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ABSTRACT 

Hudson Bay, a vast inland sea in northern Canada, receives the highest average 

annual freshwater from the Nelson River system among all other contributing rivers. A 

rapidly changing climate and flow regulation from hydroelectric developments alter Nelson 

River streamflows timing and magnitude, affecting Hudson Bay’s physical, biological, and 

biogeochemical state. Despite recent developments and advances in climate datasets, 

hydrological models, and computational power, modelling the Hudson Bay system remains 

particularly challenging. Therefore, this dissertation addresses crucial research questions 

from the Hudson Bay System (BaySys) project by informing how climate change impacts 

variability and trends of freshwater-marine coupling in Hudson Bay. To that end, I present a 

comprehensive intercomparison of available climate datasets, their performance, and 

application within the macroscale Variable Infiltration Capacity (VIC) model, over the 

Lower Nelson River Basin (LNRB). This work aims to identify the VIC parameters 

sensitivity and uncertainty in water balance estimations and investigates future warming 

impacts on soil thermal regimes and hydrology in the LNRB. 

An intercomparison of six climate datasets and their equally weighted mean reveals 

generally consistent air temperature climatologies and trends (1981–2010) but with a 

prominent disagreement in annual precipitation trends with exceptional wetting trends in 

reanalysis products. VIC simulations forced by these datasets are utilized to examine 

parameter sensitivity and uncertainties due to input data and model parameters. Findings 

suggest that infiltration and prescribed soil depth parameters show prevailing seasonal and 

annual impacts, among other VIC parameters across the LNRB. Further, VIC simulations 

(1981–2070) reveal historical and possible future climate change impacts on cold regions 
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hydrology and soil thermal conditions across the study domain. Results suggest that, in the 

projected climate, soil temperature warming induces increasing baseflows as future warming 

may intensify infiltration processes across the LNRB. This dissertation reports essential 

findings in the application of state-of-the-art climate data and the VIC model to explore 

potential changes in hydrology across the LNRB’s permafrost gradient with industrial 

relevance of future water management, hydroelectric generation, infrastructure development, 

operations, optimization, and implementation of adaptation measures for current and future 

developments. 
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CHAPTER 1:  INTRODUCTION 

Hudson Bay is a large inland sea in northern Canada that receives 94 km3 year-1 average 

annual freshwater from the Nelson River alone (Déry, Mlynowski, Hernández-Henríquez, & 

Straneo, 2011; Déry, Stieglitz, McKenna, & Wood, 2005), which is the highest among all 

contributing rivers of the Hudson Bay drainage system. Therefore, it is imperative to examine 

changing conditions within the Hudson Bay system since it is a vast inland sea that offers 

numerous opportunities for marine shipping and natural resource exploration and extraction. 

This dissertation is a part of Hudson Bay System (BaySys), a Natural Sciences and 

Engineering Research Council (NSERC) of Canada Collaborative Research and 

Development project with Manitoba Hydro as its main industrial partner. The overall purpose 

of the BaySys project is to examine the contributions of climate change and hydroelectric 

regulation to the variability and trends of freshwater-marine coupling in the Hudson Bay 

system. The specific objective of the BaySys project is to separate climate change and 

regulation effects to understand their relative contributions and impacts on Hudson Bay’s 

physical, biological, and biogeochemical conditions. To address the overarching goal, 

various sub-themes are assigned to the following teams: 1) marine and climate system, 2) 

freshwater systems, 3) marine ecosystem, 4) carbon cycling, 5) contaminants, and 6) Nucleus 

for European Modelling of the Ocean (NEMO) modelling. 

This Ph.D. dissertation comes under the freshwater systems team of the BaySys project. 

The overarching goal of the team is “To investigate the role of freshwater timing and 

magnitude on contemporary and future projections of freshwater-marine coupling in Hudson 

Bay as a means of understanding the relative contributions of regulation and climate change 

to the system” (Source: BaySys proposal). The team provides freshwater export outcomes to 
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other teams, allowing them to evaluate the impacts of regulation and climate change on the 

physical, biological, and biogeochemical processes in Hudson Bay. Moreover, results from 

the freshwater systems team will be beneficial to stakeholders, regulators, and industry by 

providing valuable information that can be used to help guide and inform the operation and 

development of the Nelson-Churchill hydroelectric system into the future. Future projections 

of net changes in runoff under climate change and flow regulation are anticipated to be 

highly uncertain due to the typical nonlinear characteristic behaviour of the hydrologic 

system (Blöschl & Zehe, 2005; Koutsoyiannis, 2010). Our study area, the Lower Nelson 

River Basin (LNRB), is highly susceptible to those changing scenarios (Figure 1.1). 

Therefore, to achieve the overall goal, our team incorporates multiple hydrological modelling 

approaches for robust projections of future runoff that quantify the uncertainty associated 

with these projections (Chen, Brissette, & Leconte, 2011; Chen, Brissette, Poulin, & Leconte, 

2011; Kumar, Singh, Jena, Chatterjee, & Mishra, 2015). This partnership between 

researchers and industry involves detailed, physically based, multi-model streamflow 

projections at continental (~1 × 106 km2) and regional (~1 × 105 km2) scales. Several 

hydrologic models are selected, and their implementation is carried out under both 

naturalized and regulated conditions using multiple climate projections. I implement one of 

the hydrologic models, the Variable Infiltration Capacity (VIC) model (Liang, Lettenmaier, 

Wood, & Burges, 1994; Liang, Wood, & Lettenmaier, 1996), under naturalized conditions 

and simulations are performed at a regional scale (i.e., LNRB). This dissertation provides 

essential inputs to other BaySys team members that eventually lead to the regulation and 

climate change impact assessments on physical, biological, and biogeochemical processes of 

the Hudson Bay system. 
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Figure 1.1 (a) Location of the Nelson River basin (NRB), Churchill River basin (CRB), and Lower Nelson 
River basin (LNRB). (b) Major rivers and sub-watersheds selected for the study; yellow and black triangles 
show the Water Survey of Canada hydrometric and Environment and Climate Change Canada (ECCC) climate 
stations, respectively, which are selected for the climate data analysis (Chapter 2); red diamonds denote current 
generating stations; the yellow circle shows a generating station under construction by Manitoba Hydro; the 
green box represents the Notigi Control Structure; and the red star indicates the Churchill River diversion. Base 
map source: World physical map (http://services.arcgisonline.com/arcgis/services) 

1.1.  Dissertation Objectives and Research Questions 

Critical research gaps related to available gridded climate datasets, their performance, and 

utilization in the VIC model, VIC parameters sensitivity and uncertainty analyses, and the 

VIC model implementation for future climate change analysis exist over sub-arctic 

watersheds. In this context, I aim to critically analyse available gridded climate data against 

observations and improve our understanding on the usability of these datasets in the VIC 

hydrological model, parameter sensitivity, and uncertainty analysis for water balance 
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estimation over the LNRB including ten of its sub-watersheds. Future warming and extreme 

weather events associated with climate change impact the hydrology, snow, rain, and soil 

thermal regime that primarily govern the hydro-climatology of this region. However, our 

knowledge of the impacts of climate change on the soil thermal regime, and subsequent 

alteration of the sub-arctic’s hydrology, including the LNRB, remains limited (Andresen et 

al., 2020; Wang et al., 2019; Westermann et al., 2016). Thus, this dissertation addresses three 

main objectives as follows: 

1. to intercompare hydro-climatic datasets, their variability, and trends across the LNRB 

and its ten sub-watersheds (Chapter 2); 

2. to perform uncertainty propagation from multiple climate datasets in the VIC model 

outputs, model parameter sensitivity, and uncertainty in VIC simulated water budgets 

(Chapter 3); and 

3. to quantify climate change impacts on the LNRB’s hydrology and soil thermal regime 

(Chapter 4). 

The seasonal variability, upstream flows, and the amount of water released from the 

LNRB’s snowpacks provide vital information for water management and hydropower 

generation. Assessing how the LNRB’s water resources may change in the future supports 

land and water resource managers, planners, and government to make informed decisions and 

requires scientific attention. Therefore, this dissertation addresses the following research 

questions in detail for our study domain: 

1. What are the suitable datasets for the hydro-climatic study of the LNRB? How do 

historic (1981–2010) climatologies and trends vary across the available climate 

datasets? 
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2. What is the contribution of uncertainty propagated through multiple climate datasets 

in water balance estimations using the VIC model? What are the most sensitive model 

parameters in water balance modelling and parameter uncertainty to streamflow 

generation across the LNRB sub-basins? 

3. What are the impacts of a changing climate on the LNRB’s water balance? How do 

projected climate changes affect soil thermal regimes and baseflows across the 

domain? 

1.2.  Background 

1.2.1. Climate Datasets 

Recent high-resolution regional and global climate datasets that incorporate various 

observational sources and sometimes numerical modelling provide improved inputs for 

hydro-climatic modelling studies. It remains challenging, however, to obtain appropriate and 

credible climate data for relatively small and remote areas with sparse climate observing 

stations. Therefore, understanding the spatial and temporal accuracies of such gridded 

datasets at watershed and sub-watershed levels is essential for modelling hydrologic 

responses to climate change studies. Previous evaluations among precipitation and 

temperature products have focused mainly on the intercomparison of (1) satellite-derived 

products (Skok et al., 2016; Turk, Arkin, Sapiano, & Ebert, 2008), (2) climate model 

simulations (Mearns et al., 2013), and (3) reanalysis datasets (Bosilovich, Chen, Robertson, 

& Adler, 2008; Kim, Kim, Boo, Shim, & Kim, 2019). However, in situ measurements (i.e., 

precipitation) may contain errors arising from wind effects (Kochendorfer et al., 2017), 

undercatch (Mekonnen, Matula, Doležal, & Fišák, 2015), evaporation (Leeper & 

Kochendorfer, 2015), human errors and instrumental problems (Dahri et al., 2018). Steps 
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toward recognizing limitations in various precipitation and temperature observations were 

undertaken in many previous studies (Eum, Dibike, Prowse, & Bonsal, 2014; Maggioni, 

Sapiano, Adler, Tian, & Huffman, 2014; Shen, Xiong, Wang, & Xie, 2010). Numerical 

climate and weather prediction models including atmosphere-ocean General Circulation 

Models (GCMs) and Regional Climate Models (RCMs) offer another potential source of 

precipitation and air temperature estimates. Climate variables from these models, however, 

produce systematic biases due to inadequate model conceptualization, discretization, spatial 

averaging within grid cells and remain relatively coarse in resolution (Teutschbein & Seibert, 

2010; Xu, Widén, & Halldin, 2005). 

Access to reliable and accurate atmospheric data, especially precipitation and air 

temperature, remains essential to understand the climate system and hydrological processes. 

Reliable precipitation and air temperature measurements provide constructive information to 

climatologists, meteorologists, hydrologists and other decision-makers in various 

applications. Prior to the application of precipitation and air temperature from different 

available products, intercomparison of these variables is essential to ensure their reliability, 

particularly for specific spatial and temporal domains (Kim et al., 2019; Tanarhte, 

Hadjinicolaou, & Lelieveld, 2012). 

1.2.2. Uncertainties in Hydrological Modelling 

The input forcing analysis is an essential part for any hydrological modelling related 

studies; along with this, many studies have their main interest either on hydrological model 

structure (Jiang et al., 2007; Poulin, Brissette, Leconte, Arsenault, & Malo, 2011; Velázquez 

et al., 2013; Wilby & Harris, 2006) or on calibration parameters (Bennett, Werner, & 

Schnorbus, 2012; Teutschbein, Wetterhall, & Seibert, 2011). Renard, Kavetski, Kuczera, 
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Thyer, & Franks (2010) identified the total predictive uncertainty in hydrological models and 

found that model inputs and structural components significantly affect predicted flows. 

Moreover, Arsenault & Brissette (2014) estimated parameter set uncertainty in hydrologic 

modelling over Québec and concluded that model implementation and flow estimates are 

particularly sensitive to parameter set selection. This shows that a hydrological model can 

have multiple equivalent local optima within a model parameters range (Poulin et al., 2011) 

and several different parameter sets may reflect the same “optimal” efficiency measures 

during the optimization process (Beven, 2006). Thus, Islam & Déry (2017) analysed 

parameter uncertainties involved in the VIC model calibration process and modelling 

uncertainties related to the selection of the calibration and validation time periods. They 

found that choice of an initial parameter range during the optimization process plays a crucial 

role and different climatic conditions during calibration and validation processes result in 

biases within the model setup. Biemans et al. (2009) assessed the uncertainty in discharge 

calculations associated with various precipitation datasets for 294 river basins worldwide and 

found substantial differences, especially in mountainous, arctic, and small basins, between 

seven global gridded precipitation datasets. 

Although recent developments and advances have been achieved in hydrological 

modelling and computational power (Fatichi et al., 2016; Singh, 2018), efficiently addressing 

the uncertainties in hydrological simulations remains a critical challenge (Liu & Gupta, 

2007). There is a growing need for sensitivity and uncertainty assessments associated mainly 

with the model parameterization and input forcing datasets to achieve the hydrological 

model’s optimal performance for decision-making. While there may be other uncertainties 

(e.g., model structure, calibration, etc.), this doctoral research focuses primarily on the 
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sensitivity of hydrological model parameters to model outputs, and uncertainties in model 

simulations due to model parameters and input forcing datasets, which are perhaps the most 

significant source of uncertainty (Zhang, Li, Huang, Wang, & Cheng, 2016). 

1.2.3. Climate Change Impacts on Cold Regions Hydrology 

Climate change profoundly impacts terrestrial freshwater export to the coastal ocean 

(Haddeland, Skaugen, & Lettenmaier, 2006; Schewe et al., 2014). There is strong evidence 

that climate change impacts are altering the water cycle and influencing water availability 

and demand (Haddeland et al., 2006; Liu, Tian, Hu, & Sivapalan, 2014). Climate change 

impact assessment on the water cycle has been extensively studied using physically based 

hydrologic and statistical models at the global, continental, sub-continental, watershed and 

local scales (Arora & Boer, 2001; Elsner et al., 2010; Haddeland et al., 2014; Islam, Déry, & 

Werner, 2017; Mishra & Lilhare, 2016). In Canada, several studies have examined climate 

change impacts on Churchill-Nelson River water yields; for example, Westmacott and Burn 

(1997) concluded that the magnitude of hydrologic events decreased over time while 

snowmelt runoff events occurred earlier, and the timing of a hydrologic event was highly 

sensitive to temperature change. Moreover, Sushama et al. (2006) examined projected 

climate change signals using simulations from two versions of the Canadian Regional 

Climate Model (CRCM) and found an increase in the average annual precipitation and a 

significant decrease in snow cover over the Churchill-Nelson River basin. Further, Poitras et 

al. (2011) reported projected increases in 2041–2070 winter streamflows for several northern 

Canadian watersheds and found significant changes in extreme flows (low and high) for 

high-latitude basins of western Canada including the Churchill-Nelson River watershed. 
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Permafrost comprises about a quarter of the exposed land in the Northern Hemisphere 

(Zhang, Barry, Knowles, Heginbottom, & Brown, 1999). Changes in permafrost distribution 

and summer active layer depth would have significant impacts on hydrology, soil organic 

carbon (SOC), vegetation distribution, and infrastructure at high latitudes (ACIA, 2004; 

Anisimov et al., 2001; Chapin et al., 1992; Nelson, 2003). For example, permafrost 

disappearance or deepening summer active layer depth could alter terrain and hydrologic 

conditions (Hinzman et al., 2005), affect growth and distribution of vegetation (Jorgenson, 

Racine, Walters, & Osterkamp, 2001), and increase SOC decomposition and enhance CO2 

and CH4 emissions from the soil to the atmosphere (Goulden et al., 1998; Oechel et al., 

1993). Climate models project large increases in mean surface temperature (~8°C) across 

present-day permafrost areas of the Canadian landmass by the end of the 21st century under 

the Representative Concentration Pathway (RCP) 8.5 scenario (Koven, Riley, & Stern, 

2013). While this enhanced warming affects permafrost temperatures and conditions 

(Chadburn et al., 2017; Guo & Wang, 2016; Slater & Lawrence, 2013), it is challenging to 

project permafrost extent reductions from climate models due to inadequate representation of 

soil properties, including ice content, and uncertainties in understanding the response of deep 

permafrost. Simulations from a process-based permafrost model driven by six GCM-

generated climate scenarios, considering deeper permafrost, project that the area underlain by 

permafrost in Canada will decline by approximately 16-20% by 2090, relative to a 1990s 

baseline (Zhang, Chen, & Riseborough, 2008a). Further simulations also show that 

permafrost thaw would continue during the late 21st century, even if air temperatures stabilize 

by mid-century (Zhang, Chen, & Riseborough, 2008b). 
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Overall, high latitudes are more susceptible to climate change and air temperature has 

increased at a higher rate than the global mean over that region during the 20th century 

(Serreze et al., 2000). Most GCMs project the same pattern will continue in the 21st century 

in high latitude regions (McCarthy, Canziani, Leary, Dokken, & White, 2001). Therefore, 

quantifying changes in soil thermal regime under a warming climate is important for 

assessing its impacts on baseflows, water and energy fluxes, SOC, ecosystems, and northern 

communities and infrastructure in arctic and sub-arctic regions such as the LNRB, and for 

including their feedbacks in GCMs for projecting future climate change. Climate change 

impacts on the LNRB’s water resources require a systematic analysis of the GCM-driven 

hydrological model simulations that has not been achieved so far. This study, therefore, 

investigates increasing air temperatures and changing precipitation impacts on the LNRB’s 

water balance, snowmelt, soil temperatures, baseflows, and its contribution to runoff 

generation. 

1.3.  Dissertation Outline 

To accomplish the above-mentioned objectives, this dissertation is organised into five 

chapters. Except for Chapters 1 and 5, all chapters independently address one or more 

objectives. Chapters 2 and 3 are written as stand-alone journal articles. Chapters 2 and 3 of 

this dissertation have been published in Atmosphere-Ocean (Lilhare, Déry, Pokorny, 

Stadnyk, & Koenig, 2019) and Hydrological Processes (Lilhare, Pokorny, Déry, Stadnyk, & 

Koenig, 2020), respectively, while Chapter 4 is written as a manuscript for future submission 

to a journal. Each of these three chapters is presented as a stand-alone effort with its own 

introduction, study area, methodology, results, discussion, and conclusion sections. There are 

slight modifications in these chapters that include a combined list of references from all 
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chapters into one bibliography, renumbering and positioning of the figures and tables, english 

and layout reformatting. 

Chapter 2 (Lilhare et al., 2019) covers a detailed intercomparison of multiple hydro-

climatic datasets, available at global and regional scales, across the LNRB. Moreover, it 

includes the 1981–2010 variability and trend analyses of climatic variables such as 

precipitation and air temperature on annual and seasonal bases over the LNRB’s sub-basins. 

In Chapter 3 (Lilhare et al., 2020), I quantify the uncertainty propagated from available 

forcing datasets in their surface water balance estimations, using the VIC model, over the 

LNRB during 1981–2010. Further, this chapter presents the VIC model parameter sensitivity 

in simulating seasonal and annual streamflow and assesses uncertainty envelopes in 

streamflow generation across the LNRB sub-basins. 

Chapter 4 describes the impacts of climate change using output from GCMs on the 

LNRB’s hydrology and its major water balance components. Furthermore, it explores 

projected climate impacts on the LNRB’s soil thermal regime and water balance by the end 

of the 2070s under the RCP 4.5 and 8.5 scenarios. 

Chapter 5 concludes the dissertation by synthesizing the previous chapters, provides 

recommendations for future research, and outlines some limitations and the broader 

implications of this study. 
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CHAPTER 2:  INTERCOMPARISON OF MULTIPLE HYDRO-CLIMATIC 

DATASETS ACROSS THE LOWER NELSON RIVER BASIN, MANITOBA, 

CANADA 

Publication details: 

This chapter has been published in Atmosphere-Ocean. 

Lilhare, R., Déry, S. J., Pokorny, S., Stadnyk, T. A., & Koenig, K. A. (2019). 
Intercomparison of multiple hydro-climatic datasets across the Lower Nelson River Basin, 
Manitoba, Canada, Atmosphere-Ocean, 57(4), 262–278. 
https://doi.org/10.1080/07055900.2019.1638226 

2.1.  Abstract 

This study evaluates the 1981–2010 spatio-temporal differences in six available climate 

datasets (daily total precipitation and mean air temperature) over the Lower Nelson River 

Basin (LNRB) in ten of its sub-watersheds at seasonal and annual timescales. We find that 

the Australian National University spline interpolation (ANUSPLIN), and Inverse Distance 

Weighted (IDW) interpolated observations from 14 Environment and Climate Change 

Canada (ECCC) meteorological stations show dry biases, whereas reanalysis products tend to 

overestimate precipitation across most of the basin. All datasets exhibit prominent 

disagreement in precipitation trends whereby the European Reanalysis-Interim (ERA-I) and 

European Union Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI) 

show exceptional wetting trends, while the IDW and ANUSPLIN manifest drying trends. 

Mean air temperature trends generally agree across most of the datasets; however, the North 

American Regional Reanalysis (NARR) and IDW show stronger warming relative to other 

datasets. Overall, analyses of the different climate datasets and their ensemble reveal that the 

choice of input dataset plays a crucial role in the accurate estimation of historical climatic 

conditions, particularly when assessing trends, for the LNRB. Using the ensemble has the 
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distinct advantage of preserving the unique strengths of all datasets and affords the 

opportunity to estimate the uncertainty for hydrologic modelling and climate change impact 

studies. 
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2.2.  Introduction 

Access to reliable and accurate atmospheric data, especially precipitation and air 

temperature, remains essential to understand the climate system and hydrological processes. 

These variables form vital elements of the water and energy cycles and are key for driving 

land surface models. Reliable precipitation and air temperature measurements provide 

constructive information to climatologists, meteorologists, hydrologists and other decision-

makers in various applications such as in agricultural and environmental research (e.g., 

Hively, Gérard-Marchant, & Steenhuis, 2006; Zhang, Sun, Singh, & Chen, 2012), climate 

and/or land use change studies (e.g., Cuo et al., 2011; Dore, 2005; Huisman et al., 2009), 

hydrological and water resources planning (e.g., Hong, Adler, Huffman, & Pierce, 2010; 

Middelkoop et al., 2001), and mitigation of natural hazards (e.g., Blenkinsop & Fowler, 

2007; Kay, Davies, Bell, & Jones, 2009; Taubenböck et al., 2011). Prior to the application of 

precipitation and air temperature from different available products, intercomparison of these 

variables is an essential prerequisite to ensure their reliability, particularly for specific spatial 

and temporal domains. 

In recent decades, multiple global and regional datasets have been generated using 

different forcing products, such as climate model simulations and interpolations of remotely 

sensed and/or in situ observations (Dee et al., 2011; Mesinger et al., 2006). These datasets 

tend to systematically agree over the major temporal trends and spatial distribution of climate 

variables (i.e., precipitation and air temperature), but they often show notable differences at 

regional scales (Adler, Kidd, Petty, Morissey, & Goodman, 2001; Costa & Foley, 1998). 

Precipitation and air temperature stations provide direct physical readings with relatively 

accurate measurements at specific points. Moreover, these station measurements are often 
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spatially interpolated and thus are unable to capture the actual spatial variability of 

precipitation and temperature fields due to sparse station networks. Satellite-based 

precipitation estimates provide good spatial coverage but have inaccuracies resulting 

primarily from instrumental, temporal sampling, and algorithm errors (Gebremichael, 

Krajewski, Morrissey, Huffman, & Adler, 2005; Nijssen & Lettenmaier, 2004). Reanalyses 

provide an alternative source of precipitation and air temperature by assimilating all available 

data (meteorological stations, aircraft, satellite, etc.); however, the accuracy of these products 

depends on the choice of physical parameterizations and specific analysis-forecast systems 

(Betts, Ball, & Viterbo, 2003). 

Several gridded datasets for precipitation and air temperature – based on available 

observations, post-processing techniques and sometimes climate modelling – are available 

for hydro-climatic studies over the Canadian landmass (Hopkinson et al., 2011; Mesinger et 

al., 2006). Since observational data are incorporated to derive the gridded datasets, they may 

also contain measurement errors and missing records. These missing values translate into the 

data interpolation and add to the overall uncertainty in the resulting gridded products (Eum et 

al., 2014; Horton, Schaefli, Mezghani, Hingray, & Musy, 2006; Kay et al., 2009). 

Understanding the observed climate trends from different gridded datasets for a river basin is 

essential to assess regional changes and gauge data consistency and reliability. Several data-

related difficulties arise when attempting to analyse Canadian climate trends at regional and 

national scales. For example, its vast land mass and high latitude result in a wide range of 

climates and relatively large spatial climate variability (Phillips, 1990). 

Given the discrepancies in available gridded datasets, errors during data development, 

and the importance of data intercomparison prior to hydro-climatic application, our paper 
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presents a detailed intercomparison of variability and trends calculated from available global 

and regional air temperature and precipitation datasets over the Lower Nelson River Basin 

(LNRB). Intercomparisons are quantified for ten sub-basins of the LNRB on seasonal and 

annual bases. Further, no studies have explored the spatio-temporal differences and historic 

trends from different gridded datasets for the LNRB. Thus, this paper seeks to fill an 

important knowledge gap in the understanding of historic trends and climate datasets 

application for future hydrologic modelling studies over the LNRB. 

