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Abstract 
 

This study uses repeat airborne LiDAR surveys to assess snow distribution within complex forested 

terrain in Russell Creek, a 33 km2 sub-basin of the Tsitika watershed, on northern Vancouver Island.  

LiDAR surveys used within this study were acquired in 2022 and 2023, with 4 – 5 flights per year timed 

with the intent to capture maximum snow depth, to the completion of the melt season. In addition, two 

separate bare earth models were used to assess error by acquisition date (2017 vs 2023). Over 2000 

manual snow depth measurements were taken over the course of this study via a) cardinal plots within 

six different forest cover types and b) weather station snow courses conducted on gravel roads.   

Mean difference (MD) of the averaged manual and LiDAR measurements were overall lowest for the 

weather station snow courses (-29 to 13 cm) and highest in the harvested (juvenile and regenerating) 

plots (-39 to 134 cm).  Analysis of the LiDAR bare earth point returns showed that juvenile and 

regenerating plots both had a low percentage of pixels with ground returns – average of 24 and 35% 

respectively - a result of the tall (~ 2 meter) and complex ground vegetation. Error was reduced in the 

juvenile forest plots (-22 to 29 cm) when LiDAR snow depth was processed with an alternative bare 

earth model acquired in 2017, in which the average coverage of ground returns was much greater (96%). 

Total snow storage within Russell Creek was relatively similar (<5% difference) between the two bare 

earth models, and the higher elevations (>1000 m) of the watershed - comprised of old growth forest and 

alpine cover types – store the majority (56 – 82%) of the snow.  At high elevations (1400 – 1700 m) in 

the watershed, the snow volumes were much greater (28 – 44%) when processed with the 2023 bare 

earth model compared to the 2017.  

An additional component to this study was a paired control-treatment approach to assess the impacts of 

forest harvest on a) the bare earth model and b) snow distribution.  Evaluation of pre- (2020) and post-
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harvest (2023) snow free models showed a slight (0.15 m) bias within treatment sites due to changes to 

the ground surface. After bias correction, the rate of increase in snow water equivalence between the 

pre-and post-harvest snow years in the treatment sites (1.4 – 4.2) doubled the control (0.7 – 1.7). 

Overall, these results highlighted the importance of the bare earth model to accurately measure snow, 

especially within complex forested and harvested watersheds. 
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Chapter 1 : Introduction 
 

Climate change directly affects coastal mountain snowpacks. Warm temperatures reduce snow water 

storage, shift snow melt earlier in spring, and decrease summer soil moisture, which can increase the 

magnitude of flood and drought events (Schnorbus et al. 2014; López-Moreno et al. 2021; Gillett et al. 

2022; Hidalgo-Hidalgo et al. 2022). Further, numerous studies (eg. Swanson et al. 1986; Gelfan et al. 

2004; Winkler et al. 2005) have shown that forest management can have an impact on snow at the plot 

scale, but scaling these results to the watershed is challenging due to landscape and forest complexity. 

Thus, basin wide estimates of snow water storage are critical to understand the impacts of climate 

change and forest management on watershed scale hydrology.  

Advances in remote sensing technology have improved the ability to map snow depths for entire 

watersheds. A Light Detection and Ranging (LiDAR) sensor fixed to an airborne platform can acquire 

millions of high accuracy surface elevation points over several hundred square kilometres in a time span 

of just several hours (Hojatimalekshah et al. 2021). To derive a snow depth surface, a snow-free LiDAR 

digital elevation model (DEM) is subtracted from a snow-on LiDAR DEM. LiDAR performs best in 

open, relatively flat terrain where light pulses can easily penetrate to the ground (Hojatimalekshah et al. 

2021). Uncertainty increases when using LiDAR to measure snow in forested environments, as trees and 

vegetation obstruct the ground and the snow surface, which reduces the number of surface returns 

(Hopkinson et al. 2004; Hopkinson et al. 2012; Zheng et al. 2016). Dense ground cover vegetation can 

also increase elevation uncertainty by being mis-classified as ground in the bare earth model (Hopkinson 

et al. 2005; Gould et al. 2001). Additionally, forest snow accumulation and melt patterns are much more 

variable than in open areas, due to complex relationships between the canopy and energetic inputs into 
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the snowpack (Pomeroy and Gray 1995; Varhola, Coops, Bater, et al. 2010). This holds particular 

significance to watershed management in regions where a significant proportion of the snowpack is 

stored within forests.  

As winter temperatures increase due to climate change, lower elevation coastal mountains will see an 

increase in winter precipitation falling as rain (Evan and Eisenman 2021). Having accurate data for the 

snow water storage in the forest is essential for sustainable water resource consumption, in particular for 

managing watersheds with “at-risk” snow (Nolin and Daly 2006). Forest management and natural 

disturbance lead to a mix of forest structure from clear open areas to regenerating stands of mixed 

species, age and structure (Floyd 2012; Winkler et al. 2021). Furthermore, there is a need to assess how 

snow storage varies with forest regeneration to contribute to our understanding of how stands and 

watersheds hydrologically recover after disturbance, as well as advance models for large and complex 

watersheds. 

This research project will focus on the use of airborne LiDAR to measure snow depth in Russell Creek 

Experimental watershed (established in 1991), a heavily forested watershed on Northern Vancouver 

Island (Hudson and Anderson 2006; Floyd 2010). Beginning in the late 1970s, forest harvest began in 

Russell Creek, resulting in a range of stand ages and forest stand composition. The objective of this 

research is to assess LiDAR uncertainty in forested watersheds typical of the coastal mountain region of 

British Columbia to improve our understanding of catchment scale snow water storage.  

With repeat LiDAR acquisitions and plot scale sampling for depth, this research aims to answer the 

following questions: 

1. How accurate is LiDAR at capturing the spatial variability of the snowpack under different forest 

stand structures? 
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2. How does the spatial variability of the snowpack vary among different forest stands, and how 

does this variability change through the snow melt season? 

3. How does the bare earth model impact LiDAR snow depth accuracy under different forest stand 

structures? 

This research project will contribute towards current literature on forest snow interactions in a region 

with at-risk snow due to climate change and a history of forest management going back to the 1970s.  It 

will also contribute to development of hydrological recovery assessment methods in coastal British 

Columbia. This part of a larger study using LiDAR snow surveys in forested watersheds in British 

Columbia, which is the first of its kind in the province.  

This thesis is organized as follows: 

Chapter 2 provides a comprehensive review of literature related to LiDAR observations of snow depth 

in forested catchments and summarizes the current state of knowledge with respect to forest disturbance 

hydrology. Chapter 3 identifies the study area and data collection methods used in this research, while 

Chapter 4 summarizes the methods of analysis. In Chapter 5, the main results section addresses the 

research questions and objectives. Chapter 6 follows with a case study, in which harvesting activity that 

occurred over the course of this research is used to quantify the impacts of harvesting on the ground 

surface and subsequent DEM, and the change to snow storage.  Chapter 7 discusses the key findings and 

implications of this research.  Chapter 8 provides the overall conclusions and recommendations for 

future research.    
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Chapter 2 : Background 
 

Airborne LiDAR has drastically up scaled the speed, size, and quantity of snow depth acquisitions, from 

manually collected points or data from discrete weather stations, to millions of measurements at the 

catchment scale. Despite this, using LiDAR within heavily forested terrain is challenging both due to 

limitations of the LiDAR instrument, as well as the complexity of the snowpack under canopies. Section 

2.1 will discuss how LiDAR is used to measure the snowpack, as well as sources of error and 

uncertainty. Section 2.2 will follow with an overview of the complex snow distribution within forests.  

Section 2.3 will focus on how forest disturbance changes snow distribution and can influence watershed 

scale hydrology.  

2.1 Snow and Remote Sensing 

In-situ methods to measure snow depth and density are generally limited to single point measurements, 

either through manual depths with snow probes or tubes, imagery from snow stakes or remote cameras, 

or automated instruments, like snow depth sensors and snow pillows associated with weather stations 

(Hopkinson et al 2001; Kinar and Pomeroy 2015). To quantify catchment wide snow water storage, 

these snow depth and density point measurements can be used to validate physically based hydrological 

models (e.g. Pomeroy et al. 2007), however the sparse sampling leads to high uncertainty in estimates. 

Snow depth measurements predominantly occur in relatively flat, un-forested and sheltered areas which  

a) are recommended for representative meteorological station locations that aim to measure incoming 

precipitation and snow storage that in unaffected by wind (World Meterological Organization 2008) and, 

b) avoid exposure to avalanches and other hazards endemic to complex terrain. Despite efforts to 

establish weather stations in more remote and under-represented regions within British Columbia (Foord 

et al. 2014), as well as the extensive Snow Telemetry Network (SNOTEL) network in the U.S. (U.S. 
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Department of Agriculture), point measurements are limited in their ability to describe catchment-wide 

snow depth variability, particularly within forested watersheds.  

Major advantages to remote sensing methods are the ability to capture spatially continuous snow depth 

data, and coverage of areas too remote or complex to access with manual measurements. Snow covered 

area has been observed through satellite remote sensing since the 1960s, where the high reflectance in 

visible wavelengths, and low reflectance in the SWIR band clearly distinguishes snow from other 

surfaces (Hall et al. 2005), however these data provide no information about depth and are limited to 

cloud free days.  Currently, satellites like Sentinel-1 synthetic aperture radar (SAR) data and ICESat-2 

can collectively determine snowpack properties such as the depth, wetness, and water equivalence 

(Karbou et al. 2021), though coverage can be limited and both forests and wet snow surfaces complicate 

interpretation of data. While recent studies have shown that ultra-high-resolution satellite imagery can 

derive high resolution (1-4 m) and decimeter accuracy snow depth mapping (Marti et al. 2016; 

Deschamps-Berger et al. 2023), the majority focus on large scale snow measurements in alpine terrain 

due to limitations of spatial resolution and complications associated with forest cover (Lievens et al. 

2019; Karbou et al. 2021). In contrast, Structure from Motion (SfM), in which a camera is attached to an 

unpiloted aircraft (UAV), is capable of centimeter resolution, but generally focused on relatively small 

study areas (<5 km2) due to aircraft battery limitations and acquisition time (Harder et al. 2016). Studies 

have shown that UAV SfM can accurately map snow depths (RMSE: 8.0 – 13.0 cm) in open 

environments, but data are poor in areas of exposed vegetation and forests due to the obscuration of the 

snow surface (Harder et al. 2020; Dickinson 2022; Landry et al, 2021).  

Airborne LiDAR has been used to measure snow since 2001 and is now a well-established technology to 

map snow depth across expansive alpine terrain (Hopkinson et al. 2001; Painter et al. 2017; Currier et al. 

2019). Applications of LiDAR snow depth data cover a diverse range, inclusive of evaluation of 

hydrological models (Dickerson-Lange, Lutz, Gersonde, et al. 2015; Vionnet et al. 2020), improved 
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knowledge of snow distribution patterns (Deems et al. 2006; Currier and Lundquist 2018; Pelto et al 

2019), and quantification of derived snow water equivalence (Tedesco et al. 2014; Floyd et al. 2020; 

Geissler et al. 2023). Despite widespread application in alpine environments, there are limited examples 

in forested watersheds. This is especially important in the low elevation coastal mountains, where 

typically snowpack accumulation is high but alpine terrain limited, thus a considerable proportion of 

snow is stored in the forest. 

 
2.1.1 LiDAR systems 
 

LiDAR is a remoting sensing technology which emits light pulses and measures the time of flight for a 

given photon to calculate distance from the sensor. A LiDAR system is composed of a laser scanner, a 

global navigation satellite system (GNSS), and dedicated inertial measurement unit (IMU). The laser 

scans perpendicular to the line of flight and measures the return time of the laser pulse to the unit to 

determine a three-dimensional elevation point. To calculate snow depth, LiDAR data are acquired in 

both snow-on and snow-free conditions, processed into a separate DEMs, co-registered and then 

differenced. The LiDAR scanner can be either terrestrial laser system (TLS) or airborne laser system 

(ALS); each hold advantages and disadvantages. TLS provides high density returns- in the order of 

thousands of returns per metre squared - therefore suited for producing accurate, high resolution datasets 

(< 10 cm mean bias error; Prokop et al. 2008; Hartzell et al. 2015; Maté-González et al. 2022). A TLS is 

well suited to describe fine scale forest-canopy snow relationships, as the ground-based system provides 

the ideal scan angle to capture vegetation structure, as well not be obscured by the canopy (Disney 2019; 

Hojatimalekshah et al. 2021).  For example, Revuelto et al (2016) used TLS to quantify the forest 

management practice of pruning lower branches reduced canopy area by 36% and increased total snow 

depth by 14%. Handheld terrestrial LiDAR sensors have become more widely available, a recent study 

by King et al (2022) conducted with an iPhone 12 Pro LiDAR module produced very high accuracy 



  
 

7 
 

(RMSE ~ 6mm) snow depth measurements. Studies have found snow depth accuracy decreases with 

distance and high (>60 degrees) incidence angles, therefore TLS are best suited for short-to-medium 

range (<500 m2) areas and recommended several scans per site (Prokop et al. 2008; Revuelto et al. 2014; 

Hartzell et al. 2015).   

Airborne LiDAR configurations are commonly mounted to aircraft such as helicopters or fixed wing 

airplanes, or Uncrewed Aerial Vehicles (UAVs). Plane mounted systems are well suited for larger area 

(order of hundred kilometers) campaigns at the watershed scale (e.g. Floyd et al. 2020), and under ideal 

circumstances, accurate to the decimetre level at a 1 metre resolution (Deems et al. 2013). The drawback 

for a more extensive survey area is a generally a lower density of ground point returns (~ < 10pts/m2) 

than helicopter or UAV mount LiDAR, which can be a source of uncertainty in the measurements 

(Menounos et al. 2020). UAV-mounted LiDAR systems provide a compromise between the terrestrial 

and plane mounted LiDAR systems in terms of point density (~100 pts/m2) and area coverage, and are 

thus well-suited to stand level studies (Harder et al. 2020).  LiDAR sensor capabilities continue to 

expand as technologies rapidly improve. For example, geiger mode LiDAR – a photon counting system 

– has become more prominent, and can capture high resolution datasets (on par with UAV LiDAR) with 

the coverage of plane mounted systems (Deems et al. 2013; Lin et al. 2022). 

2.1.2 Data processing 
 

Imagery - either ortho-imagery collected coincidentally with  a LiDAR survey, or satellite - can be an 

important part of the processing workflow for identifying snow free and stable terrain in the survey area 

to help with co-registration and confirm snow cover when snowpacks are shallow (Deems et al. 2013; 

Floyd et al. 2020; Vionnet et al. 2020). Raw LiDAR data are represented as a point cloud, comprised of 

single x,y,(horizontal) and z (vertical) points, of which z may represent either a discrete return or the full 

waveform (Deems et al. 2013). Discrete returns are the more common approach, as full waveform 
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requires a complex processing methodology, higher computational power, and a greater cost (Anderson 

et al. 2016). Full waveform LiDAR is popular for forestry applications as it allows for much more 

detailed description of vegetation, including the canopy and ground vegetation characteristics, as 

discrete points only separate sufficiently spaced objects into separate returns (Lindberg et al. 2012).  

Anderson et al (2016) found bare earth was captured with greater accuracy in vegetated terrain by full 

waveform, and conversely in non-vegetated terrain (roads) by discrete returns. Thus, full waveform data 

shows great potential in the snow depth mapping application to better distinguish vegetation from 

ground, and thereby improve accuracy of the ground surface. 

From the raw LiDAR point cloud, algorithms are used to a) filter and remove noise and outlier data 

points, and b) for classification to identify the ground surface and other attributes like vegetation and 

structures. A digital elevation model (DEM) is rendered from the ground point class to represent either 

the snow or snow-free surface. The highest resolution a DEM can support is usually a function of the 

ground point density, for example an average ground point density between 1 - 2 points per m2 could 

support a 1 m2 gridded surface (Guo et al. 2010).  

2.1.3 LiDAR validation 
 

Typically, LiDAR snow depth accuracy is assessed against in-situ measurements, which are 

georeferenced with a GNSS system to ensure high accuracy and precision. A common sampling strategy 

is by a linear transect with GNSS measurements at the start and end with manual measurements 

between, or a radius approach with transects at cardinal directions from a centre GNSS position 

(Hopkinson et al. 2012; Floyd et al. 2020; Proulx et al. 2022). Generally, studies compare a one-to-one 

manual-to- LiDAR snow depth measurement, which can be a source of geo-positional error, especially 

under the canopy where GNSS accuracy is reduced (Murgaš et al. 2018). To address this, Broxton et al  

(2019) used canopy height maps in the field combined with GNSS to ensure trees were correctly 
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identified for under canopy snow depth measurements. In-situ measurements are generally taken with 

graduated avalanche probe or an automated version known as a magnaprobe – or a Federal snow 

sampler, which also measures density.  A review of the different manual sampling methods by Proulx et 

al (2022) showed a slight positive snow depth bias (average 1.7 cm) between the magnaprobe and the 

snow tube, attributed to penetration of soil by the probe, with a greater difference in the forest than open 

sites. As snow tube measurements are considerably slower and more strenuous than a snow probe, a 

hybrid approach (snow tube and probe) is recommended for in-situ measurements to obtain both depth 

and density at a selection of sampling points (Proulx et al. 2022). 

2.1.4 LiDAR Error and Uncertainty 
 

Sources of error in airborne LiDAR system can be classified as either systematic, errors which can be 

reproduced and potentially can be removed, or random, which reflects the measurement uncertainty. 

Sensor based geo-positional errors are a result of poor accuracy within the GPS, INS, IMU systems, 

with generally horizontal error greater than vertical (Hodgson and Bresnahan 2004a; Deems et al. 2013). 

As well, an increase in laser scan angle, flight height, and laser beam incidence angle tends to 

correspond to an increase in LiDAR error (Goulden et al. 2016) 

Terrain features that can affect the precision of LiDAR surveys include forest canopy cover, ground 

vegetation, and slope (Hopkinson et al. 2012; Zheng et al. 2016). Slope introduces error as a small 

horizontal geo-positional error will lead to a large error in the vertical position on steep terrain (Nuth 

and Kääb 2011). Several studies have found that the vertical error on slope angles greater than 30 

degrees nearly doubles (Hodgson and Bresnahan 2004b; Tinkham et al. 2012).  

Total LiDAR ground returns are reduced under the canopy as the trees interact with emitted photons, 

which results in data gaps in the ground point cloud. Areas with very high forest density are likely to 

have larger areas with no LiDAR ground returns, in which interpolation of pixel values is required. 
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Zheng et al (2016) found that under-sampling under mixed deciduous forest resulted in an 

overestimation of snow depth of an average of 10 cm under the canopy due to the interpolation of data 

with the adjacent open pixels, which had a higher snow depth than under canopy. 

Dense ground vegetation has been shown to cause a systematic underestimation of snow depth as a 

result of both the inability of the laser to penetrate through to ground as well as misclassification of 

vegetation as ground from the bare earth acquisition (Hopkinson et al. 2005; Gould et al. 2013; Currier 

et al. 2019). Gould et al (2013) found that airborne LiDAR ground models in areas with ceanothus, a 

dense ground shrub species, had elevation errors (RMSE: 17 to 37 cm) that were attributed to the 

inability of LiDAR pulses to penetrate the shrub, and misclassified as ground. An accuracy assessment 

of LiDAR by vegetation types conducted by Hodgson and Bresnahan (2004a) showed the highest error 

in brush and low trees (RMSE 23.3 cm) and the lowest error in pavement and evergreen forests (RMSE 

of 14.9 cm and 12.9 cm). The low error within the evergreen forest is attributed to the minimal ground 

vegetation and generally uniform height of forest canopy, resulting in two distinct levels of which 

ground can be easily distinguished. The opposite effect is true for the brush and low trees: the multistory 

environment, and variable height of the low vegetation, increases the likelihood of misclassifying 

ground. Reutebuch et al (2003) found minor difference in mean ground surface error (16 – 31 cm) 

between four forest categories (cutblock, heavily thinned, lightly thinned, and uncut), attributed to the 

relatively lower flying height (200 m), which results in stronger return signals due to the shorter distance 

the laser travels. Thus, the LiDAR errors in snow depth mapping attributed to vegetation may be largely 

dependent on the accuracy of the ground surface representation. 

Recent studies with UAV LiDAR systems generally show lower snow depth error in forest (RMSE: 9 – 

16 cm) than compared to plane mounted systems (RMSE: 5 - 35 cm), likely due to their ability to fly 

lower to the ground surface, though generally errors were worse in forest compared to the open 

(Mazzotti et al. 2019; Harder et al. 2020; Jacobs et al. 2021; Geissler et al. 2023). Menounos et al (2020) 
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suggested the use of lower flight altitudes (to increase the density of the point cloud) and in-situ 

measurements (to correct detected bias) to improve LiDAR snow depth accuracy in forested terrain. 

Other studies have highlighted the importance of in-situ snow depth measurements which encompass 

forested terrain in addition to the open to better understand snow depth uncertainties (Painter et al. 

2016). 

2.2 Snow distribution in forests 

Snow distribution is governed by energy inputs into the snowpack, as well the interactions of vegetation, 

topography and wind. The snow energy balance of the snowpack can be represented as  

∆ܳ = ܴ௡௘௧ + ௌܪ + ௅ܪ + ீܪ+ +  ோ         [2.1]ܪ

where ∆ܳ is change in snowpack energy, and the energetic fluxes are: net radiation (ܴ௡௘௧), sensible heat 

 The .(ோܪ) and advective heat transfer from precipitation ,(ீܪ) ground heat ,(௅ܪ) latent heat ,(ௌܪ)

contributions of net radiation to the snow energy balance are five to ten times greater than all other 

components, though the relative inputs of the short and longwave radiation vary considerably (Marks 

and Dozier 1992). Net radiation is the sum of the incoming and outgoing radiant fluxes, and can be 

expressed as  

ܴ௡௘௧ = (1 − ௦ܴ(ߙ + ܴ௟௜ + ܴ௟௢          [2.2] 

Where α is albedo, Rs is direct and diffuse incoming radiation, Rli is the incoming longwave, and Rlo is 

the outgoing longwave radiation. Longwave radiation is emitted by the ground surface and objects, and 

by the atmosphere, and is generally higher: 1) under cloudy skies as opposed to clear, 2) in higher air 

temperatures and humidity, and 3) within a forest vs in a clearing (Dingman 2015). Shortwave radiation 

is emitted directly from the sun and is a function of the declination of the sun, latitude, and time of year 

(Dingman 2015). Albedo measures the proportion of short-wave radiation which is reflected; fresh snow 
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with a small grain size has a higher albedo value (0.9) than older and wetter snow (0.5) (Jones et al. 

2001). As ground and vegetation are exposed, albedo will decrease and longwave and conductive energy 

from the ground and vegetation will generally increase in snow melt rate (Pomeroy et al. 2003). 

Snow distribution under forests differs from in the open due to the interactions with the canopy altering 

snow redistribution and components of the snow energy balance. Generally, snow will accumulate 

slower and reach shallower depths within forests, due to first, snow interception, and then a combination 

of sublimation, meltwater drip, evaporation and mass unloading from the canopy. Mechanics for snow 

loss to the canopy vary across climatic regions: in cold and dry climates, up to 30 to 45% of annual 

snowfall may be lost to canopy sublimation (Pomeroy and Gray 1995), versus in maritime climates 

where sublimation generally only account for approximately 10% of loss, with meltwater drip and mass 

unloading from the canopy are the dominant processes (Storck et al. 2002). Methods to assess how 

intercepted snow is removed from the canopy have included:  

- Individual branch experiments: warmer branches will bend easier, therefore snow will unload 

more rapidly at warmer temperatures, or in maritime climates (Schmidt and Pomeroy 1990) 

- Cut-Tree experiments: Storck et al (2002) found that the variability of snow interception was 

minimal between the species compared (douglas fir, white fir, and ponderosa pine) in a maritime 

environment, and interception variability was mostly a function of the snow event itself. A novel 

approach using TLS by Russell et al. (2020) shows potential, with initial results showing good 

agreement between the TLS and cut-tree measured snow mass.  

- Time lapse photography: Floyd and Weiler (2008) captured mass release events from the canopy, 

and observed that snow release occurred over a broad area under the tree, and snow depth 

remained the same in areas which snow unloaded, but snow density increased. 

Trees can either enhance or reduce ablation rates of the snowpack, but generally melt rates are 

slower under forests than in the open due to the sheltering effects of the trees from short-wave radiation 
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and turbulent energy fluxes associated with wind (Hedstrom and Pomeroy 1998; Varhola, Coops, 

Bater, et al. 2010). Recent studies conducted in maritime climates, which typically have deeper 

snowpacks, warmer temperatures, and larger trees, have shown that in many cases the pattern of snow 

melt under forest and in the open is reversed. In maritime climates, an increase in long-wave radiation 

from the trees can dominate the energy balance, which in turn accelerates the melt rate within the 

forest, and results in longer snowpack duration in adjacent open sites (Lundquist et al. 2013; 

Dickerson-Lange, Lutz, Martin, et al. 2015; Roth and Nolin 2016). This pattern is more pronounced 

below tree-line, in warm dense forest stands sheltered from the wind (Dickerson-Lange, Lutz, Martin, 

et al. 2015). In colder and more arid climates, trees alter the energy balance by reducing incoming 

shortwave radiation which reduces melt beneath forest canopies.  

Wind also impacts snow distributions through a) transportation of snow from exposed to sheltered areas, 

b) turbulent fluxes of energy into the snowpack causing melt or c) sublimation of the snow into the 

atmosphere, though this tends to be a small component in coastal watersheds (Currier and Lundquist 

2018). Blowing snow is more prevalent in cold climates due to a lower wind speed threshold required to 

transport cold and low density snow, than the warm, and higher density snow typical of the coastal 

climate (Li and Pomeroy 1997). A study by Currier and Lundquist (2018) showed significant differences 

to snow depth between the windward and leeward side of a forest in a high wind cold climate site in 

Colorado, and no significant different in a maritime location with equal or greater wind speeds. High 

wind speed sites (> 8 – 17 m/s) in a study in the Pacific Northwest showed accumulation rates were 

equal between forest and open due to the depositional differences from the wind transported snow 

(Dickerson-Lange et al. 2017). 

Large rain-on-snow (ROS) events occur with greater frequency in temperate climates and can rapidly 

change the snowpack and its distribution (Marks et al. 1998; López-Moreno et al. 2021; Gillett et al. 

