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Abstract 
 

I evaluated how intra- and inter-specific competition affects the development of eleven wood 

attributes of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca 

(Moench) Voss) over 34 years. My analysis was conducted in a mixedwood trial site in Northern 

British Columbia, Canada, that included treatments consisting of 0, 1000, 2000, 5000, and 10000 

stems per hectare of aspen. Competition was found to negatively influence wood attribute 

development in aspen and positively impact spruce (at low levels of competition). Plot level 

competition indices were the best predictor of variation in aspen wood attributes, while stand 

level competition (population density) best explained the majority of spruce wood attributes. 

Maintaining aspen at lower densities in intimate mixture can have a positive effect on spruce 

wood quality, while incurring relatively small reductions in spruce volume production and also 

retaining the ecological benefits associated with managing for mixed stands. 
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1. Introduction 
 

1.1 Boreal forest introduction and overview 
 

Boreal forests are frequently composed of broadleaf and conifer trees interacting and 

competing for limited resources. These forests are among the most productive and diverse forest 

ecosystems in North America (Chen and Popadiouk 2002). Aspen (Populus tremuloides Michx.) 

and white spruce (Picea glauca (Moench) Voss) are the predominant components of the Western 

Canadian boreal mixedwood forest and competition driven succession between these species is 

the primary process of forest composition shift (Jiang et al. 2018). The forest industry in western 

Canada has largely focused on the utilization of softwood, however, reductions in the predicted 

midterm supply, pine beetle infestation,  projected future climate change, and a shift towards the 

valuation of products such as carbon storage all portend to an increased use of hardwood species 

(McCulloch and Kabzems 2009; Mbogga et al. 2010; Dhar et al. 2016). Previous studies have 

evaluated the challenges and benefits of growing various  mixed stands have primarily focused  

on stand productivity, nutrient cycling, over yielding potential, pest and fire mitigation, and 

resistance to climate change (Brassard et al. 2008; Girardin and Terrier 2015; Laganière et al. 

2015; Kweon and Comeau 2019). Many of the studies focusing on wood quality in mixedwoods 

have focused on basal area increment or biomass productivity. However, recently within wood 

attributes such as wood density, and modulus of elasticity (MOE), have become a subject of 

interest in both aspen and spruce due to the increased economic appeal of aspen products and 

softwood value-added forest products. The objective of this thesis is to examine the effect of 

competition on the within wood attributes of both aspen and white spruce.  
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1.2 Mixedwood stand dynamics  
 

Historically, aspen has been viewed as a weed, undesirable and inhibiting of preferred 

conifer growth (Carleton and Maycock 1981). Aspen is frequently the primary tree species to 

grow in post-disturbance landscapes, following destructive fire, beetle infestation or clear-cut 

through asexual root suckering (Comeau et al. 2005; Frey et al. 2011; Smith et al. 2011). Aspen 

is shade intolerant and displays fast initial growth rates, which allows it to quickly dominate the 

forest canopy, compared to the seed-sowed and slow juvenile growth rates of spruce (Lieffers et 

al. 1996). Aspen, however, has a short lifespan (50 – 60 years), and reaches the age of 

senescence earlier than most conifers (250 – 300 years). Canopy openings from this senescence 

allows for establishment or release of more shade tolerant, slow-growing conifer species, 

including spruce (Brassard and Chen 2006). Competition is particularly critical for mixedwood 

stand development in the stem exclusion or self-thinning phase (20-40 years of stand age) where 

resources such as light, soil moisture and nutrients become scarce as the trees expand in size, 

leading to logarithmic decreases in stem density (Lieffers et al. 2002; Chen and Popadiouk 

2002).  Although spruce is a shade tolerant species, studies have shown a strong response in 

radial and height growth to increases in light, and poor conifer height growth under dense 

hardwood canopies with light levels below 20% of full sunlight (Lieffers and Stadt 1994).  

 

1.3 Combining abilities of mixed stands 
 

Management objectives have been biased towards conifer growth as softwoods offer 

superior properties for both pulp and lumber, however, recent studies have demonstrated the 

ecological and economic benefits of growing white spruce in conjunction with aspen. As such, 

the novel silviculture technique of  planting spruce under developing or mature aspen has been 
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shown to effectively create boreal mixedwood establishment (Kabzems et al. 2016).  Managing 

for mixtures can vary with site fertility, but, can also positively impact the diversification of each 

species functional traits, which, maximizes growing space (Pretzsch et al. 2013). Species 

diversity can increase ecosystem function through habitat creation and through increased nutrient 

cycling leading to productivity and carbon sequestration (Brassard et al. 2008; Laganière et al. 

2015; Payne et al. 2019).  Competition is the driving force of stand diversity in mixedwood 

stands as it strongly influences successional trajectory (Filipescu and Comeau 2007). This 

successional trajectory contributes to the landscape patchwork age-class distribution, which in 

turn, mitigates fire and insect outbreak (Comeau et al. 2005; Girardin and Terrier 2015). 

Since the early 2000’s, utilization of aspen increased and is now the main fibre source for 

several oriented strand board (OSB) and veneer mills. Support for mixedwood management 

options, including aspen utilization, has the potential to diversify forest silviculture and lower 

costs of traditionally intensive silviculture practices while creating more resilient forests in B.C. 

Also, the delayed maturation age of spruce relative to aspen allows for multiple entry partial 

harvest, thereby allowing constant timber supply, while preserving biodiversity and habitat 

continuation (Man and Lieffers 1999).   

One of the distinct benefits of mixedwood forests is the potential for overyielding, or the 

increase in productivity of a mixed species stand compared to a monoculture (Hector 1998). 

Overyielding can occur when managing for space partitioning and size inequality between spruce 

and aspen (Hector 1998; Kweon and Comeau 2019). The potential for overyielding in boreal 

aspen spruce mixtures has been identified (Man and Lieffers 1999; Kabzems et al. 2007). 

However, an increase in volume is only desirable when it corresponds with merchantable timber. 

The characterization of wood attributes along with cost effective land use management is at the 
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forefront of the boreal forest industry’s fundamental shift from traditional wood products to 

multiple value-added forest products (Chen et al. 2017).  

 

1.4 Wood attribute overview  
 

Mixed species stands have been found to differ from pure stands in terms of growth 

(Comeau et al. 2004; Pretzsch et al. 2013), tree shape (Pretzsch 2019), resource use efficiency 

(Carr et al. 2020), and resistance to disturbance (Hansen et al. 2016). Much less is known on the 

effect of tree mixtures on individual tree wood attribute development, especially in the boreal 

mixedwood. Mixedwood stands provide opportunities to apply variation in silviculture 

techniques such as planting densities and thinning treatments to manage for desired combinations 

of wood properties and yield (Comeau 2021). Wood attributes (Table 1.1) within both soft and 

hardwoods have impacts on tree survivability and the grade of economic viability.  

 

Table 1.1 A summary of each of the wood attributes that were analyzed in this study 

Wood Attribute Description Economic Value History 

Modulus of 
Elasticity 
(MOE) 

A measure of stress compared 
to strain within wood, and 
often varies with MFA (Evans 
and Ilic 2001) 

Stiffness of wood increases 
resistance to trunk breakage, 
xylem explosion and increases 
stem stability (Hacke et al. 
2001)  

Previous studies have shown 
that MOE is the best 
representation of wood 
stiffness (Antony et al. 
2012a; Sattler et al. 2014) 

Microfibril 
Angle (MFA) 

The orientation of the 
crystalline cellulose in the 
secondary cell wall (S2) wood 
along the fibre axis (Cave 
1966).(Varies with age as 
juvenile (core) wood has larger 
MFA, mature wood has lower 
MFA (Barnett and Bonham 
2004). 

Low MFA leads to higher 
dimensional stability in lumber 
and tensile strength in paper. As 
MFA increases, stiffness and 
compressive strength decrease 
(Aziz 2013).  

Previous studies have shown 
that MFA varies most with 
age (De Araujo et al. 2015). 
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Wood Attribute 

 
 

Description 

 
 

Economic Value 

 
 

History 
 

Density 

Wood density is defined as the 
ratio of the oven-dry weight of 
a sample to the weight of a 
volume of water equal to the 
volume of the sample at a 
specified moisture content 
(green, air-dry, or oven-dry). 

Wood density influences 
lumber strength (determining 
lumber grade), pulp yield, pulp 
quality, timber shrinkage, 
stiffness, hardness, heating 
value, machinability, and 
energy requirement of the 
pulping process (Jozsa and 
Middleton 1994). Denser wood 
is associated with lowered trunk 
breakage, xylem implosion and 
increased stem stability (Hacke 
et al. 2001). 

Previous study has shown 
that there was no effect of 
mixed vs pure competition 
having an effect on wood 
density (De Araujo et al. 
2015)  

Ring area 

Related to ring width Fibre morphology and cell wall 
structure directly influences 
fibre flexibility, plasticity and 
resistance to processing  

Height (rather than diameter) 
preferred growth in 
competitive environments has 
resulted in a lower ring width 
in aspen and spruce 
(Coopersmith and Hall 1999) 

Specific surface 
area 

Fibre perimeter divided by 
coarseness (See methods 
equation 3).  

Tensile strength    

Ring width 

Ring width represents the 
interannual variability in 

several factors both 
endogenous and exogenous. 
Variations in climate, site 

conditions, competition, and 
disturbance lead to differences 
in observed ring widths (Fritts 

1976) 

Lower ring width can indicate 
increased density and impact 

other wood attributes 

Height (rather than diameter) 
preferred growth in 
competitive environments has 
resulted in a lower ring width 
in aspen and spruce 
(Coopersmith and Hall 1999)  

Tangential 
Diameter 

Tracheid length parallel, or 
tangent, to growth rings.  

Tracheid length, diameter and 
wall thickness not only affect 
tensile and tear strength, but 
also impact the optical and 
printing properties of paper 

(Macdonald and Hubert 2002). 

Longer fibres have been 
reported for mixed white 

spruce and aspen sites 
compared to pure stands (De 

Araujo et al. 2015). 

Radial 
Diameter 

Tracheid length that is 
perpendicular to growth rings. 

Fibre morphology and cell wall 
structure directly influences 
fibre flexibility, plasticity and 
resistance to processing  

Longer fibres have been 
reported for mixed white 
spruce and aspen sites 
compared to pure stands (De 
Araujo et al. 2015). 
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Wood Attribute 

 
 

Description 

 
 

Economic Value 

 
 

History 
 

Coarseness 

Defined as the weight per unit 
length of the wood fibres 
(methods equation 3) 

Lower Coarseness means 
higher tear strength,  greater 
bonding area, and more fibres 
per tonne of pulp, which are 
important to papermaking 
(Watson and Bradley 2009) 

Higher coarseness has been 
reported for mixed white 
spruce and aspen sites 
compared to pure stands (De 
Araujo et al. 2015).  

Wall Thickness 

The thickness of xylem cell 
walls.  

Influences fibre collapsibility 
during paper making 

Thickness in the cell wall 
may change in response to 
long term ecological factors 
such as wind, exposure and 
climate, thereby changing 
MFA and resultant wood 
properties (Hein and Lima 
2012).  

 

Within angiosperms (aspen) and gymnosperms (spruce), xylem cells are necessary for 

structural integrity and for water transport within the tree. Gymnosperm tracheids are 

characterized by many bordered pits in their radial walls, and are also much longer than 

angiosperm fibres (Barnett and Bonham 2004). The orientation and magnitude of certain 

characteristics within the tracheid reflects the influence of external forcing which can include 

competition, or environmental conditions such as temperature changes, nutrient availability, 

precipitation, increased wind stress or snowpack (Speer 2012).  

Traditionally, density has been considered the most important industry wood trait as it 

affects wood quality as well as the tear strength  and burst of paper (Zobel and Jett 1995). 

Studies have shown that ecologically, a denser wood is associated with lowered trunk breakage, 

xylem implosion, and increased stem stability (Hacke et al. 2001).  

However, it has been shown  that the longitudinal modulus of elasticity (MOE) which is a 

measure of stress compared to strain within wood, is in fact the best representation of wood 

stiffness which is both desirable ecologically and for industry application (Antony et al. 2012b; 

Sattler et al. 2014). Microfibril angle (MFA) is defined as the orientation of the crystalline 
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cellulose in the secondary cell wall (S2) wood along the fibre axis (Cave 1966). The MFA is 

measured within the S2 layer of the secondary cell wall since the thickness of the S2 layer is 

much greater than that of the primary S1 or S3 layers. Furthermore, MFA varies with age as 

juvenile (core) wood has a larger MFA where-as mature (outer) wood displays a low MFA 

(Barnett and Bonham 2004). As MFA increases in the wood, the stiffness and compressive 

strength decrease (Aziz 2013). In general, low MFA leads to higher dimensional stability in 

lumber and tensile strength in paper. Thickness in the cell wall may change in response to 

exterior forces such as wind and thunderstorm, thereby changing the MFA and the resultant 

wood properties (Hein and Lima 2012). Studies have found that Microfibril Angle (MFA) is the 

best predictor of MOE, whereby MFA alone accounts for 86% of the variation observed in MOE, 

and together with wood density describe 96% of the variation in MOE (Evans and Ilic 2001). 

Fibre wall thickness in conjunction with fibre width influences fibre collapsibility during 

paper making. Coarseness is defined as the weight per unit length of the wood fibres. Lower 

coarseness means higher tensile sheet strength, greater bonding area, and more fibres per tonne 

of pulp, all of which are highly prized by papermakers (Watson and Bradley 2009). Ring width 

represents the interannual variability in several factors both endogenous and exogenous. 

Variations in climate, site conditions, competition, and disturbance lead to differences in 

observed ring widths (Fritts 1976). Lower ring width can indicate increased density and other 

desirable attributes.   

 

1.5 Competition in the mixedwood 
 

Studies of how competition influences wood attributes within mixedwood systems have 

been limited. Competition indices enable the quantitative analysis of relationships between stand 
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composition and wood attributes. Competition indices are numerical expressions that describe 

how much each tree is affected by its neighbours. Two main types of competition indices are 

often considered: distance-independent and distance-dependent. Distance-independent indices 

are typically easier to calculate as they require less data, and have performed similarly to 

distance-dependent indices in previous modelling applications (Kahriman et al. 2018). However, 

much of the study of competition indices has been confined to models relating exterior tree 

growth characteristics or mortality, and there is currently a lack of research concerning the 

resolution required for finer wood attributes (Kahriman et al. 2018; Sun et al. 2019). Within 

mixed forest plantations in Eastern Quebec, distance independent indices have successfully 

quantified the competition effect on basal area increment growth in planted white spruce, while 

distance-independent indices worked best for ingrown or non-planted species (Bérubé-

Deschênes 2017). In an analysis of permanent sample plots that included pure and mixed stands 

of aspen and white spruce of varying age in Central Alberta, wood density and carbohydrate 

content was found to be consistent across sites, while MFA was lower within aspen sampled in 

pure stands and fibre characteristics were higher in the pure site for both species (De Araujo et 

al. 2015).  Previous studies have been limited due to sampling uneven age stands with 

inconsistent measures of treatment density. This study builds on previous work by analyzing the 

effect of competition on wood attribute development in managed aspen and spruce stands with 

homogenous site conditions.  

 

1.6 Thesis Objectives 
 

The purpose of this study was to characterize eleven wood attributes (Table 1.1) of both 

white spruce and trembling aspen grown in various levels of competition within a mixedwood 
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trial site where tree ages and other ecological conditions were uniform. The specific objectives 

were: 

1. To determine if there was a difference in wood attribute response to stand level 

competition between species.  

