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ABSTRACT

In recent years, advancements in dam management and construction have greatly contributed
to improved dam reliability. However, failures still occur due to natural disasters, human error,
and structural deterioration, often leading to severe flash floods. This research presents a GIS-
based framework aimed at assessing the impacts of dam failures, with a primary focus on loss
of life (LOL) estimation. To achieve this, an improved LOL estimation model was proposed
using a dataset of historical dam failures, divided by flood severity and evaluated through
multivariate regression analysis. Key influencing factors—such as flood depth, population
vulnerability, warning time, and evacuation conditions—were systematically weighted using
entropy-based methods, allowing for a more accurate representation of risk levels in different
failure scenarios. The framework integrates GIS spatial analysis with hydraulic modelling to
evaluate potential damages resulting from dam failure. Results from model validation against
historical cases demonstrated that the proposed LOLmodel achieved a strong fit to the observed
data with a coefficient of determination (R²) value of 0.99 for both medium-high severity cases
and for low-severity cases, outperforming conventional models, such as Graham's model. By
integrating LOL prediction with spatial analysis, this framework provides assessment that can
be incorporated into hazard mitigation plans, emergency response plans, and can also be used
to inform insurance policies and risk mitigation strategies.
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1 INTRODUCTION
Flooding, which is one of the most common and destructive natural hazard, is projected to
worsen with climate change, higher sea levels and more intense cyclonic systems (Canadian
Climate Institute, 2024; Sanders, 2007). Some of the most destructive flash floods stem from
dam breaches. Dams play a crucial role in water resources management and offer significant
benefits, including irrigation, flood control, hydropower generation, and water supply (ICOLD,
2011). However, their construction and operation also bring serious challenges. Dam failures
can trigger catastrophic floods, posing risks to human lives, infrastructure, and the environment.
According to Albu et al. (2020), approximately 1–2 dam breaches with fatalities are recorded
worldwide each year, with causes often related to natural disasters, human errors, or degradation
from long-term neglect.
With the increase in safety awareness and the improvement of the concept in dam risk
management, more attention is being given to dam safety and life-threatening risks. This
highlights the urgent need for effective dam breach risk evaluation and the development of
hazard mitigation plans (Li et al., 2019).
Strategies to cope with flooding such as emergency preparedness, levee projects, floodplain
building regulations and insurance all rely on flood predictions. Hence, the effectiveness of
these measures is linked to the quality of flood predictions which depend on reliable modelling.
Hydraulic modelling, a key tool since the 1940s, has evolved significantly since the early 2000s,
especially with the use of GIS for detailed spatial analysis. GIS and hydraulic modelling enable
precise simulation of dam breach scenarios, including dam collapse patterns, flood extents,
water levels, flow rates, and water velocities (Eleutério, 2013). Studies demonstrate that
integrating GIS and hydraulic models facilitates the development of inundation maps and
supports flood risk assessments by mapping potentially affected populations and infrastructure
(Abdalla, 2009; Ghent, 2013).
Loss of Life (LOL) estimation resulting from dam failure is critical for disaster management,
legal accountability, and insurance purposes. By quantifying potential risks, engineers can
identify vulnerabilities, enhance dam design, and aid authorities in developing effective
emergency response strategies, evacuation zones, and resource allocation plans. Notable
models for LOL estimation, such as those by Graham (1999) and more recent developments by
Huang et al. (2017) and Mahmoud et al. (2020), have refined predictions by factoring in flood
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severity, population vulnerability, and preparedness. These advancements, however, still face
limitations in certain regions, outlining the need for continued model refinement.
This project proposes a framework to aid in assessing the consequences resulting from dam
failure. By integrating LOL modelling with GIS and hydraulic modelling, the framework aims
to enhance the predictive accuracy of dam safety assessments. This approach highlights the
importance of modern tools and methodologies in addressing contemporary challenges in dam
safety and disaster preparedness, aiming to provide a foundation for more informed decision-
making and comprehensive risk management.

1.1 RESEARCH NEEDS
Since the first half of the 19th century, research on the effects of dam failure has been ongoing
(Rogers, 1928), but assessment of all impacts has received very little attention. This research is
relevant because it would help in understanding the effects of a dam break. Table 1 provides a
bibliometric analysis of research studies relating to dam failures across various databases and
search parameters. It highlights the scope of research using different search terms, illustrating
the breadth and specificity of available literature. While dam failure research is well-
represented in the literature, studies focusing specifically on the impact and use of GIS are
comparatively sparse. This gap presents an opportunity for further research in integrating GIS
for impact assessment.
Table 1 - Bibliometric Analysis
Search Parameters Web of science Science directdam AND break All fields 4,452 39,646dam AND breakAND impact All fields 972 22,631
dam AND breakAND impactAND GIS

All fields 33 1,736

dam AND breakAND GIS All fields 80 2,052
dam AND break Categories 1,951Water Resources or EngineeringCivil or EnvironmentalSciences or EngineeringEnvironmental or EnvironmentalStudies or Geology.

20,196EnvironmentalScience or Earth andPlanetary Sciences orEngineering
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dam AND breakAND impact Categories 508Water Resources or EngineeringCivil or EnvironmentalSciences or EngineeringEnvironmental or EnvironmentalStudies or Geology.

13,332EnvironmentalScience or Earth andPlanetary Sciences orEngineering orcomputer Sciencedam AND breakAND impactAND GIS
Categories 19Water Resources or EngineeringCivil or EnvironmentalSciences or EngineeringEnvironmental or EnvironmentalStudies or Geology.

1382EnvironmentalScience or Earth andPlanetary Sciences orEngineering orcomputer Sciencedam AND breakAND GIS Categories 48Water Resources or EngineeringCivil or EnvironmentalSciences or EngineeringEnvironmental or EnvironmentalStudies or Geology.

1644EnvironmentalScience or Earth andPlanetary Sciences orEngineering orcomputer Science

1.2 OBJECTIVES
The purpose of this project is to conceptualize an open-source GIS framework for identifying
and evaluating the potential economic, social, and environmental consequences of dam failure.
As a starting point in the development of this framework, an improved loss of life model is
developed, implemented, and tested.

1.3 ORGANIZATION OF THESIS
The thesis structure is as follows:

1. Introduction: This chapter outlines the motivation behind developing a GIS framework
for assessing dam failure impacts, particularly loss of life. It introduces the research
needs, objectives, and scope of the study.

2. Literature Review: This chapter explores existing models and methodologies for
estimating loss of life due to dam failures, and also the current methods used to assess
the economic impacts of dam breaks. It discusses empirical and agent-based models,
their variables, and limitations. The review identifies a need for models that are
adaptable to various regional contexts and addresses limitations in data availability.
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3. An Improved EstimationModel for DamFailure-Induced Loss of Life: This chapter

presents the proposed model in detail. It begins with the failure database, outlining data
collection and processing methods. The methodology here includes classifying
influencing factors, normalizing data, calculating entropy and weights, and conducting
a nonlinear regression analysis to estimate loss of life. Although there is no dedicated
"Methodology" chapter in the thesis, the methodology for this model is contained within
this chapter, detailing steps such as the classification and scoring of factors influencing
life loss. This chapter is an enhanced version of a paper presented at the 2024 Canadian
Society of Civil Engineers (CSCE) Conference and will be submitted to a peer reviewed
journal.

4. GIS Framework to Assess Impacts of Dam Failure: This chapter describes the GIS-
based framework, focusing on data collection, preparation, and hydrodynamic
modelling with HEC-RAS. The methodology section here is specific to implementing
the GIS framework and calculating potential life loss using tools integrated with QGIS.
Results include the development of a plugin that supports loss of life estimation. This
chapter is a modification of a paper presented at the Canadian Dam Association (CDA)
2024 Conference, and now includes the description of a successfully implemented
QGIS plugin, which was not available at the time of the conference.

5. Conclusion: The final chapter presents a general conclusion in addition to those stated
in chapters 3 and 4.

Note that Chapters 3 and 4 each incorporate their own methodology sections, detailing specific
approaches for different aspects of the study rather than having a unified methodology chapter.
This structure allows each chapter to directly address its methodological requirements and
applications in context.
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2 LITERATURE REVIEW
The potential loss of life (LOL) caused by dam breaches has attracted the attention of many
researchers and several methods have been developed that relate to mortality in the inundation
area due to dam failure. Generally, empirical models, developed by regression analysis of
historical dam breach events, were used to establish the functional relationship between the
loss of life and certain key parameters. Brown & Graham (1988) proposed a method for
predicting the LOL based on the analysis of the population at risk (PR) and the warning time
(TW). DeKay & McClelland (1993) proposed a model for estimating the nonlinear relationship
between life loss and population at risk. In a publication by the US Department of Interior,
Graham (1999) added the understanding of the dam break as an influencing factor to propose
a procedure for estimating loss of life. Reiter (2001) proposed the RESCDAM method
introducing the vulnerability of the population, warning efficiency and rescue condition. The
U.S. Department of the interior Bureau of Reclamation (2015) also proposed a new method to
replace Graham’s method of estimating LOL. Although these methods can be used with ease,
they require extensive data, and, therefore, have limited application (Jonkman et al., 2008).
Also, they are not particularly precise because most of the methods do not consider all the
variables/parameters relevant in the estimation of loss of life. However, they are useful as a
screening tool to rank risks (D. Lumbroso et al., 2021). Additionally, the differences in
economic and social conditions of different countries, as well as the discrepancy in the time
span of statistical data, lead to a decline in the accuracy of these models when global usage is
attempted.
Due to the limited applicability of empirical models, physical or agent-based models which
focus on the analysis of the LOL mechanism gradually became research hotspots. Assaf and
Hartford (2002) developed a virtual reality approach (BC Hydro’s Life Safety Model (LSM))
to deal with the problems of failure consequence analysis and emergency planning. This LSM
allows the behaviour of the population at risk to be represented, as it simulates the interaction
of people with the modelled flood. This allows various scenarios to be investigated that could
help reduce the risk to people (e.g., improvements in warning time and development of new
evacuation routes). The LSM has been used to assess the potential LOL and propose effective
emergency management measures for a number of historical dam failures (Lumbroso et al.,
2011; 2021) - Malpasset dam, Canvey Island and Brumadinho tailings dam).
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The U.S. Army Corps of Engineers (USACE) and the Australian National Committee on Large
Dams (ANCOLD) supported the establishment of a GIS model for estimating dam failure and
other life-loss calculation models by Aboelata et al., (2003; 2008). Aboelata (2008) LIFESim
model is designed to simulate the entire warning and evacuation process for estimating potential
life loss. Lee (2003) estimated life and economic loss by analysing dam-break related
parameters, such as warning time and people’s risk awareness by performing uncertainty
analysis using Monte Carlo simulation.
Agent-based models can simulate different possible scenarios caused by floods and make
effective safety decisions. However, these models also have high data requirements which
resulted in comprehensive evaluation models recently receiving more attention. The
comprehensive evaluation models combine the knowledge of both empirical models and
physical models. Jonkman et al. (2008, 2018) developed a new function to estimate the LOL
caused by flood disasters in low-lying areas. Their proposed approach takes into account flood
characteristics, such as water depth, rise rate and flow velocity; estimation of the number of
people exposed (including the effects of warning, evacuation and shelter); and assessment of
the mortality amongst those exposed to the flood.
Ehsan (2009) also developed an improved method for LOL estimation by introducing new
criteria for defining flood severity using a geometric aggregate (GA). Considering more factors
affecting the LOL and the relationships among them, Peng & Zhang (2012) constructed the
human risk analysis model (HURAM) based on Bayesian network theory in order to take into
account more important parameters and their inter-relationships in a systematic structure,
include the uncertainties of these parameters, incorporate information from previous studies
and historical data, and to also update the predictions using Bayes’ theorem based on available
information in specific cases.
Based on data obtained from 14 dam failure cases in China, (Huang et al., 2017) proposed a
new method for estimating the LOL using a three-dimensional stratified sampling method.
Their method led to better results, when compared to observed values, than those obtained
through Graham’s method and Dekay and McClelland’s method.
Li et al. (2019) analysed the weights of the primary factors that affect the consequences of dam
breaks, using set pair analysis and the variable fuzzy set theory. Ge et al. (2019, 2020)
constructed a rapid evaluation model based on catastrophe theory and used interval theory to



7
determine the possible upper and lower limits of LOL caused by dam breaches, rather than a
single value. These comprehensive evaluation models focus on the innovation and application
of mathematical methods, with a significantly improved level of accuracy when compared with
other models. Ge et al. (2022) also modified pre-existing models and aimed to further account
for evacuation potential, such as the time required for evacuation and the effective evacuation
positions, while estimating LOL caused by a dam breach.
The establishment of an accurate flood-induced loss estimation method involves several issues
due to the complexity of components, especially the nature of damage caused by flooding
(Dutta et al., 2003). Several studies present detailed modelling of direct losses caused by
flooding (Van Der Veen, 2004). However, due to incomplete, inconsistent, or unreported
information, the scope/extent of losses is still not fully understood (Meyer et al., 2013; Van Der
Veen, 2004). Most of the studies focused on direct tangible losses which can be estimated using
replacement costs of damaged assets that can be monetized (Merz et al., 2004; Natho &
Thieken, 2018; Yang et al., 2018). In assessing the economic consequence from a dam break,
current literature primarily suggests two categories: those based on mathematical methods, and
the use of GIS & remote sensing technology, both discussed in the following paragraphs.
The following studies employed evaluation models based on mathematical methods. Tang et
al. (1992) investigated the data of several units in residential areas, industrial areas, agricultural
areas and commercial areas of Bangkok, Thailand, using multiple regression analysis to
estimate the flood-damage functions in terms of depth and flood duration. (Oliveri et al. (2000)
proposed an empirical frequency–damage relationship for flood mitigation measures in strongly
urbanised drainage areas and also used the structural replacement cost to estimate the average
value of a property. Middelmann-Fernandes (2010) studied a combination of techniques to
assess the economic cost caused by floods. Notaro et al. (2014) evaluated the uncertainty of
water depth-damage function to calculate the flood damage in Cappalermo, Italy. The United
Nations International Strategy for Disaster Reduction, UNISDR (2016), now known as
UNDRR (United Nations Office for Disaster Risk Reduction) proposed a methodology to
estimate the direct economic losses from natural hazards. The main point of the UNDRR’s
method is to provide a simple approach that allows for the estimation of direct economic losses
for a wide range of disasters, based on documented physical damage (i.e., number of affected
buildings, amount of destroyed agricultural area, number of livestock lost, etc.). (Natho et al.
(2018) adapted and calibrated the UNDRR’s model for Germany (as model M-DELENAH),
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and it was concluded that: the UNDRR method underestimates the losses in general and that
loss documentation needs to be improved to fill in the data gaps.
The following studies employed GIS and remote sensing technology for delineation of flood
inundated areas for loss estimation. De Jonge et al. (1996) developed a flood hazard assessment
model, simulated the flood depth and damage assessment using GIS technology, and
established a flood disaster loss assessment model. The model focused on the socio-economic
impacts of flooding, not on the ecological impacts. Haq et al. (2012) combined GIS with socio-
economic data, developed a procedure for mapping inundated areas to determine the flooded
range, estimate the affected land use/land cover types and the number of people affected.
Mohammadi et al. (2014) proposed a model to estimate the economic amount of flood damage
using flood depth as the assessment index. The assessment of existing literature points to a
number of challenges related to data availability, access and quality.

2.1 LOL Estimation Model Review
The Brown & Graham (1988) procedure for estimating loss of life from a dam failure uses

equations that were derived from the analysis of 24 dam failures and major flash floods. The
warning time which was the major factor in calculating the loss of life is the time between the
initiation of an evacuation warning and the arrival of the floodwater to the population at risk.
This is presented as:
When warning time is less than 15 minutes:

𝐿𝑜𝑠𝑠 𝑜𝑓 𝐿𝑖𝑓𝑒 =  .5(𝑃𝐴𝑅) 1
When warning time is between 15 and 90 minutes:

𝐿𝑜𝑠𝑠 𝑜𝑓 𝐿𝑖𝑓𝑒 = 𝑃𝐴𝑅.6 2
When warning time is more than 90 minutes:

𝐿𝑜𝑠𝑠 𝑜𝑓 𝐿𝑖𝑓𝑒 =  .0002(𝑃𝐴𝑅) 3
𝑃𝐴𝑅 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘
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Dekay and McClelland (1993) further explored the work of Brown & Graham (1988),

by including a few events that were not used by the latter. They proposed that loss of life is
greater in situations where the flood waters are deep and swift. DeKay and McClelland have a
separate equation for high and low force conditions.
Under high force conditions (where 20% or more of flooded residences are either destroyed or
heavily damaged) their model is given by equation 4.

