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ABSTRACT 
 

Plant communities and soils of grasslands on an elevation gradient and the forest-

grassland mosaic in the Cariboo-Chilcotin of British Columbia were examined. Vegetation 

change along an elevation-climate gradient was analysed, including plant cover, litter cover, 

species composition, and species richness. Grassland plant communities were compared with 

associated climate variables and biogeoclimatic classifications. Based on results, an updated 

classification of grassland ecosystems is proposed with suggestions for management and 

research. Plant community and soil moisture characteristics of adjacent forests and grasslands 

were compared. Ten-year-old slash and burn treatments of young forests, and areas of forest 

encroachment on grasslands were studied to detect potential change between forest and grassland 

states. Results did not suggest change in ecosystem state between grasslands and forests, with 

persistent ecosystem legacies a potential source of long-term resilience. Land-use legacies 

manifested as encroachment of forests on areas of historical grasslands and high cover values of 

exotic species. 
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BACKGROUND 
 

 
Inland Douglas-fir forests and intermountain grasslands reach their most northern 

geographic extent in the Cariboo-Chilcotin region of British Columbia. The Douglas-fir 

biogeoclimatic zone is primarily on the plateau surrounding the Fraser River, while grasslands 

are centred on low elevations of the Fraser and Chilcotin River Valleys and extend to higher 

elevations on adjacent parts of the Fraser Plateau (Steen and Coupe, 1997). Grassland 

ecosystems of North America are highly fragmented, with most productive types being 

converted to cultivation agriculture (Samson et al., 2004; Looney and Eigenbrode, 2012; 

Augustine et al., 2019). In the Cariboo-Chilcotin region, extensive native grasslands remain 

because of low human population density and absence of widespread cultivation. Within the 

region, there is a wide climate gradient due to influence of the Coast Mountains rainshadow and 

large changes in elevation (Steen and Coupe, 1997). This is a unique landscape with an intact 

gradient of grassland ecosystems of semi-arid to sub-humid climates, and the transition to a 

forested landscape.  

Grassland ecosystems of North America were described in comprehensive ecological 

studies predominantly published in the early- to mid-20th century (e.g. Daubenmire, 1942; 

Tisdale, 1947; Weaver and Bruner, 1954; Coupland, 1961; van Ryswyk et al. 1966). The 

comprehensive studies formed the foundation for subsequent experimental research and for 

ecosystem conservation and management. The Cariboo-Chilcotin grasslands may be the largest 

grassland ecosystem that has not been described in a comparable comprehensive study. While it 

may not be possible to identify causal factors for plant community and soil changes along a 

climate gradient (Dunne et al., 2004), baseline descriptive studies are vital in informing 

experimental research. Furthermore, the long-term livestock exclosures of the Range Reference 
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Area program provide an experimental basis to compare grazed and non-grazed grassland plant 

communities, and climate modelling (Wang et al., 2016) permits the establishment of ecosystem-

climate relationships at the sub-regional level.  

A landscape mosaic of forests and grasslands occurs on the plateau surrounding the 

Fraser and Chilcotin Rivers. Like other grasslands of North America, trees have encroached on 

these grasslands in the 20th century (Bai et al., 2004; Steele et al., 2007). Tree encroachment on 

grasslands of the region has been documented with historical photo-imagery (Bai et al., 2004; 

Steele et al., 2007) and reconstructed through dendrochronological studies of grassland-adjacent 

trees (Strang and Parminter, 1980; Harvey and Smith, 2017). Encroachment has been associated 

with the introduction of livestock grazing, fire suppression, and end of First Nations traditional 

burning practices (Tisdale, 1950; Strang and Parminter, 1980; Arno and Gruell, 1986; 

Blackstock and McAllister, 2004; Heyerdahl et al., 2006). Recently, grassland restoration 

practices (cutting and prescribed burning of young forests) have been applied to areas of tree 

encroachment on grasslands. However, the effects of forest encroachment on plant communities 

have not been studied. Also, the effectiveness of treatments in “restoring” grassland plant 

communities is not known.  

Water availability is a leading determinant of plant composition in drylands (Brown et 

al., 1997; Weltzin et al., 2003). Vegetation and soil moisture can often act as a positive feedback 

in woody vegetation dynamics (D'Odorico et al., 2007). Therefore, soil moisture should be the 

subject of studies on the effects of forest encroachment in a water-limited environment. In 

ecosystems near the boundary between grassland- and forest-associated climates, tree cover 

establishes slowly or is limited to pulses of establishment during infrequent high-precipitation 

years (Arno and Gruell, 1986; League and Veblen, 2006; Weidenmaier et al., 2010).  
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Modification of soil moisture conditions by the plant community is a factor in maintaining an 

ecosystem state. For example, the high concentration of fine roots in grassland soils can prevent 

tree seedling establishment by reducing soil moisture (James et al., 2003). As trees encroach on 

the grasslands, the likelihood of subsequent tree establishment increases due to shading, 

increased soil moisture content and associated tree seedling survival (Kennedy and Sousa, 2006). 

Further, woody plant growth on grasslands interrupts the relatively homogenous spatial 

distribution of soil moisture, resulting in resource-poor patches and deterioration of the grassland 

plant community (Schlesinger et al., 1990).   

Frequent surface fires are often a factor in excluding trees from grasslands (Heyerdahl et 

al., 2006). There is potentially a relationship between the spatial distribution of soil moisture and 

the fire disturbance regime in grasslands. The relatively homogenous spatial distribution of soil 

moisture in grasslands is reflected above ground as continuous cover of vegetation and litter 

(Schlesinger et al. 1990). This is expected to influence the grassland fire regime, as spatial 

connectivity of fine fuels is a condition required to support surface fires (Krawchuck and Moritz 

2011).  Higher elevation grasslands are associated with a cooler-wetter climate and greater net 

primary productivity (NPP) (van Ryswyk et al., 1966; Carlyle et al., 2014). Greater NPP 

supports a frequent fire return interval fire regime, with fine fuel accumulations supporting 

higher intensity and greater spatial connectivity of fires (Krawchuck and Moritz, 2011; Moritz et 

al., 2012).  Therefore, on the cooler and wetter part of the climate gradient, the relationship 

between NPP and the fire disturbance regime likely plays a substantial role in preventing forest 

encroachment on grasslands.  

Forests have greater spatial heterogeneity of soil moisture than grasslands (Kleb and 

Wilson, 1997).  Mature Douglas-fir forests facilitate patches of tree seedling survival, as the 
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heterogenous canopy provides a balance of precipitation throughfall, light transmission, and 

shading (Simard, 2009). At the northern extent of the Interior Douglas-fir biogeoclimatic zone, 

the forest canopy thermal cover is an important factor in reducing tree seedling mortality caused 

by growing season frost (Reich and Kamp, 1993). Variable soil moisture conditions in dry 

Douglas-fir forests result in clump and patch patterns of tree regeneration, and understorey 

vegetation that is sparse in comparison to adjacent grasslands (Steen and Armleder, 2008; Lemay 

et al., 2009). This could contribute to Interior Douglas-fir forests having a mixed-severity stand 

maintaining disturbance regime. The mixed-severity disturbance regime of Interior Douglas-fir 

forests is spatially and temporally heterogeneous and results in structurally diverse stand 

conditions across the landscape (Klenner et al., 2008; Heyerdahl et al., 2012; Harvey et al., 

2017). Therefore, there may be a relationship between spatially heterogeneous soil moisture, 

vegetation patterns, and the fire disturbance regime.  
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RESEARCH OBJECTIVES 
 

 
The purpose of this research is to develop an understanding of grassland ecosystems of 

the Cariboo-Chilcotin region, and to determine potential factors contributing to the long-term 

persistence of forest and grassland states within a grassland-forest mosaic. Chapter 1 is based on 

the sampling of previously established grazed and non-grazed grassland permanent paired plots. 

Based on this sampling, I describe grassland plant communities and soils on a climate-elevation 

gradient. I also examine the effects of grazing of grassland plant communities. In chapter 2, I use 

grassland restoration treatments and areas of forest encroachment on historical grasslands to 

examine effects of recent forest establishment on plant communities and soil moisture 

conditions. These plant community and soil moisture observations are compared to baseline 

conditions found in adjacent mature forests, and adjacent grasslands that have not been affected 

by forest encroachment.  

While field sampling was in progress, the Hanceville wildfire burned the forest-grassland 

mosaic part of the study area in late July 2017. This event created an opportunity to sample plant 

communities and soil moisture one year after a burn, where “pre-burn” sampling had been 

completed in the same month that the fire occurred. Therefore, there is an additional objective of 

studying the effects of burning on plant communities and soil moisture (Chapter 2).  
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Objective 1:  

a) Characterize grassland plant communities and associated soils of the Cariboo-Chilcotin on 

an elevation gradient.  

b) Examine the effects of grazing on grassland plant communities. 

Objective 2:  

a) Describe the effects of forest encroachment and ecological restoration treatments on 

grassland plant communities. 

b) Compare the soil moisture of forests and grasslands and determine if forest encroachment 

causes a change in soil moisture.  

c) Examine the effects of burning on plant communities and soil moisture in the forest-

grassland mosaic.  
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CHAPTER 1: GRASSLAND PLANT COMMUNITIES AND ASSOCIATED SOIL 
CHARACERTISTICS ALONG AN ELEVATION GRADIENT FROM BRITISH 

COLUMBIA’S CARIBOO-CHILCOTIN REGION 
 

Introduction 
 

 The Cariboo-Chilcotin grasslands are a geographically isolated most northern extension 

of the intermountain grasslands that are found in interior British Columbia and western United 

States. Grassland climatic factors of the region include a strong rainshadow effect of the Coast 

Mountains and very cold winter temperatures from the influence of northern Arctic air masses 

(Steen and Coupe, 1997). The low to middle elevation grasslands have similar species 

composition to low- to mid-elevation grasslands described in the Thompson-Nicola region of 

southern interior British Columbia (Tisdale, 1947; van Ryswyk et al., 1966) and the inland 

northwest of the United States (Daubenmire, 1942). Like the intermountain grasslands to the 

south of the region, leading species at low elevations are bluebunch wheatgrass 

(Pseudoroegnaria spicata), needle-and-thread grass (Hesperostipa comata), Sandberg’s 

bluegrass (Poa secunda var. sandbergii), and big sagebrush (Artemisia tridentata).  Notably, 

rough fescue (Festuca campestris) and Idaho fescue (Festuca idahoensis) are absent. The 

dominance of needlegrasses (Achnatherum rihardsonii and Hesperostipa curtiseta) in the upper 

grasslands at all seral stages is distinct from grasslands of other regions. In the upper grasslands, 

there are botanical similarities to northern grasslands including the fescue grasslands of the 

northern Great Plains (Coupland, 1961) the Rocky Mountain foothills (Moss et al., 1947), and 

small grassland patches in the sub-boreal forests of central British Columbia (Pojar, 1982).  

Livestock severely overgrazed the Cariboo-Chilcotin grasslands from the 1860s to the 1920s, 

resulting in deterioration of grasslands and presence of early seral plant communities (Tisdale et 

al., 1954; Bawtree and Zabek, 2011). Early records of grassland composition include 
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descriptions of extensive bare soil and the presence of ruderal species, and there are no 

descriptions of species composition that pre-date grazing. Extensive bare ground and lack of 

plant cover can be seen in early photographs of the region such as at Toosey range reference area 

in 1923 (Figure 1.1). The first Grazing Act of 1918 brought about the regulation of grazing on 

crown land (Thistle, 2009), resulting in gradual reduction of livestock use across the study area 

from the 1920s to the 1990s. Conservation grazing measures have resulted in increases of native 

and non-native grasses and forbs, and an increase in productivity. However, there is abundance 

of exotic species and apparent lack of successional change in the upper grasslands, with the 

exotic grass Poa pratensis often being the leading species. From the late 1980s to the mid 1990s, 

an effort was undertaken in building range reference areas (RRAs) throughout the grassland 

elevation gradient (Province of British Columbia, 2020 a). The effort in constructing RRAs was 

intended to determine ecosystem potential and plant community successional stages of various 

grassland types. In this study, I collect plant and soil data from those RRAs in order to complete 

the following objectives:  

1. Characterize the species composition and soils of Cariboo-Chilcotin grasslands on a 

climate-elevation gradient.  

2. Determine the effects of grazing on Cariboo-Chilcotin grassland plant communities.  
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Figure 1.1. Toosey Range Reference Area near Riske Creek in 1923. The livestock exclosure 
was recently installed and growth of Koeleria macrantha can be seen inside the exclosure.  

 

Methods 
 

Study Area 

 

The study was conducted in the Cariboo-Chilcotin grasslands along the Fraser River 

Valley and adjacent plateaus from Big Bar North to Riske Creek, an area that is approximately 

120 by 40 km in size (Figure 1.2).  The grasslands of this region occur along the Fraser and 

Chilcotin River Valleys and their adjacent plateau areas. The grasslands occur within the 

Bunchgrass and Interior Douglas-Fir biogeoclimatic zones (Steen and Coupe, 1997), and have 

been classified into the elevation categories of the lower, middle and upper grasslands (Tisdale, 

1947; van Ryswyk et al., 1966; Delesalle et al., 2009). The grasslands are found on an elevation 

gradient from approximately 400 to 1200 metres. Higher elevations are associated with cooler 

and wetter conditions. From the lowest to highest elevation, mean annual temperature (MAT) is 

estimated to range from 7.7 to 3.0 Co, and mean annual precipitation (MAP) from 309 to 499 mm 
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(Wang et al., 2016). The soils have been grouped into Brown Chernozems at the lowest 

elevations, and Dark Brown and Dark Gray Chernozems at mid to high elevations (Valentine et 

al., 1987). The parent material of the study area is a veneer of eolian fine sand and silt overlaying 

skeletal glaciofluvial deposits (Valentine et al., 1987).  

 

Figure 1.2. The study area with RRAs categorized into climate categories: semi-arid (triangles), 
dry sub-humid (squares), and moist sub-humid (circles).  
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Experimental design 
 

Twenty-eight grassland range reference areas (RRAs) were selected for vegetation 

sampling (Appendix 1). The selection excluded reference areas with steep slopes, saline soils, 

and riparian vegetation. Each range reference area consists of a permanent plot inside a 0.5 to 1-

hectare livestock exclosure and an adjacent paired plot outside the exclosure. Therefore, “inside” 

refers to plots inside an exclosure that have not been grazed since exclosure installation, and 

“outside” plots are grazed annually. These RRAs were established 20 to 35 years before the 

sampling for this study, apart from a 60-year-old and 95-year-old reference area.  At the time of 

establishment, permanent plot locations were selected to represent a uniform plant community 

within and between inside and outside plots. Sampling took place on five parallel transects that 

are 30 metres length and spaced 5 metres apart.  

Vegetation was sampled between 2013 and 2017 at the expected peak productivity of the 

site: early June for low elevations and July or August for higher elevations. Vegetation and 

substrates were sampled with 50 Daubenmire frames (20 cm by 50 cm) using the cover class 

method (Daubenmire, 1959). Ten frames were placed at random locations on each of the five 

transects. The cover class category of individual vascular plant and moss species was visually 

estimated in each frame, with categories representing 0-5, 5-25, 25-50, 50-75, 85-95, and 95-

100% cover. The mid-point of each cover class category was used to for statistical 

determinations of the mean cover for each species. Sampling characterized the cover of all 

vascular species as well as litter and bare soil.  

Soil was sampled in September 2019 in a sub-set of 11 RRA inside plots selected to 

represent intervals of the elevation gradient. The sampling was designed to ensure representation 

of soil characteristics for the plot area. Samples were taken using a 7 cm diameter corer to 15 cm 
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depth. Two composite samples were taken from each plot. The first composite sample was taken 

from the second transect and the second composite sample from the third transect. Each 

composite sample consisted of six sub-samples taken from randomized locations along the 

transect and mixed in one container.  

Climate Analyses 
 

Climate data for each RRA was obtained from the ClimateBC model (Wang et al.,2016, 

downloaded from http://climatemodels.forestry.ubc.ca/climatebc/downloads) based on monthly 

averages from 1980 to 2010. The climate category for each RRA was determined using the 

definition of semi-arid climates (Bailey, 1979).  Like the Thornthwaite (1948) index, Bailey’s 

index is a moisture index based on annual precipitation and temperature. However, Bailey’s 

index takes greater account for the effectiveness of precipitation by taking account of season 

(mean monthly temperature) and variability of precipitation throughout the year. The climate 

categories were determined using the Bailey’s equation ∑ 0.18�/1.045^���
�  where p is monthly 

precipitation (mm) and t is mean monthly temperature in degrees Celsius.  Based on this 

calculation, RRAs were placed in climate categories:  semi-arid (2.5 < SA <4.7), dry sub-humid 

(4.7 < DSH < 6.37), and moist sub-humid (6.37 < MSH < 8.7).  