2. To determine if aspen and white spruce display similar responses to stand level 

competition over time.  

3. To analyze if there are any economic benefits observed in wood attributes with 

increasing aspen treatment density. 

4. To compare spruce and aspen wood attribute response to inter- and intra-specific 

competition. 

5. To utilize plot data and formulate neighbourhood level competition indices. Then to 

determine which neighbourhood level competition indices best improved a model for 

wood attributes in both aspen and spruce. 

6. To determine the competition resolution required for the wood attributes of both 

spruce and aspen.  

In addition to the introductory chapter, this thesis contains two chapters written as stand-

alone manuscripts that address the above objectives, as well as a concluding chapter which 

synthesizes the conclusions from each of the two manuscripts. The following chapter (Chapter 2) 

explored objectives 1 through 3, by applying a mixed effect model approach to tree core data 

collected to characterize eleven wood attributes across different competition regimes. Chapter 3 

builds on the mixed effect model of Chapter 2, by utilizing plot data from the study site to 

increase the competition resolution in order to explore objectives 4 to 6.   
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2. Evaluating the impact of stand composition and competition on 
Spruce and Aspen wood attributes in mixedwood stands 

 
 

2.1 ABSTRACT 
 

In this study, we sampled 50 aspen (Populus tremuloides) and 70 white spruce (Picea 

glauca) in northern British Columbia. We analyzed 11 wood attributes (microfibril angle, 

density, modulus of elasticity, cell wall thickness, coarseness, ring width, cell population, 

specific surface area, ring area, tangential diameter, and radial diameter) over five population 

densities (0, 1000, 2000, 5000, and 10,000 stems per hectare (sph) aspen) to evaluate the impact 

of competition on wood attributes. Through a mixed effects model framework, two thresholds 

emerged from our analysis. First, the largest effect on spruce wood attribute development 

occurred when aspen was grown in intimate mixture with spruce compared to spruce grown 

without aspen. Second, was the variation observed in the 10,000 sph aspen treatment compared 

to the treatments with lesser densities of aspen. Our results indicate that desirable wood attributes 

are generally increased when spruce is grown with aspen competitors. Further, our results show 

that desirable traits within aspen decrease with increasing levels of competition. Therefore, 

maintaining aspen at lower densities in intimate mixture can increase spruce wood quality, 

production and also provide the ecological benefits of aspen and their potential positive impacts 

on forest resilience, while incurring some reductions in spruce volume.  
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2.2 INTRODUCTION 
 

Mixedwood forests are some of the most productive and diverse forest ecosystems in 

North American boreal forests (Chen and Popadiouk 2002), and support a range of ecosystem 

services such as reducing the risk of insect/pathogen/fire outbreaks and improving resilience to 

climate change (Bergeron et al. 2014). Mixedwood forests can also facilitate forest productivity 

(Reyes-Hernández and Comeau 2015), and are a source of lumber and various value added forest 

products (McCulloch and Kabzems 2009). Aspen (Populus tremuloides Michx.) and white 

spruce (Picea glauca (Moench) Voss) are the primary components of the Western Canadian 

boreal mixed forest and competition driven succession between these species is the primary 

process of forest composition shift (Jiang et al. 2018). Previous studies have shown that various 

levels of competition between species in a mixed stand can influence yield, biomass production, 

and exterior growth characteristics (Comeau et al. 2005; Kabzems et al. 2007).  These findings 

have influenced forest management techniques, but knowledge gaps remain with regard to how 

stand composition and neighbourhood competition impacts spruce and aspen wood attributes and 

by extension economic value.  

The forest industry in western Canada has largely focused on the utilization of conifers, 

however, reductions in the predicted midterm timber supply, pine beetle infestation,  projected 

future climate change, and a shift towards the valuation of ecosystem services such as carbon 

storage all portend to an increased use of broadleaf species (McCulloch and Kabzems 2009; 

Mbogga et al. 2010; Dhar et al. 2016). Historically, aspen has been viewed as a weed, 

undesirable and inhibiting of preferred conifer growth (Carleton and Maycock 1981). Past 

management objectives were biased towards conifer growth as they offered superior properties 

for both pulp and lumber production, based on industrial scale processes available at the time. 
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Although the majority of current industrial application relies on conifer growth, the benefits of 

more holistic forest management plans which incorporate a diversity of tree species are 

increasingly recognized (Macdonald et al. 2010). For instance, the silviculture technique of  

planting spruce under developing or mature aspen has been shown to effectively establish boreal 

mixedwood conditions (Kabzems et al. 2016).  Overyielding, or the increase in productivity of a 

mixed species stand compared to a monoculture, can occur when managing for space partitioning 

and size inequality between spruce and aspen (Hector 1998; Kweon and Comeau 2019). Within a 

mixed stand, an aspen density of 2000 – 5000 stems per hectare (sph) and white spruce at 1300 

sph allows for overyielding with 21% more volume produced than monocultures of either 

(Kabzems et al. 2007). Also, the delayed maturation age of spruce relative to aspen allows for 

multiple-entry partial harvest, thereby enabling more consistent timber supply, while preserving 

biodiversity and habitat continuation (Man and Lieffers 1999). As a result, there has been 

increased interest in managing for intimate mixtures of aspen and spruce. 

Developing a more thorough understanding of the complex interactions of the 

mixedwood system, and specifically how competition between overstory trees may influence tree 

growth and wood properties, is vital to the effective future management of these forests. Within 

angiosperms (aspen) and gymnosperms (spruce), xylem cells are important for structural 

integrity and for water transport within the tree. Gymnosperm tracheids are characterized by 

many bordered pits in their radial walls, and are also, often, longer than angiosperm fibres 

(Barnett and Bonham 2004). The orientation and magnitude of certain characteristics within the 

tracheid  reflects the influence of external forcing which can include competition, or 

environmental conditions such as temperature changes, nutrient availability, precipitation, 

increased wind stress or snowpack (Speer 2012). Wood density, modulus of elasticity (MOE), 



 19 

microfibril angle (MFA), and other wood attributes (Table 1.1) are potentially responsive to 

changes in a trees neighbourhood composition, stand structure, and the type and intensity of 

competition that a tree experiences (Pretzsch and Rais 2016).  

 

The primary objective of this study is to characterize the wood attributes of both white 

spruce and trembling aspen grown within an established mixedwood research experiment with 

variable aspen densities where tree ages and ecological conditions are uniform.  The first sub-

objective is to determine if there is a difference observed in wood attribute variation between 

species. The second sub-objective is to determine if there is a difference observed in wood 

attribute response to competition between species. The third and final sub-objective is to 

determine if spruce and aspen wood attributes display similar responses to competition, and 

whether those differences can be translated into discernable economic benefits. To achieve these 

sub-objectives, three hypotheses were formulated. The first hypothesis is that spruce and aspen 

display differences in their wood attributes which will be tested through the evaluation of a linear 

mixed effect model. Spruce has been shown to display physiological differences as well as 

variation in basal area increment growth in response to competition, so it is likely that spruce 

will also display differences in other wood attributes. Aspen is shade intolerant, and therefore 

will likely have a more pronounced reaction to competition than spruce. Therefore, the second 

hypothesis is that there is a difference in wood attribute response to competition between species. 

Finally, the third hypothesis is that spruce and aspen will display different responses to 

competition that will translate to benefits (or detriments) in wood quality. Evaluation of this third 

hypothesis will be critical to understanding the role that competition plays on wood quality in the 

boreal mixedwood.  
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2.3 MATERIALS AND METHODS 
 

2.3.1 Study Site 
 

The study site is located 45 km northeast of Fort St. John, British Columbia (Figure 2.1) 

in the moist warm subzone of the Boreal White and Black Spruce biogeoclimatic zone 

(BWBSmw, DeLong et al. 2011). 

 

Figure 2.1 A map of Siphon Creek trial site with the treatment map (Richard Kabzems) 

 The site is characterized by a mesic to sub hygric moisture regime and rich nutrient 

regime (Kabzems et al. 2007).  The soils underlying the study area are fine-textured Gray 

Luvisols, moderately well drained, with a thick, gray Ae horizon over a more fine-textured Bt 

horizon (Lord and Green 1986). 
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 The area was selectively logged for conifers in 1968. The remaining aspen trees and 

existing vegetation were sheared and windrowed in the early winter of 1984/85. In 1985, the site 

was planted with three-year-old bareroot white spruce seedlings at 1480 stems per hectare, which 

were sampled for this study at 33 years of age. The study site was established in 1989 as part of 

Ministry of Forests Experimental Project 1077, and plots were laid out in 1990. Twenty plots 

with varying densities of aspen (0, 5000, and 10,000 stems per hectare) combined with a second 

planting of white spruce (0, 500, 700, 900, 1100, 1300 and 1500 stems per hectare) were laid out. 

In 1990, the aspen regeneration was manually thinned to target densities of 0, 5000, and 10,000 

stems per hectare and all other tree and tall shrub species manually removed, similar to a juvenile 

spacing treatment. Repeated manual brushings were applied until 2000 to maintain the 0-aspen 

treatment. In the summer of 2000, two additional aspen treatments (1000 and 2000 stems per 

hectare) were created by reducing existing densities in previously established plots (Kabzems et 

al. 2015).  

 

2.3.2 Data Collection 
 

Samples were obtained in 2018 from trees within the 0, 1000, 2000, 5000, and 10,000 sph 

aspen treatment units (Table 2.1). A total of five undamaged spruce trees (i.e., those with no 

mechanical damage, forked tops, or other obvious growth issues), were sampled within each 

treatment. All sampled spruce trees within a treatment replicate were separated by a minimum 

10-meter distance to ensure distribution over the plot. For each sampled spruce tree, one aspen 

was deemed to be ‘paired’ with the spruce and sampled. The aspen ‘pair’ was the nearest 

healthy, canopy dominant aspen stem within 1-2 meters of the sampled spruce tree. 
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Table 2.1Descriptive statistics of sampled trees. Diameter at breast height (DBH) means are shown with standard 
deviations in parentheses.  

Treatment 
(aspen 
sph) 

Spruce DBH 
(cm) 

Aspen 
DBH (cm) 

Number of 
spruce samples 

Number of 
aspen samples 

0 17.3 (2.3) NA 20 0 

1000 16.2 (3.1) 15.7 (4.2) 5 5 

2000 15.0 (5.2) 14.4 (3.9) 5 5 

s5000 12.1 (1.5) 13.7 (2.8) 20 20 

10000 11.1 (2.1) 11.6 (1.8) 20 20 
 

Using an increment borer, a 12 mm core was collected at breast height (1.3m), from each 

tree selected. Core position was chosen to minimize effects of slope on the ring patterns and to 

facilitate optimal cross dating. The cores were placed in paper tubes for protection and allowed 

to air dry prior to preparation.  The condition and growth form of each sampled tree was noted 

along with any indications of historic abiotic or biotic damage.  Height and diameter at breast 

height (DBH) were measured for the selected tree and for all neighborhood trees within a 3.99-

meter radius of the targeted spruce and aspen stems. Competitive trees were deemed to be those 

greater than 1.3 m in height. The species and the distance of the competitive tree to the target tree 

were also recorded. 

 

2.3.3 Sample Preparation 
 

Tree core samples were air-dried and prepared for analysis in the University of Northern 

BC (UNBC) Dendrochronology Laboratory. An important factor controlling density in wood is 

resin. Since resin is unevenly distributed within the wood and it has different properties than the 

wood itself, it must be removed (Speer 2012).  Samples were soaked in acetone for 8 hours, 

before being passed through a Soxhlet apparatus for a further 8 hours (Rydval et al. 2014). 

Within the Soxhlet apparatus, the acetone boils, and the steam will rise until it hits a condenser, 
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then drips into the core chamber. When the acetone reaches a maximum height, the chamber is 

drained and the process is repeated, thereby extracting the resins. Once the samples were 

removed of all resins, they were sent to FPInnovations for SilviScan® analysis. 

 FPInnovations in Vancouver, Canada, further prepared the 12 mm cores collected.  

Cores were air-dried and then cut into strips of 2 x 7 mm (tangentially x longitudinally) using a 

twin-blade saw. Resulting laths were scanned using SilviScan® technology. Each strip was 

scanned for radial and tangential cell dimensions using optical microscopy, wood density using 

x-ray densitometry, and microfibril angle (MFA) using x-ray diffractometry.  The analysis 

performed measured wood properties every 25 µm across the wood lath, with the exception of 

microfibril angle, which was measured every 5 mm.  Properties measured included ring density, 

radial and tangential diameters, and microfibril angle. Coarseness (Cr), cell wall thickness 

(CWT), and Specific Surface Area (SSA) values were calculated as a function of other measured 

variables through the following equations: 

[1]  Cr = R x T x Dw 

[2]  CWT =  

  [3]  SSA = P/Cr 
 
Where:     P = 2 (R + T) 
And, R and T are the radial and tangential tracheid diameters, respectively, P is fibre perimeter, 
and Dw is the cell wall density (Tong 2019). 
 
 

2.3.4 Data analysis 
 

 The wood attributes analysed included: wood density (kg/m3), radial diameter (µm), 

tangential diameter (µm), coarseness (µg/m), cell population (#/mm2), microfibril angle (MFA, 

degree), modulus of elasticity (MOE, Gpa), wall thickness (µm), specific surface area (m2/kg), 

ring width (mm), and ring area (mm2). For each of the wood properties analysed, a mean value 
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was calculated for each ring in order to determine if significant differences occurred between 

trees from varying treatments. Intra-annual differences were observed, but exceed the scope of 

this paper, as they did not exhibit clear increasing or decreasing trend over one ring width. The 

significance level selected for all levels of the statistical analysis was α = 0.05 (95% confidence 

level). Residuals were checked visually with quantile-quantile plots using the ggpubr package 

(Kassambara 2020) and were found to not differ from normal at every stage of the analysis. A 

comparison of linear and 3rd, 4th, and 5th order polynomials, as well as exponential equations was 

used in order to observe the change in a given wood property over time for each species in each 

treatment. Akaike’s information criterion (AIC value) was used to evaluate the goodness of fit of 

the various line types. All wood attribute variation approximated linear change at approximately 

10 years.  

 

A linear mixed model (equation 4), with tree as the random factor, and ring (cambial 

age), species, and treatment as the fixed factors, was utilized to investigate differences in wood 

attributes. The linear mixed model was created using the lme function within the nlme package 

(Pinheiro et al. 2020) in R (version 3.4.3)(R Development Core Team 2017).  The dredge 

function within the MuMIn package (Barton 2020) for model selection was used to rank the best 

model (based on variable inclusion of the model terms) through Akaike’s Information Criterion 

(AIC) value. The global model included both aspen and white spruce samples, in order to 

determine that there was a difference in wood attribute variation between species.  Next, in order 

to determine if the observed wood attributes varied within species and between treatments, a 

linear mixed model separated by sample species was run (lme: ring, and treatment with tree as 

the random effect). An analysis of variance (ANOVA) was then used to determine significant 
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effects of each species separated model. Post-hoc analysis of significant treatment effects were 

conducted by the pairwise comparison of contrasts from the lsmeans (Lenth 2016) package with 

a Bonferroni adjustment applied to p-values. Although p-values can be the subject of controversy 

when used as an indicator of significance in mixed effect models, and in scientific hypothesis 

testing in general, the application of the conservative Bonferroni adjustment can mitigate the 

potential of Type 1 error. Also, in this instance, the results of the multi model inference agreed 

with the same analysis comparing significant model terms based on p-values (Appendix Table 

6.2). So, beyond the initial model selection test, p-values were used to represent significance. 

