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Abstract

This thesis provides generalization to known solutions for the scale factor and cosmic
time of Friedinann-Lemaitre-Robertson-Walker model universes in terms of elliptic
functions. In particular the integration of known expressions for the scale factor is
used to find new expressions for cosmic time. Various techniques using both the
Weierstrass and Jacobi functions are discussed. Plots of physically significant quan¬
tities such as redshift and redshift drift are given. Limiting cases provide context for
how various cosmic fluids change the dynamics of the universe on the largest scales.
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Chapter 1

Introduction

1.1 Object

The objective of this thesis is to provide new special function solutions to problems

in cosmology. It is desired to do so in such a way as to display intuitively use¬

ful insight into obtaining and interpreting these solutions. The use of Jacobi and

Weierstrass elliptic functions for modelling Friedmann-Lemaitre-Robertson-Walker

(FLRW) universes is a core component of this work. Modern computing tools will be

used to explore the results obtained throughout this thesis.

1.2 Related Work

Elliptic integrals and functions have been used in many areas of physics for over one

hundred years. A classic example is the full solution to the simple pendulum where

one does not make the small angle approximation [11]. These special integrals and

functions arise naturally in a wide variety of physical systems.

General relativity presents many problems that can be analysed using various spe¬

cial functions. The Schwarzschild geometry, Kerr geometry, and many other space¬

times can be handled in this fashion. Chandrasekhar [4] classifies and details many

8



orbits in the Schwarzschild geometry in part by using the Jacobi elliptic functions and

integrals. This work is further generalised by Scharf [29] and Rodriguez [27]. Many

spacetime geometries evidently provide a framework where physical phenomena are

readily described using elliptic integrals and functions.

The FLRW spacetime is another environment where special functions may be

applied. Edwards [10], D’Ambroise [8], and Steiner [31] each solve for the scale factor

of general FLRW universes in terms of special functions. The general solution for

the scale factor as a function of conformal time is written in terms of the Weierstrass

elliptic function. This type of analysis dates as far back as the founding work done

by the titan Lemaitre [21, 22]. Elliptic integral techniques are applied by Kharbediya

[20] for several types of universes. Edwards and D’Ambroise also look at special

cases of the scale factor in terms of the Jacobi elliptic functions. Steiner discusses

his results in the context of modelling the time dependence of the energy density of

the universe. Aurich and Steiner [32] apply this approach to an investigation into

hyperbolic finite volume universes. An explicit formula for luminosity distance as a

function of redshift is given by Dabrowski [6]. D’Ambroise [9] provides a resource for

solving some nonlinear differential equations in cosmology using special functions.

There are other important model properties for FLRW universes that have not

been modelled using special function techniques. Redshift and redshift drift are two

important quantities plotted by Liskc [13] and Lineweaver [23]. Lobo ct al. [15]

investigates some higher order changes in redshift drift using an asymptotic series

type approach. Understanding the dynamical properties of universe expansion is

important for constructing a clearer picture of our cosmos.

1.3 Overview

This thesis is broken down in the following manner. Chapter 2 will provide the

necessary background for special functions and integrals used throughout this thesis.
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The elliptic integrals are defined in standard fashion, and used to derived the elliptic

functions of Jacobi. Trigonometric analogies for these functions help motivate why

they might be especially useful to physicists. The elliptic functions of Weierstrass

are introduced and related to the elliptic functions of Jacobi. Other functions of

Weierstrass are discussed in the context of doing calculus with his elliptic function.

General motivation and theory for all elliptic functions is briefly mentioned.

Chapter 3 will contain the core principles of standard cosmology and cosmic dy¬

namics. The FLRW spacetime and how it arises in the framework of general rela¬

tivity begins the chapter. The concept of measuring space and time in cosmology

is introduced. How the distribution of matter and energy changes the scale factor

of spacetime is of particular significance. The Friedmann equation and its solution

are discussed in detail for the purpose of modelling the scale factor. Chapter 4 will

show how known special function solutions for the scale factor can be used to derive

new expressions. Attempting to derive new expressions using both the functions of

Jacobi and Weierstrass is presented. The results are tested with independent numer¬

ical modelling, and subsequently plotted. State of the art data is used to create a

benchmark for these results. Redshift and redshift drift are calculated in a new fash¬

ion. Limiting cases are broken down to explore the parameter space of the provided

solutions. Chapter 5 will conclude this thesis and summarize the results obtained.
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Chapter 2

Background: Elliptic Functions

and Integrals

2.1 Elliptic Integrals

Elliptic integrals come in three different basic forms which each involve the integration

of radical functions. The integral

y

u= / dy>
J ^(1- ?/2) (1- A;2?/2 )

r d^'
J \/ (1 — k2 sin2 <f>')

= F(y,k)

(2.1)

is called the incomplete elliptic integral of the first kind. The integral

1 — k2y'2
1- y'2 dy'

o
k2 sin2 <^' d,<p'

(2-2)

= E^k)
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is called the incomplete elliptic integral of the second kind. The integral

y

u = [

_ ? < (2-3)
J (1 — a2 sin2 y/CW-^sh?^)

= n(y,a2,A:)

is called the incomplete elliptic integral of the third kind. The preceding integral

definitions are provided by Byrd and Friedman [2] . The substitution y = sin is a

useful change of variables.

The elliptic modulus A: is a complex number in general, but often k is limited

to the range of values 0 < k < 1. Some sources prefer to use the elliptic parameter

m which is related to the elliptic modulus by m = k2. The complimentary elliptic

modulus k' often is used, and is related to the elliptic modulus by k' — ^/(1 — k2).

The elliptic characteristic a2 is a complex number in general, but a2 often is limited

to real numbers. The elliptic argument y or also can take on any complex

value, but it’s most common to use the ranges 0 < y 1 and 0 < 7r/2.
When y — 1 the elliptic integrals are said to be complete. Note that the change of

variables y = sin0 implicitly includes the choice of branch cut ^/(1 — t2)(l — k2t2) =

-^/(1 — A2)^! — k2t2) in equations (2.1) to (2.3). For the purposes of the results

obtained in this thesis, it will be more appropriate to not use this change of variables,

though it is still useful to help motivate the elliptic functions of Jacobi, as will be

seen in the next section.

2.2 Jacobi Elliptic Functions

It is of interest to invert the elliptic integral of the first kind in order to define the

Jacobian elliptic functions. The amplitude function is defined by 0 = am(u, k).

The sine amplitude and cosine amplitude are defined by sin (b = sn(u, k) and
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cos 0 — cn(u, k) respectively. The delta amplitude is defined by A0 = dn(u, k) —
\/l — k2 sin2 </>. These functions have properties very similar to the trigonometric

functions. Often authors will suppress the modulus and even the argument of an

elliptic function to neaten their work.

Table 2.1: The Jacobi elliptic functions and their quotients.

ns u def 1
snq

deftn u — scu def snu
cnu sd u def sn-q

dnq

nc u def 1
cnu

1 def= csutn u
def cnu

snu cd u def enq
dnq

ndu def 1
dn u

defdsiz = dn u
snu de u def dn u

enq

Standard trigonometric functions can be defined by use of the unit circle, and the

Jacobi elliptic functions are no different. The sine amplitude and cosine amplitude

are projections from a point on an ellipse to the corresponding point on the unit

circle. This idea is shown in figure 2.1. Essentially the angle 6 determines where a

point on the ellipse is, and the modulus k determines how elliptic the shape is.
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Figure 2.1: The Jacobi Ellipse with a = 1. The point P = (x,y) on the ellipse

projects onto the unit circle to point Q = (cn, sn).

The relationship between elliptic integrals, elliptic functions, and trigonometry is

made more clear using arguments from Wikipedia [34], The standard equation of the

unit circle is replaced in the elliptic case by two equations

2 2

w + w =
a2 b~

x2 + y2 = r2. (2.5)

Now we construct the relations

y x , 1 .
sn = cn = — , chi = (2.6)

r ' r r

in order to parameterize an ellipse. Note that figure 2.1 normalizes the ellipse along

the x-axis as in [34], Schwalm [30] uses the other unit ellipse, and also uses a different
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set of relations for the functions. Observe that relations (2.6) satisfy both figure 2.1

and equation (2.5), which are described in a combined form by

2,2 2x + y = r

2 2,2 2 2r cn + r sn = r

cn2 + sn2 = 1.

