
 

 

 

 

MACHINE LEARNING BASED CLASSIFICATION  

OF EARLY SERAL VEGETATION IN CUT-BLOCKS IN 

THE INTERIOR OF NORTHERN BRITISH COLUMBIA 

 

 

by 

 

 

Matt McLean 

 

BSc, University of Northern British Columbia, 2017 

 

 

 

 

 

 

 

 

 

 

 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  

THE REQUIREMENTS FOR THE DEGREE OF  

MASTER OF SCIENCE 

 IN  

NATURAL RESOURCES AND ENVIRONMENTAL STUDIES 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF NORTHERN BRITISH COLUMBIA 

 

December 2024 

 

 

© Matt McLean, 2024 



ii 

Abstract 

 

Globally forests provide a wide range of essential services such as lumber for 

construction, tourism value, and habitat for animals.  In many regions forest management is 

performed to maximize the utilization of these services and to promote sustainable forest 

ecosystems. Effective management requires detailed information on the current state of forests, 

how the forest is projected to develop through time, and knowledge about the provisioning of 

desired forest services, such as forage for wildlife species.   Historically this information has 

been acquired using traditional field surveys, which is both costly and limited in the extent of 

area that can be sampled. The use of Remotely Piloted Aircraft Systems (RPAS) combined with 

machine learning potentially allows for more scalable methods of gathering information on forest 

inventories. In this thesis, I evaluate and advance the use of multispectral imagery collected from 

RPAS for the classification of early seral vegetation. This specific type of vegetation is both a 

key indicator of forest regeneration and habitat suitability for ungulates.  However, accurate 

identification and classification of early seral vegetation is particularly challenging due to its 

small size, the fact that individuals are highly variable, and the fact that individuals can overlap 

and not exhibit distinct boundaries. 

The process of image classification is broken down into two major components: the 

segmentation of collected imagery into discrete units of vegetation and then the classification of 

those units into their specific species. These two components are presented as an overall 

framework for classification.  I also provide operational recommendations to achieve successful 

results. 

The algorithms used in the segmentation of images are highly configurable and can be 

tuned to the input data to yield high quality results; however, what is more challenging is 
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determining what a high-quality result is, and applying suitable metrics that allow the accuracy 

of the segmentation process to be evaluated. In this research I propose a method for scoring the 

quality of segmentation quality applied to forest imagery, in a format that can be easily 

integrated into a larger framework that will integrate with the classification of results. 

In the second component of my thesis, I evaluate various common classification 

algorithms and assessed their accuracy. This analysis considered both overall accuracy of 

classification, as well as only the classification accuracy of species of interest. I also explore 

under what circumstances this type of classification be feasible and provide recommendations on 

what variables are most important to control during the collection of training data, and best 

practice for capture of new datasets for classification with already trained models. 

My research demonstrates both the benefits and limitations of using RPAS imagery for 

segmentation and classification of early seral vegetation and suggests best practices that can be 

used when applying this framework.   
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Chapter 1 

 

Introduction 

 

1.1 Background 

 

 Globally forests provide a range of essential ecosystem services that support 

communities, provide a wide range of regulating, provisioning and support services (Baskent et 

al., 2020; Taye et al., 2021), and are the basis of many economic sectors (Costanza et al., 1997; 

Millennium Ecosystem Assessment, 2005). In western Canada forest ecosystems are the 

providers of the timber supply that forms the economic foundation for many communities. Forest 

also help maintain the quality of water (Pearce, 2001) and air (Nowak et al., 2014) necessary for 

our survival. As time progresses there may be more significance placed on a variety of factors, 

such as wildlife habitat (Oettel and Lapin, 2021). 

 

In most regions of the world forests are explicitly managed by forest professionals with 

the aim of promoting sustainable forest ecosystems and often specific forest attributes and 

products, such as timber production (Boukherroub et al., 2017) or carbon storage (Lemprière et 

al., 2013).  Forest management involves not only determining how forest should be harvested 

and regenerated, but also developing strategies that inform which forest or stands should be 

managed, when they should be managed, and what is the most appropriate management strategy 

(D’Amato et al., 2011). Throughout time there have been a variety of forest management goals 

(McGrath et al., 2015), however a constant has been a desire to maximize the utility of available 

forests, regardless of the desired utility at the time.  

 

As forest managers seek to utilize better decision processes, having access to the most 

accurate and detailed information about the environment is a necessity (Tompalski et al., 2015; 
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van Leeuwen et al., 2011). Understanding how well forests are regenerating requires knowing 

how many trees are present of each species, and their regrowth. As forests provide a variety of 

ecosystem services, they also have a variety of information that can help with determining these 

values. Ranging from elements such has how many of which trees are present, to more 

complicated metrics where regrowth rate predictions can be determined based on density of trees 

and other factors. The more fine-grained knowledge of the forest inventory allows for more 

precise management plans to maximize forest values.  

 

Historically, information on forest ecosystem condition and forest structure was obtained 

by having field crews conduct field surveys.  These types of surveys can be very expensive to 

conduct, which thus limits the amount of knowledge available for making decisions. Historically 

the primary methods for obtaining tree species data includes ground survey-based identification 

of tree species, which is costly, time-consuming, and typically samples only a small percentage 

of the land base and extrapolates across the full area(British Columbia et al., 2007). Cost 

reduction has been achieved through manually interpreted air photos but at the cost of species 

accuracy (“Forest Health Aerial Survey Manual,” 2012; Seely, 1934); however, this involves a 

technologically complicated and expensive process.  

 

Traditional field surveys are limited in effectiveness due to both issues of scale and 

quality of data. The scale of data that can be collected is limited by the high costs of obtaining 

field data. Traditional plot sampling methods utilize relatively low sampling intensity combined 

with extrapolating the results across a disproportionately broad land base. Additionally, this 

extrapolation also introduces a degree of surveyor bias, which typically includes both subjective 
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personal interpretations of observations, as well as design bias resulting from avoiding difficult 

to access/remote areas vs an unbiased grid-based design over the entire population.   

 

1.2 Technical Background 

 

Remote sensing technologies provide opportunities to survey forest blocks in their 

entirety as opposed to averaging sample plots against the land base (British Columbia et al., 

2007). Knowing the vegetation species and quantifying its abundance helps to inform various 

types of models enabling us to better understand how to manage our land base.  Particular to this 

research there is a goal of developing data that can be used in wildlife models focused on food 

availability and wildlife cover for ungulates (Brown et al., 2007; Terry et al., 2000; Whitman et 

al., 2017). This research presents additional value in providing detailed information on the state 

of regrowth in the cut block (Pitt et al., 2010; Weisberg and Bugmann, 2003).  

 

The ability to acquire higher resolution imagery in terms of both spatial resolution and 

spectral resolution opens new possibilities for observing the environment around us. Different 

methods of data collection allow for different questions to be answered based on what data is 

produced. As an example, one of the earliest forms of remote sensing is aerial photography, 

which can cover moderately large areas, with relatively high resolution. Air photos are most 

commonly available as panchromatic or true colour. Satellites can cover much larger areas, and 

often include multispectral data that is useful for environmental modeling, however this comes at 

the cost of spatial resolution making identification of smaller objects not possible. Recently we 

have seen a growth in the use of Remotely Piloted Aircraft Systems (RPAS) commonly known 

as drones. RPAS while limited in the amount of area that can be surveyed compared to a manned 



4 

aircraft are able to capture even higher spatial resolutions than traditional aerial photography, as 

well as some systems still providing a high spectral resolution.  

 

LiDAR (Light Detection and Ranging) is a very useful tool in forest classification 

(Brandtberg, 2007; Coops et al., 2016), as it provides insight into the structure of the tree canopy 

as opposed to viewing only the surface reflectance of the vegetation present. However, this 

system may begin to have trouble where unique structures cannot be determined. This can be 

especially true of early seral vegetation, where the individual trees may be too small to be 

viewing any form of structure in the trees due to lack of point density. Additionally, by using 

multispectral imagery for classification, there is the potential for future work leveraging the same 

raw data for forest health assessments in addition to classification. 

 

 Using RPAS provides opportunities to examine the entire land base of interest allowing 

for a more thorough sampling. RPAS may carry a variety of sensors; some of these such as the 

MicaSense RedEdge-M used in this research are capable of sensing spectrums of light that are 

not visible to the human eye. The addition of nonvisible light spectrums adds more ability to 

discriminate species than with standard colour air photos intended primarily for human sight. 

Finally, due to the level of interpretation needed there is a potential for different surveyors to 

produce differences in their final report; adding a system of automation that can be executed 

across all sites can help to reduce operator bias.  

Reducing survey costs would allow land managers to collect more data allowing more 

refined management strategies. Machine learning (ML) represents a potential avenue for 

increasing the completeness and repetition of such surveys. Developing robust methods for 
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colleting remote sensing data is essential to the reliable implementation of machine learning for 

classifications. 

 

The first step in the process for using machine learning for classification is the collection 

of data. This can be split into two separate but related problems; what data to collect, and how to 

collect it. In terms of what data to collect we have a variety of methods at our disposal, ranging 

from photos, LiDAR, and Radar. Further expanded, each of these methods have multiple 

resolutions and modes available. Using the example of photos, it is important to select 

appropriate resolutions, and spectral ranges; then selecting the appropriate capture method such 

as satellite, manned aircraft or RPAS. Another crucial decision involves determining appropriate 

times to collect the data. Some of these factors might relate to weather, sunlight, seasons, or 

phenological cycle of vegetation imaged. 

 

Once data is captured it is then processed into usable products. For RPAS data this 

generally involves the use of photogrammetry to produce orthomosaics covering the entire 

capture area in a single image. It is at this stage that we may also apply radiometric calibrations, 

for RPAS data this is generally done by using a combination of images of panels with known 

reflectance, and sunlight sensors mounted on the drone (as is the case for the MicaSense cameras 

used in this research). Satellite data generally would undergo atmospheric correction, and other 

types of data would have other standard processes to prepare data for analysis.  

 

Following this, the machine learning pipeline will convert this standardized data into a 

suitable format for use within the algorithm. An example of this would be many of the 

algorithms in this research require that the images as a grid of pixels be converted into an 
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average reflectance for all pixels contained within an object. Once data is in the proper format, 

machine learning is then finally used to determine a class of the input data.  

 

Combining all these processing steps from data capture to classified data comprise of the 

analysis framework. While each step of the framework can be relatively simple to understand, 

they all work together, to produce the final outputs, where the quality of the final product is 

dependant on how robust the framework is and how well the various stages work together. A 

correct classification is dependant upon proper data collection, which is processed in such a way 

that accurate data is going into the classification step.  

 

 Despite recent advancements in RPAS technology segmentation and classification still 

rely on surface reflectance as opposed to structural attributes. Leveraging differences in reflected 

light spectrums has been a staple of machine learning classifications in other fields; a trivial 

example of this is for self driving cars there is a different meaning to white and yellow lines on 

the road, even if they have a similar structural appearance. This can then be taken furth into 

using multispectral sensors to gain more accurate identifications in changing conditions (Takumi 

et al., 2017). 

However, in the field of forestry and environmental management more generally, using 

surface reflectance to identify features can be problematic as reflectance can change through the 

phenological cycle of trees. This can be made more challenging when looking at deciduous 

vegetation which tends to have less defined boundaries than conifer species. Additionally young 

trees being smaller provide a greater challenge in identification given the resolution of the data. 

This is further complicated by the natural variance between trees of a given species; and that 



7 

their presentation will also be affected by presence of disease, and differences in environmental 

factors such as access to water and nutrients.  

This research focuses specifically on early seral vegetation, which is and important food 

source for ungulates. Early seral is the first stage of vegetation in a forest lifecycle as it 

regenerates from cut to old growth. Characteristics of this vegetation are that it is small and may 

be less rigid or well defined than mature forest; studying this stage of forest growth presents 

some unique challenges to forests in general. While a more mature forest may have 

measurements of the structure from LiDAR (Holmgren et al., 2008), the small size of early seral 

vegetation can mean it has little difference in height between trees and the understory. 

Additionally, at this stage very high spatial resolutions are required to have opportunities to 

delineate edges of tree stems due to small sizes and less definition of edges than more mature 

forest. Furthermore, the species of particular interest in this research are deciduous where 

branches tend to overlap with neighboring trees further reducing the ability to cleanly delineate 

tree edges.  

This research presents methods for the collection and processing of RPAS multispectral 

imagery and applying and evaluating machine learning based classification of image segments 

representing early seral vegetation. The goal is to present methods that are abstractable; as 

imaging technology improves both in terms of spatial and spectral resolution, and as new 

machine learning algorithms are developed, these methods could be repeated, and evaluations be 

usable as a comparison of the potential improvements of new technologies. The research 

presented shows results for a specific type of imagery and a specific set of algorithms. It should 

not be interpreted as the optimal solution for early seral vegetation classification, but rather a 

proof of concept, and a starting point for continuous evaluation of technological possibilities.    
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Image segmentation is the process of splitting a whole image into discrete units known as 

segments. These segments can then be passed into other algorithms for further processing. While 

segmentation is a generally well researched field, this research looks to apply the techniques to 

the specific case of early seral vegetation. There are a wide variety of algorithms already 

developed e.g. Random [decision] Forests (Tin Kam Ho, 1995) or Support Vector Machines 

[Support-vector Networks] (Cortes and Vapnik, 1995), however not all approaches are equal, 

and different approaches work better for different problems. This research seeks to explore how 

some of the common approaches can be used to segment early seral vegetation.  

Quality analysis of segmentations is inherently difficult, as in almost all cases a decision 

about what is a correct segmentation needs to be determined. For the purposes of this research, 

human drawn polygons are taken to be correct. There are three primary errors that are faced with 

this form of truth; first humans may make mistakes in drawing the boundaries, this is true of any 

human derived dataset. second is the risk of oversimplification, as there is a tendency for humans 

to produce over simplified polygons that either over or under encapsulate the vegetation to 

produce polygons with fewer vertices. The final source of error faced is the impure pixels, in the 

context of this research project the multispectral data is made of pixels that represent a 3cm-6cm 

square on the ground; a problem may arise at the edges of the trees where a pixel will cover a 

percentage of the tree, and this poses another question of minutia; should these impure pixels be 

included, excluded, or a percentage of them included?  

1.3 Project Roadmap 

 

 At a high level this research seeks to provide a process for taking data collected from 

RPAS, along with ground truth data and produce models that show the amount of coverage of 

each species of vegetation captured in the data; along with an analysis of the accuracy of the data 
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produced. This is accomplished using a modular approach to the process of identifying early 

seral vegetation, such that any piece should be able to be replaced without altering other pieces 

of the process; thus, providing a path for natural evolution and continual growth. While this 

research was conducted specifically with a MicaSense RedEdge-M camera, the processing 

pipeline presented in this paper could work just as well with another camera system. Likewise, 

more machine learning algorithms could be added, or different scoring metrics used. As the 

processing pipeline is in place to take images with truth segments and output trained models with 

their achieved accuracies; determining if a change to the process is beneficial becomes trivial.  

