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Abstract

Glaciers hold 1.7% of the Earth's total water supply, but they contain 68.7% of

its freshwater. Given the global warming trend, accurate and recent inventory is

necessary to assess glacial changes over time. However, frequent cloud and debris

cover often make it difficult to determine the glacier's exact edge. Multispectral

Landsat 8 imagery along with data from the Global Land Ice Velocity Extrac-
tion (GoLIVE) project are combined to to create a Bayesian multivariate general

additive model of the glaciers surrounding Mount Rainier, with Autoregressive

Moving Average (ARMA) and Gaussian processes used to model the temporal

and spatial autocorrelations. Using root mean square error and Watanabe-Akaike

information criterion, all 42 combinations of ARMA models up to 4 total pa-
rameters and exponential, Matem and spherical covariance kernels were com-
pared. The ARMA(3,1) processes with the exponential Gaussian process kernel

was determined to be the best fit model. Gaussian mixture models, hierarchical

clustering, hard and soft K-means clustering, and support vector machines are

used to classify the posterior distribution. The hard K-means algorithm was the

best classifier, and it accurately predicted 85.1% of the glaciers, compared to 68.8%

from a univariate classification on the Red/SWIR band ratio.
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Chapter 1

Introduction

Glaciers hold less than 2% of the world's total water volume; however they con-
tain more than 68% of its freshwater supply. [1] Given the large and often remote

nature of glaciers, it can be difficult to obtain reliable outlines of glacier extents.
Manual delineation of the glacial outline can be time consuming and relies on the

competence and experience of the technician [2]. Furthermore, clouds and debris

cover may obscure the glacier, making the underlying ice hard to identify and

model.

This modelling can be performed in a Bayesian framework. Bayesian models

are based upon developing a model structure for the data and the underlying

parameters. These models can be used to make new predictions or understand

the underlying process, but they are often expensive computationally, so tact with

model complexity and approximation methods is essential.
The work outlined in this thesis focuses on investigating methods to perform
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Figure1.1: Debris-covered toe of Emmons Glacier on Mount Rainier, August 1984
(Photo by Topinka Lyn).

efficient Bayesian multivariate spatiotemporal analysis with application to the

glaciers surrounding Mount Rainier (46.8523° N, 121.7603° W), an isolated stra-

tovolcano in Washington State, USA. This work can be summarised by two parts.

The first part creates a multivariate analysis that models the spatiotemporal date

to fill in gaps in the missing data. The analysis is done under a Bayesian paradigm,

with Gaussian process and autoregressive moving averages modelling the spatial

and temporal data. Seemingly unrelated regression is used to model the multi-
variate response variables. The second section is a classification of the previous

section's model output. The K-means, support vector machine, hierarchical clus-

tering algorithms, and Gaussian mixture models are used for clustering the mul-

tivariate structure into glacier. The second chapter of this work gives a summary
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on current data and methods used within the realm of geostatistics. The third

chapter presents the data used in this analysis. The fourth chapter formalises the

spatiotemporal model used in this work. The fifth chapter presents the results,

and finally the sixth chapter provides a discussion and outlines future work.

13



 
 
 
 
 
 
 
 
 
 

 

Chapter 2

Literature Review

2.1 Methods for Glacier Mapping

Glacier mapping, or determining the outline of a glacier, is done through multiple

ways with a variety of data. The available data can be grouped as passive and

active data. Active data includes lidar and radar data. While some success has

been found mapping glaciers using lidar, initially a portmonteau of "light" and

"radar" [3,4], the data acquisition can be expensive. Synthetic aperature radar

involves repeated pulses of radio waves, of which the echo is recorded and used

to create a reconstruction of the landscape. While the radar data is able to "see"

through clouds, there can often be quality issues in mountainous terrain. [5].

Passive data includes optical and thermal satellites. Optical sensors collect so-
lar radiation reflected by the earth's surface in the visible and near infrared bands

of the electromagnetic spectrum. Satellites short revist times and large swaths
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make them useful for glacier mapping [6]. The Landsat 8 satellite, launched in

2013, has11 multi spectral bands with resolutions of 15m x 15m and 100m x 100m,

and a revisit period of 16 days, to minimise the seasonal snow cover, acquisition

dates are typically limited to between August and mid September. This limits the

viable images per year to 3-4 images. [7]. Table 2.1 shows the bands, wavelengths,

and spatial resolutions of the Landsat 8 satellite.

Band ratios or standardised difference ratios, typically calculated from the

green, red, Near Infrared (NIR), and Short Wave Infrared (SWIR) bands, are com-
monly used as indices to differentiate between glaciers and the surrounding bed-
rock [8-11]. With this multispectral data, thresholding is a common technique,

in which either a predetermined threshold is declared [9,10], or the sample is

inspected and a threshold is determined to bisect the sample [5].
As glaciers continue to melt, rock and debris cover increasing amounts of a

glacier's surface. Depending on the thickness of the debris cover, it can have

Bands Wavelength(nm) Resolution(m)
Band 1 - Coastal aerosol
Band 2 - Blue
Band 3- Green
Band 4 - Red

0.43-0.45 30
0.45-0.51
0.53-0.59
0.64-0.67
0.85-0.88

30
30
30

Band 5 - Near Infrared (NIR)
Band 6 - Short Wave Infrared (SWIR) 1 1.57-1.65

2.11-2.29
0.50-0.68
I.36-1.38
10.6-11.19
II.50-12.51

30
30

Band 7 - SWIR 2 30
Band 8 - Panchromatic
Band 9 - Cirrus
Band 10 - Thermal Infrared (TIRS)1
Band 11 - Thermal Infrared (TIRS) 2

15
30
100
100

Table 2.1: Multispectral Landsat 8 data
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both an albedo effect and an insulation effect. Where debris cover is thin, it

can decrease the albedo, or proportion of incoming radiation that is absorbed

by a surface, causing the glacier to melt more quickly. As the thickness of the

debris cover increases, the debris forms barrier between the underlying ice and the

atmosphere, causing the glacier to melt more slowly. Withe the current multispec-
tral thresholding techniques, debris cover is commonly a confounding variable,

making surrounding bedrock and glacier debris indistinguishable.
To help with the debris cover, various techniques and new data sources have

been developed. Digital Elevation Models (DEM) have been used to create a slope

or elevation variable to help model debris cover [10,12]. Synthetic Aperture Radar

(SAR) data has also been used with offset tracking, in which motion between two

images is calculated using a cross-correlation algorithm [13], or interferometry. In

interferometry, the difference in two images is used to model the spatial change

[14,15].

The National Snow and Ice Data Center released a dataset as part of the glacial

velocity titled Global Land Ice Velocity Extraction from Landsat8 (GoLIVE) project.
This covers all glaciers with an area over 5 km2. Pairs of Landsat 8 images are

superimposed upon one another. Using an image correlation algorithm, pixels

corresponding to ice velocity are generated. [16]. Some recent success has been

found using this data source [17,18]; however, the data is noisy, and given it is

a product of optical satellite data, the data can be frequently obstructed by cloud

cover.

Given a set of spatial images aquired over multiple years, mapping glaciers
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can be done through a spatiotemporal paradigm. The simplest method uses an

average at each spatial site to flatten the spatiotemporal data into spatial data

[17,19]. In a similar nature, some researchers use the year as a coefficient in

linear regression [20,21], These simple methods help efficiently model the glacier

data, although there is a trade off in complexity. More complex models such as

Autoregressive Moving Average (ARMA) [22] and (local) polynomial regression

[23,24] are also in use for deliniation of glacier outlines.
Despite multiple variables sampled at each pixel, few true multivariate models

are used to model the glacier data. Frequently, some supervised classification

techniques are employed, such as multivariable logistic regression [25]; however,

caution must be taken due to frequent high correlation among the covariables.
In some research, the multivariate data is reduced through principal components

analysis (PCA) [26], similar to the previously mentioned band ratios and differ-

ences. Co-Kriging is also used, where the undersampled singular variable of note

is modelled by highly sampled multivariate covariates.

