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Abstract 

It is prudent to understand how changes in climate will affect tree-ring growth, wood

fibre quality, and percent carbon content in natural and planted stands in central interior

British Columbia (BC), as BC produces high volumes of wood fibres that are competitive in

a global market. Wood properties within natural and planted stands of hybrid white spruce

(Picea glauca (Moench) x engelmannii (Parry)) (percent carbon, ring-width, earlywood and

latewood width and wood cell properties of cell wall thickness, density, microfibril angle,

radial diameter and coarseness) were assessed to determine if climate variation is a limiting

growth factor. Results show precipitation is an important limiting factor in planted stand

growth with some indication that increasing temperatures limit growth in natural stands.

Relationships between climate and percent carbon indicate that rising winter, spring, and 

summer temperatures coupled with reduced precipitation strongly limit percent carbon 

accumulation in most natural and planted stands. 
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Chapter One: Introduction 
 

1.1 CONTEXT 
 

Models presented by the Intergovernmental Panel on Climate Change suggest that 

mean global temperatures are expected to increase 0.3 to 0.7 °C by the year 2035 with 

increased precipitation at higher latitudes and decreased precipitation at lower latitudes (IPPC 

2013). Extreme temperatures and precipitation events are projected to increase in frequency 

with more warmer- and colder-than-average days and nights and increased heavy 

precipitation events (IPPC 2013). The Pacific Northwest is expected to become warmer and 

wetter annually with increased maximum and minimum temperatures, and decreased depth 

and water content of snowpack (MWLAP 2002; Lo et al. 2010; Fleming and Whitefield 

2010).  

British Columbia (BC) is expected to experience increased drought stress and greater 

changes in temperature and precipitation that will vary across the topographic landscape 

(Spittlehouse 2007; Lo et al. 2010; Jiang et al. 2016). Boreal forests in central BC, that 

contain dense areas of several spruce species, are predicted to be one of the most sensitive 

areas to changing climates within BC (Wang et al. 2012). Tree growth within interior BC has 

historically been temperature limited with some indication that precipitation variability is 

becoming a more limiting growth factor in specific locations (Wood and Smith 2015; Cortini 

et al. 2016). Climate forces may cause BC forests to undergo ecosystem shifts, change boreal 

tree success, alter carbon accumulation, and trigger degradation of tracheid or wood product 

quality, including quality of pulp fibre (Wang et al. 2012).  

Pulp products originating from BC’s forests have been characterized by long, slender, 

thin-walled fibres that have superior strength, low coarseness and high uniformity (Taylor et 
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al. 1982; Corriveau et al. 1991; Watson and Bradley 2009). BC old-growth hybrid white 

spruce (Picea glauca x engelmanni), found in the sub-boreal forests where ranges of white 

and Engelmann spruce overlap, are a preferred species for pulp and paper-making processes 

with lower proportions of latewood cells and longer tracheids (Taylor et al. 1982). Large 

thin-walled xylem cells can easily compress into sheets that provides higher tensile strength 

due to a greater number of hydrogen bonds (Lenz et al. 2010; Shmulsky and Jones 2011, pg 

410-411). Pulp with these characteristics, historically processed from old-growth timber, is 

considered of high quality with good market value. 

Timber harvest in BC will increasingly shift from naturally generated old-growth 

stands to artificially reforested stands due to decreasing availability of old-growth forests. 

This shift will result in harvest of younger, faster grown trees with reduced wood fibre 

quality (Lenz et al. 2010). Changing climates may also affect wood quality differently in old-

growth and managed stands. Alterations to wood fibre characteristics, and thus wood quality, 

could substantially impact the market value of BC wood products. 

1.2 BACKGROUND INFORMATION 
 

Tree age can have a major impact on the quality of wood and desired end-product 

use, especially due to differences between juvenile wood and mature wood. Juvenile wood, 

formed from the pith is characterized by large radial diameter, thin-walled cells that are 

shorter and have larger fibril angles with increased variability in comparison to mature wood 

traits. Younger trees with greater proportions of juvenile wood produce lower quality wood 

products because of reduced strength with shorter, smaller, and more horizontally orientated 

microfibril angles compared to mature trees with a greater proportion of mature wood (Zobel 

and van Buijtenen 1989, pg 19; Kennedy 1995; Barnett and Jeronimidis 2003; Adamopoulos 
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et al. 2006). Age of transition between juvenile wood and mature wood is highly variable and 

depends on site-specific management practices, genetic differences, site conditions, and 

sampling height (Cameron et al. 2005; Alteyrac et al. 2006). Research with spruce has 

suggested that transition age can range between 12 and 31 years (Cameron et al. 2005; 

Alteyric et al. 2006). 

Complex interactions between external factors, such as temperature and precipitation, 

and internal processes, such stomatal activity and needle elongation, can also affect tree 

growth and wood quality (Figure 1.1) (Fritts 1976). Climate parameters are often expressed 

in wood through specific patterns of annual ring-width (RW), earlywood width (EW), 

latewood width (LW) and earlywood and latewood densities, as evidence by a large, long-

term body of literature (Fritts 1976). Annual ring-growth is comprised of EW cells, produced 

at optimal growth periods, and LW cells, which are produced when growth rates slow in 

conjunction with reductions in temperature, precipitation, or photoperiod length. EW cells 

are characterized by thin walls and reduced cell density that reflect high-growth periods 

while LW cells have thicker cell walls and higher density reflecting periods of slower 

growth. Additionally, wood cell properties of cell wall thickness (CWT), density (D), cell 

radial diameter (RD) and microfibril angle (MFA) can reflect temperature and precipitation 

variation, often with increased sensitivity compared to RW, EW, or LW (Wood and Smith 

2015). 
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Figure 2.1 Conceptual model by Fritts 1966 depicting complex interactions between climate and production of a 
narrow ring. 

As radial tree growth is strongly affected by changes in climate, it can be inferred that 

carbon accumulation will also be directly affected. The substantial changes predicted for 

interior BC climate over the next decade may reduce carbon dioxide uptake and carbon 

accumulation and potentially push forests beyond sustainability thresholds (Millar and 

Stephenson 2015). Dendrochronological techniques may be used to enhance understanding of 

relationships between above ground carbon accumulation and climate (Bouriaud et al. 2005), 

similar to tree radial growth climate relationships.  

Interpreting relationships between radial tree growth and carbon accumulation, including 

CWT and D, can improve carbon sequestration projections (Weber et al. 2018). Wood D and 

CWT are suggested to correlate with carbon concentration; thicker, denser xylem cell walls 

should have greater proportions of cellulose and lignin and thus carbon (Elias and Potvin 
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2003; Thomas and Malczewski 2007; Lachenbruch and Mcculloh 2014; Weber et al. 2018). 

Unfortunately, relationships between wood cell properties and carbon are not well 

understood as past research has focused mainly on biomass instead of direct measurements of 

carbon (Zabek and Prescott 2006; Castaño-Santamaría and Bravo 2012).  

1.3 RESEARCH GAPS 
 

Radial growth changes in RW, EW, LW, and wood cell properties of hybrid white 

spruce are expected as a result of changes to climate in central interior BC. However, few 

studies have examined radial growth properties of RW, EW, and LW in central interior BC 

spruce (Flower and Smith 2011; Wood and Smith 2015). Previous research has mainly 

focused on RW and density relationships, and not on other properties such as CWT, RD, 

coarseness, and MFA (Watson and Luckman 2001; Larocque and Smith 2005; Pitman and 

Smith 2012; Wimmer and Grabner 2000; Wood and Smith 2013; Wood and Smith 2015; 

Watson and Luckman 2016). Comparisons between carbon measurements and wood cell 

properties are lacking as literature focuses on biomass as a driving factor in carbon research 

instead of direct carbon measurements within wood structure (Zabek and Prescott 2006; 

Castaño-Santamaría and Bravo 2012). Finally, there is a lack of information on the 

relationship between climate and radial growth characteristics of young plantations in central 

interior BC compared to older, naturally occurring stands (Sanchez-Salguero et al. 2013). 

1.4 THESIS OBJECTIVES 
 

The purpose of this study was to determine how RW, EW, LW, MFA, coarseness, 

CWT, RD, and D properties of natural and planted stands of hybrid white spruce in central 

interior BC vary over time and with climate. Additionally, this study aimed to determine how 

structural percent carbon values within wood related to tracheid features and to climate. 
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Specific objectives were as follows: 
 

1. Determine annual RW, EW and LW and their variabilities for trees in natural and 

planted stands over time. 

2. Examine the statistical correlation between monthly and seasonal climate variables 

and growing season length with RW, EW, and LW and visually interpret relationships 

between climate variables and RW, EW, and LW over time. 

3. Determine average annual wood cell properties of D, coarseness, MFA, CWT, and 

RD, for trees in natural and planted stands and determine i) the variability of wood 

cell properties over time ii) the statistical correlation between monthly and seasonal 

climate variables with wood cell properties and iii) visually interpret relationships 

between wood cell properties modelled from climate data to measured wood cell 

properties over time. 

4. Review existing literature regarding relationships between percent carbon and wood 

D and/or CWT measurements. 

5. Compare values of D and CWT to measured percent carbon values using statistical 

methods and visual interpretation . 

6. Determine relationships between monthly and seasonal climate variables to percent 

carbon variation over time. Visually interpret relationships between climate variables 

and percent carbon variation over time. 

This thesis contains an introductory chapter, two data chapters that address the above 

questions, and a concluding chapter where data chapters are synthesized. Chapter 2 explores 

RW, EW, LW, and wood cell properties in natural and planted stands near Prince George and 

Fort St. James in relation to climate. Chapter 3 examines relationships between percent 

carbon and properties of RW, EW, LW, CWT and D. Chapter 3 also determines if the 
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percent carbon between individual stands and regional-level stand aggregates differs and if 

relationships exist between percent carbon and climate variation over time in natural and 

planted stands near Prince George and Fort. St. James. 

  



8

1.5 REFERENCES 
 
Adamopoulos S and Passialis CVE. 2006. Strength properties of juvenile and mature wood in 

black locust (Robina Psudoacacia L .). Wood and Fiber Science. 39(2): 241–249. 
 
Alteyrac J, Cloutier A. & Zhang, ASY. 2006. Characterization of juvenile wood to mature 

wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand 
densities and sampling heights. Wood Science & Technology. 40: 124–138. 
https://doi.org/10.1007/s00226-005-0047-4 

 
Bouriaud O, Bréda N, Dupouey J.L, Granier A. 2005. Is ring width a reliable proxy for stem-

biomass increment? A case study in European beech. Canadian Journal of Forest 
Research. 35(12): 2920–2933. https://doi.org/10.1139/x05-202 

 
Cameron AD, Lee SJ, Livingston AK, Petty JA. 2005. Influence of selective breeding on the 

development of juvenile wood in Sitka spruce. Canadian Journal of Forest Research. 
35(12): 2951–2960. https://doi.org/10.1139/x05-219 

 
Castaño-Santamaría J and Bravo F. 2012. Variation in carbon concentration and basic density 

along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus 
pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals of Forest Science. 69(6): 
663–672. https://doi.org/10.1007/s13595-012-0183-6 

 
Cook ER. and Peters K. 1981. The smoothing spline: A new approach to standardizing forest 

interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41: 45-53. 
 
Cook ER. and Holmes RI. 1999. Users manual for program ARSTAN. Tucson, AZ. 
 
Conkey LE. 1986. Red spruce tree-ring widths and densities in eastern North America as 

indicators of past climate. Quaternary Research: 26: 232-243. 
 
Cortini F, MacIsaac DA, Comeau PG. 2016. White spruce growth and wood properties over 

multiple time periods in relation to current tree and stand attributes. Forests, 7(3). 
https://doi.org/10.3390/f7030049 

 
Dale MRT, Fortin MJ. 2014. Spatial analysis: a guide for ecologists. Cambridge University 

Press. 
 
Delong C, Tanner D, Jull MJ. 1993. A field guide for site identification and interpretation for 

the southwest portion of the Prince George forest region. Province of British Columbia: 
Ministry of Forests: https://www.for.gov.bc.ca/hfd/pubs/docs/Lmh/Lmh24.pdf. 

 
Douglass AE. 1920. Evidence of climatic effects in the annual rings of trees. Ecology: 1(1). 
 
Flower A and Smith DJ. 2011. A dendroclimatic reconstruction of June-July mean 

temperature in the northern Canadian Rocky Mountains. Dendrochronologia. 29(1): 55–
63. https://doi.org/10.1016/j.dendro.2010.10.001 



9

Fritts HC. 1976. Tree rings and climate. New York (NY): Academic Press Inc. 

Grissino-Mayer HD 2003. A manual and tutorial for the proper use of an increment borer. 
Tree-Ring Research, 59(2): 63-79. 

 
Kozlowski TT, Kramer PJ, Pallardy SG. 1991. The physiological ecology of woody plants. 

San Diego (CA): Academic Press, Inc. 
 
Lo YH, Blanco JA, Seely B, Welham C, Kimmins JP. 2010. Relationships between climate 

and tree radial growth in interior British Columbia, Canada. Forest Ecology and 
Management. 259(5): 932–942. https://doi.org/10.1016/j.foreco.2009.11.033 

 
Millar CI and Stephenson NL. 2015. Temperate forest health in an era of emerging 

megadisturbance. Science. 349(6250): 823–826. 
https://doi.org/10.1126/science.aaa9933 

O’Neill GA, Wang T, Ukraintez N, Charleson L, Mcauley L, Yankcuhk A, Zedel S. 2017. A 
proposed climate-based seed transfer system for British Columbia. Prov. B.C., Victoria, 
B.C. Tech. Rep. 099, 57.  

Saranpaa P. 2003. Wood density and growth. In: Barnett JK, Jeronimidis G, editors. Wood 
quality and its biological basis. Great Britain: Blackwell Publishing & CRC Press, 
Biological Sciences Series. p. 87-117. 

Shmulsky R, Jones PD. 2011. Fundamentals of tree-ring research. Tucson: The University of 
Arizona Press.  

Speer HJ. 2010. Fundamentals of tree-ring research. Tucson: The University of Arizona 
Press. 

Stokes MA. and Smiley TL. 1968. An introduction to tree-ring dating. University of Arizona 
Press: Tucson. 

Tardif J, Camarero JJ, Ribas M. and Guti errez E. (2003) Spatiotemporal variability in tree 
growth in the Central Pyrenees: climatic and site influences. Ecological Monographs, 
73, 241–257. 

Weber JC, Sotelo Montes C, Abasse T, Sanquetta CR, Silva DA, Mayer S, Graciela IBM, 
Garcia RA. 2018. Variation in growth, wood density and carbon concentration in five 
tree and shrub species in Niger. New Forests. 49(1): 35–51. 
https://doi.org/10.1007/s11056-017-9603-7 

 
Wimmer R and Grabner M. 2000. A comparison of tree-ring features in Picea abies as 

correlated with climate. IAWA Journal. 21(4): 403–416. 
https://doi.org/10.1163/22941932-90000256 

 
Wood LJ and Smith DJ. 2015. Intra-annual dendroclimatic reconstruction for northern British 



10

Columbia, Canada, using wood properties. Trees. 29: 461–474. 
https://doi.org/10.1007/s00468-014-1124-9 

 
Yamaguchi DK. 1991. A simple method for cross-dating increment cores form living trees. 

Can. J. For. Res. 21: 414-416. 

Zabek LM and Prescott CE. 2006. Biomass equations and carbon content of aboveground 
leafless biomass of hybrid poplar in coastal British Columbia. Forest Ecology and 
Management. 223(1–3): 291–302. https://doi.org/10.1016/j.foreco.2005.11.009 

 
Zobel BJ. and Talbert J. 1984. Applied forest tree improvement. John Wiley & songs. 
 
  



11

Chapter 2: Relationship between climate and tracheid properties in natural and planted 
stands of hybrid white spruce Picea glauca (Moench) x engelmannii (Parry) in central 
interior British Columbia, Canada. 
 

2.1 ABSTRACT 

Understanding how tree growth, in naturally and artificially regenerated trees, is 

influenced by climate is important for determining forest productivity and wood quality in 

boreal forests of central interior British Columbia. The focus of this study was to investigate 

the effects of climate on radial growth (ring-width, earlywood, and latewood) and wood cell 

properties (cell wall thickness, density, radial diameter, microfibril angle, and coarseness) in 

natural and planted stands of hybrid white spruce (Picea glauca (Moench) x engelmannii 

(Parry)), in regional areas of the John Prince Research Forest (JPRF) and surrounding Prince 

(PG) George. Results suggest that winter, summer, and autumn climate strongly influence 

radial growth in planted stands with some variation between regional areas. Natural stands 

had similar relationships but lacked model verification. However, results indicate natural 

chronologies truncated to the last 30 years of growth may have increased sensitivity to 

climate variation compared to full-length natural stand chronologies in both JPRF and PG. 

Differences in climate sensitivity were found between natural and planted stands and 

between the JPRF and PG.  
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2.2 INTRODUCTION 

2.2.1 Context 

Global temperatures are predicted to increase between 0.3 to 0.7 °C by the year 2035. 

Prevalence of extreme weather conditions, characterized by more warmer and colder days 

and nights, and increased heavy precipitation events, are expected to increase (IPPC 2013). 

The Pacific Northwest of North America is expected to become warmer and wetter annually 

with increased maximum and minimum temperatures and decreased depth and water content 

of snowpack that will vary across the topographic landscape (MWLAP 2002; Lo et al. 2010; 

Fleming and Whitfield 2010). Unfortunately, compared to the global average, British 

Columbia (BC) is expected to have substantial warming and increased drought stress (Lo et 

al. 2010; Jiang et al. 2016). 

