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Abstract

The main achievement of the thesis is the proof that 1+
√

17 is not a Mahler measure

of an algebraic number. This answers a question of A. Schinzel posted in [6] in 2004.

We also show that, theoretically, there exists an algorithm to reduce the shortness of

a polynomial without changing its Mahler measure, a problem considered in [5] by

J. McKee and C. Smyth. However the number of computations required makes this

algorithm infeasible.
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Chapter 1

Introduction

My graduate thesis is about Mahler measure. In this paper, I plan to solve two relevant

open problems. We start by the key de�nition.

De�nition 1 Let P(z) = a0zd +a1zd−1 + . . .+ad ∈ Z[z] with a0 ̸= 0, and let its zeros in

C be α1,α2, . . . ,αd. The Mahler measure, M(P), is de�ned to be the product of |a0| and

all |αi| for which |αi|> 1, where 1 ≤ i ≤ d.

M(P) = |a0|∏|αi|>1|αi|

The Mahler measure of an algebraic number α is denoted by M(α).
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Chapter 2

Is 1+
√

17 a Mahler measure of an alge-

braic number?

This question was asked by A.Schinzel [6] and quoted by A.Dubickas [2] ,J.McKee and

C.Smyth [5], P.A.Fili, L.Potmeyer, and M.Zhang [3], among others.

The Mahler measure of an algebraic number is de�ned as the Mahler measure of its

minimal polynomial over Z.

Lemma 1 Let OK be the ring of algebraic integers of a number �eld K. If

f (x) = a
n

∏
i=1

(x−αi) ∈ OK[x]

then aα1 . . .αs is an algebraic integer for 1 ≤ s ≤ n.

The following proof will make this lemma more clear.

Proof 1 f (x) = a∏
n
i=1(x−αi) = axn −aσ1xn−1 + · · ·+(−1)naσn. It's trivial to see that

σ1 = α1 +α2 + · · ·+αn;

σ2 = α1α2 +α1α3 + · · ·+α1αn +α2 + · · ·+α3αn−1αn;

2
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. . .

σn = α1α2 . . .αn.

The numbers a,σ1,σ2,σn are all algebraic numbers because f (x) ∈ OK[x].

In order to prove that aα1 . . .αs is an algebraic integer, it su�ces to show that it is a

root of a nonzero monic polynomial in OK[x]. It is not di�cult to check that

F(x) = ∏
ρ∈Sn

(x−aαρ(1) . . .αρ(s))

is such polynomial. Here Sn is the permutation group on the set of n elements. In-

deed,the coe�cients of F are sums of symmetric functions in α1, . . . ,αn multiplied by

powers of a. Each monomial in these functions is of the form akα
n1
i1 . . .α

nm
im with some

positive integer m and k ≥ max{n1, . . . ,nm}. By the Fundamental Theorem of Symmet-

ric Functions, the coe�cients of F are polynomials in elementary symmetric functions

σ1, . . . ,σn of the roots of f . Further, by examining the standard procedure for the con-

version of a symmetric function into a polynomial in elementary symmetric functions,

as outlined, for example in [4] we conclude that the monomials occurring in these poly-

nomials are of the form akσ
m1
1 . . .σmn

n , where k,m1, . . . ,mn are nonnegative integers, and

k ≥m1+ · · ·+mn, hence they are algebraic integers because f ∈OK[x] and, consequently,

aσi, i = 1 . . .n are algebraic integers.

By using this lemma, we have the following corollary.

Corollary 1 If f ∈Z[x] is a nonzero polynomial,then M( f ), the Mahler's measure of f ,

is an algebraic integer.

Proposition 1 Let K =Q(
√

d), where d > 1 is a square-free integer then every element

of OK has the form
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⎧⎪⎪⎨⎪⎪⎩
β = b+ c

√
d, if d ̸≡ 1 mod 4

β = b+ c1+
√

d
2 , if d ≡ 1 mod 4.

,

where b and c are any rational integers.

Proposition 2 Let β > 1 be an irrational algebraic integer in a real quadratic �eld

Q(
√

d) and let β′ be its algebraic conjugate. If |β′|≤ 1, then β is a Mahler's measure

of a monic irreducible polynomial in Z[x].