2022). When the snowpack is near isothermal, there is a low energy requirement to begin snowmelt 



  
 

14 
 

during a ROS event, which can rapidly result in flood and landslide events (Harr 1981). Melt rates 

during ROS events have been found to be significantly higher in openings and clear cuts than in forests  

(Berris and Harr 1987; Marks et al. 1998). The major difference in the energy balance between forested 

and un-forested sites is the turbulent fluxes of sensible and latent heat, as the trees shelter the surface of 

the snow from wind. Slope and aspect also affect melt rates, as areas positioned towards the incoming 

wind will be subject to greater turbulent transfer and increased melt rate (Harr 1981). In areas where 

snowpacks are generally shallow, such as the transient snow zones, the snowpack can melt entirely 

during a single large rain-on snow event (Berris and Harr 1987). Musselman et al (2018) investigated 

the impacts of climate change to ROS events, and in a maritime environment frequency at lower 

elevations will reduce due to declining snowpack and increase at mid elevations, as well as the major 

ROS events shifting earlier in the season. While studies have shown these differences at the stand level 

during rain-on-snow, linking these stand level effects to watershed scale stream flows has been 

challenging due a sparsity of data.    

2.3 Forest Disturbance and Hydrological Recovery 

Forest disturbance can cause major shifts to the snow energy balance, by both a) changes to 

accumulation resulting from loss of canopy interception and b) changes to ablation from loss of canopy 

cover altering the long and shortwave radiation inputs and turbulent fluxes (Boon 2009; Marks et al. 

1998; Varhola, Coops, Weiler, et al. 2010; Winkler et al. 2015). Numerous studies have been conducted 

to assess how forest and open site melt rates differ as it has clear implications for forest management 

practices (eg. Hubbart et al. 2006). Gelfan et al (2004) found melt rate in the open to be 3.2mm day-1 

faster than in the forest. Increased snow accumulation mostly occurs in the openings, but even with a 

higher antecedent snowpack, averaged snow melt duration were longer in the forest (30 days) than in the 

open (22 days) (Gelfan et al 2004). 
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The size and aspect of the harvested block affects the snow retention, which is an important 

consideration for water resource management. Swanson et al. (1986) found that cut blocks that were 1-2 

tree height in width, and 60 – 80 meters in length, with the long side perpendicular to the prevailing 

wind, were ideal for snow retention. Clear cuts which are south facing and situated on level terrain have 

shown an increase in melt rate than north aspect (Murray and Buttle 2003; Pomeroy et al. 2012).  Forest 

thinning also impact snowmelt timing; Ellis et al (2013) found that on southern aspects melt rate 

increased due to greater shortwave radiation, and on northern aspects decreased, due to loss of longwave 

radiation from the trees. 

Stand level hydrological recovery describes to what extent a regenerating stand is behaving as an old 

growth or mature forest, and may be evaluated on the following metrics: rainfall interception, snow 

melt, snow accumulation and interception, ROS, and evapotranspiration (ET), although in coastal 

watersheds ET recovery is not deemed to be a major component (Hudson and Horel 2007). Generally in 

British Columbia, hydrological recovery focuses on snow accumulation and melt, and is estimated via 

canopy characteristics, such as height, density and species ( Hudson and Horel 2007; Winkler and Boon 

2017). Floyd (2012) investigated hydrological recovery through ROS events within the coastal Russell 

Creek watershed (the location of this study) and found recovery to be variable; low elevation 

(approximately 500 m) and sheltered forest plots with a canopy height of 13 m were 100% recovered in 

relation to energy inputs during ROS, but recovery of forests of a similar height at higher elevation was 

lower likely due to higher exposure to turbulent fluxes.  

Since the 1990’s, equivalent clear cut area (ECA) has been the primary metric within British Columbia 

to quantify the extent of disturbance, and is defined as the area that functions hydrologically as a clear 

cut in a disturbed area (Winkler and Boon 2017).  To measure ECA, recovery curves as described above 

are used to assess each harvested area and its regenerating forests. For example, an area which is 

considered permanently disturbed, such as roads or powerlines, has an ECA of 100%, while a forest 
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15m in height may be considered 50% recovered. The next step is to calculate the area disturbed at the 

watershed level based on the ECA and use that resulting metric to assess the potential for current and 

additional harvest to negatively impact stream flow. A major shortcoming of the use of ECA is it is a 

highly simplified approach based on empirical relationships from a handful of studies, which fails to 

consider the impact of important watershed characteristics such as aspect, size, and elevation gradient  

(Winkler and Boon 2017). Despite these limitations, ECA along with a suite of other indicators is widely 

used to assess overall risk for harvesting to impacts peak flows and downstream values.  

There is a long history of using paired watershed studies to assess the impacts of forest harvest on 

stream flows (Richardson et al. 2023). Here, a control and treatment watershed which are of similar size 

and characteristics, are monitored pre and post forest harvesting to determine changes to stream flow, 

including water yield, low flows, and peak flows. The long-standing nature of many of the experimental 

paired watersheds (mean duration: 27 years), as well as their spatial distribution across North America 

(34 operational as of  2023) provides both a ) a method to assess relative change due to disturbance 

which is not obscured by the effects of climate change, and b) comparison of watershed responses 

between different hydrological regimes and c) insights into the effects of forest regeneration on stream 

flow (Richardson et al. 2023). For example, Perry and Jones (2017) evaluated the impact of forest 

plantation on summer streamflow across 8 paired watersheds in the Pacific Northwest over six decades. 

They found that relatively young stands (25 – 45 years) of Douglas fir within the treatment watersheds 

resulted in summer stream flow deficits of 50% compared to the control basin, which was comprised of 

150 – 500 year old forests. Coble et al (2020) found these effects can reverse at larger scales, when a 

broad range of regenerating forest are represented in the catchment.  Despite widespread usage, 

criticisms and limitations of the paired catchment approach include:1) challenges to find representative 

paired watersheds, as well as basins which have pre-disturbance stream flow records, 2) the uncertainty 

of scaling for small basin to large, 3) problems with data quality and accessibility between watersheds, 
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and 4) the cost of maintaining long-term observations (Pike et al. 2010; Neary 2016; Richardson et al. 

2023).   

In theory, a greater area of disturbance results in greater potential for hydrologic change in terms of 

snow melt rate, peak SWE timing, and overall water yield. However, there is disagreement within the 

forest hydrology community on the effects of forest harvesting on the magnitude of the hydrological 

response, and whether disturbance impacts only average flows, or the frequency of peak flows (Alila et 

al. 2009; Bathurst et al. 2020; Pham and Alila 2024). Disagreement largely stems from a) differences in 

disturbance distributions within basins and hydro-climatic regimes, and b) the analysis methods which 

have been employed to assess change, specifically flood frequency vs chronological pairing (Alila et al. 

2009). Some studies - both paired catchments and through other methods - have shown watersheds that 

are more than 30% logged have increased snow melt rates and peak flows, as well as peak flows that 

occur earlier in the season and low flows that occur later (Bosch and Hewlett 1982; Moore and Scott 

2005; Winkler et al. 2015; Winkler et al. 2021).  However, a recent study by Johnson and Alia  (2023), 

which employed a flood frequency approach, found a lower threshold, in which 21% harvested 

watershed resulted in flood events of all magnitudes increasing in frequency, with 7, 20, 50, and 100 

year flood events becoming 2, 4, 6 and 10 times more frequent respectively.  

Much of the current understanding of forest disturbance has been gained through plot scale data, paired 

watersheds, or hydrological models which have utilized the paired watershed and plot data (Alila et al. 

2009).  Compounded with forest harvesting are the effects of climate change, which can result in snow 

melt occurring earlier, and can increase risk of early melt events, and summer droughts (Winkler et al. 

2015). This highlights the need for robust snow water measurements at the catchment scale to improve 

our understanding of watershed processes and forest management practices.  
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2.4 Research Gaps and Objectives 

Based on the background review presented above, there remain some key gaps in our understanding of 

the ability of LiDAR to evaluate snow distributions in forested catchments where logging has occurred.  

These gaps, and the research questions identified in Chapter 1, will be addressed in this thesis through 

the following objectives:  

1)  Establish a manual sampling network to assess accuracy of snow depth derived from LiDAR 

samples and calculate error metrics at the plot scale (Chapter 4) 

2) Characterize forests and vegetation attributes at manual sampling network, and ground return 

point density in different forest cover types, to determine if these contribute to LiDAR error 

(Chapter 5)  

3) Compare the plot results using an alternative bare earth DEM with different ground sampling 

point densities and acquisition times (Chapter 5) 

4) Assess the spatial distribution of snow at the watershed scale, and the differences between the 

two bare earth models (Chapter 5) 

5) Evaluate the impact of harvesting activities on bare earth models and snow depth distributions in 

a control-treatment forest harvest experiment (Chapter 6) 
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Chapter 3 :  Study Area and Data  
3.1 Study Area 

This study is situated within the Russell Creek Experimental Watershed, a sub-basin of the Tsitika River 

watershed (397 km2), located on Northern Vancouver Island (Figure 3.1), British Columbia, Canada. 

Access to the watershed is via a network of resource roads. The watershed encompasses an area of 

approximately 32 km2, with predominantly north to northwest aspects, and spans an elevation range 

from 220 to 1670 m. The area is 85% forested and with limited alpine terrain. Three biogeo-climatic 

zones are within the watershed: coastal mountain-heather alpine, coastal western hemlock, and mountain 

hemlock (Meidinger and Pojar 1991). The coastal mountain-heather alpine zone is characterized by most 

vegetation being low growing white and pink mountain-heathers, and treeline tree species are 

predominantly mountain hemlock (Tsuga mertensiana). It encompasses only 12% of the watershed and 

is generally above 1500 m. The mountain hemlock zone occurs at the approximately 900 to 1400 metre 

range, with extensive parkland from 1100 to 1400 depending on aspect, with Mountain Hemlock, 

amabilis fir (Abies amalabis) and yellow cedar (Chamaecyparis nootkatensis) being the dominant tree 

species. The largest zone is the coastal western hemlock, which is approximately 65% of the basin, 

situated in the low to mid elevation range and bordered by the mountain hemlock zone. Dominant tree 

species are western hemlock (Tsuga heterophylla), western red cedar (Thuja plicata), and large areas of 

regenerating stands of douglas fir (Pseudotsuga menziesii). The watershed is characterized by high 

precipitation (approx. 2300 mm per year), rain-on-snow events, and deep winter snowpacks from 3 to 5+ 

m in the alpine (Floyd 2010). Average temperatures are mild, with annual average temperatures of 7.1, 

5.2 and 2.9 degrees Celsius at 400, 840, and 1500 m respectively (Floyd 2010).  It is typical for seasonal 

snowpacks to develop above 700 m, with transient snowpacks below that elevation, but this can vary 
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from year to year. Rain-on-snow events are typical in this watershed and are associated with the highest 

peak flows on record. 

 
Figure 3.1 Overview map of the study site: Russell Creek (32 km2) sub-basin of the Tsitika watershed (397 km2), located Northern 
Vancouver Island, British Columbia 

Active logging has occurred in the Russell Creek Watershed since 1978, which presents the opportunity 

to study a spectrum of regenerating and old growth forest stands within the same hydrological zone. The 

regenerating forest at lower elevations is a mix of planted western hemlock, western red cedar and 

douglas fir (Pseudotsuga menziesi), while at higher elevation regenerating forests western hemlock and 

douglas fir are more common. As of 2023, approximately 40% of the watershed has been harvested, all 

of which occurs below 1300 metres.   

3.2 Weather Station Network 

Russell Creek Experimental Watershed was established in 1991, originally to address concerns that 

timber harvesting was causing ecological harm to a nearby rubbing beach for Orcas (Floyd 2010). Since 
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2009, ten weather stations have been operated by the Ministry of Forests Coast Area Research, though 

the construction and data acquisition of several of the stations precede this. The weather stations are 

located at an elevation gradient from 280 to 1516 meters and located to capture the elevation gradient of 

the watershed and in areas with different exposure to energy fluxes.  Each station measures at a 

minimum rain via a tipping bucket, temperature and relative humidity, while most measure wind speed 

and direction, solar radiation and snow depth, with three stations located at 493, 820 and 1164 m 

measuring total precipitation in a standpipe.  Data can be found at http://graph.viu-hydromet-wx.ca/.  

Meteorological data from these stations, specifically snow depth and air temperature, were used to 

describe the seasonal snowpack, as well as assess change when manual measurements and the LiDAR 

acquisition occurred. 

3.3 Land Cover Classification 

To assess whether forest cover had an impact on LiDAR error, broad land cover types based on age and 

height were created in Russell Creek watershed (Figure 3.2). Roads within the watershed, both the 

highway and resource roads, were digitized from the bare earth model, and alpine terrain was classified 

by a combination of the BC bio geo-climatic zones, and ortho-imagery. The remaining forested portion 

of the watershed was first categorized by whether the forest was previously harvested, or not (old 

growth). Of the harvested forest, age was a relatively good proxy to distinguish between the different 

stand characteristics, and was broken into four categories: mature regenerating, regenerating, juvenile, 

and new harvest (Table 3.1; Figure 3.2). Figure 3.3 provides images of the typical cover types in the 

watershed.  
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Table 3.1 Breakdown of the land cover categories within the Russell Creek watershed, which were used to: a) determine plot locations and 
b) for watershed scale analyses. 

 

 

 

Figure 3.2 Overview of Russell Creek watershed showing A) the landcover type, B) the landcover broken down by elevation, C) the 
orthoimagery of the watershed, and D) aspect 

 

Cover Type 
Canopy Height  
(Median, m) 

Canopy Density 
[%]  Harvest year 

Area  
[% of watershed] 

Alpine 1.1 35%   12 
Old Growth 21.1 84%   45 
Mature Regenerating 14.4 95% 1986 or before 16 
Regenerating 7.9 74% 1987 - 2005 21.8 
Juvenile 2.7 25% 2006 - 2017 5 
New Harvest 0.4 0% 2018 - 2023 1.1 
Roads 2.8 33%   0.7 
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Figure 3.3 Images of the forest cover types where plots were sampled within this research project: Juvenile (A), Regenerating (B), Dense 
Old Growth (C), Old Growth (D) and Alpine (E) 

 

3.4 LiDAR surveys  

Airborne LiDAR data used in this study was collected by the Airborne Coastal Observatory (ACO), a 

partnership between the Hakai Institute, the University of Northern British Columbia, and Kisik Aerial 

Survey. As part of a greater project to quantify seasonal snow water storage, LiDAR surveys were flown 

over portions of four key watersheds in southern coastal British Columbia: Tsitika, Cruickshank, 

Englishman and Seymour. Five flights were targeted between March and June to capture peak snow 

accumulation and the subsequent melt for each year between 2020 and 2023. The exact timing of the 

flights is subject to weather and equipment availability, as well as the snow conditions. The focus of this 
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study is the 2022 and 2023 snow years within the Tsitika watershed; an approximately 80 km2  LiDAR 

survey area (Figure 3.4). The Hakai geospatial team processed the raw LiDAR data and produced a 

cleaned point cloud, ortho-imagery, and derived raster products (Table 3.3).  

3.4.1 Snow Free acquisition 
 

The LiDAR bare earth DEM for the Tsitika watershed was acquired in 2023.  The motivation for an 

updated DEM was to have one acquisition for the full watershed, acquired with the same LiDAR system 

used to create the snow surface DEMs. The prior bare earth DEM was a mosaic of two separate 

acquisitions: the majority of the area was a BC Timber Sales LiDAR acquisition from 2017, and a small 

area was flown by the ACO in 2020 to cover the southern Mount Cain region (Figure 3.4). This 

provided an opportunity to compare two different bare earth DEMs created from separate acquisitions 

and subsequent impacts on resulting calculated snow depths and volumes. The updated LiDAR bare 

earth survey was captured by the ACO in August 2023 (see Appendix A: ACO 2023 Bare Earth Model), 

and is the primary DEM used within this research project. 
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Figure 3.4 LiDAR survey area within the Tsitika watershed, showing the ACO 2023 bare earth boundary and snow surveys(red), the 2017 
BCTS bare earth coverage of the AOI (orange), and the ACO 2020 acquisition which was targeted to fill the missing area over Mount Cain 
(blue).  Note that the linear boundary to the SE was used to cover the highway and provide generally snow free stable terrain 
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Table 3.2 LiDAR products and metadata for the Tsitika survey area from 2020 to 2023 used within this research project 

LiDAR product Format Acquisition date Source Raster 
Resolution 

(m) 

Average ground/snow 
surface point density 

(pt/m2) 

Bare Earth: 
2017 BCTS 

raster (.tiff); 
point cloud (.laz) 

September 3 2017  BC Timber 
Sales  

1 n/a 

Bare Earth: 
2020 ACO (Mount 

Cain) 

Raster(.tiff); 
Point cloud (.laz) 

September 29 2020 ACO 1 n/a 

Bare Earth: 
2023 ACO 

Raster(.tiff); 
Point cloud (.laz) 

August 19 2023 ACO 1 1.19 

Snow surveys: 2022 raster (.tiff); 
Point cloud (.laz) 

Phase 1: March 9 
Phase 2: April 11 
Phase 3: May 21 
Phase 4: June 24 

Phase 5: cancelled 

ACO 1 1.24 
1.12 
1.09 
0.86  

Snow Surveys: 2023 raster (.tiff); 
Point cloud (.laz) 

Phase 1: March 10 
Phase 2: April 4 

Phase 3: April 29 
Phase 4: May 25 
Phase 5: June 12 

ACO 1 2.88 

n/a 

1.08 

1.01 

0.97 

Ortho Imagery Georeferenced 
imagery(.tiff) 

Produced for each 
snow survey 
acquisition 

ACO 10 – 20 cm - 

Canopy Density raster (.tiff) Produced for each 
bare earth 

ACO 1 - 

Canopy Height raster (.tiff) Produced for each 
bare earth 

ACO 1 - 

Canopy Cover raster (.tiff) Produced for each 
bare earth 

ACO 1 - 

Ground returns raster (.tiff) Produced for each 
bare earth 

ACO 1 - 

All 
returns 

raster (.tiff) Produced for each 
snow survey 
acquisition 

ACO 1 - 
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3.5 In-Situ Observations 

Field validation measurements occurred at cardinal plots and weather station snow courses within an 

approximately 4 km2 area in the southern portion of the Russell Creek watershed (Figure 3.5) 

 

Figure 3.5 Location of the game camera sites (blue), weather stations (purple), and cardinal plots (red) within the Russell Creek watershed 

 3.5.1 Snow Sampling 

Thirteen cardinal plots were located at elevations ranging from 809 m to 1505 m. Sites were selected to 

incorporate the different forest cover types captured in the watershed (Figure 3.5), while also allowing 

for summer and winter access. Each plot had a GNSS-sampled plot centre, with cardinal and inter-

cardinal arms extending 10 m (Figure 3.6). Every 2.5 m, a snow depth measurement was taken, with a 
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total of 33 snow depth measurements per plot. A federal snow sampler was used to measure depth, snow 

water equivalent and density at the plots enter and at the 10 m of each cardinal arm (n=5).  

 

Figure 3.6 Cardinal plot snow sampling strategy of density (open circles) and snow depth (dash) measurements. Distances (red) are in 
meters 

Manual snow depth measurements were recorded using an iPad via the Device Magic field form 

application (Device Magic, 2022). For each probed snow depth, canopy cover was observed (open, edge 

or under canopy, tree well) as well as characteristics of the ground hit (wood, rock, or other notes). Plot 

naming conventions started with the prefix of the next highest weather station: for example, ST1 is 

located at an elevation below Steph 1 and above Steph 2 weather station. The suffix denotes the cover 

type of the plot (A: alpine, OG: old growth, CC: clearcut, RF: regenerating forest), and numbered from 

highest to lowest elevation. For the plot-scale study, old growth with denser canopy closure (>70% of 

plot) was further sub-categorized as dense old growth. Slope and aspect metrics were derived from the 

bare earth DEM. 
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Table 3.3 Meta data for cardinal plots used within the in-situ sampling campaign.  Precise plot locations and GNSS accuracies for the 
2022 and 2023 sampling campaigns can be found in Appendix C  

Cover 
(harvest year) Plot ID Average Canopy 

height (m) 

Canopy 
Cover 
(%) 

Average 
Slope 

(degrees) 

Elevation 
(m, ellipsoid) Aspect 

Alpine 
ST1A1 2 6 18 1505 E 

ST1A2 2 27 10 1507 SW 

Old  
Growth 

ST1OG3 8 30 33 1379 W 

ST1OG7 15 40 20 1254 N 

ST1OG8 18 41 25 1228 NE 

 
Dense  
Old  

Growth 

ST1OG4 18 84 30 1331 W 

ST1OG5 15 81 26 1311 W 

ST1OG6 15 72 18 1296 W 

 
Regenerating 

(1988) 

ST4RF1 6 76 30 832 NE 

ST4RF2 5 53 20 830 NE 

ST6GC1 7 88 18 809 W 

Juvenile 
 

 (2008) 

ST2CC1 2 9 25 1007 N 

ST2CC2 2 2 12 1076 NE 

 

Accurate geo-referencing of the snow validation site locations is essential to compare in-situ snow depth 

measurements to LiDAR depths. Two GNSS units were used to establish the plot position: one base 

head set up on a previously established and known point, and the second rover point at the plot centre 

(Figure 3.7). Precise position and accuracy of the GNSS plot centres is provided in Appendix C. The 

horizontal position of the plot location was of higher importance than the vertical, as purpose was to 
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geo-position the probed snow depths, rather than the elevation of the snow surface. Generally, plots 

were surveyed only the first validation trip of the season, as the plot centres remained in place to mark 

location for the future sampling campaigns. 

Additional GNSS data points were collected in 2023 snow season as a means to improve the process of 

LiDAR survey alignment.  This included elevation transects of the snow surface, as well as stable terrain 

points such as a cabin roof.  High accuracy data points in the x,y, and z planes were required, therefore 

only FIXED solution points (corrections from the base received; 1 – 3 cm accuracy) were collected.  

Technicians also ensured best practices were followed, for example careful measurement of snow 

surface to rover, as well as rover was level and stable when data point collected. 

 

Figure 3.7 GNSS set-up showing the base station (A) established on a permanent ground control point, and the rover (B) set up at the plot 
centre of Juvenile site ST2CC2 
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As part of long-term snow data collection in the watershed, manual snow survey measurements using a 

federal snow sampler were taken at seven weather stations (Steph 1 through Steph 8). For each of the 

stations, 10 measurements are taken at intervals of approximately 1 m, with GNSS positions for the start 

and end of the transect. With the exception of Steph 1, all weather station snow courses are conducted 

on relatively flat (less than 10 degree slope) gravel roads. Steph 1 weather station is in the alpine, where 

the ground is relatively flat and is either rock, moss or low-lying heather. The weather station sites 

provide a dataset free from steep slopes, canopy cover and ground vegetation, which are known to 

increase LiDAR uncertainty (see sec 2.1.3).   

In addition to the manual snow depth plots, nine camera sites captured automated continuous data 

throughout the snow season. Each site was equipped with a wildlife camera, and five PVC snow stakes 

with associated GNSS position, either 2 or 3 m in length with increments of 20 cm (Figure 3.8). 

Cameras were programmed to take two images per day, which provided a continuous dataset for the 

snow accumulation and melt period, as well as the snow disappearance date. These data were used to 

measure change between surveys. 
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Table 3.4 Game camera sites and metrics for the 2022 and 2023 LiDAR campaigns. Precise position of the game camera stakes can be 
found in Appendix C 

Cover 
(harvest year) Plot ID 

Average 
Canopy height 

(m) 

Canopy 
Cover 
(%) 

Average 
Slope 

(degrees) 

Elevation 
(ellipsoid) Aspect 

Old  
Growth 

ST1_GC1 18 95 17 1290 W 

ST1_GC2 18 93 15 1268 W 

ST1_GC3 22 93 16 1211 N 

ST2_GC1 25 97 21 1094 NW 

ST6_GC2 41 99 18 787 W 

ST6_GC3 36 98 24 771 NW 

Regenerating 
(1988) 

ST6_GC1 7 88 18 809 W 

Mature 
Regenerating 

(1986) 

ST7_GC1 22 100 19 606 NW 

ST7_GC2 15 100 23 584 NW 

 

 

Figure 3.8 Game camera snow stake set up – this imagery is of game camera site ST2GC1 as seen in snow free and snow on conditions 
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3.5.2 Sampling error and mitigation 
A known error in manual snow depth measurements can occur by over-probing into ground, with 

increased likelihood in unfrozen soils, complex terrain or areas with dense leaf litter. Though 

challenging to assess, other research has found probing error to be relatively small and infrequent, with 

an average error sub-10 cm, occurring in less than 10% of measurements (Hiemstra et al. 2020). Depth 

measurements when using a snow sampler will have less “over-probe” error as a soil plug would be in 

the tube and accounted for. For the probed measurements, technicians minimized this error by retaking a 

snow depth measurement if uncertain of ground strike (dirt on the probe end would be indicative of 

this).  

Minor positional errors are likely to occur within the sampling plot, as a result of: 

1. Plot cord: Variation in the cord tension between each transects, bends in the cord when 

navigating through trees within the plot, as well as the slope of the plot can also contribute to 

positional errors.   

2. Compass: Though care is taken by technicians, compass error can result in slight offsets in 

direction. Even with correct use, situational choices, for example which side of tree to measure, 

are a factor in error. 

3. Movement of centre position marker: Snow creep can move or break the centre position post. 

Nearest trees were flagged with a bearing and distance to centre point to ensure plot center is 

returned to the same position if moved. 

Since we compared the plot averages to the LiDAR averages over the same area i.e. not point to point, 

these errors were expected to be minor. 
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3.5.3 Vegetation surveys 

Low lying vegetation can be a source of error when classifying bare earth by reducing the number of 

points that reach the ground, requiring interpolation over larger distances, and when especially dense, 

can be misclassified as ground which can result in a systematic bias. To account for this error the 

cardinal plots were surveyed in snow free conditions to evaluate the height and cover of ground 

vegetation in the different forest types. These data were used to evaluate whether a systematic bias in 

snow depth measurements was a result of ground vegetation.  

A point sampling transect method was used to evaluate ground cover to mirror the cardinal snow plot 

methodology. At every 2.5 m interval on the cardinal and inter-cardinal directions, a 50 cm radius area 

was sampled. The following metrics were gathered: total number of species present, height of each 

species, and classification of species. Broad categories of species identification were used as the focus 

was to characterize the height of ground cover, not conduct a full species inventory. An avalanche snow 

probe was used to measure vegetation up to 3.2 m, exceeding that was noted as greater than 3.2 metres.  