 There are two options for running the framework for early seral vegetation classification 

demonstrated in this research (Figure 1); the first is the Training Process where inputs of 

Imagery and Ground Truth Data are provided. This option can be used any time new training 

data is collected allowing for accuracy to be improved as training sets grow; or alternatively 

additional algorithms could be added to the test. An important point here is that thanks to the 

automatic storing this can be collected as a single monolithic script that while it would take days 

to even weeks to run; minimal human effort could allow for new optimization. Once a model has 

been trained it can be applied very quickly needing only segmentation and classification steps to 

be performed. Again, there would be opportunities here to automate this process such that when 

a new segmentation or classification algorithm is identified existing imagery could be re-

processed ideally providing enhanced results. 
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Figure 1 | ER Diagram of processing pipeline for both initial training, as well as applying trained models to novel 

data. 

Chapter 2 defines a framework for segmentation of early seral vegetation from RPAS 

Multispectral imagery. This will be done by establishing a method for evaluating the 

effectiveness of segmentations, and then segmenting the imagery for all the sample sites using 

standard segmentation algorithms. Then using the scoring techniques identify the most effective 

algorithm along with the parameters that can be used to produce the most effective results.  

 Classification of imagery with RPAS based systems provides the flexibility to capture 

data as needed at moderate scales as well as providing various options regarding the type of 

imagery collected. In this work we examine specifically the ability to train models to identify 

tree species using the spectral information collected by a MicaSense RedEdge-M camera system. 
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This camera provides not just standard colour images, but also add Near-Infrared and RedEdge 

bands; as these bands are known to be useful in the analysis of vegetation (Schuster et al., 2012). 

 Chapter 3 will build upon the results of Chapter 2, using the best segments produced as 

the basis for classification. In this chapter several common algorithms will be optimized, scored 

for accuracy, and compared for accuracy. A proposed framework for classification will be 

presented based on the combination of algorithms from chapter 2 and 3, along with discussion of 

the usability of these results.  
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Chapter 2 

  

Image Segmentation for Early-Stage Vegetation in RPAS Imagery 

 

2.1 Introduction 

 

Effective forest management requires widespread, yet detailed information of forest 

composition, to select the management techniques that will achieve the wide-ranging objectives 

of resource stewardship. This balancing of competing objectives is often addressed at the 

landscape level, where regions of forest are assigned, a class based upon species composition 

(Baleshta et al., 2015; Dhar, 2013), age of trees in the stands (Zheng et al., 2007), and the 

structural attributes of the forest (Bugmann et al., 1996).   

Forest composition can be segmented at a variety of scales ranging from landscape scale 

determining surface cover types (Walsh, 1980; Wulder, 2003), to surveys of individual sites, 

down to segmenting individual trees to build more detailed forest models. The use of RPAS 

systems combined with modern image analysis techniques allows for capturing data fine scale 

enough to separate individual trees from the forest; while also providing an efficiency required to 

survey large areas that would be cost probative with traditional survey techniques. The ability to 

segment all trees as individuals can then be used to produce highly accurate models of ecosystem 

dynamics(Seidl et al., 2012).  

The objective of image segmentation is to inspect an image and return boundaries delineating 

individual features from an image. An analogue to the research presented in this paper is Optical 

Character Recognition (OCR) (Gupta and Nair, 2005); a process where each letter is first 

segmented from the image for identification, as well as words are segmented from groups of 

symbols. Segmentation is also used in a variety of computer vision tasks such as recognizing 

licence plates, or barcodes.  



13 

Effective segmentation has a variety of challenges that must be addressed to ensure optimal 

accuracy. Ideally a system for segmentation will be able to identify features based upon similar 

objects, yet not identical; this requires the collection of very large datasets of tagged training 

data. This process can be made more challenging when tagging of training requires expert 

intervention; in comparison to a problem such as OCR training data which could be collected 

from anyone with the ability to read, an example of this is reCAPTCHA used on websites (Pettis, 

2023). Additionally, segmentation relies upon the ability to separate objects from the 

background. Based upon the size and types of objects to be segmented along with the 

backgrounds upon which they are placed there is a variety of algorithms that may present 

different levels of success based on a given dataset. 

This research seeks to delineate individual stems (trees) within early seral vegetation. The 

identification of this vegetation is useful for managing forest regrowth; after cutting, forest fires 

or other disturbances displacing mature stands. Early seral vegetation is important as it provides 

sources of food and camouflage for animals within the stand and is a meaningful metric for 

habitat suitability. Further this vegetation will grow, and an accurate inventory can help to 

provide the base information needed for predictive forest models. 

 Early seral vegetation also provides some distinct challenges for segmentation. 

Segmentation is generally less complex when uniform boundaries are present, however in the 

case of vegetation the structure of branches and leaves leads to a broken silhouette without 

clearly defined boundaries. As tree crowns grow and increase in size, the crowns of individual 

trees will begin to overlap, their boundaries become obfuscated or ambiguous. The other primary 

challenge faced is due to the scale; more mature stands will have taller trees with more defined 

shapes, and gaps between them, allowing for segmentation using spatial information in addition 
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to spectral information (Yancho et al., 2019). The small size of early seral vegetation necessitates 

the use of higher resolution data, but now the spatial component is less useable due to the 

granular blending of crown edges and the understory or forest floor.  

In this chapter I demonstrate scoring metrics that can be used to evaluate the quality of 

returned segments. The scoring metrics presented will be used to evaluate the effectiveness of 

four different image segmentation algorithms. These results are used to determine which 

algorithm is the most effective for the given dataset; in this case early seral vegetation captured 

using RPAS. While there are many more than four segmentation algorithms available, this 

provides a starting point for developing the methodology. The results for this section will include 

results for both the accuracy of segmentation; as well as how stable this accuracy is from site to 

site, an important factor for a generalized solution that could be implemented at scale.  

2.2 Study sites 

 

The data used in this research was captured from a selection of sites both in the Ungulate 

Winter Range north-west of Mackenzie, as well as some sites closer to Prince George that 

provide easy access. The sites have all been logged approximately five years prior to data 

collection and are being monitored for their quality of Ungulate habitat as they regenerate.  

The sites contain a variety of young vegetation; of particular interest to this research are 

the deciduous species that will act as a food source and provide cover for ungulates in the area. 

Five target vegetation species have been identified as valuable for moose browse by the British 

Columbia Ministry of Forests: Trembling Aspen (Populus tremuloides), Red-osier Dogwood 

(Cornus stolonifera), Paper Birch (Betula papyrifera), Highbush-Cranberry (Viburnum edule), 

and Willow (Salix spp.). 
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Eleven case study sites were analyzed; these sites were situated in the central interior of 

B.C. and were in the Sub-boreal Spruce (SBS) biogeoclimatic zone (Beaudry et al., 1999).   

Table 1 | Study site data collection statistics with tree counts and capture date. 

Site \ Attribute Total Samples Target Samples Target % Capture Date 

200rd 11529 2031 18% August 24th, 2020 

700rd 3774 1977 52% September 29th, 2020 

Alezza 5649 2064 37% September 25th, 2020 

Bend05km 1521 636 42% September 21st, 2020 

ChiefLake 12861 1491 12% August 24th, 2020 

ConifexH47 1398 261 19% September 2nd, 2020 

ConifexK14 1077 513 48% September 3rd, 2020 

NorthFraser11 8331 3453 42% September 22nd, 2020 

NorthFraser41 1677 270 16% September 14th, 2020 

NorthFraser50 1107 468 42% September 21st, 2020 

Olson5km 2862 567 20% September 22nd, 2020 

 

 

Figure 2 | Map of locations where data was collected. 
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Table 2 | Extended site attributes; with information from British Columbia Vegetation Resource Index (Government 

of British Columbia, n.d.) 

Site \ Attribute Leading Species Planted Brushed Previous 

Dominant 

BEC Zone BEC 

Subzone 

200rd Pl (33%) May 2016 NA PLI SBS mk 

700rd Cs (32%) July 2017 August 2014 SW SBS wk 

Alezza Sx (42%) June 2019 NA SX SBS wk 

Bend05km Sx (50%) July 2013 August 2015 BL SBS vk 

ChiefLake Pl (23%) June 2013 August 2018 -- SBS mk 

ConifexH47 Li (23%) July 2017 
NA

1
 

SX ESSF mv 

ConifexK14 Bl (42%) August 

2017 
NA

2
 

PLI BWBS dk 

NorthFraser11 Sx (42%) June 2008 August 2010 PLI SBS mk 

NorthFraser41 Ri (21%) July 2017 August 2018 SX SBS wk 

NorthFraser50 Sx (44%) July 2016 August 2015 BL SBS wk 

Olson5km Bl (32%) June 2015 NA PLI SBS mk 

 

2.3 Data Collection 

 

 Aerial image data were collected by flying survey missions with a DJI Matrice 210 

RPAS, and a payload of a MicaSense RedEdge-M multispectral camera. The collected imagery 

was then processed using Agisoft Metashape 1.5 processed on high quality for all stages.  First 

calibrating the sensor against its Downwelling Light Sensor (DLS), matching tie points, then 

creating a dense point cloud. This dense cloud then has a ground filter applied, and a Digital 

Terrain Model DTM is produced using only ground points. Finally, an orthomosaic is produced 

by ortho-correcting and mosaicking the images collected and is then exported as a GeoTIFF for 

the segmentation process.  

 
1 Records indicate most recent brushing completed after imagery collected, unknown previous brushing date. 
2 Records indicate most recent brushing completed after imagery collected, unknown previous brushing date. 
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In addition to the imagery a corresponding set of ground truth data was also collected. 

This dataset was generated by field crews marking in-person species assessment on an 

orthophoto. Once back in the office these spatial delineations were converted to a digital format 

using GIS software to draw polygons around each feature and adding a species code as an 

attribute to the polygon. It is recognized that this process of digitizing is not a pixel perfect 

representation as it occasionally excludes the tip of a branch or includes a small piece of ground. 

Later, subsequent use of this data will be evaluated on a per-pixel basis thereby adding an 

element of error to the results. However, classifying at an object level, and analyzing at a pixel 

level is believed to have minimal impacts, and represents errors that would also occur with 

existing fully manual methods of tree segmentation.  

To prepare the data for machine learning processing truth segments needed to be created, 

to represent the trees to be classified. After the drone imagery was collected, and processed; 

these orthomosaics were then imported into GIS software, where the crowns were manually 

delineated as polygons, including an attribute for species code (Figure 3).  

 

Figure 3 | Example of manually delineated crowns in red and corresponding species code labeling. 
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2.4 Segmentation Algorithms 

 

The algorithms used for image segmentation come from SciKit-learn and SciKit-Image. 

The motivation for this choice is based upon several factors including the relative popularity of 

SciKit, and the extensive documentation and community that comes with that widespread use. 

The open-source nature of the code makes it an ideal foundation to build upon, allowing for 

others to continue future research without needing to worry about licencing costs. Finally, SciKit 

provides many algorithms that utilize standardized API’s which allows an easy path to develop 

modular code where algorithms can be easily compared for the specific datasets being used. 

Finally, SciKit has support for PyTorch-CUDA, an industry standard library for GPU accelerated 

Machine Learning. All of the algorithms selected focus on spectral reflectance as opposed to 

those that look for structure such as the watershed algorithm on DEM’s as the trees examined 

were too small to be properly represented in surface models.  

2.4.1 SLIC 

 

 Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2010) is a method for creating 

Super pixels, a computer vision term which is closely analogous to clustering in remote sensing. 

Super pixels can be thought of simply as a group of pixels sharing similar characteristics; these 

super pixels then have a border drawn around them, and this border is the segment. This method 

is based upon K-Means clustering (Pollard, 1982), and is used with a number of starting seeds, 

randomly placed though somewhat uniformly placed pixels, that are then grown by including 

pixels in the neighboring cluster that has the most similar properties to the given pixel. In the 

implementation of this algorithm in SciKit-Image the two primary parameters we can 

pragmatically test across are n_segments, and compactness.  
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 N_segments is the estimated number of segments we expect the algorithm to output, this 

variable can be informed by knowing how large objects are in relation to the size of image.  And 

compactness refers to how smooth we want individual objects to be, where maximum 

compactness would be squares (not circles as each segment must touch other segments on all 

sides and this algorithm is seeding from a grid). Lowering the compactness allows segments to 

contour to the objects being detected; however, this can also lead to more ambiguity as less 

significant features may be considered as edges. 

 

2.4.2 Quick Shift 

 

 Quick Shift (Vedaldi and Soatto, 2008) is a clustering algorithm (much like SLIC above) 

that works by calculating the average of clusters. However, due to the computational time 

required Vedaldi and Soatto proposed the addition of a Quick Shift that reduces the 

computational complexity of the algorithm. 

Quick Shift uses slightly different hyperparameters than before, where sigma, sometimes 

referred to as kernel size has a similar impact as N_segments had in SLIC. And the ratio 

hyperparameter has an effect like compactness, adjusting the ratio of importance for changes in 

colors vs changes in position within the image.  

2.4.3 Felzenszwalb’s Efficient Graph (F-Graph)  

 

Felzenszwalb’s Efficient Graph (Felzenszwalb and Huttenlocher, 2004), works by 

looking at the image both in terms of regions and neighboring pixels. By examining the 

difference in intensities of regions we can find an estimate of where segments should exist in the 

image. The next step is to look at neighboring pixels to find where the intensity changes to 

determine the precise edge of the segments.  
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2.4.4 Mean Shift 

 

 Mean shift (Comaniciu and Meer, 2002) is a clustering algorithm that like SLIC is a 

mean based clustering scheme. Where SLIC uses parameters to constrain the clusters and thus 

the computational time. Mean Shift has a single hyperparameter for bandwidth and was 

calculated at runtime by the SciKit library. This algorithm has a much higher computation time 

than the other algorithms, however, it may have benefits where prior testing for hyper parameters 

is not possible.  

2.4.5 YOLO 

 

 The final algorithm that was examined but was ultimately determined to be unsuitable at 

this stage is YOLOv3 (Redmon and Farhadi, 2018). YOLO works on a process of object 

identification as opposed to segmentation, and as a result the boundaries of detected objects are 

unclear as they are defined in terms of a bounding box as opposed to tracing the object.  
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2.5 Method of Evaluation 

 

 To evaluate the effectiveness of the algorithms a training mask is used to compare their 

outputs. The output of the segmentation algorithms is a bitmap (image) where each pixel’s value 

is linked to a unique id for a given segment. The training mask is derived from the ground truth 

data collected and has identical resolution to the output of the segmentation algorithms. The 

training mask can later be used as a template for scoring algorithms. An important note here is 

that the classification and training mask must be of identical position and number of pixels. 

These images are then stacked, and scoring is based upon the relative similarity of the images. 

By relative similarity it is meant that pixels will not have identical values, however it should be 

possible to map them. That is if a pixel in the segmentation has value α, and if the corresponding 

pixel in the training mask has value β, then for every pixel in the segmentation with value α, the 

corresponding pixel should also be β. For cases where only some pixels with value α map to β 

we know an error has been made; likewise, when multiple values from the segmentation mask 

map to the same value in the training mask an error has been made. 

  

Figure 4 | Example of perfect over-segmentation; each value in right table is mapped to only one value in left table. 
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 The segmentation methods are applied using the Python frameworks Sci-Kit and 

ImageAI. These frameworks provide the base implementation of the algorithms used and are 

designed to accept hyper-parameters that can be used to fine tune the algorithms. The advantage 

of using such frameworks is that they provide for rapid development, unified API’s making it 

easy to consistently change between algorithms and are optimized code allowing for computation 

to be completed in a reasonable amount of time.  