The goal of this portion of the study was not to create a predictive model, nor maximize R2 of 

each model, but rather answer ecological questions through these statistics. 

 

[4]  Yj=β0+β1xj+β2xj+μ1 +εj, 

Where Yj and xj represent fibre property for year j; β0, β1 and β2 are the fixed effects. 
μi1 is the random effect of tree and ui2 is the random slope; εij is the error term.  

 

Finally, an “improvement” heatmap was created by normalizing the aspen and spruce 

means for each property in each treatment to the mean within the 1000 sph aspen treatment. An 

improvement was termed to be either an increase or decrease in the value of each wood property 

as per Canadian wood fibre standards (Canadian Wood Fibre Centre et al. 2010). An important 

caveat is that these criteria for improvement could change depending on the properties required 

for the desired end product. For this study, improvements were defined as the treatments that 

displayed lesser values for coarseness, ring width, and MFA relative to the mean. The remaining 

wood attributes (density, MOE, ring area, specific surface area, cell population, tangential and 

radial diameter) were considered to have positive improvement if they increased between 
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treatments relative to the mean. The years 10-34 were used in this comparison, to omit the 

variation observed in early age wood. 

2.4 RESULTS 
 

2.4.1 Linear mixed effect models 
 

Table 2.2 shows the results of the multi model inference, where the global model that was 

tested included the terms: ring (cambial age), species, and treatment. This method chose the ‘best 

model’ (listed first for each wood attribute) based on lowest AIC score, which minimizes 

information loss of the model. Displayed in Table 2.2 is the ‘best model’ for each wood attribute 

and the next highest-ranking model until the change (delta) in AIC > 2, indicating a significant 

difference between models. The results of this analysis show that for all wood attributes, there is 

an important difference observed between species, as well as a difference observed between 

treatments.  

Table 2.2 Summarized results of the multi model inference analysis of the global model (linear model = Ring + 
species + treatment + |tree).Loglik is the log likelihood, AIC is Akaike’s information criterion, and delta is the 
difference in AIC for best performing   

Wood 
attribute 

(Intercept) Ring species treatment df logLik AICc delta weight 

Ring 
Width 

3.77 -0.0581 NA + 8 -4169.12 8354.29 0.00 0.73 

  3.75 -0.0581 + + 9 -4169.09 8356.24 1.95 0.27 

  
2.83 -0.0580 + NA 5 -4204.51 8419.04 64.75 0.00 

Density 
393.11 NA + + 8 

-
15803.80 

31623.65 0.00 0.45 

  
396.28 NA + NA 4 

-
15808.32 

31624.66 1.00 0.27 

  
392.80 0.0205 + + 9 

-
15803.77 

31625.60 1.94 0.17 

  
395.99 0.0194 + NA 5 

-
15808.29 

31626.60 2.95 0.10 

MFA 23.15 -0.6538 + + 9 -8835.62 17689.30 0.00 0.90 
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Wood 
attribute 

(Intercept) Ring species treatment df logLik AICc delta weight 

  20.77 -0.6539 + NA 5 -8841.83 17693.68 4.38 0.10 

MOE 
8.14 0.2956 + + 9 -5388.85 10795.75 0.00 0.93 

  
9.45 0.2956 + NA 5 -5395.53 10801.08 5.33 0.07 

Coarseness 
542.70 2.3385 + + 9 

-
18223.71 

36465.47 0.00 0.99 

  
506.81 2.3359 + NA 5 

-
18232.75 

36475.52 10.05 0.01 

Tangential 
Diameter 

40.53 0.0520 + + 9 -7820.46 15658.97 0.00 0.99 

  39.29 0.0519 + NA 5 -7829.07 15668.17 9.19 0.01 

Radial 
Diameter 

28.59 0.1495 + + 9 -7283.05 14584.16 0.00 1.00 

  
27.27 0.1503 NA + 8 -7290.68 14597.41 13.25 0.00 

Specific 
Surface 
Area 

263.46 -1.0999 + + 9 
-

15900.29 
31818.65 0.00 0.99 

  
283.86 -1.0987 + NA 5 

-
15909.59 

31829.21 10.56 0.01 

Ring Area  
491.55 17.8545 NA + 8 

-
21516.34 

43048.72 0.00 0.65 

  
460.56 17.8685 + + 9 

-
21515.96 

43049.97 1.25 0.35 

  
98.51 17.8805 + NA 5 

-
21547.01 

43104.04 55.32 0.00 

Cell 
Population 

905.31 
-

10.2019 
+ + 9 

-
20622.59 

41263.24 0.00 1.00 

  
1068.51 

-
10.2034 

+ NA 5 
-

20639.18 
41288.38 25.15 0.00 

Wall 
Thickness 

2.82 0.0083 + + 9 -907.37 1832.81 0.00 0.97 

  
2.72 0.0083 + NA 5 -914.87 1839.77 6.96 0.03 
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Next, in order to determine if there were differences in wood attribute variation between 

treatments and within species, the same model structure was applied to aspen and spruce samples 

separately. There was a significant effect of treatment in all wood attributes except for MFA 

(both aspen and spruce), and MOE (aspen) (Table 2.3). 

Table 2.3. Results of species separated ANOVA of model terms for each species (Full results for each wood attribute 
in Chapter 2 Supplementary Appendix). 

Significant effects were explored through pairwise comparison (summarized in table 2.4, 

complete post hoc results in Appendix Tables 6.3 and 6.4). The contrasts that displayed 

significant differences between treatments are shown in Table 2.4. From this analysis, two 

thresholds became evident. First, for aspen samples, all of the significant treatment effects were 

  Aspen Samples Spruce Samples 
Wood 
Property Cambial Age (Ring) treatment Cambial Age (Ring) treatment 
Ring 
Width 

F(1, 1421) = 367.21, 
p < 0.001 

F(3, 46) = 3.30, 
p = 0.0284 

F(1, 1621) = 488.01, 
p < 0.001 

F(4, 65) = 
24.43, p < 0.001 

Density 
F(1, 1421) = 113.28, 
p < 0.001 

F(3, 46) = 3.86, 
p = 0.0151 

F(1, 1621) = 90.97, p 
< 0.001 

F(4, 65) = 2.56, 
p = 0.046 

Microfibril 
Angle 

F(1, 1421) = 
3393.59, p <0.001 

F(3, 46) = 1.04, 
p = 0.3822 

F(1, 1621) = 
7768.49, p < 0.001 

F(4, 65) = 2.22, 
p = 0.076 

Modulus 
of 
Elasticity 

F(1, 1421) = 
3930.35, p < 0.001 

F(3, 46) = 1.17, 
p = 0.3299 

F(1, 1621) = 
10809.77, p <0.001 

F(4, 65) = 3.42, 
p = 0.0135 

Coarseness 
F(1, 1421) = 39.4, p 
< 0.001 

F(3, 46) = 6.19, 
p = 0.0013 

F(1, 1621) = 339.61, 
p < 0.001 

F(4, 65) = 
10.44, p < 0.001 

Tangential 
Diameter 

F(1, 1421) = 13.71, p 
< 0.001 

F(3, 46) = 5.67, 
p = 0.0022 

F(1, 1621) = 68.08, p 
< 0.001 

F(4,65) = 9.25, 
p < 0.001 

Radial 
Diameter 

F(1, 1421) = 6.39, p 
= 0.012 

F(3, 46) = 3.82, 
p = 0.016 

F(1, 1621) = 
3411.57, p < 0.001 

F(4,65) = 9.06, 
p < 0.001 

Specific 
Surface 

F(1, 1421) = 109.60, 
p < 0.001 

F(3, 46) = 6.55, 
p < 0.001 

F(1, 1621) = 90.64, p 
< 0.001 

F(4, 65) = 5.55, 
p < 0.001 

Ring Area 
F(1, 1421) = 489.03, 
p < 0.001 

F(3, 46) = 2.96, 
p = 0.042 

F(1, 1621) = 
1110.89, p < 0.001 

F(4, 65) = 
19.98, p < 0.001 

Cell 
Population 

F(1, 1421) = 17.14, p 
< 0.001 

F(3, 46) = 4.45, 
p = 0.0079 

F(1, 1621) = 
1682.25, p < 0.001 

F(4, 65) = 
11.64, p < 0.001 

Wall 
Thickness 

F(1, 1421) = 74.01, p 
< 0.001 

F(3,46) = 5.72, 
p = 0.0021 

F(1, 1621) = 59.91, p 
< 0.001 

F(4, 65) = 4.38, 
p = 0.0034 
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driven by differences in the highest aspen density (10,000 sph) contrasted with lower aspen 

densities. The second threshold was that for spruce, most of the significant treatment effects were 

driven by contrasts between the treatment without aspen (0sph) and treatments where spruce was 

grown in mixture with aspen (i.e., > 0sph aspen). This analysis confirmed the hypothesis that 

aspen and spruce wood attributes would vary with competition. Also, boxplots show the 

variation for each wood attribute separated by species and treatment (Figure 2.3, Figures for each 

wood attribute found at the start of each wood attribute analysis chapter in Chapter 2 

Supplementary Appendix). 

Table 2.4. The results of species separated two-way analysis of variance (ANOVA) of the effects of treatment (aspen population 
density) and cambial age on each wood attribute. For significant treatment effects, pairwise post hoc testing (Bonferroni 
adjusted) determined contrasts between treatments. For full contrast table, consult appendix (Tables 6.3 and 6.4). 

Figure Wood 
Property 

Species Treatment p-value Post Hoc: Significant Contrasts 

Ring Width 
Aspen 0.0284 None 

Spruce p < 0.001 0-2000, 1000-5000, 1000-10000 

Density 
Aspen 0.0151 2000-10000 

Spruce 0.0466 None 

Microfibril Angle 
Aspen 0.3822 N/A 

Spruce 0.076 N/a 

Modulus of 
Elasticity 

Aspen 0.3299 N/A 

Spruce 0.0135 0-5000, 0-10000 

Coarseness 
Aspen 0.0013 2000-10000, 5000-10000 

Spruce p < 0.001 0-2000, 0-5000, 0-10000 

Tangential 
Diameter 

Aspen 0.0022 1000-10000, 2000-10000 

Spruce p < 0.001 0-5000, 0-10000 

Radial Diameter 
Aspen 0.016 1000-10000 

Spruce p < 0.001 0-5000, 0-10000 

Specific Surface 
Aspen p < 0.001 2000-10000, 5000-10000 

Spruce p < 0.001 0-2000, 0-10000 

Ring Area 
Aspen 0.0418 None 

Spruce p < 0.001 0-2000, 1000-5000, 1000-10000 

Cell Population 
Aspen 0.0079 1000-10000 

Spruce p < 0.001 0-5000, 0-10000 

Wall Thickness 
Aspen 0.0021 2000-10000, 5000-10000 

Spruce 0.0034 0k-2k, 0k-10k, 2k-5k, 5k-10k 
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Figure 2.2 Boxplot showing the microfibril angle variation between aspen and spruce in each treatment. This is 
figure is shown as an example of the variation between species, for figures of all wood attributes consult Chapter 2 
Supplementary Appendix. 

2.4.2 Wood attribute variation over time 
 

In order to show wood attribute change over time, we tested the fits of several line types 

for each treatment and the results indicate that all spruce attributes exhibit non-linear changes as 

the trees develop, with the largest changes in properties being distinguished by differences in 

establishing tree (cambial age 0-5 years), and older trees (cambial age 5-30 years) (Figures 2.3, 

2.4, 2.5). While developmental changes in most wood attributes were best statistically described 
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by 4th or 5th order polynomial, most approximated linear changes in the attributes between 5 and 

30 years.  

 

 
Figure 2.3 Density change over time with separated  aspen (top)  spruce (bottom) and treatment. 
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Figure 2.4 Microfibril angle change over time with separated (a, left) aspen, and (b, right) spruce and treatments. 
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Figure 2.5 Modulus of Elasticity change over time with separated (a, left) aspen, and (b, right) spruce and 

treatments. 
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2.4.3 Heatmap 

 
Figures 2.6 and 2.7 show the results of an “improvement” heatmap where a positive 

improvement meant a reduction in ring width, coarseness, and microfibril angle, and a 

maximization of all other wood attributes. In general, aspen wood quality (as previously defined) 

was diminished with increasing levels of treatment and spruce wood quality was improved. The 

only common improvement was ring width which was minimized with increasing aspen 

treatment density. Aspen wall thickness was improved in the 10,000 sph treatment and displayed 

a negative effect in other treatments. Radial diameter and tangential diameter improved with 

increasing aspen density. Coarseness was minimized with increasing aspen treatment density. 

MOE was most desirable in 10k treatment, while minimized in the other densities of aspen. MFA 

showed positive improvement in all densities relative to 1000 sph treatment. Wood density was 

negatively associated with increasing aspen population density. Ring width improved with aspen 

population density. Within spruce, most desirable wood traits were maximized in spruce with 

increasing aspen density. Tangential and radial diameter both did not display improvements as 

they decreased with increasing treatment density. Modulus of elasticity and density were 

maximized in the 5000 sph treatment. MFA, coarseness and ring width all improved with 

increasing aspen population density.
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Figure 2.6 A relative improvement heatmap for all 11 wood attributes within spruce and their response to increasing levels of aspen 
treatment density (relative to control treatment). 

 

 
 

 



 36 

 

Figure 2.7 A relative improvement heatmap for all 11 wood attributes within aspen and their response to increasing 
levels of aspen treatment density (relative to 1000 sph aspen treatment). 
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2.5 DISCUSSION 
 

Significant differences between spruce and aspen were observed for all wood attributes with 

the exception of ring width and ring area. A lack of difference between species for ring width 

and ring area is consistent with previous studies that have observed that for both species tree 

height to diameter ratio in mixed stands increases with competition (Lanner 1985; Coopersmith 

and Hall 1999).  Both spruce and aspen exhibit increased slenderness with competition, which 

corresponds with reduced ring width and ring area. For all other wood traits, the distinct 

differences between species reflects the intrinsic anatomical differences of each species (Pretzsch 

and Rais 2016) as well as variations in their growth preferences such as shade tolerance (Man 

and Lieffers 1999). For both spruce and aspen, we found that aspen treatment density influenced 

most wood properties (Table 2.3), but that the sampled species responded differently to increases 

in aspen treatment density. Microfibril angle (MFA) in spruce and aspen, as well as modulus of 

elasticity in aspen, was not significantly impacted by aspen density. Our finding that MFA is 

insensitive to competition is consistent with previous studies from boreal mixedwood stands in 

Western Canada (De Araujo et al. 2015). The age of wood, and whether or not it is juvenile or 

mature is the greatest determinant of MFA, with large MFA’s in juvenile, and smaller in mature 

wood (Barnett and Bonham 2004). It has been shown that the normal decrease in MFA from pith 

to bark can be interrupted by surge in growth rate such as that which may occur following the 

thinning and removal of competitor trees (Herman et al. 1999). We did observe a distinct 

increase in spruce MFA (Figure 2.5b) following the thinning that occurred in the sample plots in 

1990, 8 years into the spruce growth (3-year-old planted spruce in 1985). We also observed high 

variation in the MFA in spruce for all samples (Figures 2.2 and 2.4) which could partially 

account for a significant treatment effect not being found. Further, MOE in aspen (Figure 2.5), 
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displays greater variation than the spruce (Figure 2.5), and could explain some of the lack of 

significance between treatments. Also, since MFA did not exhibit a difference between 

treatments, and MFA can explain up to 86% of the variation in MOE it could be expected that 

MOE will follow a similar trend. However, within spruce cores, MOE did in fact display a 

significant effect of treatment. This could be explained by a dominant effect of wood density on 

MOE as it varied between treatments. Approximately ~10% of the variation in MOE can be 

explained by variation observed within wood density (Evans and Ilic 2001).  