Plastic variation that coordinates to fluctuations in climate can be seen in annual ring-

with (RW), earlywood (EW), and latewood (LW) wood properties and wood cell properties 

of cell wall thickness (CWT), radial diameter (RD), coarseness, microfibril angle (MFA) and 

density (D). Analysis of average annual wood cell properties can provide greater resolution 

of the climate-growth relationships compared to analysis of annual RW, EW and LW 

properties (Chen et al. 2010; Bouriaud et al. 2005; Wood and Smith 2012; Wood and Smith 

2015). Previous studies have found age-related and climate-related growth patterns within 

radial wood properties vary significantly depending location and species (Watson and 

Luckman 2001; Larocque and Smith 2005; Pitman and Smith 2013; Wood and Smith, 2012; 

Watson and Luckman 2016). 
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2.2.2 Background 
 

Climatic conditions have a large influence on photosynthetic capabilities and 

subsequent tree growth. Tree growth over time may be measured by RW in trees that produce 

a distinct annual tree ring. In regions that demonstrate seasonality, annual growth rings form 

thin-walled, large cells during optimal growth periods, called “EW”, and thick walled, high 

density cells, called “LW” when conditions have transitioned to sub-optimal near the end of 

the growing season (Fritts 1967; Saranpaa 2003; Shumlsky and Jones 2011). EW cell 

production is initiated by changes in photoperiod length and increases in soil and air 

temperatures typical of spring-like conditions (Vaganov et al. 1999; Heinrichs et al. 2007). 

The growth hormone within apical meristems, auxin, becomes active during these optimal 

environmental conditions. Cambial zone cell division and expansion stimulated through 

meristematic auxin release and increased turgor pressure produce cells that are large in radial 

diameter, soft, thin-walled, and non-supportive, which are characteristics of EW (Barnett and 

Jeronimidis 2003). Initial EW is dependent on the previous growing season’s energy reserves 

before full current-year photosynthetic production occurs. In the northern hemisphere, 

maximum growth for EW occurs in June and July, which coincide with peak photoperiods 

(Rossi et al. 2006; Heinrichs et al. 2007). Terminal shoot cessation is initiated by decreases in 

temperature, precipitation, or a reduction in photoperiod length. These changes will reduce 

levels of auxin and other plant growth regulators, cytokinin and gibberellin, which will 

reduce cell production and cause maturation or secondary wall thickening within existing 

cells (Zobel and van Buijtenen 1989, pg 27; Heinrichs et al. 2007). Secondary wall 

thickening during this slower-growth maturation period creates thick, hard, structural, multi-

layered cell walls with organized microfibril layers held together by hemicellulose and lignin, 

and are characteristic of LW (Wimmer 2002; Barnett and Jeronimidis 2003). This multi-
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layered secondary cell wall provides structural support for growth stress. The beginning of 

LW production in a variety of North American conifers, including spruce, has been found to 

range from July 1st to August 4th with termination of xylem production between July 20th and 

September 20th (Heinrichs et al. 2007). 

2.2.3 Age Related Growth Characteristics 
 

Trees undergo changes in RW, EW, LW, and wood cell properties as they age from 

seedling to mature trees. Competition for resources drives young trees to establish dominance 

with explosive juvenile growth, producing what is known as juvenile wood (JW) for several 

years. JW will have larger RWs, larger proportions of EW cells and fewer LW cells. Once 

established, radial growth slows and stabilizes into what is known as mature wood (MW) 

with smaller RWs and lower proportions of EW (Shmulsky and Jones 2011). The transition 

from JW to MW within spruce species is not as easily defined as other conifers and has been 

suggested to be anywhere between 13 and 31 years depending on the species (Cameron et al. 

2005; Alteyrac et al. 2006). Age-related growth differences can also be found in wood cell 

properties such as CWT, D, RD, coarseness, and MFA. Distinct differences have been found 

between JW and MW; with rapidly decreasing RD combined with increasing D and CWT as 

the tree matures (Mitchell and Denne 1997; Saranpaa 2003; Zubizarreta-Gerendiain et al. 

2012). Cell RD within MW has been shown to gradually increase with cambial age to 

compensate for increased crown and hydraulic resistance related to increased taller stems 

(Lindstrom 1997; Mitchell and Denne 1997; Vahey et al. 2007; Lenz et al. 2010; Newton 

2016). Coarseness and cell tangential widths have been shown to increase from pith to bark 

with cambial age combined with decreases in tangential fibre width seen after 40 years 

(Kienholz 1931; Panshin and deZeeuw 1980; Lindstrom 1997; Muneri and Raymond 2001; 
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Lundgren 2004; Havimo et al. 2008; Franceschini et al. 2012). However, there is some 

indication that white spruce can continue increasing tangential cell widths with age (Taylor et 

al. 1982). MFA, which is the degree of tilt in cellulose microfibrils from the longitudinal axis 

primarily within the S2 secondary cell wall layer, decreases pith to bark (Erickson and Arima 

1974; Wimmer 2002; Adamopoulos et al. 2007; Kostiainen et al. 2014). 

2.2.4 Relationships between RW, EW, LW, and Climate 

Growth rate and subsequent EW and LW proportions within an annual ring are 

directly influenced by photosynthetic capacity. Genotype and environmental factors 

including humidity, stand density, photoperiod, and changes to air temperature, soil 

temperature, and water availability can affect the rate of photosynthesis (Fritts 1976; 

Wimmer, 2002). Photosynthetic capacity within interior BC trees has historically been 

temperature dependent as heavy rainfall and large snowmelts usually provided adequate 

precipitation for growth (Watson and Luckman 2007). 

Some evidence suggests that higher-than-normal temperatures can negatively affect 

RW growth by inducing water stress. Water stress can increase respiration and 

evapotranspiration leading to moisture loss without adequate precipitation inputs (Fritts 

1976; Gindl et al. 2000; Chen et al. 2010; Miyamoto et al. 2010; George et al. 2019). On 

specific sites within southern BC, water stress has been shown to be the largest limiting 

growth factor in Douglas-fir (Pseudotsuga menziensii (Mirb.) Franco var. glauca), lodgepole 

pine (Pinus contorta Dougl. var. latifolia) and hybrid white spruce (Picea glauca x 

engelmannii) (Lo et al. 2010). Additionally, growth rates of coastal BC Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco) have direct correlations between increasing soil 

moisture deficits and reduced RW and EW found in both mature (Robertson et al. 1990) and 
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planted (Bower et al. 2005) stands. Alternatively, warmer-than-normal spring, summer, and 

autumn temperatures have been shown to positively influence radial growth with adequate 

precipitation inputs in several conifer species in BC, Canada, including white spruce 

(Peterson and Peterson 1994; Ettl and Peterson 1995; Larocque and Smith 2005; Miyamoto 

et al. 2010). In these conditions spring bud burst can occur earlier and trees can grow bigger. 

Trees may have a longer time to accumulate and store nutrients in autumn months when 

typical dormancy would ensue. 

2.2.5 Climate-related Growth Trends in Wood Cell Properties 

Temperature and precipitation events can also affect growth rates in wood cell 

properties. Favorable conditions during the growing season can allow for increased cell 

production, increased cell widths, increased CWT, and increased tracheid length (Kienholz 

1931). MFA has been shown to be positively correlated with average summer temperatures 

in northern interior BC Douglas-fir (Wood et al. 2016). Precipitation increases coupled with 

adequate temperatures, have been shown to increase tracheid production and RDs (Kienholz 

1931). However, higher-than-normal summer temperatures have been shown to correlate 

with decreases in spruce radial growth and decreased cell RD, CWTs, lumens, and D 

throughout an annual ring (Chen et al. 2010). Additionally, water stress and lower-than-

normal temperatures have also been shown to negatively influence CWT (DeSoto et al. 

2011). 

2.2.6 Wood Quality in Natural and Artificially Regenerated Stands 

Pulp products originating from BC’s forests have been characterized by long, slender, 

thin-walled fibres that have superior strength, low coarseness, and high uniformity (Taylor et 

al. 1982; Corriveau et al. 1991; Watson and Bradley 2009). Large thin-walled EW cells can 
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easily compress into sheet formation (Lenz et al. 2010; Shmulsky and Jones 2011, pg 410-

411) while having high tensile strength due to high proportions of hydrogen bonds. Pulp with 

these characteristics was historically processed from old mature timber and is considered 

high quality with high marketability, with spruce as a preferred species (Taylor et al. 1982). 

Timber harvest in BC will increasingly shift from naturally generated old-growth stands to 

artificially reforested stands due to decreasing availability of old-growth forests, which may 

affect wood quality. Shifting from naturally-regenerated old-growth forests to planted forests 

will result in harvest of younger, fast-grown trees with potentially larger proportions of 

juvenile wood (Lenz et al. 2010). Additionally, previous research has suggested that several 

characteristics of planted stands may make them more vulnerable to projected changes in 

climate that include age effects, stand density and canopy structure, and lower biological 

diversity and inferior local adaptation of seeds, that could negatively affect wood quality 

(Sanchez-Salguero et al. 2013). 

2.2.7 Research Gaps 

Changes to wood cell properties and subsequent wood quality within central interior 

BC hybrid white spruce are almost certain with projected changes in climate. Although there 

is considerable research on the influence of climate on radial spruce growth, most of these 

studies have focused only on RW, EW, and LW (Gou et al. 2005; Chen et al. 2010; 

Miyamoto et al. 2010; Flower and Smith 2011; Trindade et al. 2011; Wood and Smith 2015; 

Strong 2017) with wood cell research largely limited to relationships between RW and ring D 

(Watson and Luckman 2001; Larocque and Smith 2005; Pitman and Smith 2012; Wood and 

Smith 2013; Wood and Smith 2015; Watson and Luckman 2016). Additionally, there have 

been few studies on spruce growth in areas of north-central BC (Flower and Smith 2011; 
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Wood and Smith 2015) and limited studies focused on direct comparisons of climate-related 

growth changes in both naturally and artificially regenerated stands (Sánchez-Salguero et al 

2012; Sánchez-Salguero et al. 2013). 

2.2.8 Objectives 

This study aims to investigate variations in wood quality of hybrid white spruce 

(Picea glauca x engelmannii) in natural and planted stands over time, and how these 

variations correspond with changes in temperature and precipitation in central interior BC. 

The objectives of this research were to i) determine annual radial growth profiles of RW, 

EW, LW , D, RD, CWT, coarseness, and MFA angle at annual scales, ii) determine the 

variability of radial growth and tracheid properties over time, iii) examine the statistical 

correlation between monthly and seasonal climate variables and tracheid properties, and iv) 

visually investigate the effects of climate variables on tracheid properties over time. 

2.3 METHODS 

2.3.1 Site selection 

Hybrid white spruce trees were selected from six natural (N1-N6) stands between 60 

and 125 years old, and six planted (P1-P6) stands between 25 and 40 years old from areas in 

central interior BC (Figure 2.1; Table 2.1). One group of six stands (N1-N3; P1-P3) was 

selected from the John Prince Research Forest (JPRF), where each stand was within 5km of 

one another. The second group of six stands (N4-N6; P4-P6) were within a 200km range of 

Prince George (PG). Biogeoclimatic variant of each site was determined with review of site 

characteristics and Biogeoclimatic Ecosystem Classification land management handbooks 

(Table 2.1) (Delong et al. 1993). PG stands were in the willow-wet-cool (wk1) and very-wet-

cool (vk1) variants, classified with high precipitation and cooler temperatures. JPRF stands 
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were in the Stuart-dry-warm (dw3) variant that is characterized by lower snow packs and 

warmer temperatures.  

2.3.2 Sample Collection 

Twenty dominant trees at each stand were selected for sampling. Sampling occurred 

at 5m minimum intervals to avoid concerns of spatial autocorrelation (Dale and Fortin 2014). 

Trees with scars, fire or insect damage, split tops and abnormal growth patterns were 

avoided. Areas near roads or with open canopies were also avoided to alleviate influences on 

growth that would reduce the ability to obtain a stand-level climatic growth signal (Fritts 

1976). Two 5mm cores at 90 degree spacing from each tree were collected at breast height 

(and at 30cm aboveground for smaller trees) that was parallel with contours (Grissino-Mayer 

2003). An additional 12mm core from each tree was collected at JPRF sites for SilviScan 

fibre analysis. Surrounding vegetation, slope, elevation, flowing or standing water, diameter-

at-breast-height and GPS site and tree location were recorded. 
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Figure 2.1 Overview map of natural (squares) and planted (triangles) stands sampled near Prince George and 
Fort St. James.
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2.3.3 Sample Preparation of 5mm Cores 

Increment cores from JPRF and PG were dried, glued, mounted, labelled, and sanded 

with progressively finer grit in preparation for cross-dating; 1200 grit sandpaper was used to 

identify especially narrow rings. A dotting system was used to cross-date. Cores were labeled 

with a single dot every ten years, two dots every half-century, and three dots every century 

(Stokes and Smiley 1968). The Yamaguchi (1991) list method was implemented to determine 

significant marker years. Groups of 18-20 5mm increment cores were scanned using an 

Epson 1640XL flatbed scanner at 1,200 DPIs for visual assessment of RW, EW and LW 

widths with WinDendro image analysis. Each core was reviewed to determine accuracy of 

WinDendro RW, EW and LW auto-measurements, and corrections were performed manually 

(Speer 2010; Arenas-Castro et al. 2015). 

2.3.4 Sample Preparation of 12mm Cores 

Of the 120-12mm cores sampled at JPRF, 89 undamaged cores were selected for 

SilviScan analysis. Resins were removed from selected cores via 12-hour Soxhlet acetone 

extraction. After extraction, cores were conditioned at 40% relative humidity and 20°C to 

obtain an 8% moisture content equilibrium. Once at 8% moisture content, cores were cut into 

2mm X 7mm radial pith-to-bark strips (tangentially x longitudinally) with a twin-blade saw 

and sanded. SilviScan analysis was then performed which included 1) image analysis of 

radial and tangential cell dimensions using optical microscopy, 2) x-ray densitometry to 

provide measurements of wood density every 25 microns along the wood samples, and 3) x-

ray diffractometry yielding measurements of microfibril angle at 5-mm increments (Evans 

and Ilic 2001). 
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2.3.5 Creating Master Chronologies 

Mean annual characteristic values of density (MD), microfibril angle (MMFA), radial 

diameter (MRD), coarseness (MCO), and cell wall thickness (MCWT) were cross-dated for 

each stand using end-dates obtained from SilviScan. Visual cross-dating of 5mm cores with 

WinDendro and cross-dating of 12mm cores with end-dates were verified using COFECHA 

(Grissino-Mayer 2001). Cores (series) with unique variation not representative of the stand 

were eliminated from the chronology for each growth property that allowed for the common 

stand-level variation to be captured. Inter-series correlation, or stand-level signals, were only 

accepted for further analysis if the correlation coefficient was greater than 0.3 for natural 

stands and 0.4 for planted stands, representing the 99% one-tailed confidence level (Grissino 

2001). Shorter segment lengths required higher inter-series correlations for accuracy. 

Average mean sensitivities, which indicate the variability in a master chronology from year 

to year that ranges from least sensitive (0) to most sensitive (1), were also observed and not 

accepted for further analysis if less than 0.150 (Table 2.2 and Table 2.3) (Speer 2010; 

Arenas-castro et al. 2015). 

Following analysis using COFECHA, ARSTAN software was used to detrend and 

index (standardize) series, remove variance, and transform RW, EW, LW, MD, MCO, MRD, 

and MMFA from ratio values into dimensionless (index) values (Cook and Holmes 1999). 

This detrending was performed to remove growth-frequency variation attributed to tree 

geometry and normal rapid growth of young trees (Cook and Peters 1981; Meko and Baisan 

2001). Stabilization of RW, EW, and LW was achieved through application of a negative 

exponential curve or straight line fit followed by a smoothing spline (frequency-response cut-

off of -67) (Cook and Peters 1981; Meko and Baisan 2001). A smoothing spline was applied 

to remove low-frequency variation for MD and MCWT series, and a linear, least squares 
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regression line was applied through MRD data. MMFA and MCO chronologies had 

unacceptable inter-series correlations and were not used for further analysis. Each series was 

transformed and averaged to create a master site chronology for all wood characteristics 

using an rbar (inter-series correlation) running window of 20 years with an overlap of 10 

years for mature stands, and a running window of 10 years with an overlap of 5 years for 

planted stands (Cook and Holmes 1999). Rbar and EPS (expressed population signal) were 

used to determine when chronologies had low sample size near the beginning of a series and 

the accuracy of sample representation of the population. Sites <80% EPS were discarded to 

ensure an adequate representation of population signal (Wigley et al. 1984). 

2.3.6 Comparisons of Chronologies with Climate 

Climate Data 

Historical climate information was obtained from the Adjusted Historical Canadian 

Climate Data website (https://www.canada.ca/en/environment-climate-

change/services/climate-change/modelling-projections-analysis/adjusted-homogenized-

canadian-data.html) for PG (Station #1096439, Lat 53°88, Long -122°67, 680m elevation) 

and Fort St. James (Station #1092970, Lat 54°45, Long -124°25, 686m elevation) weather 

stations. Climate variables included monthly mean temperature, total monthly precipitation, 

and winter (previous December and current January, February), spring (current March, April, 

May), summer (current June, July, August) and autumn (previous September, November, 

December) seasonal averages. Random missing values within climate data were calculated 

by averaging four surrounding data points (two from prior and two after the missing value) or 

filled with modeled climate data from Climate BC 

(http://cfcg.forestry.ubc.ca/projects/climate-data/climatebcwna/). 
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Correlation & Regression to climate 

RW, EW, LW, MD, MRD, and MCWT of planted and natural stands were tested for 

normality using skewness and kurtosis values prior to correlation and regression analysis; 

Shapiro-Wilk was used to validate normality for sites with small sample sizes (Table 2.4 and 

Table 2.5). Site data failing one test was assessed using histograms to determine severity of 

skew. Site data failing all tests were assumed non-normal and transformed where possible. 

Data that were unable to be normalized were removed from further analysis. 

Before correlation and regression analysis, a one-way independent t-test and/or analysis 

of variance (ANOVA) test, with Bonferroni post-hoc test (alpha=0.05), was conducted to 

determine significant differences in growth of RW, EW, LW and wood cell properties by site 

in order to group stands together as a regional average (Table 2.6 and Table 2.7). Correlation 

statistics were calculated for stand-level and regionally averaged data. Annual values of RW, 

EW, LW, MD, MRD, and MCWT were correlated to mean previous year monthly May-

December and mean year current monthly January-September, winter (previous December, 

current January and February), spring (current March, April, May), summer (current June, 

July, August), and autumn (previous September, October, November) temperature and 

precipitation values using a Pearson’s correlation coefficient (R) or Spearman’s Rank 

coefficient for non-parametric data that could not be normalized (Figure 2.4 – 2.19). In 

addition, correlation statistics were determined for data from natural stands that were 

truncated to the last 30 years of growth (N(X)trunc) (Figure 2.4-2.19). Truncated natural 

stand data was used to provide an opportunity for comparisons of recent natural stand growth 

to full-length chronologies and to compare natural and planted datasets within the same 

climate interval. Partial correlation was used to determine spurious correlations when 
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relationships between radial growth variables were found to both temperature and 

precipitation within the same months/seasons. 