𝐷𝑒𝑎𝑡ℎ𝑠 =  𝑃𝐴𝑅
1 + 13.277(𝑃𝐴𝑅0.440)𝑒[2.982(𝑊𝑇) − 3.790] 4

Under low force conditions, i.e., where less than 20% of flooded residences are either destroyed
or heavily damaged their model is expressed by equation 5.

𝐷𝑒𝑎𝑡ℎ𝑠 =  𝑃𝐴𝑅
1 + 13.277(𝑃𝐴𝑅0.440)𝑒[0.759(𝑊𝑇)] 5

When dam failure warnings do not precede the arrival of dam failure flooding in an area,
warning time, WT is zero.
DeKay and McClelland (1993) cautioned against using their equations for dams that fail
without warning above areas with very large populations at risk.

Graham (1999) proposed a new model seeking to correct the weaknesses in the Brown
and Graham (1988), and the DeKay and McClelland (1993) equations. Graham provided
fatality rates based on the severity of the flood, warning time and how people respond to the
warning. He considered different categories of flood severity and proposed a method that can
be used to separate low severity flooding from medium severity flooding by using the DV (level
of destructiveness) parameter. (equation 6).

𝐷𝑉 =  𝑄𝑑𝑓−𝑄2.33𝑊𝑑𝑓 6
Where,
Qdf is the discharge at a particular site caused by dam failure (m³/s).
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Q2.33 (m³/s) is the mean annual discharge at the same site, specifically a discharge level that has
a recurrence interval of approximately 2.33 years. This interval is chosen because it closely
aligns with the median discharge for many river systems, which means it generally represents
the flow level that can be considered "normal" or within the channel’s safe capacity under
typical conditions. This discharge can be easily estimated, and it is an indicator of the safe
channel capacity. As discharges increase above this value, there is a greater chance that it will
cause overbank flooding.
Wdf (m) is the maximum width of flooding caused by dam failure at the same site.
DV is the general level of destructiveness that would be caused by the flooding and not
necessarily representative of the depth and velocity and should provide a good indication of the
severity of the flooding. As the peak discharge from dam failure increases, the value of DV
increases. As the width of the flooding area narrows, the value of DV again increases.
Low flood severity is assumed when structures are exposed to depths less than 10 ft (3.048 m)
and DV is less than 50 ft2/s (4.6 m2/s). Medium flood severity is assumed when depth is greater
than 3.048 m and DV is more than 4.6 m2/s.
No guidance was provided for high flood severity level.

Reiter (2001) proposed the RESCDAM LOL Estimation Method, building on Graham’s
(Graham 1999) method but including more factors such as vulnerability factor, living
environment factor and rescue factor, as given by equation 7.

𝐿𝑂𝐿 = 𝑃𝐴𝑅 × 𝐹𝐴𝑇𝐵𝐴𝑆𝐸 × 𝐼𝑀𝑃𝐴𝐶𝑇 × 𝐶𝑂𝑅𝑅𝐹𝐴𝑇 7
Where
𝐿𝑂𝐿 = Loss of life caused by dam break flood.
PR = Population at risk.
𝐹𝐴𝑇𝐵𝐴𝑆𝐸= Base fatality rate of PR, mean values from Graham (1999);
𝐼𝑀𝑃𝐴𝐶𝑇 = Additional impact factor to account for flood severity impact (SEV), living
environment impact (LOC) and vulnerability impact (VUL) derived in the RESCDAM LOL
method using public population register information on PR.
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CORRFAT = Correction factor to take the warning efficiency and possible emergency/rescue
action into account in each sub-area Graham (1999).

Jonkman et al. (2008) proposed three general steps to estimate loss of life:
· Analysis of flood characteristics, such as water depth, flow velocity.
· Estimation of the number of people exposed (including the effects of warning, evacuation

and shelter).
· Assessment of the mortality amongst those exposed to the flood.
The number of people exposed to the floodwaters (NEXP) can be estimated by equation 8.

𝑁𝐸𝑋𝑃 = 1 − 𝐹𝐸 1 − 𝐹𝑆 𝑁𝑃𝑅 − 𝑁𝑅𝐸𝑆 8
𝑁𝑃𝑅 = The number of people at risk before the event.
𝐹𝐸= The fraction of the population that is evacuated out of the area before the flood.
𝐹𝑆= The fraction of the (remaining) population that has the possibility to find shelter.
𝑁𝑅𝐸𝑆= The number of people rescued.

Mortality is the number of fatalities divided by the number of exposed people. Mortality
functions can be used to relate to flood characteristics (e.g. water depth) and other important
factors such as the collapse of buildings. The number of fatalities (𝑁) can be estimated by
equation 9.

𝑁 = 𝐹𝐷𝑁𝐸𝑋𝑃 9
𝐹𝐷– flood mortality
In the determination of mortality amongst those exposed to the flood, Jonkman proposed an
approach in which hazard zones are distinguished. Three hazard zones were identified for a
breach of a flood defense protecting a low-lying area.
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i. Breach zone

Total destruction of masonry, concrete and brick houses occurs if the product of water depth
and flow velocity simultaneously exceeds the criteria given in equation 10.

𝐹𝐷 = 1 if ℎ𝑣 ≥  7 𝑚2/𝑠 and 𝑣 ≥   2 𝑚 𝑠  10
ℎ𝑣 = depth-velocity product
𝑣 = flow velocity
ii. Zone with rapidly rising waters

This zone of concern as people on higher floors or buildings will be endangered due to higher
water depths from the rapid rise of water. All the points categorized as being in the rapidly
rising zone had rise rates of 0.5 m/hr and the derived function is applicable for situations with
a rise rate above this threshold value.
Mortality in the zone with rapidly rising water:

𝐹𝐷 ℎ =  Ф𝑁( ln ℎ − µ𝑁µ𝑁 ) 11
if (ℎ𝑣  2.1 𝑚 and 𝑤   0.5ℎ𝑟) and (ℎ𝑣 <  7 𝑚2 𝑠  𝑜𝑟 𝑣 <   2 𝑚 𝑠)
where
FN is the cumulative normal distribution
𝑤 = rate of rise of water (m/hr)
mN = 1.46 is the average of the normal distribution
sN = 0.28 is the standard deviation of the normal distribution.
iii. Remaining zone

Account for fatalities outside the breach and rapidly rising zones. Mortality in the remaining
zone:

𝐹𝐷 ℎ =  Ф𝑁( ln ℎ − µ𝑁µ𝑁 ) 12
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mN = 7.60
sN = 2.75
if (𝑤 <  0.5 𝑚/ℎ  𝑜𝑟 (𝑤  0.5𝑚/ℎ 𝑎𝑛𝑑 ℎ <  2.1 𝑚)) and (ℎ𝑣 <  7 𝑚2 𝑠  𝑜𝑟 𝑣 <   2 𝑚 𝑠)

Ehsan (2009) improved criteria for defining flood severity using a geometric aggregate
(GA) as shown in equation 13.
𝐿𝑂𝐿𝑖 = PR𝑖 × 𝐹𝐴𝑇𝐵𝐴𝑆𝐸 × 𝐹𝑆𝑉 × 𝐹𝑎𝑔𝑒 × 𝐹𝑚𝑡 × 𝐹𝑠𝑡 × 𝐹ℎ × 𝐹𝑤𝑎𝑟 × 𝐹𝑒𝑣 13
Where
𝐿𝑂𝐿𝑖= Loss of life at a particular location “i” downstream of the dam
𝑃𝑅𝑖= Population at risk at a particular location “i” downstream of the dam
𝐹𝑆𝑉: Flood severity factor (in terms of the probability of life loss due to collapse of buildings).

High Severity very likely 1.0
Medium Severity unlikely 0.3
Low Severity very unlikely 0.1

𝐹𝑎𝑔𝑒: Age risk factor depending on different age groups in PR; three age groups have been
defined, number of people in group A (<10yrs & >=65yrs), B (10-15) yrs and C (15-64) yrs.
This factor will change from 1.0 with respect to the likelihood of different age groups
𝐹𝑚𝑡: Material risk factor. For flood severity indication, materials that are frequently used for
house construction such as concrete, bricks, masonry etc.

𝐹𝑚𝑡 = 1 × 𝑋% + 1.5 × 𝑌% (general form) 14
Where
X = % of other types of houses
Y = % of very low strength houses
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𝐹𝑠𝑡: Storey risk factor: It is assumed that all types of houses (single and more storeys) will be
damaged during high flood severity, because upper storeys can also collapse due to the failure
of the ground storeys. For medium and low severity cases, more storey houses could provide
refuge to people in upper storeys and reduce the overall risk. So, the suggested relation for the
storey risk factor is,

𝐹𝑠𝑡 = 1 (for high severity and all types of houses) 15
𝐹𝑠𝑡 = 1 − 𝑆% (for medium and low severity) 16

S = % of more storey houses
𝐹ℎ: Health risk factor: An average value of 1.0 was assumed with FATBASE for normal healthy
PR. The overall risk would increase with respect to the percentage of disabled persons within
the inundation area.

𝐹ℎ = 1 × 𝐻% + 1.25 × 𝐷% (general form) 17
H = % of PR with avg. health
D = % of disabled PR

𝐹𝑤𝑎𝑟= Warning factor depending on the initiation of warning and flood travel time. Interpreting
Graham (1999) warning definitions:
Warning time Flood severity understanding FwarNo No 1Some (15-60 min) Vague/unclear 0.7Adequate (> 60 min) Precise/clear 0.3

𝐹𝑒𝑣= Ease of evacuation factor: Depends on the warning efficiency and the available evacuation
facilities, transportation. In principle, this factor would be different for urban and rural areas.
At the moment, no empirical value or guideline is available for ease of evacuation. So, this
factor has been defined quantitatively as the likelihood of no rescue for all combinations of
population at risk (PR) with respect to warning efficiency.

Warning time Ease of evacuation FevNo No 1Some (15-60 min) Some 0.7Adequate (> 60 min) Good 0.3
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Definition of Parameters/Variables, based on a combination of the various references cited
earlier.

· Warning Time: The time available to alert potentially affected individuals before the dam
failure occurs. Measured in minutes or hours.

· Dam Size: The size of the dam, specifically its height and capacity to store water, is a crucial
factor in determining the potential magnitude of a dam failure. The height and structural
integrity of the dam influence the mode of failure, such as overtopping or breach.

· Inundation Mapping: Inundation mapping refers to the process of creating maps that depict the
areas likely to be flooded in the event of a dam failure. These maps are based on hydraulic and
hydrological modelling, taking into account various factors like topography, flow velocities,
and floodwater depths. Inundation maps provide critical information about the extent and
spatial distribution of floodwaters, helping emergency responders and communities to
understand which areas are at risk and plan evacuation routes accordingly.

· Velocity of Flow: The speed at which the floodwater moves, impacting evacuation and safety
measures. Mostly Measured in meters per second (m/s).

· Water Depth: Measured in meters (m), it specifies the depth of floodwater, which influences
the severity of the impact.

· Flood severity refers to the extent or magnitude of the flood caused by a dam failure. It is a
measure of how intense or severe the flood event is, and it plays a critical role in determining
the potential impact on human lives. The severity of the flood can be influenced by various
factors, including the volume of water released during the dam failure, the rate of flow, the
topography of the downstream area, the presence of natural or man-made obstacles that may
hinder the flow, and the characteristics of the floodwater (e.g., presence of sediments or debris).
The higher the severity of the flood, the greater the potential risk to human life and property in
the affected areas.

· Population at Risk (PR): The number of people living in the downstream area of the dam who
could be affected.

· Activities of PR: Assessed by categorizing the nature of activities (residential, industrial,
recreational, etc.) in the downstream area that could increase the vulnerability of the
population.

· Monitoring Capabilities: Based on the ability to monitor dam conditions and issue timely alerts.
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· Flood Warning System: The existence and effectiveness of a system to warn downstream

communities about the potential dam failure.
· Warning Rate, Extent, and Effect: Measured by determining how many people receive

warnings, how widespread the warning coverage is, and the impact of the warning on
evacuation.

· Prior Awareness: Assessed through surveys or interviews to gauge the level of awareness
among the affected population about the potential risks.

· Psychological Impressions: it examines how individuals perceive and respond to the threat,
which can impact evacuation decisions.

· Personal Mobilization Time: The time it takes for individuals to respond to the warning and
begin evacuating, Measured in minutes.

· Evacuation Rate/Ease of Evacuation: Measured by calculating the speed and effectiveness
of evacuation processes.

· Topography: Assessed through geographical surveys and mapping, it relates to the physical
features of the terrain, which can affect floodwater flow and evacuation options.

· Urban vs. Rural: Assessed by categorizing areas into urban and rural, which may influence
the density of population and infrastructure.

· Age: The age distribution of the population at risk, as vulnerability can vary with age.
· Time of Day: The time when the dam failure occurs, affecting the readiness and response

of the population.
· Environmental Conditions: refer to the prevailing weather, hydrological, and ecological

factors that exist at the time of a dam failure. These conditions can significantly influence
the dynamics of the flood, the speed and direction of water flow, and the extent of damage
caused. Environmental conditions may include rainfall patterns, soil saturation levels, wind
speed, temperature, and the presence of other natural hazards in the area (e.g., earthquakes
or landslides). Understanding these conditions is crucial for accurate modelling and
prediction of the flood's behaviour and the potential impacts on downstream communities.

Tabular Comparison of Variables for Estimating Loss of Life
Table 2 offers a representative overview of significant variables utilized by different LOL
models. While some of these variables were acknowledged as important by the authors, they
may not have been directly utilized in their model (primarily due to insufficient data in many
instances).
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Table 2 - Review of variables for estimating loss of life by different authors. (I = identified by the author(s), M= used in the model)Brown andGraham(1988)

DeKay &McClelland(1993)
Graham(1999) Reiter(2001) Assaf(2002) Aboelata etal., (2003);Aboelata &Bowles(2008)

Lee,(2003) Jonkman et al.(2008)

Variable I M I M I M I M I M I M I M I MDam/reservoir/breach size * * * * * * *Inundation mapping * * * * * *Depth of flooding * * * * * * * * * * * * * *Velocity of flow * * * * * * * * * * * * * *Flood severity * * * * * * * * * * *Damage to structures * * * * * * * * * *Population at risk (PR) * * * * * * * * * * * * * * *Activities of PR * * * * *Warning time * * * * * * * * * * * *Monitoring capabilities * * * * * *Flood warning system * * * * *Warning rate, extent and effect * * * * *Prior awareness * *Psychological impressions * * * *Personal mobilization time * * * *Evacuation rate/ease of evacuation * * * * * * * * *Topography * *Urban vs. Rural *Age * * * *Time of day * * * *Environmental conditions * * * *
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Eshan(2009) Johnstone &Lence, (2012) Peng andZhang (2012) Huang et al. (2017);Mahmoud et al. (2020) Li et al.(2018) Ge etal.,(2019)Variable I M I M I M I M I M I MDam/reservoir/breach size * * * * * * *Inundation mappingDepth of flooding * * * * * * * * * *Velocity of flow * * * * * * * * * *Flood lethality * * * * * * * * * * *Damage to structures * * * * * * * * * *Population at risk (PR) * * * * * * * * * * * *Activities of PRWarning time * * * * * * * * * * *Monitoring capabilities *Flood warning system *Warning rate, extent and effect * * * * *Prior awareness * *Psychological impressionsPersonal mobilization time * * *Evacuation rate/ease of evacuation * * * * * * * *Topography * * *Urban vs. Rural *Age * * *Time of day * * * * * * * * *Environmental conditions * * * *



19
Although different models have yielded results that are within acceptable limits, a

review of the variables used for loss of life (LOL) estimation is essential to understand the
current practices and identify areas for improvement.

The authors cited in Table 2 have tried to estimate the LOL as accurately as possible
with their various models, giving attention to variables/parameters they consider important and
discarding less significant ones. Newer models show a significant rise in the number of
variables utilized compared to older models.

Warning time, flow velocity, and water depth can be considered the most important
parameters in estimating loss of life from a dam failure, as they are used in 80% of the various
models in this literature.

