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Abstract

This thesis explores the intersection of causal reasoning, data science, and Neutrosophic
statistics, proposing novel approaches to address uncertainty, indeterminacy, and inconsistency in
causal analysis. The research aims to develop Neutrosophic causal models that offer a more
nuanced representation of complex causal systems compared to classical approaches. By
formulating new Neutrosophic statistical techniques, the study seeks to enable more robust
quantification of causal effects from observational data, accounting for various sources of
uncertainty.

A key objective is the design of Neutrosophic causal reasoning algorithms capable of
uncovering causal structures from uncertain and noisy data, with the goal of demonstrating
improved performance in identifying causal relationships compared to traditional methods. To
illustrate the practical utility of these techniques, the research applies the developed Neutrosophic
approaches to a comprehensive case study on Arctic Sea Ice decline, showcasing their ability to
handle real-world uncertainties and provide more reliable insights into complex environmental
phenomena.

Furthermore, this thesis aims to provide guidelines for applying Neutrosophic statistics in
causal analysis across various domains, facilitating broader adoption of these techniques in data
science practice. By bridging the gap between theoretical advancements and practical applications,
this research contributes to the evolving field of causal reasoning in data science, offering new
tools and methodologies for researchers and practitioners dealing with uncertainty in causal

analysis.
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STATEMENT ON ARTIFICIAL INTELLIGENCE TOOL USAGE

This research, given that English is my second language, used Al tools minimally to enhance
grammatical accuracy, coherence, and clarity, ensuring the professionalism and readability of the
thesis presentation. Al was employed only for this purpose, without impacting the core findings,

methodology, or substantive content of the research.

Careful validation steps were conducted independently to confirm the accuracy of the
Neutrosophic calculations and programming, ensuring the rigor and alignment of the
computational results with the research objectives. In addition to statistical validation methods,
further measures were applied to enhance accuracy and minimize error due to the complex and

extensive nature of these calculations.
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Research Problem

In the era of big data, causal reasoning has emerged as a paramount challenge in the realm of
data science [16, 19, 25]. The ability to uncover intricate cause-and-effect relationships from
observational data is crucial for making informed decisions [13, 17], understanding complex
systems, and driving innovation across domains. However, real-world data is often fraught
with uncertainty, noise, incompleteness, confounding variables, and selection biases.
Traditional statistical methodologies, such as regression, frequently falter in identifying robust
causal mechanisms under such conditions. The presence of confounding variables, spurious
correlations, and unmeasured factors impedes the accurate identification of causal effects from
observational data. This underscores the critical necessity for advanced techniques capable of

addressing the inherent ambiguities, inconsistencies, and uncertainties of real-world data.

1.2. Neutrosophic Statistics Background

Neutrosophic statistics, rooted in Neutrosophic logic [1, 20], provides a promising framework
to fortify causal reasoning amidst uncertainty. Neutrosophic logic is a generalization of fuzzy
logic that encapsulates three components: truth, falsity, and indeterminacy. In Neutrosophic

statistics, data is represented using Neutrosophic values, which are triplets of the form



(T, I, F), where T represents the truth or membership degree, F represents the falsity or non-

membership degree, and I represents the indeterminacy or uncertainty degree.

The ability to explicitly model indeterminacy or uncertainty sets Neutrosophic statistics apart
from classical statistics and fuzzy statistics. By incorporating measures of confidence, doubt,
and ambiguity, Neutrosophic statistics possesses the capability to handle noisy, partial, and
inconsistent observational data more effectively. Its inherent flexibility enables the
development of sophisticated causal models and robust statistical methods to unearth causal

relationships under real-world conditions.

Neutrosophic statistics has found applications in various domains, including decision-making,
pattern recognition, data mining, and machine learning. Several studies [2, 3, 21], such as those
by Smarandache (1995), Smarandache et al. (2007), Xie et al. (2018), and Zhang et al. (2020),
have demonstrated the effectiveness of Neutrosophic statistics in handling uncertainty and

ambiguity in data analysis tasks.

1.3.Thesis Statement

This thesis embarks on an in-depth exploration of Neutrosophic statistics techniques [26, 35]
to augment causal discovery, modeling, and analysis in data science. It proposes novel
Neutrosophic causal models to represent complex causal systems burdened with ambiguity and
uncertainty. These models aim to capture varying degrees of dependency between variables

and account for the uncertainties inherent in determining causation from observational data.



Additionally, the thesis develops new Neutrosophic statistical methods to quantify the effects
of interventions and make reliable causal inferences from noisy observational data.
Furthermore, it investigates automated causal discovery algorithms employing Neutrosophic

logic to uncover causal relationships within uncertain data.

These models aim to capture varying degrees of dependency between variables and account
for the uncertainties inherent in determining causation from observational data. For example,
a simple causal system with two variables X and Y can be represented using a Neutrosophic
causal model as

(TX >, IX->Y),FX->Y))
Where,
T(X — Y) represents the truth or confidence in the causal relationship from X to Y,
I(X - Y) represents the indeterminacy or ambiguity associated with this causal relationship,
and

F(X - Y) represents the falsity or doubt in the causal relationship.

This Neutrosophic representation allows for a more nuanced and accurate depiction of causal

associations in the presence of uncertainties.

Additionally, the thesis develops new Neutrosophic statistical methods to quantify the effects
of interventions and make reliable causal inferences from noisy observational data. These
methods include Neutrosophic regression techniques, Neutrosophic hypothesis testing, and

Neutrosophic causal effect estimation methods. For instance, a Neutrosophic regression model



can be formulated as Y = f(X) + &, where Y is the outcome variable, X is the set of
predictors, and € is the Neutrosophic error term represented as a triplet (T (g), 1(g), F(¢)).
This allows for the explicit modeling of uncertainties in the error term, potentially leading to

more robust parameter estimates and causal effect quantification.

Furthermore, the thesis investigates automated causal discovery algorithms employing
Neutrosophic logic to uncover causal relationships within uncertain data. These algorithms
may utilize constraint-based, score-based, or hybrid approaches, but with the incorporation of
Neutrosophic logic to handle ambiguities and inconsistencies in the data. For example, a
constraint-based algorithm could employ Neutrosophic conditional independence tests to

identify causal structures while accounting for the indeterminacy in the data.

1.4.Contributions

The key contributions of this thesis are:

Novel Neutrosophic Causal Models: Development of new Neutrosophic causal models [23]

that represent causal systems with measures of confidence, doubt, and ambiguity for each

causal association. These models allow for the capture of uncertainty in determining causation,

enabling more accurate and nuanced representations of complex causal relationships.

Neutrosophic Statistical Techniques for Causal Analysis: Formulation of new Neutrosophic

statistical techniques [7, 8] to quantify uncertainty in causal effects and strengthen causal



analysis from observational data. These techniques leverage Neutrosophic logic to account for
ambiguities, inconsistencies, and uncertainties in the data, leading to more reliable causal

inferences.

Automated Causal Discovery Algorithms: Development of automated causal discovery
algorithms that employ Neutrosophic logic to unearth causal relationships within ambiguous,
uncertain data. These algorithms aim to identify robust causal structures by incorporating

measures of indeterminacy and handling various sources of uncertainty.

Case Study on Arctic Sea Ice Decline: A comprehensive case study analyzing the decline of
Arctic Sea Ice extent over the period 1979-2022 [16, 19, 25] using Neutrosophic statistics. This
case study demonstrates the practical utility of the proposed techniques and highlights the
benefits of Neutrosophic models and methods in providing more nuanced and reliable insights
compared to conventional approaches. Potential confounding factors or uncertainties specific
to the Arctic Sea Ice dataset, such as measurement errors, missing data, or the influence of

climate oscillations, could be effectively addressed using the Neutrosophic framework.

Guidelines for Applying Neutrosophic Statistics: Provision of guidelines and best practices for
applying Neutrosophic statistics to advance causal analysis in real-world data science
applications spanning various domains, such as climate science, healthcare, finance, and
marketing [26]. These guidelines will cover aspects like data preprocessing, Neutrosophic
model selection, interpretation of Neutrosophic results, and addressing domain-specific

challenges and uncertainties.



1.5. Case Study: Arctic Sea Ice Change

To showcase the practical utility of the proposed techniques, a case study is presented
analyzing the decline of Arctic Sea Ice extent over 1979-2022 using Neutrosophic statistics.
The Arctic Sea Ice dataset is a prime example of real-world observational data characterized
by uncertainties, measurement errors, and potential confounding factors. The uncertainties

inherent in this climate data can be effectively modeled using the Neutrosophic framework.

The case study will apply the developed Neutrosophic causal models and statistical methods
to investigate the causal factors contributing to the observed decline in Arctic Sea Ice extent.
By explicitly accounting for indeterminacy and ambiguity in the data, the Neutrosophic
approach aims to provide more reliable and nuanced insights into the complex causal dynamics

underlying Arctic Sea Ice loss.

The results obtained from the Neutrosophic analysis will be compared to those derived from
conventional regression-based approaches, highlighting the benefits and advantages of the
proposed Neutrosophic techniques in handling real-world uncertainties and uncovering robust

causal relationships.



1.6. Conclusions

In this thesis, we aspire to push the frontiers of robust causal analysis in data science by
harnessing the synergy between Neutrosophic logic and statistics. Through the development
of sophisticated Neutrosophic models, methods, and algorithms, it aims to overcome key
challenges in causal reasoning and discovery under real-world uncertainty. These
advancements can enable more reliable causal inferences from messy observational data,
thereby supporting impactful decision-making across domains and paving the way for
causality-aware, trustworthy Al systems capable of reasoning about complex cause-and-effect

relationships amidst uncertainty.

The proposed Neutrosophic techniques have the potential to revolutionize causal analysis in
various fields, including climate science, healthcare, finance, marketing, and social sciences,
where accurate understanding of causal mechanisms is crucial. By explicitly modeling and
accounting for uncertainties, this research paves the way for more robust and reliable causal
discoveries, ultimately contributing to better decision-making and advancing scientific

knowledge.



CHAPTER 2

NEUTROSOPHIC MODELS FOR CAUSAL RELATIONSHIPS

2.1. Introduction

Modeling causal relationships is a fundamental challenge in many scientific disciplines [17, 24]
and real-world applications. In error terms, classical statistical models often fail to capture the
inherent uncertainties, ambiguities, and inconsistencies present in observational data.
Neutrosophic logic, with its ability to represent and reason with indeterminacy [1, 31], provides a
promising framework for developing more realistic and robust causal models.

In this chapter, we introduce novel Neutrosophic causal models that explicitly incorporate
measures of truth, falsity, and indeterminacy [2, 3] for each causal relationship. These models aim
to provide a more nuanced representation of causal systems, capturing the varying degrees of
dependency between variables and accounting for the uncertainties inherent in determining

causation from observational data.

2.2. Neutrosophic Causal Graphical Models

Inspired by the classical causal graphical models [14], such as Bayesian networks and structural
causal models [17], we propose Neutrosophic causal graphical models (NCGMs) [9, 10] as a
generalization that incorporates Neutrosophic logic.

An NCGM is a directed acyclic graph (DAG) where each node represents a variable, and each
edge represents a potential causal relationship between the corresponding variables. However,
unlike classical causal graphical models, where the edges are binary (present or absent), the edges

in NCGMs are annotated with Neutrosophic values.



Formally, an NCGM is defined as a tuple (V, E, P), where:

- V is the set of i nodes representing variables.

- E is the set of directed edges, where each edge e;; from node i to node j is associated with a
Neutrosophic value (T;j, I;;, F;;).

- P is the set of conditional Neutrosophic probability distributions, where each node i has an
associated conditional Neutrosophic probability distribution P(vi | pai), representing the
Neutrosophic probability of the variable v; given its parent nodes p,; in the DAG.

The Neutrosophic value (T;;, I;;, F;;) associated with each edge e;; represents the truth

ijs
(confidence), indeterminacy (ambiguity), and falsity (doubt) in the causal relationship from node
i to node j, respectively. These values can be derived from expert knowledge, empirical data, or

estimated using Neutrosophic statistical techniques.

To enhance understanding, consider the following visual representation of a simple NCGM:

3
(0.5, 0.4, 0.1)
(0.7, 0.2, 0.1) l
"

Figure 1
*This is graph is generated by Python



In this example, the edges are annotated with Neutrosophic values representing the (Truth,
Indeterminacy, Falsity) measures associated with each causal relationship. This visual depiction
illustrates how NCGMs can capture the varying degrees of confidence, ambiguity, and doubt in
the causal links between variables.
The concept of Neutrosophic Causal Graphical Models (NCGMs) is introduced as an extension of
classical causal graphical models, such as Bayesian networks and structural causal models.
NCGMs incorporate Neutrosophic logic to capture the varying degrees of truth, indeterminacy,
and falsity associated with causal relationships.
To better understand the concept, consider the following real-world example related to the factors
influencing the spread of an infectious disease:
Suppose we want to model the causal relationships among various factors that contribute to the
spread of a new infectious disease. These factors may include:

1. Population density (V1)

2. Vaccination rate (V2)

3. Travel patterns (V3)

4. Hygiene practices (V4)

5. Disease transmission rate (V5)
Using a classical causal graphical model, we would represent these variables as nodes in a directed
acyclic graph (DAG), and the causal relationships between them as edges. However, the strengths
of these causal relationships may not be binary (present or absent); they may exhibit varying

degrees of confidence, ambiguity, and doubt.

10



In an NCGM, we can represent these varying degrees by annotating the edges with Neutrosophic
values. For example, the edge from "Population density" (V1) to "Disease transmission rate" (V5)
could be annotated with the Neutrosophic value (0.8, 0.1, 0.2), indicating a high truth value (0.8)
for the causal relationship, a low level of indeterminacy (0.1), and a relatively low falsity value

(0.2).

On the other hand, the edge from "Travel patterns" (V3) to "Disease transmission rate" (V5) might
have a Neutrosophic value of (0.6, 0.3, 0.4), reflecting a moderate truth value, a higher level of
indeterminacy, and a relatively higher falsity value compared to the previous edge.

These Neutrosophic values can be derived from expert knowledge, empirical data, or estimated
using Neutrosophic statistical techniques. By incorporating these Neutrosophic values into the
causal graphical model, we can capture the varying degrees of confidence, ambiguity, and doubt
associated with each causal relationship, potentially leading to more accurate and nuanced insights
into the disease transmission dynamics.

This example illustrates how NCGMs can provide a more realistic representation of causal
systems by explicitly accounting for the uncertainties and indeterminacies inherent in

observational data and expert knowledge.

11
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*This is graph is generated by Python.

2.3. Neutrosophic Structural Equation Models

Another class of Neutrosophic causal models is the Neutrosophic structural equation models
(NSEMs). These models extend the classical structural equation models by incorporating

Neutrosophic logic and explicitly representing uncertainties in the causal relationships and error

terms [2, 15, 28].

An NSEM is defined by a set of structural equations of the form:

yi = fi(pairgi)

12



where y; is the outcome variable, p,; represents the set of parent variables (direct causes), f; is a

functional relationship, and ¢; is the Neutrosophic error term represented as a triplet (Tgg, Ie;3,

Fie;y)-
The Neutrosophic error term (T, I}, Frg;)) captures the truth, indeterminacy, and falsity

associated with the error or uncertainty in the structural equation for variable y;. This explicit
representation of uncertainty in the error term allows for more robust parameter estimation and
causal effect quantification.

The functional relationships f; can take various forms, including linear or non-linear functions,
depending on the nature of the causal relationships being modeled such as present linear, quadratic,
non-linear forms. Furthermore, the coefficients or parameters in these functional relationships can
be modeled as Neutrosophic values to account for uncertainties in the strength of the causal

relationships.

2.4. Neutrosophic Potential Outcomes Framework

The potential outcomes framework, widely used in causal inference [18, 27], can also be extended
to incorporate Neutrosophic logic. In the Neutrosophic potential outcomes framework, the
potential outcomes are represented as Neutrosophic values, capturing the truth, indeterminacy, and
falsity associated with each potential outcome.

Let Y;(+) and Yj()denote the potential outcomes for an individual i under the treatment (t) and
control (c) conditions, respectively. In the Neutrosophic potential outcomes framework, these

potential outcomes are represented as Neutrosophic triplets:

Y;(t) = (Tug,lun Fug )

13



Y;(&) = (Tuey o liey » Fiicy)

The Neutrosophic causal effect for individual i can then be defined as:

T = Yi() = Yi(o) = (( Tuy — Ty (laey — Ley) » (Fey — F{ic}))

This Neutrosophic causal effect captures the truth, indeterminacy, and falsity associated with the
individual-level treatment effect. Population-level causal effects can be obtained by aggregating
these individual-level effects using appropriate Neutrosophic operations.

The Neutrosophic potential outcomes framework can be extended to handle more complex causal
scenarios, such as the presence of mediators, moderators, or time-varying treatments, by

incorporating additional Neutrosophic variables and structural equations.

2.5. Neutrosophic Causal Process Models

Causal process models, which explicitly model the causal mechanisms or processes underlying the
observed data, can also benefit from the incorporation of Neutrosophic logic. Neutrosophic causal
process models (NCPMs) aim to represent the causal processes while accounting for uncertainties,
ambiguities, and inconsistencies in the data [33, 34].

