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Abstract 

Wildfires are a growing threat due to climate change, and they often leave 

unburned forest patches called fire refugia. While young forests in some regions burn 

more severely, preliminary observations in central British Columbia suggest that 

managed juvenile forests exhibit lower fire severity, potentially influenced by fuel 

moisture conditions, and stand characteristics. To identify the role of fuel moisture in the 

formation of juvenile stand fire refugia, this research collects and examines ground-

based, empirically modelled, and remote sensing indices of greenness, moisture, and 

fire severity.    

This thesis investigates the fuel moisture contents (FMC) of duff, fine woody 

debris, and foliage at six locations near Prince George and Smithers, British Columbia 

(BC), over two summers (2021 and 2022). A total of 6116 individual samples of foliage, 

fine woody debris, and duff were collected from open, juvenile, and mature conifer 

forest stands and analysed for moisture content (MC). On average, the MC of duff and 

fine woody debris samples was higher in juvenile and mature forests than open sites. In 

contrast, open forests had higher foliage MC than the other forests. Observations of 

FMC were used to evaluate the accuracy of FMC estimates extracted from the 

Canadian Forest Fire Weather Index (FWI) system. Observations of FMC were also 

compared with remote sensing indices to assess the utility of using spaceborne 

(Landsat 8&9, Sentinel 2) remote sensing to predict local FMC.  

Three versions of the FWI model were used to estimate FMC: the original FWI 

model which uses the closest fire weather station, and versions that used updated 

parameters based on local fuel conditions and in-stand weather data.  When estimating 

fine woody debris MC, the best statistical results are obtained with locally calibrated 

models at open stands. However, the original FWI model provides better estimates of 

duff MC in juvenile stands.  

For remote sensing of foliar MC in juvenile stands, the Normalized Difference 

Moisture Index (NDMI) had a higher R2 value (0.334) and a lower RMSE than other 

indices, while the NDMI gave the best result for foliar MC in mature forests (R2 = 0.160). 

For fine woody debris and duff MC in open stands, none of the remote sensing indices 
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tested have R2 > 0.1 when estimating duff and fine woody debris MC. However, the 

RMSE of using empirical models from FWI to estimate duff (lowest at 59.95% RMSE) 

and fine woody debris (21.13%) MC was higher than remote sensing (41.64% for duff, 

17.50% for fine woody debris).  

Remote sensing indices such as NDMI and GNDVI (Green Normalized 

Difference Vegetation Index) were used to estimate pre-burn FMC, and the estimated 

FMC results were found to be generally higher at juvenile stands than mature forest 

from a case study area from Plateau Complex Wildfire of 2017. Lower remote sensing 

estimates of FMC in mature stands corresponded to higher burn severities.  
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1. Introduction 
Wildfires are a serious threat to humans, infrastructure, and industry (McGee et 

al., 2015). They are expected to increase in frequency and severity as a result of 

climate change (Flannigan et al., 2000). In the western Cordillera of North America, 

wildfires frequently leave unburned blocks of forest known as fire refugia or fire islands 

(Krawchuk et al., 2016). According to a prior study in southwestern Oregon, USA, young 

forests burn more severely, and many old forests were left largely unburned as wildfire 

refugia (Zald & Dunn, 2018). However, preliminary observations from central British 

Columbia (BC) showed that some juvenile forests burn less severely than mature 

forests (Burton et al., 2019). Typically, distinct from naturally regenerating forests, 

young forests planted after logging in central BC are characterised by a dense uniform 

structure of a single tree species (Wang et al., 2019). Managed juvenile forest stands in 

central BC have several plantation features: uniform tree species (often lodgepole pine, 

Pinus contorta var. latifolia trees) and tight spacing between them (Burton, 2022). The 

difference between fire refugia in central BC and other regions could be caused by a 



13 

disparity in fuel moisture conditions, the effects of the stand characteristics on the 

factors that influence fire spread, or both. Previous research has shown that fuel 

components in different stand types can influence fire behaviour (Kane et al., 2015; 

Dunn & Bailey, 2016).  

Specific approaches have used remote sensing and weather data to estimate the 

fuel moisture content (FMC) of flammable materials found in nature. Fuel moisture 

content is a strong determinant of wildfire susceptibility and behaviour (Scott & Burgan, 

2005, Krawchuk et al. 2009). The Canadian Forest Fire Weather Index (FWI) system is 

widely used to measure and communicate forest fire danger in Canada (Van Wagner, 

1987). Parts of FWI can be used to estimate the moisture content (MC) of fine woody 

debris and duff around fire weather stations, which were located in forest openings (Van 

Wagner, 1987; De & William, 1998). Previous research has used remote sensing to 

estimate MC in broadleaf (Danson & Bowyer, 2004) and coniferous foliage in western 

Montana, USA (Qi et al., 2014). Previous studies have also used remotely sensed burn 

severity indices to help understand fire behaviour from historical fires (Parks et al., 

2014). Due to the challenge of diverse, complex and interacting fire effects, there is a 

limitation in using remote sensing indices to assess burn severity (Penelope et al., 

2014). However, there needs to be more research to accurately estimate FMC in 

different forest stands. It is necessary to compare methods to estimate selected FMC 

attributes in central BC and determine whether differences in FMC might explain why 

juvenile forests sometimes remain as wildfire refugia in central BC, in contrast to 

patterns observed in southwestern Oregon (Zald & Dunn, 2018). 

This study includes ground-based observations of fuel moisture levels against 

directly measured weather conditions, standard empirically based modelling 

approaches, and remote sensing data. Weather conditions, empirical models and 

remote sensing methods are tested to estimate FMC in different forest stands. 

Estimated FMC from these alternative data sources were also used to analyse 

observed burn severity differences in the Plateau Complex Wildfire in central BC in 

2017. Pre-fire evaluation and prevention could be accomplished by using the methods 

determined by this research, with monitoring and assessing FMC on a larger scale for 

different stand types (Chuvieco et al., 2003). 
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1.2 Thesis statement 

There are two statements I aimed to prove in this research: 1. Empirical models 

and remote sensing can be used to estimate fuel moisture contents on a larger scale 

(Central BC) 2. High fuel moisture contents played a role in juvenile stand fire skips in a 

recent wildfire. To accomplish the research stated above, this study has:  

1) Developed and tested empirical models of the FWI system to estimate duff 

and fine woody debris MC from regional weather conditions and on-site 

fire weather station data with field observation data. 

2) Collected and analysed remote sensing imagery, calculated greenness 

and MC indices, and compared them with field observations and 

empirically modelled FMC values.  

3) Compared burn severities calculated with remote sensing imagery for a 

historical wildfire with remote sensing indices related to FMC and 

evaluated the role of FMC in fire severity and fire refugia. 

2. Literature review  
In Canada, wildfires consume more than two million hectares of forest yearly 

(McGee et al., 2015). Fires have an impact on forested areas around the world and 

contribute significantly to greenhouse gas emissions (Chuvieco, 2008). Many 

ecosystems are well adapted to fire cycles, and fire has historically been used as a tool 

for land use management (Chuvieco et al., 2010). However, recent changes in the 

climate and societal factors can alter traditional fire regimes, potentially magnifying the 

adverse effects of fire on vegetation, soils, and human values (Chuvieco et al., 

2010).Based on inflation-adjusted insurance claims, the most expensive wildfire 

disasters in Canada include the Kelowna wildfires in British Columbia in 2003 (costing 

$252 million), the Slave Lake wildfires in Alberta in 2011 ($864.67 million), the Horse 

River Wildfire in northeastern Alberta in 2016 (the costliest natural disaster in Canadian 

history, at $3.84 billion), and the British Columbia wildfires in 2017 ($137.3 million) 

(Tymstra et al., 2020). When the costs of suppression, recovery, lost revenue, and other 
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effects (such as on the air and water quality) are also considered, the overall cost of 

wildfire disasters listed above is significantly higher (Tymstra et al., 2020).  

Wildfires are a common disaster with substantial consequences, necessitating 

research on wildfire prevention and mitigation (Tymstra et al., 2020). The most 

comprehensive indicator of the potential for fire ignition and spread is fuel moisture 

content (FMC), which is expressed as the ratio of water to dry mass (Blackmore & 

Flanner, 1968; Fosberg & Schroeder, 1971; Paltridge & Barber, 1988; Pompe & Vines, 

1966; Trowbridge & Feller, 1988; Viegas et al., 1992). The FMC strongly impacts the 

time to ignition and the manner of fire development (Nelson, 2001). 

It has been historically observed that old forests often functioned as fire refugia 

that experienced lower severity burns in stand-replacing fires (Meigs et al., 2020). 

However, according to observations from recent fires in central BC, some juvenile forest 

stands escaped wildfire while mature forest burned around them, a phenomenon that 

occurred more frequently than could be expected by chance (Burton et al., 2019). 

Studies in California and Oregon have demonstrated that the fuel components in 

different stand types of influence fire intensity and behaviour (Kane et al., 2015; Dunn & 

Bailey, 2016). While there are many factors that can influence fire behaviour, fuel 

moisture content (FMC) is an important measure of moisture in forest fuels that can 

have a significant impact (Anderson 1982, Jolly et al. 2015). Other factors that can 

affect fire behaviour include differences in tree species, site preparation (e.g., soil types), 

and the specific area, level, and stage of fire initiation and spread (Byram 1959, White 

et al. 1996). Nonetheless, FMC remains a crucial variable in assessing fire risk and 

developing effective fire management strategies (Anderson 1982, Jolly et al. 2015).  

Field observations of FMC provide accurate observations on one fire risk factor 

but are time-consuming and only represent conditions in the sample collection area at 

specific points in time (Caccamo et al., 2011). The FWI system has been used to 

estimate weather-driven fire risk and local fuel moisture contents such as fine woody 

debris and the forest floor or duff (Van Wagner, 1987). The associated Canadian Forest 

Fire Danger Rating System (CFFDRS) is widely used to measure and report forest fire 

danger across Canada today (Wang et al., 2017). Unfortunately, FWI needs accurate 

weather conditions from weather stations, which can limit its application in sparsely 
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instrumented and topographically complex landscapes (Van Wagner, 1987). Remote 

sensing has been suggested as an alternative approach to estimating FMC on a larger 

scale. However, satellite image resolution (20-200 m), quantity (image collection 

frequency), and quality (cloud cover) are challenges in operationalizing this research 

(Yang et al., 2018). The following literature review examines the principles and 

background of the three main components of this study: ground-based FMC 

observations, empirical modelling of FMC, and remote sensing for FMC and wildfire 

severity. 

2.1 Field Observations of Fuel Moisture Content  

Duff (forest floor organic matter consisting of fermentation and humus layers, 

typically at 5-10 cm below the surface) and fine woody debris (small dead fuel such as 

twigs and branches with diameter of 2-7mm), play a role in wildfire intensity and spread 

(Ryan, 2002, Norum et al., 1984). In regions where the ground cover has high duff and 

woody debris composition, fires burn several hours longer than in regions with 

widespread mineral soil exposure, and this increases the chances of fire spreading to 

foliage (Ryan, 2002; Hartford & Frandsen, 1992). 

Fuel moisture content can substantially affect ignition probability and the severity 

of forest fires, as low fuel moisture levels can be necessary for wildfire initiation and 

spread (Dennison et al., 2008; Chuvieco et al., 2009; Nolan et al., 2016). Fuel moisture 

estimation is thus necessary for fire risk assessment and prevention (Dennison et al., 

2008; Yebera et al., 2013).  

Fuel moisture content is calculated as the percent difference between a sample's 

fresh weight and dry weight (Equation 1, Chuvieco et al. 2003): ��� = �������� � ∗ 100%            [Eq. 1]  

where FW is the fresh weight, and DW is the dry weight after oven-drying at 100 ℃ for 

at least 24 hours. The typical ranges of FMC vary with fuel type, forest age, and recent 

weather conditions and events. In FWI models, the MC of fine woody debris can range 

between 0 to 250 %, and the MC of duff is between 20 to 300 % (Van Wagner, 1987). 

The FWI model is based on observations from boreal and eastern Canada dominated 
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by pine stands of various ages and structures, so fuel conditions may respond 

differently to weather in central BC (Wagner, 1987). 

2.2 Fuel moisture inferred from weather station data 

The FWI system uses weather station data to estimate fire risk and FMC of fine 

fuels and duff for the area adjacent to the index weather station (Van Wagner, 1987; De 

& William, 1998). The system includes a Fine Fuel Moisture Code (FFMC) and a Duff 

Moisture Code (DMC), which are empirically calibrated estimates of the cumulative fuel 

drying/wetting effects of recent weather behaviour (Viegas et al., 2001). The FFMC and 

DMC indices (Figure 1), which are unitless, can be used to convert back to the MC of 

fine woody debris and duff, respectively, by using formulas based on an empirical model 

or by creating local formulas (Wotton, 2009). 

 
Figure 1:Schematic of FWI, modified from (Natural Resources Canada, accessed May 
2023)  

The calculation of FFMC requires inputs of accumulated daily precipitation (mm), 

relative humidity (%), wind speed (km hr-1), and temperature (oC) at noon, and the 

previous day’s value of FFMC (Van Wagner, 1987; Wotton, 2009). As the duff layer is 

found beneath the surface of the forest floor, it is unaffected by wind. The calculation of 
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DMC requires daily precipitation (mm), relative humidity (%), temperature (oC), and day 

length (h) and the previous day’s DMC (Van Wagner, 1987; Wotton, 2009).  

2.2.1 Fine Fuel Moisture Code (FFMC)  

The Fine Fuel Moisture Code (FFMC) assesses the flammability and ease of 

ignition of fine fuels, such as fine woody debris, which typically have a dry weight of 

around 0.25 kg m-2 (Van Wagner, 1987). It estimates the MC of litter and other cured 

fine fuels within a forest stand during mid - afternoon (Van Wagner, 1987). FFMC 

calculations require input data of temperature, relative air humidity, wind speed at noon, 

and precipitation from 24 hours measured at a nearby fire weather station. Wetting by 

rain and drying is also considered in FFMC calculations. The FFMC index is calculated 

from equations 2 to 11 as follows (Van Wagner & Pickett, 1985): 

Calculation of the current day’s FFMC (FFMCt) requires the previous day’s (t-1) 

moisture content (MC, %), which is a function of the previous days FFMCt-1:  ����� = ���. � ∗ �������������.���������         [Eq. 2] 

Precipitation (P, mm) is measured from noon of the previous day to noon of the 

current day. If the precipitation amount is greater than 0.5 mm, the wetting effect from 

rain is added to the previous day’s fine fuel moisture content (MCt-1) to get today’s fine 

fuel moisture content (MCt). The wetting effect is estimated empirically as follows: ��� = ����� + ��. � ∗ � ∗ �� ������������� �� − ���.��� � , for �����<150    [Eq. 3] ��� = ��. �` + �. ����(����� − ���)���.�, for ����� ≥150     [Eq. 4] 

In the FFMC model, the maximum fine fuel MC is 250%. If a moisture content calculated 

from Eq.3 or 4 is higher than 250%, then it is converted back to 250. Then a drying 

effect (Ed) considers air temperature (T, °C) and relative humidity (H, %) measured at 

noon on the current day, and is calculated as follows:    �� = �. �������.��� + �� ∗ �������� + �. ��(��. � − �) ∗ (� − ��.����)   [Eq.5] 

If Ed is less than MCt-1, the fine fuel moisture content MCt  is calculated by including the 

wind speed (W):  � = �. ��� �� − � ������.�� + �. ������.� �� − � ������� �. �����.������  [Eq.6] 
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��� = �� + (���� − ��) ∗ 10��         [Eq.7] 

If Ed is greater than MCt-1 then Eq. 7 would lead to a negative moisture content. So 

instead, a wetting effect Ew that considers temperature and humidity is used to calculate 

MCt:  �� = �. �����.��� + ���������� + �. ��(��. � − �)�� − ��.���∗��    [Eq.8] 

If Ew >MCt-1 , then MCt  can be calculated as following equations: ��� = �� − (�� − �����)��−�                   [Eq.9] 

If Ew≤ MCt-1≤ Ed , then there is no drying effect on the previous day’s moisture content 

and Mt-1 is equal to MCt . Finally, the current day’s moisture content MCt is converted 

back to FFMC following: ���� = ��. � ����������.�����                  [Eq. 10] 

In areas where snow is typically present in the winter, the calculation of FFMC 

begins on the third day after the disappearance of snow. When snow cover is not a 

prominent characteristic in a region, the calculation begins on the third day in a row that 

the noon temperature is over 12°C (Lawson and Armitage 2008). The FFMC index is 

set to 85 as its initial value. 