The vegetation categories were broken down into major groupings: Ground cover, heather, shrub, and 

woody debris. Ground cover was composed of mosses and lichens, which were less than 5 cm in height, 

and woody debris encompassed logs, stumps, and slash piles. The cardinal plots were grouped by cover 

type, and the average height and variability each vegetation category were calculated. 
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Chapter 4 : Data Processing and Analyses 
 

The following chapter describes the processing methods of each dataset, including LiDAR, manual 

observations, and weather station data. As this study is part of a larger study, some stages of the 

processing workflows were completed by other members of the team.    

To assess snow depth variability and LiDAR accuracy within the different forest cover types, the 

following steps were completed and described in detail below: 

i) Analysis of weather and snowpack conditions for 2022 and 2023 snow years 

ii) Summary of vegetation height and broad species overview for each cardinal plot cover type 

iii) Calculation of LiDAR snow surface point density for each forest cover type and changes 

through the snow melt season 

iv) Comparison of the average and variability of snow depths between the manual and LiDAR 

observations 

v) Bare earth error analysis: Comparison of bias error when LiDAR snow depth is processed 

with alternate bare earth model (ACO 2023 vs BCTS 2017)  

The final portion of analysis focused on watershed scale snow distribution using the LiDAR derived 

snow depth layer. Total snow storage in Russell Creek was calculated with both the 2017 and 2023 bare 

earth models, for each LiDAR acquisition, to assess how the bias and error analysis affected the final 

volumes.  
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4.1 LiDAR processing 

The initial processing of the LiDAR data was completed by the Hakai Geospatial team. Processing steps 

closely follow the methodology described by Deems et al. (2013): 

I. Flight strip alignment 
II. Ground classification and filtering of noise  

III. Integration of GNSS ground control points 
IV. A manual co-registration using GCP’s and pseudo-points within the LiDAR 
V. Generation of snow surface raster, and additional raster products  

Ground classification of the point cloud is an important step in the processing, as the choice of algorithm 

can be a significant factor in the elevation accuracy (Tinkham et al. 2011). All ACO LiDAR snow-on 

acquisitions and the 2023 bare earth model were classified with LASground (Isenberg 2014), which is 

based on Axellson’s (2000) progressive Triangulated Irregular Network (TIN) densification algorithm. 

First, a subset of low points are selected and used to form a coarse TIN surface. The algorithm then 

iterates through the points, and either adds to the TIN ground surface or filters as non-ground based on 

whether they fall within assigned threshold parameters. Specific LAStools processing parameters used 

are found for ground classification, noise filtering, and generation of the rasters are found in Appendix 

B: LiDAR Processing. The 2017 BCTS - which was merged with the 2020 ACO acquisition over Mount 

Cain - was re-classified by the Hakai geo-spatial team with the proprietary Terrasolid software product 

TerraScan, which also uses a TIN densification algorithm. All raster products were then aligned to the 

bare earth model using GDAL warp, to ensure consistency between the processing extents. LiDAR 

datasets were primarily processed in python, with some supplementary workflows completed with the 

GIS software ArcGIS Pro and QGIS. 
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4.1.1 Non-gap Filled Rasters 
 

The creation of LiDAR bare earth and snow surface rasters requires data interpolation between pixels 

when there are gaps in the ground returns. Where there are no ground or snow surface returns in a pixel, 

a value can be derived through a nearest neighbour algorithm (Deems et al. 2013).  

To eliminate the smoothing effect from interpolation between pixels only the “true” LiDAR derived 

pixels in the plot-scale analyses were used in the comparisons between in-situ observations and LiDAR-

derived snow depths. Non-gap filled (NGF; zero point return pixels removed) rasters were generated for 

each snow survey (Figure 4.1). The interpolated, or gap filled, snow surfaces were utilized in the 

watershed snow volume analyses, where the priority shifted to equal area (ie. number of pixels) between 

surveys, and a viable operational workflow. 

 

Figure 4.1 Hillshade of snow-on surface for the Russell Creek watershed, showing the A) interpolated (gap-filled) raster surface and B) the 
non-gap filled (pixels with zero ground returns removed, and  shown in red) for March 10th 2023 LiDAR survey.  For both years, the area 
of no ground point returns increased through the snow melt season. 
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4.1.2 Snow Depth Rasters 
 

Co-registered snow depth rasters were produced by subtracting the bare earth DEM from the snow 

surface DEM, then converted to cm of snow (Eq. 1),  

[݉ܿ] ℎݐ݌݁ܦ ݓ݋݊ܵ = (Z snow ) − (Z bare  ) (1)         100 ݔ 

where Z snow is the surface elevations with snow cover, and Z bare is the surface elevation without 

snow cover. This was repeated for the gap filled and non-gap filled snow surfaces, for both the primary 

2023 ACO bare earth acquisition, and the 2017 BCTS. 

4.1.3 Bias Assessment 
 

Snow-free and stable terrain within the LiDAR boundaries were isolated to assess each snow survey for 

systematic error. A section of the highway within the LiDAR survey boundary was ideal for this 

analysis, as it generally remained snow-free, had a high point return count, and was free of vegetation. 

Calculated snow depths on snow-free terrain should be zero, and can be used to assess bias. Ortho-

imagery collected contemporaneously with the LiDAR data was used to confirm the highway was snow-

free, and a hillshade applied to the bare earth model guided the digitization of the highway. The non-

gap-filled snow depth and point density rasters were then clipped to the extent of the highway.  

Snow depth values were plotted in histograms, and categorized as high (greater than 5), medium (2 – 5) 

and low (less than two) ground point density (points/m2; Figure 4.2). Unbiased datasets will have peak 

in the snow depth values at or close to zero. Histograms that skew above or below zero indicate of a 

systematic error in the acquisition, and prompted a survey re-alignment to remove bias.  
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Figure 4.2 Histograms of the snow-free pixel values of the stable terrain for each snow survey acquisition in 2023. The ground point 
density has been classified by greater than five points per m2 (green), 2 – 5 points per m2 (yellow) and less than two points per m2 (grey). 
Pixels with no ground points were excluded from this analysis.  

4.2 In-Situ Observations and Supplementary Data  

Over 2000 manually probed snow depth data points were collected over the course of the LiDAR 

campaigns. A python script was developed to clean, summarize, and generate scatter plots from the data 

output by Device magic. The plot summaries and scatterplots were reviewed to identify and correct any 

errors within the dataset. In-situ snow depth data was then geo-positioned to the GNSS cardinal plot 

centre. 
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4.2.1 Weather Stations 
 

With the exception of Steph 3 which transmits via an Iridium Satellite Modem, weather station data 

were manually downloaded through the season.  The meteorological data then underwent a QA/QC 

process to remove noise and outlier data points. With the cleaned datasets, analyses completed were: 

i) Seasonal review: Overview of the snow seasons in 2022 and 2023 in terms of air temperature 

and snow depth 

ii) Short-term change: An assessment of air temperature and snow depth data in the period between 

the manual sampling and LiDAR acquisition to determine if depth had changed 

iii) Historical averages: comparison of how 2022 and 2023 snow melt seasons and average monthly 

air temperature compare to previous years weather station data, going back to 2016 

4.2.2 Game Cameras 
 

To assess the relative change in snow depth between the LiDAR acquisition and manual observations, 

game cameras captured daily images of five snow stakes within the forest at nine locations. Imagery for 

2022 and 2023 was processed using the image manipulation software GIMP to create a workflow to 

measure pixels of snow, using the snow stakes increment of 20 cm to calibrate a pixel to snow ratio. A 

snow depth measurement per snow stake was acquired on the date of the LiDAR survey, as well as 10 

days before and after each survey, to calculate the relative change in snow depth. Game camera 

observations were removed from this analysis if the snow stake had shifted or was not straight, and 

changes in snow depth were averaged between the five stakes.  

4.3 Plot Analyses 

To compare the manual and LiDAR snow depths at the plot scale, the mean snow depth per plot, rather 

than a point-to-point comparison, was employed.  The use of mean snow depth reduces errors that may 
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be introduced due to minor (less than 1 meter) offsets in position, the accuracy (<1m) of GNSS plot 

centres, as well as field sampling practices (see 3.5.2 Sampling error and mitigation).  

LiDAR snow depth data was extracted for each plot using a 10 meter radius buffer from the GNSS plot 

centre for the cardinals, and a 5 m width line from the start and end GNSS points for the weather station 

snow courses.  The total number of pixels captured in the LiDAR were variable due to a) the number of 

full and partial pixels contained within the plot buffer and b) the number of valid data points within the 

plot buffer for the non-gap filled rasters (Figure 4.3). The maximum number of LiDAR data points were 

312 for the cardinal plots and 33 for the weather station snow courses. Manual snow depth 

measurements were generally 33 per cardinal plot, and 10 per a weather station snow course.  Cardinal 

plot results were analysed individually, as well as aggregated by their respective cover type: juvenile, 

regenerating, old growth, or alpine (see sec 3.5.1) 

  

 

Figure 4.3 Ortho-imagery and snow depth data for dense old growth forest plot, ST1OG6, from the April 29th 2023 survey. The in-situ (A) 
and LiDAR (B) snow depths are averaged separately, and mean difference calculated. Missing pixels in the LiDAR are a result of no valid 
snow surface returns for the survey.   

Additional raster datasets used in the plot analysis include LiDAR-derived aspect, slope, and ground 

point density, and the canopy metrics of height and density. Canopy coverage and slope are both known 

topographical components which impact both LiDAR error and snow distribution (see sec 2.1 and 2.2). 

The ground point density is indicative of LiDAR error, as poor ground point coverage results in more 
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interpolated data points. The ground point density rasters were used to determine the total ground points, 

the proportion of pixels with no data (data gaps), and average point density per each plot.  The point 

density analysis was completed for all snow-on surveys, as well as both (2017 BCTS and 2023 ACO) 

bare earth models. 

4.3.1 Test of Normality 
 

Snow depth distributions for each plot were assessed for normality, as this dictated which statistical tests 

were valid for testing equality of variability and central tendency. Three metrics which were used to 

determine whether the plot snow depths followed a normal distribution were 1) a q-q plot, 2) a 

histogram, and 3) the sample Kolmogorov-Smirnov (KS) Goodness-of-Fit Test.  The KS test is used to 

test the null hypothesis that a sample is distributed according to a normal distribution. Using a 

confidence level of 95%, the null hypothesis is rejected if the p-value is less than 0.05, and was 

calculated using the built in KS function within the SciPy stats package. 

4.3.2 Snow Depth Variability 
 

Snow depth variability is known to be influenced by factors such as canopy cover and wind exposure. A 

highly variable snowpack poses more of a challenge to LiDAR, as the conventional gridded format will 

naturally smooth a dataset. A variability analysis was conducted for each of the different forest covers to 

assess a) how the variability of the snowpack changes through the snow melt season and b) whether 

LiDAR captures the same variability as the manual measurements.  

For each plot, the standard deviation of snow depth was calculated independently for the manual 

observations and LiDAR.  The coefficient of variation was not used due to misleading results as snow 

depths approach zero. Standard deviation was first compared separately for manual and LiDAR 

separately for each cover type, to establish whether the snow depth variability changes as snow melts. 
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Then, to assess whether LiDAR captures the same variability as the manual observations, the standard 

deviations were compared between the manual and LiDAR measurements.  

The Levene’s test was selected to assess for homogeneity of variance, as it does not require normality of 

data or equal sample sizes. The Levene’s test was conducted for two different null hypotheses for each 

plot:  

i) Snow depths (LiDAR and manual observations separately) are equal in variance through the 

snow melt period, with number of groups (n) ranging between 2 and 5, dependant on number of 

surveys and/or manual observations per snow season 

ii) LiDAR and manual measurements captured equal variance (n=2) 

Assumptions for the Levene’s tests were that observations are independent, and the test variable is 

quantitative (not nominal or ordinal).  Levene’s test results were calculated with the SciPy python 

package, where a p-value of less than 0.05 at 95% confidence level rejects the null hypothesis for 

homogeneity of variance. 

4.3.3 Mean Snow Depth  

To assess the accuracy of LiDAR within the different forest cover types, the average snow depth from 

manual sampling and LiDAR were compared for each plot. Mean difference (MD) was then calculated 

using the in-situ observations as the true measure of snow depth (Eq. 2). A positive value for MD 

indicates LiDAR over-estimation of snow depths and vice versa. 

ܦܯ =  µௌ஽ ௅௜஽஺ோ − µௌ஽ ௠௔௡௨௔௟               (2)  
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The Mann Whitney U test, a non-parametric statistical test, was selected to compare whether the LiDAR 

and manual measurements are equal in median. Again, this was selected for the less stringent 

assumptions, including: 

i) Two independent, non-paired samples 

ii) A minimum of 10 samples per group 

iii) Independence of observations 

As with the previous statistical test, the manual and LiDAR snow depth measurements were not required 

to be normally distributed, or of equal sample size. The Mann Whitney test uses the rank sum of the 

snow depths, and the test statistic is calculated as the smaller of ܷ௠௔௡௨௔௟  (Eq. 3) and  ܷ௅௜஽஺ோ (Eq. 4) 

ܷ௠௔௡௨௔௟ = ݊௠݊௅ + ௡೘(௡೘ାଵ)ଶ − ܴ௠          (3) 

ܷ௅௜஽஺ோ = ݊௅݊௠ + ௡ಽ(௡ಽାଵ)ଶ − ܴ௅  (4) 

where n is the number of samples and R is the sum of the ranks, respective for the manual (m) and 

LiDAR (L) snow depth measurements. The test statistic was then compared to the critical value at the 

5% significance level, and null hypothesis rejected if the test statistic exceeds the critical value.  

A consistent MD within a particular cover type, ie. if LiDAR over- or under-estimates snow depth, may 

be the result of a systematic bias within the bare earth model. To establish the role of the bare earth 

model on LiDAR snow depth accuracy, the workflow described above was repeated with the 2017 

BCTS bare earth model.  

4.3.4 Timing error and mitigation 

A delay between LiDAR acquisition and manual sampling can be a source of error, as changes to the 

snowpack may occur between the two observations. A longer period of time between LiDAR and 



  
 

45 
 

manual sampling will generally increase the likelihood of snowpack change between the two 

observations, especially when in the snow ablation period. However, Geissler et al. (2023) noted a 

systematic bias due to snowpack settling in as short as a four-hour delay between manual sampling and 

LiDAR collection. To address this source of error, the weather station snow depth sensors and snow 

depth derived from the game camera stations were used to detect snow depth changes between the 

LiDAR and manual measurements.  Plots which were forested (regenerating and old growth) used the 

nearest game camera imagery, and the more open plots (juvenile, alpine, and weather station snow 

courses) used the nearest weather station snow depth data. Relative change to the snowpack was 

calculated by subtracting snow depth observed on the date of the manual sampling, from the snow depth 

on the date of the LiDAR acquisition.  The snow depth change value is referred to in the results as a 

meteorological bias correction.  

A second timing-based error may incur when plots are manually sampled prior to the LiDAR 

acquisition.  Here, there is potential for snow compaction from the survey team activities, which may 

result in an under prediction of the snowpack by LiDAR. Snow compaction is difficult to account for, as 

compaction may be non-existent when the snowpack is firm, or substantial in softer conditions. Ideally, 

approximate snow compaction was documented in field notes, however this was not a consistent 

protocol for each plot. Plots which were sampled prior to the LiDAR acquisition are noted in the results, 

but no error correction applied. 
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4.4 Watershed Scale Analysis 

The final portion of the analysis describes total snow storage within the Russell Creek watershed.  Here, 

the objectives were to assess: 

i) Snow distribution in the watershed, in terms of the forest cover types and elevation bands 

ii) How the snow distribution changes through the snow melt season 

iii) Whether biases observed at the plot scale were present when scaled to the watershed 

iv) The impact of the bare earth model to the proportion of snow stored by cover type and elevation 

band, as well as the total snow storage in the watershed 

The interpolated (gap-filled) snow depth grids were used for the watershed scale analysis.  The Russell 

Creek watershed was delineated from a 30 m SRTM DEM using ArcGIS Pro hydro tools, and the gap-

filled snow depth grids were masked to the watershed extent. As the pixel size of the raster was 1 meter, 

snow volume for each pixel was calculated as:  

[ଷ݉] ݁݉ݑ݈݋ܸ ݓ݋݊ܵ = ([݉] ℎݐ݌݁ܦ ݓ݋݊ܵ) × (1݉ଶ)      (5)  

 

This process was completed using the snow depth grids generated with both the 2023 ACO and the 2017 

BCTS bare earth model. For each snow survey, snow volume was aggregated by 200 meter elevation 

bands, as well as the cover type classifications. 
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Chapter 5 : Results 
 

This chapter summarizes meteorological and snowpack observations collected in 2022 and 2023, 

vegetation characteristics of the snow survey plots, and the plot scale mean and variability in snow 

depths from (a) ground surveys, (b) LiDAR measurements made with the 2023 ACO bare earth model, 

and (c) LiDAR measurements made with the 2017 BCTS bare earth model. The final portion of this 

chapter examines watershed-scale snow storage, the impacts of bare earth model selection, and the 

variability of snow storage across stand types. 

5.1 Snowpack and Weather  

Observations of air temperature from a selection of weather stations located in the Russell Creek 

watershed (Figure 3.5) were used to compare the 2022 and 2023 accumulation and melt seasons, and 

identify changes in snow depth (snow accumulation or melt) that occurred in the days between LiDAR 

acquisitions and in-situ snow depth sampling. Automated observations of snow depth were available at 

four weather stations.   

Visual inspection of 2022 and 2023 snow depth and temperature records (Figure 5.1) show distinct 

differences in the snow accumulation and melt periods between seasons. Snow accumulation was 

slightly greater in 2022, and the timing of maximum snow depth was approximately 1 week earlier in 

the alpine in 2022 than in 2023. The snowpack melted rapidly in 2023, with a short period (26 – 42 

days) between melt onset and snow-free conditions. In 2022, the snowpack persisted approximately one 

month later. 



  
 

48 
 

 

Figure 5.1 Hourly air temperature (upper) and snow depth (lower) data recorded from Steph 2(1164m) weather station, for water years 
2022 and 2023 

The 2022 snow season was the longest since 2017 at both the Steph 6 (827 m) and Steph 2 (1164 m) 

weather stations (Figure 5.2).  The 2022 snowpack development started slow, but by the time of the first 

ACO flight was completed, snow depth was near average for the rest of the season and the second latest 

seasonal peak snow, before a rapid melt at Steph 2 and 6. 
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Figure 5.2 Snow depth records from 2016 - 2023 for Steph 6 (upper) and Steph 2 (lower) weather station, with the years of this study 
highlighted with a blue (2022) and red (2023) dashed line respectively.  Of the 7 years of data shown for Steph 6 and Steph 2 weather 
stations. 2022 had the latest date on record for snow free, whereas 2023 had the second earliest 

Air temperatures in March 2022 were warmer than March 2023, with average temperatures ranging 

from 0.4 to 2 °C across all stations (Table 5.1; Table 5.2). For April, May, and June the temperatures 

were warmer in 2023 than 2022. Notably, May 2023 had the greatest divergence in average monthly air 
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temperatures. When compared to the previous 7 years of weather station data, average monthly air 

temperatures in the alpine were -3.3 °C cooler in 2022, versus 3.8 °C warmer in 2023. 

Table 5.1 Average daily air temperature across all weather stations. Highlighted values represent that the temperature was higher between 
the two years, and a dash indicates there was no data for that month. 

   
Average Air Temperature 

. 
 March April May  June 

station elevation 2022 2023 2022 2023 2022 2023 2022 2023 
Steph 8 576 2.6  1.4  2.3 3.5 6.0 11.2 11.0 12.1 
Steph 7 707 1.4 1.0  - 2.9 6.2 10.6 10.6 11.4 
Steph 6 813 1.1 0.1 0.6 2.3 3.8 5.6 9.4  - 
Steph 4 935 1.4 1.0  - 2.9 6.2 10.6 10.6 11.4 
Steph 3 1004 0.9 -0.4 0.1 0.9 3.3 8.6 9.2 9.7 
Steph 2 1158 -0.3 -1.8 -1.3 0.2 2.0 8.9 7.6 10.3 
Steph 1 1508 -2.3 -4.3 -3.8 -2.0 0.5 7.6 5.4 8.4 
 

Peak snow depths in 2022 were greater than 2023 at all weather stations, ranging from 8-26 % deeper 

(Table 5.2).  With the exception of Steph 3, peak snow depth occurred 3 – 16 days later in 2022. The 

cooler temperatures in May 2022 resulted in the snowpack persisting 41 days longer at the alpine 

stations in 2022 than in 2023.  Generally, snow melt periods were longer in 2022 than 2023 weather due 

to the greater antecedent snowpack.   

Table 5.2 Summary of 2022 and 2023 snow depth measurements at four weather stations, selected for consistent snow depth data across 
2022 and 2023.  Metrics include: 1) peak snow depth and date, 2) length of melt period in days (defined as sustained loss of 0.5 cm per 
day) and rate of snow melt, and 3) snow free date 

 
peak snow depth  

(cm, date) 
snow loss rate  

[cm/day, (days of melt)] Snow-free date  
station elevation 2022 2023 2022 2023 2022 2023 
Steph 6 813 125.8 (5-Apr) 91.9 (21-Apr) 4.3 (42) 4.3 (36)  28-May   6-May 
Steph 3 1004 106.1 (5-Apr) 97 (3-Mar) 6.1 (8)  5.7 (13) 26-May  3-May 
Steph 2 1158 212.2 (5-Apr) 170.3 (21-Apr) 5.1 (35) 6.1 (26)  23-Jun  18-May 
Steph 1 1508 334.5 (13-Apr) 246.8 (16-Apr) 6.1 (47) 4.7 (42)  7-Jul  27-May 
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5.2 Vegetation Surveys 

To evaluate the role of ground vegetation in LiDAR ground return point density, characteristics of the 

vegetation at each cardinal plot were collected in October, 2022. The height of ground vegetation is used 

here as a proxy for the vigour and density of ground vegetation that might affect LiDAR point densities.  

Between 70 to 232 individual plant height measurements were collected at each cardinal plot (Figure 

5.3; Table 5.3). Though a thorough species inventory was not collected, the most numerous species 

within the forested sites belonged to the genus Vaccinium (blueberries and huckleberries) and Asplenium 

(ferns), and Phyllodoce (mountain heathers) in the alpine. Vegetation measuring less than 5 cm in height 

and trees were not included in the results. Species were broadly categorized by whether they were a) 

woody debris, for example logs and stumps b) heather, or c) shrubs and ferns.  

Table 5.3 Vegetation composition by cover type, summarized by the average height (μ) and the standard deviation (σ) of the 
shrubs and ferns, woody debris, and heather. 

Vegetation Shrubs and Ferns Woody Debris Heather 

Cover Type 
μ 

[cm] 
σ 

[cm] 
% 

of total 
μ 

[cm] 
σ 

[cm] 
% 

of total 
μ 

[cm] 
σ 
[cm] 

%  
of total 

Juvenile 116.3 44.9 84.7 71.2 66.6 15.3 n/a n/a n/a 

Regenerating 78.8 87.8 88.1 72.8 55.1 11.9 n/a n/a n/a 

Dense Old Growth 36.7 29.8 70.3 28.0 38.1 12.9 10.0 8.0 16.8 

Old Growth 52.4 37.0 71.9 35.7 15.8 1.3 32.3 15.2 26.8 

Alpine 26.5 26.3 57.1 n/a n/a n/a 19.5 10.0 42.9 
 

 

The average shrub height was greatest in the cardinal plots located in the juvenile and regenerating- 

forests, at 116 and 78 cm, respectively.  The regenerating and juvenile forests had a high proportion of 

woody debris – stumps, logs, and slash piles – that are bi-products of the forest harvest, and they also 
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had the greatest variability in shrub height of the cover types. Large canopy gaps and relatively small 

trees (less than 5 m) in juvenile forest stands allow for the ground vegetation to grow to greater heights. 

The tree and shrub layer were the least distinct within the juvenile forest, and in some cases the shrubs 

exceeded the tree heights.   

 

Figure 5.3 Average vegetation height by cover type broken into the categories of shrub, woody debris, and heather. Vegetation measured 5 
cm or less, as well as trees, were not included in the results. Error bars represent the 95% confidence interval.  

 

The old growth forest was predominantly comprised of a single shrub layer, which was highest in the 

stands with large canopy gaps. As the canopy density increased in the cardinal plots, the average height 

of the shrub layer decreased. Alpine vegetation was predominantly low-lying mountain heather, with 

clusters of stunted trees and sparsely spaced shrubs. The alpine shrub layer was the lowest average 

height and the lowest variability of all the cover types.  

Though ground vegetation layers were present at all cardinal plots, the harvested (juvenile and 

regenerating) cardinal plots were considerably more complex in terms of the height, density and 
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variability of the vegetation. As a result, the LiDAR ground earth model is likely to be less accurate in 

the harvested forests due to the a) potential misclassification of vegetation as ground, and b) reduced 

ground points due to the lasers inability to penetrate through the vegetation to the ground. 

5.3 LiDAR Point Densities 

The LiDAR snow surface point density returns varied by both the forest cover type, and the date of 

acquisition (Figure 5.4).  Overall, as the snowmelt season progressed, the average point density 

decreased and the number of data gaps (pixels with zero ground returns) also increased (Figure 5.4). No 

changes were made to the planned snow survey density between the acquisitions. 

 

Figure 5.4 Percentage of the cardinal plots which had at least one LiDAR ground or snow surface  point return per m2, grouped by forest 
cover type, for each LiDAR acquisition in 2022 (upper) and 2023 (lower).  Hatched bars denotes acquisitions that were snow-free for all 
plots within the cover type. Error bars represent the 95% confidence interval. 
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With the exception of the regenerating forest, all plots in 2022 were snow-covered for each acquisition 

due to the late snow melt. As a result, 2022 had higher average point density per m2, as well as 

proportion of snow surface returns per plot than 2023. In contrast, the earlier snowpack meltout in 2023 

led to reduced ground point densities in the snow-free acquisitions. This is interpreted as being the result 

of ground vegetation leaf-out, particularly in the juvenile and regenerating forests and between the May 

25th and June 12th acquisition (Figure 5.5). An anomaly to this pattern occurs in April 2023 acquisition 

in the dense old growth forest, as the average proportion of ground point returns drops from 92% in the 

March 10th acquisition to 18% in the April 4th, despite snow conditions being stable. A less pronounced 

decrease in point density is also observed within the old growth in April 2023, but the overall decrease 

in returns through the melt season is consistent between the two acquisitions. Changes to the snow 

surface, i.e. reduced reflectivity of snow with vegetation emerging or forest debris, may also contribute 

to variability in the snow surface point density. 