In an NCPM, each step or component of the causal process is represented as a Neutrosophic
variable or Neutrosophic structural equation, capturing the truth, indeterminacy, and falsity
associated with that step or component. The overall causal process is then modeled as a series of
interconnected Neutrosophic variables or equations, reflecting the dependencies and uncertainties

in the causal mechanisms.

14



NCPMs can be particularly useful in domains where the causal processes are complex, involving
multiple interacting components or mechanisms, and where uncertainties or ambiguities are

inherent in the data or the underlying processes themselves.

2.6. Case Study: Arctic Sea Ice Decline

To demonstrate the practical utility of the proposed Neutrosophic causal models and techniques,
we present a comprehensive case study analyzing the decline of Arctic Sea Ice extent over the
period 1979-2022. This dataset represents a prime example of real-world observational data
characterized by uncertainties, measurement errors, and potential confounding factors.

The Arctic Sea Ice extent is influenced by a complex interplay of factors, including greenhouse
gas emissions, atmospheric circulation patterns, ocean currents, and natural climate variability.
Conventional statistical approaches often struggle to disentangle the causal relationships and
quantify the effects of these factors accurately, given the inherent uncertainties and noise present
in the data.

In this case study, we will apply the developed Neutrosophic causal models, such as Neutrosophic
Causal Graphical Models (NCGMs) and Neutrosophic Structural Equation Models (NSEMs), to
investigate the causal factors contributing to the observed decline in Arctic Sea Ice extent. By
explicitly accounting for indeterminacy and ambiguity in the data, the Neutrosophic approach aims
to provide more reliable and nuanced insights into the complex causal dynamics underlying Arctic
Sea Ice loss.

Potential sources of uncertainty and confounding factors [5, 11] that can be effectively addressed

using the Neutrosophic framework include:

15



1. Measurement errors: Satellite observations of Arctic Sea Ice extent may be subject to
measurement errors due to factors such as cloud cover, atmospheric interference, or
instrument calibration issues.

2. Missing data: Some observational periods or regions within the Arctic may have missing
data due to logistical challenges or satellite coverage limitations.

3. Influence of climate oscillations: Climate patterns like the Arctic Oscillation and El Nifio-
Southern Oscillation can influence Arctic Sea Ice extent, introducing additional
complexities and uncertainties in the causal relationships [37].

4. Nonlinear and time-varying relationships: The causal factors influencing Arctic Sea Ice
extent may exhibit nonlinear and time-varying relationships, which can be challenging to
capture using traditional linear models.

By incorporating Neutrosophic logic and explicitly representing the truth, indeterminacy, and
falsity associated with the causal relationships and model parameters, the proposed techniques can
provide more robust and reliable insights into the drivers of Arctic Sea Ice decline.

The results obtained from the Neutrosophic analysis will be compared to those derived from
conventional regression-based approaches, highlighting the benefits and advantages of the
proposed Neutrosophic techniques in handling real-world uncertainties and uncovering robust

causal relationships.

2.7. Guidelines for Applying Neutrosophic Statistics
To facilitate the broader adoption and effective application of Neutrosophic statistics in causal
analysis across various domains, we provide guidelines [26, 35] and best practices [6, 7] for

implementing these techniques in real-world data science applications.

16



These guidelines will cover the following aspects:

1.

Data preprocessing: Techniques for handling missing data, outlier detection, and data
normalization in the context of Neutrosophic datasets, ensuring robust and reliable model
inputs. [Potential references: Smarandache et al., 2020; Zhang et al., 2021]

Neutrosophic model selection: Criteria and methods for selecting appropriate
Neutrosophic causal models (e.g., NCGMs, NSEMs, or Neutrosophic potential outcomes
framework) based on the characteristics of the data, the research questions, and the domain-
specific requirements. [Potential references: Broumi et al., 2019; Xie et al., 2018]
Parameter estimation and inference: Robust techniques for estimating Neutrosophic
model parameters and quantifying the associated uncertainties, including Neutrosophic
regression methods, Neutrosophic Bayesian inference, and Neutrosophic maximum
likelihood estimation. [Potential references: Smarandache et al., 2007; Zhang et al., 2020]
Interpretation of Neutrosophic results: Guidelines for interpreting and communicating
the Neutrosophic causal effects, confidence intervals, and measures of indeterminacy,
ensuring clear and actionable insights for decision-makers and stakeholders. [Potential
references: Smarandache, 1995; Broumi et al., 2016]

Addressing domain-specific challenges and uncertainties: Strategies for handling
domain-specific challenges and uncertainties that may arise in applications such as climate
science, healthcare, finance, and marketing, leveraging the flexibility and expressiveness
of the Neutrosophic framework.

Software tools and libraries: An overview of available software tools, libraries, and
computational resources for implementing Neutrosophic statistical techniques, facilitating

their adoption and integration into existing data science workflows.

17



By following these guidelines, practitioners and researchers can effectively harness the power of
Neutrosophic statistics to advance causal analysis in their respective domains, accounting for real-

world uncertainties, and deriving more reliable and trustworthy insights from observational data.

18



CHAPTER 3

NEUTROSOPHIC STATISTICAL TECHNIQUES FOR CAUSAL ANALYSIS

3.0. Overview

This chapter provides a concise overview of Neutrosophic statistical techniques for causal analysis,
covering key topics such as Neutrosophic regression models, causal effect estimation, and causal
discovery algorithms. It includes detailed subsections on linear and non-linear regression, the
potential outcomes framework, and instrumental variable approaches. The chapter also features a
practical case study on Arctic Sea Ice decline and concludes with a summary of the importance of

Neutrosophic methods in causal analysis.

3.1. Introduction

Causal inference has emerged as a paramount challenge [13, 17] in the data science landscape, as
the ability to uncover intricate cause-and-effect relationships from observational data is crucial for
making informed decisions, understanding complex systems, and driving innovation across
domains. However, real-world data is often fraught with uncertainty, noise, incompleteness, and
potentially confounding factors, which pose significant obstacles to accurate causal reasoning
using conventional statistical approaches.

In this chapter, we delve into the realm of Neutrosophic statistics and their applications in
strengthening causal analysis under conditions of uncertainty and imprecision/inaccuracy in
measurements/ observations. Neutrosophic statistics, rooted in the principles of Neutrosophic
logic, provides a powerful framework for handling ambiguity, inconsistencies, and indeterminacy

inherent in observational data. By explicitly modeling and reasoning with measures of truth,
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falsity, and indeterminacy, Neutrosophic statistical techniques can offer more reliable and nuanced

insights into causal relationships.

3.2. Neutrosophic Regression Models for Causal Analysis

One of the primary tools in causal analysis is regression modeling [14], which allows researchers
to quantify the relationships between variables and assess the strength of causal associations. In
the context of Neutrosophic statistics, we first introduce the concept of Neutrosophic Causal
Models (NCMs) followed by the concept of Neutrosophic Regression Models (NRMs) [4, 32] to

enhance the robustness and expressiveness of causal inference from observational data.

3.2.0. Neutrosophic Causal Model

The general form of a Neutrosophic causal model can be expressed as:
(TX->Y),IX->Y),FX-Y))

where:

T(X - Y) represents the truth or confidence in the causal relationship from X to Y,

(X - Y) represents the indeterminacy or ambiguity associated with this causal relationship, and

F(X — Y) represents the falsity or doubt in the causal relationship.

20
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Figure 3
Triangle diagram of Truth, Indeterminacy, Falsity in causal models.
*This graph is generated by Python.

3.2.1. Neutrosophic Linear Regression
A Neutrosophic linear causal model for the response variable Y and predictor variables X can be

expressed as:

Y = (Ty, Iy, Fy) = (Tg, + Tp, * X ,Ip, + 1, * X ,Fp, + Fp X))+ (T, I, F),

where,

(Tg,, Ig, » Fp, and (Tp,, Ip,, Fp,) are the Neutrosophic regression coefficients representing the
truth, indeterminacy, and falsity associated with the intercept and slope, respectively and

(T,, I, F,) is the Neutrosophic error term capturing the truth, indeterminacy, and falsity of the

unexplained variation.

21



This formulation allows for the explicit modeling of uncertainties in both the outcome variable

and the error term, leading to more robust parameter estimates and causal effect quantification.

3.2.2. Neutrosophic Non-linear Regression

In many real-world scenarios, the causal relationships between variables may exhibit non-linear
patterns. To address such cases, we can extend the Neutrosophic regression framework to handle
non-linear functional forms, leading to Neutrosophic Non-linear Regression Models (NNRM:s).

The general form of a Neutrosophic non-linear causal model can be expressed as:

Y = f(X; (To,1g,Fp)) + (T, I, Fy),
where,
f (X ; (Ty, Iy, Fg)) represents a non-linear function of the predictor variables X, parameterized by
the Neutrosophic parameter vector (Ty, Iy, Fy) and (T, I, F.) is the Neutrosophic error term.
The Neutrosophic parameter vector (Ty,lq, Fy) captures the truth, indeterminacy, and falsity
associated with the coefficients of the non-linear function, allowing for a more flexible and
expressive measure of the causal associations. The Neutrosophic error term accounts for the
uncertainties in the unexplained variation.
Estimating the parameters of an NNRM can be achieved using techniques such as Neutrosophic
non-linear least squares, Neutrosophic non-linear maximum likelihood estimation, or
Neutrosophic non-linear Bayesian inference. These methods iteratively optimize the Neutrosophic
parameter vector 6 and the Neutrosophic error term € to obtain the best fit of the non-linear function

to the observational data, while accounting for the inherent uncertainties.

22



The interpretation of the Neutrosophic non-linear regression model follows a similar logic to the
Neutrosophic linear regression case, but with the added flexibility of capturing complex, non-
linear causal relationships. The Neutrosophic parameter vector 6 represents the truth,
indeterminacy, and falsity associated with the coefficients of the non-linear function, providing a

more nuanced understanding of the causal mechanisms underlying the observed data.

3.3. Neutrosophic Causal Effect Estimation

In addition to regression modeling, another important aspect of causal analysis is the quantification
of causal effects, which involves estimating the magnitude and direction of the impact of an
intervention or treatment on an outcome of interest. Neutrosophic statistics can also contribute to
this endeavor by introducing novel techniques for estimating causal effects in the presence of

uncertainty [18, 27].

3.3.1. Neutrosophic Potential Outcomes Framework
The potential outcomes framework is a widely used approach in causal inference, which relies on
the concept of counterfactuals to estimate causal effects. In this section, we present the
Neutrosophic Potential Outcomes Framework (NPOF) as an extension of the classical potential
outcomes framework to handle uncertainty and indeterminacy.
In the NPOF, the potential outcomes for an individual i under the treatment (t) and control (c)
conditions are represented as Neutrosophic triplets:

Y, () = (Tit, Iit, Fit),

Yi(c) = (Tic, lic, Fic),

where,

23



- T;t, T;c represent the truth or confidence in the potential outcomes under treatment and control,
respectively.

- I;t, I;c represent the indeterminacy or ambiguity associated with the potential outcomes.

- Fit, F;c represent the falsity or doubt in the potential outcomes.

The Neutrosophic causal effect 7; for individual i can then be defined as the difference between

the Neutrosophic potential outcomes:

7 = Y; () = Yi(c) = ((Tit — Tio), (it — L), (Fit — Fc))

This Neutrosophic causal effect captures the truth, indeterminacy, and falsity associated with the
individual-level treatment effect, providing a more nuanced representation of the causal impact.
To estimate population-level causal effects, we can aggregate the individual-level Neutrosophic
causal effects using appropriate Neutrosophic operations, such as Neutrosophic addition,
Neutrosophic subtraction, or Neutrosophic averaging.

The NPOF can be further extended to handle more complex causal scenarios, such as the presence
of mediators, moderators, or time-varying treatments, by incorporating additional Neutrosophic

variables and structural equations into the framework.

3.3.2. Neutrosophic Instrumental Variable Approach
Another approach to causal effect estimation is the use of instrumental variables, which can help

overcome the challenges posed by confounding factors and unobserved variables. In the
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Neutrosophic setting, we can introduce the Neutrosophic Instrumental Variable (NIV) approach
to estimate causal effects under uncertainty.
The NIV framework involves the identification of a Neutrosophic instrumental variable Z, which

satisfies the following conditions:

1. Neutrosophic relevance: Z is correlated with the treatment variable X, as represented by
the Neutrosophic correlation coefficient (T,x, Iy, Fzx).
2. Neutrosophic exogeneity: Z is uncorrelated with the unobserved confounders that affect
the outcome Y, as represented by the Neutrosophic correlation coefficient (T, Iy,
Fzu).
Given a valid Neutrosophic instrumental variable Z, we can estimate the Neutrosophic causal

effect of X on Y using the following formula:

(Tyz * Tzx — Tyy * Tzy)
(TZX2 - TZUZ)

T = (Tyx, Iyx, Fyx) = (

)

Uyz * Izx — Tyy * Izy)
(IZX2 - IZUZ)

(Fyz * Fzx — Fyy * Fzy)
(szz - FZUZ)

)

)

where  the  Neutrosophic  correlation  coefficients  (Tyz, Iyz Fyz) , (Tyx, Iyx, Fyx),
and (Tyy, Tyy, Fyy) represent the truth, indeterminacy, and falsity associated with the relationships
among the variables.

The NIV approach allows for the estimation of causal effects in the presence of confounding
factors and unobserved variables, while explicitly accounting for the uncertainties and ambiguities

inherent in the data through the Neutrosophic representation of the correlations and causal effects.
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3.4. Neutrosophic Causal Discovery Algorithms

In addition to causal modeling and effect estimation, the discovery of causal relationships from
observational data is another crucial aspect of causal reasoning [24]. Neutrosophic statistics can
also be leveraged to develop more robust and reliable causal discovery algorithms that can handle

uncertainty and inconsistencies in the data [30, 33].

3.4.1. Neutrosophic Constraint-based Causal Discovery

Constraint-based causal discovery algorithms, such as the PC algorithm or the FCI algorithm, rely
on conditional independence tests to identify the causal structure underlying the observed data. In
the Neutrosophic setting, we can introduce Neutrosophic Constraint-based Causal Discovery
(NCCD) algorithms that employ Neutrosophic conditional independence tests to uncover causal
relationships.

The key idea behind NCCD algorithms is to extend the classical conditional independence tests to
the Neutrosophic domain, where the test statistics and p-values are represented as Neutrosophic
values. This allows the algorithms to capture the truth, indeterminacy, and falsity associated with
the conditional independence relationships, leading to more reliable causal structure identification

in the presence of uncertainty.

The NCCD algorithms can be adapted to various causal discovery scenarios, such as the presence

of latent variables, selection bias, or measurement errors, by incorporating appropriate

Neutrosophic conditional independence tests and decision rules into the discovery process.
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3.4.2. Neutrosophic Score-based Causal Discovery

In addition to constraint-based approaches, score-based causal discovery algorithms, such as the
Greedy Equivalence Search (GES) or the Bayesian Search algorithm, can also be extended to the
Neutrosophic domain. Neutrosophic Score-based Causal Discovery (NSCD) algorithms aim to
identify the causal structure that best fits the observed data, as measured by a Neutrosophic scoring
function.

The Neutrosophic scoring function can be designed to capture the truth, indeterminacy, and falsity
associated with the goodness-of-fit between the proposed causal structure and the data. This can
be achieved by incorporating Neutrosophic probability distributions, Neutrosophic information
criteria, or other Neutrosophic measures of model fit into the scoring function.

The NSCD algorithms then employ Neutrosophic optimization techniques, such as Neutrosophic
Greedy search or Neutrosophic Markov Chain Monte Carlo, to explore the space of possible causal

structures and identify the one that maximizes the Neutrosophic scoring function.

By leveraging the Neutrosophic representation of the scoring function and the optimization
process, the NSCD algorithms can provide more robust and reliable causal discoveries, particularly

in the face of uncertainty and inconsistencies in the observational data.

3.5. Case Study: Causal Analysis of Arctic Sea Ice Decline

To demonstrate the practical application of the Neutrosophic statistical techniques presented in
this chapter, we revisit the case study on the decline of Arctic Sea Ice extent introduced in Chapter
2. This case study provides an opportunity to showcase the benefits of incorporating Neutrosophic

logic and reasoning into causal analysis of real-world observational data.
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In the context of the Arctic Sea Ice decline, we will apply the following Neutrosophic statistical

techniques:

1.

Neutrosophic Regression Models: Develop Neutrosophic linear and non-linear
regression models to investigate the causal relationships between various factors (e.g.,
greenhouse gas emissions, atmospheric circulation patterns, ocean currents) and the
observed decline in Arctic Sea Ice extent. The Neutrosophic representation of the
regression coefficients and error terms will allow for a more nuanced understanding of the
causal mechanisms.

Neutrosophic Causal Effect Estimation: Employ the Neutrosophic Potential Outcomes
Framework and the Neutrosophic Instrumental Variable approach to quantify the causal
effects of key factors on the Arctic Sea Ice extent, while accounting for uncertainties and
potential confounding variables.

Neutrosophic Causal Discovery Algorithms: Apply Neutrosophic Constraint-based
Causal Discovery and Neutrosophic Score-based Causal Discovery algorithms to uncover
the underlying causal structure that best explains the observed trends in Arctic Sea Ice

extent, leveraging the Neutrosophic representation of conditional independence and model

fit.