2.5.1 Base-Metrics 

 

The metrics listed below represent various methods of comparing the segmentation to 

training mask, each placing value on different types of errors. Used in combination these metrics 

put more weight towards errors that would be more detrimental to the results. 

 A False merge (FM; Figure 4) is the case where a segment encompasses more than a 

single object. For example, a segmentation that includes multiple trees, or the ground 

surrounding the tree. False mergers are a measure of entropy associated with segmentation and 

are a representation of over-segmentation (many objects per segment). For this metric a lower 

score is better, with 0 implying that there is no over-segmentation present which is to say there is 

never a segment including more than one tree. (Meilă, 2007) 

 False splits (FS; Figure 4) occur when a single object is represented by multiple 

segments.  False merges are a measure of entropy associated with the segmentation and are a 

representation of under segmentation (many segments per object). For this metric a lower score 

is better, with 0 implying that there is no under-segmentation present. (Meilă, 2007) 
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 As a note if both False Merge and False Splits were 0 that would suggest that the output 

of the segmentation was a pixel perfect representation of the training mask (Figure 5).  

 

Figure 5 | Examples of Segmenations on data; colors represent distinct data, dashed lines determined segments 

 Adapted Random Precision (ARP) is the probability that a pixel of a given class in the 

results is the same class in the truthing data, and normalized over the total number of pixels in 

the classified data, in simple terms this can be thought of as the percentage of pixels correctly 

segmented. (Arganda-Carreras et al., 2015) Higher values are better for this base-metric. This 

can be thought of as like false merges, in that if a segment is too large it will lower the ARP, by a 

proportion of the area of over segmentation as opposed to the quantity of segments.  

 Adapted Random Recall (ARR) is the probability that a pixel of a given class in the 

results is the same class in the truthing data, and normalized over the number of pixels in the 

truthing data. (Arganda-Carreras et al., 2015) Higher values are better for this base-metric. As 

ARP was to FM, ARR is to False Splits, again looking at the number of pixels that have been 

placed into alternate segments as opposed to the number of additional segments produced.  
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 ARP and ARR are closely related statistics and thus it may be useful to take their 

average. Adapted random error is defined by the equation. 𝐴𝑅𝐸 = 1 −
2(𝐴𝑅𝑃∗𝐴𝑅𝑅)

𝐴𝑅𝑃+𝐴𝑅𝑅
,  (Arganda-

Carreras et al., 2015) and in this case, we seek a lower value, with 0 being the perfect 

classification. In the case of 0 all pixels can be directly mapped from the classified data to the 

training mask. 

Table 3 | Figures in table below each demonstrate the scoring of a base metric as the SLIC hyper-parameters are 

changed. 

 
 

Figure 6 - SLIC False Merges, as 

segments per hectare increases 

false merges decreases 

 
Figure 7 - SLIC False Splits, as 

segments per hectare increases False 

Splits increase 

 
Figure 8 - SLIC Adapted Random 

Precision decreases with 

segments per hectare 

 
Figure 9 - SLIC Adapted Random 

Recall increases with segments 

per hectare 

 
Figure 10 - Adapted Random Error, 

local minimum is achieved with 
segments per hectare. This is the only 

base metric that the optimal solution 

does not extend to limit 
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 In the table above we see some graphs which show the reaction of the metrics against the 

hyper parameters used in the SLIC algorithm (discussed later). These graphs are useful for 

visualizing how False Merges and False Splits compete against each other, as do Adapted 

Random Precision and Recall. Adapted Random Error is the only metric that does not extend 

towards a limit as it is made up of two competing metrics. It is for this reason that these metrics 

must be defined to produce useful results.   

2.5.2 Evaluation-Metrics 

 

For this research, scoring methods that help to moderate the base-metrics were needed. 

At first glance it is easy to think that the goal is to min/max the metrics used, however these 

metrics taken to the extreme (perhaps except for Adapted Random Error); will not actually 

provide useful results. To illustrate this, consider false merges, if we simply make every pixel its 

own segment there will be no false merges; likewise making the entire image a single segment 

will present as no false splits. ARP and ARR also suffer from this however to a lesser extent as 

we recognize that the training data has multiple classes, as such simply saying the whole image 

is one segment means that some of the classes must be wrong; however, even here caution must 

be used in relation to unbalanced data sets. If our training data is for example 75% class α, then a 

single segment for the entire image could still represent a 0.75 ARR.  

Five base-metrics were utilized to evaluate the quality of  the segmentation algorithms 

and the segments they produced: False Splits (FS), False Merges (FM), Adapted Random Error 

(ARE), Adapted Random Precision (ARP), and Adapted Random Recall (ARR) (Arganda-

Carreras et al., 2015). While each of these metrics provide insight into the general accuracy of 

the segmentation algorithms, they represent different and sometimes contrasting accuracy 

components. For example, a segment that covers the entire image contains no false splits; while a 



26 

segmentation where every pixel is a segment would contain no false merges. Given this 

quandary it becomes necessary to find a formula where a balance is provided between these 

metrics.  

Subtracting the False Merges reduces the favourability of parameter sets that have 

segments which are too large. The theory here being that it would be better to have multiple 

segments per tree, than multiple trees per segment or worse yet, including ground in the 

segments. The logic behind this assumption is that a segment representing half of species γ 

should still present most of the characteristics of a segment representing an entire species γ, 

though potentially with lower deviation. In contrast, a segment that includes both species γ and 

species ε will have characteristics that are an average of the two species. This would make 

classification extremely difficult as this segment would not be like any of the training samples.  

Four equations are proposed to merge the metrics to a form where a maximum can be 

found as the desirable solution. The one exception to this is that Equation 1 converges towards a 

limit, for this equation the most desirable state is the first occurrence of this limit, making this 

equation a little bit harder to work with than the other three. 

2.5.2.1 Metric 1: “Small Segments” 

 

MAX (ARP - FM) 

This metric is chosen for having a strong emphasis on reducing the amount of over-

segmentation in the image, this is based on the theory that a tree spilt into multiple segments 

could still have all segments classified as that species. However, multiple trees in the same 

segment could never be classified correctly).  
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2.5.2.2 Metric 2: “Average of Metrics” 

 

MAX (-ARE - FM - FS) 

This metric represents an evenly weighted combination of all metrics.  

2.5.2.3 Metric 3: “Weighted Small Segments” 

 

MAX (-FM - 0.5 * FS)) 

 This metric puts a strong emphasis on avoiding false merges however does still consider 

false splits, just to a lesser degree. This represents that while less impactful false splits may still 

be damaging to the classification.  

2.5.2.4 Metric 4: “Weighted Average of Metrics” 

 

MAX (-ARP - 0.5 * ARR - FM - 0.5 * FS)) 

 This final metric can be thought of as a combination of Eq2 and Eq3, where all metrics 

are considered but those with higher weighting giving to those metrics that avoid false merges.  

2.5.2.5 Stability: 

 

 For the purposes of this paper stability is the absolute value of standard deviation divided 

by score; this is meant to provide a way of comparing scores from metrics that may not produce 

results within the same range. 

2.5.2.6 Sharpness: 

 

 Sharpness is calculated as the mean of edge intensity using Sobel’s filter and is used as an 

indication of how distinctly edges are presented within the image. This is a method that has been 

used for simple camera autofocus; and in this case is attempting to evaluate the amount of 

motion blur present in the image. However, it should be noted that the content of the image 

affects the sharpness and thus is only a proxy for amount of motion blur.  
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2.5.3 Compilation of Results 

 

Experiments are run on all study sites, with all 4 algorithms, where the hyperparameters 

were selected by distributing tests across the entire range of possible settings. The result of this 

experimentation is over 140,000 tests run producing a very large data set; results are picked from 

this set to distill a more usable set of results. For each pair of metric and algorithm the results 

tests are extracted using an SQL query that picks the highest score for each site, as well as the 

hyper parameters that produce the highest average score when those parameters are applied to all 

sites. With 4 algorithms, 4 metrics, and 11 sites yields 4 * 4 * (11 + 1) results providing a much 

more manageable dataset to draw conclusions from.  

2.6 Results of Image Segmentation Algorithms 

 

 Results are based upon the highest scoring hyperparameters for these sites, with complete 

tables located in Appendix C through I.  

2.6.1 SLIC 

 

To make effective use of SLIC it is helpful to have an estimate of the number of 

segments that should be expected in the image. This was calculated by demining the average size 

of a feature from the ground truth data, then determining how many times that area could be 

placed in each hectare.  This parameter was corrected in terms of hectares, as opposed to over the 

whole image to help provide transferability to the results. Analysis of the training data shows that 

the average canopy size of trees at the study site is 0.519m2 or 9576 clusters per ha.  

Table 4 | Average segmentation score for SLIC across all four metrics 

SLIC  
Metric 

1 

Metric 

2 

Metric 

3 

Metric 

4 

Average -0.1137 -0.4829 -0.3045 -0.2907 

SD 0.0601 0.2835 0.1797 0.1872 

Stability 0.5283 0.5871 0.5902 0.6439 
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Table 4 above shows the scores attained with SLIC, along with the deviation in those 

scores and a third value representing Stability. A full list of site scores is available in  

Appendix C.  

 

Figure 11 | Results of SLIC segmentation on 200rd site optimized for metric 1 in red, training segments in black. 

  Overall, the results show that the cluster scale has a heavy impact on the final 

segmentation producing what is nearly a grid, with segments larger than the smallest trees, yet 

still requiring many for the larger trees.  

This method could theoretically be advanced further by looking at cluster merging 

algorithms to merge the larger trees into single segments, however at this time as we are 

currently more concerned with coverage of species than actual counts; this will be left to future 

work should tree counts become a desirable attribute. Additionally, it may be easier to merge the 

trees post species classification as it can be assumed that only segments of the same species 

should be merged.  
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2.6.2 Quick Shift 

 

 Quick Shift shows a much a more complicated pattern of results however it is not 

visually obvious that the segments are following tree crowns and many of the segments cover 

both crown and not crown. Compared to SLIC above there is generally higher stability but at the 

cost of lower scores (except for Metric 1). A complete list of site specific hyperparameters can 

be found in Appendix D. 

Table 5 | Average segmentation score for Quick Shift across all four metrics 

Quick Shift  
Metric 

1 

Metric 

2 

Metric 

3 

Metric 

4 

Average -0.0755 -0.5020 -0.3464 -0.3315 

St. Dev 0.0295 0.2610 0.1195 0.1255 

Stability 2.5569 1.9230 2.8991 2.6417 
 

 

Figure 12 | Results of Quick Shift segmentation on 200rd site optimized for metric 1 in red, training segments in 

black. 
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2.6.3 F-Graph 

 

 Felzenszwalb’s Efficient Graph produced interesting results; looking at Figure 13 it can 

be seen while many smaller trees were segmented, it simultaneously missed segmenting some 

trees completely including some of the larger ones. A complete list of site specific 

hyperparameters can be found in Appendix E. 

Table 6 | Average segmentation score for Felzenszwalb's Efficient Graph across all four metrics 

F-Graph  
Metric 

1 

Metric 

2 

Metric 

3 

Metric 

4 

Average -0.0823 -4.7949 -2.3340 -2.8789 

St. Dev 0.0496 2.8222 1.2867 1.1941 

Stability 1.6588 1.6990 1.8139 2.4109 

 

 

Figure 13 | Results of Felzenszwalb’s Efficient Graph segmentation on 200rd site optimized for metric 1 in red, 

training segments in black. 
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2.6.4 Mean Shift 

 

 Mean shift was completed using SKLearn’s estimate bandwidth function, however given 

how poor the results of the algorithm were, there was additional tests done manually setting 

bandwidth at various points ranging from 1 to 1000, however this did not produce any 

improvement in results, only a reduction in computation time as it bypassed the estimate 

bandwidth function. Mean Shift missed segmenting nearly all trees. The individual site scores 

are available in Appendix F. 
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Table 7 | Average segmentation score for Mean Shift across all four metrics 

Mean Shift  
Metric 

1 

Metric 

2 

Metric 

3 

Metric 

4 

Average -1.8970 -3.3371 -2.9115 -4.1571 

St. Dev 3.3994 3.8410 3.3919 3.1491 

Stability 0.5580 0.8688 0.8584 1.3201 

 

 

Figure 14 | Results of Mean Shift segmentation on 200rd site optimized for metric 1 in red, training segments in 

black. 

2.6.5 YOLO  

 

Figure 15 below shows the results; each object is given a bounding box, each box belongs 

to a class (maps to species of training data), followed by the likelihood that the object is of that 

class. One interesting result that was captured here however, is that attempting to train the 

algorithm to detect trees in general (tree vs no tree), was essentially a complete failure. By 

providing the training data classified as species, it was able to provide a higher success rate, 

though with a great deal of variance between species.  
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detection_model-ex-006--loss-0033.073.h5 

Evaluation samples:  300 

Using IoU:  0.5 

Using Object Threshold:  0.3 

Using Non-Maximum Suppression:  0.5 

0: 0.0550 - Cs / Red-osier Dogwood (cornus stolonifera) 

1: 0.0000 – Ac / Cottonwood (populus balsamifera) 

3: 0.0000 – Bl / Subalpine Fir (abies lasiocarpa) 

4: 0.2057 – Ep / Paper Birch (betula papyrifera) 

5: 0.0000 – Fd / Douglas-Fir (pseudotsuga menziesii) 

7: 0.1273 – Sx / Hybrid White Spruce (picea glauca x engelmannii) 

mAP: 0.0647. 

 
Figure 15 | Example of YOLO Segmentation and Classification, bounding boxes are labeled with species code: 

confidence percentage. 
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The detection rate of YOLOv3 was overall very low, however it does show a strong 

contrast between the ability to classify different species of trees. Due to its distinctly different 

format compared to the other algorithms, and the low accuracy of results this algorithm was not 

explored further for this paper.  

2.6.6 Summary 

 

 Table 8 below provides a summary to make an easier comparison between methods. In 

Table 8 each metric has an average accuracy for all sites where each site used optimal 

parameters, as well as an aggregate value where the same hyperparameters were used for all 

sites. It is expected that the Aggregate scores will be lower than Average score, as it is less tuned 

to specific sites.  

Table 8 | Summary of Algorithm performance across all four metrics. Average is the score of each site segmented 
independently and scores averaged, Aggregate is the score when the same hyper-parameters are used on all sites 

then averaged. 

  Average Scores 

Metric 1 

  SLIC QuickShift F_Graph MeanShift 

Average -0.11367 -0.07550 -0.08227 -1.89704 

Aggregate -0.1161 -0.0763 -0.0897 -1.897 

Metric 2 

  SLIC QuickShift F_Graph MeanShift 

Average -0.48293 -0.50196 -4.79493 -3.33711 

Aggregate -5.0441 -5.6223 -5.3433 -3.3371 

Metric 3 

  SLIC QuickShift F_Graph MeanShift 

Average -0.30448 -0.34644 -2.334 -2.91146 

Aggregate -2.5232 -2.765 -2.7298 -2.9115 

Metric 4 

  SLIC QuickShift F_Graph MeanShift 

Average -0.29074 -0.33147 -2.87894 -4.15706 

Aggregate -3.1395 -3.2964 -3.2869 -4.1571 
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 Based upon the scores above we can see that SLIC had the highest scores for metrics 3 

and 4 and was a strong contender on all metrics; Metric 2 does show Mean Shift with the 

advantage for average score. Finally, Quick Shift as the leader for Metric 1 and showing up in 

2nd place for average score on all metrics. To further examine this is it helpful to understand how 

the stability of the metrics between sites, as the Aggregate functions are what would be applied 

to novel sites without training data and having stable results provides expectations of the data 

quality. 

