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ABSTRACT 

This thesis explores the use of treatment wetlands (TWs) for domestic wastewater (WW), 

addressing the need for more experimental trials in secondary treatment scenarios and cold 

climates. Additionally, a data-driven model, the Sparse Identification of Nonlinear Dynamics 

(SINDy) algorithm, was employed for the first time to identify a nonlinear system of ordinary 

differential equations (ODEs) to describe pollutant removal rates in TWs. A 2x2x2 full factorial 

experiment was conducted to examine the effects of WW strength, temperature and vegetation 

on lab-scale horizontal subsurface flow TWs. High-resolution monitoring of biologically 

relevant parameters such as oxidation reduction potential (ORP), dissolved oxygen (DO), pH, 

and temperature was implemented. Experimental datasets were utilized for training and 

validating the chemical oxygen demand (COD), ammonia and phosphates reaction rate models. 

Results indicated no significant difference in COD removal between high and low WW 

strength, indicating TWs can effectively manage raw domestic WW.  

Results indicated no significant difference between high and low organic loads, indicating TWs 

can effectively manage high-strength domestic WW. However, temperature significantly 

decreased the COD removal (86-96% in warm and 58-76% in cold conditions). Additionally, 

systems with the largest increase in ORP values exhibited the best COD removal efficiencies. 

However, not enough oxygenic levels were wealthy enough to enhance ammonia degradation 

efficiently. The pH also presented a slight increase in the systems, which could affect the 

phosphate removal by promoting their release in the water. Finally, ORP offered more reliable 

insights into oxygenic conditions than direct DO measurements. These results underscore the 

potential of TWs to be implemented for secondary treatment, as well as the importance of 

continuous monitoring of ORP and pH parameters as just-in-time indicators of TW 

performance. 
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ODEs were identified for modelling pollutant removal, with simplified equations employing 3 

to 6 polynomial basis functions in low-noise scenarios and up to 11 polynomial basis functions 

in high-noise situations. Key parameters such as COD*ammonia, ORP, and pH were found to 

have the most significant impact on the pollutant removal rates. Validation results demonstrated 

robust predictive capabilities for COD models, achieving R² values between 0.81 and 0.98 with 

experimental data, while ammonia and phosphate models showed varying accuracy levels. 

These results suggest the need for effective application of the SNDy algorithm to identify the 

TWs dynamics and more datasets to be tested for model validation. They also highlight the 

importance of incorporating ORP and pH into TWs monitoring and modelling. 
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1 INTRODUCTION 

1.1 Study background 

Water is a precious resource for living beings. In 2010, the United Nations General Assembly 

explicitly recognized the human right to water and sanitation, acknowledging that clean 

drinking water and sanitation are essential to the realization of all human rights (UN-WHO, 

2010). It includes ensuring safe, accessible, and affordable ways to manage wastewater  (WW). 

Nevertheless, billions of people worldwide are reported to live without safely managed 

sanitation (UN-Water, 2021). Globally, 44 % of all household WW flows are not safely treated, 

i.e. treated by secondary or higher processes or with effluent discharges meeting relevant 

standards. Under this situation, the deterioration of rivers, lakes, and oceans, as well as public 

health concerns, have increased (Cosgrove and Loucks, 2015; Hoekstra et al., 2018).  

Traditionally, centralized gray infrastructure has been used to supply water and WW services 

for storage, conveyance, treatment, and disposal. In these systems, WW is collected and 

transported to treatment facilities far from the generation point (de Anda et al., 2018). 

Consequently, it is capital and energy-intensive, with long construction cycles, and often 

incompatible with the environment (Li et al., 2017; Palmer et al., 2015). This prompts a review 

of alternative blue-green infrastructure technologies, such as treatment wetlands (TWs) for on-

site WW treatment (WWAP and UN-Water, 2018).  

TWs are nature-based solutions consisting of a waterbed with plants and a filter media layer as 

its foundation, where physical, chemical and biological processes combine to clean WW (Fu et 

al., 2018). They are described as a high-efficiency, low-cost, easy-to-operate, and low-

maintenance technology, proposing TWs as a feasible solution to face water sanitation issues 

(Meng et al., 2014; Puigagut et al., 2008; Solano et al., 2004). 
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1.2 Treatment wetlands for secondary domestic wastewater 

The interest in studying TWs, also called constructed wetlands (CW), has increased 

significantly in the past 10 years. A bibliometric analysis conducted in the Science Direct 

database indicates an exponential growth of scientific publications in the last seven years 

(orange in Figure 1.1). Similar trends were found for Google Scholar and Web of Science search 

engines (not shown). This is partly due to TWs versatility in treating a wide range of WW, such 

as domestic sewage, urban runoff and stormwater, industrial and agricultural WW, landfill 

leachate, and polluted river water (Kumar and Dutta, 2019; Saeed and Sun, 2012; Vohla et al., 

2011; Wu et al., 2015). However, in the context of domestic WW, the research interest started 

only a few years ago (green in Figure 1.1), where most TW systems are implemented to perform 

the tertiary or polishing treatment as the main process occurring in a centralized WW treatment 

plant. It limits our understanding of their performance as a secondary treatment system. 

Experimental trials under high pollutant concentrations might help to evaluate the feasibility of 

TWs for decentralized (i.e. small-scale) domestic WW treatment since only a few studies have 

been reported in the literature (blue in Figure 1.1). This is especially important in developing 

countries where the majority of raw WW is discharged directly into rivers due to a lack of 

suitable and effective treatment technologies, operational failures of larger treatment plants, 

and higher costs involved in constructing new treatment units (Zhang et al., 2014).  
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Figure 1.1 Year-round publications between 2000 and 2023, Science Direct. Keywords search 

as dark red: “treatment wetland,” “constructed wetlands”; orange: “treatment wetland,” 

“constructed wetlands,” “domestic”; blue: “treatment wetland,” “constructed wetlands,” 

“domestic,” “decentralized.” 

1.2.1 Treatment wetlands classification 

TWs can be classified according to their hydraulics into free water surface flow (FWSF) and 

subsurface flow (SSF) (Kadlec and Wallace, 2009). In the FWSF configuration, the water 

circulates over the saturated substrate through the stems of the plants. The water is directly 

exposed to the atmosphere, similar to the conventional lagoon systems. In the SSF wetlands, 

water circulation is through a granular medium and the plant rhizomes and roots. Depending 

on the direction of the flow, SSF systems are divided into horizontal subsurface flow wetlands 

(HSSFW) and vertical subsurface flow wetlands (VSSFW) wetlands. In the HSSFW, the water 

is fed at the top of one end; however, in VSSFWs, the system receives WW at the top along the 

wetland surface area (Delgadillo et al., 2010). 

In particular, SSF systems are the most common types of TWs used around the world since they 

improve anaerobic and anoxic conditions and interactions between pollutants and soil substrate, 
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plant roots and microorganisms (García et al., 2010; Kumar and Dutta, 2019). HSSFW is 

preferred over VSSFW due to its less complex operation and maintenance (del Castillo et al., 

2022).  

1.2.2 Design and operational criteria 

The design of TWs is often carried out using the black box concept. Although numerous 

manuals are available currently, most of the design and operational recommendations are still 

considered “rule of thumb” or empirically based on previous experiences (Kadlec and Wallace, 

2009; UN-Habitat, 2008; US EPA, 2000). Key factors influencing TW efficiencies include 

influent quality, temperature, and plant species. However, the interconnections between these 

factors and their impact on pollutant removal rates are not fully understood (Fu et al., 2018).  

In addition, oxidation reduction potential (ORP), dissolved oxygen (DO) and pH are reported 

to affect the physical, chemical, and biological processes occurring within WW treatment 

processes, thus they can aid in enhancing the understanding and prediction of removal rates for 

conventional pollutants (Grimalt-Alemany et al., 2021; Zhai et al., 2012). However, these 

parameters are not often reported in previous studies and if so, measurements are typically taken 

only at the influent and effluent of the treatment system, limiting the comprehension of their 

roles within the TWs.  

1.3 Data-driven models for treatment wetlands 

The pollutant dynamics, i.e. their transportation, transformation and fate, in TWs have not been 

elucidated yet, which limits proposing design and operational optimization strategies (Meyer et 

al., 2015; Yuan et al., 2020). Over time, mathematical modelling has been applied to overcome 

this limitation. It describes the conceptual understanding of pollutant degradation mechanisms 

into mathematical expressions (i.e., algebraic or differential equations) (Meyer et al., 2015). As 
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shown in Figure 1.2, publications that included a modelling approach for studying TWs have 

increased over time, with most of them involving mathematical models for expanding the 

understanding of TWs. Nevertheless, these models exhibit some limitations since they are 

generally based on assumptions; contain parameters that rely on real-time measurement; and 

often present high complexity due to typically large numbers of equations, kinetic constants 

and stoichiometric factors (Li et al., 2021; Meyer et al., 2015). Moreover, such models generally 

do not consider nonlinear interactions for pollutant degradation via biological activity which 

has been reported (Li et al., 2021).  

Recently, data-driven models based on machine learning algorithms have gained attention in 

simulating complex engineering systems. These models consist of finding relationships 

between the system state input and output variables without exact knowledge about the physical 

behaviour of the system (Solomatine et al., 2008). Although data-driven models have been 

reported to be successfully applied in different fields such as mechanics, hydraulics, cell 

biology, among others (Brunton et al., 2020; Li et al., 2021; Zitnik et al., 2019), its 

implementation on TWs started increasing only three years ago with 661 publications in 2023 

(purple in Figure 1.2). Hence, exploring data-driven models stands out as a research opportunity 

to obtain a simplified equation to better understand pollutant dynamics in TWs.  
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Figure 1.2 Year-round publications between 2000 and 2023, Science Direct. 

Keywords research as blue: “treatment wetland,” “constructed wetlands,” “modelling”; 

purple: “treatment wetland,” “constructed wetlands,” “data-driven models.” 

The general objective of this thesis is to support the effective design and operation of TWs for 

secondary domestic WW treatment by evaluating their performance under different conditions 

and developing pollutant removal prediction models in the form of ordinary differential 

equations (ODEs) based on a data-driven model. This approach addresses the complexity of 

TWs by viewing them as adaptive-evolving systems that respond to operational and design 

changes such as organic loading, temperature and plant growth. Based on experimental 

observations, a data-driven model can learn from the ongoing variations in TW processes and 

identify nonlinear ODEs to describe pollutant dynamics. 

This research expects to provide a better understanding of TW performance and propose 

operational strategies and design recommendations to improve the performance of small -scale 

TWs for secondary domestic WW. Also, it is expected to provide insights into using data-driven 

models to study TWs.  
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1.4 Hypotheses 

The hypotheses to be tested in this work are: 

• The performance of TWs, in terms of pollutant removal efficiencies, can vary due to 

factors such as WW strength, temperature, and plants. 

• Physicochemical parameters such as ORP, DO and pH can serve as indicators of the 

pollutant removal rates in TWs. 

• Data-driven modelling based on machine learning regression can produce governing 

nonlinear ODE to describe pollutant removal rates in TWs. 

1.5 Research objectives 

Based on the main research gaps, the objectives of this thesis are:  

1. To examine the influence of WW strength, temperature, and the presence of plants in 

HSSFW treatment efficiency (in terms of conventional pollutants concentration and 

physicochemical parameters). 

2. To implement a data-driven model that generates the non-linear governing ODE for 

pollutant dynamics, emphasizing the interactions between key parameters influencing 

the degradation of conventional pollutants in HSSFWs. 

1.6 Thesis outline 

The thesis proposal is composed of four chapters. Chapter one presents the general overview 

and objectives of the thesis work. Chapter two presents the experimental results, including the 

effect and the interactions between factors such as WW strength, temperature, and vegetation, 

as well as changes in physicochemical parameter values to explain pollutant dynamics over the 

reaction time. Chapter three presents the modelling results where a data-driven model algorithm 

was implemented using experimental data to elucidate the non-linear ODE for conventional 
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pollutants removal in TWs. Finally, chapter four provides the conclusions and suggests 

directions for future research. 
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2 TREATMENT WETLANDS FOR SECONDARY TREATMENT OF DOMESTIC 

WASTEWATER: FACTORIAL EXPERIMENT AND HIGH-RESOLUTION 

DATA MONITORING 

2.1  Abstract 

TWs can be used as decentralized treatment technology by removing pollutants such as organics 

and nutrients from domestic WW; however, more research is needed under secondary treatment 

scenarios and cold climates while monitoring biologically relevant parameters. In this work, a 

2x2x2 full factorial experiment was implemented to investigate the impact of WW strength 

(500 and 2,000 mgCODt/L), temperature (6 and 20°C), and vegetation (planted and unplanted) 

on lab-scale HSSFW, with the high-resolution monitoring of ORP, DO, pH and temperature as 

biologically relevant parameters. Results indicated no significant difference between high and 

low organic loads, indicating TWs can effectively manage high-strength domestic WW. 

However, temperature significantly decreased the COD removal (86-96% in warm and 58-76% 

in cold conditions). Additionally, systems with the largest increase in ORP values exhibited the 

best COD removal efficiencies. However, not enough oxygenic levels were wealthy enough to 

enhance ammonia degradation efficiently. The pH also presented a slight increase in the 

systems, which could affect the phosphate removal by promoting their release in the water. 