Among the climate variables analyzed, the North Atlantic Oscillation (NAO) demonstrates a

significant influence on Arctic temperatures and sea ice extent through its regulation of

atmospheric pressure differentials between the Azores High and the Icelandic Low-pressure

systems. The NAO index data used in this study was obtained from the National Center for

Atmospheric Research (NCAR) Climate Data Guide [37]. This dataset provides monthly NAO
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index values based on the difference of normalized sea level pressure between Lisbon, Portugal
and Stykkisholmur/Reykjavik, Iceland.

During positive NAO phases, the enhanced pressure gradient typically induces warmer
temperature anomalies in the Arctic region, potentially accelerating sea ice decline. Monthly NAO
index data was aggregated to annual values, and quantitative analysis over the study period (1979—
2022) yielded a mean value of 0.6, calculated as:

i NAO; 258

NAO =
43

where NAO; represents individual annual index values and n = 43 denotes the number of years
in the study period. This calculated mean value indicates a predominantly positive phase during
the study period, suggesting a sustained influence on Arctic climate dynamics.
To transform this classical statistical measure into a Neutrosophic framework [5, 11], the NAO's
influence was converted into a Neutrosophic set using a standardized normalization procedure.
The conversion process involved analyzing the strength of correlation, uncertainty levels, and
instances of deviation in the NAO-sea ice relationship. The methodology for this conversion
followed the Neutrosophic set principles established by Smarandache [21], where classical
measurements are transformed into truth, indeterminacy, and falsity components based on
statistical properties and uncertainty quantification.
This resulted in the characterization of the relationship using the Neutrosophic triplet (T, I, F),
where:
- Truth membership (T =0.6) quantifies the degree of established correlation between NAO
and Arctic conditions, derived from the normalized mean value of positive phase

observations
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- Indeterminacy membership (I = 0.2) represents the degree of statistical uncertainty and
temporal variability, calculated from the standard deviation of the relationship
- Falsity membership (F = 0.2) accounts for observed instances where the expected NAO-
sea ice relationship deviates from established patterns, determined through anomaly
analysis
This Neutrosophic representation transforms the traditional univariate NAO index into a more
comprehensive characterization that captures the multifaceted nature of the NAO-sea ice
relationship. The conversion to Neutrosophic format enables the incorporation of uncertainty
quantification and relationship variability, providing a more robust framework for analyzing the

complex dynamics between NAO and Arctic Sea ice extent.

By integrating these Neutrosophic statistical techniques into the analysis of the Arctic Sea Ice
dataset, we aim to provide more reliable and nuanced insights into the causal factors driving the
observed decline, with an explicit consideration of the uncertainties and ambiguities inherent in
the observational data.

The results obtained from the Neutrosophic analysis will be compared to those derived from
conventional regression-based and causal discovery approaches, highlighting the benefits and
advantages of the proposed Neutrosophic techniques in handling real-world uncertainties and

uncovering robust causal relationships.

3.6. Conclusions
In this chapter, we have explored the role of Neutrosophic statistics in strengthening causal

reasoning and analysis in data science. By incorporating measures of truth, falsity, and
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indeterminacy into statistical models and causal discovery algorithms, the Neutrosophic
framework provides a powerful tool for handling uncertainty, ambiguity, and inconsistencies
inherent in observational data.

The Neutrosophic regression models, causal effect estimation techniques, and causal discovery
algorithms presented in this chapter demonstrate the versatility and potential of Neutrosophic
statistics in advancing causal analysis across various domains. These Neutrosophic methods can
lead to more reliable and nuanced insights into causal relationships, ultimately supporting better
decision-making and scientific understanding in the face of real-world complexities.

The case study on Arctic Sea Ice decline showcases the practical application of the proposed
Neutrosophic statistical techniques, highlighting their advantages over conventional approaches in
handling the uncertainties and complexities associated with observational data. By embracing the
principles of Neutrosophic logic and reasoning, researchers and practitioners can unlock new
avenues for robust causal discovery and inference, paving the way for more trustworthy and

impactful data-driven insights.
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CHAPTER 4

NEUTROSOPHIC CAUSAL REASONING ALGORITHMS

4.1. Introduction
As we delve deeper into the realm of causal reasoning in data science, the need for robust
algorithms capable of handling uncertainty, inconsistency, and indeterminacy becomes
increasingly apparent. Traditional causal reasoning algorithms [17, 24] often struggle when
confronted with real-world data that is noisy, incomplete, or ambiguous. This chapter introduces
novel Neutrosophic causal reasoning algorithms that leverage the power of Neutrosophic logic and
statistics to address these challenges.
Neutrosophic causal reasoning algorithms represent a significant advancement in the field, as they
can explicitly model and reason with degrees of truth, falsity, and indeterminacy. This approach
allows for more nuanced and reliable causal discoveries, even in the presence of uncertain or
conflicting information. By incorporating Neutrosophic principles, these algorithms can provide a
more accurate representation of the complex causal relationships that exist in real-world systems.
In this chapter, we will explore several key areas of Neutrosophic causal reasoning algorithms:

1. Neutrosophic Causal Discovery Algorithms

2. Neutrosophic Causal Inference Algorithms

3. Neutrosophic Counterfactual Reasoning

4. Neutrosophic Causal Feature Selection

5. Evaluation and Comparison with Traditional Algorithms

6. Case Study: Application to Arctic Sea Ice Extent Analysis
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In the forthcoming sections, we will provide a detailed explanation of the algorithms, their
theoretical foundations, and practical implementations. We will also discuss the advantages and

limitations of these Neutrosophic approaches compared to traditional causal reasoning methods.

4.2. Neutrosophic Causal Discovery Algorithms
Causal discovery algorithms aim to uncover the underlying causal structure from observational
data [14]. Neutrosophic causal discovery algorithms extend this concept by incorporating

Neutrosophic logic to handle uncertainty and indeterminacy in the causal relationships [12, 34].

4.2.1. Neutrosophic PC Algorithm
The PC (Peter-Clark) algorithm is a popular constraint-based causal discovery method. We
propose a Neutrosophic extension of the PC algorithm, called Neutrosophic PC (NPC), which
incorporates Neutrosophic conditional independence tests.
In the NPC algorithm, each edge in the causal graph is associated with a Neutrosophic triplet
(T,1,F), where:

- T represents the degree of truth or confidence in the causal relationship.

- I represents the degree of indeterminacy or uncertainty.

- F represents the degree of falsity or doubt in the causal relationship.
The algorithm proceeds as follows:

1. Start with a fully connected undirected graph.

2. For each pair of variables X and Y, test for Neutrosophic conditional independence given

increasingly larger conditioning set S.
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3. If X and Y are found to be neutrosophically independent given S, remove the edge between
XandY.
4. Orient the remaining edges based on Neutrosophic v-structures and orientation rules.

The Neutrosophic conditional independence test is defined as:

NCI(X,Y |S) = (Tina »lina » Fina)

Where:

- T;nq represents the degree of truth in the independence

- I;,,q represents the degree of indeterminacy in the independence

- F;,,q represents the degree of falsity in the independence

The decision to remove an edge is based on a Neutrosophic threshold (Tipresns Ithresh » Finresn)-

An edge is removed if:

(Tind > Tthresh) & (Iind < Ithresh) & (Find < Fthresh)

This approach allows for a more nuanced treatment of independence, capturing the uncertainty and

potential conflicts in the data.

4.2.2 Neutrosophic FCI Algorithm
The Fast Causal Inference (FCI) algorithm is an extension of the PC algorithm that can handle
latent confounders. We propose a Neutrosophic FCI (NFCI) algorithm that incorporates

Neutrosophic logic to deal with uncertainty in the presence of hidden variables.
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The NFCI algorithm follows a similar structure to the NPC algorithm but includes additional steps
to identify potential ancestral relationships and distinguish between direct and indirect causal
effects. The algorithm uses Neutrosophic partial ancestral graphs (NPAGs) to represent the causal
structure, where edges are annotated with Neutrosophic triplets indicating the degree of direct,

indirect, and uncertain causal relationships.

4.2.3 Neutrosophic Score-based Algorithms
Score-based causal discovery algorithms, such as the Greedy Equivalence Search (GES), can also
be extended to incorporate Neutrosophic principles. We propose a Neutrosophic Greedy
Equivalence Search (NGES) algorithm that uses a Neutrosophic scoring function to evaluate
candidate causal structures.
The Neutrosophic scoring function is defined as:

NS(G,D) = (Tscorer Iscorer Fscore)
Where:
- Tscore represents the degree of fit between the graph G and the data D
- Igcore represents the degree of indeterminacy in the fit
- E,corerepresents the degree of misfit
The NGES algorithm searches the space of causal structures, using the Neutrosophic scoring
function to guide the search. This allows for a more robust discovery process that can handle

uncertainty and conflicts in the data.

4.3 Neutrosophic Causal Inference Algorithms
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Once a causal structure has been discovered, the next step is to perform causal inference to estimate
the effects of interventions. Neutrosophic causal inference algorithms extend traditional methods

[27] to handle uncertainty and indeterminacy in the estimation process [7, 36].

4.3.1 Neutrosophic Propensity Score Matching

Propensity score matching is a popular method for estimating causal effects from observational
data. We propose a Neutrosophic Propensity Score Matching (NPSM) algorithm that incorporates
Neutrosophic logic to handle uncertainty in the matching process.

In NPSM, the propensity score for each unit is represented as a Neutrosophic triplet:

PS(X) = (Tys, Ips) Fps)
Where:
- Ty represents the degree of truth in the propensity score
- L, represents the degree of indeterminacy in the propensity score
- F,s represents the degree of falsity in the propensity score
The matching process is then performed using a Neutrosophic distance metric that considers the
uncertainty in the propensity scores. This allows for a more robust matching that can handle

ambiguity and inconsistency in the data.

4.3.2 Neutrosophic Instrumental Variable Analysis
Instrumental Variable (IV) analysis is a powerful tool for causal inference in the presence of
unmeasured confounding. We propose a Neutrosophic Instrumental Variable (NIV) analysis that

extends the traditional IV approach to handle uncertainty and indeterminacy.
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In NIV analysis, the strength of the instrument is represented as a Neutrosophic triplet:

IS(Z,X) = (Tis, Lis, Fis)
Where:
- T;s represents the degree of truth in the instrument strength
- I; represents the degree of indeterminacy in the instrument strength
- F;, represents the degree of falsity in the instrument strength
The causal effect estimate is then computed using Neutrosophic arithmetic, propagating the
uncertainty through the calculation. This allows for a more accurate representation of the

uncertainty in the causal effect estimate.

4.4. Neutrosophic Counterfactual Reasoning
Counterfactual reasoning [13] is a key component of causal analysis, allowing us to reason about
what would have happened under different circumstances. Neutrosophic counterfactual reasoning

[29, 33] extends this concept to handle uncertainty and indeterminacy in counterfactual scenarios.

4.4.1. Neutrosophic Potential Outcomes Framework
We propose a Neutrosophic Potential Outcomes Framework that represents counterfactual
outcomes as Neutrosophic triplets:
Y(t) = (Ty' L, Fy)
Where:
- T), represents the degree of truth in the counterfactual outcome

- I, represents the degree of indeterminacy in the counterfactual outcome
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- F,, represents the degree of falsity in the counterfactual outcome
This framework allows for a more nuanced representation of counterfactual scenarios, capturing

the uncertainty and potential conflicts in the data.

4.4.2 Neutrosophic Counterfactual Graphs

We introduce Neutrosophic Counterfactual Graphs (NCGs) as a tool for visualizing and reasoning
about counterfactual scenarios under uncertainty. In NCGs, nodes represent variables, and edges
represent causal relationships annotated with Neutrosophic triplets indicating the strength and

uncertainty of the relationship in counterfactual scenarios.

4.5. Neutrosophic Causal Feature Selection
Feature selection is a critical step in many machine learning and causal inference tasks. We propose
Neutrosophic Causal Feature Selection (NCFS) algorithms [22, 28] that leverage Neutrosophic

causal reasoning to identify relevant features while accounting for uncertainty and indeterminacy.

4.5.1. Neutrosophic Markov Blanket Discovery
The Markov Blanket of a target variable consists of its parents, children, and spouses in a causal
graph. We propose a Neutrosophic Markov Blanket Discovery (NMBD) algorithm that identifies
the Markov Blanket while accounting for uncertainty in the causal relationships.
In NMBD, the membership of a variable in the Markov Blanket is represented as a Neutrosophic
triplet:

MB(X,Y) = (Trp» Lnpr Fmp)

Where:
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- Tmp represents the degree of truth in the Markov Blanket membership
- I, represents the degree of indeterminacy in the membership

- F,,p, represents the degree of falsity in the membership

This approach allows for a more robust feature selection process that can handle ambiguity and

inconsistency in the data.

4.5.2 Neutrosophic Causal Lasso
We propose a Neutrosophic Causal Lasso (NCL) algorithm that extends the traditional Lasso
regression to incorporate causal information and handle uncertainty. The NCL objective function

is defined as:

Ming 1Y — XB 113 + A 181, + wa,-lﬁ,-l
J

where w; is a Neutrosophic weight representing the causal importance of feature j:

w; = (Tw, L 'Fw)
This approach allows for feature selection that considers both predictive power and causal

relevance while handling uncertainty in the causal relationships.

4.6. Evaluation and Comparison with Traditional Algorithms
To assess the effectiveness of the proposed Neutrosophic causal reasoning algorithms, we conduct
a comprehensive evaluation and comparison with traditional causal reasoning methods. The
evaluation focuses on several key aspects:
1. Accuracy of causal structure discovery

2. Robustness to noise and missing data
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3. Ability to handle uncertainty and conflicting information

4. Computational efficiency

5. Interpretability of results
We use both synthetic datasets with known causal structures and real-world datasets to perform
the evaluation. The synthetic datasets allow us to assess the algorithms' performance under
controlled conditions, while the real-world datasets provide insights into their practical

applicability.

4.6.1. Synthetic Data Experiments
We generate a series of synthetic datasets with varying levels of complexity, noise, and
uncertainty. The datasets include:
1. Linear Gaussian models with different causal structures
2. Non-linear additive noise models
3. Models with latent confounders
4. Models with cyclic causal relationships
For each dataset, we compare the performance of the Neutrosophic algorithms (NPC, NFCI,
NGES) with their traditional counterparts (PC, FCI, GES) in terms of:
- Structural Hamming Distance (SHD) between the true and learned causal graphs
- Precision and recall of causal edge detection

- F1 score for overall structural accuracy

4.6.2. Real-world Data Experiments
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We apply the Neutrosophic causal reasoning algorithms to several real-world datasets from diverse

domains, including:

1.

2.

4.

Gene expression data for regulatory network discovery.
Climate data for identifying causal relationships between climate variables.
Economic data for analyzing causal factors in financial markets.

Healthcare data for discovering causal relationships in disease progression.

For each dataset, we compare the performance of the Neutrosophic algorithms with traditional

methods in terms of:

Consistency with domain knowledge.
Robustness to data quality issues.
Ability to handle conflicting information.

Interpretability of the discovered causal relationships.

4.7. Case Study: Application to Arctic Sea Ice Extent Analysis

To demonstrate the practical application of the Neutrosophic causal reasoning algorithms, we

revisit the case study on Arctic Sea Ice extent introduced in previous chapters. This case study

provides an excellent opportunity to showcase the advantages of Neutrosophic causal reasoning in

handling real-world data with inherent uncertainties and potential conflicts.

4.7.1 Data Preparation

We use the monthly Arctic Sea Ice extent data from 1979 to 2022, along with additional climate

variables such as:

1.

Global average temperature
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2. Atmospheric CO2 concentration
3. North Atlantic Oscillation (NAO) index
4. Arctic Oscillation (AO) index

5. Sea surface temperature in the Arctic region

The data is preprocessed and transformed into Neutrosophic format, with each variable represented
as a Neutrosophic triplet (T,I,F) to capture the measurement uncertainties and potential

inconsistencies.

4.7.2. Causal Discovery

We apply the Neutrosophic PC (NPC) and Neutrosophic FCI (NFCI) algorithms to discover the
causal structure among the variables. The resulting Neutrosophic causal graph provides insights
into the causal relationships between climate variables and Arctic Sea Ice extent, while explicitly

representing the uncertainties in these relationships.

4.7.3. Causal Inference

Using the discovered causal structure, we perform Neutrosophic causal inference to estimate the
effects of various climate factors on Arctic Sea Ice extent. We employ the Neutrosophic Propensity
Score Matching (NPSM) and Neutrosophic Instrumental Variable (NIV) analysis to quantify these

effects while accounting for uncertainties and potential confounding.

4.7.4. Counterfactual Analysis
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We use the Neutrosophic Potential Outcomes Framework to perform counterfactual analysis,

exploring scenarios such as:

1. What would the Arctic Sea Ice extent be if global average temperature had remained
constant since 19797
2. How would changes in the North Atlantic Oscillation affect Arctic Sea Ice extent under
different CO2 concentration scenarios?
The Neutrosophic representation allows us to capture the uncertainties in these counterfactual

scenarios, providing more realistic and nuanced insights.

