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ABSTRACT 

Transcutaneous near infrared spectroscopy (NIRS) of muscle requires 

coupling between the device and the skin. An unfortunate by-product of this coupling 

is contact force artefact, where the amount of contact force between the device and 

the skin affects measurements. Contact force artefact is well known, but largely 

ignored in most NIRS research. 

We performed preliminary investigations of contact force artefact to quantify 

tissue behaviour to inform future NIRS designs. Specifically, we conducted three 

studies on contact force artefact: (i) an experimental investigation of static load at 

varied levels of contact force and muscle activation, (ii) an experimental investigation 

of oscillating load at varied levels of contact force and frequency, and (iii) a Monte 

Carlo simulation of photon propagation through skin, adipose tissue, and muscle. 

Our results confirmed that contact force artefact is a confounding factor in NIRS 

muscle measurements because contact force affects measured hemoglobin 

concentrations in a manner consistent with muscle contractions. Further, the effects 

of contact force are not altered by muscle contraction and a likely candidate for the 

mechanism responsible for contact force artefact is the viscoelastic compression of 

superficial tissues (skin and adipose) during loading. Simulation data suggests that 

adipose tissue plays a key role in diffuse reflectance of photons, so any compression 

of the superficial tissues will affect the reflected signal. Further research is required to 

fully understand the mechanisms behind contact force artefact, which will, in turn, 

inform future NIRS device designs. 
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PREFACE 

An introduction to my research requires an introduction to me. My academic 

background is in mechanical and biomedical engineering, so I am interested in device 

design and optimization. My previous research areas include orthopaedic 

biomechanics, orthopaedic device design, biological materials testing and forensic 

analysis. Near infrared spectroscopy (NIRS) was a new field to me when I started my 

PhD and over the past few years I developed a keen interest in developing non-

invasive measurement modalities. 

In my future career, I hope to continue to develop NIRS systems and NIRS 

analysis while expanding my expertise to other modalities in hopes of creating non-

invasive multimodal measurements. For example, NIRS, ultrasound, 

electromyography, motion capture, and even MRI provide complementary information 

that can be combined to offer a better understanding of in vivo processes. 

Lastly, I would like to explain why I chose to write a paper-based thesis. Peer-

reviewed journal articles are the main modality for scientific knowledge transfer in my 

field, and very few manuscripts reference full length monographs; therefore, I believe 

it makes sense to write my thesis in a way that will lead directly to peer-reviewed 

journal articles.
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Currently, near infrared spectroscopy (NIRS) is more commonly applied within 

academic research communities than it is applied clinically, though researchers are 

keen to translate their knowledge to the clinical realm1-3. There are a few reasons why 

NIRS has not seen a large clinical uptake, but large inter-subject variability seems to 

the most salient among them. I believe that superficial tissues (skin and adipose 

tissue) and associated measurement artifacts are a potential source of inter-subject 

variability during transcutaneous muscle measurements. My research explores some 

of the effects of superficial tissues on NIRS measurements with specific focus on the 

effects on contact force. I view these initial studies as the first steps in my research 

career that will improve NIRS devices to the point where they are a valued and integral 

part of clinical imaging. 

The following section is intended to provide context and background for readers 

who are unfamiliar with NIRS. NIRS experts can skip the following section and 

proceed to the 1.3 Research Objectives on page 11. 

1.2 NEAR INFRARED SPECTROSCOPY 

NIRS is a non-invasive, non-ionising imaging modality that has been 

researched and refined since 19774,5. Almost all NIRS devices operate under the 
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principle of diffuse reflectance, where light is emitted from a source, photons are 

diffusely scattered within tissue and some are re-emitted into a detector. See Figure 

1 for a schematic representation of this process.  

 

Figure 1: Schematic representation of a NIRS device with one source (emitter) 

operating in diffuse reflectance. Re-emitted light, on average, follows a ‘banana-shape’ 

path in a homogenous medium (solid line) with maximum absorption occurring at a 

depth roughly 20% to 30% of the source-detector distance (SDS)6, although each 

photon will follow a random path (dashed line) influenced by the reduced scattering 

coefficient. This idealised schematic is not necessarily representative of true photon 

paths in layered media and is generated based on homogeneous medium data. 

The exact path of individual photons is unknown, though some aggregate 

metrics (for example, pathlength) can be determined with time-domain and frequency-

domain systems7-9. The two main factors affecting photon propagation within tissue 

are geometry and tissue optical properties. When source-detector separation (SDS, 

see Figure 1) increases, the average photon path penetrates deeper into tissue, 

though the exact penetration depths in vivo are poorly defined. Experimental phantom 

investigations6,10,11 and computer simulations12-18 provide estimates of expected 

propagation paths. 

Detector  Source 

SDS 
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Biological tissue optical properties also influence photon propagation. As a 

photon propagates in tissue, it interacts with the tissue through both scattering and 

absorption, which are quantified by the reduced scattering coefficient (μs’, accounting 

for both scattering and material anisotropy) and the absorption coefficient (μa). Cell 

and nuclear membranes are thought to be a source of scattering in human tissue19 

though cellular organelles and collagen fibres likely play a more important role for near 

infrared wavelengths20.  

The chromophores (molecules that absorb specific wavelengths of light) vary 

with wavelength, and, in the near infrared spectrum, oxygenated hemoglobin (O2Hb) 

and deoxygenated hemoglobin (HHb) are thought to be the main chromophores (see 

1.2.1Assumptions and Limitations section below) and the summation of these two 

values is called the total hemoglobin (tHb). Higher μa causes more photons to be 

absorbed in the tissue so less light is re-emitted into a detector, and lower μa increases 

the intensity of re-emitted light. Figure 2 shows the absorption of O2Hb and HHb21 

plotted against typical NIRS wavelengths. 
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Figure 2: Specific absorption of O2Hb (red line) and HHb (blue line)21. Wavelengths 

used by NIRS devices are chosen to maximise differences in hemoglobin absorption 

while minimising the absorption of water. Wavelengths utilized by the OxiTor (yellow 

lines), the NIRS device during experimental data acquisition, are plotted for reference. 

If the interrogated tissue contains muscle, such as the measurements taken in 

the experimental portions of this thesis, myoglobin will also contribute to the light 

absorption in a similar fashion to hemoglobin (Hb) such that the two contributions to 

the absorbance are indistinguishable. At present, the contribution of myoglobin to 

NIRS data is unknown and estimates range from less than 10%22 to approximately 

70%23. For clarity, the term Hb used in this thesis implies an aggregate of both Hb and 

myoglobin within muscle tissue.  

As discussed above, light is both scattered away and absorbed by the tissue 

causing an attenuation of the light intensity before it enters the detector. While 

scattering is thought to be roughly constant once a probe is in position24,25, the 
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absorption changes as Hb concentrations changes. Differences in detected intensities 

are used to determine the relative amount of O2Hb and HHb using a modified Beer-

Lambert’s Law26 as described by Equation (1).  

(1)      � = ������[����] + ����[���]� · ��� · ��� + �   

Where:  

� is the light extinction, which is the log of the ratio of transmitted intensity to 

detected intensity (log
��

�
) 

����� is the extinction coefficient for O2Hb (mm-1M-1) 

���� are the extinction coefficient for HHb (mm-1M-1) 

[����] is the concentration of O2Hb (M) 

[���] is the concentration of HHb (M)  

��� is the source-detector separation (mm) 

��� is the differential path length factor 

� is a factor accounting for other light losses 

Concentrations of O2Hb and HHb can be used to compute total hemoglobin 

(tHb) through simple addition. The above method of interpreting signal attenuation 

with a modified Beer-Lambert Law has been implemented in many studies and it is an 

appropriate model to determine Hb concentrations using diffuse reflectance; however, 

the method requires some assumptions and has associated limitations.   
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1.2.1ASSUMPTIONS AND LIMITATIONS 

Near infrared spectroscopy is subject to certain assumptions and limitations 

and many of the following concerns about NIRS methodology are areas of active 

research. The main assumption required for calculations of O2Hb and HHb is that both 

O2Hb and HHb are the primary chromophores in the tissue at the specified 

wavelengths. This is not entirely true because, in addition to O2Hb and HHb, water is 

an absorber in the near infrared spectrum. To minimize error, wavelengths are 

selected that minimize water absorption and maximize Hb absorption, or water content 

is estimated (for example, the OxiplexTS made by ISS Inc. assumes a user-defined 

water content with a default of 70%). Despite careful wavelength selection, there is 

potential for NIRS measurements to be affected by sweat. Other potential absorbers 

(for example, cytochrome C oxidase21,27 or carboxyhemoglobin) are ignored during 

calculations because their relative contributions are deemed negligible28 or coupled29 

to Hb concentration. Additionally, natural skin pigmentation, tattoos, or the presence 

of hair can alter subject-specific absorption. The variation of the properties of 

superficial tissues increases inter-subject variation a lead most NIRS researchers to 

monitor relative changes in Hb. Based on the modified Beer-Lambert law, all NIRS 

devices are capable of computing relative changes in Hb, though the majority of 

systems are not capable of determining absolute values. 

Only time-domain and frequency-domain systems are capable of providing 

absolute Hb concentrations because they are capable of estimating DPF. Continuous 

wave systems, like the OxiTor M2 (Pathonix Innovation Inc., Vancouver, Canada) can 

only estimate DPF based on published values, so absolute values can not be 
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computed with accuracy. Instead, Hb concentrations changes are reported with 

reference to a steady-state baseline. Baseline values differ depending on tissue 

composition and physiologic demands, so between-subject baselines can not be 

compared. For example, subjects with different superficial tissue thickness (STT, the 

combined thickness of skin and subcutaneous adipose tissue) over muscle will have 

different signal attenuation, so their baseline values will be different.  

Adipose tissue thickness (subcutaneous) is the main source of between-

subjects STT variance, and is a major confounding factor of NIRS muscle Hb data 

because light is highly scattered in adipose tissue30. The contributions of 

intramyocellular lipids are typically disregarded because the concentrations are low 

enough31,32 to be deemed negligible. Larger STT is associated with an 

underestimation of Hb concentrations (O2Hb, HHb, and tHb)33,34. In practice, all NIRS 

measurements should be accompanied by a measurement of adipose tissue 

thickness using ultrasound, MRI, broadband NIRS or skinfold calliper. Ultrasound may 

be considered the gold standard, but ultrasound has been correlated with each of 

these other modalities, which facilitates computational corrections33. Algorithms used 

to correct for the effects of adipose tissue thickness on NIRS data are currently based 

on a combination of experimental data, numerical models35,36 and unverified 

physiologic assumptions37. Despite the importance of adipose tissue thickness, most 

researchers do not apply corrective calculations because there is no commonly 

accepted method. Instead, NIRS research is typically conducted on subjects with 

minimal STT.  
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Another major limitation of diffuse reflectance NIRS devices is the ambiguous 

propagation of light through in vivo tissue. As discussed above, exact penetration 

depth of near infrared light within tissue is poorly understood. Maximum NIRS 

penetration depths are commonly quoted to be roughly 50% of the SDS38,39, though 

experiments based on homogeneous tissue phantoms6,10,11 suggest that the average 

photon penetration depth is less than 50% SDS. Qualitative interpretation of these 

results suggests that mean penetration depth is likely closer to 30% SDS, though 

exact values have not been reported. Monte Carlo simulations of cerebral NIRS 

suggest a similar penetration depth of approximately 30% SDS12. Experiments6,10 and 

simulations12 produced spatial sensitivity maps suggest that the distribution of light 

penetration depth is skewed toward shallow tissue and the most probable penetration 

depth may even be less than 30% SDS. A schematic of depth sensitivity in a tissue 

phantom is provided in Figure 3 for clarity, though current research has not fully 

quantified the effects of layered media during NIRS muscle measurements. 

 

Figure 3: Schematic depicting idealized penetration depths based on experimental 

work in tissue phantoms. Photons are thought to propagate within the banana shape 

region between the two solid black curved lines that connect the emitter (E) and the 

detector (D), though the highly scattering effects of the adipose tissue layer may skew 

the penetration depths to smaller values. 

D
etector 

NIRS Device  

E
mitter 
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 In vivo penetration depths are very difficult to estimate without making 

assumptions about tissue properties and photon path lengths based on published 

data7,8,13. Both tissue properties and differential path length factors have high 

variation, so many researchers run numerical simulations to estimate penetration 

depth. Unfortunately, most light propagation simulations12,14,15 focus on cerebral tissue 

rather than on muscle, so light penetration within muscle is relatively poorly 

understood. Additional insight into probable penetration depths within muscle could 

be collected by changing the gate times on a time-domain NIRS device because time 

of flight can be related to light penetration depth40; however, there is no time-domain 

NIRS device available at the University of Northern British Columbia. 

Despite the ambiguity of NIRS penetration depth, research is being conducted 

to eliminate the contribution of superficial tissue to hemodynamic data, though most 

of this research is focused on cerebral NIRS. Scholkmann et al.41 provide an in-depth 

description of techniques used in near infrared imaging to eliminate superficial noise. 

Briefly, a short-distance (roughly 5 mm SDS) optode is added in close proximity42 to 

a typical-distance optode (SDS of roughly 30 to 40 mm). Data from both short- and 

long-separation optodes are processed to determine hemodynamic values, and then 

a numerical analysis is performed under the assumption that the shallow penetration 

(short optode) hemodynamic data can be subtracted from the deep (long optode) data. 

Algorithms used to determine the relative weighting of each signal rely on least 

squares regression43-45, physiologic assumptions46, or adaptive filtering16,47,48. These 

subtraction techniques are thought to remove systemic noise (for example, heart rate 

or ventilation rate) that presents in superficial tissues (by, for example, skin blood 
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flow49).  In theory, superficial filtering may be able to remove demonstrated effects of 

temperature and sweat on NIRS data50. Unfortunately, the superficial filters are 

primarily focused on cerebral measurements and have not been implemented in 

muscle measurements. 

Near infrared spectroscopy measurements on muscle differ slightly from 

cerebral measurements because tissue compliance is different. In cerebral NIRS, the 

skull prevents deeper tissues from deforming under load, so filtering surface tissue 

contribution to the hemodynamic response should be an adequate method to 

eliminate effect of contact force between the device and the skin. However, no such 

rigid barrier exists around muscles, and superficial tissue filtering may not remove the 

effects of contact force because the tissues deform under load51 and STT is more 

variable. By their nature, NIRS devices need to be coupled to the skin, and fixation 

techniques can result in different, or even time-varying, contact forces. If these varied 

contact forces cause differences in tissue structure then photons may propagate 

differently within the tissue composite (skin, adipose and muscle) causing a 

measurement artefact. Researchers are aware of the potential issues relating to 

contact force and they often attempt to prevent “excessive eternal pressure”52 or 

provide “sufficient care … not to occlude blood flow”53 when fixing NIRS devices to 

subjects; however, very little published research has aimed at quantifying or 

remediating this potential issue.   

