
COMBINING ACTIVE LEARNING AND DATA AUGMENTATION TO
REDUCE LABELLED TRAINING DATA FOR SENTIMENT ANALYSIS

by

Colton Aarts

B.Sc., University of Northern British Columbia, 2019

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

April 2025

© Colton Aarts, 2025

Abstract

Creating a sentiment analysis classifier requires a large amount of labelled train-

ing data. Labelling this data is an expensive and time-consuming process. Because

of this, reducing the amount of labelled data required leads to classifiers that are

cheaper to train and more accessible to all disciplines. Many different methods

can be used to reduce the amount of labelled data. For this research, we focused

on combining active learning and lexical expansion techniques.

By combining these two techniques, this research examined an underutilized

area of study. Active learning focuses on letting the classifier select the data to

learn from, while lexical expansion creates more data for the classifier. While there

are a larger number of different techniques in both fields, there is little work to be

done to combine them. We felt this was a natural progression for these techniques

as they complement each other well. The active learning technique will select the

data to be labelled, and the lexical expansion technique will generate high-quality

artificial data from this hand-selected information. In addition to combining these

techniques, we examined how different neural network structures would interact

with our new technique.

Our research found that the combination of active learning and lexical expan-

sion improved the performance of our classifiers for very small amounts of data.

We found a significant difference between the performance of our two classifiers.

While there was an improvement at low levels of training data, at higher levels,

we found that the combined techniques did not offer any improvements over the

active learning technique. Overall, we found potential benefits to combining the

two techniques and that future research is required to understand further how to

leverage these improvements best.

ii

TABLE OF CONTENTS

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vi

List of Acronyms viii

Acknowledgements ix

1 Introduction and Motivation 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Objectives and Contributions . 2
1.4 Thesis Layout . 3

2 Background 4
2.1 Neural Networks . 4

2.1.1 Convolutional Neural Networks 6
2.1.2 Recurrent Neural Networks . 6
2.1.3 Encoder-Decoder . 9
2.1.4 Transfer Learning . 11
2.1.5 Sequentail Task Learning . 12

2.1.5.1 Pretraining . 12
2.1.5.2 Adoption . 13

2.1.6 Attention . 14
2.1.6.1 Inter-attention . 14
2.1.6.2 Intra-attention . 16
2.1.6.3 Multi-Headed Attention 17

2.1.7 Transformers . 17
2.2 Pre-processing . 19
2.3 Language Models . 20
2.4 Sentiment Analysis . 23

iii

2.5 Improvements . 24
2.5.1 Active Learning . 24
2.5.2 Data Augmentation . 25

3 Related Research 27
3.1 Data set . 27
3.2 Literature Review . 27

3.2.1 Neural Networks . 27
3.2.2 Stacked 1D CNN . 28
3.2.3 CoLSTM . 30

3.2.3.1 Behera et al. 30
3.2.3.2 Vo et al. 31

3.2.4 BERT . 31
3.2.4.1 Original BERT . 31
3.2.4.2 ALBERT . 32

3.2.5 Active Learning . 33
3.2.5.1 Exploration-Exploitation 35

3.2.6 Lexical Expansion and Data Augmentation 37
3.2.6.1 PLSDA . 39

4 Algorithm 42
4.1 Preprocessing . 42

4.1.1 Over Length Sequences . 43
4.1.2 Tokenization . 43
4.1.3 Intermediate Information . 44
4.1.4 Build Vocabulary . 45
4.1.5 Convert Words to Numbers . 45
4.1.6 Padding . 46
4.1.7 Complete Preprocessing . 46

4.2 AL + LE . 46
4.2.1 Combining AL and LE . 47

4.2.1.1 AL . 47
4.2.1.2 LE . 48
4.2.1.3 Combining AL and LE 48

4.3 Contributions . 52

5 Experiment Set Up 54
5.1 Models . 54

5.1.1 CNN . 55
5.1.2 CoLSTM . 56
5.1.3 ALBERT . 57

5.2 Algorithm Selection . 57

iv

6 Evaluation and Analysis 59
6.1 Evaluation Criteria . 59
6.2 Evaluation . 61

6.2.1 CNN . 61
6.2.2 LSTM . 67
6.2.3 BERT . 73

6.3 Comparison and Analysis . 74
6.3.1 Compare Networks . 74
6.3.2 Compare Algorithms . 75

6.4 Overall Comparisons . 76

7 Conclusion 79
7.1 Future Work . 81

Bibliography 82

v

LIST OF TABLES

3.1 CNN vs. RNN . 29
3.2 Stacked 1D CNN . 29

5.1 Our CNN . 55
5.2 Our CoLSTM . 56
5.3 ABLERT . 57

6.1 Average F1 Score CNN . 61
6.2 Max F1 Score CNN . 64
6.3 Standard Deviation CNN . 65
6.4 P-Values CNN . 67
6.5 Average F1 Score LSTM . 68
6.6 Max F1 Score LSTM . 69
6.7 Standard Deviation LSTM . 71
6.8 P-Values LSTM . 72
6.9 BERT F1 Score . 73
6.10 Active Average F1 Score Comparison 76
6.11 Active Max F1 Score Comparison . 77
6.12 PLSDA Average F1 Score Comparison 77
6.13 PLSDA Max F1 Score Comparison . 77
6.14 APLSDA Average F1 Score Comparison 78
6.15 APLSDA Max F1 Score Comparison 78
6.16 P Values Between LSTM and CNN 78

vi

LIST OF FIGURES

2.1 A Single Neuron . 5
2.2 A Simple Network . 5
2.3 RNN Neuron . 7
2.4 LSTM Neuron [1] . 8

3.1 Exploitation Code . 36
3.2 Exploration Code . 37
3.3 Substitution Candidate Selection . 40
3.4 Instance Generation . 41

4.1 Create SVD Code . 44
4.2 Create Vocab Code . 45
4.3 Add Sequence Code . 46
4.4 Preprocessing Code . 47
4.5 Generated Data . 49
4.6 Training Data . 49
4.7 Decision Boundary . 50
4.8 Active Learning Data . 50
4.9 PLSDA Data . 51
4.10 New Training Data . 51
4.11 Updated Decision Boundary . 52

6.1 Average F1 Score CNN . 62
6.2 Change in Average F1 Score CNN . 63
6.3 Max F1 Score . 64
6.4 Change in Max F1 Score CNN . 65
6.5 Change in Standard Deviation F1 Score 66
6.6 Average F1 Score LSTM . 68
6.7 Change in Average F1 Score LSTM 69
6.8 Max F1 Score LSTM . 70
6.9 Change in Max F1 Score LSTM . 70
6.10 Change STD LSTM . 71
6.11 BERT F1 Score . 74

vii

LIST OF ACRONYMS

AL Active Learning

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

CoLSTMConvolutional Long Short Term Memory

LSTM Long Short Term Memory

NLP Natual Language Processing

PLSDA Part-of-Speech Focused Lexical Substitution for Data Augmentation

POS Part-of-Speech

viii

Acknowledgements

I would first like to express my gratitude to my supervisor, Dr. Fan Jiang

(Terry). Without his continued support and advice, I would never have started,

let alone completed my Masters. He has constantly provided me with guidance

as well as opportunities for success. Between research papers to industry grants,

Terry has been instrumental in my success as a Masters student at UNBC.

I would next like to thank my committee, Dr. Chen and Dr. Monu, who have

supported me as much as Terry has. They have provided advice and guidance for

my research and work at the university. Without their input, I would not have

been able to complete this research.

Next, I would like to thank the fantastic Computer Science department here at

UNBC. From professors like Dr. Haque, who has been a constant source of support

and motivation, to our outstanding Admin Assistants, who helped me navigate

the mysteries of required paperwork, everyone in the department has helped me

during my time at UNBC.

Finally, I would like to thank my friends and family. Without my friend group’s

unconditional love and support, I would never have been able to complete my

research. Alongside this, my mom and my sister’s motivation, drive, and love

were instrumental in my ability to complete my Masters.

ix

Chapter 1

Introduction and Motivation

Sentiment Analysis (SA) is a field of Natural Language Processing (NLP) that

is concerned with detecting positive, neutral, and negative text. Currently, the

best-performing models use various deep-learning techniques and neural network

structures. While these models perform well, they suffer from a shared drawback

of requiring a large amount of labelled data to achieve the desired performance.

In addition, many SA models are domain-dependent, adding the additional con-

straint that a model that performs well on one domain may not perform well on

a different domain. Acquiring large domain-specific datasets can be expensive as

domain experts must provide the labels. Utilizing methods that reduce the re-

quired labelled data to combat these costs is helpful. Active Learning (AL) and

Data Augmentation (DA) are popular methods to reduce the total data needed.

1.2 Motivation

A trend that has appeared in many different data mining disciplines is using more

and more data in training and training longer to achieve better performance. While

this has been achieving the desired results, it is not always feasible for smaller re-

search groups or many industrial partners. For example, Open AI used over 40

1

GBs of data for Chat-GPT and built a custom supercomputer to train it, the BERT

pre-trained word embeddings are trained on 13 GB of text, AlphaGo was trained

on over 1000 CPUs and over 100 GPUs, and for text mining, there has been re-

search showing that having over 200,000 labelled data points can improve perfor-

mance [2]. While continually pushing the bleeding edge of performance is impor-

tant, it is also important to remember that producing tools other domains can use

is essential to research. With this in mind, finding ways to reduce the amount of

data or computational resources required to achieve a model that still performs

at a high level is essential. When focusing on sentiment analysis, acquiring high-

quality labels can be expensive [3]. The cost of labelling is compounded by the fact

that current sentiment analysis techniques remain domain-dependent, and creat-

ing high-quality labels requires experts in that domain. While there are methods

that can acquire labels cheaper, these run the risk of creating a noisy dataset, which

can affect the model’s performance [4].

1.3 Objectives and Contributions

While there has been extensive research into different active learning and lexical

expansion techniques, combining them is under-researched. In addition, the exist-

ing research tends to focus on a single model and demonstrate how the individual

techniques improve the performance of the specific model. For our research, we

proposed four research questions:

1. Does combining an AL and LE offer better performance?

2. Is it possible to use this technique to create a classifier whose performance

improves faster?

3. Does the proposed algorithm behave differently with different classifier ar-

2

chitectures?

4. Is there a large variance between the average and best performance of the

classifiers?

The main goals of our research are Questions 1 and 2. We expect that combining

the two techniques will allow us to perform better with less training data. To do

this, we will examine our classifiers’ performance when they are trained with vari-

ous training data. We propose Questions 3 and 4 to help get a better understanding

of how our algorithm will interact with different classifier architectures and to in-

vestigate if our proposed algorithm creates reliable results. We expect that our

proposed algorithm will increase the performance of any classifier it uses. While

we expect that the overall performance of the classifier will improve, we predict

that the variance of our proposed APLSDA algorithm will be higher than the base

classifier as we introduce noise through the PLSDA technique.

1.4 Thesis Layout

The thesis is organized as follows. We introduce the background information in

Chapter 2. In Chapter 3, we introduce the different AL and LE algorithms we are

using and the neural network architecture we are using to create our classifiers.

Our combined algorithm is presented in Chapter 4, and our experiment setup is

found in Chapter 5. Finally, we evaluate the performance in Chapter 6, and the

final Chapter 7 contains our conclusions and future work.

3

Chapter 2

Background

This chapter will focus on reviewing concepts related to our research. We will start

by providing background knowledge on neural networks (NNs). We will then in-

troduce the different types of Language Models (LMs) used in Sentiment Analysis.

We will then explore how SA combines the different LM and NN structures. We

will conclude this chapter by examining techniques used to improve the perfor-

mance of SA models.

2.1 Neural Networks

The idea of neural networks was introduced in the mid-1940s by McCulloch and

Pitts in [5]. In this work, the authors proposed a computational model to repre-

sent how the brain learns. Their work laid the foundation for creating NNs. The

smallest component of a NN is the neuron or perceptron. A perceptron works by

summing its inputs in multiplied by their associated weights wn. The output from

the perceptron results from applying an activation function f(y) to the sum. The

basic structure of a single perceptron can be seen in Figure 2.1. Many different acti-

vation functions are popular in research, including softmax and tanh. The weights

are first initialized to random values. These values are updated during training to

4

minimize a given error function.

o = f(
n∑︁

x=1

ixwx)
i1
...
in

o

Figure 2.1: A Single Neuron

One of the main drawbacks of a single perceptron is that they can only learn

linear relationships between their inputs. However, arranging multiple percep-

trons into different layers can create a network that learns non-linear relationships.

The weights of each perceptron are learned through backpropagation. This is the

basic structure of neural networks today, and a simple example can be seen in Fig-

ure 2.2. This network would be described as a fully connected network whose

first two layers have three perceptrons, and the final layer has a single perceptron.

Fully connected networks are simply networks where the output from all percep-

trons in the previous layer is provided as input to each perceptron in the following

layer. Combining different combinations of layers that contain different numbers

of perceptrons can allow NNs to learn a fast variety of relationships. While NNs

with structures similar to Figure 2.2 are useful, different types of networks have

been developed to help solve complex problems. Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) are particularly interesting to our

research and will be examined in more detail in this section.

Figure 2.2: A Simple Network

5

2.1.1 Convolutional Neural Networks

CNNs are neural networks that contain at least one convolutional layer. These lay-

ers were developed initially to be used on image data but have been adapted to

text processing. CNNs were inspired by the brain’s visual cortex and how spe-

cific regions focus on sections of the visual field. CNNs also help reduce the neu-

rons needed in the fully connected layers. This helps reduce the computation time

needed to train the network.

CNNs use convolutions to detect different features in the dataset. A convolu-

tion is an integral whose result is the overlap between two functions. CNNs use

this idea by applying several filters to the input. The filters will all be the same size

and are moved across the data. Each of these filters will detect a different feature.

Stacking multiple convolutional layers on top of one another is also popular. As

you add more convolutional layers, the complexity of the features that can be de-

tected increases. While convolutions will reduce the data’s dimensionality, using

a pooling layer is also common. This layer will look at a section of the output from

the convolution and apply a function to return a single number. Two popular func-

tions are max pooling and average pooling. After applying the pooling layer, the

final results will be flattened and fed into a fully connected layer for classification.

CNNs were adapted to be used on text data by modifying how the filter is

moved across the data. Instead of moving the filter in two dimensions, the filter

is only moved in one. This allows the CNN to consider the words that occur near

each other and allows the network to learn different relationships in the text.