Table 5.4 Median ground point density per meter squared for the snow surveys, as well as the average proportion of valid pixels per each 
of the cover types 

LiDAR Acquisition 
Date  

Median GPD/m2  (Mean proportion of ground returns per plot [%]) 

Cover juvenile regenerating 
dense old 
growth old growth alpine 

20
22

 Mar-9 5 (99.0%) 2 (66.6%) 2 (83.3%) 2 (91.6%) 3 (97.6%) 
Apr-11 5 (99.4%) 3 (71.5%) 2 (85.8%) 3 (93.6%) 3 (99.6%) 

May-21 5 (97.4%) 2 (58.6%) 1 (69.1%) 2 (89.4%) 3 (98.2%) 
Jun-24 3 (84.0%) 1 (37.5%) 1 (69.2%) 2 (85.0%) 2 (85.8%) 

20
23

 

Mar-10 5 (98.5%) 2 (62.9%) 2 (92.2%) 3 (94.0%) 4 (97.8%) 
Apr-4 3 (95.4%) 1 (50.5%) 1 (18.7%) 1 (57.4%) 3 (98.6%) 

Apr-29 3 (96.6%) 2 (49.6%) 2 (75.8%) 2 (87.1%) 3 (98.3%) 
May-25 1 (53.6%) 1 (32.9%) 1 (57.4%) 1 (71.5%) 2 (64.2%) 
Jun-12 1 (14.2%) 1 (12.4%) 1 (57.4%) 1 (65.1%) 2 (66.8%) 

 

Despite highest canopy cover occurring in the dense old growth forest, the overall lowest proportion of 

snow surface and ground returns per plot was found in the regenerating forest, ranging from an average 



  
 

55 
 

high of 71.5% in high snow accumulation conditions, to a low of 12.4% when snow free. The alpine had 

the fewest gaps in ground returns, and median point returns of 3 - 4 points m-2 in high snow 

accumulation conditions, and 2 point m-2 in intermittent to snow-free conditions.  

The greatest variability in the point density occurred in the juvenile forest. In snow-on conditions, 

minimal canopy cover resulted in high point density and less than 10% of data points missing per plot. 

As the snowpack thinned and melted, and vegetation exposed, the median point density dropped to 1 

point per m2, and only 14.2% of ground points per plot.  

 

Figure 5.5 Imagery of the juvenile forest from the (A) May 25th 2023 and (B) June 12th 2023 acquisitions showing the green up of the 
vegetation 

5.4 In-situ vs LiDAR Snow Depths 

LiDAR-derived snow depths, were compared with in-situ observations made at the weather stations and 

cardinal plots. Weather station data was used to establish to what extent the snowpack conditions 

changed between the time of the LiDAR survey and in-situ measurements. The mean difference (MD) 

and standard deviation (SD) was compared between the different forest cover types.  
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5.4.1 Snow depths Validation 
 

In-situ snow depth sampling was targeted to overlap with the LiDAR acquisitions, however this was not 

always possible due to weather conditions and other logistics. In general, the manual observations took 

place within 3 days pre- or post-LiDAR (Table 5.5). An exception to this was the June 24th 2022 

acquisition, which occurred 6-10 days after the manual measurements. As this survey occurred during 

the snowpack ablation period, automated snow depth observations indicate that a large loss of snow (35 

– 55 cm) occurred between manual sampling and the LiDAR acquisition (Table 5.5). 

Table 5.5 Summary table of LiDAR and manual dates for 2022 and 2023 and how the snow depth changed within that time frame.  Snow 
depth change includes the SR50 data of all seven weather stations in Russell Creek, provided the sensor was collecting data in that time 
frame 

Year LiDAR 
acquisition 
date 

Manual sampling SR50 snow depth change 

 
 
2022 

March 9th March 8th - March 10th -1 cm to 2 cm change from manual 
sampling to LiDAR acquisition 

April 11th April 5th - April 10th 18 – 25 cm increase from the start of the 
manual sampling to LiDAR acquisition  

May 21st May 21st - May 25th 16 – 24 cm loss from LiDAR acquisition 
to end of manual sampling 

June 24th June 14th - June 18th 35 – 55 cm loss from start of manual 
sampling to LiDAR acquisition 

 
 
 
2023 
 

 March 10th March 9th - March 13th -2 to 2 cm change from manual sampling 
period to LiDAR acquisition  

April 4th April 5th - April 7th  -1 to 1 cm change from LiDAR 
acquisition to manual sampling 

April 29th April 26th - April 27th 13 – 22 cm of loss from the manual 
sampling period to LiDAR acquisition 

May 25th May 23rd - May 25th 7 cm loss at Steph 1 recorded from start of 
manual sampling period to LiDAR 
acquisition 

June 12th n/a Snow free at plots and weather stations 

 

LiDAR surveys in 2023 were generally aligned closer to the manual sampling windows than in 2022.  

Manual sampling occurred in the days immediately prior to the April 29th LiDAR survey, yet a rapid rise 
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in temperature resulted in an average of 17 cm snow loss between start of sampling and the LiDAR 

survey (Figure 5.6). 

 

Figure 5.6 Steph 2 weather station showing the change in average daily snow depth which occurred between the manual sampling window 
and the LiDAR survey for the April 29th 2023 acquisition 

 

5.4.1.1 Weather Station Snow Courses  

The weather station snow courses (with the exception of Steph 1) are conducted on gravel resource 

roads, and are therefore free from bias introduced by ground vegetation. Across the 2022 snow year, the 

3rd of March survey had the lowest bias error between the LiDAR and manual sampling, with mean 

difference (MD) ranging from – 6 to 8 cm (Figure 5.7).  This snow course represents the ‘ideal’ 

comparison between manual and LiDAR-derived snow depths, as it was conducted shortly after the 

March 9th LiDAR acquisition, with no disturbance to the snow surface from manual sampling, and the 

weather was stable with no accumulation or melt (Table 5.5). The greatest MD occurred in the June 24th 

acquisition, in which snow depth was underestimated by 37 to 56 cm due to melt between the snow 

course and LiDAR acquisition.  A comparison of the snow-on and snow-free plots from the June survey 
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show a much reduced, though positive bias for the snow free plots, confirming the large negative bias is 

a result of the changes to the snowpack (Figure 5.7). 

 

Figure 5.7 The mean difference for snow courses from the 2022 and 2023 snow season. A 10 day delay between the LiDAR acquisition and 
manual sampling -which coincided with a period of snow melt - is attributed to the large negative bias for June 24th 2022 

In 2023, the greatest deviation between the manual and LiDAR snow depths occurred in April, where 

the April 29th LiDAR acquisition underestimated snow depth by 14 to 24 cm. This again coincided with 

a melt period between the manual sampling and LiDAR acquisition (Figure 5.6). The snow courses 

which were snow-free, Steph 7 and Steph 8, had a MD of -2 and 6 cm respectively, which indicates that 

snowpack changes between manual and LiDAR surveys were responsible for the observed bias.  

In general, the systematic error was greater in plots in which LiDAR was acquired after the manual 

sampling occurred as opposed to before, as well as if it had snowed or melted in between the manual 

surveys and LiDAR acquisition (Figure 5.8). This suggests that both meteorological variability as well 

as potential snowpack interference from manual sampling can explain some of the systematic error for 

specific surveys. 
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Figure 5.8 2022 and 2023 snow-on surveys mean difference grouped by whether LiDAR was flown pre or post manual sampling, and the 
snow depth change between acquisition and sampling.  Snow depth readings are compiled from the weather stations in Russell Creek, 
Steph 1 – 8. 

5.4.1.2 Cardinal Plots 

The cardinal plots were situated in more complex terrain than the weather station snow courses, with 

varying degrees of canopy cover and ground vegetation (see Table 3.3 and Figure 3.3). Over each of the 

314 m2 plot, the average snow depth of 33 in-situ measurements was compared to a maximum of 312 

LiDAR measurements, dependant of pixels with at least one ground return point within the plot. Overall, 

systematic differences between LiDAR and manual snow depth observations at the cardinal plots were 

found to be related to the forest cover type.    

As identified previously, changes to the snowpack that occur between LiDAR acquisition and manual 

sampling will affect the mean difference. To account for sources of accumulation or melt error, weather 

station snow depth sensors at nearby meteorological stations were used to estimate the snowpack change 

in the alpine and juvenile sites between manual and LiDAR surveys, while game camera images of snow 

stakes were used to evaluate snow depth changes in the forested sites. When the LiDAR was flown after 
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the manual measurements, compaction of the snow surface during manual snow sampling may introduce 

additional errors, depending on snow conditions. Plots in which the LiDAR was captured after manual 

sampling occurred are marked with a star, but no offset applied.  

Despite a significant melt period between manual sampling and the June 24th 2022 LiDAR acquisition 

(Table 5.5), these data will still be used within the validation of snow depths, as the meteorological bias 

correction applied should counteract the melt. However, data from this survey will be omitted from the 

aggregated results.  

5.4.1.2.1 Alpine 

Differences in manual and LiDAR derived snow depths were inconsistent between acquisitions (Figure 

5.9), however not all plots were sampled every time due to elevated avalanche hazard. In 2022, alpine 

plots were sampled for three of the four LiDAR surveys. The lowest mean difference (-7 cm) was 

observed during the first acquisition. While the May 21st LiDAR survey showed average snow depths 40 

and 50 cm greater than the manual survey, this was reduced by a correction of 10 cm to account for 

snow melt that occurred between the LiDAR and manual measurements. In contrast, the negative bias 

for the June 24th survey is consistent with the snow melt which occurred between LiDAR flight and 

manual sampling (see Table 5.5).  

For 2023, all five of the acquisitions were sampled, but the final acquisition were all verified snow free.  

Overall, MD was lower in 2023 for the alpine plots, ranging from -20 to +11 cm across all surveys with 

snowpack conditions that were stable between LiDAR and manual surveys. In snow-free conditions, 

MD was reduced to -4 and -2 cm, showing good agreement between the bare earth surfaces within the 

plots. 
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Figure 5.9 Alpine cardinal plots mean difference between LiDAR and in-situ snow depth measurements for the 2022 and 2023 surveys.  
Meteorological corrections from the weather station snow depth data is denoted with the darker bars, and asterisk mark if LiDAR was 
acquired after manual measurements.  Hatched bars indicate plot was snow free. 

5.4.1.2.2 Old Growth 

Bias was similar across acquisitions and plots for the dense old growth forest (bias across all 

acquisitions and plots. For both years, LiDAR snow depths were 3 to 33 cm lower than manual 

observations (Figure 5.10). After the snow melt correction was applied to the June 24th 2022 acquisition, 

the LiDAR snow depths were slightly higher than manual observations.  
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Figure 5.10 Dense old growth cardinal plots mean difference between LiDAR and in-situ snow depth measurements for the 2022 and 2023 
surveys.  Meteorological correction applied using the game camera data is denoted with the darker bars, and asterisk mark if LiDAR was 
acquired after manual measurements. Hatched bars indicate plot was snow free. 

The highest MD (29 to 33 cm) for 2023 occurred on the April 29th survey, which may be attributed to 

the manual measurements occurring prior to LiDAR acquisition. Field notes documented approximately 

10 cm compaction - as well as rapid warming and melt (see Table 5.5). In the one day between manual 

sampling and the LiDAR survey on April 29th, the forest game camera situated in nearby forest stand 

(ST1GC1) show an average 10 cm of melt (Figure 5.11).  When conditions were snow-free, the bias 

remained negative, suggesting a consistent bias to the ground surface model in the dense canopy forest. 
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Figure 5.11 Game camera ST1GC1 showing the rapid snow melt which occurred, with a loss of approximately 10 cm between 10 am on 
the 28th of April to 3 pm on the 29th of April 2023.  Snow stakes are marked by 20 cm increments.  

Manual and LiDAR-derived snow depths in the old growth plots were characterized by higher snow 

depths and variability (Figure 5.12).  The median of the mean difference in snow depth was -17 cm. No 

significant differences in snow depths were observed for the March 9th 2022 LiDAR survey. For the 

May 21st 2022 survey, the LiDAR overestimated the snow-pack by an average of 82 cm for plot 

ST1OG3, which was reduced to 74 cm after a correction for melt was applied. Notably, a) ST1OG3 is 

situated in a steeper terrain, and is the highest of the old growth sites, and b) the May 21st survey also 

saw an over-estimation of snow depth in the two alpine plots.  The greatest bias for old growth plots 

OG7 and OG8 – which are spatially closest together – occurred on the April 4th 2023, where LiDAR 

underestimated the snowpack by average of 57 and 103 cm respectively. The snow conditions were 

stable, sampling occurred post-LiDAR surveys, and manual measurements have been checked for error.  

However, this is consistent with the reduced proportion of snow surface returns shown in Figure 5.4. 
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Figure 5.12 Old growth cardinal plots mean difference between LiDAR and in-situ snow depth measurements for the 2022 and 2023 
surveys. Error corrected using the game camera imagery is denoted with the darker bars, and asterisk mark if LiDAR was acquired after 
manual measurements. Hatched bars indicate plot was snow free.  

 

5.4.1.2.3 Regenerating 

In the regenerating forest plots LiDAR consistently over-estimated snow depths by 25 to 106 cm (Figure 

5.13).  Biases in snow depth during three snow-free acquisitions (i.e. snow depth should be zero) ranged 

from +160 to -30 cm, which indicates poor agreement between the snow-free elevations and the ground 

surface model. Plot ST6GC1 generally had the lowest MD (29 to 56 cm) in snow-on conditions, and is a 

denser forest canopy than both ST4RF1 and ST4RF2.  
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Figure 5.13 Regenerating cardinal plots mean difference between LiDAR and in-situ snow depth measurements for the 2022 and 2023 
surveys.  Error corrected using the meteorological or game camera data is denoted with the darker bars, and asterisk mark if LiDAR was 
acquired after manual measurement. Hatched bars indicate plot was snow free. 

 

5.4.1.2.4 Juvenile 

LiDAR over predicted snow depth in the juvenile forest cover in both snow years, though at much 

different magnitudes between the two plots (Figure 5.14). Of all the cover types, the juvenile plots 

showed the greatest error variability in snow-on conditions (32 to 127 cm), despite being similar in 

topography. Plot ST2CC2 had a MD which was consistently in a range three times greater than that of 

ST2CC1. Notably, as the vegetation greened up, the snow free error changed from positive on the May 

25th survey (31 and 127 cm) to negative on the June 12th (-9 and -27 cm). 
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Figure 5.14 Juvenile cardinal plots mean difference between LiDAR and in-situ snow depth measurements for the 2022 and 2023 surveys.  
Error corrected using SR50 snow depth sensor denoted with the darker bars, and asterisk mark if LiDAR was acquired after manual 
measurement. Hatched bars indicate plot was snow free. 
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5.4.1.3 Summary 

Overall, differences between the LIDAR and manual snow depth measurements were greater in the 

cardinal plots (characterized by complex terrain and a range of ground and canopy covers) than the 

weather station snow courses (characterized by graded surfaces with no ground vegetation or canopy 

cover; Figure 5.15). Though the meteorological corrections proved beneficial to some plot biases, the 

results were mixed, and in some cases bias increased. Therefore, MD ranges will be reported for the 

non-meteorological corrected version, with the June 24th 2022 survey excluded due to the significant 

melt which occurred (Table 5.5). 

The Median MD for the weather station snow courses were -4 and -6 cm for 2022 and 2023 

respectively.  The greatest MD occurred in the regenerating (median MD: 55 cm) and juvenile (median 

MD: 76 cm) stands, with LiDAR generally over-predicting snow depth in the harvested stands.  Ground 

vegetation in the regenerating and juvenile stands was notably much higher and more complex than the 

other cover types. Snow depths in regenerating plots were consistently overestimated by LiDAR across 

all three of the plots, with MD between +12 to +106 cm (Figure 5.14). The two juvenile plots were 

similar in topography, canopy cover, and ground vegetation, however they had two distinctly different 

ranges in MD (2 to 41 cm and 121 to 150 cm). Old growth forest plots had a general negative bias, with, 

a smaller range of MD observed in the denser canopy sites (-25 to -6 cm) than the more open sites (-58 

to 4 cm; excluding ST1OG3, complex, sub-alpine plot).  Alpine plots were inconsistent between snow 

years, with a mostly positive, and wider MD range in 2022 (-6 to 50 cm), and a negative range in 2023 (-

18 to -4 cm). However, only three pairs of LiDAR and manual measurements are included for 2022. As 

observed with the weather station snow courses, the snow depth bias observed at the cardinal plots was 

generally reduced when sampling took place shortly after the LiDAR acquisition, when minimal 

changes to the snowpack had occurred. 



  
 

68 
 

 

Figure 5.15 Boxplots of the mean difference for each plot by cover type, with “open” referring to the weather station snow courses. For 
each vegetation type, the left box represents 2022 data and the right box 2023.  For 2022, phase 4 has been excluded due to the noted offset 
due to delay in LiDAR acquisition and manual sampling, and subsequent snow melt. The box shows the quartiles of the dataset, with 
whiskers extending to points within 1.5 x the inter-quartile range. Observations outside of this range are displayed as points.  

In addition to the forest cover and ground vegetation, slope is a topographic parameter which will 

impact LiDAR accuracy (see sec 2.1.3). The sampling strategy of this thesis focused on forest 

composition, and did not target slope angle to assess LiDAR accuracy due to both the well-established 

relationship between slope angle and LiDAR error (eg. Painter et al. 2017), as well as challenges of 

manual sampling in steep terrain. Therefore the average slope angle of the plots did not exceed 35 

degrees, and, as a result, there was no clear relationship between the gradient of the plot, and the mean 

absolute bias (Figure 5.16).   
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Figure 5.16 Scatterplot of the slope angle of the cardinal plots and the mean absolute bias error for the 2022 and 2023 LiDAR surveys. 
Each marker represents the mean absolute bias error of the cardinal plot, color coded by cover type, and the vertical bars represent +/- 
sigma.  
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5.4.2 Variability of Observed Snow Depths 

The spatial variability of snow depth is an important parameter (Lopez-Moreno et al., 2011) that may 

vary through the accumulation and melt seasons (Grunewald et al., 2010). However, there are few 

comparisons between LiDAR-derived and manual snow depth that specifically investigate the snow 

depth variability at the plot scale. This section summarizes the variability of snow depths measured (a) 

manually and (b) with airborne LiDAR scans at the snow courses and cardinal plots throughout the snow 

melt season.  

5.4.1 Weather Station Snow Courses 

Snow depth variability from both manual (Table 5.6) and LiDAR-derived (Table 5.7) snow depth 

observations were greatest at Steph 1, where standard deviation ranged from 16 to 31 cm across all three 

acquisitions. Steph 1 is an alpine site with reduced canopy and high wind exposure which results in 

greater wind transport of snow. As well, the ground surface of the Steph 1 snow course is much more 

variable than the rest of the weather station snow courses. 

The lowest snow depth variabilities for both manual and LiDAR observations occurred in the low 

elevation and sheltered snow courses (Steph 8 and Steph 7), which do not receive much direct sun or 

wind. Manual observations yielded standard deviations between 3.0 and 5.2 cm at these sites, while 

LiDAR observations gave standard deviations between 7.4 and 12.1 cm. Overall, the snow depth 

variability did not change through the snow melt period for the manual nor LiDAR, though Steph 2 

showed statistically different variance between sampling periods in 2022. 

For the weather station snow courses, the manual sampling and LiDAR observations captured similar 

snow depth variability across both melt seasons (Figure 5.17). Of the 46 instances of manual and LiDAR 

comparison measurements, only 6 were statistically different in variability (full results in Appendix D). 
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These six occurred at lower elevations and were spread over all acquisitions. Both manual and LiDAR 

snow depth measurements identified the same sites as having the greatest snow depth variability (Steph 

1 and Steph 3). 

Table 5.6 Standard Deviation (SD) of the in-situ snow depth observations at each weather station snow course. Snow courses which were 
snow free are shaded blue.  To assess whether the in-situ snow depth variability changed as snow melted, the Levene’s test was conducted, 
where for each weather station and year, each groups (LiDAR survey) variance were compared to each other. Snow free and no data 
surveys were not included as groups. 

 
 In-situ Observations  - Snow Depth Standard Deviation (cm)  
Weather Station Steph 1 Steph 2 Steph 3 Steph 4 Steph 6 Steph 7 Steph 8 

20
22

 9-Mar 33.0 4.5* 5.3 7.5 4.7 5.2 4.1 
11-Apr - 4.5* 14.9 8.4 3.3 4.8 3.0 
21-May 29.9 10.7* 8.6 10.5 4.4 0.0 0.0 
24-Jun 30.3 4.6* 0.0 0.0 0.0 0.0 0.0 

20
23

 

10-Mar 16.9 3.9 5.4 5.0 3.1 2.3 1.7 
4-Apr 29.5 4.2 6.3 5.2 5.5 1.8 1.6 

29-Apr - 7.3 7.7 5.9 4.4 0.0 0.0 
25-May 22.9 0.0 0.0 0.0 0.0 0.0 0.0 
12-Jun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

* Statistically significant at a p-value of 0.05. 

 

Table 5.7 Standard Deviation of the LiDAR collected snow depth at each weather station snow course. Snow courses which were snow free 
are shaded blue. To assess whether the LiDAR  snow depth variability changed as snow melted, the Levene’s test was conducted, where for 
each weather station and year, each groups (LiDAR survey) variance were compared to each other. Snow free and no data surveys were 
not included as groups. 

 
 LiDAR  - Snow Depth Standard Deviation (cm)  

Weather Station Steph 1 Steph 2 Steph 3 Steph 4 Steph 6 Steph 7 Steph 8 

20
22

 9-Mar 25.0 7.1* 9.1* 4.1 6.9* 9.3 7.4* 
11-Apr 27.5 5.9* 15.5* 6.7 5.8* 12.1 8.7* 
21-May 33.5 6* 13.7* 7.5 9.1* 8.3 6.0 
24-Jun 35.7 8.2* 5.1 4.5 6.5 8.3 8.5 

20
23

 

10-Mar 16.8 6.5 10.8* 3.8 5.4 7.5 4.9 
4-Apr 25.5 6.3 10.5* 4.1 7.0 8.3 4.1 

29-Apr 22.3 6 9.6* 7.8 8.6 6.3 4.2 
25-May 21.1 5.1 1.6 4.8 5.4 7.5 4.4 
12-Jun 2.7 3.5 2.8 3.3 9.3 8.6 5.1 

 

* Statistically significant at a p-value of 0.05 
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Figure 5.17 Snow distribution for Steph 1 weather station snow course for each LiDAR survey in 2022, showing the manual (red) and 
LiDAR (blue) snow depth distribution.  None of the measurements were significantly different in snow depth variability.  The offset between 
the LiDAR and the manual sampling in the June 24th acquisition is due to the snow melt which occurred between manual sampling and 
LiDAR survey. No in-situ measurements were taken at Steph 1 on April 11, 2022. 

 

5.4.2 Cardinal plots 
 

Snow depth variability was greater at the cardinal plots than at the weather stations for both the manual 

and LiDAR observation (Table 5.8; Table 5.9). While alpine sites were inconsistently sampled due to 

varying avalanche conditions, snow depth variability calculated using both manual and LiDAR 

observations was relatively stable through the 2022 and 2023 snow melt seasons. 
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Table 5.8 Standard deviation for in-situ snow depth measurements for the cardinal plot sampled across 2022 and 2023. Cells highlighted 
blue indicate snow-free.  To assess whether the in-situ snow depth variability changed as snow melted, the Levene’s test was conducted, 
where for each plot and year, groups (LiDAR survey) variance were compared to each other. Snow free and no data surveys were not 
included as groups. 

 

In-Situ 
measurements 

SD (cm) 

2022  2023  
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24
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pr
 

29
-A

pr
 

25
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ay
 

12
-J

un
 

  
A

lp
in

e ST1A1 25.5 - 34.6 27.8 30.0 37.3 - 28.2 0 
ST2A2 - - 44.5 46.9 30.8 38 - 34.9 0 

O
 G

ro
w

th
 ST1OG3 -   - 57.8 44.1 39.2 42.3 - 26.2 0 

ST1OG7 34.7 46.9 41.7 36.8 26.0* 37.1* 40.2* 21.1* 0 
ST1OG8 44.8 46.4 44.3 39.9 33.2* 51.4* 43.4* 16.3* 0 

D
 O

 G
ro

w
th

 

ST1OG4  - 30* 17.3* 13.6* 21.3* 15.8* 21.3* 0 0 
ST1OG5 24.6 29.1 28.0 19.8 21.3* 29.4* 25.9* 5.1* 0 

ST1OG6 21.3 28.7 25.5 20.1 22.4* 19.1* 18.2* 5.8* 0 

Re
ge

n ST4RF1 54.2* 40.7* 30.1* 0 24* 30.9* 33.2* 0 0 
ST4RF2 37.6 40.3 46.7 0 27.5 27.2 34.3 0 0 
ST6GC1 33.2* 55.3* 29* 0 29.7* 35.5* 27.9* 0 0 

Ju
ve

ni
le

 

ST2CC1 - 51.2* 46.4* 5.4* 25.4 34.3 40.8 0 0 

ST2CC2 - 30.2* 46.5* 17.6* 23* 26* 34.6* 0 0 
* Statistically significant at a p-value of 0.05 

Open canopy old growth forest plots had the greatest snow depth variability among the manual 

observations (SD = 16.3 to 57.8) but not in the LiDAR (SD = 21.1 to 61.5 cm) observations, and the 

highest snow depth variability coincided with the timing of the greatest average snow depth in both 

years (April acquisitions). With both snow depth observation types, plot ST1OG3 stands out with higher 

variability in snow depths due to its location in the sub-alpine and greater exposure to wind. At all old 

growth sites and in both datasets and seasons, snow depth variability decreases from the maximum snow 

depth through to the end of the melt season.    

Dense old growth forest overall had less variable snow depths than open canopy sites in both manual 

(SD = 5.1 to 30.0 cm) and LiDAR (SD = 7.1 to 26.1 cm) observations, and was the least variable 
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snowpack across all the forest cover types.  Similar to the old growth, snow depth variability was 

consistent across all acquisitions and observation types for 2022, and more variable in 2023 as the plots 

were largely snow free by the May 25th acquisitions.   