As discussed above, continuous wave NIRS collects useful, non-invasive, in 

vivo, local tissue data (relative O2Hb, HHb, and tHb concentration changes). These 
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data are beneficial to physiologic investigations; however, NIRS devices suffer from 

limitations that need to be overcome before clinical uptake is increased.  

1.3 RESEARCH OBJECTIVES 

My long-term research goal is to minimize measurement artefacts in NIRS 

devices to refine clinical indices and encourage clinical uptake. The objective of my 

current work was to investigate measurement artefact related to contact force. All 

NIRS devices need to be coupled to skin54 in some fashion and one of the most basic 

questions is, “How firmly should a NIRS device be attached to the skin?” 

Surprisingly, there is little guidance in published literature, possibly because 

the majority of NIRS investigations focus on cerebral measurements or researchers 

are willing to accept contact force artefact as a limitation of the methods. With little 

guidance from published literature, I decided to investigate this issue in a series of 

studies with the goal of quantifying the effects of contact force on NIRS 

measurements. In theory, understanding contact force artefact should inform both 

NIRS data analysis and NIRS device design to increase reliability. The studies 

included two experimental approaches and one computer simulation.  

1.3.1 STATIC CONTACT FORCE ARTEFACT 

As a starting point for my research, I conducted an experiment to quantify the 

effects of contact force on NIRS muscle measurements. With minimal published 

research available to reference, I assumed that the structural properties (for example, 
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structural stiffness, which influences the mechanical deformation under load) would 

influence contact force effects; therefore, I decided to measure from several muscles, 

each with varied muscle activation. The geometry and supporting structure of each 

muscle was different, so the structural stiffness differs as well. Also, when muscle 

generates more force, intramuscular pressure increases55 and stiffness increases. 

Both muscle location and muscle contractile intensity were varied with contact force 

to determine main effects and interactions, and this investigation provided some 

baseline data that informed the following studies. 

1.3.2 OSCILLATING CONTACT FORCE ARTEFACT 

Based on the findings of the static contact force investigation, I decided to 

explore the time-dependent behaviour of contact force on NIRS muscle 

measurements. Human tissues exhibit a viscoelastic response to loading56, so the 

structural response is expected to change with duration of loading; therefore, the static 

investigation results were only applicable to isometric exercises, and additional data 

was needed to apply these findings to dynamic contractions where contact forces 

fluctuate as a result of geometrical changes. The oscillating contact force investigation 

was intended to address how contact force effects are altered by magnitude and 

frequency of external loads. 

1.3.3 PHOTON PROPAGATION IN A TISSUE COMPOSITE 

The final investigation of my thesis was originally planned as a tool to be used 

in future NIRS device design. In the work discussed in this dissertation, however, the 

simulation was used to examine the effects of adipose tissue compression to help 
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infer the underlying mechanisms responsible for contact force artefact when 

measuring from skeletal muscle. A computer simulation of photon propagation through 

a tissue composite of skin, adipose and muscle tissue was created and input variables 

were varied to examine the effect of STT and SDS on photon propagation. 
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CHAPTER 2: STATIC CONTACT FORCE ARTEFACT 

 

Disclaimer: The content of this chapter has been submitted to a peer-reviewed 

journal and copywrite for the manuscript will agree with the journal’s policy. The roles 

of each contributing author are listed in Table 1. 

Table 1: The roles of each author for the static contact force investigation. 

Author Role 

Timothy Schwab • Design and construction of loading rigs 

• Data collection 

• Analyze data 

• Write paper 

 

Colton Jensen • Data collection 

 

Dr. Alex Aravind • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: experimental design, 

data analysis, and manuscript review. 

 

Dr. R Luke Harris • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: experimental design, 

data analysis, and manuscript review. 
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2.1 ABSTRACT 

Near infrared spectroscopy is used to measure oxygenated hemoglobin and 

deoxygenated hemoglobin in muscle. An emitter and a detector (sometimes more than 

one of each) are placed in contact with the skin for such measurements. Computed 

hemoglobin concentrations are influenced by the magnitude of contact force (i.e. of 

the device against the soft tissue) but these effects are not well quantified. Therefore, 

with 12 healthy, adult participants, we quantified these effects by varying contact force 

(2, 20, 40 and 60 N), muscle contraction intensity (0, 10, 30, 50, and 70% maximum 

voluntary contraction) and muscle location (biceps brachii, extensor digitorum, vastus 

lateralis, and sternocleidomastoid). All three main effects (i.e. contact force, 

contraction intensity and location) were statistically significant, though no interactions 

were detected. In general, post hoc comparisons indicated that the lowest contact 

force was significantly different from all other contact forces and the remaining contact 

forces were not different from each other. We regressed our data to determine 

corrective values to minimise the effects of contact force.  The relative influence of 

contact force is greater at lower contraction intensities. These findings can be applied 

to future diffuse reflectance spectroscopy investigations of both static and dynamic 

muscle contractions. 

2.2 INTRODUCTION 

In vivo concentrations of oxygenated hemoglobin (O2Hb) and deoxygenated 

hemoglobin (HHb) can be measured using near infrared diffuse reflectance 
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spectroscopy, which is commonly simplified as near infrared spectroscopy (NIRS). 

NIRS devices consist of one or more light sources and one or more detectors, and 

rely on the diffuse reflectance of tissue to redirect emitted photons back toward the 

detector. The intensity (and in some cases, phase shift or timing) of reflected light is 

then related to hemoglobin concentrations with a modified Beer-Lambert law57.  

Using NIRS to measure hemoglobin concentration in muscle is challenging, in 

part because the device needs to be properly fixed to a specific location in contact 

with the skin overlying the target muscle. This is typically done with a strap or with 

tape to limit the migration of the device and to prevent decoupling of the instrument 

from the skin, which would result in ambient light leakage. Unfortunately, these 

techniques can lead to varied contact forces when muscles undergo dimensional 

changes during contraction. Researchers sometimes acknowledge that contact force 

variations have the potential to influence NIRS measurements, but the effects have 

yet to be quantified and, as such, have been largely ignored during acquisition. At 

most, researchers prevent “excessive external pressure”52 or provide “sufficient care 

… not to occlude blood flow”53 when coupling NIRS devices to the skin. In fact, only a 

few studies58-64 have investigated the effects of contact force on diffuse reflectance of 

tissue in vivo. 

2.2.1 PREVIOUS RESEARCH RELATING TO CONTACT FORCE 

Most published research relating contact force and diffuse reflectance has been 

performed with isolated tissues, rather than composite structures. The literature 

reviewed here focused on separate investigations of muscle58,59, adipose tissue60 
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(represented by measurements on breast tissue) and skin61-63,65,66, because photons 

propagate through each of these tissues when measuring hemoglobin/myoglobin 

content of muscle. In these studies, there is no consistency in wavelengths, source-

detector separation or measured variables, so some degree of inconsistency in results 

was expected. Reif et al59 observed increases in oxygen saturation and reduced 

scattering coefficient with increased contact force (between 40 kPa and 200 kPa) on 

mouse thigh muscle with superficial tissues resected. Ti and Lin58 demonstrated 

decreased oxygenation and total hemoglobin (tHb) only at high contact pressures (48 

kPa) in rat heart following a sternotomy. Similar trends occur in compressed breast 

tissue, where decreases in tHb, oxygen saturation and reduced scattering coefficient 

were observed in response to increased contact force60. When skin is subjected to 

increased contact force (between 9 and 152 kPa), tHb and oxygen saturation both 

decrease61,63. In skin, the change in reduced scattering coefficient in response to 

increased contact force is less consistent: some authors demonstrate increases63,65 

but others demonstrate decreases61,66. These inconsistencies may result from 

wavelength dependent inter-subject variations62 or from differences in methodology. 

The previous studies provide valuable insight into the diffuse reflectance of 

tissues under varied loading, but they do not address how a composite structure of 

different tissue reacts to varied contact force. In a series of papers, Cugmas and 

coworkers64,67,68 used diffuse reflectance spectroscopy to differentiate between 

different soft tissues in vivo.  When measuring skin superficial to pollicis brevis, they 

observed an increased absorption coefficient, a decreased reduced scattering 

coefficient and decreased oxygen saturation in response to increased contact force. 
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Based on site specific results, they speculated that higher contact force may result in 

partial measurement of deeper tissues (for example, bones in the wrist) rather than 

from more superficial soft tissue64. However, practically speaking, their findings are 

difficult to apply to physiological NIRS measurements from muscle because they 

applied very high contact pressures that would be uncomfortable during muscle 

activation studies, and they used longer wavelengths than those typically employed 

when measuring hemoglobin.  

Cheng et al69 demonstrated that NIRS measurements from composite 

structures are affected by contact force. Specifically, they varied contact force 

between 0 N and 20 N (contact pressure not reported) on calf, thigh and breast tissue. 

Each tissue exhibited a decrease in tHb in response to external loading and site-

specific differences in magnitude were reported; however, their results are limited to 

one low load (20 N), that is difficult to translate to different NIRS devices because the 

contact area, and, therefore, contact pressure, was not reported. 

The previous studies failed to quantify the effects of varied levels of contact 

force and muscle activation on the hemoglobin content of human muscle tissue in 

vivo. Such data would be relevant to any study where diffuse reflectance is employed 

to study muscle during static or dynamic contractions. 

2.3 PURPOSE 

Our primary goal was to quantify the effects of contact force on NIRS 

measurements in vivo by varying contact force and muscle activation at various 
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muscle measurement sites. The results will be used to achieve our long-term goal of 

limiting the variability in NIRS data resulting from contact pressure when measuring 

from muscle tissue. 

2.4 METHODS 

2.4.1 EXPERIMENTAL DESIGN 

Institutional Research Ethics Board approved all procedures in this study and 

12 volunteers provided consent before taking part. NIRS data was recorded using an 

OxiTor M2 (portable continuous wave device with a source-detector separation of 35 

mm; Pathonix Innovation Inc., Vancouver, BC, Canada). We recorded NIRS data from 

each participant during isometric contractions of biceps brachii (BB), extensor 

digitorum (ED; i.e. of the forearm), vastus lateralis (VL), and sternocleidomastoid 

(SCM). At the beginning of each measurement session, the participant’s skinfold 

thickness was measured. The participant then performed three  three-second 

isometric contractions at maximum effort to determine the maximum voluntary 

contraction (MVC). The highest recorded torque (see section 2.2) in these three trials 

was defined as the MVC and all subsequent contractions were normalized to this level. 

Participants were then asked to perform a series of submaximal contractions in a 

randomized order. Each submaximal contraction was 0.5 minutes long and the 

minimum rest period between contractions was 4.5 minutes, though most rest periods 

were approximately 5 minutes.  
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Both muscle contraction intensity and NIRS contact force were varied for these 

submaximal contractions. Muscle contraction intensity was defined as a percent of 

MVC (%MVC): 0, 10, 30, 50, and 70% of MVC. The contact force levels for BB, ED, 

and VL were 2, 20, 40 and 60 N. The 60 N contact force level could not be maintained 

comfortably on SCM so 2, 20, 30, and 40 N contact forces were used instead. For 

reference, the contact area between the OxiTor and the skin is 24.4 cm2, so the 

contact forces 2, 20, 30, 40, and 60 N correspond, respectively, to contact pressures 

of approximately 0.82, 8.2, 12, 16 and 25 kPa. The lowest contact force (2 N) was 

selected because we determined that this was the minimal contact force level that 

could be used without device-skin decoupling occurring during contraction. 

2.4.2 LOADING APPARATUS 

We constructed custom rigs to measure joint torques and contact forces during 

isometric contraction. Joint torques were measured with a ±1130 Nm torque cell 

(TFF600, Futek, Irvine, CA, USA). The torque cell was aligned with the axis of rotation 

for the BB (elbow) and the VL (knee). For ED and SCM contractions, force applied 

was perpendicular to the moment arm of the torque cell. Participants maintained a 

specified %MVC with the aid of a visual display.  

Contact forces were recorded with a uniaxial load cell attached to a custom 

clamp. The load cell (±220 N, LSB200, Futek, Irvine, CA, USA) was aligned with 

geometric center of the OxiTor and held in place with set screws. Contact forces were 

applied by hand following a visual display. Both joint torque and contact force were 



~ 21 ~
 

recorded with a computer (IPM 650 and Sensit software, Futek, Irvine, CA, USA). 

Sample data traces are depicted in Figure 4. 

 

 

Figure 4: Sample data traces of (a) O2Hb (red), HHb (blue) and tHb (green) in response 

to a contraction at 50% MVC, and (b) torque (solid black line) and contact force 

(dashed black line). 

2.4.3 ANALYSIS 

2.4.3.1 NIRS ANALYSIS 

We analyzed relative peak-concentration-changes (measured in mM·mm) of 

O2Hb, HHb and tHb. The baseline bias values were computed by taking the average 

of each data trace (O2Hb, HHb, or tHb) in the 30 seconds prior to the beginning of 

each contraction. The peak-concentration-changes were defined as the largest 

change from baseline that was recorded during the contraction.  
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2.4.3.2 STATISTICS 

Peak concentration changes were analyzed with a three-way repeated 

measures ANOVA (using R Project software, https://www.r-project.org/about.html) 

with factors of contraction intensity, contact force and muscle location. Post hoc 

comparisons were performed using paired t-tests with Bonferroni correction. This 

analysis was completed separately for each of O2Hb, HHb and tHb. 

2.4.3.3 CONTACT FORCE CORRECTIONS 

We determined a corrective equation intended to help compare NIRS data 

recorded with higher contact forces to those recorded with minimal contact force (2 

N). Peak concentration changes were biased with respect to 2 N contact force and 

0%MVC for each muscle location. These zeroed-peak-concentration-changes were 

regressed with a multiple least-squares regression on contact force and contraction 

intensity to give  
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(2)    ��� = �� ��(�) + ���� · %���                                              

Where:  

���  is the estimate of hemoglobin (O2Hb, HHb or tHb) zeroed-peak-

concentration-change; 

 � is contact force in Newtons;  

%���  is the contraction intensity as a percent of maximum voluntary 

contraction 

�� and ���� are the regression coefficients.  

All regressions were forced through the origin. 