2.1.2 Recurrent Neural Networks

While CNNs offer an advantage over regular NNs by changing the structure of

the layers and reducing the number of neurons needed, RNNs change the internal

6

structure of the neurons, allowing them to remember the information they have

previously seen. Adding memory to the neurons makes RNNs especially useful

for time series data. This includes text, as the meaning of words is influenced by

all the context that occurs before them. RNNs modify the internals of a neuron to

include past information. These neurons work by taking the previous state ht−1

and combining it with the current input. The output from this is then used as

the state for the next neuron and the output for timestep t. This can be seen in

Equation 2.1.

ht = f(Wxxt +Whht−1 + bh) (2.1)

Where f is some activation function. Wx and Wh are the weights associated with

the inputs and the previous state, respectively, and finally, bh is the neuron’s bias.

This configuration allows for the passage of information between neurons in the

same layer. An example RNN neuron can be seen in Figure 2.3. While RNNs pro-

vide advantages over a standard NN, they suffer drawbacks. Namely vanishing

and exploding gradients. A solution to the vanishing gradient problem can be

found in Long-Short Term Memory units (LSTMs).

tanh
ht−1

xt

ot

ht

Figure 2.3: RNN Neuron

LSTMs were introduced in 1997 by Hochreiter and Schmidhuber [6]. LSTMs

modify regular RNNs to allow the neuron to remember information longer. This

modification comes in the form of three gates and an additional state. These gates

7

are the forget, output, and input gates. The state is a long-term state that accumu-

lates and forgets information as time passes. The forget gate was added by Gers,

Schmidhuber, and Cummins in 2000 [7], allowing the LSTM to remove informa-

tion from the long-term state. The input gate allows information to be added to

the long-term state, and finally, the output gate creates the next hidden state and

the output for the current time step. An example LSTM neuron can be seen in Fig-

ure 2.4. Where × is the Hadamard product, + is element-wise addition, and σ is

the sigmoid function. We will start by examining the forget-gate, the out-gate, and

the in-gate in Equations 2.2, 2.3, and 2.6.

s(t− 1)

h(t− 1)&x(t− 1)

s(t)

h(t)

σ
σ

tanh

×

+×

×σ

tanh

Figure 2.4: LSTM Neuron [1]

for(t) = σ(Wforxt + Vforht−1 + bfor) (2.2)

out(t) = σ(Woutxt + Voutht−1 + bout) (2.3)

Both the forget-gate and the out-gate are straightforward processes. They both

apply a sigmoid function to the sum of their input weights and inputs Wx, their

state weights and the previous state Vht−1, and their bias b. The in-gate is some-

what more complicated as it has two parts that are combined by taking the Hadamard

product. These are Equations 2.4 and 2.5.

ina(t) = σ(Wina
xt + Vina

ht−1 + bina
) (2.4)

8

inb(t) = tanh(Winb
xt + Vinb

ht−1 + binb
) (2.5)

in(t) = ina(t)× inb(t) (2.6)

We now can calculate the long-term memory state s(t) and the hidden state

h(t).

s(t) = for(t)× ct−1 + in(t) (2.7)

h(t) = out(t)× tanh(s(t)) (2.8)

With the addition of three gates and a long-term state, LSTMs help the network

perform better on longer series.

The final improvement for recurrent networks is bi-directional networks. In

traditional RNNs, the network can only look backward and not relate what it sees

to what comes next. While this is suitable for some scenarios to determine the

context of text data, it is necessary to consider the entire sentence, not simply what

has come before. Bi-directional LSTMs (BiLSTMs) are one of the most popular bi-

directional RNNs. To create a BiLSTM, you simply have an LSTM layer for both

directions and combine the output of the neurons at each time step.

2.1.3 Encoder-Decoder

In natural language processing, several problems require a sequence of words to

be transformed into a sequence of different words. Standard neural networks can

struggle to accomplish this task [8]. Encoder-decoder neural networks were intro-

duced to help with this task. In addition to helping with tasks such as machine

translation researchers have discovered that using an encoder-decoder structure

9

a general representation of a language can be learned. The BERT model that will

be discussed in 3 is of particular interest to this research. First, we will explore

encoder-decoder models here, and in section 2.1.7, we will examine transform-

ers. An encoder-decoder network can be broken into three important parts: the

encoder, the encoded vector, and the decoder.

The encoder is composed of an RNN cell that will read each input symbol se-

quentially. The goal of the encoder is to read a sequence of any length and to create

the encoded vector that is a specified length. This is accomplished by having the

hidden state of the RNN be updated after each symbol. Cho et al. proposed a

new method to update the RNN cell in the encoder. Their method can be seen in

2.9. Their method improved the RNN’s ability to forget while remaining simpler to

compute than an LSTM cell [9]. This method uses a reset gate rj and an update gate

zj, seen in equations 2.11 and 2.12 respectively. Where the j subscript denotes the

j-th element of a vector. While the network is reading through the input symbols,

we discard the outputs from the RNN. After reading the entire input sequence, the

hidden state of the encoder RNN will be the encoded vector.

ht
j = zjh

t−1
j + (1− zj)h̃

t
j (2.9)

where h̃
t
j is:

h̃
t
j = tanh([Wx]j + [U(r⊙ ht−1)]j) (2.10)

rj = σ([Wrx]j + [Urht−1]j) (2.11)

zj = σ([Wzx]j + [Uzht−1]j) (2.12)

In these equations, Wr and Ur are learned matrices. The logistic sigmoid func-

10

tion is represented by σ.

The encoded vector is a vector that summarizes the input sequence. This sec-

tion of the Encoder-Decoder model is worth highlighting as this is the area that

BERT focuses on. This vector aims to encapsulate the information that was con-

tained in the input sequence. This vector acts as the initial hidden state of the

decoder. There has been additional research in providing the decoder with more

information about the input sequence that will be discussed in section 2.1.6.

The decoder is another RNN that is trained to generate the next word in the

target sequence. The hidden state of the decoder is initialized as the encoded vec-

tor. As the decoder proceeds from one output to the next, the hidden state evolves.

This can be seen in equation 2.13.

ht = f(ht−1,yt−1, c) (2.13)

Where c is the encoded vector, and f is some activation function that provides

valid probabilities.

2.1.4 Transfer Learning

Unlike traditional neural networks, encoder-decoders work by exploiting the idea

of transfer learning. The main idea behind transfer learning is that knowledge

learned from one task should transfer to a similar task. This parallels human learn-

ing, where knowledge from one domain can be transferred to another if they are

similar enough. This is useful for tasks where there is a lack of labelled data for

the target task, but there is a large amount of data in a related task. Specifically

for NLP, there is a large amount of unlabeled text available. Still, when we want

to focus on a specific task such as sentiment analysis, question answering, named

entity recognition, etc., we can run into scenarios where there is a lack of labelled

11

data available.

Transfer learning can be broken down into two sub-groups: transductive and

inductive transfer learning. Inductive transfer learning is used in NLP, where the

target task differs from the source task. Inductive transfer learning can be further

sub-grouped into multi-task and sequential task learning. Of these two, sequential

task learning is the most common in NLP. Unlike multi-task learning, there is only

one target task in sequential task learning. We will explore the specifics of how

sequential task learning works in the following section.

2.1.5 Sequentail Task Learning

STL can be broken down into two main stages: pretraining with source data and

adoption with the target data. Ideally, the source data will be similar to the target

data. We will break these two stages down in more depth.

2.1.5.1 Pretraining

In the pretraining stage, the network is presented with data that is similar to the

target data, but the task that the network is learning is different. In NLP, this gen-

erally looks like training the network on unlabeled data to learn a general repre-

sentation of the target language. This can be done with a variety of different source

training tasks, but they are generally some forms of word prediction. A common

pretraining task is next-word prediction. This involves training the network to

create a probability distribution of all words, with the network predicting which

words are the most likely to occur next in the sentence. Another task that has

been used is next-sentence prediction, where, in addition to learning which words

follow each other, the network is trained to identify which sentences follow each

other. A drawback to this kind of learning is that you still require a large amount

of unlabeled data, as seen in [When Do You Need Billions of Words of Pretrain-

12

ing Data]. For classification tasks, you need upwards of one billion words for the

pre-trained model.

2.1.5.2 Adoption

After pretraining the model, the next step is to decide how to transfer the infor-

mation to the target task. There are two approaches to facilitate this transfer: fine-

tuning or embedding/feature extraction. The main distinction between these two

is if the weights of the pre-trained model are adjusted in the new task (fine-tuning)

or if the weights are kept as is and a new model is trained (embedding/feature

extraction).

Fine-tuning is the more flexible of the two approaches as it does not require any

specific changes to the pre-trained models’ architecture. It can be accomplished

by selecting specific outputs representing the target task or adding a final layer

to compute the needed task [10]. One of the main drawbacks of fine-tuning is

that the relationships between the tokens in the pre-trained network can be lost

as the model learns the specifics of the target task. This is called “catastrophic

forgetting,” and there are some proposed solutions, including freezing learning

rates and regularization.

In contrast to fine-tuning, the embedding approach freezes the weights of the

pre-trained model. This allows the creation of a fixed-sized representation of the

tokens to be extracted. For NLP, you can create word embeddings of a fixed size

representing the word and its context regarding all other words in the pre-trained

models’ data set. You can build a new network from this embedding to take this

contextual information and use it to complete the target task. A drawback of the

embedding approach is that if the usages and meanings of words change between

the pretraining and adoption stages, there is no way to update the embeddings.

13

2.1.6 Attention

In natural language processing, attention is the networks’ ability to know which

words relate to each other. The relationship between words can be demonstrated

best with an example: consider the sentence:

”The chicken did not cross the road because it was tired.”

Determining what the word ”it” refers to requires the ability to recall previous

information. Specifically, the network must know that the chicken is the associated

noun, not the road. Basic attention accomplishes this by having different compo-

nents share information. As the encoder-decoder section mentions, a neural net-

work without attention will create a context vector c to predict outputs. One of the

downsides to this vector is that it lacks information on how the different words

relate to each other. Attention mechanisms work to add this information back to

the vector. There are two general types of attention: inter or cross attention.

2.1.6.1 Inter-attention

Inter-attention networks are generally encoder-decoder models that are frequently

used in machine translation. The context vector is created so that the decoder

understands which inputs could influence the correct output. Hence, the name

inter-attention refers to the interdependencies between the encoder and decoder

networks.

The context vector is changed by adding a vector of hidden states. The decoder

will use these context vectors to help create their hidden state. This gives the de-

coder a unique context vector for each time step. The context vector contains the

dependencies between the current word and all the other words in the input. The

context vector adds an alignment score to the summation of the hidden states as

14

seen in Equation 2.14.

ct =

Tx∑︂
i=0

αt,ihi (2.14)

The hidden state hi concatenates the bidirectional states for each element i. Cal-

culated as:

hi = [
−→
hi;
←−
hi] (2.15)

The alignment score αt represents how relevant the input is to the current time

step of the decoder. This is calculated by taking the softMax of the score func-

tion as seen in Equation 2.16. This score function can be calculated in a variety of

different ways, including concat, general, location-based, and dot-product seen in

Equations 2.17, 2.18, 2.19 and 2.20 respectively.

αt,i = softMax(score(st,hi)) (2.16)

score(st,hi) = vTαtanh(Wα[st;hi]) (2.17)

score(st,hi) = sTtWαhi (2.18)

αt,i = softmax(Wαst) (2.19)

score(st,hi) = sTthi (2.20)

W and v are both learned matrices. This process will allow the attention mech-

anism to determine how each word relates to all other words in the sentence.

With the context vector calculated, we can now determine the current state of

15

the decoder. This is accomplished by applying the decoding function to the previ-

ous state, previous output and the context vector. This function may be multiple

neural layers, but it will ultimately provide the state as seen in Equation 2.21. This

state will be used to calculate the correct output by being fed into an additional

neural network.

st = f(st−1,yt−1, ct) (2.21)

2.1.6.2 Intra-attention

Intra-attention or self-attention networks do not generally have an encoder-decoder

structure. These networks can be used for a variety of tasks that are not suitable

for an encoder-decoder structure, including sentiment analysis.

Self-attention is calculated using three sets of vectors: query, key and value.

These vectors are obtained by multiplying the word vector with three different

weight matrices seen in 2.22.

⎡⎢⎢⎢⎢⎣
Q

K

V

⎤⎥⎥⎥⎥⎦ = H

⎡⎢⎢⎢⎢⎣
WQ

WK

WV

⎤⎥⎥⎥⎥⎦ (2.22)

Where H is the hidden states of the output layer. The values of the WQ,WK, and WV

matrices are learned during the network training. The final out layer is calculated

by multiplying these matrices together as seen in 2.23.

Attention(Q,K,V) = softmax(
QKT

√
d
)V (2.23)

Where d is the dimensionality of the layers and
√
d is the scaling factor.

Self Attention has been shown to help improve various NLP tasks, including

machine translation and linguistic probing.

16

2.1.6.3 Multi-Headed Attention

Normal attention will learn the relationships between the words in the sequence

using the entire word embedding. While this is effective, it can lose some of the

nuance encoded into the embedding. Different parts of the embedding may be

capturing different aspects of the word. Multi-headed attention looks to solve this

problem by splitting the embedding into separate sections. Its attention head at-

tends to each of these sections. In [11], the authors propose using eight attention

heads and splitting the embedding dimension evenly between these heads. This

changes the attention calculation into eight different attention calculations as seen

in 2.24 that are concatenated together at the end 2.25.

headi = Attention(QW
Q
i ,KWK

i ,VWV
i) (2.24)

MultiHead(Q,K,V) = Concat(head1, ...,headh)W
A (2.25)

The Attention function is similar to the one described in 2.23. The only change

is that the
√
d becomes

√
dk. This is because the attention heads no longer examine

the entire embedding space. They are now examining sections of size dk. This dk

is calculated by taking the model’s dimensions and dividing it by the number of

heads.

2.1.7 Transformers

As language models have progressed, the computing constraints of using vari-

ous RNN cell structures have become problematic. The desire for a more efficient

neural network model has increased as the sequence length, and the number of

sequences required to train have increased. This is where the Transformer was in-

troduced in [11]. The transformer does not use any RNN cell or any convolutions.

17

This allows it to have a large amount of parallelization, significantly increasing

training efficiency.