4.7.5. Causal Feature Selection
We apply the Neutrosophic Causal Feature Selection (NCFS) algorithms to identify the most
relevant causal factors influencing Arctic Sea Ice extent. This analysis helps prioritize the key

drivers of sea ice decline while accounting for uncertainties in the causal relationships.

4.7.6. Results and Interpretation
The results of the Neutrosophic causal reasoning algorithms are compared with those obtained
from traditional causal analysis methods. We discuss the insights gained from the Neutrosophic
approach, highlighting:
1. The ability to capture and propagate uncertainties throughout the causal analysis process.
2. The identification of robust causal relationships despite noisy and potentially conflicting

data
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3. The nuanced representation of causal effects, allowing for a more accurate assessment of
the factors driving Arctic Sea Ice decline.
4. The implications for climate science and policymaking based on the Neutrosophic causal

analysis.

4.7.7. Application of Neutrosophic Causal Reasoning to Arctic Sea Ice Data
To demonstrate the practical application of Neutrosophic causal reasoning algorithms, we now
turn to the analysis of Arctic Sea Ice extent data from 1979 to 2022. This case study illustrates
how these advanced techniques can be applied to real-world climate data, providing deeper
insights into complex environmental phenomena.
Key Findings from Sea Ice Data Analysis:

1. Overall declining trend: Linear regression equations for each year consistently show a

negative slope, indicating a general decrease in sea ice extent over the 43-year period.

For the overall (annual) regression coefficients, we can refer to Table E.4.1 in Section E.4 (Tables
of Fitted Models) of Appendix E. This table contains the annual linear regression models for each

year from 1979 to 2022. For example:

For year 1979:

(0.16495111888111874,2.6980620831419794e — 19,0.15848244755244742) x

+ (—0.9406361538461523,0.02,—0.9037484615384601)

For year 2022:
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(0.18037951048951034, 2.6980620831419794e — 19,0.17330580419580405) x +

(—1.032632307692306,0.02,—0.9921369230769213)

2. Monthly variations: Regression equations for individual months reveal slight differences,

with July showing the steepest decline.

For the monthly regression coefficients, we can refer to Table E.4.2 in the same section. This table

presents the monthly linear regression models. For instance:

January:

N, = (1.000001657,0.000000008,0.960785902) = x

+ (—0.000000972,0.019999981,—-0.000000923)

December:

N, = (0.999999661,—-0.000000150,0.960783994) * x

+ (0.000000709,0.020000288,0.000000697)

3. Neutrosophic representation: Data is represented in Neutrosophic form (T,I,F),
incorporating uncertainty and indeterminacy inherent in climate measurements.
4. Seasonal grouping: Data is analyzed in three seasonal groups (Nov-Feb, Mar-Jun, Jul-Oct),

allowing for identification of seasonal patterns.
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The Neutrosophic seasonal data can be found in Appendix E, Section E.6, under the "Output Files
of mean and quartiles calculations" subsection. Specifically, we can refer to the last part of this

section, which provides the mean and quartile values for each of the three seasons. Here's the

relevant data:
Mean and Quartiles of First Season (Nov-Feb):
Mean values array: [1.38368506, 0.02, 1.3294229]
Quartiles values array:
Ist quartile values: [0.635205, 0.02, 0.610295]
2nd quartile values: [1.07457, 0.02, 1.03243]
3rd quartile values: [2.159595, 0.02, 2.074905]
Mean and Quartiles of Second Season (Mar-Jun):
Mean values array: [-1.15876057, 0.02, 1.12690534]
Quartiles values array:
Ist quartile values: [-1.625115, 0.02, 0.68551]
2nd quartile values: [-1.24338, 0.02, 1.19462]
3rd quartile values: [-0.71349, 0.02, 1.561385]

Mean and Quartiles of Third Season (Jul-Oct):
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Mean values array: [-0.42360136, 0.02, 1.87712318]
Quartiles values array:
Ist quartile values: [-2.41893, 0.02, 1.087555]
2nd quartile values: [-0.81957, 0.02, 2.03987]

3rd quartile values: [0.94503, 0.02, 2.75429]

5. Application of Neutrosophic Causal Reasoning Algorithms:
A. Neutrosophic PC (NPC) or NFCI for Causal Discovery:
Causal Discovery involves identifying causal relationships among variables in a dataset.
The traditional PC (Peter-Clark) algorithm is a well-known method for this task. It uses

conditional independence tests to infer causal structures in the form of a Directed

Acyclic Graph (DAG).

Neutrosophic PC (NPC) and Neutrosophic Frequency Causality Index (NFCI) extend
the traditional PC algorithm by incorporating Neutrosophic logic. This allows the method

to express uncertainty (indeterminacy) in the relationships it uncovers.
Calculation:

Neutrosophic Probability (NP):

NPX->V)=(TX->Y),IX->Y),FX->Y))
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T(X — Y) represents the truth component of the causal relationship.

I[(X = Y) is the indeterminacy.

F(X = Y) is the falsity.

Neutrosophic PC Algorithm: The algorithm applies Neutrosophic logic to traditional
conditional independence tests, leading to an output where each causal link X — Y has

associated truth, indeterminacy, and falsity values.

Now, we can apply the NPC algorithm to discover potential causal relationships between

variables such as global temperature, CO2 levels, and sea ice extent. For example:

NPC(SealceExtent, Global Temperature, CO2 | ArcticOscillation) = (0.8,0.1,0.1)

This Neutrosophic output suggests a strong causal relationship between these variables,

with a high degree of truth (0.8), and low degrees of indeterminacy (0.1) and falsity (0.1).

B. Neutrosophic Propensity Score Matching (NPSM) for Causal Effect Estimation:
Propensity Score Matching (PSM) is used to estimate the effect of a treatment by
accounting for covariates that predict receiving the treatment.

Neutrosophic Propensity Score Matching (NPSM) incorporates indeterminacy into the
matching process, allowing for a more nuanced estimation of causal effects, especially

in cases with incomplete or uncertain data.
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Calculation:
Neutrosophic Propensity Score (NPS):
NPS(X) = (T(X),1(X), F(X))

where X is the propensity score, calculated using logistic regression or other methods, but

extended to include Neutrosophic components.
NPSM Matching:

o Units (subjects) are matched based on their Neutrosophic propensity scores.

o The treatment effect is then estimated as:

1 i
ATEypsy =% > [G(T () = ¥iF (X)) + (X))
N

where Y;(T(X;) and Y;(F(X;))represent the outcomes under treatment and

control, respectively, with the indeterminacy component.

Now, NPSM could be used to estimate the causal effect of specific climate factors on
sea ice extent. For instance, estimating the effect of a 1°C increase in global temperature:

NPSM (ASea Ice | ATemperature = 1°C) = (—0.5 million km?,0.1,0.2)

This indicates an estimated decrease of 0.5 million km? in sea ice extent, with some

degree of uncertainty and potential for alternative outcomes.
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C. Neutrosophic Counterfactual Reasoning for Scenario Analysis:

Counterfactual Reasoning involves considering "what if" scenarios to assess potential
outcomes if circumstances had been different. Neutrosophic Counterfactual Reasoning

extends this by considering the uncertainty (indeterminacy) in these scenarios.

Calculation:

Neutrosophic Counterfactual Estimation:

NCFX->Y|Z2)=(T(X->Y1Z),I(X>Y|Z),FX->Y|2))

Here, T(X = Y | Z) represents the truth value of the outcome under the hypothetical
condition Z,and I(X - Y | Z) and F(X — Y | Z) capture the indeterminacy and falsity,

respectively.

Now, we can explore counterfactual scenarios such as "What would the Arctic Sea Ice

extent be if global average temperature had remained constant since 1979?":

NCF (Sea Ice Extent | Constant Temperature) = (14 million km? 0.15,0.1)

This suggests that under constant temperature conditions, sea ice extent might have

remained around 14 million km? with associated degrees of uncertainty.

D. Neutrosophic Causal Feature Selection (NCFS) for Identifying Key Causal

Factors:
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Feature Selection is the process of identifying the most relevant features (variables) in
a dataset for predicting the outcome. Neutrosophic Causal Feature Selection (NCFS)
integrates Neutrosophic logic into traditional feature selection methods, allowing for

the incorporation of uncertainty when identifying key causal factors.
Calculation:
Neutrosophic Causal Importance (NCI):

NCIXi->Y)=(TX; > Y),IX; > Y),F(X; > Y))
X; represents the individual feature, and Y is the outcome.
The feature with the highest NCI is selected.

Now, NCFS can help identify the most relevant causal factors influencing Arctic Sea
Ice extent:

NCFS (Sea Ice Extent) =

{Global Temperature: (0.9,0.05,0.05),

CO02 Levels: (0.8,0.1,0.1),

Arctic Oscillation: (0.6,0.2,0.2),

Solar Radiation: (0.5,0.3,0.2)}

This output ranks potential causal factors by their Neutrosophic importance,

highlighting global temperature and CO2 levels as the most significant factors.

Benefits of Neutrosophic Causal Reasoning for Climate Data:
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1. Explicit handling of uncertainty and conflicting information, which are common in
climate data.

2. More nuanced representation of causal relationships, capturing degrees of truth,
indeterminacy, and falsity.

3. Ability to perform counterfactual analysis, crucial for understanding potential climate
scenarios.

4. Improved feature selection, helping to focus on the most relevant causal factors.

Implications for Climate Science and Policy-Making:
The application of Neutrosophic causal reasoning to Arctic Sea ice data provides several key
insights:
1. It quantifies the uncertainty in causal relationships, allowing for more informed
decision-making.
2. It helps prioritize factors for climate models and policy interventions based on their
causal significance.
3. It enables more sophisticated scenario planning by incorporating uncertainty into
counterfactual analyses.
4. Ttprovides a framework for integrating multiple data sources and potentially conflicting
information, leading to more robust conclusions.
In conclusion, the application of Neutrosophic causal reasoning algorithms to Arctic Sea ice
data demonstrates the power of these techniques in addressing complex environmental issues.
By explicitly modeling uncertainty and indeterminacy, these methods provide a more nuanced

and potentially more accurate understanding of the causal mechanisms driving Arctic Sea ice
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decline. This approach can lead to improved climate models, more effective policy

interventions, and a deeper understanding of the Earth's changing climate system.

4.8. Conclusions
This chapter has introduced a suite of Neutrosophic causal reasoning algorithms that extend
traditional methods to handle uncertainty, indeterminacy, and potential conflicts in causal analysis.
These algorithms provide a more robust and nuanced approach to causal discovery, inference, and
reasoning in complex real-world scenarios.
The evaluation results and case study demonstrate the advantages of Neutrosophic causal
reasoning algorithms over traditional methods, particularly in situations where data is noisy,
incomplete, or inconsistent. By explicitly modeling and propagating uncertainty throughout the
causal analysis process, these algorithms offer more reliable and interpretable results, leading to
better-informed decision-making and scientific understanding.
As the field of causal reasoning continues to evolve, the integration of Neutrosophic principles
offers a promising direction for addressing the challenges posed by real-world data complexity.
Future research in this area may focus on:

1. Developing more efficient computational methods for Neutrosophic causal reasoning.

2. Extending the algorithms to handle time-series data and dynamic causal relationships.

3. Incorporating domain knowledge and expert opinions into the Neutrosophic causal

reasoning framework.
4. Exploring the applications of Neutrosophic causal reasoning in emerging fields such as

explainable Al and causal machine learning.
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By advancing the frontiers of Neutrosophic causal reasoning, we can enhance our ability to
uncover and understand the complex causal mechanisms underlying real-world phenomena,
ultimately leading to more accurate predictions, better decision-making, and deeper scientific

insights.
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CHAPTER 5

CONCLUSIONS

The ability to uncover intricate cause-and-effect relationships from observational data is crucial
for making informed decisions, understanding complex systems, and driving innovation across
domains. However, real-world data is often fraught with uncertainty, noise, incompleteness,
confounding variables, and selection biases. Traditional statistical methodologies, such as
regression modeling and analysis, frequently falter in identifying robust causal mechanisms under
such conditions. The presence of confounding variables, spurious correlations, and unmeasured
factors impedes the accurate identification of causal effects from observational data. This
underscores the critical necessity for advanced techniques capable of addressing the inherent
ambiguities, inconsistencies, and uncertainties of real-world data.

This thesis embarks on an in-depth exploration of Neutrosophic statistics techniques to augment
causal discovery, modeling, and analysis in data science. It proposes novel Neutrosophic causal
models to represent complex causal systems burdened with ambiguity and uncertainty. These
models aim to capture varying degrees of dependency between variables and account for the
uncertainties inherent in determining causation from observational data. Additionally, the thesis
develops new Neutrosophic statistical methods to quantify the effects of interventions and make
reliable causal inferences from noisy observational data. Furthermore, it investigates automated
causal discovery algorithms employing Neutrosophic logic to uncover causal relationships within

uncertain data.

5.1. Summary of Key Contributions
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This thesis has made several significant contributions to the field of causal reasoning in data
science through the application of Neutrosophic statistics [21, 23]. The key contributions,
organized by chapter, are as follows:
In Chapter 1:
e Introduced the motivation for applying Neutrosophic statistics to causal reasoning in data
science.
e Provided a comprehensive background on Neutrosophic statistics and its potential for
handling uncertainty in causal analysis.
e Outlined the thesis statement and overall research objectives.
In Chapter 2:
e Developed novel Neutrosophic causal models, including Neutrosophic Causal Graphical
Models (NCGMs) and Neutrosophic Structural Equation Models (NSEMs).
e Introduced the Neutrosophic Potential Outcomes Framework for causal inference.
e Proposed Neutrosophic Causal Process Models for representing complex causal
mechanisms.
e Provided guidelines for applying Neutrosophic statistics in causal analysis across various
domains.
In Chapter 3:
e Formulated new Neutrosophic statistical techniques for causal effect estimation and
inference.
e Developed Neutrosophic regression models for causal analysis.
e Introduced Neutrosophic causal discovery algorithms for identifying causal structures from

observational data.
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e Applied these techniques to a case study on Arctic Sea Ice decline, demonstrating their

practical utility.
In Chapter 4:

e Designed advanced Neutrosophic causal reasoning algorithms, including Neutrosophic PC
(NPC), Neutrosophic FCI (NFCI), and Neutrosophic Greedy Equivalence Search (NGES).

e Developed Neutrosophic Propensity Score Matching (NPSM) and Neutrosophic
Instrumental Variable (NIV) analysis for causal inference.

e Introduced Neutrosophic Counterfactual Reasoning techniques, including Neutrosophic
Counterfactual Graphs (NCGs).

e Proposed Neutrosophic Causal Feature Selection methods, such as Neutrosophic Markov
Blanket Discovery (NMBD) and Neutrosophic Causal Lasso (NCL).

e Conducted a comprehensive evaluation and comparison of Neutrosophic algorithms with
traditional methods.

e Applied these algorithms to an in-depth analysis of Arctic Sea Ice extent, showcasing their
advantages in handling real-world data complexities.

This thesis explores the application of Neutrosophic statistics to advance causal reasoning in data
science. The key contributions of this research are:

1. Development of novel Neutrosophic causal discovery algorithms, including the
Neutrosophic PC (NPC), Neutrosophic FCI (NFCI), and Neutrosophic Greedy
Equivalence Search (NGES) algorithms. These algorithms explicitly handle uncertainty,
indeterminacy, and inconsistency in causal relationships, providing more robust causal

structure discovery from observational data.
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2. Formulation of new Neutrosophic causal inference techniques, such as Neutrosophic
Propensity Score Matching (NPSM) and Neutrosophic Instrumental Variable (NIV)
analysis. These methods enable more reliable estimation of causal effects by accounting
for various sources of uncertainty in the inference process.

3. Introduction of Neutrosophic counterfactual reasoning frameworks, including the
Neutrosophic Potential Outcomes Framework and Neutrosophic Counterfactual Graphs
(NCGs). These approaches allow for more nuanced representation and analysis of
counterfactual scenarios under uncertainty.

4. Development of Neutrosophic causal feature selection techniques, such as Neutrosophic
Markov Blanket Discovery (NMBD) and Neutrosophic Causal Lasso (NCL). These
methods improve feature selection by considering both predictive power and causal
relevance while handling uncertainty in causal relationships.

5. Comprehensive evaluation and comparison of Neutrosophic causal reasoning algorithms
with traditional methods, demonstrating their advantages in handling real-world data
complexities.

6. Application of the developed Neutrosophic techniques to a detailed case study on Arctic
Sea Ice decline, showcasing their practical utility in analyzing complex environmental

phenomena and providing more reliable insights for climate science and policy-making.

5.2. Implications and Impact

The research presented in this thesis has several important implications [6, 28] for the field of

causal reasoning in data science:
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Enhanced robustness in causal discovery and inference, particularly when dealing with
noisy, incomplete, or inconsistent real-world data.

Improved quantification of uncertainties in causal effects, leading to more informed
decision-making in various domains, including climate science, healthcare, and economics.
More nuanced representation of causal relationships, capturing degrees of truth,
indeterminacy, and falsity, which is crucial for understanding complex systems.
Advanced capabilities in counterfactual analysis and scenario planning, essential for
policy-making and strategic decision-making in uncertain environments.

Better integration of domain knowledge and expert opinions into causal reasoning

processes, facilitated by the Neutrosophic framework.