Validation of relevant and significant parameters/variables is through empirical studies
and data analysis. That would mean analysing historical dam failure events or conducting
virtual simulations to understand how specific variables influence the actual outcomes and
assessing how well the chosen variables correlate with the observed loss of life.

Our model incorporates additional variables to achieve a more comprehensive estimation
of the potential loss of life (LOL) in dam failure scenarios. By integrating these extra
parameters, we aim to improve the model's accuracy and provide a more thorough assessment
of the potential impacts on human lives. These variables include:
· Dam Failure Mechanism: The specific mode of dam failure (e.g., breach, overtopping)

which can significantly affect the characteristics of the flood.
· Dam Type and Design: Different dam types may lead to distinct failure patterns and

consequences.
· Sediment Transport: The presence of sediments (debris, slurry in tailings) in the floodwater,

affecting flow dynamics and potential hazards.
· Hazard Mapping/inundation mapping: The existence of accurate hazard maps to understand

and communicate potential risks.
· Climate Change Impact and environmental conditions: Environmental conditions refer to

the prevailing weather, hydrological, and ecological factors that exist at the time of a dam
failure. These conditions can significantly influence the dynamics of the flood, the speed
and direction of water flow, and the extent of damage caused. Climate change impact
focuses on the long-term changes in climate patterns and how they might affect the
likelihood and severity of dam failures over time.
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· Community Preparedness or prior awareness: The level of preparedness and awareness

among the population at risk, influencing their ability to respond effectively.
· Communication Infrastructure: The availability and reliability of communication channels

to disseminate warnings and information to at-risk populations, emergency responders, and
relevant stakeholders.

· Emergency Response Capabilities: The effectiveness of emergency response services and
agencies in managing the crisis.

The novelty of this proposal lies in its comprehensive analysis of the variables used in LOL
estimation models and the identification of areas for improvement. It begins by acknowledging
the existence of various models that estimate LOL, then proposes a model that integrates
additional variables to achieve a more comprehensive estimation of LOL in dam failure
scenarios. By expanding the scope of variables considered, it addresses various aspects related
to infrastructure, community, dam-specific factors, communication, vulnerability, and climate
change. This broader perspective can enhance the accuracy of the LOL estimation model and
also provide a more thorough assessment of the potential impacts on human lives in the event
of a dam failure.

Generally, this work aims to contribute significantly to the field of dam safety by providing
a more robust and comprehensive framework for predicting the potential loss of life and
mitigating the impacts of dam failures.
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3 AN IMPROVED ESTIMATION MODEL FOR DAM FAILURE INDUCED LOSSOF LIFE
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Columbia, Prince George, BC, V2N 4Z9
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This chapter is an expanded version of the article “An Improved Estimation Model
for Dam Failure Induced Loss of Life” presented in the Canadian Society for Civil
Engineers 2024 annual conference and will be submitted to a peer reviewed journal such
as Springer’s Stochastic Environmental Research and Risk Assessment.

Abstract. The potential loss of life (LOL) resulting from dam failures represents
a critical concern in the field of dam safety and disaster management. The accurate
estimation of LOL is paramount for informed decision-making, emergency
preparedness, and the minimization of human casualties in such catastrophic events.
The purpose of this paper is to propose an improved model for LOL estimation
specific to North American dam failure cases. The study involves a review of
existing literature, selecting a model, and refining the chosen model to improve its
predictive capabilities for LOL. The approach categorizes dam failure into subcases
based on flood severity and the distance from the dam. It then identifies and filters
the more important influencing variables. Subsequently, two empirical equations
that serve as the calculation method for LOL formulated through multivariate
regression analysis are derived using thirty-two dam failure subcases. The datasets
were split into train and test sets, yielding R² values of 0.9949 for low severity cases
and 0.9955 for medium-high severity cases on the test sets. Graham's model was
selected as a comparison benchmark due to its straightforward formula, established
use in LOL estimation, and minimal data requirements. The successful
implementation of this model suggests its potential applicability for diverse regions,
contributing to improved disaster preparedness and response strategies, as well as
enhancing dam safety and community well-being downstream of dams.
Keywords: Flood, Dam breach, life loss prediction.
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3.1 INTRODUCTION

According to the International Commission On Large Dams (ICOLD, n.d.), dams play a crucial
role in the development and management of water resources, providing a range of benefits that
contribute to societal progress. However, their construction and operation are not without
challenges. Dam failures can potentially unleash catastrophic floods, leading to the loss of
human lives, damage to infrastructure, and severe environmental consequences (Ehsan, 2009;
Graham, 1999). The potential loss of life (𝐿𝑂𝐿) resulting from dam failures is a critical concern
in the field of dam safety and disaster management, and it is imperative to develop accurate and
reliable methods for its estimation (Jonkman et al., 2008).
By quantifying the potential risks, engineers can gauge the potential consequences of dam
breaches, identify vulnerabilities, and make necessary improvements to dam design and
operation, and authorities can further develop effective emergency response plans, make
informed decisions regarding evacuation zones and allocate resources efficiently (Public Safety
Canada, 2017).
𝐿𝑂𝐿 estimation is also vital for legal and insurance purposes, aiding in determining liability,
compensation, and insurance coverage for affected individuals and properties.
Despite its critical significance, existing 𝐿𝑂𝐿 estimation models for North American regions
still have limitations regarding accuracy and comprehensiveness. Therefore, the aim of this
paper is to contribute to this evolving field of 𝐿𝑂𝐿 estimation. This will be achieved by
reviewing existing models and refining a chosen model to enhance its predictive capabilities
for 𝐿𝑂𝐿.
Life loss estimation models from dam failure have been developed by several authors. Brown
& Graham (1988) proposed a formula based on the size of the population at risk (PR) from
failure and the warning time available for that population. DeKay & McClelland (1993)
proposed an equation for 𝐿𝑂𝐿 estimation, considering flood severity, the size of the population
at risk and warning time. Graham (1999) improves 𝐿𝑂𝐿 prediction by adding preparedness as
a factor. Reiter (2001) proposed the RESCDAM method based on Graham’s principle, by
introducing more factors, such as vulnerability of the PR and rescue conditions. Assaf (2002)
take the behaviour of the PR into consideration to develop BC Hydro’s life safety model (LSM).
Jonkman et al. (2008) considered hydraulic characteristics of the flood, evacuation rate and
warning time. Ehsan (2009) introduced a new criteria for classification of flood severity. Peng
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& Zhang (2012) developed the human risk analysis model (HURAM), taking into account
factors such as evacuation time, distance to dam and time of day. Ge et al. (2019, 2020) used
a combination of catastrophe theory and interval theory to select the most important influencing
factors and to estimate upper and lower limits of 𝐿𝑂𝐿 rather than a single value. Ge et al. (2022)
further improved that work by including the time required for evacuation.
Huang et al. (2017) and Mahmoud et al. (2020) developed a more comprehensive model for
predicting 𝐿𝑂𝐿 resulting from dam failures in China. Their approach categorizes dam failure
into subcases according to the severity of the flood. It then identifies and filters the more
important influencing variables. Subsequently, two empirical equations are formulated through
multivariate nonlinear regression. These equations serve as the calculation method for 𝐿𝑂𝐿,
with one tailored for low-severity cases and the other for medium and high-severity cases. Their
model shows superior performance when compared with results documented by DeKay &
McClelland (1993) and Graham (1999). Thus, Huang et al. (2017); Mahmoud et al. (2020)
model was selected as the starting point to propose a similar approach for North America.

3.2 Failure database
3.2.1 Collection and processing

The data employed in this study were collected from various sources (ASDSO, n.d; Graham,
2008; Jay Hilary Kelley et al., 1973; Joseph A. Strahl et al., 1972; Larimer & Department of
the Interior, 1973; Logan County Genealogical Society, 1972; Meservy, 1968; National
Weather Service, n.d.; NOAA, 1972; Spero et al., 2022; U. S. Census Bureau, n.d.; US Army
Corps of Engineers, 2015; USGS & NOAA, 1975; Wahl, 1998; Weather Underground, 2024;
Williamm E. Davies et al., 1972): 1) existing data on historic cases available in the literature
and GIS databases, 2) existing data from institutional bodies (National committees,
governmental agencies, municipal data), and 3) simulation-derived data. The dam failure sites
selected for the study were divided into sub-cases based on the severity of the flood, which is
indirectly influenced by the distance from the dam, to give an accurate representation at
different locations downstream of the dam failure. Therefore, a total of 32 subcases were
analysed (10 low-severity subcases and 22 medium or high-severity subcases) and are listed in
Table 3. These sites are selected to include dams ranging from low to extreme failure
consequences as classified by the Canadian Dam Association (Environment Alberta, 2016).
Based on dam height (ICOLD, 2011), the cases include small to large dam ranges (6.1 – 92
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metres) as well as a range of fatality rates (0.0 – 0.5) and reservoir size from 0.49 – 310 million
m3 of water.
Incomplete or missing information such as flood severity, not available in existing sources was
derived from the outcome (water depth, flow velocity) of two-dimensional hydrodynamic
simulations of unsteady flow using HEC-RAS. This was achieved by leveraging a reported,
known or estimated severity of flood (𝑆𝐹) at a specific point along the flood path to estimate
conditions at other locations downstream of the flood reach.

3.3 Methodology
The calculation steps are divided into: classification and categorization of the influencing
factors; normalization and weight calculation using the entropy method; Multivariate
Regression Analysis. LOL equations are obtained for a) low severity and b) medium and high
severity cases, respectively.

3.3.1 Classification of influencing factors affecting LOL
A review of variables influencing 𝐿𝑂𝐿 is essential for identifying areas for improvement. Peng,
Ge, Huang, Mahmoud (Ge et al., 2019; Huang et al., 2017; Mahmoud et al., 2020; Peng &
Zhang, 2012) and several others cited earlier have tried to accurately estimate the 𝐿𝑂𝐿 with
their various models, giving attention to variables they consider important and discarding less
significant ones, with newer models showing a significant rise in the number of variables
utilized compared to older models. In this work, influencing factors are selected based on
Mahmoud et al. (2020) classification into four categories: hazard factors, exposure factors,
population-related factors and rescue capability factors (Figure 1).

Figure 1. Influencing factors for estimating life loss due to dam break (from Mahmoud et al.,
2020).
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Table 3. Dam failure cases

* Low flood severity caseHD is the height of the dam; SF is the flood severity; MB is the dam break mode; TB is the time of the dam breach; WB is the weather at the time of the dam breach; VB is theVulnerability of Buildings; DD is the distance from the dam; PR is the population at Risk; EC is the Effectiveness of evacuation conditions; TW is the warning time; UB ispeople’s understanding of a dam break; Lol is the loss of life resulting from failure of the dam.Dam SUBCASE HD(m) 𝑆𝐹(m2.s-1)
MB SW(x104

m3)
TB WB VB DD(km) PR UB TW EC LOL

1 Johnstown SouthFork 1 Johnstown 38.30 17.88 1 1890 0.33 0.4 0.835 22.05 37700 1 1 1 2209
2* Canyon lake dam Rapid City 6.10 3.71 1 99 0.67 0.8 0.835 11.27 43000 0.5 1 1 238
3 Teton Dam Mouth of TetonCanyon 92.96 26.95 0.75 31047 0.33 0.2 1 8.05 2 1 1 1 1
4 Wilford 92.96 10.08 0.75 31047 0.33 0.2 0.67 13.52 536 1 0.8 1 5
5 Town of Teton 92.96 8.83 0.75 31047 0.33 0.2 0.67 14.16 1466 1 0.6 0.67 0
6* Sugar city 92.96 3.71 0.75 31047 0.33 0.2 0.67 19.79 2987 1 0.2 0.67 0
7* Rexburg 92.96 2.87 0.75 31047 0.33 0.2 0.67 24.62 4767 1 0.2 0.33 0
8 Buffalo CreekDam Saunders 13.41 14.16 0.75 49 0.33 0.4 0.835 1.5 429 1 1 1 18
9 Lorado 13.41 9.22 0.75 49 0.33 0.4 0.835 6.78 618 1 1 1 22
10* Lundale 13.41 2.37 0.75 49 0.33 0.4 0.835 9.57 997 1 1 1 52
11* Stowe 13.41 2.62 0.75 49 0.33 0.4 0.835 9.66 128 1 1 1 2
12* Latrobe 13.41 2.95 0.75 49 0.33 0.4 0.835 13.2 258 1 0.6 0.67 8
13* Accoville 13.41 1.77 0.75 49 0.33 0.4 0.835 19.32 2070 1 0.6 0.67 0
14 St. Francis, Ca Edison Camp 60.00 52.86 0.75 4687.2 1 0.2 0.835 29.9 150 1 1 1 84
15* Mohegan Park Dam(Spaulding Pond Dam) Norwich 6.10 4.18 0.75 17 0.67 0.8 0.67 3.21 500 0.5 1 1 6
16* Meadow Pond / BergeronPond Dam Alton, Nh 11.00 0.65 0.75 34.8 0.33 0.2 0.835 1.26 50 0.5 1 1 1
17* Lee Lake Lee, Ma 7.60 4.18 0.75 37 0.33 0.2 0.835 4.02 80 0.5 1 0.67 2
18 Baldwin Hills, Ca Dam to SanchezDrive 20.10 18.58 0.75 95 0.33 0.2 0.67 0.8 100 0.5 0.2 0.33 0
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19 Sanchez Driveonwards inc.Green Village

20.10 13.66 0.75 95 0.33 0.2 0.835 4.8 16400 0.5 0.2 0.33 5

20 Kelly Barnes Dam Toccoa FallsBible College 11.60 7.9 0.75 77.7 1 0.8 0.67 1.6 100 0.5 1 1 39
21 Mill River Williamsburg 13.10 9.75 0.75 227.12 0.33 0.2 0.835 4.82 888 1 1 0.67 138
22 Austin Dam (Bayless Dam)I Austin, Pa 14 11.15 0.75 86.3 0.33 0.2 0.835 2.41 900 1 1 1 78
23 Laurel Run Dam, Pa Johnstown 12.80 11.15 1 55.5 1 0.6 0.835 2.4 150 1 1 1 40
24 Timberlake Dam, VA Lynchburg 10.05 5.57 1 178.7 0.67 0.8 0.835 1.5 7 1 1 1 2
25 Little Deer Creek Dam, UT - 26.21 14.59 0.75 136 0.33 0.2 1 11.58 50 1 1 1 1
26 Lawn Lake Dam Roaring River 7.90 16.21 0.75 79.8 0.33 0.2 1 6.437 25 1 1 1 1
27 Cascade Lake Dam Aspen GlenCampground 5.20 11.24 1 3.1 0.33 0.2 1 11.265 275 1 0.8 0.67 2
28 Lawn Lake & CascadeValley Fall River Road /Estes Park 5.20 6.6 1 3.1 0.33 0.2 0.835 19.31 4000 0.5 0.6 0.33 0
29 Bear Wallow Dam Ashville, NC 10.97 6.97 0.75 4.93 1 0.6 0.835 1.28 8 0.5 1 1 4
30 walnut grove dam Another NewDam 33.00 33.00 1 1100 1 0.6 1 24.14 125 0.5 1 0.67 85
31 Swift Dam No. 2, MT Birch Creek 47.85 47.85 1 4193.8 0.33 0.8 0.835 8 250 1 1 0.33 19
32 Castlewood Canyon Dam II Denver 21.30 21.30 1 617 1 0.8 0.67 60 5000 0.5 0.2 0.33 2
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The severity of flooding, 𝑆𝐹 is calculated by equation 18 as outlined by (Graham, 1999; Huang
et al., 2017). If the flow rate Q and max width of the water surface, W is known, 𝑆𝐹 can be
determined from equation 19.

𝑆𝐹 = ℎ𝑣 (18)
𝑆𝐹 ≈ 𝑄𝑇𝑜𝑝/𝑊𝑀𝑎𝑥 (19)

Where ℎ = flood depth (m), 𝑣 = flow velocity (m.s-1), 𝑄𝑇𝑜𝑝 = peak flood flow (m3.s-1), 𝑊𝑀𝑎𝑥
= top-width of flow (m).

𝑆𝐹 is the variable used to categorize the severity into low or medium/high. According to Graham
(1999); Li et al. (2006), as Cited in Huang et al. (2017), 𝑆𝐹 is neglected if it is <0.5 m2/s, while
low, medium and high severity cases are based on the range of values, 0.5 m2/s ≤ 𝑆𝐹 <4.6 m2/s,
4.6 m2/s ≤ 𝑆𝐹 < 12.0 m2/s and 𝑆𝐹 ≥ 12.0 m2/s, respectively.