2.3.7 Regression Analysis and Comparison of Measured and Modelled Values 

Regression analysis was completed where significant Pearson’s correlation 

coefficients were detected (Tables 2.8-2.10). Significant R2 values were only accepted where 

R2 >0.25 (Wood and Smith 2011; Blanchette et al. 2015). Modelled values were correlated 

back to measured values to verify model accuracy (Tables 2.8-2.10). Models with significant 

correlation coefficients and acceptable R2 values were visually assessed against measured 

values to determine model accuracy over time (Figures 2.20-2.24). 

2.4 RESULTS 

2.4.1 Changes in Climate 

Climate conditions recorded at Fort St. James and PG weather stations have changed 

over the last 100 years (Figures 2.2-2.5). Figures 2.2-2.5 depict mean annual temperature and 

total annual precipitation of autumn (previous September, November, December), winter 

(previous December, current January and February), spring (current March, April, May) and 

summer (current June, July, August) for Fort St. James and PG with a 10-year moving 

average. Historical climate records indicate mean annual precipitation has ranged from 282-

770 mm in Fort St. James and 368-934 mm in PG. Average annual precipitation and annual 

average temperatures have been recorded as 465 mm and 2.8 ˚C for Fort St. James and 633 

mm and 3.7˚C for PG. Mean average temperatures have increased 1.2 ˚C and 0.4 ˚C for Fort 

St James and PG respectively since 1920. Total annual precipitation has generally decreased 

Fort St. James and increased in PG since 1920. However, recent reductions in precipitation 

are seen in Fort St. James in the last 30 years. 
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2.4.2 Chronologies 

Chronology lengths for planted stands were between 31-41 years for PG and 29-35 

for JPRF. Natural stand chronology lengths were between 144-168 years for PG and 62-113 

years for JPRF (Table 2.2). The year of residual EPS cut-off was variable for radial growth 

characteristics (Table 2.3). Most inter-series and mean sensitivity values were acceptable, 

>0.3 and >0.15 respectively, excluding all MCO and MMFA that were disregarded from 

further analysis (Table 2.2 and Table 2.3). Normality testing of RW, EW, LW and wood cell 

properties chronologies determined most data as normal with the exception of N5trunc-EW, 

P5-LW and N6-LW; N6-LW was normalized using a log transformation but N5trunc and P5 

chronologies could not be normalized (Table 2.4 and Table 2.5). 

2.4.3 Climate Correlations

Several significant correlations (p > 0.05) were found between tracheid characteristics and 

the previous and current monthly and seasonal weather record of Fort St. James and PG 

(Figures 2.6-2.21). 

Temperature 

PG & JPRF: RW, EW, and LW 

RW, EW, and LW chronologies from planted stands in PG and JPRF were 

significantly negatively correlated with previous autumn and summer and current summer 

and winter mean monthly temperatures (Figure 2.6 and Figure 2.9). Significant positive 

correlations were only found between LW in JPRF planted stands and previous year June 

monthly temperatures. JPRF and PG natural stand RW, EW and LW chronologies had fewer 

significant correlations with temperature than planted stand chronologies (Figure 2.7 and 

Figure 2.10). RW, EW, and LW in JPRF and PG natural stands were significantly negatively 



32

correlated with previous autumn and current spring and summer monthly temperatures. RW, 

EW, and LW chronologies from PG natural stands were significantly positively correlated 

with previous winter and autumn and current year summer temperatures; few positive 

correlations were found with JPRF natural stands. Several truncated natural stand 

chronologies were more strongly correlated to climate parameters than full-length 

chronologies (Figure 2.8 and Figure 2.11). Truncated RW, EW, and LW chronologies from 

PG natural stands were significantly negatively correlated with previous year spring/summer 

monthly temperatures and significantly positively correlated with previous year November 

and current year August monthly temperatures (Figure 2.8). Truncated RW, EW and LW 

chronologies from JPRF natural stands were significantly negatively correlated to previous 

June and September and current year winter and July monthly temperatures; no positive 

correlations were found in JPRF (Figure 2.10). 

JPRF: Cell Properties of MCWT, MRD and MD 

Very few significant correlations were found between cell property chronologies of 

planted stands in JPRF and mean monthly temperature. MCWT, MRD, and MD chronologies 

from JPRF planted stands were significantly correlated to previous year June and August and 

current year autumn and August mean monthly temperatures (Figure 2.20). Natural stand cell 

property chronologies from JPRF had more numerous correlations to mean monthly 

temperature than JPRF planted stands (Figure 2.21). The truncated natural stand chronologies 

from JPRF were more strongly correlated to temperature than full-length chronologies in 

most cases (Figure 2.21). MRD and MRDtrunc chronologies from natural stands were 

significantly negatively correlated with previous year winter and current year winter, spring, 

summer, and autumn mean monthly temperatures; no positive correlations were found 

between temperature and MRD or MRDtrunc chronologies. MD chronologies from natural 
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stands were significantly positively correlated with previous and current year summer, 

September, and current year spring mean monthly temperatures. 

Precipitation 

PG & JPRF: RW, EW, and LW 

Planted stand and truncated natural stand chronologies significant correlations were 

more numerous and were more strongly correlated to precipitation than full-length natural 

stand chronologies (Figures 2.12- 2.17). RW, EW and LW chronologies from PG stands were 

significantly positively correlated to previous and current spring and summer precipitation 

and negatively correlated with winter and previous autumn precipitation (Figures 2.12 – 

2.13). RW, EW and LW chronologies from JPRF planted and natural stands were 

significantly positively correlated with previous summer and autumn and current year winter, 

spring and summer precipitation, and significantly negatively correlated with total previous 

autumn and winter and current winter precipitation (Figures 2.15-2.17). 

JPRF: Cell Properties of MCWT, MRD, and MD 

Planted stand wood cell property chronologies were more significantly correlated 

with precipitation than with temperature (Figure 2.18 and Figure 2.19). MCWT chronologies 

from JPRF planted stands were significantly negatively correlated to total previous July and 

current spring, summer and September annual precipitation (Figure 2.18); all MCWT 

chronologies from JPRF natural stands had unacceptable EPS values. MRD chronologies 

from JPRF planted stands were significantly positively correlated to previous or current 

spring, summer or and autumn total precipitation and significant negative correlations were 

found to previous December total precipitation (Figure 2.18). MRD truncated and full-length 

chronologies had fewer correlations than planted stand chronologies; truncated chronologies 

had more numerous and stronger correlations than full-length chronologies (Figure 2.19). 
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MRD full-length chronologies from JPRF natural stands were significantly correlated to 

previous year August and October and current year June, and September monthly 

precipitation (Figure 2.19). Truncated MRD chronologies from JPRF were significantly 

correlated to current year May and summer monthly precipitation (Figure 2.19). MD 

chronologies from JPRF planted stands were significantly correlated to current year winter 

and September total precipitation (Figure 2.18). MD full-length chronologies from JPRF 

natural stands had very few, weak correlations between previous year June December and 

current year average autumn monthly total precipitation (Figure 2.19). Truncated MD 

chronologies from JPRF natural stands had no correlations with precipitation (Figure 2.19). 
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Table 2.3. Master chronology statistics for planted (P1, P2, P3) and natural stands (N1, N2, N3) within the John 
Prince Research Forest in interior British Columbia. MCO mean coarseness, MD mean density, MMFA mean 
microfibril angle, MRD mean radial diameter, MCWT mean cell wall thickness. 

Site Name 
Chronology 
Type 

Chronology 
Length 

Interseries 
correlation 

Mean 
sensitivity 

EPS 
value 

EPS 
cutoff 

N1 MCO 1899-2017 0.402 0.062 <0.8 - 

 MD " 0.487 0.060 >0.8 1930 

 MMFA " 0.080 0.032 - - 

 MRD " 0.541 0.038 >0.8 1920 

  MCWT " 0.442 0.061 <0.8 - 

N2 MCO 1891-2017 0.347 0.062 <0.8 - 

 MD " 0.467 0.062 <0.8 - 

 MMFA " 0.063 0.033 - - 

 MRD " 0.452 0.033 <0.8 - 

  MCWT " 0.404 0.062 <0.8 - 

N3 MCO 1957-2017 0.322 0.066 <0.8 - 

 MD " 0.584 0.065 - - 

 MMFA " 0.058 0.039 - - 

 MRD " 0.541 0.033 >0.8 1970 

  MCWT " 0.483 0.065 <0.8 - 

P1 MCO 1983-2017 0.443 0.081 <0.8 - 

 MD " 0.683 0.080 >0.9 1991 

 MMFA " 0.070 0.055 - - 

 MRD " 0.666 0.041 >0.9 1991 

  MCWT " 0.624 0.077 >0.85 1992 

P2 MCO 1980-2017 0.303 0.080 <0.8 - 

 MD " 0.608 0.079 >0.9 1989 

 MMFA " 0.139 0.039 - - 

 MRD " 0.558 0.048 >0.9 1989 

  MCWT " 0.459 0.076 >0.8 1996 

P3 MCO 1982-2017 0.492 0.085 <0.8 - 

 MD " 0.642 0.080 >0.8 1992 

 MMFA " -0.023 0.094 - - 

 MRD " 0.602 0.048 >0.9 1992 

  MCWT " 0.548 0.079 >0.85 1990 
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Table 2.4. Normality statistics for ring width (RW), earlywood (EW), latewood (LW) in the John Prince 
Research Forest and Prince George sites including Skewness and Kurtosis values; Shapiro-Wilk test was used to 
validate normality of sites with small sample sizes. Skewness > +3 or < -1 was not accepted as normal data. 
Kurtosis >+1 or <-1 was not accepted as normal data. Grey shading indicates normality values for mature 
chronologies that were truncated at 30 years. Areas with “-” indicate chronologies tested for normality because 
of unacceptable EPS values. Shapiro-Wilk normality test confirmed P3-EW & N5trunc-RW are normal data (*); 
unable to normalize N5trunc-EW & P5- LW (+); N6-LW normalized with log transformation (t). 

 

RW EW LW 

  Site Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

Jo
h

n
 P

ri
n

ce
 R

es
ea

rc
h

 F
o

re
st

 

N1 0.035 0.045 -0.151 0.394 0.542 0.962 

N1 0.316 -0.387 0.254 -0.459 0.118 -0.170 

N2 0.397 0.299 0.296 0.315 0.245 0.340 

N2 0.451 -0.322 0.553 -0.372 0.134 0.927 

N3 0.423 -0.081 0.472 0.122 0.347 -0.754 

N3 0.644 0.755 -0.048 -0.980 0.605 0.002 

P1 0.404 0.754 0.811 0.406 0.464 -0.419 

P2 0.135 -0.859 0.166 -0.774 0.434 0.881 

P3 -0.351 -0.879 -0.148 -1.228* - - 

P
ri

n
ce

 G
eo

rg
e 

N4 0.245 0.702 0.303 -0.109 - - 

N4 0.329 0.061 0.352 -0.023 - - 

N5 0.058 0.469 0.091 -0.682 0.049 -0.765 

N5 0.136* -1.174* 0.018+ -1.275+ 0.062 -0.481 

N6 0.370 0.469 0.27 0.411 0.693 -0.006 

N6 0.714 0.403 0.687 0.269 0.515t 0.128t 

P4 -0.018 0.821 0.008 0.205 0.025 -0.060 

P5 0.058 0.788 -0.223 0.061 0.719+ 1.636+ 

P6 -0.392 0.809 -0.179 -0.198 - - 
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Table 2.5. Normality statistics for the John Prince Research Forest sites including Skewness and Kurtosis 
values. Skewness > 4 + or < -1 was not accepted as normal data. Kurtosis >+1 or <-1 was not accepted as 
normal data; P3-MRD accepted as normal because very close to cut off value. MCWT mean cell wall thickness; 
MRD mean radial diameter; MD mean diameter. Grey indicates mature chronologies truncated at 30 years; areas 
with “-” indicates chronologies that were not used for correlation statistics due to unacceptable EPS values. 
 

 MCWT MRD MD 

Site Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

N1 - - 0.366 -0.395 -0.264 0.808 

N1 - - 0.471 -0.600 -0.707 0.823 

N2 - - - - - - 

N2 - - - - - - 

N3 - - -0.370 -0.534 - - 

N3 - - -0.192 -0.758 - - 

P1 0.587 0.787 -0.188 -0.521 0.234 0.880 

P2 0.462 -0.530 -0.191 -0.577 0.391 -0.661 

P3 0.699 -0.520 -0.063 -1.006 -0.264 0.808 
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Table 2.5. ANOVA and t-test statistics for natural (N1, N2, N3) and planted (P1, P2, P3) stands surrounding the 
John Prince Research Forest. Statistics presented show mean total ring-width (RW), earlywood (EW), latewood 
(LW), cell wall thickness (CWT), radial diameter (RD), density (D) and standard deviations (SD) per stand. 
Natural stand data truncated to the last 30 growth are indicated with NXtrunc. Within a column, numbers 
indicate mean and standard deviation within brackets. Anova test results are presented with letters; similar 
letters indicate groups that have no significant difference, different letters indicate groups that have a significant 
difference. Bonferroni(*) post hoc shown for the ANOVA statistical tests; t-test(t). 

 
  

RW* 
(SD) 

RWtrunc* 
(SD) 

EW* (SD) 
Ewtrunc* 
(SD) 

LW* 
(SD) 

LWtrunc* 
(SD) 

MRD 
(SD)(t) 

N1 
0.9908 a 
(0.11970) 

0.9824 a 
(0.11168) 

0.9886 a 
(0.13022) 

0.9860 a 
(0.11744) 

0.9791 a 
(0.11690) 

0.9758 a 
(0.09022) 

0.9830 a 
(0.01913) 

N2 
0.9825 a 
(0.13152 

0.9785 a 
(0.15458) 

0.9941 a 
(0.14717) 

0.9764 a 
(0.16288) 

0.9845 a 
(0.12805) 

0.9701 a 
(0.12714) 

- 

N3 
0.9988 a 
(0.12412) 

0.9814 a 
(0.12752) 

0.9935 a 
(0.12162) 

0.9819 a 
(0.13281) 

0.9888 a 
(0.15280) 

0.9776 a 
(0.12758) 

0.9988 a 
(0.03900) 

  
RW* 
(SD) 

EW* (SD) 
LW 
(SD)(t) 

MCWT* 
(SD) 

MRD* 
(SD) 

MD (SD)* 
 

P1 
0.9840 a 
(0.13211) 

0.9987 a 
(0.13020) 

0.9841 a 
(0.17635) 

1.0123 a 
(0.02620) 

1.0079 a 
(0.05829) 

1.0032 a 
(0.03237)  

P2 
0.9979 a 
(0.16320) 

0.9946 a 
(0.16608) 

0.9857 a 
(0.17829) 

1.0065 a 
(0.03662) 

1.0106 a 
(0.03578) 

1.0024 a 
(0.04327)  

P3 
1.0499 a 
(0.01430) 

0.9994 a 
(0.10880) 

- 
0.9682 a 
(0.11555) 

0.9995 a 
(0.04775) 

1.0028 a 
(0.03956)  
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Table 2.6. ANOVA and t-test statistics for natural (N4, N5, N6) and planted (P4, P5, P6) stands surrounding 
Prince George. Statistics presented show mean total ring-width (RW), earlywood (EW), latewood (LW), cell 
wall thickness (CWT), radial diameter (RD), density (D) and standard deviations (SD) per stand. Natural stand 
data truncated to the last 30 growth are indicated with NXtrunc. Within a column, numbers indicate mean and 
standard deviation within brackets. Anova test results are presented with letters; similar letters indicate groups 
that have no significant difference, different letters indicate groups that have a significant difference. 
Bonferroni* post hoc shown for the ANOVA statistical tests; t-test have no “*”. 

  
RW 
(SD)* 

Rwtrunc 
(SD)* 

EW* (SD) 
Ewtrunc(t) 
(SD) 

LW(t) 
(SD) 

Lwtrunc 
(SD) 

N4 
0.9697 a 
(0.26135) 

0.9973 a 
(0.11381) 

0.9886 a 
(0.12474) 

0.9948 a 
(0.11755) 

- - 

N5 
0.9858 a 
(0.16724) 

1.0090 a 
(0.16176) 

0.9929 a 
(0.17653) 

- 
0.9831 a 
(0.16948) 

0.9840 a 
(0.13172) 

N6 
0.9667 a 
(0.17698) 

0.9389 a 
(0.21538) 

0.9601 a 
(0.19342) 

0.9303 a 
(0.23723) 

0.9792 a 
(0.18930) 

0.9792 a 
(0.18930) 

  
RW* 
(SD) 

EW* 
(SD) 

LW 
   

P4 
0.9875 a 
(0.12352) 

1.0004 a 
(0.12965) 

- 
   

P5 
0.9697 a 
0.26135 

0.9904 a 
(0.19133) 

- 
   

P6 
0.9895 a 
(0.12147) 

0.9904 a 
(0.19133) 

- 
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Table 2.7. Regression analysis between average monthly temperature (°C) (T), total monthly precipitation (mm) 
(P) and ring-width (RW), earlywood (EW) and latewood (LW) chronologies for natural (N4, N5, N6) and 
planted (P4, P5, P6) stands surrounding Prince George. R2 values only accepted if > 0.25. ** p = 0.01; * = 0.05 
level. Grey shading indicates natural stand chronologies; NXtrunc indicates natural stand chronologies truncated 
at the last 30 years of growth. Months are represented by lower and upper case letters. Pearson correlation 
statistic and p-value results between measured (M) and modelled (MX) RW, EW and LW also presented for 
every model. 