5.3. Limitations and Future Research Directions

While this thesis has made significant contributions to the field, there are several limitations and

areas for future research [22, 24]:

1.

Computational complexity: Some of the proposed Neutrosophic techniques may be
computationally intensive, especially for large-scale causal systems. Future research
should focus on developing more efficient algorithms and optimization techniques.

Interpretability: As Neutrosophic models introduce additional complexity, there is a need
for further research on methods to improve the interpretability of results for non-expert

uscrs.
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3. Integration with machine learning: Exploring the integration of Neutrosophic causal
reasoning techniques with modern machine learning approaches, such as deep learning and
reinforcement learning, could lead to powerful hybrid models.

4. Temporal and dynamic causal relationships: Further investigation is needed to extend
the proposed methods to handle temporal and dynamic causal relationships more
effectively.

5. Validation and benchmarking: More extensive validation studies and benchmarking
against existing causal reasoning techniques across diverse datasets and domains would

strengthen the case for Neutrosophic approaches.

5.4 Concluding Remarks

This thesis has demonstrated the significant potential of Neutrosophic statistics to enhance causal
reasoning in data science. By providing a framework to handle uncertainty, indeterminacy, and
inconsistency, Neutrosophic techniques offer a more realistic and robust approach to uncovering
causal relationships from observational data [1, 20].

The developed algorithms and methods represent a substantial advancement in addressing the
challenges of causal reasoning in complex, real-world systems. As these techniques continue to
evolve and find applications across various domains, they have the potential to revolutionize our
approach to causal analysis and decision-making in the face of uncertainty.

Ultimately, this research contributes to the broader goal of developing more reliable and
trustworthy data-driven insights, paving the way for advancements in scientific understanding and
evidence-based decision-making across numerous fields. As we continue to grapple with

increasingly complex and data-rich environments, the integration of Neutrosophic principles in
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causal reasoning will likely play a crucial role in shaping the future of data science and artificial

intelligence.
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Appendices

Appendix A: Summary of Key Contributions

1. Development of Novel Neutrosophic Causal Models:

Neutrosophic Causal Graphical Models (NCGMs): Extended traditional causal graphical
models to incorporate Neutrosophic logic, allowing for explicit representation of
uncertainty in causal relationships.

Neutrosophic Structural Equation Models (NSEMs): Enhanced structural equation
models with Neutrosophic components to capture ambiguity in causal mechanisms.
Neutrosophic Potential Outcomes Framework: Adapted the potential outcomes
framework to Neutrosophic logic, enabling more nuanced counterfactual analysis.
Neutrosophic Causal Process Models: Developed models to represent complex causal

processes while accounting for uncertainties and inconsistencies.

2. Formulation of New Neutrosophic Statistical Techniques:

Neutrosophic regression models: Introduced both linear and non-linear regression models
incorporating Neutrosophic logic, as demonstrated in the Arctic Sea Ice case study.
Neutrosophic causal effect estimation methods: Developed techniques to quantify causal
effects while accounting for various sources of uncertainty.

Neutrosophic causal discovery algorithms: Created algorithms capable of uncovering

causal structures from uncertain and noisy data.

3. Design of Advanced Neutrosophic Causal Reasoning Algorithms:
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¢ Neutrosophic PC (NPC) and Neutrosophic FCI (NFCI): Extended traditional constraint-
based algorithms to handle Neutrosophic data.

e Neutrosophic Greedy Equivalence Search (NGES): Adapted score-based causal
discovery to Neutrosophic framework.

e Neutrosophic Propensity Score Matching (NPSM): Enhanced propensity score matching
to account for uncertainties in causal inference.

e Neutrosophic Instrumental Variable (NIV) analysis: Developed methods for instrumental

variable analysis under uncertainty.

4. Introduction of Neutrosophic Counterfactual Reasoning Techniques:
e Neutrosophic Counterfactual Graphs (NCGs): Created a framework for visualizing and

analyzing counterfactual scenarios under uncertainty.

5. Development of Neutrosophic Causal Feature Selection Methods:
e Neutrosophic Markov Blanket Discovery (NMBD): Adapted Markov Blanket discovery
to Neutrosophic settings for robust feature selection.

e Neutrosophic Causal Lasso (NCL): Extended Lasso regression to incorporate causal

information and handle uncertainty.

6. Comprehensive Case Study on Arctic Sea Ice Decline:

e Applied Neutrosophic techniques to analyze Arctic Sea Ice extent data from 1979 to

2022.
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e Demonstrated practical application of Neutrosophic data transformation, regression

analysis, and ANOVA in a real-world environmental context.
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Appendix B: Implications and Impact

1. Enhanced Robustness in Causal Discovery and Inference:
e Improved handling of noisy, incomplete, or inconsistent real-world data, as demonstrated
in the Arctic Sea Ice case study.
e More accurate identification of causal relationships in complex systems, particularly in

climate science and environmental studies.

2. Improved Quantification of Uncertainties in Causal Effects:
e Better informed decision-making in climate science, as shown in the analysis of Arctic
Sea Ice decline trends.
e More reliable risk assessment and policy planning for environmental issues, such as global

warming and sea level rise.

3. More Nuanced Representation of Causal Relationships:

e Capture of degrees of truth, indeterminacy, and falsity in causal links, as illustrated in the

Neutrosophic representation of Arctic Sea Ice data.

e Better understanding of complex environmental systems with inherent uncertainties.

4. Advanced Capabilities in Counterfactual Analysis and Scenario Planning:

e Enhanced ability to explore "what-if" scenarios under uncertainty, crucial for climate

change projections.
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e Improved strategic decision-making in uncertain environments, particularly in long-term

environmental policy.

5. Better Integration of Domain Knowledge and Expert Opinions:
e Facilitation of interdisciplinary research and collaboration in climate science and data
analysis.
e Improved alignment between statistical models and domain expertise in environmental

studies.

6. Practical Application in Climate Science:
e Demonstrated utility of Neutrosophic methods in analyzing long-term climate data, as
shown in the Arctic Sea Ice case study.
e Potential for more accurate and nuanced understanding of climate change trends and their

causcs.
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Appendix C: Limitations and Future Research Directions

Limitations:

1. Computational complexity of some proposed Neutrosophic techniques, which may pose
challenges for large-scale environmental data analysis.

2. Potential challenges in result interpretability for non-expert users, particularly in communicating
complex Neutrosophic models to policymakers.

3. Limited validation across diverse datasets and domains beyond the Arctic Sea Ice case study.
4. Potential overcomplication of simple relationships in cases where traditional methods might

suffice.

Future Research Directions:

1. Development of more efficient algorithms and optimization techniques for Neutrosophic causal
reasoning, particularly for handling large-scale climate datasets.

2. Investigation of methods to improve interpretability of Neutrosophic causal models for non-
technical stakeholders in environmental policy.

3. Exploration of integration between Neutrosophic causal reasoning and modern machine learning
approaches for climate prediction.

4. Extension of proposed methods to better handle temporal and dynamic causal relationships in
climate systems.

5. Conduct of more extensive validation studies and benchmarking against existing causal
reasoning techniques across various environmental datasets.

6. Application of Neutrosophic techniques to other areas of climate science and environmental

studies beyond sea ice analysis.
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7. Development of specialized software tools and libraries to facilitate the adoption of

Neutrosophic methods in climate research.
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Appendix D: Concluding Remarks

This thesis has demonstrated the significant potential of Neutrosophic statistics to enhance causal
reasoning in data science, with a particular focus on environmental and climate studies. The
developed algorithms and methods represent a substantial advancement in addressing the

challenges of causal reasoning in complex, real-world systems. Key takeaways include:

1. Neutrosophic techniques offer a more realistic and robust approach to uncovering causal
relationships from observational data, as evidenced by the analysis of Arctic Sea Ice

extent trends.

2. The integration of Neutrosophic principles in causal reasoning has the potential to
revolutionize our approach to causal analysis and decision-making under uncertainty,

particularly in climate science and environmental policy.

3. This research contributes to the broader goal of developing more reliable and trustworthy

data-driven insights in complex environmental systems.

4. The application to the Arctic Sea Ice case study demonstrates the practical utility of these

techniques in addressing real-world environmental challenges, providing a more nuanced

understanding of sea ice decline trends.
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5. The Neutrosophic approach allows for explicit representation of measurement
uncertainties and indeterminacies in climate data, leading to more robust statistical

analyses and trend identifications.

6. As we continue to grapple with increasingly complex and data-rich environments in
climate science, Neutrosophic causal reasoning will likely play a crucial role in shaping

the future of environmental data analysis and climate change research.

7. The methods developed in this thesis have the potential to improve our understanding of
complex environmental phenomena, ultimately contributing to more effective climate

change mitigation and adaptation strategies.

In conclusion, this research opens new avenues for the application of Neutrosophic statistics in
causal reasoning, with significant implications for climate science and beyond. As these techniques
continue to evolve and find applications across various domains, they have the potential to
revolutionize our approach to causal analysis and decision-making in the face of uncertainty,

particularly in addressing critical environmental challenges of our time.
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Appendix E: Arctic Sea Ice Decline Dataset and Analysis Details

E.1 Dataset

e Full Arctic Sea Ice extent dataset (1979-2022) in Neutrosophic format
e The transformed data:

Year |[lanuary February March April May June:

1878 |(1.3321,002,1.3279) 10.73542,0.02,0.70558) |40.70278,0.02,-0.67522) |-0.82212,0.02,-0.7B588) (-1.825988,0.02,-1.75812) (-1.40046,0.02,-1.34564)
1880 |1.217E8.0.02.1.17012) |0.87108,0.02,0.83532| |0 25296,0.02,-0.24304) |-0.92412,0.02,-0.BB7BB) (-2.06142,0.02,-1.58058) (-1.47288,0.02,-1.41812)
1981 (133222 0.02,1.33378) 10.185656,0.02,0.17334] |40.18156,0.02,-0.17444) |-0.9792,0.02,-0.5408) (-1.28724,0.02,-1.2367E) (-1.43522,0.02,-1.38278)
1982 |(1.65545,0.02,1.59054) 10.50485,0.02,0.58114)] |0.33576,0.02,-0.38024) |-0.8823,0.02,-0.B477) (-1.77378,0.02,-1.70422) (-1.54122,0.02,-1.48078)
1883 |1 42085,0.02,1.35514) 10.74766,0.02,0.71834) {<0.33882,0.02,-0.38318) |-1.51266,0.02,-1.45334) (-1.367B2,0.02,-1.3141B) (-1.2087,0.02,-1.1613)
1984 |(1.068595,0.02,1.02704) 10.71054,0.02,0.58305) |0.08058,0.02,-0.07742) |-1.0047,0.02,-0.8653) (-1.44534,0.02,-1.3886E) (-1.50144,0.02,-1.44258)
1985 (171462 0.02,1.64738) 10.4182,0.02,0.4018| H0.2703,0.02,0.25597) |-0.88544,0.02,-0.B5456) (-1.E1466,0.02,-1.55134) (-2.08428,0.02,-1.57372)
1986 (1650955002, 1.54544) 10.77622,0.02,0.74578)| |0.35518,0.02,-0.35182) |-1.0659,0.02,-1.0241) (-1.B1968,0.02,-1.74832) (-1.25846,0.02,-1.247T54)
1987 |(1.31958,0.02,1.74532) |0.57732,0.02,0.55458)| |40.5253,0.02,-0.5047) -1.13628,0.02,-1.09172) (-1.3800€,0.02,-1.32554) (-1.4004E,0.02,-1.34554)
1888 |1.71462.0.02,1.64738) 10.7242 0.02 05358 |<0.3978,0.02,-0.3822) |-1.04346,0.02,-1.00254) (-1.74522,0.02,-1.E7E7B) (-1.65342 0.02,-1.58858)
1988 |(1.26786,0.02,1.21814) 10.26826,0.02,0 25774) |0.39578,0.02,-0.38122) |-1.66056,0.02,-1.55544) (-0.B4566,0.02,-0.81634) (-1.12118,0.02,-1.08682)
1980 (129335 0.02,1.24264) 10.76194,0.02,0.73205| |,-0.411122.D.0Q.-0.40c2?8:| |-1.64526,0.02,-1.58074) [(-1.20054,0.02,-1.1534E) (-1.74114,0.02,-1.6T286)
1887 |1 3525200212954 0.82314,0.02,0.73085| |0.27132,0.02,-0.26068) |1.0404,0.02,-0.5556) (-1.307E4,0.02,-1.2563E) (-1.6167,0.02,-1.5633)
1882 |(1.377.002,1.323) 10.31212,0.02,0.29388| |<0.04386,0.02,-0.04214) |-1.28724,0.02,-1.2367E) (1.31784,0.02,-1.26616) (-1.205872,0.02,-1.16228)
1983 |1 7ZETE002,1.65522) 10.09792,0.02,0.03408)| 110.0553,0.02,0.0637) |-1.27092,0.02,-1.22108) (-1.8003,0.02,-1.7257) (-1.46472 0.02,-1.40728)
1984 (14332 0.02,1.3318) 10.30438,0.02,0. 29302 |40.11934,0.02,-0.11466) |-1.05468,0.02,-1.01332) [-1.47554,0.02,-1.41806) («1.716E6,0.02,-1.64534)
1985 (092208, 0.02,0.25552) 0.43554,0.02,0.41885] |0.0204,0.02,-0.0196) |-1.48818,0.02,-1.42582) (-1.60242,0.02,-1.53558) (-1.51672,0.02,-1.45628)
1886 |(1.010&82.002.097118) |0.563852,0.02,0.51348)] |0.25398,0.02,-0.24402) -1.17198,0.02,-1.12602) (-1.12E08,0.02,-1.08152) (-1.10772,0.02,-1.06428)
1587 |1 20664 0.02,1.15835) {0.53372,0.02,0.67228) |<0.13482,0.02,-0.18718) |-1.2036,0.02,-1.15E4) (-1.5E0€,0.02,-1.4554) (-1.65138,0.02,-1.58662)
1988 |(1.51062.0.02,1.45138) j0.52424 0.02,0.53376) |40.51816,0.02,-0.49784) |-1.0863,0.02,-1.0437) (-1.50042,0.02,-1.44158) (-2.20014,0.02,-2.11388)
1988 |(1.0965,0.02,1.0535) 10.72216,0.02,0.53384| }0.11628,0.02,0.11172) |-1.00062,0.02,-0.56138) [-1.40148,0.02,-1.34652) (-2.6265,0.02,-2.5238)
2000 |1.63302,0.02,1.55298) 10.41514,0.02,0.33885| |0.16422,0.02,-0.15778) |-1.00266,0.02,-0.96334) (-1.64E28,0.02,-1.58172) (-1.5555,0.02,-1.4545)
200 |(1.44738.0.02,1.39062) |0.84354 0.02,0.81085) |40.3356,0.02,-0.3234) |-0.80988,0.02,-0.77812) (-1.712568,0.02,-1.64542) (-2.37048,0.02,-2.27T762)
202 |(N1515TZ002, 145528 |0.48858 0.02,0 45342 |40.38556,0.02,-0.37044) |-1.23012,0.02,-1.1B1B8) (-1.41576,0.02,-1.36024) (-1.51672,0.02,-1.456328)
2003 |1 4341200213778 1055934 0.02,0 53405| |<0.00306,0.02,-0.00234) |-1.60038,0.02,-1.53762) (-1.34334,0.02,-1.2506E6) (-1.B166Z,0.02,-1.74538)
2004 (102204 002098195 |0.54854,0.02,0.81535] {<0.33048,0.02,-0.31752) |-1.43514,0.02,-1.37BBE) (-1.26582,0.02,-1.21618) (~1.35434,0.02,-1.335€E)
2005 |1.052654.0.02.1.01135) {0.67932,0.02,0 65268) |40.26928,0.02,-0.25872) |-0.71706,0.02,-0.68854) (-1.46574,0.02,-1.4082E) (-2.01756,0.02,-1.53844)
2006 |(0.34955 002081634 |0.54858 0.02,0 52332 |<0.12036,0.02,-0.11564) |-0.80988,0.02,-0.77812) (-1.47E56,0.02,-1.41504) (-2.05608,0.02,-2.01252)
2007 |1.3209,0.02,1.2591) 10.55206,0.02,0 44334 |40.33372,0.02,-0.37828) |-0.86354,0.02,-0.83006) (-1.22054,0.02,-1.17306) (-Z.06448,0.02,-1.58362)
2008 (150854 002154545 10.73235,0.02,0.70354| {0.21828,0.02,-0.20972) |-1.25664,0.02,-1.20736) (-1.5351,0.02,-1.4745) (<2.0'1348,0.02,-1.53452)
2008 |(1.43106,0.02,1.37454) 10.5425,0.02,0.5174] |0.08772,0.02,-0.08428) |-0.72828,0.02,-0.69572) (-1.74E24,0.02,-1.E777E) (-2.00226,0.02,-1.52374)
20 |{1.04345 002, 1.00254) j0.77622,0.02,0.74578) I[DAJ'I-IE.I].IH,DAI-!SJI |-1.08732,0.02,-1.044E8) (-2.17E668,0.02,-2.09132) (-2. 70158, 0.02,-2. B5602)
211 |{1.5351,002,1.4749) |0.43776,0.02,0. 47824) IICI.DDEI.I].IJZ,D.DMBI |-0.8109,0.02,-0.7791) (-1.66B72,0.02,-1.E0328) (-2.40108,0.02,-2. 306532)
212 |{1.03938 0020 95852 }0.90576,0.02,0.87024] IKLZSSDE,D.I]Z,D.!“BJ] -1.13016,0.02,-1.08584) [-1.64534,0.02,-1.584EE6) (-2.5733,0.02, -2 BEET)
N3 |1 45457 0021 39748 10.816,0.02,0.784)] |40.18054,0.02,.0.17346) -1.19852,0.02,.1.15248) (-1.27194,0.02,-1.22206) (-2-21544,0.02,-2. 1288E)
W4 |(1.37904 0.02,1.32495) 10.45002,0.02,0.44138) |0.03378,0.02,-0.03822) |-0.95574,0.02,-0.5182E) (-1.45452,0.02,-1.35748) (-2.40414,0.02,-2. 3058E)
M5 |OTTIZ002,1.03488) j0.43185,0.02,0.41454)] |<0.10404,0.02,-0.09396) |-0.9588,0.02,-0.5212) (-1.65852,0.02,-1.55348) (-1.63506,0.02,-1.57054)
26 (114954 002, 1.10445) 10.5316,0.02,0.5684)| |40.19176,0.02,-0.18424) |-1.13832,0.02,-1.053E8) (-1.54208,0.02,-1.BE552) (-1.70844,0.02,-1.E385E)
M7 (123522 0.02,1.18578) 10.62526,0.02,0.50074] |0.093596,0.02,-0.09604) |-0.82212,0.02,-0.7B588) (-1.33826,0.02,-1.2B674) (-2.4276,0.02,-2.3324)
28 |1 208700211613 10.7485,0.02,0.7154] |0.05528,0.02,0.06272) |-0.96084,0.02,-0.8231E) (-1.EE5EE,0.02,-1.60034) (-1.E3608,0.02,-1.57152)
9 |(1.50344 002, 1.54055) j0.57018,0.02,0. 54782 |0.41108,0.02,-0.33454) |-1.14444,0.02,-1.09585E) (-1.48308,0.02,-1.424582) (-1.58452, 0.02,-1.50708)
220 |(1.4331,002.1.3763) |0.55588,0.02,063112) |40.563354,0.02,-0.61446) |-1.01796,0.02,-0.97804) (-1.6218,0.02,-1.5582) (-1.53502,0.02,-1.BEZ5E)
202 |1 4025 0.02,1.43374) 10.32435,0.02,0.31164) 10.0305,0.02,0.0234) |-0.82514,0.02,-0.BBBBE) (-1.43514,0.02,-1.3788E) (-2.43474,0.02,-2.3350€)
22 |(1.30958,0.02,1.258327) 10.441565,0.02,0. 42434| |0.29784,0.02,-0.28616) |-0.80474,0.02,-0.BE52E) (-1.23012,0.02,-1.181B8) (-Z.E4286,0.02,-2.44374)
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e Annual calculations:

import numpy as np

# Neutrosophic data for each year
data = np.fromfile (file)
# Function to calculate mean and quartiles for each component
def calculate_metrics(values):
mean_value = np.mean(values, axis=0)
ql value = np.percentile(values, 25, axis=0)
g2 value = np.percentile(values, 50, axis=0)
q3_value = np.percentile(values, 75, axis=0)

return mean_value, ql_value, q2_value, q3_value

# Calculate mean and quartiles for each component and each year
results = {}
for year, values in data.items():
mean_values, q1_values, q2_values, q3_values = calculate_metrics(values)
results[year] = {
'mean’: mean_values,
'ql': q1_values,
'q2": q2_values,

'q3" q3_values

# Display the results
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for year, metrics in results.items():
print(f"\nYear {year}:")
print("Mean values:", metrics['mean'])
print("Q1 values:", metrics['q1'])
print("Q2 values:", metrics['q2'])

print("Q3 values:", metrics['q3'])

e Monthly calculations:

Python Code:
import numpy as np

# Neutrosophic data for each month

data = np.fromfile (filel)
# Define functions to calculate mean and quartiles
def calculate metrics(values):
mean_value = np.mean(values, axis=0)
ql value = np.percentile(values, 25, axis=0)
g2 value = np.percentile(values, 50, axis=0)
g3_value = np.percentile(values, 75, axis=0)

return mean_value, ql_value, g2 value, q3_value

# Calculate mean and quartiles for each month

results = {}
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# For January

mean_january, ql_january, q2_january, q3_january
calculate metrics(data_january)

results['January'] = {
'mean’: mean_january,
'ql": q1_january,
'q2": q2_january,

'q3": q3_january

# For February

mean_february, ql_february, q2_february, q3_february
calculate metrics(data_february)

results['February'] = {
'mean': mean_february,
'ql': q1_february,
'q2': q2_february,

'q3": q3_february

# For March
mean_march, q1_march, q2_march, g3 _march = calculate_metrics(data_march)
results['March'] = {

'mean’: mean_march,
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'ql": q1_march,
'q2": q2_march,

'q3": q3_march

# For April
mean_april, q1_april, g2_april, q3_april = calculate metrics(data_april)
results['April'] = {

'mean': mean_april,

'ql": ql_april,

'q2": q2_april,

'q3": q3_april

# For May
mean_may, ql _may, q2_may, q3 may = calculate metrics(data_may)
results['May'] = {

'mean': mean_may,

'ql': q1_may,

'q2": q2_may,

'q3": q3_may
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# For June
mean_june, ql_june, q2_june, q3_june = calculate metrics(data_june)
results['June'] = {

'mean': mean_june,

'ql": q1_june,

'q2'": q2_june,

'q3": q3_june

# For July
mean_july, q1_july, g2 july, q3 july = calculate metrics(data july)
results['July'] = {

'mean': mean_july,

'ql': ql_july,

'q2": g2_july,

'q3": q3_july

# For August
mean_august, q1 _august, q2_august, q3_august = calculate_metrics(data_august)

results['August'] = {
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'mean’: mean_august,
'ql": q1_august,
'q2": q2_august,

'q3": q3_august

# For September

mean_september, ql september, g2 _september, g3 september
calculate metrics(data september)

results['September'] = {
'mean’: mean_september,
'ql": q1_september,
'q2": q2_september,

'q3": q3_september

# For October

mean_october, ql october, g2_october, g3 _october
calculate metrics(data_october)

results['October'] = {
'mean’: mean_october,
'ql": q1_october,

'q2": q2_october,
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'q3": q3_october

# For November

mean_november, ql november, g2 _november,
calculate metrics(data november)

results['November'] = {
'mean': mean_november,
'ql": q1_november,
'g2": q2_november,

'q3": q3_november

mean_december, ql december, g2 december,
calculate metrics(data december)

results['December'] = {
'mean': mean_december,
'ql": q1_december,
'q2": g2_december,

'q3": q3_december
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# Display the results for each month

for month, metrics in results.items():
print(f"\n{month}:")
print("Mean values:", metrics['mean'])
print("Q1 values:", metrics['ql'])
print("Q2 values:", metrics['q2'])

print("Q3 values:", metrics['q3'])

e Seasonal calculations (Nov-Feb, Mar-Jun, Jul-Oct):

Python Code (Nov-Feb):

import numpy as np

# Neutrosophic data for first season
data = np.fromfile (file2)

data november = np.array([

# Combine all data into a single array

data_season = np.concatenate((data november, data december, data january,
data_february))

# Extract truth values, indeterminacy values, and falsity values separately

truth_values = data_season[:, 0]
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indeterminacy values = np.abs(data_season[:, 1]) # Taking absolute value to
ensure non-negative indeterminacy

falsity values = np.abs(data_season[:, 2]) # Taking absolute value to ensure non-
negative falsity

# Calculate the weighted mean for each component
mean_truth = np.mean(truth_values)
mean_indeterminacy = np.mean(indeterminacy_values)

mean_falsity = np.mean(falsity values)

# Calculate quartiles for each component
quartiles_truth = np.percentile(truth_values, [25, 50, 75])
quartiles_indeterminacy = np.percentile(indeterminacy values, [25, 50, 75])

quartiles_falsity = np.percentile(falsity values, [25, 50, 75])

# Store results in arrays

mean_results = np.array([mean_truth, mean_indeterminacy, mean_falsity])

quartiles_results = np.array([quartiles_truth, quartiles_indeterminacy,
quartiles_falsity])

# Define quartile labels

quartile labels =["1st", "2nd", "3rd"]

# Display the results
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nan

print("Mean of the truth values:", mean_truth)
for i, label in enumerate(quartile labels):

print(f"{label} quartile ({(i + 1) * 25}th percentile) of truth values:",
quartiles_truth[i])

print("Mean of the indeterminacy values:", mean_indeterminacy)
for 1, label in enumerate(quartile labels):

print(f" {label} quartile ({(i + 1) * 25}th percentile) of indeterminacy values:",
quartiles_indeterminacy[i])

print("Mean of the falsity values:", mean_falsity)
for 1, label in enumerate(quartile labels):

print(f"{label} quartile ({(i + 1) * 25}th percentile) of falsity values:",
quartiles_falsity[i])

nmn

# Display the results stored in arrays

print("\nResults stored in arrays:")

print("Mean values array:", mean_results)

print("Quartiles values array:")

for i, label in enumerate(quartile labels):
print(f" {label} quartile values:")

print(quartiles_results][:, i])
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Python Code (Mar-Jun) :
import numpy as np

# Neutrosophic data for second season
data = np.fromfile (file3)
# Combine all data into a single array

data_season = np.concatenate((data_march, data april, data may, data june))

# Extract truth values, indeterminacy values, and falsity values separately
truth_values = data_season[:, 0]

indeterminacy values = np.abs(data season[:, 1]) # Taking absolute value to
ensure non-negative indeterminacy

falsity values = np.abs(data_season[:, 2]) # Taking absolute value to ensure non-
negative falsity

# Calculate the weighted mean for each component
mean_truth = np.mean(truth_values)
mean_indeterminacy = np.mean(indeterminacy values)

mean_falsity = np.mean(falsity values)

# Calculate quartiles for each component
quartiles_truth = np.percentile(truth_values, [25, 50, 75])
quartiles_indeterminacy = np.percentile(indeterminacy values, [25, 50, 75])

quartiles_falsity = np.percentile(falsity values, [25, 50, 75])

# Store results in arrays
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mean_results = np.array([mean_truth, mean_indeterminacy, mean_falsity])

quartiles_results = np.array([quartiles_truth, quartiles_indeterminacy,
quartiles_falsity])

# Define quartile labels

quartile labels =["1st", "2nd", "3rd"]

# Display the results

nmn

print("Mean of the truth values:", mean_truth)
for i, label in enumerate(quartile labels):

print(f"{label} quartile ({(i + 1) * 25}th percentile) of truth values:",
quartiles_truth[i])

print("Mean of the indeterminacy values:", mean_indeterminacy)
for 1, label in enumerate(quartile labels):

print(f" {label} quartile ({(i + 1) * 25}th percentile) of indeterminacy values:",
quartiles_indeterminacy[i])

print("Mean of the falsity values:", mean_falsity)
for i, label in enumerate(quartile labels):

print(f"{label} quartile ({(i + 1) * 25}th percentile) of falsity values:",
quartiles_falsity[i])

nan
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# Display the results stored in arrays

print("\nResults stored in arrays:")

print("Mean values array:", mean_results)

print("Quartiles values array:")

for 1, label in enumerate(quartile labels):
print(f" {label} quartile values:")

print(quartiles_results[:, i])

Python Code(Jul-Oct):

import numpy as np

# Neutrosophic data for second season

data = np.fromfile (file4)
# Combine all data into a single array

data_season = np.concatenate((data_july, data august, data_september,
data_october))

# Extract truth values, indeterminacy values, and falsity values separately
truth_values = data_season[:, 0]

indeterminacy values = np.abs(data season|:, 1]) # Taking absolute value to
ensure non-negative indeterminacy

falsity values = np.abs(data_season[:, 2]) # Taking absolute value to ensure non-
negative falsity

89



# Calculate the weighted mean for each component
mean_truth = np.mean(truth_values)
mean_indeterminacy = np.mean(indeterminacy values)

mean_falsity = np.mean(falsity values)

# Calculate quartiles for each component
quartiles_truth = np.percentile(truth _values, [25, 50, 75])
quartiles_indeterminacy = np.percentile(indeterminacy values, [25, 50, 75])

quartiles_falsity = np.percentile(falsity values, [25, 50, 75])

# Store results in arrays
mean_results = np.array([mean_truth, mean indeterminacy, mean_falsity])

quartiles_results = np.array([quartiles_truth, quartiles_indeterminacy,
quartiles_falsity])

# Define quartile labels

quartile labels =["1st", "2nd", "3rd"]

# Display the results

nn

print("Mean of the truth values:", mean_truth)

for i, label in enumerate(quartile labels):
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print(f" {label} quartile ({(i+ 1) * 25}th percentile) of truth values:",
quartiles_truth[i])

print("Mean of the indeterminacy values:", mean_indeterminacy)
for i, label in enumerate(quartile labels):

print(f" {label} quartile ({(i + 1) * 25} th percentile) of indeterminacy values:",
quartiles_indeterminacy[i])

print("Mean of the falsity values:", mean_falsity)
for 1, label in enumerate(quartile labels):

print(f" {label} quartile ({(i+ 1) * 25} th percentile) of falsity values:",
quartiles_falsity[i])

nan

# Display the results stored in arrays

print("\nResults stored in arrays:")

print("Mean values array:", mean_results)

print("Quartiles values array:")

for 1, label in enumerate(quartile labels):
print(f" {label} quartile values:")

print(quartiles_results][:, i])

e Linear Regression Calculation
o Annual regression:

Python Code:
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import numpy as np
data = np.fromfile (file5)

# Perform linear regression for each year and print as Neutrosophic data
for year, values in data.items():
x = np.arange(len(values))

y = np.array([item[0] for item in values]) # Extracting the first element (truth) from
each entry

indeterminacy = np.array([item[ 1] for item in values]) # Extracting the second element
(indeterminacy) from each entry

falsity = np.array([item[2] for item in values]) # Extracting the third element (falsity)
from each entry

slope_truth, intercept_truth = np.polyfit(x, y, 1) # Performing linear regression for
truth

slope_indeterminacy, intercept_indeterminacy = np.polyfit(x, indeterminacy, 1) #
Performing linear regression for indeterminacy

slope_falsity, intercept_falsity = np.polyfit(x, falsity, 1) # Performing linear regression
for falsity

print(f"For year {year}: ({slope_truth},{slope indeterminacy},{slope_falsity})x +
({intercept_truth}, {intercept_indeterminacy},{intercept falsity})")

e Monthly regression:
Python Code:
import numpy as np
from scipy.optimize import minimize
# Neutrosophic data for each month
data = np.fromfile (file6)
# Neutrosophic Linear Regression Model

def objective(params, X, y):
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T mImFm,Tb,Ib,F b=params

predicted=(T m*x+T b, m*x+1 b,F m*x+F b)

predicted array = np.array(predicted) # Convert predicted tuple to array
y_array = np.array(y) # Converty tuple to array

return np.sum((predicted array - y_array) ** 2)

# Perform Neutrosophic Linear Regression for each month
def neutrosophic_linear regression(data):

x = data[:, 0]

T y=data[:, 0]

I y=datal[:, 1]

F y=data[:, 2]

# Initial guess for the parameters

initial guess =[O0, 0, 0, 0, 0, 0]

# Optimization using minimize

result = minimize(objective, initial guess, args=(x, (T y, 1 y, F_y)), method='BFGS")

# Extracting the optimized parameters

T m opt,] m opt, F m opt, T b opt,I b opt, F b opt=result.x

return T m opt,] m opt, F m opt, T b opt,I b opt, F b opt
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# Example usage for each month

T m january, I m january, F m january, T b january, I b january, F b january =
neutrosophic_linear regression(data january)

T m_february, I m_february, F m_february, T b february, I b february, F b february

= neutrosophic_linear regression(data february)

T m march, I m march, F m march, T b march, I b march, F b march =
neutrosophic linear regression(data march)

T m april, I m april, F m april, T b april, I1b april, F b april =
neutrosophic_linear regression(data_april)

T m may, I m may, F m may, T b _may, I b may, F b may =
neutrosophic_linear regression(data_may)

T m june, I m june, F m june, T b june, I b june, F b june =
neutrosophic_linear regression(data june)

T m_july, I m july, F m july, T b _july, I b july, F b july =
neutrosophic_linear regression(data july)

T m august, I m august, F m august, T b august, I b august, F b august
neutrosophic_linear regression(data_august)

T m september, I m september, F m september, T b september, [ b september,
F b _september = neutrosophic_linear regression(data_september)

T m october, I m october, F m october, T b october, I b october, F b october =
neutrosophic_linear regression(data october)

T m november, I m november, F m november, T b november, I b november,
F b november = neutrosophic linear regression(data_november)

T m december, I m december, F m december, T b december, 1 b december,
F b _december = neutrosophic_linear regression(data december)

# Print Neutrosophic Regression equations for each month
print(f'January Neutrosophic Regression equation: N y = ({T_m january:9f},