The dam break mode, MB is ranked based on four frequent break modes (Graham, 1999; Huang
et al., 2017):

o Overtopping
o Poor quality (leakage, internal erosion, tunnel, blockage or obstruction of dam structure,

spillway etc.)
o Mismanagement (over storage, poor or lacking maintenance or management)
o Others.

The time of the dam breach, TB is divided into three main periods: daytime-work period
(8:00–20:00); night rest period (20:00–24:00); and midnight sleep period (24:00–8:00) (Li et
al., 2019; Mahmoud et al., 2020).
The weather at the time of the dam breach, WB can contribute to the level of severity and extent
of the consequences such as precipitation intensity, visibility, communication, wind speeds and
temperature, making it difficult for evacuation and rescue. The weather conditions are reported
by Mahmoud et al. (2020) as cited by Huang et al. (2017) and are divided into:

o Level I (extreme weather: storm, blizzard, typhoon, fog, haze)
o Level II (heavy rain, heavy snow, gale, etc.)
o Level III (moderate rain, moderate snow, etc.)
o Level IV (light rain, shower, light snow, etc.)
o Level V (sunny or cloudy day).
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Building Vulnerability, VB is classified into adobe, wood or masonry and concrete (Mahmoud
et al., 2020; Reiter, 2001). Here, wood and masonry are separated into different classes to
provide a more precise classification in building vulnerability. Herein, VB is classified into:
Adobe, Wood, Masonry and Concrete.
The distance from the dam, DD plays a significant role in determining the response time
available for affected communities to evacuate and seek safety. Therefore, the greater the DD,
the lesser the 𝐿𝑂𝐿 (Huang et al., 2017).
The population at Risk, PR is the total number of people within the inundation area (Brown &
Graham, 1988).
The grading of all the influencing factors have been defined in Table 4.
Table 4. Grading standard of influencing factors. Modified from (Ge et al., 2019; Huang et al., 2017; Mahmoud

et al., 2020; Peng & Zhang, 2012).
Factors Description GradeWeather at breach Storm 1.0

Heavy rain/snow 0.8
Moderate rain/Snow 0.6
Light rain/Snow 0.4
Sunny 0.2

Evacuation Condition Bad 1
Middle 0.67
Good 0.33

People understanding Vague/fuzzy 1.0
Clear/precise 0.5

Building vulnerability Adobe 1.0
Wood 0.835
Masonry (brick, stone) 0.67
Concrete 0.33

Warning time (min) 0-15 1.0
15-30 0.80
30-45 0.60
45-60 0.40
> 60 0.20

Breach time Midnight 1.0
Night rest 0.67
Day time 0.33

Break mode Overtopping 1.0
Poor quality 0.75
Mismanagement 0.50
Others 0.25
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The people’s understanding of the dam break, UB will play a role in 𝐿𝑂𝐿, as a better or clearer
understanding will lead to lesser loss of life (Brown & Graham, 1988). This is divided into clear
or precise understanding and vague or fuzzy understanding (Graham, 1999) and can be
understood as level of preparedness.
The warning time, TW refers to the duration between the identification of an imminent dam
breach and the actual arrival of floodwaters downstream. The amount of warning time
significantly affects the ability of affected communities to respond, evacuate, and seek safety
(Huang et al., 2017; Jonkman et al., 2008; Mahmoud et al., 2020). TW has been divided into:
0–15, 15–30, 30–45, 45–60 and >60 min (Huang et al., 2017; Jonkman et al., 2008).
Effectiveness of evacuation condition, EC plays a crucial role in determining the potential 𝐿𝑂𝐿
and is influenced by terrain and environment (Huang et al., 2017). This is divided into good,
middle and bad evacuation conditions (Johnstone W M et al., 2005).

3.3.1 Normalization and grading of influencing factors.
Influencing factors that do not have a numeric value are normalized by assigning them to a
standard grade of values up to 1 (Ge et al., 2019; Huang et al., 2017; Mahmoud et al., 2020;
Peng & Zhang, 2012).
The normalization of variables with numeric values, that is HD, Sw, Dd, Sf, PR is done using eq.
20 (Mahmoud et al., 2020).

𝑟𝑖𝑗 =  𝑥𝑖𝑗/𝑚𝑎𝑥 {𝑥𝑖𝑗} (20)
where i is the dam break case, j is the influence factor number, and 𝑟𝑖𝑗 is the normalized value.
After normalization, the normalized judgement matrix is represented by eq. 21.

𝑅 = 𝑟𝑖𝑗 𝑚 × 𝑛 (21)
And 𝑥𝑖𝑗 is the initial value of the influencing factor in the judgment matrix (22).

𝑥𝑖𝑗 =  
𝑥11 ⋯ 𝑥1𝑛⋮ ⋱ ⋮𝑥𝑚1 ⋯ 𝑥𝑚𝑛 𝑚 × 𝑛

(22)

Where m is the number of dam break events, that is, m = 10 and 22 for the low subcase and
medium and high severity subcases, respectively. The influencing factors are grouped into g=4
modules: hazard factors, exposure factors, population-related factors, and rescue capability
factors. For these modules, n = 4, 4, 2, 2, respectively.
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3.3.2 Entropy calculation

Mahmoud et al. (2020) present the jth factor entropy (Hj) (Eq. 23).
𝐻𝑗 =  − ∑𝑚𝑖=1 (𝑓 𝑖𝑗𝑙𝑛 𝑓 𝑖𝑗)𝑙𝑛 𝑚 (23)

Where
𝑓𝑖𝑗 = 𝑟𝑖𝑗 ∑𝑚𝑖=1 𝑟 𝑖𝑗 (24)

If any influencing factor affecting a dam break case has an equal probability, the entropy is
maximum and equal to 1. As such, its utility for analysis is zero. Therefore, the utility value of
an influencing factor depends on the difference between 1 and the information entropy, 1 - 𝐻𝑗
(Huang et al., 2017; Mahmoud et al., 2020).

3.3.3 Weight calculation, filtration and comprehensive score calculation
The weight of the jth factor entropy is calculated using Eq. 25. Factors with weight <5% can be
neglected when calculating the comprehensive score (Huang et al., 2017; Mahmoud et al.,
2020).

𝑤𝑗 =  (1 − 𝐻𝑗) ∑𝑛𝑗=1 (1 − 𝐻 𝑗) (25)
The comprehensive score is calculated for the four modules with m dam break cases (m = 10,
22) using Eq. 26.

𝑌𝑘 =  ∑𝑛𝑗=1 𝑟𝑘𝑗  ×  𝑤 𝑗 (26)

3.3.4 Nonlinear regression analysis
Multivariate regression analysis is the final step in this 𝐿𝑂𝐿 estimation model, it involves
exploring the relationships between the fatality rate, FL, and the four modules (Y1, Y2, Y3 and
Y4). To capture both linear and nonlinear relationships, we evaluate different combinations of
regression functions to optimize for the best fit using the coefficient of determination (R²).
Here, the functions used are reciprocal, square root, cubic, exponential, logarithmic, power,
and linear functions, which allow a diverse combination and increase the possibility of
achieving a good fit, allowing to explore different relationships between FL and the modules.
The key objective for this combination is that it explores all possible combinations of the seven
transformation functions across the four independent variables.
In addition to these regression functions, the four modules are combined using second-degree
polynomials.
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The number of combinations tested in this analysis highlights the comprehensive nature of the
model. With seven different regression functions tested for each of the four variables, the total
number of possible combinations becomes 2401.
Each combination was evaluated by randomly splitting the dataset into training and testing
subsets, ensuring a more robust and reliable model through data transformation and multiple
splits. Unlike our approach, some authors chose to fit their entire datasets without splitting,
likely due to limited data availability. While this may create a strong model fit, it risks
overfitting, where the model performs well on training data but poorly on unseen data.
To identify the best dataset randomization for optimal model performance, we iteratively
explored all possible dataset splits. For the 10 low-severity datasets, we generated 45 unique
combinations, while the 22 medium- and high-severity datasets yielded 26,334 combinations.
Each iteration ran a loop to find the optimal randomization state based on the highest R² score
on the test data. This process was repeated separately for both 70/30 and 80/20 train-test splits
to determine the most effective ratio. Python coding was developed to implement this
procedure, using the NumPy and Pandas libraries for data manipulation, and Scikit-learn for
regression analysis.
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3.4 Results

The normalized judgement matrix, 𝑹 = 𝒓𝒊𝒋 𝒎 × 𝒏 from equation 21 is presented as 𝑹𝟏…
𝑹𝟒 for low severity and medium/high severity cases for the four influencing factor
categories, respectively, in equations 27 & 28.
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Mahmoud et al. (2020) elected to neglect the influence of parameters whose calculated weight
result is smaller than 5% for the comprehensive score (Yk) calculation. In the low severity cases
𝑆𝐹, 𝑀𝐵, 𝑈𝐵 and 𝑉𝐵 have weights less than 5%, while 𝑀𝐵, 𝑈𝐵 and 𝑉𝐵 are below the threshold
in the medium/high severity case. This is presented in Figure 2 & 3 respectively. Here, we chose
to utilize all the weights including those below the 5% threshold, to ensure general
representation across the categories, and not to allow for cumulatively neglecting a large
percentage of the influencing factors.
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Figure 2: weight of influencing factors for the low severity case
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Figure 3: weight of influencing factors for the medium and high severity case
3.4.1 Regression Analysis

Based on the highest R2, the best combination of the regression function for low severity is
logarithmic, square root, exponential, square root. For the medium and high severity, power,
reciprocal, reciprocal and exponential are the best functions. the proposed equation for low
flood severity (0.5 m2/s ≤ SF <4.6 m2/s) and medium and high severity cases (𝑆𝑓  > 4.6 m2/s) is
presented in Eq. 29 &30 respectively, using second-degree polynomials to combine the four
Y’s.
𝐹𝐿,𝑙 =  𝛽0 +  𝛽1  × 𝐿𝑁 𝑌1 +  𝛽2  ×  𝑌2 + 𝛽3  × 𝑒𝑌3 +  𝛽4  × 𝑌4 +  𝛽5  × 𝐿𝑁 𝑌1 2 +  𝛽6 × 𝐿𝑁 𝑌1  ∙
 𝑌2 + 𝛽7 × 𝐿𝑁 𝑌1  ∙ 𝑒𝑌3 + 𝛽8 × 𝐿𝑁 𝑌1  ∙ 𝑌4 + 𝛽9  × ( 𝑌2)2 +  𝛽10 ×  𝑌2∙ 𝑒𝑌3 +  𝛽11 × 𝑌2∙ 𝑌4 +
 𝛽12  × 𝑒𝑌3 2 +  𝛽13  ×  𝑒𝑌3∙ 𝑌4 +  𝛽14  × ( 𝑌4)2 (29)

FL,m&h =  β0 +  β1  × Y52 + β2 × 1 Y6 + β3 × 1 Y7 +  β4  × 𝑒𝑌8 +  β5 × (𝑌52)2 +  β6∙Y52∙ 1 Y6 +
β7∙Y52∙ 1 Y7 + β8∙Y52∙𝑒𝑌8 +  β9 × 1 Y6 2 +  β10  ∙( 1 Y6 )∙( 1 Y7 ) +  β11  ∙( 1 Y6 )∙𝑒𝑌8 +  β12 ×

1 Y7 2 +  β13  ∙( 1 Y7 )∙ 𝑒𝑌8 +  β14 × 𝑒𝑌8 2 (30)
In the regression analysis, some of the predicted values for the fatality rate (FL) were negative.
As a negative fatality rate is not physically meaningful in real-world scenarios, these negative
predictions likely occurred due to the mathematical nature of the regression model and the
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limitations of the data available. In such cases the fatality rate was adjusted to zero. It is
important to note that this adjustment, though necessary, may slightly bias the model's
performance metrics.

The regression model was also trained and tested using a standard approach of splitting the
dataset into two subsets: 80% for training and 20% for testing, and 70% for training and 30%
for testing. The training set was used to fit the model, while the test set provided an independent
evaluation to assess the model’s generalization capability. This split ensures that the model is
not overfitted to the training data and can be reliably applied to new, unseen data. The 80/20
split provided the best results.
From the result of the regression analysis, the RMSE (Root Mean Square Error) and R² (the
coefficient of determination) for the low-severity and medium/high flood severity cases are
presented in Table 5.

Table 5. Regression analysis metrics
Data Split Low severity (10datasets) Medium and high Severity (22datasets)RMSE R2 RMSE R2
80/20 Train CombinationNo. 32 1.0807e-15 1 CombinationNo. 17081 0.01941 0.9904

Test 0.0009 0.9949 0.0170 0.995570/30 Train CombinationNo. 42 2.9939e-15 1 CombinationNo. 12330 3.3582e-12 1
Test 0.0049 0.8547 0.04086 0.9714100/0 Train - 3.6572e-16 1 - 0.0180 0.9929

For comparison, the low, medium, and high-severity datasets were also looked at as a single set
and combined in one regression analysis. The results are: RMSE (Train): 0.1108 and R² (Train):
0.6146; RMSE (Test): 0.1595 and R2 (Test): 0.5134. This indicates that combining the datasets
does not lead to a good fit.
The iteration with the lowest R² value on the test dataset for low severity resulted in: RMSE
(Train): 4.6e-14, R² (Train): 1; RMSE (Test): 82.9668, R² (Test): -4.4e+07. This occurred with
the transformation combination: cubic, exponential, cubic, and reciprocal. While the iteration
with the lowest R² value on the test dataset for medium and high severity cases resulted in
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RMSE (Train): 0.002551, R² (Train): 0.9998; RMSE (Test): 11.7263, R² (Test): -2117.72. This
occurred with the transformation combination: cubic, reciprocal, cubic and power. This
extremely low R² and high RMSE may likely be amplified noise or poor generalization, causing
the poor performance on unseen data.
The proposed equation for estimating 𝐹𝐿 for low flood severity and medium and high severity
cases is calculated in Eq. 31 & 32 respectively. Fatality rate (𝐹𝐿) is defined as the value of loss
of life (𝐿𝑂𝐿) divided by population at risk (PR). Thus 𝐿𝑂𝐿 is calculated by Eq. 33 (Huang et
al., 2017).
FL,l =  1.1270 +  1.2347 × LN Y1 +  0.4266 ×  Y2 + 1.0421 × eY3 − 1.3593 × Y4 − 0.0629 ×
LN Y1 2 − 0.1314 × LN Y1  ∙ Y2 − 0.5220 × LN Y1  ∙ eY3 − 1.1981 × LN Y1  ∙ Y4 − 1.9268 ×

Y2 2 − 0.0792 ×  Y2∙ eY3 +  1.6188 × Y2∙ Y4 − 0.8520 × eY3 2 +  0.6823 ×  eY3∙ Y4 − 2.2349 ×
( Y4)2 (31)

FL,m&h =  − 2.2533 +  11.3349 × Y52 − 0.1300 × 1 Y6 − 0.0378 × 1 Y7 + 2.6903 × 𝑒𝑌8 +
 12.7990 × 𝑌52 2 − 4.2117∙Y52∙ 1 Y6 + 0.4114∙Y52∙ 1 Y7 − 6.6235∙Y52∙𝑒𝑌8 +  0.0375 × 1 Y6 2 +
0.0009 ∙ 1 Y6 ∙ 1 Y7 − 0.1023 ∙ 1 Y6 ∙𝑒𝑌8 +  0.0001 × 1 Y7 2 + 0.0098 ∙ 1 Y7 ∙ 𝑒𝑌8 − 0.5143 ×

𝑒𝑌8 2 (32)

𝐿𝑂𝐿 =  𝐹𝐿  ×  𝑃𝑅 (33)

The comparison between the actual and predicted 𝐿𝑂𝐿 shows that the model results are close
to the actual value of 𝐿𝑂𝐿 except in a few cases (Figure 4, Table 6). A further comparison
between the fatality rate and loss of life calculated with the proposed method and Graham’s
model (Graham, 1999) shows the proposed model performs better in predicting the 𝐿𝑂𝐿 (Table
6). Graham's model was chosen as a comparison benchmark due to its straightforward formula
and minimal data requirements. Unlike more complex models, Graham’s model enables
reproducibility and efficient comparison within the limits of available data and resources.
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Figure 4: Comparison of actual LOL, predicted LOL and Graham’s model.
Table 6. Comparison of the proposed equation and the actual 𝐿𝑂𝐿 and 𝐹𝐿.Case Subcase SubcaseNo. Actual𝐿𝑂𝐿 Graham𝐿𝑂𝐿 Predicted𝐿𝑂𝐿
Johnstown South Fork 1 (1889) Johnstown 1 2209 11310 2244
Canyon Lake Dam (1972) Rapid City 2 238 301 238