(2-7)

We must now break free from standard geometric interpretation of ellipses to

accommodate the elliptic modulus. A relationship between the elliptic modulus and

the eccentricity of an ellipse may be given by

^b2 — d2
k = - = eccentricity. (2-8)

Equation (2.8) is found conventionally from the eccentricity of an ellipse that is

squeezed along the y axis. We will use this relationship for any elliptic shape we

desire since it is just a geometric tool with no real analytic impact. This makes some

sense from the perspective that our coordinate system must not only be consistent

with the shape of the ellipse, but also the single valued elliptic functions. Relations

(2.6) and equations (2.5) to (2.8) lead us to the identity

2 sn2 1
CI1 + ld = 72

2
, 2 Sn , 21- sn + — = dn

b2

1- A'2sn2 = dn2

Equations (2.7) and (2.9) form the basis for all Jacobi elliptic function square

identities. With a < b, you have 0 < A’2 < 1, which is an ellipse with the major axis

along the y axis. While b < a gives A’2 < 0, which is an ellipse with the major axis
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along the x axis. However, the use of the Jacobi elliptic functions includes all elliptic

shapes, and not just closed ellipses.

We now push the eccentricity even further by considering b to be a purely imag¬

inary complex number. Equation (2.8) with imaginary b now tells us that k2 > 1.

This choice with equation (2.4) describes geometrically a hyperbola. We now have an

understanding of the possible shapes that the Jacobi elliptic functions describe with

a real elliptic parameter. It’s important to note that a complex k2 in general leads to

a complex torus that does not necessarily have any nice geometrical properties.

Thus far we have purposefully ignored any discussion related to a geometric in¬

terpretation of the elliptic function argument u. We consider a point on an ellipse

labelled by P = (x,y) = (?’ cos 0, r sin 0), which satisfies equation (2.5). Without loss

of generality consider a unit ellipse with eccentricity given by

Inserting our point P into the ellipse of equation (2.10) gives

2 A 2 „ Sill2 Ar2 cos2 6 + ——— = 1
\ b2 /

2 A • 2 n sin20\
r" 1 — sm2 0 + ——— I = 1
\ b2 J

r2\ 1- ( 1- ) sin2 0 ) = 1
\ \ o / /

?’2(1 — k2 sin2 0) = 1
1

y/(l — k2 sin2 0)

(2-10)

(2.H)

This process leads us full circle back to the elliptic integral of the first kind given by

o
U = J'r^dP

o
0r do’

J ^(l — k2sm20')

(2.12)
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We have effectively defined the elliptic function argument u from where we started

with the trigonometric arguments. It’s important to understand how unique equation

(2.12) is from standard vector calculus since it has no physical meaning such as area

or arc length [30] . The trigonometric arguments are fun and often useful for the sake

of intuition towards elliptic functions, but analytically we will push them far from

where trigonometry resides. It is extremely important to remember that the Jacobi

elliptic functions are defined in general from the inversion of the elliptic integral of

the first kind, and not the preceding trigonometric arguments.

The derivatives and integrals of Jacobi elliptic functions behave very similarly to

the standard trigonometric functions as well. Equations (2.13) to (2.15) give three

useful examples of derivatives of Jacobi elliptic functions.

—snu = cnudnu (2.13)
du

^cnu = —snudnu (2.14)
du

—-dnu = — k2snu cnu (2-15)
du

A few basic integrals of the elliptic functions are given by equations (2.16) to (2.18).

snu du = — In(dnu — k cnu) + constant

/ cnu du — — arccos(dnu) + constant
J k

I dnu du = arcsin(snu) + constant

(2-16)

(2.17)

(2-18)

The elliptic functions and integrals of Jacobi are in a way a generalization of

the trigonometric functions. They arise often in physics, so naturally it helps to

motivate intuitive and familiar definitions where possible. There are many other

elliptic functions, but lots of them have no possibility of being explained using any

easy trigonometric arguments.
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2.3 The Weierstrass Elliptic Function

The elliptic function of Weierstrass p(z) is given by

, , 1 V ' ± 1 , .

+
mn (z ~ ^mwi — Znwz}2 (2mwi + 2nw2)2 ’

The summation is taken over all integers except for when both indices are zero. The

numbers and w2 are the fundamental half-periods of the elliptic function, and their

ratio is not real. The Weierstrass elliptic function solves the inversion of the integral

z = / dX (2.20)
J y/ 4a:3 - g2x - g3

The invariants g2 and g3 are related to the roots of the cubic in

/(®) = 4x3- g2x - g3 = 4(;r - ei)(x - e2)(;r - e3). (2.21)

Since equation (2.21) is cubic the relationship between all gt and e, is laid out by

relations

ei + e2 + e3 = 0, eie2 + eie3 + e2e3 = — -g2, eie2e3 = -g3. (2.22)

The nonlinear ordinary differential equation

/d A2( W ) = 4u3 - g2u - g3 (2.23)
\da:/

is solved by the Weierstrass elliptic function.

There exists a theorem by Biermann and Weierstrass that extends the usefulness

of this elliptic function even further.

Theorem (Biermann-Weierstrass): Consider the integral

2 -J w (124)
a

where

f(x) = a0x4 + 4ai®3 + 6a2x2 + 4a3x + «4 (2.25)
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has no repeated roots; and let its invariants be

52 = (lo^4 — 4(1103 + 3o|
(2.26)

def , o 3 2 2p3 — (1q(Z2^4 — ^2 — ^0^3 —
Then

( A , v^p'W + |f(«)[pW - + ^/(a)f"(a) ,
x^z) = OH = 2 : „. .2[pW - tJ (“)] -48^(a)^IVW

with p(z) = p(^|52,5s) [33].
The overwhelming power of the Weierstrass elliptic function should now be strik¬

ingly apparent from the preceding theorem. However there does remain a minor

“issue” with the Weierstrass elliptic function. On one hand the use of complex num¬

bers does not put any restrictions on our parameter space, though on the other hand

there do not exist particularly nice expressions for derivatives or integrals of the func¬

tion. This can be viewed as an indirect consequence of the Weierstrass function being

an analytic tool not motivated at all by elementary functions. However, there do exist

particularly nice relationships between the Weierstrass and Jacobi elliptic functions.

We introduce the concept of the modular discriminant for analyzing the two gen¬

eral cases relating the Jacobi and Weierstrass functions. The equation

— 92 ^93 (2.28)

provides the information we need. It can be identified as the discriminant of equation

(2.21). You don’t need to go this far, but it can be exploited to keep the elliptic

modulus and argument real. For the first case we have A > 0, and use ej > 0 e2 >

e3. The relationship

P^) = e3 + —w yr (2.29)
snqwj/, k)

has phase and modulus

co =V^^, k = (2.30)
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Equation (2.29) and relations (2.30) are found in [7] among many other sources.

This transformation proves most useful since the Jacobi elliptic functions have nice

derivatives and integrals.

The more complicated case of A < 0 can be found in [1]. This case has roots

Ci = —a + ip, e2 > 0, and e3 = eq. The constants a and p satisfy a 0 and p > 0.

The relationship
1 + cn(nm, k)pPP = e2 + H2- - — (2.31)
1 — cn(cm;, k)

has phase and modulus

where H> is equivalent to

^ = 2^, k=PPPp.

H2 = ifAf, H2=Ze2-^.

(2.32)

(2.33)

We will use this transformation in chapter 3 to some extent. If it arises that g3 < 0,

then the reduction

= -^2- 92,-53) (2.34)

may be employed.

The introduction of some elliptic function theory from complex analysis allows one

to understand these concepts in a more fundamental context. This unified approach

contains all of the ideas from the preceding sections, but in a clean and concise

manner.

2.4 The Elliptic Functions

Definition (elliptic function): A complex function that is meromorphic and doubly

periodic is called an elliptic function.

The above definition gives a lot more meaning to equation (2.19). Upon inspection

one sees that there is one double pole in the Weierstrass elliptic function. It is also
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clear that the function is doubly periodic with half periods and u?2. Following

these ideas we construct the fundamental period parallelograms.

Figure 2.2: The fundamental period parallelogram for the case of A > 0.

