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Abstract

Deep Learning has become increasingly popular since 2006. It has an outstanding

capability to extract and represent the features of raw data and it has been applied

to many domains, such as image processing, pattern recognition, computer vision,

machine translation, natural language processing, and autopilot.

While the advantages of deep learning methods are widely accepted, the limita-

tions are not well studied. This thesis studies cases where deep learning methods

lose their advantages over traditional methods. Our experiments show that, when

the neighbouring proximity disappears, deep learning methods are significantly less

powerful than traditional methods. Our work not only clearly indicates that deep

structure methods cannot fully replace traditional shallow methods but also shows

the potential risks of applying deep learning to autopilot.
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Chapter 1

Introduction

Machine learning is an important branch of artificial intelligence that has been studied

for many years. Its algorithms allow computers to learn rules from large amounts of

raw data and present representations of them. The development of machine learning

has experienced two waves: shallow learning and deep learning.

In the 1990s, various shallow machine learning models were proposed, such as

support vector machines, boosting, and maximum entropy methods. These models

have achieved great success both in theoretical analysis and in practical applications

because of solid theoretical foundation and little amounts of trainable parameters.

Especially in small sample tasks, shallow learning models still have great advantages.

However, the traditional shallow models cannot mine the potential internal infor-

mation from raw data. Therefore, deep learning was pushed onto the center stage of

machine learning. It simulates humans brain structure to achieve efficient processing

of complex input data, which allows the deep model to intelligently learn different
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knowledge and effectively solve many types of complex problems. In recent years,

with emergence of efficient learning algorithms, machine learning community has set

off a wave of research on deep learning theory and application.

Both shallow and deep machine learning methods have made breakthroughs in

tasks such as computer vision and natural language processing.

1.1 Deep Learning

Deep learning (DL) was first proposed by Hinton et al. [34] on 2006. After that, in

2012, Alexnet [44] made researchers feel the power of deep learning on ILSVRC2012

(All of ILSVRC challenges based on Imagenet [22]). Compared to K-nearest neigh-

bours (KNN), support vector machine (SVM), boosting, maximum entropy and other

“shallow” learning methods, deep architecture has more levels of non-linear opera-

tions [5]. Multilevel non-linear operators enable deep models to acquire more advanced

and more abstract data representations by stacking simple non-linear modules.

It has been demonstrated that deep learning methods could discover abstractions

of features at different levels and final representations from labeled raw datasets using

general-purpose learning algorithms automatically.

In general, the deep learning model we refer to is a multilayer artificial network such

as Deep Convolutional Neural Networks (DCNNs), Deep Belief Networks (DBNs) and

Recurrent Neural networks (RNNs). In the DCNNs, lower layers detect and extract

simple features with convolutional kernels and pass these features to higher layers,

which extract more abstract and global features. The features of data are presented by
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vector afterward. Unlike the working principle of DCNNs, in RNNs, state of neurons

and current input together affect output of the neurons. Each neuron has a memory

unit which captures information from beginning until current moment. They are very

powerful models for processing sequences and are capable of processing sequences with

arbitrary length theoretically. Deep belief networks are probabilistic generative models

that are composed of multi-layers hidden units (also called feature detectors) [32]

with connections between layers. But units within a single layer are not connected.

A typical DBN is stacked by multiple Restricted Boltzmann machines with directed

and undirected connections. In an RBM, each hidden layer encodes distribution of

previous units and attempts to reconstruct its input. The final representation of input

data is produced by layer-wise transformation from lowest to highest layer on DBNs.

1.2 Current Research Status of Deep learning

As a branch of machine learning, deep learning has become one of the most popular

research subjects. In recent years, it has continuously attracted people’s attention;

especially the deep learning methods have achieved state-of-art results in various

datasets as shown in Figure 1.1 [45]. In 2012, Alexnet achieved the state of art result

by reducing top-5 error from 26% to 15.3% on ILSVRC2012, which is roughly 1.2

million pieces of data with 1000 categories. That opened curtain of deep learning.

Compared to previous common neural networks, Alexnet is deeper and has more

convolution kernels. “Deeper” has always been the direction of researchers’ efforts—

the deeper the structure, the better the presenting ability of neural networks.