Teton Dam (1976)

Mouth of TetonCanyon 3 1 2 1
Wilford 4 5 21 5
Teton Town 5 0 513 0
Sugar city 6 0 0 0
Rexburg 7 0 0 0

Buffalo Creek Dam (1972)

Saunders 8 18 300 6
Lorado 9 22 340 41
Lundale 10 52 10 52
Stowe 11 2 1 2
Latrobe 12 8 2 8
Accoville 13 0 14 0

St. Francis, CA (1928) Edison Camp 14 84 114 84
Baldwin Hills, CA (1963)

Dam to SanchezDrive 15 0 0 30
Sanchez Driveonwards inc. GreenVillage 16 5 0 0

Kelly Barnes Dam (1977) Toccoa Falls BibleCollege 17 39 14 43
Mill River (1874) Williamsburg 18 138 124 143
Austin Dam (Bayless Dam) I (1911) Austin, PA 19 78 126 75
Laurel Run Dam, PV (1977) Johnstown 20 40 21 40
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Timberlake Dam, VA (1995) Lynchburg 21 2 1 2
Little Deer Creek Dam, UT (1963) 22 1 38 1
Mohegan Park Dam (Spaulding PondDam) (1963) Norwich 23 6 4 6
Meadow Pond / Bergeron Pond Dam(1996) Alton, NH 24 1 0 1
Lee Lake (1968) Lee, MA 25 2 1 2
Lawn Lake Dam (1982) Roaring River 26 1 19 2
Cascade Lake Dam (1982) Aspen GlenCampground 27 2 4 0
Lawn Lake & Cascade Valley (11982) Fall River Road /Estes Park 28 0 40 7
Bear Wallow Dam (1976) Ashville, NC 29 4 1 4
Walnut Grove Dam (1890) Another New Dam 30 85 95 85
Swift Dam No. 2, MT (1964) Birch Creek 31 19 190 17
Castlewood Canyon Dam II (1933) Denver 32 2 - 0

3.5 Conclusion
The presented 𝐿𝑂𝐿 estimation model, developed through a comprehensive review and
improvement of existing models, holds promise for improving accuracy of loss of life (LOL)
predictions in dam failure scenarios. The paper successfully adapts and applies a model
originally developed for China to North American dam failure cases, demonstrating potential
cross-regional applicability. Limitations include data constraints which were overcome by
simulation and estimation. In some cases, the Population at Risk was not reported, and the
missing data were estimated based on watershed area and census data and might be a source of
error. Future work should focus on obtaining additional historical data for dam failures in North
America and other regions globally to improve model accuracy and develop models for other
regions. The incorporation of polynomial terms and combination functions ensures that the
model accounts for both simple and complex relationships between variables, leading to a
robust regression model that captures key patterns in the data. The model's high R² values,
particularly in low-severity cases, suggest strong performance; however, the possibility of
overfitting, especially in cases where R² approaches 1, should be considered due to the
complexity of the non-linear regression used. The proposed method, with its emphasis on
diverse influencing factors, stands as a valuable tool for disaster preparedness and response,
contributing to dam safety and community well-being downstream of dams.
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4 GIS FRAMEWORK TO ASSESS IMPACTS OF DAM FAILURE
Samuel Ovu, MASc Candidate, School of Engineering, University of Northern British Columbia, CanadaMauricio Dziedzic, P. Eng., Chair, School of Engineering, University of Northern British Columbia, Canada

This chapter is an expanded version of the article “GIS Framework to Assess Impacts of DamFailure” presented in the Canadian Dam Association 2024 Annual Conference and will besubmitted to a peer reviewed journal such as Elseviers’s International Journal of Disaster RiskReduction.

ABSTRACT
Dam safety is of critical concern in water resources management. While traditional approaches
to dam safety have been effective for decades, climate change and increasingly extreme weather
events necessitate a continuous improvement in risk assessment and emergency planning
capabilities. Geographic Information Systems (GIS) have become a valuable tool in dam failure
analysis, allowing for modelling scenarios and providing valuable information for emergency
planning and risk mitigation. This paper introduces a segmented GIS model being developed
as part of a comprehensive framework to assess the impacts of dam breaks. The framework
integrates hydraulic modelling, loss of life (LOL) modelling and GIS technologies. It highlights
a QGIS plugin that facilitates flood risk analysis and loss of life estimation by integrating HEC-
RAS results into QGIS and enables the visualization of flood extents, identification of
vulnerable assets, and estimation of potential fatalities. Mortality rate is calculated considering
regional dam failure data, population dynamics, time of failure and weather patterns. This
approach will contribute to enhance dam safety management and advance the field of dam
safety by providing a comprehensive understanding of the potential impacts of dam breaks.
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4.1 Introduction

Dams serve as vital components of water resource management systems, facilitating irrigation,
flood control, hydropower generation, and municipal water supply. For decades, dam safety
has been managed effectively through established practices. However, factors such as aging
infrastructure, evolving climate patterns, and population growth in downstream areas lead to
the need for re-evaluating dam safety protocols (Li et al., 2019). While traditional methods
have been effective, these new challenges require their supplementation with advanced tools
and methodologies to enhance existing dam safety practices. These tools offer more
comprehensive risk assessment capabilities and improved emergency planning, allowing to
proactively address dam safety in the face of contemporary challenges.
Geographic Information Systems (GIS), coupled with hydraulic and hydrologic modelling
software, remote sensing technologies, and advanced computational methods, offer
unprecedented capabilities for analysing dam safety risks in a comprehensive manner. With
GIS being an indispensable tool for understanding and managing complex spatial data (Ghent,
2013), its integration into various fields has revolutionized the way we approach problem-
solving, particularly in the field of environmental risk assessment and disaster management.
Understanding the role of GIS in dam break assessment is recognizing its capacity to integrate
diverse datasets and analytical tools into a cohesive platform. By harnessing spatial data on
dam infrastructure, terrain characteristics, hydrological patterns, and population demographics,
GIS empowers stakeholders to model and simulate various scenarios, thereby anticipating
potential risks and formulating effective mitigation strategies (Katwal, 2018; Mancusi et al.,
2015). Through spatial analysis and visualization techniques, GIS facilitates the identification
of vulnerable populations, critical infrastructure, and ecologically sensitive areas that may be
affected in the event of a dam failure.
Recently, there has been notable progress in the assessment of dam failure hazards, largely
credited to the integration of GIS with hydraulic modelling. This integration allows for the
seamless transfer of data generated from hydraulic models to GIS platforms, enabling the
creation of inundation maps and facilitating further analysis (Abdalla 2009; Pandya and Jitaji
2013). Numerous studies have examined the significance of integrated GIS in managing dam
failure hazards: Aboelata et al. (2003) discussed the concept of integrated GIS, proposing a
modular GIS model for estimating potential loss of life resulting from natural and dam-failure
floods. Similarly, Abdalla (2009) demonstrated the utility of WebGIS through a case study in
the Don Valley watershed, Toronto, Canada, highlighting its effectiveness by simulating
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different scenarios in delineating different water surface elevations for the assessment of
possible impact on critical infrastructure and land use classes.
The quality of spatial data used in modelling is also of importance, as it forms the basis of the
geometric file used for simulation and analyses (Solaimani 2009). Advanced spatial data
collection technologies, such as LiDAR and high-resolution satellite imagery, have
significantly enhanced the accuracy and detail of three-dimensional (3D) spatial information
(Doyle et al. 1998; Schultz 2009). Alonso (2015) investigated the impact of LiDAR data on the
classification of multispectral imagery to show its potential for extracting buildings and other
objects from medium-resolution satellite imagery. The classification result showed a more
realistic representation of geographic features compared to those obtained solely from
multispectral satellite imagery.
Various software and modelling tools have been employed to predict flooding and manage its
consequences. River Analysis System (HEC-RAS) and Hydrologic Modelling System (HEC-
HMS) which were developed by the U.S. Army Engineer Hydrologic Engineering Center
(HEC), can simulate the water surface profile of rivers and open channels, generate flood hazard
maps, and simulate the complete hydrologic processes of watershed systems (Ogras and Onen
2020; Ongdas et al. 2020; Almasalmeh et al. 2022; HEC 2024). Quantum Geographic
Information system (QGIS), an open-source GIS application, has also been extensively utilized
for flood risk assessment, natural hazard mapping, and detection of flood hazards (Mancusi et
al., 2015; Sansare & Mhaske, 2020; Soni & Prasad, 2021). Integration of QGIS with HEC-RAS
enabled the mapping of flood-risk buildings resulting from a levee breach causing flooding that
affected millions of people in Nepal and India in 2008 (Katwal, 2018). Derdous et al. (2015)
studied an approach based on the integration of hydraulic modelling and GIS to assess the risks
resulting from a potential failure of a concrete dam in Algeria’s North East. Albano et al. (2019)
used a similar approach to demonstrate the effectiveness of a GIS-based method for delineating
dam-break flood-prone areas, particularly in data-scarce environments and transboundary
regions.
The studies mentioned thus far have effectively showcased the diverse functionalities enabled
by GIS integration. Therefore, the aim of this paper is to introduce a segmented framework
under development for dam break assessment. This framework integrates hydraulic modelling,
LOL modelling, and GIS technologies. Also, the components of the segmented GIS framework
illustrate how each facet contributes to a comprehensive understanding of dam failure risks and
their consequences. In addition, we highlight the practical implications of integrating GIS into
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dam safety management practices, emphasizing the potential for enhanced preparedness and
response in the face of evolving threats.

4.2 EXAMPLE OF APPLICATION
Buffalo Creek dam located N 37 47′50″ W 81 39′50″ in Logan County, West Virginia, USA.
The Buffalo Creek flood is considered as one of the worst dam break-related disasters in
American history (NOAA, 1972a; Webb Jeffrey, 2021). On the 26th of February 1972, an
impoundment dam for coal-mine waste broke, releasing over 130 million gallons (app. 492
million liters) of dark floodwater. The flood travelled over 20 km downstream, killing 125
people and leaving over 3000 homeless. Information about this area is presented in Table 7.
This site’s data, including a Digital Elevation Model (DEM) with resolution of 1m, was used
for hydrologic and hydrodynamic simulations that allowed obtaining the flood severity
parameter to inform the loss of life model in the GIS framework presented in the following
sections.

Table 7. information on the areas downstream of Buffalo CreekHeight of Dam, m Distance to Dam site, km Population
Saunders

13.41

1.5 429
Lorado 6.78 618
Lundale 9.57 997
Stowe 9.66 128
Latrobe 13.2 258
Accoville 19.32 2070

4.3 METHODOLOGY
4.3.1 Data collection and preparation

Depending on the availability of data, hydrologic simulation might not be required if the inflow
hydrograph is available. HEC-HMS is used for the hydrologic simulation to obtain hydrograph
results. Data required for hydrologic modelling in HEC-HMS include a Digital ElevationModel
(DEM), dam and spillway parameters, Land Use Land Cover data (LULC), soil map (soil type
data), climate data (precipitation), and dam breach parameters. The data sources can vary
depending on factors such as availability, scale, and specific project requirements. Here are
some common sources for each type of data:

· Elevation Models:
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o Provincial and national mapping agencies (e.g., Government of BC Geographic

Data Services, United States Geological Survey (USGS), Ordnance Survey in
the UK)

o Satellite or aerial imagery (e.g., NASA's Shuttle Radar Topography Mission,
commercial satellite providers)

o LiDAR surveys
o Open data repositories (e.g., NASA Earthdata, USGS EarthExplorer)

· Land Use Land Cover (LULC) Data:
o National or regional land use/land cover datasets (e.g., National Land Cover

Database in the United States, CORINE Land Cover in Europe)
o Remote sensing imagery (e.g., Landsat, Sentinel)
o Academic research institutions

· Soil Maps (Soil Type Data):
o National or regional soil surveys (e.g., NRCS Soil Survey in the United States,

European Soil Data Centre)
o Government agencies specializing in soil science
o Soil research institutions and universities
o Remote sensing techniques combined with ground-truthing

· Climate Data (Precipitation):
o Meteorological stations operated by national meteorological agencies
o Global climate datasets (e.g., WorldClim)
o Remote sensing data (e.g., satellite-derived precipitation estimates)
o Climate reanalysis datasets (e.g., ERA5, NCEP/NCAR Reanalysis)

· Dam and Spillway Parameters:
o Design documents and engineering drawings provided by dam owners/operators
o Regulatory agencies responsible for dam safety
o Dam safety databases maintained by government agencies
o Site surveys conducted by engineering firms or consultants

· Dam Breach Parameters:
o Engineering studies and reports on dam safety and risk assessments
o Historical data on dam failures and breach events
o Hydraulic modelling studies specific to dam breach scenarios
o Empirical equations and guidelines for estimating dam breach parameters
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After the data collection and preparation, a hydrological simulation is made using HEC-HMS
to obtain the flow hydrograph. This hydrograph result is then used in the hydraulic simulation.
Finally, flood water depth, velocity, and inundation/flood-affected area were obtained from the
hydraulic simulation, and these are used to make flood inundation maps. Figure 5 shows a
summary of the procedure followed to achieve the objective of this study. Collected data may
need to be modified or used to create additional information to be used for modelling.

Figure 5: Overview of the methodology.

4.3.2 HEC-RAS (hydrodynamic modelling)
Dam break simulations were conducted using HEC-RAS, a widely utilized hydraulic modelling
tool for simulating water surface profiles in rivers, streams, and other reservoir systems.
Notably, 2D hydrodynamic modelling is widely used for flood inundation modelling (Katwal,
2018). Originally introduced in 1995, it has undergone several iterations since its inception.
Version 6.5 of HEC-RAS was used in this study to model flood extents. Figure 6 shows a
schematic flowchart of the hydraulic modelling using HEC-RAS.
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Figure 6: HEC-RAS simulation flowchart (from Phyo et al. 2023)

4.3.3 LOL Estimation Calculation
The LOL estimation model and the validation of the model's accuracy has been discussed in
the previous chapter.

4.3.4 Tools
The major tool used in this study for spatial analysis and visualization is QGIS. It is an open-
source geographic information system that provides a comprehensive environment for spatial
data analysis, visualization, and modelling. Integration of simulation outputs in QGIS
facilitated the spatial representation and analysis of dam break consequences, including the
visualization of flood extents, identification of affected areas, and assessment of impacts. One
main advantage of QGIS is its ease in the development of new plugins. In this study, a plugin
is being developed and the interface is created with the aid of the Python programming
language. The plugin is first created in QGIS, then the user interface is designed with QT-
Designer, then functionality is added to the plugin through Python scripts on PyCharm. Loss of
life (LOL) model calculation is also automated in QGIS with Python codes.
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4.4 RESULTS AND DISCUSSION

The results of the HEC-RAS simulation are the floodwater discharge, maximum water surface
elevation, floodwater volume, velocity, water depth and water surface elevation profile along
Buffalo Creek. The output map for the maximum flooding depth along the downstream reach
for the time of breach is shown in Figure 7 (the different subcase/ settlements are marked by
the black lines across the flood path). Figure 8 shows downstream settlements before and after
flooding of the same section, respectively. The simulation results are exported in raster format.
The exported rasters are polygonised in QGIS and finally overlayed with other data layers.

Figure 7: Inundation map with depth of Buffalo Creek flood
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(a) (b)
Figure 8: Segment before (a) and after (b) flooding along Buffalo Creek channel downstream.

4.4.1 Development of Integrated Plugin for QGIS
The plugin allows users to import multiple raster layers (Figure 9a). To determine the inundated
area, the plugin uses QGIS's basic statistical calculation tools to measure the area of polygons.
Identifying affected assets involves intersecting data, such as buildings, crops, and
infrastructure, with the inundation layer. The resulting inundation map highlights zones and
assets impacted during the maximum flood discharge.
The plugin employs a previously developed loss of life estimation model (Ovu and Dziedzic,
2024) (as shown in Figure 9b). By considering various factors such as population density,
building occupancy, flood intensity, and time of occurrence, the model provides an estimate of
the potential loss of life.
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(a) (b)
Figure 9: GIS framework plugin interface for (a) importing layers and (b) loss of life estimation.
The outcomes generated by the plugin will vary based on the data layers imported (Figure 10).
The plugin's flexibility allows it to accommodate a wide range of data inputs. Future work on
expanding the plugin functionalities will include allowing the user to select different
hydrodynamic modelling software and estimate other environmental, social, and economic
consequences resulting from dam failure, such as the social disruptions and impacts on
vegetation/crops, bridges, roads, human and environmental health, water availability and
quality, and animals/wildlife within the inundation zone.
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Figure 10: GIS framework plugin interface sample result.