Proof 2 M( f ) = β for f (x) = (x−β)(x−β′). We can see f ∈Z[x] because its coe�cients

are symmetric functions of algebraic numbers.

The case of |β′|> 1 is more interesting. In this direction we have the following

theorem.

Theorem 1 Let β > 1 be an irrational algebraic integer in a real quadratic �eld Q(
√

d)

and suppose that |β′|> 1. Then β is not a Mahler's measure for any irreducible, monic

polynomial in Z[x].

Proof 3 For a contradiction, suppose that f ∈ Z[x] is a monic irreducible polynomial

and M( f ) = β. Let

f (x) =
n

∏
i=1

(x−αi).

Suppose that |αi|> 1 for 1 ≤ i ≤ s and |αi|≤ 1 for s+ 1 ≤ i ≤ n. By the de�nition of

Mahler measure, we have

β = M( f ) =
s

∏
i=1

|αi|,1 ≤ i ≤ s.

Next,we claim that

β = εα1 . . .αs where ε ∈ {−1,+1}.
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For this note that if |αi|> 1 and αi ∈ C \R then |ᾱi| is also greater than 1, so it

occurs in the product α1 . . .αs. Hence this product is a real number and, consequently

β =±α1 . . .αs.

Further, we must have s < n, since otherwise M( f ) will be equal to the constant

term in f (x) which is a rational integer.

For convenience we will denote the conjugates αs+1, . . . ,αn by α′
1, . . . ,α

′
r, so that

n = s+ r.

Let L =Q(α1, . . . ,αn) and K =Q(
√

d), so

Q⊂ K ⊂ L.

Then L/K and L/Q are Galois extensions. A �nite extension L/K is called a Galois

extension if |Aut(L/K)|= [L : K]. Let G = Gal(L/Q) and H = Gal(L/K). Let D = |G| be

the order of G. Then |H|= D
2 , as [K : Q] = 2. In particular, D is even. Then we have

σ(β) = β for every σ ∈ H

while

σ(β) = β
′ for every σ ∈ G\H.

The �rst statement implies that

Every σ ∈ H is a permutation of the set S = {α1, . . . ,αs}

and a permutation of the set R = {α
′
1, . . . ,α

′
r} (2.1)

In order to see this, notice that |α1 . . .αs| is strictly larger than absolute value of any
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other product of s conjugates from the set {α1, . . . ,αn} because |αi|> 1 for i = 1 . . .s.

Since |σ(β)|= |β|= |∏s
i=1 σ(α1) . . .σ(αs)|, all σ(αi) for 1 ≤ i ≤ s must belong to S. Fur-

ther, σ is one-to-one from S to S, so a permutation of S. This implies that σ(R)∩S = /0,

so that σ is also a permutation of R.

Now consider

L= ∏
σ∈G

σ(α1 . . .αs) = ∏
σ∈G

σ(α1) . . .σ(αs).

The Galois group G acts transitively on the set {α1, . . . ,αn} because f is irreducible.

Clearly L is a product of conjugates and because of transitivity, each conjugate occurs

in L with the same frequency. Hence

L= (α1 . . .αn)
sD
n = ((−1)nan)

sD
n ,

where D = |G| is the order of G, and an = f (0) is the constant term of f .

Observe that G is a disjoint union of two cosets G = H
⋃︁

σ(H), where σ is any auto-

morphism from G\H.

By α1 . . .αs = εβ and σ(β) = β for σ ∈ H and σ(β) = β′ for σ ∈ G\H we get

L= ∏
σ∈G

σ(εβ) = ∏
σ∈H

εβ ∏
σ∈G\H

β
′.

With our notation for β we have ββ′ = N(β) =

⎧⎪⎪⎨⎪⎪⎩
b2 − c2d, if d ̸≡ 1 mod 4

(2b+c)2−c2d
4 , if d ≡ 1 mod 4

.

Hence

L= (β)
D
2 (β′)

D
2 = N(β)

D
2 = ((−1)nan)

sD
n
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We get

|an|
2s
n = |N(β)|= |ββ

′|> |β| because |β′|> 1.