Classification methodsare varied and include the previously mentioned thresh-
olding and multiple logistic regression. In addition, object-based clustering [12,

27], in which objects are based upon similar sample values and proximity, is often

used and is akin to hierarchical clustering. Multivariate clustering techniques

such as K-means and K-medoids, which minimise the error around cluster mean

or median respectively, [28,29] are also employed. Machine learning techniques,

such as support vector machines and neural nets, have also been applied to glacier

classification with some success [28,30]. Instead of directly classifying data, the
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Expectation-Maximisation (EM) algorithm is often used when there is missing

or unlabelled data. The theory is that it is easier to estimate and model using

a missing latent parameter, than to model the distribution directly. In this case,

instead of classifying the glacier directly, the EM algorithm attempts to identify

the unknown parameters of a mixture distribution, which then can be used to

classify the glacier [15,31]. Manual delineation is also used to define a glacier's

extent, in which an expert defines the glacier edge based on a visual interpretation

of the glacier edge. This method is typically performed using colour composites

from optical satellites. Manual deliniation may get high results; however, it can

be time consuming and not applicable for the delineation of multiple glaciers [32].

2.2 Contribution of this Work

Overall, spatial methods are well utilised in current glacier remote sensing re-
search, typically through a Kriging variant. The spatiotemporal framework is

typically used to impute missing data with a temporally adjacent sample. Addi-
tionally, the majority of research models are developed with a univariate response.

The contribution of this work is to broaden the current methods in use in three

ways. Firstly, this work is done within a Bayesian paradigm that allows the model

parameters to vary and captures the uncertainties involved in the modelling and

final classification of the glacier rather than relying on the user's fixed knowledge

of the spatiotemporal processes, as implicit in more commonly used methods.

Secondly, this work avoids flattening the data in order to maintain its spatiotem-
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poral nature. Finally, the model developed in this work has a multivariate re-

sponse, to account for correlations within the errors of the response variables and

to assist with the final glacier classification.
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Chapter 3

Data

The glaciers surrounding Mount Rainier were chosen for a variety of reasons.

Firstly, it is a fairly isolated group of glaciers, so there is a clear split between

glacier and surrounding area. Secondly, there was a recent glacier inventory of

Mount Rainier in 2015 shown in Figure 3.1. Finally, as it is located in the United

States, Landsat 8 Analysis Ready Data (ARD) is available. The United States

Geological Survey (USGS) releases the ARD as preprocessed data that has been

tiled, and top of atmosphere and atmospherically corrected for direct analysis

and immediate use. The data is also georeferenced so that the internal coordinate

reference system matches between scenes. [33]

The initial plan for this research involved incorporating radar data and inter-
ferometry; however, there were issues with coregistering the SAR scans due to

poor quality DEM data in mountainous regions. As a result only optical data

from the Landsat 8 satellite and the GoLIVE project, also derived from Landsat 8
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satellite, were used for this work. The data was clipped to a bounding box 26 x 20

km immediately surrounding Mount Rainier.

3.1 Preprocessing

Some further processing for the ARD and GoLIVE data was needed. The USGS

uses the Function of Mask (Fmask) algorithm to determine cloud cover on pixels.
Theoretically, the SWIR band is able to distinguish between clouds and underly-
ing ice; however, clouds made of ice crystals may cause the two to be indistin-

guishable [34]. Along with the multispectral data outlined in Table 2.1, the USGS

releases a quality assessment band, which show the cloud and cloud shadow

cover results of the Fmask algorithm. This was used to remove cloud and cloud

shadows. Figures 3.2 and 3.3 show the pattern of missing data, and Table 3.1

shows the proportion of missing data per year. The data is relatively complete in

years 2013, 2016, and 2017. In 2015, a pair of clouds covers up most of the glacier,

causing most of the image to be removed. In 2019, the most cloud-free image is

one that bisects the glacier, leaving roughly a third of the image complete. In 2014,

the western half of the image is covered in clouds causing half of the image to be

removed.
The resolutions between the ARD and GoLIVE data also differed, the ARD

data is 30m x 30m, while the GoLIVE data is 100m x 100m. Given that three quar-

ters of the data is at a higher resolution, the GoLIVE data was resampled to 30m x

30m using a nearest neighbour algorithm. The data was clipped to a approximate
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20km x 20km area surrounding Mount Rainier, resulting in approximately 800,000

observations.

The additional processing of the ARD and GoLIVE data is as follows. Firstly,

all ARD and GoLIVE images were downloaded from 2013-2019 for the period

between August 01 to September 21. Data access data was March 2019 for years

2013-2018, and October 2019 for 2019. Secondly, data was clipped to the area im-
mediately surrounding Mount Rainier Thirdly, cloud and cloud shadows were re-
moved using the quality assessment band. Fourthly, for each year, the most com-
plete image was selected. Fifthly, ARD and GoLIVE images from each year were

combined to create a multivariate spatial matrix. Finally, images were stacked

together to create a multivariate spatiotemporal matrix.

Note that the release date for the ARD program was November 2017. Given

its relative infancy, by March 2019 not all Landsat 8 imagery for 2013-2018 was

updated into the ARD program. As a result, more cloud-free images for 2013-
2018 have been added after the data download and processing was completed.

Year Aquisition Date Proportion of Cloud Cover over Area of Interest
2013 August 20
2014 August 07
2015 September 20
2016 September 13
2017 August 15
2018 August 18
2019 August 14

0.28
0.56
0.53
0.20
0.17
0.40
0.68

Table 3.1: Aquisition Dates and proportion of incomplete observations due to
cloud cover for 2013-2019.
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Figure 3.1: SWIRl-NIR-red composite of Mount Rainier on August 23, 2020. The
red outline represents the extent of Mount Rainier's glaciers in 2015. This extent
was obtained from Andrew Fountain, Portland State University.
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Figure 3.2: SWIRl-NIR-red composite image pairs of Mount Rainier for 2013-2016. Left
image is complete image, right image has clouds and cloud shadows removed.
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3.2 Variables of Interest

As previously mentioned, with multispectral data, there are many band ratios

and differences to choose from. NDSI ( creen+swiR ) [10/ 35] and the Red/SWIR

band ratio [8,11] were frequently suggested. Surface temperature (ST) was added

as a frequent accompaniment to multispectral indices [30, 36]. The pixel speed

component of the glacial velocity was added from the GoLIVE project. Due to

memory and computation time constraints, only 4 variables were chosen. Figures

3.4, 3.5, 3.6, and 3.7 show the spatial distribution of the variables of interest.

This work makes a few assumptions about the spatiotemporal data. Firstly,

due to georeferencing of the ARD imagery, the measurements are taken at the

same set of locations over different instances in time. Secondly, despite being cap-
tured anytime between the dates of Aug 01 and Sept 21, the time measurements

are assumed to be equally spaced, i.e. one year apart. If the time measurements

were not equally spaced apart, continuous, rather than discrete, time modelling

would have been more appropriate.