2.5 RESULTS 

2.5.1 PARTICIPANT DESCRIPTIVE STATISTICS 

Nine male participants and three female participants completed the study 

protocol. The average and standard deviation of height, weight and age were 171 cm 

± 8.6 cm, 76 kg ± 15 kg, and 29 years ± 8.1 years, respectively. Adipose tissue 

thickness was approximated as half the skinfold thickness and was recorded for BB 

(3.5 mm ± 2.5 mm), ED (2 mm ± 1.5 mm), VL (6 mm ± 4.5 mm), and SCM (2 mm ± 

1.5 mm).  
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Participants were able to maintain the submaximal target loads of 10% MVC, 

30% MVC, 50% MVC and 70% MVC with one standard deviation equal to 1.2% MVC, 

2.4% MVC, 4.0% MVC and 5.6% MVC for each target, respectively. Contact force 

was manually applied by one researcher (CJ) and was acceptably close to target 

loads: 2.02 N ± 0.65 N, 20.2 N ± 1.6 N, 39.6 N ± 1.9 N, 28.9 ± 1.4 N, and 59.5 N ± 2.0 

N. 

2.5.2 STATISTICAL FINDINGS 

Peak-concentration-change results for O2Hb, HHb, and tHb are displayed in 

Figure 5 and Figure 6. The main effects of contraction intensity, contact force and 

muscle location were all statistically significant (p < 0.001 for all main effects). No 

statistically significant interactions were detected between contact force and 

contraction intensity (p = 0.66), contact force and muscle location (p = 0.41), or contact 

force and both contraction intensity and muscle location (p = 0.95). Some general 

trends are evident in Figure 5 and Figure 6: O2Hb and tHb both decreased and HHb 

increased when muscle tissues were subjected to increased contact forces. These 

changes persisted at all levels of contraction intensity with greater magnitudes due to 

the added effect of the contraction. Magnitudes also varied across muscle location 

(p<0.001), with greater changes in large muscles (BB and VL). 
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Figure 5: Peak changes for VL (a) O2Hb, (b) HHb, (c) tHb, and for ED (d) O2Hb, (e) 

HHb, (f) tHb. Each mark represents a different level of contraction (˜ = 0% MVC; ì = 

10% MVC;  = 30% MVC; ¾ = 50% MVC; p = 70% MVC). Data points for 10%, 30%, 

50% and 70% MVC are offset slightly to clarify error bars (±SD). 

(b) 

(c) 

(e) 

(d) 

(f) 

(a) 
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Figure 6: Peak changes for ED (a) O2Hb, (b) HHb, (c) tHb, and for SCM (d) O2Hb, (e) 

HHb, (f) tHb. Each mark represents a different level of contraction (˜ = 0% MVC; ì = 

10% MVC;  = 30% MVC; ¾ = 50% MVC; p = 70% MVC). Data points for 10%, 30%, 

50% and 70% MVC are offset slightly to clarify error bars (±SD). 

(a) 

(b) 

(c) 

(e) 

(d) 

(f) 
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The effects of contact force were further investigated with post hoc 

comparisons. The contact force levels differed for SCM, so comparisons for each 

muscle location were computed separately. For almost all combinations of contraction 

intensity and muscle, statistically significant differences in peak-concentration-change 

were detected between 2 N contact force and all other contact force levels, except for 

BB-HHb, SCM-tHb and VL-HHb. When comparing contact force levels above 2 N, we 

observed a single statistically significant difference (tHb values between 20 N and 40 

N on SCM), but all other comparisons (n=35) were not statistically significant, which 

suggests that, above 20 N, there is limited effect of contact force on peak-

concentration-change. 

2.5.3 REGRESSIONS 

Zeroed-peak-concentration-changes (see Contact Force Corrections section 

above) were regressed on the natural logarithm of contact force (N) and contraction 

intensity (%MVC) with a least-squares method. Data from each muscle location was 

regressed separately because the levels of contact force were different for SCM—this 

decision was supported by a post hoc analysis that revealed significant differences 

between the coefficients at each muscle location. The regression coefficients and 

adjusted correlation coefficients are listed in Table 2. All of the slope coefficients were 

significantly different from zero, with the exception of one (SCM, tHb, ln(contact 

force)). All slope coefficients were negative for O2Hb and tHb and were positive for 

HHb. Adjusted correlation coefficients (adjusted r2) ranged from 0.373 (SCM, tHb) to 

0.896 (BB, O2Hb), with all r2 values being statistically significant. 
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Table 2: Regression coefficients for each predicted variable (O2Hb, HHb, and tHb) at 

each muscle location (BB, ED, SCM and VL). Standard errors are quoted in 

parentheses. Superscript symbols indicate p-values of each coefficient and the total 

regression equation (*** p<0.001; ** p<0.01; * p<0.05). 

Muscle 

Location 

Predicted 

Variable 

ln(Force) 

cF 

Contraction Intensity 

cMVC 

Adjusted 

r2 

BB O2Hb -0.444 (0.035)*** -0.059 (0.003)*** 0.896*** 

BB HHb 0.104 (0.016)*** 0.026 (0.001)*** 0.857*** 

BB tHb -0.359 (0.038)*** -0.031 (0.003)*** 0.748*** 

ED O2Hb -0.368 (0.026)*** -0.027 (0.002)*** 0.842*** 

ED HHb 0.133 (0.010)*** 0.013 (0.001)*** 0.865*** 

ED tHb -0.230 (0.018)*** -0.014 (0.001)*** 0.789*** 

SCM O2Hb -0.064 (0.020)** -0.013 (0.001)*** 0.542*** 

SCM HHb 0.064 (0.011)*** 0.008 (0.001)*** 0.660*** 

SCM tHb -0.011 (0.011) -0.006 (0.001)*** 0.373*** 

VL O2Hb -0.662 (0.052)*** -0.031 (0.004)*** 0.748*** 

VL HHb 0.034 (0.014)* 0.020 (0.001)*** 0.770*** 

VL tHb -0.641 (0.058)*** -0.013 (0.004)** 0.595*** 

2.6 DISCUSSION 

2.6.1 MAIN FINDINGS 

The main finding from our experiment was that the magnitudes of O2Hb, HHb 

and tHb values measured with continuous wave NIRS are affected by the contact 

force with which the NIRS device is applied to the soft tissue being studied. 

Specifically, increasing contact force amplifies decreases in O2Hb and tHb such as 
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those that are typically associated with a contraction; increasing contact force also 

amplifies the corresponding increases in HHb. Importantly, these effects of contact 

force on the observed hemoglobin concentration changes in skeletal muscle are not 

further altered by the degree of muscle activation. We also determined regression 

equations that could correct for these contact force effects during isometric 

contractions. 

2.6.2 APPLYING THE FINDINGS 

We demonstrated that contact force influences hemoglobin values determined 

by NIRS. The influence of contact force appears to be limited to lower contact force 

levels (≤ 20 N). We detected one statistically significant difference between contact 

force greater than 20 N (comparing 20 N to 40 N for tHb in SCM), but this may be a 

type I error because it is not consistent with the other 35 pairwise comparisons we 

performed at force levels at or above 20 N, for which no differences in hemoglobin 

concentration changes were observed. This threshold pattern is similar to those 

documented in skin (see Lim et al’s61 Figure 4 for a subjective comparison).  

Two different approaches could be used to minimize contact force effects. The 

simplest technique would be to ensure that instrument fixation maintains a minimum 

of 20 N contact force (8.2 kPa contact pressure) regardless of changes to muscle 

geometry or muscle engorgement due to contractile activity. This is feasible for short 

durations, but our experience indicates that contact forces above 20 N cause 

discomfort during longer sessions (greater than 20 minutes). 
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The second approach would be to directly measure contact force during NIRS 

data collection and adjust hemoglobin concentrations with the regression coefficients 

listed in Table 2. Our findings are preliminary and only applicable to isometric 

contractions, but if future investigations verify findings, then the slope coefficient for 

ln(Contact Force) could be used for this adjustment; however, site-specific differences 

suggest that this technique would be limited to one of the four muscle locations 

examined in the current study. Additional locations could be documented with less 

effort because we have shown no interaction between contact force and muscle 

activation, so only contact force needs to be varied. 

Our regression coefficients demonstrate the potential errors caused by ignoring 

the effects of contact force. For example, predicted peak-concentration-changes 

changes in O2Hb (in BB, see Table 2) associated with 20 N and 10% MVC are -1.33 

mM·mm and -0.59 mM·mm, respectively. This suggests that the peak-concentration-

change in O2Hb reported by the device is dominated by contact force at low 

contraction levels. In contrast, at 70% MVC the peak-concentration-change in O2Hb 

resulting from contraction intensity is estimated as -4.13 mM·mm, so contact force has 

a smaller relative effect at higher muscle contraction intensities. In other words, 

approximately 69% of the hemoglobin changes are a contact force artefact when 

measuring from muscle during low contractile intensities. When measuring from 

muscle during higher contractile intensities, the contact force artefact accounts for 

25% of the measured hemoglobin changes.  Similar trends exist at all muscle locations 

and all outcomes (O2Hb, HHb, and tHb). 
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We believe that, after further verification, mathematically correcting NIRS-

derived hemoglobin concentrations is the best approach, especially when performing 

studies with low levels of muscle activation or when participants will be studied for 

prolonged periods. 

2.6.3 SYNTHESIS WITH PUBLISHED LITERATURE 

No previous study has investigated the relationship between different levels of 

contact force and in vivo NIRS muscle hemoglobin data, though previous studies 

provide insight into the possible mechanisms for our findings. 

Previous NIRS research suggests that increased contact force compresses 

soft tissue by redistributing fluid (both water and blood) away from the interrogated 

volume. Fluid redistribution is a suggested mechanism for findings in isolated muscle 

tissue58,59 and multi-layered in vivo structures68,69. The effects of tissue compression 

vary with tissue and absorber type. In isolated muscle, reduced scattering coefficient 

is increased, presumably because scattering components become closer together 

when fluid is forced from the tissue59. When blood within muscle is redistributed away 

from the interrogated volume, decreases in tHb are observed58. Consistent with this, 

tHb decreased as contact force increased in our experiment, which suggests that 

some of the observed changes may be the result of blood redistribution. 

Determining where the fluid redistribution occurs is difficult. We tested a multi-

layered tissue composite composed of skin, adipose tissue and muscle. The 

phenomenon of decreased tHb and increased scattering has been observed in 

skin61,63, adipose tissue60 and muscle58,59, so it is unknown what tissue layer, if any, is 
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the dominant source of fluid redistribution. Cugmas et al64,67,68 have quantified tissue 

specific responses to pressure, but they reported that their results were “frequently 

inconsistent”68 under 16 kPa (40 N in our study), and they used different light 

wavelengths with much shorter source-detector separations from those in our study, 

so little guidance can be derived from their work to explain our findings. Cheng et al69 

suggest that viscoelastic creep of tissues while under load may result in signal 

contamination from bone below the measurement site, and result in gradual increases 

in tHb during loading. We did not observe similar tHb recovery during loading and we 

speculate that Cheng et al.’s contact pressure was less than ours and resulted in less 

complete occlusion of the microvasculature. 

A finite element model70 indicates that increased muscle activation decreases 

muscle deformation during mechanical indentation, though skin deformation is 

unaffected by muscle activation. Adipose tissue deformation during indentation is 

governed by its thickness, rather than muscle activation. We did not observe an 

interaction between contact force and activation, so we speculate that fluid 

redistribution in the skin or subcutaneous adipose tissue might be the source of the 

contact force effects, but further experimentation is required to confirm this. 

2.6.4 CURRENT LIMITATIONS AND FUTURE DIRECTIONS 

Our study was not designed to determine the mechanisms responsible for 

contact force effects, though future research will be geared toward determining these 

mechanisms. If contact force effects are driven by fluid redistribution in superficial 

tissues, then these effects could be filtered from the signal using short source-detector 
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separation optodes. Until this is verified or disproven, we suggest that NIRS data be 

adjusted as discussed in the previous section to minimize data variability. 

As with most NIRS studies, our variability was high. We may be able to explain 

more variation by adding more factors to our regression (for example, adipose tissue 

thickness); however, the intention of the regression was to quantify the NIRS changes 

associated with increasing contact force rather than identifying all sources of variation. 

We included muscle activation because that was a controlled factor in our experiment. 

We forced our regressions though the origin because non-zero intercepts would be 

illogical when computing corrective values for contact force. 

We performed this experiment with a continuous wave NIRS device that was 

unable to record absolute values of O2Hb, HHb, tHb or tissue oxygenation index. 

Instead our data reports the changes relative to baseline prior to each contraction (30 

second average), so there is a potential confounding effect of reactive hyperemia 

influencing the baseline of the next contraction. We allowed at least 4.5 minutes of 

rest between contractions to minimize this risk and did not observe baseline drift.  

We conducted our experiment with an OxiTor M2, so caution should be used 

when applying our results to other NIRS devices because alternate form factors may 

influence the changes induced by varied contact force. In particular, the emitters and 

detectors protrude from the body of the OxiTor. These protrusions may act as stress 

risers resulting in higher contact pressures around the protrusions. Despite these 

potential inhomogeneities in contact force, we suspect that similar results would be 
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obtained with other NIRS devices, assuming their contact surface is similar to the 

OxiTor (rectangle; 65 mm x 37.5 mm). 

2.6.5 CONCLUSION 

We demonstrate that contact force affects hemoglobin concentrations 

determined by NIRS and we suggest possible techniques to minimize these variations. 

Our experiment was conducted with isometric contractions, so our findings are 

applicable to static analysis. However, our findings also may provide insight into 

dynamic contractions because we failed to detect an interaction between contraction 

intensity and contact force.  
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CHAPTER 3: OSCILLATING CONTACT FORCE ARTEFACT 

 

Disclaimer: The content of this chapter will be submitted to a peer-reviewed 

journal for publication and copywrite for the manuscript will agree with the journal’s 

policy. The roles of each contributing author are listed in Table 3. 

Table 3: The roles of each author for the oscillating contact force investigation. 

Author Role 

Timothy Schwab • Data collection 

• Data analysis 

• Interpret findings 

• Write paper 

 

Shamitha Aravind • Data collection 

• Data analysis 

 

Dr. Alex Aravind • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: experimental design, 

data analysis, and manuscript review. 

 

Dr. R Luke Harris • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: experimental design, 

data analysis, and manuscript review. 
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3.1 ABSTRACT 

Near infrared spectroscopy (NIRS) measurements of hemoglobin (Hb) 

concentration in skeletal muscle tissue are influenced by contact force between the 

NIRS device and soft tissue. Measurements taken during in vivo dynamic exercise 

may be subject to contact forces that vary over time, and these time-dependent effects 

on hemoglobin measurements have not been quantified. The purpose of this study 

was to evaluate how different magnitudes and periods of cyclic square-wave loading 

affects relative hemoglobin concentrations. Higher contact loads were associated with 

greater peak changes, reoxygenation rates, cyclic amplitudes and cyclic averages. 

