feature, with each curve plotted as a thin partially 

transparent line. PDPs, shown with bold thicker lines, show the average marginal impact of 

varying a chosen feature across all feature combination possibilities (Friedman, 2001). 

To visualize the impact of features inherently correlated with other features, accumulated 

local effects (ALE) plots were used.  ALE plots only consider feature combinations within 

specific intervals of the feature(s) being considered to reduce misleading results that could be 

introduced from unrealistic combinations of inherently correlated features. The effects in 

each local interval are then calculated as differences from the mean prediction, and connected 

to form a curve (Apley & Zhu, 2020). ALE plots show either the main effect or the 

interaction effect (Molnar, 2024), not the combined effect, therefore main and interactive 

effects were both plotted where applicable to show the full picture.  

ICE, PD, and ALE plots were used to compare each models understanding of relationships 

between features to the findings in literature. Studies which study the average effect of a 

variable across different design permutations are limited. The P-K-C* model (Kadlec & 

Wallace, 2009) is one, which was compared to our HLR and influent strength findings since 

these are both variables within the P-K-C* equation. Remaining P-K-C* variables were 

chosen based on mean HLR and organic matter influent strength in our datasets, along with 

mean C*, P, and k values as reported by Kadlec and Wallace for our mean influent strength.  
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Table 2-1: P-K-C* variables which correspond to the mean treatment wetland features in our machine learning data 
sets. These are used to provide predictions of effluent concentrations to compare with model interpretation plots. 
Variable Vertical unsaturated Horizontal saturated 
C*  
(background concentration) 

2 10 

P  
(tanks in series constant) 

2 3 

k [m/y]  
(areal removal rate constant) 

187 25 

HLR [L/m2/d] 90 27 
 

2.3 Temperature results and discussion 

2.3.1 Data collection 

Data collection criteria are summarised in Table 2-2, resulting in 7 publications, 27 unique 

treatment wetlands, and 1933 data points (see list of papers in Table A-1). Influent 

temperature was the least reported critical feature, significantly limiting data which datasets 

could be included. Radiation, ground transfer, and evapotranspiration components of the 

energy balance equation (Kadlec & Wallace, 2009) were not directly included as critical 

features due to lack of available data. These may reduce accuracy of summer temperatures 

but are considered negligible for prediction of temperatures in the winter due to snow and ice 

cover (Grebenshchykova et al., 2023). 

Insulating features suffered from high cardinality and imbalance. Insulative materials in the 

collected data included mulch, plastic, foam, glass beads, and gravel while collectively 

representing only 2% of datapoints. Presence and depth of snow was not consistently 

reported, especially as winter air temperature variation can cause periodic melting 

(Grebenshchykova et al., 2020; Muñoz et al., 2006) that requires frequent reporting of snow 

presence and depth. Plant detritus thickness was variable but not consistently reported. To 

lower imbalance and cardinality while still accounting for insulative materials, a single 
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numerical R value [m2K/W] feature was calculated for each system based on reported 

insulation thickness and estimated thermal properties (Kadlec & Wallace, 2009).  

Table 2-2: Features considered for training the temperature model and the reasons for including or not including 
them. 
Feature Expected Importance Availability Included 
Influent temperature High (Grebenshchykova et al., 2023) Low Yes 
Air temperature Moderate (Prost-Boucle et al., 2015a) High Yes 
Saturation Moderate (Prost-Boucle et al., 2015a) High Yes 
HLR Moderate (Grebenshchykova et al., 2023) High Yes 
Insulation Moderate (Kadlec & Wallace, 2009) Moderate1 Yes 
Plant status Moderate (Agnieszka & Anna, 2013) Moderate No 
Snow Moderate (Grebenshchykova et al., 2023) Low No 
Ground temperature Low (L. Zhang et al., 2015) Very low No 
Evapotranspiration Low2 Low No 
Radiation Low2 Very low No 

1Imbalanced variable 

2Low only in cold-temperature conditions, which are the focus of this study. High in warmer 

temperatures (Wallace & Nivala, 2005). 

2.3.2 Model performance 

XGBoost achieved the highest accuracy, however similar performance to Cubist and RF 

shows that comparing the interpretation results of each model is necessary to understand their 

differences (Figure 2-1). The good accuracy from XGBoost aligns with its strategy of 

continual sequential tree improvement. Despite lower fit metrics, SVM was retained in the 

analysis as its less flexible nature provides a valuable comparison during model interpretation 

exercises (Awad & Khanna, 2015).  

To the best of our knowledge there are no other studies which use machine learning 

techniques to predict temperatures in constructed wetlands. Empirical models exist with R2 

values of 0.86 to 0.94 for horizontal subsurface constructed wetlands (Kadlec & Wallace, 

2009) but rely on inputs of annual average water temperature and amplitude of the sinusoidal 
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annual pattern. Our model has the advantage of using values obtainable prior to construction 

as well as achieving higher fit metrics. 

 

Figure 2-1: Effluent temperature predictions plotted versus actual effluent temperature for each model algorithm 
tested, as well as their R2 and RSME goodness of fit scores. 

2.3.3 Model interpretation 

The SHAP values for each feature were similar between models, however model 

disagreement increased for interaction strengths and increased again for specific interactions 

(Figure 2-2). The SVM model was the largest outlier in both interaction plots, indicating 

differences in modelled relationships compared to the other models. Omitting SVM results, 

interaction strengths shows that interactions were responsible for no more than 20% of the 

variance in predicted effluent temperature per feature, and main effects dominate predicted 

effluent temperature. Interaction strengths of influent temperature, delta, and HLR were 

highest, and the strength of specific interactions between these features which also had lower 

standard deviations were delta:HLR and delta:influent temperature.  
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Figure 2-2: Ranked importance of features and interactions between features for the prediction of effluent 
temperature. SHAP values show the overall importance of each feature. Interaction values show how much variance 
in predictions is attributed to interactions of either a particular feature (interaction strength) or a specific interaction 
(shown with “:” between the interacting features).  

The SHAP values in Figure 2-2 agree with a study of vertical flow filters (Grebenshchykova 

et al., 2023) which showed that influent temperature has the highest influence. The same 

study concluded that HLR was more important than air temperature, though air temperature 

was noted to be especially important at the beginning of the cold season. Our use of delta 

inherently accounts for the larger difference between air and influent temperature during the 

seasonal temperature shift, which may account for delta having higher importance than HLR.  

Further investigations of feature relationships using ALE plots (Figure 2-3) show linear 

effects of influent temperature and delta between influent temperatures of 6 and 20°C and -15 

and 2. These linear relationships align with those in the temperature balance equation (R. 

Kadlec & Wallace, 2009). The ALE plots show less linear relationships in higher and lower 

delta and influent temperature conditions. In warm conditions this may be accounted for by 

evapotranspiration consumption of energy, which is the largest warm temperature energy loss 
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(R. H. Kadlec, 2006) that was not reported enough to be included. In colder conditions there 

is ice and snow formation, which slows the effect of delta (Wallace & Nivala, 2005) and also 

did not have sufficient data to be included.  

  

Figure 2-3: Accumulated local effect of each feature in the model. The marks along the x-axis indicate data point 
presence, giving an approximation of data distribution. 

ALE plots of the interactive effect between HLR and delta (Figure 2-4) showed that HLRs 

less than 10 – 15 L/m2/d cause delta to have a larger (0 – 1°C) impact on predicted effluent 

temperature at both higher (10) and lower (-30) delta values. This is supported by the 

temperature balance equation (Equation 1), with the same effect observed by other studies 

(Grebenshchykova et al., 2023) at higher HLRs (70 – 140 L/m2/d) than our ALE plots had 

clear patterns for. This suggests that there is a wider effect than was clearly captured in our 

model interpretation plots. 
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Figure 2-4: The accumulated local effect of delta on the predicted effluent temperature depending on the specific 
algorithm (right), and the accumulated local interaction effect between delta and HLR for the Cubist (top-left) and 
XGBoost (bottom-left) algorithms. The colour legend for the interaction effects is shown in the top-right. Presence of 
training data points are shown as black dots as well as black lines along the x and y axis.  

No effect of saturation was observed in the original model. As saturation type has been 

previously shown to effect temperatures within the bed (Prost-Boucle et al., 2015a), a 

simplified model was trained without the HLR, as it is highly correlated with saturation type, 

to see how model interpretation changed. The simplified models disagreed on the magnitude 

of the saturation effect, but each algorithm showed alternating systems to be most affected by 

delta, followed by aerated, percolating, and lastly saturated systems (Figure 2-5). This 

matches the order of both the rate of air inflow and the mean HLR from largest to smallest. 

As increased airflow should increase the influence of delta and increased HLR should lower 

the influence of delta, this suggests that saturation differences may have a larger impact than 

HLR and deserves further study. 
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Figure 2-5: ALE of delta on the predicted effluent temperature for different algorithms (separate plots) and 
saturation types (different coloured lines). Training data presence is noted by marks along the x and y axis, coloured 
by saturation type. 

ALE interactions between plants or insulation and delta or influent temperature showed only 

very slight (<0.25°C) effects on the predicted effluent temperature. Though marginal, effects 

showed planted and insulated systems warmer at cold temperatures, and colder at warm 

temperatures. Plants have shown to have a similar impact on bed temperature of unsaturated 

systems as sludge buildup in French vertical flow systems, greatly reducing the decline 

between doses even when harvested and removed prior to winter (Torrens et al., 2009). As 

this lowered bed temperature does not directly correspond with reductions in the effluent 

temperature (Prost-Boucle et al., 2015a) predicted by our model, this may account for the 

lowered effect. 

All specific interactions (Figure 2-2) with strengths above 0.1 or standard deviations below 

0.1 were assessed, though not all are displayed here. Most interactions were both small and 

slightly different in each model, resulting in no consistent relationship. Interactions with large 

standard deviations often predicted large effects in values in regions of lower data density, 

and low effects within higher data density areas, indicating a lack of any robust relationship. 
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2.4 Treatment results and discussion 

2.4.1 Data collection 

Data collection criteria are shown in Table 2-3, resulting in an initial 24 publications, 108 

unique treatment wetlands, and 2350 data points (see detailed list in Table A-2). Effluent 

temperature was reported rarely in literature (with air temperature more common), and the 

frequency of feature availability often did not meet requirements, making these two 

restrictions the primary limiting parameters for data inclusion. Features recorded during data 

collection but with insufficient data in the resulting dataset to be included were organic 

nitrogen (available in 55% of total data), rest times between fill-and-drain batches (available 

in 70% of fill-and-drain data), and evapotranspiration (reported in 43% of total data points).  

High correlations eliminated dosing method and flow direction, which had high correlations 

with each other and saturation. All but one fill-and-drain system was batch dosed, all but two 

saturated systems were continuously dosed, and all vertical unsaturated systems were 

intermittently dosed. For flow direction, fill-and-drain systems were the only saturation type 

which had substantial numbers of systems in both vertical and horizontal configurations. 

Imbalanced data included recirculation and plant species. Recirculating systems represented 

only 2% of the final datapoints but were retained due to being identified as a solution for cold 

temperature systems (Ji et al., 2020) and having clear effects in the datasets which were 

available (Arias et al., 2022). Plant species was omitted due to imbalance and high 

cardinality, with Phragmites australis representing 80% of the data, with the remaining 20% 

composed of 23 other species.  
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Large high-resolution datasets made up 70% of the data points for treatment wetlands older 

than 1 year, resulting in treatment wetland age serving as a proxy for seasonal temperature 

changes. To account for age while preventing its use as a proxy for season, ages over 1 year 

were rounded to one significant figure. 