P Site RW (R2) EW (R2) LW (R2) 
MvsMX (Pearson's 
R ) 

p-value 

jul N6trunc     0.263** 0.513 0.003 
 P5 0.267**  0.517 0.003 

JUL N6trunc     0.327** 0.572 0.001 
 N5/N6trunc     0.246** 0.496 0.005 
 P5 0.256**  0.506 0.002 
 P6  0.338* 0.6 <0.0001 

P4/P5/P6 0.335** 0.280** 0.578; 0.529 0.001; 0.003 

SUM P4 0.346** 0.254** 0.286** 0.588; 0.504; 0.535 0.001; 0.005; 0.003 

 P5  0.271** 0.521 0.002 

 P6 0.253**  0.503 0.003 

P4/P5/P6 0.402** 0.323** 0.634; 0.569 <0.0001; 0.001 

T Site RW (R2) EW (R2) LW (R2) 
MvsMX (Pearson's 
R) 

p-value 

JAN P4 0.332** 0.276** 0.576; 0.526 0.001; 0.003 
 P5 0.254**  0.504 0.002 

P4/P5/P6 0.365** 0.290** 0.604; 0.539 <0.0001; 0.003 

aug P4     0.266** 0.516 0.005 

WIN P4 0.360** 0.365** 0.6; 0.596 <0.0001; 0.001 
 P4/P5/P6 0.298** 0.251** 0.546; 0.501 0.001; 0.006 
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Table 2.8. Regression results from regression analysis between average monthly temperature (°C) (T), total 
monthly precipitation (mm) (P) and ring-width (RW), earlywood (EW) and latewood (LW) chronologies for 
natural (N1, N2, N3) and planted (P1, P2, P3) stands surrounding the John Prince Research Forest. R2 values 
only accepted if > 0.25.** p = 0.01; * = 0.05 level. Grey shading indicates natural stand; NXtrunc indicates 
natural stand chronologies truncated at the last 30 years of growth. Months are represented by lower and upper 
case letters, respectively. Pearson correlation statistic and p-value results between measured (MX) and modelled 
(M) RW, EW and LW also presented for every model. 

P Site 
RW 
(R2) 

EW 
(R2) 

LW (R2) 
MvsMX (Pearson's 
R) 

p-value  

JAN N1trunc     0.267** 0.516 0.003 

JUN P1 0.294** 0.302** 0.253** 0.542; 0.550; 0.503 0.002; 0.003; 0.010 

 P2 0.363** 0.273** 0.298** 0.603; 0.522; 0.546 
<0.0001; 0.003; 
0.002 

 P3 0.353** 0.345**  0.593; 0.588 0.001; 0.003 

  P1/P2/P3 0.392**     0.626 <0.0001 

nov N3  0.201**  0.458 0.001 

 N3trunc 0.342**   0.569 0.001 

  P1 0.255*     0.504 0.004 

dec N2trunc 0.286** 0.287** 0.310** 0.535; 0.536; 0.556 0.002; 0.002; 0.001 

  N1/N2/N3trunc 0.332**   0.577 0.001 

T Site 
RW 
(R2) 

EW 
(R2) 

LW (R2) 
MvsMX (Pearson's 
R) 

p-value 

JAN N3trunc     0.286** 0.535 0.002 

 P3 0.337**   0.581 0.001 

  P1/P2/P3 0.254**   0.504 0.007 

JUL N3     0.277** 0.527 <0.0001 

 N3trunc     0.258** 0.508 0.004 
 P1   0.395** 0.628 <0.0001 

  P1/P2     0.459** 0.678 <0.0001 

sep P1   0.330** 0.575 0.003 
 P1/P2   0.341** 0.584 0.002 

SUM P1   0.340** 0.538 0.002 

 P1/P2   0.358** 0.598 0.002 
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Table 2.9. Regression results from regression analysis between total monthly precipitation (mm) (P) and 
average monthly temperature (°C) (T) for mean cell wall thickness (MCWT), mean radial diameter (MRD) and 
mean density (MD) natural (Nx) and planted (Px) stand chronologies near the John Prince Research Forest. R2 
values only accepted if > 0.2. ** p = 0.01; * = 0.05 level. Grey shading indicated natural stand chronologies; 
NXtrunc indicates natural stand chronologies truncated at 30 years. Months are represented by lower and upper 
case letters, respectively Correlation statistics (Pearson’s R & p-value) results between measured (M) and 
modelled (MX) cell properties are also presented for every model. 

P Site 
MCWT 
(R2) 

MRD 
(R2) 

MD 
(R2) 

MvsMX 
(Pearson's R ) 

p-value 

MAR P1   0.255**   0.01 

jul P3 0.272**   0.521 0.008 

 P1/P2/P3 0.302**   0.549 0.007 

JUL P3 0.280*   0.529 0.007 

  P1/P2/P3 0.311**     0.588 0.006 

sep P2  0.267**  0.517 0.005 

SEP P3 0.263*  0.263** 0.512; 0.513 0.009; 0.010 

  P1/P2/P3 0.300**     0.548 0.007 

dec P1 0.263** 0.513 0.009 

WIN P3   0.371* 0.609 <0.0001 

SUM P3 0.272*   0.522 0.007 

P1/P2/P3 0.296** 0.544 0.007 

T Site 
MCWT 
(R2) 

MRD 
(R2) 

MD 
(R2) 

MvsMX 
(Pearson's R) 

p-value 

jun P2 0.256** 0.506 0.01 

JUN N1trunc   0.297** 0.545 0.003 

SUM N2   0.284** 0.533 <0.0001 

 
 

2.4.4 Regression Analysis 

Although there were numerous significant relationships found between climate and 

JPRF and PG radial growth properties in regression analysis, the models presented below 

reflect the strongest relationships found between wood properties and winter, summer, and 

autumn climates (Tables 2.8-2.10 and Figures 2.22 – 2.26). 

Winter Relationships 

RW, MD, and MRD chronologies from planted stands in JPRF and PG modelled 

from current and previous year winter climates compared to observed values (Figure 2.22). 
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Although the RW models of PG and JPRF planted stands based on January temperatures 

show reliability, some points are inaccurate in 1998 and between 2001-2003. Decoupling 

occurs between measured and modelled MD values in 2012 and 2013, and between measured 

and modelled MRD values from 1991-1997, 2002, and in 2012 modelled from previous 

December and current average winter precipitation. 

Models of both truncated and full-length RW, EW, LW and MRD chronologies from 

natural stands in JPRF based on winter climates corresponded well with measured data; 

truncated natural stand data demonstrated better reliability than full-length chronologies 

(Table 2.9 and Figure 2.23). PG natural stands had no strong predictors of measured values 

based on winter climates (Table 2.8). Measured and modelled values of N1/N2/N3trunc EW 

from previous December precipitation decouple in 1987 and between 2008-2010. Modelled 

values of the N1trunc based on current January precipitation do not follow measured values 

in 2007 (Figure 2.23). Decoupling occurred between measured and modelled values of 

N3trunc LW in 1998, 2007, 2013 and 2016 based on current January temperature (Figure 

2.23). Variability in measured and modelled RW, EW, LW and cell property values in both 

planted and natural stands from JPRF and PG coincide with fluctuations in climate as 

recorded in the meteorological records from PG and Fort St. James. Extreme weather events, 

such as in 1992, which was 10˚C warmer than the record average, corresponded to significant 

marker years in chronologies of wood properties (Figure 2.22 and Figure 2.23). 
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Figure 24.22. Measured (dotted line) vs modelled (solid line; crossed solid line indicates 1-year lagged data) 
ring width (RW), mean cell radial diameter (MRD) and mean density (MD) of regional (P1/P2/P3 & P4/P5/P6) 
and individual (P1, P3) planted stands of central interior British Columbia spruce. Data modeled from previous 
December precipitation (A), current average winter precipitation (B) and current mean January temperature (C, 
D) from Fort St. James and Prince George climate stations. R2 values are presented with ** p =0.01 and * p= 
0.05 Note not all axis are the same scale.   
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Figure 25.23. Measured (dotted line) vs modelled (solid line; crossed solid line indicates 1-year lagged data) 
ring width (RW), earlywood (EW), latewood (LW) and mean radial diameter (MRD) from regional (N1/N2/N3) 
and individual (N1, N3, N3trunc) natural stands of spruce in central British Columbia within the John Prince 
Research Forest. Data modelled from previous December total precipitation (A), current January total 
precipitation (B) and current mean January temperature (C) from Fort St. James climate stations. Thirty-year 
truncated natural stand chronologies indicated by NX”trunc”. R2 values are presented with ** p =0.01 and * p= 
0.05. Note not all axis are the same scale. 
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2017 in measured and modelled values (Figure 2.24). MCWT chronology from P1/P2/P3 

modelled from current July precipitation moderately followed the measured values with some 

areas of uncoupling occurred in this model from 1994-1996 and in 2005 (Figure 2.24). 

LW chronologies from natural stands in PG (N6trunc) modelled from current July 

total monthly precipitation were strongly correlated with measured values (Figure 2.25). 

However, modelled N6trunc LW values decouple from measured values in 1988-1989, 1990-

1995 1998, 2009 and 2013. N1trunc MRD chronology modelled from current June mean 

monthly temperature also strongly related to measured values (Figure 2.25). Decoupling from 

measured values only occurred from 2011-2017 in the N1trunc MRD model. 

Measured wood properties were strongly related to extreme climate events. Measured 

wood properties were strongly related to higher-than-normal precipitation years in PG such 

as 1991 (190.9 mm), 1993 (254.6 mm) and 2008 (274.3 mm), and in Fort St. James such as 

1993 (147 mm), 2005 (95.6 mm) and 2012 (103 mm) (Figure 2.24 and Figure 2.25). 

Similarly, measured values were related to lower-than-normal precipitation years in PG such 

as 1992 (108.9 mm) and in Fort St. James such as 1992 (22.6 mm), 1994 (49.8 mm), 2006 

(11.2 mm), 2014 (8.6 mm). Relationships between growth and precipitation fluctuations are 

reflected in model accuracy in most cases. Wood properties were also strongly correlated to 

higher or lower-than-normal Fort St. James temperatures, such as 1998 (17.4˚C), 2009 

(17.3˚C), 2005 (14.3˚C), and 2010 (15.9˚C) which is reflected in model accuracy (Figure 

2.24 and Figure 2.25).  
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Figure 26.24. Measured (dotted line) vs modelled (solid lines) ring width (RW), latewood width (LW), mean 
cell radial diameter (MRD) and mean cell wall thickness (MCWT) of regionally averaged (P1/P2/P3, P1/P2 & 
P4/P5/P6) planted stands of spruce in central interior British Columbia modelled from current summer (A) total 
precipitation from Prince George climate station and current year June (B) and July (C) total precipitation and 
current year mean July temperature (D) from Fort St. James climate stations. R2 values are presented with ** p 
=0.01 and * p= 0.05. Note not all y-axis are the same scale. 
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Figure 27.25. Measured (dotted line) vs modelled (solid line) latewood width (LW) and mean radial diameter 
(MRD) of regional (N1/N2/N3) and stand (N1trunc, N6trunc) level natural stands of central interior British 
Columbia modelled from current July (A) total precipitation and current June (B) mean temperature from the 
Fort St. James and Prince George climate stations. R2 values are presented with ** p =0.01 and * p= 0.05. Note 
not all axis are the same scale.  
 
Autumn Relationships 

RW, EW, LW, MCWT, MD, and MRD chronology values from planted stands in 

JPRF and N3 were strongly related to models based on previous September, October and 

November, and current year September climate variables (Figures 2.26). No reliable models 

were found for planted stands from PG and the other natural stands from JPRF and PG 

(Tables 2.8 – 2.10). Decoupling occurred in 1997, 2006 and 2009-2010 between measured 

and modelled P1/P2 LW values modelled from previous September temperatures. Values of 

N3 RW modelled from previous November precipitation decouple from measured values in 

1989, 1997, 1998 and 2006. Values of MD and MRD modelled from current September 

precipitation decouple from measured values between 1996-1997, 2003 and 2011-2012. 

Wood properties were also strongly correlated to extreme precipitation changes between 

1993 and 1996 (1993 (12.9mm) to 1994 (70.6mm) to 1995 (8.6mm) to 1996 (57.9mm)) 

which are reflected in the models. 
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Figure 28.26. Measured (dotted line) vs modelled (solid line; crossed line indicates 1-year lagged data) values 
of 
earlywood (EW), mean cell wall thickness (MCWT), mean density (MD) and mean radial diameter (MRD) 
from regional (P1/P2/P3) and/or stand (P2, P3) level planted stands of central interior British Columbia 
modelled from previous September mean monthly temperature (A), previous November total monthly 
precipitation (B, C) and current (D) and previous (E) September total monthly precipitation from Fort St. James 
climate station. R2 values are presented with ** p =0.01 and * p= 0.05. 
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2.5 DISCUSSION 

Relationships between tree growth and climate over time were successfully modeled 

using RW, EW, LW, MCWT, MRD, and MD chronologies from planted and natural spruce 

stands in central interior BC and current and one-year lagged precipitation and temperature 

variables from Fort St. James and PG climate stations. Although there were numerous 

significant correlations between radial growth and climate, correlations will only be 

discussed where models were successfully predicted (R2 >0.25) from climate variables. 

Regression analysis determined that winter and summer climate variation have the strongest 

influence on growth of RW, EW, LW, and cell properties in planted and natural stands of PG 

and JPRF. Previous autumn and current year September climate variation also had a strong 

effect on growth variation in JPRF planted stands. Low inter-series correlations and lack of 

reliable EPS values indicated that sample size was too small to create reliable stand level 

chronologies for MCWT in natural stands and any MMFA or MCO chronologies. 

2.5.1 Climate-growth Relationships in Natural and Planted Stands of JPRF and PG  

Winter 

Variation in winter climate was a strong predictor of radial growth in planted stands 

of PG and planted and natural stands of JPRF. Correlations between January climate and 

chronologies suggests that recent reductions in JPRF precipitation, and rising winter 

temperatures in JPRF and in PG resulted in reduced annual growth (RW, LW). Higher-than-

normal winter temperatures can reduce accumulated winter precipitation, or insulation, and 

trigger soil freezing to depths that can prevent or reduce absorption of melting snow leading 

to reduced water reserves for spring growth (Jarvis and Linder 2000). These events can cause 

drought-like conditions that will reduce cell expansion, or radial growth, by physical 
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inhibition through loss of cell turgor pressure (Abe et al. 2003). In this study, RW (P1/P2/P3; 

P4/P5/P6) and LW (N1trunc) modelled from January temperature show strong correlation 

with measured values in years with higher-than-normal temperatures, such as 1992. Years 

with higher-than-normal winter temperatures can also cause midwinter dehardening and 

freezing injury that will substantially reduce growth, an observation seen in other studies 

(Strimbeck et al. 1995; Carolyn et al. 2017). Differences were found in relationships between 

winter precipitation and LW and EW. Relationships between winter precipitation and 

LW/MRD/MD chronologies of JPRF suggest that years with higher-than-normal 

precipitation related to increased LW production in natural stands and production of larger, 

less dense cells in planted stands. However, relationships between winter precipitation and 

EW in natural stands of JPRF suggest that years with higher-than-normal precipitation 

produce limited EW proportions. These differences are likely due to timing of cell formation, 

as substantial buildup of snow can delay spring growth, an observation found in other studies 

(Watson and Luckman 2001; Watson and Luckman 2016). 

Summer 

Radial growth over time in planted stands of PG and planted and natural stands of 

JPRF were strongly related to summer climates. Relationships between summer climate and 

JPRF planted and natural stands suggest that recent reductions in summer precipitation and 

higher-than-normal temperatures both coincided with reduced radial growth (RW, LW) and 

increased MCWT during what should be typical optimal cell enlargement periods (Fritts 

1967; Flower and Smith 2011). These results are consistent with previous studies with BC 

interior spruce that show unfavourable summer climate conditions will reduce cell expansion 

with increased density and cell wall thickness and reduced RW and LW proportions (Zhang 
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et al. 1999; Flower and Smith 2011; Oberhuber et al. 2014). However, in more favourable 

conditions in the PG area, relationships between summer precipitation and planted and 

natural stands of PG suggest that increases in summer precipitation produced increased radial 

growth (RW, LW), an observation found for several conifer species in BC, Canada, including 

white spruce (Kienholz 1931; Peterson and Peterson 1994; Ettl and Peterson 1995; Larocque 

and Smith 2005; Miyamoto et al. 2010). Model reliability was not consistent in all years and 

less reliable in models of cell properties. This outcome is particularly apparent in 2013 in 

models of RW, (P4/P5/P6), LW (P1/P2 and N6trunc), MCWT (P1/P2/P3) and MRD 

(N1trunc) where measured values poorly correlated with modelled values. Given that JPRF 

climate in 2013 had higher-than-average temperatures coupled with 20mm above the average 

precipitation, this may have allowed trees to increase cell expansion in June and increase LW 

and secondary wall thickening in July under favourable conditions; similar conditions were 

seen in growth of PG stands with higher-than-average temperatures coupled with 35mm of 

precipitation above the average. 

Autumn 

Radial growth in the stands investigated may not be as sensitive to previous autumn 

and current September variation as they are to other climate factors. Relationships were only 

found between autumn climate factors and planted stands of JPRF and N3 chronologies. 

Increasing autumn temperatures in JPRF were correlated with reduced LW for the P1/P2 LW 

chronologies. Maintaining summer-like temperatures in previous autumn months can 

promote active photosynthesis and carbohydrate food storage used for growth in the 

following year, however, results of this study show that precipitation is limiting in JPRF, and 

therefore is not able to adequately match climbing temperatures (Chinn et al. 2008). 
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Similarly, recent reductions in JPRF previous and current September precipitation appear to 

be related to production of cells with reduced radial diameter and higher density. These 

results are consistent with previous studies suggesting that water deficiency, characterized by 

decreasing precipitation coinciding with rising temperatures, may become the limiting 

growth factor in central interior boreal forests of Canada (Lo et al. 2010; Jiang et al. 2016). 

Although reductions in previous November precipitation were correlated with increased RW 

(P1; N3trunc), investigation revealed that measured and modelled values were only strongly 

related in years with higher-than-normal precipitation. This suggests that the negative 

correlation between previous November and RW is misrepresentative and that trees may be 

able to take advantage of years with higher-than-normal precipitation that compensates for 

rising temperatures. 