Longer cyclic periods resulted in larger cyclic amplitudes and cyclic averages, and 

these magnitudes changed over the duration of loading. Greater superficial tissue 

thickness was associated with trends similar to those observed with increased contact 

loads. These effects need to be considered when interpreting NIRS data, in order to 

differentiate between real physiologic changes and measurement artefacts. 

3.2 INTRODUCTION 

Near infrared spectroscopy (NIRS) is a technique in which two or more 

wavelengths of light are emitted into human tissue. Emitted photons undergo diffuse 

reflectance within the tissue and a portion of re-emitted photons is detected by the 

NIRS device. Oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) 

have different absorption spectra, enabling relative concentrations of O2Hb and HHb 
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to be computed using a modified Beer-Lambert law26. Total hemoglobin (tHb) 

concentration is then computed as the summation of O2Hb and HHb concentrations.  

NIRS measurements and subsequent computations rely on proper coupling 

between the NIRS device and skin. If a device de-couples from the skin, ambient light 

leakage contaminates the data54. The inverse is also true: elevated contact force can 

also influence data quality. This contact force artefact is complicated by the layering 

of interrogated tissues. In vivo measurements of muscle metabolic activity are made 

when photons propagate through skin, subcutaneous adipose and muscle tissues, so 

NIRS contact force effects need to be characterized for the complete skin-adipose-

muscle composite. All three layers interact to produce a specific mechanical response 

to external loading. For example, the tissue composite’s overall viscoelasticity and 

compressive strain is influenced by the material properties of each constituent 

layer51,71. This combined tissue response to compression can influence NIRS data. 

One method to evaluate the in vivo tissue optical response is to study each 

constituent layer independently and create a theoretical model to combine the results. 

At the present time, the relevant layers have not all been thoroughly examined 

independently to provide the detail required for this, though previous investigations 

explored optical effects when isolated tissues are subjected to compression58,59,66.   

Both rat heart58 and mouse skeletal muscle59 experienced a decrease in tHb 

when contact force was increased. Both studies also demonstrated increased HHb 

and deceased tissue oxygenation index (TOI) when higher contact forces were 
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applied. Time-dependent effects were not reported for skeletal muscle59 and they were 

difficult to quantify in heart because of heart movement throughout the cardiac cycle.  

Time dependent effects in the optical behaviour of skin were demonstrated by 

Chen et al72. The authors determined that the optimal contact pressure to measure 

blood glucose from skin is 66 kPa. At this pressure, signal variability was decreased 

and little additional signal optimization resulted from higher contact pressures. At 66 

kPa, NIRS data took approximately 30 seconds to stabilize, which we interpret as a 

viscoelastic response of the skin. A different study61 demonstrated a clear decrease 

in skin TOI over 60 seconds of elevated contact pressure. This effect was site-specific, 

with TOI stabilizing after 20 seconds when measured from the forehead. Stabilization 

was less evident on the finger and neck (see their Figure 4 for details).  

Instead of building a theoretical model, based on constituent layers, it is more 

feasible to directly measure the optical response of tissue composites in vivo. Previous 

work73 demonstrated time-dependent response of breast tissue (skin-adipose 

composite) in response to cyclic contact force. tHb was also observed to decrease in 

association with increased contact force. The SDS used for the study ranged from 1.5 

to 2.6 cm, so diffuse reflectance occurred in both skin and adipose tissue. 

Cugmas et al68 measured in vivo NIRS response to contact force with the intent 

of tissue classification. One of their measurements sites was over the abductor pollicis 

brevis muscle, so it consisted of a skin-adipose-muscle composite; however, their 

SDS was geared toward measurements from skin, rather than underlying muscle. 
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Increased contact force caused increased absorption and decreased reflectance and 

reduced the cutaneous scattering coefficient. 

Previously, we investigated the effects of static contact force on NIRS muscle 

measurements (unpublished data). Various static contact forces combined with 

various isometric muscle activations were tested at four different locations, including 

from the vastus lateralis muscle (VL). Peak changes in tHb, O2Hb and HHb were 

affected when contact force increased. Both tHb and O2Hb decreased and HHb 

increased. While both contact force and muscle activation significantly affected peak 

changes, no interaction was detected, which suggested that follow up studies should 

not need to vary muscle activation. However, these findings only apply to isometric 

contractions with static loading (unpublished results). Given that fixation techniques 

usually involve straps, dynamic motions are expected to affect contact force as muscle 

geometry changes. Dynamic loading is usually cyclic (for example, recording from VL 

during cycling), so time dependent effects are also important. The current study 

addresses these issues by measuring NIRS response to cyclic loading at different 

periods. 

3.3 PURPOSE 

The objective of this study was to quantify the relationship between computed 

changes in O2Hb, HHb and tHb concentrations in response to varied contact force, 

period of loading and cycle number. Contact force, period and cycle number were 



~ 40 ~
 

expected to influence the behaviour of computed O2Hb, HHb and tHb for all outcome 

measurements. 

3.4 METHODS 

3.4.1 PROTOCOL 

Eighteen volunteers, ten males and eight females, participated in the study 

after providing informed consent. All procedures were reviewed and approved by the 

institutional research ethics board. NIRS data was acquired from the thigh by placing 

a NIRS device (OxiTor M2, Pathonix Innovation Inc., Vancouver, BC, Canada) 

superficial to the midline of vastus lateralis. Longitudinal placement was determined 

by landmarking both the greater trochanter and the distal end of vastus lateralis. The 

NIRS device was placed 60% of the distance between the two landmarks (referenced 

from the greater trochanter), using the greater trochanter as a reference. Skinfold 

thicknesses were recorded three times at the NIRS measurement location and the 

average of these three measurements multiplied by 0.5 was used to estimate 

superficial tissue thickness (STT, consisting of skin and subcutaneous adipose 

tissue). 

Participants sat in a chair with their hip and knee each at 90 degrees of flexion 

and they were asked to refrain from activating vastus lateralis and other leg muscles 

throughout the experiment. Varied levels of contact force were applied to the NIRS 

device with the aid of a custom loading cradle (Figure 7) and load cell (±220 N, 
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LSB200, Futek, Irvine, CA, USA). One investigator (TS) applied the contact force with 

one hand while bracing the participant’s knee to prevent motion and muscle activation. 

 

Figure 7: Custom loading cradle and load cell. 

The loading protocol consisted of 13 trials, each with 2 minutes of baseline 

measurement, 2 minutes of contact force loading and 2 minutes of recovery. The 

entire protocol took approximately 1.5 hours and was conducted in a mostly darkened 

room to minimize the potential for ambient light contamination. During the contact 

force loading, both the level of contact force and the cyclic period were varied 

randomly. Peak load levels were 15 N, 30 N and 60 N. Cyclic loading consisted of 

square waves starting at 1 N and stepping up to the peak load with periods of 5 s, 10 

s, 20 s and 240 s. Loading with a period of 240 s approximated the static load 

condition.  
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3.4.2 ANALYSIS 

Relative concentration changes in O2Hb, HHb and tHb, measured in mM*mm, 

were computed with respect to the average values recorded in the 2-minute baseline 

measurement immediately preceding each loading trial. Five outcome measurements 

were computed from O2Hb, HHb and tHb data. TOI values were not analyzed because 

they were not fully implemented in our NIRS device. Outcomes quantified both the 

overall response (i.e., PC and FR) for each trial and the cyclic response (i.e., CAM, 

CAV, and CR; these five abbreviations are explained below). For each trial, the peak 

change (PC) is the largest magnitude change from baseline during the entire loading 

period; and final reoxygenation rate (FR) is the least-squares regression slope of the 

O2Hb curve for 3 s at the end of loading74. Cycle-specific outcomes include the 

following. (i) Cyclic average (CAV) is the average relative hemoglobin concentration 

change during one complete cycle, which is synonymous with DC offset for each 

cycle. (ii) Cyclic amplitude (CAM) is the difference between the maximum and 

minimum hemoglobin concentrations during one full loading cycle. (iii) Cyclic 

reoxygenation rate (CR) is the same as FR, but computed at the beginning of the 

unloaded portion of each loading cycle. A 3-second window was not possible for CR 

because the shortest period was 5 seconds, so a 1-second interval was chosen 

instead. All cyclic measurements—CAV, CAM and CR—were computed for each 

loading cycle.  Both PC and FR were computed to provide an indication of the 

aggregate response to each loading block. CAV, CAM and CR were computed to 

quantify the time-dependent nature of contact force artefact. A schematic description 

of the outcome measurements is displayed in Figure 8. 
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Figure 8: Schematic representation of PC, CAV, CAM, CR and FR for one trial (20 sec 

period and 60 N load) 

3.4.3 STATISTICS 

Peak data were analyzed with a three factor ANOVA, with load, period and STT 

as within-subject factors. Cyclic data contained different numbers of data points 

because different loading periods resulted in different numbers of loading cycles; 

therefore, a mixed-effects model was used to analyze cyclic data. Load, period, cycle 

and STT were fixed effects, subject was a random effect, and model residuals were 

checked to ensure statistical models were appropriate. 

Post hoc comparisons were made with t-tests and p-values were adjusted for 

multiple comparisons using the Holm-Bonferroni method. All levels within each factor 

were compared in the post hoc tests for the ANOVA results, and an equivalent 

approach was used with the post hoc tests for load and period cyclic data (mixed 

model results). Post hoc tests based on cycle number were restricted to comparisons 

between the first cycle vs. each remaining cycle. This approach was taken to avoid an 
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excess number of post hoc test and qualitative analysis of the results suggested that 

cyclic effects where largely restricted to the first cycle. 

3.5 RESULTS 

A total of 18 subject participated in the study and their descriptive statistics are 

listed in Table 4. Fifteen out of 18 participants responded to contact force, both static 

and cyclic, in a similar pattern. O2Hb, HHb and tHb decreased from baseline during 

loading and values returned to baseline following the removal of the load. This typical 

response is presented in Figure 9 a). The recovery was more variable, with some 

subject exhibited a hyperemic response, and some simply returned to baseline values 

asymptotically. The response to loading in three subjects did not follow these typical 

patterns. In these three subjects, O2Hb and tHb decreased and HHb increased (Figure 

9, b and d), in a similar fashion to what would be expected during a contraction. These 

three subjects were included in the statistical analysis and their presence did not alter 

significance levels in a meaningful manner. 

Table 4:Descriptive statistics of subjects. 

 Mean Standard Deviation 

Age (years) 29.4 9.9 

Height (m) 1.74 0.07 

Weight (kg) 76.3 19.7 

BMI 24.9 4.45 
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Figure 9: Example trial data. Each chart displays hemoglobin changes, with O2Hb in 

red, HHb in blue and tHb in green. The corresponding square wave loading is drawn 

in black and plotted against the secondary y-axis. a) is representative of the typical 

NIRS response to external load (15 out of 18 subjects). b) is representative of the 

atypical NIRS pattern, which is similar to a muscular contraction where HHb increases 

over time, though the magnitude is much smaller than that expected with a contraction. 

c) is representative of a static hold. 

Load period and cycle effects were largely consistent on all outcome measures 

for O2Hb, tHb and HHb. Some general trends included the following. (i) Increased 

contact force resulted in a greater magnitude of PC, CAV, CAM, CR and FR. (ii) A 

longer period caused a greater magnitude of CAV and CAM. (iii) The effects of cycle 

were mostly limited to the first one or two loadings cycles. These cycles had smaller 

magnitudes of CAV and larger magnitudes of CAM when compared to the remaining 

cycles. (iv) Subjects with greater STT typically exhibited larger magnitudes of PC, 

CAV, CAM, CR and FR. There were some exceptions to the above general trends. As 

previously mentioned, HHb exhibited a more variable response than O2Hb and tHb 

because HHb sometimes decreased and sometimes increased in response to each 

elevated load, so main effects were not always statistically significantly. In contrast, 
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O2Hb and tHb both decreased in response to treatments so there we detected 

statistically significant changes. The following paragraphs provide detailed results, 

grouped by outcome measurement. 

3.5.1 PEAK CHANGES 

PC was affected by contact force and STT. All levels of contact force were 

different from each other for both O2Hb and tHb (p<0.0001 for both).  No effect of 

contact force on HHb was detected. Similarly, a significant main effect of STT on PC 

was detected for O2Hb and tHb (p<0.0001 for both), but not HHb. No post hoc t-tests 

were performed for STT levels because some subjects had equivalent STTs (see 

Figure 10 description for more details) and there were many levels of STT. No effect 

of period on PC was detected for O2Hb, tHb or HHb. 
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Figure 10: Boxplots depicting the effects of contact force, period and STT on peak 

changes (PC). O2Hb data is displayed in a, b and c, tHb data is displayed in d, e and f 

and HHb data is depicted in g, h and i. Only 13 boxes are shown in c, f and i because 

each of the following STTs had two subjects with equivalent values: 0.3, 0.9, 1.0, 1.2 

and 1.35 mm. 

3.5.2 FINAL REOXYGENATION RATE 

FR was affected by contact force (p=0.003), period (p=0.037) and STT 

(p<0.001). Post hoc comparisons revealed differences between 15 N and 60 N 

(p=0.003) and 30 N and 60 N (p=0.039). FR following static loading was significantly 

different than periods of 5 s (p<0.001), 10 s (p<0.001) and 20 s (p<0.001), and we 
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failed to detect differences in FR for all cyclic periods. Similar to the PC analysis, no 

post hoc comparisons were made for FR as a function of STT (see Figure 11). 

 

Figure 11: Boxplots of final reoxygenation rate (FR) as a function of (a) contact force, 

(b) period and (c) STT. 

3.5.3 CYCLIC AVERAGE 

Contact force affected CAV for O2Hb, tHb and HHb and all levels of contact 

force were different from each other (p<0.0001). There was also a significant main 

effect of period on CAV and post hoc comparisons revealed differences between 5-s 

and 10-s periods in their effects on CAV for both O2Hb (p=0.0001) and tHb (p=0.0003). 