Finally, ORP offered more reliable insights into oxygenic conditions than direct DO 

measurements. These results underscore the potential of TWs to be implemented for secondary 

treatment, as well as the importance of continuous monitoring of ORP and pH parameters as 

just-in-time indicators of TW performance. 
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2.2 Introduction 

TWs have become a viable and affordable natural option in recent years to treat municipal WW. 

They have proven effective in a variety of settings and sizes, working both alone and in tandem 

with conventional methods (Arias et al., 2021). HSSFW are reported to effectively remove 

organics with efficiencies ranging between 75% and 95% (Ilyas and Masih, 2018) and, to a 

lesser extent, nutrients (N and P) with 0-75% (Ilyas and Masih, 2018, 2017). Their efficiency 

can be attributed to their ability to enhance aerobic and anoxic conditions and, thus, promote 

complex biological and physicochemical processes (García et al., 2010; Kumar and Dutta, 

2019). In this sense, HSSFWs show potential as a decentralized secondary WW treatment 

alternative, especially in scenarios where communities face challenges accessing traditional 

sanitation systems. However, further experimental tests are needed to explore this potential 

application fully (Ghimire et al., 2019), including the effect and interactions of operational and 

design parameters, as well as obtaining high-resolution data on conventional pollutants and 

more biologically relevant parameters like ORP, DO and pH to explain pollutant dynamics. 

The performance of HSSFW can be improved by the proper selection of operational and design 

parameters such as WW strength, temperature and plant types (Kadlec and Wallace, 2009; Wu 

et al., 2015). While many studies have shown high efficiencies in treating low-strength WW 

(50-500 mg CODt/L), there is only a limited number that focuses on high-strength WW (1,000-

2,000 mg CODt/L), which levels can also be seen in raw black domestic WW (Gómez-Borraz 

et al., 2022; Wang et al., 2016). Hence, to our knowledge, no optimal reaction time has been 

reported at high-strength WW. The impact of temperature on plant and microbial activity has 

been noted, with reports indicating decreased efficiencies in organic and nutrient removal in 

cold climates (min. and max. temperatures of -3°C and 10°C, respectively) (Wang et al., 2017). 

While recent studies show that HSSFWs may be feasible in cold climates, there still exists 
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uncertainty about how temperature can affect contaminant removal efficiencies and treatment 

processes (Varma et al., 2021). Plants have been shown to fulfill a crucial role by facilitating 

nutrient assimilation, oxygenation of the rhizosphere, and creating favourable conditions for 

biofilm development (Lai et al., 2012). However, this is contradicted by other studies that have 

reported no significant differences in organics removal compared to unplanted systems (Von 

Sperling and de Paoli, 2013). From the above-mentioned points, it is noted that TW systems 

are complex, and parameters such as WW strength, temperature, and plants may interact with 

each other. However, the interactions among influencing factors in the operation of TW systems 

remain unknown as they have been studied separately. In this sense, factorial analysis can help 

better explore and understand such internal interactive effects to propose design and operation 

strategies (Demir-Duz et al., 2020; Song et al., 2018). 

Additional parameters such as ORP, DO, and pH may offer insights into processes occurring 

under these conditions, given their significant roles in driving both biological and 

physicochemical removal processes (Ilyas and Masih, 2018; Varma et al., 2021). ORP is a 

dynamic indicator that reflects the presence of oxidizers or reducers in a liquid and is reported 

to correlate with biological substances like enzymes, vitamins, and most metabolic processes, 

as well as concentrations of COD, DO, and NO3–/NH4+  (Grimalt-Alemany et al., 2021; Li and 

Bishop, 2002). However, despite its importance in indicating organic degradation, nitrification, 

and denitrification, research on ORP changes within TWs remains limited. Recent review 

papers indicate that oxygen limitation is the primary factor limiting biological pollutant removal 

rates in TWs, whereas neutral pH levels promote nitrification and denitrification processes 

(Ilyas and Masih, 2018, 2017; Tang et al., 2020a). Nevertheless, studies typically only report 

values at the influent and effluent, creating a gap in understanding how concentrations change 

and affect other processes within the system when monitored at high resolution during hydraulic 
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retention time (HRT). While phosphorus removal is reported to be primarily attributed to 

physical processes rather than biological mechanisms, ORP, DO, and pH are known to 

influence phosphorus speciation, affecting its potential for adsorption, precipitation, and 

microbial assimilation (Kadlec, 2016). Overall, ORP, DO and pH levels can be measured online 

and are directly involved in key pollutant removal processes. As such, they can be used as 

complementary to traditionally measured parameters such as COD and biological oxygen 

demand (BOD). This could be important since COD and BOD are measured ex-situ, take from 

a couple of hours to days to be processed, and do not offer just-in-time insights.  

The present work's objective is thus to factorially analyze the performance of  HSSFW in the 

removal of COD, ammonia and phosphates under various operating conditions. The probable 

interactions between WW strength, temperature and plants were investigated, and the relative 

impacts of each factor were evaluated using a 2x2x2 factorial design. Also, biologically relevant 

and just-in-time parameters were monitored to see if they helped follow the operations of the 

conventional pollutant measurements. The fluctuations within the TWs of ORP, DO, and pH 

were observed and analyzed in relation to the changes in the concentration of the targeted 

pollutants using a high-resolution data set. The results aim to better understand the application 

of TWs for secondary treatment and better monitor performance efficiency. 

2.3  Materials and methods 

2.3.1 Treatment wetland systems 

The study consisted of operating eight identical lab-scale HSSFW prototypes located in a 

greenhouse and a cold room in the Enhanced Forestry Laboratory at the University of Northern 

British Columbia campus in Prince George, BC (53°53'8.63" N -122°48'29.63" W). Four 

systems operated at room-controlled temperatures in a greenhouse at 20 ± 2.5 °C and 12 hours 
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average of sunlight per day, while the other four were operated in a cold room at 6 ± 1.0 °C and 

12 hours of 3000K artificial warm light per day (Figure 2.1). Each TW comprised a rectangular 

dark-plastic tank (58 cm long, 38 cm wide, and 32 cm deep) filled with 27 cm deep gravel with 

a working volume of 13 L. The aspect ratio (length: width) of 1:1.5 was selected following the 

US EPA, 2000 design guidelines. Figure A1 shows the experimental set up in the cold room 

and greenhouse. The HSSFW systems were divided into three major sections: surface, 

treatment, and bottom. Their respective substrate further distinguished each section: the surface 

and bottom layers are associated with a 5 cm layer of course river rock (20 – 25 mm), while the 

treatment section consisted of a 17 cm layer of gravel substrate (4.75 – 9.5 mm) to increase 

surface area for biofilm formation. At the center of each TW, a 5 cm diameter PVC pipe with 

even perforations was placed vertically, functioning as the sampling and measurement port.  

The vegetation in the planted systems was Carex utriculata acquired in May 2023 from the 

Western Acres Wetland, a full-scale surface TW that receives the effluent of a lagoon system 

located southwest of Prince George. These plants have been growing in the Western Acre 

Wetland since 2001, and it could be assumed that they are adapted to local domestic WW 

contaminants and weather (from -40 °C in the winter to 30 °C in the summer). After harvesting, 

the macrophytes were acclimatized to the experimental conditions by exposing the plants to the 

working temperatures in the greenhouse (20 ± 2.5 °C) and the cold room (6 ± 1.0 °C) fed with 

low-strength synthetic WW (SWW) (Table 2.1) for two weeks. Six individuals were planted 

per system.  
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Figure 2.1. Experimental set-up for evaluating the effect of WW strength, temperature and 

plants on pollutant removal efficiencies. 

2.3.2 Influent preparation 

Commercial pet food was used to mimic the complex composition of domestic WW (Picos-

Benítez et al., 2017; Sun et al., 2022). In the present study, the Kargol et al., 2023 technique 

was adapted, wherein dog food was blended instead of soaked, and commercial fertilizer Scotts 

Turf Builder Lawn Food was added for nitrogen supplementation. The SWW was prepared with 

a CODt:Ammonia ratio of 10:1, as reported for raw black domestic WW (Gómez-Borraz et al., 

2022). The SWW was held in a 60L holding tank situated before the TWs for three days to gain 

anoxic conditions. The pH of the feeding was adjusted to 6.75 ± 2.5 pH with 5M NaOH. 

Influent characterization is shown in Table 2.1. The TWs operated in batch mode with a pump 

delivering a mean volume of 15L of SWW every six days. 
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Table 2.1. Influent characterization (n=8). 

Parameter High-strength WW Low-strength WW 

CODt (mg/L) 1980 ± 107 492 ± 25 

CODs (mg/L) 601 ± 94 179 ± 22 

Ammonia (mg/L) 193 ± 13.4 48.3 ± 3.3 

Nitrates (mg/L) 39.4 ± 11.2 24.7 ± 12.2 

Nitrites (mg/L) <0.01 <0.01 

Phosphates (mg/L) 54.0 ± 7.1 16.5 ± 3.3 

ORP (mV) -299 ± 63 -258 ± 44 

DO (mg/L) 1.8 ± 0.7 1.9 ± 0.7 

pH 6.7 ± 0.2 6.6 ± 0.3 

CODt: total chemical oxygen demand; CODs: soluble chemical oxygen demand; ORP: 

oxide-reduction potential; DO: dissolved oxygen 

 

2.3.3 Factorial design 

A full factorial design was adopted to determine the factors influencing the secondary treatment 

of domestic WW using TWs and to study their interactions. Factors considered in the design 

were WW strength, temperature, and plants, while the percent removal of COD, ammonia and 

phosphates were the response variables. The range of values was determined based on previous 

works (Gómez-Borraz et al., 2022; Kadlec and Reddy, 2001; Wang et al., 2017, 2016): WW 

strength 500–2000 mg CODt/L, temperature 6–20 °C, and plants as unplanted and planted. In 

a full factorial design, each factor has 2 levels, minimum and maximum. Eight TWs were 

designated with the names W20P, W20U, C20P, C20U, W5P, W5U, C5P, and C5U, based on 

the parameters under which they operated. The designations W or C indicate warm or cold 

temperature, the number 20 or 5 denotes high- or low-strength SWW intake and the letters P or 

U specify whether they were planted or unplanted, respectively. Table 2.2 shows the level of 

the factor for each experiment. 
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Table 2.2. Factors and levels of each experiment of the factorial design.  

Experiment WW strength  

(mg CODt/L) 

Temperature 

(°C) 

Vegetation 

 

W20P 2,000 20 Planted 

W20U 2,000 20 Unplanted 

C20P 2,000 6 Planted 

C20U 2,000 6 Unplanted 

W5P 500 20 Planted 

W5U 500 20 Unplanted 

C5P 500 6 Planted 

C5U 500 6 Unplanted 

 

2.3.4 Sample collection and analysis 

The HSSFW started operating in June 2023, and the monitoring consisted of everyday sampling 

from August to October 2023 (i.e. eight batches). Water loss due to evapotranspiration was 

replenished at night to maintain a constant volume during sampling. To increase the data 

resolution of the parameters’ behaviour in the 6-day HRT, samples were collected in triplicate 

at various times for each batch (Table 2.3). This sampling strategy was designed to maintain an 

evenly distributed time interval between each data point (3 hours timestep) when staggering.  

Table 2.3. Sampling schedule per batch 

Batch Sampling time 

1 10 am 

2 7 am 

3 7 pm 

4 10 pm 

5 4 pm 

6 1 am 

7 1 pm 

8 4 am 

Note: The systems were fed and drained every six days at 4 pm during the study.  

The following conventional water quality parameters and the respective standard method used 

to measure each one was determined from grab samples: total COD, CODt (closed reflux 
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colorimetric: APHA 2017: 5220-D); soluble COD, CODs (UV-Vis absorption: Xu et al., 2023); 

phosphate (ascorbic acid: APHA 2017: 4500 P-E); ammonium (ammonia selective electrode: 

APHA 2017: 4500 D); nitrate (cadmium reduction method: APHA 2017: 4500 NO3-B); nitrite 

(colorimetric method: APHA 2017: 4500 NO2-B); DO (membrane electrode: APHA 2017: 

4500 O-G); ORP (Pt electrode method: APHA 2017: 2580-B); pH  (electrode: APHA 2017: 

2580-B); temperature (probe method: APHA 2017: 2550-B). The CODs, DO, and water 

temperature were measured in situ, while the remaining parameters were measured in the lab 

the same day after sampling. The COD probe values were contrasted with those obtained 

through the digestion method to ensure the validation of the equipment (Figure A2). Table 2.4 

shows detailed information regarding the equipment and reagents used. 

Table 2.4. Water analyses, methods and instruments   

Parameter Method Reference Instrument/reagents 

CODt Closed reflux 

colorimetric 

(APHA, 2017: 5220-D)  COD HACH Digestion vials 

CODs UV-Vis 

absorption 

(Xu et al., 2023) APURE  

Phosphate Ascorbic acid 

(adaptation) 

(APHA, 2017: 4500 P-

E) 

HANNA HI 93706-01 

Ammonium Ammonia 

Selective 

Electrode 

(APHA, 2017:4500 D) YSI TruLine Ammonium 

ISE 

Nitrate Cadmium 

reduction 

(APHA, 2017: 4500 

NO3-B) 

YSI TruLine Nitrate ISE 

Nitrite Colorimetric (APHA, 2017:4500 

NO2-B) 

HANNA HI 93707-01 

DO Membrane 

electrode 

(APHA, 2017: 4500      

O-G) 

Myron Ultrapen PT5 

ORP Pt electrode (APHA, 2017: 2580-B) Atlas Scientific ENV-30-

ORP 

pH Electrode (APHA, 2017: 2580-B) Thermo Scientific STAR 

A2116 

Temperature Probe (APHA, 2017: 2550-B) Myron Ultrapen PT5 

CODt = total chemical oxygen demand; CODs = soluble chemical oxygen demand; DO= dissolved 

oxygen; ORP = oxide-reduction potential 
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2.3.5 Calculations 

The removal efficiencies (RE, %) for CODt, ammonia and phosphates were calculated 

according to Eq. (1): 

𝑅𝐸 =
𝐶𝑖−𝐶𝑒

𝐶𝑖
 𝑥100%   (1) 

Where Ci and Ce denote the pollutant concentrations in the influent and day six within the 

HSSFWs, respectively (mg/L). The factorial experimental design and statistical analysis were 

conducted using MINITAB 21 statistical software.  