However |an|= |α1 . . .αs||αs+1 . . .αn|≤ β. Thus

β ≥ |an|> β
n
2s

and we conclude that 2s > n, so 2s > s+ r, s > r.

We shall show that the last inequality, s > r, together with (2.1) contradicts the irre-

ducibility of f .

For this let

f1(x) =
s

∏
i=1

(x−αi) and f2(x) =
r

∏
i=1

(x−α
′
i).

The coe�cients of these polynomials are symmetric functions of {α1, . . . ,αs} and

{α′
1, . . . ,α

′
r}, respectively. Hence by (2.1) they are preserved by any σ from H, also

they are algebraic integers. By Galois theory we conclude that the coe�cients of both

polynomials are algebraic integers in the �eld K. Now, let σ be any automorphism in

G \H, then fi(x)σ( fi(x)) for i = 1 and i = 2 are in Z[x], because σ(K) = K, and its

restriction to K is the nonidentity automorphism. Further f (x) = f1(x) f2(x). We get

f 2(x) = f (x)σ( f (x)) = ( f1(x)σ( f1(x)))( f2(x)σ( f2(x))).

The degree of integer polynomial f2(x)σ( f2(x)) is 2r < n. However f 2(x) as a product of

two irreducible factors of degree n cannot have a factor of degree 2r < n. This completes

the proof of Theorem 1.

The main theorem
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In [6] Schinzel studied the conditions under which a quadratic algebraic integer is

a Mahler measure of an algebraic number. Let M = {M(α)|α ∈ Q̄}, where Q̄ is the

algebraic closure of Q̄.He proves there two theorems:

Theorem 2 A primitive real quadratic integer β is in M if and only if there exists a

rational integer a such that β > a > |β′| and a | ββ′, where β′is the conjugate of β. If the

condition is satis�ed then β = M(β/a) and a = N(a,β), where N denotes the absolute

norm.

Here `primitive' means that β has no rational integer factor, other than ±1. Let J be

an ideal of OK . The absolute norm of J is the number of residue class of in OK , that is

N(J ) = |OK/J |.For quadratic integers that are not primitive he considers the numbers

pβ, where p is a rational prime and β a primitive algebraic integer, and proves

Theorem 3 Let K be a quadratic �eld with discriminant ∆ > 0, β,β′ be primitive con-

jugate integers of K and p a prime. If

1.

pβ ∈ M ,

then either there exists an integer r such that

2.

pβ > r > p β
′| and r | ββ

′ p ∤ r

or

3.

β ∈ M and p splits in K

Conversely, (2) implies (1), while (3) implies (1) provided either

4.

β > max

⎧⎨⎩−4β
′,

(︄
1+

√
∆

4

)︄2
⎫⎬⎭
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or

5.

p >
√

∆.

In Schinzel's notation 1+
√

17 = 2β, where β = 1+
√

17
2 is primitive and p = 2. With

K = Q(
√

17) we have ∆ = 17. Thus condition (2) fails, condition (3)is satis�ed but

without (4) or (5). This fact motivates Schinzel's question:

Is 1+
√

17 a Mahler measure of an algebraic number?

Let α be an algebraic number and suppose that M(α) = β. Then, by de�nition of

M(α), we would have M(α) = M( f ), where f ∈Z[x] is the minimal polynomial of α. So

f is irreducible in Z[x]. However we shall prove that it is impossible for β = 1+
√

17.

More speci�cally I shall prove the following theorem.

Theorem 4 Let f ∈Z[x] be irreducible over Q[x]. If M( f ) = 1+
√

17 then 2 divides the

content of f and

f (x) = 4x2s ±2xs −4.

Note: In algebra, the content of a nonzero polynomial with integer coe�cients is the

greatest common divisor of its coe�cients.This theorem implies that f is not a minimal

polynomial of an algebraic number and consequently β = 1+
√

17 is not a measure of

an algebraic number. For example, we can check directly that

M(4x2 −2x−4) = M(4x2 +2x−4) = β.

The content of both polynomials is 2, c(4x2 −2x−4) = c(4x2 +2x−4) = 2.