2.2.2 Duff Moisture Code (DMC) 

Another fuel moisture code from the Canadian forest fire weather index (FWI) system is 

the Duff Moisture Code (DMC). Duff consists of loosely packed, decomposing organic 

matter in the fermentation and humus layers (Norum et al., 1984) of forest soils, and it 

has a dry weight of around 5 kg m-2 (Van Wagner, 1987). Similar to FFMC, the 

calculation of DMC considers the wetting and drying phases. Required inputs to the 

DMC calculation are temperature, relative air humidity, daily precipitation (at noon), the 

previous day’s DMC, and day length (Van Wagner, 1987). DMC is calculated from 

equations 12 to 19 as follows (Van Wagner & Pickett, 1985): 

Duff requires daily precipitation (P) greater than 1.5 mm to achieve a wetting effect; 

rainfall effect (Pe) is calculated by: �� = �. ��� − �. �� , for P >1.5 mm                [Eq.11] 
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The wetting variable (b) for previous day’s DMC (DMCt-1) is calculated for three different 

DMCt-1 ranges (less than 33, between 33 to 65, higher than 65): � = ����.�������� for DMCt-1  ≤33                  [Eq.12] � = �� − �. � ��(������), for 33< (DMCt-1)  ≤65               [Eq.13] � = �. � ��(������) − ��. � , for DMCt-1 >65               [Eq.14] 

Once wetting effect b is calculated, it can use the previous day’s duff moisture content 

(MCduff t-1) to get the current day’s duff MC (�����), first estimating MC 

duff t-1 from DMCt-1 : ��������� = �� + ��.��������������.�� �                  [Eq.15] ������ = ��������� + ��������.������                  [Eq.16] 

MCduff is then converted back to the current day’s DMC for the next day continuous 

calculation:  ��� = ���. �� − ��. ���� (������ - 20)                [Eq.17] 

As DMC can not go below 0, if DMC from Eq.18 is lower than 0, it will be set to 0 for the 

continuous calculation. If P is less than 1.5 mm, the above calculation is not used and 

DMC = DMCt-1. After calculating the DMC with the rainfall effect, a drying effect will also 

be added to get the final DMC (DMCf ) for the current day as follows: ���� = ��� + ��� ∗ (�. ��� ∗ (� + �. �) ∗ (��� − �) ∗ �� ∗ ����)            [Eq.18] 

where T is temperature, H is relative humidity measured at noon, and DL is the day 

length; notice the minimum temperature is set as -1.1 ℃, and any inputs lower than -1.1℃ 

will be set as -1.1℃. The DMC computation begins on the third snow-free day in areas 

typically covered in snow throughout the winter. When snow cover is not prominent in a 

region, the calculation begins on the third day in a row that the noon temperature is over 

12 °C (Lawson & Armitage, 2008). The index's initial value must be set to 6. 

 Though the fine fuels and duff moisture codes can be used to estimate the MC of 

woody debris and duff layers, the accuracy will vary with the distance between the site 

and the fire weather stations, as temperature, relative humidity, wind speed, and 

precipitation will vary. The drying and wetting corrections for FFMC and DMC are 

empirical corrections based on data collected from major eastern pine forests around 

Ontario (Van Wagner, 1987). In contrast, fuel conditions might differ in other regions 
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and forest types. Fire weather stations are usually located in open spaces close to a 

highway. Previous research has used FFMC and DMC in old-growth forests in Australia, 

with in-stand weather stations, where it was shown that the microclimate is moister in 

the mature forest than in open and younger forests (Furlaud et al., 2021). 

2.3. Fuel moisture from remote sensing 

Remote sensing and spectral reflectance in different band combinations have 

been widely used to retrieve information on the biophysical properties of vegetation by 

using wavelengths of reflected radiation that capitalise on the spectral signatures of 

healthy versus diseased vegetation or moisture (Ceccato et al., 2002). Band 

combinations such as the Normalised Difference Vegetation Index (NDVI) (Tucker, 

1979) and the Normalised Difference Moisture Index (NDMI) have been calculated with 

Landsat 8 data to estimate FMC, as they contain bands that are most sensitive to the 

water content of plant tissue (Rao et al., 2020; Table 1 and 2). The Visible 

Atmospherically Resistant Index (VARI) provides an alternative estimate of greenness 

based on visible wavelengths and has been used previously to estimate FMC in 

southern California (Schneider et al., 2008) as well as monitor water content (Gitelson 

et al., 2002, bands information in Tables 1&2). The NDVI indicator and the normalised 

multi-band drought index (NMDI) can be used to estimate soil MC, as those indices 

exhibited strong relationships with soil moisture data in previous studies (Wang & Qu, 

2007, Tables 1&2). Green Normalized Difference vegetation index (GNDVI) was used in 

estimating grassland MC in previous research (Bao et al. 2022), which can be 

expanded to estimate FMC in this research (Tables 1&2).   

The MODIS (Moderate Resolution Imaging Spectroradiometer) satellite platform 

provides daily imagery and has been used previously to monitor FMC. However, its 

spatial resolution (250-1000 metres) limits its application in this research because the 

planted forest blocks are relatively small compared to other studies (Caccamo et al., 

2011; Yang et al., 2018). Landsat 8/9 and Sentinel 2 have been used to study forest 

FMC content in previous research, with their higher spatial resolution data (10 -30 

metres resolution), but at the expense of less frequent data acquisition for a given 

location (Wang & Qu, 2007; Zhang & Zhou, 2016) (Table 1).     
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 Pre- and post-wildfire imagery can be used to distinguish between burned and 

unburned forests and can help assess wildfire burn severity and help understand 

historical fire behaviours (Key et al., 2006). Due to its 30 m spatial resolution, 

approximately 16-day temporal resolution, and extensive library of freely accessible 

images dating back to 1984, imagery from the Landsat TM and ETM+ sensors has been 

widely used to estimate and map burn severity (Parks et al., 2014). Sentinel 2 imagery 

has also been used in burn severity studies (Quintano et al., 2018), and it has higher 

spatial (10-30 metres) and temporal resolution (5 days). In the previous research, 

differenced Normalised Burn Ratio (dNBR) (Key et al., 2006) and its related form, the 

relativized dNBR (RdNBR) (Miller et al., 2007) are the two most used band ratios for 

estimating burn severity (Table 2). Instead of using differenced Normalised Burn Ratio 

(dNBR), Relativized Burn Ratio (RBR) has been proved as a more appropriate index to 

use when comparing burn severity across diverse western US forests, as it uses the 

surrounding surviving forest pre- fire conditions as a parameter to adjust the scale of 

burn ratio (Parks et al., 2014) (Table 2).  

Table 1:Satellite sensors used in this study (Data source: USGS, Sentinel Hub) 



23 

  

Table 2: Band indices used in this study (Data source: USGS, Sentinel Hub) 

Remote sensing 
indices/Application Satellite  Bands Combination 

NDVI: Measure live green 
vegetation 

Landsat 8/9 (B5-B4)/(B5+B4) 

Sentinel 2  (B8-B4)/(B8+B4) 

NDMI: Measure crops water 
stress level 

Landsat 8/9 (B5-B6)/(B5+B6) 

Sentinel 2  (B8-B11)/(B8+B11) 

NMDI: Measure soil/vegetation 
moisture 

Landsat 8/9 (B5-(B6-B7))/(B5+B6-B7) 

Sentinel 2  (B8a-(B11-B12))/(B8a+(B11-B12)) 

VARI: Estimate vegetation 
fraction  

Landsat 8/9 (B3-B4)/(B3-B4-B2) 

Sentinel 2  (B3-B4)/(B3-B4-B2) 
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GNDVI: Measure vegetation 
greenness  

Landsat 8/9 (B5-B3)/(B5+B3) 

Sentinel 2  (B8-B3)/(B8+B3) 

dNBR: Estimate burn severity 
Sentinel 2  Δ(B8-B12)/(B8+B12) 

Landsat 8/9 Δ(B5-B7)/(B5+B7) 

RBR: Estimate burn severity 
Sentinel 2  dNBR/(prefire(B8-B12)/(B8+B12)+1.001) 

Landsat 8/9 dNBR/(prefire(B5-B7)/(B5+B7)+1.001) 

 

3. Study Areas  

3.1 Prince George and Smithers  

The Biogeoclimatic Ecosystem Classification (BEC) zone of the surrounding 

forests of Prince George and Smithers is generally classified as the Sub-Boreal Spruce 

(SBS) zone (Klinka et al., 1999). The SBS zone is dominated by mature coniferous 

forests, including species such as spruce (Picea glauca, Picea engelmannii, Picea 

mariana), fir (Abies lasiocarpa), and pine (Pinus contorta) (Natural Resources Canada, 

2017). Other tree species found in this zone include larch (Larix laricina), aspen 

(Populus tremuloides), and birch (Betula papyrifera) (Natural Resources Canada, 2017). 

Cool and moist climates characterise this region, mean annual temperature in the SBS 

zone typically ranges from 0°C to 5°C, while mean annual precipitation ranges from 500 

mm to 1,500 mm (Ministry of Forests, Lands, Natural Resource Operations and Rural 

Development, 2014). However, there can be significant variation within the zone, with 

some areas receiving much higher or lower levels of precipitation depending on 

elevation, latitude, and local topography (Ministry of Forests, Lands, Natural Resource 

Operations and Rural Development, 2014). The terrain is characterised by rolling hills, 

flat plateaus and gentle slopes, with well-drained soils and scattered wetlands (Ministry 

of Forests, Lands, Natural Resource Operations and Rural Development, 2014). 
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Six research locations (Figures 2 and 3) near Prince George and Smithers in 

central BC were selected for this research. The sites were selected for (a) proximity to 

Prince George and Smithers; (b) proximity to provincial fire weather stations; and (c) 

access to three stand types (open, juvenile, and mature) in close proximity to each other. 

The locations selected for this study are approximately 50 km apart in different 

directions from Prince George or Smithers, with a provincial fire weather station located 

approximately 3.21 – 27.3 km away (Figure 2 and 3). Each research location has three 

stand types (Figure 4) that close to each other, with the following characteristics (Burton, 

2022): 

● Juvenile: Lodgepole pine (Pinus contorta var. latifolia), and interior white spruce 

(Picea engelmannii x glauca) have been planted after the primary forest had 

been logged. Juvenile forests are dense, with only 2-3 metres separating each 

tree; stands are 20–40 years old. 

● Open: recently logged, relatively open land with widely space, recently 

established pine trees that are less than 5-7 years old. 

● Mature: stands that have never been logged; they are characterised by a 

preponderance of trees older than 120 years, with various tree species 

(lodgepole pine, interior white spruce, subalpine fir and interior Douglas-fir 

(Pseudotsuga menziesii var. glauca), with lesser amounts of broadleaf species 

such as trembling aspen (Populus tremuloides), black cottonwood (Populus 

balsamifera ssp. trichocarpa) and paper birch (Betula papyrifera), at low densities, 

and with irregular spatial arrangements. 

 Each stand’s latitude, longitude, and elevation are shown in Appendix 1. The 

name of closest fire weather station to each research location is also provided in 

Appendix 2, with its latitude, longitude, elevation, and distance to the research location 

presented as well.   
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Figure 2: Prince George field sites (imagery from Google EarthTM) 
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Figure 3: Smithers field sites (Image clipped: Google EarthTM) 
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Figure 4: Tamarac sampling locations near the BCWS Bednesti fire weather station, 
showing three stand types (Image clipped: Google EarthTM, RPAS image: Dr.Joseph 
Shea) 

3.2. Plateau Complex Wildfire, Williams Lake 

The Plateau Complex Fire occurred in the Cariboo Regional District of British 

Columbia, Canada, approximately 60 kilometres northwest of Williams Lake, and 150 

kilometres southwest of Prince George (Figure 5). The fire burned over a distance of 

approximately 135 kilometres (84 miles) from south to north, and 70 kilometres (43 

miles) from east to west (BC Wildfire Service, 2022). Between 7th July and 1st 

September 2017, a few wildfires merged to burn a total of 521,012 hectares covering a 
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broad range of stand types and ages (BC Wildfire Service, 2022). Due to logging and 

replanting activities in the area, the wildfire covered a mix of recently harvested open 

sites, juvenile replanted sites, and some mature forest blocks (Williams Lake 

Community Forest, 2022).  

The Plateau Complex Fire provides a suitable case study in which to test 

applications of this research, as it covered similar stand types (open, juvenile, and 

mature, much of it dominated by lodgepole pine) to the Smithers and Prince George 

field sites in central BC. For this case study, the method and results from FMC 

observations and remote sensing indices, were used to examine how fire severity 

corresponds to areas that exhibited low moisture content/greenness immediately before 

the wildfire.  

A small subset of the Plateau Complex Fire was selected for this research, as 

wildfire conditions can vary substantially across such a large fire perimeter, and smoke 

conditions prevented suitable image acquisitions across the entire fire complex. The 

subset area included open, juvenile, and mature forests located near each other, similar 

to the Prince George and Smithers observation sites, for which suitable pre- and post-

fire imagery was available for the calculation of fire severity indices. The proximity of 

these stands also suggests they would have experienced similar fire weather conditions. 
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Figure 5: Plateau Complex Wildfire map and study area (image captured in Google 
EarthTM). 

 Figures 6 and 7 show pre- and post-fire near-infrared composite images of the 

Plateau Complex northwest of Williams Lake, where intense red indicates the vigour of 

greenness (juvenile and mature forests), and green/brown indicates the lack of 

vegetation (open stands) or burnt areas. The false color composite images in Figures 6 

and 7 use the combination of Sentinel-2 bands 8 (near-infrared), 4 (red), and 3 (green). 

Note in Figures 6 and 7, that some juvenile forests appeared to act as wildfire refugia, 

which remain bright red in both pre-and post-fire images. A comparison of the remote 

sensing indices and fuel moisture conditions in the pre-fire area between different stand 
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types can serve as a reference guide for future wildfire vulnerability assessment and 

prevention and could help demonstrate the relationship between fire activity and 

FMC/remote sensing indices. 

 

 
Figure 6: False colour composite pre-fire map at Plateau Complex, image captured on 
June 11th, 2017, centred on 52.94105 N, -124.01571 W. 
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Figure 7: False colour composite postfire map at Plateau Complex, image captured on 
September 4th, 2017, centred on 52.94105 N, -124.01571 W. 

4. Methods 

4.1 Fuel Moisture Observations  

4.1.1 Sample collection 

In the summers of 2021 and 2022, samples of foliage (older than 1 year), fine 

woody debris, and duff were collected from six research locations near Prince George 

and Smithers for this project (Figures 2 and 3). Each sampling location contains three 

stand types located near each other. Field samples were taken from open (dominated 

new grown pine), juvenile (pine dominated, with some spruce), and mature forests (mix 

of pine, spruce, and fir). Higher foliage was collected at heights 4-6 m above the ground 

with cutting poles at the juvenile and mature sampling sites to compare with lower 
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foliage. Lower foliage was collected at a height of 1-2 metres. Duff and fine woody 

debris were typically picked with a mix of sun-exposed and shaded areas at the Prince 

George sites. At the Smithers sites, duff and fine woody debris were collected from 

multiple diverse spots in each stand to ensure consistency and obtain a mixture of 

moisture data from sun-exposed and shaded areas. Replication of sample trees cannot 

be excluded as the sites were chosen randomly at each visit.  

In the summer of 2021, at Prince George, twelve samples were collected at each 

visit to the juvenile and mature sites: three samples of duff, three of fine woody debris, 

and three each for higher (4-6 m) and lower (1-2 m) foliage. Nine samples were 

collected for open sites, as there is no higher foliage at open sites. Samples collected at 

the start of 2021 were transported in plastic sandwich bags prior to oven drying, and 

then were oven-dried in aluminium baking cups. After mid-summer 2021, different sizes 

of metal tins with lids were used to collect samples, and these were subsequently stored 

and transported in a cooler to reduce moisture loss from the samples, with the same 

tins used for sample drying in the oven.  

In the summer of 2022, lower-level foliage was not collected due to the increased 

sampling frequency and lack of sample tins. Additional characteristics such as tree 

species and fuel exposure to the sunlight were documented while collecting the 

samples, as they can influence plant water conditions. 

Ideally, field sample collection dates would coincide with satellite overpasses to 

directly compare field-observed FMC with remote sensing data (Sentinel 2; Landsat 8 

and 9). Landsat 8 and 9 (launched in 2022) capture images at 10:00 am local time, 

whereas Sentinel 2 collects data at noon local time (USGS, 2022). The sample 

collecting period is aimed to be close around noon, as DMC and FFMC are also 

calculated at noon (Van Wagner, 1987). However, the collection times often varied due 

to weather conditions, transportation time, schedules, and labour constraints. Generally, 

samples were collected between 10:30 am and 3:00 pm Pacific Standard Time (PST). 

4.1.2 Moisture content measurement 

In previous studies, samples of duff, fine woody debris, and foliage were set in an 

oven for 48 hours at 60 degrees to dry (Viegas et al., 1992). Before the sample 
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collection began, foliage from the forests at UNBC was collected and tested for two 

drying approaches. In the first approach, twelve test samples were measured after 

drying for 24 hours at 100 °C and another three days at 100 °C. The MC results from 

both approaches were approximately identical, with less than 0.06% moisture change 

for foliage and fine woody debris and 0.01% moisture change for duff, compared with 

the average dry weight of 5 g for foliage and fine woody debris and 40 g for duff. Due to 

a lack of tins and time-saving purposes, samples in this study were dried for 24 hours at 

100 °C. 