Neural networks are usually trained through back-propagation using stochastic

gradient decent. The gradient decreases exponentially as it is propagated down from
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Figure 1.1: Imagenet classification top-5 error [45]. Imagenet is now one of most
the popular dataset with more than 1.4 million images and has become one of stan-
dard dataset for deep learning algorithms. Since 2011, all the state-of-art results for
Imagenet are achieved by deep learning methods

output layer to input layer; it may become vanishingly small, after multiple layers of

propagation, that restrain the training from being effective and accurate. This phe-

nomenon is called the vanishing gradient problem in the context of deep learning and

it is a major problem that hinders neural networks from going deeper. The problem

has been receiving attention again recently due to increasing amounts of applications

of deep architectures. And Alexnet suppresses this problem by introducing Rectified

Linear Unit and dropout. After that, Szegedy et al. [81] proposed a twenty two layers

deep CNN called inception V1 (also called GoogLeNet). It achieved a top-5 error

rate of 6.67% on ILSVRC2014. That was very close to human level performance. In

Inception V1, two important concepts are employed: batch normalization [40] and

small-convolution kernel. Batch normalization allows each layer of a network to nor-

malizes the output of the previous activation layer by subtracting the batch mean

and dividing by the batch standard deviation. That effectively suppress the vanish-

ing gradient problem. Besides, small-convolution kernels are capable of reducing the

number of parameters. Recently, at ILSVRC2015, He et al. [31] introduced Resid-
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ual Neural Network (ResNet) architecture with “skip connection”. Such a structure

ensures gradients propagate more layers forward. That enables neural networks to

be substantially deeper than previous and improves performance of deep architec-

tures. ResNet has achieved a top-5 error rate of 3.57% which beats human expert

on ILSVRC2015. Batch normalization, small-convolution kernel and skip connections

have been widely adopted by deep learning researchers and have been used to set up

the basic framework structures of current deep networks.

Deep RNNs are also rapidly evolving along with Deep Convolutional Neural Net-

works. Similar to the case of CNNs, vanishing gradient problem also seriously affects

developments of RNN. To solve this problem, researchers have proposed many pa-

rameters optimization methods such as NAG [65], Adagrad [23], Root Mean Square

Prop(RMSProp)[83], Adadelta [96] and so on. Adaptive learning rate algorithm

named RMSProp, as a typical representative, can make RNNs’ training process smoother.

In 2015, Le et al. [46] introduced a novel initialization method with Rectified Linear

Units (IRLU) which also obviously boosted performance of deep RNNs. Besides, re-

searchers have improved performance by continuously upgrading and changing struc-

tures of RNNs to avoid the problem. For instance, models such as AWD-LSTM [57]

and GruRNN [14] with more complex structures significantly improve the accuracy of

natural language processing.

Researchers are now trying to combine CNN and RNN to solve more complex prob-

lems. Recently, researchers have used CNN-RNN hybrid model for image patching

and image Super-Resolution reconstruction [67]. In addition, image-to-text hybrid

model [51] is also a hot topic of current research. That is, deep model automati-

cally generates a human-readable description based on a received image(Automatic

Image Caption Generation [25]) or automatically generates an image based on some
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descriptions.

1.3 Deep Learning Applications

Deep learning is now sweeping across industry and research, as evidenced by the

successes of DCNNs and RNNs in fields of computer vision and natural language

processing. Although it is a technique facing many challenges and problems, it has

achieved a remarkable amount of reliable solutions for today’s applications in personal,

commercial or governmental environment. Some applications of deep learning are

listed below.

A typical example is object recognition. As a subset of object recognition, face

recognition/identification has been successfully applied to security department as

shown in Figure 1.2 [1]. Australia government has applied facial recognition sys-

tem as part of self-service border clearance kiosks program in Sydney airport, which

improved security reliability and raised efficiency. Besides, Qantas Airways passengers

are expected to use facial recognition for check-in, baggage drop, border processing,

and airport lounge [24]. Other subsets, such as object tracking, and real-time action

detection are also used in video surveillance [42].

Besides, deep learning was also applied to healthcare. It is well known that elec-

trocardiogram is an important measure of cardiac activity and many cardiac abnor-

malities will be manifested in the electrocardiogram. [99] proposed a deep learning

model that can serve as a tool for screening of electrocardiogram to quickly identify

different types and frequencies of arrhythmic heartbeats.
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Figure 1.2: Face recognition based on deep learning has been widely used in CCTV
systems [1] for verifying and recognizing faces.

For RNNs, one of the most popular usage areas is voice-assistant. The voice-

assistant, which is capable of “understanding” your instructions, can even convert

sounds into text and search for relevant content in search engines. Typical voice

assistants include Apple Siri, Google now, and Microsoft Cortana [58]. Now, they

can be found on nearly every smartphone. Deep RNN is also used in automatic text

generation and automatic machine translation [60].
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In addition, as a typical combination of deep learning with other complex tech-

nologies, self-driving vehicles have been developed by many technology companies and

entered the road test phase.