Regenerating and juvenile plots showed no change in snow depth variability as the melt seasons 

progressed, and had the highest variability observed with the LiDAR observations (SD = 46 to 93 cm). 

This variability is likely due to ground features endemic to harvested terrain, such as the stumps, slash 

piles and compressed shrubs. Leaf-out in the spring would also affect the variability observed through 

the LiDAR observations (but not the manual probing).  

Table 5.9 Standard deviation for LiDAR cardinal plot snow depth measurements across both years. Cells highlighted blue indicate snow-
free. To assess whether the LiDAR snow depth variability changed as snow melted, the Levene’s test was conducted, where for each plot 
and year, groups (LiDAR surveys) variance were compared to each other. Snow free and no data surveys were not included as groups. 

 

Standard Deviation 
(cm) 

LiDAR 2022  2023  
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pr
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A
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e ST1A1 32.1 36.2 36.0 34.4 32.1* 32.9* 33.5* 17.2* 10.8 
ST2A2 35.2 34.2 28.5 32.5 28.8 30.5 32.8 26.9 22.9 

O
ld
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ST1OG3 51.8* 61.5* 52.3* 41* 34.7* 27.2* 33.5* 25.5* 10.8 
ST1OG7 33.5* 44.3* 39.7* 36.7* 26.4* 28.4* 29.3* 23.3* 10.9 
ST1OG8 34.7* 41.3* 36.4* 32.6* 26.3* 31* 25.6* 21.1* 19.5 

D
en

se
 O

ld
 

G
ro

w
th

 ST1OG4 20.5* 23.7* 23.7* 18.5* 13.5* 7.1* 13.9* 10.8 9.8 
ST1OG5 23.6* 26.1* 26* 16.8* 17.9* 12.3* 20.1* 10.2* 10.2 

ST1OG6 18.2* 22.7* 20.7* 16.4* 14.0* 12.8* 16.4* 11.4* 9.1 

Re
ge

n ST4RF1 80.0 85.2 78.4 93.1 83.3 76.1 72.2 72.2 32.5 
ST4RF2 66.0 62.6 67.7 88.1 61.1 62.3 63.6 65.0 59.7 
ST6GC1 75.6 75.8 70.0 81.7 71.4 69.9 74.2 67.7 41.2 

Ju
ve

ni
le

 

ST2CC1 58.2 62.3 61.0 60.4 58.1 57.7 59.4 55.0 80.5 

ST2CC2 53.5 50.9 51.1 63.6 57.4 54.4 52.6 58.0 46.0 
* Statistically significant at a p-value of 0.05 
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Only two of the cardinal plots were equal in variance between the manual and LiDAR measurements for 

every acquisition: the alpine plot ST1A1, and old growth plot ST1OG7 (Figure 5.18). Of the cover 

types, the old growth forest had the most cases of equal variance between the manual and LiDAR, with 

only 13% significantly different in variance through the snow melt period (full results table in appendix 

D). 

 

Figure 5.18 KDE plot for 2022 showing the variability of snow depth for old growth plot ST1OG7. None of the survey dates were 
significantly different in snow depth variability between the in-situ and LiDAR 

The majority of the regenerating and juvenile sites were significantly different in variability between the 

manual and LiDAR measurements (89% and 84% of all plots respectively).  In each case, the LiDAR 

snow depth variability was greater than the manual observations (Figure 5.19). 
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Figure 5.19 KDE plot for the regenerating forest plot ST4RF1 for 2022. The snow depth distribution was significantly different across all 
phases between the in-situ and LiDAR.  For the 24th of June survey, the 33 in-situ measurements not visible on the graph recorded zero 
snow. 

 

 

5.5 Bare Earth DEM 

To assess bias which may be inherent to the bare earth acquisition, the snow depth analysis was re-run 

with an alternative bare earth model for Russell Creek, a BCTS acquisition flown in 2017. Here, the 

manual to LiDAR snow depth validation results are compared between both models to assess whether 

the errors differ by cover type. Additionally, the LiDAR ground point coverage and density per each plot 

is compared between the bare earth models.  

Validation results for the weather station snow courses, conducted on stable ground with no canopy 

cover (open), are relatively uniform using either the 2017 or 2023 bare earth DEMs (Figure 5.20).  

However, distinctly different errors were produced within the juvenile, regenerating and dense old 

growth forest when processed with the 2017 bare earth model. 



  
 

77 
 

 

Figure 5.20 Boxplot comparing the mean difference of plot snow depth for the manual observations and LiDAR across both years, with 
open cover representing the weather station snow courses. Blue boxes represent results of the 2017 BCTS model, and the orange boxes are 
of the 2023 bare earth model. The box shows the quartiles of the dataset, with whiskers extending to points within 1.5 x the inter-quartile 
range. Observations outside of this range are displayed as points.  

 

The juvenile plots had the greatest MD range between plots with the 2023 BCTS model (-27 to 134 cm), 

whereas with the 2017 BCTS model, it had the lowest MD ranges across the cardinal cover types (-13 to 

29 cm). The juvenile forest low MBE was consistent for both of the plots for the 2017 model, versus the 

inconsistent results with the 2023 model. Within the regenerating forest plots, bias shifted from 

generally positive with the 2023 bare earth model (median MD = 45 cm), to predominantly negative 

(median MD = -30 cm) with the 2017 model, though both had a wide range in error (>80 cm).   

Error increased in the dense old growth forest with the 2017 bare earth model, with LiDAR over-

estimating the snow depth in the range of 25 – 86 cm across all acquisitions. However, the old growth 

with larger canopy gaps did not over-estimate snow, and the MD was the most consistent between 

models of all the cardinal cover types.  
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Overall, the percentage of the plots with valid ground return points is greater in the 2017 model than the 

2023, but to varying degrees across the different cover types (Figure 5.21). The greatest discrepancy 

occurs in the juvenile forest plots, with ground point returns is on average 95% coverage with the 2017 

model – akin to the alpine - and drops to 35% with the 2023 model.  The standard error for the juvenile 

is also much greater, due to the inconsistency between the two plots. The regenerating forest plots are 

the lowest proportion (24 – 25%) and most consistent result between both models. 

 

Figure 5.21 Bar graphs to show the comparison of  the two bare earth models - 2017 BCTS (hatched) and 2023 ACO (non-hatched) 
showing the total ground points per plot, broken down by point density per meter squared (top) and the proportion of the plot which had 
valid ground returns (bottom).  Bars represent the average of the cardinal plots by each cover type, and error bars represent standard 
error 

With the exception of the juvenile forest, the 2023 bare earth model had more total ground points per 

plot than the 2017 model. Despite a greater proportion of data gaps, the point density was higher in the 

2023 model, resulting in overall a higher number of ground returns per plot. Notably, the dense old 

growth forest, which over-predicts snow depth in the 2017 model, is almost entirely comprised of single 
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point returns in the 2017 model. The juvenile forest is the exception; total ground point returns for the 

juvenile forest plots are approximately double within the 2017 model versus the 2023.   

5.6 Watershed Snow Storage 

Total snow volumes were calculated for the Russell Creek watershed with both the 2017 BCTS and 

2023 ACO bare earth models using interpolated (gap-filled) rasters (Figure 5.22). Using the 2023 bare 

earth model resulted in greater snow volumes (3-6%) across all LiDAR acquisitions. 

Consistent with the meteorological observations (Sec. 5.1), peak snow storage in 2022 was captured in 

the April 4th acquisition, and substantial snow volumes persisted in the watershed until the last survey on 

June 24th. In 2023, peak snow storage was captured on the March 3rd survey, with significant melt (76 – 

82% of snow volume) occurring between the April 4th and May 25th acquisitions. The watershed was 

largely snow free, with intermittent snow in the alpine, for the final acquisition on June 12th 2023. 

Overall, peak snow storage captured in 2022 was 28% greater than in 2023. For the 2023 snow surveys,  
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Figure 5.22 Comparison of the total snow storage in the Russell Creek watershed between the 2017 BCTS model, and the 2023 ACO model 
for each snow survey, broken down by forest cover type. Grey bars for the 12th June 2023 represent that the snow volumes were negative 
overall.  

 

5.6.1 Snow Volumes by Elevation 
Across all acquisitions, peak snow volumes were observed between 1200 and 1400 meters (Figure 5.23). 

In 2022, more snow was stored below 800 meters, (20 – 33%) and stayed through until the June 

acquisition. Contrasted with 2023, from the April 4th survey onwards, less than 9% of total snow is 

stored in the lower 800 meters. The choice of bare earth model had negligible impacts on the distribution 

of snow volume by elevation, with the exception of the 1400 – 1700 m range.  
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Figure 5.23 Snow volume by elevation band for the 2017 BCTS model (red) and the 2023 ACO model (blue), showing the 2022 (top) and 
2023 (bottom) LiDAR surveys 

 The pattern was consistent between all acquisitions as to which bare earth model predicted more snow 

per elevation band. With the exception of two elevation bands, the 2017 bare earth model predicted 

more snow than the 2023 model across all acquisitions, but not by a substantial volume overall. 

However, as the 2023 bare earth model predicted a much greater (28 – 44%) volume of snow in a sub-

alpine and alpine elevation band (1400 – 1700 m), overall the 2023 total snow storage was consistently 

higher.  
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Table 5.10 Snow storage by elevation band, with percent of overall snow stored in the Russell Creek watershed shown in brackets,  
between the two different bare earth models (2017 vs 2023), for the 9th of March 2022 and 10th March 2023 acquisitions.  Highlighted 
values indicated which model predicted the greater snow volume per elevation band. 

Date Flown 3/9/2022 3/10/2023 
Bare Earth 2017, BCTS  2023, ACO 2017, BCTS  2023, ACO 
  m³ (percent of total snow volume) m³ (percent of total snow volume) 

200 - 400 432,489(1.3%) 438,489(1.3%) 103,995(0.3%) 120,090(0.3%) 
400 - 600 3,327,715(10.2%) 2,879,070(8.4%) 2,417,108(7.2%) 1,829,453(5.3%) 
600 - 800 3,425,212(10.4%) 3,314,036(9.7%) 3,254,608(9.8%) 2,925,779(8.5%) 
800 - 1000 4,706,684(14.3%) 5,126,971(15.0%) 5,490,746(16.4%) 5,883,739(17.1%) 
1000 - 1200 5,641,676(17.2%) 5,231,501(15.3%) 7,120,985(21.3%) 6,715,517(19.5%) 
1200 - 1400 9,030,259(27.5%) 8,791,304(25.7%) 10,044,987(30.1%) 9,755,978(28.3%) 
1400 - 1700 6,237,263(19.0%) 8,404,252(24.6%) 4,952,145(14.8%) 7,211,324(20.9%) 
Total 32,801,298 34,185,623 33,384,574 34,441,880 
 

 

5.6.2 Snow Volumes by Forest Cover 

The majority of snow in Russell Creek is stored in the alpine and old growth forest (Figure 5.22). The 

alpine makes up only 6.8% of the watershed by area, but contains 32 – 58% of the total snow storage, 

regardless of the bare earth model used (Figure 5.22). Though total snow volume decreases, the 

proportion of snow stored in the alpine increases steadily by acquisition date, as the lower elevation 

portions of the watershed loses snow. Old growth forest is the dominant forest type at higher elevation 

where a deeper snowpack develops (see Figure 3.3), so it contains a higher relative proportion of the 

total snow volume.   
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Table 5.11 Snow storage by cover type, with  the percent of overall snow stored in the Russell Creek watershed shown in brackets, between 
the two different bare earth models (2017 vs 2023), for the 9th of March 2022 and 10th March 2023 acquisitions.  Highlighted shows which 
model predicted more snow per cover type 

Date Flown 3/9/2022 3/10/2023 
Bare Earth 2017, BCTS  2023, ACO 2017, BCTS  2023, ACO 
  m³ (percent of total snow volume) m³ (percent of total snow volume) 

Alpine 11,814,549(36.0%) 13,712,941(40.1%) 11,053,398(33.1%) 12,968,040(37.6%) 
Old Growth 13,007,977(39.7%) 11,230,885(32.9%) 14,129,254(42.3%) 12,200,555(35.4%) 
Mature Regen. 1,299,083(4.0%) 1,070,746(3.1%) 1,131,221(3.4%) 763,779(2.2%) 
Regenerating 4,823,783(14.7%) 5,947,794(17.4%) 4,816,056(14.4%) 5,934,958(17.2%) 
Juvenile 1,572,433(4.8%) 2,059,789(6.0%) 1,883,514(5.6%) 2,358,069(6.8%) 
New Harvest 195,834(0.6%) 73,387(0.2%) 269,670(0.8%) 116,560(0.3%) 
FSR 87,639(0.3%) 90,081(0.3%) 101,461(0.3%) 99,919(0.3%) 
Total          32,801,298           34,185,623           33,384,574           34,441,880  
 

Differences in snow cover volumes and percentages of total snow volume are consistent between all 

acquisitions in terms of which bare earth model is used (Table 5.11). The biases observed at the plot 

scale (Sec 5.4.1) were present when scaled to the watershed. In juvenile forest plots, the use of the ACO 

2023 bare earth model results in overestimated snow depths, whereas with the BCTS 2017 model there 

is good agreement between manual and LiDAR-derived observations of snow depth.  When scaled to the 

watershed, juvenile forests appear to contain 33% more snow (e.g. 1.5 x 106 m3 vs 2.0 x 106 m3 in 

March 9 2022 survey) using the 2023 ACO bare earth model, though the overall impact on total snow 

volume is ~1%.  

In contrast, snow depths in old growth forest are likely overestimated when using the 2017 BCTS bare 

earth model versus the 2023 ACO bare earth model, which had a much lower MBE (Sec 5.6). At the 

watershed scale, the use of the less accurate 2017 bare earth DEM in old growth forests results in 

substantially greater relative contributions to overall snow volumes (39.8 vs 33.1% in 2022).  The choice 

of bare earth DEM, and their respective accuracies in different forest types, thus plays an important role 

in determining the relative importance of different forest cover types for total snow storage. 
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In other regions of the Tsitika watershed outside of Russell Creek, forest harvesting has recently 

occurred at higher elevations, where snow accumulates to greater volumes. The following chapter will 

use this recent forest harvesting as an experiment to assess the changes which occurred to both the 

ground surface model and snow distribution pre- and post-harvest. 
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Chapter 6 : Forest Harvest Experiment 
6.1 Introduction 

Forest harvesting can change snow accumulation and melt due to removal of the canopy which alters the 

energy balance, generally increases wind and eliminates interception of snow (Boon 2009; Varhola, 

Coops, Weiler, et al. 2010; Winkler et al. 2015).  Current forest practices also change the ground 

characteristics, with slash piles, woody debris and roads potentially changing the elevation. Further, 

after harvest low lying shrubs can become a dominant ground cover as the stand regenerates. Though 

numerous studies have investigated the impact of forest harvesting on snow storage (e.g. Swanson et al. 

1986, Winkler et al. 2015), most focus on the post-harvest condition, rather than the change which 

occurs before and after disturbance. As well, studies which have looked and pre- and post-disturbance 

changes to the snowpack and hydrological response pre-dominantly are based in cold climate 

watersheds which develop shallower snowpacks than coastal British Columbia (Richardson et al. 2023).  

Forest harvesting in coastal British Columbia is occurring at higher elevations, of which the impacts to 

snow accumulation and melt are poorly understood.  

Active forest harvesting within the Tsitika watershed which occurred during the span of the LiDAR 

campaign presents a unique opportunity to assess how snow distribution changed pre-and post-

harvesting, and through the accumulation season. As described in section 2.3, paired catchment studies 

which compare water yield pre and post disturbance through control and treatment watersheds, have 

been the longstanding method to assess impacts of forest disturbance (Richardson et al. 2023).  Here, a 

similar control-experiment before-after approach was taken, in which cut blocks harvested in 2022 were 

designated “treatment” sites, and adjacent forest stands, not harvested, were assigned “control”. Then, 

the change in snow storage and water equivalence between 2022 and 2023 for both the control and 

treatment areas were compared to evaluate the impact of forest harvesting. 
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As demonstrated within the previous chapter, an accurate snow-free surface model is critical to quantify 

snow depth variability and snow storage (see sec 5.5 Bare Earth DEM). An advantage to recently 

harvested areas is vegetation is yet to regrow and trees have been removed and therefore provide 

relatively good conditions for LiDAR. However, the debris which remains after forest harvesting may 

pose challenges. This study area has ACO acquired bare earth models pre- and post-harvest, which 

provides the opportunity to assess whether the bare earth model changes from canopy covered to 

harvested conditions. The first objective of this analysis was to assess whether the LiDAR snow-free 

ground surface model changed after harvesting. The results of the ground surface analysis were then 

integrated into the second objective: quantification of snow distribution change that occurred after forest 

harvesting. This section focused on snow volume and water storage changes at the plot scale, and used 

LiDAR derived snow depths to quantify the change. This also provided an opportunity to assess how 

these changes impact overall snow storage at the watershed scale. 

6.2 Methods 

In June to August 2022, forest harvesting (16 hectares) occurred in the southern portion of the Tsitika 

watershed adjacent to the Mount Cain ski hill, within the Cain Creek catchment (634 hectares). LiDAR 

snow surveys acquired in 2022 therefore reflect the pre-harvest conditions, and surveys acquired in 2023 

reflect post-harvest conditions. Additionally, the ACO acquired bare earth models for this region in 2020 

(pre-harvest), and in 2023 (post-harvest).  Meteorological data were collected at the Lower Cain (50.225 

° N, -126.356 ° W, 1260 m) and Cain Ridge Run (50.227 ° N, -126.352 ° W, 1330 m) weather stations, 

situated approximately 1.2 km south and 100 - 200 meters higher in elevation (Figure 6.1).  
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Figure 6.1 Site maps for the natural experiment with a) showing the AOI relative to the Tsitika watershed, northern  Vancouver Island, and 
b) scaled to the AOI, showing the road, control, and treatment area used within the analysis and c) the extent of Cain creek catchment 
inclusive of the Lower Cain (1260 m) and Ridge Run (1330 m) weather stations 

(b) 
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A relatively homogenous 30ha area of interest (AOI) where harvesting occurred between the 2022 and 

2023 snow survey was delineated (Figure 6.1b). Harvested areas within the AOI were identified through 

ortho-imagery collected by the ACO, and were designated as the treatment sites. Only areas which were 

harvested after June 24th  2022 - the last LiDAR acquisition of the season - were included. Unharvested 

areas were the control sites. A minimum 10 meter buffer was applied to the boundaries of the control 

and treatment to each other, as well as the road (Figure 6.1c).  The buffer distance was based on current 

literature on forest edge effects as well as canopy height on snow distribution (Currier and Lundquist 

2018).  Treatment and control areas were summarised by the metrics of slope, elevation, aspect, forest 

canopy density and stand area (Table 6.1). One section of road was built prior to the pre-harvest bare 

earth collection in 2020, and was used to assess any change to stable terrain between the two bare earth 

surfaces.  

Table 6.1 Topographic and canopy metrics for the control, treatment and road area which was used within this study. Metrics for slope, 
canopy cover, and height represent the average value. 

Plot Elevation 
range Slope Canopy Cover Canopy Height Area 

Aspect 
 [m] [degrees] [%] [m] [ha] 

Control 1039 - 1361 27 88 18 14 South 

Treatment 1080 - 1353 28 91 25 16 South 

road 1077 - 1124 4 0 0 0.54 South 
  

 

6.2.1 Snow free surface assessment 
 

A primary goal of the snow free surface assessment was to identify whether the LiDAR ground models 

changed after harvesting. Post-harvest surfaces are a complex mix of slash piles, stumps, and debris 

which may influence the ground surface model if the LiDAR pulse cannot penetrate to the ground. This 
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will have direct implications as to a) whether a bare earth LiDAR model captured prior to harvesting is a 

viable product to measure snow once harvesting has occurred or vice versa and b) whether the bare earth 

model post-harvest is capturing the ground, or surface debris.  

 The road constructed prior to the 2020 bare earth acquisition was used to first establish whether the two 

bare earth models had good agreement on the stable terrain. If there was no significant change between 

the elevation values between the two bare earth models, this would be indicative of no systematic error 

between the models due to timing of acquisition and potential instrument bias. Average and standard 

deviation of the road surface elevation values were calculated for both the 2020 (pre-harvest) and 2023 

(post-harvest) models. As this portion of the analysis employs a point to point approach to compare 

LiDAR pixels, different error metrics were able to be calculated which were not possible with the 

unequal sample sizes of the plot-scale analyses. Error metrics were mean bias error (Eq. 6.1), mean 

absolute error (6.2), and root mean squared error (6.3), where z is the elevation raster value. 

ܧܤܯ =  ଵ௡ ∑ ଶ଴ଶଷݖ) − ଶ଴ଶଶ)௡௜ୀଵݖ        (6.1) 

ܧܣܯ = ଵ௡ ∑ ଶ଴ଶଷݖ| − ଶ଴ଶଶ|௡௜ୀଵݖ        (6.2) 

ܧܵܯܴ =  ටଵ௡ ∑ ଶ଴ଶଷݖ) − ଶ଴ଶଶ)௡௜ୀଵݖ ଶ
      (6.3) 

 

Then, the same process was applied to the control and treatment sites.  As the ground surface 

distributions were not normally distributed, the Levene’s and Mann-Whitney U test were selected for 

testing whether the variability and mean of the surfaces were significantly different. 

Additionally, the snow depth rasters in which the AOI was snow-free were used to confirm the existence 

or absence of changes in ground surface elevations pre- and post-harvest within the treatment and 
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control areas. Ortho-imagery captured coincidently with the LiDAR was used to verify whether there 

was snow in the AOI.  Then the “snow depth” i.e. no snow pixel values were extracted for the control 

and treatment sites. If the treatment site snow depth distributions were centered at zero in the pre- and 

post-harvest snow free surveys, this would indicate the LiDAR bare earth DEM is unchanged by forest 

harvesting. If the treatment site elevations differ after the treatment, indicates a change to the ground 

surface due to harvesting. 

6.2.2 Snow distribution and volume change 
 

Pre-harvest snow depth distributions were compared between control and treatment plots to confirm 

snow depths were similar before harvesting.  Snow depths were then converted to snow water equivalent 

(SWE mm) by multiplying the snow depth pixels by a modelled snow density pixel value. Snow 

densities were modelled using a random forest regression with the key factors being snow depth, 

elevation, and meteorological variability, which is a proxy using hourly weather station data (Bisset et 

al, 2024 (in prep)). A relative change assessment was conducted by comparing the snow-on acquisitions 

from 2022 and 2023. This analysis is based on the control area remaining stable, despite the date of the 

LiDAR acquisitions and the snowpack changing between the two years. Three surveys in both 2022 and 

2023 were acquired when the average snow depth exceeded 1 m at the weather stations and snow visible 

in the ortho-images. These three surveys were defined as phases, identified to compare change between 

the two years (Table 6.2).  A ratio was calculated for the control and treatment sites, to reflect the 

relative increase or decrease in SWE from 2022 to 2023.  

Table 6.2 LiDAR surveys for 2022 and 2023 paired for comparing snow distribution change pre-harvest (2022) and post-harvest (2023). 
Weather station snow depth data from Lower Cain (1260 m) included for each survey 

Phase 
LiDAR Acquisition Date Lower Cain:  snow depth [m]  
2022 2023 2022 2023 

1 9th March 10th March 1.69 1.74 
2 11th April 4th April 2.21 1.94 
3 21st May 29th April 2.27 1.76 
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6.3 Results 

6.3.1 Weather Station Overview 

The two weather stations located on Mount Cain - Lower Cain (1260 m) and Ridge Run (1330 m) - 

provide important context to the snow distribution results and the differences in the 2022 and 2023 snow 

seasons.  In 2022, peak snow depth occurred on the 12th of April, 266 cm at Lower Cain and 303 cm at 

Ridge Run (Figure 6.2). The start of snow melt was defined as the date at which an average loss of .5 cm 

of snow depth occurred for a minimum of 14 day period. Sustained snow melt started on the 19th of May 

for both stations lasting 42 -45 days, with an average 6 cm snow loss per day.  Both weather stations 

snow depth sensors were recording no snow as of July 3rd. Relative to the LiDAR acquisitions, peak 

snow occurred 2 days after the 10th of April acquisition. Based on the orthoimagery from the June 24th  

2022 LiDAR acquisition, the snowpack within the area of interest was intermittent and mostly snow 

free, with snow patches still present in natural openings within forested areas. 
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Figure 6.2 Overview of the Lower Cain (1260 m) weather station air temperature (red) and snow depth (blue) measurements for the 2022 
and 2023 peak snow and snow melt season. 

 The 2023 snow season was characterized by an earlier melt, with both stations being snow free by May 

27th, over a month earlier than 2022. The weather stations recorded a shorter sustained snowmelt period 

and lower peak snow depths, 34 and 47 cm less at Lower Cain and Ridge Run stations respectively. By 

the May 25th LiDAR survey, the natural experiment AOI was snow-free. Peak snow occurred 

approximately halfway between two LiDAR acquisitions, on April 18th 2023.   

The first three LiDAR acquisitions of both the pre-harvest 2022 acquisitions, and the post-harvest 2023 

acquisitions had a measurable snowpack, so will be referred to in this analysis as the snow-on surveys.  

There were three surveys near or completely snow-free within the experiment AOI:  the 24th of June 

2022 and the last two surveys in 2023 (25th May and 12th June).  All of the LiDAR surveys will be 

included in the snow distribution assessment, and only the snow-on surveys will be incorporated into the 

water storage analysis.  
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6.3.2 Ground surface change 
 

The road within the harvested block showed good agreement in elevation between the 2022 and 2023 

bare earth models, with an RMSE value of 0.02 m (Table 6.3). A histogram of the residuals showed the 

peak close to zero, indicating minimal change between the two bare earth surfaces (Figure 6.3). Thus, 

the stable terrain within the AOI was consistent between both surface models. 

Table 6.3 Results from pre and post-harvest ground surface changes, in which the control, treatment, and road plot types average and 
standard deviation elevation were calculated, and error metrics mean bias error (MBE), mean absolute error (MAE) and root mean square 
error (RMSE) were calculated between the 2022 (pre-harvest) and 2023 (post-harvest) bare earth models. 

Plot type Average [m] Standard Deviation [m] MBE MAE RMSE 
  2022 2023 2022 2023  [m] [m]   [m] 

control 1171.93 1172.08 97.38 97.43 0.15 0.37 0.48 
treatment 1179.03 1179.33 69.38 69.25 0.3 0.4 0.49 
road 1107.31 1107.32 13.04 12.95 0.01 0.12 0.2 
* Statistically significant at a p-value of 0.05 

The variability of the ground surface showed good agreement for both the control and treatment sites. 