The weight of field samples was measured and recorded in tins after they arrived 

at UNBC's Enhanced Forestry Lab (EFL) (Figure 8), and they were sent to dry in an 

oven for roughly 24 hours. Tins with dried samples were weighed and recorded on 

another day. The weight of the empty tins and lids was subtracted from the dry and wet 

weight to get their mass, then Eq.1 was used to calculate FMC. At Prince George, the 

scale used to measure woody debris and duff was accurate to 0.01 g. A higher 

precision scale (0.001g) was used to measure the weight of the foliage. Samples 

collected at Smithers locations were measured with a scale that measured to 0.01 g for 

woody debris and duff, and 0.001 g for foliage. Measurements were recorded in field 

notebooks and transferred to a spreadsheet along with information on fuel types, tree 

species, sunlight exposure, and weather conditions. 

 
Figure 8: Drying process at UNBC EFL lab 
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4.1.3 Moisture content analysis 

Observations collected while it was raining, or collected immediately after rainfall 

were filtered out as there was water attached to the fuel surface. Foliage from tree 

species other than pine, spruce, fir, or Douglas-fir were removed from this analysis as 

well. Only juvenile and mature forests were analysed with the remote sensing method 

for its correlation with foliage, as their canopy was dense enough to cover the ground. 

Foliage data from two summers of fieldwork was separated by species, and their mean, 

maximum and minimum values were determined. Using remote sensing to estimate fine 

woody debris MC and duff MC was only applied at the open sites, where the forest floor 

was fully exposed.  

Once two years of data collection were completed, the 3 subsample FMC values 

collected for each of foliage, fine woody debris, and duff from each stand at each date 

were averaged, then plotted as time series and boxplots to visualize changes through 

time and differences between fuel types. Statistical tests (Kruskal-Wallis one way 

analysis of variance) were conducted to determine whether the FMC levels varied 

significantly among different stands throughout the summers of 2021 and 2022. The 

seasonal evolution of FMC in different stands and fuel types may help explain the 

existence of juvenile fire refugia. Time-series of FMC values were plotted for each stand 

to understand the seasonal evolution of moisture contents in different stand types. 

Meanwhile, FMC at different stands and sites was compared with the results from 

empirical meteorological models and remote sensing indices, as explained in the 

following sections. 

4.2 Regional and on-site meteorological data 

4.2.1 Fire weather stations 

The BC provincial fire weather stations observe several weather parameters 

related to fire behaviour. For this research, temperature, relative humidity, wind speed, 

and precipitation data were used from fire weather station data. The temporal frequency 

of the data collected by these fire weather stations can vary. Generally, the 
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observations are taken at least once per day, usually in the afternoon. However, during 

periods of high fire risk or active fire events, the frequency of observations may increase 

to multiple times per day or even hourly, depending on the situation. This more frequent 

monitoring allows for better tracking of changing fire weather conditions and enhances 

the accuracy of fire danger ratings and fire behaviour predictions. Fire weather station 

data were obtained from the Pacific Climate Impacts Consortium website 

(https://www.pacificclimate.org/data/bc-station-data-disclaimer-0). 

4.2.2 In-stand meteorological observations 

HOBOTM U23 Pro v2 (Onset Computer Corporation, Bourne, Massachusetts) 

temperature and relative humidity sensors (Appendix 3) were installed at all six 

sampling locations and in each of the three different stand types. Each HOBO was 

mounted on a metal rebar about 30 cm above the forest ground, and their location is 

given in Appendix. Full weather stations were also installed at the open sites, measuring 

hourly air temperature, relative humidity, precipitation and wind speed at approximately 

two metres high (Appendix 4). Open site weather stations had a tipping bucket (except 

North Fraser) to collect precipitation data in 2021, though open site weather station 

installation occurred after the start of field sampling (July 8th-10th for Smither sites, June 

6th – 8th for Prince George sites). Therefore, on-site precipitation and wind speed was 

not used to estimate duff and fine woody debris MC in 2021. 

 For the analysis of 2021 data, in-stand HOBO sensor data (temperature and 

relative humidity) were combined with nearby fire weather station data (precipitation 

and/or wind speed). In the summer of 2022, tipping buckets (event data only) and wind 

speed sensors (recorded every 15 mins) were installed in all stands. Meteorological and 

microclimate data will be archived in an open-source repository. 

4.2.3 Meteorological data analyses 

Daily averages of temperature, relative humidity, and wind speed, as well as 

daily accumulated precipitation, were calculated for in-stand and fire weather station 

data (Appendix 3).As the data are not normally distributed, Kruskal-Wallis one-way 

analysis of variance tests were applied to identify any significant differences between 
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fire weather station and in-stand s weather station data (Section 5.2). As the 

meteorological data are not normally distributed, the non-parametric Kruskal-Wallis test 

was used to compare means between sites. The null hypothesis is that there is no 

significant difference between populations, and a significance threshold of 0.05 was 

used to accept (p > 0.05) or reject (p < 0.05) the null hypothesis. Data variance was 

also calculated following Eq. 19: (Section 5.2), 

 (σ²)  =  Σ[(xᵢ −  μ)²] / n         [Eq.19] 

where xᵢ represents each individual data point in the dataset, μ represents the mean of 

the dataset, and n is the number of observations. Variances are also reported in Sec 5.2.  

4.3 FWI empirical model  

To test the accuracy of the moisture contents generated by the FWI model in the 

study region, four versions of the model used in this research. First, the original FWI 

model (Model 1) was used to calculate FFMC and DMC from nearby fire weather station 

data to estimate MC with Eq.2 and Eq.17. The second approach (Model 2) used 

meteorological data from nearby fire weather stations locally calibrated and stand-

specific fine woody debris and duff start MC values to estimate MC. The third approach 

used partial (Model 3) or full on-site meteorological data (Model 4) from the different 

stands and constrained parameters based on local moisture observations to estimate 

MC. 

4.3.1 Model 1: Fire weather stations and empirical coefficients  

The FWI system described in section 3.2 was used with nearest fire weather 

station data to estimate the MC of duff and fine woody debris in coniferous stands (Van 

Wagner, 1987). This approach is consistent with the current operational use of the FWI 

system, and a flow chart outlining this stage of the research is shown in Figure 9. In 

2021, FFMC and DMC values from nearby fire weather stations were provided, while in 

2022 they were calculated nearby fire weather station data (Figures 2 and Figure 3). 

daily expected values of FMC for fine woody debris and duff can be calculated based on 

Eq. 2 and 16 with their FFMC and DMC (Viegas et al., 2001, Wotton, 2009). 
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Daily FMC estimates from empirical models, and local/regional meteorological 

inputs are compared with the field-based observations of FMC. To compare the 

estimated and observed FMC, RMSE and MBE were calculated. The goodness of fit (R2 

and p value) for each site and stand type were calculated based on observed MC and 

MC predicted from the regression line. 

 
Figure 9:  FFMC and DMC application flow chart 

4.3.2 Model 2: FFMC and DMC corrected for local moisture contents. 

 As the FWI model is based primarily on eastern Canada forest types and 

climates, previous research has updated parts of the DMC and FMC based on local 

conditions (Wotton, 2009). Both DMC and FFMC models require the previous day’s 

DMC and FFMC value, to which the drying and wetting effects are added to calculate 

the current day’s DMC and FFMC (Eq.2 to Eq.18). To initialise the DMC and FFMC 

models at the start of the season, default values of 85 for FFMC and 6 for DMC have 

been used in the original model (Van Wagner, 1987). Using Eqs. 2 and 15, this gives 

initial moisture contents of 16.3% for fine woody debris and 264.7% for duff. Errors in 

the initial MC values used in the FFMC and DMC models would lead to accumulated 

errors throughout the summer season.  
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Averaged initial duff and fine woody debris MC at each stand and location 

subsamples for 2021 and 2022 are shown in Table 3. In 2021, the average initial MCs 

observed in mature stands was 181.7% for duff and 19.2% for fine woody debris, while 

for open stands it was 119.1% for duff and 13.3% for fine woody debris. For juvenile 

stands, the average initial MC was 137.7% for duff and 26.1% for fine woody debris. In 

2022, the average initial MC for mature stands was 281.0% for duff and 61.6% for fine 

woody debris, while for open stands it was 193.6% for duff and 28.1% for fine woody 

debris. For juvenile stands, the average initial MC was 225.6% for duff and 58.5% for 

fine woody debris. While average observed initial values may be similar to those derived 

from Eqs. 2 and 15, there is variability between sites and years that may be important 

for model estimation.  

Table 3: Initial FMC at different sites and stand around Prince George and Smithers in 
2021 and 2022, where FWD means fine woody debris. 

    Duff 2021 FWD 2021 Duff 2022 FWD 2022 

Location Stand Initial FMC (%) Initial FMC (%) Initial FMC (%) Initial FMC (%) 

Tamarac Mature 199.37 17.64 107.6 31.85 

North Fraser Mature 205.23 26.51 281.04 35.7 

Stone Creek Mature 122.47 19.54 246.31 57.78 

Chapman Mature 105.72 13.80 218.65 77.04 

McDonnell/Dennis Mature 261.50 23.20 410.39 63.85 

Barren Mature 196.02 14.25 474.63 103.23 

Average Mature 181.72 19.16 288.77 61.58 

Tamarac Open 79.80 9.73 136.03 16.70 

North Fraser Open 214.29 15.43 185.70 24.49 

Stone Creek Open 104.56 22.06 184.06 9.60 

Chapman Open 152.51 10.13 206.53 30.26 

McDonnell/Dennis Open 62.03 14.21 323.98 14.41 
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Barren Open 101.30 8.49 125.04 73.19 

Average Open 119.08 13.34 193.56 28.11 

Tamarac Juvenile 97.23 20.36 101.37 16.96 

North Fraser Juvenile 189.06 24.26 227.46 90.88 

Stone Creek Juvenile 191.63 44.96 224.94 83.97 

Chapman Juvenile 66.45 16.12 194.55 62.11 

McDonnell /Dennis Juvenile 128.33 35.59 303.97 40.24 

Barren Juvenile 153.28 15.45 301.38 57.10 

Average Juvenile 137.66 26.12 225.61 58.54 

The start averaged duff MC range in central BC was found to vary from 62.0 – 

474.6% across different forest stand types, seasons, and weather conditions. As the 

DMC was originally developed for pine forests in the eastern US and Canada (Wotton, 

2009) and fuel components vary in different regions, Eq. 19 was updated to use the 

local in-stand maximum FMC for MCmax and the local in-stand minimum FMC for Et.  

By replacing all the parameters “DMC” in the DMC model with Eq.19, duff MC 

can be calculated directly from weather conditions. Values of MCmax and E in Eq. 19 

were updated based on local measurements of duff MC through summer of 2021 and 

2022. Instead of entering default initial DMC to calculate the following, averaged first 

observed duff MC from different stands at different locations were entered to calculate 

their following MC. With local duff MC values as starting points and updated 

maximum/minimum values, it provides an opportunity to monitor the surrounding 

different forests' MC based on local conditions.  

The previous day’s FFMC is used to estimate to fine woody debris MC with Eq. 2, 

then drying and wetting effects are used to calculate the current day’s MC (Van Wagner, 

1987). In the FFMC wetting rate, the maximum fine woody debris MC value is set to 250% 

(Van Wagner, 1987), whereas it may differ in central BC. For the samples collected 

around Prince George and Smithers, the maximum daily averaged fine woody debris 
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MCs at the open stand is 228.4%, 192.0% in the mature stands, and 195.0% in the 

juvenile stands, all of which are less than 250%.  

Although FFMC does not require minimum fine woody debris MC, like DMC, 

FFMC also has a default initial value to start the estimation, which is 16.3%. The initial 

averaged fine woody debris MC varies between 8.5 - 103.2% in different stands (Table 

3). Resetting maximum MC values in the FFMC model and entering local observation 

data as a starting point from Table 3 can provide an opportunity to better estimate fine 

woody debris MC locally. These maximum duff MC values, starting DMC, and starting 

FFMC as applied to run locally customized FWI indices in each stand type at each 

location are presented in Table 6. Subsequent calculations of daily DMC and FFMC 

used the standard meteorological data from the nearest fire weather station. 

Similar to the analysis of the original FWI model (Section 4.3.1), duff and fine fuel 

MC estimated with the updated model parameters were compared with on-site FMC 

observations. To evaluate the model skill, R2, p-value, RMSE and MBE were calculated.  

4.3.3 Model 3: FWI with local temperature and relative humidity 

Model 1 and 2 presented in sections 4.3.1 and 4.3.2 estimate MC with data 

measured at a regional fire weather station. However, as fire weather stations are sited 

with specific requirements (open areas, measurement heights), and often some 

distance away, these cannot be expected to reflect the actual in-stand weather 

conditions. On-site relative humidity is higher (particularly at night-time), and wind speed 

is lower than observed at the fire weather station. Some of these differences are likely 

due to measurement heights: wind speed data were collected at approximately 2.5 

meters height for this study, while fire weather station wind speeds are collected at 10 

meters height. Total precipitation over the observation period is similar, though 

individual event totals vary. Distances between fire weather stations and sampling sites 

range between 3.2 and 27.3 km. Hence, the use of regional weather stations potentially 

introduces an additional source of error in the estimation of FMC.  

In-stand temperature and humidity data were used in Model 3, combined with 

nearby fire weather station data for wind speed and precipitation to reduce errors 

caused by weather differences. While the FWI formulas were developed to empirically 
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predict in-stand fuel moisture conditions using standardized observations from fire 

weather stations, the third empirical model tested here relies partially on-site weather 

conditions (temperature and relative humidity), locally updated model parameters and 

initial conditions, and is combined with the closest fire weather station data to estimate 

in-stand duff and fine woody debris MC.  

4.3.4 Model 4: FWI with local weather conditions  

Differences in microclimate between juvenile/mature stands and open stands are 

also expected, as various forest tree densities and canopy cover lead to different wind 

blocking, exposure to sunlight, and interception of rainfall (Karki & Chaudhary, 2018). 

Forest stands and their canopy can also influence wind speed and precipitation, which 

requires in-stand sensors to capture accurate in-stand data.  

In the summer of 2022, wind speed sensors and tipping buckets were installed in 

most sites to capture on-site wind speed and precipitation. The new wind speed sensors 

and tipping buckets were installed at a height of 2.5 m in all stands and were located 

near the 30-cm HOBO sensors (monitoring temperature and relative humidity). In-stand 

wind speed data were combined with in-stand temperature and relative humidity to 

calculate a localized “in-stand” estimate of fuel moisture contents from FWI indices 

(Model 4).  RMSE, MBE and goodness of fitting (R2 and p value) from Model 4 were 

calculated and compared with other models to check if there is any improvement 

statistically. 

4.4 Remote sensing and GIS 

Multispectral data and remote sensing indices were collected and analysed with 

Google Earth Engine (GEE), which provides access to historical satellite images. 

Harvested Areas of BC and Vegetation Results Inventory (VRI) data (Government of 

British Columbia, accessed May 2023) from the BC data catalogue and Government of 

Canada was used in QGIS to select and filter the various forest types based on their 

recorded year of logging/ project ages, which can help to determine the forest condition 

before wildfires. Although combining Landsat 8 & 9 and Sentinel 2 data will increase the 

image capture frequency, there are challenges that prevent the combination of the 
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different platforms (Zhu et al., 2019). Differences between Landsat and Sentinel 2 data, 

such as spatial and spectral resolutions, can also limit the usage and introduce errors 

when combining them (Zhu et al., 2019).  
Bands and remote sensing indices mentioned above from Landsat 8 & 9 and 

Sentinel-2 are listed in Tables 1 and 2. Band descriptions, wavelength, and remote 

sensing index band combinations are also shown in Tables 1 and 2.  

4.4.1 Remote Sensing Indices For FMC 

During the first field observation period from late May to September 2021, 

Sentinel 2 satellite imagery was collected using Google Earth Engine (GEE). A buffer 

with a 30-metre radius was applied to the site of each sampling location, which was 

within the range of sample collection, and bands were clipped to the buffered area. 

Quality assessment (QA) bands were used to filter out images with clouds and cloud 

shadows that could affect the band ratio analysis for Landsat 8 & 9. As Sentinel 2 does 

not have a cloud shadow mask, a 2 x 2 km polygon was applied to identify the possible 

presence of clouds over the study area, but not directly over the site, as this could 

produce cloud shadows. Sentinel 2 scenes that have higher than 10% cloudy pixels in 

the 2 x 2 km polygons were considered to potentially contain cloud shadows, and they 

were removed from the analysis. The images retained after filtering were exported from 

GEE and visually inspected before analysis. 