Table 2-3: Features considered for inclusion in the treatment model training data, including whether they were 
included and the rationale. 
Feature Expected Importance Availability Included 
COD Target variable High Yes 
sCOD Target variable Low Yes 
BOD5 Target variable Very low Yes 
CBOD5 Target variable Moderate Yes 
NH4-N Target variable Moderate Yes 
Org-N Moderate (Thorén et al., 2004b) Low No 
Influent temperature High (Pucher & Langergraber, 2019) Very low No 
Bed temperature Low (Prost-Boucle et al., 2015b) Very low No 
Effluent temperature High (Pucher & Langergraber, 2019) Low Yes 
Air temperature Low (Prost-Boucle et al., 2015b) High No 
Saturation High (Nivala et al., 2013) High Yes 
Loading interval Moderate (Langergraber et al., 2020) Moderate Yes 
Batch rest time Moderate (Jia et al., 2010) Low No 
Dosing method Uncertain, high correlation with 

saturation 
High No 

Flow direction Uncertain, high correlation with 
saturation 

High No 

Hydraulic loading 
rate 

High (Pucher & Langergraber, 2019) High Yes 

Recirculation rate Moderate (Foladori et al., 2013) Low Yes 
Media diameter 
(smallest) 

High (Pucher & Langergraber, 2019) High Yes 

Media diameter 
(median to largest) 

Low (Langergraber et al., 2020) High No 

Influent distribution 
system 

Moderate (Pucher & Langergraber, 
2019) 

Low No 

Plant status Low (Taylor et al., 2011) High Yes 
Plant species High (Taylor et al., 2011) Imbalanced, 

high 
cardinality 

No 

Plant family Moderate (Taylor et al., 2011) Imbalanced  No 
Evapotranspiration Moderate (Ouellet-Plamondon et al., 

2006) 
Low No 

Age Moderate (Ding et al., 2021) High Yes 
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2.4.2 Preliminary modelling and data division 

Preliminary modelling for prediction of organic matter used all data in the treatment dataset 

but resulted in misattribution issues. Feature importance scores (not shown) gave depth the 

highest median importance across the models, while saturation had low importance. 

Similarly, ALE plots showed that the models predicted lower effluent concentration 

depending on depth and HLR rather than the saturation type. This is contrary to the 

established understanding, which designates the type of wetland as the largest factor for 

treatment due to oxygen transfer differences (Nivala et al., 2013). Correlation matrices 

showed that depth, HLR, saturation, organic matter, and ammonia features were highly 

correlated due to the typical performance and design parameters of each type of wetlands 

(Table 2-4), likely causing misattribution issues in the models. Removing HLR and depth 

from the preliminary model resulted in saturation having the highest SHAP value, with ALE 

plots showing large interactions between saturation and other features. This confirmed 

collinearity issues and showed that the effect of other features was highly dependant on 

saturation.  

Similar machine learning studies which have used vertical and horizontal flow data in the 

same model have also found HLR and filter depth to have high importance (Lam et al., 2024; 

Nguyen et al., 2022). These correlation issues may have been the cause, with Lam showing 

PDPs for HLR and depth with a similar step pattern to those generated by all-inclusive 

models of this dataset. The lower step corresponds with the typical design parameters of 

saturated systems, while the higher step corresponds with those of unsaturated systems. 

Based on our results, future studies should avoid correlation issues by separating saturation 



40 
 

types (Soti et al., 2023) or removing correlated design features and retaining only system 

type (S. Liu et al., 2025).  

Table 2-4: Mean values of features correlated with saturation type in the treatment data set. as well as how many 
unique treatment wetlands were collected within each saturation type.  
Saturation Systems HLR 

[L/m2/d] 
Media 
Depth [m] 

Influent Effluent 

aerated 9 108 ± 20 0.9 ± 0.1 
COD: 432 ± 140 
CBOD: 298 ± 83 
NH3: 65 ± 17 

COD: 24 ± 8 
CBOD: 2 ± 3 
NH3: 1 ± 1 

alternating 1 169 ± 13 0.9 ± 0 CBOD: 277 ± 53 
NH3: 55 ± 15 

CBOD: 4 ± 4 
NH3: 8 ± 10 

fill-and-drain 39 18 ± 25 0.3 ± 0.2 
COD: 369 ± 177 
BOD5: 173 ± 50 
NH3: 17 ± 11 

COD: 61 ± 51 
BOD5: 21 ± 16 
NH3: 17 ± 7 

percolating 22 128 ± 
117 0.7 ± 0.2 

COD: 373 ± 215 
CBOD: 269 ± 65 
BOD5: 131 ± 134 
NH3: 43 ± 22 

COD: 24 ± 10 
CBOD: 12 ± 17 
BOD5: 18 ± 32 
NH3: 8 ± 11 

saturated 34 30 ± 28 0.4 ± 0.1 

COD: 513 ± 194 
CBOD: 294 ± 89 
BOD5: 98 ± 49 
NH3: 57 ± 26 

COD: 63 ± 51 
CBOD: 54 ± 23 
BOD5: 30 ± 22 
NH3: 45 ± 26 

 

Subsequent modelling used separated datasets, which enabled retention of HLR and depth 

while increasing interpretability. The dataset was divided by saturation to eliminate high 

correlations, with batch and saturated systems grouped due to similar design parameters and 

performance (Table 2-4). As saturation was shown to heavily influence the effect of other 

features, dividing the dataset also served to account for saturation in each interpretation 

method. This allowed for more useful interpretation of interactions since there are no 

interpretation techniques for interactions of more than two features (Molnar, 2024). 

As a result of the data division, aerated and alternating systems were removed from 

modelling due to high treatment consistency and data limitations (Table 2-4). These systems 

had high and consistent treatment rates across all designs and conditions reported, reducing 
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the benefit of modelling for the data distributions available. In addition, only one alternating 

system had data which met requirements and 99% of the aerated datapoints were from the 

same paper, providing less opportunity for insights not already captured by the original 

publications. The decision was therefore made to remove them from the modelling analysis, 

and the final data used for modelling is shown in Table 2-5. This final data totalled 24 

publications, 100 unique treatment wetlands, and 1693 data points. 

Table 2-5: The range, mean, and standard deviations of numeric features in the separated treatment datasets. 
 Organic matter NH3 

Feature 

Saturated 
min – max 
(mean±sd) 

Unsaturated 
vertical 
min – max 
(mean±sd) 

Saturated 
min – max 
(mean±sd) 

Unsaturated 
vertical 
min – max 
(mean±sd) 

Organic matter effluent 
[mg/L] 

0 - 300  
(61±39) 

0 - 140  
(16±20) N/A N/A 

Organic matter influent 
[mg/L] 

59 - 900 
(370±160) 

110 - 550  
(300±100) 

0 - 900 
(350±180) 

110 – 550 
 (290±100) 

NH3 effluent  
[mg/L] N/A N/A 0 - 160  

(44±27) 
0 - 54  

(11±12) 
NH3 influent  
[mg/L] N/A N/A 0.57 - 270 

(54±24) 
14 - 150  
(54±19) 

Minimum media diameter 
[mm] 

0.25 - 30  
(7.7±6) 

0.06 - 4  
(1.7±1.4) 

0.25 - 30  
(8.2±6) 

0.06 - 4  
(1.7±1.4) 

HLR  
[L/m2/d] 

3.3 - 380 
(27±25) 

22 – 250 
 (90±28) 

5.5 - 380 
(27±26) 

22 – 250 
 (90±29) 

Depth 
[m] 

0.25 - 1.1 
(0.42±0.11) 

0.1 - 1  
(0.78±0.18) 

0.25 - 0.7 
(0.43±0.12) 

0.1 – 1 
 (0.78±0.18) 

Age  
[y] 

0.05 - 9  
(2.6±2) 

0.1 - 6  
(1.3±0.91) 

0.05 - 6 
(2.3±1.6) 

0.1 - 6  
(1.3±0.92) 

Effluent temperature  
[°C] 

0.1 - 27  
(12±5.7) 

3.1 - 27  
(13±5.4) 

0.1 - 27 
 (13±5.7) 

3.1 - 27  
(13±5.5) 

Recirculation rate  
[%] 

0 – 300% 
(0.62±11) 

0 – 200% 
(0.023±0.16) N/A 0 – 200% 

(2.3±16) 
Loading interval 
[h] N/A 1 - 12  

(2.1±1.9) N/A 1 - 12  
(2.1±2) 
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2.4.3 Model performance 

Model fit primarily differed by dataset rather than algorithm (Table 2-6). In general, our 

models demonstrated similar or better accuracy than those reported in previous machine 

learning studies of treatment wetlands. However, the prediction of organic matter in saturated 

systems showed a weaker fit. For instance, horizontal saturated treatment wetlands modeled 

with SVM have achieved an R2 of 0.4 (S. Singh et al., 2022b). In another study, multiple 

treatment wetland types were modeled using Cubist, RF, and SVM, finding that Cubist 

performed best with an R2 of 0.84 for both ammonia and organic matter models (Nguyen et 

al., 2022). Our fit metrics (Table 2-6) were lower for organic matter but corresponded to the 

standard deviations of our dataset (Table 2-5). The relatively poorer prediction for saturated 

systems may be attributed to the wider range of effluent concentrations in our dataset (61±39 

mg/L organic matter), compared to Singh’s study which reported (10±12 mg/L BOD, 42±14 

mg/L COD). 

Table 2-6: Fit metrics for each model and algorithm that is predicting effluent concentrations.  

Parameter Dataset XGBoost 
rmse / R2 

Cubist 
rmse / R2 

SVM 
rmse / R2 

RF 
rmse / R2 

Organic 
matter saturated 37 / 0.33 38 / 0.31 44 / 0.21 37 / 0.31 

Organic 
matter 

vertical 
unsaturated 16 / 0.58 11 / 0.81 21 / 0.28 13 / 0.71 

Ammonia saturated 6.8 / 0.93 8.4 / 0.90 9.3 / 0.87 7.7 / 0.91 

Ammonia vertical 
unsaturated 2.9 / 0.92 4.0 / 0.87 6.5 / 0.68 3.7 / 0.89 

 

2.4.4 Model interpretation  

SHAP values were highly dependant on both the saturation and whether ammonia or organic 

matter was being predicted (Figure 2-6). Feature importance scores have previously been 
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shown for machine learning of treatment wetlands (S.-Z. Zhang & Jiang, 2024), but with 

different features, and comparison of machine learning feature importance scores across 

saturation types and algorithms has not been done to our knowledge. In our model the large 

variability between models shows that feature importance scores of a single model using data 

from all saturation types would have limited value. Comparison of algorithms shows larger 

standard deviations for features with higher median SHAP values, but similar feature 

rankings, giving higher confidence to the rankings. Interaction importance scores were not 

generated for the treatment models due to the processing power required and visualization 

difficulty for an increased number of models and features.  

 

Figure 2-6: SHAP values show the relative importance of each feature depending on if ammonia or organic matter is 
being predicted (top labels, first line) and if the training data is from saturated or unsaturated treatment wetlands 
(top labels, second line). Coloured dots show SHAP values of specific algorithms, while the box plots show their 
median importance and distribution. 

2.4.4.1 Influent loading 

Organic matter effluent prediction showed a lower response to organic matter influent 

concentrations than modelled using P-K-C*. Unsaturated models predicted an average 2 

mg/L rise in effluent per 100 mg/L of influent increase, while saturated predicted an average 

5 mg/L rise. As comparison, the P-K-C* equation (Kadlec & Wallace, 2009) modeled rises of 

20 mg/L for vertical flow and 40 mg/L for horizontal flow. This is representative of the high 

removal rates in our data. As our model was trained on individual points rather than median 
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values, it may also be a consequence of robustness (Seintos et al., 2024; Sultana et al., 2016) 

to temporary changes in influent concentration. 

 

Figure 2-7: PDP and ICE plots show how organic matter influent (x-axis) [mg/L] changes the predicted organic 
matter or ammonia effluent (y-axis) depending on the algorithm (colored lines) and saturation type (separate plots).  