Figure 2.3: The fundamental period parallelogram for the case of A < 0.
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Figures 2.3 and 2.4 give common fundamental rectangles for the Weierstrass ellip¬

tic function with the half periods denoted w and u/. The orientation is chosen differ¬

ently depending on the sign of the discriminant. These fundamental parallelograms

may be translated to become an arbitrary unit cell without any loss of generality.

The Jacobi elliptic functions are constructed by two simple poles as opposed to a

single double pole. This difference in pole structure is fundamentally what sets the

elliptic functions of Weierstrass and Jacobi apart. They both satisfy the following

simple properties.

1. The number of poles of cm elliptic function in any cell is finite.

2. The number of zeros of an elliptic function in any cell is finite.

3. The sum of the residues of an elliptic function, ffiz), at its poles in any cell is

zero.

Much more could be said about elliptic function theory. Texts such as Whittaker

and Watson [33] contain much more information on the subject. It is worth introduc¬

ing the other functions of Weierstrass that are related to his elliptic function. The

derivative of the Weierstrass elliptic function is

p/(<) = -2V'- — (2.35)(z — 2mw1 — 2nwT)3
m,n x 7

The derivative of the Weierstrass elliptic function is also elliptic. Because the Weier¬

strass elliptic function is even, its derivative is odd. The Weierstrass sigma function

is defined by

a(z\ _ TT Y1 — - Ae«/(2mwi+2nw2)+J(£/(2mwi+2nw2))2 m 36)"11 \ 2mwi + 2nw2 /
m,n

The sigma function is not an elliptic function, and it is referred to as pseudo periodic

instead. The filial function of interest is the Weierstrass zeta function given as

^( ) 1
। \ A f 1

।
1

। z 37)
c z — 2mw\ — 2nw2 2mw\ + 2nw2 (2mwt + 2nw2f2

m,n
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Once again the zeta function is not an elliptic function, and is instead pseudo periodic.

The Weierstrass zeta function is the logarithmic derivative of the sigma-function, that

is,

C(^) = (2.38)

The derivative of the zeta function is related to the p function by

= ~^ZY (2.39)

All four of Weierstrass’s functions are formed with invariants g2 and g3. Equations

(2.35) to (2.39) are useful when one must do calculus with the Weierstrass elliptic

function. The relationships are far less satisfying than those of Jacobi’s functions,

but they are serviceable. The necessary mathematical background has now been

provided. The next chapter will introduce the important physical concepts used in

this thesis.
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Chapter 3

Background: Cosmology

3.1 The FLRW Spacetime

Modelling cosmic dynamics involves combining many unique disciplines within physics.

The equations and techniques needed for studying the cosmos are vast and depend

entirely on what perspective your study is focused. Taking the universe on a mas¬

sive scale and attempting to approximate its behaviour is one idea. If we can ap¬

ply the properties of isotropy and homogeneity we arrive at one such model. The

sort of size we are talking about here is something like a sphere of radius 100 Mpc

[28]. It is thought that at this scale the universe feels the same wherever you are

(homogeneity) in space, and looks the same wherever you point (isotropy). These

approximations lead to the FLRW model of the cosmos.

Einstein’s field equations of general relativity play a critical role in the quest

for understanding spacetime. These equations are very complicated in general, but

simplify greatly in certain cases. Special relativity does not include gravity, and has

the straightforward spacetime interval given by

ds2 = c2dt2 — dx2 — dy2 — dz2. (3.1)

A spacetime interval can be thought of as the line element separating events within

a spacetime geometry [18]. When gravitation is included we get what is called the
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general semi-Riemannian spacetime interval

ds2 = g^^x^dx^dx1' , xz = (x^x^x^x3)= (ct,x,y, z), (3.2)

where g^x’) is called the metric tensor, or in some texts it may be referred to as

the metric instead.

Einstein’s equation

- Ag^ = (3-3)

is what solves for the metric given any distribution of energy-momentum. The Ein¬

stein tensor contains information about the geometry of spacetime, and the

energy-momentum tensor contains information about the distribution of stuff,

matter and energy, throughout the universe. The suspicious term involving A brings

out the idea of the cosmological constant, or dark energy. The inclusion of this

term may be interpreted in many ways, and the nature of it is still actively studied.

Note that this equation hearkens to one of the principles of relativity

(the contents of the universe) = (the geometry of the universe). (3-4)

The FLRW universe has the line element

ds2 = —c2dt2 + a2(i) [dr2 + S^^dQ2] . (3-5)

The coordinate system chosen for equation (3.5) is called hyper-spherical coordi¬

nates where r is proportional, but not equal, to the radial distance in general. The

factor Sffr) depends on whether the universe is spatially flat (k = 0), open (k = +1),

or closed (k = —1). The three cases are

sin(r) K = +1

K = 0

sinh(r) k = —1,

(3-6)
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where k is called the curvature constant. The factor dQ is just the standard element

of solid angle on a 2-sphere

dQ2 = dd2 + sin2 0d<f)2 . (3.7)

The real intrigue conies with the ever important scale factor a(t). The expan¬

sion or contraction of the universe is mapped by a(f), and in general can be a very

complicated function with no closed form. We can regard the scale factor as the size

of the universe. Note that the units of length are carried by a(t), and not the radial

coordinate r.

3.2 Distance and Time

There are are many different choices for distance and time measures in cosmology. The

proper time between two events is the elapsed time measured in the reference frame

where they occur at the same place. The time on one’s own wristwatch is recording

their proper time. The proper distance between two events is the distance measured

in the reference frame where they occur at the same time. These two measures are

very important, but not always convenient. Suppose a light signal is sent out from

one observer to another. The received signal will be redshifted if the universe is

expanding. The cosmic redshift z is given by

^(f em.

such that

1 + 2 = ^-. (3.9)

Here a(tob) is the cosmic scale factor at the time the signal is received, and a(tem)

is the cosmic scale factor at the time the signal is emitted. This follows from the

definition of radial redshift between two signals

1+ ^ = ^, (3.10)
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where A is wavelength. More details on redshift can be found in Hogg [19].
When we wrote equation (3.5) we used what are called the comoving coordi¬

nates (r, 0,0). These spatial coordinates of cosmological objects do not change with

time, and therefore the comoving distance is constant with the expansion of the

universe. If you consider a purely radial distance between two distant objects

ds = a(t)dr, (3-11)

then the proper distance may be found by integrating

dp^ = a(t) r. (3-12)

Thus the recession speed between the objects at time now to

vM=dp(Q (3.13)

becomes

vp{to) = Hodp(to), (3.14)

where the Hubble constant H„ is the Hubble parameter

= 04 (3.i5)
a(t)

evaluated at time now to [28]. Note that differentiation with a dot is with respect

to cosmic proper time t. Equation (3.14) is a statement of Hubble’s Law, and is

therefore very important. Hubble’s Law is the observation that galaxies move away

from the earth at a speed proportional to their proper distance.

Sometimes it is not convenient to work with the cosmological proper time t , as we

have done thus far. Consider a photon’s trajectory with only radial motion

ds2 = 0 = —c2dt2 + a2^d.r2. (3.16)

For a photon emitted at time te and observed today (t„), the radial coordinate is

ro~re = —cJ (3.17)
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By convention we set

ro = 0. (3.18)

This null geodesic leads to a very powerful definition. Let the conformal time r] be

related to the cosmic proper time by

cdt = adg. (3.19)

The distance rea(t) is called the particle horizon, and is the furthest proper

distance a photon may travel to today from where it was emitted. These ideas of

distance and time are only the very basics of cosmology. Further discussion can be

found in Ryden [28], Hogg [19], Lineweaver [23], Piattella [25], and many others.

3.3 Cosmic Dynamics

We seek to understand how different combinations of matter, dark energy, radiation,

and spatial curvature effect the behaviour of an FLRW universe. Friedmann derived

the Friedmann equation

~ , . 8x6' . . Ac2 nc2 .W = + TW (3.20)
id- 3 a (t)

from the Einstein Held equations. The third term is related to the spatial curvature

of the universe. The energy density of the universe e(t) is unsurprisingly present in

equation (3.20) as well. We will need more information in order to properly solve for

the expansion history of a given isotropic and homogeneous universe. We define the

critical density
3c2

-cW = (3.21)
87FCz

corresponding to a spatially flat universe. Note that the energy density is defined

component wise

s = (3.22)
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for any x components. We can thus normalize energy densities accordingly by defining

the dimensionless energy density parameter

W) = 44 (3.23)
^c\t)

If we combine A into s(i), and then rewrite equation (3.20) with dimensionless energy

parameters
2

Evaluating equation (3.24) at time today leads us to a relationship between the cur¬

vature of the universe and its contents

a- A2
- = ^(QO-1). (3.25)
a2 c2

The idea is that measuring the curvature of the universe today is probably impossible,

but indeed we can find it if we have ideas for Ho and Qo.