2.3.  Study Area: the Lower Nelson River Basin 

The Nelson River Basin (NRB) is one of the largest river systems in Canada (third largest 

by area and volumetric discharge to the coastal ocean) that drains water mainly from the 

interior of Canada, cutting through the Canadian Shield of northern Manitoba before 

emptying into Hudson Bay (Figure 2.1a) (Newbury & Malaher, 1973). The Churchill River 

system covers the north-western part of the NRB and is considered here since it was joined to 

the Nelson River by a diversion in 1976. The entire Nelson-Churchill River Basin extends 

geographically between ~45.5°N to 59.5°N, and ~90.0°W to 117.5°W. In this study, the 

downstream segment of the Nelson River system fed by the Churchill River basin and Lake 

Winnipeg constitute the LNRB (Figure 2.1). The LNRB spans an area of ~90,500 km2 and 

collects all water from the drainage area upstream of the Nelson River (~970,000 km2) before 

discharging into Hudson Bay. In the LNRB, the main stem river (Nelson) and its largest 

tributary – the Burntwood, whose downstream segment carries diverted flows from the 

Churchill River – have less seasonal flow variability due to streamflow regulation and a large 

drainage area. Most of the LNRB has gentle slopes, with common channelized lakes 

moderating flow variability. Wetlands abound within the LNRB and store significant 
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volumes of water, cover large areas and moderate streamflow responses to rainfall and 

snowmelt events. Shallow soils and permafrost limit infiltration, groundwater storage and 

groundwater flows. To increase its hydroelectric capacity, Manitoba Hydro manages flows in 

the LNRB with two major sources of streamflow regulation: the Churchill River Diversion 

(CRD) and Lake Winnipeg Regulation (LWR) (Figure 2.1b). On the LNRB’s north-western 

boundary, Manitoba Hydro operates the CRD. In 1977, a portion of the Churchill River Basin 

was diverted into the LNRB and regulated at Notigi Lake by the Notigi Control Structure on 

the Rat River. In 1972, Manitoba Hydro started the LWR project, which is key to 

hydropower development on the Nelson River system. Presently, Manitoba Hydro operates 

six hydroelectric generating stations while one station remains under construction (Keeyask) 

(Figure 2.1b) within the LNRB (Déry, Stadnyk, MacDonald, Koenig, & Guay, 2018). 
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Figure 2.1 Maps of (a) The Nelson River Basin (NRB), Churchill River Basin (CRB), and Lower Nelson River 
Basin (LNRB). (b) major rivers within the LNRB are labelled, black triangles show the selected ECCC stations 
for this study, red diamonds denote current generating stations, and the yellow circle shows a generating station 
under construction by Manitoba Hydro, a green box represents the Notigi Control Structure, and a red star 
indicates the Churchill River diversion. (c) domain elevation distribution and selected sub-watersheds (black 
line). 

The LNRB experiences a sub-arctic continental climate characterized by moderate 

precipitation and humidity, cool summers, and cold winters. The snow-free season remains 

brief, generally beginning in May and ending in October. Most of the precipitation that 

occurs during the summer months falls as rain, accounting nearly two-thirds of the annual 

total precipitation. The precipitation peaks in July, the warmest month of the year with an 

average daily air temperature of 16.2°C. The average annual precipitation over the LNRB 

totals ~500 mm while evapotranspiration in the region attains ~300–350 mm annually with 



19 
 

 
 

more annual surface water evaporation (~450 mm) (Environment and Climate Change 

Canada, 2016; Smith, Delavau, & Stadnyk, 2015). 

2.4.  Data and Methods 

2.4.1. Datasets 

The observation-based ANUSPLIN, NARR, ERA-I, WFDEI, and HydroGFD datasets are 

available for hydro-climatological studies over the LNRB (Table 2.1).These datasets were 

selected because they are derived using advanced interpolation (for ANUSPLIN) and data 

assimilation (for NARR, ERA-I, WFDEI, and HydroGFD) techniques, are open source, 

cover the entire study period (1981–2010) and domain, and have continuous records at the 

required temporal and spatial resolutions for hydrological modelling. However, the data 

assimilation capacity of global and regional reanalysis products over different parts of the 

world does not extend to Canada, where weather station coverage is much lower and not 

assimilated into many real-time reanalysis updates, especially in northern Canada (Bukovsky 

& Karoly, 2007; Essou, Sabarly, Lucas-Picher, Brissette, & Poulin, 2016; Langlois et al., 

2009). To compare these products against observations, a gridded dataset (IDW) from 14 

Environment and Climate Change Canada (ECCC) meteorological stations is constructed 

across the LNRB using a squared IDW interpolation technique (Table 2.2 and Figure 2.2). 

Other observation-based datasets such as the Canadian Precipitation Analysis (CaPA) are 

also available for an intercomparison but CaPA contains records from 2002 onwards and so 

remains unsuitable for the present study (Fortin et al., 2018; Mahfouf, Brasnett, & Gagnon, 

2007). 
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The observation-based daily gridded dataset, ANUSPLIN, developed by Natural 

Resources Canada (NRCan) is available for the Canadian landmass south of 60°N at 10 km 

resolution (Hopkinson et al., 2011; McKenney et al., 2011; Natural Resources Canada, 

2014). Preliminary analysis shows the updated version (1950–2015) of ANUSPLIN exhibits 

a consistent dry bias in precipitation over the LNRB; therefore we retained the earlier version 

(1950–2011) of this dataset (Hopkinson et al., 2011). This dataset uses a trivariate thin-plate 

smoothing spline technique and includes daily total precipitation (mm), minimum and 

maximum air temperature (°C) at 10 km spatial resolution based on 7514 meteorological 

stations (1950–2011) over the Canadian landmass south of 60°N (Eum et al., 2014; Sharma 

& Déry, 2016). 
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Table 2.1 Main characteristics of the datasets used in this study. 

Dataset 
Description 

(Reference(s)) 

Temporal and 
Spatial Resolution 

Geographical 
Coverage 

ECCC 

The Environment and Climate 
Change Canada meteorological 
stations (Figure 2.1a): Norway 
House A (506B047), Flin Flon A 
(5050960), Gillam A (5061001), 
Thompson A (5062922) 

Daily (1981–2010), 
Point data 

LNRB, Land 
only 

IDW 

Inverse Distance Weighted 
interpolated observations from 14 
ECCC meteorological stations 
(Table 2.2 and Figure 2.2) 
(Gemmer, Becker, & Jiang, 2004; 
Shepard, 1968) 

Daily (1981–2010), 
0.10° 

LNRB, Land 
only 

ANUSPLIN 

The Australian National University 
spline interpolation (Hopkinson et 
al., 2011; Natural Resources 
Canada, 2014) 

Daily (1950–2011), 
0.10° 

Canada, Land 
only 

NARR 
North American Regional 
Reanalysis (Mesinger et al., 2006) 

3-hourly and daily 
(1979 to near 

present), 0.30° 

North 
America, Land 

and ocean 

ERA-I 
European Reanalysis-Interim (Dee 
et al., 2011) 

3, 6-hourly and daily 
(1979 to near 

present), 0.125° 

Global, Land 
and ocean 

WFDEI 
European Union Water and Global 
Change (WATCH) Forcing Data 
ERA-Interim (Weedon et al., 2014) 

3, 6-hourly and daily 
(1979 to near 

present), 0.50° 

Global, Land 
and ocean 

HydroGFD 
Hydrological Global Forcing Data 
(Berg et al., 2018) 

3, 6-hourly and daily 
(1979 to near 

present), 0.50° 

Global, Land 
only 

ENSEMBLE 
Average of above mentioned six 
gridded datasets  

Daily (1981–2010), 
0.10° 

LNRB 
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Table 2.2 List of selected weather stations for daily precipitation and mean air temperature, maintained by 
Environment and Climate Change Canada (ECCC) and Manitoba Hydro (MH), for the IDW interpolation 
(1981-2010). 

Stations 

(Operating agency) 

Climate 
IDs 

Latitude 
(°N)  

Longitude 
(°W)  

Elevation 
(m) 

Data 
availability 

Cross Lake Jenpeg 
(ECCC) 

5060623 54.54 98.03 218.8 1972–present 

Flin Flon A (ECCC) 5050960 54.68 101.68 303.9 1968–2017 

Gillam A (ECCC) 5061001 56.36 94.71 145.1 1970–2014 

Grand Rapids Hydro 
(MH) 

5031111 53.16 99.28 222.5 1966–present 

Island Lake A (ECCC) 5061376 53.85 94.65 235.6 1970–2015 

Kelsey Dam CS (MH) 5061422 56.04 96.51 182.9 2000–present 

Kelsey Hydro (MH) 5061423 56.03 96.53 182.9 1983–1995 

Limestone GS (MH) 5061567 56.50 94.18 88.4 1985–1992 

Norway House A 
(ECCC) 

506B047, 

5062045 
53.95 97.85 223.7 1973–2010 

Snow Lake (ECCC) 5062706 54.88 100.03 295.7 1983–1998 

South Indian Lake 
(ECCC) 

5062734 56.78 98.97 259.1 1976–1989 

The Pas A (ECCC) 5052880 53.97 101.10 270.4 1943–2014 

Thompson A (ECCC) 5062922 55.80 97.86 224.0 1967–2014 

Wabowden (ECCC)1 
5063041, 
5063044 

54.92 98.63 232.9 1982–2008 

 

The NARR product is a high resolution, regional extension of the National Centers for 

Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 

global reanalysis data (Kalnay et al., 1996; Kistler et al., 2001). It is developed at 32 km 

spatial and 3-hourly temporal resolution by utilizing a version of the Eta Model and its 3D 

variational data assimilation system (Mesinger et al., 2006) for the North American 

continent, available from 1979 to present. 

                                                 
1Records spliced from multiple stations 
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The ERA-I dataset is a global reanalysis product from the European Centre for Medium-

Range Weather Forecasts (ECMWF). Originally developed at 0.8° spatial resolution, data are 

also available for download at different spatial (0.125° to 3° grids) and 3-hourly temporal 

resolutions for January 1979 through near real-time (Dee et al., 2011). In this application, the 

ERA-I products are downloaded at 0.125° (~13 km) spatial resolution. The product combines 

observations with a prior estimate of the atmospheric state generated by a global forecast 

model in a statistically optimal way. The ERA-I datasets have been evaluated and widely 

used in a variety of studies related to pan-Arctic hydro-climatology (Betts & Beljaars, 2017; 

Bromwich et al., 2016; Simmons et al., 2014; Simmons & Poli, 2015). 

 
Figure 2.2 Map of selected weather stations (red triangles) for the IDW interpolation across the LNRB, 1981–
2010. 
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The WFDEI relies on a method developed by the European Union’s WATCH project 

(http://www.eu-watch.org) and incorporates in situ observations in the reanalysis (Weedon et 

al., 2014). The WFDEI derived from the ERA-I (Dee et al., 2011) and was improved by an 

elevation correction for numerous variables. Further, to retain the monthly statistics similar to 

in situ observations of the Global Precipitation Climatology Centre (GPCC) (Schneider, 

Fuchs, Meyer-Christoffer, & Rudolf, 2008), an undercatch correction is adopted whereby the 

daily variability of the reanalysis product is conserved (Weedon et al., 2014). We obtained 

the WFDEI-GPCC precipitation and mean air temperature data at ~55 km spatial and daily 

temporal scale for this study. 

The recently developed HydroGFD dataset combines different reanalysis datasets to 

produce near real-time, updated hydrologic forcing of precipitation and air temperature 

(Berg, Donnelly, & Gustafsson, 2018). The HydroGFD resembles the established WFDEI 

method but uses updated climatological observations and interim products to produce near-

real time estimates of precipitation and air temperature at 3- and 6-hourly temporal and 0.50° 

spatial resolutions (Berg et al., 2018). 

The IDW dataset of daily precipitation and mean air temperature derives from 14 ECCC 

meteorological stations using the WATFLOOD interpolation tool (Kouwen, 1988) (Table 2.2 

and Figure 2.2). These observation stations are spatially interpolated by applying the IDW 

interpolation method, and gridded datasets are procured at 0.10° (~10 km) horizontal 

resolution for the LNRB. The WATFLOOD model is optimized through a calibration 

procedure over the LNRB with specified parameter values for the radius of influence (241.2 

km), smoothing distance (52.8 km), and precipitation and air temperature vertical lapse rates 

(0 mm m-1 and -0.004°C m-1, respectively). 
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The NARR, ERA-I and HydroGFD daily precipitation and mean air temperature are 

obtained from the sum and average, respectively, of 3-hourly values for a 24-hour period. To 

simplify the datasets intercomparison and to provide consistent hydrological model inputs for 

future work over the LNRB, the NARR, ERA-I, WFDEI and HydroGFD are then regridded 

to 10 km (~0.10°) spatial resolution using bilinear interpolation. The NARR (32 km) 

curvilinear grid and the ERA-I, WFDEI, and HydroGFD Gaussian grids are interpolated 

from coarser resolution to higher resolution (10 km). No elevation correction during the 

interpolation from coarser to finer spatial resolutions is performed as elevations vary no more 

than ±10% in the study area; hence regridding of the NARR (32 km), ERA-I (~13 km), 

WFDEI (~55 km) and HydroGFD (~55 km) datasets to 10 km spatial resolution results in 

negligible elevation-dependent uncertainty. LNRB grid cells exhibit almost no difference in 

orography and none of these datasets contain discontinuous flux fields (precipitation and air 

temperature); therefore, atmospheric variables (i.e., average air temperature) and basin 

elevation remain nearly identical at both spatial resolutions. 

Spatially regridded datasets (IDW, ANUSPLIN, NARR, ERA-I, WFDEI and HydroGFD) 

at daily temporal and 10 km spatial resolutions are assembled to produce an ensemble mean 

dataset (i.e., ENSEMBLE hereafter) from 1981 to 2010. For the multi-product ensemble 

dataset, daily precipitation and mean air temperature are derived from the equally-weighted 

average of all six gridded products. We assign equal weights to each dataset and so ignore 

prior knowledge of their modelling capacity. This is one of the most commonly used 

methods, where it assumes that the equally weighted ensemble provides the best estimates of 

contemporary and future conditions, since each model is equally likely to represent the truth 

(Krishnamurti et al., 1999; Suh et al., 2012). The concept of a multi-product ensemble has 
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been used widely over global and regional domains to examine uncertainty in forcings and 

provide input to land surface models under historical and projected future climate conditions 

(Fowler, Ekström, Blenkinsop, & Smith, 2007; Fowler & Kilsby, 2007; Mishra & Lilhare, 

2016; Wang, Bohn, Mahanama, Koster, & Lettenmaier, 2009). 

2.4.2. Methods 

Observational data for an intercomparison are obtained from the average of four ECCC 

meteorological stations (ECCC hereafter) within the LNRB (Table 2.1 and Figure 2.1). The 

ECCC data with adjusted, continuous and homogenous climatic records over 1981–2010 

represent domain-averaged observations of mean annual air temperature and total 

precipitation (Figure 2.3). They may not represent the ‘best-guess’ of precipitation and air 

temperature but an additional comparison of ECCC data provides acceptable results against 

interpolated (i.e., IDW) values (Figure 2.3). We examine the Root Mean Square Error 

(RMSE), Percent Bias (PBIAS) and bias (air temperature only) for the long-term seasonal 

and annual precipitation and air temperature error statistics. 

Analyses are performed for all four seasons: winter (DJF), spring (MAM), summer (JJA) 

and autumn (SON). Daily total precipitation (mean air temperature) from all datasets are 

averaged and aggregated to annual and seasonal totals (means) for each grid cell. Temporal 

and spatial analyses of the mean aggregated gridded data are then performed. As the first step 

of temporal analysis, the mean of all grid cells for each year and its seasons is calculated for 

all datasets; for spatial analyses, calculations are performed at the grid scale. The long-term 

seasonal variability is measured by the standard deviation (SD) for precipitation and mean air 

temperature. 
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For trend analyses, precipitation and air temperature datasets are verified for 

autocorrelation and pre-whitened if any serial correlation exists using the method of Yue, 

Pilon, Phinney, & Cavadias (2002). Further, we used the Mann-Kendall, non-parametric test 

to estimate trends in the total seasonal and annual precipitation and mean air temperature 

(Kendall, 1975; Mann, 1945; Wilks, 2011). The Mann-Kendall trend test follows the relative 

ranking of the data rather than model fitting, and is resistant to outliers, non-normal and 

dominant data. This test remains robust for trend detection in similar hydro-climatic studies 

(Burford, Déry, & Holmes, 2009; Déry & Brown, 2007; Déry & Wood, 2005b; Gan & 

Kwong, 1992; Gocic & Trajkovic, 2013; Modarres & Sarhadi, 2009). The trend magnitudes 

are calculated using the Theil-Sen trend estimate and the statistical significance is determined 

at the 95% confidence level (Mondal, Kundu, & Mukhopadhyay, 2012; Sen, 1968). 
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Figure 2.3 Comparison of the interpolated (IDW, 14 stations) and averaged (ECCC, four stations) data over the 
LNRB, 1981–2010. 

2.5.  Results 

2.5.1. Intercomparison of Gridded Climate Data with Station 

Observations 

To examine the consistency and pattern of gridded datasets against the ECCC, each 

dataset is spatially averaged over the LNRB from 1981 to 2010 (Figure 2.4). Overall, annual 

precipitation from the ERA-I and WFDEI exceeds that from the ANUSPLIN, ECCC, NARR 

and HydroGFD datasets across the entire study period. ANUSPLIN consistently 

underestimates annual total precipitation, whereas HydroGFD and ENSEMBLE show better 
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agreement with the observations for most years. Differences in annual total precipitation 

from six different datasets increase in recent years, mainly from 2004 to 2010; however, the 

ENSEMBLE shows better agreement with the ECCC dataset. These emerging differences 

(post 2003) are likely because of the Canadian precipitation observations not being 

assimilated into most of the gridded products as of 2004 (Mesinger et al., 2006). Long-term 

annual total precipitation for the HydroGFD dataset shows less positive PBIAS (0.5%) and 

RMSE (25.4 mm) relative to other datasets, while ERA-I and WFDEI show high RMSE and 

PBIAS due to systematic overestimation of precipitation (Table 2.3). The ANUSPLIN data 

exhibit a dry bias (-8.2%) in annual precipitation amongst other datasets. Long-term seasonal 

analyses reveal ANUSPLIN underestimates precipitation during all seasons, apart from 

winter; whereas HydroGFD and ENSEMBLE better represent seasonality with lower RMSE 

with ranges from 6.3 to 15.9 mm compared to ECCC stations (Table 2.3). The NARR 

precipitation shows less PBIAS (-0.5% to 10.2%) during winter, summer, autumn and at an 

annual timescale while it overestimates spring precipitation (17.1%). The ERA-I and WFDEI 

substantially overestimate seasonal precipitation, which range from 4.3% to 18.6% during 

spring, summer and autumn. 

Apart from precipitation differences, the NARR dataset does not show agreement on 

mean annual air temperature variability with other datasets (Figure 2.4). NARR exhibits 

~1.0°C deviation in annual air temperature and high RMSE (1.5°C) over the LNRB relative 

to the ECCC observations whereas the ANUSPLIN and ERA-I show better agreement with 

the lowest RMSE (0.2°C) among all other datasets (Table 2.3). ANUSPLIN and HydroGFD 

are ~0.5°C colder than the observations, a negative bias (-0.5°C to -0.1°C) that persists 

throughout the study period (Figure 2.4 and Table 2.3). The seasonal analysis reveals colder 
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mean air temperatures from the ANUSPLIN, ERA-I and HydroGFD, which ranges 

from -0.5°C to -0.1°C, with similar inter-annual variability during spring, summer and 

autumn. NARR is warmer across all seasons, which affects the ENSEMBLE mean air 

temperature (i.e., highest (lowest) positive biases, 1.7°C (1.1°C) in winter (spring)). In 

general, the ANUSPLIN has lower biases and RMSEs than other datasets for mean seasonal 

air temperature, while ERA-I and HydroGFD fall statistically between ANUSPLIN and 

WFDEI for spring and summer. Moreover, NARR shows larger RMSEs than its counterparts 

and has a strong positive bias in mean seasonal and annual air temperature over the LNRB. 

The NARR biases may translate into the ENSEMBLE dataset that exhibits positive seasonal 

and annual biases in air temperature. 

 
Figure 2.4 Area-averaged annual (a) total precipitation and (b) mean air temperature over the LNRB for the 
ANUSPLIN, NARR, ERA-I, WFDEI, and HydroGFD datasets compared to four ECCC stations average values 
across the basin, 1981–2010. 
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Table 2.3 Seasonal and annual precipitation and mean air temperature statistics for the 

domain-averaged ANUSPLIN, NARR, ERA-I, WFDEI, HydroGFD and ENSEMBLE 

datasets against four ECCC stations average values across the LNRB, 1981–2010. 

Precipitation (1981–2010) 

Errors Datasets Winter Spring Summer Autumn Annual 
R

M
S

E
 (

m
m

) 
ANUSPLIN 6.0 14.6 28.1 15.3 47.2 

NARR 12.6 21.6 34.1 17.1 43.5 

ERA-I 8.6 14.5 36.6 17.8 53.8 

WFDEI 21.8 19.1 19.0 24.7 71.8 

HydroGFD 9.7 9.8 15.9 14.0 25.4 

ENSEMBLE 6.9 6.3 13.3 11.0 21.2 

P
B

IA
S

 (
%

) 

ANUSPLIN 3.9 -12.8 -10.6 -6.4 -8.2 

NARR 10.2 17.1 -4.5 -0.5 2.2 

ERA-I -4.7 12.4 9.9 7.4 7.9 

WFDEI 33.9 18.6 4.3 15.9 13.5 

HydroGFD -2.9 -7.8 1.5 6.2 0.5 

ENSEMBLE 7.9 4.2 -0.2 3.9 2.6 

Mean air temperature (1981–2010) 

Errors Datasets Winter Spring Summer Autumn Annual 

R
M

S
E

 (
o
C

) 

ANUSPLIN 0.4 0.5 0.1 0.3 0.2 

NARR 1.9 1.2 1.6 1.6 1.5 

ERA-I 0.8 0.4 0.3 0.5 0.2 

WFDEI 0.3 0.7 0.5 0.4 0.4 

HydroGFD 0.3 0.6 0.1 0.3 0.3 

ENSEMBLE 0.7 0.4 0.6 0.6 0.5 

B
IA

S
 (

o
C

) 

ANUSPLIN -0.2 -0.5 -0.1 -0.1 -0.2 

NARR 1.7 1.1 1.6 1.5 1.5 

ERA-I 0.8 -0.2 -0.2 -0.2 0.0 

WFDEI 0.1 0.6 0.4 0.3 0.3 

HydroGFD -0.2 -0.5 -0.1 -0.1 -0.2 

ENSEMBLE 0.7 0.3 0.5 0.5 0.5 
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2.5.2. Intercomparison of Precipitation and Mean Air Temperature 

Datasets 

2.5.2.1. Basin Average Intercomparison of Datasets 

The domain-averaged monthly total precipitation magnitudes vary substantially among 

datasets, with greater inter-dataset differences over the LNRB from March to September 

(Figure 2.5a). ANUSPLIN consistently underestimates precipitation throughout the study 

period relative to the IDW and NARR datasets, with 5 to 10 mm month-1 differences, 

especially in summer. For peak spring and summer precipitation, the range of inter-dataset 

spread varies from 70 to 90 mm month-1 as overestimated by the ERA-I and WFDEI datasets, 

respectively, during the study period. On the other hand, the 1981–2010 observed seasonal 

climate normals for total precipitation compare favourably with the NARR dataset 

(Environment and Climate Change Canada, 2016). ERA-I and WFDEI, however, 

overestimate summer precipitation while winter, spring and autumn precipitation correspond 

more favourably with climate normals. The dry bias in ANUSPLIN precipitation arises 

possibly from the thin plate smoothing spline surface fitting technique used in its preparation, 

a feature reported in previous studies (Islam & Déry, 2017; Milewska, Hopkinson, & Niitsoo, 

2005; O’Neil, Prowse, Bonsal, & Dibike, 2017). In the reanalysis products, HydroGFD 

shows the best agreement followed by NARR with IDW, while other products (ERA-I and 

WFDEI) reveal considerable differences in precipitation, which may have been induced by 

the climate model used to assimilate and generate these products. However, HydroGFD 

shows an improvement over the WFDEI and ERA-I datasets when compared to IDW, in 

agreement with previous studies (Berg et al., 2018). 
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The monthly mean air temperature from all datasets falls below 0.0°C from October to 

April but rises above 0.0°C in early spring over the LNRB domain (Figure 2.5b). While the 

inter-datasets seasonal variability of air temperature is quite similar, IDW and NARR 

monthly mean air temperatures are ~1.5°C warmer compared to the remaining datasets. 

Seasonal climate normals for monthly mean air temperature of ANUSPLIN, ERA-I, WFDEI 

and HydroGFD datasets match relatively well, except during spring where NARR 

overestimates mean air temperature when compared with the observed records (Manitoba 

Hydro, 2015). 

 

Figure 2.5 Area-averaged climatology of (a) monthly total precipitation (solid lines, dotted lines for 
ENSEMBLE) and (b) monthly mean air temperature over the LNRB for the IDW, ANUSPLIN, NARR, ERA-I, 
WFDEI, HydroGFD, and ENSEMBLE datasets, 1981–2010. 
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2.5.2.2. Spatial Characteristics (1981–2010) 

Due to the large number of datasets, and for the sake of clarity, we only compare annual 

means. A more detailed intercomparison is carried out for the seasonal and annual standard 

deviations and trends in precipitation and air temperature at the sub-watershed scale in the 

following sections. To obtain the overall biases among datasets and their spatial distribution, 

we calculate the spread among the precipitation and air temperature datasets as represented 

by the ensemble standard deviation. 

2.5.2.2.1. Annual Total Precipitation 

Annual total precipitation patterns across the LNRB exhibit notable differences from 

relatively wet conditions in WFDEI to relatively dry ones in ANUSPLIN (Figure 2.6); 

however, the IDW, NARR, and HydroGFD precipitation data are in general agreement with 

each other. Other noticeable features (wet and dry) in the rainfall distribution are present over 

the south-eastern part of the basin and Hudson Bay coast with different precipitation 

magnitudes in all datasets. 
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Figure 2.6 Spatial distribution of the annual total precipitation (mm month-1) for the (a) IDW, (b) ANUSPLIN, 
(c) NARR, (d) ERA-I, (e) WFDEI, and (f) HydroGFD datasets, 1981–2010. 