The step response in the unsaturated model’s predicted ammonia effluent as a function of 

influent strength (Figure 2-7) was consistent between algorithms. The response also aligns 

with slow nitrification reported prior to BOD being reduced below 20 mg/L, due to 

competition for oxygen between nitrifiers and heterotrophs (Headley et al., 2005). For 

saturated treatment wetland models, low removal of ammonia was predicted regardless of the 

influent organic matter concentration, indicating that it is not the limiting factor. This low 

removal rate is shown more clearly in Figure 2-8, where influent and effluent concentrations 

of ammonia are highly correlated for both saturated and unsaturated treatment wetlands.  
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Figure 2-8: PDP and ICE lines show how ammonia influent [mg/L] influences the predicted ammonia effluent for 
saturated (left) and unsaturated (right) treatment wetlands depending on the algorithm (coloured line). Unsaturated 
vertical wetlands had no training data with influent ammonia greater than 100 mg/L. 

The effect of HLR in our models (Figure 2-9) was greatly diminished compared to literature. 

Between 0 and 100 L/m2/d the P-K-C* model showed organic matter effluent rising 400 

mg/L for saturated systems and 200 mg/L for unsaturated systems. In our models only the 

saturated model predicted organic matter increased, and it was an order of magnitude lower. 

It is possible that the lowered effect of HLR in the models was due to strong buffering 

capacities (Weerakoon et al., 2016), as we used multiple data points from each system, some 

of which varied in HLR. 
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Figure 2-9: PDP and ICE plots of how HLR [L/m2/d] influences each algorithms predicted organic matter or 
ammonia effluent, depending on the saturation of the treatment wetland. 

2.4.4.2 Physical design parameters 

Media diameter interpretation plots generally showed that smaller media can achieve lower 

effluent concentrations for both saturated and unsaturated systems. This is well understood 

for unsaturated vertical systems, for which simulations calibrated on experimental data have 

been published (Langergraber et al., 2020). For both ammonia-N and organic matter effluent, 

Langergraber’s results show the largest increase between 0.06 mm and 1 mm, with decreased 

benefit above 1 mm. While our overall organic matter increase from 0 to 4 mm is similar, our 

decreases between 0.06 mm and 1 mm and subsequent jumps in concentration are not aligned 

with the theoretical understanding. Ammonia-N results were more consistent between 

algorithms but did not show the larger difference in effluent concentrations between 0 and 1 

mm that simulations predict. 
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Figure 2-10: PDP and ICE plots showing how the minimum media diameter [mm] influences the predicted ammonia 
and organic matter concentrations for each algorithm, depending on the saturation of the treatment wetland. 

For our saturated models, media size had a 10 – 30 mg/L impact, despite uncertainty in 

publications. While some studies showed smaller media slightly increasing organic matter 

removal (He & Mankin, 2007), others have not (Akratos & Tsihrintzis, 2007a). Likewise, 

while total Kjeldahl nitrogen (TKN) has shown to be reduced by smaller media (Akratos & 

Tsihrintzis, 2007a), the same conclusions do not appear to be present for ammonia-N. Our 

models show a clear effect on organic matter concentration, and a small effect for ammonia-

N. The increased effect at smaller media sizes that other studies showed for unsaturated 

systems was predicted here for saturated. If this is the real relationship, it may have been 

better distinguished here due to the higher number of systems (88) in the saturated model 

compared to the unsaturated (22).  

The effect of depth in our saturated models (Figure 2-11) aligned with the clear impact in 

literature, with shallower systems performing better (Aguirre et al., 2005). For organic 

matter, changes below 0.6 m had increased effect for all but the SVM model. This would 
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correspond with the quicker percentage increase of bed depth near the water surface where 

oxygen transfer occurs.  

Unsaturated models showed the reverse effect, with removal increasing with depth. 

Unsaturated systems allow air to flow into their full depth between loadings, preventing 

increased depth from causing anaerobic conditions. Increased filter depth has shown to 

benefit all treatment parameters (Torrens et al., 2009), however this may be contingent on 

installation of passive aeration tubes which allow airflow to the bottom of the bed, better 

enabling aerobic conditions (Stefanakis & Tsihrintzis, 2012). Presence of aeration tubes was 

not included in the model to reduce dimensionality but could be added in future modelling 

efforts. 

 

Figure 2-11: PDP and ICE plots showing how the depth of the treatment wetland bed [m] influences the predicted 
ammonia and organic matter concentrations for each algorithm, depending on the saturation of the treatment 
wetland. 

2.4.4.3 Temperature 

Responses to temperature varied significantly by saturation and parameter (Figure 2-12). 

Model responses generally aligned with established theory; removal is more sensitive to 
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temperature in less aerobic systems (Nedwell, 1999), and nitrifying bacteria are more 

sensitive to temperature than heterotrophic bacteria (Salvetti et al., 2006; Varma et al., 2021). 

Despite their sensitivity, saturated system PDP curves showed no ammonia-N response to 

temperature due to lack of predicted removal even at warmer temperatures. ICE curves 

revealed that feature combinations with zero effluent ammonia-N at warm temperatures show 

increased concentrations as temperatures lower. ICE curves also showed alternate responses 

for the other plots, indicating interactions with other features. 

 

Figure 2-12: PDP and ICE plots showing how effluent temperature [°C] influences the predicted organic matter and 
ammonia effluent concentrations for each algorithm, depending on the saturation of the treatment wetland. 

Plant presence effected effluent differently dependant on both temperature and saturation of 

the treatment wetlands (Figure 2-13). For the general saturated model, planted systems were 

predicted to have significantly reduced sensitivity to temperature decline, aligning well with 

20-day batch studies included in the training dataset (W. C. Allen et al., 2002b; Taylor et al., 

2011). However, these results must be taken with caution, as the 20-day batch time (3 – 7 

L/m2/d) of these 103 data points represents a very low loading rate, and many of the plant 

species had uniquely high cold temperature performance compared to the more common 
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Phragmites australis. In addition, a study of batch (20-day) and continuous flow (5-day) 

microcosms showed minimal or no effect of plants in cold continuous flow microcosms, in 

contrast to large effect in batch microcosms (Stein et al., 2003). While the discrepancy 

between contact times in Stein’s study is obviously large, this deserved further investigation 

using modelling.  

 

Figure 2-13: PDP plots showing how effluent temperature [°C] influences the predicted effluent organic matter 
concentrations for all saturated systems (continuous and batch), depending on the algorithm (from left to right), and 
plant status (coloured lines). 

A supplementary model was created with only continuous flow saturated treatment wetlands, 

omitting all batch-operated microcosms. This model resulted in Figure 2-14, which predicts a 

more subdued but persistent benefit of plants at colder temperatures. This continuous flow 

saturated data set has a higher HLR (30 ± 28 L/m2/d, Table 2-5) than that of the batch 

microcosms (3 – 7 L/m2/d). It also consists of 80% Phragmites australis, which has been 

shown to be less effective at improving treatment in colder temperatures than other species 

(Taylor et al., 2011). While the discrepancy between Figure 2-13 and Figure 2-14 may be 

partially due to the difference in plant species, it may also be due to plants being less 

effective at higher HLRs or with continuous flow operation. Figure 2-14 is a more realistic 

relationship for the bulk of treatment wetlands, as continuous flow wetlands planted with 

Phragmites australis are more common than batch or other species outside of microcosm 

studies, and the average HLR is more aligned with typical design recommendations (Dotro et 
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al., 2017). For areas where P. australis is invasive or batch wetland operation is of interest, 

more research is necessary. 

 

Figure 2-14: PDP plots showing how effluent temperature [°C] influences the predicted effluent organic matter 
concentrations for continuous flow saturated treatment wetlands (no batch), depending on the algorithm (from left to 
right), and plant status (coloured lines). 

For unsaturated models, only a small decrease in effluent concentrations was attributed to 

plants in cold conditions (Figure 2-15), and only for the Cubist algorithm. To our knowledge 

this effect has not been reported for unsaturated systems, giving more uncertainty to this 

effect. A lack of measurable effect would align with the literature. Unsaturated treatment 

wetlands obtain more oxygen from their operation than theoretically obtainable from plants, 

therefore plant supplied oxygen would be a smaller percentage of the total oxygen available 

to them (Nivala et al., 2013), and make a proportionally smaller difference than in saturated 

operation wetlands. 

In warm conditions unsaturated models predicted that plants cause higher organic matter 

concentrations (Figure 2-15). This reveals one of the causes of the unsaturated model’s 

unintuitive improvement of organic matter removal as temperatures decrease. Literature on 

the effect of plants in unsaturated systems is scarce. A slight overall improvement in organic 

matter removal was reported for planted unsaturated systems (Torrens et al., 2009), but was 

not distinguished by temperature range, preventing adequate comparison here. Effluent 
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concentration due to evapotranspiration (Nivala et al., 2019) is a possible explanation for the 

model prediction, but has not been observed to increase effluent concentrations for 

unsaturated systems from our review of literature.  

 

Figure 2-15: PDP plots showing how effluent temperature [°C] influences the predicted effluent organic matter 
concentrations for vertical unsaturated systems, depending on the algorithm (from left to right), and plant status 
(coloured lines). 

Models predicted consistently lower ammonia effluent for planted systems regardless of 

saturation or temperature (Figure 2-16). Plant uptake of ammonia occurs during plant growth 

(Vymazal, 2007) in warm conditions, while root oxygen release increases in colder 

conditions (W. C. Allen et al., 2002b), providing oxygen for denitrification. Figure 2-16 

suggests that plant uptake has a larger impact than root oxygen-caused denitrification for 

saturated systems. For unsaturated the additional root oxygen appears to be more beneficial. 

Studies of unsaturated and saturated system ammonia removal at both warm and cold 

temperatures were not found for comparison. 
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Figure 2-16: PDP and ICE plots showing how effluent temperature [°C] influences the predicted effluent ammonia-N 
concentration, depending on the saturation (upper and lower plots), algorithm (from left to right), and plant status 
(coloured lines). 

A limitation to all plant related prediction plots is that the evapotranspiration rate (and 

therefore also root oxygen supply and ammonia uptake) is a function of the air temperature, 

solar radiation, growth stage, and plant species (Kadlec & Wallace, 2009), none of which are 

included in the model. The strongest experimentally demonstrated impacts of plants on 

organic matter removal (which were included in model training data) were shown to occur at 

a water and air temperature of 4°C, when the air temperature was cold enough to stop or slow 

plant evapotranspiration, but not cold enough to wither the plants (Taylor et al., 2011). Our 

collected data from published studies of outdoor buried systems shows that a water 

temperature of 4°C corresponds to air temperatures ranging from -15 to 11°C (Figure 2-17). 

There is a lower air temperature limit below which oxygen supply through plant stalks lowers 

or stops; P. australis for example was found to have insignificant root radial oxygen loss 

below air temperatures of 2.4°C (Q. Wang et al., 2015a). For ammonia, evapotranspiration 
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driven uptake will also slow and stop as air temperatures approach zero; the common Typha 

spp. for example, starts to turn yellow at 5°C (Yan & Xu, 2014). In addition, studies have 

shown that plant effects are highly dependant on the species, which was omitted due to 

imbalance and high cardinality issues. Due to these unmodelled effects of air temperature and 

species, the ammonia and organic matter removal of planted systems is expected to vary from 

the behaviour shown by the PDPs dependant on the air temperature. 

 

Figure 2-17: Plot of influent (yellow) and effluent (blue) water temperatures versus air temperature for all outdoor 
buried systems in the temperature dataset.  

2.4.4.4 Age 

For saturated models, PDP and ICE showed a quick decrease of organic matter effluent in the 

first four months to a year, aligning with reported startup period durations (Ding et al., 2021; 

Zidan et al., 2015). The subsequent 15 – 25 mg/L decrease in predicted organic matter 

effluent has also been observed for the treatment of dairy (Tunçsiper et al., 2015) wastewater. 