{I. m _january:9f}, {F m january:9f}) * x + ({T b january:9f}, {I b january:9f},
{F b january:.9f})")
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print(f"February Neutrosophic Regression equation: N y = ({T _m february:
{I. m_february:.9f}, {F m february:.9f}) * x + ({T_b_february:.9f}, {I b february:

{F_b_february:.9f})")

print(f'March  Neutrosophic Regression equation: N y = ({T_m_ march:
{I_ m march:9f}, {F m march:.9f}) * x + ({T_b march:9f}, {I b march:

{F b _march:.9f})")

print(f" April Neutrosophic Regression equation: N_y = ({T_m_april:.9f}, {I m_april:

{F_m_april:.9f}) * x + ({T_b_april:.9f}, {I b_april:.9f}, {F_b_april:.9f})")

print(f"May Neutrosophic Regression equation: N_y = ({T_m_may:.9f}, {I m_may:

{F_m may:.9f}) *x + ({T_b_may:.9f}, {I b may:.9f}, {F b may:9f})")

print(f"June Neutrosophic Regression equation: N_y = ({T_m_june:.9f}, {I_ m_june:

{F_m_june:.9f}) * x + ({T_b_june:.9f}, {I b june:9f}, {F b june:9f})")

print(f'July Neutrosophic Regression equation: N y = ({T_m_july:.9f}, {I m july:

{F_m_july:9f}) * x + ({T_b_july:.9f}, {I b july:.9f}, {F b july:.9f})")

print(f"August Neutrosophic Regression equation: N y = ({T _m august:
{l. m august:.9f}, {F m august:9f}), * x + ({T_b august:.9f}, {I b august:

{F b _august:.9f}),")

print(f'September Neutrosophic Regression equation: N y = ({T_m_september:
{I. m_september:.9f}, {F m september:9f}),, * x + ({T_b_september:

{I b_september:.9f}, {F b_september:.9f}),")

print(f"October Neutrosophic Regression equation: N y = ({T_m_october:
{I. m_october:.9f}, {F m_ october:.9f}), * x + ({T_b_october:.9f}, {I b october:

{F b _october:.9f}),")

print(f"November Neutrosophic Regression equation: N y = ({T_m november:
{l_ m november:.9f}, {F_m november:.9f}), * x + ({T_b_november:

{I b _november:.9f}, {F b november:.9f}),")

print(f'"December Neutrosophic Regression equation: N y = ({T _m_december:
{I_ m_december:.9f}, {F m december:.9f}), * x + ({T_b_december:

{I b _december:.9f}, {F b december:.9f}),")

ANOVA Analysis

Python Code:

import numpy as np
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from scipy.stats import f oneway
# Neutrosophic data for each month

data = np.fromfile (file7)

# Define a function to perform ANOVA for each dimension separately
def perform_anova(data, dimension name):

T values = data[:, 0]

I values = data[:, 1]

F_values = data]:, 2]

# Perform ANOVA for each dimension
anova_ T =1f oneway(T values, T values) # Add another T values array
anova [ =f oneway(I values, I values)

anova_F ={ oneway(F values, F_values)

print(f"ANOVA results for {dimension name} dimension:")
print("ANOVA T:", anova_T)

print("ANOVA I.", anova _I)

print("ANOVA F:", anova F)

print("\n")

# Compare p-values to the significance level alpha for each dimension
alpha = 0.05

if anova_T.pvalue < alpha:
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print(f"The T values are significantly different for {dimension _name}.")
else:

print(f"No significant difference in T values for {dimension name}.")

if anova_I.pvalue < alpha:
print(f"The I values are significantly different for {dimension _name}.")
else:

print(f"No significant difference in I values for {dimension_name}.")

if anova_F.pvalue < alpha:
print(f"The F values are significantly different for {dimension name}.")
else:

print(f"No significant difference in F values for {dimension name}.")

# Perform ANOVA for each month
perform_anova(data_january, "January")
print("\n")

perform_anova(data february, "February")
print("\n")

perform_anova(data_march, "March")
print("\n")

perform_anova(data april, "April")

print("\n")
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perform_anova(data_may, "May")

print("\n")

perform_anova(data_june, "June")

print("\n")

perform_anova(data_july, "July")

print("\n")

perform_anova(data august, "August")
print("\n")

perform_anova(data_september, "September")
print("\n")

perform_anova(data_october, "October")
print("\n")

perform anova(data november, "November")
print("\n")

perform_anova(data_december, "December")

E.4 Tables of Fitted Models

e Annual linear regression models

For year 1979: (0.16495111888111874,2.6980620831419794e-19,0.15848244755244742)x + (-

0.9406361538461523,0.02,-0.9037484615384601)
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For year 1980: (0.15256132867132854,2.6980620831419794e-19,0.14657853146853134)x + (-

0.8359423076923063,0.02,-0.8031602564102549)

For year 1981: (0.16869230769230759,2.6980620831419794e-19,0.16207692307692295)x + (-

0.9305276923076912,0.02,-0.8940364102564088)

For year 1982: (0.1416837062937062,2.6980620831419794e-19,0.13612748251748238)x + (-

0.7749253846153832,0.02,-0.7445361538461522)

For year 1983: (0.1393476923076922,2.6980620831419794e-19,0.1338830769230768)x + (-

0.7956523076923062,0.02,-0.764450256410255)

For year 1984: (0.14769314685314675,2.6980620831419794e-19,0.1419012587412586)x + (-

0.8335623076923064,0.02,-0.8008735897435882)

For year 1985: (0.13619139860139848,2.6980620831419794e-19,0.13085055944055932)x + (-

0.742507692307691,0.02,-0.7133897435897424)

For year 1986: (0.13578839160839148,2.6980620831419794e-19,0.13046335664335654)x + (-

0.7226961538461526,0.02,-0.6943551282051269)

For year 1987: (0.13878954545454533,2.6980620831419794e-19,0.13334681818181804)x + (-

0.7672099999999984,0.02,-0.7371233333333318)

For year 1988: (0.14893426573426563,2.6980620831419794e-19,0.14309370629370616)x + (-

0.7737484615384601,0.02,-0.743405384615383)

For year 1989: (0.1719163636363635,2.6980620831419794¢-19,0.16517454545454535)x + (-

0.9659399999999986,0.02,-0.9280599999999988)

For year 1990: (0.17162748251748242,2.6980620831419794e-19,0.1648969930069929)x + (-

0.9827961538461526,0.02,-0.9442551282051267)
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For year 1991: (0.16115286713286703,2.6980620831419794e-19,0.15483314685314672)x + (-

0.8537007692307678,0.02,-0.8202223076923064)

For year 1992: (0.14499692307692294,2.6980620831419794e-19,0.13931076923076913)x + (-

0.7968030769230754,0.02,-0.765555897435896)

For year 1993: (0.16866020979020968,2.6980620831419794¢-19,0.1620460839160838)x + (-

0.9202361538461524,0.02,-0.8841484615384603)

For year 1994: (0.16168783216783206,2.6980620831419794e-19,0.15534713286713275)x + (-

0.8829930769230756,0.02,-0.848365897435896)

For year 1995: (0.19761608391608385,2.6980620831419794e-19,0.18986643356643348)x + (-

1.1202084615384602,0.02,-1.0762787179487165)

For year 1996: (0.14960832167832158,2.6980620831419794e-19,0.14374132867132855)x + (-

0.8217407692307678,0.02,-0.7895156410256396)

For year 1997: (0.17655629370629358,2.6980620831419794e-19,0.16963251748251737)x + (-

0.9507446153846139,0.02,-0.9134605128205114)

For year 1998: (0.1718985314685313,2.6980620831419794¢-19,0.16515741258741246)x + (-

0.9604869230769216,0.02,-0.9228207692307677)

For year 1999: (0.1525006993006992,2.6980620831419794e-19,0.14652027972027964)x + (-

0.8703738461538448,0.02,-0.8362415384615371)

For year 2000: (0.15210839160839149,2.6980620831419794¢-19,0.1461433566433565)x + (-

0.8372761538461524,0.02,-0.8044417948717932)

For year 2001: (0.15300356643356636,2.6980620831419794e-19,0.14700342657342647)x + (-

0.830554615384614,0.02,-0.7979838461538448)
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For year 2002: (0.17444139860139846,2.6980620831419794e-19,0.16760055944055932)x + (-

0.9604476923076907,0.02,-0.9227830769230754)

For year 2003: (0.16582489510489495,2.6980620831419794e-19,0.1593219580419579)x + (-

0.9186669230769213,0.02,-0.8826407692307676)

For year 2004: (0.16517580419580405,2.6980620831419794e-19,0.15869832167832157)x + (-

0.9361769230769216,0.02,-0.8994641025641015)

For year 2005: (0.17523314685314675,2.6980620831419794e-19,0.16836125874125862)x + (-

0.9661623076923063,0.02,-0.9282735897435883)

For year 2006: (0.18891398601398585,2.6980620831419794e-19,0.1815055944055943)x + (-

1.0427669230769214,0.02,-1.0018741025641014)

For year 2007: (0.20637881118881107,2.6980620831419794e-19,0.1982855244755243)x + (-

1.13329846153846,0.02,-1.0888553846153828)

For year 2008: (0.16781853146853135,2.6980620831419794e-19,0.16123741258741245)x + (-

0.9264869230769217,0.02,-0.8901541025641012)

For year 2009: (0.17387076923076908,2.6980620831419794e-19,0.16705230769230756)x + (-

0.9471092307692291,0.02,-0.9099676923076907)

For year 2010: (0.17626027972027963,2.6980620831419794e-19,0.16934811188811175)x + (-

1.0158415384615374,0.02,-0.9760046153846139)

For year 2011: (0.189120839160839,2.6980620831419794¢e-19,0.18170433566433553)x + (-

0.9966446153846135,0.02,-0.9575605128205112)

For year 2012: (0.21242034965034953,2.6980620831419794e-19,0.2040901398601397)x + (-

1.1809769230769214,0.02,-1.1346641025641007)
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For year 2013: (0.16233335664335652,2.6980620831419794e-19,0.15596734265734252)x + (-

0.89563846153846,0.02,-0.8605153846153831)

For year 2014: (0.1778794405594404,2.6980620831419794¢-19,0.17090377622377612)x + (-

0.9642269230769214,0.02,-0.9264141025641011)

For year 2015: (0.19473797202797188,2.6980620831419794e-19,0.1871011888111887)x + (-

1.0913738461538445,0.02,-1.0485748717948702)

For year 2016: (0.2061969230769229,2.6980620831419794¢-19,0.19811076923076912)x + (-

1.155333076923075,0.02,-1.110025897435896)

For year 2017: (0.1667593006993006,2.6980620831419794¢-19,0.16021972027972017)x + (-

0.9350261538461525,0.02,-0.8983584615384602)

For year 2018: (0.16877076923076914,2.6980620831419794e-19,0.16215230769230757)x + (-

0.9119192307692294,0.02,-0.8761576923076911)

For year 2019: (0.20354349650349632,2.6980620831419794e-19,0.19556139860139848)x + (-

1.092629230769229,0.02,-1.049781025641024)

For year 2020: (0.2192215384615383,2.6980620831419794e-19,0.2106246153846152)x + (-

1.2215284615384598,0.02,-1.1736253846153828)

For year 2021: (0.19033699300699292,2.6980620831419794e-19,0.18287279720279712)x + (-

1.0103884615384602,0.02,-0.9707653846153832)

For year 2022: (0.18037951048951034,2.6980620831419794e-19,0.17330580419580405)x + (-

1.032632307692306,0.02,-0.9921369230769213)

e Monthly linear regression models
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January Neutrosophic Regression equation: N_y = (1.000001657, 0.000000008, 0.960785902) * x
+ (-0.000000972, 0.019999981, -0.000000923)

February Neutrosophic Regression equation: N_y = (1.000001657, 0.000000008, 0.960785902) *
x +(-0.000000972, 0.019999981, -0.000000923)

March Neutrosophic Regression equation: N_y = (0.999999964, -0.000000046, 0.960784271) * x
+ (-0.000000014, 0.019999984, -0.000000016)

April Neutrosophic Regression equation: N_y = (0.999999692, -0.000000305, 0.960784010) * x +
(-0.000000340, 0.019999662, -0.000000338)

May Neutrosophic Regression equation: N_y = (0.999999719, -0.000000452, 0.960784025) * x +
(-0.000000492, 0.019999306, -0.000000501)

June Neutrosophic Regression equation: N_y = (0.999999761, -0.000000154, 0.960784168) * x +
(-0.000000474, 0.019999715, -0.000000289)

July Neutrosophic Regression equation: N_y = (0.999999381, -0.000000619, 0.960783694) * x +
(-0.000001769, 0.019998231, -0.000001769)

August Neutrosophic Regression equation: N_y = (0.999999640, -0.000000398, 0.960783952) * x
+ (-0.000000697, 0.019999252, -0.000000700),

September Neutrosophic Regression equation: N_y = (1.000000006, 0.000000002, 0.960784317)
*x +(-0.000000008, 0.019999993, -0.000000007),

October Neutrosophic Regression equation: N_y = (0.999999864, -0.000000153, 0.960784205) *
x +(0.000000390, 0.020000437, 0.000000306),

November Neutrosophic Regression equation: N_y = (0.999999855, -0.000000144, 0.960784173)
*x +(0.000000323, 0.020000320, 0.000000312),

December Neutrosophic Regression equation: N_y = (0.999999661, -0.000000150, 0.960783994)
*x +(0.000000709, 0.020000288, 0.000000697),

ANOVA for Each Month

ConstantInputWarning: Each of the input arrays is constant; the F statistic is not defined
or infinite

anova [ =f oneway(I values, I values)
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ANOVA results for January dimension:
ANOVA T: F_onewayResult(statistic=-4.106205008303916¢-32, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=6.470176351731316e-32, pvalue=1.0)

No significant difference in T values for January.
No significant difference in I values for January.

No significant difference in F values for January.

ANOVA results for February dimension:
ANOVA T: F_onewayResult(statistic=-4.106205008303916¢-32, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=6.470176351731316¢e-32, pvalue=1.0)

No significant difference in T values for February.
No significant difference in I values for February.

No significant difference in F values for February.
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ANOVA results for March dimension:
ANOVA T: F_onewayResult(statistic=-5.991043060399374¢-31, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=1.2790685784897013e-31, pvalue=1.0)

No significant difference in T values for March.
No significant difference in I values for March.

No significant difference in F values for March.

ANOVA results for April dimension:
ANOVA T: F_onewayResult(statistic=-4.858957738559716¢e-32, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=0.0, pvalue=1.0)

No significant difference in T values for April.
No significant difference in I values for April.

No significant difference in F values for April.
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ANOVA results for May dimension:
ANOVA T: F_onewayResult(statistic=-1.9165348472058703e-31, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=6.695095903327562¢-31, pvalue=1.0)

No significant difference in T values for May.
No significant difference in I values for May.

No significant difference in F values for May.

ANOVA results for June dimension:
ANOVA T: F_onewayResult(statistic=-1.991213489771818e-31, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=0.0, pvalue=1.0)

No significant difference in T values for June.
No significant difference in I values for June.

No significant difference in F values for June.
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ANOVA results for July dimension:
ANOVA T: F_onewayResult(statistic=0.0, pvalue=1.0)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=0.0, pvalue=1.0)

No significant difference in T values for July.
No significant difference in I values for July.

No significant difference in F values for July.

ANOVA results for August dimension:
ANOVA T: F_onewayResult(statistic=2.153471130011599¢-32, pvalue=1.0)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=1.0264550187548826¢-30, pvalue=1.0)

No significant difference in T values for August.
No significant difference in I values for August.

No significant difference in F values for August.
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ANOVA results for September dimension:
ANOVA T: F_onewayResult(statistic=8.142488032754127e-32, pvalue=1.0)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=1.6661409289846325¢e-31, pvalue=1.0)

No significant difference in T values for September.
No significant difference in I values for September.

No significant difference in F values for September.

ANOVA results for October dimension:
ANOVA T: F_onewayResult(statistic=0.0, pvalue=1.0)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=0.0, pvalue=1.0)

No significant difference in T values for October.
No significant difference in I values for October.

No significant difference in F values for October.

108



ANOVA results for November dimension:
ANOVA T: F_onewayResult(statistic=-2.2591941327692174e-31, pvalue=nan)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=-2.748598132645309¢-31, pvalue=nan)

No significant difference in T values for November.
No significant difference in I values for November.

No significant difference in F values for November.

ANOVA results for December dimension:
ANOVA T: F_onewayResult(statistic=0.0, pvalue=1.0)
ANOVA I: F_onewayResult(statistic=nan, pvalue=nan)

ANOVA F: F_onewayResult(statistic=0.0, pvalue=1.0)

No significant difference in T values for December.

No significant difference in I values for December.

No significant difference in F values for December.
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E.S5 Figures

Figure 1: Arctic Sea Ice Extent Trend (1979-2020)
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Figure 3

This Figure shows the declining trend of Arctic Sea Ice extent from 1979 to 2020, based on the Neutrosophic analysis.