For the bias calculations, the NARR and HydroGFD datasets deviate only marginally and 

thus influence the ensemble mean relatively strongly (Figure 2.7). This also applies to the 

IDW dataset, though the bias is slightly larger in the central part of the basin. Generally, 

ERA-I and WFDEI exhibit wetter conditions compared to other datasets for most of the 

regions, whereas ANUSPLIN appears to be unrealistically dry over the LNRB. The NARR 

and HydroGFD show improvements in modelled precipitation resulting in less differences 

compared to the ENSEMBLE dataset. The differences are attributed to the number of 

observation stations used in the IDW and ANUSPLIN and the climatological observations, 

interpolation and data assimilation procedures used to develop the NARR, ERA-I, WFDEI 

and HydroGFD. HydroGFD precipitation has low biases in all regions, with dry (wet) biases 

over the north-eastern part of the basin. The WATCH method with updated climatological 

observations applied in HydroGFD, appears to have improved precipitation records for the 
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LNRB. NARR is generally slightly wetter in most parts of the basin, which shows an 

improvement over global reanalysis products (i.e., ERA-I and WFDEI). IDW and 

ANUSPLIN exhibit dry conditions over the eastern LNRB compared to the other datasets, 

which may be due to an interpolation technique associated with the poor gauge coverage in 

the underlying observation stations. The ensemble spread is found to be large (small) over the 

north-eastern and south-eastern (north-western and middle) sections of the basin (Figure 2.8). 

This high deviation in precipitation may result from the scarcity of observation stations that 

were incorporated during development of the climate datasets. The corresponding ensemble 

mean exceeds 43.0 mm month-1, which is relatively high with low spatial variation in the 

higher elevations and southern part of the basin. 

 

Figure 2.7 Bias as measured against the ENSEMBLE total annual precipitation (mm month-1) for the (a) IDW, 
(b) ANUSPLIN, (c) NARR, (d) ERA-I, (e) WFDEI, and (f) HydroGFD datasets, 1981–2010. 
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Figure 2.8 Ensemble mean and standard deviation of (left) precipitation and (right) mean air temperature, 1981–
2010. 

2.5.2.2.2. Mean Annual Air Temperature 

The ANUSPLIN, ERA-I, WFDEI and HydroGFD datasets capture mean air temperature 

patterns (e.g., the longitudinal gradient between the north-eastern and the south-western parts 

of the domain) quite similarly, which ranges from 0.4°C to -2.0°C (Figure 2.9). The IDW and 

NARR datasets exhibit similar spatial patterns, ranging from 2.0°C at higher elevations 

to -2.0°C near Hudson Bay in mean annual air temperature although both show overall warm 

biases relative to the ensemble mean (Figure 2.10). Other datasets, including global 

reanalysis products, show overall cold biases over the domain that may be related to 

relatively large influences of data assimilation and numerical modelling. Moreover, coarser 

resolutions of the reanalysis products impact biases due to the proximity of Hudson Bay. 

Large ensemble spreads (0.9-1.1°C) over the northern part of the basin exist while relatively 

small deviations (0.5-0.7°C) emerge in the south (Figure 2.8). 
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Figure 2.9 Spatial distribution of the mean annual air temperature (°C) for the (a) IDW, (b) ANUSPLIN, (c) 
NARR, (d) ERA-I, (e) WFDEI, and (f) HydroGFD datasets, 1981–2010. 

 

Figure 2.10 Bias as measured against the ENSEMBLE mean annual air temperature (°C) for the (a) IDW, (b) 
ANUSPLIN, (c) NARR, (d) ERA-I, (e) WFDEI, and (f) HydroGFD datasets, 1981–2010. 
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2.5.2.3. Seasonal Means, Totals and Standard Deviations (1981–2010) 

In general, the precipitation totals and mean air temperature values from all datasets 

approach each other for all sub-watersheds and seasons (Figures 2.11 and 2.12). The 

precipitation totals show relatively large differences between datasets and sub-basins (Figure 

2.11). Further, summer and spring values show more variability among the datasets than the 

other seasons. In general, the ERA-I and WFDEI datasets appear to overestimate the seasonal 

precipitation in all sub-basins, and ANUSPLIN clearly underestimates the precipitation in all 

seasons and sub-watersheds. Over the southern and north-eastern sub-basins (Gunisao, 

Limestone and Weir), all datasets show high variability in seasonal precipitation. The 

temperature means are similar, except for the IDW and NARR, which have a warm bias in all 

seasons, particularly during summer and winter in all sub-watersheds (Figure 2.12). 
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Figure 2.11 Area averaged seasonal (a) precipitation totals and (b) standard deviations (1981–2010) for all 
datasets over the ten sub-watersheds. Data are shown for each sub-watershed and all seasons: DJF (Winter) 
stars; MAM (Spring) diamonds; JJA (Summer) triangles; SON (Autumn) pluses. 

Although each precipitation dataset is based on its own selected network of stations, with 

a probable substantial overlap, the IDW and ANUSPLIN include a higher density of stations 

than the other datasets, notably in the middle portion of the basin (McKenney et al., 2011). 

The comparison of ANUSPLIN with higher density network datasets over different Canadian 

watersheds, however, has shown that ANUSPLIN underestimates higher precipitation values 

(Eum et al., 2014; Wong, Razavi, Bonsal, Wheater, & Asong, 2017). Over the domain, 

reanalysis products indicate high precipitation values, which lead to a high standard deviation 

over all sub-watersheds (Figure 2.11). The latter is larger in winter and spring because of the 

high coefficient of variation in precipitation over the Gunisao sub-watershed (Figure 2.13). 
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The standard deviation over most of the sub-regions is similar for all seasons, except for the 

Gunisao and Weir, which are the ones with the highest variability in precipitation among all 

datasets (Figures 2.11 and 2.13). The air temperature standard deviation from all datasets, 

except for NARR, is higher in winter over all sub-watersheds (Figure 2.12). Other seasonal 

spreads, except autumn for NARR, in temperature are similar in all the datasets over all sub-

watersheds. Thus, apart from NARR, every dataset captures similar seasonal air temperature 

variation. Moreover, the IDW dataset shows high spread over the Weir sub-watershed for all 

seasons, which might be related to that region’s sparse observation station density. 

 

Figure 2.12 Area averaged seasonal (a) air temperature means and (b) standard deviations (1981–2010) for all 
datasets over the ten sub-watersheds. Data are shown for each sub-watershed and all seasons: DJF (Winter) 
stars; MAM (Spring) diamonds; JJA (Summer) triangles; SON (Autumn) pluses. 
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Figure 2.13 Seasonal coefficient of variation (1981–2010) for all precipitation datasets over the ten sub-
watersheds. Data are shown for each sub-watershed and all seasons: DJF (Winter) stars; MAM (Spring) 
diamonds; JJA (Summer) triangles; SON (Autumn) pluses. 

2.5.3. Intercomparison of Annual and Seasonal Trends (1981–2010) 

2.5.3.1. Precipitation 

The 1981–2010 maximum (minimum) annual precipitation trends among all datasets are 

30.0 (-30.0) mm decade-1 over the LNRB (Figure 2.14). Trend magnitudes from the IDW and 

ANUSPLIN show similar decreasing trend magnitudes (5.0-20.0 mm decade-1) whereas 

reanalysis products such as NARR and ERA-I show significant increasing trends (20.0-30.0 

mm decade-1) with disagreement over most of the basin. The WFDEI and HydroGFD show 

better agreement in the north but opposite trend magnitudes (±20.0 mm decade-1) in the 

south. Overall, the ENSEMBLE dataset does not show any significant trend over the LNRB; 

however, its precipitation increases by 5.0-25.0 mm decade-1 over most of the basin. 

Sub-watershed annual trend signals are statistically insignificant for all regions, excluding 

the Gunisao, where ERA-I shows significant increasing trend (>30.0 mm decade-1) (Figure 

2.15). All datasets show increasing trends in annual precipitation (>10.0 mm decade-1) for all 

sub-watersheds except ANUSPLIN and IDW, which show similar negative trends. The 
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Gunisao sub-watershed shows different trend magnitudes in each dataset with slight 

increasing trends from WFDEI and ENSEMBLE. The WFDEI and HydroGFD datasets 

produce similar trend magnitudes in most of the sub-watersheds, followed by the 

ENSEMBLE dataset, which indicates the substantial influence these two datasets have on the 

magnitude and pattern of the ENSEMBLE precipitation. This may also be due to the IDW, 

ANUSPLIN, ERA-I, and NARR offsetting each other so that the ENSEMBLE values 

approach the HydroGFD and WFDEI in all sub-basins except the Gunisao. Significant 

increasing trends (~25.0 mm decade-1) arise in NARR during summer for all sub-watersheds 

whereas ERA-I manifests similar significant trends (25.0-30.0 mm decade-1) across the 

Footprint, Gunisao and Grass sub-basins (Figure 2.15). Winter precipitation exhibits no trend 

across all datasets while autumn precipitation decreases by < 8.0 mm decade-1 for the IDW, 

ANUSPLIN, HydroGFD and ENSEMBLE datasets in most sub-basins with high drying 

tendencies (>15.0 mm decade-1) in HydroGFD over the Gunisao sub-watershed. 

2.5.3.2. Mean Air Temperature 

The 1981–2010 maximum and minimum spatial annual warming rate among all datasets, 

except IDW, are 0.6°C decade−1 and 0.1°C decade−1, respectively over the LNRB (Figure 

2.16). Trend magnitudes from the IDW, ANUSPLIN and ERA-I show similar significant 

warming trends (>0.5°C decade−1) approaching those in NARR, WFDEI and HydroGFD 

albeit with insignificant increasing trends over the eastern LNRB. The IDW temperature 

trend shows disagreement (i.e., a cooling trend of 0.2°C decade−1), among all other datasets 

across the upstream part of the basin. The WFDEI and HydroGFD do not show any 

significant warming with similar magnitudes across the basin, which may affect the 

ENSEMBLE air temperature trends with some outliers at the lower elevations. Overall, the 
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ENSEMBLE air temperature does not demonstrate any significant warming across most of 

the LNRB; however, it shows warming of 0.1-0.6°C decade−1 across the basin. 

 

Figure 2.14 Spatial trends of the annual total precipitation (mm decade-1) from different datasets, 1981–2010. 
The grid cells with significant trends (p < 0.05) are indicated by dots. 

Almost all datasets show insignificant rising annual air temperatures over all LNRB 

sub-watersheds, apart from NARR for which we find significant warming trends (>0.4°C 

decade-1) in the Burntwood and Footprint sub-basins (Figure 2.17). The ANUSPLIN, NARR, 

ERA-I, WFDEI, HydroGFD, and ENSEMBLE manifest similar annual trend magnitudes for 

all regions with some exceptions: the NARR trends (>0.3°C decade-1) over all sub-basins are 

much greater than the other datasets and seem unrealistic. Consequently, trends analyses for 
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the LNRB using NARR should be interpreted with caution. IDW is the only dataset that 

shows minimum annual temperature warming over the LNRB’s sub-watersheds, which are in 

fact negative in the Gunisao and Grass. All datasets in autumn show insignificant warming 

trends except NARR and ERA-I, which show significant and strong warming trends (0.8°C 

decade-1) over all sub-watersheds (Figure 2.17). NARR exhibits strong warming trends in 

winter (>0.8°C decade-1); however other datasets (except ANUSPLIN) show more modest 

winter warming trends over all sub-watersheds. Summer and spring show insignificant 

negative trends whereas most of the datasets show no trend during winter over each sub-

basin. Overall, air temperature trend analysis shows insignificant temperature warming 

during winter and autumn, and less warming in spring and summer over most of the basin. 

 

Figure 2.15 Seasonal and annual precipitation trends for all datasets and sub-watersheds, 1981–2010: dots 
(Annual); DJF (Winter) stars; MAM (Spring) diamonds; JJA (Summer) triangles; SON (Autumn) pluses. Red 
colour symbols denote significant trends (p < 0.05). 

2.6.  Discussion and Conclusions 

An intercomparison of the 1981–2010 ERA-I and WFDEI precipitation showed wetter 

conditions as compared to four other datasets across the LNRB including ten of its sub-

basins. The NARR and HydroGFD showed similar interannual variability and magnitudes for 
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most of the sub-watersheds and across the LNRB. The ANUSPLIN showed considerably dry 

seasonal and annual precipitation for the entire domain and sub-watersheds. The discrepancy 

in all precipitation datasets was notably greater for southern and low elevation regions of the 

LNRB and its sub-watersheds (and for all seasons except winter) than those at the middle and 

higher latitude sub-basins. These results demonstrate that there is greater uncertainty in 

precipitation over the downstream portion of the basin. This is possibly due to the combined 

effects of sparse observation stations (Figure 2.2), the coarse spatial resolution of reanalysis 

products, and the possible undercatch of snowfall and rainfall in the observational data for 

the downstream and south-eastern part of the LNRB. Moreover, we found much larger 

differences between ANUSPLIN and reanalysis datasets during 2004 to 2010 than that in 

previous years. This may be due to the non-assimilation of precipitation observations in 

reanalysis products over Canada as of 2004 (Bukovsky & Karoly, 2007; Mesinger et al., 

2006). Furthermore, NARR precipitation exhibits a structural breakpoint in January 2004 

over Canada’s Athabasca watershed, further highlighting this issue (Eum et al., 2014). 

Nonetheless, previous studies found NARR to provide reliable climate input data relative to 

the global reanalysis product (NCEP/NCAR Global Reanalysis-1) over northern Manitoba 

(Choi, Kim, Rasmussen, & Moore, 2009). Precipitation data are more problematic compared 

to temperature data over Canada due to cumulative daily problems such as evaporation, 

wetting loss and trace measurements (Mekis & Hogg, 1999). Therefore, it is necessary to 

conduct a data homogeneity test for different available datasets; moreover, reanalysis 

products such as NARR should be tested over different Canadian regions before use and 

limited to the qualified period from 1979 to 2003 for hydro-climatic studies (Choi et al., 

2009; Eum et al., 2014; Mesinger et al., 2006). 
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Figure 2.16 Spatial trends of the mean annual air temperature (°C decade-1) from different datasets, 1981–2010. 
Dots indicate grid cells with significant trends (p < 0.05). 

The intercomparison showed that NARR and IDW provided warmer seasonal and annual 

air temperatures than all other datasets over the northern LNRB and its sub-watersheds. The 

IDW was slightly warmer than the NARR air temperature in the upper basin, and somewhat 

similar across the rest of the basin. Intercomparison with the four ECCC stations showed that 

NARR exhibited warmer annual air temperature than other datasets and, therefore, resulted in 

larger RMSEs with strong positive bias for air temperature over the basin. The ANUSPLIN, 

ERA-I, WFDEI, and HydroGFD showed better agreement for seasonal and annual air 
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temperatures over the entire basin, although the WFDEI was warm over the upstream part of 

the LNRB. Moreover, the WFDEI and ERA-I air temperatures showed less bias as compared 

to other datasets for most of the basin. The intercomparison of different air temperature 

datasets suggests that the global reanalysis products (ERA-I and WFDEI) compared more 

favourably against observations than the regional reanalysis (NARR) and stations 

interpolated (IDW) datasets over the study domain. Consequently, there is a need of an 

improved air temperature monitoring system to increase the reliability of the observed 

gridded datasets. However, the ANUSPLIN and IDW datasets have been derived from 

similar temperature observations within the LNRB but showed different spatial patterns, 

which exhibit interpolation errors and outlier effects in the resulting datasets. On the other 

hand, the NARR data showed strong disagreement in air temperatures with other global 

reanalysis products for the majority of the LNRB. This quantifies discrepancies in data 

assimilation and numerical modelling techniques during regional and global reanalysis 

product development. Overall, this analysis showed that HydroGFD may be an optimal 

option in selecting reanalysis products for both daily precipitation and air temperature for the 

LNRB. In the observational datasets, IDW and ANUSPLIN, both have major issues with 

either precipitation or air temperature. Moreover, because of indirect assimilation in NARR 

through latent heat profiles over Canada during 2004–2010, this study found noticeable 

differences between selected datasets (Essou et al., 2016; Mesinger et al., 2006). Therefore, 

combining all gridded datasets and generating a hybrid climate product (i.e., ENSEMBLE) 

can provide a reliable long-term climate dataset for further hydro-climatic study over the 

LNRB (Christensen & Lettenmaier, 2007; Eisner et al., 2017; Fowler et al., 2007; Wang et 

al., 2009). 
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Figure 2.17 Seasonal and annual mean air temperature trends for all datasets and sub-watersheds, 1981–2010: 
dots (Annual); DJF (Winter) stars; MAM (Spring) diamonds; JJA (Summer) triangles; SON (Autumn) pluses. 
Red colour symbols denote significant trends (p < 0.05). 

Trend analyses for the relatively small area could be influenced by different spatial 

resolutions (e.g., global and regional climate datasets) and the time period used for the study. 

For instance, precipitation records indicated below average precipitation in many regions 

since the mid-1980s; therefore, the trend analysis showed small increasing trends in eastern 

Canada for 1948–1992 (Boden, Kaiser, Sepanski, & Stoss, 1994; Environment Canada, 

1995). Quantitative analyses of the influence of different spatial resolutions, seasonal and 

annual variations on the climate trends are difficult. Therefore, we investigated climate 

variability and trends from available datasets (global and regional) at both seasonal and 

annual timescales. Given many previous findings on Canadian climate trends are supported 

by our analysis where they indicate insignificant increasing trends, which are not artificial 

(e.g., changes in observation sites, locations or programs), in precipitation and air 

temperature over northern Manitoba (LNRB) (e.g., Environment Canada, 1995; Skinner & 

Gullett, 1993; Zhang et al., 2012). Using multiple datasets for trend analysis from different 

sources confirms data quality and the outcome to be reliable and robust. Perhaps the most 

interesting finding based on our analysis was the disagreement in historical precipitation 
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trends from different gridded datasets, which involved wet and warm patterns across the 

basin. The eastern sub-watersheds are affected by abnormally warm and dry conditions in 

summer and autumn despite the general increase in precipitation throughout the study period. 

The cause of different spatial and temporal trends from available gridded datasets may be 

associated with increasing atmospheric greenhouse gases or natural climate variability and 

cannot be addressed by a study of this nature. In this study, our primary goal was to obtain 

the data that have better comparable historical climatic trends with observations. There is 

evidence, nevertheless, suggesting that a certain degree of agreement exists between 

observed trends in Canadian climate and those estimated by the WFDEI, HydroGFD and 

ENSEMBLE precipitation, and air temperature from all datasets except NARR and ERA-I 

(Environment Canada, 1995; Skinner & Gullett, 1993; Zhang et al., 2012). 

One of the greatest challenges presently facing the hydro-climatic and hydrological 

modelling community remains the reliability of available gridded data at different locations, 

including the distribution and amounts of regional and continental scale precipitation. Most 

reanalysis products predict a concomitant increase in regional and global precipitation as 

mean air temperatures rise during the historical time period (1981–2010). This study suggests 

that available gridded datasets have issues, mainly at a seasonal time scale, with either 

precipitation or air temperature. The NARR precipitation, WFDEI air temperature, and 

HydroGFD precipitation and air temperature more closely resemble observations. Moreover, 

it is useful to have all datasets to quantify the uncertainty in precipitation and air temperature 

across the basin and its sub-watersheds. Confidence in the historical and future hydrologic 

cycle simulations could be improved if ENSEMBLE precipitation and air temperature are 

used to drive land surface models. 
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CHAPTER 3:  SENSITIVITY ANALYSIS AND UNCERTAINTY 

ASSESSMENT IN WATER BUDGETS SIMULATED BY THE VARIABLE 

INFILTRATION CAPACITY MODEL FOR CANADIAN SUB-ARCTIC 

WATERSHEDS 

Publication details: 

This chapter has been published in Hydrological Processes. 

Lilhare, R., Pokorny, S., Déry, S. J., Stadnyk, T. A., & Koenig, K. A. (2020). Sensitivity 
analysis and uncertainty assessment in water budgets simulated by the Variable Infiltration 
Capacity model for Canadian sub-arctic watersheds. Hydrological Processes, 34(9), 2057– 
2075. https://doi.org/10.1002/hyp.13711 

3.1.  Abstract 

In this study, we evaluate uncertainties propagated through different climate datasets in 

seasonal and annual hydrological simulations over ten sub-arctic watersheds of northern 

Manitoba, Canada, using the Variable Infiltration Capacity (VIC) model. Further, we perform 

a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and 

state-of-the-art approach. The VIC model simulations utilize the recently developed 

Variogram Analysis of Response Surfaces (VARS) technique that requires in this application 

more than 6000 model simulations for a 30-year (1981–2010) study period. The method 

seeks parameter sensitivity, identifies influential parameters, and showcases streamflow 

sensitivity to parameter uncertainty at seasonal and annual time scales. Results suggest that 

the Ensemble-VIC simulations match observed streamflow closest whereas global reanalysis 

products yield high flows (0.5-3.0 mm day-1) against observations and an overestimation (10-

60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal 

importance in VARS, and the choice of input data and performance metrics substantially 

affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each 
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water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined 

separately to show both time and space dimensionality in available forcing data at seasonal 

and annual time scales. Reliable input forcing, the most influential model parameters, and the 

uncertainty envelope in streamflow prediction, are presented for the VIC model. These 

results, along with some specific recommendations, are expected to assist the broader VIC 

modelling community, and other users of VARS, and land surface schemes, to enhance their 

modelling applications. 
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3.2.  Introduction 

Numerical modelling of a river basin remains essential for both climate and ecological 

studies as it provides vital information about the hydrological cycle and water availability for 

societies and ecosystems. Although recent developments and advances have been achieved in 

hydrological modelling and computational power, addressing efficiently the uncertainties in 

hydrological simulation remains a critical challenge (Liu & Gupta, 2007). There is a growing 

need for sensitivity and uncertainty assessments associated mainly with the model and input 

forcing datasets to achieve the hydrological model’s optimal performance for decision 

making. Input climate forcing for numerical modelling, primarily precipitation and air 

temperature, are essential for accurate streamflow simulations and water balance calculations 

(Eum et al., 2014; Fekete, Vörösmarty, Roads, & Willmott, 2004; Reed et al., 2004; Tobin, 

Nicotina, Parlange, Berne, & Rinaldo, 2011). For cold regions, these input forcing alter the 

phase and magnitude of modelled variables and cascade through all hydrological processes 

during numerical simulations, impacting the reliability of model output (Anderson et al., 

2008; Tapiador et al., 2012; Wagener & Gupta, 2005). In Canada, however, numerous studies 

have also used multiple forcing datasets to assess the performance of hydrological 

simulations. For example, Sabarly et al. (2016) used four reanalysis products to evaluate the 

terrestrial branch of the water cycle over Québec, Canada with acceptable results for the 

period 1979–2008. The question of which forcing dataset is the most suitable and accurate to 

drive hydrological models remains elusive and inconclusive. Steps toward answering that 

question were undertaken by Pavelsky & Smith (2006) who concluded that observations 

covered the trends significantly better than two reanalysis products when they assessed the 

quality of four global precipitation datasets against the discharge observations from 198 pan-
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Arctic rivers. The bias and uncertainty in global hydrological modelling due to input datasets 

and associated over- or underestimations in modelled streamflows in several river basins 

have also been identified in previous studies (e.g., Döll, Kaspar, & Lehner, 2003; Gerten, 

Schaphoff, Haberlandt, Lucht, & Sitch, 2004; Nijssen, Schnur, & Lettenmaier, 2001). While 

there may be other uncertainties (e.g., model structure, calibration, soil type, land use, etc.), 

this paper focuses primarily on the uncertainties due to model parameters and input forcing 

datasets, which are perhaps the most significant source of uncertainty for any hydrological 

modelling study (Zhang et al., 2016). 

In practice, many (from tens to hundreds) parameters in most hydrological models lead to 

dimensionality issues where parameter estimation becomes mostly nonlinear and a high 

dimensional problem. Numerous optimization algorithms are available to address these 

problems (e.g., Abebe, Ogden, & Pradhan, 2010; Aster, Borchers, & Thurber, 2013; Beven & 

Binley, 1992; Duan, Sorooshian, & Gupta, 1992; Hill & Tiedeman, 2007; Vrugt, Diks, 

Gupta, Bouten, & Verstraten, 2005; Vrugt, Gupta, Bouten, & Sorooshian, 2003) but it is not 

often feasible or necessary to include all these parameters in the calibration and Sensitivity 

Analysis (SA) process to obtain efficient optimization and sensitive parameters, respectively. 

For instance, over-parameterization is another well-known problem in land surface modelling 

(Van Griensven et al., 2006). At present, various SA methods (e.g., qualitative or 

quantitative, local or global, and screening or refined methods) are used widely in different 

fields, such as complex engineering systems, physics, and social sciences (Frey & Patil, 

2002; Iman & Helton, 1988). Given the extensive range of SA methods available, users 

should have a clear understanding of the methods that are appropriate for a specific 

application. In general, the Variable Infiltration Capacity (VIC) hydrological model 
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incorporates many parameters (some with physical significance and some statistical), which 

are used to calibrate the model by various methods. In some cases, parameters with physical 

significance may be adjusted interactively during calibration. Some parameters may have less 

influence on model output such that they could be easily ignored. One of the objectives of 

this study is thus to explore the sensitivity of VIC calibration parameters to reduce the 

dimensionality issue in model optimization at different time scales and to establish their 

interannual importance in the calibration and model performance. 

In this study, we quantify the uncertainty propagated from available forcing datasets in 

their surface water balance estimations over the Lower Nelson River Basin (LNRB) in 

northern Manitoba, Canada. To achieve this goal, seven input forcing datasets that are 

intercompared in our companion paper are ingested into the VIC model over the LNRB 

(Lilhare et al., 2019). These datasets are used in various other studies over different Canadian 

regions (Boucher & Best, 2010; Islam & Déry, 2017; Sauchyn, Vanstone, & Perez-Valdivia, 

2011; Seager et al., 2014; Woo & Thorne, 2006). To our knowledge, this is perhaps the first 

comprehensive study that collectively utilizes available gridded datasets in hydrological 

modelling, establishes the most suitable datasets, minimizes the input data uncertainty by 

evaluating the best performing product, and then propagates input and parameter uncertainty 

through the model output. Moreover, we consider not only the total uncertainty (i.e., total 

runoff) but also the apportioned uncertainty in runoff generating processes such as 

precipitation, evapotranspiration (ET hereafter), and soil moisture at annual and seasonal 

time scales. The main objectives of this study are to: (i) examine uncertainty propagated 

through various input forcing datasets in the VIC model; (ii) identify parameter sensitivity of 
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the VIC model to streamflow; and (iii) assess streamflow sensitivity to parameter uncertainty 

in the VIC model over the LNRB. 