For most of the wood attributes that we measured (ring width, MOE, coarseness, tangential 

diameter, radial diameter, specific surface area, ring area, cell population, and wall thickness), 

two thresholds consistently emerged from our analysis. First, the largest effect on spruce growth 

occurred when aspen was grown in densities greater than zero with the spruce. Ninety percent of 

the significant differences within spruce wood properties, and between treatments, were 

attributed to the presence of aspen in the stand. Aspen growing in mixture with spruce will 

impact the availability of key limiting resources with regard to light, water and nutrients 

(Filipescu and Comeau 2007; Kabzems et al. 2015). Past studies have demonstrated that 

modifications to spruce’s growing environment influence absolute growth as well as gross 

growth characteristics such as height-to-diameter ratio (Kabzems et al. 2015). Our findings build 

on this previous work by demonstrating that spruce wood attributes are different for spruce 

growing in pure stands (at lower density) compared to spruce grown in mixture.  

The second threshold that emerged from our results was the impact of an aspen treatment 

density of 10,000 sph, on aspen wood characteristics. Differences between the 10,000 sph 

treatment and those with lower densities of aspen accounted for all of the significance observed 
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in aspen wood attributes (Table 2.4). Growth of trembling aspen has been shown to be 

significantly affected by inter- and intraspecific competition (Jiang et al. 2018).  

An outlier from these two thresholds is wood density. Both aspen and spruce displayed a 

significant effect of treatment, but upon post-hoc testing, only aspen wood density exhibited 

significant differences between 2000 – 10,000 sph (Table 2.4) treatments.  The significant effect 

of the overall model term without significant post-hoc treatment contrasts, could be attributed to 

the low sample sizes, and an overly conservative result from the Bonferroni correction. This 

could further be explored through additional sampling. The finding that wood attributes of both 

aspen and spruce are affected by treatment compares to previous studies involving wood density 

and mixtures of white spruce and aspen (De Araujo et al. 2015), where no significant differences 

between mixed and pure stand wood density were found in either species.  A possible 

explanation for the overall treatment significance observed in aspen and spruce cores in this 

study is that the Siphon Creek research plots provide a higher resolution as they were sampled 

from plots with the same ecological conditions, consist of controlled densities, and have the same 

age across plots.  Since all other environmental variables are held constant, the differences in 

density were more readily apparent from the data collected at the research site than the 

geographically separate permanent sample plots in previous studies.  

Furthermore, our work indicates that all spruce wood attributes exhibit non-linear 

changes as the trees develop, with the largest changes in properties being distinguished by the 

differences in establishing tree (age 0-5 years), compared to older trees (5-30 years). While 

developmental changes in most wood attributes were statistically best described by a third or 

fourth order polynomial, most approximated linear changes in the attributes between 5 and 30 
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years. This variation is consistent with previous observations of change in wood attribute 

development as trees age (Amarasekara 2002). 

In this study we aspired to evaluate if there were discernable economic improvements in 

wood attribute value with increasing levels of competition. Our experimental framework does 

not allow us to explicitly tease apart the relative impact of increased interspecific competition 

compared to overall competition, on spruce wood attributes. However, our results indicate that 

desirable spruce wood attributes are generally increased when spruce is grown with aspen 

competitors (Figure 2.6). In general, spruce grown in intimate mixture with 5000 sph aspen 

density seemed to offer relative improvements in wood properties that are considered the most 

important for lumber products. Increased wood density, larger MOE, lower MFA, larger ring 

width, and increased wall thickness are the benefits observed in spruce grown in the 5000 sph 

treatment which constitute either best or second-best improvements to wood quality, relative to 

other treatments. Aspen densities of 5k and 10k are due to juvenile spacing of five-year-old 

aspen, while the 1k and 2k aspen have had two juvenile spacing treatments at 5 and 15 years. 

Thus, the aspen represents dominant and codominant individuals at the time of spacing 

treatment. 

Density may be less important for lumber products in the future due to the increased 

production of value added engineered wood products, as they are often made stronger and stiffer 

by laminating a low-density wood to a higher-density wood (Canadian Wood Fibre Centre et al. 

2010). However, density is still important for bioenergy, which values the higher energy content 

of dense wood. 

 MOE has been shown to be the best predictor of wood stiffness, which is desirable both 

for tree survivability, and lumber considerations when maximized (as evident in the increase 
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between treatments in Figures 2.5, and the resultant heat map improvement in Figures 2.6 and 

2.7).   

Further, depending on the intended use, radial and tangential diameter can either be 

maximized or minimized. In this case length maximized was viewed as desirable in the 

improvement heatmap value as longer fibre results in stronger paper sheets, which resulted in 

negative improvement on the heatmap. However, thinner fibre tends to form better quality sheets 

of higher tensile strength and greater bonding area (Watson and Bradley 2009), so again, it 

depends on intended use. Increased water availability has been linked to formation of wider 

tracheids particularly in the radial direction (Vysotskaya and Vaganov 1989; Wilpert 1991). 

Since the treatments without aspen have a lower density of trees in general, there is likely to be 

more water available, allowing for the discrepancy in radial diameter observed between 

treatments (Kerhoulas et al. 2013). 

In contrast to spruce wood attributes, our results indicate that most desirable traits (MOE, 

density, and MFA) within aspen decrease with increasing levels of aspen competition (Figure 

2.7). Lower values for MOE and density increase the risk of trunk breakage, xylem implosion 

and decreased stem stability (Hacke et al. 2001). Effectively, in this instance, the increased 

competition is weakening the aspen, and accelerating the stand dynamics typical of mixedwood 

forests (Bergeron et al. 2014) .  However, the majority of the negative associations for the 

remaining wood attributes are related to the 10,000 sph aspen treatment, suggesting that, aspen 

wood attributes are not significantly affected until densities are increased past a certain threshold. 

Previous studies have shown that increases in maximum stand stem density can lead to an 

increase in productivity in mixed species forest stands when space partitioning allows for the 

favourable expression of the functional traits of each species (Reyes-Hernández and Comeau 
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2015). For both aspen and spruce samples, we found that the increased stockability of the 

managed 1000-5000 sph treatments, had very few negative effects on wood attribute values. 

Therefore, it is a conclusion of this study that some of the benefits of maintaining aspen in a 

stand are realized even at relatively low aspen densities (between 1000 and 5000 sph). This 

suggests that maintaining aspen at lower densities in intimate mixture can increase spruce wood 

quality and maintain the ecological benefits of aspen and their potential positive impacts of forest 

resilience (Macdonald et al. 2010). Changes in measures of productivity for the spruce and aspen 

components of a mixture will vary with management choices and desired outcomes (Comeau 

2021).  Increased competition from aspen may have a negative impact on spruce volume growth 

(Cortini et al. 2012), even though intimate mixture stands often exhibit similar total volume 

production (spruce and aspen volume growth combined) or potentially increased total yield 

(Kweon and Comeau 2019). Forest managers focused on conifer production must therefore 

consider the beneficial impacts of a managed aspen component on spruce wood attributes and 

increase in overall volume in the context of the concomitant reductions in spruce volume 

production.  
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3. A mixed effect approach to evaluating the impacts of stand 
composition, age and neighbourhood competition on the wood 
attributes of spruce and aspen grown in mixedwood stands 

 
 

3.1 ABSTRACT 
 
 

The influence of stand composition, neighbourhood competition, and stand level 

competition, on the development of wood attributes of aspen (Populus tremuloides Michx.) and 

white spruce (Picea glauca (Moench) Voss) were examined. Data was collected from a 

silvicultural trial site in British Columbia, Canada. Eleven wood attributes (wood density, radial 

diameter, tangential diameter, coarseness, cell population, microfibril angle (MFA), modulus of 

elasticity (MOE), cell wall thickness, specific surface area, ring width, and ring area) were 

analysed from 120 sample trees (70 spruce and 50 aspen). Four distance-independent and four 

distance-dependent competition indices were tested in order to determine the dominant effect, 

and competition resolution required for each wood attribute in each species. Aspen 

neighbourhood level (within 3.99m plot radius) competition was best described by a distance-

dependent index, while spruce was best described by a distance-independent competition index. 

Neighbourhood level competition resolution is necessary for determining the wood attributes of 

ring area, ring width, radial diameter, cell population, and coarseness in aspen, but relatively 

unimportant in spruce. For spruce samples, stand level competition (treatment density) had a 

dominant effect on wood density, ring area, ring width, tangential diameter, radial diameter and 

cell population. Age was the dominant effect for MFA and MOE variation in both spruce and 

aspen. Our models explained up to 75% and 91% of the variation observed in aspen and spruce 

wood attributes respectively.   
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3.2 INTRODUCTION 
 

Aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) are 

the dominant tree species found in the Western Canadian boreal mixed forest and competition 

driven succession between these species is the primary process of forest composition shift (Jiang 

et al. 2018). Studies have shown that mixedwood competition at various levels can influence 

yield, biomass production, and exterior growth characteristics (Comeau et al. 2005; Kabzems et 

al. 2007).  These findings have influenced forest management techniques, but knowledge gaps 

remain with regard to how stand composition and neighbourhood competition impacts spruce 

and aspen wood attributes, and by extension, economic value.  

Both inter and intra-specific competition play important roles in affecting forest growth, 

composition, structure and succession in the boreal mixedwood. Aspen is frequently the primary 

tree species to grow in post-disturbance landscapes, following destructive fire, beetle infestation 

or clear-cut through asexual root suckering (Comeau et al. 2005; Frey et al. 2011; Smith et al. 

2011). Aspen is shade intolerant and displays fast initial growth rates, which allow it to quickly 

dominate the forest canopy, compared to the seed-sowed and slow juvenile growth rates of 

spruce (Lieffers et al. 1996). Aspen, however, has a short lifespan (50–60 years), and reaches the 

age of senescence earlier than most conifers (250-350 years). Canopy openings from this 

senescence allow for establishment or release of more shade tolerant, slow-growing conifer 

species, including spruce (Brassard and Chen 2006).  Competition is particularly critical for 

mixedwood stand development in the stem exclusion or self-thinning phase (20-40 years of stand 

age) where resources such as light, soil moisture and nutrients become scarce as the trees expand 

in size, leading to logarithmic decreases in stand density as trees compete for these resources 

(Lieffers et al. 2002; Chen and Popadiouk 2002).  Although spruce is a shade tolerant species, 
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studies have shown a strong response in radial and height growth to increases in light, and poor 

conifer height growth under dense hardwood canopies with light levels below 20% of full 

sunlight (Lieffers and Stadt 1994). Intra-specific competition has been shown to have a stronger 

effect on oak and beech growth than inter-specific competition, which shows the importance of 

the diversification of each species functional traits in order to maximize growing space (Pretzsch 

et al. 2013). Since competition can have an effect on radial and height growth, it is hypothesized 

that there will be an effect on the wood attributes of both spruce and aspen as well.  

Competition indices enable the quantitative analysis of relationships between stand 

composition and wood attributes. Competition indices are numerical expressions that describe 

how much each tree is affected by its neighbours, and there are two main types: distance-

independent (Wykoff et al. 1982) and distance-dependent (Martin and Ek 1984). Distance-

independent indices are typically easier to calculate as they require less data, and have performed 

similarly compared to distance-dependent indices when the performance of each competition 

index and its contribution to a growth model were assessed by the mean square error reduction 

(Kahriman et al. 2018). However, much of the study of competition indices has been confined to 

models relating exterior tree growth characteristics or mortality, and there is currently a lack of 

research concerning the resolution required for finer wood attributes (Kahriman et al. 2018; Sun 

et al. 2019). In this study, both distance-dependent and distance-independent competition indices 

were used to characterize neighbourhood competition regime.  

One of the distinct benefits of managing for competition in a mixedwood forest is 

overyielding, or the increase in productivity of a mixed species stand compared to a monoculture 

(Hector 1998). Overyielding can occur when managing for space partitioning and size inequality 

between spruce and aspen (Hector 1998; Kweon and Comeau 2019). The potential for 
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overyielding in boreal aspen spruce mixtures has been identified (Man and Lieffers 1999; 

Kabzems et al. 2007). However, an increase in volume is only desirable when it corresponds 

with merchantable timber. The characterization of wood attributes along with cost effective land 

use management is at the forefront of the boreal forest industry’s fundamental shift from 

traditional wood products to multiple value-added forest products (Chen et al. 2017). 

Wood attributes within both broadleaves and conifers have impacts on tree survivability 

and the grade of economic viability (Table 1.1). Within angiosperms (aspen) and gymnosperms 

(spruce), xylem cells are important for structural integrity and for water transport within the tree. 

Gymnosperm tracheids are characterized by many bordered pits in their radial walls, and can be 

much longer than angiosperm fibres (Barnett and Bonham 2004). The orientation and magnitude 

of certain characteristics within each tracheid reflects the influence of external forcing which can 

include competition, or environmental conditions such as temperature changes, nutrient 

availability, precipitation, increased wind stress or snowpack (Speer 2012). Therefore, 

developing a thorough understanding of the complex interactions of the mixedwood system, and 

how, specifically competition between overstory trees may influence tree growth and wood 

properties, is vital to the effective future management of these forests. 

In this study, the primary objective is to characterize the wood attributes of both white 

spruce and trembling aspen grown in varying levels of competition. The first sub-objective is to 

compare spruce and aspen wood attribute response to inter- and intra-specific competition. The 

second objective is to determine which wood attributes of which species varied with the tested 

distance-dependent or distance-independent competition indices. The third and final objective is 

to compare the responses of wood properties to neighbourhood and stand level competition. To 

achieve these sub-objectives, three hypotheses were formulated. The first hypothesis is that 
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aspen wood attribute response will be most affected by intra specific competition, since aspen is 

a shade intolerant species and can grow in close proximity with other aspen. Alternatively, 

spruce was planted at prescribed densities, and as such will likely be affected by inter-specific 

competition (i.e., competition from in-grown aspen). The variation in shade tolerance, as well as 

below ground root behaviours between species leads to the second hypothesis that aspen 

neighbourhood level competition will best be described by a distance dependent index and 

spruce sample neighbourhood competition will best be described by a distance-independent 

index. The final hypothesis is that aspen wood attributes will be most influenced by 

neighbourhood competition while spruce will be most affected by stand level competition. 

 

3.3 MATERIALS AND METHODS 
 

3.3.1 Study Site 
 

See section 2.3.1.  

3.3.2 Data Collection 
 

See section 2.3.2. 

3.3.3 Sample Preparation 
  

See section 2.3.3 
 

3.3.4 Data analysis 
 

 The fibre attributes analysed included: wood density (kg/m3), radial diameter (µm), 

tangential diameter (µm), coarseness (µg/m), cell population (#/mm2), microfibril angle (MFA, 

degree), modulus of elasticity (MOE, Gpa), cell wall thickness (µm), specific surface area 

(m2/kg), ring width (mm), and ring area (mm2). For each of the fibre properties analysed, a mean 

value was calculated for each ring in order to determine if significant differences occurred 
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between trees from varying treatments. Intra-annual differences were observed, but exceed the 

scope of this paper, as they did not exhibit clear increasing or decreasing trend over one ring 

width. The data analysis was comprised of three main parts: competition index calculation, 

neighbourhood competition model term selection, and mixed effect model evaluation. The null 

hypothesis was that wood attribute development is consistent across all trees of the same species, 

regardless of their competition index. The significance level selected for all levels of the 

statistical analysis was α = 0.05 (95% confidence level).  