Transformers are encoder-decoder networks that are built from stacked, fully

connected layers. The encoder is built from six layers. These layers have two

components. The first is a multi-headed self-attention mechanism. The second is

a position-wise fully connected network. A position-wise neural network uses the

same layers to transform all the words from the input sequence [12]. This can be

seen in equcation 2.26, and can be explained as two sets of matrix multiplication

with a ReLU activation between them. In addition, each sub-layer has a residual

connection that allows the input from each layer to bypass the network and be

included in the output. This makes the output of each sub-layer:

PWN(x) = max(0, xW1 + b1)W2 + b2 (2.26)

SublayerOut = SubLayerNorm(x+ Sublayer(x)) (2.27)

The decoder is composed of six identical layers. These layers are composed of

three sub-layers. The first and last sub-layers are the same as the encoder. The

second sub-layer is composed of an additional multi-headed attention layer. The

attention layer takes its Q and K values from the encoder, while its V value comes

from the first sub-layer. In addition, the attention mechanisms in the decoder are

modified to ensure that they only attend to words in the sequence that have already

been seen. This prevents the decoder from looking into the future and ensures it

only uses information that should be available.

Since transformers do not use RNNs or any convolutions, they need to add

additional information about the position of the words in the sequence. This is

18

accomplished using the sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.28)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.29)

where pos is the word’s position in the sequence, and i is the dimension. These

positional encodings will have the same dimension as the model, allowing them

to be summed into word encoding before being fed into the encoder or decoder.

With this setup, the authors found that the proposed transformer was nearly

identical or better than all previous models. In addition to being competitive, their

model requires significantly less training time than previous models.

2.2 Pre-processing

Before the computer can start to create a language model, it is important to pre-

process the text. This entails various activities, including but not limited to remov-

ing unwanted symbols, stemming or lemmatization, and removing stopwords. A

typical text analysis application will use some pre-processing techniques to ensure

that the text being used is suitable for their chosen model.

Removing unwanted symbols is a common practice when the text being ana-

lyzed is collected from an environment where it is common for unusual or unique

characters (or combinations of characters) to be included in the text. For example,

if the text corpus is collected from Twitter, it is common to remove the @ sign as it

is used to identify a specific account. When the data was collected using the Twit-

ter API, it is typical for the character ”RT” to be appended to the beginning of the

text in certain circumstances. Removing these characters helps the model avoid

19

learning relationships that are overly specific to where the data was collected.

Stemming and lemmatization are techniques used to convert words with sim-

ilar meanings into a single word. Stemming is the process of removing characters

from a word to reduce it to a base form known as a lemma. This process is gener-

ally accomplished by following rules that can result in misspellings. For example,

the words funny and funnier can be stemmed into the word funni. Lemmatization

is similar to stemming in that the end goal is to convert words to a simpler lemma.

However, lemmatization considers the context of the word and can replace the en-

tire word with a lemma if one is suitable. An example of lemmatization would be

the nouns leafs and leaves, both converting to the word leaf. By utilizing stemming

and lemmatization techniques, it is possible to drastically reduce the number of

words the language model needs to learn, thus helping both performance and run

time.

Removing stopwords from the text is another process that can reduce the over-

all number of words that the model is exposed to and required to learn. Stopwords

are words that have been identified in a language as common and not necessary

for the content of the text to be learned. Some examples of stopwords for English

are the, a, and as. Removing these words from the text reduces the number of

words that are required to be learned and helps reduce the time required to run

the model.

2.3 Language Models

Converting text into something a computer can understand is one of the most im-

portant parts of any text-processing application. Creating a systematic represen-

tation of a language is called creating a language model. Language models are a

probabilistic representation of the language. This means that the model is trained

20

to determine the probability of words in a given sentence. The simplest LM is an

n-gram model. These LMs are models trained to predict the next word based on

the previous n words. This can be accomplished by using Equation 2.30.

P(wn|wn−N+1:n−1) =
C(wn−N+1:n−1wn)

C(wn−N+1:n−1)
(2.30)

Where wn|wn−N+1:n−1 is a word that is proceeded by N other specific words.

C(x) is a function that returns the frequency of a sequence of words. Several im-

provements have been proposed over the years; however, with the rise of neural

networks, neural LMs have become more popular.

Neural language models (NLMs) are a type of LM created by a neural network.

These models create embeddings to represent the text. These embeddings allow

the LM to encode additional information about the language. Similar words will

be encoded closer together in the embedding space, allowing the model to under-

stand the language better while requiring less training data. A popular approach

with neural networks is to use pre-trained language models. These pre-trained

LMs can provide significant advantages compared to network learning in repre-

senting the language alongside their prescribed task. Pre-trained LMs leverage

transfer learning, the idea that knowledge learned on one task can be transferred to

a similar task. This applies to language models by training the pre-trained model

on a general language task such as next sentence prediction or word prediction

and then taking that model and fine-tuning it to more precise tasks. An additional

advantage of pre-trained LMs is that they can be pre-trained on large unlabelled

datasets. This is because the tasks they are initially learning can be trained us-

ing a self-supervised approach, eliminating the requirement of labelled data. Sev-

eral different pre-trained LMs have recently become popular with these advan-

tages [13, 14]. Of particular interest to our work is the BERT family of pre-trained

LMs. We will introduce BERT here, and in Chapter 3, we will further explore the

21

specific architectures we will use.

In their work, Devlin, Chang, Lee, and Toutanova introduce BERT [13], an LM

trained on a corpus composed from the BooksCorpus [15] and Wikipedia that to-

talled over 3 billion words. The main advantage of BERT over previous pre-trained

LMs is that it is a fine-tuned bidirectional model. Being a fine-tuned model means

that when BERT is adapted to a specific task, the only change that needs to happen

is for an additional layer to be added to the output of BERT. This layer is trained

on the specific task instead of the entire model. A bidirectional model means that

BERT has been trained to look ahead in the sentence and behind when analyzing a

particular word. The two tasks that BERT is pre-trained on are the two mentioned

above. Training to predict masked words is fundamental to BERT’s success. With-

out masking words, BERT would struggle to learn an accurate representation of

the language. In a traditional unidirectional LM, when considering a word in a

sentence, you can train it to predict what the next word most likely is. However,

in a bidirectional model, the word has access to too much information about itself

and to what words would come next in the sentence. Because of this, the model

would struggle to learn an actual representation and not overfit the given data.

The solution to this problem is to mask random words in the sentence and ask

BERT to predict what that word would be. The authors tested various masking

strategies that varied how a word is masked. The authors mask fifteen percent of

the total words in each sentence. Each masked word has an eighty percent chance

that the target token is replaced with the ”MASK” token, a ten percent chance that

the target token is replaced with a random token and a ten percent chance that

the target token is replaced with the original token. The authors found that these

percentages resulted in the best overall performance of the model.

22

2.4 Sentiment Analysis

Determining if a piece of text expresses positive or negative sentiment can be used

in many fields, including security, finance, and medical [16]. This process is called

Sentiment Analysis (SA) and has been an area of research since 1940 [16]. There

are two broad categories for sentiment analysis: binary (positive or negative) or

ternary (positive, negative, neutral). The specific models may differ between the

two categories, while general strategies remain similar. Over time, the methods

used have evolved into the sophisticated ones used today. Alongside the models’

evolution, the domains in which they were being used evolved as well. The growth

of Web 2.0 opened up new and exciting areas for applying sentiment analysis. The

rise of social media, online blogs, and companies moving customer reviews online

created a vast source of potential training data for SA. While this data is easily

available, the amount of data gave rise to a new problem: acquiring high-quality

labels is expensive. Coupling this with the fact that the best-performing models

are neural networks that require a large amount of labelled data to train creates

a problem for developers and researchers. There have been a variety of different

solutions proposed, including:

• Creating models more resilient to noise.

• Improving the quality of labels acquired from cheap sources.

• Creating artificial data from high-quality labels.

• Reducing the number of labels required for current models.

For our purposes, we will focus on the last two ideas.

23

2.5 Improvements

One of the main drawbacks when creating a SA model is the requirement for

a large training set. While there are several publicly available datasets, SA is

domain-dependent. You must create your own if you are working on data that

is not similar to any public datasets. Considering that it is expensive to obtain

high-quality labels, ensuring that you are labelling the correct pieces of data and

getting the most out of your labels is important. The areas of data augmentation

and lexical expansion work to solve these problems.

2.5.1 Active Learning

In machine learning, Active Learning (AL) is a machine learning algorithm that

chooses the data from which it will learn [17]. The main idea behind these algo-

rithms is that if you allow the classifier to choose which data points to label, you

will achieve a higher level of performance while requiring fewer labels. To train

a classifier using AL, we first need two sets of data: U, the unlabeled data, and L,

the labelled data. We will train our classifier C on L: train(C,L). After completing

this training step, we need to query U for the data we want to add to L to improve

the classifiers’ performance. This requires the creation of some query function f

that will return a value that can be used to compare the data points in U. There

are several different query strategies, including uncertainty sampling, query-by-

committee, and expected model change. For our research, uncertainty sampling is

the most important. The most common uncertainty sampling strategy is entropy:

E(x) = −
∑︂
i∈Y

pi(x)log(pi(x)) (2.31)

where Y is the set of all possible labels and pi(x) is the probability that x belongs

to label i. This allows us to create our function f as:

24

f(S) = max(E(x), x ∈ S) (2.32)

where S is a data set for which the classifier has provided labels. With this func-

tion, our classifier can provide labels for U and pass U and the labels to f. This will

give us the next data point to get the correct label. This process is repeated until

the desired performance is reached.

In traditional AL, new data will be added one at a time. However, this is im-

practical in practice. Labelling potentially hundreds of data points one by one is

expensive, and some classifiers will overfit if trained on datasets where there has

been little change between one step and the next. This leads to the idea of batch

learning. Batch learning is where the classifier will select multiple data points at

each step to learn from. This will modify Equation 2.32 to return multiple points.

While this can lead to some data points being labelled when they did not nec-

essarily require it, the benefits achieved between cost reduction and preventing

overfitting outweigh the cost.

2.5.2 Data Augmentation

Data Augmentation (DA) expands the provided training data to increase perfor-

mance without manually labelling more data. It is widely used in computer vision

and has started to be used more in other areas, including text classification tasks

like sentiment analysis. There are a variety of different types of DA. However,

we will be focusing on word-level replacement methods. These methods focus on

how many sentiment analysis techniques work on a word level. This means that

the classifier attempts to determine a representation of the individual words in

the dataset and decide how the words relate to the label. Over the training steps,

the classifier will encounter words and learn this representation. Problems arise

25

when the classifier encounters words in the testing stage that were not known in

the training stage. When this happens, the classifier cannot use the new word and

discard it. This can lead to losing large amounts of information, especially when

the training data set is small. Word Level Data Augmentation looks to solve this

problem by introducing a wider variety of words in the training step to ensure that

the classifier can recognize as many words as possible.

Two main approaches have been proposed for word-level replacement in sen-

timent analysis. The first utilizes word embeddings, and the second depends on

a thesaurus. There are a variety of different approaches that utilize word embed-

dings. These range from generating data to balance classes to using cosine compar-

ison and k-nearest neighbours to select words for replacement. The other methods

utilize thesauruses to replace selected words with their synonyms. The selection

of the original words has been an area of active research. We have chosen to im-

plement the PLSDA algorithm that selects words belonging to specified parts of

speech and ensures that all replacement words belong to the same part of speech.

26

Chapter 3

Related Research

In this chapter, we will discuss the research directly related to ours. We will exam-

ine the dataset on which we chose to train our NNs. Then, we will introduce the

different NN structures that we are comparing, and finally, we will look at the AL

and DA techniques we are combining.

3.1 Data set

The data set we trained on is the IMDB Movie Ratings Sentiment Analysis dataset

that can be found from [18]. This is a publicly available dataset that contains a

large number of labelled movie reviews. There are 20019 negative reviews and

19981 positive reviews.

3.2 Literature Review

3.2.1 Neural Networks

There are a wide variety of neural networks used in natural language processing.

The most common structures are CNN, LSTMs and pre-trained networks. We have

27

implemented one of each of these networks. We will introduce the networks that

we have based our implementations on here. We discuss the exact structures of

our implementations in Chapter 5.

We are comparing three different neural network structures. These are a stacked

one-dimensional CNN proposed by Dang, Moreno-Garcia, and De la Prieta in [19],

the second is a convolutional LSTM from the work of Behera et al. in [20]. The last

NN is a BERT classifier based on the work of Devlin, Chang, Lee, and Toutanova

in ”BERT: Pre-trainings of Deep Bidirectional Transformers for Language Under-

standings.” [13]

3.2.2 Stacked 1D CNN

The first neural network we use for our research comes from Dang, Moreno-Garcia,

and De la Preieta’s work in ”Sentiment Analysis on Deep Learning: A Compara-

tive Study.” [19] The authors reviewed many different SA techniques and model

structures in their work. They compare the performance of three different neu-

ral network structures and two sentence representation techniques across eight

datasets. From these comparisons, the authors found that using a stacked CNN

structure, you can create a SA model that achieves competitive performance while

taking at most 65% of the time to train as the top-performing model. The F-score

and run time comparisons can be seen in Table 3.1. The neural network structure

can be found in Table 3.2.

The run times reported in Table 3.1 come from running the selected neural net-

work structure on 100% of the data. While the authors found that the RNN outper-

formed CNN, the run times are much longer. This increase in run time can make

the RNN unsuitable for certain tasks where getting results quickly is an important

factor for the model. Overall, the authors’ comparisons in this work provided us

with a CNN structure that has been shown to perform well on various datasets.

28

Table 3.1: CNN vs. RNN

Datasets CNN F Score RNN F Score CNN Time RNN Time
Sentiment140 0.8006 0.8297 7 min 3 s 1 h 4 min 16 s
Tweets Airline 0.9406 0.9406 1 min 22s 2 min 41 s

Tweets SemEval 0.8288 0.8387 1 min 11 s 2 min 43s
IMDB Movie Reviews (1) 0.8591 0.8702 33 s 7 min 42 s
IMDB Movie Reviews (2) 0.8273 0.8697 37 s 8 min 23 s
Cornell Movie Reviews 0.7156 0.7759 21 s 4 min 40 s

Book Reviews 0.7773 0.7340 21 s 4 min 40 s
Music Reviews 0.7403 0.7321 17 s 4 min 42 s

Table 3.2: Stacked 1D CNN

Layer Output Shape Parameters
Embedding 40, 300 4500300

1D Conv 40, 64 57664
1D Conv 40, 32 6176

Max Pooling 1D 13, 32 0
1D Conv 13, 16 1552
1D Conv 13, 8 264

Global Avg 1D 8 0
Dense 1 9

29

3.2.3 CoLSTM

To create our Convolutional Long-Short Term Memory Neural network, we com-

bined the ideas presented in the the following papers:

• ”Co-LSTM: Convolutional LSTM model for sentiment analysis in social big

data” by Behera et al. [20].