3.3.  Study Area 

In this study, the lower Nelson River, which is the downstream segment of the Nelson 

River system, is selected for the VIC modelling, sensitivity, and uncertainty analyses (Figure 

3.1). The LNRB spans an area of ~90,500 km2 and collects all water from the drainage area 

upstream of the Nelson River (~970,000 km2) before discharging into Hudson Bay. In the 

LNRB, the main stem river (Nelson) and its largest tributary – the Burntwood, whose 

downstream segment carries diverted flows from the Churchill River – have less seasonal 

flow variability due to streamflow regulation and a large drainage area. Most of the LNRB 

has gentle slopes, with common channelized lakes moderating flow variability. Wetlands 

abound within the LNRB and store significant volumes of water, cover large areas and 

moderate streamflow responses to rainfall and snowmelt events. Shallow soils and 

permafrost limit infiltration, groundwater storage and groundwater flows. To increase its 

hydroelectric capacity, Manitoba Hydro manages flows in the LNRB with two major sources 

of streamflow regulation: the Churchill River Diversion and Lake Winnipeg Regulation. 

 The LNRB experiences a sub-arctic continental climate characterized by moderate 

precipitation and humidity, cool summers, and cold winters. The snow-free season remains 

brief, generally beginning in May and ending in October. Most of the precipitation that 

occurs during the summer months falls as rain, accounting nearly two-thirds of the total 

annual precipitation. The most expansive land cover class in the LNRB is temperate or sub-

polar needleleaf forest covering ~33% of its total area with secondary classes being mixed 

forests (19%) and temperate or sub-polar shrublands (9%) (North American Land Change 
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Monitoring System, 2010). Wetlands (bogs and fens, 21%) and open surface water (13%) 

also prevail in the region. The entire region exhibits low relief with a maximum elevation of 

390 m.a.s.l. and average basin slope of 0.037%. Permafrost abounds in the LNRB with the 

downstream, northeastern portion underlain by continuous (between 90% to 100%) and 

extensive discontinuous (between 50% to 90%) permafrost (approximately 0.8% and 9% of 

the LNRB, respectively) while sporadic discontinuous (between 10% to 50%) and isolated 

permafrost spans ~68% and 16% of the LNRB’s total area, respectively (Natural Resources 

Canada, 2010). 

 

Figure 3.1 Maps of the LNRB. (a) The Nelson River Basin (NRB), Churchill River Basin (CRB), and Lower 
Nelson River Basin (LNRB). (b) major rivers and sub-watersheds within the LNRB, yellow triangles show the 
hydrometric stations used in this study, white circles denote existing generating stations, and the yellow circle 
shows a future generating station (currently under construction) by Manitoba Hydro. A red star indicates the 
Churchill River diversion and the Digital Elevation Model (DEM) represents the VIC model domain at 0.10° 
resolution.  
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3.4.  Materials and Methods 

3.4.1. Datasets 

Soil parameters for the VIC model are sourced from the multi-institution North American 

Land Data Assimilation System (NLDAS) project at 0.50° resolution (Cosby, Hornberger, 

Clapp, & Ginn, 1984). These soil parameters are then aggregated to the VIC model resolution 

(0.10°) following Mao & Cherkauer (2009). Frost-related parameters (e.g., bubbling 

pressure) are extracted from Miller & White (1998), or set to default values (Mao & 

Cherkauer, 2009). Land cover data are obtained from the Natural Resources Canada’s 

(NRCan) GeoGratis - Land Cover, circa 2000-Vector (LCC2000-V) product and vegetation 

parameters are estimated by following Sheffield & Wood (2007). All landcover classes are 

mapped into standard VIC model vegetation classes and the Leaf Area Index (LAI) for each 

vegetation class in every grid cell is estimated (Myneni, Ramakrishna, Nemani, & Running, 

1997). Rooting depths are obtained from Maurer et al. (2002), while other vegetation 

parameters are taken from Nijssen et al. (2001). 

We obtain various gridded forcing datasets for further analysis: the Australian National 

University spline interpolation (ANUSPLIN), North American Regional Reanalysis (NARR), 

European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-

Interim), European Union Water and Global Change (WATCH) Forcing Data ERA-Interim 

(WFDEI), and Hydrological Global Forcing Data (HydroGFD). As well, an Inverse Distance 

Weighted (IDW) dataset constructed from 14 Environment and Climate Change Canada 

(ECCC) meteorological stations across the LNRB using a squared IDW interpolation 

technique is also used (see Table 3.1 for more details). These datasets are assembled to 

produce the Ensemble dataset from 1981 to 2010. Our companion paper (Lilhare et al., 2019) 
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and Appendix A provide a comprehensive intercomparison and additional details of these 

datasets. The NARR, ERA-I and HydroGFD daily precipitation and wind speed are obtained 

from the sum and average of 3-hourly values for a 24-hour period, respectively. To obtain 

daily maximum and minimum air temperature (Tmax and Tmin) for these products, we extract 

the maximum and minimum value for one day from the 3-hourly NARR, ERA-I and 

HydroGFD air temperature products. Daily wind speed is not available for the ANUSPLIN 

and IDW forcing datasets. The observed wind speeds, both upper air and near-surface values, 

are assimilated in the NARR reanalysis product and they show satisfactory correspondence 

with ECCC observations (Hundecha, St-Hilaire, Ouarda, Adlouni, & Gachon, 2008). 

Therefore, we use NARR wind speeds to run VIC in combination with the ANUSPLIN and 

IDW datasets for input forcing. For the Ensemble, daily precipitation, Tmax and Tmin are 

derived from the equally weighted average of all six gridded products, while the daily wind 

speed ensemble is calculated from four reanalysis products (NARR, ERA-I, WFDEI and 

HydroGFD) as the other two datasets (IDW and ANUSPLIN) do not have such records. The 

equally weighted ensemble approach has been used previously over global and regional 

domains to evaluate changes in water balance components under historical and projected 

future climate conditions (Fowler et al., 2007; Fowler & Kilsby, 2007; Mishra & Lilhare, 

2016; Wang et al., 2009). 
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Table 3.1 VIC intercomparison experiments performed using different forcings (Lilhare et al., 2019). 

VIC model 
input forcing 

datasets 
Description VIC configuration 

IDW 

Inverse Distance Weighted interpolated 
observations from 14 ECCC 
meteorological stations (Gemmer et al., 
2004; Shepard, 1968) 

Domain: 53°−58°N, 
91°−103°W 
Resolution: 0.10°×0.10° 
Time step: Daily 
Soil Layers: 3 
Vertical elevation band: No 
Natural lakes and frozen 
ground: On 
Calibration period: 1981–1985 
(dry/cool) and 1995–1999 
(wet/warm) 

Validation period: 1986–1994 
(average) 

Overall simulation period: 
1981–2010 

ANUSPLIN 
The Australian National University 
spline interpolation (Hopkinson et al., 
2011; Natural Resources Canada, 2014) 

NARR 
North American Regional Reanalysis 
(Mesinger et al., 2006) 

ERA-I 
European Reanalysis-Interim (Dee et 
al., 2011) 

WFDEI 
European Union Water and Global 
Change (WATCH) Forcing Data ERA-
Interim (Weedon et al., 2014) 

HydroGFD 
Hydrological Global Forcing Data 
(Berg et al., 2018) 

Ensemble 
Average of above mentioned six 
gridded datasets 

3.4.2. The Variable Infiltration Capacity (VIC) Model 

In this study, the VIC (version 4.2.d) model (Liang et al., 1994, 1996) with more 

recent modifications is used to simulate daily streamflow in full water and energy balance 

mode (Bowling & Lettenmaier, 2010; Bowling et al., 2003; Cherkauer & Lettenmaier, 1999) 

(Table 3.1). The VIC model grid cells over the LNRB comprise 41 rows and 90 columns 

with a 5° range of latitudes (53°-58°N) and a 12° range of longitudes (103°-91°W). The VIC 

model uses three soil layers, five soil thermal nodes (the default value) and a constant bottom 

boundary temperature at a damping depth of 10 m for our study region (Williams & Gold, 

1976). The LNRB’s tiles are characterized by soil and vegetation fractions, which are 

partitioned proportionally within a grid cell. For cold regions hydrology, VIC follows the 
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U.S. Army Corps of Engineers’ empirical snow albedo decay curve (USACE, 1956), the total 

precipitation is distributed based on the 0.10° grid cells, and the air temperature is adjusted to 

resolve the precipitation type with a 0°C threshold to discriminate rainfall/snowfall. The 

default single elevation band is used whereby VIC assumes that each grid cell is flat and 

takes the mean grid elevation into account for simulations over the LNRB. A finite difference 

algorithm for frozen soil, which tracks soil ice content and represents permafrost, is 

implemented into the VIC model to improve its modelling abilities (Cherkauer & 

Lettenmaier, 1999, 2003). The frozen soil algorithm solves heat fluxes through the soil 

column using a heat transfer equation (Cherkauer & Lettenmaier, 1999). This algorithm 

supersedes the original soil thermal flux equations (Liang, Wood, & Lettenmaier, 1999) in 

favour of a more robust numerical technique (Cherkauer & Lettenmaier, 1999) that simulates 

soil temperatures at five thermal nodes through the soil column. Natural lakes and wetlands 

are considered in the model implementation; however, anthropogenic structures (i.e., dams, 

reservoirs) and flow regulation are not incorporated in the VIC model. The VIC model lake 

and wetlands algorithm represents the effects of hydrologically disconnected lakes and 

wetlands by creating its land class that can be added to the grid cell mosaic, in addition to the 

vegetation and bare soil land classes (Bowling & Lettenmaier, 2010). It does not represent 

riparian systems that receive water from overbank flow. The energy balance of open water in 

VIC builds on the work of Hostetler (1991), Hostetler & Bartlein (1990), and Patterson & 

Hamblin (1988), while that of the exposed wetland vegetation follows Cherkauer & 

Lettenmaier (1999). Ten of the lower Nelson River’s unregulated tributaries (including the 

unregulated, upstream portion of the Burntwood River) are selected for model calibration, 

evaluation, and subsequent analyses (Table 3.2). The routing network and other essential 

inputs for the routing model (e.g., flow direction, fraction, and mask) are created at 10 km 
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resolution for the entire LNRB using the 30 m Shuttle Radar Topography Mission (SRTM) 

digital elevation model (United States Geological Survey, 2013). 

Table 3.2 List of ten selected unregulated hydrometric stations, maintained by the Water Survey of Canada and 
Manitoba Hydro, for the VIC model calibration and evaluation with sub-watershed characteristics and mean 
annual discharge (Water Survey of Canada, 2016). 

Station name (Gauge 
ID) 

Latitude 
(°N) 

Longitude 
(°W) 

Mean sub-
watershed 
elevation 

(m) 

Gauged 
drainage 

area (km2) 

Mean 
annual 

discharge 
(m3 s-1) 

Burntwood River above 
Leaf Rapids (05TE002) 

55.49 99.22 302.4 5,810 22.9 

Footprint River above 
Footprint Lake 
(05TF002) 

55.93 98.88 273.8 643 3.2 

Grass River above 
Standing Stone Falls 
(05TD001) 

55.74 97.01 265.0 15,400 64.6 

Gunisao River at Jam 
Rapids (05UA003) 

53.82 97.77 260.9 4,610 18.0 

Kettle River near Gillam 
(05UF004) 

56.34 94.69 164.7 1,090 13.2 

Limestone River near 
Bird (05UG001) 

56.51 94.21 173.6 3,270 21.5 

Odei River near 
Thompson (05TG003) 

55.99 97.35 253.5 6,110 34.3 

Sapochi River near 
Nelson House 
(05TG006) 

55.90 98.49 259.1 391 2.2 

Taylor River near 
Thompson (05TG002) 

55.48 98.19 236.2 886 5.1 

Weir River above the 
mouth (05UH002) 

57.02 93.45 125.8 2,190 15.6 

3.4.3. Calibration and Evaluation 

For VIC model calibration, an optimization process using the University of Arizona 

Multi-Objective COMplex Evolution Algorithm (MOCOM-UA) minimizes the difference 
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between observed and simulated monthly streamflow at unregulated hydrometric gauge 

locations within the LNRB (Shi, Wood, & Lettenmaier, 2008; Yapo, Gupta, & Sorooshian, 

1998). Here, the training parameter set used in the sensitivity and calibration processes 

comprises six soil parameters: binf (infiltration parameter that controls the amount of water 

infiltrating into the soil with values ranging from 0 to 0.4, in fractions), Dsmax (the maximum 

velocity of baseflow for each grid cell ranging from 0 to 30 mm day-1), Ws (the fraction of 

maximum soil moisture where nonlinear baseflow occurs ranging from 0 to 1), D2 and D3 

(thickness of the second and third soil layers, which affects the soil moisture storage 

capacity, ranging from 0.3 to 1.5 m), and Ds (fraction of the  Dsmax parameter at which 

nonlinear baseflow occurs ranging from 0 to 1). The Nash–Sutcliffe efficiency (NSE) (Nash 

& Sutcliffe, 1970), Kling–Gupta efficiency (KGE) (Gupta, Kling, Yilmaz, & Martinez, 

2009), and Pearson’s correlation (r) coefficients (for simulated vs observed monthly 

streamflows) in addition to Percent Bias (PBIAS) provide metrics to summarize model 

performance. Separate calibration using each forcing dataset is applied to all ten sub-basins 

within the LNRB to determine the most optimized parameters against the observed 

streamflow. We use a split-sample approach to span the variety of relatively 

dry/wet/warm/cool years. Years 1981–1985 (dry/cool) and 1995–1999 (wet/warm) are used 

for calibration, and 1986–1994 (average) forms the validation period (Table 3.1) (Lilhare et 

al., 2019). The MOCOM-UA optimizer searches a group of VIC input parameters using the 

population method; it attempts to maximize the NSE coefficient between observed and 

simulated streamflow at each iteration. At each trial, the multi-objective vector consisting of 

VIC parameters is determined, and the population is ordered by the Pareto rank of Goldberg 

(1989). In the MOCOM-UA optimization process, the user defines the training parameter set 

and these parameters are selected based on the calibration experience from previous studies 
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(Islam & Déry, 2017; Kang, Gao, Shi, Islam, & Déry, 2016; Nijssen, Lettenmaier, Liang, 

Wetzel, & Wood, 1997; Shi et al., 2008). 

3.4.4. Experimental Set-up and Analysis Approach 

A series of different VIC model setups is conceived to: (i) compare the VIC model’s 

response when forced by different gridded datasets (with each simulation referred to as a 

given “dataset-VIC” hereafter), (ii) evaluate the uncertainties propagated in the water budget 

estimation using different input forcings, (iii) assess VIC parameter sensitivity using the 

Variogram Analysis of Response Surfaces (VARS) at seasonal and annual time scales, and 

(iv) gauge streamflow sensitivity to the VIC model parameter uncertainty (Figure 3.2). The 

sensitivity, parameter sampling, and uncertainty methodology are discussed in the following 

sub-sections. Moreover, the VIC simulations driven by each forcing dataset from 1981–1985 

are used to generate a VIC initial state parameter file, to allow model spin-up time for five 

years. This diminishes simulation uncertainty in the calibration, validation, and water balance 

estimation during the study period. Intercomparison of the seven meteorological datasets 

from our companion paper suggests that the Ensemble dataset provides more robust historical 

meteorological forcing (Lilhare et al., 2019); therefore, the VIC model forced by the 

Ensemble dataset (i.e., Ensemble-VIC) is used as a reference calibration simulation to 

investigate the propagated uncertainties in water balance estimation from different input 

forcing datasets. 
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Figure 3.2 Schematic representation of the overall methodology adopted for the propagation, sensitivity, and 
uncertainty assessment in the VIC modelling over the LNRB. Coloured boxes indicate various objectives of this 
study. 

3.4.4.1. Sensitivity Analysis 

VARS, a model parameters SA approach, is applied to the VIC model (Razavi & Gupta, 

2016a, 2016b). The SA approach reduces the number of parameters that numerical models 

require to consider in the optimization process. Moreover, the setup is useful for high-

dimensional optimization problems and can reduce the parametrization uncertainty (Razavi, 

Sheikholeslami, Gupta, & Haghnegahdar, 2019). We utilize six VIC model parameters in the 

“star-based” sampling strategy (STAR-VARS), to incorporate VARS in the VIC model and 

subsequent uncertainty assessment (Razavi & Gupta, 2016b). Parameter selection is based on 

the optimal number of VARS simulations and SA conducted by various VIC model users 

using different SA methods (Demaria, Nijssen, & Wagener, 2007; Kavetski, Kuczera, & 

Franks, 2006; Liang & Guo, 2003; Liang, Xie, & Huang, 2003). Specifically, we evaluate the 

sensitivity of the Kling-Gupta criterion (Gupta et al., 2009) (which measures goodness-of-fit 

between simulated and observed streamflows) to variations in the six VIC model parameters 

across their feasible ranges. VARS determines parameter reliability through a bootstrapping 

process and ranks them based on similar parameter occurrence and relative sensitivity 
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(Razavi & Gupta, 2016a). The SA is performed at seasonal and annual time scales and if a 

given model parameter suffers with identifiability issues then it varies temporally in relative 

sensitivity and reliability. We use 35 star centres (i.e., 1925 VIC model runs for each sub-

watershed) and 0.10 variogram resolution to generate efficient and robust estimates of the 

VARS sensitivity ranking (Razavi & Gupta, 2016b). 

3.4.4.2. VIC Parameter Sampling and Uncertainty Analysis 

Parametric uncertainty is assessed by utilizing the Ensemble input forcing and 

Generalized Likelihood Uncertainty Estimation (GLUE) methodology using 1925 STAR-

VARS samples (Beven & Binley, 1992). Model parameters are sampled from uniform prior 

distributions and behavioural parameter sets and then used to generate parameter likelihood 

distributions. The pseudo-likelihood function of KGE is used to assess model performance. 

The less subjective selection criteria are a common practice in the literature thus we use a 

behavioural parameter set, which subjectively meets the desired performance criteria (Li & 

Xu, 2014; Shafii, Tolson, & Matott, 2015; Stedinger, Vogel, Lee, & Batchelder, 2008). These 

methods fail to account for output uncertainty; therefore, we use a simple method of selecting 

the top 10% of the model simulations. The STAR-VARS generates directional variograms in 

the dimension of each parameter. This implies that once a parameter’s directional variogram 

is sampled for a star centre, it is held constant until being varied for the next star centre; this 

creates a high density of sampling at one parameter value per star centre. To determine 

sufficient sampling towards reasonably well-defined parameter uncertainty, we perform a 

visual inspection of the parameter distribution. If the most sensitive parameters, determined 

by VARS, show notable deviation from their uninformed priors by visual inspection, then we 

assume sufficient sampling of the parameter. Further, if the GLUE method, using 1925 
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STAR-VARS samples, fails to accommodate reasonable likelihood distributions, then we 

additionally perform Orthogonal Latin Hypercube (OLH) sampling. The OLH offers uniform 

sampling and generates an additional 600 VIC parameter samples (Gan et al., 2014). 

3.5.  Results 

3.5.1. Intercomparison of the VIC Simulations 

The NSE (KGE) average scores during calibration and validation are much higher for 

the NARR-VIC, Ensemble-VIC, ANUSPLIN-VIC, and HydroGFD-VIC (NARR-VIC, 

Ensemble-VIC, HydroGFD-VIC, and WFDEI-VIC) compared to other simulations (Figure 

3.3). Despite low (< 0.5) NSE and KGE scores from the IDW-VIC, ANUSPLIN-VIC, ERA-

I-VIC, and WFDEI-VIC simulations, the correlation coefficients remain substantially high 

for all sub-basins. The negative (positive) biases from IDW-VIC, ANUSPLIN-VIC and 

HydroGFD-VIC (ERA-I-VIC and WFDEI-VIC) contribute to the lower NSE and KGE 

coefficients, whereas the timing of seasonal flows resembles the observed flows in the IDW-

VIC and ANUSPLIN-VIC. The ERA-I-VIC and WFDEI-VIC simulations reveal strong 

positive biases for most of the sub-watersheds due to their wet biases in the precipitation 

datasets (Lilhare et al., 2019); however, they show acceptable NSE and KGE coefficients  

(≥ 0.5) for most of the sub-basins. 
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Figure 3.3 Boxplots for monthly calibration (a1-d1) and validation (a2-d2) performance metrics, NSE (a1-a2), 
KGE (b1-b2), r (simulated vs observed monthly streamflow) (p-value < 0.05 for all) (c1-c2) and PBIAS (d1-
d2), for ten sub-watersheds within the LNRB based on IDW-VIC, ANUSPLIN-VIC, NARR-VIC, ERA-I-VIC, 
WFDEI-VIC, HydroGFD-VIC and Ensemble-VIC simulations. The black dots within each box show the mean, 
the red lines show the median, the vertical black dotted lines show a range of minimum and maximum values 
excluding outliers, and the red + signs show the outliers defined as the values greater than 1.5 times the 
interquartile range of each metrics. 
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Figure 3.4 Simulated and observed daily runoff (mm day-1) averaged over water years 1981–2010 for the 
LNRB’s ten unregulated sub-basins. An external routing model is used to calculate runoff for the IDW-VIC, 
ANUSPLIN-VIC, NARR-VIC, ERA-I-VIC, WFDEI-VIC, HydroGFD-VIC and Ensemble-VIC simulations. 
Note that y-axis scales vary between panels. 

Comparison of simulated daily runoff against the observed hydrometric records 

reveals satisfactory model performances from the NARR-VIC and Ensemble-VIC, while the 

IDW-VIC and ANUSPLIN-VIC runoff is considerably low for all sub-watersheds (Figure 

3.4). ANUSPLIN-VIC and IDW-VIC runoff shows substantial disagreement with the 
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observed hydrograph, especially in the Kettle, Limestone, Odei, Sapochi, and Weir sub-

basins, owing to the dry bias and undercatch issue in the precipitation data, respectively. The 

ERA-I-VIC and WFDEI-VIC simulations overestimate summer and autumn runoff and 

capture reasonably well winter and spring flows for all sub-watersheds. Simulated flows for 

the Burntwood, Footprint and Taylor sub-watersheds from all VIC simulations are 

comparable in magnitude with observations, but the timing is considerably shifted (~20 

days), yielding more spring runoff and earlier decline of summer recession flows. The NARR 

air temperature is warmer among all other datasets during winter, spring and autumn. This 

improves the snowmelt-driven runoff in the NARR-VIC simulation, causing a better 

representation of simulated flows for these seasons over each sub-watershed. The Ensemble-

VIC and NARR-VIC simulations exhibit satisfactory hydrographs with ≥ 0.5 NSE and KGE 

scores in most of the sub-basins (Figures 3.3 and 3.4). 

3.5.2. Uncertainty in the Water Budget Estimation 

The average annual precipitation and VIC simulated water budgets, which are 

important factors driving changes in total runoff, from all input forcing and their standard 

deviations (SD) are estimated to find the uncertainty in annual water budgets over the 

LNRB’s sub-basins (Tables 3.3 and 3.4). For 1981–2010, the Gunisao sub-watershed shows 

high average annual inter-dataset variability (52.7 mm year-1) in precipitation that results in 

61.5, 50.0, and 88.8 mm year-1 SD in the total runoff, ET, and average soil moisture, 

respectively. The Gunisao (southern outlier in the study area, where air temperatures are 

much warmer than other sub-basins) generates the lowest total runoff despite the highest 

annual precipitation. This situation arises through the compensating effect of the highest ET 

values in the LNRB and appreciable precipitation variability that contributes to overall 
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uncertainty for this sub-basin. A somewhat similar pattern arises in the Grass where a 

decrease in precipitation uncertainty yields less deviation in total runoff; for example, the 

Grass sub-watershed exhibits 26.7 mm year-1 deviation in precipitation, which results in 19.1 

mm year-1 deviation in total runoff, smallest among all sub-basins. The smaller Sapochi, 

Footprint and Taylor (gauged area < 900 km2) sub-basins manifest similar inter-dataset errors 

(> 29 mm year-1) for annual precipitation. Further, relatively larger sub-watersheds (i.e., 

Gunisao and Odei) show significant differences in the SD, which reveal higher spatial 

variability from different forcing datasets. 

Table 3.3 Components of the simulated water budgets in the LNRB’s sub-watersheds, with average annual 
values for 1981–2010. The average annual precipitation (PCP) based on the mean of six forcing datasets, and 
other terms are the total runoff (TR), ET, and average soil moisture (SM), all based on the mean of VIC 
simulations from six different input forcing datasets. Standard deviation (SD) shows inter VIC simulations 
variation in the water balance estimations. 

Sub-basins 
PCP (mm) TR (mm) ET (mm) SM (mm) 

Mean SD Mean SD Mean SD Mean SD 

Burntwood 502.8 29.6 97.1 23.8 408.7 17.5 77.4 14.0 

Footprint 521.0 35.5 109.6 31.3 408.3 34.6 167.1 78.3 

Grass 508.2 26.7 92.8 19.1 412.0 21.4 168.8 55.6 

Gunisao 546.6 52.7 93.3 61.5 451.8 50.0 150.5 88.8 

Kettle 519.6 47.2 148.6 46.9 373.4 23.3 83.5 15.2 

Limestone 511.6 44.9 132.2 48.0 380.1 23.4 93.1 24.2 

Odei 525.3 35.3 148.2 44.6 379.8 29.9 89.7 14.7 

Sapochi 524.5 34.3 109.1 28.0 417.7 36.7 94.4 18.8 

Taylor 522.2 29.4 137.6 32.6 385.9 27.0 91.5 13.4 

Weir 508.3 44.7 129.6 45.8 380.6 21.9 91.3 25.2 

Mean 519.0 38.0 119.8 38.1 399.8 28.6 110.7 34.8 

Area-averaged seasonal total runoff (TR) shows higher uncertainty for relatively large 

sub-watersheds (e.g. Gunisao, Kettle, Limestone, Odei, and Weir), especially in spring and 

summer (Figures 3.5 and 3.6 b1-b4). The Ensemble-VIC TR (black dots) matches closely the 
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average of the remaining VIC simulations (red bars, referred to as multidata-VIC hereafter) 

for all sub-basins (Figure 3.6). The Ensemble-VIC captures multidata-VIC spring TR closely 

in eight out of ten sub-watersheds whereas two others show underestimation (Figure 3.6 b2). 