Based on the plot data for each sample, four competition indices were calculated for each 

tree. The first, basal area (denoted BA, Equation 4) is a common distance-independent 

competition index that describes the average amount of an area (hectare) occupied by tree stems 

(m2). The second competition index, basal area of larger trees (denoted BAL, equation 5) was 

calculated in the same way to equation 4, except that only the competitors with a larger diameter 

at breast height than the diameter at breast height of the sample were included. This is a 

commonly used index where it is assumed that neighbouring trees that are smaller than sample 

tree do not place the sample tree at a competitive disadvantage (Wykoff et al. 1982; Sun et al. 

2019).  

The Martin and Ek index (denoted MNE, Equation 6, (Martin and Ek 1984)) was chosen 

as the distance dependent index as it was shown to perform well in similar stand conditions in 

previous research (Kahriman et al. 2018). The MNE index places a larger “competitive weight”, 

on neighbouring trees that are larger, and closer to the sample tree.  The fourth competition index 

was another iteration of the Martin and Ek index, with the same size restriction imposed in the 

determination of BAL, where only the competitors that had a larger diameter at breast height 

than the diameter at breast height of the sample were included (denoted as MNEL, Equation 7).   
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Where d is in cm, to give BA in m2/ha. 

[5]  BAL = (#	 ×	&
(!!%!")
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'
"

) 

Where i is subject tree; j, competitor; d, Diameter at breast height (cm), to give  
BAL in m2/ha; (�' > ��),	those competitors that are greater in dbh than the dbh of  
the sample (Wykoff et al. 1982). 
 

[6]  MNE = ∑ (
!!

!"
) × -(�*×,"!)/(!".!!)�

'0�  

Where i is subject tree; j, competitor; d, Diameter at breast height (cm); 
Lij,distance of subject tree I to competitor j (m) (Martin and Ek 1984).  
 

[7]  MNEL = ∑ (
(!!%!")

!"
) × -(�*×,"!)/(!".(!!%!"))�

'0�  

Where i is subject tree; j, competitor; d, Diameter at breast height (cm); 
Lij, distance of subject tree i to competitor j (m). (�' > ��),	those competitors that 
are greater in dbh than the dbh of the sample. 
 
 

Additionally, two iterations of each of the four competition indices aforementioned (BA, 

BAL, MNE, MNEL), were run in order to determine the effect of intra- vs inter-specific 

competition. The first iteration included both aspen and spruce competitors combined (denoted 

BA, BAL, MNE, MNEL). The second iteration separated aspen and spruce competitors into two 

terms (BA.aspen, BA.spruce, BAL.aspen, BAL.spruce, etc) but included both in the model in 

order to have the same cumulative competition index value as the combined competitor term. 

Therefore, eight indices were tested in total: BA, BA.aspen & BA.spruce, BAL, BAL.aspen & 

BAL.spruce, MNE, MNE.aspen & MNE.spruce, MNEL, MNEL.aspen & MNEL.spruce (where 

the L denotes a model with the size restriction). 

In order to determine which of the competition indices would be used as the 

neighbourhood competition term for the mixed effect model for each species, Akaike’s 

Information Criterion (AIC value) was used to rank each model for each wood property. For 

each of the eleven wood attributes for each species, the best competition index was determined 
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as that with the lowest AIC score for the most wood attributes. The competition index that 

described the most wood attributes for each species was then used as the neighbourhood 

competition term in the mixed effect model.  

A linear mixed effect model (Equation 8), with tree as the random factor, and ring 

(cambial age), stand level competition (treatment) and neighbourhood level competition (one of 

the eight competition indices) as the fixed factors, was conducted to investigate differences in 

fibre attributes.  

 

[8]  Yj=β0+β1xj+β2xj+ (β1 β2)+ μ1 +εj, 

Where Yj and xj represent fibre property for year j; β0, β1 and β2 are the fixed effects. 
μi1 is the random effect of tree and ui2 is the random slope; εij is the error term.  
 

This portion of the analysis was completed using the lme function within the nlme 

statistical package  (Pinheiro et al. 2020) in R (version 3.4.3) (R Development Core Team 2017). 

The relationships between growth levels and competition have been shown to vary between 

young and old stands, resulting in the need to parameterize models that characterize growth as a 

function of competition (Filipescu and Comeau 2007). The parameterization applied to this study 

was that measurements corresponding with a cambial age less than year 15 were omitted, to 

reduce the variation evident in early age wood attributes (Figure 3.1). 
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Figure 3.1 Microfibril angle change over time for aspen samples (top), and spruce samples (bottom), separated by 
treatments.This figure is shown as an example of the fluctuation of values between years 0 and 10 in both spruce 
and aspen samples and demonstrates that both approximate linear changes after year 15. This trend throughout 
wood attributes provided the basis for paramaterization. For the figures for each wood attribute and species, 
consult Chapter 2 Supplementry Appendix.  
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The Rb
2 statistic was calculated using the Kenward-Roger approach within the r2glmm 

(method = “kr”) function in R (Halekoh and Højsgaard 2014). The linear mixed model lmer 

function within the lme4 package (Bates et al. 2015) was used for the calculation of effect size, 

as the rbeta function does not work with the lme function in the nlme package. This statistic 

estimates the R2 value for mixed effect models in the R environment. Tukey’s test for significant 

differences (TukeyHSD function in “stats” package (R Development Core Team 2017)) was 

used to determine differences between relative contributions of aspen and spruce competitors to 

the overall competition index.  

 

3.4 RESULTS 

 

3.4.1 Inter- vs intra specific competition 
 

Table 3.1 summarizes the results of Tables 3.2 and 3.3, which show the results of the mixed 

effect model analysis that included cambial age, and neighbourhood level competition terms in 

the form of either a combined species “both” term or separated “aspen” and “spruce” terms. 

Building on results of the Chapter 2, we reviewed differences between treatment for each wood 

attribute. This analysis builds on the previous model by including plot level (3.99m) competition 

index terms. Due to the vast amount of information included in model outputs for each wood 

attribute, the results of these analyses have been synthesized into several summary tables. Full 

statistical results can be found in “Chapter 3 Supplementary Appendix” attached.  

In order to test the first hypothesis, that aspen is more affected by intra-specific competition 

and that spruce is more affected by inter-specific competition, the number of significant results 

for species combined competition indices were tallied and compared to those indices which 

separated aspen and spruce (Table 3.1, 3.2 and 3.3). The first result is that, out of the species 
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separated competition terms, the aspen term was more often significant than the spruce term, 

indicating that aspen is more susceptible to intra-specific competition, while spruce is more 

susceptible to inter-specific competition. Further, comparing the total number of significant 

neighbourhood level terms show that aspen wood attributes were determined to be more 

sensitive to neighbourhood level competition compared to white spruce. Finally, these results 

indicate that both spruce and aspen samples are more affected by competition models that 

included a combined “both” term rather than separated aspen and spruce terms. This shows that 

defining the overall competitive environment is more important than separating competitor 

species.   
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 There were distinct differences in the type of competition index that best described 

neighbourhood level competition for each of aspen and spruce (Table 3.4). Table 3.4 is the 

summary of table 3.5, which shows the AIC rankings of each neighbourhood competition index 

included in the mixed effect model for each wood property.  

Table 3.4 The best neighbourhood competition term was determined by comparing the eight competition index 
terms, for each of the eleven wood attributes, for both aspen and spruce samples. Percentages show the number of 
times each competition index was chosen as the best term for each wood attribute divided by the total number of 
fibre properties (11). 

Aspen AIC results  Spruce AIC results 

Competition 
index 

Number of fibre 
properties  

Percentage 

 

Competition 
Index 

Number 
of fibre 

properties 
Percentage 

MNE 5 45%  BAL 6 55% 

BAL 4 36%  MNE.aspen.spruce 2 18% 

MNEL 2 18%  MNE 1 9% 

    
BAL.aspen.spruce 

1 9% 

    BA 1 9% 
 

For aspen, no models which separated spruce and aspen competition terms improved 

model performance. The distance-dependent Martin and Ek competition index (MNE) yielded 

the lowest AIC score for five of the eleven aspen wood attribute models. There was more variety 

observed in the spruce samples, where several models displayed low AIC scores (Table 3.4). 

However, the distance-independent BAL (basal area where dbh competitor > dbh sample) 

yielded the lowest score for six out of eleven wood attributes in spruce so it was chosen as the 

best index for spruce. MNE was used as the neighbourhood competition term for the following 

iterations of the mixed effect models for aspen, and BAL was used for spruce mixed effect 

models in order to separate the effects of age, competition index and stand level competition. 
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Table 3.5 The best neighbourhood competition term was determined by comparing the eight competition index 
terms, for each of the eleven wood attributes, for both aspen and spruce sample, and ranked by AIC value. 

 Aspen Spruce 

Wood attribute Model df AIC Model df AIC 

Ring Width lme.BAL.a 8 1324.418 lme.BAL.s 9 790.0412 

  

lme.BAL.aspen.spruce.a 9 1325.607 lme.BAL.aspen.spruce.s 10 790.2578 

  
lme.MNEL.a 8 1333.212 lme.MNEL.s 9 800.5454 

  

lme.MNEL.aspen.spruce.a 9 1334.793 lme.MNEL.aspen.spruce.s 10 800.9915 

  lme.MNE.a 8 1341.907 lme.MNE.s 9 801.7944 

  

lme.MNE.aspen.spruce.a 9 1343.009 lme.BA.s 9 802.6489 

  
lme.BA.a 8 1355.271 lme.BA.aspen.spruce.s 10 803.3094 

  

lme.BA.aspen.spruce.a 9 1357.051 lme.MNE.aspen.spruce.s 10 803.7911 

  lme1.a 5 1749.084 lme1.s 6 1222.7332 

Density lme.BAL.a 8 7167.262 lme.BAL.s 9 6419.25 

  

lme.BA.a 8 7168.487 lme.BAL.aspen.spruce.s 10 6421.236 

  

lme.BAL.aspen.spruce.a 9 7168.962 lme.MNEL.s 9 6421.528 

  
lme.MNE.a 8 7170.278 lme.BA.aspen.spruce.s 10 6423.314 

  

lme.BA.aspen.spruce.a 9 7170.415 lme.MNEL.aspen.spruce.s 10 6423.454 

  
lme.MNEL.a 8 7170.55 lme.MNE.s 9 6424.786 
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Wood attribute Model df AIC Model df AIC 

  

lme.MNEL.aspen.spruce.a 9 7171.448 lme.BA.s 9 6425.188 

  

lme.MNE.aspen.spruce.a 9 7172.005 lme.MNE.aspen.spruce.s 10 6426.195 

  lme1.a 5 7732.726 lme1.s 6 6854.024 

MFA 

lme.BAL.a 8 1965.562 lme.MNE.aspen.spruce.s 10 2734.74 

  

lme.BAL.aspen.spruce.a 9 1967.315 lme.BA.s 9 2738.692 

  
lme.MNEL.a 8 1968.172 lme.MNEL.s 9 2739.686 

  
lme.MNE.a 8 1969.939 lme.BA.aspen.spruce.s 10 2740.197 

  

lme.MNEL.aspen.spruce.a 9 1970.108 lme.BAL.s 9 2740.267 

  
lme.BA.aspen.spruce.a 9 1971.504 lme.MNE.s 9 2740.448 

  

lme.BA.a 8 1971.778 lme.BAL.aspen.spruce.s 10 2741.236 

  

lme.MNE.aspen.spruce.a 9 1971.884 lme.MNEL.aspen.spruce.s 10 2741.48 

  lme1.a 5 3284.046 lme1.s 6 3730.14 

MOE 

lme.MNE.a 8 1941.123 lme.MNE.aspen.spruce.s 10 1901.319 

  
lme.BAL.a 8 1941.355 lme.BA.aspen.spruce.s 10 1904.728 
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Wood attribute Model df AIC Model df AIC 

  lme.BA.a 8 1941.355 lme.BA.s 9 1905.025 

  
lme.MNEL.a 8 1941.359 lme.BAL.s 9 1905.146 

  
lme.BAL.aspen.spruce.a 9 1942.479 lme.MNE.s 9 1905.416 

  

lme.MNEL.aspen.spruce.a 9 1942.486 lme.MNEL.s 9 1905.44 

  

lme.BA.aspen.spruce.a 9 1942.981 lme.BAL.aspen.spruce.s 10 1906.62 

  

lme.MNE.aspen.spruce.a 9 1943.122 lme.MNEL.aspen.spruce.s 10 1907.424 

  lme1.a 5 3021.362 lme1.s 6 2979.759 

Coarseness lme.MNE.a 8 8640.239 lme.MNE.s 9 6512.454 

  

lme.MNE.aspen.spruce.a 9 8642.127 lme.MNE.aspen.spruce.s 10 6512.676 

  
lme.MNEL.a 8 8642.599 lme.BAL.s 9 6513.03 

  

lme.MNEL.aspen.spruce.a 9 8643.152 lme.MNEL.s 9 6513.109 

  lme.BAL.a 8 8646.848 lme.BA.s 9 6513.795 

  

lme.BA.a 8 8648.203 lme.BAL.aspen.spruce.s 10 6514.993 

  

lme.BAL.aspen.spruce.a 9 8648.438 lme.MNEL.aspen.spruce.s 10 6515.108 

  
lme.BA.aspen.spruce.a 9 8649.159 lme.BA.aspen.spruce.s 10 6515.11 

  lme1.a 5 9228.614 lme1.s 6 7200.806 

Tangential 
Diameter 

lme.MNE.a 8 3457.947 lme.BAL.s 9 2252.067 
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Wood attribute Model df AIC Model df AIC 

  

lme.MNEL.a 8 3458.519 lme.BAL.aspen.spruce.s 10 2253.732 

  

lme.MNE.aspen.spruce.a 9 3458.556 lme.MNEL.s 9 2254.194 

  lme.BAL.a 8 3458.871 lme.MNE.s 9 2255.447 

  

lme.MNEL.aspen.spruce.a 9 3459.442 lme.MNE.aspen.spruce.s 10 2255.668 

  

lme.BAL.aspen.spruce.a 9 3460.787 lme.BA.s 9 2255.8 

  
lme.BA.a 8 3461.678 lme.BA.aspen.spruce.s 10 2255.911 

  

lme.BA.aspen.spruce.a 9 3463.021 lme.MNEL.aspen.spruce.s 10 2256.141 

  lme1.a 5 3970.028 lme1.s 6 2694.796 

Radial 
Diameter 

lme.MNEL.a 8 3105.711 lme.BAL.s 9 2408.213 

  lme.MNE.a 8 3106.02 lme.MNE.s 9 2410.153 

  
lme.BAL.a 8 3107.104 lme.MNEL.s 9 2410.198 

  

lme.MNEL.aspen.spruce.a 9 3107.551 lme.BAL.aspen.spruce.s 10 2410.212 

  

lme.MNE.aspen.spruce.a 9 3107.958 lme.MNEL.aspen.spruce.s 10 2412.033 

  

lme.BAL.aspen.spruce.a 9 3108.751 lme.MNE.aspen.spruce.s 10 2412.113 
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Wood attribute Model df AIC Model df AIC 

  
lme.BA.a 8 3112.174 lme.BA.aspen.spruce.s 10 2412.577 

  
lme.BA.aspen.spruce.a 9 3113.162 lme.BA.s 9 2417.235 

  lme1.a 5 3650.971 lme1.s 6 3084.568 

Specific Surface 
Area 

lme.MNE.a 8 6874.273 lme.BA.s 9 6324.396 

  

lme.MNEL.aspen.spruce.a 9 6876.251 lme.BAL.s 9 6324.437 

  

lme.MNE.aspen.spruce.a 9 6876.252 lme.MNEL.s 9 6325.056 

  
lme.MNEL.a 8 6876.486 lme.MNE.s 9 6325.339 

  

lme.BA.a 8 6877.462 lme.MNE.aspen.spruce.s 10 6325.482 

  
lme.BAL.a 8 6877.984 lme.BA.aspen.spruce.s 10 6326.076 

  

lme.BA.aspen.spruce.a 9 6878.564 lme.BAL.aspen.spruce.s 10 6326.437 

  

lme.BAL.aspen.spruce.a 9 6879.325 lme.MNEL.aspen.spruce.s 10 6327.03 

  lme1.a 5 7448.818 lme1.s 6 6906.066 

Ring Area 

lme.BAL.a 8 10478.41 lme.BAL.aspen.spruce.s 10 9164.62 

  

lme.BAL.aspen.spruce.a 9 10479.54 lme.BAL.s 9 9165.148 

  
lme.MNEL.a 8 10496.82 lme.MNEL.s 9 9176.824 
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Wood attribute Model df AIC Model df AIC 