Missing data is said to be missing at random (MAR) if the distribution of

the missing data does not depend on the missing values, p(0|yobserved/ ymissing ) =
p(0|yobseTved ) - Missing data is missing completely at random (MCAR) if

p(0|yobserved/ ymissing ) = p(0) arid not at random (MNAR) if the distribution of 0

is conditional upon ymissing - The MAR (but not the MCAR) assumption is further

supported by including as many observations as possible, as the increased num-
ber of observations decreases the degree on which the missing data is modelled

by an unobserved parameter [37]. With application to this work, the weaker



 
 

 

assumption of MAR is sufficient for Bayesian inference without further requiring

modelling of a missing data parameter [37], so the largely missing years of 2016

and 2019 do not explicitly change the modelling process.
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Figure 3.4: Grid of Red /SWIR Band ratio of Mount Rainier's glaciers 2013-2019. The
grey indicates missing data due to clouds or cloud shadows.
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Figure 3.5: Grid of surface temperature of Mount Rainier's glaciers 2013-2019. The grey
indicates missing data due to clouds or cloud shadows.
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Figure 3.6: Grid of NDSI of Mount Rainier's glaciers 2013-2019. The grey indicates
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Figure 3.7: Grid of glacier speed of Mount Rainier's glaciers 2013-2019. The grey
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Chapter 4

Methods

Everything is related to everything else. But near things are more

related than distant things.

-Tobler's First Law of Geography

This quote largely summarises the problems with spatial, and by extension

spatiotemporal modelling. The independence and identically distributed assump-
tion of observations is no longer applicable, and thus the development and study

of new techniques is necessary. There are a few different ways of modelling

spatiotemporal data. One way is to approximate the spatiotemporal process as

a collection of spatial processes taken at different time indices. This is essen-
tially a temporal extension of the spatial process. This way represents most of

the research done within remote sensing. Historically, obtaining satellite images

was expensive [38], so many applied methods were developed with a minimal

amount of different time indices. Currently this is seen with three-dimensional
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data being flattened, or techniques such as co-Kriging using adjacent temporal

images to model a variable of interest. Alternatively, spatiotemporal modelling

can be perceived as a spatial collection of time series. This is the paradigm in

which this this thesis research is approached. The underlying assumption is that

the temporal dependence is as natural to model as the spatial dependence [39].

4.1 Modelling Overview

The modelling is done under a Bayesian paradigm, described in Section 4.2. This

will allow the uncertainties to be captured through the distribution of the pos-

terior and then predict the missing data. As the Bayesian posterior has no ana-

lytical solution, the Bayesian inference is performed using Markov chain Monte

Carlo methods, described in Section 4.3. Given the highly correlated variables

of interest, a multivariate modelling approach is necessary. The four response

variables are modelled through a generalised additive model, defined in Section

4.4. The link between the four response variables is done through seemingly

unrelated regression, which is described in Section 4.5. Autoregressive moving

averages and Gaussian processes are respectively used to model the temporal and

spatial autocorrelations within the generalised additive model. These methods

are described in Sections 4.6 and 4.7. Each of these methods have varying levels

of complexity, and the methods for choosing the best model is described in Section

4.8. The model chosen via Section 4.8 is then used to predict the cloud covered,

missing data. This complete dataset is then classified using techniques described
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in Section 4.9. Finally, a principal components analysis, defined in Section 4.10, is

used to support the choice in multivariate response variables for this work.

4.2 Bayesian Methodology

The Bayesian approach to modelling takes its name from the 18th Century En-

glish non-conformist minister Thomas Bayes, well before the advent of modem

statistics. Despite the name, the present form of Bayes's theorem comes from

French mathematician Pierre-Simon Laplace, who generalised Bayes's theorem

to any probability distribution:

P(0 I *) ocp(x | 0) x p(0) (4.1)

Posterior a likelihood x prior. (4.2)

0 is the unknown parameter of interest and x corresponds to the data. Bayesian in-
ference is performed upon the posterior, in which prior information is updated via

the likelihood. However, for most situations, this posterior integral is intractable,

meaning it has no closed-form solution. Techniques have been developed to es-
timate these posterior distributions through approximations such as integrated

nested Laplace approximations or variational Bayes, or through Markov Chain

Monte Carlo (MCMC) algorithms [40,41].

The strength of Bayesian inference, with regards to this thesis research, is how

it handles missing data. Bayesian inference supports a general approach through

which missing data is represented as one or more parameters estimated via the
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posterior [37].

4.3 Markov Chain Monte Carlo

Becoming popular in recent decades, MCMC methods date back to World War

II, when they were used to solve nuclear diffusion problems. The MCMC name

combines two concepts: Markov chain and Monte Carlo. The Markov chain

represents that the samples are generated by a sequential process. Each sample

is used in an iterative process to generate the next random sample. The Markov

property states that each sample depends on only the previous sample, not any

samples before then. A Monte Carlo process is the practice of estimating the

properties of a distribution through random sampling of the distribution, rather

than symbolic analysis.

There are several MCMC algorithms available, the one used in this work is a

Hamiltonian Monte Carlo (HMC) algorithm coded in Stan, a programming lan-
guage named after Polish scientist Stanislaw Ulam, a creator of Monte Carlo meth-

ods. The Hamiltonian, often used in physics, is an operator that relates the changes

of potential and kinetic energies of a system over time. In this case the potential

energy is the log-likelihood of the distribution and the kinetic energy is a random

parameter introduced to determine the relative location of the next MCMC sample

[42],

The HMC algorithm starts at a random set of parameters, then for a previously

determined number of iterations a new momentum vector is sampled and 0 is
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updated according to Hamiltonian dynamics. To avoid being stuck in local min-

ima, a Metropolis acceptance step is introduced, where the probability of keeping

updated 0' and p' is min ^1, . If 0' and p' are not accepted, then the

previous parameters are returned, and another random draw is taken [37,42].

4.4 Generalised Additive Model

GAMs are a class of regression models in which the predicted variable depends

linearly on smooth functions of continuous covariates [43].

Y - N ( n,I) , (4.3)

~ XB +^ fjm(*j ) - (4.4)Urn
j=1

In this model, we assume Y has a multivariate Gaussian distribution with two

parameters, mean vector p. and variance-covariance matrix I. Each response,

pm is distributed additively. The first parameter. B is a least-squares regression

parameter based upon covariates X. In this work, The B parameter corresponds

to an intercept. Each fjm is a smoothing parameter used to model autocorrelations

within the data. The errors of the {ym} response variables are correlated as per

Section 4.5. ARMA processes are used to model the temporal autocorrelations,

and Gaussian processes are used to model spatial autocorrelations. This combina-
tion of ARMA and Gaussian process framework was developed by Murray-Smith

in 2001 [44] and has been used in application with weather forecasting and other
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spatiotemporal processes [45,46].

4.5 Seemingly Unrelated Regression

Seemingly unrelated regression (SUR) is used to model the multivariate response

variables of the model. SUR involves a set of regression equations with correlated

error terms having different variances. Algebraically, the SUR model is written as

Um,s,t ~ N (Tlnv,s,t/ °nws,t)/
p q

= + fGPMm,s,t + 4)iUm.s,t—i + 9j £m,s,t-j +
Intercept Gaussian Process

(4.5)

(4.6)%,s,t
j=1 I rror

Autoregressive Moving Average

Each of the m responses has a univariate regression. The system of equations is

linked through their correlated error structure

Var( emi ) = <4m/

Cov(emi, em/i) = c4m„
Cov(emi, em/t / ) = 0.

(4.7)

(4.8)

(4.9)

With i 7^ i' and m ^ m/. The SUR model assumes that the errors within each of

the m equations are uncorrelated and homoscedastic. However, the errors of an

observation are allowed to be correlated across regression equations, that is, if two
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variables are positively correlated and one is has a negative residual, the other is

likely to be have a negative residual too. Bayesian SUR models are well used as a

relatively simple model in multivariate regression [47-50].