Proof 4 Suppose that f ∈ Z[x] is irreducible over Q[x] and M( f ) = β. The �rst step

consists of showing that
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Claim 1

f (x) = 4xn +a1xn−1 + · · ·+an−1x−4.

Proof of claim 1 For this we are following the steps of Theorem 1.

Let f (x) = a∏
n
i=1(x−αi), where a is a positive integer and suppose that |αi|> 1 for

i = 1 . . .s while |αi|≤ 1 for i = s+1, . . . ,n.

Again we use the notation α′
i = αs+i for i = 1 . . .r, where r = n− s, S = {α1, . . . ,αs}

and R = {α′
1, . . . ,α

′
r}, L = Q(α1, . . . ,αn) and K = Q(

√
17) = Q(β), G = Gal(L/Q), and

H = Gal(L/K). Let D = |G|. Then again |H|= D/2, every σ from H is a permutation

of S and R. Now

M( f ) = εaα1 . . .αs, where ε ∈ {−1,+1}.

This time we de�ne

L= ∏
σ∈G

σ(aα1 . . .αs)

and conclude that

L= aD(α1 . . .αn)
sD
n = aD(−1)sD

(︂an

a

)︂ sD
n
,

where an = f (0).

On the other hand aα1 . . .αs = εβ, so that

L= ∏
σ∈H

σ(β) ∏
σ∈G\H

σ(β) = (ββ
′)D/2 = (−16)D/2,

as ββ′ = (1+
√

17)(1−
√

17) =−16.

By comparing both expressions of |L| we get

a
D(n−s)

n |an|
sD
n = 4D
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which simpli�es to

(a
D(n−s)

n |an|
sD
n )

n
D = (4D)

n
D and so ar|an|s= 4n.

Further

|an|= |aα1 . . .αn|≤ |aα1 . . .αs|= β = 1+
√

17.

Since the previous equation shows that |an| is a power of 2 we conclude that

|an|≤ 4.

Now consider the polynomial

g(x) = sign(an)xn f (x−1).

If f (x) = axn +a1xn−1 + · · ·+an−1x+an then g(x) = η(anxn +an−1xn−1 + · · ·+a1x+a),

where η = sign(an). We know that g is irreducible over Q[x] and that M(g) = M( f )

because of reciprocality. However, the leading coe�cient of g is |an|, while its constant

coe�cient is ηa. By applying the same argument to g as we applied to f we conclude

that a ≤ 4.

The inequalities |an|≤ 4 and a ≤ 4 together with ar|an|s= 4n show that |an|= a = 4.

Hence r = s, so n = 2s is even. Further we notice that every σ ∈ G\H maps S onto R

and vice versa. Indeed, we have

|an|= a|α1 . . .αs||α′
1 . . .α

′
r| and so 4 = 4|α1 . . .αs||α′

1 . . .α
′
r|.

and since |α1 . . .αs|= β

4 we deduce that |α′
1 . . .α

′
r|= 4

β
. But β

4 = | 4
β′ |= |σ( 4

β
)|. Hence

|σ(α′
1 . . .α

′
r)|= |σ(α′

1) . . .σ(α
′
r)|= |α1 . . .αs|.
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Hence the last term has strictly the largest value among absolute values of any choice

of s conjugates, hence must have σ(R) = S. By applying σ to both sides of this equality

and noticing that σ2 ∈ H, because σ2(
√

17) =
√

17, we also �nd out that σ(S) = R.

Thus we have

an = (−1)naα1 . . .αn = (4α1 . . .αs)(α
′
1 . . .α

′
r) = (εβ)(εσ(β/4)) =−4,

where σ is any automorphism in G\H.

We have proved that f and g have the following forms:

f (x) = 4xn +
n−1

∑
i=1

aixn−i −4, g(x) = 4xn −
n−1

∑
i=1

an−ixn−i −4.

This concludes the proof of claim 1.

In the step 2, we separate f ,g into 4 new polynomials and introduce some arith-

metical facts.

