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Abstract

This research explores estimating off-shore oily waste, considering waste-waste
compatibility due to the heterogeneous nature of oily waste. Firstly, hyperparameters for
Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Improved Random
Forest (IRF) models are optimized to develop a comprehensive oily waste estimation model
incorporating liquid, solid, and total waste types. The results show that IRF is the most accurate
model, with the lowest error indices and a higher correlation coefficient compared to ANN and
SVR. This study then takes a step further to propose a waste allocation framework, which is
tested using information on the Bella Bella oil spill incident in British Columbia. Incorporating
treatment and receiving facilities' details, such as their location and capacity, the framework
distinguishes all possible waste pathways for handling the waste from source to landfill. Genetic
Algorithm (GA) is introduced to optimize waste transfer processes and successfully minimize
transportation costs. The results show that the model can find the most optimized path to reduce
transportation costs. The model's high customization, adaptability, and capacity to consider
multiple nodes make it suitable for complex waste transfer networks, demonstrating its
practicality in emergency situations. Efficiently allocating resources and ensuring cost-effective
waste transportation while considering facility capacities and waste compatibility, the study
holds practical implications for waste management practitioners, environmental authorities, and

response teams.
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CHAPTER1 INTRODUCTION

1.1 What Is a Marine Oil Spill?

Over the past two decades, there have been ongoing debates surrounding the
transition to more sustainable energy sources. Despite this, many industries continue to rely
on fossil fuels. The rapid growth of industrialization and economic expansion has led to a rise
in the transportation of fossil fuels, consequently increasing the risk of oil spill incidents. A
marine oil spill incident occurs when petroleum hydrocarbons are accidentally released at sea
due to human error or equipment failures (Li et al. (2014); Beyer et al. (2016)). Tankers, off-
shore platforms, drilling rigs, and subsea piping lines are identified as the primary sources of

such spill incidents (Li et al. (2014)).

The International Tanker Owners Pollution Federation Limited (ITOPF) is a
London-based organization that compiles statistics on global oil demand and incidents of oil
and chemical spills. They also provide technical support services for oil spill response plans.
This information is made available to tanker owners, their insurers responsible for covering
oil pollution incidents, and international organizations like the International Maritime
Organization (IMO), as adapted from ITOPF (2021). In essence, ITOPF's core services
encompass spill response, analysis of claims and damages, training, contingency planning,

and advisory and informational support.

Figure 1.1 depicts a long-term analysis of global trends in oil demand versus tanker
spill incidents. As shown, despite an increase in tanker movements from 1970 to 2020, the
number of oil spill incidents has consistently decreased over these years. This positive trend
is attributed to advancements in the shipping industry, coupled with stricter regulations and a
sustained commitment to enhancing maritime safety and environmental protection through

investment and exploration of innovative solutions.
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Figure 1.1 Comparison between the number of tanker spills and growth in crude oil and
other tanker trade between 1970 and 2020 (Adapted from ITOPF (2021)).

Investigating the causes of oil spill incidents offers valuable insights for managerial
tasks and risk analysis. An analysis conducted by ITOPF spans tanker spill incidents from
around 1970 to 2021. Spills exceeding 700 tonnes, those ranging from 7 to 700 tonnes, and
those below 7 tonnes are categorized as large, medium, and minor, respectively. Figure 1.2
illustrates the trend and volume of spill incidents in the medium and large categories during

this period.

As shown, the total volume of oil released due to tanker spill incidents in 2021 is
approximately 10,000 tonnes, with the majority classified as medium spill incidents. While
annual fluctuations are present, the overall trend shows a decline in the number of oil spill
incidents. This reduction is attributed to positive shifts within the shipping industry,

reinforced regulations, and governmental support for research initiatives.

The following sections will provide more details regarding marine oil spill incidents,

causes, environmental impacts and related regulations.
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Figure 1.2 Number of medium and large tanker spills from 1970 to 2021 (Adapted
from ITOPF (2021).

1.2 Major Oil Spill Incidents

Even though the number of oil spill incidents has decreased significantly, primarily
due to stringent regulations, it's essential to recognize that a single oil spill incident can still
lead to catastrophic events. A summary of the twenty most significant oil spill incidents
worldwide is presented in the following table. This table includes renowned incidents such as
Exxon Valdez and Prestige, although they are listed further down the rank column in Table
1.1. The subsequent section will provide detailed information about the consequences of oil

spill incidents.



Table 1.1 Twenty-two major oil spill incidents the world has seen.

Rank Ship name Year Location Spill size (tonne)
1 Atlantic Empress 1979 Off Tobago, west India 287,000
2 ABT Summer 1991 700 nautical miles off Angola 260,000
3 Castillo de Bellver 1983 Off Saldanha Bay, South Africa 252,000
4 Amoco Cadiz 1978 Off Brittany, France 223,000
5 Haven 1991 Genoa, Italy 144,000

700 nautical miles off Nova Scotia,
6 Odyssey 1988 132,000
Canada
7 Torrey Canyon 1967 Scilly Isles, UK 119,000
8 Sea Star 1972 Gulf of Oman 115,000
9 Sanchi 2018 Off Shanghai, China 113,000
10 Irenes Serenade 1980 Navarino Bay, Greece 100,000
11 Urquiola 1976 La Coruna, Spain 100,000
12 Hawaiian Patriot 1979 300 nautical miles off Honolulu 95,000
13 Independenta 1979 Bosphorus, Turkey 94,000
14 Jakob Maersk 1975 Oporto, Portugal 88,000
15 Brear 1993 Shetland Islands, UK 85,000
16 Aegean Sea 1992 La Coruna, Spain 74,000
17 Sea Empress 1996 Milfor Haven, UK 72,000
120 nautical miles off the Atlantic
18 Khark 5 1989 70,000
coast of Morocco
19 Nova 1985 Off Khark Islan, Gulf of Iran 70,000
20 Katina P 1992 Off Maputo, Mozambique 67,000
21 Prestige 2002 Off Galicia, Spain 63,000
22 Exxon Valdez 1989 Prince William Sound, Alaska, USA 37,000




1.3 Oil Spill Effects on Different Sectors

1.3.1 Aquatic Habitat and Ecology

Aquatic habitats are the first areas heavily impacted by oil spill incidents. The
marine environment is a complex system of plants, animals, and their surroundings. When the
environment is harmed, it often affects species in the food chain, leading to further

consequences for other species (IMO (2001)).

In open water, fish and whales can swim away from an oil spill by going deeper or
in different directions. However, animals like turtles, seals, and dolphins, which usually live
near the shore, are at a higher risk. They are affected by oil on beaches or by eating prey in
oil. In shallow water, oil can also harm plants like seagrasses, kelp, and coral reefs, which

many species rely on for food, homes, and breeding spots (IMO (2001)).

Oil spill incidents can also happen in swamps and marshes, where there's less water
movement, making the situation worse than in flowing water. Lakes and ponds are also at
risk because more types of animals can be exposed to oil. This is especially true for migrating
birds, as they can spread the contamination over a larger area. While rivers are usually less
affected than lakes, if a river is a drinking water source, it directly threatens human health.
This concerns many communities, including indigenous communities, that rely on water

bodies for their needs.

1.3.2 Wildlife

The species most impacted by oil spill incidents are birds, mammals, and plants

inhabiting marine environments and adjacent shorelines. These organisms face various



threats, including direct physical contact with oil, toxic contamination, depletion of food

sources or habitats, and reproductive challenges (IMO (2001)).

Different species exhibit varying degrees of tolerance to oil ingestion. For instance,
oil spill incidents and their vapours can be fatal to seabirds. Despite their potential resilience,
once exposed to oil, these birds can accumulate it within their bodies, leading to infiltration
of their nervous system, liver, and lungs. Consequently, oil enters the food chain, posing a

risk of contamination to predators.