This underestimation persists in summer, which could arise from the extension of calibrated 

parameters to the entire study period (Figure 3.6 b2-b3). This approach may be unable to 

represent long term daily and seasonal runoff for these sub-basins. Inter-seasonal air 

temperature analysis shows that due to extreme minimum air temperature in winter, 

simulated multidata and Ensemble-VIC TR over each sub-watershed are low and result in 

less uncertainty between simulations. The simulated error increases in early spring and 

persists until late autumn, consistent with seasonal precipitation for all sub-watersheds. For 

annual TR estimates, the Gunisao, Kettle, Limestone, and Weir sub-watersheds reveal high 

inter-simulation error whereas relatively smaller sub-basins show less deviation and better 

TR estimates from Ensemble-VIC (Appendix B). 

Table 3.4 Average annual precipitation (1981–2010) from six forcing datasets and standard deviation (SD) 
across the datasets over the LNRB’s sub-watersheds. 

Sub-basins 
Average annual PCP (mm) SD 

(mm) IDW ANUSPLIN NARR ERA-I WFDEI HydroGFD 

Burntwood 494.9 450.4 512.2 529.4 530.6 499.6 29.6 

Footprint 522.9 470.6 516.5 539.4 575.7 501.1 35.5 

Grass 529.5 479.2 522.1 615.3 605.0 528.4 26.7 

Gunisao 504.7 461.7 511.3 528.6 538.7 504.1 52.7 

Kettle 482.9 473.1 516.8 554.1 595.8 495.2 47.2 

Limestone 480.4 465.1 513.9 537.2 586.7 486.4 44.9 

Odei 516.5 478.3 518.8 541.7 584.2 512.5 35.3 

Sapochi 524.2 475.1 517.8 536.6 580.3 513.0 34.3 

Taylor 526.6 477.8 521.4 534.2 566.4 507.0 29.4 

Weir 473.5 457.8 509.1 529.2 583.6 496.6 44.7 

Mean 505.6 468.9 516.0 544.6 574.7 504.4 38.0 
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Figure 3.5 Spatial differences of seasonal total runoff (TR) (mm) for the LNRB’s ten unregulated sub-basins 
based on Ensemble-VIC (ENSEM) minus (1st row) IDW-VIC, (2nd row) ANUSPLIN-VIC, (3rd row) NARR-
VIC, (4th row) ERA-I-VIC, (5th row) WFDEI-VIC, and (6th row) HydroGFD-VIC simulations, water years 
1981–2010, for winter (DJF), spring (MAM), summer (JJA) and autumn (SON). 

The Gunisao and Kettle sub-basins attain 451.8 and 373.4 mm average annual ET, 

respectively, which are the maximum and minimum values among all other sub-basins (Table 

3.3). Regional ET maps from Natural Resources Canada (2016) show 350 to 450 mm 

average annual ET over the LNRB that satisfy the average ET estimate from VIC for the 

study period (1981–2010). Due to cold air temperatures in winter, Ensemble-VIC ET is lower 

(< 3 mm) and corresponds well with the average value (red bars) of other VIC simulations 

for all sub-watersheds (Figure 3.6 c1–c4). It increases through spring (~100 mm) and peaks 

in summer (~250 mm) with 35 mm multidata-VIC simulation error, which can be attributed 

to a substantial rise in air temperature and precipitation. The multidata-VIC SD shows 
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identical values in autumn that essentially reveals less regional variability in ET estimates 

(~60 mm) from all forcing datasets over the LNRB’s sub-basins. Depleted soil moisture 

conditions induce basin water limitations that yield uncertainty in ET estimates (Appendix 

C); for example, the largest sub-watersheds (Grass and Gunisao) within the LNRB show 

higher uncertainty in ET estimates. As the Ensemble dataset assigns equal weight and each 

dataset is equally likely to represent the truth, then the Ensemble-VIC simulation indeed 

better represents the winter, spring, and autumn ET with overestimation in summer for all 

sub-basins (Figure 3.6 c1–c4 and Appendix C). For annual ET, the Gunisao and Sapochi sub-

basins show high variability within VIC simulations, but other sub-watersheds have less 

inter-simulation error (Appendix B). 

 

Figure 3.6 Area-averaged VIC simulated seasonal water balance mean (mm) of precipitation (PCP, a1-a4), total 
runoff (TR, b1-b4), ET (c1-c4) and soil moisture (SM, d1-d4), represented by different columns, for the 
LNRB’s ten unregulated sub-basins, water years 1981–2010, for the winter (DJF, 1st row), spring (MAM, 2nd 
row), summer (JJA, 3rd row) and autumn (SON, 4th row) seasons. Red bars show the average of VIC simulations 
from six forcing datasets (except Ensemble), black error bars indicate inter-VIC simulation variation among 
IDW-VIC, ANUSPLIN-VIC, NARR-VIC, ERA-I-VIC, WFDEI-VIC, and HydroGFD-VIC, while black dots 
represent the water balance estimation from Ensemble-VIC. 
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The LNRB’s water balances vary within each sub-basin depending on the magnitude 

and timing of precipitation and air temperatures obtained from different input forcing 

datasets (Tables 3.3, 3.4 and Appendix C). For instance, long-term ERA-I-VIC and WFDEI-

VIC simulations show higher mean TR that results in higher soil moisture (SM) levels for 

each sub-basin (Figure 3.5 and Appendix D). However, Ensemble-VIC estimates nearly 

similar seasonal SM conditions as calculated by the average of the six other VIC simulations 

for most sub-basins (Figure 3.6 d1-d4). Among all other seasons, the highest SM occurs in 

spring followed by summer and autumn due to seasonal transitions and snowmelt runoff, 

which are more evident in relatively large sub-watersheds (Burntwood, Gunisao, Grass, 

Limestone, and Weir) (Figure 3.6 d1-d4). These increased SM values for spring, summer, 

and autumn show concomitant effects on runoff during these seasons. Furthermore, the 

Footprint sub-watershed is smaller relative to others; however, it shows considerable inter-

dataset variation (~90 mm) in SM for all seasons. Moreover, eight out of ten sub-basins 

demonstrate substantial multi-datasets uncertainty in SM for all seasons but mean seasonal 

SM is well captured by the Ensemble-VIC for these sub-watersheds. However, large 

uncertainty in SM also suggests excess water availability that goes either into the TR or ET 

during these seasons. The highest annual SM arises in the Grass, Footprint, and Gunisao sub-

basins with substantial inter-datasets variation whereas other sub-watersheds show less error 

in SM simulations with nearly identical annual values (Appendix B and Appendix C). 

3.5.3. Model Parameter Sensitivity and Uncertainty 

Figure 3.7 (a-c) shows results from VARS using values from the Integrated Variogram 

Across a Range of Scale (IVARS) between 0 and 50% of the parameter ranges (IVARS 50), 

as suggested in the VARS-Tool manual for a single global sensitivity metric (Razavi & 
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Gupta, 2016a, 2016b). The hydrologically active depth (D2) of soil for movement and 

storage of water is by far the most important parameter that contributes 24–66% of the 

sensitivity across all sub-watersheds. The next most important parameter is binf, which 

accounts for approximately 8–48% of KGE sensitivity across all sub-watersheds. Together, 

these two parameters contribute to nearly 40–88% of the KGE sensitivity. In the Grass River 

sub-watershed, Dsmax, which is the maximum velocity of baseflow for each grid cell, also 

becomes important (~30%) in controlling the amount of runoff generated at the sub-basin 

outlet. Note that physically inter-linked parameters (D2 and Dsmax) together have almost the 

same sensitivity ratio in the Grass River. Ds (fraction of the Dsmax parameter) is the third 

most important parameter, and Ws, the fraction of maximum soil moisture, is also among the 

more influential parameters in most of the sub-watersheds. Seasonal sensitivity of model 

parameters changes substantially; for example, in winter Ds and Dsmax, which control 

baseflow, become the most sensitive parameters (>25%) over all sub-basins whereas in 

spring and summer D2 still plays a dominant role in computing sub-surface flow (Appendix 

E). Autumn shows Dsmax as the most sensitive parameter since most of the water comes from 

baseflow during this season. 

For NSE, the D2 parameter becomes dominant by a large margin in six out of ten sub-

basins, responsible for 28-70% of the model sensitivity in these sub-watersheds (Figure 

3.7b). This is not the case for the other four sub-basins (Kettle, Limestone, Odei, and Weir) 

where binf remains the most influential factor controlling predictions of low flows. For the 

Footprint and Grass, Ws is also influential (~17%). Ws emerges as the third most important 

parameter in most of the sub-basins. Seasonal sensitivity of model parameters changes 

substantially; for example, in winter Ds and Dsmax, which control baseflow, become the most 
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sensitive parameters over all sub-basins whereas in spring and summer, binf and D2, 

respectively, play dominant roles in establishing streamflow (Appendix E). The binf 

parameter shows >45% ratios of factor sensitivity in spring for most of the sub-watersheds 

that reflects excess water availability for infiltration during snowmelt seasons. Autumn 

shows Dsmax and D2 as the most sensitive parameters since they are responsible in generating 

seasonal peak flows. 

 

Figure 3.7 Ratio of factor sensitivity (%) of IVARS 50 for each parameter at annual scale over all sub-
watersheds of the LNRB for the three model performance metrics (1981–2010) (a) KGE, (b) NSE, and (c) 
PBIAS. Ratio of factor sensitivity is estimated by normalizing IVARS 50 values in each case, so they add up to 
100% for all parameters. 
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The total flow volume measured by PBIAS shows D2 as the most influential parameter 

that determines maximum water storage in soils and thus streamflow (Figure 3.7c). The ratio 

of sensitivity for this parameter exceeds 50% for nine sub-basins and nears 80% in three of 

them. Unlike the KGE and NSE cases, the baseflow parameters (Ds and Dsmax) are not 

important for PBIAS because they have no effect on the total flow volume. Overall, for 

PBIAS, binf and D2 are influential parameters followed by Dsmax. This is due to the influence 

of all these parameters in controlling surface and subsurface water storages. In all sub-basins 

the depth of the second soil layer is more important than the third soil layer. This is perhaps 

because (a) the third layer is much thicker than the other two layers and (b) the second layer 

has a larger control on infiltration and ET. Seasonal sensitivity of model parameters for 

PBIAS is similar to KGE and NSE as the sensitive parameters (i.e., D2, binf, Ds, and Dsmax) 

are responsible for streamflow magnitudes and inter-linked with each other (Appendix E). 

Minimum and maximum values for streamflow over the LNRB’s sub-watersheds are 74-

274 mm year-1 (Sapochi) and 495-955 mm year-1 (Kettle) (Figure 3.8). Greater range is 

observed for streamflow in relatively small sub-basins such as the Weir, Kettle, and 

Footprint, as the VARS provides parameter samples within a broad range over small areas. 

This may also occur due to the combined overall uncertainty from other mass fluxes (i.e., ET, 

soil moisture, etc.). This analysis shows a range of potential variability that the mean annual 

streamflow has, which is intended to provide the reader with an estimation of the model 

uncertainty. 
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Figure 3.8 Annual streamflow sensitivity to parameter uncertainty for all ten LNRB sub-watersheds. The green 
dots show streamflow associated with the control run (calibration), the red lines show the median, the vertical 
black dotted lines show a range of minimum and maximum values excluding outliers, and the red + signs show 
the outliers defined as the values greater than 1.5 times the interquartile range of annual streamflow.  

3.5.4. Uncertainty Assessment of the VIC Model Parameters using OLH 

In this section, we demonstrate applicability and performance of the OLH to identify and 

estimate VIC model parameters and their associated uncertainty bounds. Input forcing data 

and model structure are held constant in this analysis, so that the entire uncertainty in 

streamflow simulation may be attributed to VIC parameters. Uniform distributions are 

obtained on the parameter ranges from OLH and the behavioural parameter sets are used to 

generate parameter likelihood distributions. As stated earlier, we obtained 600 samples by 

using six major VIC model parameters in the OLH; therefore, parameter likelihood 

distributions derive from 600 VIC simulations (Figure 3.9). These distributions illustrate two 

points; first, the likelihood distribution of binf, which is also the most sensitive parameter 

among others, nears the upper boundary of the predefined parameter range. This can be an 
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indication of a higher binf value that is important for these sub-basins. Second, the likelihood 

distribution for D2 captures only a small space of the pre-defined range, whereas D3 covers 

almost the entire parameter range. However, the hydrograph uncertainty bounds, which come 

from the top 10% of OLH runs, associated with these parameter ranges do not cover the 

expected number of observed streamflow values (dark blue region in Figure 3.10). This can 

be argued as a problem of over-conditioning the selected relationships between observed and 

modelled output (Bermúdez et al., 2017). The Footprint and Weir sub-watersheds have the 

widest uncertainty envelopes whereas the Burntwood, Limestone, Odei, Sapochi, and Taylor 

sub-watersheds show relatively narrow uncertainty bounds from the OLH simulation. This 

may depend on watershed area as parameter variation among a broad range of values over 

small sub-basins (e.g. Footprint, Weir) yields greater streamflow uncertainty than for 

relatively larger ones (e.g. Burntwood, Limestone, Odei, Sapochi, and Taylor). Even though 

the other 90% prediction uncertainty range (light grey region in Figure 3.10) captures all 

observations, it remains quite wide compared to observations and reveals a notable 

uncertainty range (0.5-1 mm day-1) in the model parameters as other conditions are static in 

this analysis. 



81 
 

 
 

 

Figure 3.9 Average likelihood distribution of the VIC parameters using 600 samples generated after the OLH 
sampling over all ten sub-watersheds of the LNRB. Red bars show the maximum likelihood of parameter range 
to the model performance metric (KGE) for the LNRB. 



82 
 

 
 

 

Figure 3.10 Streamflow prediction uncertainty associated with estimated parameters from the OLH. Top 10% 
(shown in blue colour) of OLH samples, based on KGE, used for the prediction of streamflow for all ten sub-
watersheds, water years 1981–2010. Note that y-axis scales vary between panels. Shaded area (grey colour) 
shows the envelope of VIC runs from 600 OLH samples. 
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3.6.  Discussion 

3.6.1. Input Data Uncertainty 

The underestimation in flows from the IDW-VIC and ANUSPLIN-VIC simulations 

reflect the precipitation undercatch and dry bias in these datasets over the LNRB (Lilhare et 

al., 2019). As the model resolution and other configuration (i.e., soil type, land use, etc.) are 

similar for all VIC simulations, different values of model performance metrics exhibit 

uncertainty associated only with input forcing datasets. These simulations show substantial 

disagreement in the runoff with observed hydrographs, especially in the Kettle, Limestone, 

Odei, Sapochi, and Weir sub-basins, owing to the dry bias and undercatch issues in the 

precipitation data. Consistent with our previous findings, the wet (warm) ERA-I and WFDEI 

precipitation (mean air temperature) over the LNRB in spring, summer and autumn induce 

more surface runoff and snowmelt that overestimate simulated flows (Figure 3.4) (Lilhare et 

al., 2019). Moreover, shifts in the hydrographs may be associated with warmer air 

temperatures over these sub-basins that cause earlier snowmelt runoff. Such variation in the 

simulated runoff, especially during the snowmelt period (April-July), is either due to the 

uncertain amount and timing of precipitation or air temperature in input forcing datasets 

(Lilhare et al., 2019). 

Other source of uncertainties in water budget estimation may be the dry (wet) bias in 

precipitation that results in poor calibration where model parameters cannot achieve optimal 

values due to less (excess) water availability. Consequently, these precipitation uncertainties 

among all sub-watersheds translate to a minimum (maximum) 14.0 (88.8) mm year-1 error in 

the water balance estimates. These results correspond well with those of Fekete et al. (2010) 

who found that the uncertainty in precipitation forcing translates to at least the same, or 
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typically more substantial, uncertainty in runoff and related water balance terms. The 

simulated TR uncertainty is higher in spring and summer than fall and winter, which is 

mainly due to the more substantial seasonal variation in inter-datasets precipitation and air 

temperature. However, there remains much uncertainty in air temperature records over the 

LNRB from the different forcing datasets. This uncertainty can be translated into inter-

seasonal water balance estimation through runoff and ET processes, which are more sensitive 

to air temperature. The sub-basins that are more susceptible to ET loss with relatively more 

surface water coverage, i.e., the Grass and Gunisao will, therefore, have higher uncertainty 

propagation from input data. This represents both time and space dimensionality to the 

uncertainty and plays a critical role in climate change studies where changes in runoff are 

most important. 

Given that the domain average air temperature and precipitation differ across VIC 

forcings, the choice of VIC calibration and validation periods may induce uncertainty in 

water balance simulations. Therefore, calibration using different forcing data over 5-10 years 

may generate biases in simulated water balance conditions, as only a wet or dry period may 

be captured. Intercomparison of precipitation partitioning across various land surface models 

showed that specific representation and parameterizations for water balance components (i.e., 

ET and TR) were not consistent across models (Andresen et al., 2019). However, some 

models maintained similar runoff and precipitation ratios throughout the simulation; in 

contrast, VIC showed shifts from a runoff-dominated system to an ET-dominated system 

over permafrost regions in the Northern Hemisphere north of 45°N (Andresen et al., 2019). 
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3.6.2. Model Parameter Sensitivity and Uncertainty Assessment 

The sensitivity of model outputs to selected parameters is justified given the 

formulations of the variable infiltration and baseflow generation curve that form the 

foundation of the VIC architecture (Liang et al., 1994, 1996) and as these parameters are 

traditionally applied in model calibration (i.e., Elsner et al., 2010). As reported in previous 

studies, sensitivity to these parameters hold in both current and future climate scenarios 

(Bennett et al., 2018; Christensen & Lettenmaier, 2007; Demaria et al., 2007). A previous 

effort used various objective functions and found binf and D2 were the most sensitive 

parameters followed by the drainage parameter among ten VIC parameters across four 

American river basins of different hydro-climates (Demaria et al., 2007). Xie & Yuan (2006) 

manually varied four VIC parameters from ±10% to ±25% to perform SA over 12 watersheds 

in France, finding baseflow and soil depth as the most sensitive parameters. These studies 

either used manual analysis methods or limited objective functions at annual time scale to 

examine the parameter sensitivity. In contrast, we apply a more robust, automated, and 

efficient approach at seasonal and annual time scales to determine the parameter sensitivity 

and its seasonal importance over ten sub-arctic watersheds. Moreover, the SA method takes 

multiple objective functions into account that provide more robust estimates of parameter 

sensitivity. 

The high values of IVARS 50 for D2 are caused partly by the interaction of this 

parameter with other model parameters (e.g., soil profile and root depth) and its relatively 

large range of values. The Ds and Dsmax parameters influence baseflow, which have a higher 

impact on low flow predictions. Therefore, these parameters become important for NSE in 

some sub-basins (Grass and Footprint) as they control the timing of low flows. Moreover, in 
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PBIAS, high values of D2 indicate its considerable interaction on model responses as D2 

characterizes the seasonal soil moisture behaviour but by no means binf as being perhaps also 

an important parameter over the LNRB. Overall, for PBIAS, binf and D2 are influential 

parameters followed by Dsmax. This is due to the influence of all these parameters in 

controlling surface and subsurface water storages. In all sub-basins D2 is more important 

than D3. This is perhaps because of (a) the third layer is much thicker than the other two 

layers and (b) the second layer has a larger control on infiltration and ET. 

There is general agreement between the NSE and KGE sensitivity experiments over 

most sub-watersheds, particularly in identifying the most influential parameters. Nonetheless, 

parameter sensitivity depends on metric choice and varies significantly according to model 

performance metrics. For example, the D2 parameter is quite important for KGE and PBIAS 

in most of the rivers but has slightly less impact on NSE. This is because D2 controls 

baseflow and thus the timing of flows, which is important particularly for peak flows 

represented by NSE. However, flow timing is not important when assessing total flow 

volume represented by PBIAS. Similarly, binf is less important for KGE and PBIAS but more 

influential for NSE over most sub-basins through its control of available infiltration capacity, 

thereby influencing peak flows and soil water volumes. Moreover, seasonality and wet or dry 

years may yield different SA results, which should be noted as a cautionary tale for using SA 

as a pre-calibration methodology. Consequently, to better understand the dominant controls 

on model behavior, multiple criteria should be considered. 

These results reinforce the well‐known conclusion that for most effective SA results, 

one should select SA criteria in alignment with the final goals of the modelling application 

(e.g., flood forecasting, drought analysis, or water balance assessment). Regardless of the 
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metric choice, often a limited number of parameters control most of the model response 

variations. This has important implications such as minimizing the dimensionality of the 

optimization process (i.e., calibration) through emphasis on a few influential parameters to 

generate reliable results. Even if fixed values for these influential parameters cannot be 

prescribed, any available information including observational data may reduce parameter 

ranges during calibration. This is generally true for all parameters and greatly increases the 

identifiability of our modelling application, which is often overlooked. Moreover, this also 

fits with the International Association of Hydrological Sciences’ (IAHS’) 23 unsolved 

problems in hydrology initiatives focused on understanding process changes, which control 

changing runoff response (Blöschl et al., 2019). Moreover, using these SA results, one can 

focus on specific model parameters and their value ranges, thus diminishing computational 

burdens, by fixing the value of non‐essential parameters. 

3.7.  Conclusion 

This exercise provides valuable new insights into the internal functioning of models and 

allows the provision of impactful recommendations for improving development and 

application of the VIC model. In this respect, we found that daily precipitation is more 

important than air temperature for annual and seasonal water balance estimates. The choice 

of model performance metric significantly affects the sensitivity assessment. Therefore, to 

obtain in-depth understanding of model behaviour, SA using multiple criteria should be 

adopted, which capture distinct characteristics of the model response. 

SA results can be used more effectively when aligned with the final goals of the 

model application (e.g., flood forecasting and drought monitoring). SA results depend on 

various factors such as hydro-climatic conditions, model configuration, input forcing, 
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landcover classes, initial state, vegetation parameters, etc., and these can have a large impact 

on model behaviour. We considered a full range of parameters that can influence their ratio 

of factor sensitivity if the range changes in other applications. SA can identify aspects of the 

model internal functioning that are counter‐intuitive and thus assist modellers to diagnose 

possible model deficiencies and make recommendations for end users. The calibration 

process identified a set of influential parameters that assists VIC users in reducing prediction 

uncertainty by providing a more robust, accurate and less computationally intensive 

calibration effort. Overall, parameters for the second soil layer depth and variable infiltration 

curve dominate the control of streamflow prediction in VIC followed by the Ds and Dsmax 

parameters. The VIC community may prioritize these parameters during model calibration 

for similar physical and climatic environments. While this study focused on VARS 

sensitivity and OLH uncertainty analysis, a multi-criteria SA approach under various 

conditions may lead to improved understanding of model structure, reductions in prediction 

uncertainty, and more efficient parameter calibration. Potential future work could investigate 

the effects of initial or boundary conditions and/or other model variables such as soil 

moisture or ET in model sensitivity assessments. 
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CHAPTER 4:  WARMING SOIL TEMPERATURES AND INCREASING 

BASEFLOWS IN RESPONSE TO RECENT AND POTENTIAL FUTURE 

CLIMATE CHANGE ACROSS NORTHERN MANITOBA 

4.1.  Abstract 

This study investigates climate change impacts on the hydrology and soil thermal 

regime of ten sub-arctic watersheds (northern Manitoba, Canada) using the Variable 

Infiltration Capacity (VIC) model. We utilize statistically downscaled and bias-corrected 

forcing datasets based on 17 climate models from phase 5 of the Coupled Model 

Intercomparison Project (CMIP5) to run the VIC model for three 30-year periods: a historical 

baseline (1981–2010), and future projections (2021–2050: 2030s and 2041–2070: 2050s), 

under representative concentration pathways (RCPs) 4.5 and 8.5. The CMIP5 Multi-Model 

Ensemble (MME) mean based VIC simulations show 15-20% increases and 10% decreases 

in the projected annual precipitation and snowfall, respectively over the southern part and 

>20% rainfall increase over the northern part of the domain by the 2050s. Snow 

accumulation is projected to decline across all sub-basins, particularly in the lower latitudes. 

Projected uncertainties in major water balance terms (evapotranspiration, surface runoff, and 

streamflow) are more substantial in the wetland and lake-dominated Grass and Gunisao 

watersheds than their eight counterparts. Future warming increases soil temperatures >2.5°C 

by the 2050s and results in 40-50% more baseflow. Further analyses of soil temperature 

trends at three different depths show the most pronounced warming in the top soil layer 

(1.6°C 30-year-1 in the 2050s), whereas baseflows increase significantly by 14.0% and 26.7% 

during the 2030s and 2050s, respectively. These results provide crucial information on the 
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potential future impacts of warming soil temperatures on the hydrology of sub-arctic 

watersheds in north-central Canada and similar hydro-climatic regimes. 
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4.2.  Introduction 

Cold regions and snow-dominated river basins are particularly sensitive to warming 

air temperatures, as this can decrease seasonal and long-term water availability that otherwise 

provides a consistent and reliable source of streamflow during spring and summer melt 

periods (Aygün, Kinnard, & Campeau, 2019; Barnett, Adam, & Lettenmaier, 2005). These 

changes lead to increased streamflow interannual variability that has been observed across 

Canadian watersheds in recent decades (Déry, Hernández‐Henríquez, Burford, & Wood, 

2009; Déry, Hernández-Henríquez, Owens, Parkes, & Petticrew, 2012). It is unclear, 

however, whether future climate changes will further impact the water availability and 

interannual variability in flows for cold regions, as previous studies focused solely on 

changes in mean annual and seasonal flows (e.g., Gelfan et al., 2017; MacDonald et al., 

2018; Shrestha, Schnorbus, Werner, & Berland, 2012). Results from an ensemble of climate 

models project that runoff in eastern Canada and north-central Manitoba will increase 20–

30% relative to 1900-1970 by the middle of the 21st century (Milly, Dunne, & Vecchia, 

2005). At a regional scale, trends toward declining flows have also been reported for rivers in 

the Canadian Rockies (Rood, Samuelson, Weber, & Wywrot, 2005), the Hudson Bay basin 

(Déry & Wood, 2005a), and the Canadian Prairies (Westmacott & Burn, 1997; Yulianti & 

Burn, 1998). 