• ”Multi-channel LSTM-CNN model for Vietnamese sentiment analysis” by Vo

et al. [21]

We will explore these works in this chapter, and in Chapter 4, we will introduce

how we have combined these ideas.

3.2.3.1 Behera et al.

With the introduction of their Co-LSTM model, Behera et al. provide an exciting

framework for creating a neural network to perform sentiment analysis [20]. The

model that the authors propose combines CNNs and LSTMs into a single network

to leverage the advantages that the different layer types bring. The authors use a

CNN layer to capture the relationships between different words. The LSTM layer

is used to help identify how these different relationships interact with each other

and how they relate to the overall sentiment of the input. The model proposed by

the authors has six layers. The first is a standard embedding layer that embeds the

input into 128-dimension space. The subsequent two layers are the convolutional

layer and the max pooling layer, respectively. The authors use seven 3x3 filters for

their convolutions. After the max pooling layer comes the LSTM layer. The output

from the LSTM is then fed through two fully connected layers to determine the

final label for the input.

30

3.2.3.2 Vo et al.

In their work, Vo et al. introduce a neural network structure that combines CNNs

and LSTMs [21]. Of particular interest to our work, the authors propose a CNN

structure that utilizes multiple kernels of different sizes. This allows their network

to identify relationships between multiple different combinations of words. The

authors created an LSTM-CNN network by having a separate LSTM and CNN

network, concatenating the outputs from each and then feeding this through a

final dense layer. For both the CNN and LSTM networks, they use word embed-

dings with a dimension of 200. They then use three different kernels to create 450

different convolutions. There are 150 convolutions of sizes 3, 5, and 7. The max of

each output is selected and fed through a dense layer to get the final output with

a dimension of 100. The LSTM network feeds the word embeddings into an LSTM

layer with 128 nodes. The output of this matches the dimensions of the CNN net-

work at 100. Finally, these two outputs are concatenated and fed into a final neural

network that will predict the sentiment of the original input.

3.2.4 BERT

We have chosen the ALBERT model for our work [10]. We will summarize what

BERT is here and the improvements that ALBERT offers. In Chapter 5, we will

explore how we have used ALBERT for our experiment.

3.2.4.1 Original BERT

BERT (Bidirectional Encoder Representations from Transformers) was proposed

in [13] in 2018. The main idea behind BERT was to improve on previous ideas

of unsupervised pre-training by utilizing bidirectional architecture, attention, and

transformers. Devlin, Change, Lee, and Toutanova achieved this by stacking many

31

transformers on top of one another and training these on two unsupervised tasks.

BERT was trained on a masked word prediction task and next-sentence prediction.

In the word prediction task, BERT was required to predict which word should

occur in a sentence when a word has been hidden. For the next sentence task, BERT

must predict if sentence A is followed by sentence B. The authors demonstrate that

these tasks create a pre-trained model that can be used as the basis for many other

more complicated NLP tasks.

After the model is pre-trained, it will have learned a general representation

of the text in the training materials. This representation can then be used for the

target task. To use the pre-trained representation, all that is needed is to supply the

BERT model with the new task inputs, take the outputs from the model and feed

them into a classifier. The classifier will be trained as usual and only need to learn

how to solve the new task, not how to represent the language and the new task.

BERT is pre-trained on large amounts of unlabeled data. The representation that

BERT learns can be distributed. This saves training time as only one base is needed

to create many different classifiers. This is one of the main advantages that BERT

offers. Overall, the ability of BERT to learn accurate representations of a language

and to transfer this learning to task-specific models can be a significant advantage

when creating accurate models in many NLP domains.

3.2.4.2 ALBERT

One of the main drawbacks that arose from the base BERT model is that the pre-

trained BERT model is large. This comes from the fact that it contains a large num-

ber of parameters that are used to represent the language. Lan et al. proposed AL-

BERT (A lite BERT), a model that reduces the number of parameters needed in the

final pre-trained product [10]. Their research aimed to determine if having a larger

model is required to produce good results for NLP tasks. The authors propose

32

two changes to the architecture of BERT and one change in how the model is pre-

trained. The first proposed changes to the architecture were to reduce the number

of embedding dimensions needed by taking the encodings into a lower-dimension

space before embedding them. The authors found that this enhanced the model’s

performance in all the test cases. The authors proposed the second change to al-

low information to be shared between the different layers. Unlike the first change,

the authors found that this caused the results of their models to lose performance.

Finally, the authors tested a pre-training method different from the original BERT.

The authors changed the sentence prediction training from next-sentence predic-

tion to sentence ordering; instead of simply determining if one sentence occurs

after another, ALBERT is trained to determine the order of sentences. They found

that this change in pre-training increased the performance in all other tasks. Over-

all, the authors found that their model offers better performance when compared

to the BERT models that contain a similar number of parameters.

For our research, we use the ALBERT implementation that TensorFlow pro-

vides [22]. We used this network as our baseline to compare the performance of

our proposed algorithm.

3.2.5 Active Learning

Active learning in natural language processing is a diverse field with many differ-

ent areas of active research. These include a large variety of querying strategies,

annotation techniques, and various structures for the network and techniques for

learning [23]. We will briefly explore the available research in these areas before

exploring the research we use directly in our work.

We will start by examining the three general types of querying strategies: infor-

mativeness, representativeness, and hybrid [23]. These strategies are all involved

in deciding how you select information from the unknown data set.

33

Informativeness strategies involve using different sampling methods that ex-

amine each data point individually. These strategies can range from uncertainty

sampling strategies such as entropy-based to local divergence [24, 25] to gradi-

ent [26] and performance prediction methods [27]. The general motivation behind

these strategies is to optimize how the new information is added to the model.

Representativeness strategies help to deal with the fact that informativeness

selection strategies can be susceptible to sampling bias and outlier selection [23].

The representativeness strategies include density selection, discriminative selec-

tion and batch diversity [23]. Density selection attempts to avoid outliers, where

data points are selected based on the points’ average similarity to all other points.

Discriminative selection selects samples that are different from data points with la-

bels. This will hopefully give the classifier a good representation of the entire data

set. Batch diversity strategies work to optimize the ability to select multiple data

points at once. In other selection strategies, only a single data point is selected for

each iteration. While this can ensure optimal data points are selected each itera-

tion, acquiring labels one at a time can be expensive. Supplying the labellers with

a more extensive selection of data points helps ensure their time is used well.

Hybrid strategies are a combination of the previous two. These strategies aim

to combine the advantages of the other strategies and minimize the disadvan-

tages. There are numerous different ways to combine informative and represen-

tative approaches. Common combinations include entropy and density combina-

tions [28, 29] or combinations of uncertainty, representativeness, and diversity [30].

Many of these strategies naturally combine different approaches. Examples of

these are weighted clustering or filtering for uncertain samples and then cluster-

ing to select a diverse set of the samples [23]. While these natural combinations can

provide advantages, dynamic combinations can further improve the performance

of active learning algorithms. Dynamic combinations are combinations where the

34

specific selection method evolves or changes over time. For example, a representa-

tiveness sampling method should be used at the start of the active learning process,

then changing to uncertainty sampling as you acquire more data can be helpful.

While tasks like sentiment analysis and other classification tasks that require

the classifier to provide a single label can be costly to train, other tasks like event

extraction and named entity recognition are even more expensive to label. Dif-

ferent annotation strategies can help reduce the costs for these types of tasks [31].

While different annotation strategies are an essential aspect of AL, we will focus

on the querying strategy we used in our research.

3.2.5.1 Exploration-Exploitation

In their work ”Deep similarity-based batch mode active learning with exploration-

exploitation,” Yin et al. identified two limitations that previous AL algorithms

presented. The first limitation was that the similarity measure used to compare

instances was a feature space. The second limitation was that previous algorithms

focused heavily on the ”exploitation” of the data. This means that other techniques

focused on information close to the decision boundary. The authors argue that fo-

cusing too heavily on the data around the decision boundary will limit the algo-

rithm’s ”exploration” of the entire data distribution. With these limitations in mind

the authors propose a AL algorithm that utilizes two different equations to ensure

that the entire distribution is explored while ensuring that the decision boundaries

are sufficiently explored.

The first equation is used in the exploitation step:

I(x) = E(x) − Sim(x,S) (3.1)

where Sim(x,S) is the similarity between an element x and the set of selected

35

elements S, this equation calculates the amount of information each data point

contains. To use Equation 3.1, we first need to construct the set S. This set will rep-

resent the selected data, and we will initialize it with the data point that maximizes

Equation 2.31. We will calculate Equation 3.1 for the U and select the element with

the maximum value to add to S. We will repeat this step until we have added a

total of numexploit data points. After we complete the exploitation step, we have

ensured that we have added the top m points that contain the most information.

The sudo code for this step can be found in Figure 3.1. The algorithm will now

move into the exploration step.

Given: U, numexploit

Find x ∈ U such that x = max(E(x))

S = set(x)

U = U− x

While |S| < numexploit:
For i ∈ U:

I(i) = E(i) − Sim(i,S)
End For
x = max(I(x))

S = S∪ x
U = U− x

End While
Return S, U

Figure 3.1: Exploitation Code

The equation used in the exploration step is:

i = miniSim(i,L∪ S) (3.2)

This equation ensures that the element we select is the most dissimilar in the

dataset. We will add i to S and recompute Equation 3.2 numexplore times. The

sudo code for the exploration step can be found in Figure 3.2.

36

Given: U, L, S, numexploit, numexplore

total = numexploit +numexplore

While |S| < total:
For i ∈ U:

I(i) = −Sim(i,L∪ S
End For
x = max(I(x))

S = S∪ x
U = U− x

End While
Return S, U

Figure 3.2: Exploration Code

After completing the exploitation and exploration steps, we can retrain our

classifier and calculate the new performance. We repeat these steps until we achieve

the desired performance. We perform minor modifications to the Exploration-

Exploitation Algorithm for our research. These changes are discussed in Chapter

4.

3.2.6 Lexical Expansion and Data Augmentation

As discussed previously, one of the main challenges that NLP models can face is a

lack of diversity in the training vocabulary. This is especially prevalent when the

number of training samples is limited. LE and DA techniques aim to fix this prob-

lem by introducing a wider range of words into the training data. The motivation

behind this is simple: unknown words cause errors. Following the work of [32],

we can see four main areas of DA. These are token-level augmentation, sentence-

level augmentation, adversarial argumentation, and hidden-level augmentation.

We will examine these individually before highlighting the algorithm we have im-

plemented for our research.

Starting from the individual token level, LE has been used to improve the per-

37

formance of NLP techniques. This level of augmentation focuses on changing the

individual words or simple phrases found in the training data. This can take the

form of replacing words with synonyms to insert and delete words. Many ap-

proaches have been used to decide how to insert new words into existing sen-

tences. These include using part of speech information to ensure that the new

words fulfill the same role as the original [33], to changing the structure of the

classifier to detect the changes that are made with the new data [34], or to incor-

porate the identification of target and non-target words with as well as ideas from

image data augmentation to handle incorrect word insertions [35]. The idea that

modifying the individual tokens of the training sentences can help improve per-

formance while not requiring more labelled data has been shown to increase the

performance of the classifiers. This approach can be expanded to a sentence level

as well. Tasks like machine translation and summarization depend on words and

a wider understanding of the language structure. Generating sentences in differ-

ent contexts can improve the performance of these tasks. Instead of targeting the

words in the training sentences, augmenting the data by examining what the clas-

sifier has been learning is possible. Adversarial augmentation techniques can be

created by directly challenging the classifier with unknown data. These techniques

train the model to be more robust and help increase the overall performance [36].

Finally, it is possible to create artificial data by augmenting the hidden representa-

tions of the words. This means that humans cannot read these new samples, but

they still help improve the classifier performance. An example of this can be found

in [37], where the authors combine two real samples to create a new virtual sam-

ple. LE and DA techniques all aim to create more data from the limited amount of

available labelled data. For our research, we focused on a token-level technique,

PLSDA.

38

3.2.6.1 PLSDA

Xiang et al. proposed the PLSDA algorithm to ensure that any generated data fol-

lowed the syntactic consistency principle [33]. This principle is that any changes

to the data do not change the syntactic information that the data originally con-

tained. To ensure this principle is followed, the authors proposed the constraint of

selecting words for replacement based on specified parts of speech and ensuring

any selected synonyms are of the same part of speech. Choosing a word from a

sentence and replacing it with its synonyms is accomplished over two steps. The

first is the Substitution Candidate Selection step, and the second is the Instance

Generation step.

The first step is choosing which words could be replaced with their synonyms.

We will assume a training sentence S composed of n words: S = w1,w2, ...,wn. We

will also have their associated POS tag for all these words. The authors present two

ways to select potential words from this set. The first finds all possible synonyms

with the same POS tag as the original word. While slightly more complicated,

the second provides a higher degree of quality in the generated sentences. The

second method incorporates word similarity into the synonym selection process.

After generating the synonyms for a selected word and filtering them based on

their POS tag, there is an additional comparison of the similarity of the synonym

to the original word. Only synonyms that are above a threshold are considered for

possible replacement. The algorithm will go through all n words and determine

whether synonyms should be generated. The sudo code for this step can be found

in Figure 3.3. Once complete, the words and their synonyms will be passed on to

the next step.

39

Given: S, pos, sim
SCLS = set()
FOR each word w in S:

SCLw = set()
wp = POS(w)

IF wp ∈ pos:
syns = synonyms of w
FOR sy ∈ syns:

syp = POS(sy)

IF syp=wp AND
SIM(syn,w) ⩾ sim:

SCLW ∪ syn
END IF

END FOR
END IF
SCLS ∪ (w,SCLW)

END FOR
Return SCLS

Figure 3.3: Substitution Candidate Selection

The second step in the PLSDA process is instance generation. This is where

the artificial data is created. The number of possible new sentences that could be

created is relatively high. Consider a sentence where three words fulfilled the POS

restraints. If each of these words has five possible synonyms, then the number

of potential artificial sentences is 53. Creating all these possible sentences is com-

putationally expensive; more importantly, they would require a large amount of

storage—the authors propose an additional constraint exp, which is the expected

number of generated instances. The PLSDA algorithm will stop generating new

instances once it reaches this number. If the number of possible combinations is

less than exp the PLSDA will generate all possible combinations.