1.3.3 Economy

Marine-based industries, including port operations, fisheries, tourism, and
aquaculture enterprises, often experience significant adverse effects from oil spill incidents.
These impacts manifest through direct losses of products due to mortality or habitat
destruction, as well as restricted access resulting from harvesting bans and area closures.
Furthermore, economic losses stem from decreased market demand, driven by concerns over
the safety of products tainted by oil contamination (Li et al. (2014); Beyer et al. (2016)).
These losses reverberate throughout the fisheries supply chain, affecting docks, processors,

and supply businesses (Beyer et al. (2016)).

1.3.4 First Nations and Local Communities

First Nations represent a particularly vulnerable segment of society, highly
susceptible to oil spill incidents' consequences. These communities often rely on fisheries and
land resources from water bodies, making them particularly vulnerable to the impacts of oil
contamination in terms of polluted soils from oil pipelines and tainted seafood (Li et al.

(2014)).



In addition to First Nations, other indigenous communities and rural locals with
strong ties to the natural environment for subsistence and cultural practices are also affected
by oil spill incidents. While compensatory frameworks exist for these communities, delays in
compensation disbursement may adversely affect trust in governmental authorities,

potentially leading to significant social unrest and societal disruption.

1.3.5 Tourism

Tourism stands out as a particularly vulnerable sector in crises and disasters. This
vulnerability arises from its interrelations with other industries, such as transportation and
accommodation, hotels, airlines, and car rentals. Additionally, tourism is heavily influenced
by external factors such as political stability, currency exchange rates, and weather conditions

(Beyer et al. (2016)).

Oil spill incidents near shorelines and areas populated by humans pose aesthetic
concerns, necessitating safety measures due to toxic volatile vapours. Cleaning such spills is
more costly and may extend over longer periods, resulting in significant losses and market
decline for businesses and properties situated near beaches and waterfronts, such as
restaurants, hotels, and recreational facilities. Over time, tourism in the affected area may

experience crises or collapse, as these events divert tourist traffic to alternative destinations.

1.3.6 Human Health

Human beings can be impacted by an oil spill incident in three significant ways,
including disruption of ecological processes, resulting in direct harm. This includes ingesting
seafood contaminated with oil toxins, which can lead to various health issues. For instance,

consuming seafood bio-accumulated with oil toxins or breathing in oil vapours can cause



direct harm. Economic stressors affect individuals working in fields such as fishers and the
tourism industry. According to Aguilera et al. (2010) and Major and Wang (2012), inhalation
of vapours or consuming contaminated seafood can lead to harmful health effects ranging
from dizziness and nausea to certain types of cancers and issues with the central nervous
system. Although the long-term effects of hydrocarbon toxicity on humans are less studied,
they have been associated with severe DNA degradation, cancers, congenital disabilities,
reproductive defects, irreversible neurological and endocrine damage, and impaired cellular

immunity (Binet et al. (2003); Aguilera et al. (2010)).

1.4 What Affects Oil Spill?

Once an oil slick forms on the water's surface following an oil spill incident, it
undergoes various weathering processes, including photolysis, evaporation, dilution,
formation of oil-water emulsions, and biodegradation (Dave and Ghaly (2011)). Specifically,
the formation of oil-water emulsion leads to significant changes in water interfacial tension,
density, and viscosity. Selecting the most effective method for spill clean-up largely depends
on the characteristics of the oil and environmental factors. Therefore, understanding factors
such as the quantity and type of spill, weather and ocean conditions, age of the spilled oil, and

ocean behaviour is crucial.

The most common marine oil spills include bunker crude oil, refined petroleum

products and by-products, and waste oils (Dave and Ghaly (2011)).



1.5 Qil Spill Clean-up Strategy

When the oil spills on top of the water's surface, it will slowly drift toward the shore
due to tidal activities. Spill clean-up operations must be employed to prevent a catastrophic
situation after an incident. Over the last 50 years, oil spill clean-up technologies have
developed extensively. The clean-up processes at the spill location (at sea) and the shore are

called off-shore and shoreline clean-ups, respectively.

1.5.1 Off-shore Clean-up Techniques

Off-shore response techniques are divided into mechanical/physical, chemical,

biological and in-situ burning. (Dave and Ghaly (2011)).

a)  Physical techniques primarily involve spatially controlling the oil slick using
physical barriers, thereby keeping the oil's physical and chemical characteristics
unchanged. Commonly used physical barriers globally include booms, skimmers,

and adsorbent materials (Fingas (2016)).

Booms are floating barriers designed to restrict the movement of oil,
ultimately facilitating higher oil recovery through skimmers or other response
methods. They come in three main types: fence booms, curtain booms, and fire-
resistant booms. Fire-resistant booms are typically employed in conjunction with in-
situ burning. Fence and curtain booms serve a similar function, with approximately
60% submerged underwater and only 40% floating on the surface. Booms are
typically around 15 meters long and can be interconnected as needed. While fence
booms are lightweight, easy to handle, and reliable in calm waters, their stability in

rough conditions with high waves and strong winds is limited.



Skimmers represent the second physical response technique commonly used
alongside booms to enhance oil recovery efficiency. Depending on the skimmer
type, they exhibit high stability in rough ocean conditions and can recover up to 90%
of the oil. However, they are less effective when dealing with oil mixed with
dispersants. Regardless of their type, all skimmers are made of oleophilic materials,
which attract oil slicks that adhere to the surface. This oil can then be scraped or

squeezed from the surface and collected in a small storage tank.

Utilizing adsorbent materials offers another physical approach to handling oil
spill incidents without altering the oil's characteristics. Hydrophobic sorbents are
employed for clean-up after skimming as a final step in response operations to

capture any remaining oil on the water.

b) Chemical methods complement physical techniques to expedite clean-up,
particularly in spill locations near shorelines or sensitive marine environments.
Dispersants and solidifiers are commonly employed chemicals in oil spill clean-up,
altering the characteristics of the oil. Dispersants typically consist of surfactants,
which break down the oil slick into smaller droplets, facilitating faster
biodegradation as they are dispersed into the deep-water column. On the other hand,
solidifiers transform the oil phase from liquid to a rubber-like substance, enabling
more accessible collection on the water's surface. In rough seas, solidifiers can
effectively utilize wave energy to enhance dissolution in the water, resulting in a
higher rate of solidification (Dave and Ghaly (2011)).

¢) In-situ burning represents a straightforward and rapid clean-up method.
However, its usage is limited due to concerns over human health and environmental
impacts associated with burning by-products, including residues and the emission of

thick plumes of black smoke. This method is particularly effective in snowy
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conditions, such as clean-ups after pipeline leaks or when oil spills occur on top of
ice. One crucial requirement is that the oil slick be sufficiently thick to sustain
burning and prevent it from cooling.

d) Biodegradation serves as the final option for marine oil spill clean-up. While
environmentally friendly and safe, its application is restricted by the slow
degradation process, leading to prolonged exposure and less suitable for

environments with low microbial activity.

1.5.2 On-shore Clean-up Techniques

On-shore oil spill clean-ups are more straightforward than off-shore and do not
require special equipment. The clean-up process can be summarized into three stages based

on (ITOPF (2021)) as follows:

A) Stage 1- Emergency phase: This phase revolves around a collection of floating
oil near the shoreline and transfer to temporary storage, usually on the shore.

B) Stage 2 — project phase: Stage 2 is a complementary phase to Stage 1, often
combined. This phase involves collecting oily contaminated materials left on
the shoreline. In smaller projects, any remaining oil might be left to degrade
naturally.

C) Stage 3- Polishing phase: this stage includes the final clean-ups and removal of

oil stains if required.