The average elevation for the control and treatment area showed an increase from 2022 to 2023, with a 

mean bias error of 15 and 30 cm, respectively. The RMSE was marginally higher for the treatment (0.49 

m) versus the control (0.48m), though both were quite high overall (Table 6.3). The histogram of the 

residuals shows a slight positive skew for the treatment. Neither the Levene’s test for equal variance nor 

Mann-Whitney U test produced significant results for the control, treatment or road groups (Figure 6.3).  
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Figure 6.3 Histogram of the residuals for the control, treatment, and road sites between the post-harvest (2023) and pre-harvest (2020) 
bare earth.  A positive skew is indicative of the post-harvest elevation greater than the pre-harvest. 

 

The second component to the ground surface analysis compared the calculated snow depth distributions 

for the snow free acquisitions, which, if unbiased, should be centred around zero (Figure 6.4). The 

distributions of “no snow" snow depth for the snow free acquisitions exhibit a negative bias for the pre-

harvest treatment areas, suggesting that the process of forest clearing introduced a significant change to 

the ground surface. For the 2023 post-harvest surveys, the control and treatment average snow depth 

were within .05 m of zero.  
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Surface elevation differencing for two snow-free and post-harvest acquisitions (25th May 2023 and 12th 

June 2023) with the average depth ranging from -0.05 to 0.03 m.  The standard deviation for the forested 

control sites was greater for both surveys than the harvested treatment.   

 

Figure 6.4 Snow depth distributions of the three snow free acquisitions, ie. no snow, comparing the control and the treatment site 
processed with the post-harvest (2023) bare earth model. The 24th of June 2022 (left) shows a negative offset when using the harvested 
ground model to measure snow in the treatment site which - as it is prior to harvesting – is forest covered. The 25th of May 2023 (middle) 
and 12th June 2023 (right) show good agreement between the post-harvest ground surface model and the harvested treatment and forested 
control sites 

As the treatment sites were already harvested in the bare earth model, the 2022 treatment distribution 

was a harvested ground model used to measure snow within forest.  This resulted in a negative offset (-

0.21 m) in comparison to the control (-0.05 m).    

When using the post-harvest 2023 bare earth model, snow depth was underestimated in the pre-harvest 

treatment sites. This was consistent with the results of the snow-free bias assessment, which showed a 

positive bias to the 2023 ground surface model. To accurately quantify snow storage change from 

harvesting, a bias correction must be applied to the pre-harvest treatment snow depths. The difference 

between the mean bias error for the control (0.30m) and treatment (0.15m) was differenced, and a 0.15 

m increase was applied to the treatment sites snow depth measurements for 2022.  
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6.3.3 Snow Distribution and water storage 
 

Prior to harvesting, the average snow depth for the control and treatment were closely aligned, with 0.04 

m or less difference across all the acquisitions (Figure 6.5). The average snow depths ranged from 0.31 

to 0.92 cm for both control and treatment. The snow depths increased for the first three acquisitions, 

with the average snow depth peaking on the 21st May 2022 (0.91 – 0.92 cm).   

 

Figure 6.5 Box plots of the snow depth (m) in the control and treatment sites for the pre and post-harvest conditions. The boxes (green 
control and orange treatment) shows the quartiles of the dataset, with whiskers extending to points within 1.5 x the inter-quartile range. 
Observations outside of this range are not shown on the graph  

After harvest, the average snow depth was consistently higher for the treatment versus control sites. The 

largest discrepancy in average snow depth occurred in the March 10th, 2024 survey, where the average 

snow depth was 0.75 m greater in the treatment than the control. Between the April 29th and May 25th 

2023 surveys, all the snow in both groups melted. Sentinel data were examined for dates between April 

9th and May 25th, and while the approximate date for snow free status identified in the treatment area, it 

was too difficult to see the snow cover in the forested treatment areas, thus it was not possible to 

compare the bulk ablation rates.  However, as the average snow depth for the 29th April survey was 76% 

greater in the treatment than control sites, a greater quantity of snow was available to melt than prior to 

harvest. Despite the observed similarities in distribution of the control and treatment sites pre-harvest, 
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and differences post-harvest, statistical testing produced significant differences in both the before and 

after harvest scenarios. 

After forest harvest, there was a notable shift in both the distribution and the total water storage between 

the control and treatment groups (Figure 6.6). Isolating the control group, peak water storage across both 

snow years surveys occurred on 21st May 2022. For the treatment sites, all of the post-harvest surveys 

exceeded the water storage of the pre-harvest surveys. Therefore, despite the 2022 exceeding water 

storage within the forest, the overall water storage was greater for the April 29th survey due to the 

harvested areas. 

 

Figure 6.6 Total water storage in cubic metres for the control (green) and treatment (orange) sites for the pre- and post-harvest years.  

 

When comparing 2022 to 2023 snow years, the change in SWE was positive and greater for the 

treatment group than control across all phases (Table 6.4).  Phase 1 (March 9, 2022 and March 10, 2023) 

had the greatest increase in SWE for both groups, though the treatment increased by over double that of 

the control.  The third surveys of each year resulted in the largest difference between the control and 

treatment, as well as a direction change: whereas the control group decreased in SWE, the treatment 

sites still increased compared to 2022. 
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Table 6.4 Snow water equivalence (mm) for both the pre-harvest (2022) and post-harvest years (2023), +/- standard error, for the three 
snow on LiDAR surveys. Rate of change represents the increase or decrease in SWE from 2022 to 2023, for the control and treatment 
blocks  

SWE [mm] Phase 1 
(Mar 9 2022 :  Mar 10 2023) 

Phase 2 
(Apr 11 2022 : Apr 4 2023) 

Phase 3 
(May 21 2022: April 29 2023) 

Snow year  control  treatment control  treatment control  treatment 
2022 125 +/- 0.44  95 +/- 0.32 192 +/- 0.45 187 +/- 0.38 340 +/- 0.52 317 +/- 0.54 
2023 216 +/- 0.31 398 +/- 0.34  224 +/- 0.36 375 +/- 0.36 244 +/- 0.43 428 +/- 0.52 

Rate of change  
(percent) 1.7 (72%) 4.2 (318%) 1.2 (15%) 2.0 (100%) 0.7 (-28%) 1.4 (35%) 

 

6.4 Discussion and Recommendations 

Through a comparative experiment approach, this case study used LiDAR to quantify snow depth and 

snow water volume change that occurred after forest harvesting. An important finding from this study is 

the shift to the bare earth model after harvesting. The increase to the surface elevation in the cut block 

suggests the debris from the harvesting caused the ground surface to overall register higher. A potential 

source of this bias is the slash piles or logs are being classified as ground, causing an overall increase to 

the ground elevation distribution. However, an analysis of the logs and slash compared to ground within 

the treatment site showed the bias was consistent, and not caused specifically by log piles (appendix I), 

suggesting that forest harvest caused a general increase to the ground surface, which is being reflected 

with the bare earth LiDAR model. It is critical to address this change, as the underestimation of the pre-

harvest treatment snow depth which occurred due to the use of the harvested ground surface model 

would cause the relative change to snow depth after harvesting to be amplified.  For example, without 

the bias correction applied, snow depth change within the treatment sites would have been over-

estimated by 12 – 33%.  This highlights the importance of using a ground surface model which reflects 

the current state of the land surface to accurately measure snow. Any additional changes to the ground 

surface which may occur (removal of slash for example) or on a greater temporal scale, the regeneration 

of forest, may introduce error to measuring snow with LiDAR. Furthermore, this supports and adds to 

results from the previous chapter, in which the regrowth of vegetation post-harvest reduced the accuracy 
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of the bare earth model, and subsequently the snow depth measurements. In this case, the removal of 

vegetation reduced the accuracy of retrospective snow depth measurements by the introduction of a 

positive (.15m) bias, with the post-harvest open ground surface being higher than the pre-harvest 

forested surface. With the change to the ground surface addressed, the overall confidence in the LiDAR 

snow depth measurements was high. First, both bare earth models were flown by the ACO within 4 

years of each other, using the same LiDAR sensor and systems, with similar ground classification 

algorithms employed (see sec 4.1). As discussed in the previous chapters, LiDAR snow depth 

measurements in the open and old growth plots were the two most accurate cover types, with median 

MBE of -0.9 m and -0.16 m respectively, as well as captured the variability. Despite no in-situ snow 

depth data, the snow-free validation provided confidence that the snow on and bare earth surfaces were 

in good agreement pre- and post-harvest.  

Results of the snow distribution analysis follows the most prevalent finding from numerous studies of 

this nature: snow will accumulate to greater snowpacks in the clear cuts than in the adjacent forest 

(Berris and Harr 1987; Hudson 2000). Exceptions to this can occur include larger clear cuts under high 

winds, due to evaporative losses in the opening and snow may be blown in to and stored within the 

forest (Troendle and King 1985; Swanson et al. 1986).  Studies have found maximum snow 

accumulation occurs when the width of the cutblock is 2 to 5 times the height of the trees (Swanson and 

Stevenson 1971; Troendle and King 1985), though these results were found in cold climate conditions.  

In this case study, cut blocks fell within this threshold, and were on average between 4 times in width 

(77 m) than surrounding tree height (18m). 

Hydrological effects of forest harvesting are a combination of the harvested area and recovery, the 

spatial distribution of the cut blocks, as well as the specific topographic characteristics of the watershed 

(Ellis et al. 2013; Winkler et al. 2015; Johnson and Alila 2023).  The 2022 harvested sites encompassed 

2.5% of the Cain Creek catchment, though with prior harvesting which occurred, mostly within the last 
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10 years, 9% of the catchment was harvested overall. Snow water storage between the plots increased at 

a higher rate in the treatment sites than control between 2022 and 2023, with increased rates respective 

for control and treatment were 72% vs 318% for phase 1, 15% vs 100% for phase 2, and -28% to 35% 

for phase 3. To infer the impact of the harvested sites on snow storage at the watershed scale, the 

relative difference which occurred between the plots was scaled to the Cain Creek watershed, for 

example, for the phase 1 (Mar 9 2022 – Mar 10 2023), the treatment SWE increased 40% more than the 

control.  This only resulted in a 1.6 , 1.02, and 1.36 % overall increase in water storage for the march 

10th, April 4th, and April 29th LiDAR surveys within the Cain Creek watershed as a result of the forest 

removal. This suggests that snow at this elevation makes up a proportionately smaller amount of snow at 

the watershed scale. The relatively high elevation of the study area was beneficial to quantifying snow 

depth change.  At a lower elevation, we could expect less snow to accumulate both within the open and 

the dense canopy, as warmer temperatures increase the amount of precipitation falling as rain rather than 

snow.   

One limitation of this case study is the inability to describe and compare the snow melt rates with 

LiDAR, as for both 2022 and 2023, the snowpack within the AOI melted out in entirety between the 

third and fourth LiDAR surveys. Based on the available sentinel imagery, weather station data, and 

understanding of the snow energy balance, we can infer some of the likely impacts on melt rate.  As the 

entire AOI is southerly facing, it would receive greater net shortwave from the solar incident angle and 

increased longwave inputs from the heating of tree trunks, therefore likely a higher melt rate than a 

comparable site on a northerly aspect (Seyednasrollah and Kumar 2019). As captured with sentinel 

imagery, snow melt rate in 2023 appeared to be quite rapid in the treatment sites, with full snow 

coverage May 10th, intermittent snow coverage May 13th, close to snow free as of May 18th, and no 

snow as of the LiDAR acquisition on May 25th.  Notably, a 2021 cut block (3 hectares) on the northern 

aspect at a similar (1054 – 1117 m) elevation, was still fully snow covered as of May 18th. Higher 
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antecedent snowpack was captured on the northern cut block vs southern aspect treatment, with a 1.45 m 

and 1.2 m average snow depth respectively as of the April 29th 2023 LiDAR survey. Based on recent 

studies in a maritime environment, the melt rate in the forest may have exceeded that in the open, as this 

site was relatively warm, sheltered, and below treeline. Notably though, the average snow depth was 

44% less under the canopy, therefore less snow was available to melt. The accelerated melt on south 

aspect forest harvesting may increase the synchronicity of snowmelt within the watershed, ie. the higher 

and lower elevation areas melting at the same time, which Pomeroy et al (2012) found contributed to 

higher peak flows.  

One recommendation is to increase the temporal scope of this analysis to include additional years of 

LiDAR survey data, where harvesting occurred over a broader area within the watershed. As LiDAR 

surveys in the Tsitika span back to 2020, an inclusion of the 2021 harvested areas may strengthen these 

findings, as well as provide greater understanding of how the size, aspect, and spatial distribution of 

forest harvesting impacts snow storage within a coastal watershed. An additional recommendation is to 

introduce more frequent LiDAR surveys to capture melt rate, and compare these rates between the 

forested and open sites. This case study demonstrated the utility of airborne LiDAR to provide robust 

figures for the change in snow storage which occurs after forest harvesting.  
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Chapter 7 : Discussion and Recommendations 
 

This study focused on snow distributions and potential sources of LiDAR error at the plot and watershed 

scale, through analysis of vegetation, ground point returns, and the bare earth model. This discussion is 

centred on several key themes: 

1) The vegetation and surface characteristics of the juvenile and regenerating plots, which lead to 

greater observed errors in LiDAR-derived snow depths in the complex surface and canopy of 

harvested forest; 

2) The choice of bare earth model is important: two independent bare earth models are similar in 

stable terrain but show differences between forest cover types; 

3) Confidence in overall snow volumes is high, despite the differences in the bare earth models, but 

there are differences and compensating errors. 

7.1 LiDAR Accuracy within complex ground cover 

This study assessed LiDAR accuracy by comparing plot averages of LiDAR and manual snow depth 

measurements - as opposed to point-to-point which is prevalent across most studies - in order to not 

introduce known geo-positional error associated with a) imprecise position of manual measurement and 

b) accuracy of the GNSS in the forest (Murgaš et al. 2018; Broxton et al. 2019). Mazzotti et al (2020) 

precisely referenced their snow probes in the forest with specific trees which were identified on ortho-

imagery, but this approach would have been impractical within this study due to the density of canopy. 

A drawback of the average snow depth approach used in this study is the inability to calculate and 

compare error metrics reported across other literature, commonly root mean square error (RMSE), mean 

absolute error (MAE), and mean absolute difference (MAD)(Table 7.1). Median of the mean differences 

for this study were lowest for the open sites, the weather station snow courses and alpine plots (-9 cm for 
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both), followed by the old growth (-16 cm) and dense old growth (-15 cm) plots, and highest for the 

juvenile (76 cm) and regenerating (55 cm) plots. Generally, error values from this study were similar or 

slightly greater in magnitude in the open and old growth forest sites to other LiDAR studies, and 

substantially greater in the harvested.  However, it is important to note that no published studies have 

endeavored to measure snow with airborne LiDAR in the complexity of forest stands which were done 

so in this study.  

Table 7.1 Error results from airborne LiDAR snow depth studies which evaluated LiDAR accuracy using in-situ measurements and in 

forested terrain. 

 

When compared with ground observations, LiDAR estimates of snow depth were most accurate in stable 

terrain with no ground vegetation or canopy cover, demonstrated by the consistent low MD attributed to 

the weather station snow courses. However, in terms of the snow storage, roads are an inconsequential 

area of Russell Creek (<1%) and contributed less than half a percent of snow volume.  The weather 

station snow course validations confirmed that bias found at the cardinal plots was likely due to 

vegetation misclassified as ground in the bare earth model. 

Study Airborne LiDAR type Error Evaluation  

Currier et al, 2019  Airplane Forest error metrics: 
- Mean difference: 6 cm 
- RMSD: 8 cm 
- MAD: 7 cm 

Geissler et al., 2023 UAV  Equal error for open and forested terrain: 
- RMSE: 2 cm, and MAE:1 cm  

Jacobs et al, 2021 UAV Greater error values in forest than open.  
Field (open): MAD: 0.96 cm, RMSE: 1.22 cm 
Forest: MAD: 9.6 cm, RMSE:10.5 cm 

 
Hopkinson et al., 2012 Airplane  Higher mean difference in forest than open.  

Mean differences were: 
- Open area, high elevation: 7 cm 
- Open area, alpine: -4 cm 
- Forest: 13 cm 

Mazzotti et al, 2019 Airplane Forest metrics: 
RMSE: 6 cm mean, 3cm standard deviation 
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Uncertainty increased in complex ground cover and vegetation, with notably the harvested plots 

(regenerating and juvenile) responsible for the greatest mean differences. Ground point coverage within 

the regenerating plots was low within both of the bare earth models. Even in snow-on conditions, ground 

point density within the regenerating forest plots was lower than the other cardinal cover types, with 29 

– 50 % of plot with no ground point returns, and less coverage later in the season. This was not 

necessarily a function of the canopy coverage, as the dense old growth forest plots had the highest 

canopy coverage of all the cardinal plots (90%), yet the snow-on point coverage of the plots were 

considerably higher (69 - 97%). A notable difference between the two cover types were the tree 

characteristics: tall (~ 20 m) trees, with a small ratio of branches to tree height, and no branches close to 

ground in the dense old growth, versus the smaller (~ 8 m) trees with a comparatively dense crown and 

low to ground branches in the regenerating plots (Figure 7.1).  Similar results were found in a study by 

Mazzoti et al (2019), in which dense spruce tree stands had more data gaps in the LiDAR snow surface 

and ground returns in comparison to less dense stands. Hopkinson et al. (2004) suggested a species-

specific bias correction, but within the Russell Creek watershed, which encompasses a range of 

harvested and old growth forest, a stand age component may render more accurate results. 

 

Figure 7.1 Images from the regenerating stand (A) and dense old growth (B), showing notable difference in tree branch height in relation 
to the ground.  
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In addition, complex ground vegetation increased LiDAR error at the plot scale by obscuration of the 

ground surface, which resulted in both less and low quality LiDAR ground point returns. In the 

harvested plots, the ground vegetation was tall (avg: 116 cm) and variable (std: 45 cm), and as the 

average tree height was ~ 3 meters, there was not a clear distinction between the two. Again, this 

resulted in fewer ground point densities than in the over cover types. The ground vegetation present in 

the old growth forest appeared to pose less of a problem to LiDAR penetration to ground, based on the 

relatively high ground point density and coverage, despite the vegetation being not inconsequential in 

the larger canopy gaps (approx. 50 cm). This may be a factor of both a) the vegetation being relatively 

uniform in height, and b) the large difference in height between the canopy and the ground vegetation in 

the old growth forest plots. 

The ambiguity of ground in the harvested forests introduced uncertainty in both the LiDAR and in situ 

measurements. Large air pockets from vegetation, as well as slash piles and stumps were sources of 

error within the in situ measurements. Air pockets could be identified when using the snow tube, as the 

core of snow may be substantially less than the depth measured, and measurements were retaken. The 

LiDAR interpretation of ground is also important to consider, as it may not capture how snow 

accumulates in the landscape. For example, if the LiDAR model classifies a slash pile as vegetation, this 

will result in a substantial over-estimation of snow. Geissler et al (2020) observed fallen logs classified 

as vegetation in the snow-off point cloud resulted in a large systematic error in snow depth data. Though 

in this study the over-estimation of snow in the juvenile forests was not limited to areas of stumps and 

slash piles, this may be a contributing factor to the error observed.  

Overall, this study found that a good proxy for LiDAR snow depth accuracy was the ground point 

density of the snow-free surface.  Plots with both a) good ground point coverage and b) higher density 

(>1) of returns generally had a lower mean difference. An exception to this is the alpine plots in 2022, 

which despite being free from complex vegetation and canopy coverage, had greater range in mean 
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difference than anticipated (Figure 5.9). However, this may be an artefact of the less frequent validation 

of the plots and the more variable snowpack when compared to the other cardinal plots. A similar result 

was found in Tinkham et al (2014), with the highest error attributed where the snowpack was highly 

variable, which in their case was the edge of the canopy.  

7.2 Impact of the Bare Earth Model 

The bare earth DEM and how it classifies ground and vegetation appears to be a significant source of 

error.  This is demonstrated when comparing the 2023 ACO bare earth to the 2017 BCTS acquisition. 

Both bare earth models were accurate on stable terrain, demonstrated by the weather station snow 

courses low mean difference, but biases in the cardinal plots differ (Figure 5.20). The juvenile forest 

plots had the greatest difference: the highest MD when processed with the ACO 2023 model, and the 

lowest MD with BCTS 2017 model.   

As discussed in the previous section, the juvenile plots were characterized by tall and complex ground 

vegetation, and small trees. This resulted in low ground point density and, most importantly, large data 

gaps in the 2023 bare earth model, though not in the 2017 BCTS model. In snow-on conditions, juvenile 

plots were consistent between both bare earth models as very high snow surface point density, due to 

snow coverage of all vegetation and debris.    

 Several possible theories as to why the 2023 model was substantially lower in bare earth ground point 

returns in the juvenile plots than the 2017 model are: 1) more vegetation has grown in the 6 years 

between the bare earth acquisitions, and 2) vegetation was greened up at the time of the 2023 

acquisition, thus more challenging for the laser pulse to penetrate thorough to ground. However, this is 

not a product of the top of vegetation being misclassified as ground as observed in other literature 

(Kucharczyk et al. 2018), as in this scenario, the overestimation of the snow-free surface elevation 

would result in LiDAR under-estimation of snow depth in the juvenile forest plots. It is not clear why 
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the juvenile plots under-estimated surface elevation in the 2023 model, and this result has not been 

produced in other studies.  

Support for the vegetation green up theory is provided with an additional snow-free surface experiment: 

the May 23rd, 2023 LiDAR acquisition. At the time of the May 2023 survey, the juvenile and 

regenerating plots were snow free, and the vegetation was free of foliage (Figure 5.5).  To test whether 

vegetation green-up is a factor in error, the May 2023 survey was used in the place of a bare earth model 

to validate only the harvested plots. With the experimental May bare earth, MD was much reduced for 

both the juvenile and regenerating plots, and was in fact the lowest of the bare earth models tested 

(Figure 7.2). For the Juvenile, range of MBE with the experimental May 2023 bare earth model (-16cm 

to +18 cm) was consistent with the lower bias error value from the 2017 BCTS model.  The regenerating 

plots also were the lowest bias error recorded with the May 2023 snow-free surface.  This suggests that 

for areas of high and dense ground vegetation, such as regenerating and juvenile forests, timing the bare 

earth acquisition with leaf off conditions will significantly reduce error. It also points to the challenge of 

using a static bare earth model when vegetation not only changes seasonally, but also annually. One 

possible solution to this problem would be creating a mosaic bare earth using multiple surveys and 

selecting areas with a minimum number of returns.  This would not reduce the problems associated with 

misclassification of vegetation as ground, but would limit errors associated with interpolation over large 

distances in complex terrain. 
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Figure 7.2 Mean difference of the cardinal plots from both 2022 and 2023, for only harvested plots (the regenerating and juvenile), using 
three different bare earth models: 2017 BCTS survey acquired in September 2017 (orange), 2023 ACO survey (blue), and the substitute 
bare earth model: the May 2023 snow survey which was snow-free in the juvenile and regenerating stands (green).  Individual points 
represent each plot validation across 2022 and 2023.  

 

The algorithm used to classify LiDAR ground returns can introduce error due to misclassification, 

especially within more complex terrain and vegetation (Tinkham et al. 2011). Both bare earth models 

used an iterative TIN densification approach to classify ground, but the specific algorithms used did 

differ between the two (see sec 3.4). A study by Moudry et al. (2018) found the LASground algorithm to 

perform well overall, but in complex areas, was more likely to omit a ground point rather than falsely 

classify vegetation, which resulted in low ground point density.  Within this study, the omission of 

points through ground classification may be the cause of the low ground point returns in the 2023 ACO 

model harvested forests, although it is not clear whether the LiDAR pulse was able to penetrate the 

vegetation. Tinkham et al. (2011) found between a comparison of two open source algorithms (MCC 

and BCAL) the greatest deviation (40 cm) in the ceanothus, (with the BCAL being the more accurate), 
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and suggested a multiple algorithm approach by cover types may produce the most accurate ground 

surface. 

7.3 Snow Distribution: Plot and Watershed Scale 

7.3.1 Plot scale distribution 
 

LiDAR and ground-based observations of snow depth distributions are similar for all forest cover types 

with the exception of harvested forests. LiDAR snow depths are more variable in open and wind 

exposed sites (e.g. alpine) than the sheltered sites (e.g. dense old growth). In the old growth forests with 

larger canopy gaps, both manual and LiDAR snow depth observations show deeper snow in the 

openings, and shallower snow under and at the edge of canopy (see Appendix E: Old Growth Forest: 

Canopy Snow Depth Variability).    

Snow depth variability did not appear to change through the melt season, for manual or LiDAR 

measurements.  Notably, neither the 2022 nor 2023 LiDAR campaigns were well suited to answer 

questions pertinent to snow melt rates: in 2022 the snowpack sustained until the last survey with 

minimal melt, and 2023 had fairly consistent snowpack through the first three surveys, and rapid melt 

between the third and fourth acquisition. Despite being an important metric, there are limited studies 

which evaluate LiDAR ability to capture snow depth variability.  

7.3.2 Watershed snow storage 
 

In Russell Creek, the majority of the snow was stored above 1000 m (58 – 82%), with 14 - 28% of the 

total volume of snow found in the 1400 – 1700 m elevation range. On Vancouver Island, the low to mid 

elevation zones typically develop a shallow, intermittent snowpack due to the mild winter temperatures 

and higher frequency of rain-on-snow events. Therefore, it is critical to understand not only LiDAR 
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snow depth accuracy at higher elevations, which in the case of Russell Creek, were the old growth forest 

and the alpine, but the mid-range elevations too.  

The comparison of watershed snow storage between both bare earth models produced relatively similar 

results overall, with less than 5% difference in the total snow volume estimates.  This is likely an effect 

of the two bare earth models countering biases (over and under predictions of snow depth) by different 

cover types which, to a degree, cancelled at the watershed scale. The pattern of which bare earth model 

predicted more snow within each cover type was a) consistent with each survey acquisition and b) 

generally reflective of the comparative biases seen at the plot scale. This gives some confidence to 

which bare earth model may be more accurate within the different cover types, but still difficult to assert 

which model represents the “true” snow water storage.   