4.6 Autoregressive Moving Average

Time series data typically comes from sequential data collection. The data may

take discrete or continuous values. The structure of a time series is usually identi-
fied through patterns of trends, cyclic effects, and irregular fluctuations.

Early models assumed that time series were deterministic [51], the idea of

a stochastic parameter with a more complex structure was first developed by

Yule [52], with the formation of the autoregressive and moving average models.

Until the 1970s, most of the time series model structure was decided by expert

opinion, when a maximum likelihood estimator was developed for parameters in

time series models [53].

The link between autoregressive and moving average models was first devel-
oped by Wold in 1938 [54]. From his decomposition theorem it follows that AR

processes can be written as MA processes. However these two can be combined

to create ARMA processes, the advantage being that usually ARMA process can

describe a time series with fewer parameters than entirely AR or MA models. The
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ARMA process is written as

= + Y.MM-J + Y ei £m,s,t-i •

Intercept J 1
(4.10)Vs,t

j=i

Autoregressive Moving Average

Here, c() is restricted to be in ( —1,1 ) as ARMA models are not identifiable if the

roots of the moving average characteristic polynomial lie outside the unit circle.

Most time series models require stationary with E(y ) = c for c R. This seems

like an overly severe assumption, especially as Autoregressive Integrated Moving

Average (ARIMA(p, d, q)) models have been developed for non-stationary pro-

cesses. However, ARIMA(p, d, q) can be approximated as ARMA(p + d, q) models.

In an ARIMA model the autoregressive characteristic polynomial can be writ-
ten as the following, with B the backshift operator:

4> (B) = (1 — B)d (1 — <biB <i>pBp ) (4.11)

= ( T - ®) 0 C M c|)pBP ) « (l — (tfB 4>;+dBp+d) . (4.12)4» * (B)

Here, the root of 1 + e for e > 0, is taken. Therefore an ARIMA(p,d, q) process

can be approximated as an ARMA(p + d, q) process, and we can approximate a

non-stationary process with our ARMA model.
There are a few other ways of determining ARMA model order. The first is

a fully Bayesian model, where a prior is put on the order of parameters, and the
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MCMC samples are allowed to transition between the various orders. [55] The

second is an empirical Bayesian model, where models of different orders, p, q, are

used to fit to the data and the best model is chosen. This is the method that is

used for this work. Given that additive ARMA Gaussian prior models have been

used with up to ARMA(2,2) parameters [44,56,57], all 14 combinations of ARMA

processes up to 4 total parameters p + q are fit.

4.7 Gaussian Process

Usually in simple linear regression analysis, the form of a regression is y = (3o +
|3ix + e, and Po, Pi are the intercept and slope parameters. The core of a Gaussian

process is that the regression function is not fixed, but rather the process has a

prior distribution. We can look at this as y = f (x) + e, with f (x) ~ GP(m(x), K (X) ) )

where GP( ) is the Gaussian prior distribution for the functional f. The GP has

parameters of mean function m and covariance kernel K.

Non-Bayesian Gaussian processes in the geostatistics world have been referred

to as Kriging [58], named after the South African mining engineer Danie Krige,

who developed this method to look for iron ore deposits [59], Traditionally, Krig-

ing consists of multiple steps, including exploratory statistical analysis of the data,

variogram modelling, creating the surface, and optionally exploring a variance

surface and yielding a predicted mean. If the output is Gaussian and covariance

function is exactly known, it produces the best linear unbiased estimator (BLUE).

Bayesian methods, as previously noted, do not require a completely known vari-
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ance and do not yield a mean estimate, but rather a posterior distribution from

which a mean can be extracted.

The mean function of a Gaussian process m(x) defines the base function around

which all of the realizations of the Gaussian process will be distributed. In this

case, we will assume it be 0, as there is a non-zero intercept AS/t for each sample

location. If we were to have a more complex Gaussian process with a non-zero

mean function it could simply be added to the intercept. The Gaussian process is

used to model the deviation due to surrounding points in this regression model.

The covariance kernel K (X) = k(x,x'), for x ^ x' controls how f varies around

the mean function. The larger the covariance between x and x' is the more their

outputs f (x) and f (x') vary. [60,61]

In this work, three covariance kernels are compared. Firstly, the squared expo-
o^exp '*2

*2 '
*), secondly the spherical: a2 + 0.5

and finally the Matem\\ u2exp Here, l is length parameter, controlling

the smoothness of the response. In terms of the application in this work, we can

view x and x' as spatial coordinates and l = |x — x'| [37]. Figure 4.1 shows an

application of Gaussian processes on a toy dataset, each blue line is a random

sample of a Gaussian process.

The strength of Gaussian processes comes from the prediction. If there is a

Gaussian observation model, y - N ( y.,a2 ), we can estimate p. at new locations

nential:
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Figure 4.1: Demonstration of Gaussian process regression on a toy dataset. Top
figure is the data, made of sums of sine functions with random noise. Bottom
figure is 100 samples from the posterior of a Gaussian process regression function.

through a joint density and then find the marginal density of (j.new [37]

K(X, X) + CT2I K (X, X )

K (x,x) K (x,x),

0y
(4.13)~ N

0
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with,

gV,y,T, l, cx ~ N(E(g'),cov(g') ),

E(g') = K (x',x) ^K (x,x) + cr21^ y,

cov(g') = K (x/,x/ ) — K (x',x) ^K (x,x) + o2!^ K (x,x').

(4.14)

(4.15)

(4.16)

On first glance, estimating the posterior distribution of g and the new g' may

seem simple; however each matrix inversion requires O (n3) computations for

each MCMC iteration. And thus the computation becomes very expensive with

n being more than a few thousand, which is the case here. In a fully Bayesian

analysis, the length parameter, l, would be a distribution and be allowed to vary

over MCMC samples. In this work, l was fixed to be 12, this brought the memory

and time required from three weeks and 64 gigabytes of RAM to one week and 28

gigabytes of RAM. The Gaussian process was coded in Stan, modified from code

in the Stan user's guide [62].

4.8 Model Choice

As discussed in the previous sections, 14 orders of ARMA(p, q) models and 3

different Gaussian process kernels are being compared. A choice needs to be made

that balances the goodness of fit with model complexity.

Given that this model will be used to make predictions of the missing data,

evaluation of the predicted mean should be measured [63]. Root Mean Squared
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Error (RMSE) has been employed for measuring this predictive efficacy in Bayes-
ian models [64,65]. While the output of a model is a posterior distribution, any

statistic may be calculated from this distribution. In this case, the predicted mean

can be calculated from the distribution and RMSE calculated henceforth.

ty/Eilltx — E( X) )3 (4.17)RMSE =

Note, due to the lack of independence between each of the predicted variables,

RMSE is calculated for each of these variables.

When assessing model performance, complex models with more parameters

typically out perform simpler models. [66]. The Akaike Information Criterion

(AIC), developed by Japanese statistician Hirotugu Akaike in 1974, is a statistic

frequently used to balance goodness of fit of a model with model complexity [66,

67], In 2010, the Bayesian extension, Watanabe-Akaike Information Criterion or

Widely Available Information Criterion (WAIC) was developed as an extension

for Bayesian models [68]. Note that the WAIC asymptotically approximates the

AIC [68]:

Vn (4.18)WAIC = Tn -|—-.
n

Where Tn corresponds to how the model fits the data, and Vn corresponds to the

functional variance.
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^ XI logp* (Xilw)
i=1

(4.19)Tn =-
Tl

Vn =Y_ {E>v [(logp (Xilw) )2] -Ew [logp (Xilw)]2}.
i=1 ^

(4.20)

Similarly with the RMSE, in this work the WAIC is calculated for each response

variables. The WAIC calculation was coded in Stan, modified from code in the

Stan user's guide [62]. The RMSE was calculated using R calculated from the

mean model response.