  

lme.MNEL.aspen.spruce.a 9 10498.49 lme.MNEL.aspen.spruce.s 10 9176.898 

  lme.MNE.a 8 10503.15 lme.MNE.s 9 9178.302 

  

lme.MNE.aspen.spruce.a 9 10504.79 lme.BA.aspen.spruce.s 10 9179.621 

  

lme.BA.a 8 10511.61 lme.MNE.aspen.spruce.s 10 9180.197 

  
lme.BA.aspen.spruce.a 9 10513.4 lme.BA.s 9 9180.817 

  lme1.a 5 11124.87 lme1.s 6 9913.561 

Cell Population 
lme.MNEL.a 8 9106.109 lme.BAL.s 9 8266.978 

  
lme.MNE.a 8 9106.221 lme.MNEL.s 9 8268.079 

  

lme.BAL.a 8 9106.83 lme.BAL.aspen.spruce.s 10 8268.533 

  

lme.MNE.aspen.spruce.a 9 9107.394 lme.MNEL.aspen.spruce.s 10 8270.064 

  

lme.MNEL.aspen.spruce.a 9 9107.475 lme.MNE.s 9 8270.154 

  

lme.BAL.aspen.spruce.a 9 9108.669 lme.BA.aspen.spruce.s 10 8271.236 

  

lme.BA.a 8 9112.244 lme.MNE.aspen.spruce.s 10 8271.29 

  
lme.BA.aspen.spruce.a 9 9113.212 lme.BA.s 9 8275.697 
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Wood attribute Model df AIC Model df AIC 

  lme1.a 5 9691.333 lme1.s 6 8940.39 

Wall Thickness lme.MNE.a 8 16.16111 lme.BAL.s 9 -747.3024 

  

lme.MNE.aspen.spruce.a 9 18.15581 lme.MNEL.s 9 -746.8433 

  
lme.MNEL.a 8 18.49016 lme.BA.s 9 -746.8255 

  

lme.MNEL.aspen.spruce.a 9 18.8117 lme.MNE.s 9 -746.3988 

  

lme.BA.a 8 21.12628 lme.MNE.aspen.spruce.s 10 -745.975 

  

lme.BAL.a 8 21.43247 lme.BAL.aspen.spruce.s 10 -745.3287 

  
lme.BA.aspen.spruce.a 9 22.38627 lme.BA.aspen.spruce.s 10 -745.1763 

  

lme.BAL.aspen.spruce.a 9 22.96613 lme.MNEL.aspen.spruce.s 10 -744.9067 

  lme1.a 5 618.64595 lme1.s 6 -214.5255 

 

 

3.4.2 Competition index  
 

The competition index terms varied in the relative contributions of each competitor 

species across treatments (Figure 3.2). In both spruce and aspen samples, the main contributor to 

the overall index value was aspen competitors, as the “A” value (defined as aspen competition) 

never differed significantly from the combined “both” indices (competition from both spruce and 

aspen). Alternatively, spruce competitors differed from the combined index and the aspen 

competitor contribution.  
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Figure 3.2 Aspen and MNE (top) with spruce and BAL (bottom)) showing the proportion that each  competitor 
species, aspen (A), and spruce (S), contributes to the overall index, both (B). 
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3.4.3 Effect size (Rb2) 
 

The Kenward-Roger approach for calculating the Rb
2 (effect size) statistic, was utilized to 

determine relative effects of each of the model terms. Overall, the models for each wood 

attribute were effective in describing the variation observed in both aspen samples: 23% – 75%, 

and spruce samples: 54% – 90% (Table 3.3). The Rb
2 approximates an R2 value for mixed effect 

models and indicates the fit of the model compared to the data. The terms for each wood attribute 

model are represented in the columns for each species. The “model” column shows the overall fit 

of the model, and each further column shows the relative contribution of each term to the 

model’s performance. The remainder of the variation explained by the model, but not tabulated is 

the effect described by the random tree term in the model, but was excluded, in order to focus on 

the proportion of the variance explained by fixed effects. The neighbourhood competition model 

was chosen for each species based on which performed best for each sample species. For aspen 

sample wood attributes, the distance dependent competition index by Martin and Ek (1984) 

(denoted MNE) best described neighbourhood level competition variation observed. For spruce 

wood attributes, the distance independent competition index of basal area of larger trees (denoted 

BAL, where the size of the competitor > size of the sample tree diameter at breast height) best 

described neighbourhood level competition variation. The “stand level competition” column 

describes the effect attributed to the competitive environment as defined by stems per hectare 

aspen (0, 1000, 2000, 5000, or 10000 stems per hectare). This approach to determining effect 

size of terms in the model was used rather than global model simplification, as this form of study 

answers the question of which model terms are most important for each species and wood 

attribute, when the best competition index is included for each species.  
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The model terms for spruce and aspen samples differed in their responses. Each wood 

attribute model included four terms: age, neighbourhood level competition (competition index), 

stand level competition (treatment measured in aspen stems per hectare), and the random effect 

of tree. For each of the eleven wood attributes measured (and for each sample species), one 

dominant effect was chosen as the model term that explained the most variation out of the chosen 

model terms. Aspen and spruce differed in their dominant effects. In aspen samples, ring area, 

ring width, radial diameter, cell population and coarseness variation were all best explained by 

the neighbourhood level competition term. In spruce, none of the wood property variation was 

explained by the neighbourhood competition term. In both aspen and spruce, age was the 

dominant effect for MOE and MFA. However, no other aspen attributes were explained by age, 

while specific surface area, coarseness and cell wall thickness were all explained by age in 

spruce samples. Stand level competition was the main factor in the variation of density and 

tangential diameter in both spruce and aspen. The majority of the wood attribute variation in 

spruce was best explained by stand level competition (density, ring area, ring width, tangential 

diameter, radial diameter, and cell population) (Table 3.6).  
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3.5 DISCUSSION

Our analysis indicated that aspen is more sensitive to neighbourhood level competition than 

spruce (Table 3.1). Out of the 88 iterations (11 wood properties x 8 competition index models) 

for each species, 38% of the time, neighbourhood competition terms significantly explained the 

variation in aspen wood attributes and 26% of the time in spruce. Our results correspond with the 

trees life-history characteristics as aspen is shade intolerant and reacts negatively to competition 

(Farmer 1963), compared to spruce which (under aspen canopy) exhibits linear height increment 

growth in light levels up to 40%, with negligible gain in height increment exhibited between 

40% and 100% (Lieffers and Stadt 1994; Groot 1999).  

Aspen was found to be more affected by competition from other aspen than from spruce, 

based on the observed significance in the models with separated species terms (BA.aspen & 

BA.spruce, BAL.aspen & BAL.spruce, etc.) (Table 3.4). Intra-specific competition is often more 

detrimental to non-shade tolerant species due to increased leaf area index and canopy closure 

from competition from the same species (Pretzsch and Biber 2016). Conversely, in accordance 

with previous studies documenting the negative effect of broadleaf competition on white spruce 

growth, sampled spruce were more affected by inter specific competition (Bérubé-Deschênes 

2017). However, our results suggest that competition from both spruce and aspen needs to be 

considered when assessing how wood properties are impacted by competition at the 

neighbourhood stand level. This finding could be a reflection of the uneven number of aspen 

competitors (~70%) in this study. In this case, the sheer amount of aspen in each treatment drives 

the competition index value in the combined “both” term (Figure 3.2). Therefore, since the 

competition index that included a combined term for aspen and spruce preformed best for each 
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wood attribute model, our results indicate that differentiating the competitor species is less 

important than defining the overall competitive environment.  

As hypothesized, there was a difference between best neighbourhood level competition 

index for aspen and spruce (Table 3.4). For aspen, the distance dependent MNE index best 

described the majority of wood attribute variation with neighbourhood competition environment 

(Table 6.1). Aspen typically develop large crowns, are shade intolerant and as such, require more 

growing space than a shade tolerant species. Since broadleaves are often more susceptible to 

competition, issues related to developing large crown radii can result in a larger importance 

placed on proximity to a competing tree (Pretzsch 2019). Alternatively, for spruce samples, the 

distance-independent BAL (basal area where DBHcompetitor > DBHsample) index best described the 

majority of wood attribute variation. BAL has also been found to effectively describe the 

neighbourhood competition effect on basal area increment growth of white spruce (Bérubé-

Deschênes 2017) and other conifers (Kahriman et al. 2018). This could be explained by the fact 

that shade tolerant species have been found to be less sensitive to competition (Canham et al. 

2006). Interestingly, the best models for both spruce and aspen included a size term (MNE size 

ratio term, and BAL size cut-off) further demonstrating that plant size can influence the intensity 

of competition (Canham et al. 2004). 

Through the calculation of the Rb
2 statistic, each modeled wood attribute was determined 

to be most affected by one of the three model terms: (i) age, (ii) neighbourhood level competition 

(MNE/BAL), or (iii) stand level competition (treatment) (Table 3.6). For aspen samples, the 

dominant model term for the tested model structure for each wood attribute was one of the two 

competition terms whereas the majority of spruce wood attributes were dominated by the age and 

stand level terms.  
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Within aspen samples, the neighborhood competition effect (MNE index) was the 

dominant effect in ring width, ring area, radial diameter, cell population, and coarseness (Table 

3.6). Ring width (and ring area which is directly related) was negatively impacted by increased 

competition levels in aspen samples. This is consistent with the exterior growth characteristics 

observed in trees in competitive environments, whereby height, rather than diameter growth is 

preferred (Coopersmith and Hall 1999; Carr et al. 2020). Aspen coarseness values have been 

shown to be statistically different and larger in pure stands than mixed stands (De Araujo et al. 

2015). Our results expand on this finding as they indicate that stands with an increased 

proportion of aspen leads to higher values of coarseness. Coarseness is an important 

consideration for paper manufacturing but varies in desirability depending on end use. If a paper 

with improved density, strength and optical properties is the desired end product, then low 

coarseness is desirable as it generates higher fibre collapsibility (low aspen treatment densities). 

If high porosity paper is the desired end product, then higher coarseness values are necessary 

(high aspen treatment densities) (Seth and Kingsland 1990).  

Stand level competition (treatment) was the dominant effect for density, tangential 

diameter, specific surface area and cell wall thickness in aspen samples. Density and cell wall 

thickness often vary together as density is the proportion of material in the cell which depends on 

the ratio of cell wall thickness and cell diameter (Lundgren 2004; Carrillo et al. 2015). Thickness 

in the cell wall has been shown to respond to external factors, such as exposure and climate 

(Hein and Lima 2012). A possible explanation for the change in density is that variation in 

competition regime can influence the sensitivity to these factors, thereby changing the cell wall 

thickness and density. The effect of stand composition on wood density in aspen was 

documented by De Araujo et al. (2015), but no difference between density in mixed and pure 
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stands were found. The differences observed in our study could be a result of comparing various 

managed levels of treatments in homogenous growing conditions and even aged stands rather 

than unmanaged uneven sites. 

 The dominant model terms within spruce wood attributes were split between age and 

stand level competition (Table 3.6). The lack of neighbourhood level competition effect could be 

due to spruce’s shade tolerance and relative (to aspen in this study) insensitivity to competition. 

The variation observed in MOE, MFA, specific surface area, coarseness and wall thickness were 

best described by age in spruce samples. It was surprising that cell wall thickness was more 

affected by age and not competition as thickness in the cell wall has shown to change with 

growth rates from fertilization (Lundgren 2004). However, it has been shown that age of conifers 

play an important role in the timings and duration of xylem formation: cell production in the 

cambial zone, cell expansion and cell wall thickening (Zeng et al. 2018). A possible explanation 

for why cell wall thickness was best described by age in this study, is that some of the strongest 

variation in growth rates between treatments were observed (and removed from our 

parameterization) early in stand development (< 15 years). This variation stabilized over time to 

similar values regardless of treatment.  

Stand level competition was the dominant model term for density, ring area, ring width, 

tangential diameter, radial diameter and cell population in spruce. Ring width and ring area can 

vary with competition as discussed previously with the preferential height to diameter growth in 

increasing competition regimes. Water availability changes in microsite competitive 

environments, and has been linked to the formation of wider tracheids, which could explain the 

strong competition signal in radial diameter (Vysotskaya and Vaganov 1989; Wilpert 1991; 

Kerhoulas et al. 2013).  
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The main similarity between aspen and spruce was that MOE and MFA were best 

described by the age term for both species. MOE and MFA are two terms that often vary together 

and are typically associated with the age of the tree (Barnett and Bonham 2004). Up to 86% of 

the variation in MOE can be explained by variation in MFA (Evans and Ilic 2001). Microfibril 

angle is the orientation of the crystalline cellulose in the secondary cell wall (S2) wood along the 

fibre axis, and this orientation is driven by growth rate of the tree (Cave 1966). Typically, high 

MFA values result from fast initial growth rates as the tree develops resulting in the inversely 

proportional low MOE, allowing the stem to bend without breaking. As the tree ages, it must 

support the crown and weight of branches, and stiffens, resulting in a low MFA and high MOE 

(Barnett and Bonham 2004). In this study, while age was the most important determinant for 

MFA in both spruce and aspen, neighbourhood level, and stand level competition for both spruce 

and aspen respectively were next best terms (Table 3.6). In spruce samples, one of the best 

performing models across wood attributes, was in fact the model for MFA, which explained 87% 

of the variation, and age together with stand level competition explained 80%, with around 6% 

of the variation attributed to the random effect of tree. This competition effect would likely be 

pronounced if the entire age of the tree was used (rather the < 15-year cut-off) as there is a large 

variation in the initial values of MFA in the early development (age 0-5) of spruce. These 

variations corresponding with lower MFA’s with increasing levels of treatment, indicating faster 

growth rates with increasingly competitive environments (Figure 3.1). Thus, while age was the 

most important factor in the model that described MFA change over time, stand level 

competition is also an important consideration for a comprehensive model.  
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3.6 CONCLUSION

We examined eleven wood attributes of aspen and white spruce sampled at a Northern 

British Columbia trial site and developed individual tree models to elucidate the effects of 

competition on wood attribute development. Our results demonstrated that differentiating the 

competition by species was less important than defining the overall competitive environment for 

both aspen and spruce wood attributes. We tested four neighbourhood competition indices and 

found that aspen wood attribute variation was best described by a distance dependent index, 

while spruce was best described by a distance independent index. Both of the neighbourhood 

competition indices included a size term, indicating that the size of the competitors was 

important for both species wood attribute development. Moreover, we developed a mixed effect 

model to describe each wood attribute development that included cambial age, neighbourhood 

competition, and stand level competition. Our results indicated that defining the neighbourhood 

level competition regime was most important for aspen but was relatively unimportant in spruce 

where cambial age and treatment were most important. Two of the most important wood 

attributes, microfibril angle and modulus of elasticity were best described by age and not 

competition in both spruce and aspen. These preliminary models lay the foundation for further 

studies that can make recommendations to forest managers based on desired end product. Since 

this study was conducted with samples from a managed trial site, the next step would be to 

sample natural even aged stands and compare wood attribute development across a number of 

sites. This would require careful consideration in order to find adequately comparable sites from 

an age and ecological perspective.  
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4. Conclusions and Future work 

4.1 Conclusions

The key finding of my thesis is that wood attributes of white spruce and trembling aspen

vary with competition and differ in their response to competition between species.