Permafrost covers about a quarter of the exposed land in the Northern Hemisphere 

(Zhang, Barry, Knowles, Heginbottom, & Brown, 1999) and, as defined by ground 

temperature, is sensitive to atmospheric climate changes. Changes in permafrost distribution 

and summer active layer depth will have significant impacts on hydrology, soil organic 

carbon (SOC), vegetation distribution, and infrastructure at high latitudes (ACIA, 2004; 
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Anisimov et al., 2001; Chapin et al., 1992; Nelson, 2003). For example, permafrost 

disappearance or deepening summer active layer depth could alter terrain and hydrologic 

conditions (Hinzman et al., 2005; St. Jacques & Sauchyn, 2009), modify the growth and 

distribution of vegetation (Jorgenson et al., 2001), increase SOC decomposition, and enhance 

carbon dioxide and methane emissions from the soil to the atmosphere (Goulden et al., 1998; 

Oechel et al., 1993). Climate models project substantial increases in mean surface 

temperature (~8ºC) across present-day permafrost areas of the Canadian landmass by the end 

of the 21st century under the RCP 8.5 scenario (Koven et al., 2013) (see Chapter 3, Section 

3.3.3). This amplified warming affects permafrost temperatures, distribution, and conditions 

(Chadburn et al., 2017; Guo & Wang, 2016; Slater & Lawrence, 2013). Simulations from a 

process-based permafrost model driven by six general circulation model (GCM)-generated 

climate scenarios project that the area underlain by permafrost in Canada will decline by 

approximately 16-20% by 2090, relative to a 1990s baseline (Zhang, Chen, & Riseborough, 

2008). Smith and Burgess (1998, 2004) categorized the present state and recent trends in 

ground temperatures, assessed the physical impacts of permafrost thaw and its sensitivity to 

climate warming in Canada. 

About half of Canada's landmass is classified as permafrost regions (Kettles, 

Tarnocai, & Bauke, 1997), which is about a third of the total permafrost area in the Northern 

Hemisphere (Zhang et al., 1999). In our study domain, the Lower Nelson River Basin 

(LNRB), sporadic discontinuous permafrost (between 10% to 50%) makes up ~68% of the 

total area (Figure 4.1) (Natural Resources Canada, 2010). The extensive discontinuous (i.e., 

between 50% to 90%), continuous (i.e., between 90% to 100%), and isolated patches of 

permafrost cover approximately 9%, 0.8%, and 16% of the total basin area, respectively. 
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To better quantify the impacts of climate warming on the LNRB’s hydrology and soil 

thermal conditions, we apply a distributed high-resolution hydrologic model over the LNRB 

(Lilhare et al., 2020) and utilize future climate projections from the fifth Coupled Model 

Intercomparison Project (CMIP5; Taylor et al., 2011) to examine future water balance and 

soil thermal regimes. While the historical hydrology of the study area has been reported in 

previous studies, the current literature lacks detailed information on historical and future 

changes in soil temperatures over sub-arctic watersheds. Moreover, a quantitative evaluation 

of the CMIP5 projected climate changes and systematic analysis of GCM-driven 

hydrological model simulations have not been reported over the study domain. This study, 

therefore, investigates the impacts of increasing air temperatures coupled with changing 

precipitation on the LNRB’s water balance and the sensitivity of rainfall and snowfall to a 

changing climate. To better understand climate change impacts on the LNRB’s hydrology, 

and to provide a context for any detected changes in annual baseflow due to future warming, 

this paper has the second goal of investigating future changes in soil thermal regimes relative 

to the historical period. This will fill an important research gap on climate change impacts 

over sub-arctic regions and its contribution to changes in the overall hydrology of the study 

area. 

4.3.  Study Area, Data, and Methodology 

4.3.1. Study Area 

In this study, we selected a downstream segment of the Nelson River system (i.e., the 

LNRB) fed by the Churchill River basin and Lake Winnipeg (Figure 4.1a). The LNRB 

covers ~90,500 km2 in area, collects all water from the upstream drainage area (~970,000 

km2), and discharges into Hudson Bay. In the LNRB, the main stem river (Nelson) has less 
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seasonal flow variability due to regulation and large drainage areas. The LNRB has gentle 

slopes, with common channelized lakes and wetlands altering flow variability. Wetlands 

within the LNRB store significant volumes of water, cover large areas, and moderate 

streamflow responses to rainfall and snowmelt events. Permafrost and shallow soils limit 

groundwater flows, storage, and infiltration (Figure 4.1). A major part of the LNRB lies in 

the Canadian Shield, a recently glaciated area with shallow soil depth, leaving the 

precambrian igneous and metamorphic rocks of the Canadian Shield near the surface (Centre 

for Land and Biological Resources Research, 1996). The total exposed rock percentage over 

the LNRB is about 8% – this covers most of the north-western and southern part of the basin. 

The entire LNRB is dominated by 45% organic and 48% mineral soils and contains both silt 

and clay soil types (Centre for Land and Biological Resources Research, 1996). Due to the 

erosion from glaciers in the Holocene, organic content is low in LNRB soils, which are 

dominated by clays and poor drainage capacity. 

To increase the LNRB’s hydroelectric capacity, Manitoba Hydro manages flows in 

the watershed with two primary sources of streamflow regulation: the Lake Winnipeg 

Regulation and Churchill River Diversion (Figure 4.1b). The study domain experiences a 

sub-arctic continental climate with moderate precipitation and humidity, cold winters, and 

cool summers. The snow-free season spans May to October and most of the precipitation 

occurs during summer and falls as rain, contributing nearly two-thirds of the annual total 

precipitation. The precipitation peaks in July, which is the warmest month of the year with 

16.2°C average daily air temperature. The average annual precipitation totals ~500 mm, 

while evapotranspiration (ET) over the LNRB attains ~300–350 mm annually with more 

annual surface water evaporation (Environment and Climate Change Canada, 2016). 
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Figure 4.1 Maps of the LNRB. (a) The Nelson River Basin, Churchill River Basin, and LNRB. (b) Major rivers 
and sub-watersheds within the LNRB, yellow triangles show the hydrometric stations used in this study, green 
circles denote current generating stations, the yellow circle shows a future generating station (currently under 
construction) by Manitoba Hydro and a red star indicates the Churchill River diversion. Basemap shows the 
permafrost distribution across the domain (Natural Resources Canada, 2010). Base map source: World light 
grey reference (http://services.arcgisonline.com/arcgis/services) 

4.3.2. Data and Hydrological Model 

4.3.2.1. Climate Models and Observational Data 

We use the CMIP5 data under the Representative Concentration Pathways (RCP) 4.5 

and 8.5 scenarios (Taylor, Stouffer, & Meehl, 2011; van Vuuren et al., 2011). Data from 

CMIP5 simulations assembled, pre-processed and analysed by MacDonald et al. (2018) are 

used to force the VIC model for climate change analyses and cover ~90% of the full 

ensemble’s uncertainty range for precipitation and air temperature over the entire Hudson 
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Bay domain (Table 4.1). Note however that the simulation from the IPSL-CM5A-LR GCMs 

used by MacDonald et al. (2018) exhibits spurious trends and spatial patterns relative to other 

models, especially over the Weir River sub-basin and is excluded from analysis. This yields a 

total of 17 simulations (10 for RCP 4.5 and seven for RCP 8.5) for climate change analyses 

in this study. The bias correction of daily precipitation, maximum and minimum air 

temperature is based on the daily translation quantile-mapping approach by Mpelasoka and 

Chiew (2009) (see details in Stadnyk et al. (2019) for the climate scenarios preparation). 

Further, the Hydrological Global Forcing Data (HydroGFD hereafter) is used as a reference 

in the bias correction and forced to drive the VIC model over the LNRB (Berg et al., 2018; 

Lilhare et al., 2020). 

Table 4.1 CMIP5 simulations used in this study (MacDonald et al., 2018). 

Model Centre name RCPs 

ACCESS1-0  Australian Community Climate 

and Earth System Simulator 
4.5, 8.5 

ACCESS1-3 

CMCC-CM Euro-Mediterranean Center on Climate Change, 
Bologna, Italy 

4.5 

CMCC-CMC 8.5 

CanESM2 Canadian Centre for Climate Modelling and Analysis 4.5 

CRNM-CM5 National Center for Meteorological Research, France 4.5 

GFDL-CM3 
National Oceanic and Atmospheric Administration's 

Geophysical Fluid Dynamic Laboratory, USA 
4.5 

inmcm4 Russian Institute for Numerical Mathematics 4.5 

MIROC5 University of Tokyo Center for Climate System 
Research, National Institute for Environmental Studies, 

Japan, Japan Agency for Marine-Earth Science and 
Technology Frontier Research Center for Global Change 

4.5, 8.5 

MIROC-ESM-
CHEM 

8.5 

MIROC-ESM 8.5 

MRI-CGCM3 Meteorological Research Institute, Japan 4.5, 8.5 

NorESM1-M Norwegian Climate Center 4.5 
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4.3.2.2. Variable Infiltration Capacity Model and Simulation Strategy 

We use the semi-distributed Variable Infiltration Capacity (VIC) model (version 

4.2.d) (Liang et al., 1994, 1996) to simulate hydrological processes in the LNRB. Our 

companion paper (Lilhare et al., 2020) provides detailed information on the VIC model 

implementation over the LNRB. The VIC model has been widely used for climate change 

research over various river basins (e.g., Wu et al., 2007; Adam et al., 2009; Cuo et al., 2009; 

Hidalgo et al., 2009; Elsner et al., 2010; Kang et al., 2016; Islam and Déry 2017; Sharma et 

al., 2018). 

Simulations of soil thermal fluxes are based on temperatures at the surface, at the 

bottom of the first layer, and at the bottom of the soil column whereby the surface 

temperature is solved explicitly as a part of the surface energy balance (Liang et al. 1999). 

Thermal fluxes are solved numerically via an explicit finite difference approximation of a 

general equation for heat flux through the soil column. Initial soil profile temperatures are 

estimated from the current air temperature. The lower boundary temperature is set to the 

average annual air temperature, and thermal conductivity and volumetric heat capacity of the 

soil layers are calculated at each time step from the revised soil water and ice contents. 

VIC conserves surface water and energy balances for regional-scale watersheds such 

as the LNRB and takes sub-grid variability into account by dividing each grid cell into 

elevation bands, land use, and land cover types (Cherkauer, Bowling, & Lettenmaier, 2003; 

Nijssen et al., 2001). Snow, energy, and water balances are defined for each grid cell 

separately (Gao et al. 2010). The VIC model is coupled with a standalone routing scheme 

that routes runoff from grid cells using a predefined channel network (Lohmann, Nolte-
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Holube, & Raschke, 1996; Lohmann, Raschke, Nijssen, & Lettenmaier, 1998). 

Consequently, routed flow is extracted at user-defined outlet points of specific sub-basins. 

After the CMIP5 bias-corrected and downscaled data collection, the resulting fields 

are then regridded to 10 km (~0.10°) spatial resolution to match the VIC model grid using 

bilinear interpolation (Lilhare et al., 2019, 2020). In addition to daily precipitation and air 

temperatures, VIC also requires daily wind speeds. We obtain daily wind speeds from all 

CMIP5 models at a 10 m height above ground; however, these data are not downscaled nor 

bias-corrected, and the original data are simply regridded to the VIC model resolution (0.10° 

× 0.10°) (Lilhare et al., 2020). 

The VIC model monthly calibration (1981–1985, 1995–1999) and validation (1986–

1994) are conducted using the HydroGFD data (Lilhare et al., 2020) applied to ten 

unregulated rivers within the LNRB (Table 4.2). The VIC model runs in full energy and 

water balance mode at a daily time step, and three soil layers for each grid cell (Figure 4.2). 

In this application, the VIC model utilizes a no flux bottom boundary with the finite 

difference soil thermal solution (Cherkauer & Lettenmaier, 1999). The VIC setup is adopted 

from our companion paper (Chapter 3) where VIC was calibrated using an optimization 

process based on the Nash–Sutcliffe efficiency (NSE) coefficient (Lilhare et al., 2020; Nash 

& Sutcliffe, 1970). We use the NSE, Kling–Gupta efficiency (KGE) (Gupta et al., 2009), and 

Pearson’s correlation (r) coefficients (for simulated vs observed monthly streamflows) in 

addition to Percent Bias (PBIAS) to summarize model performance during calibration and 

evaluation. Additionally, we utilize monthly mean soil temperature observations from Sutton 

et al. (1999) (data available from June 1994 to December 1998 within the LNRB) to evaluate 

the VIC simulated soil temperatures. The soil temperature point observation (55.8°N 98.7°W 
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near the Burntwood River sub-basin) is measured at various depths (0.1 m, 0.2 m, 0.5 m, and 

1.0 m). We extract soil temperature observations at 0.2 m, 0.5 m, and 1.0 m to compare 

corresponding VIC simulated soil temperatures, for a grid cell, at D1, D2, and D3, 

respectively, which range from 0.3 to 1.5 m (Table 4.3). High monthly NSE values for most 

of the LNRB’s sub-basins in the calibration and validation periods reveal the reliable 

application of the VIC model (Lilhare et al., 2020). The calibrated VIC model runs at a daily 

time step from 1981 to 2070 using each of the 17 CMIP5 GCM simulations (using historical, 

RCP 4.5 and 8.5 forcings) at 0.10° horizontal resolution. We initiate each simulation by 

running VIC for five years using the 1981–1985 meteorological forcings to allow model 

spin-up. The 1990s (1981 to 2010), 2030s (2021 to 2050) and 2050s (2041 to 2070) and 

changes relative to historical (1990s) conditions are examined in detail. 

 

Figure 4.2 Schematic representation of the overall methodology adopted to quantify climate change impacts on 
the soil thermal regime and LNRB’s hydrology using the VIC model. 
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Table 4.2 List of ten selected unregulated hydrometric stations, maintained by the Water Survey of Canada and 
Manitoba Hydro, for the VIC model calibration and evaluation with sub-watershed characteristics and mean 
annual discharge (Water Survey of Canada, 2016). 

Station name (Gauge 
ID) 

Latitude 
(°N) 

Longitude 
(°W) 

Mean sub-
watershed 
elevation 

(m) 

Drainage 
area (km2) 

Mean 
annual 

discharge 
(m3 s-1) 

Burntwood River above 
Leaf Rapids (05TE002) 

55.49 99.22 302.4 5,810 22.9 

Footprint River above 
Footprint Lake 
(05TF002) 

55.93 98.88 273.8 643 3.2 

Grass River above 
Standing Stone Falls 
(05TD001) 

55.74 97.01 265.0 15,400 64.6 

Gunisao River at Jam 
Rapids (05UA003) 

53.82 97.77 260.9 4,610 18.0 

Kettle River near Gillam 
(05UF004) 

56.34 94.69 164.7 1,090 13.2 

Limestone River near 
Bird (05UG001) 

56.51 94.21 173.6 3,270 21.5 

Odei River near 
Thompson (05TG003) 

55.99 97.35 253.5 6,110 34.3 

Sapochi River near 
Nelson House 
(05TG006) 

55.90 98.49 259.1 391 2.2 

Taylor River near 
Thompson (05TG002) 

55.48 98.19 236.2 886 5.1 

Weir River above the 
mouth (05UH002) 

57.02 93.45 125.8 2,190 15.6 

4.3.3. Methods 

A standalone model routes streamflow to the sub-basin outlet, which is then 

converted into precipitation equivalent units by dividing the corresponding sub-basin area. 

To aid our analyses of projected changes in streamflow, we evaluate several other variables 

such as total precipitation, air temperature, snowfall, rainfall, and VIC-simulated snow water 
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equivalent (SWE), and snowmelt. In the current implementation, VIC classifies total 

precipitation as 100% rainfall for temperature above 1.5°C, 100% snowfall for temperature 

below -0.5°C, and as a mixture of both for temperatures between these two thresholds. We 

perform analyses of the VIC variables using water years, defined as 1 October to 30 

September of the following calendar year. 

We consider each bias corrected climate model output as a valid approximation to the 

real climate (represented by HydroGFD); therefore, a multi-model ensemble (MME 

hereafter) approach is suitable for the projected climate change analysis (Christensen & 

Lettenmaier, 2007; Fowler et al., 2007; Mishra & Lilhare, 2016). Spatial patterns of the 

MME outputs (i.e., precipitation and air temperature) are reasonably similar across the basin 

under RCP 4.5 relative to RCP 8.5, with lower magnitudes; therefore, we present projected 

change analyses mainly for the high emission (RCP 8.5) scenario. Here, results from the 

MME are summarized using four statistics: the temporal mean and standard deviation of each 

model and the multi-model mean and intermodel variation using standard deviations. For 

each 30-year analysis period (i.e., the 1990s, 2030s, and 2050s) and a daily variable x and 

model i, we calculate the mean climatology (�̅i) and interannual standard deviation (�̅i). 

Further, the MME means of these quantities, �̅ and �̅, are calculated, while the intermodel 

variation is determined by the 5% to 95% model range in �̅i. 

We consider the highest performing VIC model simulation for each sub-basin from 

Chapter 3. Further, we evaluate the climate change impacts on several water balance terms 

simulated by VIC, i.e., evapotranspiration (ET), surface runoff, baseflow, and streamflow 

over the LNRB. Climate change impact assessment is carried out at annual and seasonal 

(winter: DJF, spring: MAM, summer: JJA, and autumn: SON) scales for the 2030s and 2050s 
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against historical (1990s) simulations. Moreover, to evaluate the projected changes in surface 

and sub-surface soil temperatures, we analyse the seasonal and annual mean of key outputs 

such as soil temperatures at three different depths (Table 4.3). Nonparametric statistical 

methods are employed to investigate temporal changes in simulated soil temperatures. These 

methods are generally considered to be more robust compared to parametric ones and are less 

affected by the presence of outliers or issues of non-normality (Burford et al. 2009; Déry and 

Wood 2005a; Gan and Kwong 1992). The Mann-Kendall test (Kendall, 1975; Mann, 1945) is 

used to examine the statistical significance of trends and Sen’s method (Sen, 1968) is used to 

obtain estimates of the trend magnitude. The presence of serial correlation can confound the 

identification of true trends; therefore, the data are examined for significant autocorrelation 

and then decorrelated (Yue et al., 2002) before applying both Sen’s and Mann-Kendall’s 

methods. We assume a 5% significance level to assess the significance of temporal trends 

throughout the study. 

4.4.  Results 

4.4.1. VIC Performance 

The NSE, KGE, and r values show generally good agreement between monthly 

simulated and observed streamflow, exhibiting NSE and KGE scores >0.6 for most sub-

watersheds (Figures 4.3 and 4.4). The calibrated streamflow, including the timing of runoff 

peaks and low-flow volumes, match closely those in observations for all sub-watersheds, 

except the Footprint, Gunisao, and Sapochi (Figure 4.5). Model performance is optimal at the 

Burntwood, Kettle, Limestone, Odei, Taylor, and Weir, with acceptable NSE, KGE, and r 

values in both calibration and evaluation (Figures 4.3 and 4.4). The LNRB sub-basins are 

well-calibrated considering the high-performance metrics, whereas relatively larger sub-
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watersheds with high PBIAS, especially the Grass and Gunisao, are the only sub-basins with 

low NSE values. Additionally, poor model performance in the southern LNRB may reflect 

the irregularity in input forcings where interpolation procedures commonly do not take 

available stations into account due to discontinuous records and data availability (Lilhare et 

al., 2019). Moreover, discrepancies in simulated flows may be associated with the lake and 

wetland algorithm represented by the VIC model version adopted for this study. However, 

there are eight out of ten LNRB sub-basins that have comparatively fewer such features, 

exhibit satisfactory results (NSE > 0.5) and modelling capacity of the VIC model (Figures 

4.3 and 4.4) (Lilhare et al., 2020). 

Table 4.3 The VIC model calibrated (1990s) values of the D1, D2, and D3 soil layer thicknesses for all sub-
basins of the LNRB. 

Sub-basin D1 (m) D2 (m) D3 (m) 

Burntwood 0.30 0.31 0.43 

Footprint 0.30 0.41 0.69 

Grass 0.30 0.63 1.49 

Gunisao 0.30 1.05 1.33 

Kettle 0.30 0.31 0.35 

Limestone 0.30 0.32 0.36 

Odei 0.30 0.31 0.36 

Sapochi 0.30 0.30 0.39 

Taylor 0.30 0.30 0.40 

Weir 0.30 0.31 0.40 

Mean 0.30 0.43 0.62 

 
  



104 
 

 
 

 

Figure 4.3 Spatial distribution of monthly calibration (1981–1985, 1995–1999) performance metrics, NSE, 
KGE, r (p < 0.05) and PBIAS, for ten selected sub-watersheds within the LNRB based on the HydroGFD-VIC 
simulations. 
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Figure 4.4 Spatial distribution of monthly validation (1986–1994) performance metrics, NSE, KGE, r (p < 0.05) 
and PBIAS, for ten selected sub-watersheds within the LNRB based on the HydroGFD-VIC simulations. 
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Figure 4.5 Simulated and observed daily runoff (mm day-1) averaged over water years 1981–2010 for the 
LNRB’s ten unregulated sub-basins. An external routing model is used to calculate runoff for the HydroGFD-
VIC simulations. Note that y-axis scales vary between panels. 

4.4.2. CMIP5 Precipitation and Air Temperature Climatology 

The bias-corrected and spatially disaggregated CMIP5 GCMs show satisfactory 

baseline precipitation and air temperature mean climatology by its pattern (Figure 4.6). The 

MME mean precipitation shows a projected increase in winter (~18%), spring (~26%), and 

autumn (~6%) over the northern and north-eastern LNRB for the 2050s while summer 
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precipitation is projected to decrease over the same period, particularly in the southern LNRB 

under RCP 8.5 (Figure 4.7). The spatial patterns of precipitation change are reasonably 

similar under RCP 4.5 relative to RCP 8.5, with lower magnitudes overall (figure not shown). 

The area-averaged mean daily climatology shows precipitation between November and April, 

approaching a maximum of 1.5, 3.0, and 2.5 mm day-1 in winter, summer, and autumn, 

respectively, for the 1990s (Figure 4.6). The maximum intra-seasonal variability for CMIP5 

MME precipitation takes place in summer and autumn when daily rates range from nearly 0 

to 1.5 mm day-1. Daily precipitation rates are projected to change less in winter and late 

spring than in summer and autumn, when rates are projected to increase, particularly in June 

and July. The range of intermodel variation for peak precipitation during summer varies 

between 1.5 and 3.5 mm day-1. 

 

Figure 4.6 Area-averaged water year cycles of CMIP5 Multi-Model Ensemble (MME) mean daily precipitation 
(a, b) and air temperature (c, d) over the LNRB for the 1990s (black), 2030s (blue), and 2050s (red) (RCP 4.5, 
left and RCP 8.5, right). Shading corresponds to intermodel ranges. 
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The MME mean air temperature is projected to increase with higher magnitudes 

under RCP 8.5 than RCP 4.5, during all seasons, in the 2050s (Figure 4.6). The mean air 

temperature increases in all seasons under RCP 8.5 but with lower magnitudes and similar 

patterns to the RCP 4.5 scenario (Figure 4.8). Absolute increases are more prominent in 

winter than in spring and summer, over the entire LNRB, for both pathways; however, 

projected warming is especially notable in the northern LNRB. Over the 1990s, air 

temperature remains below -10.0°C between November and March on average, then rises 

above 0.0°C in late spring inducing snowmelt across the LNRB (Figure 4.6). In the 2030s 

and 2050s, while the annual variation of air temperature remains similar to the baseline, a 

consistent increase from 2.0 to 4.0°C is projected for the basin average air temperatures. 

 

Figure 4.7 Projected changes (2050s-1990s; %) in the spatial distribution of precipitation during (a) winter, (b) 
spring, (c) summer, and (d) autumn for RCP 8.5. 
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Figure 4.8 Projected changes (2050s-1990s; °C) in the spatial distribution of air temperature during (a) winter, 
(b) spring, (c) summer, and (d) autumn for RCP 8.5. 

4.4.3. Projected Changes in VIC Simulated Variables 

For the BaySys project, we were interested in analysing the projected changes in 

water balance variables and soil temperature under a more extreme climate scenario (i.e., 

RCP 8.5). The spatial patterns of VIC simulated variables such as rainfall, snowfall, SWE, 

snow cover, and runoff for RCP 4.5 are similar to those for RCP 8.5, but with slightly lower 

magnitudes in the 2030s and 2050s (not shown); therefore, here we analysed only 

simulations under the RCP 8.5 scenario. While the total precipitation substantially increases 

(~15%) in the 2050s, the simulations project future increases of ~16% in mean annual 

rainfall and nearly 6% decreases in mean annual snowfall (Figure 4.9). The partitioning of 

MME mean daily precipitation into rainfall and snowfall exhibits substantial increases in 

summer rainfall towards the 2050s across the LNRB (Figure 4.10: a, b). The increase in 

rainfall persists, especially in June and July, with >6.0 mm day-1 in the latter half of the 21st 

century (Figure 4.10a). Daily snowfall shows higher values during the early winter months 
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(November and December). Warming temperatures and reduced snowfall produce 

considerable changes in snow accumulation and ablation seasons (Figure 4.10: c, d). 

 

Figure 4.9 Future changes (2050s-1990s; %) in the spatial distribution of mean annual (a) rainfall, (b) snowfall, 
and (c) total precipitation for RCP 8.5. 

Day-to-day SWE accumulation declines while its seasonality shifts over the 2050s, 

with more noticeable changes relative to the 1990s across the LNRB (Figure 4.10c). The 

length of the snow accumulation season is nearly 15 to 30 days shorter in the 2050s, relative 

to the 1990s. The magnitude and seasonality of snowmelt, which is responsible for 

generating high flows typically in April or May, show earlier snowmelt freshets in the future 

and increased snowmelt volume (Figure 4.10d). The increase in daily runoff is much more 

evident in the 2050s due to earlier snowmelt, which contributes to spring and summer flows. 