4.9 Classification

As a part of the Global Land Ice Measurements from Space (GLIMS) initiative, a

census of Mount Rainier's glaciers was done by Andrew Fountain from Portland

State University in 2015 [69]. In this thesis a variety of different classification tech-

niques are used to classify the multivariate matrix of predicted variables as glacier.
Hard algorithms, in which the classification is expressed as a binary outcomes

and soft algorithms, in which the classification is expressed as a probability, are

described in the following subsections.

4.9.1 Hard K-means

Classical (Hard) K-means is a iterative clustering algorithm in which n observa-
tions are partitioned into K clusters. The clusters are created to minimise the intra-
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cluster sum of squares,

w = kkfai “ Wc)2 (4.21)N
k=1 i=1

where Uk is the mean of each cluster, and I is an indicator function for a particular

observation belonging to a cluster. The hard K-means algorithm was performed

on the two clusters of glacier and non-glacier.

4.9.2 Soft K-means

Soft K-means, is similar to Hard K-means, being an iterative classification tech-

nique with K clusters; however, each yn may be assigned to different cluster, with

probability p( Ik):

K N
W = J2^p(k) (yi - pk )2-

k=1 i=1

In classical K-means, the iterative process assigns each observation to a cluster

with an index function. This is akin to assigning each observation with a proba-
bility of 1. Soft K-means differs in that the probability of an observation belonging

to any cluster is no longer 1, but can range between 0 and 1. The Soft K-means

algorithm was performed on the two clusters of glacier and non-glacier.

(4.22)

4.9.3 Support Vector Machines

Support vector machines (SVM) are a classification technique that has gained pop-

ularity over last few decades through machine-learning development. In SVM,
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the data is mapped to a higher dimension via a kernel and an optimal hyperplane

segments the data into groups.

The radial basis function kernel used in this analysis is written as,

K (yi/ Uj) = exp (-Y (yt-yj)2) • (4.23)

The gamma parameter defines the influence of a singular observation. Higher

gamma functions are more influenced by a single outlier, and thus more prone

to overfitting. The gamma function of 0.25 was chosen via an iterative search

from 0 to 1. The threshold balances correct classification with maximisation of

the decision function. As the threshold increases, the classification becomes less

sensitive to errors. The threshold value of 0.1 was chosen through an iterative

search from 0 to1 to minimise the sum of type I and II errors.

4.9.4 Hierarchical Clustering

Hierarchical clustering builds a hierarchy of nested clusters. The agglomerative

technique here is a bottom-up algorithm pairs of observations are combined to-

gether until one final cluster remains. In order to choose the pairs of clusters

being merged, a dissimilarity matrix is created, and a linkage criterion is applied

to create clusters.
While it is not necessary to predetermine the number of clusters in hierarchi-

cal clustering, given it is a series of nested observations, once observations are

assigned to a cluster, they will never separate. If the clusters are not truly nested,
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hierarchical clustering is not appropriate. Complete, single and average linkages

were investigated in the analysis, with average linkage performing the best and

used for the final analysis.

4.9.5 Gaussian Mixture Models

A mixture model is a probabilistic model for representing groups within a popu-
lation. If we assume a Gaussian mixture, we have the following

N
f (*) = ^p(*i)9i(x),

i=1
(4.24)

9i ~ M ( Md/ °i ). (4.25)

The EM algorithm is an iterative process often used to estimate missing data. In

this case, we will assume that the data is a mixture of two distributions, one for

the glacier and another for the surrounding area. This Gaussian mixture model

uses the EM algorithm to estimate the mean n* and variance cr£ for each of the

mixtures. The EM algorithm alternates between an expectation step, which creates

a function to for the expectation of the log-likelihood given the parameters, and

the maximisation step, which computes new parameters to maximise the expected

log-likelihood found in the expectation step. These new parameters are then

used in subsequent expectation steps and the algorithm repeats until the values

converge. The Gaussian mixture model was coded in Stan, using modified code

from the Stan users guide [62] and executed in R using the RStan package.
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4.10 Principal Components Analysis

Principal components analysis (PCA) is a statistical method that aims to find the

principal directions in which the data varies. It takes linear combinations of the

data in order to capture the maximal variance.
The principal components themselves are found though calculating the eigen-

value and eigenvectors of either the variance-covariance matrix or the correlation

matrix. The eigenvector with the largest eigenvalue denotes the direction with

the highest variation, and subsequently the second highest eigenvalue's eigen-
vector is the second highest variation. If the set of all eigenvectors are normalised,

they form an orthonormal basis for the multivariate data structure. If only the

eigenvectors that capture the most variance are selected. PCA provides a tool

for dimension reduction that limits the loss in variance. Due to the differences

in units and scale of the variables of interest in this work, PCA is performed on

the correlation matrix. The principal components analysis was performed on the

correlation matrix in R.
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Chapter 5

Results

5.1 Glacier Model Choice

All 42 combinations of ARMA(p,q) models up to 4 parameters and 3 Gaussian

process kernels were modelled. The RMSE and WAIC for each of the four vari-
ables of interest are shown in Tables 5.1 and 5.2. Note that lower RMSE and lower

WAIC correspond to better model fit.
No single model was lowest in each of the response variables, so the RMSE

were combined via an Euclidean distance, and the WAIC were combined via a

sum. The ARMA(3,1) model with exponential Gaussian process kernel was lowest

in both of these metrics. This model is highlighted in red in Tables 5.1 and 5.2 and

is used for prediction of the missing data and subsequent classification.
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 Gaussian
Process
Kernel

Surface Band
Temperature Ratio NDSI Speed Pooled

RMSE RMSE RMSE RMSE RMSE

Glacier
ARMA
Process

ARMA(0,1) Spherical
ARMA(0,2) Spherical
ARMA(0,3) Spherical
ARMA(0,4) Spherical
ARMA(1,0) Spherical
ARMA(1,1) Spherical
ARMA(1,2) Spherical
ARMA(1,3) Spherical
ARMA(2,0) Spherical
ARMA(2,1) Spherical
ARMA(2,2) Spherical
ARMA(3,0) Spherical
ARMA(3,1) Spherical
ARMA(4,0) Spherical
ARMA(0,1)
ARMA(0,2)
ARMA(0,3)
ARMA(0,4)
ARMA(1,0)
ARMA(1,1)
ARMA(1,2)
ARMA(1,3)
ARMA(2,0)
ARMA(2,1)
ARMA(2,2)
ARMA(3,0)
ARMA(3,1)
ARMA(4,0)
ARMA(0,1) Exponential
ARMA(0,2) Exponential
ARMA(0,3) Exponential
ARMA(0,4) Exponential
ARMA(1,0) Exponential
ARMA(1,1) Exponential
ARMA(1,2) Exponential
ARMA(1,3) Exponential
ARMA(2,0) Exponential
ARMA(2,1) Exponential
ARMA(2,2) Exponential
ARMA(3,0) Exponential
ARMA(3,1) Exponential
ARMA(4,0) Exponential