Removing bulked oil and treating oil-contaminated beach materials (Stages 1 and 2)
typically involves using skimmers to collect the oil, which is then transferred using vacuum

trucks to subsequent handling facilities. The oil removal process can be done using

11



mechanical equipment or manual methods. Pressure washing is commonly employed to

ensure thorough cleaning for hard-to-access areas along the shore.

1.6 Review of Canadian Petroleum Industry and Oil Shipping Activities

Canada is among the world's top oil producers, with approximately 98% of its oil
exported to the United States (Mohammadiun et al. (2021)). Alberta has the largest oil sand
reserves and crude oil production, followed by Saskatchewan, which produces approximately
487,000 daily barrels. Canada relies on reliable transportation methods such as railways,
pipelines, trucks, and oil tankers to transport the produced oil to its destinations, including the
US and other parts of the world. The selection of transportation methods depends mainly on

factors such as volume and destination.

Regarding marine oil shipping, around 87% of Canadian oil is transported through
the Atlantic coast, the Great Lakes, the Gulf of St. Lawrence and St. Lawrence Seaway, and
associated ports. In comparison, the remaining 13% is shipped through Pacific coastal ports.
Seven major ports accommodate significant oil tanker traffic, including the Port of
Vancouver, Port of Montreal, Port de Quebec, Newfoundland Off-shore, Port of Saint John,

Port of Hawkesbury, and Nova Scotia.

Given Canada's strategic geographical location, multiple international transit routes,
and the continuous growth of industrial activities, there has been an increase in oil tanker

transit along the Canadian coastline, consequently heightening the risk of oil spill incidents.

1.6.1 Canadian Marine Qil Response System and Practices

The Canadian Coast Guard (CCG) operates as a strategic agency under Fisheries and

Oceans Canada (DFO) and is entrusted with the task of providing timely and effective

12



responses to incidents involving ship-source or unknown-source pollutants in Canadian
waters (Government of Canada (2022)). To facilitate efficient program delivery, Canada has
been divided into three regions known as the Western, Atlantic, Central, and Arctic Coast
Guards. These regional divisions were established in October 2012 to ensure swift
administration of response efforts. Figure 1.3 illustrates the boundaries of the Canadian Coast

Guard regions as determined in October 2012.

Legend / Légende

* Regional Office / Bureau Régional
[ Atiantic Region / Région de FAtlantique
Il centrai and Arctic Region / Région du Centre et de [Arctique
] Western Region / Région de I'Ouest
T

Figure 1.3 Canadian Coast Guard Regional boundaries (Adapted from Government of

Canada (2022))

1.6.2 Legislative and Regulatory Structure

Under federal legislation and various international agreements, the federal

government is responsible for cleaning up any pollutants spilled in Canadian waters.
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1.6.3 National Oil Spill Preparedness and Response Regime

Since 1995, Transport Canada has taken the lead of federal regulatory agencies
responsible for the regime based on the partnership between industry and government. This
regime provides guidelines and regulatory structures for preparedness and response to marine
oil spill incidents. In this regime, potential polluters pay for readiness. The three pillars of oil

spill clean-up are Prevention, Preparedness and Response.

1.7 Objectives and Significance of this Study

Understanding the quantity of generated oily waste is essential for proactive
preparedness for oil spill response, enabling the determination of necessary resources such as
materials and labour required for urgent response. This helps decision-makers allocate
resources effectively to address oil spills promptly, as the longer the response is delayed, the
further the oil spreads across the water body. This spread necessitates increased use of
resources such as products and labour, significantly increasing the volume of oily waste
generated. Therefore, prompt action is vital to minimize waste accumulation and effectively

address the environmental impact of oil spill incidents.

Therefore, the objectives of this study are twofold: a) to develop an Al-based model
to effectively and accurately estimate the volume of generated oily waste, and b) to develop a
waste management framework for handling the generated waste based on factors such as
waste type and the availability of treatment and receiving facilities, as well as landfills, to

minimize the cost of waste handling.
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1.8 Organization of The Thesis

The thesis structure is as follows: Chapter 2 consists of a comprehensive literature
review. The methods, materials, results, and discussion were described in Chapters 3 and 4.
Chapter 5 explains the conclusion of the entire study and the recommendations for future

studies.
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CHAPTER 2 LITERATURE REVIEW

2.1 Oil Spill Waste Management and Modeling

In recent years, the focus on adequate pre-planning, risk assessment, and
advancements in response techniques within the realm of oil spill management has
intensified. This heightened attention stems from recognizing oil spills' profound

environmental and economic consequences.

Researchers such as Marta-Almeida et al. (2013) and Azevedo et al. (2014) have
made vital contributions to this field, whose models have emerged as valuable tools for
addressing these challenges. The models proposed by Marta-Almeida et al. (2013) and
Azevedo et al. (2014) have benefitted various stages of oil spill management. Specifically,
these models have played instrumental roles in pre-planning activities, facilitating more
informed decision-making processes. Additionally, they have proven invaluable in
conducting comprehensive risk assessments, enabling stakeholders to anticipate and mitigate
potential environmental and socioeconomic impacts (Bejarano and Mearns (2015)).
Moreover, these models have contributed significantly to advancing response techniques
during oil spill incidents. By providing insights into the behaviour and trajectory of spilled
oil, as well as the effectiveness of different response strategies, they have empowered
responders to devise more effective and efficient cleanup operations (Lehr et al. (2000);

Ghanbari et al. (2021)).

Previous studies have underscored these contributions (Peterson et al. (2003); Dave
and Ghaly (2011); Barron (2012)), which have highlighted the critical role of modelling
approaches in enhancing preparedness and response capabilities. Through their empirical
analyses and case studies, these researchers have demonstrated the tangible benefits of

integrating modelling frameworks into existing oil spill management protocols (IMO (2001)).
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Managing oily waste represents a crucial aspect of pre-planning and response
strategies in oil spill waste management. Oily waste necessitates specialized handling and
disposal procedures due to its hazardous nature and potential environmental impact. Despite
the considerable attention given to oily waste management, a significant gap exists

concerning estimating oily waste volumes generated during spill incidents.

While preliminary guidelines for oily waste management and factors influencing
waste generation rates have been documented since the early 2000s (IMO (2001); IPIECA
and IOGP (2014)), more emphasis should be placed on the accurate estimation of oily waste
volumes. Metcalf (2014) attempted to address this deficiency by developing a general waste
management plan to investigate the impact of cleanup strategies on waste generation.
However, further advancements were reported as necessary to improve the accuracy and

reliability of oily waste estimation methodologies (Beegle-Krause (2005); Bergstra (2012)).

Recent studies have turned to innovative approaches, such as self-learning or semi-
supervised learning techniques, to bridge this gap and enhance the model's accuracy. These
methodologies leverage labelled and unlabeled data to improve model performance (Tkalich
(2000)) iteratively. Combining information from unlabeled data with labelled data expands
the labelled training dataset over successive iterations until the entire dataset is labelled. Such
techniques are the foundation for machine learning algorithms, including Random Forest

(RF).

The applicability of self-learning approaches has been demonstrated across various
scientific disciplines, including GIS and remote sensing (Fatehi and Asadi (2017); Zhao et al.
(2017); Lottes and Stachniss (2017)); medical diagnostics (Kourou et al. (2015)), and

groundwater investigation (Sameen et al. (2019)). These studies have highlighted the
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potential of self-learning methods, particularly in data-scarce environments, as they require

fewer labelled training data than traditional supervised learning models.

Another aspect of marine oil spill response waste management involves efficiently
handling the waste. Oily waste is categorized as hazardous waste, characterized by toxicity,
corrosiveness, ignitability, and chemical reactivity, primarily stemming from industrial and
manufacturing processes. In many countries, the manufacturing industry contributes over
75% of hazardous waste, emphasizing the criticality of its management due to environmental
and human health risks. Efficiently managing hazardous waste involves collecting,
transporting, treating, recycling, and disposing of it safely and cost-effectively (Xu et al.