The dataset only included seven saturated systems older than three years, therefore additional 

studies may increase the certainty of this relationship.  
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For ammonia and unsaturated vertical models there was no clear relationship, with either no 

effect or disagreement between models. Start up effects have been reported for unsaturated 

vertical flow systems, with BOD5, COD, and NH4 all more erratic and higher during the first 

year (Stefanakis & Tsihrintzis, 2012). For French vertical flow systems, long term 

improvement due to age has been demonstrated to be similar to what our saturated model 

shows (Paing et al., 2015). The lack of effect for the unsaturated models may be a 

consequence of low data density, with only three vertical unsaturated systems older than two 

years. It is also possible that non-French unsaturated systems do not improve over time, since 

Paing attributed it to sludge buildup that improved distribution. Instead improved distribution 

can be designed for (Pucher & Langergraber, 2019). 

 

Figure 2-18: PDP and ICE plots showing how the treatment wetland age [years] affects the predicted organic matter 
and ammonia-N effluent concentrations, depending on the saturation and algorithm.  

2.5 Limitations 

Models and their interpretations are a result of the distribution and range of data used. Less-

represented treatment wetland types may not be accurately portrayed or insufficiently 

represented in the global interpretation methods which are biased towards treatment wetlands 
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with more data points. Models also predict based on correlations, while we are most 

interested in causation (Molnar et al., 2022). Patterns developed by models may match causal 

relationships, but this cannot be assumed blindly. For this reason relationships within models 

must be compared to specific publications and established theory where possible to assess the 

likelihood of causality and application to theoretical understanding.  

The majority of the datasets used are from small scale systems, which are not always 

representative of pilot or full scale systems, especially for planted systems (Brisson et al., 

2024). Direct extrapolation of results between systems of different scale is assumed for this 

work but should be investigated further in the future. Seasonal comparison of a cold-climate 

hybrid treatment wetland and mesocosms using C. utriculata showed similar effluent quality 

results but unique microbial communities, showing that care must be taken when comparing 

(Ayotte et al., 2024). As data availability from pilot or full-scale treatment wetlands 

increases, wetland size could be included as a model feature or a dedicated model for full 

scale treatment wetland could be created.  

Temperature and water quality are both affected by past conditions which are not captured in 

these models, as they have been trained on point-in-time data points. Substantial heat 

capacity dampens temperature changes (Kadlec & Wallace, 2009), and microbial 

communities take time to stabilize from environmental changes. For example, lags in growth 

observed in spring temperature shifts (Kim et al., 2022) may indicate that more sensitive 

bacteria are not able to compete and regain population share until temperature is above a 

certain value, leading to possible differences in performance between spring and fall despite 

equal temperatures. This applies to plants as well, which may be fully matured (in fall) or not 

yet grown (in spring) with equal effluent temperatures. Research on this problem has shown 
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that long short-term memory (LSTM) neural networks can be effective, but should be 

combined with smoothed data, and have only been implemented for single treatment 

wetlands thus far (Yang et al., 2023). 

ALE and PD plots cannot visualize interactions of three or more features, despite these 

relationships existing in the models. While these higher order interactions are often less 

impactful than main effects or two-way interactions, it is possible for significant effects to be 

missed because of this.  

2.6 Conclusion 

Machine learning models were able to predict effluent temperature with a RMSE of 0.7 °C, 

organic matter with a RSME of 20 – 40 mg/L, and ammonia with a RSME of 5 – 14 mg/L. 

Saturated systems had considerably more variable effluent quality than unsaturated vertical 

systems, resulting in lower RSME scores while achieving similar R2 values.  

Interpretation of the machine learning models successfully allowed comparison to the 

established understanding and identification of issues in model logic. Visualizing the range of 

response possibilities using ICE curves added considerable value. Areas of misalignment 

between model algorithms signalled more uncertainty, but did not always correlate with 

divergences of the curves from established theory. No single algorithm was clearly most 

aligned with the established understanding. While the SVM model had lower fit metrics and 

was not able to capture the less linear relationships, it also resisted the overfitting tendencies 

of the other more flexible models. High correlations between saturation type, HLR, depth, 

and effluent concentration caused all algorithms to make incorrect conclusions in preliminary 
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treatment modelling. Models must be interpreted with an understanding of data distribution, 

correlations, and wetland theory.  

Interactive relationships showed increased differences between model algorithms as well as 

inconsistencies with established understanding. This is unsurprising due to the increased 

degrees of freedom but does limit the building of new knowledge since it is these more 

complex relationships that are less understood. Interaction strength scores of individual 

features more successfully aligned with expected importance. 

Machine learning driven modelling can successfully extrapolate across results from multiple 

studies while accounting for differences in system designs. By leveraging model 

interpretation methods in combination with an understanding of the underlying theory of 

wetland systems, the average and range of effects of individual variables were effectively 

visualized. In this case, interpretation tools have provided a valuable review of the effects of 

not only temperature, but other key parameters. Using multiple modelling techniques in this 

analysis helped indicate where relationships were less certain and multiple explanations are 

possible, and where the relationship is more defined. The results of these methods can 

effectively communicate variable effects, allowing new insights into future system design 

and operation. These results must be interpreted with caution however, as modelling is based 

on correlation, not theoretical causation, and misattribution of cause can lead to incorrect 

predictions or insights.  
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Chapter 3 Using Machine Learning Insights to Target Research on the Seasonal 

Effects of Plants in Batch Treatment Wetlands 

3.1 Introduction 

This chapter reviews the insights on evapotranspiration, plant effects, and saturated treatment 

wetlands from the in silico experiments and discusses subsequent research questions, 

methodology to answer them, and expected outcomes of that methodology. 

3.2 Insights from machine learning on the effects of plants 

The machine learning work in Chapter 2 provided information about several gaps or 

uncertainties in the performance dynamics of treatment wetlands, particularly regarding the 

combined effect of plants and temperature. Plants and temperature clearly had joint impacts 

(Figure 2-15 and Figure 2-16) on the predicted effluent quality in the models. However, gaps 

in understanding the reasons and extent of these impacts were evident due to both limitations 

of feature inclusion and the design of treatment wetlands included in the training data.  

Evapotranspiration is one feature which could not be included due to insufficient data, and 

model interpretation of warm planted systems highlighted uncertainty in its effect. Figure 

2-15 shows that plants increased predicted effluent organic matter for unsaturated systems in 

warmer conditions, which may have reflected evapotranspiration-caused concentration of 

effluent. Horizontal flow systems have previously observed this, noting effluent 

concentrations increasing and water levels decreasing due to summer evapotranspiration 

(Sultana et al., 2016), but no studies to our knowledge have quantified this effect. Despite 

lack of quantification, compensating for evapotranspiration has been done by multiple 

authors through artificial water level maintenance (Taylor et al., 2011) or mathematical 
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compensation (Sultana et al., 2016). This forced intentional omission of warm temperature 

results from Taylor’s work and all results from Sultana to allow any potential 

evapotranspiration effects to be visible in the model. Notably this also meant there were no 

planted warm temperature batch treatment wetlands represented in the data, as no batch 

studies to our knowledge allowed evapotranspiration to have an effect. This leaves 

considerable uncertainty around the size and type of effect that evapotranspiration has, 

especially for batch systems. 

Uncertainty around plant effects at lower temperatures was present as well. While plant status 

showed a large effect on the removal of organic matter at low temperatures for the overall 

saturated model (Figure 2-13), comparing results from a continuous flow specific model 

revealed a smaller effect (Figure 2-14). The subdued effect of plants in Figure 2-14 could be 

contributed any of operation (batch vs continuous flow), HLR, or plant species. While we 

know that plant species can make a difference, the impact of larger HLRs and operation on 

the impact of plants has not been made clear to our knowledge, with comparisons only done 

with significantly different HLRs (Stein et al., 2003), leaving a gap in understanding. 

Less represented but included in the training data were harvested treatment wetlands, which 

showed a slight but uncertain effect. Harvested treatment wetland data points were present in 

four of the publications used in the saturated training data, representing only 5% of the data 

points. Interpretation of harvested treatment wetlands showed either slightly worse or similar 

cold temperature organic removal than planted. These results matched the findings of the 

only publication of harvested treatment wetlands to quantify the performance impact 

(included in the training data) (Q. Wang et al., 2015b), but the limited data and the variability 

between algorithms reduces the confidence of this relationship. Other publications have 
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reported non-quantified reduced treatment after harvesting (Sultana et al., 2016) or did not 

mention an effect (Akratos & Tsihrintzis, 2007a; Sani et al., 2013). This reveals insufficient 

knowledge about the effect of harvesting for different ranges of design variables or plant 

species. 

These knowledge gaps identified through data collection and model interpretation for plants 

can be summarised as follows: 

• No information exists to our knowledge of how batch operated treatment wetlands are 

affected by evapotranspiration. 

• It is uncertain whether plants improve cold temperature treatment more in batch operated 

microcosms due to the batch operation, long retention times, or species selection. 

• Data on effluent quality for harvested treatment wetlands is limited, reducing confidence 

in how harvesting may impact effluent treatment at design or operational conditions other 

than those from the singular study.   

3.3 Research questions driven by machine learning insights 

Allowing evapotranspiration to occur in batch-operated systems would not only concentrate 

effluent but also lower the water level throughout each batch. This would both extend the 

unsaturated period of the upper media and gradually reduce the media in contact with the 

wastewater as the water level is reduced. Microcosm batch experiments showed increased 

performance by exchanging saturation time for unsaturation time, with the best treatment at 

an unsaturated time of 1 day for every 2 days of saturation (Jia et al., 2010). Increased 

unsaturated time has also shown to increase the effective porosity in as few as three days, 

resulting in implications for bed hydraulics and volumetric capacity for each batch (Hua et 
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al., 2014a). Given these results, how does evapotranspiration-driven water level reduction in 

batch treatment wetlands affect both treatment performance and bed hydraulics? 

Evapotranspiration must be less than HLR to maintain wet conditions in batch operated 

treatment wetlands in summer. When winter comes, can plants still improve batch treatment 

at these higher HLRs? Evapotranspiration rates of non-aerated horizontal flow treatment 

wetlands have been reported to peak at 19 – 28 mm/d (Nivala et al., 2022) for Phragmites 

australis, depending on the wetland depth, and additionally vary (5 – 37 mm/d) depending on 

the wetland plant species (Milani et al., 2019). This provides a practical HLR range to 

determine cold temperature batch treatment wetland performance. As C. utriculata has 

previously been shown to have the largest influence on treatment in cold-temperature 

microcosm batch studies at low HLRs (3 - 7 mm/d) (W. C. Allen et al., 2002b; Taylor et al., 

2011), it is a suitable species to determine the effect of these larger HLRs. By using a species 

with known cold temperature benefit in batch operation, we eliminate two of three unknowns 

(species, HLR, and operation) in the knowledge gap and ask if C. utriculata specifically can 

maintain its cold-temperature benefits under HLRs which prevent drying out treatment 

wetlands in summer.  

To our knowledge, C. utriculata has not been harvested in any published research and 

therefore represents an ideal species to widen the literature on how harvesting affects 

treatment. Harvesting of P. australis has been reported to worsen cold temperature 

performance of planted horizontal saturated wetlands at influent concentrations as high as 

4000 mg/L COD at 12 mm/d (Sultana et al., 2016), as well as influent as low as 60 mg/L 

COD for a 7-day batch (Q. Wang et al., 2015b). As P. australis has been shown to have a less 

pronounced cold temperature benefit than C. utriculata (Taylor et al., 2011), will C. 
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utriculata have a larger drop in treatment when harvested, with more to lose, or have a 

smaller change that gives insights on the potential mechanisms behind treatment 

improvements? 

In summary, the research questions prompted by the machine learning work are: 

• How does evapotranspiration-driven water level reduction in batch treatment wetlands 

affect both treatment performance and bed hydraulics? 

• Can C. utriculata maintain its cold-temperature benefits under HLRs which prevent 

drying out treatment wetlands in summer? 

• How will cold-temperature treatment performance change if C. utriculata is harvested? 