Table 9 | Stability Matrix for segmentation algorithms and scoring metrics, higher stability indicates more consistent 

results between sites. 

Stability Metric 1 Metric 2 Metric 3 Metric 4 

SLIC 1.892777 1.703242 1.69425 1.553036 

Quick 

Shift 2.55691 1.923048 2.899101 2.641684 

F Graph 1.658837 1.698979 1.813909 2.410898 

Mean 

Shift 0.558048 0.868819 0.858369 1.320089 

 

Table 9 shows that Quick Shift using Metric 3 provided the most stable results, with 

Metrics 4 and 1 claiming respective 2nd and 3rd place and was also the top performer on Metric 2. 

Conversely Mean Shift took last place in every category for stability.  

2.6.7 Inter-site results 

 

The results were also calculated with the case that every site is scored separately, 

however all using the same hyper-parameters. By using the same parameters for all sites, it 

provides an indication of expected results if segmenting a novel image without training. 

Calculated hyperparameters are in Appendix G, Appendix H, and Appendix I. 
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Figures were created for each of the four-scoring metrics. Metric 1: Figure 16, Metric 2: 

Figure 17, Metric 3: Figure 18, and Metric 4: Figure 19. These graphs show the accuracy of the 

site specific hyperparameters as blue dots, and the aggregate hyperparameters as red dots. The 

vertical distance between the blue and red dots shows the loss in accuracy from using aggregate 

hyperparameters. 

 

Figure 16 | Metric 1 scores across sites, horizontal line represents sore of all sites combined. 
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Figure 17 | Metric 2 scores across sites, horizontal line represents sore of all sites combined. 

 

Figure 18 | Metric 3 scores across sites, horizontal line represents sore of all sites combined. 
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Figure 19 | Metric 4 scores across sites, horizontal line represents sore of all sites combined. 

 Figure 16 shows that there is almost no difference on score whether using site specific or 

aggregate hyperparameters, while all others show better scores when using site specific, except 

for Mean Shift which does not have hyperparameters and has identical results for all four 

metrics.  

To help examine why some sites have larger differences in single site as opposed to 

aggregate hyperparameters, several additional factors were compared for correlations with 

aggregate scores in Table 10. The various sites represent a variety of conditions, variations in 

species composition, as well as age distribution (here represented as tree size).  
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Table 10 |Correlations between Metric 1 score and site attributes 

Algorithm SLIC Fgraph 

Quick 

Shift 

Mean 

Shift 

Conifer Coverage % 0.0184 0.0888 0.353 -0.0489 

Deciduous Coverage % 0.3397 0.4988 0.5964 0.4531 

Plant Coverage % -0.157 -0.2813 -0.5394 -0.149 

Leading spp. Coverage 

% -0.1655 -0.1387 0.1435 0.0952 

2nd spp. Coverage % 0.5085 0.4722 0.6989 -0.0685 

3rd spp. Coverage % 0.5895 0.6098 0.4173 0.3034 

Tree Size -0.2081 -0.2692 -0.4849 -0.5384 

Tree Size Variation -0.1079 -0.102 -0.0487 -0.3578 

Tree Count -0.5408 -0.51 -0.4105 0.3193 

Sharpness -0.3125 -0.3462 -0.4116 0.0624 

 

  Some interesting notes on the correlations are how high third leading species seems to 

correlate with segmentation score. Tree Size and Variation have low correlation with 

segmentation scores.  

2.7 Discussion 

 

 With the analysis completed, it is interesting to note that based on Metric 1 quick shift 

produces the best results. However, when comparing the results between SLIC and Quick Shift 

(available in appendix), SLIC’s segments give the appearance of segments closer in size to the 

trees than with Quick Shift, Quick Shift’s lack of over segmentation places it higher in the 

scoring system. Looking at this in a wholistic sense moving forward it will be essential to take a 

few of these metrics forward into future classification work to see which works best in the final 

classification.  

Moving forward to classification of segments, SLIC and Quick Shift, optimized to 

Metrics 1 and 3 seem the most beneficial to proceed with. Between these two metrics, Metric 3 

was chosen for its higher stability especially when used with the Quick Shift segmentation 
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algorithm. SLIC consistently produced the highest scores, additionally its uniform distribution 

may be beneficial as there are generally few crowns per segment due to the small size of each 

segment. 

While there is likely an optimal combination of the base-metrics for the sake of 

producing an initial dataset that can be used to start training models, the naïve approach and 

equal rating of all 5 parameters was the initial attempt at finding a balance to these extremes. 

However, upon further testing, based on a visual examination using the ARP and subtracting the 

FM, seemed to produce the most usable results. The visual examination was focused mainly by 

looking at segmentations where the lines most closely followed the edges of the trees and were 

small enough to capture the smaller trees. However, at this stage it is impossible to definitively 

say this is the ideal metric, as it is unclear whether the visual intuition will translate directly to 

classification performance, and it was only practical to review a subset of the 135,000 

experiments that were completed. A variety of metrics for determining the best segmentation 

were used to select those experiments from the database that would receive a manual review.  

The parameters that maximize the metric ARP – FM produce segments that most closely 

align with the original training data.  However, it should be noted that this formula was chosen 

by visual qualitative analysis of various simple potential metrics. This formula is likely not the 

ideal metric for optimization of segmentation, however there is a bit of a “which comes first: 

chicken or egg” problem at this stage; although the goal is to determine which segments produce 

the best classification; segments are concurrently used to develop the classification algorithms, 

which then are used to quantitatively score the segmentation properly. As such there is room for 

future work once the classification algorithm is developed to then run various segmentations 

against this classification to find an optimal solution. 
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 It is notable that none of the algorithms produced cleanly delineated tree crowns. A 

possible explanation for this is the lack of sharpness between the crowns and surrounding 

vegetation, as these algorithms rely upon edge detection to place the segment boundaries. As an 

example, (Figure 20 below) is a Sobel Edge filter applied to the 200rd_13km site, displayed as 

intensity of edge. This image covers roughly the same area as figures above showing segments, 

however it is very hard to identify crowns at all in this image.  

 

Figure 20 | Sobel Edge Detection from 200rd_13km site. 

Another point of interest in this research is that SLIC performed better than anticipated, 

as it is the simplest of the algorithms it was selected to provide a control of sorts, to show the 

naive solution. However, it has shown itself as the strongest contender on three of the metrics, 

and 2nd on the fourth metric. 

There is also future work looking at segmentation that works at multiple scales as there 

are large discrepancies in size between the smallest and largest trees, presenting a challenge to 

optimizing for segment size. Alternatively, if a particular size of tree is of interest it could be 
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useful to filter the training data to train base only upon trees of that size; giving up accuracy for 

the set of all trees to gain accuracy for a subset that is the target tree size.  

 Finally, it should be emphasised that many training sites must be used in the development 

of a set of generic aggregate hyperparameters. Initial testing for this paper was conducted using a 

single site (North Fraser 41km), and led to early results that were dramatically different than 

looking at the set of sites, and even at this stage eleven site is still a small sample size, and while 

it may be tempting to say that the sites [bend_0-5km, conifex_k14, 700rd_28km, conifex_h47, 

200rd_13km, alezza_lake north_fraser_11km] are the most common presentation of sites, it 

cannot be ignored that four of the sites performed atypically, and three of these relatively similar.   
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Chapter 3 

 

Image Classification for Early-Stage Vegetation in RPAS Imagery 

 

3.1 Introduction 

 

 Classification is the process where the computer evaluates information and places that 

information into a class with the objective of providing meaning or context to that information. 

Classification is the fundamental problem that machine learning was pioneered upon. The origins 

of machine learning has been proposed as Frank Rosenblatt who developed the ‘perceptron’ in 

1957 for the detection of letters of the alphabet (Fradkov, 2020).  

 As research advances machine learning is being used to classify an ever growing variety 

of objects, such as automated counting of cars (Biswas et al., 2017), monitoring sea ice (Dumitru 

et al., 2019) and forest fire detection (Seydi et al., 2022). The same way we as humans use our 

perception of the world to identify our surroundings, a computers ability to classify information 

allows it to solve problems within the real world.  

 The classification of information is an extensive discipline able to use a variety of 

techniques to work with a range of different data types. In this thesis a specific vein of research 

is pursued; specifically, the techniques that look at regions of images that can be processed as 

tabular data for classification.  

 The motivation to perform these classifications automatically is twofold. The first and 

more obvious motivation is that the identification of thousands or (if done at scale) millions of 

samples is a very mundane job which would be cost prohibitive and likely unfulfilling to have 

completed manually by human operators. Secondly the types of data produced are at a 
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dimensionality that is difficult to express to human operators; allowing the computer to have a 

more precise view between samples in a much faster time.  

 No classification system will yield perfect results; in practice a human would perform 

tree identification with much greater accuracy. However, a human would simply not undertake 

the task of individual tree identification at the landscape level. In this respect the advancement of 

research looks to make possible access to information at scales effectively not currently possible; 

despite the seemingly simple problem presented. An example of why this distinction matters is 

the development of Optical Character Recognition (OCR) that allowed for the digitization of 

entire libraries; while true reading and typing books is not a particularly challenging task, 

completing this process for entire libraries would have been effectively impossible without the 

aid of machine learning.  

 The ability to take imagery and classify it by vegetation type will provide land managers 

with new opportunities for decision making about their land base. An understanding of what 

vegetation is present, and to watch the development over time will allow for better understanding 

of how healthy the environment is; and make choices about how to best enhance ecosystems for 

a variety of factors. Some of these factors may include keeping it suitable for wildlife, ensuring 

economic value in the timber supply, or considering vegetation type impacts on forest fire 

susceptibility.  

 This chapter aims to answer the following questions: 

- How should data be segmented? 

- Should algorithms be used to balance the quantity of training data? 

- Which algorithm should be used as input data for use with classification?  
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- Are trained models re-usable? 

- What are the key areas for improvement? 

3.2 Definitions 

 

 The definitions presented below are intended to help provide clarity to readers as to the 

specific definitions being applied to terms in this thesis. These are especially important as the 

terms used can carry domain specific definitions that may not be consistent across the domains 

of study involved: Remote Sensing, Machine Learning, Ecology, Computer Vision, etc. The 

details within the definitions also help to provide clarity to the methods presented.  

Feature: an instance of what is being modelled in the real world, in the case of this work a 

feature is an individual tree.  

Segment: a region of imagery; these may be hand drawn (Truth Segments as seen in Figure 3); 

or automatically produced by segmentation algorithms. In an ideal circumstance there would be a 

1:1 mapping between features and segments, however in practice this is rarely the case. 

Sample: the information about the intersection of imagery and segments; the machine learning 

algorithms used here do not work directly on imagery, but rather numeric information. Samples 

are produced by calculating raster statistics for each segment. Additionally, Truth Segments 

contain information about species classes of the feature they represent; algorithm generated 

samples contain information about overlap between the given sample and intersecting Truth 

Segments.  

Coverage: For data that has been automatically segmented the boundaries will very rarely be 

fully contained within ground truth polygons, as such it is beneficial to calculate how much of 

the area in the segment being trained on is represented by the labeled species. Note that coverage 
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is a measure of sample purity only and does not convey how much of the original feature is 

contained by the segment; see the first and last examples in Figure 21, both have the same 

coverage, yet the first example covers more of the original feature. 

Limitations of assigning a single species to each segment are that it does not account for 

the case where segments overlap two trees of the same species, coverage will be calculated only 

as the single tree with the greatest coverage, potentially underrepresenting coverage. 

 

Figure 21 | Examples of how coverage is measured based on segment overlap. 

  

Dimensionality: Refers to the number of attributes each sample contains, for example five bands 

each with a mean and standard deviation would provide ten dimensions to the training process. 

High dimensionality is a relative term generally comparing the ratio of dimensions to training 

samples, this is useful in conveying comparisons of the general behavior of various algorithms.  

Model: the result of using training algorithms against the training dataset; the resultant model 

can then be used to classify novel data. 

Overfitting: an occurrence in models where the trained model can easily identify the training 

data but fails to maintain accuracy on novel datasets. Conceptually this could be thought of as a 

fit model being able to identify people in photographs, where an overfit model may only identify 

specific persons as people. In simpler terms a fit model would be able to identify aspen trees, 
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while an overfit model would only identify a specific subset of aspen trees; likely those 

contained in the training data or possessing an extremely similar representation. 

3.3 Data Preparation 

 

 The data used in this Chapter is the same dataset that was used in Chapter 2, with the 

results of Chapter 2 preparing the data for further analysis. More generally before the data can 

undergo object-oriented classification, it must be provided to these algorithms as segments of the 

image, where each segment will be treated as a unit to be segmented. This also begins to show 

the modular approach of the overall process from data collection to classification in that any 

process which segments the image could be used in place of the results of Chapter 2 as the input 

data for this section. 

3.3.1 Zonal Statistics 

 

To prepare the previously segmented imagery for classification it must be converted from 

raster into tabular data. This is done by overlaying the segments on the orthomosaic, calculating 

statistics for each band, and saving the results into a database table. The statistics calculated here 

are minimum, maximum, mean, number of pixels, standard deviation, median, and range for all 

pixels that fall within the segment.  

In addition to the zonal statistics the table includs site, date of capture and how many 

bands are present. This information will be required as the geometry of segments will not be 

included in the algorithm training process.  

3.3.2 Species Coverage 

 

 It is also important that we know what species are represented by the recorded statistics; 

this is achieved by overlaying the segments with the ground truth data. Each segment is assigned 
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a species code based upon which shape in the ground truth data has the most overlap; percent 

coverage is calculated as what percentage of the new segment is contained within the truth 

segment with the greatest overlap.  

Table 11 | Table of sample counts by site, both total samples as well as counts of only target species 

Samples in each Site 

 200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

All 11529 3774 5649 1521 12861 1398 1077 8331 1677 1107 2862 

Target 2031 1977 2064 636 1491 261 513 3453 270 468 567 

 

 Table 11 shows how many training samples are present in each site of both all samples as 

well as samples of the target species. This will be used later to see if there is correlation between 

quantity of training data and accuracy. As well as how the ratio of target species affect the target 

accuracy specifically.  

 

Figure 22 | Average reflectance of species across all five bands of 10 most common species per site. 

The sites varied considerably in terms of quantity and quality of data. Even after 

calibration, 200rd, Chief Lake, and Olson5km have significantly lower reflectance than the other 

sites (Figure 22). This is believed to be due to issues with the calibrated reflectance panel with 

the RedEdge-M camera. Through other ongoing research projects, it has been observed that 

newer versions of the MicaSense cameras utilizing version 2 of the DLS sensor provide more 

consistent and reliable calibration results. This lack of consistent calibration is likely to be the 

cause of negative impacts on accuracy of models trained on multiple sites.   
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3.4 Classification Algorithms 

 

 In this research a variety of common classification algorithms were tested and compared 

to each other for effectiveness at classifying early seral vegetation. While machine learning is a 

powerful tool for solving a variety of problems, not all methods of learning work for all types of 

data. Different algorithms may perform better or worse depending upon the amount of noise in 

data, number of variables present, correlation between input variables amongst others.   