(2014); Ghanbari et al. (2021)).

The integration of location and vehicle routing decisions in hazardous waste
transportation and disposal was explored in the early 1980s. Various models have emerged to

optimize objectives like travel time, transportation, and disposal risk.

Alumur and Kara (2007) addressed optimizing hazardous waste management
systems with treatment and disposal facilities, introducing realistic constraints on the
properties of waste types. Alumur and Kara (2007) incorporated waste-technology
compatibility constraints, while Peterson et al. (2003) considered waste-waste compatibility
and disposal centers, considering government regulations and air pollution standards as
constraints. Few studies have directly addressed the vehicle routing problem, while Peterson
et al. (2003) tackled waste management with multiple incompatible waste types. Integrating

inventory control into location and routing decisions has yet to be explored.

Addressing uncertainty is crucial, as it affects planning decisions. Zhao et al. (2017)

explored waste generation amount uncertainties and transportation costs. Metaheuristic
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approaches like Genetic Algorithms (GA) have gained traction due to the Non-deterministic

Polynomial-time (NP)-hard nature of location-routing problems.

Despite advancements, several gaps still need to be addressed. Simultaneous
optimization of location, routing, and inventory plans under uncertain conditions, multi-
period planning, and application of multi-objective solution approaches for medium to large-
scale stochastic problems warrant further exploration. This comprehensive literature review
outlines these aspects, providing a foundation for marine oily waste management framework

research.

2.2 Research Gaps in Oily Waste Estimation and Waste Management

Understanding the magnitude of oily waste production during oil spill incidents is
crucial for proactive response planning, facilitating the allocating necessary resources such as
materials and labour required for prompt intervention. Rapid response is imperative to
mitigate oil spread across water bodies, minimizing resource consumption and waste
generation. Therefore, timely action is crucisl to reduce waste accumulation and effectively

mitigate the environmental repercussions of oil spill incidents.

Hence, this study aims to achieve two primary objectives: firstly, to develop an Al-
based model for the estimation of oily waste volume, and secondly, to formulate a
comprehensive waste management framework considering factors such as waste type and the
availability of treatment and disposal facilities with the ultimate goal of optimizing and/or

minimizing waste management costs.

Based on the existing literature, this research introduces a novel, Improved Random
Forest (IRF) model for marine oily waste estimation. By linking self-learning methodologies

with the Random Forest algorithm, IRF aims to enhance predictive accuracy regarding oily
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waste generation in marine contexts. To ensure the efficacy of the IRF model, this study
employs Bayesian optimization for fine-tuning hyperparameters and conducts thorough
performance evaluations through cross-validation. Furthermore, two conventional machine
learning algorithms, namely Artificial Neural Network (ANN) and Support Vector
Regression (SVR), are examined for comparative analysis to discern the optimal method for

marine oily waste estimation.

Moreover, a comprehensive framework for managing oily waste has been developed
to streamline the allocation of various waste volumes to suitable facilities, considering their
capacities and geographical locations to minimize transportation costs. This model provides
responders with a structured pathway for transferring waste volumes from generation points
to treatment facilities, receiving stations, and ultimately landfills, considering compatibility
between different types of waste and the capacities of the respective facilities. This model
provides responders with optimized routes for waste transfer, ensuring efficient management

even during facility disruptions or the availability of additional facilities.
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CHAPTER 3 METHODOLOGY

This research aims to conduct comparative assessments of various well-known Al-
based models, namely Artificial Neural Networks (ANN), Support Vector Regression (SVR),
and Improved Random Forest (IRF), for estimating off-shore oily waste following oil spill
clean-ups. ANN is often considered a primary choice among researchers due to its versatility
and success in addressing many problems. Meanwhile, SVR has gained increased attention in
recent years for its effectiveness in handling estimation problems comprehensively. The
following paragraphs will provide data collection and background information on the
abovementioned models. This section will then continue explaining how to develop and

evaluate estimation models.

3.1 Data Collection and Assumption

Understanding the factors influencing the volume and composition of waste
generated during oil spill incidents is crucial for estimating waste. However, accessing
information about oil spill incidents presents significant challenges due to limited valid
sources. This study compiles a comprehensive database detailing the physical and chemical
characteristics of previous oil spill incidents globally to address this issue. Extensive efforts
were made to gather information through literature searches, surveys, and consultations with
relevant agencies such as the Western Canada Marine Response Corporation (WCMRC),
DFO, and BC Ministry of Environment and Climate Change Strategy as provided in
Appendix A. This database considers various aspects of oil spill incidents, including quantity
of spilled oil, location, oil type, viscosity, ocean conditions, wind speed, water temperature,

response techniques, duration of off-shore response operations, and volume of recovered oil
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and waste (Figure 3.1). These factors significantly influence response strategies, personal

protective equipment requirements (PPE), and the volume of generated waste.

Generated oily
waste (liquid and
solid)
Response
technique
(booms,
Offshore dispersant, in
response time situ burning,
skimmer and
o absorbent)
temperature
and Wind
speed

Figure 3.1 Parameters affecting the volume of generated off-shore oily waste

In cases where climatic data, such as ocean temperature, were unavailable in oil
spill response reports, assumptions were made based on past 20-year average water
temperatures for the incident location reported on different websites such as National Oceanic
and Atmospheric Administration (NOAA), US Environmental Protection Agency (EPA), and
ITOPF. Sixty oil spill incidents were ultimately selected as input data for the research model.
The selection criteria prioritized oil spill incidents with 90% of the required information

available.

While Al-based models typically benefit from larger datasets, the decision to use 60

oil spill incidents for testing purposes was deemed sufficient. This approach helps prevent
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model overgeneralization and ensures efficient pattern recognition by excluding erroneous or
irrelevant data. Notably, the model's adaptability allows for optimization based on new and
existing data, promising more accurate waste volume estimations as additional information

becomes available.

3.2 Artificial Intelligence (AI)-based Model Development

3.2.1 Artificial Neural Network (ANN)

Artificial neural networks are complex mathematical systems that mimic the human
brain's neural system. In brief, ANNs comprise three different layers: input, output, and
hidden. Each layer consists of neurons or nodes as processing elements of the network.
Neurons on the input layer will distribute the input information to the neurons of the next
layer, hidden layer(s), where the information will be processed and then transferred to the
output layer, where the results are produced (Zhang and Friedrich (2003)). Figure 3.2 shows a
schematic structure of a simple ANN model. In training such a network, weighted
connections among layers only occur in a forward direction from the input to the output
layers. These interconnections are then adjusted by distributing errors through the layers to
produce the most accurate outputs, which is called backpropagation. Hidden layers are
advantageous over traditional logistic regression analysis techniques by modelling the
interactions and relations among all the input parameters. An essential consideration in
designing ANNSs is choosing the number of neurons at each layer and the number of hidden
layers, commonly known as hyperparameters (Zhang and Friedrich (2003); Wang et al.
(2009)). This study has applied a new approach to tuning these parameters, which will be

discussed in section 3.2.
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Input Hidden Output
layer layer layer

Figure 3.2 Schematic structure of the ANN model

3.2.2 Support Vector Regression (SVR)

Another studied model is SVR, initially designed for classification problems (Sain
and Vapnik (1996)), but with the introduction of a new parameter, Vapnik’s € intensive loss
function, its application has been extended to solve non-linear regression estimation (Smola
and Scholkopf (2004)), and time series forecasting as well (Thissen et al. (2003); Lin et al.
(2006)). SVR implements Structural Risk Minimization (SRM) rather than empirical risk
minimization implemented by most traditional ANNs, which ultimately results in providing

an answer that is always unique and globally optimal (Lin et al. (2006)).