In 2021, the smoke created by wildfires reduced the available satellite images to 

use, and field samples were collected at different times than satellite acquisitions. 

Therefore, a Locally Weighted Scatterplot Smoothing (lowess) function was used to 

generate continuous remote sensing indices values (Moreno et al. 2014) throughout the 

summer to match the dates of field sampling. In 2022, sample collection was aimed to 

match satellite collection dates. However, the lowess smoothing function was still 

applied to avoid mismatches between field sampling data and remote sensing indices 

caused by clouds and shadows. 

In 2022, Sentinel 2 underwent a shift in its bands and use Harmonized collection 

to match the same range as in older scenes (Earth Engine Data Catalog, 2022), which 

resulted in its cloud quality assessment (QA) filter not functioning as intended. To 
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address this issue, a simple method of using NDVI to map clouds and cloud shadows 

was employed (Tucker, 1979). This method is based on the fact that vegetation reflects 

more in the near-infrared range than in the visible range, while clouds and shadows 

reflect relatively evenly across all wavelengths (Tucker, 1979; Fonseca & Andrade, 

2019; Xiong et al., 2020). Therefore, pixels with low NDVI values are more likely to be 

clouds or shadows and can be masked or removed from the analysis. To remove cloudy 

pixels from the 2022 Sentinel 2 data, a threshold was first calculated (see below) and 

applied to NDVI values calculated for each scene: pixels with NDVI values below this 

threshold were classified as cloudy or shadowed.  

To determine a NDVI threshold for the detection of cloud and cloud shadows, a 

series of clear, cloud/shadow, and cloudy images from the North Fraser site in June 

2022 were exported and analysed. NDVI and true colour images were compared in 

Appendix 6 to Appendix 8, where A is the true colour image, and B is the NDVI image, 

with open (red polygons), old (blue polygon), and juvenile (purple polygon) separated. 

When there was no cloud (Appendix 6A), mature and juvenile forests have generally 

higher NDVI (0.6-0.8) than open forests (0.4-0.6). When it is cloudy, NDVI is generally 

lower than 0.2 (white colour), regardless of the stand types (Appendix 7 and Appendix 

8). For cloud shadow, as shown in Figures 12-B, the shadow's NDVI was typically 

higher than 0.9 (black colour), which also matched the shadows in the true colour image. 

Consequently, when exporting remote sensing indices with 2022 Sentinel 2 data, pixels 

with NDVI lower than 0.2 or higher than 0.9 were removed on that image capture day. 

Remote sensing indices (NDVI, NDMI, VARI, NMDI, GNDVI, Table 2) were 

calculated on an average of the extracted pixel values (partial pixels on edge included) 

for buffered areas from GEE (Figure 10). To compare remote sensing indices and 

observations of FMC, locally weighted smoothing (lowess) functions were used to 

interpolate remote sensing indices between satellite retrieval dates for the 2021 and 

2022 summers, as there is a mismatch between sample observation and satellite 

visiting days. After applying lowess functions, remote sensing index values from lowess 

were paired with the same day averaged observation data at the exact location. 

An example of NDMI indices and their lowess smoothers at Tamarac juvenile 

stands in 2022 summer is shown in Figure 11. NDMI values from the lowess smoother 
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were compared with sample observation data with a smoothing parameter set to 0.5. 

The smoothing parameter controls the balance between the fit to the data and the 

degree of smoothing applied to the curve. A lower smoothing parameter corresponds to 

a more responsive curve that better fits the data, while higher parameter value 

corresponds to a smoother curve (Cleveland, 1974). As there were days with smoke 

that couldn’t be removed with QA bands and the NDVI filter, a lowess smoother 

parameter set as 0.5 can help to avoid the influence of smoke days. 

 

 

Figure 10: Tamarac NDVI in different stands in 30 metres pixels in three stand types, 
NDVI captured on July 20th, 2022. 
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Figure 11: Example of lowess smoothing of NDMI, at Tamarac juvenile site in 2022 
summer, with the smoothing parameter (degree of smoothing) set to 0.25, 0.5, and 0.75.   

 

Remote sensing indices were compared to foliage MC observations at juvenile 

and mature sites, and duff and fine woody debris MC values at open sites, representing 

exposed/partially exposed ground. To test the performance of the model collaboration, 

60% of the data was randomly selected as the training data set to generate linear 

regressions, and goodness of fitting (p-value and R2) were calculated. The generated 

best-fitting line was then used to calculate the RMSE with the remaining 40% of data.  

Randomly selecting training data and calculating the RMSE with the remaining 

test data is a common practice in remote sensing studies and has been previously used 

in related research (e.g., Zhou et al., 2016). This approach helps verify the results' 

reliability and consistency and comprehensively evaluates the remote sensing indices 

employed. This comparison can inform the development of empirical functions to 

estimate fuel conditions in different stands at a larger scale and help to understand the 

fire behaviour from historical wildfires. 
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For foliage in mature and juvenile stands, as well as duff and fine woody debris in 

open stands daily-averaged FMC observation data points were compared with index 

values from lowess smoothers for the same day; 60% were selected randomly as 

training data for the linear regression, their goodness of fit (R² and p-value) was also 

calculated, as well as their equations. The remaining 40% observations were used to 

test the model and generate error statistics (RMSE).  

4.3.2 Mapping Forest types with GIS  
Open, juvenile, and mature/old forests have different canopy covers and spectral 

characteristics (Cohen et al., 1995). To investigate the relationship between remote 

sensing indices and burn severity in stands of different ages, it is necessary to develop 

a method for mapping recently logged (open), juvenile, and mature forests prior to the 

occurrence of a wildfire. Forest harvest year data was used to map recently logged 

forests as it provided more recent and accurate information on logging activity. 

Meanwhile, VRI data was used to map juvenile and mature forests as it provided age 

information for most forests, including primary forests that have never been logged. For 

this study, mature forests were defined as stands older than 60 years, juvenile stands 

were logged 10-60 years before 2017, and recently logged areas were logged less than 

ten years before 2017. Figure 12 shows that most of the mature, juvenile, and recently 

logged forests were successfully mapped for the selected case study region.  
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Figure 12: Stand ages with true colour image on 6th July 2017, centred on 52.94105 N, 
-124.01571 W. 

4.3.3 Relations between dNBR/RBR and remote sensing indices  
As mentioned in section 2.3, dNBR and RBR can both be used to estimate burn 

severity after wildfires. For this analysis, QA bands have been used to filter out the 

cloudy pixels, and Normalised Difference Water Index (NDWI) has been used to mask 

out water bodies such as lakes (Gao, 1996).  

To extract the remote sensing indices representing the pre-fire forests/fuel 

condition, the image captured at the closest date before the wildfire started should be 

chosen. Sentinel 2 data was selected to use when extracting pre-fire indices, as 

Sentinel 2 visited the study area (Figure 4) from the Plateau Complex fire area on July 

6th, the day before the wildfire started. As wildfires created much smoke, the first cloud-

free image from Sentinel 2 after the fire was on September 4th, which was used as a 

post-fire image for burn severity calculations. A dNBR value range provided by the 

United States Geological Survey (USGS) was used to convert fire severities to burn 
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severity categories (Table 4). In this research, dNBR were classified into five levels, 

which are Regrowth (-500 to -101), Unburned (-100 to +99), Low severity (+100 to 

+269), Moderate severity (+270 to +650) and High severity (+660). To match the dNBR 

range in Table 4, dNBR were scaled by 103. 

Table 4: Burn severity levels obtained calculating dNBR, proposed by USGS (Key et al. 
2006) 

Severity level dNBR range (scaled by 103) 

Enhanced regrowth, high (post fire)  -500 to -251 

Enhanced regrowth, low (post fire)  -250 to -101 

Unburned  -100 to +99 

Low severity  +100 to +269 

Moderate-low severity  +270 to +439 

Moderate-high severity  +440 to +659 

High severity  +660 to +1300 

 

As RBR was examined and evaluated with 18 different fires in the western USA, 

its range classification is different compared to dNBR (Parks et al. 2014). Table 5 shows 

the severity level and its averaged RBR range from the results in different fires (Parks et 

al., 2014), which was applied in this research as well. 

Table 5: Burn severity levels obtained calculating RBR, proposed by Parks et al., 2014.  

Severity level RBR range 
Unburned  <35 
Low severity 35-130 
Moderate severity 130-298 
High severity >298 
 

Remote sensing indices such as NDMI and NDVI were extracted from the pre-

fire image to compare fire severity among the different stands. As this method produces 

a large quantity of data points, hexbin plots of indices versus burn severity were plotted 

to show data density, frequency distribution (histograms at x and y axis), and relations 
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between the two elements. Hexbin plots are commonly used to reduce noise in the data 

by showing the overall distribution and patterns in the data, rather than individual data 

points (Camacho, 2014). Linear or non-linear fits were not attempted in the analysis of 

estimated moisture content and fire severity, and this is discussed in Section 6.  

5. Results  

5.1 Fuel Moisture Contents 

Summaries of the daily average MC for different observations sites, forest stands 

(juvenile, mature, and open), different types of fuel (duff and fine woody debris), as well 

as statistical results are presented in Table 6. Information on the total number of daily 

averaged observations for each category is also included in Table 9, along with the 

maximum and minimum FMC values. The maximum FMC for duff was 439.27 %, which 

was found in mature stand; the minimum MC for duff was 14.38 %, and it was in a 

mature stand (Table 6).  

The daily averaged MC for duff was also listed in Table 6, and it was not normal 

distributed in all stands. At mature stand had 163.76 % MC compared with juvenile 

(143.56 %), and the difference was statistically significant (p < 0.05) with Kruskal-Wallis 

test. The daily averaged FMC for duff at open stands is 14.03 % lower compared with 

juvenile, and the difference was statistically significant (p < 0.05). 

Information on the daily averaged FMC for fine woody debris was also in Table 6. 

The average fine woody debris MC for juvenile stands was 50.19 %, while for mature 

stands it was 1.17 % lower, which was not statistically significant (p > 0.05). However, 

for open stands, the daily averaged MC for fine woody debris was 20.11 % lower 

compared to juvenile stands, and this difference was statistically significant (p < 0.05). 

The maximum MC for daily averaged fine woody debris was 228.38 %, which was found 

in an open stand, and the minimum FMC was 2.17 %, also in an open stand. 
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Table 6: The maximum, minimum of daily averaged MC, variance, and averaged of 
daily averaged MC for duff and woody debris from different stands in 2021 and 2022. 

Forest Stand Juvenile Mature Open Juvenile Mature Open 

Fuel Type Duff Duff Duff Fine woody debris Fine woody debris Fine woody debris 

Total Number 132 131 132 132 132 132 

Maximum MC (%) 407.44 423.68 439.27 194.98 192.04 228.38 

Minimum MC (%) 28.75 29.87 14.38 8.64 9.53 2.17 

Averaged MC (%) 143.56 163.76 129.57 50.19 51.9 49.02 

Variance (%2) 6918.07 8082.44 7514.89 1515.28 1428.62 1300.20 

 

As different types of foliage species were collected during the summers of 2021 

and 2022, daily average foliage MC, as well as maximum and minimum MC values for 

each stand and species type are shown in Table 7. Kruskal-Wallis tests were conducted 

to determine if there were any significant differences in daily averaged FMC among the 

different types of foliage species, as none of the dataset is normal distributed.  

At the juvenile stand, where pine was the dominant species type, its daily 

averaged MC was compared with that of spruce and fir. Pine foliage had an average 

MC of 112.38%, which is 0.08% lower than fir and 8.45% higher than spruce (Table 7). 

However, the difference was not statistically significant, as both p-values were higher 

than 0.05. Fir was used as the reference species to compare with other species types at 

the mature stand (Table 7), and no statistically significant differences were observed, 

with all p-values higher than 0.05. At the open stand, pine was compared with spruce 

and fir (Table 7). Similar to the juvenile and mature stands, the p-values were both 

higher than 0.05, indicating no statistically significant difference in foliar among MC 

species. 

Table 7: The maximum, minimum of daily averaged  MC, and averaged of daily 
averaged MC for foliage from different stands around Smithers and Prince George in 
2021 and 2022, where DFir means Douglas-fir. 

Foliage 
type 

Pine Spruce Fir Pine Spruce Fir DFir Pine Spruce Fir 

Forest Juvenile  Juvenile  Juvenile  Mature Mature Mature Mature Open Open Open 
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stand 
Total 
Number 

111 21 23 6 49 108  6 113 3 15 

Maximum 
MC (%) 

151.40 156.81 195.82 112.27 237.12 191.65  299.26 233.85 226.26 161.32 

Minimum 
MC (%) 

82.63 71.49 73.57 101.39 50.28 74.02  101.27 41.4 105.60 91.32 

Averaged 
MC (%) 

112.38 103.93 112.47 105.65 108.29 111.34  143.91 124.78 148.71 115.67 

Variance 
(%)2 

281.83 611.01 1184.78 22.79 806.39 1821.17 5902.24 916.48 2662.78 418.99 

 

As there is no statistically significant difference in MC between foliage species 

types in all stands, different foliage species types were combined to check their FMC 

difference in different stands. The daily averaged maximum and minimum MC of foliage 

in different stands in all locations, as well as their observation number, are presented in 

Table 8. Open stands have the highest maximum MC (233.9%) and minimum MC 

(41.4%). When comparing the averaged MC of foliage with their daily averaged data, 

mature forests have -2.85% MC lower than juvenile stands (112.34%), however, the 

difference is not statistically significant with (p > 0.05). Open stands have 12.62% MC 

higher than juvenile forests, and the difference is statistically significant, with p < 0.05. 

Table 8: The maximum, minimum of daily averaged MC, and averaged of daily 
averaged MC for foliage from different stands in 2021 and 2022. 

Forest Stand Juvenile Mature Open 
Total Number 115 116 120 
Maximum MC (%) 152.68 194.83 233.85 
Minimum MC (%) 74.88 75.71 41.40 
Averaged MC (%) 112.34 109.49 124.96 
Variance (%2) 694.40 1066.87 1197.82 

 

 The time series of daily averaged FMC (consisting of three individual 

measurements averaged in each stand and study location) observed in duff, woody 

debris, and foliage for the summers of 2021 and 2022 are presented in Appendix 9 and 

Figure 13. In both 2021 and 2022, daily averaged MC in the duff layer is significant 

higher in mature forest stands, followed by juvenile and open stands. Fine woody debris 

at the mature and juvenile sites have a similar MC, with no statistically significant 
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difference (p > 0.05). However, daily averaged fine woody debris MC at open stands are 

lower than mature and juvenile stands, with statistically significant difference (p < 0.05). 

 
Figure 13: Daily average FMC in 2022 for different stands and fuel types at the Prince 
George and Smithers study locations. The number of observations averaged to create 
each point varies between 3 and 15, depending on the number of sites visited. 

When comparing different fuel types and stands at each location, similar 

statistical results were found in Figure 14 to 16. To compare the FMC difference in 

different stands at each location, as the data is not normal distributed, Kruskal-Wallis 

test were also applied. 

 For foliage MC, open stands have higher MC compared to juvenile stands, and 

the difference is statistically significant at Barren, Tamarac, Chapman, and McDonnell 
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sites (p < 0.05). The difference between juvenile and mature stands is generally not 

statistically significant, except at Chapman, where the mature stands have significantly 

higher MC (p < 0.05), and at McDonnell/Stone Creek, where the juvenile stands have 

significantly lower MC (p < 0.05). 

For duff MC at different stands at each location, juvenile stands have significantly 

higher MC than open stands at most locations (Barren, Dennis, North Fraser, and Stone 

Creek, with p < 0.05), significantly lower MC at Chapman and McDonnell, and no 

statistically significant difference at Tamarac (p > 0.05). When comparing juvenile and 

open stands, most locations show no significant difference (Tamarac, Dennis, North 

Fraser, and Stone Creek with p > 0.05). However, at Barren and Dennis, juvenile stands 

have significantly higher averaged MC than open stands (p < 0.05), while at Chapman, 

they have significantly lower averaged MC than open stands (p < 0.05). 

When comparing fine woody debris, juvenile stands have higher daily averaged 

MC than open stands at each location, and the difference is also statistically significant 

(p < 0.05). However, the difference is only significant at Barren and North Fraser sites 

when comparing mature and juvenile stands. 

In summary, this study finds that location and stand differences play a crucial role 

in daily averaged FMC values for different fuel types. In the next sections, daily FMC 

values at each fuel types, location, and stand types were tested and compared with 

different methods. 
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Figure 14: Boxplots of daily averaged duff MC at different stands and locations in 2021 
and 2022 around Prince George and Smithers. Lower box limits (first quartile -1.5 * IQR 
(Interquartile range), upper box limits (third quartile +1.5 * IQR), outliers (circles), mean 
values (green triangles), and median values (yellow horizontal lines) are shown.  
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Figure 15: Boxplots of woody debris MC at different stands and sample collection sites 
in 2021 and 2022 around Prince George and Smithers. 
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Figure 16: Boxplots of foliage MC at different stands and sample collection sites in 2021 
and 2022 around Prince George and Smithers. 
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5.2 Meteorological Data 

 As the distance between fire weather stations and sample collecting sites ranges 

between XX and XX km, weather conditions may vary between fire weather stations 

and in-stand locations. Figure 17 shown an example of daily weather conditions plots 

between the open weather station at Barren site and the Houston fire weather station in 

the summer of 2022. The difference of relative humidity and precipitation between 

Barren open site and Houston fire weather station is not significant (p>0.05), however, 

there is a significant difference (p<0.05) for temperature and relative humidity.  
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Figure 17: Weather condition comparison between the BC fire weather station (FWS, 
Houston) and onsite weather station in 2022 at Barren, BC. 