In terms of the cover types which store the most snow - the old growth and alpine - there is evidence 

within both the plot error comparison and snow free watershed storage to suggest the ACO 2023 model 

may be the more accurate representation within the old growth, but likely the “true” snow volume is 

between the 2017 and 2023 models for the alpine. For the dense old growth, the reverse pattern was 

observed in the snow free acquisition in 2023: median MBE of  +62 cm for BCTS 2017 bare earth 

model, vs -13 cm for the ACO 2023 bare earth model. The inconsistencies in biases between the bare 

earth models may be attributed to differences in: 1) the acquisitions and how well the LiDAR pulses 

were able to penetrate to ground, 2) the alignment of the model, and 3) the LiDAR processing and 

classification. As detailed in the following section (re: study limitations), caution should be applied for 

upscaling the errors observed at the plots to the watershed.  However, due to the consistent relationship 

between the two bare earth models - which also were consistent with the plot scale bias errors - it is 

probable that the BCTS model under-predicted snow in the alpine, and over-predicted snow in the old 

growth forest.  
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Within the alpine plots, the BCTS model had a MBE of – 50 and -5 cm error in the snow free acquisition 

which may be a result of a positive elevation bias in the bare earth model ground surface. In support of 

this, the watershed snow storage was entirely negative for the alpine on the 12th of June 2023 survey for 

the 2017 BCTS model (see Appendix H: Watershed Snow Volume), despite visible snow in the ortho-

imagery.  The 2023 ACO model generally showed good agreement on the snow free ground surface 

within the plots (MBE -3 and -4 cm), but there are several substantial data gaps (450 to 13,900 m2) 

isolated to steep (average slope: 51 degrees) rocky peaks, which resulted in extremely high (average: 20 

m) and clearly not representative snow depth values due to the interpolated data.  Though these areas 

make up a relatively small proportion (4%) of the alpine, the snow volume accounted between 22 – 32% 

of the total snow in the alpine. In the same areas of missing data in the ACO 2023 version, the 2017 

BCTS model under-estimated snow depth, notably in 2023(average: -8 m), and snow volumes were 

negative, which may be indicative of an alignment issue. This demonstrates both a) LiDAR inaccuracies 

on steep slopes, which are well documented within other studies (Hodgson and Bresnahan 2004a; 

Tinkham et al. 2012), and b) a limitation of the plots to assess accuracy at the watershed scale.  

The over estimation in the harvested forests observed at the plot-scale with the ACO 2023 model did not 

have a significant impact (<5%) on total snow volume within the watershed, due to the proportion and 

elevation of the regenerating and juvenile stands within Russell Creek. The juvenile and regenerating 

forest stands had the greatest uncertainties at the plot scale, therefore if represented a larger portion of 

the watershed, or higher elevation areas which accumulate a deeper snowpack, could have more of an 

impact on estimates of basin wide snow storage.   

For the 12th of June survey 2023, in which all plots surveyed were snow-free, both bare earth models 

measured negative snow depths. Though clearly erroneous, this result is consistent with the mean 

difference observed at the plot scale within that survey, in which for all cover types the bias was 

negative, ranging from on average a slight negative on the road (-4 +/- 3 cm) and alpine  (-3 +/- 1 cm), 
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to more negative in the dense old growth (-12 +/- 3 cm), old growth (-17 +/- 4 cm), juvenile (-18 +/- 12 

cm) and regenerating stands (-31 +/-7 cm).  As Russell Creek appeared to only hold snow in the higher 

alpine portions of the watershed outside of the sampling extent, the accumulation of the negative snow 

depths would result in a negative snow volume overall. For the old growth, the negative bias was 

consistent with the biases observed with the snow on, versus for the regenerating and juvenile, this was 

the opposite, as all other surveys –including other snow free surveys – the bias was positive, with 

LiDAR over-predicting snow. As vegetation was greened up in the regenerating and juvenile stands by 

June 12th survey, the poor ground point coverage of the snow-on surface combined with the poor ground 

point coverage of the bare earth model increased the uncertainty overall.  

The watershed scale component of the analysis utilized the interpolated rasters, in order to be a viable 

operational workflow with equal pixel count between surveys. At the watershed scale, the proportion of 

missing data was substantial (42 – 68%), particularly in the lower elevation portions of the watershed 

and regenerating stands (Figure 7.3). As the snowpack thinned and melted, the number of no data pixels 

increased across all cover types. The most significant data gaps occur in the mature regenerating stands, 

where the range of missing data was consistently high (76 to 83%) across Russell Creek regardless of 

whether snow on or snow free conditions. As observed within the alpine, small, isolated areas of 

extreme snow depth errors (>15 m snow depth at 600 m elevation) coincide with areas in which there 

are no ground returns. Compounded with the proportion of data missing in the bare earth model (76%), 

and absence of manual observations, additional analysis outside the scope of this study is required to 

assess overall confidence in the mature regenerating forest.  For example, the game camera sites 

ST7GC1 and ST7GC2 could be used to determine approximate snow depth within the regenerating 

forest for each LiDAR survey. 
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Figure 7.3 Imagery of the ground point density (GPD) within the Russell Creek watershed showing the March 10th acquisition (A1, A2), 
where snowpack is covering much of the watershed and high snow accumulation survey, and low snow accumulation May 25th 2023 (B1, 
B2).  As snow melts in the watershed, the number of no data pixel increases, and the ground point density decreases.  

 

7.4 Study Limitations and Recommendations 

This study highlights the importance of in-situ measurements which are spatially distributed over the 

different cover types represented in a watershed to validate LiDAR snow depth.  Through the sampling 

strategy employed in this study, biases inherent to specific stand types at the plot scale were detected.  If 

the manual measurement campaign were more constrained - for example only the weather station snow 

courses - error would been misconstrued as a much narrower range than when inclusive of the cardinal 

plots in complex terrain (Figure 7.4).  
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Figure 7.4 Distribution of the cardinal (blue) and weather station snow course (orange) mean difference for 2022 (left) and 2023 (right) 
processed with the 2023 ACO bare earth model.   

Although the manual snow depth measurements encompassed a range of cover types, the location was 

limited to a fairly small (~4 km2) portion of the Russell Creek watershed (33 km2). Additionally, plots of 

the same cover type generally were close together. The watershed cover types were fairly broad, as well 

not all cover types classified were able to be sampled (new harvest and the mature regenerating, see sec 

3.4). In addition to the spatial distribution of the plots, the timing of in-situ measurements and LiDAR 

acquisitions represents another limitation. In general, when in-situ measurements were timed shortly 

after LiDAR acquisition, systematic error was reduced. The meteorological correction (based on the 

change to snow depth observed at either the game camera snow stake plots or weather station snow 

depth sensors) did seem effective at correcting error in some cases (e.g. dense old growth: April 29th 

2023 survey), but not in others (e.g. dense old growth: June 24th 2022 survey; Figure 5.10). This may be 

due to a thin and intermittent snowpack which results in over-compensation in the bias correction. 

An accurate snow free model is crucial to measure snow in complex forested terrain. LiDAR bare earth 

collection timed as soon after snow melt as possible to capture leaf-off and potentially still compressed 

vegetation is one approach to reduce error. However, this may be impractical for a plane based LiDAR 

system, due to the variability of snow free conditions in a watershed, and the high cost of repeat 

acquisitions. For example, in 2023 there was a 46 day difference between the first (ST7GC1 at 540 m) 
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and last (ST1GC3 at 1210 m) snow-free game camera plots within Russell Creek. UAV LiDAR has 

potential for improving the ground surface model, due to the flexibility of repeat acquisitions, ability to 

fly low to the ground, and higher ground point density. Thus, a mosaic approach to a bare earth model, 

in which particular elevations or forest stands are flown as per their optimal condition, ie. before leaf-on, 

may improve LiDAR error.  

The processing methods for the raw LiDAR data were outside the scope of this study. Suggested steps to 

consider within the processing of LiDAR data which may improve the bare earth model include: 

i) A comparison of classification algorithms used to distinguish ground and vegetation, which 

may “save” more points in the harvested forests 

ii) Investigation of full waveform data, particularly in areas of complex vegetation 

iii) Comparison of interpolation algorithms by different cover types 

This study presented several key findings and novel results for measuring snow in predominantly forest-

covered and heavily harvested watersheds. The bare earth model proved to be a crucial component in the 

ability to measure snow depth accurately, in particular for forests with complex canopy and vegetation 

structures such as the harvested stands. In the case of Russell Creek, forest harvesting has occurred 

below 1300 meters, which coincides with the approximate elevation threshold where snow accumulates 

to a lesser degree. Therefore, the overall impact of the LiDAR accuracy in harvested terrain is dictated 

by the spatial distribution within the watershed.   

  



  
 

116 
 

Chapter 8: Summary 
 

This study evaluated airborne LiDAR as a method to measure snow in a densely forested watershed, 

with great variability and complexity to the stands as a result of over 40 years of forest harvesting. 

Though the methodology to evaluate accuracy with LiDAR with manual snow depth measurements is 

well established, there were several components to this study which were novel: 1) the complexity of 

forest stands in which manual observations were collected, 2) the comparison of LiDAR accuracy in two 

bare earth models, and 3) LiDAR snow depth observations for pre- and post- forest harvest. Through 

both the manual plots and forest harvest experiment components of this study, it is shown that airborne 

LiDAR can quantify snow storage, even in dense forest, provided a high accuracy ground surface model 

is used. Important considerations for the bare earth model which may impact snow depth accuracy are: 

the characteristics of the trees, the height and complexity of the ground vegetation, the seasonality, and 

changes to forest cover. The need for timely and accurate snow depth data at the watershed scale has 

never been greater, as forest harvesting occurs at increasingly higher elevations as well as the 

compounded effects of climate in coastal watersheds is poorly understood (Bathurst et al. 2020; Gillett 

et al. 2022; Johnson and Alila 2023). Results from this study support the validity of LiDAR as a tool to 

increase our understanding of hydrological recovery in coastal watersheds, however there remains high 

uncertainty in some regenerating stands making it difficult to quantify differences. 
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Appendices 
Appendix A: ACO 2023 Bare Earth Model 

In order to have the full AOI an ACO acquisition (previously BC Timber Sales), a new bare earth was 

initially flown on July 14th 2023.  Due to high errors concentrated within the harvested areas of the 

watershed, a reacquisition occurred on August 19th 2023.  Although overall an improved acquisition, the 

August flight has a critical data gap (~860 m2) in the old growth forest, partially within the Russell 

Creek watershed AOI. Though it makes up a small portion of the watershed, six of the cardinal plots - 

ST1OG7, ST1OG6, ST1OG5, ST1OG4, ST1OG3 and half of ST1A2 – are situated within this data gap.   

 

 

Figure A 1 Hillshade of the August LiDAR acquisition, showing the data gap in red, and the Russell creek watershed in blue 
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An analysis of similar and adjacent old growth forest stands showed good agreement in the ground 

surface between the July and August acquisitions.  A histogram of the difference in pixel values between 

the two bare earth models showed no bias within the old growth forest adjacent to the data (Figure A- 1).  

Based on this result, I filled the data gap has with the pixels from the July 14th acquisition bare earth 

model. 

 

Figure A- 1 A histogram (A) of the difference in pixel values between July and August bare earth models from the Old Growth AOI 
boundary (B), which is similar forest stand to the data gap in the August acquisition 
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Appendix B: LiDAR Processing 

Table B 1 LAS tools processing commands used to take the raw LAS files to a gridded raster product 

LAStools Command 

1 - lastile 

 

lastile -cpu64 -i "(input).laz" -o "tile.laz" -tile_size 225 -buffer 25 -flag_as_withheld -

faf -cores 12 -odir “(output)\1 Tiles" –olaz 

 

2 - lassort -i tiles_raw\*.las ^ -odir tiles_sorted -olaz ^-cores 7 

3 - lasnoise lasnoise -cpu64 -i " tile.laz" -step_xy 1 -step_z 0.1 -isolated 100 -remove_noise -odir 

"3 Noise" -o "noise5.laz" 

4 – lasground 

(temporary) 

lasground -i LAS\tiles_isolated\*.laz ^ -city -ultra_fine -ignore_class 0 7 ^ 

-odir LAS\tiles_temp_ground -olaz ^  -cores 7 

5 – lasheight  lasheight -cpu64 –lof *.txt -classify_below -2 7 -classify_between 0.3 20 3 -olaz 

6 – las2las -cpu64 -i "noise5.laz" -keep_classification 2 -odir "las2las de-noise" -olaz 

7 - lasthin lasthin -cpu64 -i "*.laz" -step 0.25 -adaptive 0.1 -odir " \7 Thin" -olaz 

8 – lasground 

(final) 

lasground_new -cpu64 -i " \noise5.laz" -city -hyper_fine  

-odir " \8 Final Ground" -olaz 
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Appendix D: Snow depth variability results tables 

Table D 1 snow depth variability in cm from the weather station snow courses for 2022 

STD. DEV. 
(cm) FIELD LiDAR 

2022 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

Steph 1 33.0 - 29.9 30.3 25.0 27.5 33.5 35.7 
Ridge Run - 12.6 15.2 20.5 18.6 17.3 15.9 17.8 
Lower Cain - 33.3 11.5 10.0 13 13.7 8.8 16.5 
Steph 2 4.5 4.5 10.7* 4.6* 7.1 5.9 6.0* 8.2* 
Steph 3 5.3 14.9 8.6   9.1 15.5 13.7 5.1 
Steph 4 7.5* 8.4 10.5   4.1* 6.7 7.5 4.5 
Steph 6 4.7 3.3 4.4*   7.0 5.8 9.1* 6.5 
Steph 7 5.22 4.8*     9.3 12.1* 8.4 8.3 
Steph 8 4.1 3.0     7.4 8.7 6.0 8.5 
 

Table D 2 Snow depth variability in cm from the weather station snow courses for 2023 

STD DEV 
(cm) FIELD LiDAR 

2023 10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Steph1 16.9 29.5 - 22.9   16.8 25.5 22.3 21.1 2.7 
ridge run - - - 12.4   18.9 15.8 16.5 19.8 5.7 
lower cain - - - 6.9   7.7 7.7 8.5 11.4 7.6 
steph2 3.9 4.2 7.3     6.5 6.3 6 5.1 3.5 
Steph3 5.4 6.3 7.7     10.8 10.5 9.6 1.6 2.8 
steph4 5 5.2 5.9     3.8 4.1 7.8 4.8 3.3 
steph6 3.1 5.5 4.4     5.4 7 8.6 5.4 9.3 
steph7 2.3* 1.8*       7.5* 8.3* 6.3 7.5 8.6 
steph8 1.7* 1.6       4.9* 4.1 4.2 4.4 5.1 
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Table D 3 Snow depth variability in cm from cardinal plots for 2022 

 

STD. DEV. (cm) Field LiDAR 

2022 9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

Alpine 

ST1A1 25.5 - 34.6 27.8 32.1 36.2 36 34.4 
ST2A2 - - 44.5* 46.9* 35.2 34.2 28.5* 32.5* 
RRA1 - - - 68 43.3 44.2 58.1 66.7 

Old 
 

Growth 

ST1OG3 - - 57.8 44.1 51.8 61.5 52.3 41 
ST1OG7 34.7 46.9 41.7 36.8 33.5 44.3 39.7 36.7 
ST1OG8 44.8* 46.4 44.3 39.9 34.7* 41.3 36.4 32.6 
RROG3 - - - 56.4 42 44.2 40.6 49 
RROG4 - - - 31.7 30.7 31.9 34.7 34.8 

D. Old 
Growth 

ST1OG4   30 17.3* 13.6 20.5 23.7 23.7* 18.5 
ST1OG5 24.6 29.1 28 19.8* 23.6 26.1 26 16.8* 
ST1OG6 21.3 28.7 25.5 20.1 18.2 22.7 20.7 16.4 

Regen. 

ST4RF1 54.2* 40.7* 30.1*   80* 85.2* 78.4* 93.1 
ST4RF2 37.6* 40.3* 46.7*   66* 62.6* 67.7* 88.1 
ST6GC1 33.2* 55.3 29*   75.6* 75.8 70* 81.7 

Juvenile 
ST2CC1 - 51.2 46.4* *5.4 58.2 62.3 61* 60.4* 
ST2CC2 - 30.2* 46.5 17.6* 53.5 50.9* 51.1 63.6* 

Table D 4 

 

Table D 5 Snow depth variability in cm from cardinal plots for 2023 

 

STD. DEV. (cm) Field LiDAR 

2023 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Alpine 

ST1A1 30 37.3 - 28.2   32.1 32.9 33.5 17.2 10.8 
ST2A2 30.8 38 - 34.9*   28.8 30.5 32.8 26.9* 22.9 
RRA1 - - - 64.9   45 43.8 56.9 54.7 38.3 

Old  
Growth 

ST1OG3 39.2 42.3*  26.2   34.7 27.2* 33.5 25.5 10.8 
ST1OG7 26 37.1 40.2 21.1   26.4 28.4 29.3 23.3 10.9 
ST1OG8 33.2 51.4* 43.4* 16.3   26.3 31* 25.6* 21.1 19.5 
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D. Old 
Growth 

ST1OG4 21.3* 15.8 21.3*     13.5* 7.1 13.9* 10.8 9.8 
ST1OG5 21.3 29.4* 25.9 5.1*   17.9 12.3* 20.1 10.2* 10.2 
ST1OG6 22.4* 19.1* 18.2 5.8*   14* 12.8* 16.4 11.4* 9.1 

Regen. 

ST4RF1 24* 30.9* 33.2*     83.3* 76.1* 72.2* 72.2 32.5 
ST4RF2 27.5* 27.2* 34.3*     61.1* 62.3* 63.6* 65 59.7 
ST6GC1 29.7* 35.5 27.9*     71.4* 69.9 74.2* 67.7 41.2 

Juvenile 
ST2CC1 25.4* 34.3* 40.8*     58.1* 57.7* 59.4* 55 80.5 
ST2CC2 23* 26* 34.6*     57.4* 54.4* 52.6* 58 46 
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Appendix E: Old Growth Forest: Canopy Snow Depth Variability 

Generally, canopy gaps in forests will accumulate more snow than under the trees, due to the tree 

intercepting snow and subsequent sublimation. For plots such as old growth forests with large canopy 

gaps, this was captured in both the field and LiDAR measurements, with higher depths in the open, and 

lower depths under the canopy.  

 

Figure E 1 Snow depth distribution of  old growth forest plot ST1OG7 showing the field (orange) and LiDAR (purple) snow depths 
categorized by open, edge, or under canopy for 2022 snow surveys 
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Appendix F: Average snow depth results tables 

 

Table F 1 2022 mean snow depth from snow courses for field and LiDAR measurements. Blue highlight indicates the plot was snow free 

Mean Snow 
Depth (cm) FIELD LiDAR 

2022 9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

Steph 1 212.4 - 308.6 181 212.6 294.6 293.5 124.5 
Ridge Run - 290.7 281 146.1 223 284 274.5 108.4 
Lower Cain - 186 206.6 80.7 168.5 216.8 210.8 38.8 
Steph 2 175.8 245.2 212.8 79.9 175.7 224.8 201.8 27.5 
Steph 3 78.4 128.8 65.4   77.7 114.8 58.7 13.9 
Steph 4  89.6 130.2 69.6   83.6 118.3 66.3 0.9 
Steph 6 91.7 122.3 52.4   86.4 101.5 42.8 5.7 
Steph 7 51.8 41.4     60.1 35.2 -2.6 24.8 
Steph 8 45.4 18.6     46 7.6 -11.8 4.6 
 

Table F 22023 mean snow depth from snow courses for field and LiDAR measurements. Blue highlight indicates the plot was snow free 

 

Mean Snow 
Depth (cm) FIELD LiDAR 

2023 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Steph1 204.4 194.4 - 81   189.5 207.4 190.4 56.4 -4 
Ridge Run - - - 65.9   209.7 217.2 226.9 45.4 -4.1 
Lower Cain - - - 22.9   171.5 173.1 172 21.5 6.1 
Steph 2 163.9 158.4 169.6     160.6 156 154.7 1.3 -8.3 
Steph 3 80.5 69.5 66.6     76.2 70.8 48.9 5.4 -3 
Steph 4 91.4 81.2 74.9     75.1 66.9 45.5 0.1 -4.5 
Steph 6 95 76.7 73.2     78 64.5 49.1 -0.5 -4.9 
Steph 7 52.6 21.6       43.7 21.4 6.5 5.3 1.9 
Steph 8 52.6 27.8       42.1 17.3 -2.4 -8.1 -10.1 
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Table F 3 Mean difference  in centimeters for snow courses snow depth between field and LiDARs. Grey highlight indicates bias +/- 10 cm, 
red is LiDAR under-estimated by more than 10 cm, and green highlight indicates LiDAR overestimated by more than 10 cm.  Blue highlight 
indicates snow free. Significantly different average snow depths between the field and LiDAR (p<0.05) are bolded with an *. 

 

Mean 
difference 

2022 2023  

 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Steph 1 0.2 - -15.1 -56.5* -14.9* 13 - -24.6* -4 
Ridge Run - -6.7 -6.5 -38* - - - -20.5* -4.1 
Lower Cain - 30.8* 4.2 -41.9* - - - -1.4 6.1 
Steph 2 0.1 -20.4* -11* -52.4* -3.3 -2.4 -14.9* 1.3 -8.3 
Steph 3 0.7 -14* -6.7 13.9 -4.3 1.3 -17.7* 5.4 -3 
Steph 4 -6* -11.9* -3.3 0.9 -16.3* -14.3* -29.4* 0.1 -4.5 
Steph 6 5.3 -20.8* -9.6* 5.7 -17* -12.2* -24.1* -0.5 -4.9 
Steph 7 8.3* -6.2 -2.6 24.8 -8.9* -0.2 6.5 5.3 1.9 
Steph 8 0.6 -11* -11.8 4.6 -10.5 -10.5 -2.4 -8.1 -10.1 
 

 

Table F 4 2022 mean snow depth from the cardinal plots for field and LiDAR measurements. Blue highlight indicates the plot was snow 
free 

Mean Snow Depth 
(cm) 

Field LiDAR 

2022 9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

Alpine 

ST1A1 167.4 - 172.8 69.3 160.4 213.7 222.8 34.8 
ST2A2 - - 191.5 71.1 171.3 222.9 232 61.1 
RRA1 - - - 206.9 218.4 302 406.1 157.7 

Old 
 Growth 

ST1OG3 - - 157.6 88.1 170.9 223.1 240.1 61.6 
ST1OG7 163.6 229.2 201.2 94 158.8 205.9 193.2 59.8 

ST1OG8 146.8 223.9 210.4 94.4 151.6 198.3 185 47.2 

D. Old 
Growth 

ST1OG4   112.6 120.1 16.5 69 96.1 116.1 11.8 
ST1OG5 79.3 115.3 137.6 23 72 105 116.9 15.5 
ST1OG6 93.1 125.6 140.4 25.5 79.2 107.7 112.6 19 

Regen. 

ST4RF1 103.6 91.4 28.1 0 143.4 147.4 65.4 162.9 
ST4RF2 84.2 150.5 48 0 191.1 216.6 147.6 118.3 
ST6GC1 64.4 104.8 14.8 0 120.4 117.3 44.1 76.8 

Juvenile 
ST2CC1 - 167.3 147.8 27.6 169.8 196.8 150.5 68.7 
ST2CC2 - 194.7 117.5 13.9 284 316.2 251.5 164.8 
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Table F 5 2023 mean snow depth (cm) from cardinal plots for field and LiDAR measurements. Blue highlight indicates the plot was snow 
free 

  Field LiDAR 

 

 
10

-M
ar

 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Alpine 

ST1A1 165 161.2 - 15.7 0 148.4 152.5 140 11.8 -4.9 
ST2A2 208.9 216.7 - 35.6 0 183.3 197.6 172.5 33.3 0.5 
RRA1 - - - 198.6   291 302.8 335.6 134.9 30.9 

Old  
Growth 

ST1OG3 228.2 218.6 - 24.4 0 221.9 207.7 224.1 3.3 -16.4 
ST1OG7 169.7 172.5 177.1 25.8 0 156.5 114.9 164.4 11.2 -14 

ST1OG8 175.9 178 198.2 22.1 0 151.5 74.9 164.1 -7.2 -22.9 

D. Old 
Growth 

ST1OG4 143.9 155.2 171.2 0 0 138.3 138.6 141.2 -11.9 -9.1 
ST1OG5 143.5 148.2 158.8 1.6 0 128.2 129.3 131.8 -11.8 -12.2 
ST1OG6 130.3 136.5 156.1 2.2 0 118.9 116.4 122.2 -10.7 -15.6 

Regen. 

ST4RF1 90.8 62.9 46.4 0 0 132.8 115.9 87.7 45.3 -27.6 
ST4RF2 106 72.8 75.8 0 0 175.1 158.3 131.3 75.2 -40 
ST6GC1 59.6 36.2 29.8 0 0 98.4 80.2 59 25.4 -25 

Juvenile 
ST2CC1 156.4 151.5 155 0 0 178.7 182 172.2 31.5 -9.8 
ST2CC2 152.4 141.6 137.6 0 0 275.6 276.4 261.8 127.5 -27.8 
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Table F 6 Mean difference in centimeters for cardinal plots for snow depth between field and LiDARs. Grey highlight indicates bias +/- 10 
cm, red is LiDAR under-estimated by more than 10 cm, and green highlight indicates LiDAR overestimated by more than 10 cm.  Blue 
highlight indicates snow free. Significantly different average snow depths between the field and LiDAR (p<0.05) are bolded with an *. 