We denote the roots of g by γ1, . . . ,γs and γ′1, . . . ,γ
′
s, where γi = (α′

i)
−1, and γ′i =

(αi)
−1, for i = 1 . . .s. In what follows we use the fact that K =Q(

√
17) has class number

1. This implies that every irreducible element in OK is a prime element and the greatest

common divisor is de�ned. Consequently the content of a polynomial is de�ned and

we denote it by c( f ). It is determined uniquely up to a unit factor.

We need to establish some arithmetical facts about OK

We have

• u = 4+
√

17 is the fundamental unit. That means that group of unit of OK is of

the form U = {±un : n ∈ Z},

• π1 =
−3+

√
17

2 and π2 =
−3−

√
17

2 are primes,
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• π1π2 =−2,

• 1+
√

17
2 = uπ2

1,

• 1−
√

17
2 =−u−1π2

2.

Next we de�ne four polynomials:

f̂ (x) = 4
s

∏
i=1

(x−αi), f̆ (x) = 4
s

∏
i=1

(x−α
′
i)

and

ĝ(x) = 4
s

∏
i=1

(x− γi), ğ(x) = 4
s

∏
i=1

(x− γ
′
i).

Then by Lemma 1, all four polynomials are in OK[x], and

• 4α1 . . .αs = εβ, 4α′
1 . . .α

′
s = εβ′,

• 4γ1 . . .γs =−εβ, 4γ′1 . . .γ
′
s =−εβ′,

• 4 f (x) = f̂ (x) f̆ (x) and 4g(x) = ĝ(x)ğ(x),

• f̂ (0) = (−1)sεβ = (−1)sεu2π2
1,

• f̆ (0) = (−1)sεβ′ =−(−1)sεu−12π2
2,

• ĝ(0) =−(−1)sεβ =−(−1)sεu2π2
1,

• ğ(0) =−(−1)sεβ′ = (−1)sεu−12π2
2.

We can see that all zeros of f̂ lie strictly outside the unit circle while the zeros of

f̆ lie inside or on the unit circle. We shall show that, in fact, the zeros of f̆ must

lie strictly inside the unit circle. For this, suppose that a zero of f̆ , α lies on the

unit circle. Then α ̸= 1 because 4 f = f̂ f̆ , by our assumption is irreducible over Q.

Suppose then that |α|= 1 and α ∈ C \R. Then ᾱ = α−1 is another zero of f̆ . Then

by transitivity of action of G on the zeros of f , {σ(α−1)|σ ∈ G} = {α
−1
i : i = 1 . . .n}
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must be the set of the zeros of f , thus showing that f is reciprocal, so that we have

f (x) = 4∏
n
i=1(x−αi) = 4∏

n
i=1(x−α

−1
i )

xn f (x−1)= 4xn
n

∏
i=1

(x−1−αi)= 4
n

∏
i=1

(1−xαi)= 4
n

∏
i=1

(−αi)
n

∏
i=1

(x−α
−1
i )=−4

n

∏
i=1

(x−α
−1
i )=− f (x)

, because 4∏
n
i=1(−αi) = an = −4. Now substituting x = 1 gives − f (1) = f (1). Hence

f (1) = 0 which contradicts the irreducibility of f . We have

c(4 f ) = 4c( f ) = c( f̂ )c( f̆ ).

This implies that 4|c( f̂ )c( f̆ ). For any σ ∈ G\H we have σ( f̂ ) = f̆ and σ(ĝ) = ğ. Thus,

2|c( f̂ ) if and only if 2|c( f̆ ).Further, 4 = π2
1π2

2 and π1π2 =−2, so if 2 ∤ c( f̂ ) then either

π1 ∤ c( f̂ ) or π2 ∤ f̂ . So We have two possibilities

1. 2|c( f̂ ) and 2|c( f̆ )

or

2. π2
1|c( f̂ ) and π2

2|c( f̆ ).

Note that we cannot have π2
1|c( f̆ ) and π2

2|c( f̂ ) because π2 does not divide the constant

term of f̂ . We claim that if the second possibility occurs then 2|c(ĝ), so also 2|c(ğ).

We have

ĝ(x) =
4

f̆ (0)
xs f̆ (x−1) =

4εu
−(−1)s2π2

2
xs f̆ (x−1).