Similar to ANN, SVR uses an implicit feature space mapping from the dimension of
the data to a possibly infinite feature space, which provides a non-linear representation of the
modelled data, performed through a kernel function (Smola and Schélkopf (2004); Sadri et
al. (2012); Goyal et al. (2014)). Defining kernel function and its parameters is not
straightforward in the SVR network, as some settings might be prone to over-fitting or under-

fitting. Therefore, different kernel functions should be tested to choose the one associated
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with the lowest error in the validation stage. This study uses a Bayesian optimization model

to determine the most competent kernel function.

3.2.3 Improved Random Forest (IRF)

RF, the third studied model in this work, is a classification-based regression model
introduced by Breiman (2001). It is a supervised learning algorithm that uses an ensemble
learning method for regression. RF operates by creating and combining many decision trees
(Figure 3.3). Decision trees handle high dimensional data well, overlook irrelevant
descriptors, control multiple mechanisms of action, and are amenable to model interpretation

( Svetnik et al. (2003)).

Training dataset
1 sample, j variable

|
! I '

‘ Sample 1 ‘ ‘ Sample 2 ‘ ‘ Sample 1 ‘
In bag Out of In bag Out of
1 bag 1 2 bag 2
Tree 1 Tree 2

;Y—)\—Y—)

Estimation 1 Estimation 2 Estimation N
| | i

¥

‘ Random forest regression = average of trees’ estimations |

Figure 3.3 A Random Forest schematic view
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The steps of training the RF regression model can be summarized in the following

steps:

1.  About two-thirds of the data will be randomly selected as a training dataset
called a bootstrapped dataset.

2. The remaining one-third will fall into an out-of-bag dataset, which will be used
to measure the error.

3. The model's outcome is the average result of all the trees (Cutler et al. (2007)).

3.3 Waste Estimation Model

As mentioned, artificial intelligence and machine learning techniques can
significantly expedite decision-making processes by analyzing subtle data patterns from
previous oil spill incidents. No single machine learning algorithm consistently outperforms
others, as their effectiveness depends on the nature of the problem and data formats. Hence,
this thesis compares ANN, SVR, and RF for off-shore oily waste estimation. Generally,
developing estimation models involves establishing a formula between input and output
parameters that accurately represents the problem's nature and can be extended to estimate

new variables within the input parameter range the model is trained with.

The effectiveness of Al-based models hinges on the proper combination of
hyperparameters, which control the model's overall performance. Typically, hyperparameters
are selected through trial and error, a time-consuming process with loose guidelines on their
numerical range. Moreover, hyperparameters interact with each other, complicating the
optimization process. To address this challenge, robust optimization methods are employed to

find the optimal configuration of each Al-based model. Traditionally, grid and random search
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methods have been used for this purpose. Grid search optimizes all possible model
configurations, while random search involves iterative runs of evaluating models with
randomly selected hyperparameters. However, these methods overlook historical information

from previous evaluations.

This study wuses Bayesian optimization to find the best combination of
hyperparameters by minimizing an error index (objective function) within predefined search
ranges (constraints). Unlike trial-and-error approaches, Bayesian optimization leverages past
evaluations to create a probabilistic model mapping hyperparameters. The Bayesian
optimization procedure involves several steps, including model initialization, acquisition
function optimization, model updating, and hyperparameter selection. For detailed

information on Bayesian optimization, readers are referred to Snoek et al. (2012).

1. Build a surrogate probability model of the objective function;
2. Find the hyperparameters that perform best on the surrogate;
3. Apply these hyperparameters to the actual objective function;
4, Update the surrogate model incorporating the new results; and
5. Repeat steps 2—4 until max iterations or time is reached.

Table 3.1 presents the name of hyperparameters along with their search range for
optimization purposes for ANN, SVR and RF. To accurately compare the models, the
objective function is set to minimize the Root Mean Square Error (RMSE) for all models (see
Eq. (3.1)). Mean Square Error (MSE) and RMSE are widely used error indices for evaluating
model performance. RMSE is chosen over MSE mainly because RMSE gives higher weight

and punishes significant errors.
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RMSE = :\/71'—1

n

Eq. (3.1)

Where O and S denote the observed and estimated values, respectively, to achieve a
more reliable estimation of oily waste, a 5-fold cross-validation method is employed
alongside Bayesian optimization to tune hyperparameters finely. This process involves
randomly dividing the data in the training subset into five equal-sized parts. One part is
reserved for validating the model, while the remaining four are used for training. The cross-
validation process is repeated five times for each run of Bayesian optimization. The estimated
hyperparameters and their accuracy are then derived by averaging the results across all runs

(Diamantidis et al. (2000)).

Table 3.1 Al-based models’ hyperparameters, their description and search space used
in the Bayesian optimization process

Model Hyperparameter Search space
Hidden Layer size (1, 20)
ANN
Learning rate (103, 1)
Kernel Function (Gaussian, RBF, Polynomial)
SVR
Kernel scale (103, 10%)
Number of estimators (trees) (100, 5000)
Max_features (1,7
RF

Max_depth (The maximum number of splits a
(1, 20)
tree should make before it makes a prediction)
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3.3.1 Model Evaluation

In this study, the three most common statistical error indices, including RMSE,
Relative Mean Absolute Error (RMAE), and Spearman correlation coefficient, are considered

to compare the performance of waste estimation models at the test stage as follow:

n

> (0;-5;)°

i=1

Eq. (3.2)

RMSE=

n

n
> loi-5i|

RMAE ==L xj100 Eq. (3.3)

6nd.2
24 Eq. (3.4)

Correlation coefficient=1-—=—

n(n*-1)

Where n is the sample size, O and S denote the estimated waste from the Al-based
model and the actual generated waste, respectively. This study uses Spearman correlation, a
non-parametric correlation factor, to measure the association between the estimated waste
from the Al-based model and the actual generated waste. Unlike other correlation measures,
Spearman correlation does not assume a normal distribution of the variables. Instead, it
evaluates based on the difference in their statistical ranks (as elaborated in Snoek et al.

(2012)).
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3.4 Waste Management/Transfer Framework

Off-shore oily waste management faces more constraints related to cost and
resources compared to response plans, emphasizing the importance of careful pre-planning to
maximize resource efficiency. This planning can be divided into two main components:
waste estimation and designing an efficient waste management framework. This section will
evaluate the most effective framework for waste transfer, considering factors such as route
number and cost. Accurate waste estimation is crucial for responders to arrange temporary
storage and allocate resources effectively before an incident occurs. Given its significant cost
implications, waste management plays a pivotal role in contingency planning for oil spill
response. Efficient and optimized allocation of generated waste relies on several critical
factors, including the location of the oil spill incident and available facilities, the
compatibility of waste types with treatment facilities, the capacities of these facilities, the

treatment rate of treatment facilities, and the number of generated points (oil spill incidents).

3.4.1 Problem Description

Industrial hazardous waste management involves handling waste at its source,
transporting it to treatment or receiving facilities, and ultimately disposing of it in landfills if
necessary. Through consultations with hazardous waste management contractors in British
Columbia (BC), such as Terrapure, it has been recognized that waste transportation
constitutes the most costly and time-consuming aspect of waste management. This challenge
is exacerbated when dealing with multiple types of waste, as considerations must be made for
compatibility with facilities and transport vehicles, with some waste types posing risks of
dangerous reactions if co-transported. Hence, understanding the available waste treatment

network is crucial for optimizing waste transportation efficiency. The key focus of this
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optimization lies in determining the most effective routing system to minimize transportation

costs.

BC has been selected as a case study for this study due to its relevance to the
research funded by DFO for waste management purposes on the West Coast. On a typical day
without spill incidents, approximately three to four trucks transport around 60 tonnes of waste
to landfills in BC and Alberta. Consequently, proactive planning is essential to transport
waste to each facility based on its current waste load and capacity to prevent congestion and
additional storage costs. The efficient utilization of temporary storage or receiving facilities'
capacity constitutes the second component of this study. Each facility is designed to

accommodate a finite amount of waste.