The first law of thermodynamics

dQ = dE + PdV (3.26)

applied to our expanding universe leads to another equation. Assuming heat does

not flow into or out of our universe (dQ = 0), we have

E + PV = 0. (3.27)

Take the universe to be a sphere of volume

4V(Q = ^r3a3(t\ (3.28)
o

and internal energy

E(Q = V(Qe(Q. (3.29)

We now get the fluid equation

e(Q +3^[£(t)+ P(^ (3.30)
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The rest of the details can be found in Ryden [28]. The comoving radius of the sphere

has corresponding proper radius

Rs = a(t)rs, (3.31)

as seen in equation (3.12). We approximate our universe to be a perfect fluid since we

can largely ignore the internal stresses of our cosmological components. This means

that the pressure is related linearly to the energy density by the following equation

of state
P(t) = we(tf (3.32)

where w is called the equation of state parameter. The value of w for a partic¬

ular type of fluid depends on what it is comprised of. The most common types of

cosmological fluids are:

dust, w — 0; (3.33)

radiation, w = 1/3; (3.34)

dark energy, w = —1. (3.35)

Here dust is non-relativistic matter, radiation is photons and relativistic matter, and

dark energy is the cosmological constant. You sometimes see some alternative theory

fluids such as:

quintessence, w = —2/3;

strings, w = —1/3.

(3.36)

(3.37)

Modelling information corresponding to quintessence and strings can be found in

Steiner [31]. The fluid equation (3.30) together with the Friedmann equation (3.20)

forms the acceleration equation

«(0
a(i)

4x6/ , . Ac2
+ + V (3.38)
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See Ryden [28] for details. The equation of state (3.32) allows us an explicit analytic

solution to the fluid equation (3.30)

(3.39)

where e0 is just s(a(to)), and considered to be the energy density at time now. We

have the tools to describe the expansion history of many interesting model universes.

We often want to use a dimensionless scale factor such as

a= —. (3.40)

This together with the energy density parameters provides the Friedmann equation

in dimensionless form

(3.41)

which includes dark energy, matter, radiation, and spatial curvature. Writing Fried¬

mann’s equation this way was made possible by having a solved fluid equation. This is

commonly known as the generalised ACDM model because today’s universe is thought

to be primarily comprised of dark energy and cold dark matter. The initial density

parameters are used to create different model universes assuming some value of Ho.
Equation (3.41) will be of more use to use in terms of conformal time, so using the

chain rule of differential calculus

1 /dd'
d2 \ dt y

2

= fiA + a3 +"F
^C,O

1 /dd dr]'
d2 \ dr] dt.

2

= Qa + a3 + a4
^c,o

1 / dd 1' 2

= Qa + d4
^c,o

a2\dr] d , I d3 d2
1 dd' 2

= Qa ^m,o
I

^r,o , ^c,o
d4 \di] y

“T d3 I d4 d2

— Qa^ T + ^r,o +

(3.42)
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We write

^'(j/)]2 = Qa [aM]4 + ^c,o[a^)]2 + ^m.o [«(??)] + ^r.o- (3.43)

Note that differentiation with a prime is with respect to conformal time 77.

3.4 General Solution for FLRW Scale Factor

This section will finally combine ideas from all of chapters 2 and 3. Special functions

are used to solve for an analytical solution to equation (3.43). This will provide a

sturdy platform for which my results are obtained.

Let us take a warm up lap before we engage in the real violence of solving equation

(3.43) explicitly. There’s a fairly simple model universe that will build into something

very intriguing in chapter 3. We take our universe to be spatially flat, and to contain

only matter and dark energy. The Friedmann equation (3.43) becomes

[^(t?)] 2 = QA [«(??)] 4 + ^m,o [a^)] . (3.44)

Integrating (3.44) we have

"0Ho dU
7? = / / =■ (3.45)

a 0 T )

The solution to (3.45) is provided in terms of Jacobi elliptic functions by Sazhin et

al [14]

„(,) = ( , (3 46)
\ / \/3(1 + cn(u??7, L)) — (1 — cn(a?77, k))

where the phase and elliptic modulus are

(3-47)

We have a universe that seems to represent ours well if we set Qmo = 0.32, and

Qa = 0.68 [5],
The addition of radiation and curvature complicates the situation, but not gravely.

It might be realistic to add small amounts of radiation and spatial curvature to
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models. Some may also find pedagogical significance in many wild combinations of

cosmological fluids. Steiner [31] employs the Biermann-Weierstrass theorem (section

2.3) to solve equation (3.43) in terms of Weierstrass elliptic functions. The works of

Edwards [10], and D’Ambroise [9] provide other solutions. Following Steiner’s [31]
approach we have

= oTTfA—lo 12 icT-o ’ ^3'48)

where

^ = ^fj\g2,g^, (3.49)

with

1/2 = + TZ^c,o> 1/3 = T^A^r,o^c,o nip ^c,o- (3.50)
1Z O IO Z1O

The argument 7) is the rescaled conformal time

When dark energy is included in this model there may be a finite limit to conformal

time such that the scale factor a —> 00 as 77 —> 77^. Steiner [31] provides a crafty way

to calculate this limit using

p(doc) — 2 T ^c,o (3.52)

or

p'(^oo) = (3.53)

More limiting expressions and values may be found in Steiner’s paper [31].
The results of this section will serve as the primary framework for this thesis to

be built upon. Equations (3.46) and (3.48) provide the opportunity to calculate and

plot a wealth of physically important quantities. The nature of elliptic functions

and integrals also allows for great mathematical discussion. We have acquired the

necessary and sufficient background to move on to results.
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Chapter 4

Results

4.1 Model Solutions

The general result of equation (3.48) has a remarkably simple form. The introduction

of conformal time has allowed for such a solution to exist. Actually the conformal time

plays the role of what’s called a uniformizing variable of the mathematical equation

y~ — T T T A3J’ T A4, (4.1)

which has lead to the general solution of the scale factor. This is worth noting because

although x is a four-valued function of y, and y is a two-valued function of x; x and

y are one-valued functions of conformal time r/ [33] .

A fairly annoying problem does exist with the modelling described thus far. We do

not have the ability to calculate cosmological proper time in terms of conformal time.

This is an issue because it would be very convenient to have a parametric model that

includes both a(?/) and t(y). This would allow for a more comprehensive overview of

Friedmann models. From the definition of conformal time we form the integral

0

We introduce dimensionless proper time,

t = Hot (4.3)
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and with our dimensionless and rescaled variables t, 77, and a we write

= / ’4)
o

Calculating the integral in equation (4.4) would be one such way to solve for a

parametric model of scale factor and proper time. It’s important to remember that

this is all within the context of having the parameters Ho. £1^,0,^, and Qr>o. The

choice of these parameters has great impact on what form the solution takes. The next

section will begin the approach to solving for proper time as a function of conformal

time.

4.2 The Spatially-Flat ACDM Model

An important special case of the FLRW universe is where we have only matter (bary¬

onic and cold dark) and dark energy (the cosmological constant), that is to say,

QCjO = QrjO = 0. It is predicted by both the WMAP probe [24] and more recently

the Planck Collaboration [5] that the universe is primarily comprised of only these

two substances. The equations still involve elliptic functions despite the simplicity.

Equation (3.48) simplifies to

where the invariants of p(f)) are

.92 — 0, 53 — - QA^O (4-6)

This may be converted to Jacobi elliptic functions as in equation (3.46).

Surprisingly there is a well known solution for a(t) in this case. This solution also

has the nice property of being invertible so that t(o) may also be explicitly given.

The form used by Ryden [28] reads

2t (a) = —;= InV 7 3^Qa (4.7)
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This allows one to insert an expression for a(?y) to obtain Inserting equation

(4.5) into equation (3.7) leads to

2 W.,, \/W[p®]-s/2 + \/i +
o V 04

(4.8)

Thus we complete a parametric solution determining the expansion history for the

flat ACDM model.