2.4 Results and discussion 

2.4.1 System performance 

Varying removal efficiencies for CODt, ammonia, and phosphates, ranging from 63 to 95%, 

from -7 to 96% and from 46 to 87%, respectively, were found in the TWs. In general, prior 

studies have also reported elevated removal rates for CODt, 80-95% (Ilyas and Masih, 2017; 

Wang et al., 2017) and lower removal rates for ammonia, -19-91% (Fountoulakis et al., 2017; 

Trang et al., 2010; Yadav et al., 2018), and phosphates, 53-85% (Stefanakis and Tsihrintzis, 

2009; Zhong et al., 2015).  

Figure 2.2 shows the removal of CODt, ammonia and phosphates under different conditions of 

the factorial design. It can be observed that the TWs exposed to a warmer temperature presented 

the highest CODt mean removal with 95% for the unplanted fed with 500 mg CODt/L, followed 

with 94% for the planted fed 2,000 mgCODt/L, then with 93% for the unplanted fed with 2,000 

mgCODt/L, and 91% for the planted fed with 500 mgCODt/L. It can be explained by the fact 

that organic matter is mostly a result of microbial activity that is highly influenced by 
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temperature (Wang et al., 2017). On the other hand, the planted system fed 500 mgCODt/L at 

20°C produced significantly higher mean removal of ammonia and phosphates, with 96 and 

87%, respectively. Thus, plant activity plays an essential role in nutrient removal, as reported 

in previous studies (Wang et al., 2019). Nevertheless, under strong WW conditions (2,000 mg 

CODt/L and 200 mg ammonia/L), significantly lower removals of ammonia with mean values 

of 2.0% for the planted at 20°C; 1.0% for the unplanted at 20°C; -2.3% for the planted at 6°C; 

and -6.6% for the unplanted at 6°C. It might suggest that TWs cannot remove ammonia from 

strong WW at these conditions. Further discussion regarding the effect and interactions between 

WW strength, temperature and plants is discussed in section 2.4.2, while the CODs, phosphates, 

ammonia, ORP, DO, and pH trends over the HRT are presented in section 2.4.3. 

 

Figure 2.2. Average removal efficiencies of CODt, ammonia and phosphates in the 

different TWs (N=8 per system). 

 

2.4.2 Evaluation of factors 

2.4.2.1  Significant factors 

The analysis of variance (ANOVA) resulting from the factorial analysis of each pollutant is 

shown in Table 2.5. Significant interaction is presented at P<0.05. It can be observed that only 
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linear interactions are significant for CODt, while for ammonia and phosphates, 2-way 

interactions are presented. The residual plots presented in Figure A3 demonstrate a normal 

distribution as the points were approximately along a straight line (Song et al., 2018). The 

Pareto chart of effects (Figure 2.3) was also used to distinguish all components' main influences 

and interactions. In each Pareto chart, all standard effects (SE) were arranged in decreasing 

order, and the column length showed their significant levels. 

The findings suggest that temperature (F=554, p=0, SE=24) as a factor exerts the greatest 

independent influence on CODt removal, whereas plants also contributed significantly at a 

lesser degree (F=5.8, p=0.019, SE=2.5). These two factors emerged as the sole significant 

contributors to the CODt removal. Higher temperatures and the absence of plants were 

favourable for organic degradation in TWs. This might be explained since the microbial activity 

and metabolic rate in the TW systems at the lower temperature were reduced, which 

significantly impeded the heterotrophic bacteria in decomposing organic pollutants (Ji et al., 

2020). Plants are reported to enhance carbon oxidation by introducing oxygen into the 

rhizosphere (Březinová & Vymazal, 2015). However, certain plant species may not release 

enough oxygen to facilitate organic reduction notably. In addition, plants release exudates, 

predominantly organic in nature, which could contribute to the measured COD content 

(Kantawanichkul et al., 2009). This might be the situation with the C. utriculata species utilized 

in this study. Similar observations have been reported by (Von Sperling and de Paoli, 2013) 

where unplanted systems exhibited lower COD concentrations along the TW compared to 

planted systems with Typha latifolia. The fact that the WW strength was not a significant factor 

affecting CODt removal (F=1.09, p=0.302, SE=1.0) suggests that TWs could efficiently treat 

high-strength WW, thus being effective for secondary treatment.  
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In terms of ammonia removal, the three factors, including both independent and 2-way 

interactions, presented significant effects. WW strength (F=46.9, p=0, SE=6.92) and 

temperature (F=45.7, p=0, SE=6.88) presented the greatest influence on ammonia removal,  

followed by the interaction between these two factors, WW strength*temperature (F=30.8, p=0, 

SE=5.56). It indicates that stronger WW (i.e. higher ammonia concentrations) limited ammonia 

removal. Kantawanichkul et al., 2009 evaluated the performance of vertical SSFW under high 

ammonia concentrations (290 ± 16 mg NH3-N/L). They also observed high concentrations in 

the effluent after the treatment using Cyperus involucratus (163 ± 16 mg NH3-N/L ),  Typha 

angustifolia (110 ± 26 mg NH3-N/L) and unplanted (126 ± 68 mg NH3-N/L). Furthermore, it is 

widely recognized that higher temperatures promote ammonia oxidation, nitrification, and 

denitrification processes, which constitute the primary mechanisms for ammonia removal 

(Gersberg et al., 1986; Tang et al., 2020b). Finally, a lower but still significant effect was 

presented by plants (F=13.77, p=0, SE=3.8) and its interaction with temperature (F=11.8,  

p=0.001, SE=3.45) and WW strength (F=10.0,  p=0.002, SE=3.12). It is documented that plants 

primarily enhance nitrogen removal through the adsorption of solutes, uptake of inorganic 

nitrogen compounds, and release of oxygen and root exudates to influence microbial activity 

and diversity (Kantawanichkul et al., 2009; Tang et al., 2020b) 

The most important parameters affecting phosphate removal were WW strength (F=21.5, p=0, 

SE=4.55) and plants (F=21.0, p=0, SE=4.50). It indicates that higher phosphate concentrations 

limit its removal, and the plants significantly promote it. This finding aligns with previous 

research, such as that conducted by Körner & Vermaat, 1998, which indicated that plants and 

microbes could remove up to 75% of phosphorus from which macrophytes were found to uptake 

around 52%, with the remaining portion removed by associated organisms and microorganisms. 

Plants stood out as a highly important factor affecting phosphates since their interaction with 
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temperature (F=15.62, p=0, SE=3.9) and WW strength (F=4.71, p=0.034, SE=2.1) presented a 

significant effect, too. Also, it mainly indicates that the effect of WW strength and temperature 

on plant activity drives phosphate removal. This can be explained by considering that the 

strength of WW (i.e., the level of toxicity resulting from the presence of pollutants in high 

concentrations) and temperature influence plant physiology. Consequently, these two 

parameters may constrain root processes involved in phosphorous uptake and promote diversity 

among microorganisms, including phosphate-accumulating organisms (Ilyas and Masih, 2018; 

Lu et al., 2023). 

Table 2.5. Statistical F- and P-value of factors on CODt, ammonia and phosphates removal 

Response CODt removal Ammonia removal Phosphate removal 

Source F-Value P-Value F-Value P-Value F-Value P-Value 

WW strength 1.09 0.302 46.96 0 21.55 0 

Temperature 554.9 0 45.75 0 0.19 0.663 

Plants 5.8 0.019 13.77 0 21.03 0 

WW strength*temperature 1.21 0.275 30.83 0 2.15 0.148 

WW strength*plants 0.69 0.409 10.04 0.002 4.71 0.034 

Temperature*plants 1.55 0.219 11.79 0.001 15.62 0 

  Note: bold numbers indicate significant factors.  

 

 

 

 

 

 

 

 

a)                                                                     b) 
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                                             c) 

 

Figure 2.3. Pareto chart related to the factors evaluated for the removal of a) CODt, 

b) ammonia, and c) phosphates (A = WW strength, B = temperature, and C = plants). 

 

2.4.2.2 Interactive effects 

Interaction and contour plots were obtained to assess the interactive effects of the factors. Figure 

2.4 illustrates interaction plots depicting the combined effects of three factors (WW strength, 

temperature, and plants) on the removal of CODt, ammonia, and phosphate. These plots 

demonstrate how the behaviour of individual factors changes in the presence of  others and 

highlight their level of independence. The slope of the line is proportional to the magnitude of 

the factor's importance. Figure 2.5 shows the contour plots where the effect of the three factors 

is presented. Distinctly coloured regions represent different levels of removal efficiency 

corresponding to the specified values for each parameter. 
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The WW strength*temperature interaction was only significant for ammonia removal, and the 

interaction plot (Figure 2.4.b) shows a negative slope in relation to these factors. It indicates 

higher removal rates at low-strength WW, where the effect of temperature is evident as 

significantly higher removal is presented at warmer temperatures. Although WW 

strength*temperature interaction was not significant for phosphates, similar trends are 

presented regarding WW strength; however, no significant difference (p>0.05) is presented for 

temperature. In terms of removing CODt, the interaction plots of WW strength and temperature 

reveal no significant difference between high- and low-strength WW, as evidenced by nearly 

identical slopes (slope≈0). Supporting the statement that TWs can effectively treat secondary 

raw WW. However, distinct variations emerge when different temperatures are applied, 

particularly with significantly higher removal rates observed at warmer temperatures.  

The WW strength*plants interaction was significant for ammonia and phosphates, and similar 

trends were observed in their interaction plots (Figure 2.4. b and c). For both, plants 

significantly improve their removal when having low-strength WW. However, by increasing 

the concentration of pollutants, there is no significant difference in the removal either by having 

or not plants. In terms of removing CODt, the interaction plots of WW strength and plants 

reveal no significant difference between high- and low-strength WW, neither by having nor not 

having plants.  

The temperature*plants interaction was significant for ammonia and phosphates, and similar 

trends are observed in their interaction plots (Figure 2.4. b and c). For both, there is no 

significant difference at low temperatures, either by using plants or not. However, at high 

temperatures, planted systems increase the removal significantly. In terms of removing CODt, 

the interaction plots of temperature and plants reveal no significant difference between planted 

and unplanted systems but significantly higher removal at warmer temperatures.  
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                             a)                                                                            

                                 

                             b)    

 

                               c) 

                                   

Figure 2.4. The interaction effects of WW strength, temperature and plants for a)CODt, 

b)ammonia and c)phosphates 
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Contour plots were obtained to show the areas with high and low removal at different WW 

strength levels, temperatures and plants. For CODt removal, linear plots are shown since there 

are no significant 2-way interactions for its removal (Figure 2.5.a). Similar plots are presented 

for planted and unplanted systems, and the removal increases mainly as the temperature does 

and not towards a change in the SWW strength. For ammonia removal, curves are observed 

since 2-way interactions are significant (Figure 2.5.b). Planted systems present higher removal 

efficiencies (up to >80%), while unplanted systems present up to >40%. Although different 

plots are shown for those planted and unplanted systems, the highest removal is presented when 

lower WW strength and higher temperatures are presented in both cases. The unplanted systems 

plot presents zones (shown in blue) where null removal is presented, indicating that 

temperatures below 8 °C and WW strength concentration above 1,800 mgCOD/L affect the 

performance of the systems for its removal. Finally, different plots are presented for phosphate 

removal for planted and unplanted systems (Figure 2.5.c). Planted systems presented higher 

phosphate removal, particularly under optimal conditions like warmer temperatures and 

reduced pollutant concentrations. Conversely, in unplanted systems, observations indicate that 

lower temperatures can lead to increased removal of phosphates due to the enhancement of 

adsorption and precipitation processes (He et al., 2023). Studies have also revealed that at 

warmer temperatures, the release of phosphorus in the water increases (Sarkar et al., 2017).  

  

  



27 

 

a.    i)                                                            ii)    

     

b.    i)                                                            ii) 

       

c.    i)                                                             ii) 

          
 

Figure 2.5. Temperature*WW strength contour plots obtained by Box-Behnken design for 

the removal of a) CODt, b) ammonia, and c) phosphates in i)planted and ii) unplanted TWs 
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2.4.3 Change in pollutants and physical-chemical parameters 

2.4.3.1 Chemical oxygen demand soluble (CODs) 

Figure 2.6 shows the concentration of CODs over the HRT in the TWs after staggering the data. 