Hence c(ĝ) = c(±2u
π2

2
)c(xs f̆ (x−1)) = c(±2u

π2
2
)c( f̆ ), we deduce that 2|c(ĝ) because π2

2|c( f̆ ).

Similarly, we show that 2|c(ğ). However M( f ) = M(g), and if we prove that g(x) =

4x2s ± 2xs − 4 then it would imply that f (x) = 4x2s ± 2xs − 4 as well. Therefore if the

second case occurs we can work with polynomial g instead of f , so without loss of

generality we can assume that the �rst case occurs. We thus conclude that
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f̂ 1(x) =
1
2

f̂ (x) = 2xs +
s−1

∑
i=1

Aixs−i +(−1)s
εuπ

2
1

and

f̆ 1(x) =
1
2

f̆ (x) = 2xs +
s−1

∑
i=1

Ãixs−i − (−1)s ε

u
π

2
2

are in OK[x], and f = f̂ 1(x) f̆ 1(x) Here Ãi are algebraic conjugates of Ai, i = 1 . . .s.

In the �nal step, we'll show that all coe�cients Ai is equal to 0 with Schur lemma.

The following is Schur [7] lemma, employed in the Schur-Cohn algorithm to deter-

mine the distribution of roots of a complex polynomial relative to the unit circle. The

version below is presented in Wikipedia [8].

Lemma 2 Let p be a complex polynomial of degree n ≥ 1 and let p∗ be de�ned by

p∗(z) = zn p(z̄−1). De�ne T p by T p = p(0)p− p∗(0)p∗, and let δ = T p(0).

1. If δ ̸= 0 then p, T p, and p∗ share zeros on the unit circle.

2. If δ > 0 then p and T p have the same number of zeros inside the unit circle.

3. If δ < 0 then p∗ and T p have the same number of zeros inside the unit circle.

If δ < 0 the T p and p∗ have the same number of roots inside the unit circle.

We apply this lemma to

p(x) = xs f̂ 1(x
−1) = (−1)s

εuπ
2
1xs +

s−1

∑
i=1

Aixi +2

and to p∗ (x) = f1̂(x). Here p has all its roots inside the unit circle. We get

T p(x) =
s−1

∑
i=1

(2Ai − (−1)s
εuπ

2
1As−i)xi +4− ε

2u2
π

4
1.
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δ = 4− ε
2u2

π
4
1 ≈−2.56 < 0

The polynomial p∗ has no roots inside the unit circle, therefore the same is true about

T p. The degree of T p is less than s. Suppose that degT p = i for some i, 1 ≤ i ≤ s−1.

Then the leading coe�cient of T p is 2Ai − (−1)sεuπ2
1As−i. Since all roots of T p lie

outside of the unit circle, we must have

|2Ai − (−1)s
εuπ

2
1As−i|< |4− ε

2u2
π

4
1|= |T p(0)|.

Now we apply the same argument to p = f1̆ = 2xs+∑
s−1
i=1 Ãixs−i− (−1)sε1

uπ2
2 whose

roots lie inside the unit circle. Then p∗(x) =−(−1)sε1
uπ2

2xs +∑
s−1
i=1 Ãixi +2.

T p(x) =
s−1

∑
i=1

(−(−1)s
εu−1

π
2
2Ãs−i −2Ai˜ )xi + ε

2u−2
π

4
2 −4.

We �nd the corresponding

δ = ε
2 1

u2 π
4
2 −4 ≈−1.56 < 0

We conclude as in the previous case that

|−ε

u
(−1)s

π
2
2Ãs−i −2Ãi|= |2Ãi +

ε

u
(−1)s

π
2
2Ãs−i|< | 1

u2 π
4
2 −4|.

From both inequalities we get

|2Ai−(−1)s
εuπ

2
1As−i||2Ãi+

ε

u
(−1)s

π
2
2Ãs−i|= |N(2Ai−(−1)s

εuπ
2
1As−i)|< |4−ε

2u2
π

4
1||

1
u2 π

4
2−4|= 4,

where N is the norm from K to Q. Further

2Ai − (−1)s
εuπ

2
1As−i =−π1(π2Ai − (−1)s

εuπ1As−i)
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and

2Ãi +
ε

u
(−1)s

π
2
2Ãs−i =−π2(π1Ãi − (−1)s ε

u
π2Ãs−i).