Records 
 

Four pedons were classified according to standard methods (Soil Classification Working 

Group, 1998) and accessed from the provincial RRA database (Appendix 2). These pedons were 

selected to represent mid and high elevation grasslands; a low elevation grassland pedon 

classification was not completed.  Historical information was accessed from the Province of BC 
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RRA files, kept at Ministry of Forests, Lands and Natural Resource Operations and Rural 

Development, Prince George, British Columbia, 2000 South Ospika Blvd. 

Plant Community Analyses 
 

Nonmetric multidimensional scaling (NMS; PC-ORD v. 7, McCune and Mefford, 2016) 

was used on vegetation data collected inside plots to describe patterns in species composition 

along the environmental gradient. A random starting multivariate distance measure was applied 

to the NMS and the Bray-Curtis distance measure was applied (Bray and Curtis, 1957). Species 

associated with environmental gradients were determined using multiple Pearson correlations 

with ordination axes.  

Linear regressions were used to determine the relationships between elevation and litter 

cover and vegetation cover. The coefficient of variation (CV) was used to characterize the 

heterogeneity of litter cover at each plot. Species richness was determined using a simple count 

of vascular species recorded per RRA inside plot. Spearman’s rank correlation was used to 

characterize the relationship between elevation and species richness.  

Based on NMS analysis, plant communities were divided into lower, middle and upper 

grasslands (Tisdale, 1947; Deleselle et al., 2009) in order to reduce variability between plots for 

statistical analysis. Grazed and non-grazed grassland plant communities were compared using 

paired t-tests of plant community characteristics (vegetation cover, litter cover, proportion of 

native grass cover, proportion of exotic species cover, and bluebunch wheatgrass cover). 

Analyses were completed on grouped plant communities (upper, middle, and lower grasslands) 

rather than grasslands of climate categories in order to reduce variability within groups. Statistics 

were completed in SPSS version 24.0 (IBM Corp. 2016). 
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Soil Analyses  
 

The Bouyoucos (1962) hydrometer method was used for soil particle size analysis. The 

calcium chloride method was used to measure pH. For subsequent analysis, soil samples were 

dried at 35 Co to constant mass, flail ground, and sieved to <2mm. Total carbon and nitrogen 

were measured using a Flash 2000 elemental analyser based on Thermo Application Note 

(ThermoFisher Scientific, Waltham, MA., USA). Within the Flash system, samples are 

combusted at 950 Co in the presence of a catalyst in the reactor tube. During combustion, N and 

C are oxidized and gasses are analyzed in a thermal conductivity detector. Cation exchange 

capacity (CEC) and cation concentrations were measured using the BaCl2 method (Hendershot 

and Duquette 1986; USEPA Method 200.7, 1994). The extracts of the BaCl2 method were 

analyzed using ICP-OES (inductively coupled plasma, optical emission spectroscopy). Inorganic 

carbon was measured using a Skalar Primacs analyzer using the Skalar Application note (Skalar 

Inc, Brampton ON., Canada). Within the SKALAR Primacs system, samples are acidified with 

phosphoric acid, converting inorganic carbon to carbon dioxide. Carbon dioxide is then analyzed 

using an infrared detector. The average was taken from the results of the two composite samples 

from each RRA.  

Results 
 

Species composition 
 

 Species composition of the non-grazed grasslands of the semi-arid, dry sub-humid, and 

moist sub-humid climates is summarized in Tables 1.1 to 1.3. Species composition of the semi-

arid grasslands is summarized in Table 1.1. Leading species include the native bunchgrasses 
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Hesperostipa comata and Pseudoroegnaria spicata, and the low shrub Artemisia frigida, and the 

large shrub Artemisia tridentata. 

Table 1.1. Mean cover and standard deviation of vascular plant species in the semi-arid 
grasslands (n=9). 

Semi-arid 

Species Cover (%) SD 

Hesperostipa comata 14.37 12.91 

Pseudoroegnaria spicata 6.69 7.39 

Artemisia frigida 5.79 8.51 

Artemisia tridentata 2.95 5.17 

Sporobolus cryptandrus 1.34 2.48 

Phacelia linearis 0.66 0.86 

Opuntia fragilis 0.57 0.38 

Orthocarpus luteus 0.46 1.21 

Bromus tectorum 0.27 0.64 

Achnatherum hymenoides 0.17 0.39 

 

Artemisia tridentata cover was variable depending on fire history, with a 2010 wildfire 

significantly reducing cover of the species at the Cavanagh Creek RRA near Big Bar (Image 2). 

Grasslands were dominated by Hesperostipa comata or Pseudoroegnaria spicata depending on 

grazing history, with Hesperostipa comata present at all sites. The cactus species Opuntia 

fragilis is a reliable indicator of semi-arid grasslands, as it is present on all RRAs in this climate 

(sometimes at trace levels), and was not found in other climate categories. The warm-season (C4 

photosynthesizing) native bunchgrass Sporobolus cryptandrus was present on sites with past 

heavy grazing and is an early seral plant community indicator, although it was sometimes present 

at trace levels at late seral stages. The native bunchgrass Achnatherum hymenoides was an 

indictor of patches of coarse soil substrates. Plant and litter cover were discontinuous and 

heterogenous, with spaces between plants (Figure 1.3 and Figure 1.4). Spaces between plants had 

high cover of biological soil crust (BSC). Diversity of vascular species is low, typically with 10-
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11 species per RRA. Farwell Big Sage RRA (Figure 1.5) located at Farwell Canyon is an 

example of a semi-arid grassland with high cover values of Artemisia tridentata.  

 

 

Figure 1.3. Overview of Cavanagh RRA near Big Bar, in the semi-arid climate at 468 m 
elevation. The site is dominated by Pseudoroegnaria spicata with traces of Hesperostipa comata 
and Poa secunda var. sandbergii. The 2017 photograph was taken after Artemisia tridentata 
plants were substantially reduced by a wildfire in 2010.  
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Figure 1.4. Ground shot at Cavanagh RRA showing the spaces between plants and BSC cover. 
Litter cover is low. A young Artemisia tridentata plant that has seeded in post-wildfire is in the 
lower left part of the image.  
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Figure 1.5. Overview of semi-arid grasslands at Farwell Canyon, 515 m elevation. Artemisia 
tridentata is present.  Hesperostipa comata is the leading species by cover, followed by 
Pseudoroegnaria spicata.  
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Species composition of dry sub-humid grasslands is summarized in Table 1.2. 

Pseudoroegnaria spicata is the dominant species in grasslands of the dry sub-humid climate. The 

grasslands also have a greater diversity of forbs than the semi-arid grasslands. The exotic sod-

forming grass species Poa pratensis is present but at low cover levels. Artemisia frigida is the 

second most abundant species, and the forbs Astragalus miser and Achillea millefolium are 

present. The low stature native bunchgrass Koeleria macrantha has higher cover in early seral 

condition and has lower cover but is still present in late seral stages. Species richness is 

intermediate, with 20 vascular species per RRA being typical.  

Table 1.2. Mean cover and standard deviation of vascular plant species in the dry sub-humid 
grasslands (n=3). 

Dry sub-humid 

Species Cover (%) SD 

Pseudoroegnaria spicata 18.22 14.42 

Artemisia frigida 4.87 7.60 

Achillea millefolium 4.28 7.03 

Astragalus miser 3.17 5.48 

Koeleria macrantha 3.12 0.54 

Poa pratensis 2.98 5.13 

Tragopogon pratensis 2.95 5.11 

Hesperostipa comata 2.87 4.95 

Taraxacum offifinale 0.80 1.39 

Eriogonum heracleoides 0.62 1.07 

 

Plant and litter cover were greater than in the semi-arid grasslands but more variable 

(heterogenous) than in the moist sub-humid grasslands. Hesperostipa comata was absent from 

late seral stages. The exotic species Tragopogon pratensis is one of the leading forbs.  There was 

encroachment of Douglas-fir (Pseudotsuga menziesii var. glauca) and lodgepole pine (Pinus 

contorta var. latifolia) trees on the higher elevation part of the dry-sub humid grasslands.  

Toosey RRA (Figure 1.6) is near the highest elevation of the dry-sub humid grasslands (904 m). 
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Figure 1.6. Dry sub-humid climate grasslands at Toosey RRA, 904 m elevation. 
Pseudoroegnaria spicata is the leading species. Levels of heterogeneity of plant cover is 
intermediate between lower grassland and upper grasslands. There is sparse encroachment of 
Douglas-fir and lodgepole pine, but all the pine trees have died 

 

Species of the moist sub-humid grasslands are summarized in Table 1.3. Poa pratensis is 

present throughout the grasslands and is often the leading species. Achnatherum richardsonii and 

Hesperostipa curtiseta are also often present and sometimes co-dominant with Poa pratensis. 

Pseudoroegnaria spicata is sometimes the leading species or co-dominant at the lower elevations 

of this zone but is generally absent on level terrain and gentle slopes over 1000 m elevation. 
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Shrub cover is low (<4 % cover), with Rosa acicularis often being present at low cover values 

and Symphoricarpos occidentalis generally restricted to swales. Tragopogon pratensis is always 

present and is sometimes the most abundant forb species. There is greater species richness than 

found in semi-arid or dry sub-humid grasslands, with 25-40 vascular species per RRA. However, 

most of these species are low in cover (<4%), after the 1-3 leading grass species. Plant and litter 

cover are continuous with low spatial heterogeneity.  

Table 1.3. Mean cover and standard deviation of vascular plant species in the moist sub-humid 
grasslands (n=16). 

Moist sub-humid 

Species Cover (%) SD 

Poa pratensis 23.49 20.57 

Achnatherum richardsonii 11.40 13.02 

Pseudoroegnaria spicata 6.93 9.30 

Tragopogon pratensis 6.29 5.33 

Hesperostipa curtiseta 4.06 9.24 

Antennaria umbrinella 3.51 7.02 

Astragalus miser 3.17 4.88 

Koeleria macrantha 2.06 3.72 

Achillea millefolium 1.94 2.58 

Artemisia frigida 1.31 2.42 

 

An overview of moist sub-humid grasslands at Becher’s prairie near Loran RRA (970 m 

elevation) is presented as Figure 1.7. Encroachment of trees on the moist sub-humid grasslands is 

common and sometimes dense. Figure 1.8. shows an area of grasslands near Riske Creek with 

lodgepole pine encroachment that was burned in the 2017 Hanceville wildfire (970 m elevation).   
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Figure 1.7. Moist sub-humid grasslands at 970 m elevation with Poa pratensis, Achnatherum 
richardsonii, and Hesperostipa curtiseta. Note the continuous plant and litter cover.  
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Figure 1.8. Moist sub-humid grasslands at 970 m elevation with lodgepole pine trees burned in 
the 2017 Hanceville wildfire.  

 

NMS Analysis 
 

Multivariate species-space distances among sample units are show in Figure 1.9. Axis 1 

includes 71.2% of the variation, and axis 2 accounts for 15.3% of the variation, for a total of 

86.5% of variation in species composition explained by the distance matrix, measured by the 

Bray-Curtis distance measure (Bray and Curtis, 1957). The distribution of the points (RRAs) is 

driven by species composition, with similar plant communities being placed close together in the 

distance matrix. There are two gradients in the matrix represented by Axis 1 and Axis 2. The 
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distance matrix axes were correlated with climate variables of mean annual temperature (MAT) 

and mean annual precipitation (MAP), and with plant community characteristics (litter cover, 

vegetation cover, and species richness). Elevation is also correlated with the distance matrix as a 

combined climate (MAP and MAT) factor.  

 

 

Figure 1.9. NMS ordination of 28 inside plots and 78 species of the Range Reference Areas. The 
climate categories assigned to plots are: SA=Semi-arid, DSH=Dry sub-humid, MSH=Moist sub-
humid. The climate and environmental variables correlated with the ordination axes: E= 
elevation, SR = Species Richness, MAP= Mean Annual Precipitation, MAT= Mean Annual 
Temperature, VC= Vegetation Cover, LC = Litter Cover, MAT= Mean Annual Temperature. 
Both axes are significant (Monte Carlo Test p=0.004), total stress = 10.05.  
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Species associated with Axis 1 are summarized on Table 1.4. Hesperostipa comata 

abundance has the strongest positive correlation with the axis. Other species positively correlated 

with Axis 1 include CAM photosynthesizing Opuntia fragilis prickly-pear cactus and C4 

photosynthesizing native bunchgrass Sporobolus cryptandrus. The native bunchgrass 

Achnatherum richardsonii and the exotic sod-forming grass Poa pratensis, and the exotic forb 

Tragopogon pratensis are negatively associated with Axis 1. Axis 2 (summarized on Table 1.5) 

is positively associated with Pseudoroegnaria and negatively associated with Hesperostipa 

comata and Poa pratensis abundance.  

Table 1.4. Pearson correlations of plant species abundance with NMS Axis 1.  

Axis 1 Associated Species 

Negative (-) Positive (+) 

Achnatherum richardsonii 0.676 Hesperostipa comata 0.711 

Poa pratensis 0.643 Opuntia fragilis 0.704 

Cerastium arvense 0.609 Phacelia linearis 0.47 

Tragopogon pratensis 0.555 Artemisia tridentata 0.437 

Geum triflorum 0.543 Artemisia frigida 0.427 

Agoseris glauca 0.455 Sporobolus cryptandrus 0.405 

Galium boreale 0.444 Achnatherum hymenoides 0.349 

Fragaria virginiana 0.422 Kali tragus 0.327 

Danthonia intermedia 0.401 Bromus tectorum 0.302 

Elymus trachycaulus 0.391 Lepidium densiflorum 0.295 

 

 

Table 1.5. Pearson correlations of plant species abundance with NMS Axis 2. 

Axis 2 Associated Species 

Negative (-)  Positive (+)  

Hesperostipa comata 0.537 Pseudoroegnaria spicata 0.861 

Poa pratensis 0.442 Arabis hoelbolii 0.564 

 

Climate variables correlated with the ordination matrix axes are summarized in Table 1.6. Axis 1 

of the ordination matrix has a negative relationship with MAP and elevation, and a positive 
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relationship with MAT. Axis 2 is not correlated with any of the climate variables. This 

demonstrates that Axis 1 represents a climate gradient, with higher elevations and cool-wet 

conditions correlated with the negative end of Axis 1, while lower elevations and warm-dry 

conditions correlated with the positive end of Axis 1. There is a concentration of moist sub-

humid RRAs on the negative end of Axis 1 and semi-arid RRAs on the positive end of Axis 1.  

 

Table 1.6. Pearson correlations of climate variables and Axis 1 and Axis 2 of the ordination 
space. Elevation and mean annual precipitation are negatively correlated with Axis 1, and MAT 
is positively correlated with Axis 1. There is not a relationship between the climate variables and 
Axis 2. 

Variable Axis 1 (R2= 71.2) Axis 2 (R2=15.3) 

Elevation -0.914 0.032 

MAP -0.92 0.063 

MAT 0.919 -0.071 

 

Axis 2 is positively correlated with greater percent cover values of Pseudoroegnaria spicata. 

There were low cover values of Pseudoroegnaria spicata at the positive and negative ends of the 

climate gradient. Pseudorognaria spicata gradually increases and then decreases on Axis 2 

moving from negative to positive along the climate gradient (Axis 1).  

Grassland Plant Community Categorizations 
 

Based on ordination analysis, grassland plant communities were organized into lower, 

middle, and upper grasslands (Tisdale, 1947; Deleselle et al., 2009).  The relationships between 

plant communities, elevation, climate categories, and biogeoclimatic zones is summarized in 

Table 1.7. There is a gradual change in plant community composition along the elevation 

gradient. Lower grassland plant communities can be identified by the presence of Hesperostipa 

comata and Opuntia fragilis, the middle grasslands by Pseudoroegnaria spicata and greater 
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vascular species richness than the lower grasslands; the upper grasslands are characterized by 

Poa pratensis, Achnatherum richardsonii, and Hesperostipa curtiseta as leading species.  

Table 1.7. Distribution of grassland plant community categorizations with biogeoclimatic 
ecosystem classification (BEC) and climate classification systems. The symbol ** means the 
grassland category is widely distributed with the BEC subzone, while * means the category may 
be found within the BEC subzone but is not widely distributed. Climate categories are SA = 
semi-arid, DSH = dry sub-humid, and MSH = moist sub-humid. Bolded letters denote the 
climate that the grassland category is primarily associated.  

BEC and climate Lower Grasslands Middle Grasslands  Upper Grasslands 

BG xh **   

BG xw ** *  

IDF xm  ** ** 

IDF dk   * 

climate SA, DSH DSH, MSH MSH 

elevation (m) 380-700 700-950 950-1200 

 

The grassland plant communities were related with biogeoclimatic and climate categories but did 

not perfectly overlap. There were also plant communities that were intermediate between the 

grassland categorizations that occurred near the elevational boundaries.  

The effects of grazing on species composition 
 

   The mean cover and frequency of species of grazed and un-grazed plant communities are 

included in Table 1.8 (upper grasslands), Table 1.9 (middle grasslands), and Table 1.10 (lower 

grasslands). 
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Table 1.8 Mean cover and frequency of species of inside and outside plots in the upper 
grasslands. 