4.4.2 Conclusion
This study introduces a segmented framework for dam break assessment that integrates
hydrodynamic modelling, LOL estimation, social, economic, and environmental impacts, and
GIS technologies. The QGIS plugin developed as part of this study automates several critical
calculations, including the inundated area and loss of life estimations, thereby enhancing the
efficiency and accuracy of flood risk analysis. While still in the initial stages, the plugin shows
significant promise as a tool for dam safety management.
Future work will focus on refining the plugin, improving user interface design, and validating
the model's accuracy with several case studies, seeking to ensure that this plugin becomes a
valuable asset for dam safety professionals and emergency planners.
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5 CONCLUSION

This study successfully developed a GIS-based framework for assessing life loss resulting
from dam failures. By combining GIS and hydrodynamic modelling, the framework visualizes
the associated risks to downstream populations and infrastructure. The proposed model, based
on empirical data and refined regression analysis, demonstrated higher accuracy and
adaptability in estimating loss of life across various dam failure scenarios. Ultimately, this
framework provides a valuable tool for enhancing dam safety, improving emergency
preparedness, and informing hazard mitigation plans. It offers a robust, adaptable approach for
evaluating dam failure risks, promoting better-informed decision-making, and supporting
efforts to minimize disaster impacts on communities and the environment.

As this project is still in its early development, potential future work could involve exploring
advanced visualization techniques, such as Virtual Reality (VR), to enhance assessment
capabilities. By allowing users to virtually experience the potential effects of a dam break, VR
can offer an immersive understanding of flood extents and impact severity. Expanding the
framework’s applicability to include more variables that impact flood severity, such as climate
change projections and evolving urban development patterns in downstream areas. Integrating
this framework with real-time dam monitoring systems could transform it into an automated
risk assessment tool capable of issuing live updates and warnings to support rapid, informed
responses.
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APPENDIX

The codes used in this research are attached below:
LOL CALCULATION (FROM EQUATION 20 - 26)import numpy as npimport pandas as pdimport logging

# Set up logginglogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s- %(message)s')
def save_to_excel(matrix, file_name):try:pd.DataFrame(matrix).to_excel(file_name, index=False, header=False)except Exception as e:logging.error(f"Failed to save {file_name}: {e}")
def process_matrix(XX, file_prefix):try:# Find the maximum of each columnCC = np.max(XX, axis=0)

# Create a diagonal matrix with the maximum valuesBB = np.diag(CC)amalamal = BB
# Normalize the matrixYY = np.matmul(XX, np.linalg.pinv(amalamal))
# Export normalized matrix to Excelsave_to_excel(YY, f'{file_prefix}_RR.xlsx')
# Sum the columns of the normalized matrixsum_YY = np.sum(YY, axis=0)
# Create a diagonal matrix from the sum of the columnsPP = np.diag(sum_YY)
# Further normalize the matrixff = np.matmul(YY, np.linalg.pinv(PP))
# Check if the sum of each column in the final matrix is 1sumff = np.sum(ff, axis=0)
# Export the final normalized matrix to Excelsave_to_excel(ff, f'{file_prefix}_ff.xlsx')
# Compute the natural logarithm of each element in ff, handling zeros



57
ff_log = np.where(ff > 0, np.log(ff), 0)
# Multiply each element in ff by its logarithmff_final = ff * ff_log
# Export the modified matrix to Excelsave_to_excel(ff_final, f'{file_prefix}_final.xlsx')
# Calculate the sum of each column in ff_finalsum_ff_final = np.sum(ff_final, axis=0)
# Get the count of elements in each column (number of rows)count_columns = ff_final.shape[0]
# Compute the natural logarithm of the count of elementsln_count = np.log(count_columns)
# Compute the negative of the sum of each column divided by the ln of the countfinal_result = -sum_ff_final / ln_count
# Export the final results to Excelsave_to_excel(final_result.reshape(-1, 1), f'{file_prefix}_result.xlsx')
# Subtract each value in final_result from 1adjusted_result = 1 - final_result
# Calculate the sum of the adjusted resultssum_adjusted_result = np.sum(adjusted_result)
# Export the sum of the adjusted results to Excelsave_to_excel(np.array([sum_adjusted_result]).reshape(1, -1),f'{file_prefix}_sum_adjusted_result.xlsx')
# Divide each value in adjusted_result by sum_adjusted_resultnormalized_adjusted_result = adjusted_result / sum_adjusted_result
# Export the normalized adjusted results as a single row to Excelsave_to_excel(normalized_adjusted_result.reshape(1, -1),f'{file_prefix}_normalized_adjusted_result.xlsx')
# Check if the sum of normalized adjusted results is 1sum_normalized_adjusted_result = np.sum(normalized_adjusted_result)
if np.isclose(sum_normalized_adjusted_result, 1):logging.info(f'The sum of normalized adjusted results for {file_prefix} is 1.')else:logging.warning(f'The sum of normalized adjusted results for {file_prefix} is not 1, itis {sum_normalized_adjusted_result}.')
# Load the RR matrix
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RR = pd.read_excel(f'{file_prefix}_RR.xlsx').values
print("CC shape:", CC.shape)print("BB shape:", BB.shape)print("YY shape:", YY.shape)print("Adjusted normalized result shape:", normalized_adjusted_result.shape)

# Initialize a result listmultiplication_sum_results = []
# Ensure that normalized_adjusted_result is a 1D arraynormalized_adjusted_result = normalized_adjusted_result.flatten()
# Perform the column-wise multiplication and summationfor i in range(YY.shape[0]):if normalized_adjusted_result.size ==YY.shape[1]: # Check for correct dimensionsrow_result = np.sum(YY[i, :] * normalized_adjusted_result)multiplication_sum_results.append([row_result])else:raise ValueError("Mismatch in dimensions between YY andnormalized_adjusted_result")
# Convert results to numpy array and export to Excelmultiplication_sum_results = np.array(multiplication_sum_results)save_to_excel(multiplication_sum_results,f'{file_prefix}_multiplication_sum_results.xlsx')
# Print the resultlogging.info(f'The multiplication and summation results for {file_prefix} are saved to{file_prefix}_multiplication_sum_results.xlsx')
return np.sum(ff, axis=0)

except Exception as e:logging.error(f"Error processing matrix {file_prefix}: {e}")
# Define the matricesXX1 = np.array([[6.1, 3.71, 1, 99], [92.96, 3.71, 0.75, 31047], [92.96, 2.87, 0.75, 31047],[13.41, 2.37, 0.75, 49], [13.41, 2.62, 0.75, 49], [13.41, 2.95, 0.75, 49],[13.41, 1.77, 0.75, 49], [6.096, 4.18, 0.75, 17], [11, 0.65, 0.75, 34.8],[7.6, 4.18, 0.75, 37]])XX2 = np.array([[0.67, 0.8, 0.835, 11.27], [0.33, 0.2, 0.67, 19.79], [0.33, 0.2, 0.67, 24.62],[0.33, 0.4, 0.835, 9.57], [0.33, 0.4, 0.835, 9.66], [0.33, 0.4, 0.835, 13.2],[0.33, 0.4, 0.835, 19.32], [0.67, 0.8, 0.67, 3.21], [0.33, 0.2, 0.835, 1.26],[0.33, 0.2, 0.835, 4.02]])XX3 = np.array([[43000, 0.5], [2987, 1], [4767, 1], [997, 1], [128, 1], [258, 1], [2070, 1],[500, 0.5], [50, 0.5], [80, 0.5]])XX4 = np.array([[1, 1], [0.2, 0.67], [0.2, 0.33], [1, 1], [1, 1], [0.6, 0.67], [0.6, 0.67],[1, 1], [1, 1], [1, 0.67]])
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XX5 = np.array([[38.3, 17.882, 1, 1890], [92.96, 26.95, 0.75, 31047], [92.96, 10.08, 0.75,31047], [92.96, 8.83, 0.75, 31047], [13.41, 14.16, 0.75, 49], [13.41, 9.22, 0.75, 49],[60, 52.86, 0.75, 4687.2], [20.1, 18.58, 0.75, 95], [20.1, 13.66, 0.75, 95],[11.6, 7.9, 0.75, 77.7], [13.1, 9.75, 0.75, 227.12], [14, 11.15, 0.75, 86.3],[12.8, 11.15, 1, 55.5], [10.05, 5.57, 1, 178.7], [26.21, 14.59, 0.75, 136],[7.9, 16.21, 0.75, 79.8], [5.2, 11.24, 1, 3.1], [5.2, 6.6, 1, 3.1],[10.97, 6.97, 0.75, 4.93], [33.00, 33.00, 1, 1100], [47.85, 47.85, 1, 4193.8],[21.30, 21.30, 1, 617]])XX6 = np.array([[0.33, 0.4, 0.835, 22.05], [0.33, 0.2, 1, 8.05], [0.33, 0.2, 0.67, 13.52],[0.33, 0.2, 0.67, 14.16], [0.33, 0.4, 0.835, 1.5], [0.33, 0.4, 0.835, 6.78],[1, 0.2, 0.835, 29.9], [0.33, 0.2, 0.67, 0.8], [0.33, 0.2, 0.835, 4.8],[1, 0.8, 0.67, 1.6], [0.33, 0.2, 0.835, 4.82], [0.33, 0.2, 0.835, 2.4100],[1, 0.6, 0.835, 2.4], [0.67, 0.8, 0.835, 1.5], [0.33, 0.20, 1, 11.58],[0.33, 0.2, 1, 6.437], [0.33, 0.2, 1, 11.265], [0.33, 0.2, 0.835, 19.31],[1, 0.6, 0.835, 1.28], [1, 0.6, 1, 24.14], [0.33, 0.8, 0.835, 8],[1, 0.8, 0.67, 60]])XX7 = np.array([[37700, 1], [2, 1], [536, 1], [1466, 1], [429, 1], [618, 1], [150, 1],[100, 0.5], [16400, 0.5], [100, 0.5], [888, 1], [900, 1], [150, 1], [7, 1],[50, 1], [25, 1], [275, 1], [4000, 0.5], [8, 0.5], [125, 0.5], [250, 1],[5000, 0.5]])XX8 = np.array([[1, 1], [1, 1], [0.8, 1], [0.6, 0.67], [1, 1], [1, 1], [1, 1], [0.2, 0.33],[0.2, 0.33], [1, 1], [1, 0.67], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1],[0.8, 0.67], [0.6, 0.33], [1, 1], [1,0.67], [1, 0.33], [0.2, 0.33]])# Process each matrixfor i, matrix in enumerate([XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8], start=1):process_matrix(matrix, f'XX{i}')
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REGRESSION RELATIONSHIP (LOW SEVERITY) EQUATION 29 - 32

import numpy as npimport pandas as pdfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_error, r2_scorefrom sklearn.model_selection import train_test_splitimport itertools
# DataFL = np.array([0.005534884, 0, 0, 0.052156469, 0.015625, 0.031007752, 0, 0.012, 0.02,0.025])Y1 = np.array([0.052858348, 0.995486301, 0.98829137, 0.059986756, 0.062128105,0.064954685, 0.05484752, 0.054523056, 0.038262511, 0.059139302])Y2 = np.array([0.711537492, 0.580781003, 0.68514609, 0.44562505, 0.447569741,0.524060922, 0.656299915, 0.5351082, 0.182662125, 0.242299318])Y3 = np.array([0.983339522, 0.100471427, 0.140487444, 0.05573442, 0.036198511,0.039121029, 0.079856435, 0.027900932, 0.017784523, 0.01845895])Y4 = np.array([1, 0.331173601, 0.23628206, 1, 1, 0.619536494, 0.619536494, 1, 1,0.907899387])
# Combine the dependent variables into a single matrixYs = np.vstack([Y1, Y2, Y3, Y4]).T
# Split the data into training and test setsYs_train, Ys_test, FL_train, FL_test = train_test_split(Ys, FL, test_size=0.20,random_state=32)
# Transformation functionsdef reciprocal(x):return np.where(x == 0, 0, 1 / x)
def square_root(x):return np.sqrt(x)
def cubic(x):return x ** 3
def exponential(x):return np.exp(x)
def logarithmic(x):return np.where(x == 0, 0, np.log(x))
def power(x):return np.power(x, 2)
# Transformations dictionarytransformations = {
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'reciprocal': reciprocal,'square_root': square_root,'cubic': cubic,'linear': lambda x: x,'exponential': exponential,'logarithmic': logarithmic,'power': power}

# Degree of the polynomial (for non-linear fitting)degree = 2 # You can change this value
# Generate all possible combinations of transformationsall_combinations = list(itertools.product(transformations.keys(), repeat=Ys_train.shape[1]))
# Fit models and calculate metrics for all combinationscombination_results = []
for combination in all_combinations:transformed_Ys_train = []transformed_Ys_test = []

for i, transform_name in enumerate(combination):transform_func = transformations[transform_name]transformed_Ys_train.append(transform_func(Ys_train[:, i]).reshape(-1, 1))transformed_Ys_test.append(transform_func(Ys_test[:, i]).reshape(-1, 1))
combined_data_train = np.hstack(transformed_Ys_train)combined_data_test = np.hstack(transformed_Ys_test)
# Polynomial transformationpoly = PolynomialFeatures(degree=degree)poly_combined_data_train = poly.fit_transform(combined_data_train)poly_combined_data_test = poly.transform(combined_data_test)
# Non-linear (Polynomial) regressionmodel = LinearRegression()model.fit(poly_combined_data_train, FL_train)FL_pred_train = model.predict(poly_combined_data_train)FL_pred_test = model.predict(poly_combined_data_test)
rmse_train = np.sqrt(mean_squared_error(FL_train, FL_pred_train))rmse_test = np.sqrt(mean_squared_error(FL_test, FL_pred_test))r2_train = r2_score(FL_train, FL_pred_train)r2_test = r2_score(FL_test, FL_pred_test)
combination_results.append((combination, rmse_train, r2_train, rmse_test, r2_test))

# Convert the results to a DataFrame
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combination_results_df = pd.DataFrame(combination_results, columns=['Transformations','RMSE_Train', 'R2_Train', 'RMSE_Test', 'R2_Test'])
# Find the best combination based on R2 on the test setbest_combination = combination_results_df.loc[combination_results_df['R2_Test'].idxmax()]
print("All Combinations Results:")print(combination_results_df)
print("\nBest Combination:")print(best_combination)
# Extract the best combination detailsbest_transformations = best_combination['Transformations']
# Transform the training and test data with the best transformationsbest_transformed_Ys_train = []best_transformed_Ys_test = []
for i, transform_name in enumerate(best_transformations):transform_func = transformations[transform_name]best_transformed_Ys_train.append(transform_func(Ys_train[:, i]).reshape(-1, 1))best_transformed_Ys_test.append(transform_func(Ys_test[:, i]).reshape(-1, 1))
combined_data_best_train = np.hstack(best_transformed_Ys_train)combined_data_best_test = np.hstack(best_transformed_Ys_test)
# Polynomial transformation for the best modelpoly_combined_data_best_train = poly.fit_transform(combined_data_best_train)poly_combined_data_best_test = poly.transform(combined_data_best_test)
# Perform regression on the best combined datamodel = LinearRegression()model.fit(poly_combined_data_best_train, FL_train)FL_pred_best_train = model.predict(poly_combined_data_best_train)FL_pred_best_test = model.predict(poly_combined_data_best_test)
coefficients_best = model.coef_intercept_best = model.intercept_
# Output the best combined regression resultsprint("\nBest Combined Regression Results:")print(f"Coefficients: {coefficients_best}")print(f"Intercept: {intercept_best}")print(f"RMSE (Train): {best_combination['RMSE_Train']}")print(f"R2 (Train): {best_combination['R2_Train']}")print(f"RMSE (Test): {best_combination['RMSE_Test']}")print(f"R2 (Test): {best_combination['R2_Test']}")
# Calculate FL for each row in the test set using the best combination relationship
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FL_pred_test_rows = []
for i in range(len(FL_test)):row_data = []for j, transform_name in enumerate(best_transformations):transform_func = transformations[transform_name]row_data.append(transform_func(Ys_test[i, j]))row_data = np.array(row_data).reshape(1, -1)poly_row_data = poly.transform(row_data)FL_pred_row = model.predict(poly_row_data)