A comparable decreasing trend was observed in the eight systems, albeit to a different 

magnitude. At the beginning of the batches, the CODs for the high- and low-strength WW 

systems were 580 ± 18 mg/L and 155 ± 8 mg/L, respectively. On the first day of operation, the 

COD values in the high-strength WW systems dropped sharply to 220 ± 20 mg/L at a similar 

rate in both the warm and cold systems, highlighting the performance of TW to achieve 

comparable performance at the beginning of the reaction time. In contrast, this significant 

decrease occurred within the first 18 hours in the low-strength WW systems, reaching a 

concentration of 35 ± 5 mg/L. At this stage, the DO in the system may be almost depleted, as it 

has been consumed by heterotrophic bacteria during the removal of CODs (Rehman et al., 

2017). Thereafter, the CODs values experienced a slight decline before entering a plateau stage. 

After the third day, the high-strength WW systems in the cold room showed a clear difference 

in concentration compared to the warmer systems, achieving 200 ± 5 mg/L and 100 ± 10 mg/L, 

respectively. For the low-strength WW systems, those at cold temperatures reached similar final 

concentrations of 55 ± 5 mg/L for unplanted fed 500 mgCODt/L and 52 ± 3 mg/L for the planted 

fed 500 mgCODt/L, indicating no significant role of the plants in the system. In warm systems, 

the lowest final concentration was achieved by unplanted fed 500 mgCODt/L with 35 ± 5 mg/L, 

followed by the planted fed 500 mgCODt/L with 43 ± 5 mg/L. At higher concentrations, the 

impact of temperature on COD depletion becomes more evident, suggesting the need to install 

an insulating system, such as mulch, over the wetlands. However, no major modifications are 

necessary for treating low-strength wastewater, as no significant variation was observed in the 

effluent concentration after 6 days of HRT. As the concentration stabilizes after four days in 
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high-strength WW systems, a HRT of four days could be proposed for secondary treatment 

purposes. For low-strength WW, an HRT of two days would be sufficient. 

 

Figure 2.6. CODs concentrations in TW systems 

2.4.3.2 Ammonia 

The concentrations of ammonia within the TWs are shown in Figure 2.7. High-strength WW 

systems exhibited similar trends, with initial concentrations at 205 ± 5 mg/L. The 

concentrations increased slightly over the first three days, peaking at 242 ± 10 mg/L, before 

gradually decreasing over the remaining days. The initial increase in concentrations may result 

from the breakdown of organic matter, leading to the release of ammonia as a byproduct 

(Lamers et al., 2012). Subsequent declines could be attributed to microbial activity, where 

ammonia is utilized as a substrate for nitrification, converting it into nitrate (Lamers et al., 2012; 

Zhu et al., 2014). The final concentrations for high-strength WW was 185 ± 9 mg/L for planted 

system at 20 °C; 179 ± 8 mg/L for unplanted at 20 °C; 172 ± 7 mg/L for planted at 6 °C; and 

155 ± 7 mg/L for unplanted at 6 °C.  
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In contrast, low-strength WW systems showed fluctuating concentrations without a consistently 

decreasing trend, with a final value of 45 ± 3 mg/L for the unplanted system at 6 °C, 45 ± 8 

mg/L for unplanted at 6 °C and 40 ± 7 mg/L for unplanted at 20 °C. Only the planted system 

fed with 500 mg/L at 20 °C exhibited a decrease similar to the CODs, with a rapid decline on 

the first day followed by a slower decrease, reaching a final concentration of 3 mg/L. This 

highlights the importance of plant activities, which promote nutrient assimilation and provide 

favourable conditions for microbial activity (Li et al., 2018). Nitrate concentrations were also 

measured, showing fluctuations, but a downward trend is observed across all systems (Figure 

A4). This suggests that anoxic conditions were predominant, allowing the denitrification 

process to occur at a higher rate than nitrification. Specifically, it will be after the third day of 

operation.  

 

Figure 2.7. Ammonia concentrations in TW systems 

2.4.3.3 Phosphates 

Figure 2.8 illustrates the phosphate concentrations in the TWs. For the high-strength WW 

systems, the concentrations decreased gradually over the six-day period, except for the 
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unplanted system fed with 2,000 mg CODt/L at 20 °C, where the decrease halted by the second 

day, and then the concentrations stabilized. The final concentrations achieved by high-strength 

WW systems were 22 ± 3 mg/L for the planted at 20 °C; 30 ± 4 mg/L for the unplanted at 20 

°C; 24 ± 6 mg/L for the planted at 6 °C; and 19 ± 4 mg/L for the unplanted 6 °C. Decreased 

phosphate concentrations might indicate effective plant uptake and microbial assimilation (Li 

et al., 2020). Stabilizing phosphate concentrations in unplanted fed with 2,000 mg/L at 20 °C 

could be attributed to factors such as limited microbial activity or substrate availability (Li et 

al., 2020). The low-strength WW systems exhibited a slighter continuous decrease throughout 

the operation period, with the lowest concentration observed in the planted at 20 °C with 1 ± 3 

mg/L, followed by the planted at 6 °C with 5 ± 3 mg/L; the unplanted at 6 °C  with 7 ± 2 mg/L; 

and the planted at 20 °C  with 9 ± 3 mg/L, respectively. The lower final concentrations observed 

in low-strength WW and planted systems compared to unplanted underscore the significant role 

of vegetation in enhancing nutrient removal efficiency. The presence of plants promotes 

nutrient assimilation and provides favourable conditions for microbial activity, leading to more 

pronounced reductions in phosphate concentrations (Ilyas and Masih, 2018). 
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Figure 2.8. Phosphate concentrations in TW systems 

 

2.4.3.4 Oxidation reduction potential (ORP) 

ORP reflects the balance between oxidized and reduced substances within the TW environment, 

influencing the availability and transformation of nutrients and contaminants (Ilyas and Masih, 

2018; Zhai et al., 2012). The value of ORP in the high and low-strength influent was -299 ± 63 

and -258 ± 44 mV, respectively, both representing anaerobic conditions and in the range of raw 

domestic WW (Foladori et al., 2013, 2012; Ong et al., 2009). In the warm systems, ORP levels 

remained relatively steady initially, registering -300 ± 20 mV for high-strength WW systems 

and -160 ± 20 mV for low-strength WW systems (Figure 2.9). Subsequently, ORP levels 

exhibited a gradual increase, reaching -30 ± 20 mV in the planted system fed 2,000 mg CODt/L 

at 20 °C; -90 ± 18 mV in the unplanted system fed 2,000 mg CODt/L at 20 °C; 30 ± 8 mV in 

the planted system fed 5,000 mg CODt/L at 20 °C; and -28 ± 11 mV in the unplanted system 

fed 5,000 mg CODt/L at 20 °C. These levels were sustained on days 5 and 6. The progressive 

rise in ORP within the TWs indicated the development of favourable conditions for completely 

biodegradable COD oxidation, either by using O2 or by exploiting NO3 (Zhai et al., 2012; Zhu 
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et al., 2014). Studies have noted that the ascending ORP profile promotes enzymatic activities 

such as heightened dehydrogenase and catalase activities, along with intensified carbon 

degradation (cellulose and β-glucosidase activity), nitrogen cycling (urease activity), and 

phosphorus cycling (phosphatase activity). This leads to more efficient removal of various 

pollutants (Truu et al., 2009; Wießner et al., 2005; Zhou et al., 2005). 

Conversely, systems operating at colder temperatures exhibited minimal fluctuation in ORP 

levels throughout the treatment process, maintaining values within the range of -280 to -220 

mV. This sustained low ORP, indicating low oxygen conditions, can account for the notably 

lower removals of COD, ammonia, and phosphates observed in cold temperatures compared to 

warm systems. In environments with low ORP, microorganisms utilize oxygen from oxidized 

pollutants, leading to a slower breakdown and subsequent decrease in COD (Wießner et al., 

2005). 

 

 

Figure 2.9. ORP values in TW systems 
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2.4.3.5 Dissolved oxygen (DO) 

DO is vital for supporting aerobic microbial activity, which plays a significant role in the 

breakdown and biodegradation of organic pollutants and nitrogen compounds present in TWs 

(Zhai et al., 2012). Figure 2.10 illustrates the DO concentrations in the TWs. The TWs exposed 

to warmer temperatures initially exhibited dissolved oxygen (DO) concentrations of 1.3 ± 0.3 

mg/L, while those kept in colder conditions recorded 2.8 ± 0.6 mg/L. Systems operating at 

warmer temperatures showed a gradual increase, reaching an average of 2.0 ± 0.3 mg/L across 

all treatment processes, with a notable higher increment observed in planted systems. 

Conversely, systems under cold temperatures experienced a slight rise in DO levels during the 

first two days, levelling off thereafter at 3.5 ± 0.4 mg/L. Overall, the observed increase in DO 

across all systems could be influenced by several factors that may affect its accuracy. In warmer 

systems, the presence of emergent vegetation, such as Cyperus sp., likely contributed to 

enhanced oxygen transfer through root arenchyma (Rehman et al., 2017), while in colder 

systems, the increase in DO can be attributed to their ability to retain more oxygen due to lower 

temperatures and reduced evaporation rates (Varma et al., 2021). However, it has been reported 

that the direct measurement of DO in the matrix, particularly in deeper soil layers where 

concentrations tend to be lower, can be challenging and subject to variability (Li et al., 2016a). 

In comparison, ORP has been shown to correlate more strongly with microbial activity 

indicators, such as population density and oxygen uptake rate, making it a useful alternative for 

assessing oxidative-reductive processes where oxygen consumption is involved (Kadam et al., 

2009; Li et al., 2016a; Wang et al., 2007). ORP measurements were, therefore, used in place of 

direct DO measurements to provide additional insights into the system's oxygen dynamics. 
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Figure 2.10. Dissolved oxygen values in TW systems 

2.4.3.6 pH 

The pH values within the TWs over the 6 days HRT are shown in Figure 2.11. Influent pH 

values ranged between 6.6-7.0. For the eight systems, the pH increased gradually over the 

operation time. By the end of the batch, the unplanted system fed with 2,000 mgCODt/L at 

20 °C reached the highest pH at 7.6, followed by both the unplanted system fed with 

2,000 mgCODt/L and the planted system fed with 500 mgCODt/L at 20 °C with 7.3; the planted 

and unplanted fed with 500 mgCODt/L at 6 °C reached 6.9; the unplanted fed with 2,000 

mgCODt/L at 6 °C reached 6.6; and finally the planted system fed with 500 mgCODt/L at 20 °C  

and the planted fed with 2,000 mgCODt at 6 °C reached 6.4. It indicates that the TWs worked 

in a neutral environment. This range of values is reported to favour nitrification processes 

(Grinberga et al., 2022). W20U presented the highest final pH and phosphates concentration 

(Figure 2.8). This suggests that an increase in pH affects the phosphate adsorption capacities in 

TWs, as reported in previous studies (Bai et al., 2017). Fluctuations in the values for the warm 

systems might be due to the fluctuations in temperature (Figure A5). 
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Figure 2.11. pH levels in TW systems throughout the HRT operation time. 

2.5  Conclusions  

The performance of TWs in removing COD, ammonia, and phosphates was evaluated, focusing 

on the effects of WW strength, temperature, and vegetation. High CODt removal and no 

significant difference was found for WW strength in CODt removal, highlighting the 

technology's potential for implementing as secondary treatment technology receiving black 

domestic WW characteristics. Higher temperatures were most influential for CODt removal, 

promoting organic degradation, while unplanted systems showed higher removal rates than 

planted ones. ORP levels are suggested as an indicator of COD level fluctuations within the 

system. In warm systems, the increase in ORP levels corresponds to a decrease in COD 

concentration, which is due to a more oxidative environment. Ammonia removal was generally 

low across most systems, except those with low-strength WW, warm temperatures, and 

vegetation. Further research is necessary to improve ammonia removal under conditions of 

high-strength WW and low temperatures, with an emphasis on promoting plant activity, as 

indicated by this study's findings highlighting the significant importance of plants. Improving 
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aerobic conditions to enhance nitrification rates is suggested. Phosphate removal was mainly 

influenced by WW strength and plant presence, with their interactions with temperature 

enhancing efficiency. The results imply that elevated temperatures and rising pH levels reduce 

the potential for phosphate adsorption. Ultimately, ORP proved to offer more reliable insights 

into oxygenic conditions than direct DO measurements, particularly in deeper layers or 

sampling locations. 