Upper Grasslands 

Inside, n = 13 Outside, n = 12 

Species mean freq Species mean freq 

Poa pratensis 28.84 1 Poa pratensis 25.97 1 

Achnatherum richardsonii 13.39 0.92 Achnatherum richardsonii 7.54 0.67 

Tragopogon pratensis 7.12 1 Hesperostipa curtiseta 5.74 0.75 

Hesperostipa curtiseta 4.99 0.77 Antennaria umbrinella 4.87 0.67 

Antennaria umbrinella 3.53 0.77 Potentilla hippiana 3.22 0.83 

Pseudoroegnaria spicata 3.38 0.69 Tragopogon pratensis 2.85 1 

Astragalus miser 2.60 0.77 Koeleria macrantha 2.69 0.75 

Achillea millefolium 1.82 1 Geranium viscosissimum 2.55 0.25 

Galium boreal 1.51 0.54 Hesperostipa comata 1.66 0.42 

Koeleria macrantha 1.22 0.85 Pseudoroegnaria spicata 1.55 0.42 

 

Table 1.9 Mean cover and frequency of species on inside and outside plots of the middle 
grasslands. 

Middle Grasslands 

Inside, n = 5 Outside, n = 5   

Species Mean freq Species Mean freq 

Pseudoroegnaria spicata 23.99 1 Pseudoroegnaria spicata 8.09 1 

Astragalus miser 5.28 0.6 Koeleria macrantha 7.03 1 

Koeleria macrantha 4.60 1 Poa pratensis 4.57 0.8 

Achillea millefolium 4.06 1 Artemisia frigida 4.29 1 

Antennaria microphylla 3.66 0.2 Antennaria umbrinella 2.63 0.4 

Tragopogon pratensis 3.40 0.6 Artemisia tridentata 2.50 0.2 

Antennaria umbrinella 2.17 0.4 Linum lewisii 2.39 0.4 

Poa pratensis 1.95 0.6 Achillea millefolium 1.62 0.8 

Artemisia frigida 1.94 1 Hesperostipa comata 1.60 0.6 

Achnatherum richardsonii 1.65 0.2 Artemisia campestris 1.57 0.6 
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Table 1.10 Mean cover and frequency of species of inside and outside plots of the lower 
grasslands.   

Lower Grasslands 

Inside, n = 10 Outside, n = 9  

Species Mean freq Species Mean freq 

Hesperostipa comata 13.79 1 Hesperostipa comata 9.94 0.89 

Artemisia frigida 6.57 0.8 Sporobolus cryptandrus 5.39 0.89 

Pseudoroegnaria spicata 6.19 0.8 Pseudoroegnaria spicata 4.63 0.56 

Sporobolus cryptandrus 1.21 0.4 Artemisia frigida 1.83 0.89 

Artemisia tridentata 1.16 0.6 Artemisia tridentata 0.98 0.56 

Phacelia linearis 0.59 0.5 Opuntia fragilis 0.89 1 

Opuntia fragilis 0.54 1 Phacelia linearis 0.83 0.33 

Koeleria macrantha 0.43 0.4 Salsola kali 0.81 0.22 

Orthocarpus luteus 0.41 0.2 Koeleria macrantha 0.78 0.33 

Bromus tectorum 0.24 0.5 Bromus tectorum 0.56 0.33 

 

The results of paired t-tests for grazed and un-grazed plots for each plant community are 

summarized in Table 1.11. The only significant effects of grazing were reduced vegetation cover 

(p = 0.02) and reduced Pseudoroegnaria cover (p=0.001) in the middle grasslands. Potential or 

marginal effects of grazing that did not meet the alpha level (p <0.05) of significance were 

reduced plant cover in lower grasslands (p= 0.08), reduced native forbs in lower grasslands (p = 

0.08), and reduced litter in upper grasslands (p = 0.08). In the lower grasslands, grazed plots 

were associated with a decrease in Pseudoroegnaria and an increase in Sporobolus, but statistical 

analysis could not be completed due to low frequency of occurrence (4 occurrences on inside 

plots for Sporobolus and 5 occurrences on outside plots for Pseudoroegnaria).  

 

 



30

Table 1.11. Mean cover and coefficient of variation for ecosystem traits for inside and outside 
plots of each grassland category. The p-value is the result of paired t-tests and significance of the 
difference between inside and outside plots. Significant values are bolded.  

 Lower  Middle   Upper  

Trait In Out p In Out p In Out  p 

Vegetation 32.5 (35.5) 27.7 (2.6) 0.08 59.6 (13.73) 46.74 (10.33) 0.02 82.7 (7) 75.5 (6.64) 0.37 

Litter 24.1 (3.9) 21.7 (2.43) 0.71 41.6 (12.05) 39.56 (12.68) 0.47 71.9 (4.91) 61 (6.3) 0.08 

Native Grass 0.71 (0.07) 0.75 (0.05) 0.64 0.62 (0.12) 0.47 (0.06) 0.26 0.32 (0.06) 0.3 (0.06) na 

Native Forb 0.25 (0.07) 0.14 (0.04) 0.08 0.31 (0.09) 0.3 (0.09) 0.89 0.26 (0.04) 0.31 (0.04) 0.238 

Exotic 0.01 (0.002) 0.05 (0.02) na 0.07 (0.05) 0.09 (0.05) na 0.43 (0.05) 0.38 (0.08) 0.47 

 

Species composition of grazed and non-grazed upper grasslands were similar. Poa pratensis was 

leading on grazed and non-grazed plots there, while Achnatherum richardsonii and Hesperostipa 

curtiseta are frequent secondary species. Average combined cover of native bunchgrass species 

was slightly lower than average cover of Poa pratensis. 

 

Plant community characteristics on an elevation-climate gradient 
 

The relationship between elevation and plant community characteristics are summarized 

in Table 1.12. and shown in Figure 1.10. The cooler-wetter end of the climate gradient was 

associated with increased vegetation cover (R2=0.548; p <0.001), increased litter cover 

(R2=0.532; p<0.001), and reduced heterogeneity of litter cover (R2=0.432; p <0.001). There was 

also a significant positive relationship between elevation and species richness (Spearman 

correlation=0.813; p <0.001). Average vegetation cover and litter cover increased from averages 

of 32.5 and 24.1%, respectively, in the lower grasslands to 82.7 and 71.9%, respectively, in the 

upper grasslands. Plots had an average species count of 10.5 in lower grasslands, 20.6 in middle 

grasslands, and 28.1 in upper grasslands. The native forb component of upper grasslands was a 

source of diversity despite high cover values of exotic species.  
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Table 1.12. Results of linear regressions showing relationships between plant community 
characteristics and elevation. 

 Variable n F R2 p intercept slope coefficient 

Vegetation cover 28 33.77 0.548 0.000005 -14.4 0.09 

Litter cover 28 29.53 0.532 0.000011 -15.7 0.08 

Hetergoeneity of litter cover 28 19.75 0.432 0.000146 120 -0.08 
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Figure 1.10. Relationships between elevation and plant community characteristics including A. 
total vegetation cover (%), B. litter cover (%), C. litter cover heterogeneity (coefficient of 
variation; CV), and D. number of vascular species per plot (n). 
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Soil characteristics on an elevation-climate gradient 
 

A summary of soil characteristics of range reference areas collected along the elevation 

gradient are summarized on Table 1.13. Relationships between elevation, carbon and nitrogen 

are summarized on Table 1.14. and shown on Figure 1.11.  

Table 1.13. Summary of soil characteristics of RRAs selected from the elevation gradient. 

 

Reference Area elevation (m) MAP MAT organic C (%) total N (%) C/N ratio pH Clay (%) Silt (%) Sand (%) texture 

Farwell Big Sage  515 313 6.3 0.98 0.099 9.90 7.12 12.8 38.4 48.8 Loam 

Farwell Needlegrass  592 334 5.9 1.25 0.12 10.42 6.77 9.0 47.4 43.7 Loam 

Eagle Tree  641 318 5.8 2.35 0.21 11.19 6.51 17.9 46.0 36.1 Loam 

Empire Valley  668 364 5.9 1.6 0.15 10.67 6.56 14.1 53.7 32.2 Silt Loam 

Toosey  905 411 4.4 3.4 0.29 11.72 6.39 17.9 49.9 32.2 Loam 

Cotton Lake  940 420 4.2 2.6 0.225 11.56 6.39 16.6 47.2 36.2 Loam 

Loran  966 436 4.1 3.7 0.31 11.94 5.96 21.7 43.5 34.8 Loam 

Rock Lake  969 438 4.0 3.1 0.265 11.70 6.17 17.9 42.2 39.9 Loam 

Sting and Vert  1066 471 4.0 4.65 0.38 12.24 6.34 14.0 35.7 50.3 Loam 

Vert Lake  1114 480 3.8 4 0.355 11.27 6.78 21.7 39.6 38.7 Loam 

Bald Mountain  1155 478 3.2 8.2 0.685 11.97 5.86 11.5 47.3 41.3 Loam 
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Table 1.14. Results of linear regressions showing relationship between soil characteristics and 
elevation. 

 Variable n F R2 p intercept slope coefficient 

organic carbon (%) 11 20.84 0.698 0.001 -3.25 0.0075 

total nitrogen (%) 11 20.13 0.691 0.002 -0.24 0.0006 

C/N ratio 11 19.75 0.738 0.001 8.91 0.0028 
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Figure 1.11. Relationships between elevation and A. organic carbon (%), B. total nitrogen (%), 
and C. C/N ratio.  

 

There was a significant increase in soil organic C (%), total N (%), and C/N ratio with 

cooler and wetter climate conditions. However, the magnitude of change in C/N was small 

(ranging from 9.9 to 12.24), compared to the increase in total N across the climate gradient (from 

0.099 to 0.685 %). The inorganic carbon concentrations generally were below the detection limit 

(except for one sub-sample that was slightly above the detection limit), indicating the absence of 

calcium carbonates in the Ah horizon. Of four sub-humid zone soils, three were classified as 

orthic dark brown chernozems, and one as a calcareous dark brown chernozem (Appendix 1). 

There was low variability in soil texture among soil samples despite being collected at various 

elevations over a large geographic area. All samples were classified as a loam or silt loam, with 

similar concentrations of combined silt and clay.  
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Discussion 
 

The presence of spatially contiguous grasslands along a large (~800 m) elevation gradient 

provided an opportunity for the comparison of grassland ecosystems of different climates in a 

relatively small geographic area. Elevation was a strong predictor of plant community 

characteristics, soil qualities, and species composition. The cooler-wetter climates were 

associated with increases of soil carbon content, vegetation cover, litter cover, and species 

richness. Warm-dry conditions were associated with greater heterogeneity of litter cover. 

Grazing caused moderate changes in the plant community in middle and lower grasslands, 

notably the reduction in Pseudoroegnaria cover. In the lower grasslands, Hesperostipa comata 

had the greatest cover on grazed and non-grazed plots, and Pseudoroegnaria had higher 

frequency and cover on non-grazed plots than grazed plots. Sporobolus cryptandrus had higher 

cover on grazed lower grasslands. I did not find any significant differences between grazed and 

non-grazed grasslands in the sub-humid climate upper grasslands.  

 Tisdale (1947) created the categorization of lower, middle, and upper grasslands for 

southern interior British Columbia. This convention was supported by subsequent research in the 

Thompson-Nicola grasslands (e.g., van Ryswyk et al., 1966; Carlyle et al., 2014; Lee et al., 

2014; Cumming et al., 2016) and is applied in conservation and grazing management (Deleselle 

et al., 2009; Province of British Columbia, 2020 b). In the Thompson-Nicola region, the 

Bunchgrass very dry hot (BG xh), Bunchgrass very dry warm (BG xw) (Nicholson et al., 1991) 

and Interior Douglas-fir very dry hot (IDF xh) biogeoclimatic subzones (Hope et al., 1991) 

correspond with the lower, middle, and upper grasslands (Tisdale, 1947; Lee et al., 2014). 

Additionally, the changes in leading species composition that represent the categories are 

spatially abrupt (Lee et al., 2014). In the Cariboo-Chilcotin, the progression of biogeoclimatic 
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zones and grassland plant communities along the elevation gradient do not completely coincide. 

Creating grassland categorizations is more challenging because species composition, plant cover, 

litter cover, and soil characteristics changed gradually and continuously along the elevation 

gradient. Furthermore, because of the gradual changes along the elevation gradient, there are 

plant communities that are intermediates between categorizations.  

Based on NMS ordination analysis, a re-configuration of this classification for the 

Cariboo-Chilcotin grasslands is proposed. Steen and Coupe (1997) distinguish the BG xh from 

the BG xw by the presence of Artemisia tridentata, with the BG xh having greater cover values 

of the species. Deleselle (2009) also separates the lower and middle grasslands on the difference 

in Artemisia tridentata cover. In the RRAs, the frequent absence of Artemisia tridentata means it 

is not a reliable indicator for grassland plant communities. Therefore, the lower grasslands 

category is defined by more consistent observations. Observations include the presence of 

Hesperostipa comata at all seral stages (although Pseudoroegnaria spicata is leading at late seral 

stages), relatively low litter and plant cover, and the presence of Opuntia fragilis. The BG zone 

spatially approximates the proposed definition of the lower grasslands, although the transition to 

middle grasslands may occur in the higher elevation part of the BG xw. The definition of the 

middle grasslands includes greater cover values of Pseudoroegnaria spicata, the absence of 

Hesperostipa comata at late seral stages, and absence of Opuntia fragilis. The middle grassland 

categorization can be obscured by grazing which reduces Pseudoroegnaria spicata and because 

Hesperostipa comata may be present at early seral stages. In this case, greater species richness 

(>15 vascular species per plot), the presence of Poa pratensis, and Achnatherum nelsonii are 

indicators of the middle grasslands. The upper grasslands have one or a combination of Poa 

pratensis, Achnatherum richardsonii, and Hesperostipa curtiseta as leading species. The upper 
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grasslands also have greater plant cover and litter cover, and greater species richness than other 

grassland categories. The IDF xm contains areas of middle and upper grasslands, while the upper 

grasslands also extend into the IDF dk.  There is a broad transition between the middle and upper 

grasslands that occurs between approximately 900 to 950 m elevation. In this transition, there is 

sometimes substantial cover of Pseudoroegnaria spicata as well as grass species associated with 

the upper grasslands.   

 This study uses a framework of climate categories in analysis and discussion. The 

framework is useful because there is a great quantity of scientific literature that describes 

ecosystems characteristics for each climate category. Characteristics include productivity, carbon 

and nitrogen dynamics, biological and abiotic decomposition processes, and disturbance regimes. 

The bunchgrass biogeoclimatic zone and the lower grasslands roughly correspond with the semi-

arid climate. The middle grasslands occur in the dry sub-humid and drier parts of the moist sub-

humid climates. The transition from middle to upper grasslands and the entirety of the upper 

grasslands occur in the moist sub-humid climate.  Climate categories will be used when 

comparing the Cariboo-Chilcotin grasslands to those of other regions because climate categories 

are equivalent, while species composition-based categories are not directly comparable. 

Discussion on the effects of grazing and of within-region characteristics will use the lower, 

middle, and upper grassland categories.  

Patterns of plant cover changed from discontinuous to continuous on a gradient from 

semi-arid to sub-humid climate grasslands. The same pattern has been described in the Burke et 

al. (1998) review of global temperate grasslands. Total plant cover in grasslands is strongly 

correlated with productivity (Carlyle et al., 2014).  Aboveground productivity in grasslands is 

strongly correlated with below-ground productivity and accumulation of organic carbon 
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(Anderson, 1987). Root litter is the primary source of soil organic carbon in grassland (Steinaker 

and Wilson, 2005). Soil organic carbon increases with wetter conditions because of increased 

productivity of organic matter and with cooler conditions because of lower decomposition rates 

(Anderson, 1987; Pennock et al., 2011).  Burke et al. (1989) and Hewins et al. (2018) found that 

climate and soil texture explain most of the variation in grassland soil organic carbon content at 

the regional level. Smaller particle sizes (silt + clay) are a greater source of organic carbon 

retention capacity than larger particle sizes (sand) because of greater surface area, and because 

particles provide physical and biochemical C stabilization factors (Plante et al., 2006). In this 

study, the relative uniformity of soil texture (silt + clay content) in the aeolian veneer effectively 

created a controlled variable, permitting a representation of the climate-soil organic matter 

relationship with a small sample size.  

The semi-arid grasslands have low concentrations of soil organic carbon and total 

nitrogen. Sub-humid grassland patterns of decomposition are closely linked to the growth of the 

microbial community, while in semi-arid grasslands, above- and below-ground processes are 

uncoupled from these patterns (Parton et al., 2007). Like below-ground processes, above-ground 

decomposition is limited by low microbial activity. Low litter covers found in the semi-arid 

grasslands result from low productivity (Zhou et al., 2009), and abiotic decomposition processes 

such as photodegradation (Austin and Vivanco, 2006). The Collins et al. (2008) review 

concluded that due to the lack of a rich carbon and nitrogen “pool”, nutrient cycling in semi-arid 

ecosystems is more likely to operate in a direct “loop”. The loop works by transferring nutrients 

from the biological soil crusts directly to plants through a fungal network. Therefore, the diverse 

biological soil crust communities of the Cariboo Chilcotin grasslands as described by Marsh et 

al. (2006) are likely critical for supporting productivity. Initial observations suggest that BSC is 
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reduced or absent from heavily grazed grasslands. Caputa et al. (2013) has demonstrated 

biological soil crusts deliver substantial amounts of nitrogen to the grassland ecosystem, with 

high levels of temporal heterogeneity depending on water availability and soil surface 

temperature.  