There was also a significant difference between the 10-s and 20-s period effects on 

HHb (p<0.0001, see Figure 12). Cycle number affected CAV for O2Hb (p<0.0001), tHb 

(p<0.0001) and HHb (p<0.0001), and post hoc results demonstrated that the first cycle 

was significantly different from the remaining cycles. STT also affected CAV for O2Hb 

(p<0.0001) and tHb (p<0.0001), but there was no significant effect of STT on CAV for 

HHb (p=0.078). See Figure 13 for a summary of STT results.  
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Figure 12: Box plots of cyclic average (CAV) data for O2Hb (a, b and c), tHb (d, e and 

f), and HHb (g, h and i). 
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Figure 13: Boxplots depicting the effects of superficial tissue thickness, STT, on (a) 

CAV, (b) CAM and (c) CR. O2Hb, HHb and tHb are shown in red, blue and green, 

respectively. 

3.5.4 CYCLIC AMPLITUDE 

CAM increased in response to increased load for O2Hb, tHb and HHb 

(p<0.0001 for all three). All post hoc pairwise comparisons between 15 N, 30 N and 

60 N were significant for all hemoglobin measures (p<0.0001) and are depicted in 

Figure 14. Similar results occurred when period was increased. CAM increased with 

increasing period and all pairwise comparisons between 5 sec, 10 sec and 20 sec 

were significant (p<0.0001) for O2Hb, tHb and HHb. A significant main effect of cycle 

number was detected for O2Hb, tHb and HHb (p<0.0001). Post hoc comparison 

revealed that the first cycle had significantly larger CAM for O2Hb, tHb and HHb 
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(p<0.0001). There was also an effect of STT on CAM for O2Hb, tHb and HHb. When 

STT increased, CAM also increased. 

 

Figure 14: Box plots of cyclic amplitude (CAM) data for O2Hb (a, b and c), tHb (d, e 

and f) and HHb (g, h and i). 

3.5.5 CYCLIC REOXYGENATION RATE 

CR increased slightly when contact force was increased and post hoc pairwise 

comparisons revealed differences between all load levels (p<0.05). No effect of period 

or cycle was detected for CR. There was a significant effect of STT on CR (p=0.003). 
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3.6 DISCUSSION 

In this study, we demonstrate that transcutaneous skeletal muscle NIRS data 

is susceptible to contact force artefact, and this artefact is affected by both magnitude 

and duration of external loading. In addition, contact force artefact is magnified by 

increased STT.  

Oscillating contact forces between 15 N to 60 N (approximately 6.3 to 25 kPa) 

cause O2Hb and tHb concentration changes that resemble data generated during 

active, cyclic muscular contractions because both O2Hb and tHb decreased during the 

applied contact load and recover toward baseline when the contact load is released; 

however, the magnitude of decrease is smaller than decreases associated with 

muscle contractions (unpublished results). HHb data during elevated contact force do 

not follow trends normally observed during muscular contractions because, in this 

study, the typical response to contact load is a decrease in HHb concentration. These 

general patterns were observed during both static and cyclic loading, with the 

magnitude of contact load influencing all outcome measurements (peak changes, PC; 

cyclic average, CAV; cyclic amplitude, CAM; cyclic reoxygenation rate, CR; and final 

reoxygenation rate, FR). 

Varying the period of cyclic loading had no effect on PC or CR, but longer 

periods were associated with differences in CAM and CAV. Similar rates of change 

during unloading (i.e. CR) and loading should be associated with greater CAM at 

longer periods because the tissue has more time to react to the applied load. Logically, 

then, if CAM increases then CAV should increase as well. Reoxygenation rates have 
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been shown to be influenced by ischemic injury74, which is unlikely in our experiment 

because contact load magnitudes were low and the duration was brief, so the 

recorded effects of period are reasonable.  

Cycle number affected CAM and CAV, where the initial loading cycle differed 

from the remaining cycles. The tissue’s viscoelastic response to load is most likely the 

main cause for this finding. Unbound fluid, either blood within vasculature or interstitial 

fluid, may be redistributed away from the measurement volume during loading, which 

causes a time-varied response that stabilizes after initial fluid motion. During loading, 

tHb decreases and these changes suggest an associated decrease in blood volume. 

As interstitial fluid is redistributed away from the measurement volume, the density of 

scattering components of the tissues increases, which will affect the scattering 

coefficient and affect NIRS data59. Fluid motion was also suggested as an explanation 

for why breast tissue has a time-varying response to compressive loading 73. Skin also 

exhibits a time varied response to contact load during the first 30 seconds of loading 

at 66 kPa 72.  

Fluid redistribution is likely accompanied by compression of the superficial 

tissues. Toomey et al.75 used ultrasound to demonstrate that 40 kPa (12.7×47.1 mm 

contact area, 7.2 N applied force) of contact pressure resulted in a 24% reduction in 

STT on mid-thigh. Approximately 25 kPa was applied to the thigh in the current study, 

so it is reasonable to assume that some compression of the superficial tissues 

occurred. 
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Larger STT were associated with a greater magnitude of response for all 

outcome measures (PC, CAV, CAM, CR and FR) and this effect may be related to the 

compression of superficial tissue while under load. Li and Tin 58 performed contact 

force measurement directly on rat heart tissue and suggested that small contact 

pressures (approximately 50 kPa) were not sufficient to compress muscle tissue. In 

their case, the heart was beating, so the modulus of elasticity may be greater than 

relaxed skeletal muscle, though it suggests that compression might be isolated to 

overlying tissues. Unpublished results from our lab demonstrated no interaction 

between muscle activation and the effects of NIRS contact force, which also suggests 

that STT is the primary contributor to contact force artefact. As superficial tissue is 

compressed, detected photons spend, on average, a greater time within muscle tissue 

(based on unpublished simulation results). Compressed superficial tissues take up a 

smaller portion of the ‘banana shape’ that photons traverse during measurements; 

therefore, photons spend more time in muscle tissue. This is an oversimplification, but 

it serves as a conceptual idealization. Experimental evidence65 of increased 

transmittance through in vitro tissues subjected to compression supports the idea that 

a greater proportion of photons should reach underlying muscle.  Given that muscle 

has higher absorption coefficient76, in part from myoglobin concentrations, the optical 

density can increase during external loading. The interplay between increased 

transmittance through superficial tissue and greater optical density of muscle77 is likely 

one of the main causes for the trends we observed in response to contact loads.  

Computed changes in hemoglobin concentrations are influenced by thickness 

changes in the superficial tissues, but they may reflect the in vivo hemodynamic 
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response to loading. Specifically, vascular compression could influence the measured 

relative concentrations of O2Hb and HHb. Bringard et al78, demonstrated that HHb 

decreased and TOI increased when subjects wore compression stockings with low 

contact pressure (at 3 kPa). They suggested that venous vasculature was 

compressed at 3 kPa, but arterial vasculature was not. Consequently, HHb should be 

redistributed away from the measurement volume, but O2Hb should not, thereby 

increasing the TOI. Carp et al73 suggested a similar mechanism to explain NIRS data 

from breast tissue subjected to compression. The authors suggest that the non-

vascular portion of breast tissue supported external loads and prevented total arterial 

occlusion, which resulted in observed increases in tHb during sustained loads. The 

loads associated with tissue compression in Carp’s study were not well quantified, 

though contact pressures during mammograms is roughly 10 kPa79,80. 

In contrast to these increases in TOI and tHb observed with, respectively, lower 

extremity compression garments and compression of breast tissue, in the current 

study, tHb did not increase while the contact force was applied. This strongly indicates 

that blood was redistributed away from the measurement volume when external load 

was present. It may be caused by arterial occlusion during loading, consistent with 

measurements of capillary closing pressure of ~4 to 4.6 kPa81, which is less than what 

was applied in this study but greater than the estimated pressure of the 

aforementioned compression garments78. When contact pressure is applied directly 

to cardiac58 and skeletal59 muscle tissues, tHb decreases in response. In both tissues, 

vascular compression is proposed as a possible mechanism. Concomitant increases 

in HHb and decreases in TOI58,59 suggest that both arterial and venous vasculature 
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compression occurs in striated muscle. Non-vascular components of muscle tissue 

may not be able to support external loads without vascular compression in a manner 

similar to that speculated in breast tissue73, so muscle should be more susceptible to 

decreased tHb and increased HHb during loading. In the current study, three subjects 

experienced an initial decrease in tHb followed by a gradual increase in HHb, which 

would be consistent with O2Hb to HHb conversion. These subjects had lower STT, so 

it is possible that the effects of vascular compression in participants with less 

subcutaneous adipose tissue (i.e., thinner STT layers) were more characteristic of 

skeletal muscle than they were in participants with more subcutaneous adipose tissue 

(i.e., thicker STT layers). A contributing factor to the response of these three subjects 

may be athletic fitness. This was not formally explored in the study, but two of these 

three subjects maintained physically active lifestyles, so increased capillarization, 

myoglobin concentrations and/or mitochondrial capacity may also play a role in the 

hemodynamic response. 

These different hemodynamic trends suggest an interplay between two 

different mechanisms that affect NIRS data. In subjects with thinner STT, NIRS 

instruments may be able to detect compression of skeletal muscle vasculature, 

especially capillaries. In subjects with thicker STT, on the other hand, NIRS instrument 

may be susceptible to artefact caused by altered optical properties associated with 

superficial tissue compression. While the results lend support the to the second 

(measurement artefact) mechanism, further work is required to confirm vascular 

compression as a function of STT and contact pressure. 
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3.6.1 LIMITATIONS AND FUTURE WORK 

The author applying the contact load (TS) braced each subject’s knee to 

minimize the subject’s tendency to provide a resistive force to the contact loading. 

Preliminary trials with and without bracing suggested that bracing the knee was 

adequate to prevent involuntary muscle activation, though muscle activation could 

have influenced the NIRS data of the three subjects who exhibited gradual increases 

in HHb during loading. Muscle electrical activity was not monitored with 

electromyography during contact pressure loading, so we cannot confirm any possible 

role of muscle activation in data from these or other subjects. 

STT measurements were made with calipers, and they were not expected to 

give accurate values when compared to ultrasound measurements; however, the 

trends of STT should be robust to the accuracy of the calipers because both caliper 

measurements and ultrasound measurements are linearly related to STT33. However, 

the relative error associated with calipers is estimated at 43% when compared to 

ultrasound, so our statistical results for STT were focused on trends rather than direct 

comparisons between exact values.  

To address these issues, future work will measure STT directly using 

ultrasound in conjunction with NIRS measurements. In addition, direct measurement 

of vascular compression or microvascular flow during external loading would provide 

evidence to either support or refute the speculated mechanisms. 
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3.6.2 SIGNIFICANCE OF FINDINGS 

Computed hemoglobin data from NIRS measurements of vastus lateralis are 

sensitive to contact forces between the NIRS device and skin. These effects need to 

be considered when interpreting NIRS data to differentiate between real physiologic 

changes and measurement artefacts. At the very least, NIRS measurements 

subjected to varied contact forces (for example, measuring from vastus lateralis during 

cycling could result in varied contact forces, depending on fixation techniques) should 

be given a preconditioning period before baseline measurements are recorded. This 

will minimize viscoelastic effects associated with the first few loading cycles. STT may 

play an important role when quantifying measurement artefacts related to contact 

force. Future development of photon propagation simulations and a device capable of 

real time STT monitoring and NIRS will help to quantify measurement artefacts. 
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CHAPTER 4: PHOTON PROPAGATION IN A TISSUE COMPOSITE 

Disclaimer: The content of this chapter will be submitted to a peer-reviewed for 

publication and copywrite for the manuscript will agree with the journal’s policy. The 

roles of each contributing author are listed in Table 5. 

Table 5: The roles of each author for the photon propagation investigation. 

Author Role 

Timothy Schwab • Determine simulation design 

requirements and inputs 

• Data extraction and analysis 

• Interpret findings 

• Write paper 

 

Rodrigo Santoro 

Silverio 

• Reproduce original C code in JAVA and 

implement multithreading 

 

Dr. Alex Aravind • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: simulation design, data 

analysis, and manuscript review. 

 

Dr. R Luke Harris • Act in a supervisory role including, but 

not limited to, the following aspects of 

the investigation: simulation design, data 

analysis, and manuscript review. 
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4.1 ABSTRACT 

Near infrared spectroscopy (NIRS) is an imaging modality that computes 

relative changes in oxygenated and deoxygenated hemoglobin based the diffuse 

reflectance of photons emitted into tissue. When determining hemoglobin contractions 

in muscle, photons propagate through superficial tissues (skin and adipose tissue) 

before and after passing through muscle. Knowledge of the path of photons is critical 

to accurate measurement of underlying muscle and this path is influenced by the 

optical properties and thickness of the superficial tissue. Our purpose was to simulate 

the effects of tissue optical properties and superficial tissue thickness on photon 

propagation through a composite of skin, adipose tissue and muscle. Our Monte Carlo 

simulation suggests that photon-muscle interactions are strongly influenced by 

superficial tissue thickness, and muscle properties could be recorded at depths less 

than 12 mm. Future work with our model will aim to optimize NIRS hardware design. 

4.2 BACKGROUND 

Near infrared spectroscopy (NIRS) is a method for measuring in vivo 

hemoglobin concentration changes in tissue. Concentration changes are measured 

relative to a baseline and are computed with the intensity of diffuse reflectance, 

coupled with a modified Beer-Lambert law26. Measured hemoglobin concentration 

changes are simply trends that can be difficult to compare across individuals. Some 

NIRS systems - time-domain and frequency-domain - are able to measure absolute 

values of hemoglobin concentrations.  Both the time and frequency domain systems 
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achieve this by measuring time of flight to infer the pathlength of reflected photons 

travelling in tissue. While knowledge of the pathlength is valuable for hemoglobin 

concentration calculations, it does not define where the photons are travelling within 

tissue. For example, pathlength does not quantify how far photons propagate in each 

layer of a tissue composite. 

Computer simulations and experimental models6,10,11,34,35,82,83 provide better 

estimates of how photons propagate through tissue. Many simulations focus on how 

photons propagate through brain12-15,17,84, though a few studies have investigated how 

photons propagate through muscle18,34,35,82,83. While both measurements sites are 

modelled through either diffusion equations or Monte Carlo simulations, the anatomic 

variability in subcutaneous adipose tissue thickness is an added variable that 

confound NIRS muscle measurements. To measure from muscle, re-emitted photons 

must propagate though a composite of skin, adipose tissue and muscle (together, 

referred to as a tissue composite), so reflected intensity is a result of the combined 

absorption and scattering in all of these tissues. Given the variation in thicknesses 

and optical properties of these tissues, the relative contribution of muscle to the 

reflected signal intensity is not fully understood.  