 

Figure 18 demonstrates the differences in daily weather conditions at the Barren 

site in 2022, and summaries of the measured meteorological data are given in Appendix 

4. 
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Comparisons of measured meteorological data from the six different locations 

and various stands to determine if significant differences exist between stands 

(Appendix 4).  

 Mature, juvenile, and open stands had average temperatures of 13.95°C, 

14.17°C, and 15.29°C. The mean temperatures were not significantly different between 

mature and juvenile stands (p>0.05, the null hypothesis cannot be rejected), but the 

open stand had significantly higher temperatures.   

The mature stand had an average relative humidity of 79.64%, while the juvenile 

stand had a significantly lower average of 72.71%. In open stands, the average relative 

humidity was 72.62%. The difference between open stands and both the mature and 

juvenile stands was also statistically significant (p < 0.05). 

The daily averaged wind speed for the six locations in 2022 was also analyzed 

using the Kruskal-Wallis test due to the non-normal distribution of the data. The mature 

stand had an average wind speed of 0.10 m/s. In the juvenile stands, the average wind 

speed was 0.03 m/s. The difference between the mature and juvenile stands was not 

statistically significant (p > 0.05). However, the open stand had an average wind speed 

of 0.79 m/s, and the difference between the open stand and the juvenile stands was 

found to be significant (p < 0.05). 

Finally, the daily accumulated precipitation was compared among the stands 

using the Kruskal-Wallis test. The mature stand had an average daily accumulated 

precipitation of 1.27 mm. The juvenile stands had an average of 1.54 mm of 

accumulated precipitation. The difference between the mature and juvenile stands was 

statistically significant (p < 0.05). In the open stands, the daily accumulated precipitation 

was 1.57 mm, slightly higher than the juvenile stands, but the difference was not 

statistically significant (p > 0.05). 
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Figure 18: Weather condition comparison between on-site weather stations at different 

sites in 2022 at Barren, BC. 
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5.3 Estimates of FMC from FWI  

5.3.1 Model 1: Original model with fire weather stations and empirical 

coefficients 

Based on the methods in section 4.2, FMC for fine woody debris and duff were 

estimated from the fire weather station using the coefficients described in the empirical 

DMC and FFMC models. Modelled and observed FMC were compared for the different 

stands and years (Figure 19) using goodness-of-fit statistics. In 2021, the estimated duff 

MC was generally lower than the observed MC, with a large discrepancy between the 

best-fitting and one-to-one lines. However, in 2022, the estimated duff MC was 

generally like the observed MC, with plots closely surrounding the one-to-one line. The 

estimated and observed values for fine woody debris were generally close. However, in 

2022 estimate fine woody debris MC in juvenile and mature stands was lower than 

observed in general. 

Model performance (Table 9) varies among different stand types (open, mature, 

juvenile) and fuel types (duff and woody debris). Mean Bias Error (MBE) values for duff 

and woody debris range from -58.24 to 31.87 %, with the lowest MBE of -0.95 % 

observed in the open stand type with woody debris in 2021. RMSE values range from 

26.78 to 85.35 %, with the lowest RMSE of 26.78 % observed in the juvenile stands with 

woody debris in 2021. The R² values for the duff multiple regression tests of observed 

and predicted values range from 0.17 to 0.44, depending on the stand type and year, 

with highest R² observed in the open stands in 2021. For fine woody debris, the R² 

values for multiple regression tests of observed and predicted values range from 0.17 to 

0.65, with highest R² observed in the open stands in 2021. All p-values are less than 

0.001, which suggests that the relationships between the predictor variable and the 

outcome variable are statistically significant for all combinations of stand and fuel type. 

It can be observed that the ranges of RMSE and MBE are substantial for duff and 

fine woody debris. However, fine woody debris exhibits better statistical agreement than 

duff, particularly in open stands. The agreement between estimated and observed duff 

FMC improved in 2022 compared to 2021, while the statistical agreement for fine woody 
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debris in 2021 was superior to that in 2022. Across years and fuel types, the RMSE and 

MBE in open sites are generally better than those in juvenile and mature sites. 

 
Figure 19: Estimated vs observed FMC from as-is weather empirical model at different 
stands, where black line indicates the one-to-one lines, orange line indicates the best 
fitting line. 
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Table 9: Errors in estimated MC for different stand and fuel types for the ‘as-is’ empirical 
model (FFMC/DMC) in 2021 and 2022. Mean Bias Error (MBE), Root Mean Squared 
Error (RMSE), R², p, and sample size (N) are given. “FWD” means fine woody debris, “x” 
is estimated FMC and “y” is observed FMC.  

Model 1       
 

 

Year Stand Type Fuel Type MBE 
(%) 

RMSE 
(%) R² p Equation N 

2021 Open duff -56.22 83.94 0.44 <0.001 y = 0.71*x – 14.7 94 

2021 Mature duff -39.25 78.08 0.22 <0.001 y = 0.41* x +49.08 93 

2021 Juvenile duff -58.24 85.35 0.17 <0.001 y = 0.36*x + 41.63 94 

2022 Open duff -30.82 68.93 0.42 <0.001 y = 1.02*x -40.79 106 

2022 Mature duff 17.16 82.99 0.35 <0.001 y = 1.07*x + 2.59 106 

2022 Juvenile duff -6.49 59.95 0.39 <0.001 y = 0.99*x – 4.03 106 

2021 Open FWD -0.95 27.72 0.32 <0.001 y = 0.56*x + 12.28 93 

2021 Mature FWD 13.77 30.26 0.48 <0.001 y = 0.81*x + 19.17 93 

2021 Juvenile FWD 15.37 26.78 0.65 <0.001 y = 0.98*x + 15.68 93 

2022 Open FWD 8.94 36.20 0.17 <0.001 y = 0.64*x + 12.13 128 

2022 Mature FWD 31.13 44.90 0.31 <0.001 y = 0.90*x + 27.59 128 

2022 Juvenile FWD 31.87 47.42 0.34 <0.001 y = 0.97*x + 27.8 128 

 

5.3.2 Model 2: FFMC and DMC correction for local MC 

  Errors may increase when using the empirical weather model based on boreal 

and eastern Canada to estimate FMC in central BC. To mitigate this issue, the default 

maximum and minimum duff and fine woody debris MC (Table 6) was modified in the 

FFMC and DMC equations to minimum and maximum daily averaged values from all 

locations in 2021 and 2022 to reduce errors caused by varying fuel conditions across 
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different stands. Furthermore, instead of using a default starting value of FFMC and 

DMC, the average MC of duff and fine woody debris on the first day of data collection 

was used to estimate the following day's MC in both 2021 and 2022 (Figure 20). 

However, the estimated MC for fine woody debris in juvenile and mature stands in 2022 

is smaller than the levels observed. 

 
Figure 20: Estimated versus observed FMC from FWI (original model corrected by local 
MC), where black line indicates the one-to-one lines, orange line indicates the best 
fitting line. 

MBE for estimated MC in fine woody debris and duff in 2021 and 2022 range 

from -68.19% to 27.75%, with the lowest MBE value (-0.17) occurring in the open stand 
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type with woody debris in 2022. RMSE values range from 27.22 to 94.33%, with the 

lowest (27.20%) occurring in the juvenile stand type with woody debris in 2022. In terms 

of R², duff has highest R² (0.60) at mature stands in 2022, while fine woody debris has 

highest R² (0.65) at juvenile stands in 2021. All p-values presented in the Table 10 are 

less than 0.001, indicating the relationships between the predictor variable and the 

outcome variable are statistically significant for all combinations of stand and fuel type. 

With Model 2 (local MC correction), fine woody debris MC generally exhibits 

better statistical agreement with predicted values across all stands and years than duff. 

In 2021-2022, the estimated errors for fine woody debris MC in Table 10 are similar or 

slightly lower than those in Table 9, whereas the MBE and RMSE for duff in Table 10 

were slightly greater than in Table 9.  

An improvement for fine woody debris MC prediction demonstrates the potential 

for more accurate results using local MC observations. However, large values for MBE 

and RMSE indicate that there is still room for improvement. 

Table 10: Errors in estimated MC for different stand and fuel types for weather empirical 
model (FFMC/DMC) at different stands in 2021 and 2022, corrected by local MC. Mean 
Bias Error (MBE), Root Mean Squared Error (RMSE), R², p, and sample size (N) are 
given. “FWD” means fine woody debris, “x” is estimated FMC and “y” is observed FMC. 

Model 2       
 

 

Year Stand Type Fuel Type MBE RMSE R² p Equation N 

2021 Open duff -38.01 78.96 0.43 <0.001 y = 0.6*x +21.35 93 

2021 Mature duff -45.89 84.80 0.32 <0.001 y = 0.41*x +47.4 94 

2021 Juvenile duff -48.47 87.51 0.25 <0.001 y = 0.36*x + 44.44 94 

2022 Open duff -36.82 94.33 0.45 <0.001 y = 0.74*x – 13.90 106 

2022 Mature duff -68.19 72.20 0.60 <0.001 y = 0.88*x – 7.45 106 

2022 Juvenile duff -45.12 75.68 0.51 <0.001 y = 0.83*x – 7.70   106 

2021 Open FWD -0.17 27.20 0.33 <0.001 y = 0.59*x + 11.81 94 
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2021 Mature FWD 15.97 30.20 0.48 <0.001 y = 0.97*x + 16.74 93 

2021 Juvenile FWD 16.97 36.13 0.65 <0.001 y =1.12*x + 12.49 93 

2022 Open FWD 24.99 41.87 0.19 <0.001 y = 0.69*x + 10.93  106 

2022 Mature FWD 2.26 43.85 0.33 <0.001 y = 1.00*x + 25.00 106 

2022 Juvenile FWD 37.75 47.42 0.34 <0.001 y = 1.07*x + 25.68 106 

 

5.3.3 Model 3: FFMC and DMC with local temperature and relative humidity  

 The previous section found that the use of FFMC and DMC models resulted in 

errors due to differences in weather conditions between the closest fire weather station 

and the sample observation sites. To address this issue, local weather data 

(temperature, relative humidity, precipitation, and wind speed) from sensors or weather 

stations were incorporated to determine if this could improve the accuracy of estimating 

FMC. Meanwhile, the use of initial MC of duff and woody debris, as well as FMC limits 

applied in Model 2 was continued in the model with local weather conditions. 

In 2021 and 2022, HOBO sensors were installed at all sample collection sites 

and recorded temperature and relative humidity every 15 minutes at 30 cm above the 

ground. To estimate FMC, wind speed and precipitation data from the nearest fire 

weather station were combined with the in-stand HOBO sensors' temperature and 

relative humidity data, as not all sites had installed wind and precipitation sensors in 

2021. 

The estimated and observed FMC values in 2021 and 2022 are compared in 

Figure 21. The black line represents the most accurate estimation, and the orange line 

represents the best-fitting line. Unlike Figure 20, data from the in-stand HOBO sensors 

was used to replace the temperature and relative humidity inputs into the DMC and 

FFMC models.  
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Figure 21: Estimated versus observed FMC with local in-stand temperature and relative 
humidity, where orange line indicates the best fitting line. 

  Table 11 presents MBE, RMSE, R², p values and their linear regression 

equations for Model 3 in 2021 and 2022. The MBE ranges from -130.23 to 47.31%  

(Table 11), with the lowest MBE at -9.13% when estimating duff MC at mature forests in 

2022. The RMSE values range from 59.95 to 158.09%, where the lowest error is for 

estimating duff MC at mature stands in 2022 as well (Table 11). For fine woody debris, 

MBE ranges from -18.45 to 26.63%, with lowest MBE at 1.54 at open stands in 2021. In 

terms of RMSE, it ranges from 30.20 to 44.93%, with lowest RMSE at open stand in 

2021 when estimating fine woody debris MC.  
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 The R² ranges for duff and fine woody debris are 0.08-0.72 and 0.08-0.69, 

respectively. The p-values for most the stands are less than 0.001, indicating that the 

relationships between the predictor and response variables are statistically significant, 

except estimating duff MC in 2021 at mature juvenile stands and fine woody debris in 

2022 at all stands. The highest R² for estimating duff MC is the mature stand type in 

2022 with an R² of 0.72. For fine woody debris, the highest R² is at mature stand type in 

2021 with an R² of 0.69. 

After updating the local temperature and relative humidity data, the statistical 

results for some stands improved, such as estimating duff MC at mature stands in 2022, 

indicating that the method improved accuracy in some aspects. However, due to 

significant differences in wind and precipitation between open and juvenile/mature 

stands, combining the local in-stand data with data from nearby fire weather stations 

could result in errors. 

Table 11: Errors in estimated MC for different stand and fuel types for the weather 
empirical model (FFMC/DMC) calibrated with local temperature and relative humidity, 
as well as local fuel correction. Mean Bias Error (MBE), Root Mean Squared Error 
(RMSE), and sample size (N) are given. “FWD” means fine woody debris, “x” is 
estimated FMC and “y” is observed FMC. 

Model 3       
 

 

Year Stand Type Fuel Type MBE RMSE R² p Equation N 

2021 Open duff -44.84 86.99 0.31 <0.001 y = 0.52*x + 20.7 71 

2021 Mature duff -127.86 158.09 0.18 <0.001 y = 0.23*x + 48.05 60 

2021 Juvenile duff -130.23 153.63 0.08 0.021 y = 0.14*x + 62.56 64 

2022 Open duff 47.31 71.59 0.38 <0.001 y = 0.75*x  + 65.82 62 

2022 Mature duff -9.13 59.95 0.72 <0.001 y = 0.64*x  + 58.85 64 

2022 Juvenile duff 11.44 60.30 0.54 <0.001 y = 0.66*x + 68.34   56 

2021 Open FWD -1.54 30.20 0.30 <0.001 y = 0.52*x + 14.14 70 
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2021 Mature FWD -18.45 35.46 0.69 <0.001 y = 0.54*x + 10.25 61 

2021 Juvenile FWD -13.23 34.07 0.65 <0.001 y = 0.54*x + 14.68 64 

2022 Open FWD 9.39 36.59 0.11 0.009 y = 0.62*x + 16.14  62 

2022 Mature FWD 23.09 44.93 0.13 0.003 y = 0.63*x + 33.92 64 

2022 Juvenile FWD 26.63 44.87 0.08 0.033 y = 0.38*x + 43.99 56 

 

5.3.4: Model 4: FFMC and DMC with local weather conditions 

In 2022, all sample collection locations were equipped with tipping bucket rain 

gauges and wind speed sensors, in addition to HOBO sensors that recorded 

temperature and relative humidity. The data collected from these devices were utilised 

to calculate the MC of duff and fine woody debris. Integrating data from multiple sources 

allowed for a more comprehensive assessment of fuel conditions, as it considered 

precipitation, wind speed, temperature, and relative humidity (Figure 22). In juvenile and 

mature stands, tipping buckets were only installed during in the middle of the sample 

collection season, and sample numbers were reduced in Model 4 compared to the other 

three models. 

When comparing the RMSE and MBE values in Model 4 (Table 12) to those of 

Models 1, 2, and 3, it can be seen that for both duff and fine woody debris fuel types, 

the agreement between predicted and observed values are generally better. For duff, 

the smallest RMSE value in Table 15 was 66.11% for duff in mature stands. For fine 

woody debris, the lowest RMSE is 21.13 when estimating woody debris MC at juvenile 

stands. In terms of the of MBE (Table 12), the range was from -60.71 to -35.84 (duff), 

with a lowest MBE at mature stands. The MBE range for fine woody debris was lower (-

1.32 to 6.20%) than for duff, where the lowest values (best agreement) as found for 

open stands (-1.32%). The highest R² was the mature stand with an R² of 0.71 when 

estimating duff MC. For fine woody debris, the highest R² was the juvenile stand type 

with an R² of 0.76. All the stands have statistically significant relationships between the 

predictor and response variables of the linear regression at the p-value limit of 0.001. 
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This suggests that Model 4 produces better predictions regarding the spread of 

residuals (errors) compared to Models 1, 2, and 3.  

                                     

 
Figure 22: Estimate vs observation FMC with local weather conditions, where black line 
indicates the one-to-one lines, orange line indicates the best fitting line. 