The results indicate that availability of N is most limited by retention capacity in semi-

arid grasslands and by nitrogen inputs in sub-humid grasslands. There was a relatively constant 

C/N ratio in comparison to the large increase in total nitrogen along the elevation gradient. 

However, there were small but statistically significant increases in C/N ratio. Grassland root 

litter has lower nitrogen content than forest root litter, which contributes to higher C/N ratios in 

grassland than forest soils (Steinaker and Wilson, 2005). Despite low nitrogen content of root 

litter in grasslands, greater concentrations of SOC (soil organic carbon) are associated with 

increased soil nitrogen, as SOC provides a substrate to capture nitrogen inputs (Barrett and 

Burke, 2000). Barrett and Burke (2002) demonstrate that greater SOC content increased soil 

nitrogen retention in a fertilization experiment. Luo et al. (2017) found with increasing aridity, 

the proportion of ecosystem nitrogen (combined plant and soil) shifted to above-ground plant 

matter in comparison to the concentration of soil N. The concentration of nitrogen in foliage 

rather than soil is an indicator of the link between microbial communities and plants that bypass 

the soil. Luo et al. (2017) also found that increasing levels of SOC dilute the concentration of 

nitrogen in the ecosystem. It is likely that increases in soil N content along the elevation gradient 

were related to greater retention capacity provided by SOC, while the C/N ratio increased 

because of the dilution effect of increased SOC. Lack of nitrogen inputs to meet the retention 

capacity of soils in the sub-humid climate may also be a factor in the increasing C/N ratio.  
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The species composition of the upper grasslands consists of early- to mid-seral species or 

indicators of past disturbance. Species composition of grazed and non-grazed plant communities 

are similar, and no statistically significant differences between communities inside and outside of 

exclosures were detected. Poa pratensis is the leading species, with most areas having a 

substantial component of Achnatherum richadsonii and Hesperostipa curtiseta. Achnatherum 

nelsonii as a frequent trace species. Poa pratensis is an exotic cool-season grass that invades 

after heavy grazing and is persistent in grasslands across humid and sub-humid (mesic) 

grasslands of North America (White et al.,2013; DeKeyser and Dennhardt, 2015; Printz and 

Hendrickson, 2015). Hesperostipa curtiseta is rare in the grasslands of interior British Columbia 

outside of the of the Cariboo-Chilcotin region but is common in the northern Great Plains. In the 

Great Plains, Hesperostipa curtiseta is an indicator of past grazing disturbance in the plains-

rough fescue (Festuca hallii) grasslands (Coupland, 1961; Coupland and Brayshaw, 1953). In the 

Thompson-Nicola grasslands of southern interior British Columbia, Achnatherum richardsonii 

and Achnatherum nelsonii are a substantial part of early- to mid-seral plant communities in the 

higher elevation upper grasslands that are dominated by mountain-rough fescue (Festuca 

campestris) in the late seral stage (Province of British Columbia, 2020 c). The presence of early 

seral associated grasses and absence of a dominant late seral species normally associated with 

sub-humid climates may have contributed to lack of successional direction in the upper 

grasslands. Furthermore, grazed and non-grazed grasslands may have recovered at similar rates 

after being severely over-grazed in earlier decades, when bare ground and lower stature grasses 

such as Festuca saximontana and Koeleria macrantha were more common.  

Species richness increases continually along the elevation gradient coincidentally with 

greater plant cover and litter cover. In a worldwide meta-analysis of grassland species richness, 
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Fraser et al. (2015) found a humped-back relationship between productivity and species richness. 

While there is debate on whether the humped-back relationship of productivity and species 

richness is consistent worldwide (Laanisto and Hutchings, 2015), it appears the humped-back 

relationship at least predominates across temperate and high-latitude grasslands (Partel et al., 

2007)  In a subsequent review, Koerner et al. (2018) attributed lower species richness associated 

with productive grasslands to the monopolization of resources by dominant species. The 

continuous increase in number of species along the elevation gradient in the Cariboo-Chilcotin 

grasslands is an outlier of the normal humped-back productivity-species richness relationship. In 

the climate-elevation gradient of this study, a relatively cool-wet climate and increased 

availability of soil resources was correlated with greater species richness.  This suggests that due 

to the absence of dominant species, resource availability is the driving factor in species richness.  

Poa pratensis was the leading species in the upper grasslands, while Tragopogon 

pratensis was a high frequency low cover species. Similarly, White et al. (2013) found that Poa 

pratensis invasion reduced native species cover but not native species presence or richness at a 

site in the sub-humid foothills-fescue region of Alberta. Bromus tectorum (cheatgrass) is 

frequent but with low cover in the lower grasslands and may be a recent invader. Cheatgrass has 

invaded millions of hectares of North American rangelands (Mack, 1981), with semi-arid 

sagebrush (Artemisia tridentata) grasslands being particularly susceptible to invasion (Chambers 

et al., 2007). Cheatgrass invasions have serious consequences for ecosystem services due to the 

associated deterioration of native plant cover and soil properties, and their ability to support 

recurrent wildfires (Chambers et al., 2014). Therefore, cheatgrass may pose a significant threat to 

the semi-arid grasslands. 
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The soils of the sub-humid grasslands have considerably lower soil organic matter 

content than those described for grasslands in the sub-humid climates of Alberta (Hewins et al., 

2018), and the upper grasslands of the Thompson-Nicola region of British Columbia (van 

Ryswyk et al., 1966; Carlyle et al.,2014). This is despite the upper grasslands climate of the 

study area being considerable wetter and cooler than the upper grasslands location used in van 

Ryswyk et al. (1966) and Carlyle et al. (2014) studies (as per ClimateBC estimates; Wang et 

al.,2016). Further, black chernozems are the dominant soils of sub-humid grasslands of Canada 

(Soil Classification Working Group, 1998). The dominant grassland soils of the study area are 

dark brown chernozems, which have lower soil organic carbon content than the black 

chernozems and are more typical of semi-arid rather than sub-humid climate grasslands (Soil 

Classification Working Group, 1998). Dark Gray Chernozems are also found in the region 

(Valentine et al., 1987), indicating that forests and grasslands have both occupied some sites over 

time (Soil Classification Working Group, 1998). It is suggested that the dominance of early-seral 

grasses and the lack of a high productivity late-seral grass species may have prevented the 

accumulation of greater concentrations of soil organic carbon. The presence of a large stature 

species with a high biomass root system may be a necessary factor in the accumulation of 

organic carbon found in black chernozems. Rough fescue has a large root system in comparison 

to other grassland species (Johnston, 1961). Johnston et al. (1971) found that the long-term 

removal of rough fescue by heavy grazing may have resulted in the loss of organic carbon and a 

change from a black to dark brown soil colour. Coupland and Brayshaw (1953) determined that 

late seral rough fescue grasslands on the northern Great Plains produced a total weight of root 

material 50% greater than under an early seral grassland dominated by Hesperostipa curtiseta 

and Koeleria macrantha. The geographic isolation of these central British Columbia grasslands 
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may have prevented the migration of the typical late seral species Festuca campestris, therefore 

limiting the buildup of soil organic carbon. 

Reduced frequency of fires has resulted on the encroachment of lodgepole pine (Pinus 

contorta var. latifolia) and Douglas-fir (Pseudotsuga menziesii var. glauca) trees on the Cariboo-

Chilcotin grasslands in the past ~100 years (Strang and Parminter 1980; Bai et al., 2004). The 

greatest amount of forest encroachment occurred at higher elevations (Bai et al., 2004; Steele et 

al., 2007). Forest encroachment on grasslands in sub-humid climates is often associated with 

degradation from intensive livestock grazing and loss of fine fuels that contribute to periodic 

fires that suppressed encroachment in the past (Archer et al., 2017). Fire activity increases across 

a resource gradient as primary productivity provides a greater amount and spatial connectivity of 

fine fuels (and declines again due to high fuel moisture content) (Krawchuck and Moritz, 2011). 

In the upper grasslands, the high cover values of plant cover and litter, and the reduced 

heterogeneity of litter cover, are expected to support the spread of spatially contiguous fires. 

Therefore, it is likely that historically there was a higher frequency and larger size of fires in the 

upper grasslands than in the lower grasslands. 

The long-term predominance of grassland plant communities in parts of the sub-humid 

climate is evidenced by grassland-associated soil characteristics. These include the accumulation 

of organic carbon in the Ah horizon, and the dissolution of carbonates from the A horizon and 

precipitation to the C horizon as is characteristic of chernozemic soils (Appendix 1). There is 

evidence that the process of precipitation of carbonates to the C horizon takes longer periods of 

time than the accumulation of organic carbon in the Ah horizon (Anderson, 1977). Water 

limitation is the leading factor controlling the vegetation of the semi-arid bunchgrass 

biogeoclimatic zone, as trees do not typically grow on zonal sites and grasslands predominate 
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due to drought (Nicholson et al.,1991). Trees can grow on the sub-humid grasslands, as 

demonstrated in the 20th century as trees encroached on historical grasslands. Correspondingly, 

Burke et al. (1998) describes a resource gradient from semi-arid to sub-humid grasslands: water 

limitation controls plant-soil interactions in the semi-arid climates, and fire and grazing 

disturbances become more important as vegetation cover increases along a precipitation gradient. 

Despite the trend of afforestation, it is predicted that northern sub-humid forests will be 

susceptible to degradation due to climate change and drought, increased land use and resource 

extraction, and the presence of invasive species (Timoney, 2003). In the past, the cycle of 

vegetation and litter buildup and curing, followed by spatially continuous fires, has maintained 

areas in the grassland state over long periods of time. First Nations burning practices were likely 

an important part of this plant and soil relationship as well (Blackstock and McAllister, 2004).  

Conclusions 

 

The plant community composition of Cariboo-Chilcotin grasslands is unique and distinct 

in comparison to the grasslands of other regions. Above-ground patterns of plant and litter cover 

are consistent with those expected with a transition from semi-arid to sub-humid grasslands. 

Below-ground carbon and nitrogen dynamics are also consistent with other grassland climate 

gradients, except for the unexpectedly lower organic carbon concentrations found in the sub-

humid upper grasslands.  

Management of exotic species will be a challenge, with different strategies required 

depending on the grassland type (upper, middle, or lower). In the upper grasslands, Poa 

pratensisis is the leading species under the existing grazing regime and under the passive 

restoration found inside grazing exclosures. Therefore, research and management efforts should 

focus on strategies to reduce Poa pratensis and increase native bunchgrass cover. This may 
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include prescribed burning and altered grazing practices. In the middle grasslands, management 

should be aimed at maintaining and enhancing Pseudoroegnaria cover. In the lower grasslands, 

research should focus on strategies to prevent the spread of Bromus tectorum and to maintain 

biological soil crust cover.  
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CHAPTER 2: ECOLOGICAL LEGACIES PERSIST AFTER FOREST 
ENCROACHMENT, ECOLOGICAL RESTORATION TREATMENTS, AND 

WILDFIRE IN A GRASSLAND-FOREST MOSAIC 
 

Introduction 
 

In the Cariboo-Chilcotin region of British Columbia, spatially abrupt grassland-forest 

boundaries are historically stable despite variations in climate and frequent fires. In this region, 

warm aspects and lower elevation increase the probability of a site being grassland, cool aspects 

and higher elevation increase the probability of a site being forested (Bai et al., 2004). However, 

the largest area of both grassland and forest occur on level terrain, with extensive grassland areas 

at higher elevations (Bai et al., 2004). This suggests that in addition to landscape position factors, 

ecosystem legacies may be important for maintaining the forest and grassland states after 

disturbances. Stand-level disturbance histories of dry forests of interior British Columbia reveal 

frequent low-severity fires, punctuated by spatially and temporally heterogeneous high-severity 

fires (Heyerdahl et al., 2012; Harvey et al., 2017). These disturbance patterns create a mixed 

severity disturbance regime that contributes to diverse stand conditions over the landscape 

(Klenner et al., 2008). Meanwhile, grasslands of the dry forest zone have experienced frequent 

fires (average 10-year return interval), until the early 20th century when grassland fires become 

infrequent (Strang and Parminter, 1980). Historical grassland fires have been linked to inter-

annual climate variability (Harvey and Smith, 2017), and spatial connectivity of fine fuels 

(Krawchuck and Moritz 2011; Harvey et al., 2017; Harvey et al., 2018;).  

Ecosystem legacies are defined as “a physical or biological condition of a previous 

ecosystem that persists after a disturbance, often guiding ecosystem re-organization” (Jogiste et 

al. 2017). In dryland ecosystems, spatial and temporal distribution of soil resources is a driving 

factor in post-disturbance regime shift or re-organization to the same state. Changes in vegetation 
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patterns caused by land uses can re-distribute the spatial and temporal distribution of soil 

moisture (Breshears and Barnes, 1999). Livestock grazing and anthropogenically altered 

disturbance regimes have caused an increased spatial heterogeneity of soil resources, resulting in 

the expansion of woody vegetation into grasslands (Schlesinger et al., 1990; Okin et al., 2009; 

Bestelmeyer et al., 2018). Increased spatial heterogeneity in soil moisture is considered a 

feedback that favours regeneration of trees, as trees reinforce increased spatial soil moisture 

heterogeneity (Kleb and Wilson, 1997; Partel and Wilson, 2002). Grasslands experience greater 

temporal heterogeneity of soil resources. In grasslands, average soil moisture is greater than in 

adjacent forests during periods of high precipitation, but drought conditions are more severe due 

to greater evaporation and water uptake through the high concentration of fine roots near the soil 

surface (Wilson and Kleb, 1996; James et al. 2003; McLaren et al. 2004).  

Heterogenous light and soil moisture conditions are important in creating microsites for 

tree seedling establishment in Douglas-fir forests (Gray, 1995). In the dry Douglas-fir forests of 

interior British Columbia, a heterogeneous canopy structure is thought to provide “zones of 

regeneration” for tree seedlings through a balance of shading and reduced precipitation 

interception in openings (Simard, 2009). The concept of resource heterogeneity is related to the 

size of plants and scale of resource distribution. Trees create heterogeneity on a larger scale than 

grasses, as tree canopies cause uneven distribution of precipitation and tree root systems have 

variable water uptake over a larger area (Wilson, 2000).  This spatial heterogeneity influences 

the patchy pattern of dry forests, as tree seedling establishment is typically limited to patches of 

higher resource availability. Characteristic grassland ecosystems require a relatively uniform 

spatial distribution of resources because individual grass plants cannot reach outside resource-

poor patches. Meanwhile, native bunchgrasses are better adapted to surviving temporal 
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heterogeneity of soil moisture typical of grasslands by storing energy below ground in root 

systems during wet conditions and entering dormancy during drought.  

Forest cover has encroached on grassland ecosystems of this region in the 20th century 

(Bai et al., 2004). Forest encroachment on grasslands has resulted from interruption of the 

relationship between litter, vegetation, and the fire disturbance regime on grasslands. Livestock 

grazing reduces litter cover and interrupts fine fuel spatial connectivity in grasslands, preventing 

the spread of fires and associated mortality of tree seedlings. Encroachment has been linked to 

fire suppression (Tisdale, 1950), reduced litter cover due to livestock grazing (Strang and 

Parminter, 1980; Arno and Gruell, 1986), and the reduction in traditional First Nations burning 

practices (Blackstock and McAllister, 2004). In the Cariboo-Chilcotin region, forest cover has 

encroached on 200 km2 of grasslands from the early 1960’s to the 1990’s (Cariboo-Chilcotin 

Grasslands Strategy Working Group, 2001).  

While “ecosystem memory” is the totality of all ecosystem legacies (Jogiste et al., 2017), 

legacies identified as being important to dryland systems are examined because memory is likely 

beyond the scope of any single study. Spatial and temporal distributions of soil moisture and 

plant communities that persist after disturbance are viewed as ecosystem legacies. These 

variables are used because soil water is the most limiting resource in grasslands (Burke et al. 

1998) and dry Douglas-fir forests (Littell et al., 2008). It is predicted that patterns of resource 

distribution and plant communities interact with patterns of disturbance, including 1) 

heterogeneous distribution combined with a spatially mixed fire severity regime in forests, and 2) 

spatially homogenous patterns of resources and vegetation and relatively uniform spread of fire 

in grasslands. The high level of temporal heterogeneity of soil moisture in grasslands could 

contribute to the fire regime through periods of high soil moisture and high productivity, 
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followed by drought and curing of litter and vegetation. These disturbance patterns combined 

with a frequent fire return interval may contribute to the reorganization of the forested and 

grassland states.    