Lastly, the third component involves selecting the optimal facility based on its
capacity and location among other potential facilities. Therefore, a network incorporating all
these components can aid decision-makers in promptly managing generated waste, mainly
since prolonged collection and transportation times result in increased contamination and
storage costs. The formulation of this model aims to optimize transportation routes to waste-
compatible facilities using waste-compatible vehicles to minimize total costs. Several
assumptions are considered in designing the model, including the impact of uncollected waste
at generation nodes and unprocessed waste at treatment facilities leading to additional storage
costs, the determination of the number of vehicles at each generation node, and ensuring that

the amount of waste transferred by cars does not exceed their capacity.

31



3.4.2 Mathematical Modeling

With the assumptions outlined, a non-linear model is developed to identify the
optimal waste management strategy from the generation node to the final destination
(landfill), considering facility capacities and waste types to minimize transportation costs.
Before delving into the model's design, defining the terms and notations utilized for the

modelling process is essential, as detailed in Table 3.2.

Based on the assumption above, a non-linear model is programmed to find the
optimum way of handling waste from the generation node to the ultimate destination
(landfill), considering the capacity of facilities and waste type to minimize the transportation
cost. Before designing the model, the terms and notations used for modelling are stated in

Table 3.2.

Table 3.2 Notations used in the designed waste management framework

Index Parameter Value/unit Description
t Number of treatment facilities
r Number of receiving facilities
s Number of generation nodes (source)
1 Number of landfills
Vsol 40,000 m* Truck capacity (solid waste)
Vliq 60,000 m* Vacuum truck capacity (liquid waste)
Treatment rate at solid treatment
TR 10%
facilities
5
cc Transportation cost
CAD/km.tonne
TCt 750 tonne/day Capacity of treatment facility number t
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RCr 1200 tonne/day  Capacity of receiving facility number r
LCr Inf Capacity of landfill facility number 1

DIStr km Distance between two nodes

As previously stated, the primary objective function of the model is to identify the
most optimized path within a marine oily waste management network. Consequently, all
feasible paths between each node for waste originating from a particular node until it reaches
its designated destination are considered design variables (Figure 3.4). For instance, the
volume of waste transferred from source 1 to treatment facility one is denoted by ZST(1,1),
as per the notation outlined in Table 3.3. Subsequently, additional decision variables are
defined based on the number of generation nodes (sources), treatment plants, receiving

facilities, and landfills.

Figure 3.4 Schematic view of possible transportation paths between each two nodes in
the framework
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Table 3.3 Description of the decision variables used in the designed waste management

framework
Decision Variable Description
ZST(1,1) The volume of waste transferred from source 1 to treatment plant 1
ZST(1,2) The volume of waste transferred from source 1 to treatment plant 2
ZST(1,t) The volume of waste transferred from source 1 to treatment plant t
ZST(2,1) The volume of waste transferred from source 2 to treatment plant 1
ZST(2,2) The volume of waste transferred from source 2 to treatment plant 2
ZST(s,t) The volume of waste transferred from source s to treatment plant t
ZSR(1,1) The volume of waste transferred from source 1 to receiving facility 1
ZSR(s,r) The volume of waste transferred from the source s to the receiving facility r
ZSL(1,1) The volume of waste transferred from source 1 to Landfill 1
ZSL(s,]) The volume of waste transferred from source s to Landfill 1
ZTR(1,1) The volume of waste transferred from treatment plant 1 to receiving facility 1
ZTR(t,r) The volume of waste transferred from the treatment plant t to the receiving
facility r
ZTL(1,1) The volume of waste transferred from treatment plant 1 to landfill 1
ZTL(t,D The volume of waste transferred from the treatment plant t to the landfill 1
ZRL(1,1) The volume of waste transferred from receiving facility 1 to landfill 1
ZRL(1,]) The volume of waste transferred from the receiving facility r to the landfill 1
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3.4.3 Objective Function and Constraints

As discussed in the previous section, the complexity of the problem involves
numerous decision variables that cannot be readily solved. These issues fall under the Non-
deterministic Polynomial-time hard (NP-hard) problems, which are computationally
challenging and time-consuming to address using traditional algorithms. This challenge is
exacerbated by the exponential growth rate of feasible solutions over time, a phenomenon
known as combinatorial explosion (Hoang (2008)). Consequently, various meta-heuristic

algorithms have been developed to tackle such optimization problems effectively.

One prominent meta-heuristic optimization approach is the Genetic Algorithm (GA),
which has successfully addressed complex optimization challenges. Originating in 1975, GA
is inspired by natural selection in biological evolution. In GA, a population of feasible
solutions evolves through selection, recombination, and mutation, akin to genetic alterations
aiming to enhance solution accuracy. The critical steps of a GA optimization problem are as

follows:

o Initialization: A population of feasible solutions is randomly generated.

. Evaluation: Each solution is assessed against a fitness function, typically
representing an error index quantifying its effectiveness in addressing the
problem.

. Selection: A subset of solutions is chosen based on their fitness function
values, expecting that subsequent generations will yield improved solutions.

. Recombination: Selected solutions undergo recombination operations such as

crossover or mutation to generate a new population of solutions.
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. Replacement and iteration: The new population replaces the previous one,
repeating steps 2 to 5 for a specified number of generations or until a

satisfactory solution is attained based on the fitness function.

GA's main advantage lies in its ability to handle many feasible solutions while
remaining time-efficient. However, GA's performance heavily relies on the randomness of
the initially generated solutions, underscoring the importance of running the model multiple

times to achieve a robust solution.

In designing an optimized transportation framework, the primary objective function
aims to minimize transportation costs and determine the optimal volume and path for waste
generated from a predefined source location to the ultimate destination (landfills). The

objective function can be formulated as follows:

Min(f,) :Zslizﬂ xDIS, xcc +ZS:2Z” xDIS, xcc +ZV:ZZ:ZS1 xDIS; xcc + Eq' (35)

s=1 t=1 s=1 r=1 s=1 =1

222,, x DIS,. xcc +Zt:ZZ:Zﬂ xDIS,; xcc +Zrlzl:2r, x DIS,; xcc

t=1 r=1 t=1 I=1 r=1 I=1

ZTota[ :ZS1+ZS2+"'+ZS Eq (36)

Where the variables and decision parameters are described in Table 3.2 and Table

3.3. The optimization model's constraints are outlined s follows:

1.  Whenever a collection vehicle enters a node, it must exit it towards another

destination.
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Compatibility between wastes for transfer within a collecting vehicle is not a
concern.

Waste types must align with the technology at treatment facilities and the
types accepted by receiving facilities and landfills.

The quantity of waste allocated to a route and/or facility must be equal to or
greater than zero.

The total waste volume across all directions must match the overall volume
that needs to be managed, excluding considerations for waste type.

The volume of waste being transferred to a facility should be at most of the
facility's capacity.

some waste residues can be directed to a receiving facility or a landfill

following treatment.
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CHAPTER 4 RESULTS and DISCUSSION

4.1 Hyperparameter Optimization

In this section, the optimized values for the hyperparameters of Artificial Neural
Networks, Support Vector Regression, and Random Forest models are presented. As
previously stated, this study aims to develop an estimation model for three types of oily
waste: liquid, solid, and total solid and liquid waste. Bayesian optimization has been
employed to fine-tune the hyperparameters of the estimation models listed in Table 3.1 to
minimize the models' RMSE index. The scripts for all estimation models, including the
hyperparameter optimization, were implemented in MATLAB. Figure 4.1 illustrates the
results of Bayesian optimization for ANN, SVR, and RF models. Additionally, Tables 4.1,
4.2, and 4.3 provide detailed reports on the outcome of the optimization process and the best-
determined values for the hyperparameters of ANN, SVR, and RF waste estimation models,

respectively.