Up to this point nothing new has been done. Another way to find an equivalent

flat ACDM solution is by solving the integral in equation (4.4). We write

<«>
0

and recognize that this can be solved from the formula

, . , f du , r<T(u — u)1 .
P O’) / ~T\ 7T=log / , 1 +MH 4.10J pw) - pO’) Lrr(?/ + ?,)J

provided by Abramowitz and Stegun [1]. Since equation (3.52) in this case reads

p(??oo) = 0 we may write

=
^m,o / dr/

4 J p(^) - pfe)
0

*0?) - cQ) -^)
^0) + +

(4.11)

(4-12)

where equation 2.90 has also been used. Equation (4.12) is a special case of a solution

given by Lemaitre [21, 22].

It’s not clear how equations (4.12) and (4.8) are related. One might expect that

some identities could be used to prove that they arc equivalent. Attempts at this have

been unsuccessful thus far, but that does not mean that they are not the same to some

degree. It’s reasonable to believe that equations (4.12) and (3.8) are at least equal in

the physically significant region r/ G (O,^). This is based on the simple assumption

that no incorrect mathematical formulae have been applied in either case.
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For an example we consider a universe with parameters Q\ = 0.6847, Qm>o =
0.3153, and Ho = 67.36 km s-1 Mpc- provided by Planck [5]. We compare results

from equations (3.12) and (3.8) with a purely numerical solution.

Figure 4.1: Three methods for plotting the Planck universe. Equation (4.12) is the

Lemaitre solution, equation (4.8) is the standard solution, and finally a numerical

solution curve is shown as a sanity check.

Indeed both equations (4.12) and (4.8) produce indistinguishable data and there¬

fore bear some equivalence. Planck [5] lists the age of the universe as 13.797 Gyr. The

data from figure 4.1 is very close at 13.802 Gyr. This difference is extremely small,

and it falls well within the error bars provided by Planck’s data. The significance of

this should be taken with a grain of salt. The data provided by Planck [5] is extremely

sophisticated, and is only being used for a basic demonstration.
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4.3 The Hyperelliptic Integral Method

Thus far all discussion has been focused on the functions of Weierstrass. It would be

reasonable to instead convert equation (3.48) into Jacobi elliptic functions, and then

integrate. We look at the matter and dark energy only universe again as an example.

The modular discriminant provided by equation (2.28) is negative for this case. Thus

the transformation formula will be equation (2.31) with the appropriate choice of ei,

e2, and e3. We need H,. which is just related to e2 in this case

H2 — — y/3e2. (4-13)

Now the elliptic modulus is simply

l~i- 3e2 y/2 + \/3
V 2

“ 4^2 “

2
(4.14)

Invoking the transformation equation (2.34) let’s us write the p function as

— (1 — cn(w7), k)) + y/3(l + cn(uu), k\)
1 — cn(Jjf/, k)

with a real phase w

w = 2H}/2 = 31/4e2/2. (4.16)

What’s left is to solve for e2 and write down the scale factor. The modular invariants

are

1
~ — i6^a^TOjO-

The cubic of (2.21) now gives

62 = (4.18)

After a little algebra we write equation (4.5) as

a® = ( , (4 1£))
\ Qa / y/3(l + cn(w7/, k)) — (1 — cn(w7;, A:))
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which has employed equations (4.15) and (4.18). The phase and elliptic modulus are

T = fe= (4.20)

This is just equations (3.46) and (3.47), which are already known. To integrate

equation (4.19) it would be convenient to break it up a little. Partial fractions yield

/q X1/3/ 5/3 1 X
= ( = ) | tv - I , (4.21)

\ Qa / \1+ 7011(^77, k) + 1/
where

(4.22)

The integral equation (4.4) is now

We split up the integral equation (4.23) as

Hj)) — + J■2^ (4.24)

where we have a rather hard integral

(4.25)

(4.26)

(4.27)

but Ji poses serious problems. Byrd and Friedman [2] unfortunately do not have

quite the correct solution for J^. However, the authors do provide sufficient tools for

treating hyperelliptic integrals regardless. The square identity

cn2(<(>, k) = 1 — sn2(<)>, k) (4.28)
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can be used to split up

'q h1/3 xA F f'1 1\ vj / d. J 1 — 72 [Jo 1 — ^jsn^T)', A)2
cn(ufi\k) , ,

Jo i - ^sn^rik ky .

(4.29)

Consider the case fj 4sn-1(l, k). We want to write Ji in Legendre form to find

the solution, and thus we need a suitable substitution. We note that sn^^', A),

dn(cv?7, A:), and cn(uuy, A’) are all positive in the current regime. The substitution

u = sn^difj', k)

du — d: cn(m^, k) dn(w?y, A) df]'

cn^rj'. k) = a/1 — sn(T?7', A:)2 (4.30)

dn^if, A:) = ^/1 — A2 sn(cc7y, A’)2
. du,

dn —
dj 5/(1 — U2)5/(1 — A2//2)

may therefore be employed. This leads to the following integrals

Q \1/3Q Lm,o \

J i

(i

^3 1 r p 1
du

1
5 , =du ,-^u^l-Vuy J

where = sn(d)77, k). The integral has solution

/0 \C3 a/3 1( / -2 \

i—~~S n(sn(^/,fc). 9' k)
\ SZa / 1 — 72 w \ y2 — 1 )

7 / 72 — 1
2 y 72A:'2 + A2

— ldn(h>7, A’) + y/72A2 + A2sn(w?7, A)

^/72 — ldn(w7), A) — \/72A2 + A2sn(w7), A)

(4.32)

This is where the hyperelliptic method becomes more interesting. The value of

reaches a maximum of 1, and then decreases back to 0. This is true because the

arguments A, dj and f] are all real. This is an issue because cn(w?7, A) actually becomes
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negative in this regime. This means that in the case r/ 4sn 1(l,fc) we change the

substitution to

u = sn^fj', k)

du = & cn^’//, k) dn^^, k) dr/

dudr/ = —
Cj ^(1 — u2y(1 — k2u2}

cn(th?y,A:) = — y/l — sn(ch?j', k)2

k) = a/1 — A:2 sn^i/, k)2

(4.33)

Now Ji splits up as

j _pm,oV/3 Ti i r r1 i
du1 qa / i - 724Jo a - yyj -
u

r 1
Jr (1- -ky

r 1 7 1Jo (i -^yy -ky J
which is really just

/0 h1/3 1 F f1 1
t I ^Lm,o \ y ° 1 n I 1 z^1 — I TT I 7 O~ 2 / 2 / = i UM

\ qa / i - Vo (i - ^«2)T(i - n2) T(i -ky
r । ,

/o y^yyr^y(i-ky u

r1 1
/ 1- 7 / s , -du .

Jo (l-^n2)^!- W) J

(4.34)

(4.35)

The solution of Ji in this case is

, ymy/'i ^3 1 j k 72 \ / 72 \Jr = 7T- ; 2n T 7’^ “ n suy,k), — k
\S2a/ 1 — 72 w I \72 — 1 J \ 72 — 1 /

7 / 72 — 1
2 V J2k'2 + k2

T72 — ldn(h>7, k) + \/^2k2 + k2sn(Jf), k)
T72 — ldn(w?j, k) — y/^k2 + k2siyfj, k)

(4.36)
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Now putting everything together we have

/Q X1/3 i ( / -2 X
7 2“) n( sn(^,A:), —

7 / 72 — 1 / — ldn(h7, k) + y/^k2 + k2sn(d)fi, k)
2 y ^k’2 + k2 _ \y/72 — ldn(w7/, k) — y//72I'2^P7)2sn(^^ k)

(4.37)

and

/0 X.1/3 /3 I f / 2 \ / 2 \=(77^ ) 7 i~Vn(~ T’M “ n[sn(77)7’), — -,AJ\ Ua / 1 — 72 ~ I \72 — 1 / \ 72 — 1 /

72 — 1
^k12 + k2

y/72 — ldn(77 k) + y/^k2 + fc2sn(7?7, k)
y/72 — ldn(7?7 k) — k)

(4.38)

Equations (4.37) and (4.38) are certainly a lot more cumbersome than equation

(4.12). It’s possible to generalise this method to include radiation and spatial curva¬

ture. but doing so would be rather sinful. In the next section we will use the functions

of Weierstrass to do the same task with much less effort.