Table 12: Errors in estimated MC for different stand and fuel types for weather empirical 
model (FFMC/DMC) with local temperature, relative humidity, wind speed, and 
accumulated precipitation, as well as local fuel correction. Mean Bias Error (MBE), Root 
Mean Squared Error (RMSE), and sample size (N) are given. “FWD” means fine woody 
debris, “x” is estimated FMC and “y” is observed FMC. 

Model 4         

Year Stand Type Fuel Type MBE RMSE R² p Equation N 

2022 Open duff -60.71 89.40 0.41 <0.001 y = 0.53*x + 25.67 71 

2022 Mature duff -35.84 66.11 0.71 <0.001 y = 0.71*x + 24.54 60 

2022 Juvenile duff -56.23 85.53 0.40 <0.001 y = 0.60*x + 22.40 64 

2022 Open FWD -1.32 27.20 0.43 <0.001 y = 0.75*x + 5.92 70 

2022 Mature FWD 6.20 25.26 0.61 <0.001 y = 0.84*x + 12.09 61 

2022 Juvenile FWD 1.65 21.13 0.76 <0.001 y = 0.82*x + 9.99 64 



72 

 

5.4 Estimates of FMC from Remote Sensing 

5.4.1 Estimating FMC with Sentinel 2 data in 2021 

In 2021, Sentinel 2 was used as the source of remote sensing data compared 

with field observation data, while in 2022, both Landsat 8 & 9 and Sentinel 2 data were 

used (Table 13). When extracting remote sensing indices from GEE, the time series 

was set between May 1st to September 30th in 2021 and May 1st to September 3rd in 

2022 to cover and match the sample collection period. Due to the smoke created by the 

wildfires, valid images available in 2021 (11.48 - 32.79 %) were fewer than in 2022 (50 - 

65.38 %) when using Sentinel 2 data (Table 13). Landsat 8 & 9 data have fewer total 

image numbers (31 - 62 images), and the valid percent was generally low (12.77% - 

17.65%).  

Table 13: Study area’s cloud/shadow free images in the summer of 2021 and 2022 from 
Smithers and Prince George 

Year Satellite Site name Valid  Total Valid Percent (%) 

2021 Sentinel 2 Tamarac 15 62 24.19 

2021 Sentinel 2 North Fraser 18 61 29.51 

2021 Sentinel 2 Stone Creek 20 61 32.79 

2021 Sentinel 2 Chapman 8 61 13.11 

2021 Sentinel 2 McDonnell 7 61 11.48 

2021 Sentinel 2 Houston 8 61 13.11 

2022 Sentinel 2 Tamarac 27 53 50.94 

2022 Sentinel 2 North Fraser 31 50 62.00 

2022 Sentinel 2 Stone Creek 26 51 50.98 

2022 Sentinel 2 Chapman 33 52 63.46 
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2022 Sentinel 2 Dennis 27 54 50.00 

2022 Sentinel 2 Houston 34 52 65.38 

2022 Landsat 8&9 Tamarac 6 62 9.68 

2022 Landsat 8&9 North Fraser 5 31 16.13 

2022 Landsat 8&9 Stone Creek 6 47 12.77 

2022 Landsat 8&9 Chapman 6 34 17.65 

2022 Landsat 8&9 Dennis 5 32 15.63 

2022 Landsat 8&9 Houston 5 32 15.63 

 

Example maps for the five indices used in this research are shown in Figure 23. 

For NDMI and NMDI, juvenile and mature forests generally have higher index values 

than open stands, while VARI and GNDVI have lower index values instead (Figure 23). 

However, the situation might change from other days’ satellite imagery and another 

location.  
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Figure 23: Example of remote sensing indices. A) NMDI, B) VARI, C) GNDVI, D) NDMI, 
E) NDVI at North Fraser sites on June 2nd , 2022, where red polygons indicate the open 
stand, purple polygons indicate juvenile stands, and blue polygons indicate mature 
stands. Darker green colours indicate higher indices values (denser and healthy forest, 
opposite with VARI), and whiter colour indicating lower indices values (bare vegetation 
cover, opposite with VARI). 

Figures 24 - 27, blue points are the training data, and the green line is their best 

fitting line, while orange points are the test points.  

E 

DC 

B A 
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Figure 24: Foliage MC compared with five remote sensing indices at juvenile stands 
with Sentinel 2 data in 2021, where blue points are train data, green lines are the linear 
regression based on blue points, and orange points are test data. 

Figure 25: Foliage MC compared with five remote sensing indices at mature stands with 
Sentinel 2 data in 2021, where blue points are train data, green lines are the linear 
regression based on blue points, and orange points are test data. 



76 

 
Figure 26:  Duff MC compared with five remote sensing indices at open stands with 
Sentinel 2 data in 2021, where blue points are train data, green lines are the linear 
regression based on blue points, and orange points are test data. 

 
Figure 27: Fine woody debris MC compared with five remote sensing indices at open 
stands with Sentinel 2 data in 2021, where blue points are train data, green lines are the 
linear regression based on blue points, and orange points are test data. 

 

Regression models for estimating MC from remote sensing indices using the 

2021 data are mostly poor (Table 14).  Only one relationship (NMDI versus foliage MC 

in juvenile stand) appears to be statistically significant, with (R² = 0.334 and p < 0.05). 
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Other than NDMI for juvenile stands, all the other indices R² values are less than 0.10, 

and/or p-values are greater than 0.05. In general, RSME calculated from independent 

observations and the regression model are lower in juvenile stands than in mature 

stands. VARI-predicted foliage MC in juvenile stands had the lowest RMSE (12.76), 

while GNDVI at the mature site had the lowest RMSE at 14.61 (Table 14).   

 

Table 14: Statistical results of remote sensing indices with second year foliage MC at 
juvenile and mature stands (2021 Sentinel 2), where “y” is the observed foliage MC. 
Significant relations (p < 0.05) shown in bold. 

Index Stand Type R² p RMSE Equation (train) N train N test 

NDVI Juvenile 0.009 0.2198 13.58 y = -32.23*NDVI + 134.96 27 19 

NDMI Juvenile 0.128 0.0671 13.97 y = 64.82*NDMI + 80.73 27 19 

NMDI Juvenile 0.334 0.0016 17.86 y = 141.40*NMDI + 13.53 27 19 

VARI Juvenile 0.087 0.0500 12.76 y = 55.05*VARI + 138.83 27 19 

GNDVI Juvenile 0.040 0.3170 18.88 y = 76.34*GNDVI + 67.51 27 19 

NDVI Mature 0.007 0.6720 23.50 y = -72.51*NDVI + 161.45 27 19 

NDMI Mature 0.000 0.9710 15.92 y = 18.95*NDMI + 112.71 27 19 

NMDI Mature 0.005 0.7170 43.00 y = 66.62*NMDI + 70.22 27 19 

VARI Mature 0.013 0.3178 20.35 y = -116.98*VARI + 63.75 27 19 

GNDVI Mature 0.012 0.5930 14.61 y = -87.54*GNDVI + 157.48 27 19 

 

Statistical results for duff and woody debris MC models in open stands are 

shown in Table 15. No significant relations (p < 0.05) could be identified. At open sites, 

NMDI had a stronger correlation (R² at 0.046, p at 0.22) with fine woody debris. In 

comparison, GNDVI had a slightly stronger correlation when estimating duff MC than 

other indices, as indicated by their relatively higher R² value (0.092) and lower p-value 
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(0.07). Duff predictions had generally much higher RMSE (around 41.64 – 63.29) than 

for fine woody debris (20.90 - 36.43) with all indices. However, all indices in Table 15 

were not good enough to estimate duff and woody debris MC, with their lower R² (less 

than 0.1) and higher p-values. 

 

Table 15: Statistical results of remote sensing indices with fine woody debris/ duff MC at 
open stands (2021 Sentinel 2), where FWD means fine woody debris, y is observed 
FMC. No significant relations were identified.  

Index Fuel Type R² p RMSE Equation (train) N train N test 

NDVI duff 0.002 0.0800 63.29 y = 35.22*NDVI +43.78 36 24 

NDMI duff 0.020 0.6803 41.64 y = 95.98*NDMI +59.00 36 24 

NMDI duff 0.016 0.5537 55.82 y = 164.38*NMDI – 9.27 36 24 

VARI duff 0.009 0.3133 57.84 y = 36.71*VARI + 79.70 36 24 

GNDVI duff 0.092 0.0728 50.83 y = 402.45*GNDVI-132.72 36 24 

NDVI FWD 0.002 0.0661 34.86 y = 11.66*NDVI + 14.76 35 24 

NDMI FWD 0.020 0.6574 20.90 y = 48.33*NDMI + 19.52 35 24 

NMDI FWD 0.046 0.2150 21.68 y = 145.27*NMDI - 46.97 35 24 

VARI FWD 0.005 0.1599 36.43 y = 10.16*VARI + 23.41 35 24 

GNDVI FWD 0.014 0.4761 32.34 y = 55.75*GNDVI – 4.73 35 24 

5.4.2 Estimating FMC with Landsat 8 & 9 data in 2022.  

 With the launch of Landsat 9 in 2022, image frequency increased, and indices 

could be combined for both Landsat 8 & 9, which have the same spectral bands. Cloud- 

and shadow-free images of Landsat 8 and 9 data were extracted from GEE, then 

compared with field observation data at different stands. Similar to section 5.3.1, daily 

averaged foliage MC data at juvenile and mature stands were compared with remote 



79 

sensing indices (Figures 28 and 29), and duff and fine woody debris MC were 

compared with remote sensing indices in open stands (Figures 30 and 31).  

 
Figure 28: Foliage MC compared with five remote sensing indices at juvenile stands 
with Landsat 8 & 9 data in 2022, where blue points are training data, green lines are the 
linear regression based on blue points, and orange points are test data. 

Figure 29: Foliage MC compared with five remote sensing indices at mature stands with 
Landsat 8 & 9 data in 2022, where blue points are training data, green lines are the 
linear regression based on blue points, and orange points are test data. 

Model summaries and error statistics for remote sensing of foliage MC in juvenile 

and mature forests are shown in Table 16. R² values range from 0.002 to 0.126 for 

juvenile stands and from 0.032 to 0.297 for mature stands, while p values range from 



80 

0.0247 to 0.2890 for juvenile stands and from 0.0003 to 0.2740 for mature stands, 

which indicates weak relationships. When analysing the results for each stand 

individually, it can be observed that the GNDVI index had the highest R² value of 0.297 

for the mature stands, and the GNDVI index had the highest R² value of 0.126 for the 

juvenile stands. For the test data, the RMSE range for juvenile stands was between 

18.01 and 26.89, with the lowest RMSE observed using GNDVI. In contrast, for mature 

stands, the RMSE range was between 19.60 and 34.98, and the lowest RMSE was 

observed using VARI.  

 

Table 16: Statistical results of remote sensing indices with foliage MC at juvenile and 
mature stands (2022 Landsat 8 & 9) where y is observed FMC. 

Index Stand Type R² p RMSE Equation (train) N train N test 

NDVI Juvenile 0.070 0.0999 24.01 y = 66.4*NDVI + 65.23 40 27 

NDMI Juvenile 0.002 0.0623 19.47 y = 5.32*NDMI + 110.34 40 27 

NMDI Juvenile 0.030 0.2890 26.89 y = -24.92*NMDI + 124.21 40 27 

VARI Juvenile 0.062 0.1200 19.61 y = -52.18*VARI + 95.09 40 27 

GNDVI Juvenile 0.126 0.0247 18.01 y = 186.36*GNDVI + 9.33 40 27 

NDVI Mature 0.032 0.2740 21.56 y = 78.39*NDVI + 57.80 39 26 

NDMI Mature 0.212 0.0032 24.31 y = -79.70*NDMI + 140.56 39 26 

NMDI Mature 0.090 0.0632 25.67 y = 128.12*NMDI + 25.79 39 26 

VARI Mature 0.216 0.0029 19.60 y = -174.08*VARI + 49.98 39 26 

GNDVI Mature 0.297 0.0003 34.98 y = 341.56*GNDVI – 61.71 39 26 

 

Model summaries and error statistics for linear models were developed between 

remote sensing indices and duff and fine woody debris MC at open stands (Figures 30 

and 31) and are presented in Table 17. Similar to the findings in Section 5.3.1, the 
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relationship between the indices and duff and fine woody debris MC is relatively weak 

compared to their relationship to foliage MC, indicating that these indices may not be 

suitable for estimating woody debris MC. However, when using indices to estimate fine 

woody debris MC, it has lower RMSE (17.57 – 44.40) compared to duff (59.10 – 69.32).  

 
Figure 30: Duff MC compared with five remote sensing indices at open stands with 
Landsat 8 & 9 data in 2022, where blue points are training data, green lines are the 
linear regression based on blue points, and orange points are test data. 

 
Figure 31: Fine woody debris MC compared with five remote sensing indices at open 
stands with Landsat 8 & 9 data in 2022, where blue points are training data, green lines 
are the linear regression based on blue points, and orange points are test data. 
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Table 17: Statistical results of remote sensing indices with duff and fine woody debris 
MC at open stands, where FWD means fine woody debris, y is observed FMC (2022 
Landsat 8 & 9). 

Index Fuel Type R² P RMSE Equation (train) N train N test 

NDVI duff 0.079 0.0374 69.32 y = -185.32*NDVI + 256.41  55 38 

NDMI duff 0.036 0.1650 59.93 y = -93.98*NDMI + 166.56 55 38 

NMDI duff 0.027 0.2290 64.59 y = -157.4*NMDI + 227.79 55 38 

VARI duff 0.006 0.5900 59.10 y = 37.99*VARI + 148.66 55 38 

GNDVI duff 0.013 0.4130 65.48 y = -120.98*GDNVI + 211.58 55 38 

NDVI FWD 0.004 0.6390 17.57 y = 17.87*NDVI + 16.66 55 38 

NDMI FWD 0.012 0.4250 44.40 y = -6.70*NDMI + 19.96 55 38 

NMDI FWD 0.008 0.5240 36.63 y = 21.19*NMDI + 10.56 55 38 

VARI FWD 0.004 0.6590 23.99 y = -11.25*VARI + 22.09 55 38 

GNDVI FWD 0.029 0.2640 18.90 y = 74.00*GNDVI – 11.41 45 31 

  

 When comparing the results between sections 5.3.1 (Sentinel 2, 2021) and 5.3.2 

(Landsat 8 & 9, 2022), it can be seen that the R² values are generally higher, p-values 

are generally lower in Table 16 and 17 than in Table 14 and 15. This suggests that the 

relationship between the indices and foliage/duff MC is stronger and more statistically 

significant when using Landsat 8 & 9 data in 2022 than Sentinel 2 in 2021. 

 As previously discussed in the Methods chapter, the occurrence of multiple 

wildfires in central BC during 2021 resulted in significant smoke that may have impacted 

the remote sensing data collected during that year. Additionally, the sample collection 

dates in 2021 were only sometimes closely aligned with satellite collection dates, which 

may have further contributed to potential errors in the data. To determine which method 
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is more reliable, the remote sensing index derived from Sentinel 2 data was compared 

to the observed FMC data collected in 2022. 

5.4.3 Estimating FMC with Sentinel 2 data in 2022.  

 As stated in section 4.4.1, after January 25, 2022, the Sentinel 2 harmonized 

collection shifted data in new scenes to match the range of previous scenes. While 

using the harmonized collection, the QA bands were ineffective in removing cloudy 

pixels, so an NDVI filter was used instead. In 2022, sample collections around Smithers 

and Prince George were timed to coincide with Sentinel 2 overpasses, resulting in 

higher sample numbers than in 2021. Relationships between different remote sensing 

indices and observed MC are shown in Figures 32 and 33, with the orange lines 

indicating their best-fitting lines. Although there were more samples compared to data 

from 2021 using Sentinel 2 and Landsat 8 and 9 data in 2022, it created more noise and 

errors. 

 
Figure 32: Remote sensing indices compared with foliage MC for juvenile stands with 
Sentinel 2 data in 2022, where blue points are training data, green lines are the linear 
regression based on blue points, and orange points are test data. 
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Figure 33: Remote sensing indices compared with foliage MC for mature stands with 
Sentinel 2 data in 2022, where blue points are training data, green lines are the linear 
regression based on blue points, and orange points are test data. 

Statistical results from the 2022 Sentinel 2 MC models are given in Table 18. At 

juvenile stands, GNDVI had the highest R² value (0.175) and the lowest p value (0.0004) 

among all the indices, followed by VARI (R² = 0.139 and p = 0.0019) and NDMI (R² = 

0.137 and p = 0.0021. For mature stands, NMDI had higher R² value (0.160) among all 

the indices, followed by GNDVI (R² at 0.124), NDVI (R² at 0.110). Linear regression 

models showed stronger relationships for juvenile stands than mature stands when 

estimating foliage MC. The RMSE range for juvenile stands is between 16.97 – 22.87, 

which is close to mature forests (15.50 to 24.94). 