Knowledge of photon propagation through a tissue composite is critical to 

obtaining the most accurate data from the underlying muscle tissue, especially in 

situations where superficial tissue thickness (STT) varies dynamically in response to 

contact pressures75 between the NIRS device and the skin. Previous layered media 

simulations of photon propagation in muscle are very informative regarding potential 

crosstalk and underestimation errors34, maximum STT where a homogeneous media 
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assumption is acceptable34,82,83 and spatial sensitivity maps18,82.  These previous 

investigations used either single values34,35,82 or a tight range on values18,83 for 

inputted absorption and scattering coefficients.  These optical properties may not 

reflect natural intra-subject and inter-subject variation that is observed in vivo19,76. In 

addition, scattering coefficients are thought to change when contact loads are 

increased59,69. Two of these studies18,82 investigated photon propagation with short 

source-detector separations (SDS), though the spatial sensitivity maps for these short-

SDS were not presented. Additional data regarding the spatial sensitivity of short SDS 

would be beneficial when attempting to filter the contributions of superficial tissues 

when STT is dynamically changed (for example, during cyclic motions where contact 

loads fluctuate as a result of fixation techniques). 

Lastly, researchers quote maximum penetration depths equal to one half of the 

SDS38,39,77, when experimental6,10,11 and computational models12-15,17,34,35,82-84 

suggest average penetration depths closer to one third of the SDS. Despite this 

discrepancy, we suggest that average (or maximum) depth may not adequately 

describe where the reflected signal attenuation occurs. A computational model that 

tracks how photons propagate in each tissue layer would be more informative and 

could be used to optimize NIRS device design. For example, detailed knowledge of 

photon propagation through a tissue composite could be used to optimize superficial 

tissue filtering, by adapting SDS based on tissue thicknesses, or enhancing depth 

selectivity within muscle. 
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4.3 PURPOSE 

Our purpose was to model photon propagation and absorption through a tissue 

composite of skin, adipose tissue and muscle. We were interested in quantifying 

photon paths during diffuse reflectance, with a focus on (i) how far the photons 

propagated through muscle, (ii) how much absorption occurred in muscle and (iii) 

describing the path behaviour through aggregate tissue. Specific emphasis was leant 

to photon propagations between short SDS. 

4.4 METHODS 

4.4.1 OVERVIEW OF MONTE CARLO 

We implemented a Monte Carlo simulation of photon propagation that was first 

described by Wang et al85 and we used the simulation to model diffuse reflectance of 

photons propagating through skin, adipose tissue and muscle. In the simulation, 

photon packets are launched from a point source and undergo diffuse reflectance 

within the tissue composite. When each photon packet enters the tissue, it is displaced 

within the tissue to a point where it undergoes both an absorption event and a 

scattering event. The distance a photon packet travels between events is governed 

by an exponential distribution based on the scattering and absorption coefficients 

(distance=-ln()/(s+a), where  is a random number between 0 and 1, s is the 

scattering coefficient, and a is the absorption coefficient). The cosine of the scattering 

angle is computed with the Henyey-Greenstein phase function as described by Wang 
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et al, which models experimental data well86. Absorption decrement was computed by 

multiplying the photon packet weight by (a*L-0.5(a*L)2) which was used to 

approximate the expression exp(-a*L), where L is the photon packet step size. It is 

this decrement that leads to the term photon packet, instead of simply referring to 

photons. For simplicity, we will use the term photon for the remainder of the paper. At 

boundaries between tissue layers, Fresnel’s equations were used to determine the 

probability of internal reflection.  

This process of scattering and absorption occurs in 3 dimensions and the path 

of a photon is recorded if the photon exits the tissue and enters a virtual detector. The 

detectors are square (5 mm x 5 mm) and located at SDS = 2.5, 5, 7.5, 10, 20, 30, and 

40 mm. 

Our simulation is implemented in Java (Java 8, Oracle Corporation, USA) and 

optimized for multi-threading to decrease simulation times. 

4.4.2 MONTE CARLO DETAILS 

Photon propagation is dependent on the values of s, a, anisotropy (g), and 

the index of refraction (n) for each layer. Published values for these optical properties 

vary depending on the experimental technique used to observe them, so our 

simulation incorporates a range of possible optical properties because previous work 

suggest that simulation results can be sensitive to optical inputs34. Table 6 lists the 

ranges of each optical property at similar wavelengths to those commonly used in 

NIRS (600 nm to 850 nm). For simplicity, variables listed in Table 6 are assumed to 

have a uniform distribution between the lower and upper bounds because the true 
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underlying distribution is unknown. The values of each optical property were randomly 

selected from the ranges defined in Table 6 for each photon-tissue interaction. 

 

Table 6: Ranges of optical properties of skin, adipose tissue and muscle 

 Skin Adipose Muscle 

μa (cm-1) 
0.16 to 0.64 19 0.003 to .09 76 0.12 to 1.08 19 

μs' (cm-1) 21 to 29 76 12 to 14 76 4 to 6 76 

g 0.45 to 0.9 76 0.9 to 0.93 76 0.7 to 0.95 76 

n 1.37 to 1.38 87 1.455 to 1.467 88,89 1.38 to 1.405 88-90 

We purposefully varied two factors: adipose tissue thickness and SDS. Adipose 

tissue thickness was assigned values of 1, 4, 7, 10, 13, 16, 19, and 21 mm. The SDS 

was set at 2.5, 5, 7.5, 10, 20, 30, and 40 mm. We held the skin thickness constant at 

2 mm as this was a representative value given that site specific values vary between 

1.6 mm and 2.5 mm91; therefore, we combined the adipose tissue thickness with the 

skin thickness to define the overall STT. This resulted in STT values of 3, 6, 9, 12, 15, 

18, 21 and 24 mm. NIRS is typically used to measure from muscles where the STT is 

less than 10 mm92, so the larger values of our inputs may seem less applicable; 

however, clinical populations often exhibit these higher STT. 

4.4.3 ANALYSIS 

When a photon was re-emitted into a detector, we stored the path coordinates 

and computed several outcomes. We computed differential path length factor (DPF) 

by adding the displacements between scattering locations along a photon’s path and 
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dividing by the SDS. We computed the average depth (AD) by taking the average of 

the scattering locations. We quantified the interaction with muscle by defining the path 

length in muscle (PLM, %) and normalized absorption in muscle (NAM, %). PLM is 

computed by adding the displacements between scattering locations within muscle 

and is expressed as a percent of the total pathlength. NAM is the percent attenuation 

caused by absorption while the photon was within muscle tissue. To visualize how 

photons propagated through the tissue composite, we generated spatial sensitivity 

maps where the depth of photon-tissue interactions was characterized with respect to 

the axis defined by the emitter and detector (x-axis). Each profile was normalized to 

the maximum number of tissue interactions recorded in a specific pixel. 

4.5 RESULTS 

We ran 56 simulations, one for each STT and SDS combination, and recorded 

the paths and intensities of photons that were re-emitted into the detector. Based on 

preliminary simulations, we aimed to record 400 photons at each detector. This was 

easily obtained (577 ± 140, mean ± standard deviation, with a minimum of 409) by 

launching between a minimum of 1x105 photons (STT = 24 mm, SDS = 2.5 mm) and 

a maximum of 2x109 photons (STT = 3 mm, SDS = 40 mm). 

Both STT and SDS affected PLM, NAM and AD. Means and standard errors 

for the outcomes are shown in Figure 15. AD increased with increasing STT and 

increasing SDS, though this greater AD did not correspond to more muscle 

penetration. Both PLM and NAM increased with decreasing STT and increasing SDS.  
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Figure 15: a) Average depth, b) path length in muscle, and c) normalized absorption in 

muscle as a function of SDS. Each line represents a different STT (cm) as labeled 

below the chart. The points represent mean values and the whiskers are the standard 

errors. 

Inspection of Figure 15 suggests some potentially important thresholds. 

Measurements and simulations of cerebral photon propagation 9 suggest that a partial 

pathlength factor (equivalent to PLM) of 5% is sufficient to measure hemoglobin 

changes, so this was chosen as a threshold. PLM was below 5% at all SDS when STT 

was greater than or equal to 15 mm. PLM was above 5% at SDS ≥ 3 (typical distances 
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employed in NIRS measurements) when STT was 12 mm or less. At these same SDS 

and STT ranges, NAM had a minimum value of 7.3%. At short SDS (≤ 5 mm), PLM 

was less than 5% for all STT except STT = 3 mm. Also, at SDS ≤ 5 mm, NAM was 

below 1.6% for all STT, except STT = 3 mm. When STT was 3 mm, PLM had a 

minimum value of 6.5% and NAM had a minimum value of 2.3%. 

Spatial sensitivity maps displaying where photons interact with tissue are 

depicted in Figure 16. The two outermost contours in the figure correspond to 1% and 

5% of the max number of tissue-photons interactions, and the remaining contours are 

10% increments (i.e. 10%, 20%, 30%...). When STT is thick (≥15 mm), the photon 

propagation in the tissue composite was very similar to that expected in a 

homogeneous medium because photons largely travelled in the adipose layer. In 

these cases, the expected “banana shape” was evident. However, when STT was thin 

(<12 mm), the banana shape was compressed because photons reflected from the 

tissue boundaries.  
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Figure 16: Spatial sensitivity maps depicting depth of photon-tissue interactions for a 

variety of SDS and STT. STT = 3, 6, 9, 12, and 15, arranged in rows with 3 in the top 

row. Horizontal dashed lines depict the boundaries of the adipose tissue layer. The two 

outermost contours correspond to 1% and 5% of the max number of tissue-photons 

interactions, and the remaining contours are 10% increments (i.e. 10%, 20%, 30%...). 

Contours at SDS = 40 mm were similar to that of SDS = 30 mm, so they were not 

displayed. 

The spatial sensitivity maps show a difference between muscle penetration at 

different SDS. Longer SDSs are associated with more muscle penetration. For 

example, some 5% contour lines penetrate muscle at SDS = 30 mm and 40 mm, but 

not at SDS = 2.5 mm and 5 mm. While not evident in Figure 16, the 1% contour does 

penetrate into muscle with an SDS of 2.5 mm and an STT of 3 mm, but not at greater 

STT. Contours at SDS = 40 mm were very similar to SDS = 30 mm, so they were 

omitted from the figure. 
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4.6 DISCUSSION 

Our simulations yield three main findings: (1) our model is valid because our 

computed values agree with published experimental and simulation results, (2) a cut 

off threshold for STT (approximately 12 mm at an SDS of 4 cm) exists where photons 

fail to propagate a large amount in muscle, and (3) limiting photon propagation to 

superficial tissues can be accomplished with different SDS for each STT. 

4.6.1 MODEL VALIDATION 

We compared our DPF (Figure 17) to literature values to validate our 

simulations. Duncan et al8 used a frequency domain NIRS system (SDS = 45 mm with 

wavelengths between 690 and 832 nm) to compute the DPF on forearm, calf and 

head. DPF varied with both location and sex, and the authors suggested that these 

effects were influenced by adipose tissue thickness, though specific values were not 

reported. Our data corroborates this suggestion because we found that DPF was 

influenced by STT. In Duncan et al.’s study, DPF values were lowest on male 

forearms, with a range of 3.53 to 3.96, presumably because adipose tissue thickness 

was the smallest. The highest DPF measured from transcutaneous muscle 

measurement was from female calf muscle, ranging from 5.9 to 6.41. A direct 

comparison between these data to a specific STT is difficult because adipose tissue 

thickness was not reported by Duncan et al; however, typical forearm STT is 3 mm in 

males30 and typical calf STT ranges from 4 to 21 mm in females93. Based on these 

STT values, our DPF on male forearm would be 4.3 (approximated with SDS of 40 

mm). Our computed DPF on female calf would be between 5.0 and 16.8. Our DPF 
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estimate for forearm is within 15% of experimental findings, and our low range 

estimate of calf DPF aligns with experimental results, though our upper limit is much 

higher than experimental results. In an experimental setting, an STT of 21 mm will 

compress when a NIRS device is applied (for example a 25% reduction is expected 

at typical NIRS contact pressures75) so the effective STT will be thinner and the 

measured DPF may be lower than expected given an uncompressed thickness. When 

adjusting for a 25% reduction, our simulated DPF is still higher than experimental 

results. This comparison suggests that our simulation may overestimate DPF but 

thinner STT simulations are reasonable. Some of the disagreement between Duncan 

et al.’s experimental evidence and our simulation results likely stems from the 

uncertainty of their unreported STT. Despite these differences, our PLM results agree 

with other experimentally validated simulation results34,35 and minor differences 

between these studies can be attributed to differences in computing photon decrement 

values. 
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Figure 17: a) Differential pathlength factor (DPF) as a function of SDS (cm). Each line 

represents a different STT (cm) as labeled below the chart. The points represent mean 

values and the whiskers are the standard errors. No post hoc significant differences 

detected between SDS 3 and SDS 4, though all other SDS comparisons yielded 

statistically significant results.  

 

Comparison of our average penetration depth to experimental data is more 

challenging because experimental data is typically based on homogenous phantoms 

with different optical properties than that of a tissue composite. Cui et al6 used a 

phantom with optical properties similar to adipose tissue to determine the depth where 

photons are most likely to dwell as a function of SDS (Depth = 0.22*SDS+0.092 cm). 

Their results are very similar to our simulated AD when STT was thick enough to 

approximate a homogenous medium (18 mm ≤ STT ≤ 24 mm). For example, our AD 

at SDS = 3 and STT = 24 mm was 7.9 mm in comparison to 7.5 mm estimated by Cui 

et al.’s empirical curve.  

In addition, our data is similar to that measured by Patil et al10. Patil determined 

probability distributions for the penetration depth in a phantom (with optical properties 
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similar to a combination of adipose and muscle tissue) and quantified the penetration 

depth with the 3rd quartile of the distribution. They reported 3rd quartile penetration 

depths of 10, 13 and 15 mm for SDS of 20, 30, and 40 mm, respectively. Our 

simulation that best approximated their experimental setup has an STT of 24 mm. 

Third quartile depths of our data are 10.5, 11.9 and 12.8 mm, which are very close to 

those of Patil et al.  

The above comparisons suggest that our simulated DPF, AD and spatial 

distributions are reasonably close to experimental data collected from both in vivo 

tissues and tissue phantoms. Given this corroboration and the fact that the Wang et 

al85 physics engine is widely accepted as an appropriate model, we are confident that 

our simulated data is representative of in vivo data.   

4.6.2 PHOTON-MUSCLE INTERACTIONS 

We are interested in measuring hemoglobin concentration changes in muscle 

using NIRS, so quantifying the interactions between photons and muscle tissue and 

delimiting these interactions from those between photons and superficial tissues is 

important.  These interactions are best quantified with PLM and NAM. Not surprisingly, 

both PLM and NAM follow the same general trends, and we focus on PLM because 

there is published simulation data18,34,35 for comparison. Figure 18 depicts the PLM 

data from these studies with an SDS of 30 mm. All data follow the same general trend 

where PLM increases with decreasing STT, though our data seems to undergo less 

pronounced changes when compared to other simulations. This smaller rate of 
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change in our simulations are most evident at mid-range STT where our data may 

overestimate PLM. 