It is hypothesized that forest and grassland associated plant communities and soil 

moisture patterns will persist after disturbances, contributing to the resilience and recovery of 

each ecosystem state. Soil moisture, plant species composition, and substrates in adjacent forest 

and grassland plant communities were measured. In order to detect persistent plant and soil 

moisture legacies, areas of tree encroachment on grasslands, as well as restored grasslands (slash 

and burn treatments of forest encroachment on grasslands) were compared to stable-state 

grasslands and forests. After initial sampling, the study area was unintentionally burned in a 

wildfire. Vegetation and soil moisture were re-sampled to determine the effect of fire on 

grassland-associated and forest-associated patterns of soil moisture, as well as recovery of plant 

communities immediately after wildfire. 

Methods 
 

Study Area 
 

The study was conducted near Riske Creek, British Columbia, in an area known as 

Becher’s Prairie. Becher’s Prairie is a level to gently rolling grassland and forest parkland area 

on the Chilcotin Plateau ranging from 900 to 1100 m elevation within the very dry mild subzone 

of the Interior Douglas-fir biogeoclimatic zone (IDF xm; Steen and Coupe, 1997). The climate is 

continental sub-humid, with a mean annual temperature of 4.3 o C and mean annual precipitation 

416 mm for the 1981 to 2010 period (Wang et al., 2016). 
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The area is provincial crown land with grazing tenures allocated according to the Range 

Act and grazing management plans created under the Forest and Range Practices Act.  The area 

has been grazed since the 1860’s, with early grazing practices creating early seral grassland plant 

communities (Bawtree, 2005). Reductions in stocking rates and the introduction of rotational 

grazing in the past 50 years have resulted in the partial recovery of native grassland ecosystems. 

Forest encroachment on grasslands has occurred on Becher’s prairie. A mapped boundary known 

as the “grassland benchmark” demarcates the extent of grasslands in the region based on the 

earliest available aerial photographs (Cariboo-Chilcotin Grasslands Strategy Working Group, 

2001; Steele et al., 2007). In the case of Becher’s prairie, aerial photographs are from 1962. 

Grassland ecosystem restoration has been applied in parts of the grassland benchmark where 

trees establishing on grasslands has been cleared and excess material burned in a raised container 

(sloop) above the soil surface in order to reduce soil heating (see sloop burning: 

https://www.ccerc.net/photo-gallery-2/sloop10-018/). These treatments were followed by an 

early spring prescribed burn. In late July 2017, the study area was unintentionally burned in the 

Hanceville Fire wildfire.  

Climate and weather  
 

The Riske Creek weather station is maintained within the study area. The weather station 

has recorded April to October daily maximum and hourly temperature and daily precipitation 

data beginning in 1980, with some gaps in the data due to periodic maintenance. Table 2.1 

includes the average precipitation per month taken from the Riske Creek weather station, as well 

as the precipitation recorded for the 2017 and 2018 growing seasons when data were collected 

for this study. April 2017 had slightly greater precipitation than average, followed by below-

average precipitation from May to September. A record low (2 mm) for the month of June 
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precipitation occurred in 2017. Lower than average precipitation continued through the 2018 

growing season. 

Table 2.1 Precipitation (precip., mm) and temperature (temp., oC) values from the Riske Creek 
weather station site. The 2017 and 2018 values are the total monthly precipitation and average 
daily temperature per month, measured directly from the weather station. The average values for 
total month precipitation (Precip. ave) and average month temperature (Temp. ave) are the 
spatially interpolated averages (Wang et al., 2016) for the same location as the weather station.   

Climate variable April  May June  July Aug Sep. 

Precip. ave. 27.0 33.0 48.0 49.0 36.0 31.0 

Temp.  ave. 4.7 9.5 13.0 15.7 15.1 10.8 

2017 precip. 32.2 23.2 2 22 7.8 26 

2017 temp. 3.96 11.50 15.51 17.51 17.56 12.09 

2018 precip. NR 10.6 40.4 26.8 12 57 

2018 temp. NR 14.65 13.93 17.89 16.76 8.39 

NR = not recorded. 

Historical weather data for combined May to August precipitation are shown on Figure 

2.1. The mean May-August precipipitation for the period 1980-2018 (based on 36 complete 3 

month periods) is 153.1 mm, with a high level of interannual variability. The lowest growing 

season precipitation of all recorded years occurred in 2017 (55 mm), with below-average 

precipitation continuing in 2018 at 89.8 mm. The 2017 wildfire was preceded by an above-

average precipitation season in 2016 (183.6 mm). There has been a significant decline in May-

August precipitation over the 1980 to 2018 time period.  
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Figure 2.1. Combined May to August precipitation (mm) recorded at the Riske Creek weather 

station from 1980 to 2018. There is a significant trend (p = 0.006) in lower precipitation over 

time expressed by the slope coefficient (-2.27), constant (4694), and regression values (F = 8.67; 

R2 = 0.19).  

 

Site Selection 
 

A post-hoc experimental design was created based on the division of the forest-grassland 

ecotone into four categories: 1. Young Forests are areas within the grassland benchmark that 

have become densely forested; 2. Restored Grasslands are within the grassland benchmark, had 

been covered with dense forest, but forest cover has been removed using grassland restoration 

treatments; 3. Mature Forests are forest stands outside the grassland benchmark but adjacent to 

grassland benchmark areas; and 4. Stable State Grasslands are grasslands within the grassland 

benchmark area that have not been affected by forest encroachment, and are adjacent to mature 

forest stands. Grassland restoration treatments occurred between 2007 and 2009. These 

Y = -2.27x + 4694

R2 = 0.19

F = 8.67; p = 0.006
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treatments included winter cutting of stems, burning of excessive slash loads in an elevated steel 

container, and a low-severity prescribed burn in early spring.  

Two-hectare plots were located in four representative examples of each of the four 

vegetation categories, for a total of sixteen plots. Potential sites were selected based on forest 

cover criteria using current and historical aerial imagery overlaid with the grassland benchmark 

layer. In the field, plots locations were selected from the potential sites by controlling for terrain 

(excluding steep slopes) and excluding riparian ecosystems. In order to ensure that stable state 

grasslands, restored grasslands, and young forest plots were historically grasslands, soils were 

inspected to confirm the presence of an Ah horizon meeting the soil colour and structure 

requirements of a Chernozemic soil.  Mature forest plots met the conditions for a Luvisolic or 

Brunisolic forest soil (Soil Classification Working Group, 1998). Evidence of a grassland soil 

consisted of an Ah horizon at least 10 cm in depth and having a Munsell colour value darker than 

3.5 when moist. The forest soils had an Ah horizon less than 10 cm in depth, with a Bm or Bt 

horizon. A map of the study area is included in Figure 2.2; a historical aerial photographs of part 

of the study area are included in Appendix 3.  
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Figure 2.2. Study area with plots. The transparent green layer represents the extent of grasslands 
(the grassland benchmark) from 1962 aerial photography. The red/pink line denotes the area 
burned in the 2017 Hanceville wildfire. Red circles are young forest, yellow triangles are stable 
state grasslands, the brown hexagons are restored grasslands.   

 

Field methods: Plant Communities 
 

Within each replicate plot, vegetation and substrates were sampled using the Daubenmire 

(1959) method with sixty 50 cm x 20 cm frames randomly placed on five 50-metre transects (12 

frames per transect). The cover class category of individual vascular plant and moss species was 

visually estimated in each frame, with categories representing 0-5, 5-25, 25-50, 50-75, 85-95, 
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and 95-100% cover. Peltigera spp. was included with vegetation cover, with other lichens 

counted as part of the biological soil crust substrate. Other substrates measured for cover 

included litter, soil, rock, and wood.  In forested plots, the tree layer was sampled using the 

point-centred quarter method (Cottam and Curtis 1956) for trees greater than or equal to 2 metres 

height. According to the point-centred quarter method, four quadrants were created by using a 

line perpendicular to the transect at each randomized sampling (centre) point. The distance to the 

closest tree in each quadrant from the centre point, tree species, and the stem diameter at breast 

height (DBH, at 1.3 m) were recorded. An image of the point-centred quarter method used is 

available in Mueller-Dombois et al. (2003). Vegetation was first sampled in the second week of 

July 2017 and re-sampled at the same transect locations in the second week of July 2018.  

 

Field methods: Soil Moisture 
 

Soil moisture heterogeneity was measured during spring (May 8-11) 2017, before the 

wildfire that burned the study area in late July 2017. A late-summer re-sampling was planned for 

2017 was prevented by access restrictions due to extensive fire activity in and around the study 

area. Sampling was repeated after the wildfire in spring (May 8-11) 2018, and for a third time in 

late summer (August 20-23) 2018. Sampling was completed over three periods in order to 

measure temporal variability, and to detect the effects of wildfire on soil moisture heterogeneity.  

Soil volumetric water content (soil moisture) was sampled in situ using a Decagon GS3 

sensor (Decagon Devices,  http://www.ictinternational.com/pdf/?product_id=253). The sensor 

uses an electromagnetic field to measure dielectric permittivity of the medium, measuring soil 

moisture in a 300 cm3 area of influence around a sensor. Within each plot, soil moisture was 

measured at 30 points. Points were located at six randomized points on five 50 m long transects. 
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Measurements were taken horizontally at a depth of 10 cm from the mineral soil surface. At each 

point, a hole was dug by removing a clump of soil, and then a sensor was inserted into the 

sidewall of the hole at 10 cm depth. After measurement, the clump was pressed back into the 

hole for repeat measurements.  

The spatial scales of measurement were carefully considered; 50 metre length transects 

were intended to capture the influence of clumps and gaps within the forest type. The small area 

of influence of the soil sensor (300 cm3 or a radius of less than 4.2 cm) was selected to detect the 

fine level of variability that is important for growth of tree germinants and fine-rooted forbs and 

grasses.  

Analyses: Vegetation 

 

Each plot was used as a separate experimental unit. Species and substrate cover at each 

plot were calculated by averaging the mid-point of the 60 recorded Daubenmire cover class 

categories. Summaries of each ecosystem category were prepared by calculating the average 

cover of species and substrate from each plot. Species diversity was characterized by calculating 

unevenness of the community using Shannon’s Diversity Index (H) (Shannon and Weaver, 

1949), formulated by spreadsheet. Repeated measures analysis of variance was used to detect 

differences in the post-wildfire ecosystem conditions from pre-wildfire conditions for plant 

community and substrates. The variables tested include mean cover for leading species, plant 

functional groups, litter, and bare soil. Species and substrate values were log-transformed to 

normalize data for analysis.  

Non-Metric Multidimensional Scaling (NMS) in PC-ORD v. 7, (McCune and Mefford, 

2016) was used to: 1. Characterize the species composition of new grasslands and new forests 
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along the forest to grassland ecological gradient; 2. Detect changes in the plant communities 

resulting from wildfire; and 3. Relate vegetation trends to environmental gradients and wildfire 

effects. The Bray-Curtis distance measure (Bray and Curtis, 1957) was used with 500 iterations 

in a 2-dimensional solution. A Monte Carlo test based on 250 randomized runs was used to 

determine the significance of the resulting matrix. Pearson correlations were used to find 

relationships between the ordination axes, species abundance, and environmental variables. 

Spearman correlation r values greater than 0.45 were reported.  Successional vectors were used 

to show the change in plant communities one year after wildfire. Parametric statistics were 

completed in SPSS version 24.0 (IBM Corp. 2016).  

Analyses: Soil moisture 
 

A total of 1410 soil moisture observations were recorded: 16 plots x 30 measurements per 

plot x 3 sampling periods, minus one un-sampled missed plot in August 2018. As this missed 

plot was a mature forest, an average of the three mature forests plots for August 2018 were used 

for the missing data. Plots were analyzed as separate experimental units, each consisting of 30 

soil moisture measurements per sampling period. The average soil moisture for each plot was 

calculated by using the mean of the 30 measurements. The coefficient of variation (CV), defined 

as the ratio of the standard deviation to the mean) of the 30 measurements was used to measure 

spatial variability in soil moisture for each plot. The CV was used as the measure of variability 

because it controls for the difference in mean soil moisture between plots and sampling periods. 

Repeated measures ANOVAs were used to determine the changes in mean soil moisture and 

heterogeneity of soil moisture (CV) over the sampling periods and between ecosystem 

categories.   
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Burn Severity 
 

In August 2017, the level of burn severity on the ground was measured along vegetation 

transects using the line intercept method. Burn severity was separated into 5 categories: (0) fire 

did not burn all the way through vegetation and litter; (1) all vegetation and litter is burned to the 

mineral soil, plant and litter still present but blackened; (2) all vegetation and litter are 

completely consumed, leaving fine white ash; (3) Red coloured mineral soil indicating higher 

burn temperatures; and (4) Underground roots burned, leaving depressions. The transect distance 

of each plot (250 m total) was measured in cm with the sum of each category used as a plot total. 

Rock substrates were measured and subtracted from the total distance for calculating burn 

severity. Average burn severity for each plot was determined based on: sum of (burn severity 

category x distance/total distance of the plot).  Heterogeneity of burn severity for each plot was 

calculated using the Shannon diversity index (H) (Shannon and Weaver, 1949), based on the plot 

total of each burn severity category  

Results 
 

Forest and Grassland Plant Communities 
 

Summaries of vegetation cover for all plots are included in Table 2.2. A total of 83 

species were observed and used in analysis of vegetation for each treatment. Axis 1 of the NMS 

ordination Axis 1 (Figure 2.3) is associated with the forest-grassland ecological gradient. Pearson 

correlation analysis of the abundance of individual species with this gradient (Table 2.3) shows 

that the forests are associated with Calamagrostis rubescens, Vicia americana, Epilobium 

angustifolium, Pleurozium schreberi, Arctostaphylos uva-ursi, Lathyrus nevadensis, Lathyrus 

ochroleucus, and Eurybia conspicua. Grasslands are associated with Poa pratensis, Cerastium 
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arvense, Hesperostipa curtiseta, Achnatherum richardsonii, and Potentilla hippiana. The mature 

forests and stable state grasslands represent distinct plant communities rather than an ecological 

gradient considering there is little overlap in species composition between these types. Among 

the forest-associated species, only Vicia americana also occurred in the stable state grasslands. 

In the mature forests, native bunchgrass species represent 0.42% total cover and 1.2% as a 

proportion of total plant cover. Poa pratensis is the most abundant species in grasslands and also 

occurs in mature forests.  

Restored grasslands and forest encroachment 
 

The young forest plots had traces of forest and grassland associated species but were 

dominated by exotics. Remnants of native bunchgrass community were surviving under a forest 

canopy and combined with the presence of the forest-associated moss Pleurozium schreberi. The 

plots have trace levels of native bunchgrass species; an average of 3.6% cover compared to 

23.7% cover found in stable state grasslands. There is 5.1% cover of the forest moss species, 

Pleurozium schreberi. The most abundant species in the understorey of young forest plots were 

the exotics grass Poa pratensis and the exotic forb Tragopogon pratensis. Native bunchgrass 

cover consisted primarily of Achnatherum richardsonii and Achnatherum nelsonii. There is an 

almost complete absence of grassland-associated Hesperostipa curtiseta in young forests, 

suggesting this species has low tolerance for forest conditions.  

The restored grasslands appear in the same cluster as the stable state grasslands in the 

NMS analysis. Like stable state grassland, Poa pratensis is the most abundant species. There is 

an average 14.6% native bunchgrass cover, representing 29% as a proportion of vegetation, 

compare to 46.9% proportion in stable state grasslands. There is also similarity in composition of 
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the native forb community. The forest-associated species Pleurozium, Calamagrostis, Lathyrus 

and Eurybia are not present. There are traces of Arctostaphylos present on some plots.  

Table 2.2. Average species cover of plots recorded in 2017 and 2018. Due to wildfire evacuation, 

one young forest plot and one stable state grassland plot were not sampled in 2017. The plots 

were burned in a wildfire except one restored grassland and one stable state grassland plot.   