It is still interesting to make sure equations (4.37) and (4.38) agree with our work

from the previous sections of this chapter. Consider two initial states where the first

has dimensionless energy parameters Qm.o = 0.10 and Qa = 0.90. The second we

choose to have QmiO = 0.90 and Qa = 0.10. We use equation (4.12) to benchmark the

new expression.
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Flat ACDM Solution Comparison

t(n)

Figure 4.2: The hyperelliptic solution Jacobi versus the Lemaitre solution Weier-

strass.

Figure 4.2 suggests that the hyperelliptic integral method certainly works for

obtaining cosmic time. This method could be a huge asset for problems where you

would like to work with standard integrals and functions with intuitive properties.

4.4 Generalised Model Solution

It would be excellent to generalise to include radiation and spatial curvature. We

can follow the technique used to get equation (4.12) for this general model. Using

equation (3.48) in the integral (4.9) we have

= y
0

2^m,o[p(^?) \/^r,oP (’l)
2[p(??) -

This can be split up into two integrals such that

(4.39)

^0?) — A + A; (4.40)
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where
f 12^C,J

4 J 1^) - T^c,J2 - |^r,o^A
and

o
The denominator can be factored

[p(0) - ^^c,o]2 - |^r,o^A

(4.41)

(4.42)

[p(^) - ^Qc,o] - ^r,0^A = OO?) - aXpfa) - /3), (4.43)

where

Ct — &c,o + ^^r,o^A
14 4 (4.44)

/3 = ^c,o

The integrals (4.41) and (4.42) can now be split up via partial fraction decomposition

h.45)
0 0

and

T -
-1 / 1." , Blh£ / /V (A AR}

2 2 >/QA J — a^ 8 J p(t?) - (3 11 '

0 0

The integrals for I2 are simply logarithmic, and are handled easily. The integrals for

/1 have the same form as (4.11), so we get a similar result. We combine the results

where

(4.47)

j = {a,^}, rj E {x\^x) - j =0}. (4.48)

Equation (4.47) has realised a parametric solution for any Friedmann universe

with dark energy, matter, radiation, and spatial curvature. It’s clear that for the case

where radiation vanishes, equation (4.47) turns back into equation (4.12). What’s
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not clear is how the disposition of the roots in (4.48) impact the overall behaviour of

the solution. We first want to know the number of solutions to an equation of the

form

f(~) = c, (4.49)

where /(:) is an elliptic function and c is an arbitrary complex constant. This is

simply determined by the order of the function, which in our case is two [33]. These

solutions are repeated modulo 2uq, 2w2 from one unit cell to another. Where a unit

cell is just the fundamental period rectangle, or some translate of it. This follows

from the double periodicity of elliptic functions.

A great check would be to add a small amount of radiation to the model provided

by Planck. This correction is realistic since we know there should be a small amount

of radiation in the universe today. At radiation matter equality we have

Vm,o^ = (4.50)
“eq

from equating the energy densities [25] . Thus we can rearrange to get

(4.51)

We can substitute the ratio of scale factors for a corresponding redshift

= 7^. (4.52)
J- । %eq

The point of equation (4.52) is that Planck [5] has a listed value for zeq that we

can use. They list zeq = 3402, which together with = 0.3153, corresponds to

Qr,o = 9.265 x 10-5. Including the radiation will lead to a slight positive spatial

curvature of Qc>0 = —9.265 x 10-5. We plot the analytical values against numerical

calculation for scale factor versus proper time. The Hubble constant, matter density,

and dark energy density are the same as in figure 4.1.
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Full Planck ACDM

Figure 4.3: Numerical data versus analytical data for the full Planck universe.

Figure 4.3 suggests that Equation (4.47) has great agreement with numerically

simulated results. The age of the universe is calculated to be 13.797 Gyr using

equation (4.47). This value is in exact agreement with the data set provided by

Planck [5], and the numerical data.

It’s worth discussing how choices of the roots ra and rp in equation (4.48) affect

equation (4.47). Equation (3.52) suggests that ra = and indeed this is true.

These values are calculated independently and found to be r„ = = 4.329. The

root on the other hand has value = 4.451, which does not seem to be physically

significant whatsoever. It’s critically important also to realise that these roots are

only unique modulo 2cci, 2a?2 from the periodicity of p.

We can survey the dependence of equation (4.47) on the choice of ra, and rp.
Given ^2, and 93 we calculate ei, e2, and e3 from equation (2.21). The values of

the half periods can be found using p(uq) = p(w2) = e2, and p(w3) = e3. In

the case being currently considered the periods have values 2wx = 6.584 + 3.800/,
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2w2 = 6.584 — 3.800/, and 2^3 = 13.17. This set of periods forms a fundamental

period parallelogram as in figure 2.3. By adding an arbitrary factor of the periods to

and r^, one can probe how equation (4.47) responds. In general this looks like

r' — rj + 2twi + 2nw2 + 2rw3 n,m,r E Z, (4.53)

where j = {a, /3}, and r' = rj mod(2nwi, 2mcv2). Through testing with the model

used for figure 4.3, we find an interesting result. Adding a shift to the roots rj seems to

have an effect on the values of This effect is that sometimes the shifting process

adds an imaginary offset to t(^). The offset can be eliminated by remembering that

time should only be a real number, and not complex. Therefore it’s reasonable to take

the real part and ignore any imaginary contribution. The occurrence of this offset

makes sense intuitively because equation (4.47) depends on the Q and cr functions

which are only quasi periodic. Why the offset is purely imaginary is unknown, but at

least a nice coincidence. We insist that this evidence is purely exploratory, and that

a mathematical proof would be necessary for general conclusions. It’s reasonable to

ignore complex roots where possible, since our ideal range of 77 is purely real anyways.

Though there may be toy universe models where it is not possible to avoid a complex

set of roots rj.

Consider a model where Qa = 0.1, QmjO = 2.6, Qr.o = 0.5, and QC)O = —2.2. This

example is chosen to highlight the case where the universe is cyclic, and therefore

certainly has no limiting conformal time 7]^. We can verify this by plotting the scale

factor versus the cosmic proper time.
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A=0.10, CDM=2.60, rad=0.5

1.5

0.5

-0.5

t(n)

Analytical
Numerical

Figure 4.4: Numerical data versus analytical data for a collapsing universe with

matter, dark energy, curvature, and radiation.

Figure 4.4 has a number of features that stand out. The parameterized solution

takes the form of a prolate cycloid, and hence has some very nonphysical behaviour.

Having the cosmos become negative in size while travelling backwards in cosmic

proper time is not going to be physically realizable. The periods of p in this case are

2u>i = 4.647, 2w2 = 4.415?, and 2^3 = 4.467 + 4.415?. This set of periods forms a

fundamental period parallelogram as in figure 2.2. The roots Vj needed for are

complex this time. They take on the values = 3.252+2.207?, and = 4.168+2.207?

modulo the periods. Once again there is an imaginary offset for the values of cosmic

time, but we simply take the real part.

Equation (4.47) has very successfully been used in figures 4.3 and 4.4. The log¬

arithmic parts of £(??) have the absolute value taken to reduce any headache caused

by imaginary values. In order to eliminate the headache entirely, it’s reasonable to
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rewrite equation (4.47) as

£(n) = —y= In2^ ~ /3
(4.54)

The idea behind equation (4.54) is that now there is no imaginary offset in given

any choice of rj. This is not a necessary change, but it does make calculation a little

more concise.

4.5 Redshift Drift

When the scale factor of the universe increases, the way it continues to change changes.