To ensure that a random sampling of all possible instances is selected, the au-

thors propose using a probabilistic distribution to choose the initial word for re-

placement and a random selection of all the potential synonyms. Each word is

40

selected for replacement based on a Bernoulli distribution. The synonyms for each

selected word are selected randomly from all possible synonyms, with each syn-

onym being equally likely to be selected. By utilizing this method, it is possible to

generate artificial instances of a sentence.

Using the PLSDA algorithm can greatly increase the number of training sam-

ples that a classifier can access without manually labelling more samples. We dis-

cuss the details of our implementation of PLSDA in Chapter 4.

Given: S, SCLS
InsGen = set()
benS = BenDis(SCLS)

FOR index in benS:
Snew = S

IF benS[index] == 1:
w = SCLS[index][0]

SCLW = SCLS[index][1]

probW = Prob(SCLW)

FOR indexB in probW :
IF probW [indexB] == 1:

S.replace(w, SCLW [indexB])

END IF
END FOR

END IF
END FOR
InsGen∪ Snew

Return InsGen

Figure 3.4: Instance Generation

41

Chapter 4

Algorithm

This chapter will examine the proposed algorithm’s structure and setup. We have

designed the algorithm modularly so that either the active learning or the lexical

expansion can be used separately or together. Additionally, the selection of the

neural network is independent of the algorithm. This independence allows the

easy insertion of any appropriate network into the algorithm. We will examine the

algorithm sequentially, starting with the preprocessing, then moving into the AL

and LE and ending in the training stage. The final section of this chapter will sum-

marize the contributions this research has made to advancing sentiment analysis

research.

4.1 Preprocessing

Our preprocessing stage can be broken down into five steps:

1. Remove over length sequences.

2. Generate intermediate information.

3. Tokenization.

42

4. Build vocabulary.

5. Convert words to numbers.

6. Padding.

4.1.1 Over Length Sequences

The first step in our preprocessing stage is to remove overly long sequences. We

do this because our neural networks have a set input length. We chose the input

length to be 800 words. We chose this length as the average sequence length in

our training set is 757. We ensured we kept most of the data by selecting a num-

ber larger than the average. Another approach would be to truncate the longer

sequences than the input size. We wanted to avoid the noise this approach would

introduce, as the longest sentence in the dataset is 8574 words long. In addition,

we felt that there may be some differences between classifying long sequences and

short ones. By removing overly long sequences, we avoid any of the potential

differences between these tasks.

4.1.2 Tokenization

The tokenization process that we use is composed of four steps. We first remove

special characters. The second step is to remove single characters. The third step

is to remove numbers and stop words. The stop word list we use is the English

stop words from nltk [38]. We then finally convert the entire sentence to lower-

case. These four steps help ensure we offer our neural network the highest quality

sequences.

43

4.1.3 Intermediate Information

The second step in the preprocessing stage is the creation of two intermediate in-

formation processes. These are required as the active learning stage needs to com-

pare the similarity of unknown sequences with sequences that the classifier has

seen. We examined two approaches to this step as proposed by the authors in [39].

It is possible to use BERT embeddings to take all the sequences into an easy-to-

compare state. However, we felt that using the BERT embedding for the similarity

comparison but not for the actual network representation was utilizing informa-

tion the network did not have access to. We wanted to compare the performance of

the active learning technique when the similarity between sequences was limited

to information the network had access to. To do this, we used a latent semantic

analysis approach. We take all the sequences in the training set and create a term-

frequency inverse document frequency matrix. We then use a singular value de-

composition to reduce the dimensions of this matrix to 100. With this final matrix,

we can easily compare any unknown sequence by running it through the same

process. Any words unknown to the network will be given the same label, and

similarity will only be calculated based on available information. This process can

be seen in 4.1. We wanted to avoid using the network-learned embeddings as these

are actively being learned and would be a poor representation of the information

until the network is more established.

Define svd() as:
Given: dataTrain, dataTest, tfidf, svd
temp = tfidf.fit transform(dataTrain)

svd train = svd.fit transform(temp)

temp = tfidf.transform(dataTest)

svdtest = svd.transform(temp)

Return svd train, svd test,

Figure 4.1: Create SVD Code

44

4.1.4 Build Vocabulary

Using SVD to determine the similarity between two sequences requires maintain-

ing a vocabulary for the words we have seen. We do this by uniquely mapping

the words in the training set to numbers. Additionally, we need to be able to map

the numbers back to the words. When we add a sequence from the test set to the

training set, we update the mapping with any new words. This process can be

seen in algorithms 4.2 and 4.3.

Define vocab() as:
Given: dataTrain, STOPWORDS as SW

index = 1
map = dictionary()
indecies = dictionary()
For sentence ∈ dataTrain:

For w ∈ sentence:
If w /∈ SW and w /∈ map

map[w] = index

indecies[index] = w

index++

End If
End For

End For
Return map, index, indecies

Figure 4.2: Create Vocab Code

4.1.5 Convert Words to Numbers

After building the vocabulary, we convert all the words to numbers. Using the

dictionary created from 4.2, words that we present in the training set are replaced

with numbers. Words that are not present in the training set are removed. This is

applied to both the training and the testing set. This results in sequences that are

of varying length. Our neural networks require sequences to be the same length;

45

Define addVocab() as:
Given: sent,map, index, indices,SW
For w in sent:

If w /∈ SW and w /∈ map:
map[w] = index

indicies[index] = w

index++

End If
End For
Return index

Figure 4.3: Add Sequence Code

this is handled by the next step: padding.

4.1.6 Padding

Padding is a simple preprocessing step that ensures all sequences are the same

length. This is accomplished by inserting zeros at the end of any sequences that are

shorter than needed. It is essential to mask these zeros from the neural networks

to ensure they are not learning from these extra inputs. This is why in 4.2 our

indexing starts from one not zero.

4.1.7 Complete Preprocessing

Now that the different preprocessing stages have been examined, we can look at

the code for the entire process.

4.2 AL + LE

We will now examine our algorithm’s Active Learning and Lexical Expansion sec-

tions. These are based on the works from [39] and [33], respectively. The basics of

these algorithms were discussed in Chapter 3. Here, we will examine the changes

46

that we have made and how we combine these two approaches. In addition, as we

have created our algorithm modularly, we will assume the network is provided to

us as a variable.

Define preprocessing() as:
Given: data, STOPWORDS as SW, svd,
tfidf

data = removeOverLength(data)

data = tokenize(data)

dTr,dTe = split(data)

svd(dTr,dTe, tfidf, svd)
svdTr, svdTe = vocab(dTr,SW)

map, index, indices = vocab(dTr,SW)

dTrNum = convertNum(dTr)

dTeNum = convertNum(dTe)

dTrNum = pad(dTrNum)

dTeNum = pad(dTeNum)

Figure 4.4: Preprocessing Code

4.2.1 Combining AL and LE

We made small changes to both the Active Learning and Lexical Expansion al-

gorithms. We will discuss these changes and then outline how we combine the

techniques.

4.2.1.1 AL

The main change we make to the Exploration-Exploitation approach proposed

in [39] is switching the Siamese network with a singular value decomposition

(SVD) matrix. Training an additional network alongside the classification network

is computationally expansive. The original paper did not focus solely on text anal-

ysis, so the authors needed a method of comparing the similarity of a wide variety

47

of data types. For our purposes, we can replace the Siamese network with a sim-

ilarity comparison that is widely used in a text, a sparse term frequency-inverse

document frequency (TF-IDF) matrix that is reduced using SVD. Using this matrix

has been shown to have good results for similarity [40]. By removing the Siamese

network, the overall computation time of the algorithm should be reduced, and

the accuracy of the similarity calculation should improve as well.

4.2.1.2 LE

We also changed the PLSDA algorithm proposed in [33] by changing the similarity

measurement. In the original paper, the authors used pre-trained Glove embed-

dings to determine the similarity between the old sentence and the new modified

sentence. We did not want to use embeddings that were not being used by the clas-

sifier. Instead, we used the WordNet similarity comparison to compare words [41].

WordNet generates the synonyms used by the algorithm, and it contains a built-in

word similarity comparison. We feel that relying on a pre-trained embedding that

may not generalize to the current training set for similarity could introduce noise

into the algorithm. Using the similarity comparison from WordNet removes some

of this noise [41]

4.2.1.3 Combining AL and LE

To combine the two strategies, we first run the Active Learning approach to select

the new sequences to be added to the data set. We then take these sequences and

apply the Lexical Expansion technique to them. This will generate additional se-

quences. This can be visualized in the following Figures. The motivation behind

our approach is that the exploration-exploitation algorithm will select data that

confuses the classifier and is close to the decision boundary and data that is far

from the decision boundary on which the classifier has little information. Adding

48

the PLSDA algorithm to this will generate more information on the areas that are

either the most confusing or the most unknown.

Figure 4.5: Generated Data

Figure 4.5 contains artificially generated data demonstrating our algorithm.

The data is separated into two classes: the squares and the crosses.

Figure 4.6: Training Data

In Figure 4.6, we have selected a small amount of the data to train our classifier.

The circles around the data points denote this. The remaining data will be used to

test the classifier.

We create an artificial decision boundary based on the selected training data. The

49

Figure 4.7: Decision Boundary

line in Figure 4.7 shows this boundary. The data points above and to the right of

the line will be labelled as crosses, and the ones below and to the left will be la-

belled as squares.

Figure 4.8: Active Learning Data

After the initial labelling, we can apply our proposed algorithm. The first step will

be to run the active learning algorithm: exploration-exploitation. We will have

it selected eight data points. Four from exploration and four from exploitation.

The exploration stage will select four points far from the original training set. The

exploitation stage will select four data points that are confusing to the classifier:

four points that the classifier was wrong or unsure about in the labelling. If our

50

algorithm is used on real-world data, where the correct labels are unknown be-

forehand, the newly selected data will be provided to topic experts to label.

Figure 4.9: PLSDA Data

After the Active Learning section of our algorithm has been completed, we move

on to the PLSDA section. For this demonstration, we will create three new data

points. These will be within a preset similarity threshold to the originals. The

newly created data points are shown in Figure 4.9 as the diamonds. The gener-

ated data will be labelled as the parent data point. The new training set will be

assembled after the PLSDA section has processed all the data points selected in

the Active Learning section. This can be seen in Figure 4.10.

Figure 4.10: New Training Data

51

Figure 4.11: Updated Decision Boundary

After completing our algorithm, the classifier is retrained on the new training

data. This will create a new decision boundary that could look something like

the line in Figure 4.11. An aspect of the PLSDA approach that is not illustrated

in Figure 4.11 is that when that training data is text data, the generated data can

add information that was not initially present in the training set. Ideally, this new

information will reshape the decision space, making the distinction between the

classes more apparent.

4.3 Contributions

The contributions that this thesis has made to advance the current state of senti-

ment analysis research are:

• Combining EE and PLSDA.

• Testing a different similarity measure for EE.

• Testing a different similarity measure for PLSDA.

• Training and comparing two neural networks with EE, PLSDA, and APLSDA.

52

The main contribution of this work is the combined algorithm APLSDA. This

newly synthesized algorithm tests to see if its component algorithms’ advantages

can be combined while minimizing the weaknesses that those algorithms intro-

duce. By changing the similarity measures of both the EE and the PLSDA algo-

rithms, this research aims to determine if pre-trained embeddings are necessary for

sentiment analysis research. One of the main motivating factors for this research

is to reduce the amount of labelled training data needed to create a classifier and

to reduce the overall cost of the classifier. If pre-trained embeddings are required

to complete this goal, then the cost of creating a classifier is still high, as a general

end user will not be able to create these embeddings themselves. Finally, by train-

ing and comparing two different neural network structures, we examine how our

APLSDA algorithm interacts and whether different neural networks interact with

the algorithm differently.

In the next section, we will describe how we test this algorithm to determine if

it offers better performance when compared to the baseline networks.

53

Chapter 5

Experiment Set Up

Our experiment aims to determine if combining the PLSDA lexical expansion algo-

rithm with the Exploration-Exploitation active learning algorithm provides better

results when compared to either of the algorithms alone or the base performance

of the model. We are measuring each algorithm’s average and maximum perfor-

mance to determine this. In addition to changes in performance, we also analyze

changes in processing time between the different combinations of approaches. We

are examining three different neural networks. We are interested in seeing if the

changes in performance depend on the network structure. We will first explore the

three models we are evaluating before examining the structure of our experiments.

5.1 Models

We have two main types of models. These are general neural network models and

BERT-based models. Overall, we tested three different neural networks. The two

general neural network structures are a stacked CNN model based on [19] and a

CoLSTM, which is a combination of the works from [20] and [21]. For the BERT-

based model, we have selected an ALBERT model [10] for evaluation. All of our

neural networks use the Python API for TensorFlow [22]. We use the Keras layers

54

for both the CNN and the CoLSTM. We use the pre-trained models for the BERT

model, which are available through the TensorFlow Hub.

5.1.1 CNN

We used the CNN based on the network found in [19]. The structure of their model

can be found in Table 3.2. Our structure can be found in Table 5.1. The main differ-

ence between the author’s network and ours is that we allow the input sentences

to be longer. In the original paper, the max length of a sentence was 40, while we

allow sentences up to a length of 800. With this in mind, we follow the example

of [19] by setting the kernel size for all of the 1DCNN layers to 3. The first 1DCNN

layer has 64 filters, and the next has 32. A max-pooling layer follows this. After

this, there are two 1DCNN layers, the first with 16 filters and the second with 8.

The last two layers are a global average pooling layer and, finally, the fully con-

nected dense layer. The authors in [19] showed that this neural network structure

performs well while requiring relatively little training time.