Hence

|N(π2Ai +(−1)s
εuπ1As−i)|=

1
2
|N(2Ai − (−1)s

εuπ
2
1As−i|< 2.

We conclude that π2Ai − (−1)sεuπ1As−i is a unit.

However we have

|π2Ai +(−1)s
εuπ1As−i|< |

4− ε2u2π4
1

π1
|< 4.562

and

|π1Ãi − (−1)s ε

u
π2Ãs−i|< |

1
u2 π4

2 −4
π2

|< 0.4385

The last inequality excludes the possibility π2Ai + (−1)sεuπ1As−i = ±1. It remains

the possibility that π2Ai + (−1)sεuπ1As−i = ±uk with k ̸= 0. However then π1Ãi −

(−1)s ε

uπ2Ãs−i =±u−k, but max(|uk|, |u−k|)≥ u = 4+
√

17 > 4.562, hence this possibility

is also excluded. Finally, we have proved that T p has degree 0, so that

π2Ai +(−1)s
εuπ1As−i = 0 for i = 1 . . .s−1.

This implies that π1 and π2 divide each Ai for i = 1 . . .s−1, so also divide each Ãi. Thus

2|Ai, so also 2|Ai˜ . Hence Ai = 2Bi with Bi ∈ OK for alli. and we get

π2Bi +(−1)s
εuπ1Bs−i = 0 for i = 1 . . .s−1.

We can repeat the same argument again and conclude that 2|Bi for all i. After several

repetitions we get

2k|Ai for every positive integer k and all i.
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Hence all coe�cients Ai are zero. We have

f1̂ = 2xs +(−1)s
εuπ

2
1and f1̆ = 2xs − (−1)s

εu−1
π

2
2.

Finally,with d = s we get

f (x) =
1
4

f̂ f̆ = f1̂ f1̆ = 4x2s ±2xs −4.

This completes the proof of Theorem 4.
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Does there exists an algorithm to reduce

the shortness of a polynomial without chang-

ing its Mahler measure?

J. McKee and C. Smyth in [5] mentioned that so far no algorithm that can reduce the

shortness of a polynomial without changing its Mahler measure is known. To partially

answer this problem, we need to use the theorem of Dobrowolski [1] and its corollary.

De�nition 2 Let P(x) = ∑
n
i=0 aixn−i ∈C[x]. The length of P denoted by L(P) is the sum

of absolute values of the coe�cients of P, that is, L(P) = |a0|+ · · ·+ |an|.

De�nition 3 Let P(z) ∈ Z[z]. A short polynomial for P is a polynomial of minimum

length of the shape P(z)Q(z), where Q(z) is a product of cyclotomic polynomials.

De�nition 4 The shortness of a polynomial P(z) ∈ Z[z] is the length of a short poly-

nomial for P. The shortness of an algebraic integer α is the shortness of its minimal

polynomial.

In the following theorem, fc denotes the product of all cyclotomic factors of f .

19
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Theorem 5 (Dobrowolski [1]) Let f ∈ Z[x], f (0) ̸= 0, be a polynomial with k nonzero

coe�cients. There are positive constants c1,c2, depending only on k, and polynomials

f0, f2 ∈ Z[x] such that if

deg fc ≥ (1− 1
c1
)deg f

then either

• f (x) = f0(xl), where deg f0 ≤ c2

or

• f (x) = (∏i Φqi(x
li)) f2(x), wheremini{li}> max{ 1

2c1
deg f ,deg f2}.

The size of the constants are: ci ≤ exp(3⌊
k−2

4 ⌋sik2 logk) with s1 = 0.636 and s2 = 1.06

for f with reciprocal exponents; ci ≤ exp(3⌊
k−2

2 ⌋tik2 logk) with t1 = 1.81 and t2 = 2.841

for f that does not have reciprocal exponents.