3.4.1 Support Vector Machines (SVM) 

 

Support Vector Machines (Cristianini and Shawe-Taylor, 2000) are a binary non-

probabilistic classifier building upon the work at UC Berkley and Bell Laboratories (Boser et al., 

1992) building classifiers that optimize the margins between classes. SVM classifiers are 

particularly suited to problems with high dimensionality (Erfani et al., 2016). However SVM 

classifiers also have the drawback of being a binary classification such that if there is a goal of 

detecting multiple classes, multiple classifiers must be used with a method of combining results 

(Duan and Keerthi, 2005). SVM could represent an advantage in this study due to the high 

number of input variables, with five image bands, each containing multiple statistics (mean, 

median, SD, etc.) and avoiding the ‘curse of dimensionality’ (Friedman, 1997) is valuable; 

conversely it is also hypothesized that if the representation of a given species were to change due 

to lighting conditions or time in the phenological cycle, the classifier could have a challenge 

differentiating these different representations. 

Implementation Used: https://scikit-learn.org/stable/modules/svm.html. With gamma parameter 

set to auto. 

 

https://scikit-learn.org/stable/modules/svm.html
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3.4.2 Random Forest (RF) 

 

 The Random Forest Classifier (Breiman, 2001) is one of the more common machine 

learning algorithms used today. Random Forest classifiers have a relatively high resistance to 

overfitting as well as resistance to outliers compared to some other methods; however random 

forests can be heavily impacted by the curse of dimensionality especially when using imbalanced 

quantities of training data  (Evangelista et al., 2006).  

 Random Forest is a type of ensemble learning building upon a traditional decision tree. 

To build the random forest multiple random subsets of data, a random subset of variables is used 

to build a decision tree; this collection of trees comprises the forest. When classifying new data 

each sample is run through all the decision trees and the most common result of all trees is the 

identified class. This method of building prevents overfitting as the complexity of each 

individual tree is contained and can provide resistance to outliers as even if a tree is providing 

invalid results, it can still be overpowered by the rest of the forest. Conversely highly imbalanced 

data may produce poor results as the trees are built by forming even distribution at each decision 

point which may force the algorithm to split inside of classes as well as provide an over 

abundance of leaf nodes for the overrepresented class. Additionally, the curse of dimensionality 

can be particularly challenging here as redundant variables will cause more decisions to be made 

on the redundant information potentially reducing the impact of other important variables. 

 For the purposes of this study, it is expected that Random Forest will have a good ability 

to handle the large number of input classes, as well as handle outliers such as a tree that is 

unhealthy or in shadows on the imagery. It is also susceptible to the unbalanced quantities of 

training data, and that all five bands of imagery will be highly correlated due to relative 

closeness in spectrum especially in the visible bands.  
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Implementation Used: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. With 

number of estimators increased from 10 to 1000.  

3.4.3 K Nearest Neighbors (KNN) 

 

 K Nearest Neighbor classification (Taunk et al., 2019) is a common algorithm used in the 

field of remote sensing, and is often utilized due to its ease of implementation and computation; 

yet is still able to produce useful results in many cases. This algorithm works by placing all 

samples into n-dimensional space where n is the number of input variables provided, along with 

K randomly selected seeds. Each iteration every sample is placed into the cluster it is nearest to 

based on an n-dimensional vector; then each seed is updated to be the center or average of all 

points in the given cluster; this process is repeated either a fixed number of times or until 

stability is reached in which cluster each sample belongs to. After training new data is simply 

assigned to the cluster to which it is nearest.  

 KNN is utilized in this research as a baseline of a relatively naive approach to 

classification, making it a form of base line for the lowest effort approach to classification. 

Implementation Used: https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html. 

3.4.4 Multinomial Naive Bayes Probabilistic Classifier (MNB) 

 

 The Multinomial Naive Bayes Probabilistic Classifier works by calculating the normal 

distribution of values for each class and then places each new sample into the distribution where 

it has the highest probability of matching. Naïve Bayes classifier is well suited to handling the 

curse of dimensionality, however, it also assumes that all input variables are independent. For the 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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purposes of this research this has the potential to be beneficial as the data has relatively high 

dimensionality, however at the same time may suffer in the ability to tell a more reflective 

species from an over-exposed photo as the relative weights of variables are not considered.  

Implementation Used: https://scikit-learn.org/stable/modules/naive_bayes.html. 

 

3.5 Minimum data requirements 

 

At the scale of the current research the ground truth serves as a baseline for classification 

effectiveness with the given dataset. At the scale of the broader project the accuracy of ground 

truth opposed to algorithmically generated segments provides some indication as to feasibility of 

fully automated systems. 

During training for the classification algorithms, species with too few samples must be 

filtered out; the minimum requirement is that there be at least as many samples as folds during 

training. In the case where oversampling is to be used there must be the number of unique classes 

times the number of folds samples of each species. In the case that a species does not have 

enough samples from a given set of sites it is removed from the training.   

As the data used in this research has large variations in the quantities of training samples 

available per species per site; there is a potential for the classification algorithms to over classify 

those samples which have a higher representation. To attempt to mitigate this effect all 

classification algorithms were tested with Synthetic Minority Over-sampling Technique (Chawla 

et al., 2002). SMOTE works by oversampling underrepresented classes while simultaneously 

under sampling overrepresented classes. In SMOTE the synthetic oversampling is done by 

producing new features within the sample space of underrepresented classes as opposed to 

simply repeating real samples.  

https://scikit-learn.org/stable/modules/naive_bayes.html
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3.6 Framework for Evaluation 

 

To evaluate the comparable effectiveness of different ML Classification Algorithms, each 

algorithm was tested for accuracy using a 4-fold cross validation, for a variety of configurations, 

the choices made for each configuration are based on the following factors. 

1. Algorithm used: Random Forest, Support Vector Machines, K Nearest Neighbor, or 

Multinominal Naive Bayes Classifier. 

2. Samples: ground truth, SLIC segmentation or Quick Shift segmentation. 

3. How many sites are included: 1, 3, 7, 8, or 11. 

4. Data may be either over-sampled or not using the Synthetic Minority Over-sampling 

Technique (SMOTE) function (Chawla et al., 2002). 

The above options produce 120 scenarios for configuration of the processing pipeline 

including options for classification algorithm, segmentation algorithm, how many sites to use 

and whether or not to oversample the data. Within each scenario the accuracy is calculated for a 

range of minimum coverage thresholds. The objective is to determine which of the scenarios has 

the highest accuracy in classification; as well as looking for trends in specific options (i.e., does 

SLIC produces consistently better, consistently worse, or mixed performance compared to Quick 

Shift when used as the input segments; regardless of the other options chosen).  
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3.6 Results 

 

The sites can be broken down into the following sets, based on the results of single site 

segmentation accuracy (Figure 16 to Figure 19): 

Alpha (α) 1 site: Chief Lake 

Beta (β) 3 sites: North Fraser 41, North Fraser 50, North Olson 5km 

Gamma (γ) 7 sites: 200rd, 700rd, Alezza, Bend05km, ConifexH47, ConifexK14, NorthFraser11 

Delta (δ) 8 sites: 200rd, 700rd, Alezza, Bend05km, ChiefLake, ConifexH47, ConifexK14, 

NorthFraser11 

Epsilon (ε) 11 sites: all sites  

These groups were formed based on the results of single site segmentation accuracy 

found in Figure 18. Group α contains only a single (Chief Lake) based on having largest quantity 

of training samples available. Group β is composed of three sites that represented the lowest 

segmentation scores (Figure 18); when looking at only the target species for Quick Shift and 

SLIC segmentation. Group γ represents the seven sites with the highest segmentation scores and 

group δ is a combination of groups α and γ, making it the set of the 8 highest segmentation 

accuracies. Finally, group ε represents the set of all sites with training data.  
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These sets are used for separating the data for training and testing models and are 

intended to help determine the stability of models moving from site to site.  

Training was performed using all available species, the accuracy of the classification was 

computed in two ways; using all species in data set (Appendix A), as well as a subset of species. 

The target species are a subset that have been identified as valuable for moose browse; these 

species are Trembling Aspen (Populus tremuloides), Red-osier Dogwood (Cornus stolonifera), 

Paper Birch (Betula papyrifera), Highbush-Cranberry (Viburnum edule), and Willow (Salix 

spp.). 

3.6.1 Ground Truth Segments 

 

This section begins by analyzing what accuracy can be achieved by training ML 

algorithms on the ground truth segments. Answering this question has two motivations, first it 

shows if the trees can even be identified by spectral reflectance at all. Second this provides a 

baseline accuracy that segmentation can be compared against; as the true effectiveness of 

segmentation can not be directly observed, but rather how good the final classification will be.  

3.6.1.1 Classification of individual Sites 

 

First the accuracies for each site are determined using unaltered data in Table 12, then the 

accuracies with SMOTE are shown in Table 13, finally Table 14 demonstrates how SMOTE 

changed the accuracy of classification achieved. The ideal classification algorithm will provide 

accuracies that are consistently high across sites. 

 



57 

Table 12 | Classification accuracy of training segments for all species at each site with unbalanced data 

Accuracy 
No oversample 

Site Classification Accuracy 
200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 63% 81% 73% 78% 63% 68% 79% 81% 56% 75% 61% 

SVM 65% 83% 74% 78% 65% 68% 80% 82% 52% 79% 63% 

MNB 34% 57% 47% 60% 33% 54% 54% 42% 34% 49% 28% 

KNN 52% 79% 66% 77% 48% 62% 69% 75% 46% 72% 40% 

 

Table 13 | Classification accuracy of training segments for all species at each site with SMOTE balanced data 

Accuracy 
SMOTE 

Site Classification Accuracy 

200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 63% 85% 73% 78% 62% 74% 87% 82% NA3 83% 57% 

SVM 65% 85% 71% 77% 64% 74% 88% 78% NA 83% 59% 

MNB 41% 74% 53% 67% 40% 66% 72% 61% NA 70% 33% 

KNN 43% 77% 69% 68% 44% 62% 76% 66% NA 75% 37% 

 

Table 14 | Change in classification accuracy of training segments for all species resulting from using SMOTE. 

Accuracy 
Change 

Effect of SMOTE on Site Classification Accuracy 

200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 0% 4% 0% 0% -1% 6% 8% 1% NA 8% -4% 

SVM 0% 2% -3% -1% -1% 6% 8% -4% NA 4% -4% 

MNB 7% 17% 6% 7% 7% 12% 18% 19% NA 21% 5% 

KNN -9% -2% 3% -9% -4% 0% 7% -9% NA 3% -3% 

 

Table 14 shows the overall net effect of SMOTE is very small, with the exception being 

improvements across the board with the MNB classifier; these results must however be tempered 

with the understanding that even with these improvements the MNB classifier still produces 

consistently lower accuracies than the other classifiers. Further NorthFraser41 had too few 

samples to use SMOTE, resulting in a failure to train; highlighting that while SMOTE may be 

able to help balance the data, there does still need to be sufficient data captured.  

Another question that one might ask is what accuracy can be obtained if looking only for 

a few target species, as opposed to identifying everything in the land base. Table 15 presents the 

accuracy of models, tuned to provide the best possible accuracy of the five target species 

 
3 Insufficient training samples were present to complete classification. 
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presented in this paper. Again, SMOTE was used to oversample and balance the number of 

samples in the dataset shown in Table 16, with the difference in results in Table 17. 

Table 15 | | Classification accuracy of training segments for target species at each site with unbalanced data 

Accuracy 
No oversample 

Site Classification Accuracy (Target Species Only) 

200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 59% 90% 56% 62% 46% 38% 82% 78% 35% 67% 43% 

SVM 61% 91% 69% 64% 44% 37% 81% 79% 18% 71% 43% 

MNB 35% 57% 43% 49% 26% 34% 60% 34% 45% 52% 28% 

KNN 48% 88% 56% 63% 30% 28% 70% 70% 27% 64% 29% 

 

Table 16 | Classification accuracy of training segments for target species at each site with SMOTE balanced data 

Accuracy 
SMOTE 

Site Classification Accuracy (SMOTE & Target Species Only) 
200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 60% 95% 66% 65% 53% 35% 83% 78% NA 67% 52% 

SVM 59% 96% 68% 68% 57% 43% 83% 77% NA 71% 49% 

MNB 42% 83% 50% 56% 30% 30% 68% 63% NA 59% 48% 

KNN 42% 89% 51% 56% 43% 32% 69% 65% NA 61% 45% 

 

Table 17 | Change in classification accuracy of training segments for target species resulting from using SMOTE. 

Accuracy 
Change 

Effect of SMOTE on Site Classification Accuracy (Target Species Only) 

200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

A
lg

o
rith

m
 

RF 1% 5% 10% 3% 7% -3% 1% 0% NA 0% 9% 

SVM -2% 5% -1% 4% 13% 6% 2% -2% NA 0% 6% 

MNB 7% 26% 7% 7% 4% -4% 8% 29% NA 7% 20% 

KNN -6% 1% -5% -7% 13% 4% -1% -5% NA -3% 16% 

 

 Looking at Table 17, it is shown that when examining only the target species SMOTE is 

generally positive for Random Forest, and SVM in addition to the MNB as seen when using all 

sites.  

Table 16 shows that most sites saw a reduction in classification accuracy when looking at 

only a subset of species that are targeted. This could be from a variety of reasons, such as how 

hard the target species are to classify relative to the overall set, or how well represented the target 

species are in the training data. This demonstrates that there are different ways to assess accuracy 
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based upon the question being asked. If a forest manager wants to know about all species vs only 

target species; in the case of ConifexH47, this could be over 30% difference which may lead to 

different conclusions for the viability of machine learning for classification.  

3.6.1.2 Classification done with Groups of sites. 

 The next set of results look at training the classification models on groups of sites; such 

that the models are more generalized than those using only a single site for input. By training on 

multiple sites models are more likely to be representative of results that might be expected when 

classifying novel data. Just as with the individual sites these tables are presented as Table 18 

showing the accuracy with the original unbalanced data; Table 19 showing the results after 

oversampling with SMOTE, and Table 20 showing the effects of SMOTE on classification 

accuracy.  

 

Table 18 | Classification accuracy of training segments for all species by site group with unbalanced data 

Accuracy 
No oversample 

Site Group 

α β γ δ ε 

A
lg

o
rith

m
 

RF 63% 64% 75% 73% 71% 

SVM 65% 65% 76% 74% 72% 

MNB 33% 37% 50% 48% 45% 

KNN 48% 53% 69% 66% 62% 

 

Table 19 | Classification accuracy of training segments for all species by site group with SMOTE balanced data 

Accuracy 
SMOTE 

Site Group 

α β γ δ ε 

A
lg

o
rith

m
 

RF 62% 70% 77% 76% 74% 

SVM 64% 71% 77% 75% 74% 

MNB 40% 52% 62% 59% 58% 

KNN 44% 56% 66% 63% 62% 
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Table 20 | Change in classification accuracy of training segments for all species resulting from using SMOTE with 

site groups. 