Table 5.1: Our CNN

Layer Output Shape Parameters
Embedding 800, 300 18000000

1D Conv 800, 64 57664
1D Conv 800, 32 6176

Max Pooling 1D 266, 32 0
1D Conv 266, 16 1552
1D Conv 266, 8 264

Global Avg 1D 8 0
Dense 1 9

55

5.1.2 CoLSTM

As discussed in Chapter 3, our CoLSTM is loosely based on the works of [20]

and [21]. From [20], we adopt the idea of first using a CNN layer to reduce the

dimensionality of the data before providing it as input to the LSTM. We take the

idea of using multiple different CNN kernel sizes from [21]. By combining these

two ideas we get our final structure, where we have the word embeddings being

fed into three separate 1DCNNs. These have kernel sizes of 3, 5, and 7, respec-

tively. Each of these has five filters that are learned. An average pooling layer is

then applied to each of the CNN layers. This will provide us with three tensors

with 800 elements. We then stack these on one another to create a 3,800 tensor that

is the input into our LSTM. The LSTM’s output is fed into two dense layers to get

our final output. The idea behind this structure is that the three CNN layers will

learn the different word relationships in the text. The LSTM layer will take these

different relationships and learn any temporal relationships between them. The

layer-by-layer breakdown can be seen in Table 5.2.

Table 5.2: Our CoLSTM

Layer Output Shape Parameters
Input 800 0

Embedding 800, 300 18000000
1D Conv Kernal 3 800, 5 4505
1D Conv Kernal 5 800, 5 7505
1D Conv Kernal 7 800, 5 10505

Average Pooling 1D For 3 800 0
Average Pooling 1D For 5 800 0
Average Pooling 1D For 7 800 0

Stack 3, 800 0
LSTM 100 360400
Dense 100 10100
Dense 1 101

56

5.1.3 ALBERT

We use the large ALBERT model [10] that is available from TensorFlow [22]. We

made this choice as it has comparable performance to the base BERT model while

still providing an increase in performance. We did not allow the weights of the pre-

trained embeddings to be updated. On top of the embeddings, we have a network

that is similar to our CNN network. There is a single 1DCNN with a kernel of size

3 followed by a pooling layer. After the pooling, there are two more 1DCNN layers

with kernels of 3 each. A final pooling layer feeds into a dense layer to produce

the final classification. This can be seen in Table 5.3

Table 5.3: ABLERT

Layer Output Shape Parameters
Input 800 0

Embedding 128, 1024 17683968
1D Conv Kernal 3 128, 64 196672

Max Pooling 42, 64 0
1D Conv Kernal 3 42, 16 3088
1D Conv Kernal 3 42, 8 392

Global Avg Pooling 8 0
Dense 1 9

5.2 Algorithm Selection

We have four different algorithms that we are testing:

1. Basic

2. PLSDA

3. Exploration-Exploitation

4. PLSDA + Exploration-Exploitation

57

Depending on which algorithm we are testing, two different experiment setups are

used. When we test the basic or PLSDA algorithm, we randomly select a portion of

the data set for training and use the rest for testing. The amount of data selected for

training starts from one percent and increases by one percent up to five percent.

After the amount reaches five percent, we increase it by five percent until sixty

percent. The motivation is to use the smallest training data possible while keeping

the computational costs reasonable. We train ten of the selected neural networks

at each increment and record their performances.

The iterative nature of the Exploration-Exploitation algorithm makes the previ-

ous experiment setup ineffective in testing it. Instead, we start the algorithm with

one percent of the data, allowing it to choose 64 sequences from the testing set at

each iteration. Each time the algorithm adds data to the testing set, we train ten

networks and keep the best-performing one for the next iteration. Again, we track

the performance of all the networks for comparison. We have the active learning

algorithm run until it has selected sixty percent of the data to train from.

For our combined algorithm, we use the same setup as the Exploration-Exploitation

algorithm. We start from one percent, and using the active learning section of our

algorithm, we add 64 sequences. Additionally, our algorithm will add generated

sequences from the lexical expansion step.

58

Chapter 6

Evaluation and Analysis

6.1 Evaluation Criteria

To measure the performance of our classifiers, we use three metrics. These metrics

are Precision, Recall, and F1-Score. To understand these metrics, we must intro-

duce the confusion matrix. The confusion matrix contains four quadrants. These

quadrants are labelled as: True Positive (TP), False Positive (FP), False Negative

(FN), and True Negative (FN). TP and TN terms are used when the classifier cor-

rectly identifies whether a data point belongs to the target class. The FP and FN

terms are used when the classifier incorrectly identifies a data point as belonging

to the target class when it does not (FP) or says a data point does not belong to the

class when it does (FN). By calculating a classifier’s TP, FP, TN, and FN rates, we

can start calculating that classifier’s precision, recall, and F1-Score.

Precision measures how often the classifier correctly makes a positive predic-

tion. The formula can be found in Equation 6.1

precision =
TP

TP+ FP
(6.1)

Recall measures the classifier correctly identified that a data point belonged to the

59

target class. The equation for recall can be seen in Equation 6.2

recall =
TP

TP+ FN
(6.2)

Finally, the F1-Score is the harmonic mean of precision and recall. The formula

for F1-Score can be found in Equation 6.3

F1 = 2× precision× recall

precision+ recall
(6.3)

In addition to F1-Score, we measure the mean and variance of the different net-

works and algorithms.

F1-Score is measured across all labels in a testing set. We take the average F1-

Score to measure our classifiers’ overall performance. In both of our datasets, there

are two labels, so our final metric is:

F1average =
F10 + F11

2
(6.4)

We also measure the statistical significance of the results of our different net-

works and algorithms. This is done using the Student’s t-test. This equation can

be found in 6.5.

t =
X̄1 − X̄2

s∆̄
(6.5)

Here s∆̄ is calculated in 6.6.

s∆̄ =

√︄
s21
n1

+
s22
n2

(6.6)

Where s2i is the estimator of the variance of the ht two series, and ni is the

number of sequences in the two samples. We set our confidence interval to 0.95

and our p value to 0.05.

60

6.2 Evaluation

We use the IMDB movie review dataset [18] for our evaluation. We will analyze

the average and the maximum for the classifiers. We have taken ten observations

for each network and each algorithm. Although this is a small number of observa-

tions for significance testing, we believe these tests will still provide some helpful

information.

6.2.1 CNN

We will start by analyzing the average from the CNN. The averages can be found

in 6.1. We have graphed these values as well. This graph can be found in 6.1. The

highest average at each sampling step is in bold. Values followed by an asterisk are

statistically significant compared to the normal, unmodified results with a p-value

of p < 0.05. The p-values are in Table 6.4 in the A-N, P-N and AP-N lines for the

Active-Noraml, PLSDA-Normal and APLSDA-Normal, respectively.

Table 6.1: Average F1 Score CNN

1 2 3 4 5 10 15 20
Normal 0.335 0.335 0.335 0.558 0.666 0.791 0.812 0.806
PLSDA 0.335 0.452 0.683* 0.684* 0.720 0.782 0.782 0.800
Active 0.335 0.433 0.626* 0.667 0.697 0.801 0.816 0.824*
APLSDA 0.335 0.671* 0.706* 0.717 0.771 0.788 0.819 0.830*

25 30 35 40 45 50 55 60
Normal 0.825 0.823 0.827 0.827 0.830 0.830 0.832 0.826
PLSDA 0.820 0.822 0.823 0.820 0.825 0.828 0.832 0.832
Active 0.840* 0.848* 0.852* 0.869* 0.879* 0.894* 0.894* 0.914*
APLSDA 0.840* 0.851* 0.864* 0.865* 0.875* 0.891* 0.902* 0.913*
?* denotes statistical significance compared to the normal approach

This table shows that our proposed method outperforms the other approaches

for training amounts less than ten percent. This difference is only statically sig-

61

nificant for values two and three. For values of ten and above, the AL approach

or our APLSDA approach had the highest average. Among these values, the AL

and PLSDA approaches are only significantly different from the normal approach

for values greater than 15. There seems to be no predictable pattern in which one

outperforms the other. It is also worth noting that we have calculated the p-values

between the different approaches. These can be found in 6.4, and as seen in the A-

AP lines, there is no significant difference between the two approaches for values

greater than two.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

A
v
g

 C
o

m
b

in
e
d

 F
1
 S

c
o

re

Percent Training Data

Average F1 CNN

Active PLSDA Normal APLSDA

Figure 6.1: Average F1 Score CNN

The graph in Figure 6.1 helps to visualize the difference between the active

learning and APLSDA algorithms, which is minor for values above 25. To further

illustrate the differences between the different algorithms compared to the normal

CNN network, we have plotted the differences in the average F1 score in 6.2. This

figure shows that our APLSDA algorithm improves slightly faster than the Ac-

tive learning algorithm. While the PLSDA algorithm offers some improvements, it

62

quickly falls off and offers slight improvement, and, in some cases, it is worse than

the standard network.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fe
re

n
c
e
 C

o
m

b
in

e
d

 F
1
 S

c
o

re

Percent Training Data

Change AVG

Active PLSDA APLSDA

Figure 6.2: Change in Average F1 Score CNN

We also want to look at the maximum values the neural network achieves.

These values are in Table 6.2 and Figure 6.3. From the table and the figure, we

can see that the max value follows a similar pattern to the average value. Our

APLSDA algorithm achieves the highest value four out of five times for values of

five and less. There is little pattern to the best-performing algorithm for values

of ten and above. We can see from Figure 6.4 that the three different algorithms

provided are similar to the changes to the average F1 score.

63

Table 6.2: Max F1 Score CNN

1 2 3 4 5 10 15 20
Normal 0.335 0.335 0.367 0.706 0.786 0.817 0.824 0.824
PLSDA 0.335 0.706 0.756* 0.766* 0.791 0.813 0.816 0.826
Active 0.335 0.651 0.783* 0.753 0.795 0.815 0.829 0.837*
APLSDA 0.335 0.745* 0.779* 0.794 0.797 0.814 0.826 0.839*

25 30 35 40 45 50 55 60
Normal 0.845 0.848 0.848 0.840 0.854 0.838 0.839 0.839
PLSDA 0.826 0.830 0.830 0.831 0.835 0.850 0.837 0.836
Active 0.847* 0.854* 0.870* 0.873* 0.883* 0.896* 0.908* 0.918*
APLSDA 0.846* 0.858* 0.867* 0.874* 0.883* 0.893* 0.904* 0.915*
?* denotes statistical significance compared to the normal approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

A
vg

 C
o

m
b

in
ed

 F
1

S
co

re

Percent Training Data

Max F1 CNN

Active PLSDA Normal APLSDA

Figure 6.3: Max F1 Score

64

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fe
re

n
c
e
 i

n
 C

o
m

b
in

e
d

 F
1

 S
c
o
re

Percent Training Data

Change MAX

Active PLSDA APLSDA

Figure 6.4: Change in Max F1 Score CNN

Table 6.3: Standard Deviation CNN

1 2 3 4 5 10 15 20
Normal 5.551E-17 0.0743 0.0331 0.0842 0.1580 0.0194 0.0108 0.0119
PLSDA 0.1006 0.1881 0.1203 0.0696 0.0247 0.0105 0.0101 0.0143
Active 5.551E-17 0.1148 0.0940 0.0913 0.1257 0.0254 0.0225 0.0109
APLSDA 5.551E-17 0.0488 0.0997 0.1127 0.0229 0.0220 0.0164 0.0096

25 30 35 40 45 50 55 60
Normal 0.0132 0.0077 0.0043 0.0034 0.0038 0.0021 0.0051 0.0024
PLSDA 0.0046 0.0057 0.0273 0.0047 0.0020 0.0038 0.0039 0.0110
Active 0.0100 0.0037 0.0234 0.0020 0.0033 0.0015 0.0267 0.0029
APLSDA 0.0059 0.0037 0.0028 0.0111 0.0114 0.0023 0.0022 0.0016

65

In Table 6.3, the standard deviation for the four different algorithms is listed.

Unlike the previous tables, the smallest value is highlighted in bold. We are inter-

ested in seeing if there is any algorithm that constantly provides a smaller stan-

dard deviation. The change in standard deviation can be seen in Figure 6.5. While

the PLSDA approach does offer a smaller standard deviation in six of the sixteen

points, it is important to remember that it resulted in worse performance than

the baseline. The PLSDA approach is statistically significant in only one of these

points. The APLSDA and Active algorithms reliably produce values with a lower

standard deviation for values above 15. The Active algorithm has a smaller stan-

dard deviation in seven out of the nine values, and the APLSDA has smaller values

for six. The Active algorithm has the smallest values for three of the points.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fe
re

n
c
e
 i

n
 S

ta
n

d
a
rd

 D
e
v

ia
ti

o
n

Percent Training Data

Change SD CNN

Active PLSDA APLSDA

Figure 6.5: Change in Standard Deviation F1 Score

When looking at the statistically significant difference between the different

algorithms, we can see a clear difference in how the algorithms perform for values

of five and less, the values of ten and fifteen, and the values of twenty and higher.

66

For the values of one to five, there is little pattern to the statistical significance

between the different algorithms. For ten and fifteen, none of the algorithms are

significantly different from each other. Finally, for all the training values of twenty-

five and higher, all but Active-APLSA and PLSDA-Normal are significant.

Table 6.4: P-Values CNN

1 2 3 4 5 10 15 20
A-P 0.348 0.829 0.217 0.087 0.482 0.63 0.308 0.032
A-N 4E-225 0.136 4E-06 0.741 0.479 0.444 0.667 0.034
A-AP 1E-223 6E-05 0.073 0.24 0.187 0.309 0.873 0.217
P-N 0.343 0.427 0.001 0.035 0.166 0.612 0.318 0.784
P-AP 0.344 0.002 0.009 0.812 0.018 0.391 0.131 0.003
AP-N 6E-212 1E-08 5E-07 0.139 0.069 0.732 0.442 0.002

25 30 35 40 45 50 55 60
A-P 1E-04 7E-09 0.001 6E-12 2E-16 1E-14 4E-05 3E-10
A-N 0.001 6E-07 0.005 9E-15 9E-17 1E-21 4E-05 2E-22
A-AP 0.819 0.315 0.154 0.461 0.607 0.012 0.449 0.164
P-N 0.63 0.98 0.08 0.276 0.156 0.29 0.989 0.2
P-AP 7E-07 3E-09 1E-04 3E-07 4E-07 8E-17 3E-17 1E-09
AP-N 0.001 3E-07 1E-13 1E-06 9E-08 1E-21 4E-14 1E-22

Taking all the results from this section together, we can see that our APLSDA

algorithm and the Active algorithm perform similarly. Overall, the performance at

five percent or less is unpredictable. Our algorithm produces slightly more consis-

tent results for values over fifteen when considering the standard deviation. For

the CNN, the APLSDA and AL algorithms perform similarly, and neither outper-

forms the other.