8.73 7.56 0.153 0.175
7.20 0.149 0.170
6.66 0.138 0.166
6.51 0.131 0.163
6.58 0.130 0.169
6.46 0.126 0.158
6.47 0.125 0.157
6.42 0.123 0.158
6.49 0.128 0.164
6.57 0.125 0.158
6.47 0.125 0.156
6.44 0.123 0.160
6.42 0.123 0.158
6.42 0.123 0.159
8.52 0.209 0.162
8.00 0.195 0.160
7.30 0.177 0.158
7.13 0.163 0.156
7.19 0.160 0.159
7.08 0.154 0.153
7.08 0.154 0.153
7.03 0.151 0.153
7.09 0.156 0.157
7.18 0.156 0.153
7.06 0.153 0.153
7.06 0.152 0.154
6.99 0.152 0.153
7.03 0.152 0.154
7.74 0.150 0.156
7.35 0.146 0.155
6.78 0.134 0.153
6.65 0.126 0.152
6.70 0.128 0.154
6.60 0.123 0.150
6.60 0.122 0.150
6.56 0.119 0.150
6.61 0.125 0.152
6.66 0.124 0.150
6.56 0.122 0.150
6.57 0.120 0.150
6.55 0.120 0.150
6.55 0.120 0.150

11.556
10.692
9.755
9.456
9.387
9.310
9.449
9.451
9.243
9.397
8.363
9.405
9.450
9.504

10.386
9.747
9.008
8.784

7.89
7.11
6.84
6.68
6.69
6.88
6.92
6.57
6.70
5.29
6.84
6.92
7.00

Matem 5.92
Matem
Matem
Matern
Matern
Matern
Matern
Matem
Matem
Matem
Matem
Matem
Matem
Matern

5.55
5.26
5.11
4.93 8.731
4.83 8.578

8.583
8.524
8.614
8.662

4.83
4.80
4.87
4.82
4.78 8.531
4.80 8.544
4.72 8.445
4.82 8.531
5.22 9.345

8.822
8.264
8.110
8.046
7.936
7.925
7.910
7.958
7.955
7.905
7.912

4.86
4.71
4.62
4.44
4.40
4.38
4.30
4.41
4.33
4.39
4.39
4.37 7.881
4.39 7.894

Table 5.1: RMSE for all potential models and variables of interest. The chosen
model is highlighted in red.
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Surface Band
Temperature Ratio

WAIC

Glacier
NDSI Speed Pooled

WAIC WAIC WAIC WAIC

Gaussian
Process
Kernel

ARMA
Process

Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Spherical
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern
Matern

ARMA(0,1)
ARMA(0,2)
ARMA(0,3)
ARMA(0,4)
ARMA(1,0)
ARMA(1,1)
ARMA(1,2)
ARMA(1,3)
ARMA(2,0)
ARMA(2,1)
ARMA(2,2)
ARMA(3,0)
ARMA(3,1)
ARMA(4,0)
ARMA(0,1)
ARMA(0,2)
ARMA(0,3)
ARMA(0,4)
ARMA(1,0)
ARMA(1,1)
ARMA(1,2)
ARMA(1,3)
ARMA(2,0)
ARMA(2,1)
ARMA(2,2)
ARMA(3,0)
ARMA(3,1)
ARMA(4,0)
ARMA(0,1) Exponential
ARMA(0,2) Exponential
ARMA(0/3) Exponential
ARMA(0,4) Exponential
ARMA(1,0) Exponential
ARMA(1,1) Exponential
ARMA(1,2) Exponential
ARMA(l/3) Exponential
ARMA(2,0) Exponential
ARMA(2,1) Exponential
ARMA(2,2) Exponential
ARMA(3,0) Exponential
ARMA(3,1) Exponential
ARMA(4,0) Exponential

217,735
216,023
215,083
213,836
214,078
213,881
213,263
213,191
213,992
213,562
213,346
213,152
213,137
213,136
217,914
216,181
215.227
214,009
214,214
214,017
213,408
213,339
214,127
213,702
213,367
213,308
216,597
213,288
217,840
216,102
215,155
213,909
214,142
213,948
213,335
213,266
214,056
213,669
213,331
213.228
213,219
213,211

140,614 -20,621
138,278 -22,745
136,887 -26,053
136,585 -27,270
136,565 -26,422
136,399 -27,771
136,387 -27,774
136,373 -27,657
136,413 -27,434
136,803 -27,768
136.350 -28,009
136,382 -28,056
136,338 -27,671
136,372 -27,687
140,080 -19,399
137,784 -21,658
136,419 -24,980
136,148 -26,268
136,158 -25,593
135,987 -26,859
135,979 -26,864
135,965 -27,246
136,000 -26,553
136.351 -25,732
135,917 -26,885
135,974 -27,135
135,422 -27,421
135,959 -27,279
140,716 -20,595
138,363 -22,727
136,957 -26,036
136,655 -27,248
136,631 -26,397
136,468 -27,748
136,454 -27,751
136,442 -28,129
136,480 -27,413
136,884 -26,508
136,396 -27,767
136,449 -28,029
136,403 -28,142 -19,686 301,795
136,438 -28,161 -19,625 301,862

-18,234
-18,775
-19,185
-19,394
-18,686
-19,746
-19,724
-19,224
-19,243
-19,735
-19,816
-19,554
-19,227
-19,151
-18,199
-18,743
-19,166
-19,379
-18,646
-19,727
-19,729
-19,731
-19,224
-19,752
-19,802
-19,533
-19,709
-19,650
-18,184
-18,738
-19,148
-19,362
-18,647
-19,711
-19,699
-19,686
-19,200
-16,491
-19,771
-19,521

319,494
312,781
306,731
303,756
305,535
302,763
302,152
302,683
303.728
302,861
301,872
301,924
302,577
302,669
320,396
313,565
307,500
304,509
306,133
303,419
302,793
302,327
304,351
304,569
302,596
302,614
304,889
302,318
319,777
313,000
306,929
303,953
305.729
302,956
302,338
301,892
303,923
307,554
302,189
302,126

Table 5.2: WAIC for all potential models and variables of interest. The chosen
models is highlighted in red.
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5.2 Model Prediction

Posterior predictive checks are a standard model check procedure for Bayesian

models. Data is repeatedly simulated from the fitted model and compared to

the observed data. This repeated sampling allows the check to include the un-

certainty associated with the estimate of the parameter of the model, along with

the estimate itself. Figures 5.1 and 5.2 shows the posterior predictive checks for

the model. Overall the posterior distribution approximates the observed data

distribution well except for the NDSI variable. The NDSI distribution is bimodal,

with the modes of the posterior distribution far apart. As the MCMC samples

are taken in sequence, with the next sample being dependent upon the single

previous sample. If the modes are far apart, the MCMC samples may have dif-
ficulty transitioning between the two modes. However, as the NDSI distribution

modes are far apart, this may make for easier classification, as the two mixtures

can be easily identified. In contract with the Red /SWIR band ratio or the surface

temperature, the small deviations from the Gaussian distribution may indicate a

mixture with the modes much closer together. Apart from the NDSI variable, the

posterior predictive distribution estimates the observed distribution well.
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(a) Posterior predictive distribution
of the Red/SWIR band ratio
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MCMC
Samples

A
-1.0 -0.5 0.0 0.5

(b) Posterior predictive distribution of the NDSI

Figure 5.1: Density plots of the posterior predictive distributions of the Red/SWIR
band ratio and NDSI. The samples from the posterior simulate the observed
distribution fairly well with the exception of the bottom NDSI figure. The NDSI
observations have a bimodal distribution, which MCMC sampling has trouble
converging upon.
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Figure 5.2: Density plots of the posterior predictive distributions of the surface
temperature and glacier speed.
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The mean predictions of this model are shown in Figures 5.3, 5.4, 5.5, and 5.6.

Overall the model shows clear images of the glaciers without large artifacts with

some exceptions. In 2013, the forward predicting ARMA time series has no sup-

port, so the 2013 prediction is solely made with the approximate Gaussian process.

2015 has a large amount of missing data, leading to poor prediction, especially

in the NDSI variable. Despite missing half the image, 2019 was modelled well

compared to 2015. This may be due to the increased number of preceding years.