Accuracy 
Change 

Site Group 

α β γ δ ε 

A
lg

o
rith

m
 

RF -1% 6% 3% 2% 4% 

SVM -1% 6% 1% 1% 3% 

MNB 7% 15% 12% 12% 13% 

KNN -4% 3% -3% -3% -1% 

 

 With the site groupings, we again see that MNB sees the biggest improvement in 

accuracy from SMOTE, but is also still the lowest accuracy algorithm tested, even with SMOTE 

applied. In terms of both Random Forest and SVM, there is on average a small increase in 

accuracy that can be achieved by using SMOTE on the data before classification.  

 

 The groups were then again tested for classification on the target species only in Table 21 

and Table 22, just as were the individual sites. 

Table 21 | Classification accuracy of training segments for target species by site group with unbalanced data 

Accuracy 
No oversample 

Site Group (Target Species Only) 

α β γ δ ε 

A
lg

o
rith

m
 

RF 46% 48% 66% 64% 60% 

SVM 44% 44% 69% 66% 60% 

MNB 26% 42% 45% 42% 42% 

KNN 30% 40% 60% 57% 52% 

 

Table 22 | Classification accuracy of training segments for target species by site group with SMOTE balanced data 

Accuracy 
SMOTE 

Site Group (Target Species Only) 

α β γ δ ε 

A
lg

o
rith

m
 

RF 53% 60% 69% 67% 65% 

SVM 57% 60% 71% 69% 67% 

MNB 30% 54% 56% 53% 53% 

KNN 43% 53% 58% 56% 55% 

Table 23 | Change in classification accuracy of training segments for target species resulting from using SMOTE 

with site groups. 

Accuracy 
Change 

Site Group (Target Species Only) 

α β γ δ ε 
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A
lg

o
rith

m
 

RF 7% 11% 2% 3% 6% 

SVM 13% 16% 2% 3% 7% 

MNB 4% 12% 11% 11% 11% 

KNN 13% 13% -3% -1% 3% 

 

 Looking at Table 23, we do however see a stronger positive result to using SMOTE to 

oversample data, when training on and testing using groups of sites as opposed to individual 

sites. While it is hard to determine why a bigger increase is seen here, one potential cause could 

be that the sample sizes of the most underrepresented classes have more data, potentially causing 

less error to be induced by SMOTE.  

3.6.2 Effects of Segmentation and Coverage on Classification Accuracy 

 

The accuracy of classification using the automatically generated segments is presented in 

graphical form. The minimum coverage of a segment to be considered identified as a species has 

two primary effects making selecting a coverage threshold non-trivial. First, as the minimum 

coverage required decreases the purity of samples is reduced presenting more noise to the 

training algorithms. Conversely as the minimum coverage required increases the number of 

samples available for training decreases; this provides the need to determine an optimal ratio of 

quality and quantity samples. It is also at this stage where the differences between the human 

created and computer-generated segments may become most apparent, as a difference of even a 

single pixel would show as error at this stage; in order to prevent training sized from becoming 

vanishingly small some level of error must likely be tolerated at this stage.  

 Due to the large amount of computation required to train the models at various coverage 

levels only the two best performing algorithms Quick Shift and SLIC were continued to this 

stage of analysis. 
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The graphs presented below show the classification accuracies for the case with SMOTE 

applied to the data, tables without SMOTE can be found in Appendix J and Appendix K. 

3.6.2.1 Quick Shift Segments 

 

 

Figure 23 | Classification Accuracy of Quick Shift Segments on individual sites. 
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Figure 24 | Classification Accuracy of Quick Shift Segments on groups of sites. 

For the case of the Quick Shift algorithm, Figure 23 and Figure 24 show that in general 

requiring a very high level of coverage is very beneficial, with the exception that at or very near 

100% coverage, less training data is available due to rejecting segments for differences as small 

as 1px which could certainly be explained as human error in the delineation process. I would 

suggest that a 75% minimum coverage may be a good starting point when working with groups 

of sites as it is around this range that diminishing returns are starting be observed; while for a 

single site 90% coverage may make more sense.  
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3.6.2.2 SLIC Segments 

 

 Figure 25 | Classification Accuracy of SLIC Segments on individual sites. 

 

Figure 26 | Classification Accuracy of SLIC Segments on groups of sites. 
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The SLIC segments provide more interesting results in terms of ideal coverage levels 

with most cases preferring high coverage with some exceptions. The individual sites 200rd and 

NorthFraser11 along with groups γ and ε prefer a coverage in the range of 75%-80% before 

accuracy begins to decrease.  

3.6.2.3 Segmentation Accuracy Comparison 

 

 The below graphs show a clearer comparison of the difference in accuracies achieved 

with SLIC and QuickShift. 

 

Figure 27 | Relative Accuracy of SLIC over QuickShift on sites.  
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Figure 28 | Relative Accuracy of SLIC over Quick Shift on site groupings. 

3.6.2.4 SMOTE 

 

 

Figure 29 | Quick Shift Oversampling Change in Accuracy 
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Figure 30 | SLIC Oversampling Change in Accuracy 

 

 The use of SMOTE oversampling the generated segments increased accuracy in most 

cases (Figure 29, Figure 30), with the exception when using the MNB classifier. This is an 

interesting result, considering that SMOTE produced the biggest improvements for the MNB 

classifier when using the ground truth data as seen in Figure 27.  
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Figure 31 | Relationship between the number of samples available for training, and the minimum overlap required. 

 

Figure 32 | Relationship between the number of classes present in training data, and the minimum overlap required. 
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3.6.3 Shannon’s Diversity Index 

 

When looking at comparisons of classification accuracies, and why some sites perform 

better than others, one potential theory to look at is how well distributed are the samples being 

trained with. Shannon’s Diversity Index (Shannon, 1948) is one such method for measuring the 

diversity of sample sizes, where higher numbers represent a more unbalanced dataset. Shannon’s 

Diversity Index was calculated for both individual sites Table 24, as well as the groups of sites 

tested Table 25. 

 

Table 24 | Shannon’s Diversity Index of sample counts by site 

Diversity of Sample Sizes 

 200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km 

Truth 2.260 2.105 2.066 1.680 2.364 2.563 1.881 1.761 2.424 1.569 1.716 

QuickShift 2.060 2.045 2.292 1.696 2.156 2.270 1.297 1.665 2.082 1.419 1.749 

SLIC 1.916 1.937 2.220 1.569 2.031 2.173 1.231 1.663 1.996 1.337 1.720 

 

Table 25 | Shannon's Diversity Index of sample counts by site groups 

Diversity of Sample Sizes 

 α β γ δ ε 

Truth 
2.364 

2.480 2.598 2.720 2.660 

QuickShift 
2.156 

2.342 2.596 2.646 2.660 

SLIC 
2.031 

2.295 2.563 2.578 2.649 

 

 These diversity indexes can then be compared to both the accuracy of sites Table 26, 

Table 28, as well as the effects of SMOTE on those accuracies Table 27, Table 29. 

Table 26 | Correlation of Shannon’s Diversity Index and classification accuracy of individual sites 

Algorithm Correlation 

RF -0.53937 

SVM -0.58521 

MNB -0.19679 

KNN -0.41848 
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Table 27 | Correlation of Shannon’s Diversity Index and SMOTS effects on classification accuracy of individual sites 

Algorithm Correlation 

RF 0.000663 

SVM 0.224732 

MNB -0.30708 

KNN -0.00788 

 

Table 28 | Correlation of Shannon’s Diversity Index and classification accuracy of site groups 

Algorithm Correlation 

RF 0.854157 

SVM 0.783865 

MNB 0.536354 

KNN 0.536354 

 

Table 29 | Correlation of Shannon’s Diversity Index and SMOTS effects on classification accuracy of site groups 

Algorithm Correlation 

RF 0.329936 

SVM 0.112355 

MNB 0.500587 

KNN -0.07188 

 

 From Table 26, a negative correlation between Shannon’s Diversity Index, and 

classification accuracy can be observed suggesting that as sample sizes become more unbalanced 

accuracy decreases, which is an intuitive solution. However, that is somewhat countered by 

positive correlation when looking at groups of sites in Table 28, there is not a good explanation 

for this other than the different groupings of sites may be impacting this outside of the diversity 

of the sites. 

 When looking at the correlations with the effects of SMOTE on the data Table 27; does 

not provide a clear correlation with SVM being positive, and MNB being negative. Table 29 on 

the other hand does show a consistent high correlation, which shows higher site diversity leads to 

higher effectiveness of SMOTE at improving accuracy.  
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3.7 Results Synthesis 

 

3.7.1 How should data be segmented? 

 

 While this chapter is focused on classification rather than the segmentation, it must be 

noted that it is not possible to completely decouple these processes. Into the classification 

process carried further were the two highest ranked approaches to segmentation. When looking 

at Figure 27 and Figure 28 graphs with data above the 0 line have better performance for SLIC, 

while those points below the line Quick Shift performed better.  When looking at these figures 

we can see that SLIC generally performs better than Quick Shift, with a few outliers such as 

northfraser41 as well as groups β and ε where improvement was not seen until coverages were 

above 50%; and olson5km where there was little difference in performance. This is unexpected 

based upon the results of the segmentation indicating Quick Shift having marginally better scores 

and stability.  

3.7.2 Should SMOTE resampling be used? 

 

 The use of SMOTE provides generally positive results and thus the general 

recommendation is that SMOTE is used. The notable exceptions to this can be seen in Figure 29 

and Figure 30 are that MNB performs poorly with SMOTE applied, as well as limited effects on 

SLIC segments with very high coverage and use of the Random Forest Classifier. 

3.7.3 Which algorithm should be used for training? 

 

 The two algorithms with the highest performance were Random Forest and Support 

Vector Machines, as can be seen in  Figure 25 and Figure 26. Of interest in these figures is that 

Support Vector Machines performed better on most of the single site tests, while Random Forest 

performs better on groupings of sites.  
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3.7.4 Are trained models re-usable? 

 

 The results strongly suggest that the current models are not re-usable as each site presents 

differences in species relative reflectance; looking at Figure 22 we can see for example that 

200rd, ChiefLake and Olson5km all have very low reflectance values; without a way of 

anchoring all data to a relative point moving trained models may be difficult.  
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3.8 Discussion 

 

Evaluating multiple species accuracy will be based on number of species and their relative 

proportions. Accuracy decreases as number of species increases; conversely it will increase as 

the dataset becomes imbalanced. A simple example of this is in the most trivial case where the 

algorithm simply says all samples are of the most common class, we might expect 50% accuracy 

for two classes, and 33% accuracy for three classes; however, if 80% of the samples were class 

2, we could classify all data as class 2 producing an overall accuracy of 80%.  

In practical application looking at the Chief Lake site the leading species was Pine with a 

23% representation, however classification accuracies just over 70% were achieved, this 

demonstrates that the ability to classify tree species is greater than a random distribution.  

 It must also be noted that the accuracies of this work show lower accuracy rates than 

other previous work. For example (Csillik et al., 2018) demonstrated a greater than 96% 

accuracy on the identification of citrus trees; this work in comparison is working with a very 

diverse ecosystem including more species of trees, understory, and mixture of tree sizes. It is the 

hope of this paper that even if the results have room for improvement that a methodology for 

comparison of approaches to segmentation and classification has been demonstrated that would 

allow for future work to continue to build upon testing more algorithms, with larger datasets. As 

the fields of Computer Vison and Machine Learning continue to develop a systematic approach 

to evaluating the effectiveness of new tools in comparison to existing tools will prove valuable 

for those seeking more comprehensive management of natural resources.  

 The availability of training data must also be considered when training models. While 

this research was conducted with what may appear to be a very large dataset; the lack of balance 

in the data also makes the sample size small in many respects. Many of the under-represented 
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species were simply removed from classification due to not having enough samples at a given 

site to be able to split into K-folds, and even those that were included many were very 

underrepresented potentially leading to low training accuracy. Operationally this introduces the 

need to be thoughtful during the collection of training data, ensuring training sites both contain 

representation of species of interest, and that these samples are adequately documented. While 

more training data is always better, this researcher would suggest targeting a minimum of 100 

samples of target species, if possible, per site; this guidance is tempered with the realization this 

may not be possible due to the high cost of collecting training data.  

3.8.1 Considerations of algorithms tested 

 

This chapter reviewed 4 common classification algorithms; while this does not present an 

exhaustive search of available methods, the algorithms were chosen due to their popularity of use 

and being mechanically different with the goal of highlighting differences between approaches.  

Overall, the highest performance came from SVM and RF. KNN and MNB are faster and 

more naive algorithms, providing a baseline of very common, and relatively accessible tools.  

K-Nearest Neighbors is the simplest of the algorithms used and is commonly used in 

remote sensing projects due to the simplicity and speed of implementation. Due to the nature of 

the algorithm, it is relatively robust in highly dimensional data provided that each dimension has 

either a single representation, or the number of clusters is sufficiently high to capture clusters for 

each representation of any given class. However, at the same time this simplistic nature also 

makes the algorithm poor for use with noisy data; especially when the values of a given 

dimension have overlap between classes. 
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The Multinominal Naïve Bayes Probabilistic Classifier works by treating each dimension 

as an independent variable (Murphy, 2006); this can be very advantageous if individual 

dimensions are particularly noisy, allowing more consistent dimensions to take the lead. This 

type of classifier is more commonly applied to text classifications than imagery. Both KNN and 

MNB present issues for this classification problem in that they are looking for mean values on 

each dimension; something that is particularly challenging to achieve in the case where the 

calibration of reflectance is not consistent between sites.  

State Vector Machines provide a compelling option for the classification of tree species 

given the collected dataset as they are very well suited to handling data with very high 

dimensionality, as well as filtering out redundant dimensions. Additionally, the mechanics of 

calculating dividing lines maximize the distance between clusters as opposed to placing nearest 

to the mean of a cluster while subtle can make the algorithm much more robust to certain types 

of noise in the data. However, this is challenged by the continuing theme that SVM expects all 

elements of a class to present in the same way; a condition that was not true due to the pool 

calibration abilities of the datasets used in this research. It is believed that should a way of 

securing better calibration be achieved this could be the preferred method of segmentation. 

Finally, SVM, like the previous two algorithms has a very fast training time; this is beneficial as 

over time more training data could be collected and used for efficient retraining of models. 

Random Forest was the final model used for training; in comparison to SVM in brief RF 

has worse handling of high dimensionality, but better handling for multiple representations. 

Among the methods shown RF is unique in its ability to handle dependent dimensions; this is 

particularly useful as it can allow the model to respond to changes in exposure through the nested 

decision trees. Such that a high value on dimension A might lead to a higher threshold on 
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dimension B and vice versa thus providing a basic correction for image exposure. It should 

however be remembered that having multiple representations of classes makes the training set 

effectively smaller as each representation will contain only a portion of the training data for that 

class. 

3.8.2 Future work and areas of improvement 

 

 The work here demonstrates the potential of machine learning to be used in a production 

environment especially with further development on the primary limitations. The first limitation 

shown is that there needs to be more control of site variability, and it is hypothesized this could 

be addressed with better calibration of the multispectral cameras used. This has the potential to 

be as simple as using the more modern revisions of the downwelling light sensors. With the 

calibration challenges better addressed there would be further room to examine the impacts of 

the phenological cycle of plants and general soil conditions. 