2.5.2 Differences between Natural and Planted Stand Growth 

Results from this study show that planted stands may be suffering greater growth 

reductions than natural stands with changing climates, an observation found in other studies 

comparing climate to planted and natural stand growth (Sánchez-Salguero et al. 2012; 

Sánchez-Salguero et al. 2013). Although the differences in response of radial growth to 

climate between planted and natural stands cannot be determined, several characteristics of 

this study’s planted stands may have made them more sensitive to variation in temperature 

and precipitation (Szeicz and MacDonald 1993; Sánchez-Salguero et al. 2013). Younger 

trees, like the planted stands in this study, lack the substantial buildup of carbohydrate 

reserves in mature trees that helps to mitigate climate stress (Nobel and Alexander 1977; 

Lazarus et al. 2018). Planted trees also lack rooting depth that leads to reduced surface area 

for soil moisture absorption compared to older, larger trees with far reaching root systems 
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that can continue to photosynthesize and transpire even during low precipitation periods (Wu 

et al. 2013). Previous studies have also shown that natural stands are able to recover from 

low precipitation periods or droughts substantially better than planted stands, which might 

account for the strong correlations between planted stands and precipitation (Sanchez-

Salugero et al. 2013). Thus, results from this study suggest that variability in planted stand 

growth is more related to warming temperatures and/or reductions in precipitation compared 

to natural stands.  

2.5.3 Differences between Planted, Natural, and Truncated Natural Stand Chronologies 

Natural stand chronologies truncated to the last 30 years were used to compare 

growth in natural and planted stands with climate over the same time period and to 

investigate if recent natural stand growth was more influenced by climate than full-length 

natural stand chronologies. Although planted stand growth appears to be more sensitive to 

variations in temperature and precipitation than natural stands, stronger correlations were 

observed between climate and natural stands chronologies truncated to the last 30 years in 

JPRF and PG compared to the full-length chronologies. These relationships suggests that 

temperature and precipitation variation have become more influential in determining growth 

variation than earlier in the time series, an observation seen in other studies (Tardif et al. 

2003; Camarero et al. 2015; Peñuelas et al. 2007; Martin-Benito et al. 2013). Prolonged 

warming and frequent drought can reduce deep soil moisture that supports mature tree 

growth during years of lower-than-normal precipitation (Chapin et al. 2002). Trees that are 

dependent on deeper soil moisture regimes are expected to experience longer and more 

intense water stress compared to younger, artificially managed, shallower rooted trees in the 

long-term (Carrer and Urbinati 2004; Trugman et al. 2018; Chitra-Tarak et al. 2018). 



 
 

72 

Although this study shows that reductions in planted stand growth is more strongly related to 

variation in precipitation and temperature, relationships between the last 30 years of natural 

stand growth and temperature and precipitation variation may indicate that long-term 

warming is beginning to affect growth in natural stands. As current projections suggest that 

temperatures will continue to rise in central interior BC, reductions in growth in planted and 

natural stands should be expected. 

2.5.4 JPRF and PG Radial Growth Climate Variability 

The differences in radial growth variation and growth models between JPRF and PG 

are probably due to the distinct differences in regional climate. Although results of this study 

indicate that rising temperatures of Fort St. James and PG both negatively influence radial 

growth (RW, LW), Fort St. James climate records report roughly 200 mm less average 

precipitation than PG. Previous research has shown hybrid white spruce growth in warm arid 

areas is more climatically sensitive to precipitation changes than areas with adequate 

moisture regimes, as regional differences (stronger and more numerous correlations between 

precipitation with JPRF than PG) in this study also suggest (Lo et al. 2010; Trindade et al. 

2011; Wilmking and Myers-Smith 2008; Cortini et al. 2017). The relationships between 

precipitation and radial growth in JPRF may be amplified with recent reductions in 

precipitation. Although PG has rising temperature, adequate moisture regimes suggest that 

conditions for growth are more favorable than the warmer, drier conditions of JPRF. 

However, it is pertinent to note that the measured and modelled growth in PG is strongly 

correlated in years where lower-than-normal precipitation coincides with higher-than-normal 

temperatures in PG. This suggests that precipitation may not always be able to alleviate the 

negative effects of rising temperatures on radial growth in PG.  
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Differences in the relationships between climate and radial growth in JPRF and PG 

may also be due to the distance of sampled stands from climate stations and proximity of 

stands to one another. Although meteorological station data is relatively accurate, increasing 

distance or variability in distance from climate station will decrease accuracy (Coop et al. 

2014). As climate stations are at fixed locals, data from the stations can be more 

representative of one area over another. This may explain stronger more numerous 

correlations in JPRF than PG. Differences in climate correlation results could have also been 

influenced by proximity of sites within each region to one another. Closer proximity of JPRF 

stands to one another could allow for better regional representation in planted and natural 

stand variability in tree growth and better model predictability with similar distances to 

climate stations than stands of PG. 

2.6 CONCLUSION 

This study aimed to investigate the effect of temperature and precipitation on radial 

growth properties (RW, EW, LW MCWT, MRD, MD, MCO and MMFA) in natural and 

planted stands of hybrid white spruce in areas surrounding PG and JPRF. Review of 

historical climate records shows annual temperature has increased in JPRF and PG areas. 

Precipitation showed an overall increase since 1930 with stark decreases in the last 30 years 

in JPRF.  

Correlation analysis and regression models determined that radial growth in JPRF and 

PG planted stands was strongly influenced by previous autumn, winter, summer, and current 

September climate variables. Rising winter and summer temperatures were associated with 

reduced radial growth in planted stands of JPRF and PG and in natural stands of JPRF; rising 

autumn temperatures were also related to reduced LW in planted stands of JPRF but had 

poorer statistical strength. Higher-than-normal winter precipitation reduced EW but 
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encouraged LW production in JPRF stands, likely due to timing of cell formation. Reduction 

in summer and autumn precipitation was associated with reduced growth in stands of JPRF, 

however, increases in summer precipitation related to growth in PG. 

Stronger and more numerous relationships between climate with radial growth in 

planted than natural stands may be attributed to differences in age and size. Planted stands 

may have greater dependency on moisture reserves on the first decade of juvenile growth and 

have a lack of substantial carbohydrate reserves that help mitigate climate stressors. Although 

planted stands had stronger relationships between radial growth and climate than natural 

stands, assessment of the last 30 years of natural stand radial growth suggests increased 

sensitivity to climate variability than full-length natural stand chronologies. Increased 

sensitivity could be caused by long-term reductions in deep soil water reserves used by that 

deeper root systems of mature stands, especially during climate warming and reductions in 

precipitation. 

Finally, stronger and more robust regression models occurred from stands 

surrounding JPRF than those in PG, likely due to distinct differences in regional climate, 

climate station location and proximity of sampled stands to one another. In natural and 

planted stands of PG, adequate precipitation in cool-moist areas appear to support increased 

growth in current climates. However, rising temperatures coupled with reduced precipitation 

have been shown in this study to reduce annual radial growth rate in natural and planted 

stands within warm-arid areas of JPRF. Closer proximity of stands to one another coupled 

with similar distances to the climate station could have allowed for better regional 

representation of natural and planted stand growth in JPRF than PG. Future projections of 

rising temperatures and reduced precipitation may lead to increase drought-induced mortality 

in spruce plantations and mature forests in warm-arid areas.  
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Chapter 3: Relationships between percent carbon and wood growth and climate 
variation in natural and planted stands of hybrid white spruce (Picea glauca (Moench) 
x engelmannii (Parry)) in central interior British Columbia 
 

3.1 ABSTRACT 
 

Measurements of tree growth and carbon sequestration are important for accurate 

determination of carbon balance in terrestrial ecosystems. Using hybrid white spruce (Picea 

glauca (Moench) x engelmannii (Parry), this study sought to investigate relationships 

between percent carbon and wood properties of ring-width, earlywood, latewood, cell wall 

thickness, and density, determine if percent carbon between individual stands and between 

regional-level stand aggregates differed, and to evaluate relationships between percent carbon 

and climate variation over time. Significant differences between percent carbon of wood 

found in individual natural and planted stands were found, likely due to site-specific 

characteristics. Significant relationships were found between percent carbon and cell wall 

thickness, density, and ring-width values, which suggests these wood properties are good 

indicators of variation in sequestered carbon. Percent carbon accumulation in some planted 

stands and some natural stands appeared to be suffering reductions with increasing 

temperatures; however, warmer late-season conditions appear to enhance growth. The last 30 

years of growth in some natural stands may be more sensitive to climate variation compared 

to the entire time series. The results of this study provide improved understanding of 

relationships between percent carbon, wood properties and climate and potential differences 

inherent to natural and planted stands.  



 
 

84 

3.2 INTRODUCTION 
 

Forest growth in natural and managed stands is a key process that requires assessment 

to determine the impacts of environmental change to carbon balance in terrestrial ecosystems 

(Pompa-Garcia 2016). Simple measurements of carbon content in tree stems are a function of 

tree height and diameter at breast height (DBH), but can be enhanced with knowledge of 

wood density, carbon concentration, and wood volume (Weber et al. 2018). It has been 

suggested that wood density and cell wall thickness correlate with carbon concentration; 

cellulose and lignin are components of xylem cell walls therefore thicker, denser cell walls 

should have greater proportions of carbon (Elias and Potvin 2003; Thomas and Malczewski 

2007; Lachenbruch and Mcculloh 2014; Weber et al. 2018). However, relationships between 

wood properties and carbon are not well understood as past research has focused mainly on 

biomass (or allometric biomass equations as determined from DBH and height 

measurements) instead of direct measurements of volatile and structural carbon (Zabek and 

Prescott 2006; Castaño-Santamaría and Bravo 2012). Expanding knowledge of the variation 

and relationships in natural and planted stands between wood properties, such as density and 

cell wall thickness, and carbon could improve projections of carbon sequestration (Weber et 

al. 2018).  

Forest growth, and subsequent carbon accumulation, is strongly affected by changes 

in climate. Changes in climate are predicted to cause deviations in tree photosynthetic and 

respiration rates, increase disturbance, and increase tree mortality related to chronic drought 

(Allen et al. 2010; Schwalm et al. 2010; Haughian et al. 2012; Babst et al. 2014; McDowell 

and Allen 2015). Changes in British Columbia (BC) climate are predicted to include warmer 

and wetter conditions, with increased maximum and minimum temperatures and decreased 

depth and water content of snowpack that will vary across the topographic landscape 
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(MWLAP 2002; Lo et al. 2010; Fleming and Whitfield 2010). Over the next century, 

substantial changes in temperature and precipitation in central interior BC, particularly in the 

spruce-willow-birch (SWB) and sub-boreal spruce (SBS) biogeoclimatic zones, are expected 

(Spittlehouse 2007; Lo et al. 2010; Wang et al. 2012; Jiang et al. 2016). Increasing 

temperatures may push forests beyond sustainability thresholds, reducing the amount of 

carbon dioxide uptake and carbon accumulation (Millar and Stephenson 2015). 

Tree ring analysis has been used to determine forest growth dynamics and has 

provided climate variability information through radial growth and climate reconstructions 

(Fritts 1967; Babst et al. 2014). Dendrochronological techniques may also be used to enhance 

understanding of relationships between above ground carbon accumulation and climate 

(Bouriaud et al. 2005). However, most carbon research relates to productivity based on 

climate (Grünwald and Bernhofer 2007), biomass equations (Liepiņš et al. 2018), and 

changes to forests after anthropogenic management (Davis et al. 2009; Ter-Mikaelian et al. 

2014). These studies exclude the established large-scale spatiotemporal tree-ring records that 

are deemed unsuitable for carbon equations. 

3.2.1 Objectives 

This chapter aims to determine variations in percent carbon of hybrid white spruce 

(Picea glauca x engelmannii) in natural and planted stands over time, and how these 

variations relate to density and cell wall thickness measurements, and how these variations 

correspond with changes in temperature and precipitation in central interior BC. The specific 

objectives of this research were to:  

i) Determine radial growth profiles of percent carbon, density, and cell wall thickness 

at annual scales;  
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ii) Examine the relationship between percent carbon, ring width, earlywood and 

latewood widths, and values of wood density and cell wall thickness;  

iii) Compare percent carbon relationships among individual stands and regional-level 

stand aggregates;  

iv) Examine the statistical correlation between monthly and seasonal climate 

variables and percent carbon; and,  

v) Investigate relationships between climate variables and percent carbon over time.  

3.3 METHODS 

3.3.1 Site Selection 

Hybrid white spruce trees were selected from six natural (N1-N6) and six planted 

stands (P1-P6) from areas of central interior BC (Figure 3.1 and Table 3.1). One group of six 

stands (N1-N3; P1-P3) was selected from the John Prince Research Forest (JPRF), where 

each stand was within 5km of one another. The second group of six stands (N4-N6; P4-P6) 

were within a 200km range of Prince George (PG). Biogeoclimatic variant of each site was 

determined with review of site characteristics and Biogeoclimatic Ecosystem Classification 

land management handbooks (Figure 3.1 and Table 3.1) (Delong et al. 1993). PG stands were 

in the willow-wet-cool (wk1) and very-wet-cool (vk1) variants, of the Sub Boreal (SBS) and 

biogeoclimatic zone, classified with high precipitation and cooler temperatures. JPRF stands 

were in the Stuart-dry-warm (dw3) variant, of the SBS zone, that is characterized by lower 

snow packs and warmer temperatures. 

3.3.2 Sample Collection 

Twenty dominant trees in each stand were selected for sampling. Sampling occurred 

at 5m minimum intervals to avoid concerns of spatial autocorrelation (Dale and Fortin 2014). 
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Trees with scars, fire or insect damage, split tops and abnormal growth patterns were 

avoided. Areas near roads or with open canopies were also avoided to alleviate influences on 

growth that would reduce the ability to obtain a stand-level climatic growth signal (Fritts 

1976). One 5mm core at 90 degree spacing from each tree was collected at breast height (and 

at 30cm aboveground for smaller trees) that was parallel with contours (Grissino-Mayer 

2003). An additional 12mm core from each tree was collected at JPRF sites for SilviScan 

fibre analysis. Surrounding vegetation, slope, elevation, flowing or standing water, diameter-

at-breast-height and GPS site and tree location were recorded. 

 

 
Figure 29.1. Sample site overview map of natural (squares) and planted (triangles) stands near Prince George 
and Fort St. James. 
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3.3.3 Sample Preparation of 12mm Cores 

Of the 120-12mm cores sampled JPRF, 89 undamaged cores were selected for 

SilviScan analysis. Resins were removed from selected cores via 12-hour Soxhlet acetone 

extraction. After extraction, cores were conditioned at 40% relative humidity and 20°C to 

obtain an 8% moisture content equilibrium. Once at 8% moisture content, cores were cut into 

2mm X 7mm radial pith-to-bark strips (tangentially x longitudinally) with a twin-blade saw 

and sanded. SilviScan analysis was then performed, which included: 1) image analysis of 

radial and tangential cell dimensions using optical microscopy, 2) X-ray densitometry to 

provide measurements of wood density every 25 microns along the wood samples, and, 3) X-

ray diffractometry yielding measurements of microfibril angle at 5-mm increments (Evans 

and Ilic 2001). 

3.3.4 Percent Carbon Analysis 

Increment cores from JPRF and PG were dried, sanded, and cross-dated using a 

dotting system. Cores were labelled with a single dot every ten years, two dots every half-

century and three dots every century (Stokes and Smiley 1968); 1200 grit sandpaper was 

used to identify especially narrow rings. The Yamaguchi (1991) list method was 

implemented to determine significant marker years. Once cross-dated, twenty 5mm cores 

from each site were cut bark-pith into 5-year increments from the last 40 years for planted 

stands and 80 years for natural stands. Although one-year increments were initially sought, 

annual increments did not provide enough wood mass for percent carbon measurements. 

Each group of 20 cores (stand-level chronology) were cut into 5-year sections. These 5-year 

sections were grouped together by year and corresponding years were analysed together as an 

aggregate sample (Figure 3.2). Aggregate samples were measured for wet weight and 
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extracted at 110 ˚C for 1.5 hours of boiling, rinsing and recovery using a Soxhlet unit to 

remove resins. Once dry, samples were measured for dry weight and ground into a powder 

with a Wiley grinder. Four replicates from each aggregate sample representing 20 cores were 

created (Figure 3.2). Replicates combined 4-5mg of sample and 10mg of catalyst, valdium 

peroxide and were placed into a small tin. Each replicate was analyzed with the PerkinElmer 

2400 Series II CHNS/O Elemental Analyzer (2400 Series II) to measure carbon content as a 

percentage (Figure 3.2). Percent carbon content of replicates was then averaged to obtain a 

mean value for each 5-year segment. This process was then completed for 5-year aggregate 

sample and for all other sites. 
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3.3.5 Percent Carbon vs JPRF Cell Wall Thickness and Density Values 

Individual mean, minimum, and maximum density and cell wall thickness 

measurements were obtained from SilviScan data of all cores from each natural and planted 

stand in JPRF only (P1-P3, N1-N3) due to cost of analysis. Annual RW, EW, LW and 

density and cell wall thickness values from each core were averaged into 5-year increment 

values to correspond to 5-year carbon value increments. The 20 cores representing a stand 

were then averaged for each interval to obtain average stand-level values of RW, EW, LW, 

density, and cell wall thickness over time. Stand-level and regional-level percent carbon and 

average RW, EW, LW and mean, minimum, and maximum cell wall thickness and density 

values were tested for normality using skewness, kurtosis and Shapiro-Wilk values prior to 

statistical tests (Table 3.2). Shapiro-Wilk values for percent carbon were used to determine 

normality rather than skewness and kurtosis due to small sample sizes. Data failing one test 

was assessed using histograms to determine severity of skew. Data failing all tests was 

transformed where possible or assumed non-normal. Data that were unable to be normalized 

were removed from further analysis. 