The future evolution of runoff seasonality shows that while the dominant snowmelt-

generated peak flow shifts earlier by ~15 days, spring and summer runoffs are most 

pronounced during the 2050s. Furthermore, the low-flow period occurs historically in winter 

in all LNRB sub-basins (Figure 4.11). Streamflow starts to increase in spring, peaks in 

summer, and eventually declines in autumn. While this overall seasonal pattern continues in 

the future, the timing of seasonal flows shows a shift of approximately 15 to 20 days, and 
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flow occurs earlier for RCP 8.5 with the intermodel spread of nearly five days (Figure 4.11). 

Flows start increasing in mid-spring, followed by an earlier and steeper recession in mid-

summer. Daily mean runoff of the Footprint, Kettle, Limestone, Odei, Sapochi, Taylor, and 

Weir sub-basins exhibits similar features; however, a noticeable difference in the Grass and 

Gunisao is the change in timing of runoff peak (Figure 4.11). The peak in these two rivers 

varies between 15 and 20 days (median values) for RCP 8.5 with a range of nearly 10 days. 

 

Figure 4.10 VIC partitioned CMIP5 MME (1981-2070) mean total precipitation into (a) daily rainfall and (b) 
snowfall; CMIP5-VIC-simulated (c) mean ΔSWE (daily SWE rate) and (d) snowmelt, in (c) values greater than 
0 represent snow accumulation, while those below 0 indicate snow ablation; VIC-simulated MME (e) mean 
daily runoff for the LNRB. All values are spatial averages over the basin under RCP 8.5 scenario. Units are mm 
day-1. Runoff units are an equivalent regional average rainfall rate rather than a discharge rate.  
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Figure 4.11 The VIC-CMIP5 MME mean daily runoff for the LNRB’s sub-basins. Black, blue, and red curves 
represent the daily climatology for the base period (1990s), 2050s RCP 4.5, and 2050s RCP 8.5, respectively. 
Shading corresponds to intermodel uncertainties. 

4.4.4. Intermodel Uncertainties in the Projected Water Balance Terms 

In all LNRB sub-basins, ET is projected to increase by 5% and 15% in the 2030s and  

2050s, respectively under both scenarios with 5-10% intermodel uncertainty (Figure 4.12: a, 

b). The large intermodel uncertainties (both in the 2030s and 2050s) in ET estimates, 

especially in the Grass, Gunisao, and Weir, highlight less robust changes with respect to 
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historic climate. Under the RCP 8.5 scenario, several basins are projected to experience 

>10% increase in ET with considerable intermodel variation, which can be attributed to 

substantial warming, while the modest rise in rainfall reveals excess water over these sub-

basins. Moreover, the ensemble mean surface runoff is projected to increase in all sub-basins 

in the 2030s and 2050s under both scenarios (Figure 4.12: c, d). Projected surface runoff is 

higher for the Gunisao and Grass with more substantial intermodel variation than that of 

other rivers. The ensemble mean surface runoff is projected to increase more than 25% in all 

sub-basins under the RCP 8.5 scenario by the 2050s. Similar to the ensemble mean projected 

change in surface runoff, annual streamflow is projected to increase in the majority of sub-

basins (Figure 4.12: e, f). However, in the 2030s, there are considerable intermodel variations 

for projected changes in surface runoff and streamflow. For instance, under both scenarios, 

only three river basins (Gunisao, Grass, and Weir) are projected to experience large increases 

(50-100%) with substantial intermodel uncertainty, whereas others are projected to 

experience modest (10-15%) increases in annual streamflow. Results show that the majority 

of LNRB sub-basins are projected to experience a rise of 20-50% in annual streamflow, with 

more robust increases likely in the 2050s. 
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Figure 4.12 The MME mean projected changes (%) in (a, b) ET, (c, d) surface runoff, and (e, f) streamflow at 
annual scale under RCP 4.5 and 8.5 scenarios for the 2030s and 2050s with respect to the base period (1981–
2010). Bars show MME mean change, while error bars show intermodel variation using one standard deviation. 
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4.4.5. Projected Changes in Soil Thermal Regime 

In this section, we analyse changes in soil temperature profiles simulated by the VIC 

model at three different depths. The calibrated soil depths D2 and D3 vary for each sub-basin 

within the range of 0.3-1.5 m, while D1 (0.3 m) remains static across the LNRB (Table 4.3). 

The VIC model simulated monthly mean soil temperatures at D1, D2, and D3 over a 10 km 

grid are evaluated against point observations (Sutton et al., 1999) that show satisfactory 

results (monthly NSE ranges from 0.6 to 0.8 and r > 0.9) (Figure 4.13). However, VIC 

version 4.2.d exhibits issues with the computation of soil layer temperatures when soil 

thermal nodes do not reach the bottom of the soil column (Hamman, Nijssen, Bohn, Gergel, 

& Mao, 2018). Consequently, modelled soil temperatures for D2 and D3 match the 

seasonality reasonably well but do not capture the peaks and troughs when compared to the 

observations (Figure 4.13). Furthermore, the VIC simulated average annual soil temperature 

climatology is consistent with observations at 0.3 to 0.6 m depths that show ~2.0°C during 

the 1990s over northern Manitoba and in the LNRB (Beltrami, Gosselin, & Mareschal, 2003; 

Rouse, 1984; Zhang, Chen, Smith, Riseborough, & Cihlar, 2005). The MME mean annual 

soil temperatures for all three layers show changes of 1.0°C and 2.2°C during the 2030s and 

2050s, respectively (reference period 1990s) under RCP 8.5 across the study domain (Table 

4.4). The soil temperatures show the greatest changes in summer (1.8-3.4°C) followed by 

autumn (1.5-2.4°C), spring (0.7-2.7°C) and winter (0.5-1.1°C) during the 2030s and 2050s 

(Table 4.4). These long-term soil temperature changes (1.0-2.2°C) exhibit a positive 

relationship with baseflow changes (14.8%-19.1%) across the study domain (Tables 4.4, 4.5 

and 4.6).  
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Table 4.4 The MME mean projected seasonal and annual changes, 2030s-1990s and 2050s-1990s, in VIC 

simulated soil temperatures at D1, D2, and D3 under RCP 8.5 across the study domain. 

Timeline 
(2030s-1990s) (℃) (2050s-1990s) (℃) 

D1 D2 D3 D1 D2 D3 

Winter 0.5 0.6 0.5 1.2 1.1 0.8 

Spring 1.6 1.1 0.7 2.7 2.0 1.2 

Summer 1.9 2.0 1.8 3.2 3.4 3.0 

Autumn 1.5 1.5 1.5 2.2 2.2 2.4 

Annual 1.4 1.3 1.1 2.3 2.2 1.9 

 

Table 4.5 The MME mean projected annual trend magnitudes (30 years) of VIC simulated D3 soil temperatures 
(°C 30-year-1) and baseflows (mm 30-year-1) under RCP 8.5 for the 1990s, 2030s, and 2050s. Trend plots are 
provided in Figure 4.18 (all significant). 

Sub-basin 

D3 soil temperature 
(°C 30-year-1) 

Baseflow (mm 30-year-1) 

1990s 2030s 2050s 1990s 2030s 2050s 

Burntwood 0.7 0.9 1.2 16.1 15.1 17.1 

Footprint 0.7 1.0 1.2 16.6 16.0 18.1 

Gunisao 0.5 1.1 1.4 11.9 12.6 8.6 

Grass 0.5 0.9 1.1 19.0 23.0 17.8 

Kettle 0.6 0.9 1.1 17.2 22.4 14.0 

Limestone 0.6 0.9 1.1 15.2 22.2 12.4 

Odei 0.6 1.0 1.2 15.4 19.5 16.0 

Sapochi 0.6 1.0 1.2 15.3 19.1 15.9 

Taylor 0.6 1.0 1.2 15.4 18.9 16.1 

Weir 0.6 0.9 1.2 15.0 22.0 12.2 

Mean 0.6 1.0 1.2 15.7 19.1 14.8 
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Figure 4.13 The VIC model simulated (red) vs observed (black) monthly mean soil temperatures (June 1994 to 

December 1998) at three depths (D1, D2, and D3) over one grid cell (latitude: 55.8°N, longitude: 98.7°W) 

within the LNRB. Black dashed line shows 0°C. 
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Figure 4.14 The MME mean projected (a) winter (b) summer and (c) annual trends of VIC simulated soil 
temperatures at D1 (red), D2 (black), and D3 (blue) under the RCP 8.5 scenario over the LNRB sub-basins. The 
solid (dashed) trend lines show significant (insignificant) trends for the 1990s, 2030s, and 2050s and shading 
corresponds to intermodel uncertainties. Black dashed lines show 0°C. Trend magnitudes are provided in Table 
4.6. 
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Table 4.6 The MME mean projected seasonal and annual trend magnitudes (all significant) (30-years) of VIC 

simulated soil temperatures at D1, D2, and D3 under RCP 8.5 across the study domain. Trend plots are provided 

in Figure 4.14. 

Timeline 
D1 (℃ 30-year-1) D2 (℃ 30-year-1) D3 (℃ 30-year-1) 

1990s 2030s 2050s 1990s 2030s 2050s 1990s 2030s 2050s 

Winter 0.4 0.9 1.1 0.4 0.8 0.9 0.4 0.5 0.6 

Spring 1.0 1.8 1.7 0.9 1.3 1.4 0.5 0.6 0.8 

Summer 0.7 1.5 2.2 0.8 1.6 2.2 0.9 1.5 2.1 

Autumn 0.5 1.0 1.0 0.6 1.0 1.1 0.5 1.1 1.2 

Annual 0.7 1.3 1.5 0.7 1.2 1.4 0.6 1.0 1.2 

A significant increase in the MME mean annual and seasonal soil temperatures 

appears in all soil layers (Figure 4.14), with the MME mean maximum positive changes of 

1.3°C and 2.3°C during the 2030s and 2050s, respectively across the domain (Table 4.6). The 

annual trend analyses reveal D1 as the warmest among all other soil layers with significant 

positive trends ranging from 1.4 to 1.6°C 30-year-1 during the 2030s and 2050s (Table 4.6 

and Figure 4.14). The MME mean soil temperature under RCP 8.5 projects summer warming 

of ~5℃ (across all sub-basins), but lesser changes are projected for winter, spring, and 

autumn. In spring and autumn, D2 and D3 show similar changes and overlap during the 

projected period, whereas D1 is the warmest soil layer in spring and coldest in autumn 

(figure not shown). Trend estimates of mean annual soil temperature for the historic period 

suggest significant warming (range from 0.6 to 0.7°C 30-year-1) for all layers and sub-basins 

(Table 4.6 and Figure 4.14). However, for future climate conditions, the maximum positive 

trends are observed for the D1 soil temperature in winter and summer where the trend 

magnitudes lie within the 0.7-1.3°C and 1.8-2.2°C 30-year-1 range, respectively. The increase 

in summer soil temperatures exceeds that for winter. The Gunisao sub-basin during winters 

in the 1990s exhibits insignificant decreasing trends (-0.1°C 30-year-1) for D1 and D2. 
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4.4.6. Long Term Projected Changes in the LNRB’s Hydrology and Soil 

Temperatures 

To better understand climate change impacts on the overall hydrology of the domain, 

the MME mean annual projected changes, relative to the 1990s, in precipitation, air 

temperature, surface runoff, ET, total soil moisture, soil temperature (D3), and baseflow are 

then intercompared spatially under RCP 8.5 (Figures 4.15, 4.16, and 4.17). Precipitation and 

air temperature changes are relatively smaller in the 2030s than 2050s, where the LNRB 

attains positive changes of 4-8% and 2.0-3.5°C, respectively across the LNRB (Figure 4.15). 

These positive changes increase in the 2050s for both precipitation (10-15%) and air 

temperature (3.5-4.5°C) and show wetting and warming trends across the domain. The 

northern LNRB shows more modest increases (10%) whereas the south-eastern and central 

sections exhibit 20-40% decreases in surface runoff during the 2030s and 2050s (Figure 4.15: 

e, f). Moreover, other water balance variables such as ET and total moisture of the soil 

column show projected increase (5-25%) and decrease (5-15%), respectively across most of 

the LNRB in the 2030s and 2050s (Figure 4.16). Increasing ET reduces the surface and sub-

surface moisture content; therefore, total soil moisture decreases >15% over the south-eastern 

LNRB in the 2030s and 2050s. ET increases from 10-15% to 20-30% whereas soil moisture 

decreases <10% in the 2050s over north-central and southern sections of the LNRB. The soil 

temperature climatology for the 1990s ranges from 0.5-1.5°C and 2.0-3.0°C over the north-

eastern and south-western part of the domain, respectively. Projected changes in soil 

temperature are more modest in the 2030s than in the 2050s, when the LNRB experiences 

rises of ~0.5-1.0°C across the domain (Figure 4.17). The D3 soil temperatures increase in the 

2050s and range from 2.0-3.5°C across the LNRB. An increase in soil temperature reduces 
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the presence of frozen ground across the domain; therefore, these soil warming trends 

substantially increase infiltration that result in the highest changes in baseflow of 50-60% and 

>80% over the north-eastern LNRB in the 2030s and 2050s, respectively. The rest of the 

domain experiences >40% increases in baseflow during both future timelines. 

 

Figure 4.15 The MME mean projected changes (reference period 1990s) (a, b) % for precipitation, (c, d) °C for 

air temperature, and (e, f) % for surface runoff in the 2030s and 2050s under the RCP 8.5 scenario over the 

LNRB. 

 

Figure 4.16 The MME mean projected % changes (reference period 1990s) in (a, b) ET and (c, d) total soil 

moisture for the 2030s and 2050s under RCP 8.5 scenario over the LNRB. 



122 
 

 
 

Over the 2050s, the MME mean annual baseflow continues to increase due to the 

warmer D3 soil temperatures under the RCP 8.5 scenario that may reduce the presence of 

frozen ground and degrade permafrost (Figure 4.18). A significant positive relationship is 

observed between the MME mean annual baseflow and D3 soil temperature over all LNRB 

sub-basins. The MME mean annual D3 soil temperatures are projected to increase between 

1.0℃ to 1.2℃ 30-year-1 during the 2030s and 2050s (Table 4.5). Similarly, baseflows among 

the LNRB’s sub-watersheds are projected to increase between 13.0 mm to 14.8 mm 30-year-1 

during the 2030s and 2050s. The MME mean annual D3 soil temperatures exhibit an overall 

increase of ~2°C across the study domain by 2070 (Figure 4.18). Late winter and spring 

flows are expected to increase substantially in the future due to warming soil temperatures 

that result in increased baseflow (Table 4.7). 

The simulated MME mean seasonal baseflow increases during the 2030s and 2050s 

(reference period 1990s) in winter and spring (Table 4.7). With the absence of snowmelt in 

winter, total runoff derives mainly from subsurface flow, which shows 80.9% and 177.2% 

increases over the LNRB during the 2030s and 2050s, respectively. Baseflow exhibits the 

most considerable change in spring relative to other seasons during the 2030s and 2050s 

attaining 213.5% and 400.3%, respectively (Table 4.7). Snowmelt contributes significantly to 

total runoff during spring; however, projected runoff increases in this season are mainly due 

to a projected increase in precipitation and soil temperature. Summer shows minimal 

projected changes in baseflow during the 2030s and 2050s, where reductions appear for the 

Odei, Sapochi, and Taylor sub-basins, ranging from -3.3% to -1.9% under the RCP 8.5 

scenario (Table 4.7). These changes indicate that in summer, water originates from projected 

increases in precipitation and resulting surface runoff in these sub-basins. Furthermore, the 
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VIC simulated historic and projected precipitation partitioning in water balance variables 

suggests relatively greater precipitation partitioning to surface runoff and baseflows than ET 

in the 2030s and 2050s when compared to the 1990s (Table 4.8). The percentage of 

evaporative fraction (ET/P) for the historic climate reaches 73% but diminishes to 70% by 

the 2050s. The percentage of surface runoff (SR/P) and baseflow (BF/P) fractions increase 

~2% by the 2050s (Table 4.8). 

 

Figure 4.17 The MME mean projected annual climatology (1990s) of VIC simulated (a) D3 soil temperature 
(°C) and (d) baseflow (mm) under RCP 8.5 scenario over the LNRB. The second and third rows show changes 
(reference period 1990s), (b, c) °C for soil temperature, and (e, f) % for baseflow, in the 2030s and 2050s, 
respectively. 
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Table 4.7 The MME mean projected seasonal and annual changes, 2030s-1990s and 2050s-1990s, in VIC 
simulated baseflow under RCP 8.5 over all sub-basins across the study domain. 

Sub-basins 

% Change in baseflow (RCP 8.5), reference period: 1990s 

Winter Spring Summer Autumn Annual 

2030s 2050s 2030s 2050s 2030s 2050s 2030s 2050s 2030s 2050s 

Burntwood 128.5 277.8 185.2 355.6 1.9 13.4 -2.8 17.0 18.9 47.4 

Footprint 137.2 300.3 176.0 335.4 1.8 12.3 0.2 18.4 19.4 46.8 

Gunisao 55.7 107.7 158.4 254.7 3.7 13.4 -1.3 3.9 15.4 30.7 

Grass 41.5 84.9 272.6 511.1 8.0 21.5 13.3 23.9 21.4 42.2 

Kettle 37.3 77.4 241.5 458.3 12.2 29.7 12.2 23.9 22.6 45.8 

Limestone 42.6 89.7 241.2 471.2 11.4 34.2 14.0 31.6 22.9 50.7 

Odei 105.2 240.7 202.0 375.0 -1.9 8.2 11.7 27.2 18.6 41.8 

Sapochi 102.6 235.4 200.2 370.8 -3.0 6.9 11.4 26.7 18.3 41.4 

Taylor 102.6 233.1 198.5 366.6 -3.3 6.6 11.1 26.1 18.1 40.9 

Weir 55.3 125.6 259.0 503.9 5.9 27.2 11.1 29.4 19.9 47.8 

Mean 80.9 177.2 213.5 400.3 3.7 17.3 8.1 22.8 19.6 43.5 

 

Figure 4.18 The MME mean projected annual trends of VIC simulated D3 soil temperature (red) and baseflow 
(black) under RCP 8.5 scenario over the LNRB sub-basins. The solid trend lines show significant trends for the 
1990s, 2030s, and 2050s and shading corresponds to intermodel uncertainties. Trend magnitudes are provided in 
Table 4.5. 
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Table 4.8 The MME mean historic (1990s) and projected (2030s and 2050s) annual precipitation (P) 

partitioning in % within water balance components (ET, surface runoff (SR), and baseflow (BF)) under RCP 8.5 

for all ten sub-basins. 

Sub-basins 
1990s (%) 2030s (%) 2050s (%) 

ET/P SR/P BF/P ET/P SR/P BF/P ET/P SR/P BF/P 

Burntwood 75 16 9 73 17 10 72 17 11 

Footprint 72 18 10 70 18 11 70 18 12 

Gunisao 81 9 11 79 9 12 77 10 13 

Grass 71 16 13 69 16 15 68 16 16 

Kettle 72 17 11 70 17 13 68 17 15 

Limestone 73 17 10 71 17 12 69 18 13 

Odei 71 18 11 69 18 13 68 19 14 

Sapochi 72 17 11 70 18 12 68 18 13 

Taylor 72 18 11 70 18 12 68 18 14 

Weir 73 18 10 71 18 12 69 18 13 

Basin average 73 16 11 71 17 12 70 17 13 

 

4.5.  Discussion 

4.5.1. Projected Changes in the LNRB’s Hydrology 

Projected precipitation changes are more variable, especially between the southern 

and north-eastern parts of the LNRB, due to an overlap between model grids. Changes in the 

partitioning of precipitation between rainfall and snowfall significantly impact the seasonal 

SWE distribution in the LNRB. During late spring, snowmelt events increase overall in the 

future, likely due to more frequent warming episodes across the LNRB by the 2050s. The 

changing phases of projected precipitation in spring and winter induce seasonal shifts in 
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runoff during the 2050s (RCP 8.5). Moreover, the early decline of future SWE storage, due to 

snowpack depletion, in most of the sub-basins induces seasonal shifts in spring and summer 

runoffs that, in turn, lead to lower runoff in autumn. Furthermore, a shift from snowfall to 

rainfall leads to a decrease in surface runoff over the south-eastern LNRB, consistent with 

other previous studies (Berghuijs, Woods, & Hrachowitz, 2014; McCabe, Wolock, & 

Valentin, 2018). However, spatial plots indicate an increase (>20%) in surface runoff by the 

2050s over some parts of the northern LNRB that is concomitant with increased rainfall and 

snowfall (Figures 4.9: a, b and 4.15f). 

The uncertainty in projected water balance estimates increases in the 2050s due to the 

large intermodel variation. The higher intermodel variations arise from disagreement between 

GCMs in their simulations of precipitation and air temperature over the study domain, thus 

leading to less robust changes in surface runoff and streamflow. Previous studies argued that 

there remains considerable uncertainty in projections of seasonal precipitation across the 

globe, which could largely be attributed to a lack of understanding in physical processes by 

climate models (e.g., de Elía et al., 2008; Fekete et al., 2004; Gelfan et al., 2017; Turner and 

Annamalai, 2012). It is expected that RCP differences will be more significant by the end of 

the 21st century than they are in the 2050s (Islam, Déry, & Werner, 2017; Mishra & Lilhare, 

2016; Poitras, Sushama, Seglenieks, Khaliq, & Soulis, 2011). Despite uncertainties, our 

results fill existing gaps in projected precipitation transitioning, with relatively less snowfall 

over the LNRB. In cold regions, such changes are strongly coupled with projected changes in 

precipitation and air temperature along with latitudinal differences in the sub-basins. Future 

water availability in most of the sub-basins is likely to be driven by changes in snowmelt and 

precipitation. Part of this change appears to relate to increased precipitation, air, and soil 
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temperatures. Part of the temperature link may involve increased snowmelt in the headwaters 

of these river systems. 

 

Figure 4.19 Schematic representation of the projected hydrology in warmer and wetter climate over the LNRB. 
Positive and negative signs show indicate the direction of changes, respectively in the water balance terms and 
thermodynamic states relative to the 1990s. 

 Future warming may lead to increased atmospheric losses; therefore, relatively higher 

increases in annual ET can be attributed to significant increases in precipitation and air 

temperature during late summer and autumn (Figure 4.19). Tam et al. (2019) reported 

increased water deficits during spring to autumn over the mid-latitudes and Nelson River, 

and the ET is controlled by both water and energy availability that can limit atmospheric 

demands. Our analyses show that increases or decreases in surface runoff under the projected 

climate can be attributed to changes in precipitation type (solid and liquid) and play a crucial 

role in the LNRB’s hydrology. Our findings over the LNRB are consistent with the existing 

literature, which indicates that mid-latitudes may become drier in a warmer climate (Cook, 

Smerdon, Seager, & Coats, 2014; Held & Soden, 2006; Jeong, Sushama, & Naveed Khaliq, 
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2014; Swain & Hayhoe, 2015). However, there are considerable uncertainties in observations 

and climate model performances over northern Manitoba including the LNRB (de Elía et al., 

2008; Lilhare et al., 2019; Tam et al., 2019), which translate to the overall uncertainty in 

climate change impact assessments. 

4.5.2. Warming Impacts on Soil Temperatures and Baseflows 

Our results show that air temperature mainly drives precipitation partitioning in a 

warmer and wetter climate. Surface and sub-surface temperature warming may lead to the 

formation of unfrozen zones across the LNRB, thus providing more baseflow in cold seasons. 

Soil temperature warming also allows for more infiltration in a projected future climate 

(Figure 4.19). This results in increased ET and baseflow and contributes to the overall 

increased river discharge. Results show that changes in runoff depend on how changes in 

individual water balance components vary spatially, and the extent to which ET varies across 

different areas of the landscape is energy limited or water limited (Koster and Suarez 1999; 

Christensen et al. 2008; Gao et al. 2011). ET is energy limited in areas where there is ample 

supply of water with respect to the available energy: in these areas, increases in available 

energy in a warmer climate yield increases in ET. However, in many areas across the LNRB, 

ET is limited by the spatial distribution of lakes and wetlands across the LNRB or the amount 

of vegetation-available water during the growing season, which is controlled by changes in 

winter and summer precipitation, rain–snow partitioning, and timing of snowmelt. For 

example, the Grass sub-basin, which has a high wetland concentration, shows ~12% increase 

in ET and the highest positive changes in baseflow among all other sub-basins. Overall, soil 

temperature warming yields increases in ET and streamflow across the domain where such 
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cold and warm season interactions play an important role in partitioning of precipitation 

between water balance variables. 

Future warming impacts on the overall water cycle are evident in the present study 

(Figure 4.19). Increased soil temperature and earlier snowmelt can result in increased stream 

temperatures, especially during summer, and affect aquatic ecosystems (Ficklin, Stewart, & 

Maurer, 2013). Our results suggest that, as warming continues, air and soil temperature may 

become a more significant control of ET, surface runoff, and baseflow for arctic and sub-

arctic watersheds. Comparable results of increasing mean annual and winter flows have been 

addressed in northern Eurasia, under permafrost and non-permafrost regions (Smith, Sheng, 

& MacDonald, 2007), and over the permafrost-underlain Yukon River basin (Walvoord & 

Striegl, 2007) and the Northwest Territories in Canada (St. Jacques & Sauchyn, 2009). 

Increasing low flows in the LNRB suggest a broad-scale recent mobilization of subsurface 

water into rivers. This increase of baseflow, probably from soil and groundwater inputs into 

rivers, suggests permafrost thawing (Smith et al., 2007; Walvoord & Striegl, 2007). These 

processes are adequately supported by physical evidence of permafrost degradation, such as 

thermokarst processes, warmer springs and streamflow seasonality, in the Hudson Bay 

drainage basins including the LNRB (Stadnyk et al., 2019). The LNRB has experienced 

significantly increasing maximum and minimum seasonal and annual temperatures in the 

historical and future timelines, which would promote permafrost decay (Zhang, Vincent, 

Hogg, & Niitsoo, 2000). We quantified that the greater soil temperatures resulting from 

future warming could alter late spring and summer streamflow by allowing for more 

infiltration, delaying the runoff response to precipitation events across selected watersheds. 