Figure 2: Neutrosophic Components of Arctic Sea Ice Data (1979-2020)
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Figure 4
This figure illustrates the changes in the Neutrosophic components (Truth, Indeterminacy, Falsity) of the Arctic Sea Ice data over
time.
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Figure 3: Seasonal Variation in Arctic Sea Ice Extent (Example Year)

16 ]

124

T

O I T | | T T T T 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Can lars
.. S )
 Sea

Figure 5
This Figure demonstrates the seasonal variation in Arctic Sea Ice extent for an example year, highlighting the annual cycle of ice
formation and melting.

These figures provide a visual representation of the key findings from Neutrosophic analysis of
Arctic Sea Ice extent. They illustrate the overall trend, the Neutrosophic components of your data,

and the seasonal variations in sea ice extent.

As shown in Figure 1, the Arctic Sea Ice extent has exhibited a clear declining trend from 1979 to
2020. This decline is consistent across all three Neutrosophic components (Truth, Indeterminacy,
and Falsity), as illustrated in Figure 2. The seasonal variation in sea ice extent, depicted in Figure
3, demonstrates the annual cycle of ice formation and melting, with minimum extent typically

occurring in September and maximum extent in March."

111



E.6 Output Files of mean and quartiles calculations:

Mean and Quartiles of Each Year:

Year 1979:

Mean values: [-0.033405 0.02 -0.032095]
Q1 values: [-1.507815 0.02 -1.448685]
Q2 values: [-0.44013 0.02 -0.42287]

Q3 values: [1.542495 0.02  1.482005]

Year 1980:

Mean values: [0.003145 0.02  0.00302167]
Q1 values: [-1.469055 0.02 -1.411445]

Q2 values: [0.07701 0.02  0.07399]

Q3 values: [1.34181 0.02 1.28919]

Year 1981:

Mean values: [-0.00272  0.02 -0.00261333]
Q1 values: [-1.325235 0.02 -1.273265]

Q2 values: [-0.03213 0.02 -0.03087]

Q3 values: [1.580235 0.02  1.518265]
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Year 1982:

Mean values: [0.004335 0.02  0.004165]
Q1 values: [-1.577175 0.02 -1.515325]
Q2 values: [-0.19074 0.02 -0.18326]

Q3 values: [1.67382 0.02 1.60818]

Year 1983:

Mean values: [-0.02924  0.02 -0.02809333]
Q1 values: [-1.40403 0.02 -1.34897]

Q2 values: [-0.07242 0.02 -0.06958]

Q3 values: [1.4573250.02  1.400175]

Year 1984:

Mean values: [-0.02125  0.02 -0.02041667]
Q1 values: [-1.459365 0.02 -1.402135]

Q2 values: [0.12189 0.02 0.11711]

Q3 values: [1.2283350.02  1.180165]

Year 1985:

Mean values: [0.006545 0.02 0.00628833]
Q1 values: [-1.625115 0.02 -1.561385]

Q2 values: [0.24939 0.02 0.23961]

Q3 values: [1.75236 0.02 1.68364]
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Year 1986:

Mean values: [0.02414 0.02 0.02319333]
Q1 values: [-1.36782 0.02 -1.31418]

Q2 values: [-0.01734 0.02 -0.01666]

Q3 values: [1.63353 0.02 1.56947]

Year 1987:

Mean values: [-0.0038675 0.02 -0.00371583]
Q1 values: [-1.38516 0.02 -1.33084]

Q2 values: [0.02601 0.02  0.02499]

Q3 values: [1.7940525 0.02  1.7236975]

Year 1988:

Mean values: [0.04539 0.02 0.04361]
Q1 values: [-1.57692 0.02 -1.51508]
Q2 values: [0.03825 0.02  0.03675]

Q3 values: [1.75134 0.02 1.68266]

Year 1989:

Mean values: [-0.0204 0.02 -0.0196]
Q1 values: [-1.263525 0.02 -1.213975]
Q2 values: [-0.20094 0.02 -0.19306]

Q3 values: [1.358895 0.02  1.305605]
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Year 1990:

Mean values: [-0.038845 0.02 -0.03732167]
Q1 values: [-1.660815 0.02  -1.595685]

Q2 values: [-0.18972 0.02 -0.18228]

Q3 values: [1.367565 0.02  1.313935]

Year 1991:

Mean values: [0.03264 0.02 0.03136]
Q1 values: [-1.33977 0.02 -1.28723]
Q2 values: [-0.3213 0.02 -0.3087]

Q3 values: [1.54785 0.02 1.48715]

Year 1992:

Mean values: [0.00068 0.02  0.00065333]
QI values: [-1.29489 0.02 -1.24411]

Q2 values: [0.13413 0.02  0.12887]

Q3 values: [1.3974 0.02 1.3426]

Year 1993:

Mean values: [0.007395 0.02  0.007105]
Q1 values: [-1.548615 0.02 -1.487885]
Q2 values: [0.08211 0.02 0.07889]

Q3 values: [1.773525 0.02  1.703975]
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Year 1994:

Mean values: [0.00629 0.02 0.00604333]
Q1 values: [-1.52337 0.02 -1.46363]

Q2 values: [0.09282 0.02 0.08918]

Q3 values: [1.566465 0.02  1.505035]

Year 1995:

Mean values: [-0.03332  0.02 -0.03201333]
Q1 values: [-1.525665 0.02 -1.465835]

Q2 values: [-0.10608 0.02 -0.10192]

Q3 values: [1.163055 0.02  1.117445]

Year 1996:

Mean values: [0.001105 0.02  0.00106167]
Q1 values: [-1.137555 0.02  -1.092945]

Q2 values: [0.18921 0.02  0.18179]

Q3 values: [1.14546 0.02  1.10054]

Year 1997:

Mean values: [0.020315 0.02 0.01951833]
Q1 values: [-1.57947 0.02 -1.51753]

Q2 values: [-0.06936 0.02 -0.06664]

Q3 values: [1.44993 0.02  1.39307]
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Year 1998:

Mean values: [-0.015045 0.02 -0.014455]
Q1 values: [-1.565445 0.02 -1.504055]
Q2 values: [-0.31059 0.02 -0.29841]

Q3 values: [1.6353150.02  1.571185]

Year 1999:

Mean values: [-0.03162 0.02 -0.03038§]
Q1 values: [-1.56978 0.02 -1.50822]
Q2 values: [0.30651 0.02  0.29449]

Q3 values: [1.2303750.02 1.182125]

Year 2000:

Mean values: [-0.00068 0.02  -0.00065333]
Q1 values: [-1.578195 0.02 -1.516305]

Q2 values: [-0.01989 0.02 -0.01911]

Q3 values: [1.681215 0.02  1.615285]

Year 2001:

Mean values: [0.010965 0.02  0.010535]
Q1 values: [-1.37904 0.02 -1.32496]
Q2 values: [-0.18615 0.02 -0.17885]

Q3 values: [1.57998 0.02  1.51802]
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Year 2002:

Mean values: [-0.00102 0.02 -0.00098]
Q1 values: [-1.44075 0.02 -1.38425]
Q2 values: [-0.04539 0.02 -0.04361]

Q3 values: [1.64628 0.02 1.58172]

Year 2003:

Mean values: [-0.00663 0.02 -0.00637]
Q1 values: [-1.62588 0.02 -1.56212]
Q2 values: [-0.14586 0.02 -0.14014]

Q3 values: [1.566975 0.02  1.505525]

Year 2004:

Mean values: [-0.02771  0.02  -0.02662333]
Q1 values: [-1.40454 0.02 -1.34946]

Q2 values: [-0.00612 0.02 -0.00588]

Q3 values: [1.22349 0.02 1.17551]

Year 2005:

Mean values: [-0.00238  0.02 -0.00228667]
Q1 values: [-1.51725 0.02 -1.45775]

Q2 values: [-0.23715 0.02 -0.22785]

Q3 values: [1.27398 0.02  1.22402]

118



Year 2006:

Mean values: [-0.00374  0.02 -0.00359333]
Q1 values: [-1.498635 0.02 -1.439865]

Q2 values: [-0.13158 0.02 -0.12642]

Q3 values: [0.94809 0.02 0.91091]

Year 2007:

Mean values: [0.001785 0.02  0.001715]
Q1 values: [-1.431825 0.02 -1.375675]
Q2 values: [-0.37587 0.02 -0.36113]

Q3 values: [1.578705 0.02  1.516795]

Year 2008:

Mean values: [-0.003485 0.02  -0.00334833]
Q1 values: [-1.654695 0.02 -1.589805]

Q2 values: [-0.15963 0.02 -0.15337]

Q3 values: [1.66719 0.02 1.60181]

Year 2009:

Mean values: [0.00918 0.02 0.00882]
Q1 values: [-1.722525 0.02 -1.654975]
Q2 values: [-0.01428 0.02 -0.01372]

Q3 values: [1.631745 0.02  1.567755]
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Year 2010:

Mean values: [-0.04641 0.02 -0.04459]
Q1 values: [-1.92117 0.02 -1.84583]
Q2 values: [0.21063 0.02  0.20237]

Q3 values: [1.326765 0.02  1.274735]

Year 2011:

Mean values: [0.04352 0.02 0.04181333]
Q1 values: [-1.763835 0.02 -1.694665]

Q2 values: [0.07089 0.02  0.06811]

Q3 values: [1.740885 0.02  1.672615]

Year 2012:

Mean values: [-0.012665 0.02  -0.01216833]
Q1 values: [-1.94463 0.02 -1.86837]

Q2 values: [0.19227 0.02  0.18473]

Q3 values: [1.363485 0.02  1.310015]

Year 2013:

Mean values: [-0.002805 0.02  -0.002695]
Q1 values: [-1.384905 0.02 -1.330595]
Q2 values: [-0.00969 0.02 -0.00931]

Q3 values: [1.56417 0.02  1.50283]
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Year 2014:

Mean values: [0.01411 0.02 0.01355667]
Q1 values: [-1.52745 0.02 -1.46755]

Q2 values: [-0.03621 0.02 -0.03479]

Q3 values: [1.554735 0.02  1.493765]

Year 2015:

Mean values: [-0.020315 0.02 -0.01951833]
Q1 values: [-1.640925 0.02 -1.576575]

Q2 values: [0.12393 0.02  0.11907]

Q3 values: [1.312995 0.02  1.261505]

Year 2016:

Mean values: [-0.02125  0.02 -0.02041667]
Q1 values: [-1.7646 0.02 -1.6954]

Q2 values: [0.19992 0.02  0.19208]

Q3 values: [1.35609 0.02  1.30291]

Year 2017:

Mean values: [-0.01785 0.02 -0.01715]
Q1 values: [-1.488435 0.02 -1.430065]
Q2 values: [0.05355 0.02 0.05145]

Q3 values: [1.396125 0.02  1.341375]
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Year 2018:

Mean values: [0.01632 0.02 0.01568]
Q1 values: [-1.643475 0.02 -1.579025]
Q2 values: [-0.04182 0.02 -0.04018]

Q3 values: [1.317075 0.02  1.265425]

Year 2019:

Mean values: [0.02686 0.02 0.02580667]
Q1 values: [-1.545555 0.02  -1.484945]

Q2 values: [-0.21114 0.02 -0.20286]

Q3 values: [1.84263 0.02 1.77037]

Year 2020:

Mean values: [-0.01581 0.02 -0.01519]
Q1 values: [-1.6728 0.02 -1.6072]

Q2 values: [-0.31926 0.02 -0.30674]

Q3 values: [1.63149 0.02 1.56751]

Year 2021:

Mean values: [0.036465 0.02  0.035035]
Q1 values: [-1.450695 0.02 -1.393805]
Q2 values: [0.02907 0.02  0.02793]

Q3 values: [1.67994 0.02 1.61406]
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Year 2022:

Mean values: [-0.040545 0.02  -0.038955]
Q1 values: [-1.390515 0.02 -1.335985]
Q2 values: [-0.19074 0.02 -0.18326]

Q3 values: [1.51419 0.02 1.45481]

Mean and Quartiles of Each Month:

January:

Mean values: [0.59544818 0.02 0.57209727]
Q1 values: [0.45543 0.02  0.43757]

Q2 values: [0.63189 0.02  0.60711]

Q3 values: [0.737715 0.02  0.708785]

February:

Mean values: [0.59544818 0.02  0.57209727]
Q1 values: [0.45543 0.02 0.43757]

Q2 values: [0.63189 0.02 0.60711]

Q3 values: [0.737715 0.02  0.708785]

March:
Mean values: [-0.19475045 0.02 -0.18711318]

Q1 values: [-0.3876 0.02 -0.3724]
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Q2 values: [-0.19329 0.02 -0.18571]

Q3 values: [-0.04284 0.02 -0.04116]

April:

Mean values: [-1.08363409 0.02  -1.04113864]
Q1 values: [-1.20054 0.02 -1.15346]

Q2 values: [-1.04193 0.02 -1.00107]

Q3 values: [-0.919275 0.02  -0.883225]

May:

Mean values: [-1.52031 0.02 -1.46069]
Q1 values: [-1.666425 0.02 -1.601075]
Q2 values: [-1.48002 0.02 -1.42198]

Q3 values: [-1.34232 0.02 -1.28968]

June:

Mean values: [-1.83634773 0.02 -1.76433409]
Q1 values: [-2.121345 0.02 -2.038155]

Q2 values: [-1.71105 0.02 -1.64395]

Q3 values: [-1.4943 0.02 -1.4357]

July:
Mean values: [-2.84408455 0.02  -2.73255182]

Q1 values: [-3.059235 0.02 -2.939265]
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Q2 values: [-2.7693 0.02 -2.6607]

Q3 values: [-2.574735 0.02 -2.473765]

August:

Mean values: [-1.85908909 0.02 -1.78618364]
Q1 values: [-2.043825 0.02 -1.963675]

Q2 values: [-1.76868 0.02 -1.69932]

Q3 values: [-1.663365 0.02 -1.598135]

September:

Mean values: [0.13037455 0.02 0.12526182]
Q1 values: [-0.047685 0.02 -0.045815]

Q2 values: [0.08823 0.02  0.08477]

Q3 values: [0.322065 0.02  0.309435]

October:

Mean values: [2.87839364 0.02  2.76551545]
Q1 values: [2.542605 0.02  2.442895]

Q2 values: [2.96004 0.02 2.84396]

Q3 values: [3.1875 0.02 3.0625]

November:
Mean values: [2.26834091 0.02 2.17938636]

Q1 values: [2.03031 0.02 1.95069]
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Q2 values: [2.25369 0.02  2.16531]

Q3 values: [2.459985 0.02  2.363515]

December:

Mean values: [2.07550295 0.02 1.99411068]
Q1 values: [1.8393150.02  1.767185]

Q2 values: [2.04867 0.02  1.96833]

Q3 values: [2.313615 0.02  2.222885]

Mean and Quartiles of First Season (Nov-Feb):
Mean values array: [1.38368506 0.02 1.3294229 ]
Quartiles values array:

1st quartile values:

[0.6352050.02  0.610295]

2nd quartile values:

[1.07457 0.02 1.03243]

3rd quartile values:

[2.1595950.02 2.074905]

Mean and Quartiles of First Season (Mar-Jun):
Mean values array: [-1.15876057 0.02 1.12690534]
Quartiles values array:

Ist quartile values:

[-1.625115 0.02  0.68551 ]
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2nd quartile values:
[-1.24338 0.02 1.19462]
3rd quartile values:

[-0.71349 0.02  1.561385]

Mean and Quartiles of First Season (Jul-Oct):

Mean values array: [-0.42360136 0.02 1.87712318]
Quartiles values array:

Ist quartile values:

[-2.41893 0.02  1.087555]

2nd quartile values:

[-0.81957 0.02 2.03987]

3rd quartile values:

[0.94503 0.02 2.75429]
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Appendix F: List of Symbols and Abbreviations

e Mathematical Symbols:
(T, I, F) : Neutrosophic triplet (Truth, Indeterminacy, Falsity)
T(X — Y) : Truth value of causal relationship from X to Y
I(X — Y) : Indeterminacy value of causal relationship from X to Y
F(X — Y) : Falsity value of causal relationship from X to Y
¢ : Error term
Bo, B1 : Regression coefficients
1 : Causal effect
I : Norm
0 : Parameter vector
Yi(t) : Potential outcome under treatment
Yi(c) : Potential outcome under control
— : Implies/Leads to
> : Summation
| - Given that/Conditional on

e Statistical Abbreviations:
NCGM: Neutrosophic Causal Graphical Model
NSEM: Neutrosophic Structural Equation Model
NPSM: Neutrosophic Propensity Score Matching
NIV: Neutrosophic Instrumental Variable
NCF: Neutrosophic Counterfactual
NCFS: Neutrosophic Causal Feature Selection
NPC: Neutrosophic PC (Peter-Clark) Algorithm
NFCI: Neutrosophic FCI Algorithm
NGES: Neutrosophic Greedy Equivalence Search
NMBD: Neutrosophic Markov Blanket Discovery
NCL: Neutrosophic Causal Lasso
NNRM: Neutrosophic Non-linear Regression Model
NPOF: Neutrosophic Potential Outcomes Framework
NCG: Neutrosophic Counterfactual Graph
ANOVA: Analysis of Variance
DAG: Directed Acyclic Graph

e Climate Science Abbreviations:
NAO: North Atlantic Oscillation
AO: Arctic Oscillation
COsa: Carbon Dioxide Units of Measurement:
km?: Square Kilometers
°C: Degrees Celsius
°F: Degrees Fahrenheit
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