Several one-way ANOVAs with Bonferroni post-hoc test (alpha=0.05) tests were 

conducted to determine significant differences of mean percent carbon content between 

natural (N1 vs N2 vs N3) and planted stands (P1 vs P2 vs P3) (Table 3.3). Residuals of 

ANOVA tests were checked for normality. Regional data sets were created for natural and 

planted stands of percent carbon and mean, minimum and maximum density, and cell wall 

thickness were combined where no significant differences existed. An independent t-test 

analysis was conducted to determine if there was a significant difference between regional 

data sets of mean percent carbon content in natural and planted (Table 3.3). 
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Correlations statistics were calculated for regional data sets and natural and planted 

stand values between mean percent carbon values and average RW, EW, LW and mean, 

maximum and minimum density and cell wall thickness values over time using a Pearson’s 

or Spearman Rank correlation coefficient (R) (Table 3.4). Correlation statistics in individual 

stands were graphed for visual aid (Figure 3.3 and Figure 3.4). Juvenile wood and mature 

wood were determined for each site using changes in cell wall thickness and density values. 

Although statistical tests were not possible between juvenile wood and mature wood, 

relationships between values of percent carbon and cell wall thickness and density in juvenile 

and mature wood are graphically represented (Figure 3.5). 

3.3.6 Percent Carbon vs Climate 

Climate Data 

Historical climate information was obtained from the Adjusted Historical Canadian 

Climate Data website (https://www.canada.ca/en/environment-climate-

change/services/climate-change/modelling-projections-analysis/adjusted-homogenized-

canadian-data.html) for JPRF (Station #1092970, Latitude 54°45, Longitude -124°25, 686m 

elevation) and PG (Station #1096439, Latitude 53°88, Longitude -122°67, 680m elevation) 

stations. Climate variables included monthly mean temperature, total monthly precipitation, 

and winter (previous December, current January and February), spring (current March, April, 

May) and summer (current June, July, August), and previous autumn (previous September, 

November, December) seasonal averages. Random missing values within climate data were 

calculated by averaging four surrounding points or filled with modeled climate data from 

Climate BC (http://cfcg.forestry.ubc.ca/projects/climate-data/climatebcwna/) for large gaps in 
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data. Temperature and precipitation data was averaged into 5-year intervals for comparison 

with 5-year average percent carbon data. 

Correlation & Regression Analysis 
 

Percent carbon was correlated to climate (mean previous monthly May-December and 

mean current monthly January-September, and previous autumn, winter, spring, and summer 

temperature and precipitation) values using Pearson’s correlation coefficient (R) or 

Spearman’s Rank coefficient for non-parametric data that could not be normalized. In 

addition, correlation statistics were determined for data from natural stands that were 

truncated to the last 30 years of growth (N(X)trunc). Truncated natural stand data was 

compared with planted and entire natural stand data. Partial correlation was used to 

determine spurious correlations when relationships between percent carbon were found to 

both temperature and precipitation within the same months/seasons. 

3.3.7 Regression Analysis and Comparison of Measured and Modelled Values 

Regression analysis was completed where significant Pearson’s correlation 

coefficients were detected. Significant regression values (R2) were only accepted where R2 

>0.40 to provide the best models (Wood and Smith 2011; Blanchette et al. 2015). Modelled 

values were correlated back to measured values to verify model accuracy. Models with 

significant correlation coefficients and R2 values were visually assessed against measured 

values to determine model accuracy over time. 

3.4 RESULTS 

3.4.1 Percent Carbon vs Cell Wall Thickness and Density 

Normality testing determined normality of values for percent carbon and average 

RW, EW, and LW as well as mean, maximum, and minimum cell wall thickness and density 
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values within natural (N1, N2, N3) and planted (P1, P2, P3) stands and within natural and 

planted regional averages (Table 3.2). Data that were not normal were transformed using 

inverse or log transformations (Table 3.2). ANOVA results determined average percent 

carbon was statistically different among natural stands at a 5% confidence level; post hoc 

comparisons indicated that mean percent carbon of N1(M=45.34; SD= 0.865) was 

significantly different from mean percent carbon of N2 and N3 (p<0.0001) with no 

significant difference seen between N2 (M= 42.38; SD = 0.218) and N3 (M= 42.06; SD= 

0.070; p=0.589) (Table 3.3). Planted stands showed statistically different percent carbon at a 

5% confidence level; post-hoc comparisons indicated that mean percent carbon of P2 (M= 

44.11; SD= 0.616) was significantly different from mean percent carbon of P1 and P3 

(p<0.0001) with no significant difference between P1 (M= 42.21; SD = 0.448) and P3 (M= 

41.57; SD= 0.961; p=0.401) (Table 3.3). Independent sample t-test results indicated no 

significant difference between regional-level mean percent carbon of natural stands (N2 and 

N3) (M=42.23, SD = 0.24) and planted stands (P1 and P3) (M=41.89, SD = 0.73; t = 1.950, 

p-value = 0.070, two-tailed) in JPRF (Table 3.3).  

Correlation statistics determined significant correlations between percent carbon and 

wood properties over time in stands N2, N3, and P1 (Table 3.4). Relationships between wood 

properties and percent carbon values are presented graphically by site in Figure 3.3 and 

Figure 3.4. Relationships between cell wall thickness and density properties of mature and 

juvenile wood are graphically presented in Figure 3.5; the majority of juvenile wood is from 

planted stands whereas the mature wood is generally from natural stands. 
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Table 3.2. Normality testing including skewness (S), kurtosis (K), and Shapiro-Wilk (SW) values for percent 
carbon (% C) and mean (m), maximum (max) and minimum (min) cell wall thickness (CWT) and density (D) 

values and average (avg) ring width (RW), earlywood (EW), and latewood (LW) from natural (N3, N1, N2) and 

planted (P1, P2, P3) stands surrounding the John Prince Research Forest. Although S and K values > +11 or < -
1 are considered not normal data, SW values were used in cases with small sample sizes. SW <0.050 were not 

accepted as normal data. Some samples were transformed with inverse (y) or log (l) transformations. 

 

 

Site % C mCWT mD maxCWT maxD minCWT minD avgRW avgEW avgLW 

N1 S 0.60 -0.93 -0.67 1.48 1.47 -0.69 -0.70 1.17 1.20 1.28 

 K 1.95 -0.14 -0.46 2.21 2.01 -0.66 -0.29 0.88 0.33 1.93 

  SW 0.05 0.05 0.150 0.22(l) 0.24(l) 0.09 0.33 0.05(l) 0.01 0.092 

N2 S -0.73 -0.47 -0.27 1.18 1.13 -0.45 -0.35 0.49 0.68 0.78 

 K 1.01 -1.06 -0.29 0.45 0.32 -0.73 -0.49 -0.36 -0.72 -0.12 

  SW 0.72 0.21 0.98 0.26(l) 0.36(l) 0.50 0.88 0.43 0.10 0.23 

N3 S -0.56 -0.34 0.63 -0.95 -0.78 0.53 0.53 -0.78 -0.47 -0.35 

 K -0.24 -1.15 0.48 0.09 -0.20 0.40 -1.48 -0.47 -0.55 -0.47 

  SW 0.35 0.54 0.90 0.37 0.50 0.71 0.16 0.34 0.62 0.71 

P1 S 1.27 1.08 1.42 -0.92 -0.76 2.03 1.36 0.08 -0.48 -0.40 

 K 1.00 1.18 1.91 0.49 0.22 4.25 1.53 -1.63 -1.50 -1.89 

  SW 0.21 0.46 0.24 0.63 0.48 0.05 0.30 0.53 0.93 0.94 

P2 S 0.51 0.83 1.73 -1.63 -0.76 0.80 1.55 -0.09 -0.41 -0.72 

 K 0.49 0.48 3.14 2.83 0.22 0.09 2.36 -2.45 -0.51 -0.27 

  SW 0.97 0.56 0.05 0.08 0.16 0.58 0.09 0.11 0.98 0.96 

P3 S 1.51 1.79 1.43 -1.25 -1.90 2.02 1.74 - -0.56 -0.44 

 K 2.05 3.43 0.98 2.28 3.70 4.26 2.62 - -1.63 1.44 

SW 0.14 0.07 0.06(y) 0.45 0.04 0.06(l) 0.06(y) - 0.85 0.95 

N S -0.36 -0.83 0.25 0.51 0.60 0.20 0.60    

 K -0.31 0.21 -0.61 -1.21 -0.99 -1.40 -1.27    

 SW 0.97 0.93 0.98 0.90 0.90 0.94 0.87    

P S 0.30 0.33 1.35 -0.19 -1.44 2.63 1.45    

 K 1.23 -1.27 1.02 2.68 1.79 7.49 1.08    

 SW 0.96 0.92 0.85 0.91 0.86 0.65 0.80    
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Figure 31.3. Comparison between average percent carbon (%) and mean-maximum-minimum cell wall 
thickness (μm) and density (kg/m3) values of natural (N1, N2, N3) and planted (P1, P2, P3) spruce stands 
depicted by colour and shape. Each point represents a 5-year average within each series for percent carbon and 
wood properties. Note that not all axis are the same. 
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Figure 32.4. Comparison between average percent carbon (%) and average ring width (RW), earlywood (EW) 
and latewood (LW) values of natural (N1, N2, N3) and planted (P1, P2, P3) spruce stands depicted by colour 
and shape. Each point represents a 5-year average within each series for percent carbon and RW, EW and LW. 
Note that not all axis are the same.  
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Figure 3.5. Comparison between percent carbon (%) and mean-maximum-minimum cell wall thickness (μm) 
and density (kg/m3) values of all spruce stands combined. Blue indicates mature wood and green indicates 
juvenile wood combined for all sites. Note that not all x-axis are the same. 
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3.4.2 Changes in Climate

Climate conditions at Fort St. James and PG weather stations have changed over the 

last 100 years (Figure 3.6 and Figure 3.7). Historical climate records indicate mean annual 

precipitation has ranged from 282-770 mm in Fort St. James, 368-934 mm in PG. Average 

annual precipitation and annual average temperatures have been recorded as 465 mm and 2.8 

˚C for Fort St. James and 633 mm and 3.7˚C for PG. Figure 3.6 and 3.7 depicts trend line 

comparison for periods 1920-1987 and 1987-2016 that illustrate changes in mean average 

temperatures and total annual precipitation for all regional areas. Mean average temperature 

increased 1.2 ˚C and 0.4 ˚C for Fort St James and PG respectively. Total annual precipitation 

increased 31.2 mm in PG and decreased 24.6 mm in Fort St. James. 
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Figure 33.6. Mean annual temperature from Fort St. James (A) and Prince George (B) climate stations from
1920-2016. The solid line represents temperature variation, dotted trend lines represent differences in climate
before and after 1987, or the last 30 years, dashed trend line represents entire climate history trend.
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Figure 34.7. Total annual precipitation from Fort St. James (A) and Prince George (B) climate stations from 
1920-2016. The solid line represents precipitation variation, dotted trend lines represent differences in climate 
before and after 1987, or the last 30 years.

T
ot

al
 A

n
nu

al
 P

re
ci

pi
ta

ti
on

 (
m

m
) 

350
450
550
650
750
850

Year

350

400

450

500

550

600

650

700

750

800

850

B

350

400

450

500

550

600

A



 
 

104 

3.4.3 Carbon-Climate Correlations 

Normality testing determined most percent carbon chronologies were normally 

distributed excluding N4 chronology that was not used for further analysis (Table 3.5). 

Several significant correlations were found between percent carbon and the current and 

previous monthly and seasonal weather record for JPRF and PG (Figures 3.8 – 3.11). 

Temperature 

Percent carbon chronologies in planted stands of PG were significantly negatively 

correlated to previous year June, September and December and current year July 

temperature; significant positive correlations between temperature and percent carbon in 

planted stands of JPRF were only found for current year September temperatures (Figure 

3.8). Percent carbon in natural stand chronologies was significantly negatively correlated in 

JPRF and positively correlated in PG to several previous and current monthly temperatures 

(Figure 3.9). Truncated natural percent carbon chronologies in PG were not significantly 

correlated to any temperature variables. A truncated natural percent carbon chronology in 

JPRF was positively correlated with previous November and current July and August 

temperatures. 

Precipitation 

Percent carbon chronologies in planted stands of JPRF were significantly positively 

correlated to current February, May, and winter precipitation; significant negative 

correlations between percent carbon in planted stands of PG were only found for previous 

November and average spring precipitation (Figure 3.10). Truncated chronologies indicated 

better sensitivity to precipitation in both JPRF and PG. JPRF full-length natural stand percent 

carbon chronologies were positively correlated to previous and current July and September 
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(Figure 3.11). Truncated JPRF natural stand percent carbon chronologies were significantly 

negatively correlated with current March and positively correlated with previous September 

and current March, September, and winter precipitation (Figure 3.11). Percent carbon 

chronologies in natural stands of PG were significantly negatively correlated to previous July 

and positively correlated to summer precipitation; truncated percent carbon chronologies in 

PG natural stands were significantly positively correlated to current June and summer 

precipitation (Figure 3.11). 

 

Table 3.5. Normality testing for percent carbon values for natural and planted stands surrounding the John 
Prince Research Forest (N1-N3; P1-P3) and Prince George (N4-N6; P4-P6) including skewness, kurtosis and 
Shapiro-Wilk (SW) values. Although skewness and kurtosis values > +14 or < -1 are considered not normal 

data, SW values were used due to small sample sizes. Shapiro-Wilk values <0.050 were not accepted as normal 
data.  

 

 Site Skewness Kurtosis SW 

N1 0.592 1.951 0.054 

N2 -0.730 1.011 0.719 

N3 -0.557 -0.236 0.347 
P1 1.269 1.000 0.207 

P2 0.505 0.490 0.967 

P3 1.513 2.049 0.135 

N4 -2.126 4.043 0.001 

N5 0.421 -1.622 0.056 

N6 0.234 2.367 0.648 

P4 0.504 -1.015 0.691 

P5 0.943 -0.677 0.204 
P6 1.154 0.548 0.202 
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3.4.4 Regression Analysis and Comparison of Measured and Modelled Values 

Percent carbon values were modelled from climate variables and correlations between 

measured percent carbon and modelled percent carbon are found in Table 3.6 and Table 3.7. 

Although numerous significant relationships were found between climate and JPRF and PG 

percent carbon in regression analysis, the models presented below reflect the strongest 

relationships found between percent carbon and winter, spring, and summer climates (Figures 

3.11-3.14). Unusually high R2 values were found in planted stands (e.g. P3) that may be a 

result of small sample size. 

 

Table 3.6. Regression analysis between total monthly precipitation (mm) (Precip), average monthly temperature 
(ºC) (Temp) and percent carbon chronologies for natural (N) and planted (P) stands surrounding John Prince 
Research Forest (JPRF) (N15-N3, P1-P3). R2 values only accepted if > 0.4. ** p = 0.01; * = 0.05 level. Months 
are represented by lower and upper case letters, respectively. Correlation statistics (Pearson’s R & p-value) 
results between measured (M) and modelled (MX) percent carbon values also presented for every model. Grey 
shading indicates natural stand chronologies. 
 

Precip Site C (R2) 
MvsMX 

(Pearson's 
R) 

p-value Temp Site C (R2) 
MvsMX 

(Pearson's 
R) 

p-value 

FEB P3 0.709* 0.842 0.035 JAN N3 0.485** 0.696 0.017 

MAR N1trunc 0.718** 0.848 0.016 MAR N3 0.411* 0.641 0.033 

MAY P2 0.599* 0.774 0.041 APR N3 0.547** 0.74 0.009 

SEP N2 0.757** 0.87 0.011 JUL N2trunc 0.669* 0.818 0.025 

WIN P3 0.941** 0.97 0.001   N3 0.555** 0.745 0.009 

 N1trunc 0.809** 0.899 0.006 aug N3 0.439* 0.663 0.026 

     AUG N2trunc 0.608* 0.779 0.039 

     SEP P1 0.959** 0.908 0.001 

       P3 0.736* 0.663 0.026 

     nov N2trunc 0.591* 0.769 0.044 

     SPR N3 0.639** 0.8 0.003 

     SUM N3 0.466* 0.683 0.021 

     WIN N3 0.559** 0.8 0.003 
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Table 3.7. Regression analysis between total monthly precipitation (mm) (Precip), average monthly temperature 
(ºC) (Temp) and percent carbon chronologies for natural (N) and planted (P) stands surrounding Prince George 
(N4-N6, P4-P6). R2 values only accepted if > 0.4. ** p = 0.016; * = 0.05 level. Months are represented by lower 
and upper case letters, respectively. Correlation statistics (Pearson’s R & p-value) results between measured 
(M) and modelled (MX) percent carbon values also presented for every model. Grey shading indicates natural 
stand chronologies.  
 

 

Winter Relationships 

Measured values had a close relationship with modelled percent carbon values based 

on winter temperatures in N3, N5, and P5 (Figure 3.12). The models had some areas of poor 

association with measured values in 1951-1947 and 1981-1977 in N1, 1982-1996 and 2002-

2011 in N5, and 1998-2002 in P5 (Figure 3.12). 

Precip Site C (R2) 
MvsMX 

(Pearson's 
R) 

p-value Temp Site C (R2) 
MvsMX 

(Pearson's 
R) 

p-value 

JUN N6 0.627** 0.792 0.034 JAN N5 0.432** 0.657 0.006 

nov P4 0.593* 0.770 0.043 jul N5 0.414** 0.643 0.007 

  P6 0.609* 0.781 0.038   P4 0.675* 0.822 0.023 

SPR P5 0.734* 0.857 0.029   P6 0.748** 0.865 0.012 

     JUL N5 0.574** 0.758 0.001 

       P6 0.678* 0.823 0.023 

     AUG N5 0.408** 0.639 0.008 

     sep P4 0.748** 0.865 0.012 

     dec P5 0.851** 0.922 0.009 
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Spring Relationships 

Measured values had a close relationship with modelled percent carbon values based on 

spring precipitation and temperature in P5, N1trunc, and N3; however, measured and 

modelled values decouple in 1963-1972 in N1trunc and 1983-1987 in N3 (Figure 3.13). 