 

Mean difference 
(cm) 

2022 2023 

9-
M

ar
 

11
-A

pr
 

21
-M

ay
 

24
-J

un
 

10
-M

ar
 

4-
A

pr
 

29
-A

pr
 

25
-M

ay
 

12
-J

un
 

Alpine 
ST1A1 -6.97 - 50* -34.5* -16.7* -8.7 - -3.8* -4.86 
ST2A2 - - 40.5* -9.9* -25.5* -19.06* - -2.35 0.49 
RRA1 - - - -49.26* - - - -63.7*   

Old 
 

Growth 

ST1OG3 - - 82.5* -26.6* -6.3 -10.9* - -21.1* -16.4 
ST1OG7 -4.8 -23.4* -8.1 -34.3* -13.2* -57.6* -12.7* -14.6* -14 
ST1OG8 4.8 -25.7* -25.3* -47.2* -24.4* -103.1* -34.1* -29.3* -22.9 

D. Old 
Growth 

ST1OG4 - -16.6* -3.97 -4.63 -5.6* -16.6* -30* -11.9 -9.1 
ST1OG5 -7.3 -10.3* -20.7* -7.5 -15.3* -18.9* -27* -13.4* -12.2 
ST1OG6 -13.9* -17.9* -27.9* -6.53 -11.4* -20.1* -33.9* -12.9* -15.6 

Regen. 
ST4RF1 39.8* 56.1* 37.2 162.9 42* 53* 41.3* 45.3 -27.6 
ST4RF2 106.9* 66.1* 99.7 118.3 69.1* 85.5* 55.5* 75.2* -40 
ST6GC1 56.0 12.5 29.2 76.8 38.8* 44* 29.2 25.4 -25 

Juvenile ST2CC1 - 29.6 2.7 41.2 22.3 30.5* 17.2 31.5 -9.8 
ST2CC2 - 121.5* 134.0* 151.0* 123.2* 134.8* 124.2* 127.5* -27.8 
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Appendix G: Bias corrections for meteorological variability 

Table G 1 Meterological bias corrections applied in the bias assessment of the cardinal plots, as shown in results section 5.4.1.2 

Year Acquisition 
Date 

Cover Plot ID Snow 
depth 
change  
[cm] 

Weather Station (Wx)  / 
Game Camera (GC) 
station 

Notes 

20
22

 
 

Mar-9 
 

Regenerating 
ST4RF1 +5 GC: ST6GC1 Snowfall in plots 

sampled after 
LiDAR ST4RF2 +11 GC: ST6GC1 

Apr-11 
 

Juvenile 
ST2CC1 +16 

Wx: Steph 2 
LiDAR flown after, 
melt occurred at 
plots ST2CC2 +16 

May-21 Alpine 
 

ST1A1 -14 
Wx: Steph 1 

LiDAR flown, then 
warming prior to 
sampling ST1A2 -14 

Jun-24 

Alpine ST1A1 
+43 

Wx: Steph 1 
 

ST1A2 

Dense old 
growth 

ST1OG4 

+10 GC: ST1GC1 

Delayed LiDAR 
flight, melt occurred; 
Snow entirely 
melted at ST1GC1, 
approximation of 
melt prior 

ST1OG5 

ST1OG6 

Old growth 
ST1OG3 +31 

Average of Wx: Steph 1 & 
GC: ST1GC1 

Delayed LiDAR 
flight, melt occurred 

ST1OG7 +19 
 

GC: ST1GC3 
ST1OG8 

Juvenile ST1CC1 +30 Wx: Steph 2 
Delayed LiDAR 
flight, melt occurred ST1CC2 

20
23

 
 Apr-29 

dense old 
growth 

 

ST1OG4 

+12.5 
 

GC: ST1GC1 

Rapid snow melt 
occurred between 
sampling and 
LiDAR 

ST1OG5 

ST1OG6 

old growth 
 

ST1OG3 

+13 
 

GC: ST1GC3 
 

Rapid snow melt 
occurred between 
sampling and 
LiDAR 

ST1OG7 

ST1OG8 

regenerating  

ST4RF1 

 
+12.5  

GC: ST1GC1  

no enough snow at 
closest station 
ST6GC1 for relative 
change 
 

ST4RF2 

ST6GC1 

juvenile  

ST2CC1 

+16 

Wx: Steph 2  

Rapid snow melt 
occurred between 
sampling and 
LiDAR ST2CC2 



 
 

 

 
14

2 
 A

pp
en

di
x 

H
: W

at
er

sh
ed

 S
no

w
 V

ol
um

e 
 

Ta
bl

e 
H

- 1
 S

no
w

 S
to

ra
ge

 in
 th

e 
Ru

ss
el

l C
re

ek
 w

at
er

sh
ed

 b
y 

co
ve

r t
yp

e 
fo

r t
he

 2
02

2 
Li

D
AR

 a
cq

ui
si

tio
ns

. S
no

w 
is

 sh
ow

n 
in

 c
ub

ic
 m

et
er

s, 
w

ith
 th

e 
pr

op
or

tio
n 

of
 th

e 
w

at
er

sh
ed

 sn
ow

 sh
ow

n 
in

 
br

ac
ke

ts
 

 D
at

e 
Fl

ow
n 

3/
9/

20
22

 
4/

11
/2

02
2 

5/
21

/2
02

2 
6/

24
/2

02
2 

B
ar

e 
Ea

rth
 

20
17

, 
B

C
TS

  
20

23
, A

C
O

 
20

17
, B

C
TS

  
20

23
, A

C
O

 
20

17
, B

C
TS

  
20

23
, A

C
O

 
20

17
, B

C
TS

  
20

23
, A

C
O

 

  
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 

A
lp

in
e 

11
,8

14
,5

49
 

(3
6.

0%
) 

13
,7

12
,9

41
 

(4
0.

1%
) 

14
,5

87
,4

80
 

(3
4.

1%
) 

16
,4

84
,3

98
 

(3
7.

2%
) 

15
,2

58
,0

07
 

(4
1.

6%
) 

17
,1

63
,2

90
 

(4
4.

4%
) 

8,
96

3,
69

1 
(3

7.
8%

) 
10

,8
49

,3
64

 
(4

3.
5%

) 

O
ld

 G
ro

w
th

 
13

,0
07

,9
77

 
(3

9.
7%

) 
11

,2
30

,8
85

 
(3

2.
9%

) 
16

,2
80

,6
62

 
(3

8.
1%

) 
14

,5
52

,5
46

 
(3

2.
9%

) 
13

,8
75

,4
70

 
(3

7.
8%

) 
12

,3
08

,9
54

 
(3

1.
9%

) 
9,

02
7,

50
3 

(3
8.

0%
) 

7,
17

2,
31

2 
(2

8.
7%

) 

M
at

ur
e 

Re
ge

n.
 

1,
29

9,
08

3 
(4

.0
%

) 
1,

07
0,

74
6 

(3
.1

%
) 

4,
66

9,
24

5 
(1

0.
9%

) 
4,

51
6,

96
4 

(1
0.

2%
) 

3,
07

7,
73

3 
(8

.4
%

) 
2,

97
3,

87
5 

(7
.7

%
) 

1,
39

2,
16

5 
(5

.9
%

) 
1,

16
1,

10
6 

(4
.7

%
) 

Re
ge

ne
ra

tin
g 

4,
82

3,
78

3 
(1

4.
7%

) 
5,

94
7,

79
4 

(1
7.

4%
) 

5,
33

0,
75

8 
(1

2.
5%

) 
6,

51
2,

69
0 

(1
4.

7%
) 

3,
40

2,
65

3 
(9

.3
%

) 
4,

65
1,

51
6 

(1
2.

0%
) 

3,
30

1,
46

7 
(1

3.
9%

) 
4,

38
4,

56
8 

(1
7.

6%
) 

Ju
ve

ni
le

 
1,

57
2,

43
3 

(4
.8

%
) 

2,
05

9,
78

9 
(6

.0
%

) 
1,

60
0,

73
0 

(3
.8

%
) 

2,
07

2,
64

1 
(4

.7
%

) 
91

0,
32

9 
(2

.5
%

) 
1,

41
0,

71
6 

(3
.6

%
) 

85
0,

14
6 

(3
.6

%
) 

1,
31

8,
57

0 
(5

.3
%

) 

N
ew

 H
ar

ve
st

 
19

5,
83

4 
(0

.6
%

) 
73

,3
87

 
(0

.2
%

) 
18

3,
02

1 
(0

.4
%

) 
75

,6
33

 
(0

.2
%

) 
12

6,
20

5 
(0

.3
%

) 
58

,9
15

 
(0

.1
%

) 
16

9,
39

5 
(0

.7
%

) 
50

,4
04

 
(0

.2
%

) 

FS
R

 
87

,6
39

 
(0

.3
%

) 
90

,0
81

 
(0

.3
%

) 
82

,9
89

 
(0

.2
%

) 
90

,6
24

 
(0

.2
%

) 
46

,3
54

 
(0

.1
%

) 
55

,5
01

 
(0

.1
%

) 
26

,1
33

 
(0

.1
%

) 
33

,7
60

 
(0

.1
%

) 
To

ta
l 

   
   

   
32

,8
01

,2
98

  
   

   
   

34
,1

85
,6

23
  

   
   

   
42

,7
34

,8
85

  
   

   
   

44
,3

05
,4

96
  

   
   

   
36

,6
96

,7
51

  
   

   
   

38
,6

22
,7

67
  

   
   

   
23

,7
30

,5
00

  
   

   
   

24
,9

70
,0

84
  

  



 
 

 

 
14

3 
  Ta

bl
e 

H
- 2

 S
no

w
 S

to
ra

ge
 in

 th
e 

Ru
ss

el
l C

re
ek

 w
at

er
sh

ed
 b

y 
el

ev
at

io
n 

ba
nd

  f
or

 th
e 

20
22

 L
iD

AR
 a

cq
ui

si
tio

ns
. S

no
w

 is
 sh

ow
n 

in
 c

ub
ic

 m
et

er
s, 

w
ith

 th
e 

pr
op

or
tio

n 
of

 th
e 

w
at

er
sh

ed
 sn

ow
 

sh
ow

n 
in

 b
ra

ck
et

s 

  D
at

e 
Fl

ow
n 

3/
9/

20
22

 
4/

11
/2

02
2 

5/
21

/2
02

2 
6/

24
/2

02
2 

B
ar

e 
Ea

rth
 

20
17

, B
C

TS
  

20
23

, A
C

O
 

20
17

, B
C

TS
  

20
23

, A
C

O
 

20
17

, B
C

TS
  

20
23

, A
C

O
 

20
17

, B
C

TS
  

20
23

, A
C

O
 

 E
le

va
tio

n 
B

an
d 

[m
] 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 v

ol
um

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 v

ol
um

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 v

ol
um

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 v

ol
um

e)
 

20
0 

- 4
00

 
43

2,
48

9 
(1

.3
%

) 
43

8,
48

9 
(1

.3
%

) 
38

8,
10

7 
(0

.9
%

) 
40

2,
36

2 
(0

.9
%

) 
43

0,
81

4 
(1

.2
%

) 
44

0,
91

7 
(1

.1
%

) 
52

6,
78

4 
(2

.2
%

) 
53

4,
36

6 
(2

.1
%

) 

40
0 

- 6
00

 
3,

32
7,

71
5 

(1
0.

2%
) 

2,
87

9,
07

0 
(8

.4
%

) 
6,

05
7,

99
9 

(1
4.

2%
) 

5,
86

4,
18

5 
(1

3.
2%

) 
3,

51
3,

02
0 

(9
.6

%
) 

3,
46

4,
92

6 
(9

.0
%

) 
3,

47
8,

68
5 

(1
4.

7%
) 

3,
04

7,
72

7 
(1

2.
2%

) 

60
0 

- 8
00

 
3,

42
5,

21
2 

(1
0.

4%
) 

3,
31

4,
03

6 
(9

.7
%

) 
4,

39
4,

56
3 

(1
0.

3%
) 

4,
27

0,
94

3 
(9

.6
%

) 
2,

91
1,

51
1 

(7
.9

%
) 

2,
98

3,
64

2 
(7

.7
%

) 
3,

45
2,

78
4 

(1
4.

6%
) 

3,
32

9,
06

3 
(1

3.
3%

) 

80
0 

- 1
00

0 
4,

70
6,

68
4 

(1
4.

3%
) 

5,
12

6,
97

1 
(1

5.
0%

) 
5,

57
7,

34
3 

(1
3.

1%
) 

5,
92

2,
15

1 
(1

3.
4%

) 
3,

50
2,

83
7 

(9
.6

%
) 

3,
87

4,
08

5 
(1

0.
0%

) 
2,

81
7,

82
4 

(1
1.

9%
) 

3,
14

7,
15

9 
(1

2.
6%

) 

10
00

 - 
12

00
 

5,
64

1,
67

6 
(1

7.
2%

) 
5,

23
1,

50
1 

(1
5.

3%
) 

7,
23

7,
32

0 
(1

6.
9%

) 
6,

83
3,

37
9 

(1
5.

4%
) 

6,
42

4,
25

4 
(1

7.
5%

) 
6,

01
3,

32
7 

(1
5.

6%
) 

2,
92

1,
22

9 
(1

2.
3%

) 
2,

47
7,

29
3 

(9
.9

%
) 

12
00

 - 
14

00
 

9,
03

0,
25

9 
(2

7.
5%

) 
8,

79
1,

30
4 

(2
5.

7%
) 

11
,3

33
,2

53
 

(2
6.

5%
) 

11
,1

02
,6

71
 

(2
5.

1%
) 

11
,7

73
,9

19
 

(3
2.

1%
) 

11
,5

38
,0

73
 

(2
9.

9%
) 

5,
80

6,
57

7 
(2

4.
5%

) 
5,

54
2,

99
1 

(2
2.

2%
) 

14
00

 - 
17

00
 

6,
23

7,
26

3 
(1

9.
0%

) 
8,

40
4,

25
2 

(2
4.

6%
) 

7,
74

6,
30

0 
(1

8.
1%

) 
9,

90
9,

80
5 

(2
2.

4%
) 

8,
14

0,
39

6 
(2

2.
2%

) 
10

,3
07

,7
97

 
(2

6.
7%

) 
4,

72
6,

61
7 

(1
9.

9%
) 

6,
89

1,
48

5 
(2

7.
6%

) 
T

ot
al

 
32

,8
01

,2
98

 
34

,1
85

,6
23

 
42

,7
34

,8
85

 
44

,3
05

,4
96

 
36

,6
96

,7
51

 
38

,6
22

,7
67

 
23

,7
30

,5
00

 
24

,9
70

,0
84

  
    



 
 

 

 
14

4 
   Ta

bl
e 

H
- 3

 S
no

w
 S

to
ra

ge
 in

 th
e 

Ru
ss

el
l C

re
ek

 w
at

er
sh

ed
 b

y 
co

ve
r t

yp
e 

fo
r t

he
 2

02
2 

Li
D

AR
 a

cq
ui

si
tio

ns
. S

no
w

 is
 sh

ow
n 

in
 c

ub
ic

 k
ilo

m
et

er
s,

 w
ith

 th
e 

pr
op

or
tio

n 
of

 th
e 

w
at

er
sh

ed
 sn

ow
 

sh
ow

n 
in

 b
ra

ck
et

s 

   D
at

e 
Fl

ow
n 

3/
10

/2
02

3 
4/

4/
20

23
 

4/
29

/2
02

3 
5/

25
/2

02
3 

6/
12

/2
02

3 

Ba
re

 E
ar

th
 

20
17

, 
B

CT
S 

 
20

23
, 

A
C

O
 

20
17

, 
B

C
TS

  
20

23
, 

A
C

O
 

20
17

, 
B

C
TS

  
20

23
, 

A
C

O
 

20
17

, 
B

C
TS

  
20

23
, 

A
C

O
 

20
17

, 
B

C
TS

  
20

23
, 

A
C

O
 

  
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

A
lp

in
e 

11
,0

53
,3

98
 

(3
3.

1%
) 

12
,9

68
,0

40
 

(3
7.

6%
) 

11
,7

60
,3

05
 

(3
9.

8%
) 

13
,6

69
,9

97
 

(4
3.

7%
) 

12
,0

27
,9

88
 

(4
2.

6%
) 

13
,9

33
,8

33
 

(4
6.

3%
) 

2,
00

9,
02

9 
(4

1.
7%

) 
3,

93
0,

66
2 

(5
6.

0%
) 

-8
5,

42
6 

(1
.4

%
) 

1,
91

5,
99

5 
(-

53
.4

%
) 

O
ld

 
G

ro
w

th
 

14
,1

29
,2

54
 

(4
2.

3%
) 

12
,2

00
,5

55
 

(3
5.

4%
) 

12
,6

56
,9

02
 

(4
2.

8%
) 

10
,9

53
,0

36
 

(3
5.

0%
) 

12
,2

17
,0

25
 

(4
3.

3%
) 

10
,6

35
,5

42
 

(3
5.

3%
) 

1,
78

4,
97

5 
(3

7.
1%

) 
34

0,
75

5 
(4

.8
%

) 
-9

98
,7

07
 

(1
6.

7%
) 

-2
,3

45
,8

42
 

(6
5.

3%
) 

M
.  

Re
ge

n.
 

1,
13

1,
22

1 
(3

.4
%

) 
76

3,
77

9 
(2

.2
%

) 
30

5,
58

6 
(1

.0
%

) 
17

5,
79

0 
(0

.6
%

) 
16

5,
97

3 
(0

.6
%

) 
56

,1
04

 
(0

.2
%

) 
17

8,
22

3 
(3

.7
%

) 
50

,9
65

 
(0

.7
%

) 
-3

82
,6

70
 

(6
.4

%
) 

-4
50

,8
24

 
(1

2.
6%

) 
Re

ge
ne

ra
ti

ng
 

4,
81

6,
05

6 
(1

4.
4%

) 
5,

93
4,

95
8 

(1
7.

2%
) 

3,
20

8,
76

6 
(1

0.
8%

) 
4,

42
4,

92
0 

(1
4.

2%
) 

2,
52

3,
77

5 
(8

.9
%

) 
3,

78
2,

50
3 

(1
2.

6%
) 

52
7,

13
7 

(1
0.

9%
) 

1,
89

3,
15

0 
(2

7.
0%

) 
-3

,1
91

,5
02

 
(5

3.
3%

) 
-1

,8
22

,8
58

 
(5

0.
8%

) 

Ju
ve

ni
le

 
1,

88
3,

51
4 

(5
.6

%
) 

2,
35

8,
06

9 
(6

.8
%

) 
1,

44
9,

57
1 

(4
.9

%
) 

1,
93

4,
53

9 
(6

.2
%

) 
1,

12
0,

34
9 

(4
.0

%
) 

1,
61

1,
11

3 
(5

.3
%

) 
24

4,
11

7 
(5

.1
%

) 
78

9,
01

4 
(1

1.
2%

) 
-1

,3
42

,4
96

 
(2

2.
4%

) 
-8

26
,7

44
 

(2
3.

0%
) 

N
ew

 
H

ar
ve

st
 

26
9,

67
0 

(0
.8

%
) 

11
6,

56
0 

(0
.3

%
) 

13
9,

56
9 

(0
.5

%
) 

51
,5

45
 

(0
.2

%
) 

12
9,

85
9 

(0
.5

%
) 

39
,3

08
 

(0
.1

%
) 

63
,1

55
 

(1
.3

%
) 

-4
,4

59
 

(-
0.

1%
) 

56
,5

06
 

(-
0.

9%
) 

-2
1,

48
4 

(0
.6

%
) 

FS
R

 
10

1,
46

1 
(0

.3
%

) 
99

,9
19

 
(0

.3
%

) 
61

,2
90

 
(0

.2
%

) 
70

,5
67

 
(0

.2
%

) 
47

,6
41

 
(0

.2
%

) 
58

,0
79

 
(0

.2
%

) 
6,

65
9 

(0
.1

%
) 

18
,8

46
 

(0
.3

%
) 

-4
7,

43
3 

(0
.8

%
) 

-3
8,

03
1 

(1
.1

%
) 

To
ta

l 
33

,3
84

,5
74

 
34

,4
41

,8
80

 
29

,5
81

,9
89

 
31

,2
80

,3
94

 
28

,2
32

,6
10

 
30

,1
16

,4
82

 
4,

81
3,

29
5 

7,
01

8,
93

3 
-5

,9
91

,7
28

 
-3

,5
89

,7
88

 



 
 

 

 
14

5 
 Ta

bl
e 

H
- 4

 S
no

w
 S

to
ra

ge
 in

 th
e 

Ru
ss

el
l C

re
ek

 w
at

er
sh

ed
 b

y 
co

ve
r b

y 
el

ev
at

io
n 

ba
nd

 fo
r t

he
 2

02
3 

Li
D

AR
 a

cq
ui

si
tio

ns
. S

no
w 

is
 sh

ow
n 

in
 c

ub
ic

 m
et

er
s, 

w
ith

 th
e 

pr
op

or
tio

n 
of

 th
e 

w
at

er
sh

ed
 

sn
ow

 sh
ow

n 
in

 b
ra

ck
et

s 

 D
at

e 
Fl

ow
n 

3/
10

/2
02

3 
4/

4/
20

23
 

4/
29

/2
02

3 
5/

25
/2

02
3 

6/
12

/2
02

3 

Ba
re

 E
ar

th
 

20
17

, 
B

CT
S 

 
20

23
, A

C
O

 
20

17
, 

B
CT

S 
 

20
23

, 
A

C
O

 
20

17
, 

B
C

TS
  

20
23

, 
A

C
O

 
20

17
, 

B
CT

S 
 

20
23

, 
A

C
O

 
20

17
, 

B
C

TS
  

20
23

, A
C

O
 

  
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

m
³ (

pe
rc

en
t o

f t
ot

al
 sn

ow
 

vo
lu

m
e)

 
m

³ (
pe

rc
en

t o
f t

ot
al

 sn
ow

 
vo

lu
m

e)
 

20
0 

- 
40

0 
10

3,
99

5 
(0

.3
%

) 
12

0,
09

0 
(0

.3
%

) 
5,

32
7 

(0
.0

%
) 

41
,1

13
 

(0
.1

%
) 

-7
2,

59
1 

(-
0.

2%
) 

-4
5,

78
7 

(-
0.

1%
) 

-2
5,

86
5 

(-
0.

5%
) 

3,
16

9 
(0

.1
%

) 
-2

86
,5

10
 

(4
.8

%
) 

-2
71

,3
58

 
(7

.6
%

) 
40

0 
- 

60
0 

2,
41

7,
10

8 
(7

.2
%

) 
1,

82
9,

45
3 

(5
.3

%
) 

54
1,

99
8 

(1
.9

%
) 

50
0,

89
7 

(1
.7

%
) 

77
4,

68
9 

(2
.6

%
) 

68
1,

56
7 

(2
.2

%
) 

51
7,

40
7 

(1
0.

8%
) 

47
1,

92
0 

(6
.7

%
) 

-1
,5

82
,6

83
 

(2
6.

4%
) 

-1
,6

30
,7

07
 

(4
5.

4%
) 

60
0 

- 
80

0 
3,

25
4,

60
8 

(9
.8

%
) 

2,
92

5,
77

9 
(8

.5
%

) 
1,

23
5,

26
1 

(4
.4

%
) 

1,
24

2,
97

5 
(4

.1
%

) 
1,

89
1,

98
9 

(6
.4

%
) 

1,
77

5,
07

9 
(5

.7
%

) 
75

4,
80

0 
(1

5.
7%

) 
78

7,
26

9 
(1

1.
2%

) 
-1

,4
79

,9
70

 
(2

4.
7%

) 
-1

,3
85

,4
59

 
(3

8.
6%

) 
80

0 
- 

10
00

 
5,

49
0,

74
6 

(1
6.

4%
) 

5,
88

3,
73

9 
(1

7.
1%

) 
3,

39
7,

31
1 

(1
2.

0%
) 

3,
73

6,
93

7 
(1

2.
4%

) 
4,

26
2,

71
9 

(1
4.

4%
) 

4,
59

0,
14

5 
(1

4.
7%

) 
45

3,
50

4 
(9

.4
%

) 
1,

01
4,

58
7 

(1
4.

5%
) 

-1
,9

76
,8

15
 

(3
3.

0%
) 

-1
,4

16
,1

45
 

(3
9.

5%
) 

10
00

 - 
12

00
 

7,
12

0,
98

5 
(2

1.
3%

) 
6,

71
5,

51
7 

(1
9.

5%
) 

6,
59

2,
08

9 
(2

3.
4%

) 
6,

18
6,

74
0 

(2
0.

5%
) 

6,
74

7,
69

9 
(2

2.
8%

) 
6,

36
0,

54
0 

(2
0.

3%
) 

1,
14

4,
93

3 
(2

3.
8%

) 
81

8,
80

8 
(1

1.
7%

) 
-3

71
,4

59
 

(6
.2

%
) 

-6
68

,1
39

 
(1

8.
6%

) 
12

00
 - 

14
00

 
10

,0
44

,9
87

 
(3

0.
1%

) 
9,

75
5,

97
8 

(2
8.

3%
) 

11
,2

23
,4

85
 

(3
9.

8%
) 

10
,8

58
,2

48
 

(3
6.

0%
) 

10
,3

89
,8

86
 

(3
5.

1%
) 

10
,0

61
,3

08
 

(3
2.

2%
) 

2,
41

7,
60

1 
(5

0.
2%

) 
1,

97
3,

04
2 

(2
8.

1%
) 

76
2,

61
4 

(-
12

.7
%

) 
39

6,
25

0 
(-

11
.0

%
) 

14
00

 - 
17

00
 

4,
95

2,
14

5 
(1

4.
8%

) 
7,

21
1,

32
4 

(2
0.

9%
) 

5,
23

7,
13

9 
(1

8.
6%

) 
7,

54
9,

57
2 

(2
5.

1%
) 

5,
58

7,
59

8 
(1

8.
9%

) 
7,

85
7,

54
2 

(2
5.

1%
) 

-4
49

,0
85

 
(-

9.
3%

) 
1,

95
0,

13
8 

(2
7.

8%
) 

-1
,0

56
,9

05
 

(1
7.

6%
) 

1,
38

5,
77

0 
(-

38
.6

%
) 

To
ta

l 
33

,3
84

,5
74

 
34

,4
41

,8
80

 
29

,5
81

,9
89

 
31

,2
80

,3
94

 
28

,2
32

,6
10

 
30

,1
16

,4
82

 
4,

81
3,

29
5 

7,
01

8,
93

3 
-5

,9
91

,7
28

 
-3

,5
89

,7
88

 



  
 

 
146 

 

 

Appendix I: Harvest Experiment Slash Pile Analysis 

Further analysis of the cut block surface debris was prompted by the result of a positive increase in 

ground surface post-harvesting.  A potential source of error would be a misclassification of logs and 

slash piles as a ground.  If this occurred in numerous parts of the cut block, this would result in a false 

positive bias to the ground surface.  

Classification of the cut block into slash and ground using a basic supervised classification of the 

orthoimagery. Shadow caused by the trees were classified separately and not included in the analysis. 

The classified raster was resampled to the LiDAR 1 meter resolution, and surface elevations were 

binned according to ground or slash.  

 
Figure I 1Result of classification of cut block as ground (yellow) or slash (brown) 

The summary statistics and plotted histogram do not show evidence of a bias on logs compared to the 

ground. Both the slash and ground groups show a similar distribution and positive bias when comparing 

the 2023 ground surface to the 2022.  
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Figure I 2 Histogram of the ground surface difference between the post-harvest (2023) and pre-harvest (2022) pixels, showing the peak for 
both the slash and ground pixels are aligned, and slightly above zero 
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