 

Table 18: Statistical results of remote sensing indices relationships with foliage MC at 
juvenile and mature stands (Sentinel 2, 2022), where y is observed foliage MC. 

Index Stand Type R² P RMSE Equation (train) N train N test 

NDVI Juvenile 0.083 0.0181 17.56 y = 42.31*NDVI + 82.85 67 45 

NDMI Juvenile 0.137 0.0021 16.97 y = 105.56*NDMI + 66.97 67 45 

NMDI Juvenile 0.003 0.1858 21.22 y = -27.35*NMDI + 126.85 67 45 
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VARI Juvenile 0.139 0.0019 21.82 y = -8.31*VARI + 99.8 67 45 

GNDVI Juvenile 0.175 0.0004 22.87 y = 58.23*GNDVI + 79.51 72 45 

NDVI Mature 0.110 0.0058 17.88 y = 53.63*NDVI + 80.34 68 46 

NDMI Mature 0.160 0.0006 20.81 y = 149.52*NDMI + 63.17 69 46 

NMDI Mature 0.006 0.4144 23.41 y = -26.37*NMDI + 126.7 69 46 

VARI Mature 0.092 0.0119 15.50 y = -18.03*VARI + 97.73 68 46 

GNDVI Mature 0.124 0.0033 24.94 y = 40.42*GNDVI + 82.97 68 46 

 

  Relationships between duff and fine woody debris moisture contents in open 

stands were examined with Sentinel 2 indices in 2022 (Figures 34 and 35). Similar to 

the results from Sentinel 2 data in 2021 and Landsat 8/9 data in 2022, the relationship 

between the indices and fine woody debris MC is generally weak (Table 19). However, 

there is some promise in estimating duff MC with NDVI and GNDVI indices, which have 

relatively higher R² values (0.210 and 0.157) and lower p-values (<0.05) (Table 19). 

Although there are no clear relationships between woody debris MC and remote 

sensing indices, RMSE values for fine woody debris models (21.36 to 56.56) are lower 

than for duff (69.26 to 85.88) (Table 19).  
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Figure 34: Remote sensing indices compared with duff MC at open stands with Sentinel 
2 data in 2022, where blue points are training data, green lines are the linear regression 
based on blue points, and orange points are test data. 

 
Figure 35: Remote sensing indices compared with woody debris MC at open stands 
with Sentinel 2 data in 2022, where blue points are training data, green lines are the 
linear regression based on blue points, and orange points are test data. 
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Table 19: Statistical results of remote sensing index relationships with fine woody debris 
and duff MC at open stands (2022 Sentinel 2), where FWD means fine woody debris, 
and y is observed FMC. 

Index Fuel Types R² P RMSE Equation (train) N Train N Test 

NDVI duff 0.210 <0.0001 85.22 y = -243.00*NDVI + 272.87 78 52 

NDMI duff 0.048 0.0549 73.49 y = -260.71*NDMI +187.38 78 52 

NMDI duff 0.072 0.0174 85.88 y = 383.11*NMDI – 69.23 78 52 

VARI duff 0.045 0.0629 72.80 y = 77.74*VARI + 180.20 78 52 

GNDVI duff 0.157 0.0003 69.26 y = -313.80*GNDVI + 301.72 78 52 

NDVI FWD 0.094 0.0064 56.56 y = -47.42*NDVI +50.36 78 52 

NDMI FWD 0.031 0.1250 45.36 y = -73.29*NDMI + 39.98 78 52 

NMDI FWD 0.060 0.0303 39.92 y = 194.32*NMDI – 76.61 78 52 

VARI FWD 0.002 0.1336 21.36 y = 6.23*VARI + 36.50 78 52 

GNDVI FWD 0.015 0.2810 36.41 y = -42.25*GNDVI + 53.55 78 52 

 

Taken as a whole, these results indicate that in 2021 and 2022, for juvenile 

stands, the GNDVI, NDVI, and NMDI had a stronger correlation with field observations 

and Sentinel 2 data, as evidenced by its higher R² values and lower p-values. NMDI had 

stronger relationships and correlations in 2021, although its low R² and high p-value in 

2022 may make it unreliable. No solid relationships were found between observed MC 

and remote sensing indices in the 2021 data for mature stands. However, in 2022, 

NDMI, GNDVI, and NDVI both had relatively high R² values and lower p-values. 

Furthermore, at open stands, the correlation between remote sensing indices with duff 

and fine woody debris MC is relatively weak in 2021 and 2022 with Sentinel 2 data. 
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However, NDVI and GNDVI showed stronger relationships and correlations in 2022 

when estimating duff at open stands. 

For Landsat 8 & 9 data in 2022 for juvenile stands, only GNDVI had a higher R² 

value and a lower p-value, while at mature stands, GNDVI, NDVI and GNDVI show 

statistically significant relationships. All indices had poor statistical results when using 

Landsat 8 & 9 data to estimate duff and fine woody debris MC.  

In conclusion, GNDVI appears to work best to estimate foliage MC in juvenile 

and mature stands, followed by NDVI and NMDI. In open stands, GNDVI and NDVI 

have better statistical results than other indices when estimating duff MC, and no index 

worked well with estimating woody debris MC. In the following sections, the use of 

GNDVI as an index of pre-fire FMC and comparing it with estimates of the burn severity 

will be discussed and explored.  

5.5 Burn severity, moisture, indices, and FMC 

Distributions of dNBR and RBR burn severities for open, juvenile, and mature 

stands in the Plateau Complex Fire are shown in Figures 36 and 37. Results indicate 

that juvenile stands had lowest fire intensities/severities, followed by mature forests, and 

open stands (high intensity/severity) (Figures 36 and 37)  

The juvenile blocks (blue polygons) had lower burn severity than mature and 

open stands, as measured by dNBR and RBR (Figures 36 and 37). It is reasonable to 

find some low burn severity patches not related to underlying indices/fuel differences, as 

they may have burned under cooler conditions (e.g., at night), or the fire has stopped or 

changed its direction while spreading. For example, in Figures 36 and 37, most open 

forests (recent clearcuts) have experienced high severity fire, but the open patches 

surrounded by juvenile forests only had low burn severity. Before comparing the indices 

and burn severities, it is essential to understand the fire behaviour and test the accuracy 

of using remote sensing to estimate burn severity. 
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Figure 36: dNBR for different stands on 6th July 2017 at Plateau Complex, centred on 
52.94105 N, -124.01571 W. 
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Figure 37: RBR value for different stands on 6th July 2017 at Plateau Complex, centred 
on 52.94105 N, -124.01571 W. 

Regardless of using dNBR and RBR, juvenile stands are mainly unburned 

(majority of dNBR <100 and RBR <35, Figures 38- 39). At the same time, mature 

forests showed a wide distribution of unburned to higher burn severity (higher than 660 

for dNBR and 298 for RBR, Figures 38- 39) values. Open stands had higher dNBR and 

RBR in general, which indicates the majority of the recently logged open forest has 

burned (Figures 38- 39). 
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Figure 38: Histogram of dNBR for different stand types, where dashed lines represent 
median dNBR. 

 
Figure 39: RBR histogram in different stands, where dashed lines represent median 
RBR. 

Pre-fire NDMI, NMDI, NDVI, VARI and GNDVI at different stands were used to 

compare with dNBR and RBR, as their relationships to the FMC had been determined in 

the previous section. The relationships between remote sensing indices and dNBR/RBR 
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in different stands are shown in Figures 40 to 45. As there are more than 49,000 data 

points, hexbin plots were used to visually investigate their relationships, where darker 

colour means more dense points/points overlay. There is a wide range of weak 

relationship when comparing burn severities and indices, as the study area is a mix of 

burned and unburned forests.  

Most open forests within the scene selected in the Plateau Complex Wildfire 

have been burned, as shown by relatively high dNBR/RBR. Mature forests have 

moderate burn severity values compared to the other two stand types. For juvenile 

forests, within the scene selected, the majority of juvenile forests was unburned. The 

relationship between indices and burn severities is unclear in juvenile and open forests. 

However, despite the noise, all indices except VARI in mature stands have an inverse 

relationship to burn severities (Figures 40 and 43): as the indices decreased, the burn 

severity increased.  

    

  
Figure 40: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs dNBR for mature 
forests, with their frequency distributions 
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Figure 41: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs dNBR for open 
forests, with their frequency distributions  
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Figure 42: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs dNBR for juvenile 
forests, with their frequency distributions. 
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Figure 43: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs RBR for mature 
forests, with their frequency distributions. 
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Figure 44: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs RBR for open 
forests, with their frequency distributions.  
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Figure 45: A) NDVI, B) NDMI, C) NMDI, D) VARI and E) GNDVI vs RBR for juvenile 
forests, with their frequency distributions.  

The relationship between remote sensing indices, such as NDMI and FMC, was 

investigated for different stand types in previous sections. Results indicate a relationship 

between the two in various stands; however, the remote sensing indices in different 

stands do not relate to subsequent burning severity in general.  

Both NDMI and GNDVI have relatively higher R² and lower p values when used 

to estimate foliage MC at juvenile and mature forests (Table 19). These relationships 

were used in juvenile and mature stands to estimate their FMC in different stands. 

Figures 46 and 47 shows estimated FMC at mature and juvenile forest computed by 

equations from Table 19. Juvenile forest has higher FMC in general than mature forest, 

regardless of using NDMI or GNDVI equations. For FMC calculated by NDMI (Figure 

46), most of the juvenile forest have FMC 100-120 % as well, however, at mature forest, 

FMC is between 60-100%, which is generally lower than juvenile.  In Figure 47 

(computed by GNDVI), most of the juvenile forest have FMC between 100-120%, while 

most of mature forest have FMC between 80-100 %.  

D 
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Figure 46: FMC calculated by NDMI for juvenile and mature stand on 6th July 2017 at 
Plateau Complex, centred on 52.94105 N, -124.01571 W. 
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Figure 47: FMC calculated by GNDVI at juvenile and mature stand on 6th July 2017 at 
Plateau Complex, centred on 52.94105 N, -124.01571 W. 

 In Figure 48 and 49, FMC estimated from NDMI and GNDVI at juvenile and 

mature strands were compared with the burn severities. Similar to NDMI/ GNDVI and 

burn severity in Figure 40 and 43, despite the noise, FMC calculated by NDMI and 

GNDVI at mature stands have an inverse relationship to burn severities; as the FMC 

decreased, the burn severity increased. There is no clear relation between FMC at 

juvenile stands and burn severities, as most of juvenile stands were unburned.  

Different stands with similar remote sensing indices and FMC values tend to 

have a wide range of burn severity (Figures 40 to 45, Figures 48 and 49), which 

suggests that remote sensing indices and FMC alone is not determining whether a 

stand has been burned. 
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Figure 48: A). FMC calculated by NDMI at mature stands, B). FMC calculated by 
GNDVI at mature stands, C). FMC calculated by NDMI at juvenile stands, D). FMC 
calculated by GNDVI at juvenile stands compared with dNBR. 
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Figure 49: A). FMC calculated by NDMI at mature stands, B). FMC calculated by 
GNDVI at mature stands, C). FMC calculated by NDMI at juvenile stands, D). FMC 
calculated by GNDVI at juvenile stands compared with RBR. 

 

A B 

C D 



102 

6. Discussion 

6.1 Field observations 

As mentioned in section 5.1, the moisture content (MC) of duff, fine woody debris, 

and foliage were compared in different stand types. In 2021 and 2022, duff had a 

significantly higher daily averaged MC in mature stands, followed by juvenile and open 

stands. For fine woody debris, the daily averaged MC was similar in mature and juvenile 

stands, with no significant difference (p=0.851). However, open stands had a 

significantly lower daily averaged MC than juvenile stands. When looking at foliage MC, 

open forests had a significantly higher daily averaged MC, while mature and juvenile 

forests had similar daily averaged MC without significant differences. 

Mature forests shed more needles/foliage, creating a thicker layer of litter that 

can trap moisture and slow down evaporation, resulting in higher MC in the duff layer 

(Harmon et al., 1986). Fine woody debris in mature conifer forests may have undergone 

more decomposition than in juvenile conifer forests, resulting in a higher overall 

moisture content, however, this can be offset by the accumulation of new fine woody 

debris in mature forests (Brown, 2003; Harmon et al., 1996). The major reason why 

open stands have lower duff and fine woody debris MC could be the lack of canopy 

cover. Mature and juvenile forests have denser canopy cover that shades the forest 

floor and reduces the rate of evaporation, helping to maintain moisture levels in the fine 

woody debris and duff layer (Wotton et al., 2005). 

At open stands, foliage was collected from actively growing trees younger than 

10 years old. Active growth in younger trees might result in higher moisture content as 

they require a high level of water intake (Lambers et al., 1998). 

Although field observations of FMC yield direct estimates of moisture levels in 

forest fuels, it is time-consuming and costly (Caccamo et al., 2011). Collecting samples 

on the day of satellite image acquisition is desirable to correlate field measurements 

directly with satellite data; however, collecting samples from all six locations used in this 

study in one day was not possible. Specific errors and outliers occurred throughout the 
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summer collection, such as negative values of FMC caused by recording errors. Several 

reasons might have contributed to the defects and inconsistencies, including. 

1. Transportation: In the beginning, the team in Prince George used sealed 

sandwich bags to retain the samples, with water frequently left on the bottom 

before measurement (lower moisture content than expected). 

2. Need for more experience and canopy access for sample collection: Failure to 

correctly label tree foliage species may have led to data analysis errors. Samples 

collected primarily from lower tree branches in juvenile and mature stands are 

also controversial to compare with remote sensing data as their exposed 

canopies were too high to reach.  

3. Calculation/ measurement errors: The loss of samples happened several times 

while measuring and transferring in and out of the oven. Collecting samples while 

raining, or immediately following a rain event, may also have caused 

measurement errors if not properly labelled to allow exclusion.  

An improved sample collection procedure could provide a more reliable 

observation database to compare with both empirical models and remote sensing 

indices. Future sample collection should use different methods such as drones or 

shotguns to collect higher foliage exposed to sunlight (Charron et al. 2020).  

6.2 Empirical Models to Estimate Fuel Moisture Content  

Weather conditions can vary across geographic regions and forest types, and the 

current fire weather stations can only accurately represent a limited range of forest 

areas. Results presented in section 5.2 suggest that the installation of in-stand sensors 

may yield a more accurate estimate of FMC, but a full revision of the FWI model, or the 

development of new empirical models to estimate FMC that considers in-stand data 

may be required. The operation of in-stand sensors can be costly and labour-intensive: 

sensors installed in remote forest areas require maintenance and regular visits to 

prevent data loss from wildlife and extreme weather. Alternatives to in-stand 

meteorological observations include interpolation of weather conditions from multiple 

nearby fire weather stations, weather satellites and high-resolution dynamically 

downscaled meteorological fields (Mandel et al., 2011). Weather satellites have the 
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potential to be used to monitor fuel moisture content remotely. However, their finest 

resolution is from the United States Department of Defense's Meteorological Satellite 

(DMSP) (2.7 km), Advanced Baseline Imager (ABI) (500m), JAXA Himawari Monitor 

(500 m), and which is too low to monitor different forest stands (Mohsin Butt, 2013; 

National Oceanic and Atmospheric Administration, 2021; Japan Aerospace Exploration 

Agency, 2015). 

Over the course of the fieldwork conducted for this research, some sensors were 

damaged by animals, causing data loss and equipment damage. Methods such as 

spraying anti-chew spray and surrounding sensors with metal/ plastic chicken wire have 

been used to protect the equipment. 

Due to the lack of equipment and the challenge of setting them up in dense 

forests, most of the weather sensors used in this research are quite different from the 

standard fire weather station. At all open sites around Smithers and Prince George, 

although temperature and relative humidity were measured at a screen level (1.5 

metres), wind speed was collected at a height of approximately 2 metres instead of 10 

metres. In juvenile and mature stands, the wind speed sensor was installed at a height 

of approximately 2 metres, and temperature and relative humidity were collected around 

0.30 m above the ground. These measurement heights may be more relevant to surface 

fuel conditions but make comparisons with standard weather and FWI data difficult. 

The comparison of different FMC models in section 5.2 revealed that while 

updating local weather and fuel conditions improved the models' performance, they 

could have worked more consistently. The updated models performed better for open 

sites than for mature and juvenile forest stands. The weather data for calculating and 

converting drying and wetting rates in the DMC and FFMC models were based on 

empirical relationships derived for pine forests in boreal and eastern Canada. 

Differences in forest types and weather conditions can result in differing empirical drying 

and wetting rates, leading to potential errors when using these rates in central BC. 

Given that the FWI model was developed and completed in the 1960 to 1970s (Van 

Wagner, 1987), it is necessary to update the empirical model to include fuel collection 

data from different forests and regions. As research and operational experience 

progress, fire management challenges change, and technology advances, along with 
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the expansion of data on the fire environment, the Canadian Forest Service Fire Danger 

Rating System (CFFDRS) must continue to update and evolve, despite previous 

updates (Canadian Forest Service Fire Danger Group, 2021). 