Modelled percent carbon values from P2 are poorly correlated to measured values from 

1982-1996 (Figure 3.13). 
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Figure 40.13. Measured (dotted line) vs modelled (solid line) normalized percent carbon values of planted (P2, 
P5) and natural (N1trunc, N3) stands of central interior British Columbia spruce. Data modelled from current 
mean March (A), May (C), and average spring precipitation (D) and average spring temperature values (B). 
Note not all x-axis the same. R2 values are presented with ** p =0.01 and * p= 0.05. Note not all axis are the 
same scale. 
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Summer relationships 

Measured values and values of percent carbon modelled from previous July 

temperatures are strongly correlated in planted stands from PG with some decoupling 

occurring between 1997-2006 in P4 and 1982-1986 in P6 (Figure 3.14). Values of percent 

carbon in natural stands modelled from current July temperatures accurately predict 

measured values (Figure 3.15). Some areas of decoupling between measured and modelled 

values of percent carbon occur between 2012-2016 in N2trunc, between 1983-1992 and 

2003-2007 in N3 and between 1937-1941, 1982-1991 and 2007-2016 in N5 (Figure 3.15).  

 

Figure 41.14. Measured (dotted line) vs modelled (solid line; crossed solid line indicates 1-year lagged data) 
normalized percent carbon values from planted (P4, P6) stands of spruce in central interior British Columbia 
surrounding Prince George. Data modelled from previous July temperature from Prince George climate stations. 
R2 values are presented with ** p =0.01 and * p= 0.05. 
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3.5 DISCUSSION 

3.5.1 Individual Stands and Average Regional Percent Carbon Content 

Results of this study show significant differences between individual stand percent 

carbon values in JPRF. Literature suggests that carbon content can vary depending on 

geographical and environmental factors (Pettersen 1984; Hughes et al. 1999; Elias and Potvin 

2003; Martin and Thomas 2011). Higher percent carbon content of P2 and N1 may be 

attributed to site-specific differences, similar to relationships between radial growth and soil 

water volume, crown cover, nutrient availability, and topography (Wang et al. 2003; Weber 

et al. 2018). For example, the warmer south-facing slope of P2 receives more sunlight and 

may allow for increased snow-melt and soil thaw in comparison with the flat topography of 

P1 and P3. These conditions in P2 may result in increased growing season length that could 

directly affect percent carbon accumulation (Rossi et al. 2007). Higher percent carbon 

content of N1 may be attributed to the stream at this site that could stabilize or increase the 

soil moisture content. This increased moisture in N1 could counteract the unfavourable 

conditions of rising temperatures coupled with reduced precipitation seen in Fort St. James 

climate, an observation found in other studies with similar climatic conditions (Guehl 1985; 

McMahon et al. 2010; Hember et al. 2012 ). There is also evidence of increased carbon 

sequestration in trees grown in wet versus dry conditions (Li et al. 2015). 

Results suggest that there are no significant differences between average percent 

carbon in natural versus planted stands at the regional level. This observation was somewhat 

unexpected because the younger planted stands have larger proportions of juvenile wood than 

natural stands. Although it has been reported that juvenile wood contains higher percent 

carbon than mature wood due to the larger proportions of lignin and extractive 
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concentrations, samples within this study had chemical extractives, or non-structural carbon, 

removed (Zobel and Van Buijtenen 1989; Bert et al 2006). Therefore, based on structural cell 

properties alone, fast-growing, thin-walled, and low-density cells typical of juvenile wood 

should have a lower structural percent carbon content than denser, thicker cells, found in 

mature wood (Bao et al. 2001). Although not statistically tested, Figure 3.4 shows general 

trends in percent carbon of juvenile wood being less than that of mature wood. However, the 

high variability in juvenile wood percent carbon and the small sample size limit our 

confidence in this finding. 

3.5.2 Percent Carbon and Cell Wall Thickness and Density 

Relationships between percent carbon and average RW, EW, LW and mean, 

maximum, and minimum cell wall thickness and density values of JPRF natural and planted 

stands only existed in N2, N3 and P1; lack of more significant relationships between percent 

carbon and RW, EW, LW, cell wall thickness, and density in planted stands was likely due to 

small sample size. Relationships between percent carbon and average RW, EW, LW and 

maximum cell wall thickness and density values in N2 suggest that higher amounts of 

cellulose and lignin (as represented by a thicker cell wall and denser wood) correspond to 

greater proportions of percent carbon; maximum values appeared to have stronger 

relationships than RW, EW, or LW values. Relationships found between percent carbon and 

mean and minimum cell wall thickness and density values of N2 and N3 and average RW in 

P1 suggest that increases in cell materials contributing to larger, thicker cells and larger rings, 

such as cellulose and lignin, corresponded to reduced proportions of percent carbon. These 

results are similar to previous work in western Canada and Alaska showing correlations 

between forest productivity and LW(max) and other studies relating carbon to biomass and 
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density, with maximum values of cell wall thickness and density as the best predictors of 

percent carbon (Elias and Potvin 2003; Zhang et al. 2009; Martin and Thomas 2011; 

Castaño-Santamaría and Bravo 2012; Beck et al. 2013; Navarro et al. 2013; Weber et al. 

2018). Average RW, EW, and LW are also good indicators of percent carbon and may be 

preferred as proxies over maximum cell wall thickness and density due to their ease of 

measurement and the reduced cost of analysis. However, the lack of standardized sampling 

protocols to prepare samples for carbon measurements, such as kiln-drying (Lamlom and 

Savidge 2003), freeze-drying and oven-drying at varying temperatures, such as 105 ºC 

(Thomas and Malczewski 2007) and 70 ºC (Gower et al. 2001; Wang et al. 2003), makes 

cross-study comparisons difficult to interpret (Zhang et al. 2009; Jones and Hara 2017). 

Nevertheless, the relationships identified here suggest that maximum cell wall thickness and 

density and average RW, EW, and LW values may be good indicators of percent carbon 

variation in natural and planted stands (Beck et al. 2013). Although other studies have found 

similar trends in relationships with mean density (Xiang et al. 2014), the use of maximum 

values may improve statistical strength in relationships between percent carbon and cell wall 

thickness and density because they provide additional detail regarding radial growth that is 

lost in investigation of average (mean) values. Finally, the relationships between carbon and 

density and cell wall thickness could provide greater accuracy in carbon approximations that 

are often crudely determine biomass/carbon content as a function of tree height and DBH 

(Somogyi et al. 2007; Kearsley et al. 2013; Ali et al. 2016; Weber et al. 2018). Although 

there is evidence that in some species tree DBH is a good variable for carbon estimations, as 

increasing tree diameter allows for increased biomass and thus increased carbon (Elias and 

Potvin 2003; Usuga et al. 2010; Navarro et al. 2013), this trend is not consistent across 

studies (Clark et al 2003; Navarro et al. 2013). 
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3.5.3 Percent Carbon vs Climate 

Relationships between percent carbon and climate over time were successfully 

modeled using percent carbon chronologies from planted and natural spruce stands in central 

interior BC and current and one-year lagged precipitation and temperature variables from 

Fort St. James and PG climate stations. These results could provide a novel approach for 

estimates of climate effects on carbon accumulation. However, planted stand models lacked 

reliability due to small sample sizes, which can increase the likelihood of type II statistical 

error of failing to reject a false null hypothesis (Knudson and Lindsey 2014). Increased 

sampling error and outlier influences that question validity may also occur with small sample 

sizes (Knudson and Lindsey 2014). Consequently, few regression models of planted stands 

were compared to measured values. Nonetheless, some generalizations can be made of the 

relationship between percent carbon and precipitation and temperature in most of the planted 

stands in addition to natural stand relationships. Although there were numerous significant 

correlations between percent carbon and climate, winter and spring temperature and 

precipitation and current July temperatures had the strongest influence on percent carbon in 

planted and natural stands of PG and JPRF. Correlations also suggest that September 

temperatures also influenced radial growth, however, models lacked reliability. 

Winter, Spring, and Summer Temperature 

Results from this study show that reductions in percent carbon in planted stands of 

PG and natural stands in JPRF are related to increases in Fort St. James and PG previous 

December, current January, average spring, and previous and current July temperatures. 

Increased temperatures during winter months can reduce length of snow cover and reduce 

accumulated winter precipitation, or insulation, leading to deeper soil freezing (Jarvis and 
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Linder 2000). These conditions can prevent or reduce absorption of melting snow thus 

delaying bud burst and percent carbon accumulation in spring months (Peterson et al. 2002; 

Chavardès et al. 2013). Additionally, increasing spring or summer temperatures beyond 

optimal growth thresholds have been shown to reduce or halt growth, and subsequent carbon 

accumulation, in previous studies of BC interior spruce (Zhang et al. 1999; Flower and Smith 

2011; Oberhuber et al. 2014). Alternatively, rising winter and summer temperatures in PG 

were related to increased percent carbon of N5, which is likely due to favourable site-specific 

characteristics. Rising temperature coupled with N5’s higher elevation, typically higher 

precipitation, and cooler temperatures (SBS very-wet-cool), may have allowed for increased 

percent carbon accumulation; similar relationships have been found between warming 

temperatures and forest productivity under favourable conditions (Guehl 1985; McMahon et 

al. 2010; Hember et al. 2012).  

Spring Precipitation 

Percent carbon accumulation in JPRF and PG was related to spring precipitation 

variation. Various site-specific differences occurred in relationships between spring 

precipitation and percent carbon in natural (N1trunc) and planted (P2, P5) stands of JPRF and 

PG. Results suggest that decreases in Fort St. James spring precipitation were related to 

reduced percent carbon accumulation in P2 and enhanced carbon accumulation in N1trunc. 

Although the model of percent carbon in P2 was poorly related to measured values, 

reductions in May precipitation may have negatively affected percent carbon accumulation in 

P2 due to the south-facing slope. The warmer south-facing slope of P2 could cause increased 

rates of evaporation and transpiration and reduced soil moisture that may lead to reduced 

carbon accumulation in P2 compared to the other planted stands. Reductions in March 
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precipitation, which typically falls as snow in this region, were related to increases in carbon 

accumulations in N1trunc. Reductions in March precipitation, or snow depth, could lead to 

earlier bud burst and an extension of the growing season length and subsequent increased 

radial growth and carbon accumulation (Peterson et al. 2002; Chavardès et al. 2013). In PG, 

results suggest that reductions in percent carbon in P5 related to increasing average spring 

precipitation. Increased and prolonged precipitation could have been related to reduced cell 

production and subsequent carbon accumulation in P5 with decreases in light availability and 

allowable energy for photosynthesis with increases in cloud cover (Polge 1970; Kozlowski 

1979; Martin and Thomas 2011). 

3.5.4 Relationships in Natural and Planted Stands with Climate 

Percent carbon accumulation in planted and natural stands in JPRF and PG appear to 

be negatively influenced by rising temperatures with some site-specific differences in 

relationships with spring climate variation. However, only general statements can be made 

comparing relationships between natural and planted stands with climate due to the inability 

to evaluate percent carbon of planted and natural stands within the same time period of 

growth. Percent carbon was only determined for the last 40 years of growth for planted 

stands and the last 80 years of growth for natural, which resulted in greater proportions of 

juvenile wood in planted stands (Cameron et al. 2005; Alteyric et al. 2006). Attempts to 

separate juvenile wood and mature wood were not possible and standardized detrending 

techniques have not been developed for percent carbon. However, several studies have 

suggested that mature trees may be more resilient to acute changes in climate than planted 

trees whereas others have suggested that mature trees have higher climate sensitivity than 
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younger trees (Merian and Lebourgeois 2011; Schuster and Oberhuber 2013; Oberhuber 

2017). 

3.5.5 Differences between Truncated and Full-length Natural Chronologies in JPRF 

and PG 

Percent carbon measurements from JPRF natural stands from the last 30 years were 

more strongly related to climate variation compared to full-length JPRF natural stand 

chronologies; these relationships were not seen in natural stand data from PG. These 

relationships could indicate that temperature and precipitation variation in JPRF have become 

more influential in determining percent carbon accumulation than earlier in the time series, 

an observation seen in radial growth and climate in other studies (Tardif et al. 2003; 

Camarero et al. 2015; Peñuelas et al. 2007; Martin-Benito et al. 2013). Historical climate of 

Fort St. James shows rising temperatures coupled with stark reductions in precipitation, 

which may explain stronger relationships between climate variation and percent carbon in 

recent decades. Similar relationships may not have been seen in truncated percent carbon 

chronologies of PG natural stands because of differences in climate regimes. Historical 

records of PG climate report roughly 200 mm higher average precipitation and 1˚C higher 

average temperature than Fort St. James climate. In recent decades, records in PG also show 

stable increases in precipitation that contrasts stark decreases in Fort St. James. Higher and 

stable average precipitation coupled with increasing temperatures, as seen in the PG climate 

records, suggests conditions are more favorable for growth than in warmer, drier conditions 

of JPRF. This may explain fewer relationships between full-length natural stand chronologies 

of PG and the lack of relationships in truncated natural stand chronologies of PG. Results 

from this study may indicate trees in JPRF are reaching growth-thresholds with long-term 
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climate warming coupled with recent reduction in precipitation, not yet seen in PG stands (Lo 

et al. 2010; Camarero et al. 2015; Lazarus et al. 2018). 

3.6 CONCLUSION 

This study sought to determine relationships between percent carbon and cell wall 

thickness, density, and climate in natural and planted stands of hybrid white spruce of central 

interior BC surrounding JPRF and PG. Comparisons were made between percent carbon in 

individual stands and between regional-level stand aggregates. Although regional-level stand 

aggregates were not found to differ, differences in percent carbon between individual stands 

may be due to site-specific differences. Comparing structural percent carbon measurements 

to cell wall thickness and density and comparing percent carbon to climate over time provide 

novel approaches that may improve estimates of carbon sequestration as past research has 

mainly focused on biomass equations instead of direct measurements of volatile and 

structural carbon (Zabek and Prescott 2006; Castaño-Santamaría and Bravo 2012). 

Relationships between percent carbon and RW, EW, LW and mean, minimum and 

maximum density and cell wall thickness suggest that RW, EW, LW and maximum values 

may be good indicators of percent carbon in some natural or planted stands. Use of maximum 

cell wall thickness and density values may improve statistical strength over mean values 

because they provide greater detail in radial growth that is lost in investigation of average 

(mean) values. These relationships presented here could improve carbon approximations in 

above ground tree biomass calculations that are normally derived from tree height and DBH. 

Review of historical climate indicated annual temperature has increased in JPRF and 

PG areas with some indication of marginal reductions in temperatures within the last 30 years 

in JPRF. Historical records of total annual precipitation in JPRF and PG have shown an 
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overall increase since 1930 with stark decreases in JPRF within the last 30 years. 

Relationships between climate and percent carbon indicate that rising winter, spring and 

summer temperatures coupled with reduced precipitation were strongly related to reduced 

percent carbon accumulation in most natural and planted stands. Relationships between 

spring climates and percent carbon were variable, likely due to site-specific variation. Some 

percent carbon chronologies from JPRF natural stands more strongly related to climate 

variation in the last 30 years of growth compared to the entire time series. Truncated data 

from natural stands in the PG region did not have similar relationships. These results may 

indicate that increased temperatures coupled with reduced precipitation has an amplified 

effect on recent natural stand percent carbon accumulation in JPRF. Regional climate of 

JPRF and PG appear to effect statistical relationships with carbon. In areas with adequate 

precipitation and increasing temperatures, like PG, carbon sequestration processes were 

shown to be less associated with climate compared to drier sites, like JPRF. 

Development of a standardized percent carbon measurement sampling protocol for 

comparison with wood properties would be valuable to improve on understanding 

relationships found in this study. Validation of modelled percent carbon accumulation within 

natural and planted stands of JPRF and PG is critical as this methodology is under-utilized in 

determining relationships between climate and carbon. Changes in tree productivity with 

projected changes in climate may be better understood with analysis in future studies of 

percent carbon measurements within natural and planted stands (Montwé et al. 2014). 
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Chapter 4: Concluding Synthesis 

This thesis aimed to determine how wood properties of RW, EW, LW, cell wall 

thickness, density, radial diameter, microfibril angle, coarseness, and percent carbon in 

natural and planted stands of hybrid white spruce (Picea glauca (Moench) x engelmannii 

(Parry)) in central interior British Columbia, Canada vary over time and with climate. This 

thesis also aimed to determine if relationships existed between percent carbon and mean, 

maximum, and minimum cell wall thickness and density values in the natural and planted 

stands. Finally, this thesis aimed to determine if significant differences occurred between 

percent carbon in individual stands and regional-level stand aggregates of the natural and 

planted stands of spruce. 

4.1 KEY POINTS 

Results presented in Chapter 2 and Chapter 3 suggest that hybrid white spruce radial 

growth and percent carbon accumulation in areas surrounding Prince George (PG) and within 

the John Prince Research Forest (JPRF) are dependent on variation in temperature and 

precipitation, as suggested by other research (Wood al. 2016; Charney et al. 2016). Further, 

although planted stand variability was more sensitive to climate variation than natural stand 

growth, results suggest that natural stand growth within the last 30 years appears to be more 

sensitive to climate variation than full-length chronologies. 

Results suggest that variation in winter, summer, and autumn temperature and 

precipitation was a strong predictor of radial growth and percent carbon in planted and 

natural stands of PG and/or JPRF. Increases in winter, summer, and autumn temperatures 

were strongly related to reduced radial growth in planted stands (RW, LW) and natural stands 

(LW, MRD). Planted stands of PG and natural stands in JPRF also appear to be fixing less 
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carbon as a result of increases in Fort St. James and PG previous December, current January, 

average spring, and previous and current July temperatures. However in some cases, 

beneficial site-specific differences contributed to positive relationships between rising 

temperatures and percent carbon accumulation. 

Relationships between radial growth and percent carbon and precipitation appear to 

be influenced by differences in climate regimes of Fort St. James (warm-dry) and PG (cold-

wet). Stronger relationships with precipitation are expected in areas with lower average 

precipitation coupled with rising temperatures (Wood and Smith 2015). Higher-than-normal 

precipitation years in the winter were associated with limited EW production but related to 

increased LW production in natural stands of JPRF, likely due to timing of cell formation. 