 

Figure 18: Absolute values of pathlength in muscle (PLM) in mm, rather than % of total 

pathlength, as a function of superficial tissue thickness (STT). Data was extracted from 

the following published figures: Niwayama et al, Fig 1; Matsushita et al, Fig 3; Sayli et 

al, Fig 3. 

 

At what PLM is useful information still attainable? Cerebral work (Figure 7a in 

9) suggests that a partial pathlength factor (PLM) of 5% is sensitive enough to examine 

deeper tissues. While a 5% cut off may seem somewhat arbitrary, it agrees with 

previous work83 where errors are minimized with an STT less than 5 mm and an SDS 

of 30 mm. In other words, at an SDS of 30 mm, a homogeneous media assumption 

(non-layered) is acceptable for STT less than 5 mm. Inspection of Figure 16 reveals 

that the 5% contour extends into muscle with a STT of 6 mm; therefore, we suggest 

cases where the 5% contour extends into muscle be acceptable to assess hemoglobin 

changes within muscle.  
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Our simulations indicate that PLM muscle was below 1% at all SDS when 

superficial tissues were at least 15 mm thick, and we are doubtful that this is sensitive 

enough to detect hemoglobin changes within muscle; therefore 12 mm would be the 

maximum STT where useful information could be acquired from muscle tissue. Given 

that our simulation estimates higher PLM, some caution should be used when 

applying this 12 mm cut-off and this should be taken as an absolute maximum though 

it generally agrees with the 10 mm cut-off often implemented by NIRS researchers92. 

For comparison, Matsushita et al.’s model predicted that a 0.1% contour would fall 

within muscle at STT = 15 mm. Our data suggest that NIRS techniques may function 

adequately when superficial tissues are slightly thicker than the commonly accepted 

cut-off values of 10 mm, especially if superficial tissue contribution is filtered out (see 

Section 4.3). 

A 12 mm cut-off does not mean that clinical populations with greater STT 

cannot be measured using NIRS. When a NIRS device is applied to the skin, 

superficial tissues will compress75 and the effective STT will be lower than that in an 

unloaded state. If sampling from populations with larger STT, simultaneous readings 

of NIRS data and STT would be beneficial to assess data integrity and this concept 

will be explored in future research.  

4.6.3 IMPLICATIONS FOR SUPERFICIAL TISSUE FILTERING 

Some NIRS devices rely on a superficial filter to separate the effects of 

superficial tissues from those of deeper tissue, especially cerebral NIRS systems. 

Cerebral superficial filters are implemented with a short SDS (5 mm or less) used in 
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combination with longer SDS (30 to 45 mm). These distances work for cerebral 

measurements, though they might not be applicable for muscle measurements 

because STT is more variable between subjects. In muscle measurements, filtering 

should be able to accommodate a variable STT. 

As discussed in the previous section, our PLM results suggest that a cut-off 

below 12 mm would still allow some muscle tissue penetration for an SDS of 40 mm, 

and our NAM results agree with these values. We computed a NAM of at least 11% 

occurred with superficial tissue thickness of 12 mm or less (using an SDS of 40 mm). 

Near these lower limits of photon propagation in muscle, the contributions of 

superficial tissues should be filtered from the signal. Diffusion theory can be used to 

demonstrate that superficial layers less than 4 mm may not require filtering94,95 and 

measurements  through superficial layers greater than 12 mm are not representative 

of deeper layers94. Similarly, Yang et al83 used a 2 layer Monte Carlo simulation to 

demonstrate that an adipose layer less than 5 mm may not require correction for the 

superficial layer. Based on these results, we suggest that intermediate STT values, 

those between 3 mm and 12 mm, should be filtered to remove superficial signal 

because the signal contains information from both layers. 

The implementation of a superficial filter for muscle measurements is also 

influenced by the between-subjects variability of superficial tissue thickness. Our 

simulations suggest that an SDS of 2.5 mm would be adequate for STT greater than 

3 mm (where both PLM and NAM are less than 1%). Data presented in Figure 16 

suggest that an SDS of 2.5 mm would provide information weighted on the skin layer 

and may not reflect optical changes in the adipose layer. In the case where data from 
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the adipose layer would be considered beneficial, then an SDS of 5 to 10 mm, 

depending on adipose layer thickness, could be used for the main signal with a filtering 

SDS less than 2.5 mm. Further, a simulation, like the one presented in this paper, 

would be an excellent tool for developing a NIRS instrument that optimizes superficial 

filtering based on superficial tissue thickness. 

4.6.4 LIMITATIONS AND FUTURE DIRECTION 

Our simulations had several limitations that we plan to explore and develop 

with future research. First, there is a high amount of variability in published tissue 

optical properties and this variability influences the results34,83. Published optical 

properties largely agree with each other, though differences exist due either to 

methodological differences, to wavelength dependencies or to between-subject 

variability. Rather than selecting specific values for each optical property, we chose to 

input a range of optical input values. Input ranges add variation to simulated data, 

though they might be more representative of the variability in human tissue.  

The geometry of our tissue was a simple horizontal layering. Simple layering 

does not represent the complex geometry associated with shape of muscles and their 

overlying tissues. Nor does it account for geometric changes associated with tissue 

compression; however, we expect that the effects of these geometric inputs and the 

optical properties would not be as pronounced as that of STT.  

As seen in Figure 16, a combination of geometry and optical properties strongly 

influences photon propagation. The high scattering coefficient in adipose tissue 

concentrates photons within the adipose layer during propagation 35,82,96. When 
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boundary layers are modelled18, high scattering is coupled with internal reflection off 

boundary layers which influences the spatial sensitivity. Our simplification of a flat 

boundary causes a more delineated propagation boundary between skin and adipose 

tissue than we expect in reality because the optical properties are more likely to 

display a gradual shift rather than an instantaneous change. The in vivo boundary 

between adipose and muscle aligns better with our model though we did not attempt 

to model the influence of muscle fascia. 

Our model predicts larger DPFs than experimental results and we suspect this 

is due to the influence of adipose tissue. In vivo, superficial tissues are compressed 

when a NIRS device is fixed in place, so we question whether STT measurements 

prior to measurement are adequate to describe STT. To investigate this effect, we 

plan to design a new device that incorporates real-time STT measurements during 

NIRS data acquisition to clarify the connection, if any, between DPF and STT. 

In the future, we plan to add some new functionality to our model. First, we will 

incorporate muscle anisotropy as we suspect this will influence how photons 

propagate within muscle. Second, we need to model hemoglobin changes in the tissue 

layers to help refine our PLM cut-off values. In this paper we suggest a 5% PLM may 

be sufficient to collect data from underlying muscle. Future modelling of 

hemodynamics will help to refine this value and will inform design decisions of new 

hardware that incorporates in superficial filtering.  
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4.6.5 CONCLUSION 

We conclude that our simulation provides valuable insight into the propagation 

of photons within a tissue composite. Perhaps most striking is the influence of the 

superficial tissues on photon propagation and this helps explain why superficial tissue 

compression results in a measurement artefact (unpublished results). From a practical 

perspective, we suggest that NIRS data should not be recorded when superficial 

tissues are thicker than 12 mm, though this value is somewhat preliminary and tissue 

compression should be factored in. Lastly, we conclude that superficial filtering is 

important for muscle measurements and this filtering could be optimized with different 

source detector distances for different superficial tissue thicknesses.  
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CHAPTER 5: GENERAL DISCUSSION AND SIGNIFICANCE OF MY 

RESEARCH 

The new knowledge contributed by my research can be summarized as follows.  

5.1 SUMMARY STATEMENT OF MY RESEARCH 

Contact force artefact is a confounding factor in the transcutaneous 

measurement of muscle Hb using NIRS because its effects mimic muscle activation; 

therefore, ideally, contact force effects need to be removed from detected signals to 

provide a better estimate of physiologic changes present in underlying muscle tissue. 

This phenomenon is not restricted to static forces. Rather, measurements taken 

during dynamic activities, where contact forces oscillate, will display a time-dependent 

nature, which adds a layer of complexity to the analysis of contact force artefact.  

When interpreted together, the findings presented from each of my individual 

research experiments present possible mechanisms responsible for contact force 

artefact, and, therefore, the combined results can inform future research and drive 

strategies to minimize the artefact. Experimental and simulation results strongly 

suggest that STT is the primary contributor to contact force artefact. When superficial 

tissues are compressed in response to elevated contact force, a greater percentage 

of photons propagate through muscle whereby the NIRS signal is altered. In NIRS 

measurements involving thinner STT, contact forces may induce compression of 

underlying skeletal muscle vasculature. Regardless of the thickness of superficial 
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tissues, NIRS instruments may be susceptible to artefact caused by altered optical 

properties associated with superficial tissue compression. 

5.2 OVERVIEW OF MAIN FINDINGS 

5.2.1 STATIC CONTACT FORCE 

An elevated, constant contact force is associated with increases in peak 

changes in O2Hb, HHb and tHb in a manner similar to that expected during a muscle 

contraction. This pattern is consistent regardless of measurement location or muscle 

activation, though the magnitude of the changes is greater when measured from larger 

muscles (for example, VL) in comparison to smaller muscles (for example, SCM). 

Despite the differences in magnitude between measurement locations, there is no 

interaction between measurement location and contact force, which means that all 

muscles behaved in a similar fashion in response to contact force increases.  

In general, peak changes associated with contact force alone are smaller in 

magnitude than those associated with muscular contraction, regardless of the 

measurement location. Both contact force and muscle contraction have similar 

responses that are superimposed, making it difficult to separate the two effects during 

physiological investigations. 

Static contact force results depict clear effects for the main factors, but the 

results are only applicable to situations where contact forces are kept constant during 
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testing. This is difficult to accomplish when measuring a dynamic motion, so additional 

insight into the time-dependent behaviour of contact force is required. 

5.2.2 OSCILLATING CONTACT FORCE 

Oscillating contact force alters NIRS data in a time-dependent manner, 

presumably as a result of tissue viscoelastic properties. Similar to a static contact 

force, the greater oscillating contact forces magnify the peak changes in O2Hb, HHb 

and tHb.  Data show a viscoelastic-like response when tissues are subjected to an 

oscillating force. Specifically, Hb concentration deviates from baseline during the initial 

loading cycle(s) and does not return to baseline during the unloaded portion of each 

subsequent loading cycle. Following an appropriate recovery time (4 minutes recovery 

between trials) this phenomenon is evident again and this suggests that fluid 

redistribution plays a role in the tissue response.  

Recovery rates (CR and FR) depend on the magnitude of contact force and are 

independent of period of loading. Here again, fluid redistribution may be the 

mechanism behind this behaviour. Tissue compression is associated with a loss of 

fluid69,73 and tissue compresses more with higher contact forces. Upon release of a 

contact force, fluid pressure gradients may cause the tissue to return to its normal 

thickness. If the compressive strain rates during loading are also governed by 

magnitude of contact force, and corresponding fluid redistribution, in a similar fashion 

to recovery rates, then this suggests a mechanism that explains why longer periods 

are also associated with greater cyclic NIRS data changes (CAV and CAM). There is 

simply more time for fluid to redistribute and compression to occur. Currently, there is 
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no direct evidence where this fluid motion occurs. It could occur in skin, adipose, 

muscle or some combination of all three. Despite this ambiguity STT seems to play a 

prominent role. Larger STT values are associated with magnified NIRS data 

responses (PC, CAV, CAM, CR, and FR). The role of STT in contact force artefact 

likely arises from compression of superficial tissues and altered photon propagation 

through the tissue composite, though additional data is required to support this 

postulate. 

5.2.3 PHOTON PROPAGATION IN A TISSUE COMPOSITE 

Simulation of photon propagation through a tissue composite suggests that 

superficial tissues strongly influence how photons migrate from source to detector. 

Spatial sensitivity maps of photon propagation (see Appendix C) indicate that photons 

preferentially propagate through adipose tissue. This occurs because adipose tissue 

has a higher s and lower a, meaning that photons scatter more in adipose tissue 

and they are less likely to be absorbed. This can be thought of as the “path of least 

resistance” for photons. Even though photons are more likely to propagate within 

adipose tissue, they do propagate within muscle tissue, especially at lower STT. 

Beyond 12 mm STT, propagation within muscle diminishes to the point where 

reflected light does not represent muscle properties. At lower STT (< 3 mm), the 

detected signal is more representative of muscle tissue, and intermediate values (3 

mm < STT < 12 mm) most likely reflect aggregate optical properties of all three tissue 

layers. When measuring through intermediate STT, superficial filtering would be 

beneficial to remove the component of the signal associated with the superficial 
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tissues. Ideally, this filtering could be optimized for varied STT by adjusting the short 

SDS used to filter the data. 

The simulation itself is as important as the results generated with the program. 

I envision that this simulation will continue to be used and developed to gain insight 

into future NIRS analyses and help guide research. In the following section, for 

example, I use the simulation to help interpret some possible mechanisms responsible 

for contact force artefact. 

5.3 GENERAL DISCUSSION 

Taken together, the findings of my research inform future research toward 

understanding the mechanisms underlying contact force artefact and developing 

NIRS devices that minimise inter-subject variability, which should promote clinical 

uptake of MIRS measurements. 

5.3.1 POTENTIAL MECHANISMS UNDERLYING CONTACT FORCE ARTEFACT 

When contact force increases, superficial tissues are compressed75 and photon 

propagation is altered. The mechanisms for this optical behaviour are unknown, but 

my experimental and simulation studies provide evidence that suggests there is an 

interplay between some or all of the following responses: vascular occlusion, adipose 

compression, skin compression, changes in optical properties, or improved optical 

coupling. 
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My experimental evidence suggests there are at least 2 general trends 

apparent in the optical response of a tissue composite. In both trends, tHb and O2Hb 

concentrations decrease with increasing contact force. The difference between the 

two trends lies with Hb response. In one trend, Hb decreases with elevated contact 

force and continues to decrease (or remain somewhat constant) during the remainder 

of the loading. In the second trend, Hb increases during elevated contact force. These 

trends are most evident during static loading (see Appendix , 0% contraction data) 

because data isn’t influenced by the recovery time during the unloaded portions of 

cyclic loading (see all data in Appendix  to compare cyclic and static response). These 

two Hb trends do not appear to be mutually exclusive and, when combined, can result 

in an initial decrease in Hb followed by an increase in Hb over the duration of loading.  