Empirical models had greater skill and reduced errors in the estimation of fine 

woody debris MC than for duff MC. This is likely due to the high variability of observed 

duff MC. One of the critical reasons for the high variability in the MC of duff is its high 

porosity, which allows for rapid absorption and release of moisture in response to 

environmental conditions (Stocks et al., 2004). Factors such as temperature, humidity, 

wind, and solar radiation influence the moisture absorption and loss rate and can lead to 

significant variability in duff MC over short periods and short distances (Deeming et al., 

1997). Additional reasons behind this variability could be the difficulty of collecting duff 

in open and juvenile stands or improper identification of the duff layer, as mentioned in 

section 6.1. 

6.3 Remote Sensing of FMC  

In section 5.3, none of the remote sensing indices tested showed a strong 

relationship with the FMC, which can be attributed to several reasons. Firstly, the time 

series of remote sensing data were interpolated using lowess interpolation methods, but 

the accuracy of this approach depends on the frequency and quality of data. During the 

wildfires in central BC in the summer of 2021, clouds and smoke significantly decreased 

the number of usable image capture days. Figure 50 shows the number of useable 

images from Sentinel 2 at the different sample sites in 2021. The significant gaps in 

image capture likely led to inaccuracies in the remote sensing index values extracted 

from the lowess function. Fortunately, in 2022, there were fewer wildfires, providing 

more frequent data than in 2021. However, the harmonised 2022 data resulted in the 

QA bands not working when filtering out clouds and cirrus clouds. This study used a 

NDVI threshold to remove cloud and shadow pixels, however, using NDVI to remove 

cloud/shadow pixels may introduce errors. Although matching sample collection days 

and satellite visit days can minimise the errors caused by the lowess function, due to 

labour limitations, MC samples could not be collected for all clear satellite visit days, 

which made it still necessary to use the lowess function for the 2022 data. Running a 
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smoothing function through the remote sensing index time series could also introduce 

errors, as it may not reflect the actual indices at the sample collection dates accurately. 

Further research could test the parameters of the lowess smoothing functions, but 

without more field observations and greater image frequency it will be a challenge to 

accurately compare field and remote sensing data.  

 

 
Figure 50: Usable NDMI indices in 6 sample collection sites in 2021 summer (late May 
to September) 

The relationship between FMC and remote sensing indices should also consider 

factors such as the type of foliage (pine, spruce, or fir), sun or shade exposure, and the 

foliage's height. However, in this study, only three samples were taken per stand per 

visit, and the challenge of keeping the foliage type and exposure consistent was not 

considered. Although the daily averaged foliage MC for different foliage types also don’t 

have significant different as well as the same stand, it might still be better to keep using 

the same foliage type at same stands. As a result, the comparison between remote 

sensing indices and FMC is not fully representative. In future studies, using exposed 

fuel data/ foliage from the canopy top could provide more representative results. 

Satellites such as Sentinel 2 and Landsat 8 & 9, with a resolution of 30 metres, can 

introduce inaccuracies in comparing remote sensing indices and FMC as each pixel 



107 

includes non-foliage components such as trails, trees, and ground (as shown in Figure 

3). Additionally, the frequency and timing of satellite visits can also impact the accuracy 

of results. For example, Landsat 8/9 visited the sample collection sites around Prince 

George and Smithers at around 10 a.m., but many samples were taken at 2 - 3 pm due 

to transportation and labour constraints. To obtain more accurate results, future studies 

could use drone-based remote sensing data, which has a higher resolution, is less 

impacted by clouds, and is closer to the sample collection time.  

Additionally, the regression models used to estimate FMC from remote sensing 

indices are sensitive to the subset of points used for model training. Further research 

into this sensitivity is required.  

6.4 Burn Severity Case Study 

 A portion of the 2017 Plateau Complex Wildfire was explored as a case study to 

examine potential relationships between wildfire severity and remote sensing indices 

related to pre-fire fuel moisture content. While harvest data provides mapped areas of 

open stands, and VRI data defined most of the forest with their forest age, there were 

still some forests not defined. Clouds, shadows, and smoke can also decrease the 

chance of getting pre-fire imagery prior to the wildfire event, which may lead to false 

pre-fire forest conditions.  

 The results shown in section 5.4 indicated that there is no strong relation 

between remote sensing indices and burn severity ratios. In general, most open, 

recently logged stands had high burn severities, many juvenile forest stands remained 

unburned, while mature forests have an intermediate distribution of burn severity.  

At the end of summer in 2021, ground-based severity assessments were 

conducted Plateau Complex wildfire sites (data not presented). To evaluate burn 

severity results between remote sensing and on-site observation, 15 of the unburned 

forests (fire island) and 17 burned forests were visited. When visiting unburned 

areas/fire islands, it was common to notice that their edges had a relatively higher burn 

severity than the centre of the juvenile forest stand. From burn severity assessments 

and fieldwork observation, wildfires are not just suddenly stopped when they meet the 
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juvenile stands, they burn the edges of the stands, and their spreading slows as they go 

deeper into the forest. Evidence of low intensity fire close to the ground, such as 

scorched tree bases, less moss and recently established fireweed (Epilobium 

angustifolium), was found frequently within the fire refugia, even far from the edge of the 

forest. Open stands and very young juvenile stands, for example, can have a higher 

burn severity potential due to their high woody debris components after recent logging 

(Brown 2003, Lindenmayer et al. 2009). 

Section 5.1 showed that FMC was similar in juvenile and mature forests in Prince 

George and Smithers in 2021 and 2022, and that weak relationships exist between 

remote sensing indices and FMC. GNDVI, NDMI, and NDVI indices showed potential in 

estimating future wildfire severity in mature stands (Figures 44 and 47). However, no 

strong relations were found between pre-fire FMC and burn severities, which suggests 

that FMC is not a decisive factor for forest survival during wildfires. Linear and non-

linear models were not examined in this research due to the spread of the data. Future 

work should attempt to identify the form of the relation between burn severity and 

moisture/greenness indices.  

The high forest density in juvenile forests may also play a role in reducing the 

spread of fire by decreasing wind speed. In section 4.3.3, wind speed was found to be 

significantly lower than mature and open stands, which may prevent fire spread and 

create fire refugia. This highlights the complex interplay between various factors that 

can influence the impact of wildfires on forests, and the importance of considering a 

range of factors when evaluating the resilience of forests to fire. 

7. Conclusions 
 This research compares empirical models and remote sensing indices for 

predicting forest duff, fine woody debris, and foliage MC values measured in central BC. 

Burn severities and their relation to pre-fire remote sensing indices were also analysed 

in different stands from the wildfire case study to understand the fire behaviour in fire 

refugia. 
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The FWI and its locally modified versions were tested in this research. By 

comparing the different approaches in DMC and FFMC models, it was found that using 

local fuel limits and weather station data resulted in better estimates of duff and woody 

debris MC. However, the cost of weather stations and sensors and various wetting and 

drying rates in the model made it difficult for any of the models to work consistently well. 

When comparing the performance of FWI models in different stand types, open 

(recently logged) stands had lower errors than juvenile and mature conifer stands, as 

the model was designed to estimate MC with weather data collected in open stands in 

Eastern Canada. Although the model was designed to and intended to be 

representative of natural forests, the mature and juvenile forests in central BC are 

different than forests in Eestern Canada and US. In general, FFMC and its locally 

updated version worked better than DMC at predictive local MC of fine woody fuels and 

duff, possibly due to the greater variability of observed duff MC (14.38 – 439.27 % 

compared to fine woody debris 2.17 – 228.38 %). 

After comparing observed MC and remote sensing indices at the different stands 

and sites, a few relationships can be highlighted. Firstly, Sentinel-2 data yielded 

stronger relationships between moisture content and remote sensing indices. GNDVI, 

NDMI, and NDVI had higher R² values (higher than 0.1) and lower p-values (less than 

or equal to 0.005) when estimating foliage MC in juvenile and mature stands, compared 

to NDVI and GNDVI. When estimating duff MC in open stands, NDVI and GNDVI had 

better statistical results (higher R² and lower p-value) than other remote sensing indices. 

In contrast, almost none of the remote sensing indices had a clear relationship with fine 

woody debris MC in open stands. In general, the results of using remote sensing indices 

to estimate FMC were not convincing and accurate, with the highest R² being 0.175 

(GNDVI) for foliage in mature forests, 0.160 (NDMI) for juvenile forests, 0.210 (NDVI) 

for duff, 0.094 (NDVI) for fine woody debris in open stands. Due to the impact of satellite 

visit frequency, band resolution, weather, and the quality and quantity of observation 

data, it is unlikely that strong relationships between remote sensing indices and FMC 

can be obtained. 

A case study of the 2017 Plateau Complex fire in central British Columbia was 

used to examine pre-and post-fire forest conditions through remote sensing. The results 
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showed that juvenile stands in the Plateau complex fire had lowest burn severity in 

general, followed by mature forests and open stands. Remote sensing indices related to 

moisture or greenness could not be used to determine fire severity in juvenile stands but 

did provide information on the fire severity in mature stands. By using NDMI and GNDVI 

equations, juvenile forests tended to have a higher moisture content level than mature 

forests, however, the relations of FMC between FMC and dNBR/RBR is still 

undetermined. Thus, FMC might not be a conclusive factor in the observation that 

juvenile forests can function as fire refugia. The relationship between remote sensing 

indices and burn severity is still being determined when looking at a broader study area. 

Juvenile stands had significantly lower in-stand wind speeds than both mature and open 

stands (Figure 18), and this should be investigated further for understanding fire refugia 

and wildfire behaviour in central British Columbia.  
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Appendix  
Appendix 1: Sample sites around Prince George and Smithers 

Site Name Elevation (m)    Latitude Longitude 

North Fraser Juvenile 710 54.24368 -122.48823 

North Fraser Mature 698 54.242285 -122.48995 

North Fraser Open 698 54.243852 -122.49074 

Stone Creek Juvenile 860 53.6139 -122.53723 

Stone Creek Mature  895 53.616179 -122.53591 

Stone Creek Open 881 53.616222 -122.5379 
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Tamarac Juvenile 858 53.8701 -123.37023 

Tamarac Mature  869 53.872643 -123.36881 

Tamarac Open 865 53.871334 -123.37044 

Barren Juvenile 1051 54.51044 -126.61434 

Barren Mature 1043 54.511318 -126.61125 

Barren Open 1059 54.50796 -126.61509 

Chapman Juvenile 848 54.8839 -126.62353 

Chapman Mature 854 54.882793 -126.6376 

Chapman Open 809 54.88272 -126.62893 

McDonnell Juvenile 990 54.780862 -127.52063 

McDonnell Mature 981 54.781871 -127.50614 

McDonnell Open 980 54.78217 -127.51434 

Dennis Juvenile 883 54.761853 -127.46593 

Dennis Mature 885 54.762177 -127.46537 

Dennis Open 885 54.761427 -127.46753 

 

Appendix 2: Sample sites around Prince George and Smithers 

Fire Weather 
Station (FWS) Elevation (m) Latitude Longitude Sample site name Distance (km) 

Bear Lake 715 54.482 -122.683 North Fraser 27.3 

Hixon 615 53.411 -122.596 Stone Creek 22.1 

Bednesti 825 53.865 -123.323 Tamarac 3.21 

Houston 608 54.394 -126.618 Barren 11 

Upper Fulton 900 55.034 -126.8 Chapman 20.1 

Pine Creek 1320 54.684 -127.326 McDonnell/Dennis 18.5/12.5 
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Appendix 3: List of weather stations installed and used in this research in 2021-2022, 
where Temp=Air temperature (°C), RH= Relative humidity (%), WS=Wind speed (Kph), 
P=precipitation (mm), NF =North Fraser, SC= Stone Creek, TM=Tamarac, 
MD=McDonnell, DS=Dennis, Br= Barren, and CP=Chapman. Notice all the tipping 
buckets and wind sensors at juvenile and mature stands were only installed after mid-
summer of 2022. The recoding interval for 30 cm HOBO loggers were set at 15 mins 
and one hour for open weather stations. 

Site Name Sensor Installed 
Parameters 
measured  Latitude Longitude  Elevation(m) 

Date of data 
collection 

NF Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.243689 -122.48823 710 

2021-06-08 to 
2022-10-18 
 

NF Mature 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.242285 -122.48995 698 

2021-06-08 to 
2022-10-18 
 

NF Open 

Hobo, weather 
station, tipping 
bucket 

TEMP, RH, 
WS, P 54.243852 -122.49074 698 

2021-06-08 to 
2022-10-18 
 

SC Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 53.613937 -122.53723 860 

2021-06-09 to 
2022-10-18 
 

SC Mature 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 53.616179 -122.53591 895 

2021-06-09 to 
2022-10-18 
 

SC Open 

Hobo, weather 
station, tipping 
bucket 

TEMP, RH, 
WS, P 53.616222 -122.53790 881 

2021-06-09 to 
2022-10-18 
 

TM Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 53.870100 -122.37023 858 

2021-06-09 to 
2022-10-18 
 

TM Mature 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 53.872643 -123.36881 869 

2021-06-09 to 
2022-10-18 
 

TM Open 
Hobo, weather 
station 

TEMP, RH, 
WS, P 53.871334 -123.37044 865 

2021-06-09 to 
2022-10-18 

MD Juvenile Hobo TEMP, RH 54.780862 -127.52063 990 
2021-07-08 to 09-
03 

MD Mature Hobo TEMP, RH 54.781871 -127.50614 981 
2021-07-08 to 09-
03 
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MD Open 
Hobo, weather 
station 

TEMP, RH, 
WS, P 54.782170 -127.51434 980 

2021-07-08 to 09-
03 

DS Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.761853 -127.46593 883 

2022-07-06 to 10-
27 

DS Mature 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.762177 -127.46537 885 

2022-07-06 to 10-
27 

DS Open 
Hobo, weather 
station 

TEMP, RH, 
WS, P 54.761427 -127.46753 885 

2022-07-06 to 10-
27 

BR Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.510444 -126.61434 1051 

2021-07-09 to 
2022-10-27 

BR Mature 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.511318 -126.61125 1043 

2021-07-09 to 
2022-10-27 

BR Open 
Hobo, weather 
station 

TEMP, RH, 
WS, P 54.507960 -126.61509 1059 

2021-07-09 to 
2022-10-27 

CP Juvenile 

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.883900 -126.62353 848 

2021-07-09 to 
2022-10-27 

CP Mature  

Hobo, wind 
sensor, tipping 
bucket 

TEMP, RH, 
WS, P 54.882793 -126.63760 854 

2021-07-09 to 
2022-10-27 

CP Open 
Hobo, weather 
station 

TEMP, RH, 
WS, P 54.882720 -126.62893 809 

2021-07-09 to 
2022-10-27 

Appendix 4: List of weather stations installed and used in this research in 2021-2022, 
where T=Air temperature (°C), RH= Relative humidity (%), Wind=Wind speed (Kph), 
Pre=precipitation (mm), for data precision, the number means precision after 0.  

Sensor Name 
Data 

measured 
Sampling 
Frequency Data precision 

Data 
measured 
height (m) 

Open weather 
station 

T, RH, 
Wind, Pre Hourly  

T (0.001°C), RH/Pre 
(0.1%/0.1mm), Wind 
(0.01kph) 

2 

Hobo U23 
sensors T, RH 15 mins T (0.001°C), RH(0.001%) 

0.3 

Tipping bucket  Pre hourly  Pre (0.01%) 0.3 
Wind speed 
sensor wind 15 mins Wind (0.01mm) 

2 
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Appendix 5: Average and variance of temperature (T, °C), relative humidity (RH, %), 
wind speed (ws, kph) as well as Precipitation (P, mm) in different stands from data 
collected in summer of 2022. 

Stand Avg T Var T Avg 
RH 

Var 
RH 

Avg 
ws 

Var 
ws Avg P Var P 

Juvenile 14.17 10.49 72.71 615.64 0.1 0.03 1.57 18.23 
Mature 13.95 11.94 79.64 157.15 0.03 0 1.27 36.62 
Open 15.29 14.2 72.61 130.32 0.79 0.4 1.54 22.89 
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Appendix 6: A) Cloud and shadow-free true colour image, and B) NDVI for the North 
Fraser site, image captured on June 2nd, 2022, centred at 54.252924 N, 122.499171 W. 

 

A 

B 
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Appendix 7: -A Cloudy and cloud-shadowed true colour image, and B) NDVI for the 
North Fraser site, image captured on June 4th, 2022, centred at 54.252924 N, 
122.499171 W.    

A 

B 
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Appendix 8: A) Cloud true colour image,  and B) NDVI for the North Fraser site, image 
captured on June 9th, 2022, centred at 54.252924 N, 122.499171 W. 

A 

B 
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Appendix 9: Daily averaged FMC in 2021 for different stands and fuel types at the 
Prince George and Smithers study locations. The number of observations averaged to 
create each point varies between 3 and 15, depending on the number of sites visited.  

 