# If the predicted FL is negative, set it to zeroFL_pred_row = max(FL_pred_row[0], 0)FL_pred_test_rows.append(FL_pred_row)
FL_pred_test_rows = np.array(FL_pred_test_rows)
print("\nPredicted FL for each row in the test set:")print(FL_pred_test_rows)
print("Training Ys:")print(Ys_train)print("Training FL:")print(FL_train)
print("Testing Ys:")print(Ys_test)print("Testing FL:")print(FL_test)
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REGRESSION RELATIONSHIP (MEDUIM &HIGH SEVERITY) EQUATION 29 - 32
import numpy as npimport pandas as pdfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_error, r2_scorefrom sklearn.model_selection import train_test_splitimport itertools
# DataFL = np.array([0.058594164, 0.5, 0.009328358, 0, 0.041958042, 0.035598706, 0.56, 0,0.000304878, 0.39, 0.155405405, 0.086666667, 0.266666667, 0.285714286, 0.02, 0.04,0.007272727, 0, 0.5, 0.68, 0.076, 0.0004])Y5 = np.array([0.154513604, 0.949493671, 0.917375734,0.914995922, 0.056810268,0.047405252, 0.325555465, 0.07885526, 0.069488321, 0.042158839, 0.051963343,0.053052748, 0.051262519, 0.038332261, 0.083683737, 0.051080339, 0.035946569,0.027112709, 0.037517409, 0.155020445, 0.282934817, 0.099571713])Y6 = np.array([0.393736933, 0.201655533, 0.253430168, 0.259905885, 0.185805681,0.239230353, 0.537018648, 0.124725276, 0.166984771, 0.405518234, 0.167187137,0.142802012, 0.363187809, 0.349126653, 0.237373164, 0.185334701, 0.234185897,0.313801435, 0.351855303, 0.584946107, 0.355997351, 0.996427484])Y7 = np.array([1, 0.024962854, 0.038774457, 0.062828374, 0.036006964, 0.04089534,0.028790789, 0.015042005, 0.436632155, 0.015042005, 0.047878735, 0.048189109,0.028790789, 0.025092176, 0.026204346, 0.025557735, 0.032023842, 0.115913268,0.012662478, 0.015688616, 0.031377231, 0.141777694])Y8 = np.array([1, 1, 0.898356491, 0.634424772, 1, 1, 1, 0.263931719, 0.263931719, 1,0.83771179, 1, 1, 1, 1, 1, 0.736068281, 0.467218737, 1, 0.83771179, 0.670505754,0.263931719])
# Combine the dependent variables into a single matrixYs = np.vstack([Y5, Y6, Y7, Y8]).T
# Split the data into training and test sets (Ys, FL, test_size=0.30, random_state=12330, ortest_size=0.20, random_state=17081)Ys_train, Ys_test, FL_train, FL_test = train_test_split(Ys, FL, test_size=0.20,random_state=17081)
# Transformation functionsdef reciprocal(x):return np.where(x == 0, 0, 1 / x)
def square_root(x):return np.sqrt(x)
def cubic(x):return x ** 3
def exponential(x):return np.exp(x)
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def logarithmic(x):return np.where(x == 0, 0, np.log(x))
def power(x):return np.power(x, 2)
# Transformations dictionarytransformations = {'reciprocal': reciprocal,'square_root': square_root,'cubic': cubic,'linear': lambda x: x,'exponential': exponential,'logarithmic': logarithmic,'power': power}
# Degree of the polynomial (for non-linear fitting)degree = 2 # You can change this value
# Generate all possible combinations of transformationsall_combinations = list(itertools.product(transformations.keys(), repeat=Ys_train.shape[1]))
# Fit models and calculate metrics for all combinationscombination_results = []
for combination in all_combinations:transformed_Ys_train = []transformed_Ys_test = []

for i, transform_name in enumerate(combination):transform_func = transformations[transform_name]transformed_Ys_train.append(transform_func(Ys_train[:, i]).reshape(-1, 1))transformed_Ys_test.append(transform_func(Ys_test[:, i]).reshape(-1, 1))
combined_data_train = np.hstack(transformed_Ys_train)combined_data_test = np.hstack(transformed_Ys_test)
# Polynomial transformationpoly = PolynomialFeatures(degree=degree)poly_combined_data_train = poly.fit_transform(combined_data_train)poly_combined_data_test = poly.transform(combined_data_test)
# Non-linear (Polynomial) regressionmodel = LinearRegression()model.fit(poly_combined_data_train, FL_train)FL_pred_train = model.predict(poly_combined_data_train)FL_pred_test = model.predict(poly_combined_data_test)
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rmse_train = np.sqrt(mean_squared_error(FL_train, FL_pred_train))rmse_test = np.sqrt(mean_squared_error(FL_test, FL_pred_test))r2_train = r2_score(FL_train, FL_pred_train)r2_test = r2_score(FL_test, FL_pred_test)
combination_results.append((combination, rmse_train, r2_train, rmse_test, r2_test))

# Convert the results to a DataFramecombination_results_df = pd.DataFrame(combination_results, columns=['Transformations','RMSE_Train', 'R2_Train', 'RMSE_Test', 'R2_Test'])
# Find the best combination based on R2 on the test setbest_combination = combination_results_df.loc[combination_results_df['R2_Test'].idxmax()]
print("All Combinations Results:")print(combination_results_df)
print("\nBest Combination:")print(best_combination)
# Extract the best combination detailsbest_transformations = best_combination['Transformations']
# Transform the training and test data with the best transformationsbest_transformed_Ys_train = []best_transformed_Ys_test = []
for i, transform_name in enumerate(best_transformations):transform_func = transformations[transform_name]best_transformed_Ys_train.append(transform_func(Ys_train[:, i]).reshape(-1, 1))best_transformed_Ys_test.append(transform_func(Ys_test[:, i]).reshape(-1, 1))
combined_data_best_train = np.hstack(best_transformed_Ys_train)combined_data_best_test = np.hstack(best_transformed_Ys_test)
# Polynomial transformation for the best modelpoly_combined_data_best_train = poly.fit_transform(combined_data_best_train)poly_combined_data_best_test = poly.transform(combined_data_best_test)
# Perform regression on the best combined datamodel = LinearRegression()model.fit(poly_combined_data_best_train, FL_train)FL_pred_best_train = model.predict(poly_combined_data_best_train)FL_pred_best_test = model.predict(poly_combined_data_best_test)
coefficients_best = model.coef_intercept_best = model.intercept_
# Output the best combined regression resultsprint("\nBest Combined Regression Results:")
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print(f"Coefficients: {coefficients_best}")print(f"Intercept: {intercept_best}")print(f"RMSE (Train): {best_combination['RMSE_Train']}")print(f"R2 (Train): {best_combination['R2_Train']}")print(f"RMSE (Test): {best_combination['RMSE_Test']}")print(f"R2 (Test): {best_combination['R2_Test']}")
# Calculate FL for each row in the test set using the best combination relationshipFL_pred_test_rows = []
for i in range(len(FL_test)):row_data = []for j, transform_name in enumerate(best_transformations):transform_func = transformations[transform_name]row_data.append(transform_func(Ys_test[i, j]))row_data = np.array(row_data).reshape(1, -1)poly_row_data = poly.transform(row_data)FL_pred_row = model.predict(poly_row_data)

# If the predicted FL is negative, set it to zeroFL_pred_row = max(FL_pred_row[0], 0)FL_pred_test_rows.append(FL_pred_row)
FL_pred_test_rows = np.array(FL_pred_test_rows)
print("\nPredicted FL for each row in the test set:")print(FL_pred_test_rows)
print("Training Ys:")print(Ys_train)print("Training FL:")print(FL_train)
print("Testing Ys:")print(Ys_test)print("Testing FL:")print(FL_test)
# Assuming best_transformations and best_combination from previous steps
# Variables corresponding to the Ysvariables = ['Y5', 'Y6', 'Y7', 'Y8']
# Apply the best transformations to the training databest_transformed_Ys_train = []for i, (transform_name, var) in enumerate(zip(best_transformations, variables)):transform_func = transformations[transform_name]best_transformed_Ys_train.append(transform_func(Ys_train[:, i]).reshape(-1, 1))
# Combine the transformed variables for training
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combined_data_best_train = np.hstack(best_transformed_Ys_train)
# Polynomial transformation for the best modelpoly = PolynomialFeatures(degree=2)poly_combined_data_best_train = poly.fit_transform(combined_data_best_train)
# Fit the regression modelmodel = LinearRegression()model.fit(poly_combined_data_best_train, FL_train)
# Get the coefficients and interceptcoefficients_best = model.coef_intercept_best = model.intercept_
# Get the feature names from polynomial transformationpoly_feature_names = poly.get_feature_names_out(variables)
# Map the coefficients to the featuresprint("\nMapping of Polynomial Features to Coefficients:")for feature, coef in zip(poly_feature_names, coefficients_best):print(f"{feature}: {coef}")
# Output the best regression resultsprint("\nBest Combined Regression Results:")print(f"Intercept: {intercept_best}")print(f"RMSE (Train): {best_combination['RMSE_Train']}")print(f"R2 (Train): {best_combination['R2_Train']}")print(f"RMSE (Test): {best_combination['RMSE_Test']}")print(f"R2 (Test): {best_combination['R2_Test']}")
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PLUGIN CODEThe full code and file can be found here: lol_frameworkhttps://gounbc.sharepoint.com/:f:/r/sites/Impactsofdambreaks/Shared%20Documents/Framework%20plugin/lol_framework?csf=1&web=1&e=zb0Ej9 Orhttps://github.com/ovuchukwu/LOL-Framework/tree/2d84fa1f600a9388169db9dabcd88cc0c09dcba6/lol_framework

# -*- coding: utf-8 -*-"""/***************************************************************************LOLFrameworkDialogA QGIS pluginThis plugin estimates life loss resulting from dam failureGenerated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/-------------------begin : 2024-11-12git sha : $Format:%H$copyright : (C) 2024 by UNBCemail : ovu@unbc.ca
***************************************************************************/
/**************************************************************************** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** *
***************************************************************************/"""
import osimport numpy as npimport pandas as pdimport loggingimport math

from qgis.PyQt import uicfrom qgis.PyQt import QtWidgetsfrom .lol_framework_dialog_base import Ui_LOLFrameworkDialogBase

https://gounbc.sharepoint.com/:f:/r/sites/Impactsofdambreaks/Shared%20Documents/Framework%20plugin/lol_framework?csf=1&web=1&e=zb0Ej9
https://github.com/ovuchukwu/LOL-Framework/tree/2d84fa1f600a9388169db9dabcd88cc0c09dcba6/lol_framework
https://github.com/ovuchukwu/LOL-Framework/tree/2d84fa1f600a9388169db9dabcd88cc0c09dcba6/lol_framework
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# This loads your .ui file so that PyQt can populate your plugin with the elements from QtDesignerFORM_CLASS, _ = uic.loadUiType(os.path.join(os.path.dirname(__file__), 'lol_framework_dialog_base.ui'))

def classify_and_grade_input(input_data):"""Classifies and grades the input data based on predefined grading standards.
Args:input_data (dict): User input where keys are influencing factors (e.g., 'HD', 'MB', 'WB')and values are the provided inputs.
Returns:list: Graded and normalized inputs."""grading_standards = {'WB': {'Level I (storm, blizzard, typhoon, fog)': 1.0, 'Level II (heavy rain, heavy snow,gale)': 0.8, 'Level III (moderate rain, moderate snow)': 0.6, 'Level IV (light rain, shower, lightsnow)': 0.4, 'Level V (sunny or cloudy day)': 0.2},'MB': {'Overtopping': 1.0, 'Poor quality (leakage, internal erosion, tunnel, blockage orobstruction of dam structure, spillway etc.)': 0.75, 'Mismanagement (Overage storage, poormaintenance, dams without maintenance or management etc.)': 0.5, 'Others': 0.25},'TW': {'0-15': 1.0, '15-30': 0.8, '30-45': 0.6, '45-60': 0.4, '>60': 0.2},'VB': {'Adobe': 1.0, 'Wood': 0.835, 'Masonry(Brick/Stone)': 0.67, 'Concrete': 0.33},'EC': {'Bad': 1.0, 'Middle': 0.67, 'Good': 0.33},'UB': {'Vague/Fuzzy': 1.0, 'Clear/Precise': 0.5},'TB': {'Midnight (00:00 - 07:59:59)': 1.0, 'Night (20:00 - 23:59:59)': 0.67, 'Daytime(08:00 - 19:59:59)': 0.33},}
normalized_data = []for factor, value in input_data.items():if factor in grading_standards: # Non-numeric factorsgraded_value = grading_standards[factor].get(value, None)if graded_value is None:raise ValueError(f"Invalid value '{value}' for factor '{factor}'.")normalized_data.append(graded_value)else: # Numeric factorsnormalized_data.append(value)return normalized_data
pass

def assign_to_matrix(processed_data, SF, matrices_low, matrices_high):"""Assigns processed data to the appropriate matrix group based on SF.
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Args:processed_data (list): Graded and normalized data.SF (float): Severity of flood.matrices_low (list): [XX1, XX2, XX3, XX4].matrices_high (list): [XX5, XX6, XX7, XX8]."""target_matrices = matrices_low if SF < 4.6 else matrices_highmodules = [4, 4, 2, 2] # Module sizes
start_idx = 0for i, matrix in enumerate(target_matrices):module_size = modules[i]new_row = processed_data[start_idx:start_idx + module_size]if len(new_row) != module_size:raise ValueError(f"Data length mismatch for module {i + 1}: Expected{module_size}, got {len(new_row)}.")target_matrices[i] = np.vstack([matrix, new_row])start_idx += module_size
pass

def validate_inputs(input_data, expected_fields):"""Validates input data against expected fields.
Args:input_data (dict): User inputs where keys are field names and values are providedinputs. expected_fields (dict): Dictionary with field names as keys and value types (e.g., float,str) as values.
Returns:bool: True if all inputs are valid, raises ValueError otherwise."""for field, field_type in expected_fields.items():if field not in input_data:raise ValueError(f"Missing input: {field}")if not isinstance(input_data[field], field_type):raise ValueError(f"Invalid type for {field}. Expected {field_type.__name__}.")return True

def initialize_matrices():"""Initializes matrices for low and high severity cases.
Returns:dict: Dictionary containing 'low' and 'high' severity matrices."""return {
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"low": [np.empty((0, 4)), np.empty((0, 4)), np.empty((0, 2)), np.empty((0, 2))],"high": [np.empty((0, 4)), np.empty((0, 4)), np.empty((0, 2)), np.empty((0, 2))]}

def process_matrix_in_memory(matrix, display=True):"""Processes a matrix in memory and optionally displays the normalized adjusted resultand multiplication sum results.
Args:matrix (np.array): The matrix to process.display (bool): Whether to display the normalized adjusted result and multiplication sumresults.
Returns:dict: Contains the processed results (normalized adjusted result and multiplication sumresults)."""try:# Perform matrix operationsCC = np.max(matrix, axis=0)BB = np.diag(CC)YY = np.matmul(matrix, np.linalg.pinv(BB))

sum_YY = np.sum(YY, axis=0)PP = np.diag(sum_YY)ff = np.matmul(YY, np.linalg.pinv(PP))
ff_log = np.where(ff > 0, np.log(ff), 0)ff_final = ff * ff_log
sum_ff_final = np.sum(ff_final, axis=0)count_columns = ff_final.shape[0]ln_count = np.log(count_columns)final_result = -sum_ff_final / ln_count
adjusted_result = 1 - final_resultsum_adjusted_result = np.sum(adjusted_result)normalized_adjusted_result = adjusted_result / sum_adjusted_result
# Correct computation for multiplication sum results# Ensure normalized_adjusted_result is a 1D arraynormalized_adjusted_result = normalized_adjusted_result.flatten()
# Compute multiplication sum resultsmultiplication_sum_results = []for i in range(YY.shape[0]):if normalized_adjusted_result.size == YY.shape[1]: # Check for correct dimensionsrow_result = np.sum(YY[i, :] * normalized_adjusted_result)
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multiplication_sum_results.append([row_result])else:raise ValueError("Mismatch in dimensions between YY andnormalized_adjusted_result.")