I propose that differing Hb trends are a result of one or more physical 

mechanisms acting simultaneously (see Table 7). First, vascular occlusion, both 

arterial and venous, could explain the trends that mimic muscular contraction, those 

with increasing HHb during elevated contact force. If both arterial occlusion and 

venous occlusion occur during loading, then tHb should decrease because blood is 

removed from the measurement volume; and O2Hb should decrease with a 

concomitant increase in HHb as oxygen is consumed.  
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Table 7: Summary of effects for the proposed mechanisms that may be involved in the 

optical response of a tissue composite subjected to elevated contact load. 

Mechanism tHb O2Hb HHb 

Vascular 

occlusion 

 if arterial and 

venous occlusion 

present 

 if only venous 

occlusion present 

 if arterial and 

venous occlusion 

present 

 if only venous 

occlusion present 

 if arterial and 

venous occlusion 

present and O2Hb to 

HHb conversion 

Adipose 

compression 

 if adipose thins and 

a greater proportion of 

photons are absorbed 

in muscle 

 or  if adipose 

compression is 

associated with 

increased scattering 

 if adipose thins and 

a greater proportion of 

photons are absorbed 

in muscle 

 or  if adipose 

compression is 

associated with 

increased scattering 

 if adipose thins and 

a greater proportion of 

photons are absorbed 

in muscle 

 or  if adipose 

compression is 

associated with 

increased scattering 

Skin 

compression 

 if skin thins and a 

smaller proportion of 

photons are absorbed 

in skin 

 if skin thins and a 

smaller proportion of 

photons are absorbed 

in skin 

 if skin thins and a 

smaller proportion of 

photons are absorbed 

in skin 

Increased s’  or   or   or  

Decreased a    

Improved 

optical 

coupling 

   

Vascular occlusion alone does not explain trends with decreasing HHb and 

some other potential mechanisms likely contribute to the measured response. For 

instance, improved optical coupling could increase the intensity of re-emitted photons, 

which could be associated with smaller values of computed Hb values. Given the 
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configuration of the OxiTor, wherein the emitters and detectors project out from the 

body of the device, I expect that low loads are sufficient to ensure adequate coupling 

and elevated contact forces would have a minimal coupling effect. Similarly, 

decreased aggregate a would be associated with lower values of computed Hb, 

though given the assumed chromophore absorption (i.e. Hb is the dominant source of 

absorption), any changes in aggregate a are most likely related to blood volume 

changes associated with vascular occlusion as discussed above. The assumption that 

Hb is the main contributor to signal absorption should be somewhat robust to tissue 

compression, though an increased density of chromophores could result in greater 

signal attenuation.  

Changes in s’ probably have a more prominent role in contact force artefact 

because scatterers are more prevalent than chromophores and scattering is the 

dominant factor39 in diffuse reflectance NIRS. Tissue compression is thought to 

increase the density of scatterers59, which would influence computed Hb values. 

Interestingly, my photon propagation simulation suggests adipose compression 

(without a corresponding change in s’) causes photons to propagate deeper into 

muscle and results in greater signal attenuation.  Figure 19 shows how the normalized 

percent of re-emitted light is influenced by different STT. For clarity, the percent re-

emitted photons is the number of photons re-emitted into the detector divided by the 

total number of photons emitted into the tissue. These values were normalized to the 

maximum percent of detected photons at each SDS to facilitate graphical comparison 

between each SDS. As demonstrated in Figure 19, more photon attenuation occurs 

at lower STT and this effect is exaggerated with longer SDS. 
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Figure 19: Normalized percent of re-emitted photons as a function of STT for different 

SDS. Percent re-emitted photons is the number of photons detected by the detector 

divided by the number to photons emitted into the tissue. The magnitude of these 

values varied more than an order of magnitude for each SDS, so they were normalized 

with respect to the maximum value at each SDS. 

Figure 19 was created by varying the STT without concomitant changes in s’. 

The role of s’ is less clear, though a general trend of lower detected intensity (lower 

computed tHb) with greater s’ is expected because more photons should undergo 

more scattering events. However, increased scattering could enhance detected 



~ 89 ~
 

intensity for specific STT and SDS. Figure 20 demonstrates how the percent of re-

emitted photons fluctuates around a general decreasing trend as s’ increases. Each 

data point was determined by simulating 180x106 photons with an SDS of 20 mm and 

a STT of 6 mm. The fluctuations were evident after initial simulations using 20x106 

photons and continued to converge with more simulations, so I am confident that these 

fluctuations result from the interaction of SDS, STT and s’. As evident in Figure 20, 

minor changes in s’ could result in either an increase or a decrease in re-emitted 

photons. 

 

Figure 20: The percent of detected photons (similar to normalized detected light 

intensity) as a function of reduced scattering coefficient for an SDS of 20 mm and STT 

of 6 mm. Each data point was computed by simulating 180 million photons. The vertical 

lines identify the range of s’ used in the photon propagation study. 
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 The effects of adipose compression on contact force artefact is not entirely 

clear. A compression of adipose tissue without changing s’ results in greater signal 

attenuation. In contrast, an increase in s’ (presumably caused by tissue compression) 

could either enhance or diminish signal attenuation. Both of these mechanisms may 

be present and their relative influence on contact force artefact is unknown. In 

addition, the data presented in Figure 20 is based on one SDS and one STT and the 

effects of these two variables are unknown. 

 Lastly, skin compression may contribute to contact force artefact, though not 

in a potentially contradictory manner as with adipose compression. Skin has a 

relatively high a (closer to that of muscle than to that of adipose) and a relatively small 

thickness (compared to adipose). My simulation results suggest that skin does not act 

as a photon conduit in the same way adipose tissue does (see Appendix  for graphical 

summary). This behaviour most likely results from the superficial location and smaller 

thickness; therefore, potential increases in s’ caused by changes in scatterer density 

are negligible. However, decreased skin thickness results in lower photon absorption 

and less signal attenuation. For example, simulation results indicate a 50% reduction 

in skin thickness (from 2 mm to 1 mm) results in a 45% increase in percent re-emitted 

photons at an SDS of 20 mm. This effect is expected to be less pronounced at longer 

SDS. 

In summary, the mechanisms responsible for contact force artefact remain 

unclear, though the tissue response is governed by some interaction of a vascular 
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occlusion and superficial tissue compression. Future work is required to clarify the 

relative contributions of the above-noted mechanisms. 

5.3.2 SIGNIFICANCE OF REASERCH: REDUCTION OF CONTACT FORCE 

ARTEFACT 

My experimental results demonstrate that the magnitude of contact force 

artefact is large enough that it cannot be ignored. This is particularly important when 

measuring from muscle while contraction intensity is low and contact force is high. 

Even at high contraction intensity (70%MVC) and moderate contact force (20 N), an 

error of roughly 25% can be introduced. Moderate contact forces are required to 

maintain optical coupling and device positioning during dynamic in vivo 

measurements. Initially, I intended to design a device that concurrently measures 

NIRS parameters and contact force, which could use the empirical relations 

determined in the static contact force artefact study to correct for applied forces (a 

working prototype was developed); however, given the small sample size for the 

empirical relations and the additional findings of the dynamic contact force artefact 

study, I decided to pursue another device focused on the influence of the superficial 

layers (see next section for a description). 

Until a device that minimizes contact force artefact is developed, I suggest that 

future studies measure and record contact forces during measurements. This need 

not be real-time load cell data, but simply reporting approximate contact forces 

generated by the fixation method would be useful for standardizing data comparisons. 

In the short term, reporting contact force should be considered a requirement, much 
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like reporting STT. Most researchers report STT values for reference, though few97 

incorporate it into their calculations.  

Ideally, if contact forces are maintained above 20 N (8.2 kPa) then the influence 

of small contact force fluctuations will be minimized; however, a 20 N contact load 

causes significant contact force artefact compared to lower contact forces. Hence, 

there is a need to report contact forces and maintain higher contact forces if real-time 

load data is not acquired.  

The concept of maintaining a minimum contact force of 20 N during oscillating 

loading is different than the experimentally measured response to an oscillating 

contact force (page 35) that was acquired with a minimum of 2 N. By maintaining a 

minimum contact force of 20 N during cyclic loading, the loading profile would be more 

similar to a static load with a small cyclic component superimposed on the loading 

profile. In fact, the experimental oscillating contact force data offers little insight into 

this potential method to minimise contact force artefact. A future study where small 

cyclic fluctuations are superimposed on a static load would be very insightful to the 

potential effects of this proposed method.  

Maintaining contact loads above 20 N is a simple method to minimize contact 

force artefact, and, therefore, may be desirable for NIRS researchers, but it may not 

be ideal. Higher levels of contact force may cause participant discomfort during longer 

tests and could possibly lead to ischemic injury to the tissue in proximity to the NIRS 

device. Ideally, if contact force artefact is fully understood, it could be eliminated from 

NIRS data while maintaining lower, more comfortable, contact forces. 



~ 93 ~
 

5.3.3 FUTURE DIRECTIONS: LONG TERM REDUCTION OF CONTACT FORCE 

ARTEFACT 

The ultimate goal of my research is to understand contact force artefact and 

design a device that minimizes its effects. My current work quantified some aspects 

of contact force artefact, though the mechanisms responsible for this artefact remain 

speculative. Before a device can be designed that minimizes contact force artefact, 

these mechanisms must be understood. 

Experimental evidence suggests that both skin and subcutaneous adipose 

tissue may play an important role in contact force artefact. Namely, muscle contraction 

intensity does not affect the trends of contact force effects, and Hb patterns recorded 

during cyclic loading are not entirely consistent with vascular occlusion. A major 

limitation of my current work is that STT measurements were made with inexpensive 

calipers. At the time of the experimental design, I did not appreciate the potential 

importance of STT on contact force effects. STT measurements were intended for 

reference and the accuracy of the caliper measurements are not reliable enough for 

a detailed analysis. 

Future studies will be focused on determining the mechanisms responsible for 

contact force artefact, with specific focus on the influence of vascular occlusion and 

compression of superficial tissues. These studies will be used to inform the design 

process for a better NIRS device. Some potential investigations include the following. 

1. Investigate vascular occlusion and superficial tissue compression: Novel 

ultrasound computational techniques98, when combined with contrast 
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enhancing microbubbles, can create detailed images of microvasculature in 

rabbit skeletal muscle. This super-resolution ultrasound technique could be 

used to image tissue under varied contact loads to determine the 

contributions of vascular occlusion and quantify STT changes under load. If 

super-resolution ultrasound is recorded in conjunction with NIRS, the 

results would help clarify the effects of vascular occlusion during elevated 

contact forces. 

2. Determine the influence of compression on scattering coefficients: 

Increased scatterer density has been suggested as a possible mechanism 

for NIRS contact force artefacts in various tissues59,69, though this has not 

been formally documented with experimentation. In a muscle propagation 

simulation, Sayli et al34 acknowledge that results are sensitive to optical 

inputs. Ideally, isolated in vitro specimens could be used to measure s’ and 

a in adipose and skin under varied compressive forces to help refine 

estimates.  

3. Simulate interactions among s’, SDS and STT on percent re-emitted 

photons and Hb concentrations: Data fluctuations presented in Figure 20 

suggest that tissue geometry, optical properties and device size may 

influence signal attenuation. The fluctuations observed in the data should 

be investigated further.   

Future research will help guide the development of novel NIRS devices that will 

minimize contact force artefact. Given the current findings, I suggest that a device 

capable of measuring STT in real time would be beneficial. Two potential systems are 
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(i) a time-domain system capable of measuring backscattering, and (ii) a multimodal 

system that incorporates ultrasound. Time-domain systems that measure STT have 

been implemented33,37, though correlations between ultrasound (gold standard) and 

NIRS appear to be non-linear33. Despite this challenge, there is potential for a time-

domain system to compensate for STT if it incorporates previous work based on CW-

NIRS96 where detected intensity is used to compensate for varied STT. Unfortunately, 

this CW technique is only applicable to occluded muscles in a resting state and it has 

no way to compensate for varied vascular perfusion based on contact forces. Instead, 

a multimodal device might be better suited to refining NIRS measurements because 

the device would combine the structural imaging of ultrasound combined with NIRS-

derived Hb data. Multimodal systems are an area of current development. For 

example, a refined multimodal system has been created to detect lipid rich plaques 

during intravascular ultrasound99 and systems have been designed to help detect 

breast cancer100,101. Theoretically, either time-domain NIRS or a multimodal system 

could be used to help minimise contact force artefact with the aid of real-time STT 

measurement combined with superficial filtering, but the multimodal device would 

have the added functionality of imaging microvascular occlusion during NIRS 

measurements. The extra structural imaging of ultrasound would help to quantify the 

effects of vascular occlusion during NIRS measurements. The ultimate goal for the 

novel NIRS device is to minimize all measurement artefacts, not just those related to 

contact force, so a multimodal approach might be the best solution. 
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5.4 CONCLUSION 

The current work has provided novel information about contact force artefact in 

NIRS measurements. Perhaps the most salient finding of this work is the 

demonstration that contact force artefact can contribute to a significant portion of the 

measured signal and should not be ignored. Clearly, more investigations are required 

to understand the mechanisms responsible for this artefact before its effects can be 

removed from measurements. However, the current work provides insights to help 

steer future investigations in productive directions by quantifying the effects of contact 

force in transcutaneous NIRS muscle measurements.  
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APPENDIX A 

The following unlabelled figures depict data from all statics contact force trials. 

The figure titles indicate the measurement location, muscle contraction intensity and 

contact according to the following convention: Muscle-%MVC-Contact Force (for 

example, VL-70-20N is a measurement from vastus lateralis during a 70% MVC 

contraction with 20 N of contact force. 

O2Hb is red; HHb is blue; tHb is green. The black traces on the NIRS graphs 

indicate subjects with higher STT. The cut off for these “high” values was arbitrarily 

chosen, and they do not represent outlier cut offs. BB STT > 6 mm; ED STT > 3 mm; 

SCM STT > 3 mm; VL STT > 8 mm. The intention of the black traces was to explore 

the effects of STT on statics contact force artefact and no formal analysis was 

completed with these cut off values. 
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APPENDIX B 

The following figures show individual trial data for each subject. The subject 

number, period of loading, STT and contact force are noted in the title of each chart. 

Note that STT values displayed are skinfold values (Skinfold = 2xSTT).   
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APPENDIX C 

The following figure are the complete set of spatial sensitivity maps for 

simulations at all STT and SDS. All SDS for each STT are displayed on one page and 

the titles indicate the values of STT and SDS. 
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