Forested Plots 

2017 

Stable State N=4 Young Forest N=3 

Pleurozium schreberi 18.4 Poa pratensis 12.3 

Calamagrostis rubescens 6 Tragopogon pratensis 7 

Arctostaphylos uva-urs 2.5 Pleurozium schreberi 5 

Peltigera spp. 1.4 Achnatherum. richardsonii 2.7 

Poa pratensis 1 Peltigera spp. 1.5 

Fragaria virginiana 0.7 Achnatherum nelsonii 0.8 

Tragopogon pratensis 0.6 Fragaria virginiana 0.7 

Polytrichum spp. 0.4 Astragalus miser 0.7 

Rosa acicularis 0.4 Juniperus communis 0.5 

Antennaria microphylla 0.4 Galium boreale 0.4 

2018 

Stable State N=4 Young Forest N=4 

Calamagrostis rubescens 4.5 Tragopogon pratensis 15.4 

Epilobium angustifolium 4.1 Poa pratensis 11.8 

Tragopogon pratensis 1.3 Epilobium angustifolium 1.1 

Pleurozium schreberi 0.8 Achnatherum. richardsonii 0.6 

Poa pratensis 0.8 Galium boreale 0.6 

Fragaria virginiana 0.5 Achillea millefolium 0.5 

Lathyrus nevadensis 0.4 Taraxacum officinale 0.3 

Taraxacum officinale 0.4 Achnatherum nelsonii 0.2 

Galium boreale 0.3 Geranium viscossisium 0.2 

Achnatherum. richardsonii 0.2 Astragalus miser 0.2 
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Table 2.2. Continued  

Grassland Plots 

2017 

Stable State N=3 Restored N=4 

Poa pratensis 18.5 Poa pratensis 19.6 

A. richardsonii  14.4 Achnatherum richardsonii 10.2 

Hesperostipa curtiseta 7.9 Tragopogon pratensis 4.7 

Juncus balticus 1.8 Hesperostipa curtiseta 2.2 

Antennaria microphylla 1.2 Geum triflorum 1.7 

Cerastium arvense 0.9 Achillea millefolium 0.9 

Potentilla hippiana 0.7 Achnatherum nelsonii 0.7 

Tragopogon pratensis 0.7 Geranium viscossisium 0.7 

Achillea millefolium 0.5 Cerastium arvense 0.7 

Achnatherum nelsonii 0.4 Solidago spathulata 0.6 

2018 

Stable State N=4 Restored N=4 

Poa pratensis 21.5 Poa pratensis 16.5 

Achnatherum richardsonii  8.7 Achnatherum. richardsonii 5 

Tragopogon pratensis 4.3 Hesperostipa curtiseta 4.1 

Hesperostipa curtiseta 4.2 Tragopogon pratensis  3.4 

Geum triflorum 1.3 Achillea millefolium 1.8 

Achillea millefolium 0.8 Astragalus miser 1.1 

Geranium viscossisium 0.7 Achnatherum nelsonii 1.1 

Cerastium arvense 0.7 Cerastium arvense 0.6 

Solidago spathulata 0.5 Taraxacum officinale 0.5 

Potentilla hippiana 0.4 Fragaria virginiana 0.4 

 

NMS Analysis 
 

The NMS analysis including all plots (Figure 2.3) is statistically significant for Axis 1 

(p=0.004) and Axis 2 (p=0.004). The final stress for the solution is 9.85. Axis 1 explains 74.5% 

of the variation, and the second matrix represents 16.3% of the variation. The two axes explain 

90.8% of the variation in species composition. 
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Figure 2.3. Nonmetric multidimensional scaling ordination showing of all plots. (a) the position 

of sites according to species composition; (b) labelled with plot category (OF = mature forest, 

OG = stable state grassland, NF = young forest, NG = restored grassland); and (c) vectors 

showing the change from pre-wildfire to post-wildfire along ordination axes. n=14 plots 

measured twice, and 2 plots measured once for a total of 30 plots; 83 species.  
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Table. 2.3.  Pearson correlation of species associated with NMS ordination axes. Axis 1 species 

are associated with forests (+) or grasslands (-), while Axis 2 is associated with pre-wildfire (+) 

and post-wildfire species composition (-). 

Species  
Axis 1 (R2 = 

0.745) 
Axis 2 (R2 = 0.163) 

Calamagostis rubescens 0.87 0.18 

Poa pratensis 0.80 0.00 

Vicia americana 0.61 0.00 

Dracocephalum 
parviflorum 

0.07 -0.60 

Epilobium angustifolium 0.59 -0.32 

Pleurozium schreberi 0.58 -0.45 

Arctostaphylos uva-ursi 0.58 0.43 

Cerastium arvense -0.57 0.31 

Lathyrus nevadensis 0.56 -0.21 

Hesperostipa curtiseta -0.56 0.28 

Eurybia conspicua 0.55 0.20 

Lathyrus ochroleucus 0.53 0.37 

Tragopogon pratensis 0.25 -0.52 

Achnatherum richardsonii -0.47 0.36 

   

 

Effects of Fire on plant communities 

 

The change in species composition of forested plots is associated with consistent 

movement to the negative end of Axis 2 of the NMS ordination (Figure 2.3). Photographs of 

plant communities immediately after wildfire and one year after wildfire are included in 

Appendices 4 and 5. For the forested plots, wildfire caused a significant reduction in Pleurozium 

cover (p=0.000179). The negative end of the Axis 2 represents the post-wildfire forest condition, 

is associated with lower levels of Pleurozium (-0.45; Table 2.3). The Axis 2 post-wildfire forest 

condition was also associated with Dracocephalum parviflorum (-0.6), a native forb of the mint 

family that is dependent on fire for breaking seed dormancy (Van Veldhuizen and Knight, 2006). 

The results of repeated measures ANOVAs are included in Table 2.4. 
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Table. 2.4. Results of repeated measures ANOVA on cover values for environmental variables 

and leading species, before and after fire. Not all plots were available for before and after 

comparison because they did not burn or were not sampled in 2017. For native bunchgrasses and 

native forbs, the absolute value, and the proportion of the total vegetation cover (pr.) are 

compared. Forested plots consist of all plots with forest cover that were measured in pre-fire and 

post-fire condition. Grassland plots consist of restored grassland stable state grassland plots that 

were measured in pre-fire and post-fire condition. Thirteen of sixteen plots were analysed, as 

some plots were not sampled in 2017 due to wildfire.  

  Combined Forests, n=7 Combined Grasslands, n=6 

 2017 2018 F p 2017 2018 F p 

Native Bunchgrass  1.78 0.52 8.79 0.025 18.98 11.21 4.77 0.081 

Native Bunchgrass pr. 0.052 0.026 1.74 0.235 0.38 0.32 0.493 0.514 

Forbs  4.42 5.37 0.951 0.367 7.02 6.57 0.066 0.807 

Forbs pr. 0.131 0.265 3.56 0.108 0.14 0.18 2.3 0.191 

Diversity (H) 2.62 2.23 5.26 0.062 2.68 2.66 0.117 0.746 

Litter 53.96 40.38 2.32 0.179 62.65 29.3 12.65 0.016 

Bare soil  1.74 25.5 13 0.011 1.4 22.17 23.08 0.005 

Tragopogon pratensis 3.25 7.22 2.6 0.158 2.67 1.75 2.74 0.159 

Poa pratensis 5.83 5.48 0 0.998 19.08 14.18 2 0.216 

Pleurozium schreberi 12.66 0.49 66.88 <0.001 0 0 NA NA 

 

Wildfire caused a significant increase in bare soil in grasslands (p=0.011) and in forests 

(p=0.005). Litter was reduced in grasslands (p=0.016), but an effect on litter was not detected in 

forests. This is likely due to post-wildfire needle shedding. In forests, there was a reduction in 

cover of native bunchgrasses (p=0.025), although this change was not significant when 

calculated as a proportion of total vegetation cover (p=0.235). There was not a significant change 

in native forb cover for forests or grasslands. There was not a significant change in cover of 

native bunchgrasses or native forbs in the grasslands.  

There was a significant reduction in Pleurozium schreberi cover in young forests and 

mature forests. However young forest plant communities did not increase in similarity to either 

grasslands or mature forests. This result is reflected in the repeated measures ANOVA showing 
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that total cover of native bunchgrasses were reduced in forests. The mature forest-associated 

species Calamagrostis rubescens was a trace species or not present on forest encroachment plots 

and did not increase with wildfire. The most abundant species on post-wildfire young forest plots 

were Tragopogon pratensis and Poa pratensis (Table 2.2).  

Soil Moisture  
 

Soil moisture conditions were recorded from each plot in May 2017, May 2018 and 

August 2018. The summer 2017 measurement was not recorded due to wildfire suppression 

activities.  The mean soil moisture for each ecosystem category over three sampling periods is 

presented in Table 2.5 and shown in Figure 2.4. The grassland plots had higher soil moisture 

content than forested plots for the May 2017 sampling period following above-average 

precipitation conditions. Stable state grasslands had the highest soil moisture content followed by 

restored grasslands, forest encroachment, and mature forests. As drought conditions prevailed 

during the 2018 sampling, grassland soil moisture declined rapidly. Mature forests started with 

the lowest soil moisture in May 2017 but had the least change in soil moisture over the three 

sampling periods. At the sampling period in August 2018, mature forests had the greatest 

average soil moisture content.  

Table 2.5. Mean soil moisture values (with standard deviation) for ecosystem categories over 

three sampling periods.  

Category May 2017 May 2018 August 2018 

Stable state grasslands  33.17 (4.17) 23.24 (0.86) 12.04 (1.93) 

Restored grasslands 31.85 (3.95)  26.18 (1.36) 12.40(2.1) 

Young forests 29.61 (3.29) 30.74 (3.5) 12.79 (0.36) 

Mature forests  24.17 (2.58) 27.33 (2.08) 15.21 (0.74) 
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Figure 2.4. Mean soil moisture content over three sampling periods for: stable state grasslands 
(triangles), mature forests (circles), young forests (x’s), and restored grasslands (squares). N=4 
plots per type, with each plot value the mean of 30 measurements.  
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A repeated measures analysis of variance for average soil moisture content demonstrated 

a significant change in soil moisture over time (F = 238.58; p < 0.001), and a significant 

interaction effect between category and time (F = 9.43; p < 0.001). However, a post-hoc analysis 

did not detect significant differences among the four ecosystem categories, with p values ranging 

from 0.639 to 1.0. Therefore, to determine if soil moisture was greater in forests than grasslands, 

mean soil moisture content of all plots with forest cover (n = 8) was compared to combined 

restored grasslands and stable state grasslands (n=8).  

The repeated-measures ANOVA results for mean soil moisture content comparing all of 

grassland plots to all forested plots are presented in Table 2.6. This analysis shows that there is a 

significant difference in soil moisture content over the three sampling periods (p<0.001), but that 

there is not a significant difference between the mean forest and mean grassland soil moisture 

content, p = 0.914. However, there is a significant interaction effect between the ecosystem 

categories and sampling period (p<0.001). An insignificant difference in mean soil moisture 

between categories, combined with a significant interactive effect over time, can occur when 

there is a crossover relationship between categories. This crossover relationship is shown on 

Figure 2.4, with stable state grasslands having high soil moisture content in May 2017, and lower 

soil moisture content than other categories for the May 2018 and August 2018 sampling periods.   
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Table 2.6. Results of repeated measures ANOVA of mean soil moisture over three sampling 

periods. Forested categories include combined encroachment forest and mature forest plots, 

grassland category includes restored grasslands and stable grasslands.  

Mean soil moisture F Partial Eta squared p  

Sampling period 175.54 0.926 <0.001 

Category x sampling period 14.57 0.51 <0.001 

Between categories 0.012 0.001 0.914 

  

The results of spatial variability in soil moisture content as expressed by coefficient of 

variation (CV) is presented in Table 2.7. The forested plots have greater spatial heterogeneity of 

soil moisture than grassland plots across the three sampling periods, with mature forests having 

substantially greater levels of heterogeneity than other categories. This relationship continues as 

mean soil moisture changes over time, and after wildfire.   

Table 2.7. Mean coefficient of variation (CV; heterogeneity) of soil moisture for ecosystem 

categories over three sampling periods.  

Category May 2017 May 2018 August 2018 

Stable state grasslands 0.089  0.0915  0.0948  

Restored grasslands 0.09  0.111  0.0865  

Young forests 0.163  0.12  0.17  

Mature forests  0.208  0.167  0.232  

 

Due to the large difference in spatial heterogeneity between ecosystem types, a repeated 

measures anova ananlysis for all four ecosystem categories was completed (Table 2.8), with 

post-hoc results presented in Table 2.9. The level of heterogeneity in soil moisture changes over 

time (p=0.039), and there is a significant interactive effect between  category and sampling 

period (p = 0.017). However, the more significant results are found in the post-hoc analysis 

between categories, as shown in Table 2.9 and Figure 2.5. According to the post-hoc analysis, all 

categories are significantly different (p less than or equal to 0.001), except for stable state 

grasslands and restored grasslands, which have similar CV values, p=1. Over time there are 
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susbstantial changes in soil moisture heterogeneity. However, the ranked relationship between 

young forests and mature forests is constant over the three sampling periods despite the 

differences in season and post-wildfire condition. Forested plots mainain greater heterogeneity 

than grasslands across the three sampling periods. 

 

 

Figure 2.5. Mean coefficient of variation (CV; heterogeneity) of each ecosystem category over 

three sampling periods. Each category represents the average of four plots, with the CV of 

volumetric soil water content of 30 measurements in each plot. Triangle = mature forest, x = 

young forest, square = restored grasslands, circle = stable state grasslands.  
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Table 2.8. Results of repeated measures ANOVA for coefficient of variation (CV; heterogeneity) 

of soil moisture for four categories over three sampling periods. 

Mean CV of soil moisture  F Partial Eta squared p  

Sampling period  3.73 0.237 0.039 

Category x sampling period 3.3 0.452 0.017 

 

The more important results of homogeneity of soil moisture conditions are found in the 

post-hoc analysis in Table 2.9. The level of variability is significantly different for all plots, 

except for stable state grasslands and restored grasslands.  

Table 2.9. Results of Bonferroni post-hoc analysis (p-values) for statistical significance of 

between category comparisons after repeated measures ANOVA for coefficient of variation (CV; 

heterogeneity).   

Category Stable State Grasslands Restored Grasslands Young Forest Mature Forest 

Stable State Grasslands - 1 <0.001 <0.001 

Restored Grasslands 1 - <0.001 <0.001 

Young Forest <0.001 <0.001 - 0.001 

Mature Forests <0.001 <0.001 0.001 - 

 

There is a difference in homogeneity of soil moisture resources over time and between 

vegetation types. The wildfire disturbance that occurred after the first sampling period did not 

change the overall relationship between the vegetation types. Figure 4 shows that mature forests 

had greater heterogeneity of soil resources over all sampling periods, despite large changes in 

mean soil moisture content.  

Forest Cover, Substrates, and Wildfire Severity 
 

Tree species density for forest categories are summarised in Table 2.10. Pseudotsuga 

menziesii is the leading tree species in all the mature forest plots, while the forest encroachment 

plots have a higher proportion of Pinus contorta. The mature forest plots have greater basal area 
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and greater average DBH than encroachment plots. There is also greater variability in DBH for 

the mature forest plots due to the presence of overstorey and understory canopy layers. 

Differences in percent of canopy burned between plots is highly variable, with no relationship 

detected between category or any measure variable.  

Table 2.10. Mean forest stand characteristics with standard deviation for mature forests and 

young forests. Percent burned is the average area burned per tree by height.  Proportion of each 

tree species is by percent of total trees (> 2m height) recorded.  

Category 
DBH 
(cm) 

Density, 
stem/ha  

Douglas-fir 
lodgepole 

pine 
Aspen 

Basal area, 
m2/ha 

% burned 

Young 
Forests 

7.95 
(0.74) 

1247.75 (505) 22.5 (26.7) 74 (23.8) 3.5 (6) 10.3 (5.2) 
51.25 
(38.7) 

Mature 
Forests 

16.1 (4.2) 712.25 (270.1) 
85.875 
(17.9) 

7.5 (10.5) 
7.6 

(9.5) 
20.5(2.7) 

52.75 
(36.2) 

 

Ground-level burn severity is summarised in Table 2.11. There was higher burn severity 

and greater spatial diversity in severity in the mature forests than other categories. An example of 

high variability of burn severity in a mature forest is shown in Figure 2.6. Spatial variability and 

severity were similar between the forest encroachment and restored grassland categories. The 

stable state grasslands burn severity was highly contiguous and spatially uniform (Figure 2.7). 

This occurred despite the plots being distributed among forested plots that burned at various 

levels of severity. Field observations noted that the remnants of a forest humus layer increased 

the spatial variability of litter and burn patterns on the restored grasslands.  
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Table 2.11 Results for ground substrate burn severity using the line intercept method.  The mean 

severity is based on the sum of each burn category divided by the total distance. The diversity is 

the Shannon’s diversity index (H) is based on the proportions of each burn severity category. 

Plots that are not applicable (NA) fell outside the wildfire boundary due to a fireguard. 

 Mature Forests Young Forests Restored Grasslands 
Stable State  
Grasslands 

Plot Severity Diversity Severity Diversity Severity Diversity Severity Diversity 

1 0.95 1.11 0.52 0.82 0.78 0.56 1 0 

2 1.64 0.84 1.2 0.55 0.72 0.95 1 0 

3 2.12 1.1 0.82 0.61 0.86 0.56 1 0 

4 2.16 0.92 1.12 0.39 N/A N/A N/A N/A 

Mean 1.72 0.99 0.92 0.59 0.79 0.69 1 0 

 

 

Figure 2.6. Mature forests burn severity was highly variable, sometimes following clump and 
gap patterns. This plot has areas categorized as non-burned (0), black ash (1), and white ash (3).  
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Figure 2.7. Stable state grasslands had low variability of burn severity and all fell within the 
black ash (1) category.   