# Convert results to numpy arraymultiplication_sum_results = np.array(multiplication_sum_results)
# Log and print resultsif display:#logging.info("==== Results for Processed Matrix ====")#logging.info(f"Normalized Adjusted Result:\n{normalized_adjusted_result}")logging.info(f"Multiplication Sum Results:\n{multiplication_sum_results}")

#print("\n==== Results for Processed Matrix ====")#print("Normalized Adjusted Result:", normalized_adjusted_result)print("Multiplication Sum Results:", multiplication_sum_results)#sys.stdout.flush() # Ensure it appears in the console
return {"normalized_adjusted_result": normalized_adjusted_result,"multiplication_sum_results": multiplication_sum_results,}except Exception as e:logging.error(f"Error processing matrix in memory: {e}")return None

def calculate_fatality_rate_low(Y):"""Calculates fatality rate FL for low severity using the provided equation.
Args:Y (list or array): Multiplication sum results [Y1, Y2, Y3, Y4].
Returns:float: Calculated fatality rate FL (low severity)."""Y1, Y2, Y3, Y4 = YFL = (1.1270 +1.2347 * np.log(Y1) +0.4266 * np.sqrt(Y2) +1.0421 * np.exp(Y3) -1.3593 * np.sqrt(Y4) -0.0629 * (np.log(Y1)**2) -0.1314 * np.log(Y1) * np.sqrt(Y2) -0.5220 * np.log(Y1) * np.exp(Y3) -1.1981 * np.log(Y1) * np.sqrt(Y4) -1.9268 * (np.sqrt(Y2)**2) -
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0.0792 * np.sqrt(Y2) * np.exp(Y3) +1.6188 * np.sqrt(Y2) * np.sqrt(Y4) -0.8520 * (np.exp(Y3)**2) +0.6823 * np.exp(Y3) * np.sqrt(Y4) -2.2349 * (np.sqrt(Y4)**2))return FL

def calculate_fatality_rate_high(Y):"""Calculates fatality rate FL for high severity using the provided equation.
Args:Y (list or array): Multiplication sum results [Y1, Y2, Y3, Y4].
Returns:float: Calculated fatality rate FL (high severity)."""Y1, Y2, Y3, Y4 = YFL = (-2.2533 +11.3349 * Y1**2 -0.1300 * (1 / Y2) -0.0378 * (1 / Y3) +2.6903 * np.exp(Y4) +12.7990 * (Y1**2)**2 -4.2117 * Y1**2 * (1 / Y2) +0.4114 * Y1**2 * (1 / Y3) -6.6235 * Y1**2 * np.exp(Y4) +0.0375 * (1 / Y2)**2 +0.0009 * (1 / Y2) * (1 / Y3) -0.1023 * (1 / Y2) * np.exp(Y4) +0.0001 * (1 / Y3)**2 +0.0098 * (1 / Y3) * np.exp(Y4) -0.5143 * (np.exp(Y4)**2))return FL

def calculate_fatality_rate(severity, Y):"""Calculates the fatality rate FL based on severity.
Args:severity (str): Either 'low' or 'high'.Y (list or array): Multiplication sum results [Y1, Y2, Y3, Y4].
Returns:float: Fatality rate FL.
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"""if severity == "low":return calculate_fatality_rate_low(Y)elif severity == "high":return calculate_fatality_rate_high(Y)else:raise ValueError("Severity must be 'low' or 'high'.")

class LOLFrameworkDialog(QtWidgets.QDialog, FORM_CLASS):def __init__(self, parent=None):"""Constructor."""super(LOLFrameworkDialog, self).__init__(parent)# Set up the user interface from Designer through FORM_CLASS.# After self.setupUi() you can access any designer object by doing# self.<objectname>, and you can use autoconnect slots - see# http://qt-project.org/doc/qt-4.8/designer-using-a-ui-file.html# #widgets-and-dialogs-with-auto-connectself.ui = Ui_LOLFrameworkDialogBase()self.setupUi(self)
#self.ui.pButtonRunLOLModel.clicked.connect(self.onpButtonRunLOLModelClicked)self.pButtonRunLOLModel.clicked.connect(self.pbuttonrunlolmodelclicked)self.matrices = initialize_matrices()self.pButtonExport.clicked.connect(self.save_matrices_to_file)# Initialize matrices and reset inputsself.reset_inputs_and_matrices()
self.XX1 = np.array([[6.1, 3.71, 1, 99], [92.96, 3.71, 0.75, 31047], [92.96, 2.87, 0.75,31047], [13.41, 2.37, 0.75, 49], [13.41, 2.62, 0.75, 49], [13.41, 2.95, 0.75, 49],[13.41, 1.77, 0.75, 49], [6.096, 4.18, 0.75, 17], [11, 0.65, 0.75, 34.8],[7.6, 4.18, 0.75, 37]])self.XX2 = np.array([[0.67, 0.8, 0.835, 11.27], [0.33, 0.2, 0.67, 19.79], [0.33, 0.2, 0.67,24.62], [0.33, 0.4, 0.835, 9.57], [0.33, 0.4, 0.835, 9.66], [0.33, 0.4, 0.835, 13.2],[0.33, 0.4, 0.835, 19.32], [0.67, 0.8, 0.67, 3.21], [0.33, 0.2, 0.835, 1.26],[0.33, 0.2, 0.835, 4.02]])self.XX3 = np.array([[43000, 0.5], [2987, 1], [4767, 1], [997, 1], [128, 1], [258, 1],[2070, 1],[500, 0.5], [50, 0.5], [80, 0.5]])self.XX4 = np.array([[1, 1], [0.2, 0.67], [0.2, 0.33], [1, 1], [1, 1], [0.6, 0.67], [0.6, 0.67],[1, 1], [1, 1], [1, 0.67]])self.XX5 = np.array([[38.3, 17.882, 1, 1890], [92.96, 26.95, 0.75, 31047], [92.96,10.08, 0.75, 31047],[92.96, 8.83, 0.75, 31047], [13.41, 14.16, 0.75, 49], [13.41, 9.22, 0.75, 49],[60, 52.86, 0.75, 4687.2], [20.1, 18.58, 0.75, 95], [20.1, 13.66, 0.75, 95],[11.6, 7.9, 0.75, 77.7], [13.1, 9.75, 0.75, 227.12], [14, 11.15, 0.75, 86.3],[12.8, 11.15, 1, 55.5], [10.05, 5.57, 1, 178.7], [26.21, 14.59, 0.75, 136],
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[7.9, 16.21, 0.75, 79.8], [5.2, 11.24, 1, 3.1], [5.2, 6.6, 1, 3.1],[10.97, 6.97, 0.75, 4.93], [33.00, 33.00, 1, 1100], [47.85, 47.85, 1, 4193.8],[21.30, 21.30, 1, 617]])self.XX6 = np.array([[0.33, 0.4, 0.835, 22.05], [0.33, 0.2, 1, 8.05], [0.33, 0.2, 0.67,13.52], [0.33, 0.2, 0.67, 14.16], [0.33, 0.4, 0.835, 1.5], [0.33, 0.4, 0.835, 6.78],[1, 0.2, 0.835, 29.9], [0.33, 0.2, 0.67, 0.8], [0.33, 0.2, 0.835, 4.8],[1, 0.8, 0.67, 1.6], [0.33, 0.2, 0.835, 4.82], [0.33, 0.2, 0.835, 2.4100],[1, 0.6, 0.835, 2.4], [0.67, 0.8, 0.835, 1.5], [0.33, 0.20, 1, 11.58],[0.33, 0.2, 1, 6.437], [0.33, 0.2, 1, 11.265], [0.33, 0.2, 0.835, 19.31],[1, 0.6, 0.835, 1.28], [1, 0.6, 1, 24.14], [0.33, 0.8, 0.835, 8],[1, 0.8, 0.67, 60]])self.XX7 = np.array([[37700, 1], [2, 1], [536, 1], [1466, 1], [429, 1], [618, 1], [150, 1],[100, 0.5], [16400, 0.5], [100, 0.5], [888, 1], [900, 1], [150, 1], [7, 1],[50, 1], [25, 1], [275, 1], [4000, 0.5], [8, 0.5], [125, 0.5], [250, 1],[5000, 0.5]])self.XX8 = np.array([[1, 1], [1, 1], [0.8, 1], [0.6, 0.67], [1, 1], [1, 1], [1, 1], [0.2, 0.33],[0.2, 0.33], [1, 1], [1, 0.67], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1],[0.8, 0.67], [0.6, 0.33], [1, 1], [1,0.67], [1, 0.33], [0.2, 0.33]])

#self.comboBoxMB.addItems(['Overtopping', 'Poor quality (leakage, internal erosion,tunnel, \nblockage or obstruction of dam structure, spillway \netc.)', 'Mismanagement(Overage storage, poor maintenance, \ndams without maintenance or management etc.)','Others'])self.comboBoxMB.setToolTip("Select the dam break mode.")self.comboBoxMB.addItems(['Overtopping','Poor quality (leakage, internal erosion, tunnel, blockage or obstruction of damstructure, spillway etc.)','Mismanagement (Overage storage, poor maintenance, dams without maintenance ormanagement etc.)','Others'])self.comboBoxWB.addItems(['Level I (storm, blizzard, typhoon, fog)', 'Level II (heavyrain, heavy snow, gale)', 'Level III (moderate rain, moderate snow)', 'Level IV (light rain,shower, light snow)', 'Level V (sunny or cloudy day)'])self.comboBoxVB.addItems(['Adobe', 'Wood', 'Masonry(Brick/Stone)', 'Concrete'])self.comboBoxTW.addItems(['0-15', '15-30', '30-45', '45-60', '>60'])self.comboBoxEC.addItems(['Bad', 'Middle', 'Good'])self.comboBoxUB.addItems(['Vague/Fuzzy', 'Clear/Precise'])self.comboBoxTB.addItems(['Midnight (00:00 - 07:59:59)', 'Daytime (08:00 - 19:59:59)','Night (20:00 - 23:59:59)'])
#clear/resetdef reset_inputs_and_matrices(self):"""Resets all input fields and calculated matrices.Clears any user input and resets calculated matrices in memory."""# Clear line edits
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self.lineEditHD.clear()self.lineEditSF.clear()self.lineEditPR.clear()self.lineEditSW.clear()self.lineEditDD.clear()
# Reset combo boxesself.comboBoxMB.setCurrentIndex(0)self.comboBoxWB.setCurrentIndex(0)self.comboBoxVB.setCurrentIndex(0)self.comboBoxTW.setCurrentIndex(0)self.comboBoxEC.setCurrentIndex(0)self.comboBoxUB.setCurrentIndex(0)self.comboBoxTB.setCurrentIndex(0)
# Reinitialize matrices (empty them out)self.matrices = initialize_matrices()

def pbuttonrunlolmodelclicked(self):# Collect user inputstry:input_data = {'HD': float(self.lineEditHD.text()),'SF': float(self.lineEditSF.text()),'MB': self.comboBoxMB.currentText(),'SW': float(self.lineEditSW.text()),'TB': self.comboBoxTB.currentText(),'WB': self.comboBoxWB.currentText(),'VB': self.comboBoxVB.currentText(),'DD': float(self.lineEditDD.text()), # DD is numeric'PR': float(self.lineEditPR.text()),'UB': self.comboBoxUB.currentText(),'TW': self.comboBoxTW.currentText(),'EC': self.comboBoxEC.currentText(),}
# Validate inputsexpected_fields = {'HD': float, 'SF': float, 'MB': str, 'SW': float,'TB': str, 'WB': str, 'VB': str, 'DD': float,'PR': float, 'UB': str,'TW': str, 'EC': str}validate_inputs(input_data, expected_fields)
# Normalize and classify inputsSF = input_data['SF']processed_data = classify_and_grade_input(input_data)



78
# Dynamic matrix handlingif not hasattr(self, "matrices"):self.matrices = initialize_matrices()
matrix_group = "low" if SF < 4.6 else "high"assign_to_matrix(processed_data, SF, self.matrices["low"], self.matrices["high"])
predefined_matrices = {"low": [self.XX1, self.XX2, self.XX3, self.XX4],"high": [self.XX5, self.XX6, self.XX7, self.XX8],}
# Combine user-inputted data with predefined matricesfor matrix_group, user_matrices in self.matrices.items():for i, user_matrix in enumerate(user_matrices):if user_matrix.size > 0: # Append user-inputted data if availablepredefined_matrices[matrix_group][i] = np.vstack([predefined_matrices[matrix_group][i], user_matrix])
# Create dictionaries to store resultsmultiplication_sum_results = {}fatality_rates = {}
# Process matrices and compute multiplication sum results and fatality ratesfor matrix_group, combined_matrices in predefined_matrices.items():if matrix_group == ("low" if SF < 4.6 else "high"):# Process matrices for the selected severityfor i, combined_matrix in enumerate(combined_matrices, start=1):result = process_matrix_in_memory(combined_matrix, display=False)if result:key = f"{matrix_group}_XX{i}"multiplication_sum_results[key] = result["multiplication_sum_results"]

# Calculate fatality rate for the selected severitytry:Y1 = multiplication_sum_results[f"{matrix_group}_XX1"][-1][0] # Last rowof selected matrixY2 = multiplication_sum_results[f"{matrix_group}_XX2"][-1][0] # Last rowof selected matrixY3 = multiplication_sum_results[f"{matrix_group}_XX3"][-1][0] # Last rowof selected matrixY4 = multiplication_sum_results[f"{matrix_group}_XX4"][-1][0] # Last rowof selected matrixY = [Y1, Y2, Y3, Y4]
FL = calculate_fatality_rate(matrix_group, Y)fatality_rates[matrix_group] = FLlogging.info(f"Fatality Rate ({matrix_group.capitalize()} Severity): {FL}")
# Update labelFatality with the calculated Fatality Rate
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self.labelFatality.setText(f"{FL:.4f}") # Display Fatality Rate
# Now multiply Fatality Rate by PR and update labelLOLPR = input_data['PR']result_Lol = FL * PRself.labelLOL.setText(f"{round(result_Lol)}") # Display Fatality Rate * PR
# Switch to the Results tabself.tabWidget.setCurrentIndex(2)
# Now, call method to save matrices and results#self.save_matrices_to_file(fatality_rates, multiplication_sum_results,predefined_matrices)

except KeyError as e:logging.error(f"Error extracting {matrix_group} severity results: {e}")self.labelLOL.setText(f"Error: {e}")
except ValueError as ve:self.labelLOL.setText(f"Input Error: {ve}")logging.error(f"Validation error: {ve}")except Exception as e:self.labelLOL.setText(f"Processing Error: {e}")logging.error(f"Unexpected error: {e}")

def save_matrices_to_file(self, fatality_rates, multiplication_sum_results,predefined_matrices, filename=None):"""Saves matrices, results, and fatality rates to an Excel file."""try:# Allow user to save file using QFileDialogif not filename:from PyQt5.QtWidgets import QFileDialogfilename, _ = QFileDialog.getSaveFileName(self, "Save Matrices", "", "Excel Files(*.xlsx)") if not filename:self.labelLOL.setText("Save operation canceled.")return
# Write matrices and results to filewith pd.ExcelWriter(filename) as writer:for matrix_group, combined_matrices in predefined_matrices.items():for i, combined_matrix in enumerate(combined_matrices, start=1):sheet_name = f"{matrix_group}_XX{i}"pd.DataFrame(combined_matrix).to_excel(writer, sheet_name=sheet_name,index=False, header=False)

# Write multiplication sum resultsfor key, mult_sum_result in multiplication_sum_results.items():sheet_name = f"{key}_mult_sum_result"
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pd.DataFrame(mult_sum_result).to_excel(writer, sheet_name=sheet_name,index=False, header=False)

# Write fatality ratesfatality_rate_df = pd.DataFrame.from_dict(fatality_rates, orient="index",columns=["Fatality Rate"])fatality_rate_df.to_excel(writer, sheet_name="Fatality Rates", index=True,header=True)
self.labelArea.setText(f"Matrices, results, and fatality rates successfully exported to{filename}.")except Exception as e:self.labelArea.setText(f"Error saving matrices, results, and fatality rates: {e}")logging.error(f"Error saving matrices, results, and fatality rates: {e}")