 The other primary limitation demonstrated is sample sizes; while the set of training data 

did include 40,257 labeled trees, due to the highly imbalanced nature of the data many species 

did not contain sufficient training data. It is proposed that to make the methods presented more 

robust effort would need to be placed into collecting samples from sites with better 

representation of the rarer species; it would be ideal to have a minimum of at least 100 of each 

species with a target closer to 1000 or more. 

 It is the hope that this research presents the framework for evaluating accuracy of various 

tools that will allow for future research to continually try new algorithms and compare against 

existing solutions to provide a path for continual improvement in accuracy as new machine 

learning techniques are developed and better imagery is available. 
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 Finally, it is believed that the development of technologies whether higher resolution 

cameras or something like RPAS based LiDAR allowing for a finer scale of structural attributes 

to be captured may greatly improve these results. Other research papers were reviewed that were 

able to achieve higher accuracies (Brandtberg, 2007; Csillik et al., 2018). One notable difference 

in these papers was a focus on mature trees that were easier to discriminate from the understory; 

thus, removing the need to classify between small deciduous trees and grasses for example. 

As more research is conducted the models produced will be useful for ecologists and land 

managers to provide more detailed information about the trees present in terms of species, 

number, and size. This information could then provide for new ecological questions to be asked 

in terms of this more detailed inventory not currently possible. This also allows for positive 

feedback whereas more data is collected models can be continuously trained to be more accurate.  
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Chapter 4 

 

Synthesis 

 

4.1 Introduction 

 

 The research presented above presents a framework for identification of early seral 

vegetation. While at present these results provide an accuracy of 52%-83% depending on site 

and what species are targeted for classification. This accuracy is respectable on its own given the 

unique challenges of classifying relatively small targets. The methods presented are offered as a 

framework that will be able to continually integrate with new technologies; and see further 

increases to quality of results as technology advances. 

4.2 Data Collection 

 

 As effective machine learning requires that a high-quality dataset be used for training and 

implementation, this research has also provided the opportunity to think of strategies for 

effective data collection moving forward. 

 The first group of suggestions is around what data should be collected, as well as when 

and where it should be collected. This research had some outliers in terms of some sites not 

training well with the other sites, there are several possible explanations for this, differences in 

the phenological cycle, differences in site conditions such as soil nutrients, or inconsistent 

distribution of species from site to site. 

 In terms of the phenological cycle the importance of this can be most easily seen as this 

classification is based on the reflectance of light in various spectrums, something that very 

visibly changes from summer to fall, and to a greater extent on deciduous trees, during leaf off. 

As such it would be recommended that future work either develop controls for differences in 
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phenological cycle such as multiple training sets based on the position in the cycle, or taking 

measures to ensure all data is captured at the same point within the cycle. Both options do 

however provide operational challenges as research would require either much larger training 

sites to obtain sufficient samples, or work with very short and potentially unpredictable data 

collection windows.  

 Site condition is another element that has not been able to be adequately explored in this 

research. As we know that work is being done to monitor forest health using RPAS Multispectral 

imagery (Fraser and Congalton, 2021) it would then also follow that a trees health will alter its 

appearance and thus how a given class is represented in machine learning models. An additional 

complication here is that preliminary research suggests that some disease such as bark beetle 

infestation can be detected fast than traditional methods using multispectral imaging (Bárta et al., 

2021), thus it may not even be clear at the time of analysis if the trees are healthy or not. In terms 

of site conditions effects on forest health this should be easier to account for by looking at 

available moisture and soil nutrients as a variable within the dataset.  

 Finally, in terms of training models, training models on one site then applying to another 

site adverse impacts on classification accuracy could be observed due to differences in species 

distribution between these sites. A model may work very well with the set of species on one site 

but could then be moved to a new site where previously unrepresented species are more plentiful, 

the model may then have a bias towards not classifying these species due to the imbalanced 

training data used. A method for selecting training data that strives to balance the training data is 

more useful than one that focuses more on spatial distribution of sites.  
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 The quality of data collected will also serve to have impacts on how effective 

classification can be. This accounts for both collection of the imagery, as well as the validation 

surveys.  

 For imagery collection it is important that images be sharp, use the same spectral bands 

on all collected data for which a model is to be applied and make best efforts to control 

differences in sunlight. The most prominent issues found with data during this research were 

variations in sharpness within individual sites, with the hypothesis that this was caused by 

motion blur from tail winds, then getting sharper images on the return path where a slower 

relative ground speed is present. Some sites also did include visible shadow from changing 

lighting conditions, high quality light sensors to account for this would be beneficial.  

 For the survey component, the first and most obvious point is that accuracy matters a bias 

in segments of trees will affect model accuracy. Additionally, while not observed as an issue in 

this research it should be a priority to ensure that all training data is correctly labeled. Another 

issue to be aware of is the need to classify everything in the imagery collected. Most 

classification algorithms do not have a default option for ‘unknown’ instead opting to classify 

everything as what it is most comparable to in the training data. As such in initial testing the 

roads were being classified as trees despite being very different in appearance; this was solved 

after the fact by adding a bare earth class to the training data. Caution is urged here at the data 

collection stage to identify all types of vegetation and not just target species as adding to the 

training set after the fact may not be an option, and non-target vegetation may exhibit similar 

characteristics to target species.  

 These suggestions can be reduced to the summary that training data must include 

representations for all data that the model is to be applied to, in all its aspects including species, 
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health and phenological cycle. In order to account for reductions in accuracy due to highly 

imbalanced data, at the time of data collection either training data collected in quantities 

sufficient for training, or site selection must be done to limit appearance underrepresented 

species of little consequence from appearing in the training data. And then data quality must be 

ensured, any errors in training data will lead to flawed models regardless of how good the model 

is. While minor errors can be mitigated simply by having large data sets, attention to accuracy is 

critical at the training stage.  

4.3 Evaluation of Segmentation 

 

 When looking at the accuracy of segmentation, it is very hard to develop a comparison to 

other work, as other research did not reveal any consistent methods for measuring the quality of 

segmentation. However, this paper does propose some possible equations to address this. To be 

clear it is not the concept of rating segmentation that is novel, but rather presenting the quality as 

a single score. While metrics such as false segments, and false merges are common, they pose a 

problem for automated optimization processes due to the ambiguity of which result is better 

based upon multiple competing metrics. 

 While there is undoubtedly room for improvement upon the algorithms presented here in 

terms of fine tuning their effectiveness. The segments produced were usable for producing viable 

classification in the following stages of analysis. And potentially more importantly a framework 

has been produced for the rapid evaluation of other algorithms. The core idea here is that by 

producing standardized testing frameworks as research advances segmentation methods novel 

approaches should be able to be calculated and examined against previous results to determine an 

optimal method that can evolve over time. This also allows for automated retraining and testing 

as datasets grow.   
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 It was found that two of the proposed metrics Metric 1 MAX (ARP - FM) and Metric 3 

MAX (-FM - 0.5 * FS)) were the most useful. Both focusing on reducing the number of false 

merges; with the difference being metric 1 focuses on the number of pixels correctly segmented, 

where Metric 2 focuses on the number of false splits. In this case Metric 1 in theory could be a 

better representation of land cover, while Metric 3 may be a better representation of individual 

stems. As such while the are industry trends to wards per stem forest management (Gray et al., 

2021; Seidl et al., 2012) it would seem logical to focus on the refinement of metric 3 as an 

ongoing measurement of segmentation quality. 

 All the algorithms tested produced an over segmentation based upon the developed 

scoring metrics. Given this process is based solely on reflectance data and not texture or height 

of trees this is likely as good as could be expected due to the often-ambiguous boundaries 

between small trees and the understory. There are many successful applications of individual tree 

segmentation (Jing et al., 2012; Morsdorf et al., 2003; Zhang et al., 2015) these works all work 

with more mature trees that can be more easily discerned from noise in the data. One issue with 

the early seral vegetation is that the elevation models produced due not accurately reflect heights 

of vegetation after noise filtering is completed, this is due to both the resolution used, and 

movement in vegetation cause by even a small breeze. 

4.4 Effectiveness of Classification 

 

 Measuring the effectiveness of classification can be a complex topic hard to reduce 

accuracy to a single number. Effectiveness will vary based upon how well balanced the data is, 

the quality of imagery collected, and quality of segmentation and training labels provided. When 

reviewing the results below it is important to remember that the data below represents real world 
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data and not all of these variables can be controlled, thus producing some natural variance from 

site to site in terms of classification accuracy.    

Table 30 |Classification accuracy of target species using SVM, with top row showing total number of training 

samples. 

 

Table 31 |Classification accuracy of target species using SVM, with top row showing percentage of samples that are 

target species. 

 

 Looking at Table 30 above we can see that simply having a larger training dataset does 

not ensure better accuracy; however, Table 31 does show that when attempting to classify target 

species there is a very strong correlation (0.929) between the prevalence of target species and 

ability to classify those species. One possible explanation is that the variance in number of 

samples for each species is very important as an example of this if Shannon’s Diversity index is 

calculated for the number of each sample type per site as in Table 24 we can see a correlation of 

-0.585 with SVM’s classification accuracy, this correlation suggests that sites with less diversity 

have a better classification accuracy. It is still an open question if the need for homogeneity is 

only in the training data or if more uniform sites would classify better even with a homogenous 

training set. SMOTE did increase the accuracy of classification on average, suggesting that it is 

just the training that needs to be homogenous, but with so many species being extremely 

underrepresented this is hard to discern from the current dataset.  

 For those sites able to achieve the 78% and higher accuracies RPAS imagery is a 

relatively effective method for classification of entire sites. In comparison the other options for 

Site 200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km

Total Samples 11529 3774 5649 1521 12861 1398 1077 8331 1677 1107 1862

SVM 65% 83% 74% 78% 65% 68% 80% 82% 52% 79% 63%

SVM SMOTE 65% 85% 71% 77% 64% 74% 88% 78% NA 83% 59%

Site 200rd 700rd Alezza Bend05km ChiefLake ConifexH47 ConifexK14 NorthFraser11 NorthFraser41 NorthFraser50 Olson5km

% Target Samples 18% 52% 37% 42% 12% 19% 48% 42% 16% 42% 20%

Target SVM 61% 91% 69% 64% 44% 37% 81% 79% 18% 71% 43%

Target SVM SMOTE 59% 96% 68% 68% 57% 43% 83% 77% NA 71% 49%
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classification would be manual surveys of small plots (typically a circle with a 3.99m radius, 

hereafter referred to as a 3.99 plot) (Raymer, 2001) and interpolating over the entire land base 

which would still contain errors; or the prohibitively expensive manual survey of every tree 

which while would have 100% accuracy could realistically be accomplished. Another interesting 

avenue for future research would be to look at comparisons of RPAS classification to 3.99 plots, 

as well as looking at a potential for a hybrid approach.  

4.5 What information do these results provide to forest managers? 

 

 Just as important as developing methods for data collection and classification is to 

develop an understanding of what the information can be used for. The methods presented in this 

research classify ground cover by species type, which does have an important distinction from 

classifying trees. Due to the relatively high number of false splits allowed at the segmentation 

stage this is not a method for counting trees, only how much area each species covers. Due to the 

nature of early seral vegetations small size and lack of defined edges in RPAS imagery, the 

orthomosaics produced from a photogrammetry workflow result in an inability to separate from 

grass and brush in the understory. Further the small size of early seral vegetation, results in the 

height being filtered out as noise in the photogrammetry workflow resulting in a lack of data on 

the vertical dimension; that could be used derive tree heights or total volume of biomass. 

 The information collected is however still very useful from an ecological and forest 

management perspective as it does allow for determining a general idea of the forest makeup by 

area; if this is combined with knowledge of how recently logging has occurred it may be possible 

to get good estimates on food supply for ungulates as an example. This information is also useful 

for monitoring changes over time; RPAS is a relatively cost-effective method for collecting data 
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and changes in surface cover vegetation over time can provide indicators of how the forest is 

developing.  

 This methodology also allows for a more holistic data collection, while in some ways the 

need to classify every type of vegetation to produce accurate models could be a disadvantage in 

some cases. The collection of information on every type of vegetation instead of just 

merchantable timber for example could lead to data sets that can be used for multiple aspects of 

forest management, including not just how profitable logging could be but also what other 

ecosystem services are provided, and monitoring how much biodiversity is present in our forests.  

4.6 Framework for evaluation 

 

 The technologies used in remote sensing continue to advance; and have done so since the 

beginning of this research. As new approaches are implemented into working processes, they 

will continually have room for improvement with modern advancements. This demonstrates the 

need for processes in place that can be used to evaluate these new advancements in a timely 

manner providing for faster integrations. This research should not be understood as a prescriptive 

method for the classification; but rather a framework for considering how the tools can be 

applied.  

 While working on this research early on it became clear there is not a simple and 

definitive way for saying how good the segmentation of an image is. One of the primary factors 

for this is that different problems may be more affected by different types of errors. The optimal 

segmentation is the segmentation that produces the highest accuracy classification. The most 

trivial solution to this problem would be to train models-based segmentations were the 

parameters used to generate the segments spanned the range of possibilities. However, given the 

computational time needed to train machine learning algorithms, combining all the potential 
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parameters of both segmentation and classification would be nearly impossible to compute with 

current technology. For this reason, these two steps were decoupled.  

 Providing a quantitative metric for scoring the segmentation is a critical piece to 

producing automated training pipelines. As spatial and spectral resolutions change with different 

sensors different hyper-parameters are needed to produce optimal results. Determining a 

consistent way of weighing the importance of the different error measurements such as false 

splits and false merges is essential for performing fair comparisons between sensors.  
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Appendix 

 
Appendix A | List of all species recorded in data collection. 