6.2.2 LSTM

Similarly, for the LSTM, we will first examine the average performance of the net-

work. The numeric values can be found in Table 6.5, and the graphical representa-

tions can be found in Figure 6.6 and 6.7. We can see that the Active and APLSDA

67

outperformed the other two algorithms in all cases. In all cases, either the Acitve

or the APLSDA algorithm performed the best. However, the statistical significance

of these improvements is unreliable for values less than 30.

Table 6.5: Average F1 Score LSTM

1 2 3 4 5 10 15 20
Normal 0.335 0.516 0.519 0.565 0.646 0.708 0.748 0.751
PLSDA 0.381* 0.505 0.541 0.59 0.668 0.721 0.751 0.755
Active 0.34 0.441 0.596 0.649* 0.703 0.75 0.774 0.783
APLSDA 0.531* 0.552 0.568 0.608 0.638 0.735 0.767* 0.775

25 30 35 40 45 50 55 60
Normal 0.767 0.783 0.795 0.8 0.798 0.806 0.809 0.81
PLSDA 0.775 0.776* 0.784* 0.791 0.801 0.812 0.815 0.81
Active 0.794 0.805* 0.818* 0.819* 0.831* 0.848* 0.847* 0.854*
APLSDA 0.785 0.789 0.813* 0.826* 0.836* 0.844* 0.848* 0.866*
?* denotes statistical significance compared to the normal approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

A
v
g

 C
o

m
b

in
e
 F

1
 S

c
o

re

Percent Training Data

AVG F1 LSTM

Active PLSDA Normal APLSDA

Figure 6.6: Average F1 Score LSTM

68

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fe
re

n
c
e
 C

o
m

b
in

e
d

 F
1
 S

c
o

re

Percent Training Data

Change Avg F1 LSTM

Active PLSDA APLSDA

Figure 6.7: Change in Average F1 Score LSTM

The max F1-Scores for the LSTM network can be found in Table 6.6, Figure

6.8, and Figure 6.9. Again, the Active and the APLSDA algorithms outperform

the PLSDA algorithm at all values. The statistical significance is the same as the

average, so there is no pattern to the significance for values less than 30.

Table 6.6: Max F1 Score LSTM

1 2 3 4 5 10 15 20
Normal 0.336 0.541 0.582 0.667 0.709 0.757 0.765 0.794
PLSDA 0.458* 0.532 0.618 0.7 0.715 0.746 0.773 0.795
Active 0.366 0.651 0.684 0.718* 0.732* 0.767 0.795* 0.809
APLSDA 0.571* 0.652 0.661 0.747 0.722 0.763 0.794* 0.8

25 30 35 40 45 50 55 60
Normal 0.798 0.801 0.81 0.811 0.818 0.816 0.815 0.826
PLSDA 0.796 0.798 0.802* 0.808 0.814 0.823 0.824 0.823
Active 0.806 0.825* 0.836* 0.837* 0.843* 0.86* 0.868* 0.872*
APLSDA 0.81 0.819 0.833* 0.844* 0.852* 0.856* 0.864* 0.875*
?* denotes statistical significance compared to the normal approach

69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

A
v
g

 C
o

m
b

in
e
d

 F
1
 S

c
o

re

Percent Training Data

Max F1 LSTM

Active PLSDA Normal APLSDA

Figure 6.8: Max F1 Score LSTM

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

D
if

fe
re

n
c
e
 C

o
m

b
in

e
d

 F
1
 S

c
o

re

Percent Training Data

Change Max F1 LSTM

Active PLSDA APLSDA

Figure 6.9: Change in Max F1 Score LSTM

70

We will next examine the standard deviation of the LSTM network. Unlike the

CNN, our APLSDA algorithm with the LSTM produced a smaller standard devi-

ation for the training values of 2, 50 and 60. All algorithms produced the smallest

deviations for some values. There is no observable pattern for which algorithms

will produce small standard deviations.

Table 6.7: Standard Deviation LSTM

1 2 3 4 5 10 15 20
Normal 0 0.0134 0.0461 0.0659 0.041 0.072 0.0206 0.062
PLSDA 0.0432 0.0159 0.042 0.0692 0.0415 0.0234 0.0165 0.045
Active 0.0096 0.1146 0.0883 0.0474 0.0407 0.0087 0.0113 0.0119
APLSDA 0.0372 0.0566 0.0733 0.0798 0.0828 0.0247 0.0125 0.0123

25 30 35 40 45 50 55 60
Normal 0.0544 0.0142 0.0092 0.0097 0.0167 0.0105 0.0047 0.0151
PLSDA 0.0148 0.0232 0.0113 0.0111 0.0132 0.0085 0.0075 0.0103
Active 0.0082 0.0114 0.0116 0.0107 0.0102 0.0119 0.0223 0.0174
APLSDA 0.015 0.0332 0.0157 0.0266 0.0124 0.0103 0.0214 0.0094

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60C
h

an
g

e
 i

n
 S

ta
n
d

a
rd

 D
e
v

ia
ti

o
n

Percent Training Data

Change SD LSTM

Active PLSDA APLSDA

Figure 6.10: Change STD LSTM

71

The p-values found in Table 6.8 show that the APLSDA and AL algorithms are

only statistically different at three percent. Overall, we can see that all algorithms

except the PLSDA algorithm are significantly different from all others for values

greater than thirty. For values less than thirty, there are no clear patterns for the

significant differences between algorithms except for the previously mentioned

APLSDA and AL algorithms.

Table 6.8: P-Values LSTM

1 2 3 4 5 10 15 20
A-P 0.032 0.136 0.167 0.062 0.151 0.008 0.003 0.081
A-N 0.189 0.072 0.072 0.003 0.017 0.125 0.016 0.188

A-AP 5E-08 0.009 0.274 0.032 0.001 1E-06 2E-04 9E-07
P-N 0.012 0.133 0.385 0.513 0.204 0.582 0.728 0.902

P-AP 1E-04 0.01 0.601 0.839 0.014 3E-05 5E-04 4E-05
AP-N 7E-08 0.098 0.107 0.222 0.789 0.313 0.03 0.287

25 30 35 40 45 50 55 60
A-P 0.012 0.009 3E-04 8E-05 3E-04 5E-06 0.002 1E-04
A-N 0.185 0.003 0.002 0.006 0.001 5E-06 0.001 0.002

A-AP 5E-04 2E-05 5E-06 2E-05 7E-06 9E-09 5E-07 5E-07
P-N 0.622 0.312 0.048 0.184 0.582 0.216 0.052 0.903

P-AP 0.001 0.003 1E-04 3E-04 9E-05 3E-07 2E-08 1E-05
AP-N 0.372 0.657 0.01 0.017 5E-05 3E-07 3E-04 1E-07

Overall, the Active and APLSDA algorithms significantly improved the per-

formance of the LSTM network. These two algorithms achieved the best average

performance and the best max performance. They were both consistently statis-

tically significant for values greater than 25. However, the standard deviation of

these algorithms is not consistently lower than the normal algorithm. Similar to

the CNN, these two algorithms are not significantly different from each other at

nearly all points. The most notable result from the LSTM is that the APLSDA al-

gorithm started with a max F1 score of 0.571. This is over twenty points above

the performance of the CNN. This result is surprising when examining the rest of

72

the LSTM’s performance. This indicates that with one percent of the data being

used for training, the LSTM is slightly better than guessing. While the LSTM does

not progress to the same levels as the CNN, this result indicates some benefit to

the LSTM structure. Notably, neither the PLSDA nor the AL algorithms offer the

same performance at one percent. This could indicate that there is some use in

combining them.

6.2.3 BERT

The final model that we tested was our BERT-based model. We had to treat this

model differently than the others. We did not apply the different algorithms and

only ran the algorithm once for each dataset division. We had to do this from a

computational standpoint, as the BERT model took over three hours per epoch.

While this prevents us from being able to calculate an average or find an actual

max, we can treat this as a baseline for a large pre-trained model. The results from

our testing can be found in Table 6.9 and Figure 6.11.

From this table, we can see that the BERT model is unpredictable for values

less than 15. In addition, the performance of the BERT model is lower than what

we would have expected from other research. This may be because the ALBERT

model may struggle to transfer its learning from its pre-trained knowledge base of

books and Wikipedia to movie reviews.

Table 6.9: BERT F1 Score

1 2 3 4 5 10 15 20
Normal 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
Normal 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

A
v
g

 C
o

m
b

in
e
d

 F
1
 S

c
o

re

Percent Training Data

BERT

BERT

Figure 6.11: BERT F1 Score

6.3 Comparison and Analysis

We will compare the different techniques and networks. We will first examine

to see if our approach performed better than its components, then compare the

overall performance of the networks.

6.3.1 Compare Networks

Comparing the CNN, LSTM, and BERT networks, we can see that the CNN out-

performs the other networks in almost all cases. We can see this clearly in Tables

6.10, 6.11, 6.12, 6.13, 6.14, and 6.15. For all the algorithms, either BERT or the LSTM

starts from a higher F1 score. The CNN outperforms the other networks as early as

three percent training data. Even in the notable case with the APLSDA algorithm,

where the LSTM starts from 0.571, the CNN reaches an F1 score of 0.745 at two

percent.

When examining the standard deviation of the networks, we can see that the

74

CNN has a smaller deviation. In general, the deviation decreases as the amount of

training data increases. There is some variability in the change in deviation, but it

trends down. This implies that the CNN is learning a better representation of the

data in addition to being able to classify positive and negative sentiment.

Finally, we will examine if there is a significant difference in how the different

networks performed with the different algorithms. From Table 6.16, we can see a

significant difference between the networks for values greater than twenty. There

is no clear pattern of significance for values of twenty and under. There are no

significant differences for the values of two, three, and four. This implies that for

small values of training data, the networks are too variable to be able to statistically

pick one as better than the other, regardless of the technique used. We can see that

the CNN is statistically the better choice for higher values.

6.3.2 Compare Algorithms

In addition to comparing the differences between the networks, we want to ex-

amine the different algorithms to see any patterns in how they performed with

the two networks. Looking back at Figures 6.3 and 6.8, we can see that with less

than ten percent of the training data, all the algorithms improved the performance

of both networks. From values equal to or greater than ten percent, the AL and

APLSDA algorithms outperform the PLSDA algorithm. The AL and APLSDA al-

gorithms start outperforming the PLSDA algorithm for both networks by 20 points

and outperforming the PLSDA algorithm by at least 50 points by the end. Compar-

ing how the different algorithms affect the average and max scores as the amount

of training data changes shows some interesting differences between the networks.

For the CNN, the APLSDA algorithm increases the average performance by 0.336

from one percent to two and the max by 0.310. All the algorithms created a sig-

nificant increase in the max performance for the CNN, but only the APLSDA al-

75

gorithm created such a significant increase in the average. For the LSTM, there

were no sudden changes in performance, but the APLSDA algorithm did start sur-

prisingly high. The standard deviation is unpredictable when determining if the

algorithms create a smaller concentration of results. There are no apparent patterns

for either network.

6.4 Overall Comparisons

Overall, we can conclude that the CNN outperformed the other networks across

all algorithms. The only exception is for values one and two, where either the

LSTM or BERT would perform better. As for which algorithm performs best, the

AL and APLSDA algorithms outperformed the PLSDA algorithm. However, we

can not differentiate between these two algorithms as they performed almost the

same. There are two notable exceptions to this. One is for the CNN. The APLSDA

algorithm increases the average performance from one percent to two significantly

more than the AL algorithm. The other exception is the LSTM, where the APLSDA

algorithm produced surprisingly high values for one percent of the training data.

Table 6.10: Active Average F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.433 0.626 0.667 0.697 0.801 0.816 0.824
LSTM 0.34 0.441 0.596 0.649 0.703 0.75 0.774 0.783
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.84 0.848 0.852 0.869 0.879 0.894 0.894 0.914
LSTM 0.794 0.805 0.818 0.819 0.831 0.848 0.847 0.854
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

76

Table 6.11: Active Max F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.651 0.783 0.753 0.795 0.815 0.829 0.837
LSTM 0.366 0.651 0.684 0.718 0.732 0.767 0.795 0.809
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.847 0.854 0.87 0.873 0.883 0.896 0.908 0.918
LSTM 0.806 0.825 0.836 0.837 0.843 0.86 0.868 0.872
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

Table 6.12: PLSDA Average F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.452 0.683 0.684 0.72 0.782 0.782 0.8
LSTM 0.381 0.505 0.541 0.59 0.668 0.721 0.751 0.755
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.82 0.822 0.823 0.82 0.825 0.828 0.832 0.832
LSTM 0.775 0.776 0.784 0.791 0.801 0.812 0.815 0.81
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

Table 6.13: PLSDA Max F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.706 0.756 0.766 0.791 0.813 0.816 0.826
LSTM 0.458 0.532 0.618 0.7 0.715 0.746 0.773 0.795
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.826 0.831 0.83 0.831 0.835 0.85 0.837 0.836
LSTM 0.796 0.798 0.802 0.808 0.814 0.823 0.824 0.823
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

77

Table 6.14: APLSDA Average F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.671 0.706 0.717 0.771 0.788 0.819 0.83
LSTM 0.531 0.552 0.568 0.608 0.638 0.735 0.767 0.775
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.84 0.851 0.864 0.865 0.875 0.891 0.902 0.913
LSTM 0.785 0.789 0.813 0.826 0.836 0.844 0.848 0.866
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

Table 6.15: APLSDA Max F1 Score Comparison

1 2 3 4 5 10 15 20
CNN 0.335 0.745 0.779 0.794 0.797 0.814 0.826 0.839
LSTM 0.571 0.652 0.661 0.747 0.722 0.763 0.794 0.8
BERT 0.384 0.539 0.336 0.365 0.506 0.339 0.602 0.635

25 30 35 40 45 50 55 60
CNN 0.846 0.858 0.867 0.874 0.883 0.893 0.904 0.915
LSTM 0.81 0.819 0.833 0.844 0.852 0.856 0.864 0.875
BERT 0.656 0.647 0.540 0.588 0.642 0.685 0.681 0.713

Table 6.16: P Values Between LSTM and CNN

1 2 3 4 5 10 15 20
Normal 1E-05 0.097 0.095 0.088 0.119 0.069 0.036 0.055
PLSDA 0.089 0.144 0.093 0.1 0.049 0.043 0.031 0.044
Active 0.007 0.118 0.095 0.075 0.096 0.033 0.027 0.024

APLSDA 0.104 0.084 0.116 0.115 0.091 0.037 0.029 0.031

25 30 35 40 45 50 55 60
Normal 0.048 0.024 0.016 0.016 0.019 0.015 0.012 0.015
PLSDA 0.026 0.03 0.024 0.02 0.017 0.011 0.01 0.014
Active 0.026 0.024 0.026 0.027 0.025 0.025 0.035 0.034

APLSDA 0.031 0.04 0.028 0.029 0.024 0.025 0.032 0.025

78

Chapter 7

Conclusion

We will examine our research questions individually, starting with Question 1.