Our results suggest that future soil warming may yield increased soil infiltration, stream 
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network interconnectivity, subsurface water movement, and shifts in water storage from lakes 

and wetlands to soil and groundwater and then to increased baseflow (e.g., Grass sub-basin). 

Regardless of the exact mechanism in each circumpolar subarctic locality, the findings of 

increased baseflows throughout much of the LNRB presage a growing role of groundwater 

processes in the high latitude water cycle under projected climate. As has been suggested by 

other researchers (e.g., Smith et al., 2007), this could mean shifts from “above-ground” to 

“below-ground” water storage and increased unsaturated zone storage, soil infiltration, and 

groundwater movement in permafrost and seasonally frozen ground regions. 

4.6.  Conclusions 

Climate change impacts may induce considerable hydro-climatic alterations in mid-

latitude rivers across the globe. Results obtained in this study provide useful information 

related to these changes in key hydrological terms under projected warming, rainfall, and 

snowfall changes over the LNRB. In such a basin, where multiple hydroelectric facilities are 

situated, understanding of water balance alterations due to climate change is essential. Using 

the CMIP5 projections and VIC hydrological model, this study demonstrates that in a warmer 

climate, changes in rainfall and snowfall play a crucial role in altering water cycle 

components (i.e., ET, surface runoff, and streamflow) at the sub-basin scale. Overall, our 

results suggest that the projected rainfall and snowmelt increase rapidly, which contribute to 

substantially more runoff. Despite intermodel uncertainty, many of the LNRB sub-basins are 

projected to shift in the warmer and wetter climate. The percentage of an evaporative fraction 

(ET/P) for the current climate is 73% over the LNRB, indicating that water loss in this region 

is dominated by evaporative processes and not runoff, which accounts for only 27% of the 

annual precipitation. However, the evaporative fraction percentage decreased from 73% in 
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the current climate to 70% in the future, indicating a trend toward a wetter climate and 

increased runoff despite an optimistic precipitation scenario. Projected seasonal and annual 

trends in soil temperature are most pronounced by the 2050s across the LNRB. Warmer 

temperatures in the soil column will allow more infiltration, contributing to more 

groundwater movement into river channels in autumn, seen as increased early winter 

discharge. 

Streamflow and water availability appear to increase during summer in the 2050s, and 

water resources managers may experience more significant year-to-year variability and 

uncertainty in flows due to rapid snowmelt, more rainfall, reduced snowpacks, and warming 

soil temperatures. While results reported in this study are not precise representations of 

projected runoff, streamflow, and other water balance changes due to several computational 

limitations, dataset and modelling uncertainties (i.e., land cover, future climate data, and 

regulation), they nevertheless provide valuable insight to the projected hydrological state of 

the LNRB. Moreover, future work is essential to understand the balance between water 

availability and water demands in different seasons in the LNRB. To reduce uncertainty in 

future projections, more climate and hydrologic model ensemble members will be desired 

with better representation of water diversions, and parameterization of permafrost and snow-

related processes over the LNRB. 
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CHAPTER 5:  CONCLUSIONS 

Hydrological modelling has been used globally to assist with decision-making and the 

implementation of adaptation measures in response to climate change. Streamflow is a major 

component of the surface water balance, and numerous uncertainties (i.e., input data, model 

structure, and parameters) remain challenging when applying land surface models for both 

historical and future projection modelling. These elements have not been commonly 

integrated in previous studies over a sub-arctic domain across a permafrost gradient, such as 

in northern Manitoba, Canada (i.e., LNRB). Therefore, this dissertation presents new 

knowledge on various climate data performances as well as input data selection for 

hydrological modelling (i.e., the VIC model) studies. Moreover, this study performs 

comprehensive VIC model parameter sensitivity and uncertainty analyses and projected 

climate change impacts on overall water balances due to future soil temperature warming and 

increasing baseflows. Outcomes of this research are anticipated to provide an enhanced 

understanding in adaptation strategies and decision-making for future water management and 

regulation developments in the study region. 

5.1.  Major Findings 

Findings presented in Chapter 2 of this dissertation (Lilhare et al., 2019) show that 

annual precipitation from the global reanalysis products ERA-I and WFDEI exceeds that 

from the ANUSPLIN, IDW, NARR, and HydroGFD datasets over the LNRB during 1981– 

2010. The NARR dataset shows greater disagreement, exhibiting a warm bias of ~1.0°C for 

mean annual air temperature relative to all other datasets. The ERA-I, WFDEI, and 

HydroGFD (IDW, NARR, and WFDEI) exhibit wet (warm) biases over the central and 

southern LNRB. There is considerable disparity among all datasets in annual precipitation 
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trends with wetting trends (10.0-30.0 mm decade−1) for all sub-watersheds except 

ANUSPLIN (1.0-10.0 mm decade-1) and IDW (1.0-5.0 mm decade-1). Mean air temperature 

trends generally agree across most of the datasets; however, the NARR and IDW show 

stronger warming relative to other datasets. The Ensemble air temperature does not exhibit 

any significant warming across the study domain; however, it shows warming of 0.1-0.6°C 

decade−1 across the LNRB. In this chapter, I conclude that the input dataset selection plays a 

crucial role in hydro-climatic studies, particularly when assessing hydro-climatic trends for 

the LNRB. 

In Chapter 3 (Lilhare et al., 2020) of this dissertation, I evaluate uncertainties propagated 

through different climate datasets, examined in Chapter 2, where outcomes suggest that the 

Ensemble-VIC simulations closely match observed streamflow (NSE and KGE ≥ 0.5). In 

contrast, global reanalysis products such as ERA-I and WFDEI yield high flows (0.5-3.0 mm 

day-1) with an overestimation of 10-60% in seasonal and annual water balance terms. Overall, 

the Ensemble-VIC shows a better representation of each water balance term (i.e., total runoff, 

soil moisture, and ET) followed by the HydroGFD-VIC and NARR-VIC simulations across 

the study domain. VIC parameters exhibit seasonal importance in VARS analysis, where the 

second soil layer depth (D2) and variable infiltration curve parameters (binf) emerge as the 

most sensitive parameters at the annual and seasonal scales. Uncertainty propagated through 

different climate datasets in the VIC water balance estimation is most evident in the central 

and southern part of the LNRB due to disagreement between input forcing over these regions. 

The likelihood distributions of VIC parameters reveal parameter ranges for model calibration 

in similar hydro-climatic environments, which reduces computational time and modelling 

efforts. Moreover, the uncertainty envelope in streamflow prediction is presented for all sub-
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basins, in which input forcing data and model structure are held constant, and the entire 

uncertainty in streamflow simulation may be attributed to VIC parameters. 

Chapter 4 of this dissertation investigates the impacts of future warming across a 

permafrost gradient in the study domain. Results show a 10% decrease and 15-20% increase 

in the projected annual snowfall and precipitation, respectively over the southern LNRB by 

the 2050s. Snow accumulation is projected to decline across all sub-basins, particularly in the 

lower latitudes of the LNRB. Projected uncertainties in major water balance terms (ET, 

surface runoff, and streamflow) are more substantial in the Gunisao and Grass than other sub-

basins. The LNRB is projected to experience a warmer and wetter climate, with an 

evaporative fraction (ET/P) that remains 70% by 2050. The percentage of surface runoff 

(SR/P) and baseflow (BF/P) fractions increase ~2% in the 2050s. Future warming increases 

soil temperatures >2.5°C by the 2050s and results in 40-50% more baseflow. Further 

analyses of soil temperature trends at three different soil depths (D1, D2, and D3) show the 

most pronounced warming of 1.6°C 30-year-1 in the 2050s in the top soil layer (D1), whereas 

baseflows increase significantly by 14.0 (26.7) % during the 2030s (2050s). 

5.2.  Recommendations 

This research provides a detailed intercomparison of available gridded climate datasets 

but does not include data homogeneity tests. Moreover, all datasets should be tested over 

different regions and for different time spans as suggested in both this research as well as 

previous studies (Choi et al., 2009; Eum et al., 2014; Mesinger et al., 2006). Future work 

should incorporate other recently developed datasets for intercomparison such as the 

Canadian Precipitation Analysis (CaPA) (Fortin et al., 2018; Mahfouf et al., 2007), Daymet 

(daily surface weather data on a 1-km grid for North America, version 3) (Thornton et al., 
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2016), and ERA5-Land (Copernicus Climate Change Service, 2017; Hersbach et al., 2018). 

The NARR precipitation, WFDEI air temperature, and HydroGFD precipitation and air 

temperature more closely resemble observations and may perform better in similar 

topography and hydro-climatic conditions. However, it is recommended that combining 

available gridded datasets and generating an equally weighted hybrid climate product (i.e., 

Ensemble) can provide a reliable long-term climate dataset for hydro-climatic studies. 

Further, assimilation of in situ measurements in gridded climate datasets and advanced 

interpolation methods may significantly improve the performance of climate data, especially 

in the LNRB. 

The VIC parameter sensitivity analyses show D2 and binf as the most sensitive 

parameters across the LNRB. The sensitivity analyses also recommend parameter ranges, for 

example, binf (0.3-0.4), D2 (0.3-0.4 m), D3 (0.6-0.7 m), Ds (0.7-0.8), Dsmax (15-18 mm 

day-1), and Ws (0.2-0.3), to reduce calibration and modelling efforts in similar hydro-climatic 

regimes. However, apart from these six soil parameters, it is recommended that the VIC 

modelling community expands the VARS analysis using other parameters such as for ET and 

snow. The SA analyses, in this project, show that users should select SA criteria in alignment 

with their final goals of the modelling application (e.g., flood forecasting, drought analysis, 

or water balance assessment). Regardless of the metric of choice, often a limited number of 

parameters controls the majority of model response variations. The SA results provide a list 

of the most influential VIC parameters over sub-arctic regions to generate reliable modelling 

results. Therefore, these may reduce calibration efforts and computational burdens in similar 

hydro-climatic conditions. The VIC users should therefore prioritize influential parameters 

during model calibration for similar physical and climatic environments. 
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Results obtained in Chapter 4 suggested that projected increases in net precipitation and 

the future warming of shallow soils across the LNRB may induce more baseflow and overall 

runoff. It is recommended that these results be tested against additional in situ soil 

temperature measurements and baseflow observations across the LNRB that would provide 

more confidence in modelling of soil thermal regimes. There are some known improvements 

in the VIC parameterization for soil thermodynamics, frozen ground, and permafrost 

processes, such as developments in soil temperature and thermal nodes computation in 

addition to improved drainage solutions in updated versions of the VIC model (version 5.0.1) 

(Andresen et al., 2019; Endalamaw et al., 2017; Gao et al., 2018; Gao et al., 2019; Walvoord 

& Kurylyk, 2016) that highlight the need for further studies. Future work may focus on 

quantification of active layer depths, thawing permafrost, and associated soil carbon 

emissions in north-central Manitoba. In the LNRB, where multiple hydroelectric facilities are 

situated and ongoing future developments are planned, understanding of future water 

availability and water balance alterations due to projected changes are essential. While results 

suggest that increases in surface runoff and streamflow are likely, it will be essential to 

evaluate the seasonal variability of these changes (Vano, Nijssen, & Lettenmaier, 2015). For 

instance, there is a need to carefully evaluate excess water availability from streamflow 

during spring and summer that may be beneficial in later seasons (early and late autumn) for 

industrial water use and public demand in the LNRB. 

5.3.  Limitations 

The availability of gridded datasets over the study domain presents some limitations in 

this study. For example, recently developed datasets such as Daymet and ERA5-Land that 

cover the study domain and period, provide additional resources to improve the 
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intercomparison of climate datasets and further VIC modelling analyses. However, dataset 

selection for this research was based on the BaySys project objectives. This study did not 

intercompare wind speeds against observations and its sensitivity towards the VIC model 

response in water balance estimation. The regridding of datasets using bilinear interpolation 

may also contribute to additional uncertainty since this study did not evaluate these results 

with other interpolation methods. The sensitivity analyses of VIC parameters are limited to 

six soil parameters and the VARS method, and do not consider other parameters from lakes, 

wetlands, land-use, and the routing scheme within the watersheds. Therefore, parameter 

sensitivity to streamflow generation does not represent possible uncertainty envelopes from 

additional model parameters. 

Quantification of climate change impacts on the LNRB hydrology relies on limited 

GCMs, and do not consider additional climate model outputs in the analyses. This, in turn, 

leads to gaps in covering potential uncertainty ranges. The results in Chapter 4 provide 

projected changes in hydrology and linkages between soil temperatures and baseflows across 

a permafrost gradient in northern Manitoba; however, all selected sub-basins span extensive 

discontinuous, sporadic discontinuous or isolated patches of permafrost and do not cover any 

continuous permafrost area. Therefore, findings related to projected changes in soil 

temperatures and baseflows are limited to discontinuous permafrost areas in a sub-arctic 

domain. Projected changes in soil thermal regime and hydrology rely on the VIC simulated 

streamflows, which are calibrated against the observed hydrometric records. However, the 

VIC simulated soil temperatures are evaluated against observations but the VIC model 

application does not utilize historic soil temperature observations in model calibration. 
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5.4.  Implications of This Work 

This dissertation presents a comprehensive intercomparison of the multiple climate 

datasets across the LNRB in northern Manitoba and its utility in the VIC hydrological model 

to address uncertainty propagated through various input datasets in water balance estimation. 

The historical intercomparison of annual and seasonal trends is helpful to identify variability 

across the available datasets, providing a base for climate change impact studies in this 

region. Moreover, this study extends climate data intercomparisons (e.g., Choi et al., 2009; 

Eum et al., 2014; Hutchinson et al., 2009; Wong, Razavi, Bonsal, Wheater, & Asong, 2017) 

to the north-central Canadian watersheds using multiple climate datasets, which have 

practical and regional importance. 

Hydrological modelling in this study utilizes a comprehensive sensitivity analysis using 

the recently developed VARS approach that couples the VIC land surface scheme and 

extends applicability of VARS to different hydrological models (Razavi & Gupta, 2016b). 

This research also fulfils the International Association of Hydrological Sciences’ (IAHS’) 23 

unsolved problems in hydrology initiatives focused on understanding process changes that 

control changing runoff response (Blöschl et al., 2019). Findings associated with sensitive 

parameters and their suggested ranges assist the global hydrological and VIC modelling 

communities in reducing prediction uncertainty, providing more robust calibrations at lower 

computational costs in similar hydro-climatic environments. 

The LNRB, where complex land cover such as lakes, wetlands, permafrost, and various 

physical characteristics dominate the hydrology, is a prime example of a climate-sensitive 

basin. This domain has major hydroelectric facilities and thus is of significant environmental 

and socio-economic importance. An improved understanding of projected changes in the 
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LNRB’s hydrology due to future warming, changes in soil thermal regime, flow timings, and 

duration have broader implications on industrial water use (Manitoba Hydro) including dams, 

reservoirs, hydropower generation, community water supply, and use. Our results agree with 

the previous studies on a general picture of increasing discharge under projected climate 

scenarios for the LNRB's sub-basins. However, previous studies (Bring & Destouni, 2014; 

Bring, Shiklomanov, & Lammers, 2017) suggest that the Nelson River basin's upper reaches 

will dry out in the future; therefore, their contribution to the Nelson River total discharge will 

diminish over time. Hence, the LNRB may offset decreases in main stem flows through 

increased future precipitation and runoff. In addition to the earlier efforts, however, our 

study, by utilizing the information on significant changes but disagreement on the sign, 

supports Manitoba Hydro on climate change impact assessments where the direction of 

future discharge changes may be more uncertain, but potentially of considerable magnitude. 

Moreover, this dissertation and the BaySys project assist Manitoba Hydro on impacts and 

adaptation strategies for climate change in northern ecosystems as it affects system 

operations and future hydroelectric developments. 

The research work carried out by the BaySys project’s Team 2 expands the 

boundaries of previous studies by focusing on a large, pan-Arctic system experiencing 

changes in climate (Barber et al., 2012; Bring & Destouni, 2014). This Ph.D. dissertation 

specifically focuses on the regional importance of the complex hydraulic- and ice-affected 

regime and its direct linkage and impact on freshwater discharge to Hudson Bay. Results 

produced by this research serve as input forcing to other teams within the BaySys project 

looking at biogeochemical and sea ice modelling, ecosystem variability and contaminant 

transport. The benefit of this research to water resource managers, such as Manitoba Hydro, 
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is to better understand the current and future state of water balance and availability, and 

associated aquatic environment of the Nelson Watershed and marine environment of Hudson 

Bay. In addition, this research enhances the understanding of VIC model applicability over 

the LNRB, various uncertainties, including an investigation of how input forcing impacts 

climate change assessment and inflow forecasting tools. More broadly, collective outcomes 

from this research and the BaySys project will benefit Canadian sub-arctic regions, including 

the Hudson Bay complex, to better understand how seasonal shifts in freshwater eventually 

affect sediment transport and nutrient delivery in Hudson Bay. Soil temperature warming 

accompanying projected climate change may enhance the infiltration process, mineralization 

of carbon stored in the permafrost, and organic matter accumulation in the soil. Thus, future 

climate change across the Hudson Bay complex may enhance overall streamflow, greenhouse 

gas emission, and more methane production by the end of 2070s. Further, this project 

provides new insights on future climate changes in northern Manitoba and the LNRB that 

contribute to quantifying its impacts on fish productivity and transportation in Hudson Bay. 
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APPENDICES 

Appendix A 

I obtain gridded forcing datasets (i.e., Australian National University spline 

interpolation (ANUSPLIN), North American Regional Reanalysis (NARR), European Centre 

for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), 

European Union Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI), 

and Hydrological Global Forcing Data (HydroGFD), and an Inverse Distance Weighted 

(IDW) dataset constructed from 14 Environment and Climate Change Canada (ECCC) 

meteorological stations across the LNRB) for an intercomparison in our companion paper 

(Lilhare et al., 2019) and to further utilize these datasets in VIC model simulations over the 

LNRB.  These datasets were selected based on the availability of specific variables (daily 

precipitation, minimum and maximum air temperature, and wind speed) that are required as 

input forcing for the VIC model. Moreover, this work forms a contribution to the Hudson 

Bay System (BaySys) project, where these six datasets are selected for further data analysis, 

intercomparison, and hydrological modelling using other land surface models, including VIC. 

Thus data availability (daily values from 1981 to 2010) and spatial resolution are other 

critical factors considered during the selection process of the datasets used for this study. 

The daily gridded, gauge-based dataset ANUSPLIN, developed by Natural Resources 

Canada (NRCan), is available for the entire Canadian landmass at 10 km spatial resolution 

(Hopkinson et al., 2011; McKenney et al., 2011). Preliminary analysis shows the updated 

version (1950–2015) of ANUSPLIN exhibits a consistent dry bias in precipitation over the 

LNRB; therefore, I retained the earlier version (1950–2011) of this dataset (Hopkinson et al., 

2011). This product uses a trivariate thin-plate smoothing spline technique and includes daily 
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total precipitation (mm), minimum and maximum air temperature (°C) at 10 km spatial 

resolution based on 7514 meteorological stations (1950–2011) across the Canadian landmass 

south of 60°N. The ANUSPLIN dataset is readily available, relatively easy to apply, and 

accounts for spatially varying elevation relationships; however, it does not include daily wind 

speeds, simulates only elevation relationships and performs relatively poorly in sharp spatial 

elevation gradients (Newlands, Davidson, Howard, & Hill, 2011). 

The NARR reanalysis product is a high-resolution, regional extension of the National 

Centres for Environmental Prediction (NCEP)/National Centre for Atmospheric Research 

(NCAR) global reanalysis data (Kalnay et al., 1996; Kistler et al., 2001). It is developed at 32 

km spatial and 3-hourly temporal resolution by utilizing a version of the Eta model and its 

three-dimensional variational data assimilation system (Mesinger et al., 2006) for the North 

American continent, available from 1979 to present. The NARR dataset is readily available at 

high resolution and provides accurate estimates of daily wind speeds, which are required for 

VIC model forcing; however, it exhibits warm biases in near-surface air temperatures over 

the study domain and lacks Canadian precipitation data assimilation after 2004 (Lilhare et al., 

2019). 

The ERA-Interim dataset is a global reanalysis product from the European Centre for 

Medium-Range Weather Forecasts (ECMWF). Originally developed at 0.8° spatial 

resolution, data are also available at different spatial (0.125° to 3° grids) and 3-hourly 

temporal resolutions for January 1979 through near real-time (Dee et al., 2011). The ERA-I 

encompasses multiple variables, including precipitation, minimum and maximum air 

temperatures, and wind speeds as required by the VIC model, at a high spatial and temporal 

resolution. It has improved low-frequency variability and stratospheric circulation; however, 
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this product represents intense water cycling (precipitation, evaporation) over the oceans and 

positive biases in air temperature and humidity in the Arctic. The ERA-I is the wettest among 

all other datasets and overestimates daily precipitation, especially in the southern LNRB, and 

does not capture low-level inversions over the study domain (Lilhare et al., 2019). 

The WFDEI reanalysis dataset relies on a method developed by the European Union's 

Water and Global Change (WATCH) project (http://www.eu-watch.org) and incorporates in 

situ observations in the reanalysis (Weedon et al., 2014). The WFDEI dataset was derived 

from ERA-Interim data (Dee et al., 2011) and was improved by an elevation correction for 

numerous variables. Further, to ensure that the monthly statistics remain similar to the in situ 

observations of the Global Precipitation Climatology Center (GPCC), an undercatch 

correction is adopted whereby the daily variability of the reanalysis product is conserved 

(Weedon et al., 2014). I obtained the WFDEI-GPCC precipitation, maximum and minimum 

air temperature, and wind speed data at approximately 55 km spatial and daily temporal scale 

for this study. 

The recently developed HydroGFD dataset combines different reanalysis datasets to 

produce near-real-time, updated hydrologic forcing of precipitation and air temperature (Berg 

et al., 2018). The HydroGFD data use the already established WFDEI method but with 

updated climatological observations and interim products to produce near-real-time estimates 

of precipitation, air temperature, and wind speed at 3- and 6-hourly temporal and 0.50° 

spatial resolutions (Berg et al., 2018). The HydroGFD dataset is currently limited to 

precipitation, air temperature, and wind speeds, whereas WFDEI produces several additional 

variables (Weedon et al., 2014). 



167 
 

 
 

The IDW dataset of daily precipitation and mean air temperature is derived from 14 

ECCC meteorological stations using spatial interpolation by applying the IDW interpolation 

method in a grid format at 0.10° (∼10 km) horizontal resolution for the LNRB. The IDW 

dataset is readily available, provides higher temporal resolution (i.e., hourly) data, is 

relatively easy to apply, and accounts for distance relationships. However, it does not include 

daily wind speeds due to incomplete records for our study period (1981–2010), accounts for 

distance effects only (i.e., neglects elevation effects), and limits heterogeneity of the domain. 

Moreover, meteorological stations are often located in open areas (e.g., airports), and thus 

may not be representative of forested environments or open bodies of water. 

Spatially regridded datasets (IDW, ANUSPLIN, NARR, ERA-Interim, WFDEI, and 

HydroGFD) at daily temporal and 10 km spatial resolutions are assembled to produce an 

ensemble mean dataset (i.e., referred to as the Ensemble) from 1981 to 2010. As the VIC 

model requires daily records of precipitation, minimum and maximum air temperatures, and 

wind speeds, I therefore prepared the Ensemble dataset using the equally weighted average 

method (Krishnamurti et al., 1999). Daily precipitation, maximum and minimum air 

temperatures are derived from the equally weighted average of all six gridded products. The 

daily wind speed ensemble is calculated from four reanalysis products (NARR, ERA-I, 

WFDEI and HydroGFD) as the other two datasets (IDW and ANUSPLIN) do not have such 

records. I assign equal weights to each dataset and so ignore the prior knowledge of their 

modelling capacity. This is one of the most common methods that assumes an equally 

weighted ensemble produces the best estimates of contemporary and future climate 

conditions since each model/dataset is equally likely to represent the truth (Krishnamurti et 

al., 1999; Suh et al., 2012). The concept of a multi-product ensemble has been used widely 
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over global and regional domains to examine uncertainty in forcings and provide input to 

land surface models under historical and projected future climate conditions (Fowler et al., 

2007; Fowler & Kilsby, 2007; Mishra & Lilhare, 2016; A. Wang et al., 2009). 
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Appendix B 

Area averaged multidata-VIC simulated annual water balance (mm) precipitation (PCP, a), total runoff (TR, b), 
evapotranspiration (ET, c) and soil moisture (SM, d), represented by different columns, for the LNRB’s ten 
unregulated sub-basins based on IDW-VIC, ANUSPLIN-VIC, NARR-VIC, ERA-I-VIC, WFDEI-VIC and 
HydroGFD-VIC simulations (1981–2010). Red bars show multidata-VIC simulations mean, black error bars 
show inter-VIC simulations variation using standard deviations, while black dots represent the area averaged 
water balance estimations from Ensemble-VIC. 
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Appendix C 

Spatial differences of seasonal evapotranspiration (ET) (mm) for the LNRB’s ten unregulated sub-basins based 
on Ensemble-VIC (ENSEM) minus (1st row) IDW-VIC, (2nd row) ANUSPLIN-VIC, (3rd row) NARR-VIC, (4th 
row) ERA-I-VIC, (5th row) WFDEI-VIC, and (6th row) HydroGFD-VIC simulations, water years 1981–2010, 
for winter (DJF), spring (MAM), summer (JJA) and autumn (SON). 
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Appendix D 

Same as Appendix C but for the soil moisture (SM). 
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Appendix E 

Ratio of factor sensitivity (%) of IVARS 50 at a seasonal scale (1981–2010) for each parameter over all sub-
watersheds of the LNRB for the three model performance metrics (a) KGE, (b) NSE, and (c) PBIAS. Ratio of 
factor sensitivity is estimated by normalizing IVARS 50 values in each case, so they add up to 100% for all 
parameters. 

 

 