Latin Name sp_code Common Name Class 

Amelanchier alnifolia Aa Saskatoon plant 

Aruncus dioicus Ad Goat's Beard plant 

Acer glabrum Ag Douglas Maple deciduous 

Alnus sp Al Alder deciduous 

Anaphalis margaritacea Am Pearly Everlasting plant 

Aralia nudicaulis An Wild Sarsaparilla plant 

Actaea rubra Ar Baneberry plant 

Arctostaphylos uva-ursi Auu Kinnikinnick plant 

Cornus canadensis Cc Bunchberry plant 

Crataegus douglasii Cd Black Hawthorn plant 

Castilleja miniata Cm Red Paintbrush plant 

Corylus cornuta  Coco Beaked Hazelnut plant 

Cornus stolonifera Cs Red-osier Dogwood plant 

Disporum hookeri Dh Hooker's Fairybells plant 

Epilobium angustifolium Ea Fireweed plant 

Equisetum sp Eq Horsetail plant 

Geocaulon lividum Gl Bastard Toad-flax plant 

Heracleum lanatum Hl Cow-parsnip plant 

Juniperus communis Jc Common Juniper plant 

Lysichiton americanum La Skunk Cabbage plant 

Linnaea borealis Lb Twinflower plant 

Ledum groenlandicum Lg Labrador Tea plant 

Lonicera involucrata Li Black Twinberry plant 

Lupinus sp Lu Lupine plant 

Lycopodium annotinum Lya Stiff Clubmoss plant 

Mitella nuda Mn Common Mitrewort plant 

Paxistima myrsinites Pm Falsebox plant 

Petasites palmatus Pp Palmate Coltsfoot plant 

Rosa acicularis Ra Prickly Rose plant 

Rubus idaeus Ri Red Raspberry plant 

Ribes lacustre Rl Black Gooseberry plant 

Rubus parviflorus Rp Thimbleberry plant 

Symphoricarpos albus Sa Common Snowberry plant 

Streptopus amplexifolius Sap Clasping Twistedstalk plant 

Sambucus racemosa Sar Red Elderberry plant 

Spiraea betulifolia Sb Birch-leaved Spirea plant 

Shepherdia canadensis Sc Soopolallie plant 
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Spiraea douglasii ssp. 

menziesii 

Sd Douglas Spirea (pink / 

hardhack) 

plant 

Smilacina racemosa Sr False Solomon's-seal plant 

Sorbus sp Ss Mountain-ash plant 

Viburnum edule Ve Highbush-cranberry plant 

Vaccinium membranaceum Vm Black Huckleberry plant 

Veratrum viride Vv Indian Hellebore plant 

Salix sp W Willow deciduous 

Populus balsamifera Ac Cottonwood deciduous 

Populus tremuloides At Trembling Aspen deciduous 

Abies lasiocarpa Bl Subalpine Fir conifer 

Betula papyrifera Ep Paper Birch deciduous 

Pseudotsuga menziesii Fd Douglas-fir conifer 

Pinus contorta Pl Lodgepole Pine conifer 

Picea glauca x engelmannii Sx Hybrid White Spruce conifer 

 

 

Latin Name sp_code Common Name Class    
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Aruncus dioicus Ad Goat's Beard plant    
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Alnus sp Al Alder deciduous   

Anaphalis margaritacea Am Pearly Everlasting plant    

Aralia nudicaulis An Wild Sarsaparilla plant    

Actaea rubra Ar Baneberry plant    

Arctostaphylos uva-ursi Auu Kinnikinnick plant    

Cornus canadensis Cc Bunchberry plant    

Crataegus douglasii Cd Black Hawthorn plant    

Castilleja miniata Cm Red Paintbrush plant    

Corylus cornuta  Coco Beaked Hazelnut plant    

Cornus stolonifera Cs Red-osier Dogwood plant    

Disporum hookeri Dh Hooker's Fairybells plant    

Epilobium angustifolium Ea Fireweed plant    

Equisetum sp Eq Horsetail plant    

Geocaulon lividum Gl Bastard Toad-flax plant    

Heracleum lanatum Hl Cow-parsnip plant    

Juniperus communis Jc Common Juniper plant    

Lysichiton americanum La Skunk Cabbage plant    

Linnaea borealis Lb Twinflower plant    

Ledum groenlandicum Lg Labrador Tea plant    

Lonicera involucrata Li Black Twinberry plant    

Lupinus sp Lu Lupine plant    

Lycopodium annotinum Lya Stiff Clubmoss plant    
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Mitella nuda Mn Common Mitrewort plant    
 

Appendix B | Site Attributes 

Site 200rd_13km 700rd_28km alezza_lake bend_0-5km chief_lake_site_1 conifex_h47 conifex_k14 north_fraser_11km north_fraser_41km north_fraser_50km north_olson_5km 

SP_CD_1 Pl Cs Sx Sx Pl Li Bl Sx Ri Sx Bl 

SP_COUNT_1 1267 399 791 251 969 106 104 1153 118 163 309 

SP_PCT_1 32.97 31.72 42.01 49.51 22.6 22.75 28.97 41.52 21.11 44.17 32.39 

SP_CD_2 At Sx Ep Ep Fd Bl W Ep Li Ep Pl 

SP_COUNT_2 564 288 337 159 770 88 88 751 104 91 252 

SP_PCT_2 14.68 22.89 17.9 31.36 17.96 18.88 24.51 27.04 18.6 24.66 26.42 

SP_CD_3 Li Ep W W Al Al At W Mixed W Fd 

SP_COUNT_3 389 221 198 49 555 75 66 225 46 43 121 

SP_PCT_3 10.12 17.57 10.52 9.66 12.95 16.09 18.38 8.1 8.23 11.65 12.68 

CON_COUNT 1708 373 976 257 2189 126 129 1386 9 174 742 

CON_PCT 44.44 29.65 51.83 50.69 51.06 27.04 35.93 49.91 1.61 47.15 77.78 

DECD_COUNT 1035 287 587 226 1092 146 161 1048 87 142 193 

DECD_PCT 26.93 22.81 31.17 44.58 25.47 31.33 44.85 37.74 15.56 38.48 20.23 

PLANT_COUNT 1100 598 320 24 1006 194 69 343 463 53 19 

PLANT_PCT 28.62 47.54 16.99 4.73 23.47 41.63 19.22 12.35 82.83 14.36 1.99 

Tree_size 0.849268 1.044152 1.021664 0.0872799 1.265636 0.901288 0.998359 0.912881 1.538062 1.279441 1.111404 

Tree_size_variation 2.498069 2.47825 5.773248 5.26019 5.97062 3.355597 4.203311 1.617215 6.820703 5.500881 3.99158 

tree_count 3843 1258 1883 507 4287 466 359 2777 559 369 954 

AVG_ELEVATION 714 713 758 577 674 1118 1009 596 522 492 732 

Var_ELEVATION 1.756 16.778 6.424 9.331 10.454 4.981 7.082 7.693 3.93 5.405 3.118 

 

Appendix C | SLIC Site-Specific Hyper Parameters 

Metric Site Score Compactness Edges/ha 

1 200rd_13km -0.16414 0.003052 13300 

700rd_28km -0.11134 0.003052 12700 

alezza_lake -0.23842 0.390625 13600 

bend_0-5km -0.07174 6.25 13600 

chief_lake_site_1 -0.12559 0.003052 13700 

conifex_h47 -0.05464 0.001526 10100 

conifex_k14 -0.02676 0.003052 13700 

north_fraser_11km -0.15121 0.003052 12700 

north_fraser_41km -0.14689 0.003052 12600 

north_fraser_50km -0.09012 0.001526 13900 

north_olson_5km -0.06955 0.001526 13400 

2 200rd_13km -0.67233 0.003052 1800 

700rd_28km -0.43038 0.003052 1500 

alezza_lake -0.72822 0.006104 3000 

bend_0-5km -0.48668 0.024414 1000 

chief_lake_site_1 -1.14613 0.001526 500 

conifex_h47 -0.25366 0.001526 1600 

conifex_k14 -0.14643 0.001526 1400 

north_fraser_11km -0.47346 0.003052 3800 

north_fraser_41km -0.4463 0.001526 500 

north_fraser_50km -0.29921 0.001526 500 

north_olson_5km -0.22939 0.001526 500 

3 200rd_13km -0.3148 0.003052 5200 

700rd_28km -0.22408 0.003052 3800 

alezza_lake -0.47856 0.012207 5500 

bend_0-5km -0.28838 0.195313 2000 

chief_lake_site_1 -0.6889 0.003052 1100 

conifex_h47 -0.10666 0.001526 3500 

conifex_k14 -0.0451 0.001526 2400 

north_fraser_11km -0.22789 0.003052 8700 

north_fraser_41km -0.4463 0.001526 500 

north_fraser_50km -0.29921 0.001526 500 

north_olson_5km -0.22939 0.001526 500 

4 200rd_13km -0.3148 0.003052 5300 

700rd_28km -0.1645 0.003052 6500 

alezza_lake -0.47856 0.012207 5500 

bend_0-5km -0.21667 0.006104 3200 

chief_lake_site_1 -0.6889 0.003052 1100 

conifex_h47 -0.09455 0.001526 4800 

conifex_k14 -0.03739 0.572344 2400 

north_fraser_11km -0.22789 0.003052 8200 

north_fraser_41km -0.4463 0.001526 500 

north_fraser_50km -0.29921 0.001526 500 

north_olson_5km -0.22939 0.001526 500 
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Appendix D | Quick Shift Site-Specific Hyperparameters 

Metric Site Score Ratio Kernel Size Sigma 

1 200rd_13km -0.11529 0.9 1 1 

700rd_28km -0.0923 0.6 1 5 

alezza_lake -0.10861 0 1 5 

bend_0-5km -0.03424 0.5 1 1 

chief_lake_site_1 -0.07106 0.9 1 3 

conifex_h47 -0.03572 0.4 1 1 

conifex_k14 -0.05452 0.8 1 3 

north_fraser_11km -0.07675 0.1 1 1 

north_fraser_41km -0.11377 0.3 1 5 

north_fraser_50km -0.07619 0.6 1 3 

north_olson_5km -0.05211 0.7 1 3 

2 200rd_13km -0.82122 0.9 5 3 

700rd_28km -0.55086 0.9 5 11 

alezza_lake -0.95105 0.6 5 9 

bend_0-5km -0.33437 0.4 5 9 

chief_lake_site_1 -0.50668 0.1 5 11 

conifex_h47 -0.4337 0.7 5 1 

conifex_k14 -0.37687 0.8 5 5 

north_fraser_11km -0.82614 0.1 5 3 

north_fraser_41km -0.33876 0.9 5 1 

north_fraser_50km -0.22037 0.9 5 1 

north_olson_5km -0.16153 0.9 5 7 

3 

 

 

 

 

 

 

 

 

  

200rd_13km -0.43327 0.6 3 1 

700rd_28km -0.3214 0.6 3 9 

alezza_lake -0.52079 0.5 3 9 

bend_0-5km -0.33437 0.4 5 9 

chief_lake_site_1 -0.50668 0.1 5 11 

conifex_h47 -0.19262 0.6 3 3 

conifex_k14 -0.37687 0.8 5 5 

north_fraser_11km -0.40515 0.1 3 3 

north_fraser_41km -0.33876 0.9 5 1 

north_fraser_50km -0.21943 0.8 5 1 

north_olson_5km -0.16153 0.9 5 7 

4 200rd_13km -0.43373 0.5 3 1 

700rd_28km -0.32147 0.4 3 9 

alezza_lake -0.52075 0.5 3 7 

bend_0-5km -0.33426 0.8 5 11 

chief_lake_site_1 -0.50668 0.1 5 11 

conifex_h47 -0.19829 0.3 3 3 

conifex_k14 -0.20615 0.8 3 3 

north_fraser_11km -0.40515 0.1 3 3 

north_fraser_41km -0.33876 0.9 5 1 

north_fraser_50km -0.21943 0.8 5 1 

north_olson_5km -0.16153 0.9 5 7 
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Appendix E | Felzenszwalb’s Efficient Graph Site-Specific Hyperparameters 

Metric Site Score Scale 

1 200rd_13km -0.13814 0.0425 

700rd_28km -0.10638 0.1025 

alezza_lake -0.14963 0.0775 

bend_0-5km -0.05281 0.05 

chief_lake_site_1 -0.08896 0.0325 

conifex_h47 0.00665 0.2375 

conifex_k14 -0.01532 0.1825 

north_fraser_11km -0.09844 0.1075 

north_fraser_41km -0.12722 0.055 

north_fraser_50km -0.08017 0.06 

north_olson_5km -0.05455 0.03 

2 200rd_13km -3.29638 0.28 

700rd_28km -2.92586 0.4275 

alezza_lake -3.4425 0.505 

bend_0-5km -2.77591 0.585 

chief_lake_site_1 -6.61233 0.995 

conifex_h47 -2.34211 0.575 

conifex_k14 -2.1713 0.505 

north_fraser_11km -2.8154 0.615 

north_fraser_41km -8.6102 0.9975 

north_fraser_50km -8.78572 0.9925 

north_olson_5km -8.96649 0.985 

3 200rd_13km -1.68415 0.2025 

700rd_28km -1.4949 0.3125 

alezza_lake -1.6962 0.3125 

bend_0-5km -1.42957 0.3 

chief_lake_site_1 -3.35091 0.345 

conifex_h47 -1.13341 0.4475 

conifex_k14 -1.11794 0.3625 

north_fraser_11km -1.44071 0.31 

north_fraser_41km -4.10873 0.9975 

north_fraser_50km -4.0638 0.9925 

north_olson_5km -4.15368 0.985 

4 200rd_13km -2.16572 0.225 

700rd_28km -2.13797 0.31 

alezza_lake -2.15994 0.3575 

bend_0-5km -2.05404 0.2925 

chief_lake_site_1 -3.68367 0.43 

conifex_h47 -1.84296 0.37 

conifex_k14 -1.85426 0.275 

north_fraser_11km -2.06405 0.31 

north_fraser_41km -4.54648 0.9975 

north_fraser_50km -4.53363 0.9925 

north_olson_5km -4.62563 0.985 
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Appendix F | Mean Shift Site Scores 

Metric Site Score 

1 200rd_13km -0.16414 

700rd_28km -0.11134 

alezza_lake -0.23842 

bend_0-5km -0.07174 

chief_lake_site_1 -0.12559 

conifex_h47 -0.05464 

conifex_k14 -0.02676 

north_fraser_11km -0.15121 

north_fraser_41km -0.14689 

north_fraser_50km -0.09012 

north_olson_5km -0.06955 

2 200rd_13km -0.67233 

700rd_28km -0.43038 

alezza_lake -0.72822 

bend_0-5km -0.48668 

chief_lake_site_1 -1.14613 

conifex_h47 -0.25366 

conifex_k14 -0.14643 

north_fraser_11km -0.47346 

north_fraser_41km -0.4463 

north_fraser_50km -0.29921 

north_olson_5km -0.22939 

3 200rd_13km -0.3148 

700rd_28km -0.22408 

alezza_lake -0.47856 

bend_0-5km -0.28838 

chief_lake_site_1 -0.6889 

conifex_h47 -0.10666 

conifex_k14 -0.0451 

north_fraser_11km -0.22789 

north_fraser_41km -0.4463 

north_fraser_50km -0.29921 

north_olson_5km -0.22939 

4 200rd_13km -0.3148 

700rd_28km -0.1645 

alezza_lake -0.47856 

bend_0-5km -0.21667 

chief_lake_site_1 -0.6889 

conifex_h47 -0.09455 

conifex_k14 -0.03739 

north_fraser_11km -0.22789 

north_fraser_41km -0.4463 

north_fraser_50km -0.29921 

north_olson_5km -0.22939 

 

Appendix G | Aggregate Hyperparameters for SLIC 

SLIC Compactness Segments/ha 

Metric 1 0.003051758 13900 

Metric 2 0.003051758 500 

Metric 3 0.003051758 2300 

Metric 4 0.003051758 2300 

 

Appendix H | Aggregate Hyperparameters for QuickShift 

QuickShift Ratio Kernel Sigma 

Metric 1 0.5 1 1 

Metric 2 0.6 5 9 
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Metric 3 0.3 5 9 

Metric 4 0.1 5 5 

 

Appendix I | Aggregate Hyperparameters for F-Graph 

F-Graph Scale 

Metric 1 0.045 

Metric 2 0.635 

Metric 3 0.5 

Metric 4 0.4825 

 

 

Appendix J  | Classification Accuracy of Quick Shift Segments on individual sites. 
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Appendix K | Classification Accuracy of SLIC Segments on individual sites. 

                                              

                                                          

                                      

                           

         

 

  

  

  

   

 

  

  

  

   

 

  

  

  

   

           

 
 
 
 
 
 
 

             

   

   

  

   