Despite the large differences in burn severity of the forest canopy (Table 2.10) and 

ground-level burn severity (Table 2.11), there were not large differences in soil moisture content 

or heterogeneity of soil moisture between lightly burned and severely burned forest plots. 
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Table 2.12 summarizes the litter cover of plots before and after wildfire. The highest litter cover 

before wildfire was in stable state grasslands (78.5%). Litter was significantly reduced in 

grasslands plots, but a significant effect was not detected in forests because of needle fall from 

burned trees. The post-fire litter cover in grasslands was reduced to a greater extent than cover 

estimates indicate, because ashy burned litter material was still counted as litter cover.  

Table 2.12. Mean litter cover (with standard deviation) for plots before (2017) and after (2018) 

wildfire with standard deviation for plots that were measured before and after wildfire.  

Year Stable state grasslands  Restored grasslands  Young forests Mature forests 

2017 78.54 (6.72) 46.76 (10.11) 64.4 (5.61) 46.14 (4.14) 

2018 26.76 (11.74) 31.83 (5.67) 40.83 (19.79) 40.04 (24.67) 

 

Discussion 
 

Forest and grassland associated plant communities are essentially mutually exclusive, 

having very little overlap in species composition. Therefore, the grasslands and forests of this 

region should be understood as a mosaic of adjacent but mutually exclusive patches rather than a 

continuous cline or gradient. Similarly, forests and grasslands are different in terms of spatial and 

temporal distribution of soil moisture, which is expected to be a driving factor in plant 

community assemblage in this water limited environment.  In mature forests, burning caused a 

change in abundance of species that were present in before wildfire, but did not cause a 

directional change toward the grassland state.  Burning did not change grassland plant 

communities in the year after fire, and small differences could be attributed to inter-annual 

variability in the plant community or slight differences in data collection. These results suggest 
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that forest and grassland recovery are strongly influenced by belowground physical and 

biological legacies, in addition to effects of the aboveground physical structure in forests.  

The Forest Legacy  
 

Forest cover promotes the survival of seedlings through the canopy effect of moderating 

soil moisture conditions during drought. The study period of 2017-2018 occurred in severe 

drought conditions, with the lowest growing season rainfall recorded in over 30 years. After the 

first soil moisture sampling period in May 2017, forested plots were burned at various levels of 

severity in a wildfire that occurred under drought conditions and high summer temperatures. 

During drought conditions, mature forests had greater soil moisture content than other plot 

categories. However, a post-hoc analysis did not find the differences to be statistically 

significant, likely because of low sample size (n = 4). Analysis of combined forested and 

grassland plots demonstrated that drought was moderated on forested plots including after 

wildfire. While all forested plots had greater spatial variability in soil moisture content than 

grassland plots, mature forests had substantially greater levels of variability than encroachment 

forests. This suggests that structural attributes of mature forests such as larger diameter and taller 

trees, multiple canopy layers, and large-diameter dead wood and snags create greater spatial 

heterogeneity in soil moisture resources. Furthermore, the 2018 post-wildfire sampling periods 

indicate that heterogeneous soil moisture conditions persisted after various levels of fire severity, 

one year after the fire disturbance. It is possible that in the more severely burned forests 

ecosystem legacy effects could be reduced over time. However, it is expected that post-fire soil 

moisture conditions will contribute to survival of tree seedlings and re-establishment of the forest 

canopy.  
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In mature forests, Calamagrostis rubescens (pinegrass) was slightly reduced in the first 

year after wildfire but became the leading understorey species due to the greater reduction in 

cover of other species. In interior Douglas-fir forests, Calamagrostis recovers by 2-5 years after 

fire disturbance (Stark et al., 2006; Bassett, 2019). The species is well adapted to surviving 

wildfire in forests due to its strongly rhizomatous growth form and prolific post-fire disturbance 

seed production. It was noted in post-wildfire observations that even within high severity areas 

of the wildfire, Calamagrostis rhizomes survived in small patches of lightly or moderately 

burned forest floor. It is expected that Calamagrostis rhizomes will spread from these patches to 

re-colonize the area. Although Calamagrostis does not typically produce inflorescences and 

seeds while growing under a forest canopy, fire disturbance and open conditions causes an 

increase in flowering and seed production (Dobb and Burton, 2013). Seed production combined 

the increased bare soil substrate also likely contribute to the spread of pinegrass.  

The largest effects of fire on forested plots were a significant reduction in Pleurozium 

schreberi cover. The plant community expected for level to gently sloping sites for the IDFxm 

subzone is expected to be a Pinegrass (mean cover 7-15%) – and Feathermoss (mean cover 

>15%) plant community, with cooler aspects having a greater abundance of feathermoss (Steen 

and Coupe, 1997). Feathermoss is susceptible to fire-related mortality because it is highly 

flammable during dry spells and it lacks connection to the soil substrate (Tesky, 1992). 

Pleurozium re-established to pre-fire conditions after 90 years in a study in the eastern boreal 

forest (Foster, 1985), and is associated with late successional stages in the boreal forest of Alaska 

(Mack et al., 2008), and the hemi-boreal forests of Europe (Marozas et al., 2007). In this study, 

the significant loss of Pleurozium cover at all levels of burn severity indicates that fire spreads 

through this moss layer while missing adjacent patches of grasses and forbs. Considering that the 
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historic fire return interval for dry Douglas-fir forests of this region averages approximately 20 

years (Wong and Iverson, 2004) to 25 years (Harvey et al., 2017), it is likely that the high levels 

of pre-fire Pleurozium cover were outside the historical range of variability. Therefore, the 

wildfire-induced reduction in Pleurozium followed by dominance of Calamagrostis may 

represent a return to historical dry forest understorey conditions.  

The Grassland Legacy 
 

Average soil moisture of restored and stable-state grasslands was greater than soil 

moisture of forested plots at the first sampling period in May 2017. This sampling period 

followed an above-average level of precipitation for April 2017 and for the preceding year of 

2016. Subsequently, drought conditions set in and grassland soil moisture content remained 

below forest soil moisture content for the May 2018 and August 2018 periods. There was low 

spatial heterogeneity of soil moisture in grasslands, with a relatively even distribution of soil 

moisture resource within plots. The higher soil moisture content of grasslands during cool and 

wet conditions is likely due to the absence of precipitation interception and other effects 

provided by a forest canopy. The relatively even distribution of soil resources is related to the 

relatively even distribution of vegetation, fine roots of grasses, and litter. The more severe 

drought conditions that occur in grasslands could result from lack of shading from the canopy, as 

well as higher transpiration rates associated with the high concentration of grass roots near the 

soil surface (James et al. 2003).   

There is evidence that cycles of wet conditions and high biomass production followed by 

dry conditions and intense drying contribute to the high-frequency fire regime in the grasslands. 

Grassland fires of the Cariboo region have been linked to inter-annual climate variability 
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(Harvey and Smith, 2017). The compilation of weather data from Riske Creek confirms that 

there is a high level of inter-annual variability in growing season precipitation.  Grassland 

aboveground net primary production increases with greater precipitation of the current year, as 

well as the preceding year (Yang et al., 2008). Furthermore, the low spatial variability of soil 

moisture resources in grassland soils contributes to relatively uniform levels of productivity and 

a continuous layer of cured vegetation and litter during drought conditions. The cool-season 

native bunchgrass species of interior British Columbia survive intense drought conditions by 

entering a dormant stage (Gayton, 2013). These conditions contribute to a spatially continuous 

layer of cured (dormant) vegetation and litter thatch across the grasslands during dry conditions. 

Spread of fire in grasslands is limited by connectivity and accumulation of fine fuels (Krawchuk 

and Moritz, 2011), and fire history reconstruction of the region demonstrates a relationship 

between buildup of fine fuels and grassland fires (Harvey et al., 2017; Harvey et al., 2018). 

Stable-state grasslands had greater pre-fire litter cover than all other vegetation types, as well as 

the most severe drought conditions.  These conditions contributed to the spatially continuous 

distribution and spread of fire across the mature grasslands.  

The Hanceville wildfire of 2017 is likely the first landscape-scale grassland fire in the 

region since Strang and Parminter (1980) reported the cessation of grassland fires at nearby 

Dester Ridge (11 km west of this study area) in the 1920s. Similarly, Harvey et al. (2017) 

reported on the cessation of frequent grassland fires in the late 19th century at Churn Creek 

(approximately 60 km south of the study area). In 2017, wildfire reached the grasslands at Dester 

Ridge and Churn Creek, as well as the grasslands of the study area at Riske Creek. This is an 

indication that despite an approximately 100-year absence of frequent fire from the grassland 

landscape, the soil legacy of resource patterns and plant propagules can support spatially 
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continuous grassland fires. A high frequency, spatially continuous disturbance regime 

historically prevented the encroachment of forests on grasslands within the Interior Douglas-Fir 

biogeoclimatic zone.  

Native bunchgrass species are a major component of the restored grasslands plots, as well 

as a remnant under forest cover on grasslands. Native bunchgrasses were not significantly 

reduced in burned grasslands. However, wildfire caused a significant reduction in native 

bunchgrasses under young forests. These results are likely due to substrates; bunchgrasses within 

moss and humus layers in the forest are susceptible to fire due to the root systems being above 

the mineral soil, while the rhizomatous growth form of Calamagrostis could be an adaptation to 

surviving fire disturbances in forest substrates. The grassland restoration treatments 

mechanically removed the forest canopy and reduced the moss and humus components with a 

low-severity prescribed burn. The low-severity disturbances of the treatments likely reduced 

mortality of the remnant bunchgrass plants, over time resulting in recovery of the bunchgrass 

component close to the levels observed in stable state grasslands. These results suggest that 

grassland restoration treatments can be used to restore grassland legacies existing in the 

understorey of young forests.  

Land-Use Legacies 
 

Species composition of grassland ecosystems has been altered by livestock grazing and 

altered fire regimes, while the age distribution, structure, and stem density of Douglas-fir forests 

have been altered by logging and fire suppression (Dawson,1996; Lemay et al., 2009; Harvey et 

al., 2017). In the grasslands, the presence of the exotic grass Poa pratensis indicates a past 

history of heavy grazing; the species is known to be persistent decades after more sustainable 
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grazing practices or grazing exclusion are introduced (Sinkins and Otfinowski 2012; White et al., 

2013; Dekeyser et al., 2015;). However, distinct patterns of spatial and temporal distribution of 

soil moisture, as well as native plant species associated with forests and grasslands are present 

before and after a wildfire that occurred under severe drought conditions. Therefore, it appears 

that these ecosystems have maintained the capacity to recover after wildfire disturbances, despite 

existing land use legacies. In the case of restored grasslands, native bunchgrass communities 

recovered to a large extent, 10 years after restoration treatments. Remnants of forest humus and 

litter were also present in restored grasslands. The burn severity of the remnant forest humus 

patches was more variable than burn severity in grassland litter, resulting in greater overall 

variability of burn severity than in stable-state grasslands. The removal of these last forest 

remnants in the 2017 fire event may restore grassland-associated patterns of fire disturbance in 

the future.   

The overwhelming presence of exotic species in young forests indicates they are 

essentially an anthropogenic land use legacy resulting from fire suppression, livestock grazing, 

and species introductions of the past ~100 years. In young forests, the wildfire reduced the 

leading forest moss species Pleurozium schreberi, as well as grassland-associated native 

bunchgrasses, leaving a post-wildfire ecosystem dominated with the exotic species Tragopogon 

pratensis and Poa pratensis (mean 84% exotic species as a proportion of vegetation cover). 

Tragopogon is well adapted to the young forest habitat because it is a prolific seed producer (Qi 

et al., 1996), and its seeds germinate and survive on a wide variety of substrates including litter 

and plant substrates (Gross and Werner 1982, Gross 1984). Poa pratensis is a relatively shade 

tolerant (Lin et al., 1998) mesic ecosystem specialist (DeKeyser et al., 2015; Printz and 

Hendrickson, 2015), and is more abundant than drought-adapted native bunchgrasses in the 
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cooler and shaded microclimate of the young forests. The absence of pinegrass in young forest 

could be a result of absence of fire-induced seed production, or lack of substrate conditions 

suitable for germination. The presence or absence of soil legacies not measured in this study, 

such as seed banks, propagules, and grassland-associated or forest-associated mycorrhizal 

communities may have also limited establishment of forest-associated plant communities in 

young forests. 

Young forests moderated drought conditions and reduced soil moisture in the cool-wet 

period. Although young forest spatial heterogeneity of soil moisture is significantly greater than 

found in grasslands types, it is significantly lower than in mature forests. There is a large 

difference between young forest and mature forest spatial heterogeneity, suggesting that 

structures supporting the mature forest-imposed levels of spatial heterogeneity take long periods 

of time to develop. The species composition of tree species in the young forests is also different 

than in mature forests, with a greater proportion of Pinus contorta. This is likely a result of 

seedling survival in the grasslands due to greater tolerance to frost. Growing season frost causes 

mortality of Pseudotsuga seedlings in large openings, with thermal cover provided by forest 

canopy improving seedling survival (Steen et al., 1990). Therefore, in parts of the Cariboo 

region, cold-tolerant Pinus contorta seedlings have greater survival rates than Pseudotsuga 

seedlings in open cutblocks (Reich et al., 1993). Considering that Pseoudotsuga has greater 

drought tolerance than Pinus contorta, young forests may be more susceptible to drought-

associated mortality than mature forests.  
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Conclusions 
 

Post-wildfire ecosystem legacies include spatial and temporal patterns of soil moisture, 

and the propagules of forest-adapted and grassland-adapted species. It is expected that these and 

other legacies will promote the re-organization and recovery of forest and grassland plant 

communities after wildfire and other disturbances. Differences in soil conditions suggest that 

ecological memory, defined as “the totality of information and material legacies” (Jogieste et al., 

2017), developed over long periods of time in both grasslands and forests, and provides a source 

of resilience for each of these ecosystem states.  

In a case of afforestation of grasslands in Europe, Kimberley et al. (2019) demonstrated 

that species’ rates of extinction and colonization vary between species and habitats. In the 

Kimberley et al. (2019) analysis, afforestation caused the loss of grassland species, but forest 

species did not colonize at the same rate as the species lost. Similarly, the reproductive and 

dispersal characteristics of understorey forest species may have prevented their colonization of 

young forests in this study. On the Festuca hallii prairie (rough fescue) of Manitoba, the removal 

of tree plantations from historical grassland areas did not result in the return of rough fescue 20 

years after tree removal treatments (Coffey and Otfinowski, 2018). The Coffee and Otfinowski 

(2018) result contrasts from the results of this study where leading native grassland species did 

re-colonize areas where young forests were removed. Therefore, the ability of a plant community 

to become established or to re-establish may depend on the characteristics of the individual 

species and local conditions.  

It is unlikely the historical landscape experienced frequent regime shifts between forest 

and grasslands states. As the climate associated with the bunchgrass biogeoclimatic zone is 
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projected to shift into dry forest zones (Hamann and Wang, 2006), ecosystem legacies will 

provide some resilience for forests to resist a permanent regime shift to a grassland state. 

However, there is uncertainty regarding the maximum levels of climate change and disturbance 

severity that will still allow forest ecosystems to re-organize. Analysis of the Riske Creek 

weather station data shows that there is already a downward trend in growing season 

precipitation, which may already have affected productivity and disturbance regimes. Further, 

the establishment of young forests on benchmark grasslands did not result in levels of soil 

moisture heterogeneity, forest cover heterogeneity, or plant communities associated with mature 

forest. Similarly, the long-term loss of mature forest cover may not result in the rapid 

establishment of grassland associated plant communities. Young forests on the grassland 

benchmark (historical grassland areas) can be restored to grassland conditions with ecosystem 

restoration treatments. Management of the forest-grassland mosaic should focus on restoring 

historical patterns of resource distribution and disturbance regimes. 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

Grassland plant communities 
 

The baseline characterization of grasslands on an elevation gradient provides direction 

for management and research. The upper grasslands have high productivity in comparison to low 

and middle elevation grasslands, manifested in greater vegetation and litter cover levels. In 

recent years there have been efforts to reintroduce prescribed burning to the grasslands, and it is 

likely that the practice will become more common. The reintroduction of fire can be used to 

prevent the establishment of trees on grasslands. Livestock grazing occurs to various levels and 

frequencies on virtually all grasslands of the Cariboo-Chilcotin. Therefore, maintaining litter and 
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plant cover levels that will carry prescribed fires and support livestock grazing will be focus of 

management. Consequently, research should focus on prescribed burning and grazing practices 

that will maintain healthy native plant communities.  