This fact is very clear from the strong nonlinearity of the Friedmann equation. Since

the cosmic scale factor is what defines the cosmic redshift, a drift in this redshift may

therefore be detected. Consider a light signal emitted at conformal time r]em from a

galaxy at conformal distance y away. The signal is observed at conformal time r/ob so

Vob ~ X = Vew (4.55)

and thus

di]oh — (4.56)

The cosmic redshift is found via equation (3.9)

. a(tob) dtob
f । / \ y *

^\yem) ^em

Switching to conformal time we have

dtob _ a^o^dy^
dtem em em

and now

1 । ^(tob) a^TJob)
a^em) a(r]ob - y) '

Redshift drift is taken to mean

dz . ^(j'ob} ^(^em)

(4.57)

(4.58)

(4.59)

(4.60)
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In terms of conformal time this becomes

=
- x) f .

a(h~\) a(d-x)a^-xY

Recognizing that from the chain rule of calculus

da(rY _ da^ dr] _ a'^)
2

dtob dr] dtob a(rf) ’

equation (4.61) becomes

i = f4 63)
a^a^r] - x) [a(h - x)]2

We can use dimensionless quantities

I =
^~x) z464)

- x) [«(h - x)]2

Defining a conformal Hubble parameter

= (4.65)

we write equation (4.64) as

;=
MW) - WW - O (4.66)

- X)

Equation (4.66) gives us information for the redshift drift as a function of the ob¬

server’s conformal time ?} and the conformal distance y. It’s common to take the

observer’s time as time now, and then equation (4.60) becomes

z — (1 + z)Ho — H(z), (4.67)

where

H^z) = Ho [ Qi>o(l + 1 (4.68)
i

is just the Friedmann equation in terms of redshift. This simplification is of interest

to the experimental community [13, 17]. This is because the redshift drift of an

object will not change much over the course of even a century. Therefore matching
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astronomical data to equation (4.67) would allow for a model-independent verification

for the ACDM model. This is extremely important because our current understanding

of the cosmos depends on the modelling of other physics, and so those models must be

exactly correct for our cosmological model to be without error. The original evidence

for an accelerating expansion of the universe [26] depends on our understanding of

supernovae. The data used in this thesis for modelling “our cosmos” [5] depends on

our understanding of the cosmic microwave background. The resulting values for the

cosmological parameters from these two methodologies are not consistent. Therefore

a model independent avenue for obtaining data is of such great significance.

Equation (4.66) is still of interest however. We do not measure scale factor di¬

rectly, but instead redshift. Therefore any dynamical information involving redshift

is significant. Furthermore, we can also verify easily that equation (4.67) is a suit¬

able approximation for astronomical surveys. Consider comparing the redshift drift

of many objects at two different times. Select one time to be time now and the other

time to be after a time period “big to us but small to the universe” such as 100 years.

The dimensionless redshift drift is approximately

J® ~
We can compare the exact equation (4.66) with the approximate equation (4.69) by

plotting redshift drift versus redshift.
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Figure 4.5: Comparison of exact redshift drift and a realistic approximation.

The difference in the value of redshift drifts over the 100 year period is

f/ioo) - i{x, r/o). (4.70)

Figure 4.5 is the well-known graph that is often plotted by equation (4.67). Liske

et al. have a similar plot with slightly different universes [13]. Equation (4.70) may

be plotted to show the magnitude of change in the redshift drift over the 100 year

interval.
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Figure 4.6: The order of magnitude for the change in redshift drifts over 100 years.

The parameters used for figures 4.5 and 4.6 are once again the Planck collaboration

2018 data. It's of no surprise that over a 100 year period of time the redshift drift

for any object we could detect would not measurably change. This gives astronomers

a lot of leeway in measuring redshift drift. This measurement would be important

because we would gain a model independent verification of the ACDM model via

equation (4.67). Take for example an object at a redshift at time now of zo = 7.27.

Using our exact expressions for cosmic time, redshift, and redshift drift we can track

the evolution of the detected signal over time.
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Figure 4.7: Redshift drift versus redshift for an object in our universe. Redshift

drift is increasing with cosmic time for all times, but redshift may be increasing or

decreasing with cosmic time for some times.
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Redshift
Drift

Redshift

Figure 4.8: Redshift versus cosmic time of an object in our universe.

Figure 4.9: Redshift drift versus cosmic time of an object in our universe.
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The importance of figures 4.7, 4.8, and 4.9 is largely related to our perception

of signals from distant objects in the universe. At time now there may be objects

that have either increasing or decreasing redshift relative to us. This is a direct

result of the high nonlinearity of the Friedmann equation. Every object with distinct

redshift today conveys a unique depiction of the expansion history of the universe.

Thus detecting signals from many redshifts is necessary to understand the nonlinear

expansion completely.

This section has demonstrated that an exact solution to the standard ACDM

model is useful for plotting a wide range of dynamic quantities. In figures 4.7, 4.8,

and 4.9, equation (4.54) was used to calculate cosmic times, and scale factors were

calculated using equation (3.48). These expressions have provided data that compares

well with numerical analysis and plots provided by literature.

4.6 Limiting Cases

A popular theme is physics is to see whether or not a more complicated model can be

approximated down to a more simple one. A famous example is deriving Newton’s

law of gravitation through the formalism of general relativity. This section highlights

agreement between equations (4.54) and (3.48) versus other more simple known ex¬

pressions. For convenience I copy down the general Friedmann model equations

— 12^c,o] — (f?) /.

_ .4m = —oTTA—
Io 12

—mo ’ (4-71)

where

pO?) = (4.72)

with

52 — ^A^r,o + ,q^c,o> 53 — „^A^r,o^c,o Q^o’ (4.73)
1 U TO TO
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where

and

j = {a^}^ rj G - J = 0},

/5 = ^c,o 2 \/^r,o^A-

(4.74)

(4.75)

(4.76)

4.6.1 Dark Energy and Matter

If radiation and curvature are discarded then p2 = 0. g3 = -^Qa^o,a = /3 = 0,

and rj 6 {x|p(;r) =0}, so we can say rj = fjoo. Thus the model is exactly what was

discussed in section 4.2.

4.6.2 Dark Energy, Matter, and Spatial Curvature

If radiation is discarded then the scale factor becomes

a(^) = 4[p01) - ^^e,0] ’

where

p(^) =

with

The cosmic time is now

t(^) = In

where

^111,0

ch = — Q2 , ch = — —PaQ2 - — Q3 .
^2 c5°’ 16 m,o 216 c’

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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and

a — j3 — —Q, (4.82)

Note that rj is not just because it’s possible that the universe is cyclic. It was

shown in section 4.4 that you do not have a limiting conformal time provided enough

positive spatial curvature. Instead we denote this potentially complex root as ?%.

1 f i; I hi
4 pWI

<7(77 ~

^0? + 7?J + 27Xfc) (4.83)

This model is derived by Lemaitre [22] .

4.6.3 Matter, Spatial Curvature, and Radiation

Elliptic functions are not needed in any case without dark energy. The scale factor-

can still be found from equation (4.71) using some identities. The cosmic time is then

just the integral of that result; equation (4.74) will clearly not tolerate vanishing dark

energy. There are three sub cases because the spatial curvature term may be open,

flat, or closed. We start with the scale factor for all three cases

— ~ \/^r,oP (i))
= 4T7X o - ’ (4-84)2[PW - ^QC)O]2

where

pO?) = (4.85)

with

92 = 93 = (4‘86)

The modular invariants are special in this case and identities from [1] lead to
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The scale factor in each case is

Integrating the scale factor provides the cosmic time

Qc,o > 0

Qc.o = 0

Qc.o < 0.

(4.88)

Qc,o > 0

Qco = 0

Qc,„ < 0.

(4.89)

The positively curved case may be used to highlight one of the important features

of dark energy. You may have dark energy in a model without the model expanding

forever. We consider the parameters used in figure 4.4 but compare the analytical

expressions to ones without any dark energy.
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Figure 4.10: The “stalling” or “loitering” effect of dark energy highlighted with a

cyclic universe.

Figure 4.10 clearly highlights that dark energy is sometimes not strong enough to

overcome strong positive spatial curvature. Equations (3.87) and (3.88) can be found

in Ellis et al [12], If radiation is excluded there is a nice expression for the amount of

dark energy required to stop a universe from collapsing. Carroll [3] provides

0 A ^m,o A 1

^m,o > 1-
(4.90)

Equation (4.90) is a nice to have when looking at the matter, curvature, and dark

energy model discussed in section 3.6.2. Another special case that is useful for com¬

parison is where we get rid of radiation and only have matter and spatial curvature.
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Figure 4.11: The “looping’' effect of radiation compared to matter only.