Alternatively, reduction in summer precipitation in Fort St. James climate were shown to 

coincide with reduced radial growth (RW, LW) and increased cell wall thickness in planted 

and natural stands of JPRF during what should be optimal growth periods. Similar 

relationships were found between autumn precipitation and radial growth with reductions in 

autumn precipitation related to production of smaller, higher density cells. Percent carbon 

accumulation in JPRF was also affected by spring precipitation. Reduction in spring 

precipitation were also shown to coincide with reduced carbon accumulation in a planted 

stand of JPRF. Reductions in late spring precipitation, that could reduce snow depth and 

allow for an early bud burst, were also shown to coincide with increased percent carbon 

accumulation in a natural stand of JPRF. 

Further, recent reductions in Fort St. James precipitation appear to have increased the 

strength of relationships between precipitation and radial growth variability in planted and 

natural stands of JPRF. Although tree growth in cool-moist areas is normally temperature 

limited, rising temperatures coupled with adequate moisture in PG appear to be promoting 
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increased RW but reduced LW, likely due to timing differences. Differences in radial growth 

variation between JPRF and PG may also be due to reduced accuracy with increased distance 

to climate station and proximity of sampled stands to one another; JPRF stands may present a 

more accurate regional representation because of their closer proximity to one another than 

PG stands. 

This thesis also determined that planted stand growth had increased sensitivity to 

climate variation than natural stands which may be attributed to differences in age and size of 

tree. Greater amounts of juvenile wood in planted stands may have increased their 

vulnerability to precipitation variation. Lack of rooting depth and substantial buildup of 

carbohydrate reserves in planted stands may also make them susceptible to rising 

temperatures and low precipitation periods. However, relationships between climate and 

natural stand chronologies and percent carbon truncated to the last 30 years of growth in this 

study suggest that warming of recent decades is having an amplified effect on natural stand 

tree growth; these relationships were not found between climate and percent carbon in natural 

stand data from PG. These results may indicate preliminary effects of long-term warming 

coupled with reductions in precipitation that have been predicted to negatively affect wood 

growth (Williamson et al. 2009; Adams 2014; Wood et al. 2016). 

Chapter 3 of this thesis also explored relationships between individual and regional-

level percent carbon and relationships between percent carbon and wood cell properties of 

cell wall thickness and density. Results demonstrated that individual stand percent carbon 

values were significantly different from each other, which may be attributed to differences in 

site-specific characteristics of warmer-south facing slopes and potentially higher soil-

moisture regimes. Previous research has shown reduced percent carbon content in 

unfavorable climate conditions (Guehl 1985; McMahon et al. 2010; Hember et al. 2012) and 
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increased carbon sequestration under favourable conditions (Li et al. 2015). Regional-level 

natural and planted stands percent carbon was not found to differ. Based on wood cell 

structural properties alone, planted stands with higher proportions of juvenile wood were 

expected to have lower percent carbon contents (Bao et al.2001; Elias and Potvin 2003; 

Thomas and Malczewski 2007; Lachenbruch and Mcculloh 2014; Weber et al. 2018). 

Although there are general trends presented in Chapter 3 that suggest there is a lower percent 

carbon in juvenile wood versus mature wood, the high variability in juvenile wood and small 

sample size limit confidence in this finding. However, relationships found between percent 

carbon and RW, EW, LW and maximum cell wall thickness and density values in natural 

stands of JPRF suggest that increases in lignin and cellulose (as represented by a thicker cell 

wall and denser wood) correspond to greater proportions of percent carbon. This may suggest 

that RW, EW, LW, cell wall thickness, and density are good indicators of sequestered 

carbon; mean and minimum values do not appear to be good indicators of percent carbon. 

These relationships may improve carbon approximations that derive carbon content with 

standard measurements of DBH and tree height and often under or over-estimate carbon 

(Somogyi et al. 2007; Kearsley et al. 2013; Ali et al. 2016; Weber et al. 2018). 

4.2 CONSIDERATIONS FOR FUTURE RESEARCH 

Future research into relationships between climate and radial growth properties (RW, 

EW, LW), wood cell properties (MCWT, MRD, MD), and carbon could investigate 

additional climate variables, such as snow depth and minimum and maximum temperature 

and precipitation to improve models of radial growth and percent carbon based on climate. 

Investigation into variables in addition to climate, such as crown cover, could also improve 

estimations of variations in radial growth and percent carbon in natural and planted stands as 
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stands of different ages often have differences in crown cover. Previous research has shown 

that increased crown cover can intercept large portions of precipitation falling as snow and 

reduce melting and evaporation of accumulated snow by blocking irradiation (Burenina 

2014; Dickerson-Lange et al. 2017). Future work could also focus on developing a 

standardized percent carbon measurement sampling protocol for comparison with density and 

cell wall thickness measurements to increase understanding of relationships found in this 

study. Finally, ensuring adequate volume is collected for annual percent carbon 

measurements per stand versus 5-year averages could allow for greater resolution and 

increased sample size in planted stands, which is lacking in this work. 

4.3 IMPLICATIONS FOR THE BRITISH COLUMBIA FORESTRY INDUSTRY 
 

Examination of the general relationships between climate and radial growth and wood 

cell variables allows for preliminary conclusions regarding wood quality in natural and 

planted stands of JPRF and PG. It was demonstrated that rising temperatures in Fort St. 

James and PG were negatively correlated with radial growth (RW, LW) and related to 

production of cells that were thicker and smaller in natural and planted stands. Projected 

increases in temperature may allow for growth of wood tissues with narrow annual rings and 

higher density that are ideal for solid wood production. It was also demonstrated that 

differences occurred in relationships between radial growth and precipitation variation in 

JPRF and PG. Lower average precipitation, recent reductions in precipitation, and rising 

temperatures of JPRF coincided with reduced radial growth (RW, LW) and production of 

cells that were smaller, narrower and thicker. Although production of LW-like cells is ideal 

for solid wood products, reduction in the size of the annual ring reduces volume of product 

gained. Stands growing in cool-moist areas, such as areas surrounding PG, were able to 
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increase radial growth (RW (planted), LW (natural)) during the summer with precipitation in 

this area during summer appears to be adequate to mitigate rising temperatures; however, 

LW in planted stands was shown to be reduced with rising temperatures suggesting growth is 

connected with cell formation. It could be expected that trees in PG that experience rising 

temperature coupled with adequate precipitation will produce wider rings, with potentially 

lower cell wall thickness, that are more suited for pulp production. Finally, it was 

demonstrated that the last 30 years of radial growth in natural stand of JPRF and PG have 

increased sensitivity to climate variation than full-length chronologies. Relationships 

between climate and planted stands and truncated natural stands in this study suggest that 

projections of substantial warming and increased water stress in BC will significantly affect 

radial growth in both natural and planted stands of hybrid white spruce (Lo et al. 2010; Jiang 

et al. 2016). 
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Appendix I: SilviScan 

1. INTRODUCTION 

SilviScan analysis consists of three primary components based on three principles: image 
analysis (optical microscopy), X-ray attenuation (densitometry) and X-ray diffraction 
(diffractometry). Image analysis is performed on polished transverse surface of the pith-to-
bark strips to provide fibre cross- sectional dimensions, as well as annual ring orientation. 
Densitometry and diffractometry are performed on the longitudinal surface of the strips to 
provide microdensity and microfibril angle (MFA). Annual ring orientation information from 
image analysis is used to correct for annual ring orientation by aligning ring direction with X-
ray beam. 

A total of 89 hybrid white spruce samples were received for SilviScan analysis from 
University of Northern British Columbia in Vancouver (coordinator: Lisa Wood/Anastasia 
Ivanusic) on July 20, 2017. Physical quality of the samples was inspected upon arrival. The 
SilviScan analysis provides image analysis, pith-to-bark profiles of density, and microfibril 
angle (MFA) at 5-mm resolution. 

2. SAMPLE CONDITIONS 

Out of 89 samples, 85 were in the form of increment cores of 12 mm in diameter wrapped 
with writing papers for protection during shipping, and 4 were in the form of a pie shape 
(Figures 1 and 2). A sample list was later received via Email. Original plan was to send 90 
samples, for some reason, one sample was missing in the shipment. The customer decided 
not to send this missing sample over for analysis. All of the samples were suitable for 
SilviScan analysis. Special efforts were made to keep pith and bark on SilviScan samples, 
however, it is not possible for some samples to retain pith and/or bark due to the sample 
conditions, e.g. off-center, curvy (warp), bark-missing, breakage, etc. Breakage and crushes 
occurred on a few samples on the bark side, possibly caused by coring process in which 
excessive force was applied when engaging borer into tree trunk. Some samples lost bark at 
arrival (Figure 2). More information about SilviScan sample conditions can be found in the 
enclosed comments sheet “1708-UNBC-LW.Sample List and Comments.xlsx”. 
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Figure 1 Increment cores wrapped with writing paper.  

 

Figure 2 Increment cores and pie-shaped cookies received for SilviScan analysis.  

3. METHODS 

3.1 Sample preparation 

Pie shaped cookies were first reduced to 12x12 mm (tangentially x longitudinally) pith-to-
bark blocks. These blocks and core samples were sorted and conditioned at 40% relative 
humidity and 20°C temperature (SilviScan standard conditions) until equilibrium was 
reached (~8% moisture content, dry basis). They were then extracted with acetone to remove 
resins which may interfere with density measurements. The samples were soaked in acetone 

for 12 hours, and extracted for 8 hours at 70oC in a modified Soxhlet extraction system. 
After extraction, the samples were air-dried, and conditioned at 40% relative humidity and 
20°C (SilviScan standard conditions) until equilibrium was reached (~8% MC, dry basis). 
They were then cut into strips of 2 x 7 mm (tangentially x longitudinally) using twin- blade 
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saws. One cross-section of each strip was polished to obtain smooth surface for image 
analysis with SilviScan’s polishing unit equipped with various grits of sandpaper (i.e., 400-
grit to 1200-grit). Each strip was scanned for radial and tangential fibre dimensions using 
optical microscopy, wood density using x-ray densitometry, and microfibril angle (MFA) 
using x-ray diffractometry. Fibre dimensions and wood density were determined at a 25-m 
resolution whereas MFA was determined at a 5-mm resolution. 

3.2 Cell scanner (image analysis) procedure 

The following procedure is routinely used by SilviScan to determine fibre cross-sectional 
dimensions. Wood strips are scanned using an optical microscope equipped with a high 
resolution video camera. The frame size of the microscope is 1.8 X 1.8 mm. An autofocus 
algorithm maintains sharp, consistent focus on the polished transverse wood surface 
throughout the scan. High-contrast images of fibre cross-sections are obtained by using 
transmitted light which travels along the fibre walls. The length of the wood strip is measured 
as the distance from the pith to bark by locating the bark and pith ends in the microscope 
frames. 

Images are automatically acquired across the entire sample length at a step slightly smaller 
than the width of the microscope frame size. Each image and its positional information are 
recorded during the scan and post-scan analysis is performed to extract property profiles from 
a succession of images onto a standardized distance scale along the sample axis. 

Once acquired, each successive image is binarized and processed to identify radial and 
tangential cell wall boundaries. Figure 3 shows an example of radial and tangential walls 
extracted from an original image. 

Radial walls Original image Tangential walls 

Further image analysis is performed to determine the median value of radial and tangential 
fibre diameters, as well as to estimate fibre perimeters and cell populations within the 25-m 
radial intervals. The orientation of each annual ring (isopycnic angle) is estimated and serves 
as the reference for densitometry and diffractometry analyses. 

3.3 X-ray densitometry procedure 

Densitometric measurement is based on Beer’s Law which states that the intensity of an x-
ray beam that passes through a sample falls off exponentially with sample thickness, and that 
extent of attenuation is related to the density of the sample (Eq. 1): 

I = I0e
−mDT 

(1) where I0 is the intensity of incident x-ray beam, I is the intensity of 

transmitted x-ray beam, D is the density of the sample, T is the thickness of the sample, i.e., 
the distance that x-ray travels, and m is the mass absorption coefficient. 
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In SilviScan, the amount of radiation that is transmitted through the wood strip is detected by 
a CCD (charge-coupled device) imaging camera that has a pixel size of 7 x 7 m. Wood strip 
is mounted on a  

 

rotatable stage. When the strip is ready for scanning, a laser profilometer detects and 
measures the length of the strip by locating the bark and pith ends. Density images and 
positions are acquired automatically across the entire length of the strip. The beam size when 
exiting the collimator is 13 mm in diameter, and 11 mm in diameter when getting in contact 
with the strip. The frame size of the detector is 8.64 x 6.39 mm. The rotatable stage of the 
densitometer rotates the mounted strip according to the isopycnic angle of each growth ring 
estimated from the image analysis. The purpose is to make the x-ray beam parallel to the 
growth ring being measured to obtain a sharper definition of ring boundaries. When running 
at variable angle, the step size is controlled by the isopycnic angle which is less than 0.2 
degrees in the window frame. 

When the scan is completed, all the images are merged to form a grey scale density image 
(Figure 4). Post-scan analysis converts the density image into nominal density using the 
attenuation coefficient estimated from the cellulose acetate sheet during calibration of the 
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densitometer. The nominal density profile is generated on a line 0.5 mm below the top 
surface (I.e., transverse surface) of the strip. This nominal density is then scaled to true 
density using the average density of the strip measured from its volume (micrometry) and 
mass. SilviScan measures density at 25 m resolution in radial direction, allowing the easy 
detection of annual growth rings features. It is worth mentioning that the density measured by 
SilviScan is the density at 8% moisture content (dry basis). If needed, this density can be 
converted to basic or dry density using the swelling or shrinkage coefficient for the species. 
In the enclosed xlxs file, basic density ( Db ) is calculated using following formula (Eq. 2) 

(Siau 1995): 

Db =
1000D8 (2) 1080+0.22D8  

Where D8 is density at 8% moisture content (MC). 

3.4 X-ray diffractometry procedure  

SilviScan exploits the relationship between the variance of the (002) azimuthal diffraction 
profile of cellulose I and microfibril orientation distribution to estimate MFA (Eq. 3). The 
(002) diffraction patterns are obtained from the planes whose normal is perpendicular to the 
microfibril axis (Figure 5). The theory behind the measurement can be found in Evans (1999) 

and Evans et al. (1999). These papers showed that the variance ( S 
2 

) of the (002) azimuthal 

diffraction profile is related to the MFA (  ) and the variance ( 2 ) of the microfibril 
orientation distribution: 

S2 
2 

+2 (3) 2  

In SilviScan, a focused x-ray beam (0.2 mm) goes through the sample in the tangential 
direction. The scattered beam is detected and recorded by a CCD x-ray detector. Once 
acquired, the diffraction image is mapped onto a spherical coordinate system in which 
azimuthal angles become horizontal and radial lines become vertical. Then intensity profile is 
extracted for analysis by integrating over the radial limits of the 002 peaks. The total variance 
of the profile (Eq. 3) includes the average MFA and the dispersion of microfibril orientation. 
This last quantity has been estimated using MFA data obtained by optical microscopy. 

0As for density, samples were run in the diffractometer at variable angles to correct for 
annual growth ring orientation. MFA was acquired in integral mode (compared to point mode 
where MFA is acquired at a series of discrete points at any nominated segment) where MFA 
is averaged within segments along the sample. Each segment was 5 mm in this case (required 
step size). 

3.5 Combined analysis 

3.5.1 Modulus of elasticity 
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Density (D) from x-ray densitometry and the coefficient of variation of the intensity of the x-
ray diffraction profile (ICV) are combined to compute the fibre modulus of elasticity (MOE) 

(Evans 2005): 

MOE = A(I D)
B 

(4) cv  

The Icv includes the scattering from S2 layer and the background scattering from other cell 

wall constituents such as the S1 and S3 layers, parenchyma, and amorphous cellulose and 
lignin present in the fibre wall. The model contains two statistically determined calibration 
constants (A and B), that have been shown to be insensitive to species, and relate to the sonic 
resonance method used for calibration (Evans 2005). This means the MOE calculated by 
SilviScan is the dynamic MOE. Sonic testing historically produces higher values of modulus 
of elasticity than static bending tests. 

3.5.2 Other fibre properties  

Fibre wall dimensions from image analysis and density are combined to compute fibre 
coarseness ( C ) (Eq.5), specific surface area (SSA) (Eq. 6), and fibre wall thickness (W) (Eq. 

7), assuming a constant cell wall density (Dw) (1500 kg/m3) (Evans et al. 1995): 

C = RT Dw (5) SSA = P / C (6)  

P 16C  

W=
8
1− 1−

P2D 
 (7)  

w  

Where R and T are the radial and tangential diameters of fibre, respectively, P is fibre 
perimeter, P=2(R+T). The specific surface area SSA reported by SilviScan does not include 

lumen. However, the specific surface area including the lumen can be calculated with the 
relation (Eq.8): 

 
SSAwithlumen =(2P−8W)/C (8)  

4.2 Pith-to-bark property profiles  

4.2.1 Annual growth ring data 

Two files contain ring information for each sample. One ending with 
“properties_ring_stats.csv” contains ring statistics (mean, standard deviation, quantile and 
etc.), ring positions and widths for each ring and for all the properties measured. Density in 
this file is basic density. The other ending with “ring_info.csv” contains ring number, ring 
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width, ring area, and ring age. Figure 6 gives an example of the radial variations of annual 
growth ring width and density for sample # MJP-02. 

Figure 6 Example of SilviScan annual growth ring width and density profiles for sample # 
MJP-02.  

 

4.2.2 Raw data profiles  

The raw data (i.e., data at 25-μm intervals) of wood and fibre properties for each sample are 
provided in a single csv file with file name ending with “properties.csv”. For example, the 
file “MJP- 02_wood_010101_properties.csv” refers to the data for sample # MJP-02. A total 
of 89 csv files, one for each sample, are enclosed with this report. Figure 7 illustrates the 
pith-to-bark profiles for sample # MJP-02 as an example. Wood density in raw data is density 
at 8% moisture content. 

Figure 7 Examples of pith-to-bark profiles for basic density, MOE and MFA, and wood 
coarseness (C) and specific surface area (SSA) for sample MJP-02. MFA and MOE were 
acquired at 5-mm resolution. Basic density was acquired at 25-μm resolution and images 
were acquired at 10-μm resolution. Density shown has been scaled to true density using the 
average density obtained gravimetrically at 8% moisture content and converted to basic 
density. 
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