This study offers valuable insights into key parameters for measurement (such as ORP, DO, 

and pH) that reflect the system's performance and the potential of TWs to treat high-strength 

domestic WW. Further research is needed to gain deeper mathematical insights into the role of 

these parameters and their interactions in affecting pollutant concentrations. 
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3 DISCOVERING NONLINEAR DIFFERENTIAL EQUATIONS TO MODEL 

POLLUTANT CONCENTRATION IN TREATMENT WETLANDS  

3.1  Abstract 

Treatment wetlands (TWs) harbour complex physical, chemical and biological processes that 

may interact with each other to efficiently remove pollutants from wastewater (WW). Up to 

date, there are limitations on the design and operation of TWs due to a lack of accurate and 

interpretable models. To the best of our knowledge, this study is the first to apply a data-driven 

approach, specifically utilizing the Sparse Identification of Nonlinear Dynamics (SINDy) 

algorithm (Brunton et al., 2016), to derive model equations corresponding to TWs under 

varying WW strengths, temperatures, and plants. Using experimental data, the models reveal 

the interactions between biologically relevant parameters (ORP, DO, pH) and conventional 

pollutants (COD, ammonia, and phosphates) to predict pollutant concentrations over the 

reaction time. Nonlinear systems of differential equations were identified for modelling 

pollutant removal, with simplified equations employing 3 to 6 polynomial basis functions in 

low-noise scenarios and up to 11 polynomial basis functions in high-noise situations. Key 

parameters such as ORP and the interaction between COD and ammonia were identified as 

critical for estimating COD and ammonia concentrations, while pH and ORP were found to 

have the most significant impact on phosphates. Validation results demonstrated robust 

predictive capabilities for COD models, achieving R² values between 0.81 and 0.98, while 

ammonia and phosphate models showed varying accuracy levels. The results suggest the need 

for improved data quality and highlight the importance of incorporating ORP and pH into 

pollutant modelling.  
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3.2  Introduction 

TWs are engineering systems able to remove pollutants as they provide the environment for 

diverse removal processes, including sedimentation, precipitation, adsorption, microbial 

degradation and plant uptake (Kadlec and Wallace, 2009). These processes rely on the water's 

physicochemical properties, plant growth, microbial composition, WW composition, and nature 

of the TW substrate (media) (Garcia et al., 2010). Such complexity makes it challenging to 

model pollutant patterns using stand-alone physical or chemical equations, leaving the 

conserved quantities that govern the system's dynamics unknown. First-order chemical 

reactions, commonly used for designing TWs, do not consider interactions between multiple 

pollutants and the physicochemical environment, failing to match experimental data (Nguyen 

et al., 2018; Ventura et al., 2022). This leads to a limited understanding of pollutant behaviour 

and impedes the optimization of TWs designs. Instead, alternative modelling tools, such as 

data-driven models, have been introduced and might applied to describe TWs performance. 

Data-driven models have been shown to effectively establish relationships between pollutant 

removal rates and the TW characteristics, requiring minimal understanding of the underlying 

removal processes (Gupta et al., 2021; Jafarzadeh et al., 2022). For example, (Nguyen et al., 

2021) applied data-driven modelling, based on machine learning algorithms, such as Random 

Forest, Cubist, Support Vector Machines, and K-nearest Neighbors to predict ammonia 

concentrations in subsurface TWs. While these models achieved high correlation with the 

training data (R² values ranging from 0.80 to 0.91 and RMSE values between 0.9 and 1.9 mg/L), 

none of them offered a simple output as system identification, i.e., the model's structure or 

equation that describes the pollutant behaviour. Alternatively, regression analysis can be used 

as a simpler data-driven approach to achieve this. Singh et al., 2022 employed multiple linear 

regression (MLR) to develop a model predicting biological oxygen demand (BOD), chemical 
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oxygen demand (COD), Ammonium-Nitrogen, Total Nitrogen, and Total Phosphorus in the 

effluent, using independent variables such as hydraulic retention time (HRT), temperature, flow 

rate, depth, area, and influent concentrations. This resulted in equations with 11 variables, 

yielding from low to high accuracy (R² ranging from 0.47 to 0.90). Limitations of MLR include 

the assumption of linearity and the risk of overfitting, as it requires assigning a coefficient to 

each input variable. Additionally, the need to assign a coefficient to each input variable 

increases the risk of overfitting, especially when there are many variables, as the model may 

become too tailored to the training data and perform poorly on unseen datasets. When modelling 

TWs, no previous studies have incorporated physicochemical parameters such as ORP, DO and 

pH within TWs to derive a reaction equation for pollutants in TWs. 

In 2016, Brunton et al., 2016 reported the Sparse Identification of Nonlinear Dynamics (SINDy) 

algorithm to identify the governing equations from time series data. SINDy is based on sparse 

regression (i.e. assigning zero coefficients to less important variables), aiming to promote 

model interpretability and avoid overfitting. It consists of selecting a reduced set of nonlinear 

functions from a library of basis functions that represent potentially relevant variables and 

determining their coefficients using the least absolute shrinkage and selection operator 

(LASSO) regression as the sparsity-inducing regularization. Recently, SINDy has gained 

popularity in different fields such as economy, physics, chemistry, and biology, showing 

promising results, but its use has primarily focused on generic data, limiting its application to 

real-world data (Abdullah and Christofides, 2023; Hoffmann et al., 2019; Loiseau, 2020; 

Mangan et al., 2016; Prokop and Gelens, 2024; Sandoz et al., 2023). To the best of our 

knowledge, SINDy has not been tested on WW systems, but previous studies suggest the 

algorithm's potential to identify pollutant reaction rates in TWs.  
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This study aims to implement the SINDy algorithm to derive a nonlinear system of ODEs that 

describe the dynamics of COD, ammonia, and phosphates in TWs. Also, from these model 

structures, it will be able to identify key physicochemical parameters and their interactions with 

pollutants that promote the removal of the pollutants. The data-driven models were trained and 

validated using experimental time series data, as described in Chapter Two, from TWs under 

various operational conditions (WW strength, temperature, and plants). The resulting eight 

models (one for each TW) per pollutant were used to find relationships between the system 

state input and output variables, considering that the exact knowledge about the system's 

physical behaviour is unknown. These models were developed using the SINDy algorithm to 

estimate the mathematical equations of the physical system using the post-processed input data 

based on polynomial fitting. With comprehensive training and validation, the models were able 

to generate a set of non-linear ODEs representing the system dynamics. The equations were 

then integrated over time using the Runge-Kutta 4 (RK4) numerical method and the initial 

values.   

3.3 Methodology 

In this section, the data-based model identification method is briefly reviewed. The governing 

process dynamical system under study is represented as 

𝑑

𝑑𝑡
𝒙(𝑡) = 𝒇(𝒙(𝑡))          (1) 

where the state of the vector x(t) denotes the states of the system at time t and the nonlinear 

function f(x(t)) represents the governing equations of motion of the system. In this study, the 

SINDY method is applied to identify a candidate function f.  

3.3.1 SINDy algorithm 
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In this section, a brief overview of the SINDy method is presented. For more information, the 

readers can refer to the original paper by (Brunton et al., 2016). Given a time-series data of the 

state 𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) … 𝑥𝑛(𝑡)]
𝑇 where the time difference between each data point is the 

same, they can then be arranged into one large matrix, shown below. 

𝑋 =

(

 
 

𝑥1(𝑡1) 𝑥2(𝑡1) … 𝑥𝑛(𝑡1)

𝑥1(𝑡2) 𝑥2(𝑡2) … 𝑥𝑛(𝑡2)
: : 1 :
: : 1 :

𝑥1(𝑡𝑚) 𝑥2(𝑡𝑚) … 𝑥𝑛(𝑡𝑚))

 
 

       (2) 

Next, the derivatives of the state is numerically computed, producing a matrix shown as follows: 

Ẋ =

(

 
 

ẋ1(𝑡1) ẋ2(𝑡1) … ẋ𝑛(𝑡1)

ẋ1(𝑡2) ẋ2(𝑡2) … ẋ𝑛(𝑡2)
: : 1 :
: : 1 :

ẋ1(𝑡𝑚) ẋ2(𝑡𝑚) … ẋ𝑛(𝑡𝑚))

 
 

    (3) 

After obtaining the derivatives of the state variables, the collected time-series data of X are 

utilized to build a candidate function library containing all possible non-linear functions as: 

𝛳(𝑋) = [1 𝑋 𝑋2 𝑋3 … sin(𝑋) cos(𝑋) …  ]      (4) 

The choice of selecting the potential functions can be based on the knowledge of physics and 

prior information about the system. There is significant flexibility in constructing the entries in 

this matrix since only the regression will reveal those that represent the process dynamics of 

the system. The regression problem can be expressed as 

Ẋ = 𝜣(𝑿)𝜩     (5) 

where Ẋ denotes the time-series of derivatives of state variables, 𝜭(X) is the library of potential 

functions representing the system dynamics, and 𝜩 is the vector containing the function 

coefficients. In this sense, 𝜩 can be expressed as  𝛯 = [𝜉1  𝜉1  …  𝜉𝑛] where each column 𝛏k 
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represents a sparse vector of coefficients obtained by a convex l1-regularized (LASSO) 

regression. This optimization problem seeks to minimize the sum of the squared residuals 

and an l1 regularization term to produce a sparse solution for the coefficient vector 𝛯. By 

combining the squared error term ‖𝛩𝛯− Ẋ‖2
2 with the l1 norm penalty 𝛼‖𝛯‖1, it balances 

accurate data fit with sparsity, encouraging certain coefficients to be exactly zero.  It is 

expressed as follow 

Min
𝛯𝑥∈𝑅

𝑛
‖𝛩𝛯− Ẋ‖2

2 + 𝛼‖𝛯‖1       (6) 

where α is the hyperparameter that establishes the “strength” of the regularization. In other 

words, if alpha is zero, all features are considered, and it is equivalent to linear regression, 

where only the residual sum of squares is computed to build a predictive model. On the other 

hand, as alpha closes to infinity, it eliminates more and more features. Thus, it is important to 

set an appropriate value for α. A common way to determine the best α is by hyperparameter 

tuning, which is based on picking the α value that produced the lowest error between the model 

and the training data. In order to evaluate the accuracy of the obtained model, the root mean 

squared error (RMSE) of the predicted and true values is calculated. RMSE is shown as follows 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2
𝑛
𝑖=1     (7) 

where n is the number of observations, yi is the actual value and ŷi is the predicted value.  

3.3.2   Application of SINDy algorithm to treatment wetlands 

3.3.2.1 Data preparation 

Data was obtained from eight experimental TW systems studied for domestic WW treatment 

under different WW strengths (500 and 2,000 mg CODt/L), room temperature (6 and 20 °C) 
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and vegetation (unplanted and planted). Chapter 2 describes the experimental setup, sampling 

strategy and analytical methods in more detail. The sampling yielded 48 observations for 8 

parameters on each experimental TW. Parameters included COD, ammonia, nitrates, 

phosphates, ORP, DO and pH. Each data point has a time difference of 3 hours between each 

other. The objective of this dataset is to infer the model on the removal rate of COD, ammonia 

and phosphates during the working HRT of 6 days based on the other parameter values. The 

experimental data was split into training and validation sets in the following steps. A random 

20% of the data was set aside for model validation, while the remaining 80% was used to train 

the model. 

3.3.2.2 Model training and validation 

Using the training data, a polynomial regression was employed to model the trends of each 

parameter. The best polynomial fit was determined through a tuning process in Python. The 

obtained polynomial regression was used to generate simulation time-series data (n=48) to 

identify the governing dynamics of the process. This approach was taken to reduce inherent 

noise in the raw data, as directly modelling the raw data could risk overfitting and compromise 

the trend analysis. 
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Figure 3.1 summarizes the SINDy algorithm from a given pollutant concentration (COD as C, 

ammonia as N and phosphates as P) time-series data. The regression coefficients are calculated 

for those possible interactions that describe the pollutant dynamics. 

 

Figure 3.1 Schematic of SINDy algorithm 

The derivative of the time series data was computed using the finite difference method RK4, a 

numerical approach that approximates the derivative by applying discrete difference quotients 

between successive data points. For creating the 𝞗 matrix contained up to second-degree 

polynomial. It includes the concentration of pollutants (C, N, NO: nitrates, and P) and the 

physicochemical parameters (pH, DO, and ORP) based on their relevance to explaining TW 

performance, identified in Chapter 2. 

To get the 𝛏 sparce vector for each parameter, the LASSO regression was computed using the 

convex optimization problems (CVXPY) package in Python. The variable coefficients in 𝛏 with 

values below the thresholding parameter are set to zero, and the regression problem is solved 

iteratively until the coefficients converge. The hyperparameter α, which is crucial for setting an 

optimal thresholding value, and, thus, eliminating unwanted functions, was optimized through 

a tuning process in Python by iterating over values in the range [10⁻¹, 10⁵]. 
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The model validation was performed by calculating the RMSE between the predicted values 

derived from the obtained differential equations and the observed data. This was done using the 

validation dataset, which was excluded from the model's training process. The predicted and 

observed values were then plotted against each other to evaluate the R² coefficient. A strong 

linear correlation between these values indicates a close approximation to the actual values.  

3.4  Results and discussion 

This section presents the results obtained for model identification of the TW dynamics using 

experimental data. The identified model is evaluated based on the key parameters identified in 

each model and the prediction accuracy obtained from experimental data. 

3.4.1 Chemical oxygen demand (COD) modelling 

Table 3.1 shows the best polynomial fit for COD, indicating the degree of the polynomial where 

the RMSE between the modelled and training data was at its minimum. For all systems, the best 

polynomial fit falls between the 4th and 6th order, supporting the hypothesis that pollutant 

dynamics in TWs are nonlinear. The high RMSE value for the unplanted system fed 2,000 

mgCODt/L at 6 °C (136 mg/L) shows significant noise in the data for this dataset. The 

remaining systems present lower RMSE values, ranging from 6 to 33 mg/L. 

Table 3.1. Best polynomial degree for the COD trend.  

System Best polynomial degree RMSE (mg/L) 

W20P 6 14 

W20U 5 33 

C20P 5 23 

C20U 4 136 

W5P 6 11 

W5U 5 11 

C5P 5 6 

C5U 5 6 
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The hyperparameter α influences the degree of sparsity observed (Goharoodi et al., 2018), 

meaning that different values of α lead to different resulting models. Table 3.2 presents the best 

α for each system and their corresponding RMSE values resulting from the tuning process. 