Due to there being no 2012 observations, in 2015 the third and fourth lags in an

AR(4) model add nothing, whereas in 2019 more previous years are available.
Figures 5.7, 5.8, 5.9, and 5.10 show the residual plots calculated from the pos-

terior means. Due to the prevalent missing data, they are somewhat difficult

to inspect. However, apart from 2013 and 2016, the residual plots appear to

be randomly distributed. As previously discussed, the forward predicting time

series had no support in 2013, so the residuals are not randomly distributed and

large artifacts are found throughout the image. The residuals in 2016 appear to

suffer from a similar problem, the large amount of missing data in 2015 again

affects the time series predictions and there is some non-randomness seen in the

western half of the Red/SWIR band ratio image. While the predictions in 2015

appear to be imperfect, due to the missing data, there are no residuals to calculate

and inspect.
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Figure 5.3: Grid of mean estimate of Red /SWIR Band ratio of Mount Rainier's glaciers
2013-2019.
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Figure 5.4: Grid of mean estimate surface temperature of Mount Rainier's glaciers 2013-
2019.
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Figure 5.5: Grid of mean estimate NDSI of Mount Rainier's glaciers 2013-2019.
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Figure 5.6: Grid of mean estimate of glacier speed of Mount Rainier's glaciers 2013-2019.
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Figure 5.7: Grid of residuals of Red /SWIR Band ratio of Mount Rainier's glaciers 2013-
2019. The grey indicates missing data due to clouds or cloud shadows.
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Figure 5.8: Grid of residuals of surface temperature of Mount Rainier's glaciers 2013-
2019. The grey indicates missing data due to clouds or cloud shadows.
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Figure 5.9: Grid of residuals of Mount Rainier's glaciers 2013-2019. The grey indicates
missing data due to clouds or cloud shadows.
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Figure 5.10: Grid of residuals of glacier speed of Mount Rainier's glaciers 2013-2019. The
grey indicates missing data due to clouds or cloud shadows.
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5.3 Classification

The classification was performed using the algorithms outlined in Section 4.9 to

classify the glacier and non-glacier areas for 2015. The total classification was

calculated as a weighted average of the glacier and non-glacier classifications with

respect to the amount of pixels.

Figure 5.11 shows the classification of the final model sampled from the pos-
terior for 2015 with an outline of the 2015 glacier mapping superimposed upon

each image. Table 5.3 summarises the results for true values of glacier and sur-
rounding area. Overall, all classification methods failed to classify the debris

covered tongues of the northeastern glaciers. The Gaussian mixture model has

the highest accuracy in classifying the glacier, and it does pick out some potential

toes on the North edge of the glacier; however, it misclassifies these toes, showing

them offset in adjacent locations. Compared to the other probabilistic classifi-
cation techniques, soft K-means, Gaussian mixture model outperforms on both

glacier and non-glacier accuracy. However, the Gaussian mixture model appears

to classify too much glacier, and the edges of the glacier often protrude outside

the red boundaries. The reason Gaussian Mixture Models still outperforms soft

K-means is that the soft K-means algorithm had difficulty determining the non-

glacier areas. There are large striations in the soft K-means image, and these add

up and contribute to its low classification of the surrounding area.
The hard K-means and soft K-means perform similarly. Each algorithm finds

the true edges of the glacier well, outside of the northern toes. However, both

algorithms have difficulty finding the outline between adjacent glaciers. As pre-
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Probability of Correct Classification
Gaussian Hierarchical Support Hard K-means

Band Ratio
Machines (2016)

Glacier Mixture Hard K-means Clustering Soft K-means Vector
Models

Yes 0.874
0.854

0.852
0.940

0.803
0.943

0.819
0.832

0.764
0.958

0.688
0.973No

Total 0.858 0.922 0.915 0.830 0.919 0.916

Table 5.3: Summary table for the classification of Mount Rainier's glaciers in 2015.
The total classification was calculated as a weighted average of the glacier and
non-glacier classifications with respect to the amount of pixels.

viously noted, the large classification striations in the soft K-means image add up

and contribute to its low classification accuracy of the surrounding area.

When it comes to finding the outline between adjacent glaciers, the support

vector machine is the best model. While the hierarchical clustering and both K-
means algorithms also did this to an extent, the support vector machine best sep-
arated adjacent glaciers. This is seen in the highest classification accuracy of the

surrounding area. However, the support vector machine algorithm performed the

worst in classifying the glacier itself, with the lowest accuracy of 76.4%. Support

vector machines work by drawing a hyperplane to segment the data into groups.

As the model predicted variables appear to underestimate the edges of the glacier,

the SVM may draw the hyperplane to underlassify the glacier.

The hierarchical clustering algorithm had the second highest classification ac-
curacy of the non-glacier area at 94.3%, just behind of the support vector machine

at 95.8%. However it was least effective for the glacier itself, correctly classifying

only 80.3%.
To show comparison to current work done in a univariate non-Bayesian para-
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digm, a hard K-means classification was performed. As the 2016 data is much

more complete than the 2015 data, it was performed on the red /SWIR band ratio

on the 2016 data. When classifying the non-glacier areas, the univariate classifi-
cation performed very well, this is seen in the highest non-glacier classification of

97.3%. This is clearly seen in the middle of Mount Rainer's glaciers, where only

the support vector machines and the univariate K-means managed to delineate

the individual glaciers. Despite this, the univariate K-means had the lowest clas-
sification of the glaciers itself as it correctly classified 68.8% of the glacier. This

suggests that this multivariate and Bayesian analysis adds value.
Overall, the hard K-means algorithm appears to perform best. It does not

pick up on any glacial toes; however, it does classify the easternmost isolated

glacier, and does a good job of isolating adjacent glaciers, unlike the Gaussian

mixture model. And unlike the soft K-means, the h K-means accurately classifies

the surrounding bedrock as bedrock. While it does not have the highest accu-
racy of either the glacier or surrounding area, it is marginally behind the leading

algorithms, and it has the highest overall accuracy of 92.2%.
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Figure 5.11: Glacier classification techniques for Mount Rainier's glaciers in 2015. The
2015 glacier extent is outlined in red.
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5.4 Principal Components Analysis

In this work, the PCA was performed using the correlation matrix (or equivalently

the covariance matrix with standard-normalised variables) on the model output

of the four variables of interest for the 2015 data. The screeplot in figure 5.12

shows that at least 3 principal components should be used. Given that there is

little difference between the eigenvalues of the third and fourth principal com-
ponents, four principal components were chosen. The loadings of the principal

components are shown in Table 5.4. The loadings of the first principal component

suggests a contrast between the Red/SWIR band ratio and the glacier speed with

the surface temperature. The second principal component is the NDSI. The third

principal component is the contrast with Red/SWIR band ratio with glacier speed,

and finally the fourth principal component is the contrast of Red/SWIR band ratio

and surface temperature with glacier speed.
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Loadings of PCA of mean estimates
PCI PC2 PC3 PC4

Band Ratio
NDSI

Surface Temperature
Glacier Speed

Table 5.4: Loadings of principal components analysis of the variables of interest.
The screeplot in Figure 5.12 suggests all four principal components are necessary.

0.535 -0.293 0.688 0.394
0.206 0.955 0.190 0.099
-0.598 0.041 0.025 0.800
0.560 -0.028 -0.700 0.442

Given that all four principal components are used and there is no dimension

reduction, this suggests that only a rotation is being applied upon the data. As

Gaussian mixture models, the K-means algorithm, hierarchical clustering, and

support vector machines with radial bases (as are used here) are invariant under

rotation [70-72], this does not aid in the classification. Table 5.5 shows the results

of the classification upon the rotated data; there is minimal change compared to

Table 5.3. Note that approximate principal components are used for ease, so it is

not a true orthogonal transformation, and thus minor differences are seen.