Characterizing the effect that competition has on aspen and spruce wood attribute development is

essential in order to effectively balance the benefits and shortcomings of managing for pure or

mixed stands of aspen and white spruce. In this concluding chapter, I synthesize the main

findings from each of the previous chapters, while I discuss the implications for management

techniques, and recommend future research directions.

In Chapter 2, Evaluating the impact of stand composition and competition on Spruce and 

Aspen wood attributes in mixedwood stands, the objectives were threefold; (i) to determine if 

there was a difference in wood attribute response to stand level competition between species, (ii) 

to determine if aspen and white spruce display similar responses to stand level competition over 

time, and (iii) to analyze if there are any economic benefits observed in wood attributes with 

increasing aspen treatment density. First, my results indicated that aspen treatment density had a

significant effect on most wood attributes in aspen and spruce samples and that each sampled

species showed differences in their response. Second, my results indicated that all spruce wood

attributes exhibit non-linear change as the trees develop (cambial age 0-5 years), and

approximate linear change in older trees (cambial age 5-30 years). Finally, I developed a

framework for visualizing change in industrial desirability of wood attribute as they vary with

increasing levels of competition.
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For most of the wood attributes that I measured (ring width, density, MOE, coarseness, 

tangential diameter, radial diameter, specific surface area, ring area, cell population, and wall 

thickness), two thresholds consistently emerged from the analysis.  

First, the largest effect on spruce growth occurred when aspen was grown in densities 

greater than zero with the spruce (i.e., treatments of > 0 sph). Ninety percent of the significant 

differences within spruce wood properties, and between treatments, were attributed to the 

presence of aspen in the stand. This result was expected as aspen growing in mixture with spruce 

has been shown to impact the availability of key limiting resources with regards to light, water 

and nutrients (Filipescu and Comeau 2007; Kabzems et al. 2015). Additionally, past studies have 

demonstrated that modifications to spruce’s growing environment influence absolute growth as 

well as gross growth characteristics such as height-to-diameter ratio (Kabzems et al. 2015).  

The second threshold that emerged from my results was the impact of an aspen treatment 

density of 10,000 sph, on aspen wood characteristics. Differences between the 10,000 sph 

treatment and those with lower densities of aspen accounted for all of the significance observed 

in aspen wood attributes.  

The final objective of Chapter 2 was to determine potential industrial desirability of each 

wood attribute as a function of competition for both spruce and aspen. As the desirability of 

certain wood attributes depend entirely on the end product, this section serves only as a general 

framework and not a guide for determining economic suitability with changing competition.  The 

criteria for desirability were based on the typical uses of each wood attribute as defined by 

natural resource Canada, I found that spruce wood attributes are generally increased when spruce 

is grown in mixture with aspen. Increased wood density, larger MOE, lower MFA, larger ring 

width, and increased wall thickness are the benefits observed in spruce grown in the 5000 sph 
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treatment which constitute either best or second-best improvements to wood quality, relative to 

other treatments. Managing for higher MOE can be desirable since MOE is the best predictor of 

wood stiffness. Although density may be less important for lumber products in the future due to 

the increased production of value added engineered wood products, density is still important for 

bioenergy, which values the higher energy content of dense wood (Canadian Wood Fibre Centre 

et al. 2010). These results indicate that there are multiple benefits to spruce wood attribute 

development up to 5000 sph treatment of aspen.  

 In contrast to spruce wood attributes, our results indicate that most desirable traits (MOE, 

density, and MFA) within aspen decrease with increasing levels of aspen competition (Figure 

2.8). Lower values for MOE and density increase the risk of trunk breakage, xylem implosion 

and decreased stem stability (Hacke et al. 2001). Effectively, in this instance, the increased 

competition is weakening the aspen, and accelerating the stand dynamics typical of mixedwood 

forests (Bergeron et al. 2014). However, the majority of the negative associations for the 

remaining wood attributes are related to the 10,000 sph aspen treatment, suggesting that, aspen 

wood attributes are not significantly affected until densities are increased past a certain threshold.  

In Chapter 3, A mixed effect approach to evaluating the impacts of stand composition, 

age and neighbourhood competition on the wood attributes of spruce and aspen grown in 

mixedwood stands, the mixed effect model of Chapter 2 was expanded by the inclusion of 3.99m

plot data that incorporated information about each competitor and formed the basis for

neighbourhood level competition indices. The objectives were again, threefold; (i) to compare

spruce and aspen wood attribute response to inter- and intra- specific competition, (ii) to 

determine which neighbourhood level competition indices best improved a model for wood 

attributes in both aspen and spruce, and finally, (iii) To determine the competition resolution 
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required for modelling wood attributes of both spruce and aspen. First, my results indicate that

aspen is more sensitive to neighbourhood competition than spruce, which is similar to previous

findings. The results also suggest that defining the overall competitive environment is more

important for both spruce and aspen, rather than determining inter- vs intra-specific competition,

which is also consistent with the literature (Bérubé-Deschênes 2017). Aspen wood attribute

variation attributed to neighbourhood level competition was best described by the distance

dependent index MNE, while spruce was best described by the distance independent BAL index.

Finally, our results indicate that for aspen samples, most of the variation in wood attributes were

best explained by one of the two competition terms (neighbourhood or stand level) in the model,

while spruce sample variation was best described by age and stand level competition terms.

These preliminary models lay the foundation for further studies that can make recommendations 

to forest managers based on desired end product. 

 

4.2 Limitations and future work

In this section, I outline the limitations that apply to both of Chapter 2 and Chapter 3 as

well as provide suggestions for improvements and future work.

The first limitation is that the conclusions of this study are based off a single managed

trial site. Although the single sampling site offered a unique opportunity to compare various

levels of competition in analogous site conditions, my analysis was restricted to one site, so my

results may not accurately depict the effect competition has on wood attribute variation within

aspen and white spruce throughout the boreal mixedwood forest. Further, since the sample site is

a managed trial site that was maintained to target densities and not a natural stand, the within

wood trends observed in this study may not mimic those found in natural stands. Our study also



79

was limited in sample size due to budget restrictions associated with sending 120 samples for the

in-depth Silviscan analysis. Finally, although our methods were such that we sampled trees that

were greater than ten meters away from each other, aspen is a clonal species, and as such, the

sampling process may have captured samples that originate from a single individual. While this

is unlikely due to spatial distribution of samples, it would also likely not have a detrimental

impact to the study as each sampled tree was grown in a unique competition environment.

However, there could still be a small amount of variation attributed to the potential clonality of

aspen.

The previous limitations could all be improved by selecting even-aged stands of similar

site conditions and applying the same study framework. Multiple sites would increase the

predictive nature of the study as well as remove the potential clonality influence of aspen and the

results could then be applied to broader regions with confidence. Also, studying natural stands

would increase the applicability of the study to forest managers. However, finding natural even-

aged stands with similar site conditions is both time consuming and difficult, and as such has

been a limitation of previous research on the topic as well.
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6. Appendix 

Table 6.1. Full results of the MuMIn analysis that forms the basis for table 2.2. Multi model
inference analysis of the global model (linear model = Ring + species + treatment + |tree) where
Loglik is the log likelihood, AIC is Akaike’s information criterion, and delta is the difference in
AIC for best performing model and next best.

Wood
attribute

(Intercept) Ring species treatment df logLik AICc delta weight

Ring
Width

3.77 -0.058 NA + 8 -4169.122 8354.3 0.00 7.26E-01

3.75 -0.058 + + 9 -4169.091 8356.2 1.95 2.74E-01

2.83 -0.058 + NA 5 -4204.512 8419.0 64.75 6.31E-15

3.00 -0.058 NA NA 4 -4208.129 8424.3 69.98 4.63E-16

2.87 NA + + 8 -4542.668 9101.4 747.09
4.29E-

163

3.04 NA NA + 7 -4544.708 9103.5 749.16
1.52E-

163

1.95 NA + NA 4 -4576.558 9161.1 806.84
4.55E-

176

2.20 NA NA NA 3 -4584.712 9175.4 821.14
3.57E-

179

Density
393.11 NA + + 8 -15803.8 31623.7 0.00 4.52E-01

396.28 NA + NA 4 -15808.32 31624.7 1.00 2.73E-01

392.80 0.020 + + 9 -15803.77 31625.6 1.94 1.71E-01

395.99 0.019 + NA 5 -15808.29 31626.6 2.95 1.03E-01

367.72 NA NA + 7 -15816.98 31648.0 24.34 2.34E-06

367.28 0.035 NA + 8 -15816.88 31649.8 26.15 9.47E-07

381.02 NA NA NA 3 -15823.37 31652.8 29.10 2.17E-07
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(Intercept) Ring species treatment df logLik AICc delta weight

Density 380.54 0.035 NA NA 4 -15823.27 31654.6 30.90 8.82E-08

MFA
23.15 -0.654 + + 9 -8835.623 17689.3 0.00 8.99E-01

20.77 -0.654 + NA 5 -8841.831 17693.7 4.38 1.01E-01

27.00 -0.655 NA + 8 -8851.43 17718.9 29.60 3.35E-07

23.41 -0.656 NA NA 4 -8863.718 17735.5 46.14 8.58E-11

13.26 NA + + 8
-

10464.935
20945.9 3256.61 0.00E+00

10.81 NA + NA 4
-

10471.872
20951.8 3262.45 0.00E+00

18.80 NA NA + 7
-

10496.844
21007.7 3318.42 0.00E+00

14.43 NA NA NA 3
-

10511.176
21028.4 3339.06 0.00E+00

MOE
8.14 0.296 + + 9 -5388.845 10795.8 0.00 9.35E-01

9.45 0.296 + NA 5 -5395.529 10801.1 5.33 6.51E-02

5.67 0.296 NA + 8 -5416.273 10848.6 52.84 3.13E-12

7.79 0.296 NA NA 4 -5430.869 10869.8 74.00 7.96E-17

12.61 NA + + 8 -7696.901 15409.9 4614.10 0.00E+00

13.95 NA + NA 4 -7703.76 15415.5 4619.78 0.00E+00

9.37 NA NA + 7 -7740.604 15495.2 4699.50 0.00E+00

11.84 NA NA NA 3 -7756.135 15518.3 4722.53 0.00E+00
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Wood
attribute

(Intercept) Ring species treatment df logLik AICc delta weight

Coarseness
542.70 2.339 + + 9 -18223.71 36465.5 0.00 9.93E-01

506.81 2.336 + NA 5 -18232.75 36475.5 10.05 6.52E-03

578.11 NA + + 8 -18318.71 36653.5 188.00 1.49E-41

542.37 NA + NA 4 -18327.53 36663.1 197.59 1.23E-43

301.70 2.370 NA + 8 -18323.99 36664.0 198.56 7.60E-44

372.13 2.370 NA NA 4 -18328.99 36666.0 200.52 2.84E-44

331.38 NA NA + 7 -18421.52 36857.1 391.60 9.19E-86

404.57 NA NA NA 3 -18426.56 36859.1 393.66 3.27E-86

Tangential
Diameter

40.53 0.052 + + 9 -7820.458 15659.0 0.00 9.90E-01

39.29 0.052 + NA 5 -7829.074 15668.2 9.19 9.99E-03

41.32 NA + + 8 -7854.339 15724.7 65.75 5.22E-15

40.08 NA + NA 4 -7862.818 15733.7 74.68 6.03E-17

26.73 0.053 NA + 8 -7985.163 15986.4 327.40 7.98E-72

31.45 0.053 NA NA 4 -7991.461 15990.9 331.96 8.15E-73

27.39 NA NA + 7 -8020.34 16054.7 395.74 1.15E-86

32.17 NA NA NA 3 -8026.665 16059.3 400.37 1.14E-87

Radial
Diameter

28.59 0.150 + + 9 -7283.053 14584.2 0.00 9.99E-01



89

Wood
attribute

(Intercept) Ring species treatment df logLik AICc delta weight

Radial
Diameter

27.27 0.150 NA + 8 -7290.684 14597.4 13.25 1.33E-03

26.28 0.150 + NA 5 -7296.345 14602.7 18.54 9.38E-05

25.90 0.150 NA NA 4 -7298.178 14604.4 20.20 4.09E-05

30.85 NA + + 8 -7640.389 15296.8 712.66
1.77E-

155

28.55 NA + NA 4 -7653.621 15315.3 731.09
1.76E-

159

29.15 NA NA + 7 -7652.896 15319.8 735.66
1.79E-

160

27.95 NA NA NA 3 -7658.331 15322.7 738.51
4.31E-

161

Specific
Surface

263.46 -1.100 + + 9 -15900.29 31818.7 0.00 9.95E-01

283.86 -1.099 + NA 5 -15909.59 31829.2 10.56 5.06E-03

246.80 NA + + 8 -15991.13 31998.3 179.65 9.69E-40

267.14 NA + NA 4 -16000.2 32008.4 189.77 6.17E-42

343.51 -1.116 NA NA 4 -16005.9 32019.8 201.17 2.06E-44

371.47 -1.115 NA + 8 -16002.03 32020.1 201.45 1.79E-44

328.24 NA NA NA 3 -16099.32 32204.7 386.00 1.51E-84

357.51 NA NA + 7 -16095.37 32204.8 386.13 1.41E-84

Ring Area 491.55 17.855 NA + 8 -21516.34 43048.7 0.00 6.52E-01

460.56 17.869 + + 9 -21515.96 43050.0 1.25 3.48E-01

98.51 17.880 + NA 5 -21547.01 43104.0 55.32 6.32E-13

177.16 17.841 NA NA 4 -21551.84 43111.7 62.97 1.38E-14
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Wood
attribute

(Intercept) Ring species treatment df logLik AICc delta weight

Ring area
715.12 NA NA + 7 -22107.41 44228.9 1180.15

3.54E-
257

730.88 NA + + 8 -22107.31 44230.7 1181.95
1.43E-

257

370.68 NA + NA 4 -22139.14 44286.3 1237.58
1.19E-

269

421.30 NA NA NA 3 -22141.25 44288.5 1239.79
3.96E-

270
Cell
Population

905.31
-

10.202
+ + 9 -20622.59 41263.2 0.00 1.00E+00

1068.51
-

10.203
+ NA 5 -20639.18 41288.4 25.15 3.46E-06

1363.40
-

10.284
NA NA 4 -20742.49 41493.0 229.75 1.29E-50

1457.18
-

10.281
NA + 8 -20740.99 41498.0 234.80 1.03E-51

750.85 NA + + 8 -20982.28 41980.6 717.37
1.68E-

156

913.18 NA + NA 4 -20998.87 42005.8 742.52
5.80E-

162

1222.60 NA NA NA 3 -21108.26 42222.5 959.30
4.91E-

209

1328.40 NA NA + 7 -21106.55 42227.1 963.89
4.94E-

210

Wall
Thickness

2.82 0.008 + + 9 -907.3739 1832.8 0.00 9.70E-01

2.72 0.008 + NA 5 -914.874 1839.8 6.96 2.99E-02

2.94 NA + + 8 -975.1697 1966.4 133.58 9.56E-30

2.84 NA + NA 4 -982.4607 1972.9 140.13 3.62E-31

2.05 0.008 NA + 8 -985.5927 1987.2 154.43 2.84E-34

2.28 0.008 NA NA 4 -990.9849 1990.0 157.18 7.18E-35

2.15 NA NA + 7
-

1055.7946
2125.6 292.82 2.52E-64

2.40 NA NA NA 3
-

1061.2184
2128.4 295.64 6.16E-65
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Table 6.2  The results of the analysis of variance  of the effects of treatment (aspen population density),  cambial age 
and species on each wood attribute. This test was conducted to corroborate results from the MuMIn anlaysis 
(Figure 6.1) and justify the use of p-values for hypothesis testing.  