3.4 Methodological decisions  

To study these research questions, validate observations of plant effects from model 

interpretation, and enable future inclusion of planted batch wetland training data in warm 

conditions, an experiment using batch treatment wetland microcosms was designed. A HLR 

of 22 mm/d was chosen to match the maximum evapotranspiration observed in batch 

treatment wetland microcosm research (W. C. Allen et al., 2002a) while staying within the 

reported ranges of evapotranspiration for larger treatment wetlands (Nivala et al., 2022). C. 

utriculata was planted in half the microcosms to make its effect clear for both us and for 

training future models. 

Both total and soluble biochemical oxygen demand (COD) were included as measured 

parameters to clarify differences in temperature impact on soluble or total measurements of 

organic matter. While not part of the main discussion, soluble COD had a smaller but 

uncertain response to colder temperatures (Figure B-3) in model interpretation of saturated 
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systems. The SVM and random forest algorithms showed soluble COD to respond less to 

temperature, while the other algorithms were closer to parallel with total measurements of 

organic matter. This may be partially due to limited publications in the training data which 

reported both soluble and total organic matter, limiting the model’s capacity to concretely 

determine the relationship between them. Investigating this relationship further would also 

improve understanding of the potential differences between studies which treat wastewater 

with particulate and those with only solubilized COD sources.  

To fully understand the potential impact of evapotranspiration on treatment performance, 

mass and concentration of COD and NH3-N effluent parameters were measured. Mass 

provides an accurate measure of how much of each parameter is actually being removed 

during high evapotranspiration (Sultana et al., 2016), allowing potential effects of increased 

unsaturated time to be more visible. Concentration is important as a regulated parameter (BC 

Reg 87/2012, 2012; SOR/2012-139, 2012), with NH3-N and COD both able to be integrated 

into training future machine learning models.  

As evapotranspiration may also affect the effective porosity, water level and mass 

measurements were required. By monitoring the volume of water required to fill each batch 

microcosm to a set depth, as well as the water level at the end of the batch and the volume 

drained, the effective porosity at the start and end of each batch can be measured. Effective 

porosity has been observed to change substantially over time (Hijosa-Valsero et al., 2012; H. 

Liu et al., 2018), and be a valuable machine learning predictor for treatment performance 

(Akratos et al., 2008). Effective porosity correlates directly with clogging potential (Zhao et 

al., 2009), which continues to be a challenging phenomenon to predict. Clogging has similar 

modelling problems to treatment performance, in that prediction methods are either simple 
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rules of thumb such as HLR (Knowles et al., 2011) or require many detailed parameters for 

complex models (Fang et al., 2022). Effective porosity was not reported sufficiently to allow 

inclusion in this research’s machine learning, however clogging research may be assisted by 

machine learning in the future if enough publications are able to measure it. 

3.5 Expected outcomes, connections, and significance 

This targeted research post-machine learning can reduce uncertainties around the machine 

learning predictions of how plants and batch operation affect treatment. This includes the 

effect of effluent temperature on treatment performance based on soluble or total COD 

(Figure B-3), operation (batch versus continuous flow), and planted, harvested, or unplanted 

status (Figure 2-13, Figure 2-14, Figure 2-16). By adding measurements of parameters such 

as water level and effective porosity, the possible mechanisms causing the effluent 

concentrations can be further discussed, furthering intelligent feature inclusion and analysis 

of interpretation efforts in modelling.  

This experimentation of a specific subset of the machine learning data allows furthering of 

design and operational recommendations using their combined insights. Machine learning 

work is important for identifying and providing initial quantification of design and 

operational effects. Unfortunately, less common design combinations, specific items like 

plant species, or less reported parameters such as effective porosity are currently not able to 

be effectively included, and require further experimentation to determine their effect. 

Targeted research can reveal the dynamics of these parameters to enable their inclusion in 

future machine learning, develop an improved understanding of specific treatment wetland 

configurations, and further design and operational recommendations for colder climates. 
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Chapter 4 C. utriculata Improves Treatment in Three-Day Batch Operated 

Treatment Wetlands in Warm, Cold, And Harvested Conditions 

4.1 Introduction 

Horizontal subsurface constructed wetlands suffer declining treatment capabilities as water 

temperatures lower (Chouinard et al., 2015; Varma et al., 2021). This can be problematic for 

seasonally colder climates where regulations on effluent must be met year-round. Fortunately 

batch constructed wetland microcosms have shown that particular plant species have high 

levels of root zone oxidation when both air and water temperatures are at 4°C, greatly 

improving chemical organic matter (COD) and ammonia (NH4) removal (C. R. Allen et al., 

2023; Taylor et al., 2011). In these studies, Carex utriculata has shown to have the best cold-

temperature performance.  

A potential limitation of existing batch studies of cold temperature planted systems are their 

low hydraulic loading rates (4 - 7 mm/d) compared to evapotranspiration (22 mm/d) (W. C. 

Allen et al., 2002c; Taylor et al., 2011). In real systems, shorter batch times would be 

required to avoid drying out plants, and water levels would still decrease during the batch. 

These shorter batches may lower plant benefits during cold conditions (Taylor et al., 2011), 

while warm temperature water level decrease would extend the unsaturated period, 

potentially improving treatment (Jia et al., 2010) and preventing or delaying long-term 

clogging, as measured by effective porosity (Hua et al., 2014a). Increased unsaturated periods 

may also increase the root to shoot ratio (J. Zhang et al., 2024), altering root dynamics that 

impact performance even once evapotranspiration slows in colder weather. 
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Particulate sources of COD may also affect how cold temperature, and plants jointly affect 

treatment performance. Existing batch research has used hydrolyzed sources of COD, which 

are more readily biodegradable than the substantial percentages of particulate COD seen in 

real municipal and domestic wastewater (Gujer et al., 1999). In cold temperatures hydrolysis 

is reduced (Y. Huang et al., 2005), resulting in an accumulation of slowly biodegradable 

particulate COD (Samsó & Garcia, 2013). Plant roots can increase total suspended solids 

removal (Karathanasis et al., 2003), but the overall impact of plant species is not yet fully 

understood in these conditions. 

Finally, reported cold temperature benefits may conflict with the practice of harvesting plants 

to remove sequestered nutrients. Nutrient uptake is important for less aerobic systems such as 

horizontal constructed wetlands since oxygen sources for nitrification are minimal, and 

phosphorus uptake is important as adsorption is finite (Vymazal, 2005). To prevent 

sequestered nutrients from returning to the wetland through the winter and following spring 

by leaching out of decomposing vegetation, fall cutting and removal of the above ground 

plant stalk is practiced (Vymazal, 2020). Unfortunately, harvesting Phragmites australis has 

been shown to reduce root zone oxidation in low-strength batch microcosms (Q. Wang et al., 

2015a), and increase effluent concentrations in horizontal wetlands treating high-strength 

dairy wastewater (Sultana et al., 2016). No studies of harvesting C. utriculata have been 

conducted, nor studies comparing unplanted and planted systems, which are both of interest 

due to previously reported high cold temperature performance.  

To address the current research gaps, planted (C. utriculata) and unplanted microcosms were 

operated in three-day batches through warm and cold conditions, treating a synthetic 

wastewater that included particulate COD. Treatment metrics measured included total COD 
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(tCOD), soluble COD (sCOD), NH4, PO4, pH, and redox. Warm condition operation 

determined how evaporative drawdown over shorter batch times alters how plants affect both 

removal efficiencies and the effective porosity. Cold temperature operation determined how 

previously reported treatment benefits of C. utriculata changed with more realistic batch 

times. Finally, harvesting C. utriculata quantified how harvesting impacts treatment 

performance for this species, and if the harvested systems still outperformed unplanted.  

4.2 Materials and Methods 

4.2.1 Experimental setup 

Three replicates each of planted (C. utriculata) and unplanted batch-operated fill-and-drain 

microcosms were constructed from 0.22 m2, 0.30 m deep HDPE bins. Each bin was 

constructed with a lower 40 mm layer of 38 mm diameter gravel and an upper 260 mm layer 

of 9.5 mm diameter round gravel, separated by a fiberglass mesh screen. Ratchet straps and 

wooden boards were used around the exterior of each bin to prevent long-term bulging of bin 

sides that could alter the area and depth of the bin. A 100 mm diameter sampling pipe with 

100 mm spaced 6 mm holes was installed vertically in the middle of each system. For the 

three planted systems, C. utriculata was planted in plastic mesh pots (130 mm diameter x 100 

mm depth) with six to eight stalks of mixed maturity per pot and buried in the top 100 mm of 

the bed at six pots per planted system.  
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Figure 4-1: Planted microcosm detail drawing. Note that unplanted microcosms are the same, minus the planted pots. 

All gravel and plants were sourced from previous microcosms which had been operating 

since June 2023 (10 months prior) with varied temperature (6°C, 20°C), influent strength 

(2000 mg/L tCOD, 300 mg/L TN; 500 mg/L tCOD, 75 mg/L TN), and plant (unplanted, C. 

utriculata) factors. All gravel and plants were mixed prior to use within the new microcosms 

to ensure homogenous starting conditions but were not washed to encourage a quicker startup 

time.  

4.2.2 Synthetic wastewater composition 

Synthetic wastewater was prepared using dog food concentrate, urea fertilizer concentrate, 

and reverse osmosis water. The dog food concentrate was prepared as a modified version of 

the procedure developed by Kargol et al. (2023) by blending dog food (Purina Dog Chow 

Complete Adult Dog Food with Real Chicken) with warm tap water at 90 g/L for two 
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minutes, pouring it through a coarse sieve, swirling to remove foam, allowing the mixture to 

soak and settle for 12 – 24 hours, and decanting the top 50%. By adding the steps of blending 

and decanting, COD concentration increased to 50,000 ± 11,000 mg/L with a higher ratio of 

particulate COD. This also resulted in 64% less dog food used compared to Kargol’s 

procedure, and their noted 67% decrease in COD from dog food stored for longer than three 

months was not experienced in this study. Urea fertilizer concentrate was prepared by 

dissolving granular urea fertilizer (Nutrien Ag Solutions Evergro Special Fertilizer Urea 

Nitrogen 46-0-0) with DI water for a urea-N concentration of 13,800 mg/L. The final 

wastewater was prepared immediately before feeding by mixing the dog food and urea 

concentrates with reverse osmosis water to meet target concentrations (see Table 4-1). 

Reverse osmosis water was sourced from tanks in the enhanced forestry lab (EFL) or cold 

room depending on the experiment phase. 

Table 4-1: Synthetic wastewater composition 
Parameter Value Unit 
Total COD 509 ± 113 mg/L 
Soluble COD 155 ± 19 mg/L 
Phosphate-P 3.9 ± 1.3  mg/L 
Total nitrogen 52.6 ± 1.7 mg/L 
pH 7.0 ± 0.1  

 

4.2.3 Operation, sampling, and measurements 

Microcosms were operated in batch mode. For each batch, microcosms were filled using 

buckets of synthetic wastewater to a depth of 0.25 m, left for three days, drained for one hour 

into buckets, and refilled with new wastewater. Water level was measured at the start and end 

of each batch. The volume dosed and drained from each microcosm was measured by 

weighing the buckets before and after dosing and draining. For each microcosm, the drained 
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wastewater was stirred to ensure homogeneity, tested for soluble COD using an APURE 

COD-208 COD sensor (UV-Vis absorption: Xu et al., 2023), and sampled (2 x 45 ml per 

system).  

Samples were measured for total COD (closed reflux 17 colorimetric: APHA 2017: 5220-D), 

NH4-N (ammonia selective electrode: APHA 2017: 4500 D), NO3-N (cadmium reduction 

method: APHA 2017: 4500 NO3-B), PO4-P (ascorbic acid: APHA 2017: 4500 P-E), and pH 

(electrode: APHA 2017: 2580-B). Continuously monitoring probes within one planted and 

one unplanted microcosm measured bed temperature (probe method: APHA 2017: 2550-B, 

pH (electrode: APHA 2017: 2580-B), ORP (Pt electrode method: APHA 2017: 2580-B), and 

DO (membrane electrode: APHA 2017: 4500 O-G). Air temperature was measured by room 

sensors. The effective porosity was calculated in two ways: a fill porosity calculated from the 

volume of wastewater dosed to achieve a 0.25 m depth, and a drain porosity calculated from 

the volume drained at batch end and the depth of effluent immediately prior to draining. 