Table 4.1 Optimized hyperparameters of ANN waste estimation model

Type of waste Best Hidden layer size Best Learning rate
Solid Waste 8 0.04087
Liquid Waste 8 0.03352
Total Waste 9 0.03156
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Figure 4.1 Results of Bayesian optimization for Al-based optimization models: a)
ANN, b) SVR, and c¢) RF
Table 4.2 Optimized hyperparameters of SVR waste estimation model
Type of waste Best Kernel Function Best Kernel scale
Solid Waste RBF 1.127
Liquid Waste RBF 1.127
Total Waste RBF 1.127
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Table 4.3 Optimized hyperparameters of RF waste estimation model

Type of waste Number of trees Best max feature no. Best split no.
Solid Waste 3270 6 5
Liquid Waste 112 3 13
Total Waste 259 1 6

4.2 Waste Estimation Model

After optimizing the hyperparameters, the models were tested with the tuned
settings, and the results of the estimation models are summarized in Table 4.4. It is observed
that the error values decrease progressively from ANN to SVR and finally to RF. Notably,
RF exhibits the lowest reported error indices (RMSE and RMAE) across all types of waste.
Furthermore, RF demonstrates a higher correlation value (0.77) between the estimated and
observed wastes compared to ANN and SVR, which average at 0.4 and 0.59, respectively.
This superiority of RF can be attributed to its increased randomness and minimal risk of
overfitting due to the large number of decision trees involved. Additionally, RF provides a
more robust output estimation by ensuring low correlation among individual trees, achieved
through diversification of the forest by limiting the number of input parameters for each tree.
The RF-based model developed for oily waste estimation holds significant applicability to
numerous oil spill incidents, as the database can be continuously updated, and the model will
automatically adjust accordingly. This model is of immense value to oil spill response
practitioners and waste disposal contractors by providing crucial insights for waste

management planning.
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Table 4.4 Evaluation of the Al-based Waste Estimation Models

Model Type of Waste RMSE (tonne) RMAE (%) CC
Solid 9.98 4.86 0.39
ANN Liquid 9.98 4.88 0.39
Total 9.98 4.80 0.41
Solid 3.69 5.32 0.61
SVR Liquid 3.69 6.09 0.55
Total 3.69 5.32 0.61
Solid 1.20 0.61 0.77
RF Liquid 1.22 0.66 0.77
Total 1.25 0.61 0.77

4.3 Waste Allocation Framework

The Bella Bella oil spill incident in British Columbia, Canada, serves as a case study
to assess the proposed framework outlined in the methodology section. To this end,
comprehensive details regarding treatment and receiving facilities, including their capacities
and distances from one another, have been compiled and presented in Table 4.5. This data
was acquired through numerous meetings with representatives and operation managers of
Terrapure, the primary waste contractor on the West Coast. The geographical locations of

each facility are indicated on the map depicted in Figure 4.2.
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Figure 4.2 The location of waste handling facilities in British Columbia

Table 4.5 Name and location of currently operating facilities in British Columbia

Treatment/Recycle facilities Receiving facilities (Transfer stations)
Safety Clean: Delta Aveitas: Maple Ridge

Secure Energy: Richmond GFL: Victoria, Nanaimo, Port Alberni, Surrey,
Sumas Environment: Burnaby Cranbrook, Kelowna, Prince George
Stericycle: Surrey Safety Clean: Delta

Secure Energy: Richmond, Fort St. John
Sumas Env: Burnaby, Kamloops

Stericycle: Surrey

As depicted in Figure 4.2, most facilities are situated in the lower mainland area or

on Vancouver Island, underscoring the importance of pre-established frameworks for waste
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transport in the event of emergency incidents occurring in the central or northern regions of
the province. Through research and discussions with the primary waste contractor for the
province, it has been determined that the treatment path for generated oily waste varies
depending on whether it contains a high concentration of BTEX or bunker oil, as illustrated
in Figure 4.3. Liquid high BTEX oily waste is primarily transported to oil refineries in
Alberta via pipelines. At the same time, its solid form can undergo processing within the
province, being stabilized at a soil processing facility in Princeton before being transported to
designated landfills. In cases where the generated solid waste stems from a bunker oil spill
incident, it is typically transported directly to landfills without segregation. Conversely, the
liquid waste undergoes treatment at specialized facilities, where processes such as
dewatering, emulsion breaking, and physical separation are employed to separate oil from

water. In many instances, the separated oil can subsequently be sold.
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Figure 4.3 The common practice of oily waste management in British Columbia

48



Considering the heterogeneous nature of oily wastes, it is imperative to consider
waste-waste compatibility. Furthermore, the transportation of each waste type necessitates
specific types of trucks and treatment facilities. To address these requirements,

comprehensive details regarding all operational facilities have been compiled and are

presented in Table 4.6.

Table 4.6 The detailed information on oily waste handling facilities in British

Columbia

ID Name Type City
S1 Bella Bella Oil Spill Incident Bella Bella
T1 GFL Victoria
T2 GFL Surrey
T3 Safety Clean Delta
Treatment Facility
T4 Secure Energy Richmond
Sumas
T5 Burnaby
Environmental
T6 Stericycle Surrey
Maple
R1 Aveitas
Ridge
R2 Safety Clean Delta
R3 Secure Energy Richmond
R4 Secure Energy Fort St. John
Sumas Receiving Facility
RS Burnaby
Environmental
Sumas
R6 Kamloops
Environmental
R7 Stericycle Surrey
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R8 GFL Victoria

R9 GFL Nanaimo
Port
R10 GFL
Alberney

R11 GFL Surrey
R12 GFL Cranbrook
R13 GFL Kelowna

Prince
R14 GFL

George
L1 Silverberry Landfill Fort St. John
L2 Great Valley

As outlined in the methodology section, the optimization of decision variables
surpasses the cognitive capacity of human processing, classifying these issues as NP-hard
problems that are nearly insurmountable without computational aid. GA emerges as a robust
solution for optimizing decision variables involved in waste transfer processes, effectively
integrating the capacities of diverse handling facilities into the model without necessitating
intricate programming. This accelerates processing time and enhances the model's
practicality, which is a critical consideration in emergency scenarios. The real-world
application of this methodology is exemplified through the analysis of the Bella Bella oil spill
incident in British Columbia, where estimated solid waste volume and associated cleanup
costs serve as pivotal parameters. However, detailed information regarding the incident
volume is private. Therefore, based on the most recent study published on the estimated solid
waste in the Bella Bella oil spill incident, the volume of generated solid waste is estimated to
be 13.8 x 10 tonnes. According to the published articles, the cleanup costs of the Bella Bella

oil spill incident amount to around $2.7 million. The cost breakdown is reported as follows:
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o Cleanup costs: $2.7 million

. Fines for non-compliance: $500,000

o Environmental testing during spill: $50,000

o Labor expenses: $500,000

° Office equipment, boats, etc.: $100,000

. Hidden costs: $100,000

. Transportation and disposal expenses: $1.45 million
. Disposal fee (approx.): $100/tonne of solid waste

. Total transportation cost: Approximately $1 million

After running the model, the transportation cost was minimized, as shown in Table
4.7. The optimization process took approximately 30 minutes, resulting in a total minimized
cost of 662,600 CAD. Figure 4.4 illustrates the trial-and-error process of the algorithm to
achieve the lowest transportation cost for waste disposal from the source to the landfill. It is

evident from the analysis that utilizing the model would yield savings of 337,400 CAD.