1. Does combining AL and LE offer better performance?

Our combined APLSDA algorithm performed significantly better than the PLSDA

algorithm and the unmodified approaches. However, it was only significantly dif-

ferent from the AL approach for the CNN at the value 3. For the LSTM, the dif-

ferences between the APLSDA and AL approach were significantly different for

all values but 3 and 4. However, the performance of the algorithms was not con-

sistent with both the APLSDA and the AL algorithm performing the best with no

clear pattern. In regards to our expectations, our algorithm did result in better

performance than the unmodified approach, while our APLSDA and the AL ap-

proach we comparable. While the average performance of our APLSDA algorithm

was better than the AL algorithm for the CNN for training values up to 40 percent,

the differences were minor and not significant.

2. Is it possible to use this technique to create a classifier whose performance

improves faster?

Our algorithm did help the classifiers improve faster than all the other tech-

niques. For training values of one or two percent, our algorithm outperformed

79

the other techniques significantly. This is most apparent in the LSTM, where the

APLSDA algorithm started over ten points higher than the other algorithms for

both its max F1 and its average. For higher training values the APLSDA and the

AL algorithms are similar again when examining the rates of improvement. These

results match our expectations that our technique would help improve the classi-

fiers faster than the other results.

3. Does the proposed algorithm behave differently with different classifier ar-

chitectures?

To answer question 3 we can conclude that the CNN network outperformed

both the LSTM and the BERT model for training values higher than two percent.

For the very small values, the LSTM performed surprisingly well. While this per-

formance is notable, overall the CNN is the more useful architecture. Our expec-

tations that the APLSDA algorithm would help improve the performance of any

classifier regardless of architecture were supported by our research. Both the LSTM

and the CNN saw significant improvements with our APLSDA algorithm. We did

not expect that the CNN would outperform the LSTM so drastically.

4. Is there a large variance between the average and best performance of the

classifiers?

By examining the standard deviation of the different algorithms, we were able

to see how their performance changed over time. Overall, all the algorithms trended

towards a smaller standard deviation. Our APLSDA algorithm had the smallest

deviation at 60 percent training data. However, the other algorithms had smaller

deviations leading up to 60 percent. We can conclude that all algorithms increase

the accuracy of their predictions as the amount of training data increases. While

the PLSDA algorithm performed the worst out of the three improvements tested, it

80

did have much lower standard deviations for some of the smaller training values.

This result did not align with our expectations. We had predicted that introducing

artificial data from the PLSDA and APLSDA approaches may hurt the deviation

of those classifiers. However, this does not appear to be the case. This result is en-

couraging, as it shows that the data points generated by the PLSDA and APLSDA

algorithms are similar to the real data.

Overall, our algorithm and the AL algorithm performance are too similar to

say that one is better than the other. However, we have some useful results from

our research. We found significant improvements in all training percentages when

using either technique. When focusing on very small amounts of training data,

we found that our algorithm outperformed the AL algorithm. Finally, by exam-

ining the average performances of the classifiers as well as the max, we saw that

there could be a significant amount of variance between the performance of two

classifiers that are trained on the same data. All these findings open up interesting

future avenues for continuing this research.

7.1 Future Work

Our research brought forth several future research avenues. These include inves-

tigating the LSTM, trying different combinations of techniques, further investigat-

ing into average performances of classifiers, and the potential to examine several

classifiers. One of the most interesting results from this research was the incredi-

ble performance of the LSTM with the APLSDA algorithm at one percent training

data. It achieved a performance that was slightly better than guessing when the

other classifiers were only capable of supplying a single label. Investigating what

this classifier has learned and how it differs from the CNN and the BERT model

is an area of potential future research. The second avenue of research could be

81

combining other techniques. We selected two techniques to try and combine. Sev-

eral other AL and LE algorithms could be beneficial to use together. There is also

potential to examine different ways of combining the techniques. We only exam-

ined a complete combination of the techniques; it would be useful to examine if

starting from one technique before transitioning to another would offer any bene-

fits. We found that the performance of the classifiers was not as consistent as we

would have hoped. This was especially clear with training values of less than five.

Future research could focus on reducing the variance of the classifiers at low train-

ing values. Finally our research showed that there can be increable differences in

the performance of one classifier when compared to another. This encourages fur-

ther research into different architectures and experimentation with unusual neural

network structures.

82

Bibliography

[1] G. Chevalier, “Lstm cell.” https://commons.wikimedia.org/wiki/File:

LSTM_Cell.svg, May 2018. Accessed: 2023-05-11.

[2] J. Prusa, T. M. Khoshgoftaar, and N. Seliya, “The effect of dataset size on train-
ing tweet sentiment classifiers,” in 2015 IEEE 14th International Conference on
Machine Learning and Applications, ICMLA 2015, pp. 96–102, Dec 9-11, 2015.

[3] C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors in test
sets destabilize machine learning benchmarks,” in 35th Conference on Neural
Information Processing Systems Track on Datasets and Benchmarks, NeurIPS 2021,
Dec 6-14, 2021.

[4] V. S. Sheng, F. Provost, and P. G. Ipeirotis, “Get another label? improving
data quality and data mining using multiple, noisy labelers,” in Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2008, pp. 614—-622, Association for Computing Machin-
ery, 2008.

[5] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133,
Dec 1943.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” Neural Computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
eds.), NIPS 2017, Curran Associates, Inc., Dec 8-13, 2014.

[9] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (A. Moschitti,
B. Pang, and W. Daelemans, eds.), EMNLP 2014, pp. 1724–1734, Association
for Computational Linguistics, Oct 25-29, 2014.

83

https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg

[10] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Al-
bert: A lite bert for self-supervised learning of language representations,” in
8th International Conference on Learning Representations, ICLR 2020, Apr 26-30,
2020.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), NIPS 2017, Curran
Associates, Inc., Dec 4-9, 2017.

[12] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning. Cam-
bridge University Press, 2023.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers) (J. Burstein, C. Doran, and T. Solorio, eds.), NAACL 2019, pp. 4171–
4186, Association for Computational Linguistics, Jun 2-7, 2019.

[14] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and conse-
quences,” Minds and Machines, vol. 30, pp. 681–694, Dec 2020.

[15] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler, “Aligning books and movies: Towards story-like visual explana-
tions by watching movies and reading books,” in Proceedings of the IEEE inter-
national conference on computer vision, ICCV 2015, pp. 19–27, Dec 7-13, 2015.

[16] M. V. Mäntylä, D. Graziotin, and M. Kuutila, “The evolution of sentiment
analysis—a review of research topics, venues, and top cited papers,” Computer
Science Review, vol. 27, pp. 16–32, 2018.

[17] B. Settles, “Active learning literature survey,” Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[18] M Yasser H, “Movie ratings sentiment analysis.”
https://www.kaggle.com/datasets/yasserh/imdb-movie-ratings-
sentiment-analysis. Accessed: 2022-02-15.

[19] N. C. Dang, M. N. Moreno-Garcı́a, and F. De la Prieta, “Sentiment analysis
based on deep learning: A comparative study,” Electronics, vol. 9, no. 3, pp. 1–
29, 2020.

[20] R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-lstm: Convolutional lstm
model for sentiment analysis in social big data,” Information Processing & Man-
agement, vol. 58, no. 1, p. 102435, 2021.

84

[21] Q.-H. Vo, H.-T. Nguyen, B. Le, and M.-L. Nguyen, “Multi-channel lstm-cnn
model for vietnamese sentiment analysis,” in 2017 9th International Conference
on Knowledge and Systems Engineering, KSE 2017, pp. 24–29, 2017.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” 2015.
Software available from tensorflow.org.

[23] Z. Zhang, E. Strubell, and E. Hovy, “A survey of active learning for natural
language processing,” in Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing (Y. Goldberg, Z. Kozareva, and Y. Zhang,
eds.), EMNLP 2022, pp. 6166–6190, Association for Computational Linguis-
tics, Dec 7-11, 2022.

[24] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[25] K. Margatina, G. Vernikos, L. Barrault, and N. Aletras, “Active learning by ac-
quiring contrastive examples,” in Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing (M.-F. Moens, X. Huang, L. Specia,
and S. W.-t. Yih, eds.), EMNLP 2021, pp. 650–663, Association for Computa-
tional Linguistics, Nov 7-11, 2021.

[26] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,” in Ad-
vances in Neural Information Processing Systems (J. Platt, D. Koller, Y. Singer, and
S. Roweis, eds.), vol. 20 of NIPS 2007, Curran Associates, Inc., Dec 3-8, 2007.

[27] H.-S. Chang, S. Vembu, S. Mohan, R. Uppaal, and A. McCallum, “Using er-
ror decay prediction to overcome practical issues of deep active learning for
named entity recognition,” Machine Learning, vol. 109, pp. 1749–1778, Sep
2020.

[28] J. Zhu, H. Wang, T. Yao, and B. Tsou, “Active learning with sampling by un-
certainty and density for word sense disambiguation and text classification,”
in 2008 - 22nd International Conference on Computational Linguistics, Proceedings
of the Conference, COLING 2008, pp. 1137–1144, Aug 18-22, 2008.

[29] V. Ambati, Active learning and crowdsourcing for machine translation in low re-
source scenarios. PhD thesis, Carnegie Mellon University, 2012.

[30] A. Erdmann, D. J. Wrisley, B. Allen, C. Brown, S. Cohen-Bodénès, M. Elsner,
Y. Feng, B. Joseph, B. Joyeux-Prunel, and M.-C. de Marneffe, “Practical, ef-
ficient, and customizable active learning for named entity recognition in the

85

digital humanities,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers) (J. Burstein, C. Doran, and T. Solorio,
eds.), NAACL-HLT 2019, pp. 2223–2234, Association for Computational Lin-
guistics, Jun 2-7, 2019.

[31] M.-A. Rocha and J.-A. Sanchez, “Towards the supervised machine transla-
tion: Real word alignments and translations in a multi-task active learning
process,” in Proceedings of Machine Translation Summit XIV: Posters (A. Way,
K. Sima’an, and M. L. Forcada, eds.), MTSummit 2013, Sep 2-6, 2013.

[32] J. Chen, D. Tam, C. Raffel, M. Bansal, and D. Yang, “An empirical survey of
data augmentation for limited data learning in nlp,” Transactions of the Associ-
ation for Computational Linguistics, vol. 11, pp. 191–211, Mar 2023.

[33] R. Xiang, E. Chersoni, Q. Lu, C.-R. Huang, W. Li, and Y. Long, “Lexical data
augmentation for sentiment analysis,” Journal of the Association for Information
Science and Technology, vol. 72, no. 11, pp. 1432–1447, 2021.

[34] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep unordered
composition rivals syntactic methods for text classification,” in Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers) (C. Zong and M. Strube, eds.), ACL-IJCNLP 2015, pp. 1681–1691, As-
sociation for Computational Linguistics, Jul 26-31, 2015.

[35] Z. Miao, Y. Li, X. Wang, and W.-C. Tan, “Snippext: Semi-supervised opin-
ion mining with augmented data,” in Proceedings of The Web Conference 2020,
WWW 2020, pp. 617––628, Association for Computing Machinery, Apr 20-24,
2020.

[36] Y. Cheng, L. Jiang, and W. Macherey, “Robust neural machine translation
with doubly adversarial inputs,” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics (A. Korhonen, D. Traum, and
L. Màrquez, eds.), ACL 2019, pp. 4324–4333, Association for Computational
Linguistics, Jul 28 - Aug 2, 2019.

[37] J. Chen, Z. Yang, and D. Yang, “MixText: Linguistically-informed interpola-
tion of hidden space for semi-supervised text classification,” in Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (D. Ju-
rafsky, J. Chai, N. Schluter, and J. Tetreault, eds.), ACL 2020, pp. 2147–2157,
Association for Computational Linguistics, Jul 5-10, 2020.

[38] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python.
O’Reilly Media, Inc., 1st ed., 2009.

[39] C. Yin, B. Qian, S. Cao, X. Li, J. Wei, Q. Zheng, and I. Davidson, “Deep
similarity-based batch mode active learning with exploration-exploitation,”

86

in 2017 IEEE International Conference on Data Mining, ICDM 2017, pp. 575–584,
Nov 18-21, 2017.

[40] O. Shahmirzadi, A. Lugowski, and K. Younge, “Text similarity in vector space
models: A comparative study,” in 2019 18th IEEE International Conference On
Machine Learning And Applications, ICMLA 2019, pp. 659–666, Dec 16-19, 2019.

[41] C. Fellbaum, WordNet: An electronic lexical database. MIT press, 1998.

87

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Introduction and Motivation
	Overview
	Motivation
	Objectives and Contributions
	Thesis Layout

	Background
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Encoder-Decoder
	Transfer Learning
	Sequentail Task Learning
	Pretraining
	Adoption

	Attention
	Inter-attention
	Intra-attention
	Multi-Headed Attention

	Transformers

	Pre-processing
	Language Models
	Sentiment Analysis
	Improvements
	Active Learning
	Data Augmentation

	Related Research
	Data set
	Literature Review
	Neural Networks
	Stacked 1D CNN
	CoLSTM
	Behera et al.
	Vo et al.

	BERT
	Original BERT
	ALBERT

	Active Learning
	Exploration-Exploitation

	Lexical Expansion and Data Augmentation
	PLSDA

	Algorithm
	Preprocessing
	Over Length Sequences
	Tokenization
	Intermediate Information
	Build Vocabulary
	Convert Words to Numbers
	Padding
	Complete Preprocessing

	AL + LE
	Combining AL and LE
	AL
	LE
	Combining AL and LE

	Contributions

	Experiment Set Up
	Models
	CNN
	CoLSTM
	ALBERT

	Algorithm Selection

	Evaluation and Analysis
	Evaluation Criteria
	Evaluation
	CNN
	LSTM
	BERT

	Comparison and Analysis
	Compare Networks
	Compare Algorithms

	Overall Comparisons

	Conclusion
	Future Work

	Bibliography