   

Figure 4-2: From left to right: microcosms in the EFL (batches 0 – 29), the cold room (batches 29 – 50), and after 
being harvested in the cold room (batches 50 – 70) 

Microcosms were first matured in a climate-controlled EFL with natural summer lighting 

conditions from April 30, 2024 to July 26, 2024 at the University of Northern British 

Columbia, Prince George, Canada. Once both plant size and effluent quality was stabilized 

(judged based on similar performance for three consecutive batches), microcosms were 
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moved to a cold room with artificial lighting on a 12 hour on/12 hour off cycle, which 

provided photosynthetically active radiation (PAR) measured at 170 μmol/m²/s using a 

handheld PAR sensor. Once water quality had again stabilized, plant stalks were cut 1 – 2 cm 

above the gravel, and monitoring continued until a new stabilization point had been reached, 

at which point the experiment was concluded.  

Table 4-2: Air and water temperature throughout the experiment, depending on the location of the microcosms. 
Values are listed as mean ± standard deviation (min – max) to show variability. 
Parameter EFL [°C] Cold room [°C] 
Air temperature 21.6 ± 3.0 (16.5 – 27.1) 4.6 ± 1.1 (2.3 – 8.0) 
Water temperature 23.0 ± 2.5 (18.0 – 30.7)* 5.5 ± 0.5 (4.3 – 8.0) 

*Note that water temperature in the EFL is only from a single planted system. 

4.3 Results and discussion 

4.3.1 Evapotranspiration 

To our knowledge, evapotranspiration has not been reported for C. utriculata prior to this 

study. By the end of the warm conditions, evapotranspiration (Figure 4-3) was within the 

same range as outdoor microcosms (15 – 22 mm/d) (Hijosa-Valsero et al., 2012) and pilot-

scale continuous flow experiments (18 – 28 mm/d maximums) (Nivala et al., 2022) which 

used the more commonly reported P. australis. Warm versus cold temperature planted 

evapotranspiration rates matched the ratio of the Jackson Meadow horizontal aerated wetland 

system evapotranspiration rates at similar air temperatures (Wallace & Nivala, 2005). Post-

harvest, differences in water loss between planted and unplanted microcosms were not 

statistically significant. 
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Figure 4-3: Evapotranspiration (for planted units) and evaporation (for unplanted units) throughout each batch of 
the experimental period. The first dotted line marks the start of cold conditions, while the second marks when plants 
were harvested. 

4.3.2 Chemical Oxygen Demand 

In warm conditions mass removal of COD was identical for planted and unplanted 

microcosms COD (96±2%) (Figure 4-4). Longer (10 – 20 day batches) constant water level 

batch studies report poorer mass removal (83%) in C. utriculata microcosms compared to 

unplanted (88%) in warm conditions (Taylor et al., 2011). The cause of this is uncertain. 

Plants can add carbon to treatment wetlands through exudates and detritus, potentially 

worsening COD removal. Monitoring a free water surface treatment wetland for 56 days 

showed that 5–8% of the total Typha biomass was leached as DOC, and 30–50% exited as 

particulate organic carbon or was microbially respired (Pinney et al., 2000). In planted 

microcosms organic carbon exudates are estimated to be at least 90 mg C/m2/d for zero-

carbon influent, and especially substantial for C. utriculata in the summer compared to other 

species (C. R. Allen et al., 2023). If this rate is consistent, the mass addition of carbon 
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exudates would have been less, just as radial oxygen loss has been expected to also have 

decreased effects over shorter batch times (Taylor et al., 2011). However, Taylor argued the 

organic carbon in the wastewater is overwhelming larger than plant additions even at higher 

batch durations and did not think plant carbon addition could be the cause. Regardless of the 

reason, the lengthened unsaturated time in our planted microcosms may have increased COD 

removal. In three-day batch microcosm studies, two days of contact time followed by a 

whole day of draining had 97% COD removal, while three days of contact time with minimal 

drain time had 92% removal (Jia et al., 2010). The extended unsaturated oxidation period 

from the 20 – 83% water level fluctuations in our study may have similarly improved planted 

COD removal. 

 

Figure 4-4: NH3-N, COD, and PO4-P effluent concentrations (left) and mass (right) for planted (red) and unplanted 
(blue) microcosms. The first line marks the start of cold room conditions, and the second line marks the time at 
which C. utriculata was harvested. 
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In cold conditions, C. utriculata increased the removal of particulate COD (Figure 4-4). Cold 

conditions caused an immediate increase in soluble COD for all microcosms, followed by a 

slow but larger increase in particulate COD. This particulate COD increase was less in 

planted microcosms, indicating additional capture or hydrolysis. Other works show that while 

COD removal is not influenced by particulate in warm conditions (Caselles-Osorio & García, 

2006), it is limited by the rate of hydrolysis in cold conditions (Samsó & Garcia, 2013). The 

subsequent accumulation of particulate produces acetic acid (Y. Huang et al., 2005). Here we 

saw particulate increase in unplanted, and pH of unplanted systems also declining from 7.25 

to 7 (Figure 4-5). Planted microcosm pH stayed constant, but also started at a lower pH of 

6.75.  

 

Figure 4-5: pH in the effluent of each batch. The first line marks the start of cold room conditions, and the second 
line marks the time at which C. utriculata was harvested. 

The COD removal shown by C. utriculata in cold conditions was not as high as comparable 

studies with longer batches. In the relatively stable four batches before harvesting, COD mass 

removal was 86±5% for planted, compared to 73±9% for unplanted. Similar studies with 20-

day batches report 96 – 99% for C. utriculata and 58 – 67% for unplanted (Stein & Hook, 

2005; Taylor et al., 2011). In planted treatment wetlands, oxygen transported through the root 
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aerenchyma diffuses through roots as radial oxygen loss (Armstrong et al., 2000), which 

varies substantially by species (Lai et al., 2012). Assuming a relatively consistent flow of 

oxygen, shorter batch times, as with our microcosms, have been thought to result in a lower 

mass of oxygen per batch for heterotrophic usage (Taylor et al., 2011). Maturation stage is 

also a possible contributor, as microcosms in the present study matured for three months 

prior to the cold conditions, compared to six months or more in other studies. In our machine 

learning models, age showed improved organic matter removal until 4 months to a year, 

depending on the algorithm (Figure 2-18). Microcosm research of Juncus effusus classified 

maturity as post-80 days, with significant differences in COD, NH3-N, and DO 

concentrations attributed to maturity (Hu et al., 2023). Mature specimens were transplanted 

but may still have impacted results due to less time for extensive root development.  

Harvested microcosms retained their mass and concentration advantage over unplanted 

microcosms. Post-harvesting, mass COD removal in harvested microcosms immediately 

decreased from 83% to 79%. These are proportionally similar results to a 7-day batch 

experiment with P. australis using 59 mg/L COD influent which reported an immediate 

concentration removal change from 56% to 50% upon harvest (Q. Wang et al., 2015a). 

Despite this change, COD mass removal remained worse in unplanted microcosms, at 72% 

during the same batch. Radial oxygen loss has been shown to continue from airflow through 

cut dead plant culms (Tanaka et al., 2007). Post-harvesting, the planted microcosms 

continued to improve while unplanted performance worsened. As a result, the experiment 

concluded with a larger difference between harvested and unplanted microcosms than existed 

before harvesting.  
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Evapotranspiration reduction in cold and then harvested conditions tempered the effluent 

concentration change for planted microcosms. When microcosms were moved to cold 

conditions, evapotranspiration immediately lowered from 15 – 20 mm/d to less than 5 mm/d, 

doubling effluent volume. As a result, the COD effluent concentration increased by only 

25%, as opposed to the 400% increase in COD mass. Upon harvesting, evapotranspiration 

reduced again to 0.7 mm/d, causing the COD effluent concentration to increase by 30% 

instead of 50%.  

4.3.3 Ammonia 

Planted microcosms had a consistently higher mass removal rate of ammonia through warm 

conditions (Figure 4-4), with parallel improvement in removal between planted and 

unplanted. Throughout this whole warm period the ammonia mass removal of the planted 

microcosms was consistently 50% higher. This would align with constant nutrient uptake 

observed during plant growth periods (Bender et al., 2015), but the literature varies. Research 

with Juncus effusus indicates that nitrogen removal increases once plants are mature, and 

uptake itself is only 2 – 4% of nitrogen removal in treatment wetlands (Hu et al., 2023). 

Lengthened rest periods, as observed in our microcosms, can also greatly enhance 

nitrification (J. Zhang et al., 2024). Ammonia removal was not correlated with the rise in 

evapotranspiration from 8 to 20 mm/d, however effluent mass was more concentrated, 

resulting in 25% lower effluent ammonia concentrations in the planted microcosms.  

Planted microcosms retained their advantage throughout the cold period, but the advantage 

was less than studies with longer batch times. Cold temperatures decrease plant metabolism, 

and while this results in higher root zone oxidation for nitrification (Mburu et al., 2012), it 

has been suggested to reduce plant uptake to a greater degree (Yates et al., 2016). Despite 
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this, our cold planted ammonia removal was better than cold unplanted microcosms and 

similar to warm unplanted microcosms.  

Overall, the ammonia removal rates were lower than similar studies, which we attribute to 

our lower batch time and higher organic loading. Nitrate was zero throughout the experiment 

for planted and unplanted, as the conditions for denitrification were better than those for 

nitrification. We suspect studies with high removal rates within three days of a longer batch 

are a result of rapid sorption of ammonia onto the biofilm (Tanner et al., 1999). Plant uptake 

and nitrification of this sorbed ammonia would then continue throughout the rest of the batch, 

taking advantage of the whole batch time. Other studies with higher removal rates had lower 

organic loadings. Ammonia removal decreases as COD influent increases, since this 

increases competition for oxidation sites (Riley et al., 2005). A less explained comparison is 

with horizontal flow wetlands using a 3.4 day HRT planted with Carex aquatilis, achieving 

98% NH3 removal at 5 - 10°C (Yates et al., 2016). As their unplanted removal (2%) is similar 

to the present study, the improved planted performance suggests an interaction between their 

shallower depth and plant roots to potentially be of benefit, which would align with the 

increased evapotranspiration observed in shallower horizontal flow treatment wetlands 

(Nivala et al., 2022). 

Harvesting lowered the advantage of planted systems from 40% less ammonia mass than 

unplanted to only 12% less. We attribute this gradual decline to the saturation of adsorption 

sites (Vymazal, 2007) after plant uptake and/or oxidation decreased. The remaining benefit 

may be due to oxidation provided through cut plant culms (Tanaka et al., 2007) or continued 

accumulation of nitrogen into the plant biomass (X. Huang et al., 2020). Continued 
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accumulation has been observed for senesced Phalaris arundinacea but has not yet been 

proven for cut plants nor C. utriculata.  

4.3.4 Phosphorus 

Planted microcosms had consistently low effluent phosphate concentrations, reaching 0 mg/L 

by batch 22 – the same time that unplanted phosphate removal started to stabilize. Once zero 

phosphate in the effluent had been achieved in the microcosms it was maintained regardless 

of temperature or plant harvesting. At stability, planted microcosms reduced phosphate by an 

additional 30 mg/m2/d compared to unplanted (Figure 4-4).  

Phosphate removal is difficult to compare to other studies as removal rates vary significantly 

and mesocosms significantly outperform other treatment wetlands (Ury et al., 2023). That 

said, the rate of 2.2 g PO4-P/m2/year dosed to our microcosms is comparable to the 2.0 g 

TP/m2/y Ury found across all wetlands which were phosphorus sinks, and less than the 4 g 

P/m2/y that can be removed through harvesting biomass in full scale horizontal subsurface 

flow treatment wetlands (Okada & Vymazal, 2023). As unsaturated periods have been shown 

to enhance inorganic phosphorus solubilization leading to easier absorption by plants (J. 