Figure 4.11 highlights the effect of radiation on model with strong positive spatial

curvature. Without radiation the “loops” in figure 4.10 disappear and leave us with

the well studied collapsing universe without radiation or dark energy. Clearly the

parametric solution for the Friedmann equation does not always uniquely determine

the scale factor at all cosmic times. Indeed one has to use physical reasoning to

discard bad mathematical components of a model. For example you would probably

interpret figure 4.10 as having models where after some “big bang” at time zero the

universes expands to some maximum, and then subsequently there is a “big crunch”

later at some other time. The other information is most likely entirely unphysical

because the FLRW metric is not valid in the limit as the scale factor becomes zero.

That is to say we do not have information about the cosmos at these critical points.

It would be interesting to have a cyclic universe, or even one where the size becomes

negative as cosmic time flows backwards. One could also argue that these collapsing

models are unphysical because our own universe does not seem to entertain such
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parameters.

Other special cases become quite simple, and are found in cosmology texts such

as Ryden [28] . The following chapter summarizes and concludes the results obtained

in this thesis.
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Chapter 5

Conclusion

Elliptic functions have been used to model problems in physics for at least over

a century. Many systems that exhibit strong nonlinearities have elliptic function

solutions. It has been known for a long time that the Friedmann equation including

cosmological constant admits this type of behaviour. What was not known was how

other quantities including cosmic time could be calculated from these expressions.

This thesis has provided insight into this question. An exact parametric solution

to the Friedmann equation including matter, spatial curvature, radiation, and dark

energy was presented. This solution was then used to calculate other important

dynamical quantities for the cosmos as we understand it today. The elliptic function

technique has been shown to be a powerful tool for mathematical physicists.

It’s absolutely worth discussing how the change in computer technology has im¬

pacted special function research. Tables of special function values were your only

hope before computer algebra systems became widely available. This would have

artificially limited your parameter space to one where you have a set of given values.

One can calculate much more with modern programs such as Maple. This has made

special functions much more reliable in the same way that numerical analysis is now

much easier to do. The combination of both special function techniques and numer¬

ical analysis allows researchers to be very confident when solving difficult nonlinear
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systems. Relying on a single technique to provide raw data is never optimal and can

sometimes cause erroneous results to be published. In sections 4.3 and 4.4 I found

that the parameter space of the standard Friedmann universe was fairly complicated.

If solutions had simply been written down and not actually used it would have been

extremely easy to miss this idea. Part of the hyperelliptic solution would have been

wrong for the spatially flat universe discussed in section 4.3. Analysis of the roots

required for the general solution of cosmic time in terms of Weierstrass functions

may have been unclear. Modern computing systems are integral for understanding

complex nonlinear system like the standard ACDM model of cosmology.

Whether or not our standard model of cosmology is really the correct description of

the universe on a large scale is still a hot topic of debate. Additions to the model have

been postulated in recent years to try and remedy certain issues with intergalactic

observations. Though it's probably not worth considering an addition to the model

unless a large break in isotropy or homogeneity is ever detected. A more complicated

spacetime metric would need to be used in the case that either assumption is broken.

The equations considered in this thesis say nothing about the universe on smaller

scales, and instead seek to shed light on only the most expansive scales. Therefore

it’s not worth considering the addition of other physics to the model except in the

context of a toy theory.

It remains to be seen whether redshift drift will echo the predictions of the stan¬

dard ACDM model. Verifying and honing this model to higher precision is of great

interest to the cosmology community. Having a set of data for redshift drift at many

redshifts could verify the validity of the model. If figure 4.5 can not be created then

there would clearly be a huge problem with the standard model of cosmology. Though

this would rather surprising in contrast to the CMB data, and many other data sets.

The data used to create the current accurate “Planck” model in this thesis was not

coincidentally selected. It’s not that it was considered the most physically significant,

but instead it avoids discussion of difficult experimental astrophysics. Analysing the
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CMB fits intuitively very well with discussions of the universe on the largest scales.

Other astrophysical data may involve discussing ideas such as standard candles and

various stellar objects. The Planck 2018 data is also simply some of the newest data

available, and is widely cited.

Limiting cases were discussed in some detail in section 4.6. The cases provided

were selected to highlight the similarities and differences between models with and

without dark energy. The dark energy term in the Friedmann equation is what leads to

the elliptic function solution after all. Dark energy appears to play two general roles in

cosmic dynamics. If dark energy is dominant, then a model will eventually experience

an accelerated expansion. If dark energy is not dominant with large positive spatial

curvature, then instead it can cause the scale factor to “stall” or “loiter” before the

universe subsequently collapses. Figure 4.10 describes an example of the latter case,

and figure 4.3 and example of the former. Comparing various Friedmann models is

interesting because it sheds some light on the unique contributions of each cosmic

fluid considered.

Elliptic functions continue to be used in many areas of physics. Some research has

even been aimed at comparing systems described by the same equation. A paper of

Faraoni [16] looks at many phenomena with properties described by the Friedmann

equation. Therefore it’s reasonable to suggest that the research included in this

thesis could be used in a wide rage of engineering, physics, and biology applications.

Perhaps future work could even explore how various systems differ in parameter space.

Classifying problems based on evolutionary equations may not be a new idea, but it

remains of great interest to the mathematical physics community.
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Appendix A

Numerical Methods

A.l Friedmann Equation Discretization

The differential equation

[a'^] 2 = Qa [a®]4 + ^c.o [a(^)] 2 + ^m,o [a^)] + Q,,„ (A.l)

and the integral

^) = y«(^) H (A.2)
o

can be solved numerically. First raise the order of equation (A.l) by taking a deriva¬

tive

2[a'(^)] [a"(^)] = 4Qa [a^)]3 [a'^] + 2QC,O [a^] \a\fj)] + Qm,o [az(^)] . (A.3)

We simplify equation (A.3)

[«"(??)] = 2Qa [«(??)] 3 + ^c,o [«(??)] + ^m,o- (A.4)

Now we can lower the order of equation A.4 by turning it into a system of two first

order equations. Let u = and v = a1^, then

u' = v, v' = 2QAu3 + Qc,ou + |Qm,o- (A-5)

66



The system of equations (A.5) can be solved via two-dimensional fourth order Runge-

Kutta. The integral (A.2) can be done in tandem with the differential equation using

the trapezoidal rule on each iteration. Let x = g and t = Now let u' = f(x,u,v)

and v' = g(x,u,v) with initial values ay = 0, t; = 0, u, = 0, and Vi = ^/Qr,o. If h is

some chosen step size then let

n
h (A.6)

be the number of steps where x is the chosen value of conformal time. If j — 1, .... n
then our system solves as

Ay = hf(xj,Uj,Vj) (A.7)

= hg^Xj,Uj, i^) (A.8)

^2 = hf(xj + |/i,Uj + |fci,Vj + (A.9)

Z2 = hg^Xj + ^h,Uj + Vj + (A.10)

k3 = hf(xj + -h,Uj + ^2, Vj + -Z2) (A.ll)

II 'AT'" + IC
I + tC

1 to + (A.12)

k4 = hf(xj + h,Uj + k3,Vj + /3) (A.13)

Z4 = hg(xj + h,Uj + k3,Vj + /3) (A.14)

Uj+i = A A A ^4) (A.15)

Vj+l = “(L + 2^2 + 2Z3 + Z4) (A.16)

xj+i = x j + h (A.17)

ij+i = + uj+^' (A.18)

This method is more than sufficient for basic numerical results. Absolute error cal¬

culations are done using the standard idea

absolute \f exact fnumerical • (A.19)

For example consider the numerical and Lemaitre solution data as in figure 3.1.

67



Error in Cosmic Scale

Figure A.l: The agreement between exact and numerical results for cosmic scale.

Figure A.2: The agreement between exact and numerical results for cosmic time.

68



The agreement between numerical and analytical results is absolutely mandatory

for mathematical physics research, and has been demonstrated in this appendix. The

routine used was fairly straight forward to implement. Calculations were done in

c++ to allow for fast analysis. Figures A.l and A.2 display the routine maintaining

great stability until the strong dark energy term becomes entirely dominant as ?; goes

to Therefore values extremely close to the asymptote might not be as reliable

as others. Though a smaller step size or an improved routine could most likely bury

much of the error.
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Appendix B

Calculation of Elliptic Functions

and Integrals

B.l Maple

We are blessed to live in an age of almost infinite computational power. Only the

most complex problems in physics can not be solved with our technology today. The

results obtained in this thesis were calculated using Maple. Maple has functions to

directly calculate the elliptic functions of Jacobi and Weierstrass, as well as elliptic

integrals.
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