The model's high level of customization is evident in its ability to adjust capacities
for different facilities, preventing traffic congestion in smaller plants. Furthermore, the model
accommodates diverse treatment rates and relevant costs across facilities, contributing to a
more cost-effective waste allocation strategy. The model's adaptability is a key highlight,
enabling rapid adjustments in response to emergencies, such as the malfunction of a treatment

plant, ensuring an optimized flow of waste transportation.
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Table 4.7 The identified path from source to landfill with volume based on the Bella
Bella oil spill incident in British Columbia

ID Path Volume (tonne) Description

Volume of waste from source 1 to

26 Zslll1 7.28 landfill 1

Volume of the waste from source 1 to

58 Zslrl 6.4 L o
receiving facility 1
Volume of waste from receiving facilit
59 Zrlll 6.4 & Y
1 to landfill 1
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Figure 4.4 Genetic Algorithm minimization cost graph

The model's capacity to consider multiple generation nodes reflects its applicability
to real-world scenarios where waste transfer involves intricate networks. The reported daily

transfer of 60 tonnes of non-marine oily waste in British Columbia underscores the
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significance of such a comprehensive approach. Moving beyond immediate applications, the
study offers valuable insights for decision-makers regarding future facility expansions and
strategic placements. It serves as an evaluative tool, providing feedback on the current
performance of facilities and proposing a holistic optimization of the waste management
system. The model's versatility extends to different geographical areas, making it a valuable
tool for calculating distances based on the coordinates of new facilities or potential oil spill

sources.
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, this research represents a significant step forward in the field of
Oily waste management, offering an in-depth exploration of estimation models and allocation
frameworks. The study systematically examined three prominent models — Artificial Neural
Networks (ANN), Support Vector Regression (SVR), and Random Forest (RF) — and found
that RF stands out as the most adept in accurately predicting volumes of oily waste.
Incorporating Bayesian optimization in hyperparameter tuning enhanced the precision and
adaptability of the estimation model, rendering it a potent tool for practical applications in

diverse scenarios.

Utilizing the Genetic Algorithm (GA), the waste allocation framework emerged as a
robust solution to the intricate challenges of transporting varied types of oily waste to
treatment and disposal facilities. Its flexibility enables decision-makers to tailor the
framework to specific needs, accounting for facility capacities, waste compatibility, and real-
time conditions. This research showcased its practical efficacy by applying the framework to
the Bella Bella oil spill incident in British Columbia, highlighting its pivotal role in

facilitating informed decision-making during emergencies.

Beyond its theoretical contributions, this research holds practical implications for
waste management practitioners, environmental authorities, and response teams. The rigorous
evaluation and validation of the proposed models and frameworks establish a solid
foundation for enhancing waste management practices in offshore environments. As the
offshore industry evolves, integrating artificial intelligence and optimization techniques

becomes imperative for developing sustainable and efficient waste management strategies.
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The models and frameworks introduced in this study address current challenges and set the
stage for future innovations in the field, emphasizing the continual need for advancements in

off-shore waste management.

The success of the waste allocation framework lies in its adaptability, providing
decision-makers with the ability to customize the model based on facility capacities, waste
compatibility, and real-world constraints. Furthermore, applying the Genetic Algorithm
enables quick adjustments to the network in response to emergencies, ensuring that the
optimized flow of waste transportation can be identified promptly. The model's capacity to
handle multiple generation nodes and provide insights into facility performance and potential

expansions further strengthens its utility in practical waste management scenarios.

In summary, this research underscores the pivotal role of advanced modelling and
optimization techniques in addressing the complexities of off-shore oily waste management.
The presented models and frameworks advance our understanding of waste estimation and
allocation and offer tangible tools for improving decision-making in the face of
environmental emergencies. As the industry progresses, integrating these innovations will be
essential in shaping sustainable practices and minimizing the ecological impact of oft-shore

activities.

The summary of advantages and disadvantages of the incorporated models in this

study are presented as follows:

Strengths:

e Precision in Waste Estimation: Bayesian optimization enhances the precision of
waste estimation models, ensuring accurate predictions.

e Optimized Waste Allocation: Genetic Algorithm-based waste allocation framework

optimizes transportation routes and minimizes the costs.
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Model Adaptability: The waste allocation framework is highly customizable,
allowing adjustments based on real-time conditions and facility capacities.

Practical Efficacy: Application of the framework in the Bella Bella oil spill incident
demonstrates its practical efficacy in real-world emergencies.

Flexibility for Decision-Makers: Decision-makers can tailor the waste allocation
framework to specific needs, considering waste compatibility and facility capacities.
Quick Network Modifications: Genetic Algorithm enables adjustments to the waste
transportation network in response to emergencies or facility malfunctions.

Handling Multiple Generation Nodes: The model can consider multiple generation
nodes, addressing the complexity of waste transfers to various facilities.

Insights for Facility Expansion: Provides insights into the performance of existing
facilities, aiding in strategic decisions for future expansions.

Feedback Mechanism: The model acts as a feedback mechanism for the
performance of present facilities, allowing for continuous improvement.
Applicability in Different Areas: The model's ability to calculate distances by
entering geographical coordinates makes it applicable in diverse geographical
locations.

Weaknesses:

Limited Public Data: Lack of publicly available data for actual incidents, such as the
Bella Bella oil spill incident, limits the accuracy of model validation.

Complexity of NP-Hard Problems: Waste allocation problems are NP-hard, making
manual handling impractical due to the extensive number of decision variables.
Dependency on Initial Solutions (GA): The performance of the Genetic Algorithm

is highly dependent on the randomness of the initial generated solutions.
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Incomplete Information for Bella Bella Qil Spill Incident: Limited information on
the volume of the Bella Bella oil spill incident waste hinders precise modelling and
validation.

Challenges in Modeling Waste-Waste Compatibility: Incorporating waste-waste
compatibility in the models is challenging due to the heterogeneous nature of oily
wastes.

Specificity of Truck and Facility Requirements: Shipping each type of waste
requires specific trucks and treatment facilities, adding complexity to the waste
allocation problem.

Continuous Model Improvement: The model's performance depends on frequent
updates and adjustments based on evolving waste management practices.
Resource-Intensive Bayesian Optimization: Bayesian optimization, while effective,
can be resource-intensive, requiring significant computational power.

Inherent Uncertainties in Oil Spill Incidents: The unpredictable nature of oil spill
incidents introduces uncertainties that may affect the accuracy of waste estimation.
Need for Real-Time Data Integration: Real-time data integration is crucial for the

models, and its absence may impact the adaptability and accuracy of waste allocation.

5.2 Recommendations

Given the strengths and weaknesses outlined in the previous section, broadening the

study by integrating various approaches or components will contribute to a more thorough

evaluation of off-shore oily waste estimation. The suggested viewpoints are summarized

below:

57



Integration of Real-Time Data: Developing methods for real-time data integration
to enhance the adaptability and accuracy of waste management models.

Enhanced Validation Processes: Implementing comprehensive validation processes,
including creating realistic scenarios, to overcome data limitations for incident-
specific models.

Exploration of Advanced Optimization Algorithms: Investigating the application
of advanced optimization algorithms beyond Genetic Algorithms for waste allocation
to improve efficiency.

Incorporation of Waste-Waste Compatibility Models: Developing models that
explicitly consider waste-waste compatibility, addressing the challenges posed by the
heterogeneous nature of oily wastes.

Dynamic Facility Capacity Updates: Implementing mechanisms for dynamic
updates of facility capacities, allowing for real-time adjustments in waste allocation
frameworks.

Human-Computer Interaction: Conducting studies on human-computer interaction
to enhance the user-friendliness of waste allocation frameworks for decision-makers.
Integration of Machine Learning for Incident Volume Estimation: Investigating
the use of machine learning techniques for more accurate estimation of incident
volumes, considering the complexities of real-world incidents.

Environmental Impact Assessment: This includes an environmental impact
assessment component in future studies to evaluate the sustainability of waste

management practices proposed by optimization models.
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