Zhang et al., 2024), our planted microcosms may have been able to treat a higher loading of P 

while maintaining low effluent concentrations. 

The lack of clear temperature effect on phosphate removal aligns with some literature (Sani 

et al., 2013), while contrasting with findings which found reductions in removal at lower 

temperatures (Akratos & Tsihrintzis, 2007b). The reason for our continued 0 mg/L phosphate 

in planted microcosms in cold temperatures and post harvest is uncertain. Adsorptive 

capacity may have remained due to previous plant uptake, leaving sites for phosphate 

adsorption post-harvest that would eventually fill and reduce removal unless plant growth 
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restarted. Continued uptake of phosphates into the root biomass has been observed in 

senesced (but not harvested) wetland plants throughout winter (X. Huang et al., 2020). Plant 

roots can also increase adsorption sites; iron plaque formed on roots has shown to be a 

significant contributor to phosphorus removal (Y. Liu et al., 2024) in floating treatment 

wetlands.  

4.3.5 Porosity 

In warm conditions, effective porosities based on the volume to fill each batch (‘fill’ 

porosity) were higher in planted microcosms (Figure 4-6). Interestingly, the porosity of the 

planted microcosm’s lower drained portion (‘drain’ porosity) was 7 – 10% lower than the 

overall porosity of the entire filled microcosm. In contrast, unplanted microcosms had only a 

1% difference between the ‘fill’ and ‘drain’ porosities. While not observed in other fill-and-

drain treatment wetlands to our knowledge, periodic unsaturated rest periods of continuous 

flow microcosms have increased effective porosity by up to 6% over 10 days due to the 

inflow of oxygen that accelerates organic matter decomposition (Hua et al., 2014b; H. Wang 

et al., 2021). The reduced porosity observed in lower portions of the microcosm is therefore 

attributed to lower oxygen availability at depth, with the higher porosity in upper portions of 

the planted microcosms attributed to lengthened unsaturated periods caused by 

evapotranspiration.  

The effective ‘fill’ porosity of the planted and unplanted microcosms diverged slightly 

throughout the maturation period, with planted microcosms increasing and unplanted 

decreasing for a 2 – 3% difference by the end of the warm period. In the fill-and-drain batch 

configuration demonstrated in this study, resting periods would occur naturally from 

evapotranspiration each warm season, potentially preventing long term biological-based 
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clogging effects. Measurements of effective porosity in a long-term study would be of benefit 

to confirm any trends shown in our short-term study.  

 

Figure 4-6: Effective porosity of each batch, based on the volume to fill the drained microcosms to a set water level. 
The first line marks the start of cold room conditions, and the second line marks the time at which C. utriculata was 
harvested. 

In cold conditions effective porosity decreased substantially, and harvesting did not have a 

discernable impact. Thicker biofilm growth occurs in attached-growth and planted systems in 

lower temperatures (Morcillo & Manzanera, 2021). Lower temperatures decrease the 

biodegradation rate, resulting in reactants diffusing further through biofilm before being 

consumed and allowing a thicker biofilm to accumulate (Ahmed & Delatolla, 2021). Build up 

of non-degraded particulate matter can also contribute to clogging (Zhao et al., 2009), and we 

observed a larger fraction of particulate COD in the effluent in cold conditions. The cause of 

continued decline of planted microcosm porosity in the final four batches of planted 

microcosms (as opposed to the unplanted) is uncertain and deserves future study. 

This reduction in porosity between warm and cold conditions represents a substantial 17% 

(unplanted) to 29% (planted) reduction in working volume and mass loading over a period of 

60 days. For batch operated microcosms used for experiments, this shows the importance of 

volumetric inflow and outflow measurements for mass removal calculations. In real world 

batch operated treatment wetlands, this could result in a critical reduction in flow capacity 
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unless batch length is dynamically adjusted. In the more commonly scaled-up horizontal flow 

treatment wetlands, a similar reduction in porosity would reduce the hydraulic retention time 

at a time where treatment is already lower due to temperature, potentially further worsening 

treatment. This may contribute to the clogging issues documented in some vertical flow 

wetlands during cold spells (Langergraber et al., 2009), despite their unsaturated periods. 

4.4 Conclusion 

The findings of this study show that batch treatment wetland microcosms planted with C. 

utriculata have consistently better performance than unplanted equivalents in warm, cold, 

and cold harvested conditions, apart from COD effluent concentrations at warm 

temperatures. C. utriculata microcosms had higher effective porosities than unplanted, which 

appear to be driven by evapotranspiration caused unsaturated periods. This potential for long-

term clogging resistance should be further investigated with long term studies. Warm 

temperature mass COD removal of planted microcosms was identical to unplanted, unlike 

similar studies which reported poorer performance of planted microcosms in warm 

conditions. In cold conditions C. utriculata continued to improve treatment compared to 

unplanted, although the shorter batch time was associated with a lower benefit than 

previously reported. Harvesting C. utriculata resulted in a 15% increase in effluent total 

COD mass, and a 20% increase in NH3-N mass, but continued complete removal of 

phosphates. Despite these reductions, harvested systems still provided better treatment for all 

parameters when compared to unplanted. Negative effects on effluent concentrations were 

minimized due to reductions in evapotranspiration during cold temperatures and after 

harvesting causing a higher effluent volume.  
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Chapter 5 Conclusion 

5.1 Background 

Machine learning and microcosm experiments in this thesis have shown that the dynamics of 

how both warm and cold temperatures impact treatment wetlands are highly dependant on 

their design and operation variables (Figure 2-12). Machine learning models trained with a 

wide range of published data have proven to be relatively effective at accounting for these 

many permutations and providing a global understanding of feature effect through 

interpretation tools. Models are still limited by the extent of data available, and variables 

insufficiently reported to include and less common design permutations led to uncertainty 

around more specific effects and feature interactions. These areas of uncertainty identified 

through the machine learning process can and should be followed up with physical 

experiments to effectively fill in gaps in understanding. While multiple such uncertainties 

were identified, evapotranspiration, operation, and plant harvesting were chosen for follow 

up.  

5.2 Joint results of machine learning and microcosm experiments 

In Chapter 2, machine learning interpretation of temperature predicted that planted 

continuous flow saturated treatment wetlands would have a 7 – 12 mg/L lower organic matter 

concentration than unplanted, while the general saturated model influenced by low HLR 

batch microcosms showed a larger 18 – 30 mg/L benefit. Chapter 4’s physical experiments 

with C. utriculata revealed a 30 mg/L benefit of planted microcosms even at 22 mm/d, 

matching the higher end of the general saturated model effect. While not as impactful as 3 

mm/d microcosms using C. utriculata (Taylor et al., 2011), it shows that a significant 
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percentage of the plants benefit is retained at higher HLRs, and inclusion of plant species will 

be important in future machine learning models. Adding Chapter 4’s microcosm data to the 

machine learning training data (Figure 5-1), results in between the original saturated model 

and the continuous flow-only model were predicted. Figure 5-2 shows the model assumes 

these plant benefits to be applicable to both fill-and-drain and permanently saturated 

treatment wetlands, since PDPs include all possible combinations and interactions, and 

saturated treatment wetlands would have poorer performance if the model understood plants 

to have less benefit for permanently saturated treatment wetlands.  

 

Figure 5-1: PDP curves of the effect of plants dependant on temperature AFTER Chapter 4 microcosm data was 
added. Results are in between the original saturated model and the continuous flow only model. Harvesting shows a 
larger effect than previously predicted. 

Warm temperature planted batch treatment wetlands were missing from Chapter 2’s data 

collection due to intentional exclusion treatment wetlands with artificial controls on 

evapotranspiration. This gap was filled by the microcosm experiments in Chapter 4. While 

the evapotranspiration water level reduction did not result in a definite improvement in NH3-

N or PO4-P removal compared to other studies, there was increased COD mass removal 

compared to longer 20-day batch studies using C. utriculata. In addition, planted microcosms 

observed a lower effective porosity attributed to the extended unsaturated time from 

evapotranspiration. A revised model including the new microcosm data did not substantially 

change the effect of operation on the average predicted organic matter effluent (Figure 5-2, as 
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compared to Figure B-4). No algorithms predicted effluent concentrations to be higher for 

planted fill-and-drain treatment wetlands in summer despite the new microcosm data.  

 

Figure 5-2: PDP curve for the effect of temperature depending on the whether the treatment wetland is fill-and-drain 
(batch) operated or permanently saturated. Model shows results AFTER microcosm data added.  

Particulate COD was affected by temperature to a much larger degree than soluble COD in 

the Chapter 4 microcosms, supporting the machine learning findings. Random forest and 

SVM PDPs (Figure B-3) showed soluble COD to be less effected, despite the obvious errors 

of soluble COD being larger than total in the PDP. With added data from the new 

microcosms, the modelled relationships changed to those of Figure 5-3. While sCOD is still 

higher than COD for warm temperatures in the random forest model, the total COD is now 

shown to more affected by cold temperatures than sCOD for three of the four models, better 

matching the experimental results. 
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Figure 5-3: PDP curves AFTER microcosm data added for the effect of temperature, depending on the organic 
matter parameter for saturated systems. COD is more consistently greater than sCOD in the revised plots, especially 
at colder temperatures.  

Harvesting the C. utriculata in Chapter 4’s microcosms caused an immediate increase in 

effluent particulate COD while soluble COD effluent remained constant. These results 

indicate that plant stalks were increasing the rate of hydrolyzation while having little impact 

on the degradation of soluble COD, suggesting the impact of plant species on soluble and 

total COD removal in cold temperatures should be different. As a three-way interaction, this 

cannot easily be visualised through current model interpretation techniques.  

5.3 Cold climate design and operation 

When considering design in cold climate locations, the influent wastewater temperature is 

critical as it is heavily responsible for the resultant wastewater treatment process temperature 

(Figure 2-2). Once the type of treatment wetland is determined, it can be considered together 

with the HLR and air temperature data to model the effluent temperature (Figure 2-3), 

representing the coldest water in the treatment wetland (Figure 2-17). While insulation is 

known to be effective in other publications, quantification of this effect was not achieved in 

this work. 

Well designed forced aeration and alternating treatment wetlands are do not appear to be 

affected by temperature at all in the design and temperature ranges currently explored (Nivala 
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et al., 2019), but do have additional power and operational requirements which are outside 

the scope of this thesis. Neither design was studied in this work due to less data availability. 

For the other main treatment wetland types, unsaturated vertical flow treatment wetlands are 

less temperature sensitive than more saturated treatment wetlands such as continuous flow or 

fill-and-drain (Figure 2-12). 

Multiple treatment wetland design variables and operational methods were shown by 

machine learning to alter low and high temperature treatment rates similarly. A lack of clear 

modelled interaction between effluent temperature and HLR, media diameter, depth, or age 

indicates that the PDP relationships for these features apply across all temperatures. As such, 

for saturated treatment wetlands PDPs indicate that a low HLR (Figure 2-9), small media 

diameter (Figure 2-10), shallow depth (Figure 2-11), and old (Figure 2-18) treatment wetland 

would perform best. For unsaturated treatment wetlands, a smaller media diameter, thicker 

media layer, and shorter interval between loadings (Figure B-2) increase treatment 

performance. 

Features shown to affect warm and cold treatment wetlands differently included plants, 

operation, and particulate matter in the wastewater. For batch treatment wetlands, planting 

appropriate species (C. utriculata being best (Taylor et al., 2011)) can substantially improve 

cold temperature treatment up to at least 22 L/m2/d (Figure 4-4), and machine learning 

suggests these effects are applicable to continuous operated treatment wetlands as well 

(Figure 5-2). Plant benefits are slightly reduced if the plant stalks are cut and removed, but 

harvested treatment wetlands still hold a strong advantage to unplanted treatment wetlands 

(Figure 4-4). The fraction of particulate in wastewater is important as soluble COD is more 
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readily degradable than particulate in colder treatment wetlands (Figure 5-3), and increased 

solubilization appears to be a portion of the benefit provided by plants (Figure 4-4).  