Note: In the second case in the original paper we have mini{li}≥max{ 1
2c1

deg f ,deg f2}

was not sharp, however the proof implies a sharp inequality.

Corollary 2 Let f (x) = ∑
k
i=1 aixni ∈ Z[x], f (0) ̸= 0, be a polynomial with k nonzero co-

e�cients. If the second case of Theorem 5 occurs then f2(x) = ±∑
k
i= j aixni with some

j,1 < j < k.

Note: In this theorem, we assume that f (x) = ∑
k
i=1 aixni with k nonzero coe�cients, the

exponents n1, . . . ,nk are strictly decreasing; fc denotes the product of all cyclotomic

factors of f , fn denotes the product of all noncyclotomic factors and possibly a constant,

so that f = fc fn. When we say f has reciprocal exponents, the exponents of x in

xdeg f f (x−1) are the same as in f (x). Φq denotes the qth cyclotomic polynomial. If

f (x) = f0(xl) occurs then also fn(x) is a polynomial in xl. Hence, this case in the

theorem is not interesting, because M( f (x)) = M( f (xl)) for any polynomial f , so if we

are studying Mahler measure we can assume that f (x) ̸= f0(xl) with l > 1.

Let fn ∈Z[x] be a monic and noncyclotomic polynomial, and fc(x) ∈Z[x] be a product
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of cyclotomic polynomials. Corollary 2 implies that if fc fn has the minimal number of

nonzero terms, we must have

deg fc < (1− 1
c1
)deg( fc fn)

since otherwise the part of fn fc which contains power of x with exponents less than

some m, would form the polynomial f2 that is a multiple of fn and some cyclotomic

polynomials, and has even smaller number of nonzero terms and which contradicts

that fc fn has minimal number of terms.

Concerning the minimal length of fc fn we notice that if fc fn has k nonzero terms then

L( fc fn)≥ k. Thus for the shortest length we need to examine polynomials which have

fewer than L( fn) nonzero terms. The inequality

deg fc < (1− 1
c1
)deg( fc fn)

implies that

deg fc < (c1 −1)deg fn.

This means that if we want to �nd a polynomial with smallest number of nonzero

coe�cients that is a multiple of fc and fn, we can limit the search for polynomials

fc with deg fc < (c1 −1)deg fn. The same inequality applies for the search of shortest

polynomials, but we have to replace k in c1 by L( fn).

However, we tried to use the formula in the theorem 5 to calculate c1 and �nd a

bound of maximum degree of the product of cyclotomic polynomials required for the

search, but even a very small values of k resulted in a bound exceeding computer's

limit. Hence, the algorithm exists only theoretically and cannot be implemented for
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calculations.



Appendix A

Complementary facts

• All �elds considered are sub�elds of C, so we do not discuss separability.

• A �eld L is an extension of a �eld K if K ⊆ L, and the operations of K are those

of L restricted to K.

• A splitting �eld of a polynomial with coe�cients in a �eld is the smallest �eld

extension of that �eld which contains the zeros of the polynomial.

• The automorphism group of a �eld extension L/K is the group consisting of �eld

automorphisms of L that �x K, that is they are identities on K.

• If f is a polynomial over F and if E is its splitting �eld over F , then G(E/F)

denotes all automorphisms of E that �x F and it is called the Galois group of f

over F.

• The symmetric group de�ned over any set is the group whose elements are all the

bijections from the set to itself, and whose group operation is the composition of

functions.

Theorem 6 Let K be a quadratic �eld.Let d = d(K). Let p be a rational prime. Then

• ⟨p⟩ splits ⇔ (d
p) = 1,

23
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• ⟨p⟩ rami�es ⇔ (d
p) = 0,

• ⟨p⟩ is inert ⇔ (d
p) =−1,

where (d
p) is the Legendre symbol for p > 2 and Kronecker symbol for p = 2.

De�nition 5 Let d be a nonsquare integer with d ≡ 0 or 1 mod 4. The Kronecker symbol(︁d
2

)︁
is de�ned by

(︃
d
2

)︃
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if d ≡ 0 mod 4,

1, if d ≡ 1 mod 8,

−1, if d ≡ 5 mod 8

(A.1)
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