The α values vary significantly across different systems, reflecting the influence of data 

complexity (e.g., polynomial degree) and noise (data points distribution). Higher α values, like 

150 for the planted system fed 2,000 mgCODt/L at 6 °C, might be linked to more complex or 

noisy datasets, requiring stronger regularization to avoid overfitting, whereas smaller values, 

such as 0.5 for the unplanted system fed 500 mgCODt/L at 6 °C, might be associated with 

cleaner data where minimal regularization suffices. The planted systems generally require 

higher α values than the unplanted ones, suggesting that plants may introduce additional 

complexity to the data sets. This may be explained by the roles of plants in TWs such as 

providing surface area for microbial growth on their roots, oxygenating the rhizosphere, and 

releasing exudates that promote organic breakdown and nutrient uptake, leading to more 

complex dynamics in COD concentrations (Rahi et al., 2020). 

Table 3.2. Best hyperparameter value for the COD modelling using SINDy.   

System Best-hyperparameter value RMSE (mg/L) 

W20P 80 47 

W20U 40 38 

C20P 150 25 

C20U 1 36 

W5P 11 13 

W5U 51 7 

C5P 1 11 

C5U 0.5 10 

 

Table 3.3 presents the resulting model coefficients obtained by solving equation 6 using each 

system's optimal hyperparameter, α. A matrix can be observed where the majority of the 

potential candidates’ coefficients are zero. The most simplified model was found for the planted 
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system fed 500 mgCODt/L at 20 °C, which included only 5 out of 27 potential candidates. In 

contrast, planted system fed 2,000 mgCODt/L at 6 °C had the highest number of possible 

candidates, with 11 variables used to describe the model. From all the potential interactions, 

ORP stands out as a significant parameter in all the systems models. This underscores the 

significance of ORP in estimating COD concentrations and aligns with previous research that 

highlighted the correlation between the gradual rise in ORP values and microbial activity and 

abundance in subsurface treatment systems (Li et al., 2016a), as well as conventional 

wastewater treatment technologies (Zhao et al., 2023). The strong interaction between COD 

and ammonia (C*N) in all the warm systems and the planted system fed 2,000 mgCODt/L at 6 

°C suggests that ammonia availability directly supports the microbial processes responsible for 

organics removal, especially at warm temperatures when higher microbial activity is presented. 

This dependence may be attributed to the role of organic carbon as an essential energy source 

for nitrifying bacteria, which enhances their capacity to conduct nitrification (Yang et al., 2018). 

The C*ORP interaction is significant in all planted systems, supporting that microbial metabolic 

processes and redox conditions govern organic matter breakdown. In planted systems, where 

root exudates provide a source of organic carbon to stimulate microbial activity and stabilize 

redox conditions, the relationship between COD and ORP becomes increasingly important. 

(Truu et al., 2015). Finally, pH is observed only in the cold temperature systems, interacting 

with COD in the unplanted system fed 500 mgCODt/L at 6 °C, with ammonia in the planted 

system fed 2,000 mgCODt/L at 6 °C, and with ORP in both the planted and unplanted system 

fed 2,000 mgCODt/L at 6 °C. pH may primarily affect cold temperature systems, where 

variations impact microbial activity and enzymatic processes. In contrast, warm systems 

typically have more adaptable microbial communities, making them less sensitive to pH 

fluctuations and allowing for stable performance (Varma et al., 2021). 
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It can be noted that the unplanted system fed 2,000 mgCODt/L at 6 °C got the coefficients with 

the highest values (up to -3,857.9 x10-3). This dataset exhibited the highest RMSE during the 

polynomial regression fit, suggesting a high level of noise. This could result in overfitting, even 

with the application of LASSO regularization. 

• Planted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝐶

𝑑𝑡
= 23.7𝐶 + 56.4𝑂𝑅𝑃− 0.2𝐶 ∗ 𝑁 + 5.2𝐶 ∗ 𝐷𝑂 + 4.7𝑃 ∗ 𝑂𝑅𝑃 + 3.6𝑂𝑅𝑃2       [x10-3] 

• Unplanted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝐶

𝑑𝑡
= 2.27𝐶 + 22.4𝑂𝑅𝑃− 0.1𝐶 ∗ 𝑁 + 0.1𝐶 ∗ 𝑂𝑅𝑃+ 14.1𝐶 ∗ 𝐷𝑂 − 0.2𝑁 ∗ 𝐷𝑂    [x10-3] 

• Planted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝐶

𝑑𝑡
= 22.1𝑂𝑅𝑃− 2𝐶2 + 0.8𝐶 ∗ 𝑁 + 1.1𝐶 ∗ 𝑃 − 0.1𝐶 ∗ 𝑂𝑅𝑃 + 1.3𝐶 ∗ 𝐷𝑂 − 31.6𝑁 ∗ 𝐷𝑂 +

4.4𝑁 ∗ 𝑝𝐻 + 7.8𝑃 ∗ 𝑂𝑅𝑃+ 4.8𝑂𝑅𝑃 ∗ 𝑝𝐻 + 5.2𝑂𝑅𝑃2  [x10-3] 

• Unplanted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝐶

𝑑𝑡
= −25.7𝐶 − 241𝑁 − 304𝑂𝑅𝑃 − 0.7𝑁2 + 176.3𝑁 ∗ 𝑝𝐻 + 39.8𝑂𝑅𝑃 ∗ 𝑝𝐻 + 3.2𝑂𝑅𝑃2 −

3,858𝐷𝑂2  [x10-3] 

• Planted system fed with 500 mgCODt/L at 20 °C 

𝑑𝐶

𝑑𝑡
= 2.3𝑂𝑅𝑃 − 0.2𝐶2 − 0.4𝐶 ∗ 𝑁 − 0.5𝐶 ∗ 𝑂𝑅𝑃 + 0.5𝑁 ∗ 𝑂𝑅𝑃     [x10-3] 

• Unplanted system fed with 500 mgCODt/L at 20 °C 

𝑑𝐶

𝑑𝑡
= 4.6𝑁 − 1.2𝑂𝑅𝑃+ 0.4𝐶2 + 1.6𝐶 ∗ 𝑁 + 0.8𝑁2 − 0.1𝑁 ∗ 𝑂𝑅𝑃 − 0.5𝑂𝑅𝑃 ∗ 𝐷𝑂 [x10-3] 
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• Planted system fed with 500 mgCODt/L at 6 °C 

𝑑𝐶

𝑑𝑡
= 0.5𝑂𝑅𝑃 + 0.4𝐶2 + 9.2𝐶 ∗ 𝑃 + 6.3𝐶 ∗ 𝑂𝑅𝑃− 17.4𝑁 ∗ 𝑃 − 4.4𝑁 ∗ 𝑂𝑅𝑃 + 6.1𝑃2 +

22.2𝑃 ∗ 𝑂𝑅𝑃+ 0.2𝑂𝑅𝑃2  [x10-3] 

• Unplanted system fed with 500 mgCODt/L at 6 °C 

𝑑𝐶

𝑑𝑡
= 40.6𝐶 + 5.4𝑂𝑅𝑃 + 0.1𝐶 ∗ 𝑂𝑅𝑃 + 7.4𝐶 ∗ 𝐷𝑂 + 1.1𝐶 ∗ 𝑝𝐻 + 23.8𝑁 ∗ 𝐷𝑂 + 5.7𝑂𝑅𝑃 ∗

𝐷𝑂  [x10-3] 

Table 3.3. Sparse coefficients estimated for CODs modelling (values x10-3) 

System W20P W20U C20P C20U W5P W5U C5P C5U 

C 23.7 2.27  -25.7    40.6 

N    -241.4  4.6   

P         

ORP 56.4 22.4 22.1 -303.7 2.3 -1.2 0.5 5.4 

DO         

pH         

C2   -2.0  -0.2 0.4 0.4  

C*N -0.2 -0.1 0.8  -0.4 1.6   

C*P   1.1    9.2  

C*ORP  0.1 -0.1  -0.5  6.3 0.1 

C*DO 5.2 14.1 1.3     7.4 

C*pH        1.1 

N2    -0.7  0.8   

N*P       -17.4  

N*ORP     0.5 -0.1 -4.4  

N*DO  -0.2 -31.6 176.3    23.8 

N*pH   4.4      

P2       6.1  

P*ORP 4.7  7.8    22.2  

P*DO         

P*pH         

ORP*DO      -0.5  5.7 

ORP*pH   4.8 39.8     

ORP2 3.6  5.2 3.2   0.2  

DO*pH         

DO2    -3,857.9     
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pH2         

Note: grey areas represent coefficients with a value of zero. 

Figure 3.2 presents the model fit obtained using the SINDy algorithm compared to the 

polynomial curve that served as the source of the training data. The model successfully captures 

the exponential decay trends of the COD throughout the 6-day HRT across various systems. 

The model presents a strong correlation for all the TWs with R² values of 0.98 or 0.98 for all 

the cases. The RMSE ranges from 11.30 to 16.29 mg/L for high-strength WW and from 3.92 

to 5.54 mg/L for low-strength WW. 

 

 

Figure 3.2. SINDy model approximation to COD polynomial curve (training data) for 

A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and H)C5U 
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Figure 3.2. (continuation) SINDy model approximation to COD polynomial curve (training 

data) for A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and H)C5U 

 

Table 3.4 displays the R2 and RMSE to evaluate the model validation with experimental data. 

R² values range from 0.81 to 0.98, indicating a strong correlation between the observed and 

predicted COD concentrations. The RMSE ranges from 32.3 to 45.8 mg/L for high-strength 

WW and from 5.2 to 14.0 mg/L for low-strength WW. 
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Table 3.4.  SINDy model validation with COD experimental data  

System R2 RMSE (mg/L) 

W20P 0.93 40.7 

W20U 0.92 39.8 

C20P 0.95 32.3 

C20U 0.94 45.8 

W5P 0.81 14.0 

W5U 0.98 5.2 

C5P 0.93 8.7 

C5U 0.87 12.4 

 

3.4.2 Ammonia modelling 

Table 3.5 shows the best polynomial fit for ammonia values. For all systems, the optimal 

polynomial fit falls between the 2nd and 6th order, indicating that ammonia dynamics in TWs 

are nonlinear. The high RMSE values for the planted system fed 2,000 mgCODt/L at 20 °C 

(106 mg/L) and the unplanted system fed 2,000 mgCODt/L at 20 °C (386 mg/L) suggest 

significant noise in the data for these two datasets. The remaining systems present lower RMSE 

values, ranging from 11 to 37 mg/L.  

Table 3.5. Best polynomial fit for the ammonia trend.  

System Best-polynomial fit RMSE (mg/L) 

W20P 3 106 

W20U 3 386 

C20P 4 28 

C20U 4 37 

W5P 6 32 

W5U 3 11 

C5P 2 20 

C5U 2 18 

 

Table 3.6 presents the best α for each system after the tuning process. Ammonia hyperparameter 

values are considerably higher, ranging from 320 to 40,000, whereas COD values are much 

lower, spanning from 0.5 to 150. This suggests that ammonia dynamics are more complex than 
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those of COD, as ammonia data sets require stronger regularization. The planted system fed 

2,000 mgCODt/L at 20 °C, which has a hyperparameter value of 1,000, results in a higher 

RMSE of 38 mg/L, indicating challenges in accurately predicting ammonia levels. In contrast, 

the planted system fed 500 mgCODt/L at 6 °C system achieves the lowest RMSE of 6 mg/L.  

Table 3.6. Best hyperparameter value for the ammonia modelling using SINDy.   

System Best-hyperparameter value RMSE (mg/L) 

W20P 1,000 38 

W20U 577 30 

C20P 400 26 

C20U 40,000 17 

W5P 9,450 14 

W5U 670 8 

C5P 455 6 

C5U 320 7 

 

Table 3.7 presents the resulting model structure obtained by solving equation 6 using each 

system's optimal hyperparameter, α. The most simplified model was found for W5U, which 

included only 3 out of 35 potential candidates. In contrast, planted system fed 2,000 mgCODt/L 

at 6 °C had the highest number of possible candidates, with 11 variables used to describe the 

model. The COD2, ORP, and pH2 functions affect ammonia concentration in all systems, 

indicating a strong dependence of ammonia on these parameters. This may suggest a potential 

cometabolism with COD or a dependency on the rate of COD consumption, considering that 

COD is oxidized before bacteria can utilize oxygen for the nitrification process (Nivala et al., 

2013). Additionally, ORP and pH reflect the environmental conditions under which nitrification 

rates occur. Although ORP has been reported as an indicator of potential nitrification processes 

in conventional WW treatment technologies and TWs, the optimal ranges for this parameter 

vary. (Fuerhacker et al., n.d.) identified an optimal range between -33 and +290 mV, while 

(Weißbach et al., 2018) found the optimal ORP for nitrification to be between 200-260 mV, 
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ensuring sufficient oxygen availability. The interaction between ammonia and ORP (N*ORP) 

stands out in six out of eight systems, highlighting the relationship between the gradual rise in 

ORP and the microbial activity and abundance of nitrifiers and denitrifiers in TWs (Li et al., 

2016a). Regarding the high dependence on pH, (Zhao et al., 2023) reported that nitrification-

denitrification rates are highly sensitive to pH changes, with optimal activity occurring within 

a narrow range of 7.20–7.50. A significant decline in activity was observed when the pH rose 

above 8.0 or fell below 7.00. In all systems receiving high-strength WW, ammonia is 

consistently present as N2 function throughout. It indicates a nonlinear relationship, where 

higher ammonia concentrations significantly influence system dynamics, such as microbial 

activity and nutrient removal efficiency. This suggests that small changes in operational 

conditions may significantly influence ammonia removal at high ammonia concentrations.  

It is observed that the pH coefficients have the highest values, ranging from 29.0 to 2,993.1. 