5.4 Limitations and recommendations for future work 

Careful interpretation of machine learning algorithms showed high potential for compiling 

and summarizing the relationships discovered by individual studies, but only if checked 

against literature. Unlike mechanistic models, machine learning has no concept of causality, 

and results in this thesis and future works must be used with caution and an understanding of 

what should theoretically occur in treatment wetlands. Interpretation of multiple algorithms 

together and the use of ICE curves helped to show the potential variability of relationships 

mapped by models and are recommended for future work.  

As treatment wetlands are high dimensional systems, having interpretation tools for only one 

or two features limited results. As data availability increases in the future, we recommend 

splitting training data into further subsets of treatment wetland types, as done here for 

unsaturated and saturated treatment wetlands, to allow for more specific interpretation plots. 

Data division and modelling must be done with an understanding of imbalance, correlation, 

or cardinality issues in the source data, or misleading results will occur. As more data-dense 

areas of interpretation plots tended to show increased agreement with established theory, the 

ability to learn from models will increase and improve as more data is available and added.  

We recommend that future treatment wetland studies should consider the features used here 

for machine learning as the minimum reporting requirements. This will enable machine 

learning models to add data from these studies and continually improve as research 

progresses. It will also provide sufficient information for normal comparison with other 
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studies, as parameters such as influent and effluent temperature have been proven here to be 

important but were not readily available in all publications. Theoretically important features 

not able to be added due to data availability issues should also be considered, such as snow 

presence and depth over the winter, organic nitrogen influent concentration, time between 

fill-and-drain batches, evapotranspiration, the influent distribution system details. Once 

sufficient treatment wetlands report these parameters, they could be added to future machine 

learning models with data imputation methods used to fill in the missing values in past 

publications without this data. This will allow for more accurate and comprehensive 

predictions and interpretation plots. It should be emphasized that while this project included 

only data from published treatment wetland studies, data from non-academic sources could 

easily be added if of high quality and containing sufficient features. 

Machine learning is a wide and evolving field, with many different possible approaches that 

could be explored to follow up to the in silico experiments in this project. A significant 

limitation to the approach in this project is the lack of accounting for within-wetland 

autocorrelation. Real wetlands are not necessarily steady state, dynamically responding to 

influent composition changes, long term development of microbial and plant communities, 

and seasonal temperature patterns. This was partially accounted for with the ‘age’ feature, but 

past states were not accounted for, including parameters important for temperature and plant 

interactions such as season, which posed difficulties in our smaller dataset due to high 

correlations with effluent temperature. As data availability increases over time and machine 

learning methods continue to develop, more options will emerge. Future modelling efforts 

could experiment with adding features such as season, past influent and temperature 

conditions, or even month. Methods could also include recurrent neural networks such as the 
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long short-term memory (LSTM) models that have been used for individual constructed 

wetlands (Yang et al., 2023), or methods as of yet unexplored for treatment wetlands such as 

temporal fusion transformers (Lim et al., 2020) which can deal with static and temporal 

variables while still being interpretable. Given the importance of interpretation demonstrated 

in this work, we recommend focusing efforts on interpretable modelling methods.  

Both in silico and ex situ experiments were limited by the microcosms included in both, 

whose smaller scales and/or controlled indoor conditions for often short periods can impact 

the relevance of findings. Treatment wetlands, though designed, are also natural, biological 

systems that can perform differently at larger scales and natural conditions over multiple 

years or decades (Brisson et al., 2024). These limitations are particularly relevant for the 

temperature and season focused work of this thesis, and data from pilot or full-scale 

treatment wetlands over multiple seasons or years can provide valuable improvement and 

follow up to all aspects of this work. 

Multi-year treatment wetland experiments through seasonally frozen conditions are 

recommended to follow up to our work with batch microcosms. Realistic weather patterns 

are difficult to simulate in indoor conditions, and multi-year studies are difficult for a 

master’s length project. While our microcosms experienced the same air and water 

temperatures, air and water temperature are rarely the same in outdoor conditions (Figure 

2-17). As radial oxygen loss is a function of air temperature (Lai et al., 2012) while microbial 

communities are more affected by water temperatures, this is a limitation of our work. Cold 

climates also have long periods of frost and snow, unexplored in this work, which may alter 

passage of air through cut plant stalks, carbon release of decomposing tissue, and how C. 

utriculata impacts treatment. These cold periods are followed by warmer conditions in 
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spring; however, plant growth is immature at this point, again causing potential changes in 

how planted treatment wetlands behave. We also demonstrated that the effective porosity of 

batch fill-and-drain wetlands is affected by evapotranspiration water level reduction and 

temperature, but how these influence the effective porosity over multiple season changes and 

years of plant growth, harvesting, and frost damage is unknown. Experiments throughout 

multiple natural seasonal changes would extend our understanding of batch treatment 

wetland dynamics and better allow for temporal modelling that accounts for seasonal shifts. 

Finally, while the machine learning and microcosms of this project assume a monoculture, 

polycultures and changes in the dominant species can arise from ecological pressure over the 

long term (Zheng et al., 2020). As cold climate treatment performance has been shown to 

change with species (Taylor et al., 2011), this could pose issues for designs that rely on the 

performance of a particular species such as C. utriculata. How treatment wetland design and 

operation relate to the long term stability of a particular species or mixture of species is yet to 

be fully explored, but could potentially draw on knowledge from natural analogous wetlands 

(MacKenzie & Moran, 2004), and involve intentional planting of polycultures with different 

growth forms (Luo et al., 2023). As polycultures become more studied, inclusion strategies 

will also become necessary for machine learning. Plant species were already unable to be 

included in our model to due high cardinality, therefore strategies to reduce this and allow 

inclusion should be explored such as grouping similar performing species or polycultures. 
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Appendix A: Modelling datasets 

Table A-1: Papers used in temperature dataset. 
Paper Systems Data 

rows 
Min. 
Air 
Temp. 
[°C] 

Max. 
Air 
Temp. 
[°C] 

Min. 
Eff. 
Temp. 
[°C] 

Max. 
Eff. 
Temp. 
[°C] 

(Grebenshchykova et al., 2020) 4 16 -10 18 7 22 
(Mietto et al., 2015) 1 37 -2.4 27 1 24 
(Muñoz et al., 2006) 2 2 -8.7 -8.7 1 2 
(Nivala et al., 2019) 12 1883 -12 27 0.1 23 
(Sharma et al., 2013) 3 190 -13 22 0.48 23 
(Wallace & Nivala, 2005) 1 43 -17 21 0.79 22 
(Wallace et al., 2001) 1 25 -28 5.3 0.52 13 

 

Table A-2: Papers used in treatment datasets 
Paper Systems Data 

rows 
HLR  
[L/m2/d] 

Effluent 
temperature  
[°C] 

(Akratos & Tsihrintzis, 2007) 5 308 15 ± 8.1 15 ± 5.5 
(Allen et al., 2002) 4 5 6.8 ± 0 8 ± 8.9 
(Arias et al., 2022) 1 1 24 ± NA 12 ± NA 
(Burgos et al., 2017) 4 12 5.5 ± 0 13 ± 1.5 
(Garcı́a et al., 2003) 8 8 36 ± 0 24 ± 0 
(Grebenshchykova et al., 2020) 4 16 80 ± 40 15 ± 7.6 
(Hijosa-Valsero et al., 2012) 2 14 50 ± 0 13 ± 7.7 
(Langergraber et al., 2007) 2 9 36 ± 11 11 ± 4.8 
(Langergraber, 2007) 1 8 43 ± 0 11 ± 4.9 
(López et al., 2019) 2 4 29 ± 2 16 ± 4.8 
(Nivala et al., 2019) 12 1837 74 ± 40 12 ± 5.2 
(Ouellet-Plamondon et al., 2006) 6 12 30 ± 0 14 ± 6.8 
(Põldvere et al., 2009) 1 2 58 ± 0.71 4.2 ± 1.6 
(Sani et al., 2013) 5 40 56 ± 17 10 ± 2.2 
(Stein et al., 2003) 3 42 37 ± 0 12 ± 6.3 
(Sultana et al., 2016) 2 79 31 ± 32 20 ± 7.9 
(Taylor et al., 2011) 20 46 3.3 ± 0 5.5 ± 4.2 
(Wang et al., 2015) 3 18 19 ± 0 5.6 ± 2.5 
(D. Q. Zhang et al., 2012) 6 6 37 ± 14 25 ± 0.59 
(Zuo et al., 2024) 2 12 100 ± 0 9.7 ± 7.8 
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Appendix B : Supplementary model interpretation plots 

 

Figure B-1: Pearson correlation and data distribution for features in temperature dataset. X and Y axis labels are 
shown along the central diagonal.  

 

Figure B-2: PDP and ICE curves for the effect of loading interval [hours] on ammonia and organic matter 
concentrations 
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Figure B-3: PDP curves for the effect of temperature depending on the organic matter parameter for saturated 
systems. 

 

 

Figure B-4: PDP curve for the effect of temperature depending on the whether the treatment wetland is fill-and-drain 
(batch) operated or permanently saturated. 

 

Figure B-5: PDP curve for the effect of temperature depending on the whether the treatment wetland is fill-and-drain 
(batch) operated or permanently saturated. AFTER microcosm data added. 
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Figure B-6: PDP and ICE points for the effect of plants on ammonia and organic matter concentrations 

 

Figure B-7: PDP and ICE curves for the effect of recirculation rate [fraction of inflow] on ammonia and organic 
matter concentrations 

 


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	Chapter 1 Introduction
	1.1 Chapter overview
	1.2 Background
	1.3 Problem statements
	1.3.1 Limitations of temperature inclusion and model interpretation of treatment wetlands
	1.3.2 Batch operation of C. utriculata treatment wetlands through seasonal changes

	1.4 Objectives
	1.5 Thesis organization
	1.6 Scientific outcomes and outputs

	Chapter 2 Interpretable Machine Learning Reveals Cold Climate Dynamics of Treatment Wetlands
	2.1 Introduction
	2.2 Methods
	2.2.1 Data collection
	2.2.2 Model construction
	2.2.3 Interpretation

	2.3 Temperature results and discussion
	2.3.1 Data collection
	2.3.2 Model performance
	2.3.3 Model interpretation

	2.4 Treatment results and discussion
	2.4.1 Data collection
	2.4.2 Preliminary modelling and data division
	2.4.3 Model performance
	2.4.4 Model interpretation
	2.4.4.1 Influent loading
	2.4.4.2 Physical design parameters
	2.4.4.3 Temperature
	2.4.4.4 Age


	2.5 Limitations
	2.6 Conclusion

	Chapter 3 Using Machine Learning Insights to Target Research on the Seasonal Effects of Plants in Batch Treatment Wetlands
	3.1 Introduction
	3.2 Insights from machine learning on the effects of plants
	3.3 Research questions driven by machine learning insights
	3.4 Methodological decisions
	3.5 Expected outcomes, connections, and significance

	Chapter 4 C. utriculata Improves Treatment in Three-Day Batch Operated Treatment Wetlands in Warm, Cold, And Harvested Conditions
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Experimental setup
	4.2.2 Synthetic wastewater composition
	4.2.3 Operation, sampling, and measurements

	4.3 Results and discussion
	4.3.1 Evapotranspiration
	4.3.2 Chemical Oxygen Demand
	4.3.3 Ammonia
	4.3.4 Phosphorus
	4.3.5 Porosity

	4.4 Conclusion

	Chapter 5 Conclusion
	5.1 Background
	5.2 Joint results of machine learning and microcosm experiments
	5.3 Cold climate design and operation
	5.4 Limitations and recommendations for future work

	References
	Appendix A : Modelling datasets
	Appendix B : Supplementary model interpretation plots