 Attaining knowledge on the autecology of leading species will be a key step in managing 

for greater abundance of native bunchgrasses in the upper grasslands. An important species trait 

of interest is the response to presence of litter. Litter accumulation drives grassland plant 

community composition via leaf traits (Letts et al., 2015).  Litter can form a dense thatch in the 

upper grasslands, and litter cover levels can be manipulated through grazing and burning. Hilger 

and Lamb (2017) found that grassland productivity peaks at an intermediate amount of litter. A 

second important autecological trait is the response of species to defoliation at various levels of 

severity, timing, and frequency. Defoliation studies have contributed to management of native 

grasslands of other regions (e.g., MacLean and Wikeem, 1985). There is an absence of literature 

on the effects of defoliation for leading native grasses of the upper grasslands in the Cariboo-

Chilcotin (particularly Achnatherum richardsonii and Hesperostipa curtiseta). Finding the 

effects of litter cover and defoliation on key species will provide information on optimal 

frequency and severity of grazing and prescribed burning. Too frequent or severe defoliation and 

litter removal can result in reduced species richness (Bai et al., 2001), increased bare ground 

cover and soil erosion (Facelli and Pickett, 1991), more severe drought conditions (Deutsch et 

al., 2010), and reduced grassland productivity (Willms et al., 1986; Zhang and Romo, 1994). The 

exotic cool-season Poa pratensis is the leading species in the upper grasslands, and ~30 years of 

grazing exclusion has not reduced its abundance. Poa pratensis is known to have a competitive 

advantage in situations where there is frequent defoliation (Tannas, 2011), and where there is 
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excessive litter cover (Bosy and Reader, 1995). Intermediate levels of disturbance may create 

competitive advantages for native grass species and contribute to reduced cover of Poa pratensis.  

 The low soil organic carbon content of sub-humid grassland soils in comparison to other 

sub-humid grassland regions is a topic of interest. Isolating the covarying effects of plant 

community and climate on soil organic carbon has been a challenge for regional scale studies. 

The Cariboo-Chilcotin sub-humid grasslands present a unique situation in having lower soil 

organic carbon than sub-humid climate grasslands of other regions. The lower than expected 

organic carbon levels may be attributed to species composition that includes leading grass 

species that are normally considered early- to mid-seral, and perhaps less productive than late 

seral grasses of other regions. Historical overgrazing may also be a factor in the lower than 

expected soil organic carbon content. Comparative studies on productivity of fine roots between 

species of the Cariboo-Chilcotin and leading species of other sub-humid grasslands may provide 

new insights in soil organic carbon accumulation. Researchers may also experiment with 

introduction of higher productivity grass species and measure inputs of litter and organic carbon 

to the mineral soil.  

 In lower grasslands, biological soil crusts (BSC) cover the large inter-plant spaces that 

result from low productivity and the bunchgrass growth form of leading species. BSC cover data 

was excluded from analysis of this study because the Daubenmire (Daubenmire, 1959) cover 

class method was found to be inaccurate in measurement of BSC as total substrate and species 

levels abundance.  Future research on measuring abundance of BSC species may obtain more 

accurate results using a point-based method (e.g., as described by Booth et al., 2006), as it would 

be more appropriate for the size and spatial distribution of the crust species. The diversity of 

BSC species and their potential contribution to soil nitrogen content in the Cariboo Chilcotin 
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region has been described (Marsh et al., 2006; Caputa et al., 2013). However, there are gaps in 

knowledge on the links between BSC and grassland productivity, the effects of various grazing 

practices on BSC, effects of burning on BSC, and the potential links between mycorrhizal fungi 

to BSC species and vascular grassland species. BSC cover has also been demonstrated to reduce 

the germination rates of exotic annual grass Bromus tectorum in semi-arid ecosystems (Deines et 

al., 2007). An investigation into the role of BSC in controlling the spread of Bromus tectorum in 

the Cariboo-Chilcotin region may provide valuable information. Finally, the use of fungal 

pathogens for biological control to prevent the spread of Bromus tectorum (Meyer et al., 2008) is 

also a topic of interest.  

The Forest and Grassland Mosaic 
 

The “grasslands benchmark area” is a demarcated area of grassland ecosystem and is the 

central policy to protect grasslands from forest encroachment (Cariboo-Chilcotin Grasslands 

Strategy Working Group, 2001). The grassland benchmark represents the extent of grasslands 

based on the earliest available aerial imagery, which dates from the 1960s to 1970s (Steele et al., 

2007). Ecosystem restoration treatments can be used to remove forest encroachment within the 

benchmark, and provincial re-forestation obligations are not attached to logging activities 

(British Columbia CORE, 1995). The concept of the grasslands benchmark as a delineated area 

with an abrupt grasslands boundary is supported by measurement of conditions on the ground. 

There is very little overlap in species composition between adjacent forests and grasslands. 

Encroachment of forest cover on the grassland benchmark has not resulted in the establishment 

of mature-forest-associated plant communities. Therefore, the grassland-forest boundary should 

be considered representative of boundaries in a complex mosaic rather than a continuous 

ecotone.  



88

Leading species in young forests were exotic Poa pratensis and Tragopogon pratensis. 

Removal of young forests on the benchmark area resulted in the re-establishment of native 

grassland communities, although with high cover values of Poa pratensis (like the baseline 

condition in adjacent grasslands). In mature forests, pinegrass was present before wildfire, and 

was the leading species re-established after wildfire. In terms of silviculture, pinegrass is often 

considered a nuisance species as it may compete for moisture with conifer plantations.  After 

logging and wildfire, efforts are made in reducing pinegrass abundance using herbicide and 

mechanical treatments (Simard et al., 1998; Swift and Turner, 2004). The policy of removing 

pinegrass should be reconsidered; after wildfire, pinegrass was the most important species for 

reducing bare ground cover in mature forests. Pinegrass may play a role in reducing soil erosion, 

capturing nutrients, and contributing organic matter to burned soils. The importance of pinegrass 

as forage for livestock is well known (MacLean et al., 1969; MacLean, 1972), but its ecological 

role as dominant species in dry forests of interior British Columbia has not been recognized by 

researchers and resource managers.  

Mature forests had greater heterogeneity of soil moisture than grasslands or young 

forests. Grasslands had spatially homogenous soil moisture and experienced the highest average 

and lowest average soil moisture conditions over the study period. Soil moisture conditions of 

young forests were intermediate between grasslands and mature forests, with heterogeneity being 

more like grasslands. The high spatial heterogeneity of soil moisture was measured in mature 

forests before and after wildfire. Several studies have linked structural diversity to successful 

regeneration in Douglas-fir forests. There was greater variability in stem density and stem size in 

mature forests than young forests. Therefore, soil moisture heterogeneity in mature forests may 

result from greater structural heterogeneity in than found in encroachment forests.  
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As the climate is projected to become warmer and drier (Hamann and Wang, 2006), 

creating heterogeneity in forest stand structure may be a strategy for maintaining recruitment of 

trees. Interior Douglas-fir (Pseodotsuga menziesii var. glauca) is shade tolerant, (Klinka et al., 

2000) (unlike Coastal Douglas-fir, Pseudotsuga menziesii var. menziesii which is shade 

intolerant) (Drever and Lertzman, 2001). The forest canopy reduces understorey drought 

conditions through buffering of air and soil temperatures (Simard, 2009). However, interception 

reduces the amount of precipitation that reaches the soil directly beneath forest the forest canopy 

(Pypker et al., 2005). Simard (2009) has hypothesized that edges of canopy gaps and edges of the 

dripline of mature trees are zones of regeneration due to a balance of shading and precipitation 

throughfall. Lemay et al. (2009) found that in dry interior Douglas-fir forests, tree regeneration 

was densely clustered near large diameter trees, and the clustered pattern of regeneration was 

likely due to higher moisture microsites. In the same study, there was high mortality of small 

trees (<7 cm dbh) due to competition in these dense patches of regeneration. Therefore, a 

strategy in recruiting healthy trees into the canopy may include protecting large diameter trees 

while using low-severity prescribed burns or mechanical treatments to reduce stem density in 

regenerating patches and to create or maintain canopy gaps. Lemay et al. (2009) and Simard 

(2009) associated patches of Douglas-fir regeneration with large trees and canopy gaps, while 

this study associated greater soil moisture heterogeneity with mature forests. The ecological 

processes that caused the patches of more favourable soil moisture conditions were not measured 

directly. A high level of soil moisture heterogeneity persisted after a severity burn, indicating 

that standing dead trees (and possibly other forest legacies) continue to contribute to higher 

moisture microsites one year after the fire disturbance. However, the period that these greater 

heterogeneity conditions will persist is not known; in summer 2018, many dead trees still had 
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needles and the shading effects may be reduced with needle fall. Where there is greater distance 

to live trees, seed dispersal may be a limiting factor. Due to the large areas burned in 2017 and 

2018, there are opportunities to study the effects of standing dead trees and other forest legacies 

on forest regeneration. Also, studies should aim to identify how particular forest attributes create 

the soil moisture conditions that permit the growth of tree seedlings during drought. Variables of 

interest include canopy gap size, tree height, light conditions, density, stem flow, presence of 

veteran trees, and precipitation interception and throughfall. 

 In the in the 2017 wildfire, surface cover in mature forests burned at the highest severity 

and had the greatest variation (diversity) of burn severity. Dendrochronological studies have 

found that interior Douglas-fir forests historically burned at various levels of severity, but that 

the high severity burn patches were limited in area by heterogeneity of stand structure and 

topography (Heyerdahl et al., 2007; Heyerdahl et al. 2012; Harvey et al. 2017). In mature forests, 

some large high-severity burn patches were likely outside of the historical range of variation. 

Dry Douglas-fir forests should be managed for lower stem densities and heterogenous patterns of 

clumps and gaps in order to prevent the spread of high-intensity wildfires (Harvey et al., 2017).  

There are several lines of evidence that ecological legacies will prevent the rapid shifting 

between grassland and forest ecosystem states. Evidence includes: the failure of mature forest- 

associated plant communities to establish in young forests, the re-establishment of grassland 

plant communities in restored grassland, and the re-establishment of forest-associated 

communities in mature forests after wildfire. Legacies that prevent change between states may 

include soil characteristics associated with forests and grasslands, remnant forest floor and stand 

structure in burned forests, the presence of plant propagules, and soil mycorrhizal communities, 

among others. Although climate change altered disturbance regimes are expected to expand the 
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extent of grasslands (Hamann and Wang, 2006; Seidl et al., 2017) managing for changes in 

ecosystem state should be considered carefully. First steps may include experimental treatments 

on small areas and recording long term ecological trends.  
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APPENDIX 1  
 

Range Reference Areas (RRAs) and associated information included year of exclosure 
construction and plot layout (created), elevation (m), climate category, grassland plant 
community type, and location in decimal degrees. Soil samples were collected from bolded 
RRA’s. SA = semi-arid, DSH = dry sub-humid, MSH = moist sub-humid. 

Range Reference Area created elevation (m) climate  type location  

Lower Sheep 1997 436 SA lower 51.230, -122.160 
Middle Sheep 1997 445 SA lower 51.234, -122.160 

Cavanagh 1997 468 SA lower 50.982, -121.900 
Hartman Flats 1997 511 SA lower 51.271, -122.193 

Big Sage Farewell 1986 515 SA lower 51.824, -122.546 
McGhee Flats 1997 518 SA lower 51.337, -122.253 
Deer Park 1990 548 SA lower 51.887, -122.348 

Whaleback 1997 577 SA lower 51.243, -122.153 
Farwell Needlegrass 1986 592 SA lower 51.832, -122.547 

Fraser North Eagle Tree 1997 641 DSH middle 51.457, -122.273 
Empire Valley 1994 668 DSH middle 51.473, -122.277 
Toosey 1921 905 DSH middle 51.950, -122.495 

Cotton Lake 1995 940 MSH middle 51.951, -122.478 
Airport flats 1997 950 MSH middle 51.435, -122.285 

Cotton Ranch Corrals 1995 956 MSH upper 51.944, -122.424 
Loran C 1995 966 MSH upper 51.986, -122.396 

Rock Lake  1963 969 MSH upper 51.981, -122.426 
Mile 35 1995 978 MSH upper 51.873, -122.529 
Sheep Point 1997 1016 MSH upper 51.329, -122.281 

Cow Lake 1990 1036 MSH upper 51.762, -122.658 
Greenfield W 1986 1056 MSH upper 51.880, -122.806 
Sting and Vert 1988 1066 MSH upper 51.652, -122.163 

Greenfield S 1986 1067 MSH upper 51.880, -122.760 
Wineglass Big B 1987 1102 MSH upper 51.898, -122.609 

Vert Lake 1996 1114 MSH upper 51.622, -122.190 
Greenfield N 1986 1142 MSH upper 51.893, -122.760 
Bald mtn. Holding Ground 1995 1155 MSH upper 51.926, -122.589 

Breeding pasture N 1986 1190 MSH upper 51.908, -122.726 
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APPENDIX 2 

Morphological descriptions of pedons from the Cariboo-Chilcotin grasslands. Colour values are 
recorded as moist. Pedon data was accessed from the RRA database, BC Ministry of Forests, 
Lands and Natural Resource Operations.  

 

 

Depth 
(cm) Description 

Toosey: Orthic Dark Brown Chernozem 

Ah1 0-11 very dark gray (10 YR 3/1); silt loam; weak to moderate, fine granular; abundant, fine, oblique roots within soil matrix 

Ah2 11-26 dark yellowish brown (10 YR 3/4); silt loam; moderate, medium subangular blocky; abundant, fine, oblique roots within peds 

Bt 26- 40 brown (10 YR 4/3); clay loam; moderate to strong, medium angular blocky; plentiful, fine, oblique roots within peds 

Ck 40+ light olive brown (2.5 Y 5/3); sandy loam; moderate to strong; medium angular blocky; very few, very fine, oblique roots 

Rock Lake: Orthic Dark Brown Chernozem 

Ah 0-15 very dark brown (10 YR 2/2); silt loam; moderate, medium subangular blocky; abundant, fine, oblique roots within peds 

Bm 15-26 dark grayish brown (10 YR 4/2); loam; moderate, medium subangular blocky; plentiful, fine, oblique roots within peds 

Bt 26-36 Brown (10 YR 4/3); clay loam; moderate to strong, medium angular blocky; plentiful, fine, oblique roots within peds 

BCca 36- 45 dark grayish brown (10 YR 4/2); loam; moderate, medium angular blocky; few, fine, oblique roots along ped surfaces 

Ck 45+ dark olive brown (2.5 Y 3/3); loam; moderate, medium angular blocky      

Sting and Vert: Calcareous Dark Brown Chernozem 

Ah 1 0-9 very dark brown (10YR 2/1.5); silt loam; moderate, medium granular; abundant, fine, oblique roots within soil matrix 

Ah 2 9-26 very dark grayish brown (10YR 3/2); silt loam; medium, subangular blocky; abundant, fine, oblique roots within soil matrix 

Bmk 26-36 
very dark grayish brown (10YR 3/2.5); sandy loam; weak, fine subangular blocky; plentiful, very fine, oblique roots within soil 
matrix 

Cca 36-55 dark grayish brown (2.5Y 4/2); sandy loam; weak, medium subangular blocky; few, very fine, oblique roots within soil matrix 

Ck 55+ very dark grayish brown (2.5Y 3/2); sandy loam; weak, medium subangular blocky     

Vert Lake: Orthic Dark Brown Chernozem 

Ah1 0 -12 very dark brown to black (10YR 2/1.5); silt loam; moderate, medium granular; abundant, fine, oblique roots within soil matrix 

Ah2 12 -23 very dark brown (10YR 2.5/2); silt loam; moderate, medium subangular blocky; abundant, fine, oblique roots within peds 

Bmk 23- 35 dark brown (10YR 3/2.5); loam; moderate, medium subangular blocky; plentiful, very fine, oblique roots within peds 

Cca 35- 55 dark grayish brown (2.5Y 4/2.5); loam, moderate to strong, medium angular blocky; very few, very fine, oblique roots within peds 

Ck 55+ very dark grayish brown (2.5Y 3/2.5); loam; strong, medium angular blocky         
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APPENDIX 3 

Riske Creek (Becher’s Prairie) aerial photographs showing A. 1962 benchmark for extent of 
forests and grasslands, B.  2005 showing extent of forest encroachment on grasslands, and C. 
2011 after grassland restoration treatments removed young forest encroachment from portions of 
the grassland benchmark. Shapes indicate an example of each ecosystem category, with an 

approximate location: stable state grassland (yellow circle), restored grassland (blue triangle), 
young forest (orange square), and mature forest (red octagon). Aerial Photographs provided by 
Province of British Columbia, Ministry of Forests, Lands and Natural Resource Operations.  
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C. 2011 
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APPENDIX 4 

Photographs of stable state grasslands A. before wildfire in July 2017, B. after wildfire in August 
2017, C. May 2018, and D. September 2019. Continuous plant and litter cover resulted in low 
diversity (H) of burn severity. After wildfire, the plant community recovered to a similar species 
composition by July 2018, although litter cover was reduced and there was increased bare 

ground cover. It appears that there may be higher cover of native needlegrasses and reduced Poa 
pratensis in September 2019; however, this needs to be verified with future research.    

 

 

A. July 2017 



111

 

 

 

 

B. August 2017 
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C. May 2018 
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D. September 2019 
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APPENDIX 5  

Before and after photographs of plant communities several weeks after wildfire (August 2017) 
and one year after wildfire (July 2018) including: A. mature forests, B. young forest, and C. 
restored grassland. The wildfire resulted in increased dominance of Calamagrostis rubescens in 
mature forests, an increase in exotic species Tragopogon pratensis in young forests, and no 

detected change in species composition of restored grasslands. Diversity of burn severity in 
restored grasslands and young forests was intermediate between mature forests which had high 
diversity and stable state grasslands low diversity (H).   
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