This can be explained by the fact that pH values are between 6.5 and 8.0 in all cases, whereas 

other parameters, such as COD, ammonia, and ORP, vary in the hundreds. Therefore, to include 

the impact of pH within the model, its coefficient should reflect a comparable influence to that 

of other parameters. Additional data preparation, such as the standardization process, might 

help avoid this issue. It is important to note that standardizing data sets does not alter the 

parameters displayed by the model; it only changes the coefficient values. 

• Planted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝑁

𝑑𝑡
= 𝐶2 − 𝐶 ∗ 𝑁 + 2𝑁2 +𝑁 ∗ 𝑂𝑅𝑃+ 𝑂𝑅𝑃2− 2,993𝑝𝐻2       [x10-5] 
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• Unplanted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝑁

𝑑𝑡
= 0.08𝐶2 − 0.8𝐶 ∗ 𝑁 − 0.02𝐶 ∗ 𝑁𝑂 + 0.63𝐶 ∗ 𝑂𝑅𝑃+ 0.52𝑁2 + 0.02𝑁 ∗ 𝑁𝑂 + 0.28𝑁 ∗

𝑂𝑅𝑃 − 0.23𝑁𝑂 ∗ 𝑂𝑅𝑃+ 0.68𝑂𝑅𝑃2− 2,016𝑝𝐻2  [x10-5] 

• Planted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝑁

𝑑𝑡
= −0.7𝐶2 + 3.8𝐶 ∗ 𝑁 − 4.2𝐶 ∗ 𝑁𝑂 + 0.5𝐶 ∗ 𝑂𝑅𝑃− 1.3𝑁2 − 3.7𝑁 ∗ 𝑁𝑂 − 0.6𝑁 ∗

𝑂𝑅𝑃 − 6.8𝑁𝑂 ∗ 𝑂𝑅𝑃 − 11.6𝑃 ∗ 𝑂𝑅𝑃 + 𝑂𝑅𝑃2 − 3,161𝑝𝐻2  [x10-5] 

• Unplanted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝑁

𝑑𝑡
= 𝐶2 + 3.8𝐶 ∗ 𝑁 + 1.3𝑁2 + 0.1𝑂𝑅𝑃2− 4,171𝑝𝐻2  [x10-5] 

• Planted system fed with 500 mgCODt/L at 20 °C 

𝑑𝑁

𝑑𝑡
= −2.9𝐶2 + 2.7𝑁 ∗ 𝑂𝑅𝑃 − 0.9𝑂𝑅𝑃2 + 29𝑝𝐻2  [x10-5] 

• Unplanted system fed with 500 mgCODt/L at 20 °C 

𝑑𝑁

𝑑𝑡
= 0.5𝐶2 + 4.6𝑁2 + 0.3𝑂𝑅𝑃2 − 561𝑝𝐻2  [x10-5] 

• Planted system fed with 500 mgCODt/L at 6 °C 

𝑑𝑁

𝑑𝑡
= 4.5𝐶2 + 2.4𝐶 ∗ 𝑂𝑅𝑃 − 17.4𝑁 ∗ 𝑃 − 0.4𝑁 ∗ 𝑂𝑅𝑃− 0.8𝑁𝑂 ∗ 𝑂𝑅𝑃 + 0.2𝑁𝑂 ∗ 𝐷𝑂 +

0.2𝑂𝑅𝑃2 − 368𝑝𝐻2  [x10-5] 

• Unplanted system fed with 500 mgCODt/L at 6 °C 

𝑑𝑁

𝑑𝑡
= 1.3𝐶2 + 0.6𝐶 ∗ 𝑂𝑅𝑃 − 0.4𝑁 ∗ 𝑂𝑅𝑃+ 0.8𝑁𝑂 ∗ 𝑂𝑅𝑃 − 2𝑁𝑂 ∗ 𝐷𝑂 + 0.1𝑂𝑅𝑃2−

229𝑝𝐻2  [x10-5] 
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Table 3.7. Sparse coefficient estimated for ammonia modelling (values x10-5) 

System W20P W20U C20P C20U W5P W5U C5P C5U 

C         

N         

NO         

P         

ORP         

DO         

pH         

C2 1.0 0.08 -0.7 1.0 -2.9 0.5 4.5 1.3 

C*N -1.0 0.8 3.8      

C*NO  -0.02 -4.2      

C*P         

C*ORP  0.63 0.5    2.4 0.6 

C*DO         

C*pH         

N2 2.0 0.52 -1.3 1.3  4.6   

N*NO  0.02 -3.7      

N*P       -17.4  

N*ORP 1.0 0.28 -0.6  2.7  -0.4 -0.4 

N*DO         

N*pH         

NO2         

NO*P         

NO*ORP  -0.23 -6.8    -0.8 0.8 

NO*DO       0.2 -2.0 

NO*pH         

P2         

P*ORP   -11.6      

P*DO         

P*pH         

ORP2 1.0 0.68 1.0 0.1 -0.9 0.3 0.2 0.1 

ORP*DO         

ORP*pH         

DO2         

DO*pH         

pH2 -2993.1 -2016.2 -3161.3 -4170.6 29.0 -561.2 -368.0 -228.5 

Note: grey areas represent coefficients with a value of zero. 
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Figure 3.3 illustrates the fit of the model derived from the SINDy algorithm alongside the 

polynomial curve. The model captures the initial rise in ammonia, followed by a continuous 

decline in all the systems receiving high-strength WW, as well as the unplanted system fed 500 

mgCODt/L at 20 °C. In the planted system fed 500 mgCODt/L at 20 °C, an exponential decay 

trend similar to those observed for COD is identified. As the systems that received low-

strength WW at 6 °C showed no significant decrease in concentration, the model only reflects 

a slight decline over the HRT. The model presents a strong correlation for all the TWs with R² 

values ranging from 0.75 to 1.00. The RMSE is variable and ranges from 3.72 to 17.53 mg/L 

for high-strength WW and from 0.98 to 4.33 mg/L for low-strength WW. 

 

 

Figure 3.3. SINDy model approximation to ammonia polynomial curve (training data) 

for A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and H)C5U 
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Figure 3.3. (Continuation) SINDy model approximation to ammonia polynomial curve 

(training data) for A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and 

H)C5U 

 

Table 3.8 presents the fit between the experimental data and the predicted values using the 

models generated by the SINDy algorithm. R² values range from 0.27 to 0.86, and the RMSE 

ranges from 15.1 to 20.8 mg/L for high-strength WW and from 3.8 to 6.6 mg/L for low-strength 

WW. The lowest performance accuracy was observed for planted system fed 500 mgCODt/L 

at 6 °C (R² = 0.27, RMSE = 3.8 mg/L) and unplanted system fed 2,000 mgCODt/L at 6 °C 

(R² = 0.32, RMSE = 16.8 mg/L). In contrast, the planted system fed 500 mgCODt/L at 20 °C 
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demonstrated strong prediction accuracy, with an R² of 0.6 and an RMSE of 6.55 mg/L. This is 

likely due to the arranging of the data, as the planted system fed 500 mgCODt/L at 20 °C shows 

a clear exponential decay trend in the raw data. In contrast, the other systems exhibit 

fluctuations throughout the 6-day HRT. In common practice, planted system fed 500 

mgCODt/L at 20 °C conditions are typically represented, making this model more suitable for 

testing and application in evaluating the performance of HSSFW under similar conditions. 

Table 3.8.  SINDy model validation with ammonia experimental data  

System R2 RMSE (mg/L) 

W20P 0.57 15.1 

W20U 0.60 20.8 

C20P 0.72 20.1 

C20U 0.32 16.8 

W5P 0.86 6.6 

W5U 0.59 4.7 

C5P 0.27 3.8 

C5U 0.35 5.3 

 

3.4.3 Phosphates modelling 

Table 3.9 shows the best polynomial fit for phosphates. For all systems, the optimal polynomial 

fit falls between the 2nd and 5th order, indicating that phosphate dynamics in TWs are 

nonlinear. The planted system fed 2,000 mgCODt/L at 20 °C employs a 4th-degree polynomial 

fit, resulting in an RMSE of 8.51 mg/L, suggesting a more complex relationship but with 

relatively moderate accuracy. In contrast, the planted system fed 500 mgCODt/L at 20 °C 

system utilizes a 3th-degree polynomial fit, achieving a low RMSE of 0.68 mg/L, indicating a 

strong fit for the data. Similar trends are observed in unplanted system fed 500 mgCODt/L at 

20 °C and planted system fed 500 mgCODt/L at 6 °C. 
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Table 3.9. Best polynomial fit for the phosphates trend.  

System Best-polynomial fit MSE (mg/L) 

W20P 4 8.51 

W20U 2 6.10 

C20P 2 4.35 

C20U 3 3.15 

W5P 3 0.68 

W5U 3 1.18 

C5P 3 0.65 

C5U 3 1.26 

 

Table 3.10 outlines the best hyperparameter, α, values for phosphate modelling and their 

corresponding RMSE values in mg/L for various systems. The α values exhibit considerable 

variation across the different systems. The planted system fed 500 mgCODt/L at 20 °C system, 

with a high hyperparameter value of 9,450, achieves a low RMSE of 1.05 mg/L, indicating that 

this particular setting effectively captures the underlying dynamics despite the strong 

regularization process. Conversely, the planted system fed 2,000 mgCODt/L at 20 °C system, 

which has a lower hyperparameter value of 1,671, results in a higher RMSE of 12.32 mg/L, 

suggesting a less accurate model.    

Table 3.10. Best hyperparameter value for the phosphates modelling using SINDy.   

System Best-hyperparameter value RMSE (mg/L) 

W20P 1,671 12.32 

W20U 324 2.68 

C20P 125 4.39 

C20U 341 2.36 

W5P 9,450 1.05 

W5U 50 0.45 

C5P 70 0.39 

C5U 69 1.33 

 

Table 3.11 presents the resulting model structure obtained by solving equation 6 using each 

system's optimal hyperparameter, α. The most simplified model was found for the planted 
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system fed 500 mgCODt/L at 6 °C, which included only 5 out of 27 potential candidates. In 

contrast, the planted system fed 500 mgCODt/L at 20 °C had the highest number of possible 

candidates, with 12 variables used to describe the model. The high pollutant removal 

efficiencies in the planted system fed 500 mgCODt/L at 20 °C indicate greater microbial 

activity due to ideal conditions (20°C) and healthy plant growth, resulting in overlapping 

processes that may need extra parameters to describe phosphate dynamics accurately. The 

functions COD*ammonia (C*N) and pH2 stand out in all the systems models. The COD*N 

interaction in TWs might affect phosphate removal by altering microbial activity and redox 

conditions. COD consumption lowers oxygen levels, favouring ammonia denitrification but 

limiting aerobic phosphate removal by phosphate-accumulating organisms (PAOs) (Ding et al., 

2022; Tarayre et al., 2016). Additionally, it has been reported that anoxic conditions can lead 

to the release of bound phosphates from sediments up to 5 times higher than in aerobic 

conditions (1 mg P/kg in aerobic; 5 mg P/kg in anaerobic), significantly reducing phosphate 

removal efficiency (Wu et al., 2014). Similarly, phosphates release by PAOs is reported in 

anaerobic conditions (Tarayre et al., 2016). Regarding the high sensitivity to pH, phosphorus, 

and thus phosphates released from sediments, has been found to be significantly higher under 

alkaline conditions (pH 7.5-8.5) compared to acidic conditions (pH 6.5-7.0) (Wu et al., 2014). 

This suggests that even a slight increase in pH can have a notable impact on phosphorus 

concentrations, potentially influencing nutrient cycling. In all treatment wetland (TW) systems, 

ORP is included in the model structure, either by interacting with phosphates (P*ORP) or as 

squared functions (ORP²). This might be explained as ORP influences the solubility and 

bioavailability of phosphates. Lower ORP conditions can lead to increased phosphate release 

from sediments, often due to the reduction of iron oxides that typically bind phosphorus to the 

substrate in aerobic environments (Wu et al., 2014). The ORP2 function also reflects the 

nonlinear impacts of ORP conditions on microbial communities, particularly PAOs, which have 
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demonstrated increased activity at higher ORP values (from +25 to +225 mV) (Li et al., 2016b; 

Tarayre et al., 2016).  

Similar to ammonia, the pH coefficients are among the highest, as pH values range narrowly 

between 6.5 and 8.0 in all cases, while other parameters, such as COD, ammonia, and ORP, 

vary in the hundreds. 