Wood
Property Cambial Age (Ring) treatment species
Ring
Width

F(1, 3043) = 861.13,
p < 0.001 F(4, 114) = 27.31, p < 0.001 F(1, 114) = 0.062, p = 0.802 

Density
F(1, 3043) = .288,   
p = 0.59 F(4, 114) = 4.18, p = 0.003 F(1, 114) = 29.2, p < 0.001

Microfibril
Angle

F(1, 3043) = 5899,
p < 0.001 F(4, 114) = 8.87, p < 0.001 F(1, 114) = 36.13, p < 0.001

Modulus
of
Elasticity

F(1, 3043) = 10896,
p < 0.001 F(4, 114) = 13.03, p < 0.001 F(1, 114) = 69.42, p < 0.001

Coarseness
F(1, 3043) = 226.07,
p < 0.001 F(4, 114) = 13.88, p < 0.001 F(1, 114) = 514.82, p < 0.001

Tangential
Diameter

F(1, 3043) = 112.97,
p < 0.001 F(4, 114) = 51.68, p < 0.001 F(1, 114) = 1731, p < 0.001

Radial
Diameter

F(1, 3043) = 811.08,
p < 0.001 F(4, 114) = 4.52, p = 0.002 F(1, 114) = 16.24, p < 0.001

Specific
Surface

F(1, 3043) = 219.69,
p < 0.001 F(4, 114) = 10.95, p < 0.001 F(1, 114) = 531.97, p < 0.001

Ring Area
F(1, 3043) =
1434.54, p < 0.001 F(4, 114) = 24.29, p < 0.001 F(1, 114) = 0.76, p = 0.39 

Cell
Population

F(1, 3043) = 891.21,
p < 0.001 F(4, 114) = 5.55, p < 0.001 F(1, 114) = 742.48, p < 0.001

Wall
Thickness

F(1, 3043) = 159.32,
p < 0.001 F(4, 114) = 10.38, p < 0.001 F(1, 114) = 319.99, p < 0.001
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Table 6.3 Aspen results table of complete post-hoc test of species separated linear mixed model results (summarized 
in Figure 2.3). Lsmeans pairwise comparison to establish contrasts, p-value adjusted by Bonferroni method. 

Wood Property contrast estimate SE df t.ratio p.value

Ring Width
1000 -
2000

0.078 0.274 46 0.2845 0.7773

1000 -
5000

0.2788 0.2171 46 1.2841 0.2055

1000 -
10000

0.5488 0.2172 46 2.5266 0.015

2000 -
5000

0.2008 0.2163 46 0.9286 0.3579

2000 -
10000

0.4708 0.2164 46 2.1759 0.0347

5000 -
10000

0.27 0.1374 46 1.965 0.0555

Density

1000 -
2000

37.4002 16.649 46 2.2464 0.0295

1000 -
5000

19.7303 13.1705 46 1.4981 0.1409

1000 -
10000

-0.0497 13.1719 46 -0.0038 0.997

2000 -
5000

-17.6699 13.1564 46 -1.3431 0.1858

2000 -
10000

-37.4499 13.1581 46 -2.8462 0.0066

5000 -
10000

-19.78 8.3309 46 -2.3743 0.0218

MFA No significant effect of treatment

MOE No significant effect of treatment

Coarseness
1000 -
2000

29.609 43.7801 46 0.6763 0.5022

1000 -
5000

-19.2998 34.6432 46 -0.5571 0.5802

1000 -
10000

-89.1754 34.6489 46 -2.5737 0.0133

2000 -
5000

-48.9089 34.589 46 -1.414 0.1641
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Wood Property
contrast estimate SE df t.ratio p.value

2000 -
10000

-
118.7844

34.5955 46 -3.4335 0.0013

5000 -
10000

-69.8755 21.915 46 -3.1885 0.0026

Tangential Diameter

1000 -
2000

0.4259 1.3173 46 0.3233 0.7479

1000 -
5000

-1.3026 1.0423 46 -1.2498 0.2177

1000 -
10000

-2.9991 1.0425 46 -2.877 0.0061

2000 -
5000

-1.7285 1.0408 46 -1.6608 0.1036

2000 -
10000

-3.425 1.041 46 -3.2902 0.0019

5000 -
10000

-1.6965 0.6593 46 -2.573 0.0134

Radial Diameter

1000 -
2000

-1.4275 0.9353 46 -1.5263 0.1338

1000 -
5000

-1.3656 0.7403 46 -1.8446 0.0715

1000 -
10000

-2.3451 0.7405 46 -3.1669 0.0027

2000 -
5000

0.0619 0.7388 46 0.0838 0.9336

2000 -
10000

-0.9176 0.7389 46 -1.2417 0.2206

5000 -
10000

-0.9795 0.4684 46 -2.0913 0.0421

Specific Surface Area

1000 -
2000

-23.3402 14.5948 46 -1.5992 0.1166

1000 -
5000

-7.2824 11.5478 46 -0.6306 0.5314

1000 -
10000

18.6077 11.5494 46 1.6111 0.114

2000 -
5000

16.0579 11.5316 46 1.3925 0.1705
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Wood Property contrast estimate SE df t.ratio p.value

2000 -
10000

41.9479 11.5335 46 3.637 0.0007

5000 -
10000

25.89 7.3048 46 3.5442 0.0009

Ring Area

1000 -
2000

23.9787 115.4942 46 0.2076 0.8364

1000 -
5000

115.3324 91.3691 46 1.2623 0.2132

1000 -
10000

217.5375 91.3803 46 2.3806 0.0215

2000 -
5000

91.3537 91.2624 46 1.001 0.3221

2000 -
10000

193.5588 91.2752 46 2.1206 0.0394

5000 -
10000

102.2051 57.7961 46 1.7684 0.0836

Cell Population

1000 -
2000

34.0495 54.8124 46 0.6212 0.5375

1000 -
5000

62.0499 43.3708 46 1.4307 0.1593

1000 -
10000

130.7563 43.3775 46 3.0144 0.0042

2000 -
5000

28.0004 43.3068 46 0.6466 0.5211

2000 -
10000

96.7068 43.3144 46 2.2327 0.0305

5000 -
10000

68.7064 27.4356 46 2.5043 0.0159

Wall Thickness

1000 -
2000

0.2374 0.1708 46 1.3903 0.1711

1000 -
5000

0.0415 0.1351 46 0.3074 0.7599

1000 -
10000

-0.2315 0.1351 46 -1.7131 0.0934

2000 -
5000

-0.1959 0.1349 46 -1.4518 0.1534

2000 -
10000

-0.4689 0.1349 46 -3.4748 0.0011
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Wood Property
contrast estimate SE df t.ratio p.value

5000 -
10000

-0.273 0.0855 46 -3.1944 0.0025

Table 6.4 Spruce results table of complete post-hoc test of species separated linear mixed model results 
(summarized in Figure 2.3). Lsmeans pairwise comparison to establish contrasts, p-value adjusted by Bonferroni 
method. 

Wood Property contrast estimate SE df t.ratio p.value

Ring Width 0 - 1000 0.2499 0.1967 65 1.2707 0.2084

0 - 2000 0.6628 0.1975 65 3.3569 0.0013

0 - 5000 0.9481 0.1246 65 7.6098 < 0.001

0 - 10000 1.1053 0.1247 65 8.8669 < 0.001

1000 - 2000 0.4129 0.2492 65 1.6568 0.1024

1000 - 5000 0.6982 0.1966 65 3.5511 0.0007

1000 -
10000

0.8554 0.1967 65 4.3497 < 0.001

2000 - 5000 0.2853 0.1974 65 1.445 0.1533

2000 -
10000

0.4425 0.1975 65 2.2409 0.0285

5000 -
10000

0.1572 0.1246 65 1.2618 0.2115

Density 0 - 1000 9.7875 9.4269 65 1.0382 0.303

0 - 2000 11.8164 9.4583 65 1.2493 0.216

0 - 5000 -11.8251 5.9704 65 -1.9806 0.0519

0 - 10000 -1.7975 5.973 65 -0.3009 0.7644

1000 - 2000 2.0289 11.9437 65 0.1699 0.8656

1000 - 5000 -21.6126 9.4252 65 -2.2931 0.0251

1000 -
10000

-11.585 9.4269 65 -1.2289 0.2235

2000 - 5000 -23.6415 9.4567 65 -2.5 0.015
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Wood Property
contrast estimate SE df t.ratio p.value

2000 -
10000

-13.6139 9.4583 65 -1.4394 0.1548

5000 -
10000

10.0277 5.9703 65 1.6796 0.0978

MFA No significant effect of treatment

MOE 0 - 1000 -0.1738 0.7592 65 -0.2289 0.8197

0 - 2000 -1.2728 0.7596 65 -1.6756 0.0986

0 - 5000 -1.4354 0.4803 65 -2.9887 0.004

0 - 10000 -1.4623 0.4803 65 -3.0447 0.0034

1000 - 2000 -1.099 0.9606 65 -1.1441 0.2568

1000 - 5000 -1.2616 0.7592 65 -1.6617 0.1014

1000 -
10000

-1.2886 0.7592 65 -1.6972 0.0944

2000 - 5000 -0.1626 0.7595 65 -0.2141 0.8312

2000 -
10000

-0.1896 0.7596 65 -0.2496 0.8037

5000 -
10000

-0.027 0.4803 65 -0.0562 0.9554

Coarseness 0 - 1000 25.5604 11.3826 65 2.2456 0.0281

0 - 2000 43.1356 11.4279 65 3.7746 < 0.001

0 - 5000 28.6305 7.211 65 3.9704 < 0.001

0 - 10000 44.2045 7.2147 65 6.127 < 0.001

1000 - 2000 17.5752 14.426 65 1.2183 0.2275

1000 - 5000 3.07 11.38 65 0.2698 0.7882

1000 -
10000

18.6441 11.3825 65 1.638 0.1063

2000 - 5000 -14.5052 11.4256 65 -1.2695 0.2088

2000 -
10000

1.0689 11.4279 65 0.0935 0.9258
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Wood Property
contrast estimate SE df t.ratio p.value

5000 -
10000

15.574 7.2108 65 2.1598 0.0345

Tangential
Diameter

0 - 1000 0.1889 0.4386 65 0.4307 0.6681

0 - 2000 1.2584 0.4425 65 2.8438 0.006

0 - 5000 1.3478 0.2785 65 4.84 < 0.001

0 - 10000 1.4168 0.2788 65 5.0822 < 0.001

1000 - 2000 1.0695 0.5572 65 1.9194 0.0593

1000 - 5000 1.1588 0.4384 65 2.6434 0.0103

1000 -
10000

1.2279 0.4386 65 2.7996 0.0067

2000 - 5000 0.0894 0.4423 65 0.202 0.8405

2000 -
10000

0.1584 0.4425 65 0.358 0.7215

5000 -
10000

0.0691 0.2784 65 0.2481 0.8049

Radial Diameter 0 - 1000 1.3694 0.7861 65 1.742 0.0862

0 - 2000 1.6556 0.7868 65 2.1041 0.0392

0 - 5000 2.2055 0.4974 65 4.4343 < 0.001

0 - 10000 2.8468 0.4974 65 5.7229 < 0.001

1000 - 2000 0.2863 0.9948 65 0.2878 0.7744

1000 - 5000 0.8361 0.7861 65 1.0637 0.2914

1000 -
10000

1.4774 0.7861 65 1.8794 0.0647

2000 - 5000 0.5499 0.7868 65 0.6989 0.4871

2000 -
10000

1.1911 0.7868 65 1.5138 0.1349

5000 -
10000

0.6412 0.4974 65 1.2893 0.2019

Specific Surface
Area

0 - 1000 -23.4501 10.2854 65 -2.2799 0.0259

0 - 2000 -33.5114 10.3201 65 -3.2472 0.0018

0 - 5000 -10.694 6.5142 65 -1.6416 0.1055
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Wood Property contrast estimate SE df t.ratio p.value

0 - 10000 -26.1929 6.5171 65 -4.0191 0.0002

1000 - 2000 -10.0614 13.0316 65 -0.7721 0.4429

1000 - 5000 12.7561 10.2834 65 1.2405 0.2193

1000 -
10000

-2.7429 10.2853 65 -0.2667 0.7906

2000 - 5000 22.8174 10.3183 65 2.2114 0.0305

2000 -
10000

7.3185 10.3201 65 0.7092 0.4808

5000 -
10000

-15.499 6.5141 65 -2.3793 0.0203

Ring Area 0 - 1000 112.182 84.8913 65 1.3215 0.191

0 - 2000 282.1284 84.9941 65 3.3194 0.0015

0 - 5000 382.9638 53.7168 65 7.1293 < 0.001

0 - 10000 424.3377 53.7254 65 7.8983 < 0.001

1000 - 2000 169.9464 107.4439 65 1.5817 0.1186

1000 - 5000 270.7818 84.8856 65 3.19 0.0022

1000 -
10000

312.1557 84.8913 65 3.6771 0.0005

2000 - 5000 100.8355 84.9889 65 1.1865 0.2398

2000 -
10000

142.2093 84.9941 65 1.6732 0.0991

5000 -
10000

41.3739 53.7168 65 0.7702 0.444

Cell Population 0 - 1000 -62.6329 49.7296 65 -1.2595 0.2124

0 - 2000
-

133.2715
49.8366 65 -2.6742 0.0095

0 - 5000
-

165.5025
31.4798 65 -5.2574 < 0.001

0 - 10000
-

195.9866
31.4887 65 -6.224 < 0.001

1000 - 2000 -70.6385 62.97 65 -1.1218 0.2661

1000 - 5000
-

102.8695
49.7236 65 -2.0688 0.0425

1000 -
10000

-
133.3537

49.7295 65 -2.6816 0.0093

2000 - 5000 -32.231 49.8311 65 -0.6468 0.52

2000 -
10000

-62.7152 49.8365 65 -1.2584 0.2127

5000 -
10000

-30.4842 31.4797 65 -0.9684 0.3364
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Wood Property contrast estimate SE df t.ratio p.value

Wall Thickness 0 - 1000 0.1152 0.0611 65 1.8845 0.064

0 - 2000 0.1805 0.0614 65 2.9405 0.0045

0 - 5000 0.0476 0.0387 65 1.2281 0.2238

0 - 10000 0.135 0.0388 65 3.4837 0.0009

1000 - 2000 0.0653 0.0775 65 0.8429 0.4024

1000 - 5000 -0.0676 0.0611 65 -1.1067 0.2725

1000 -
10000

0.0198 0.0611 65 0.3239 0.7471

2000 - 5000 -0.133 0.0614 65 -2.1661 0.034

2000 -
10000

-0.0455 0.0614 65 -0.7414 0.4611

5000 -
10000

0.0874 0.0387 65 2.2575 0.0273