Despite not being able to aid in the classification, the PCA does add value. It

suggests that one single variable (a linear combination of multiple variables) does

not capture enough of variability in the model. So having a model with all four

multivariate responses, as in this work, better models the spatiotemporal process

compared to a univariate model.
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Dimensions

Figure 5.12: Screeplot of estimated Red/SWIR band ratio, NDSI, surface
temperature, and glacial speed for Mount Rainier's glaciers.

Probability of Correct Classification of Rotated Data
HierarchicalGaussian Support Hard K-means

Mixture Hard K-means Clustering Soft K-means Vector Band Ratio
Machines (2016)

Glacier
Models

Yes 0.868 0.851 0.805
0.945

0.818
0.836

0.764
0.958

0.688
No 0.859 0.940 0.973

Total 0.857 0.922 0.915 0.829 0.919 0.916

Table 5.5: Summary table of the rotated data for Mount Rainier's glaciers in 2015.
The univariate classification was not rotated but added for comparison. The total
classification was calculated as a weighted average of the glacier and non-glacier
classifications with respect to the amount of pixels.
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Chapter 6

Conclusions and Discussion

In terms of satisfying its research goals, this work successfully modelled the spa-
tiotemporal data of the glaciers surrounding Mount Rainier, and it had mixed suc-
cesses with the delineation of said glaciers. The delineation outperformed a com-

parable univariate analysis; however it failed to classify any of the debris covered

glacier tongues. In order to do this modelling, a spatiotemporal GAM was chosen

for its flexibility and computational speed, with ARMA processes and Gaussian

processes respectively modelling the temporal and spatial autocorrelations. The

ARMA(3,1) model with the exponential Gaussian process kernel was chosen via

lowest pooled RMSE and WAIC of all four variables. Model predictions were then

created by sampling from the posterior. These predictions were classified with

a variety of techniques, from which the hard K-means algorithm measured by

euclidean distance was determined to be the best. A further PCA was performed

which showed that a reduction in the number of variables could not capture the
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variability within the model and that multivariate response regression as justified.
Furthermore compared to a univariate classification of the Red/SWIR band ratio

only, the hard K-means multivariate classification outperformed the univariate

classification by 85% to 68%.

One major limitation in this research is that there are only seven time indices.
In the realm of time series analysis, this is a small sample size. The seven time

indices also allowed for some assumptions in the modelling process that could

not be checked by hypothesis tests. Given the nature of a glacier, each pixel is rel-
atively stationary throughout time, until a certain point when the ice melts and the

observation's expected value is no longer invariant with respect to time and the

stationary assumption is violated. If these methods were applied to a longer time

period, it would be reasonable to consider a change point model to accommodate

nonstationarity, whereby an additional parameter can be used to separate two

different time series models. Furthermore, the time and memory required, even

with this restricted data, was substantial. A single ARMA model required up to 28

Gigabytes of memory for upwards of seven days of run time. Gaussian processes

scale 0(n3), so if double the data is used, the model requirements scale by 8. So

further approximations, or different processes are needed if even a small amount

of additional data is used. Since this research has been completed, additional

ARD imagery has been uploaded for the years 2013-2019. Further research may

use these additional images, older Landsat 7 imagery, or data from 2020 onwards

for a larger dataset.

The Bayesian methods used allowed us to model the uncertainty not only in
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the response, but also allows variation in the hyperparameters, unlike current

methods. The issue that arose is that Bayesian computation is expensive in both

time and memory demands. As a result, further approximations are needed to

be made to run the model in a reasonable time. In this case, only one acquisition

was used per year, and the Gaussian process length parameter was fixed at 12.

This is seen in Figures 5.3, 5.4, 5.5, and 5.6 for 2013, in which the ARMA process

had no support and the approximations within the Gaussian process clearly did

not effectively outline the glacier. Including multiple scenes per year could help

with modelling the intra-annual variation. Given the data is obtained from satel-

lites rotating the earth, including multiple scenes per year could help mitigate

sampling error. Additionally, the additional data would influence the modelling

choice. Instead of modelling the spatial dependencies with Gaussian processes,

conditional autoregressive models may be more suitable, as there would no longer

be large amounts of missing data, and conditional autoregressive models are more

sensitive to rapid changes, such as one would find at the glacier edges. However,

given the large memory and time constraints on the analysis, the data was re-
stricted to a singular image per year. While a glacier is a stationary object and

is not expected to shrink more than a few meters per year, adding additional

manner may help with first reconstructing a complete image on an annual basis,

then modelling the spatiotemporal dynamics. This may increase the time and

memory demands of the algorithm.

The methods here, as with many statistical techniques, rely on the missing

data being MAR, the assumption of which can certainly be brought into ques-
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tion. As previously noted, the Fmask algorithm, used to remove the clouds and

cloud shadows, has difficulty distinguishing between clouds made of ice crystals

and underlying snow or ice. As a result, given equal cloud cover, more glacier

observations would be deemed missing than non-glacier observations. However,

given the elevation range of Mount Rainier, an isolated strato-volcano, the cloud

formation is not uniformly distributed, and will be more likely to form at certain

elevations. This research glossed over this with a MAR assumption. I think it

would be a valid extension to further investigate this by adding a missing data

model parameter.

The missing data also influenced the algorithm complexity. Note that the

simplest ARMA models, the AR(1) and MA(1), could be ruled out immediately by

inspecting the data in Figures 3.4, 3.5, 3.6, and 3.7. The missing data in 2015 and

2019 does not allow any time series process with a single lag to make predictions

for the following year. So the 2016 and future 2020 data would be not well mod-

elled under an AR(1), MA(1), or ARMA(1,1) process. Current research avoids this

problem by filling in these gaps, either through a Kriging-variant interpolation

or through quantile regression [73-75] . The issues arising here are that these

methods often flatten the spatiotemporal data, or they use the data twice. The

first time is to fill in the gaps, and the second time is to model the spatiotemporal

dynamics. A different way of approaching this would be not to use a discrete time

series process, such as ARMA, but instead use a continuous time series process.

The downside of this is that the sample size may grow many times in size, which

will greatly increase the memory and computation time.
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Glacier observations seem to be taken from several sub-populations. The first

is the snow and ice on the glacier. The second is the surrounding bedrock. The

third is the surrounding forest and alpine areas, and finally, speculatively, is the

border area between the first two. One possible way would be to model this

using a multi-modal distribution. The issue with applying this stems from the

MCMC methods used to approximate the posterior distribution. The MCMC

iterations happen in sequence, so if the modes of the posterior distribution are

far apart then the MCMC samples have trouble transitioning from one peak to

another. Given there are a finite, predetermined amount of MCMC iterations, the

model may not transition in time from one peak to another for accurate modelling.
The potential solution to this would be to split the data into three sections and

model each independently. A difficulty with this is that as the glacier melts,

pixels will transition from one state to another. This would require a dynamic

spatiotemporal model with a non-separable covariance structure. This is another

potential opportunity not seen in current glacier remote sensing research.

Another way to approach the debris cover question would be to involve differ-
ent data sources. Given that debris covered glaciers and the surrounding bedrock

are indistinguishable to the human eye, research shows little improvement with

including finer resolution lidar data [76]. However, the addition of non-optical

data, such as SAR data, may improve upon the classification. Given the methods

themselves have no determinant connection to isolated strato-volcanos, the meth-

ods demonstrated here can easily be applied to other glaciers, ice fields, and other

permanent ice structures. These methods here are also suited to other stationary
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spatiotemporal data structures. Potential applications include but are not limited

to mountain snow pack, algae bloom, and particulate spread from an emission

source.
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