• Planted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝑃

𝑑𝑡
= −0.6𝐶2 + 0.2𝐶 ∗ 𝑁 − 0.5𝐶 ∗ 𝑂𝑅𝑃 − 0.1𝑁2 + 0.6𝑃 ∗ 𝑂𝑅𝑃 − 0.3𝑂𝑅𝑃2+ 24.4𝑝𝐻2       

[x10-5] 

• Unplanted system fed with 2,000 mgCODt/L at 20 °C  

𝑑𝑃

𝑑𝑡
= 0.2𝐶2 + 0.2𝐶 ∗ 𝑁 + 0.9𝐶 ∗ 𝑂𝑅𝑃 − 3.8𝑁 ∗ 𝑃 − 0.9𝑁 ∗ 𝑂𝑅𝑃+ 0.7𝑃 ∗ 𝑂𝑅𝑃 −

0.1𝑂𝑅𝑃2 + 68𝑝𝐻2       [x10-5] 

• Planted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝑃

𝑑𝑡
= 0.1𝐶2 − 0.3𝐶 ∗ 𝑁 + 0.1𝑁 ∗ 𝑂𝑅𝑃 + 2𝑃 ∗ 𝑂𝑅𝑃+ 0.1𝑂𝑅𝑃2 + 171𝑝𝐻2       [x10-5] 

• Unplanted system fed with 2,000 mgCODt/L at 6 °C 

𝑑𝑃

𝑑𝑡
= −0.25𝐶 ∗ 𝑁 + 0.02𝐶 ∗ 𝑂𝑅𝑃− 0.18𝑁2 − 0.07𝑂𝑅𝑃2 − 303𝑝𝐻2       [x10-5] 

• Planted system fed with 500 mgCODt/L at 20 °C 

𝑑𝑃

𝑑𝑡
= 0.1𝐶 ∗ 𝑁 + 0.8𝐶 ∗ 𝑃 − 0.3𝐶 ∗ 𝐷𝑂 + 0.3𝐶 ∗ 𝑝𝐻 − 0.7𝑁2 + 0.3𝑁 ∗ 𝑃 − 0.1𝑁 ∗ 𝑂𝑅𝑃 +

0.3𝑁 ∗ 𝑝𝐻 + 0.1𝑃2 − 0.2𝑃 ∗ 𝑂𝑅𝑃+ 0.1𝑃 ∗ 𝑝𝐻 − 51𝑝𝐻2       [x10-5] 
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• Unplanted system fed with 500 mgCODt/L at 20 °C 

𝑑𝑃

𝑑𝑡
= −0.1𝑂𝑅𝑃− 0.1𝐶2 + 0.3𝐶 ∗ 𝑁 + 0.1𝐶 ∗ 𝑃 + 0.7𝑁2 + 0.1𝑁 ∗ 𝑃 + 0.1𝑁 ∗ 𝑝𝐻 − 0.6𝑃 ∗

𝑂𝑅𝑃 − 0.1𝑂𝑅𝑃 ∗ 𝐷𝑂 − 0.6𝑂𝑅𝑃 ∗ 𝑝𝐻 − 73𝑝𝐻2     [x10-5] 

• Planted system fed with 500 mgCODt/L at 6 °C 

𝑑𝑃

𝑑𝑡
= 0.1𝐶 ∗ 𝑁 + 0.12𝐶 ∗ 𝑂𝑅𝑃+ 0.25𝑁 ∗ 𝑂𝑅𝑃+ 0.04𝑂𝑅𝑃2 + 18.7𝑝𝐻2  [x10-5] 

• Unplanted system fed with 500 mgCODt/L at 6 °C 

𝑑𝑃

𝑑𝑡
= 0.2𝐶2 − 0.8𝐶 ∗ 𝑁 − 0.1𝐶 ∗ 𝑃 + 0.1𝐶 ∗ 𝑂𝑅𝑃 − 0.2𝑁 ∗ 𝑃 + 0.7𝑃 ∗ 𝑂𝑅𝑃+ 31.8𝑝𝐻2 

 [x10-5] 
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Table 3.11. Sparse coefficient estimated for phosphates modelling (values x10-5) 

System W20P W20U C20P C20U W5P W5U C5P C5U 

C         

N         

P         

ORP      -0.1   

DO         

pH         

C2 -0.6 0.2 0.1   -0.1  0.2 

C*N 0.2 0.2 -0.3 -0.25 0.1 0.3 0.1 -0.8 

C*P     0.8 0.1  -0.1 

C*ORP -0.5 0.9  0.02   0.12 0.1 

C*DO     -0.3    

C*pH     0.3    

N2 -0.1   -0.18 -0.7 0.7   

N*P  -3.8   0.3 0.1  -0.2 

N*ORP  -0.9 0.1  -0.1  0.25  

N*DO         

N*pH     0.3 0.1   

P2     0.1    

P*ORP 0.6 0.7 2.0  -0.2 -0.6  0.7 

P*DO         

P*pH     0.1    

ORP2 -0.3 0.1 0.1 -0.07   0.04  

ORP*DO      -0.1   

ORP*pH      -0.6   

DO2         

DO*pH         

pH2 24.4 68.0 170.8 303.1 -51.2 -73.4 18.69 31.8 

Note: grey areas represent coefficients with a value of zero. 

Figure 3.4 presents the model fit obtained using the SINDy algorithm compared to the 

polynomial curve that served as the source of the training data. R2 values indicate a strong 

correlation with values ranging from 0.87 to 0.99 for all the systems. The RMSE is variable and 

ranges from 4.22 to 9.76 mg/L for high-strength WW and from 0.21 to 1.84 mg/L for low-

strength WW. In most systems, the trend indicates a gradual decrease in phosphate 

concentrations, which aligns with the experimental trend. In the case of unplanted fed 

500 mgCOD/L at 20 °C, the model describes an initial increase in phosphates, followed by a 
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continuous decline, as seen in the polynomial curve. The planted fed 2,000 mgCOD/L at 20°C 

model shows signs of overfitting due to the oscillations in the phosphate values produced by 

the model's solution. 

 

Figure 3.4. SINDy model approximation to phosphates polynomial curve (training data) for 

A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and H)C5U 
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Figure 3.4. (Continuation) SINDy model approximation to phosphates polynomial 

curve (training data) for A)W20P, B)W20U, C)C20P, D)C20U, E)W5P,  F)W5U, G)C5P and 

H)C5U 

 

Table 3.12 presents the fit parameters between the experimental data and the predicted values 

using the models generated by the SINDy algorithm. R² values range from 0.11 to 0.85, and the 

RMSE ranges from 4.1 to 5.7 mg/L for high-strength WW and from 0.9 to 2.1 mg/L for low-

strength WW. The lowest performance accuracy was observed for unplanted fed with 

500 mgCOD/L at 20°C (R² = 0.11, RMSE = 1.8 mg/L). In contrast, unplanted fed with 

2,000 mgCOD/L at 20°C demonstrated strong prediction accuracy, with an R² of 0.85 and an 

RMSE of 5.7 mg/L.  
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Table 3.12. SINDy model validation with phosphates experimental data  

System R2 RMSE (mg/L) 

W20P 0.80 5.4 

W20U 0.76 4.1 

C20P 0.79 5.4 

C20U 0.85 5.7 

W5P 0.60 0.9 

W5U 0.11 1.8 

C5P 0.68 1.0 

C5U 0.62 2.1 

 

3.5 Conclusions 

A data-driven model using the SINDy algorithm was implemented to identify ODEs that 

characterize the pollutant dynamics of TWs under different operational and design conditions, 

highlighting the dependency and interaction between physicochemical parameters and 

pollutants. For the three parameters, COD, ammonia and phosphates, polynomial regression 

degrees ranged from the 2nd to the 7th, confirming the nonlinear nature of pollutant dynamics. 

Moreover, the differences in hyperparameter, α, values among systems emphasize the 

significance of choosing the appropriate value based on the complexity and noise of each 

dataset. Planted systems typically demonstrate higher α values due to their complex dynamics  

and might be associated with the effects of root activity on microbial diversity and activity, as 

well as nutrient uptake. 

Differential equations for modelling the removal of COD, ammonia, and phosphates were 

determined. In certain instances, simplified equations involving 3 to 6 functions were found, 

whereas in cases with high noise in the raw data, up to 11 functions were required to capture 

the dynamics accurately. ORP was identified as a crucial parameter across all systems, 

underscoring its importance in estimating COD concentrations and its correlation with 

microbial activity. For ammonia dynamics, the analysis highlights the COD2, ORP2, and pH2 

functions, illustrating a nonlinear relationship that indicates minor operational adjustments can 
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greatly influence ammonia removal efficiency, particularly in high-strength WW scenarios. In 

terms of phosphates, the functions COD*ammonia, pH2 and phosphates*ORP underscores the 

intricate relationships that influence phosphate removal. These factors may play an essential 

role in determining the solubility and bioavailability of phosphates. 

The COD models strongly correlated with training  (R² from 0.98 to 0.99) and validation data 

(R² from 0.81 to 0.98). In contrast, ammonia models exhibited a more diverse performance, 

showing R² values from 0.27 to 1.0. Similarly, for phosphates, validation results indicated 

varying prediction accuracies, with R2 ranging from 0.87 to 0.99 with training data and from 

0.11 to 0.85 with validation data. These findings suggest the necessity for improved data quality 

and stability to enhance model robustness, particularly in system models with low prediction 

accuracy.  

Overall, this study demonstrates the effectiveness of the SINDy algorithm in developing models 

to predict pollutant concentrations in TWs. Future work will focus on training the model with 

online measurements to enhance the data's quality and quantity, as well as testing the reported 

equations in TWs across various scales and conditions. Applying Bayesian inference to the 

identified parameters can quantify the model's uncertainty. Additionally, this study suggests 

incorporating ORP and pH into the performance analysis and modeling of TWs. 
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4 SIGNIFICANCE OF THE RESEARCH AND CONCLUSIONS  

4.1 Research summary 

In this study, the performance of TWs for secondary domestic WW treatment was evaluated 

under different conditions, and a pollutant removal model was obtained based on the SINDy 

algorithm. A full factorial experiment (2x2x2) was conducted to examine the effects of WW 

strength (500 and 2,000 mg CODt/L), temperature (6 and 20°C), and vegetation (planted and 

unplanted) on lab-scale HSSFW, incorporating high-resolution monitoring of biologically 

relevant parameters such as ORP, DO, pH, and temperature. The experimental data was then 

used to train and validate a derivative model based on the SINDy algorithm, which identified 

simplified differential reaction equations for COD, phosphates, and ammonia, as well as the 

relevance and interactions between physicochemical parameters and pollutants.  The main 

findings are as follows: 

(1) High COD removal and no significant difference between high and low WW strength 

was presented, highlighting the TWs potential for implementing as secondary treatment 

technology receiving black domestic WW characteristics.  

(2) Ammonia removal was generally low across most systems, except those with low-

strength WW, warm temperatures, and vegetation.  

(3) Phosphate removal was mainly influenced by WW strength and plant presence, with 

their interactions with temperature enhancing efficiency. The indicates that elevated 

temperatures and rising pH levels reduce the potential for phosphate adsorption and 

biological assimilation. 

(4) ORP offered more reliable insights into oxygenic conditions than direct DO 

measurements, particularly in deeper layers or sampling locations. 
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(5) The SINDy algorithm identified simplified differential equations involving 3 to 6 

functions in some cases, while in instances with high noise in the raw data, as many as 

11 functions were needed to capture the dynamics. 

(6) Key factors influencing COD removal rate include ORP and COD*ammonia, as critical 

functions for estimating COD concentrations. The COD models strongly correlated with 

training (R² of 0.98 or 0.99) and validation data (R² between 0.81 and 0.98). 

(7) The key factors for ammonia removal rate include COD2, ORP2, and pH2. These 

interactions suggest that minor operational adjustments can significantly affect 

ammonia removal efficiency. The ammonia models displayed varied performance, with 

R² values between 0.75 and 1.0 with training and from 0.26 to 0.86 with validation data. 

(8) Key factors for phosphate removal include COD*ammonia, pH2 and phosphates*ORP, 

which might affect their solubility and bioavailability. The phosphate models exhibited 

a strong correlation with training data (R² from 0.87 to 0.99), and varying correlation 

with validation data (R² from 0.11 to 0.85), indicating diverse prediction accuracies. 

Overall, this study demonstrates the potential of TWs for domestic WW treatment; suggests the 

use of the SINDy algorithm in developing simplified models to predict pollutant concentrations 

in TWs; and offer insights into key parameters for measurement (ORP, DO, and pH) that reflect 

the system's performance. 

4.2 Limitations and future work 

In this study, the performance evaluation and development of reaction equations in TWs for 

domestic WW was conducted. While the results showed efficient removal of COD and, to a 

lesser extent, ammonia and phosphates, the observations and model validation in field 

applications has yet to be confirmed. Several additional steps can be taken to improve the 
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applicability of these findings for decentralized domestic WW treatment. Recommendations for 

follow-up optimization and potential future studies are outlined as follows: 

(1) The trend observations and resulting equations can be polished by using a larger 

quantity of cleaner measurements, as this study only used 48 data points. Incorporating 

data from online COD, ORP, DO, and pH measurements could further improve the 

current models. Machine learning techniques such as data augmentation and denoising 

algorithms could also be applied for data preparation. 

(2) The models developed in this study need to be validated with TWs exposed to the 

elements and receiving real domestic wastewater. 

(3) Measuring additional parameters, such as biomass growth in the substrate (soil), plant 

biomass growth, nitrites, total nitrogen, and organic nitrogen, could enhance the 

accuracy of the models.  

(4) Quantify the uncertainty of the model by applying Bayesian inference to the identified 

parameters. 
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APPENDIX A 

                 a) 

 

                 b) 

 

Figure A1. Experimental set ups in the a) greenhouse and b) cold room. W=warm; C=cold; 

5= low strength WW; 20=high strength WW; P=plantes; U=unplanted 
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a)                                                            b) 

 

 

                                                    

Figure A2. Correlation between CODs from digestion and CODs measurements from the 

probe at a) the beginning and b) the end of the experiment using SWW samples. The samples 

for the digestion method were previously filtered using a 45 mm membrane 
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a)                                                            b) 

  

                                                   c)  

 

Figure A3. Residual plots for a) CODt, b) ammonia and c) phosphates. 

 

 

Figure A4. Nitrates concentration within the system in TWs. 
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Figure A5. Water temperature within the system in TWs. 

 