1.4 Potential Problems of Deep Learning

Since the release of LeNet-5 [49], researchers have high expectations for deep net-

works and so they continue to explore advantages of them and try to introduce them

into more fields. In the past two decades, researchers have proposed many ways to

improve deep neural networks’ performance. For example, some studies have made

networks more complicated by enriching structures, that is, constantly modifying and

introducing additional functional structures [55] [40] [53]. Other studies have initial-

ized network parameters by certain methods to stabilize training process of neural

networks. There are also some studies that avoid problems like vanishing gradient

by modifying activation functions in networks. However, there remains a potential

problem.

As in most of machine learning and pattern recognition applications, a dataset used

for training and testing deep networks can be seen as a set of samples in the form of

(X;Y ), where X is a vector, 2-d matrix or m-d matrix (m ≥ 2) of elements, and Y is

a class label or a class label vector. Image sets, natural language sequences, and text

sequences are commonly used datasets for the experiments validating (evaluating) the

advances of deep networks. An in-depth examination can easily reveal that there is

a strong proximity relationship between neighbouring elements in X in any samples

on these applications. In the applications related to images, any neighbouring pairs

have statistical dependencies and proximity. Similarly, the words in a text or natural
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language sequence keep dependencies between neighbouring words. In general, such

datasets are defined as neighbouring proximity preserved datasets. Similarly, when

elements in the samples do not keep neighbouring proximity, the datasets are called

neighbouring proximity unpreserved datasets.

Based on the aforementioned background, it is natural to ask: Can deep net-

works work on neighbouring proximity unpreserved dataset as good as these work on

neighbouring proximity preserved dataset? Furthermore, how well can deep networks

perform on neighbouring proximity unpreserved dataset? Le et al. [46] and Cooijmans

et al. [18] have demonstrated that IRNN and RBN-LSTM can work on neighbouring

proximity unpreserved datasets. But, comparing with traditional shallow methods,

how well can these models work? Especially in the case where the deep learning

method has been applied to autonomous driving, will the neighbouring proximity se-

riously affect the performance of deep learning? And if so, will this potential problem

affect people’s safety? Besides, from the perspective of the development of machine

learning, if these models are always guaranteed to be better than traditional shallow

methods, then can we safely dump all the traditional methods? However, if it is not

the case, under what situations should the traditional shallow methods be chosen over

these models?

These problems are all needed to be studied in order to reach certain conclusions.

Unfortunately, these potential problems and the limitations of deep learning are not

well researched at this point in time.
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1.5 Research Contributions

The main contributions of this thesis are summarized as follows:

This thesis presents the study and analysis of neighbouring proximity that seriously

affects the performance of deep learning models. We conducted extensive experiments

on neighbouring proximity preserved/unpreserved datasets using both deep learning

and shallow methods. The results demonstrate that when the neighbouring proximity

is lost, the accuracy of deep learning methods is at most as good as, if not worse than,

that of advanced traditional shallow methods. In terms of accuracy, deep learning has

no advantage over shallow learning on neighbouring proximity unpreserved datasets.

As the resources that traditional shallow methods needed are always much less than

deep learning methods, we conclude that, in situations where neighbouring elements

of input samples do not have proximity, deep learning methods are significantly less

powerful than traditional methods. Furthermore, this clearly indicates that current

deep structure methods cannot fully replace traditional shallow methods. In addition,

this thesis shows that the length of the dependencies can lead to performance drop in

RNN.

1.6 Organization of this thesis

The rest of this document is organized as follows:

Chapter 2 introduces developments of related learning methods in various periods,

including reasoning-based algorithm, knowledge-based algorithm, and sample-based
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shallow as well as deep machine learning methods.

In Chapter 3, several deep and shallow learning method frameworks related to

this thesis are introduced, including convolutional neural network, recurrent neural

network, deep belief network, sparse coding, and support vector machine. The first

part of each section introduces the basic components of the framework, and the rest

describes the learning algorithms and processes of the framework.

Chapter 4 includes an introduction of the detail designs of deep and shallow archi-

tectures we implemented or employed, including Standard CNN, MIN, DBN, Sparse

coding and some SVM algorithms.

In Chapter 5, original and neighbouring proximity unpreserved dataset (i.e. MNIST

and CIFAR-10), as well as parameters of the models for each dataset are introduced.

Experimental results of each model are also presented in this chapter. The results

clearly show that the shallow methods on neighbouring proximity unpreserved MNIST

dataset and neighbouring proximity unpreserved CIFAR-10 dataset are superior to the

deep learning methods in terms of accuracy and efficiency.

In the end, Chapter 6 summarizes this thesis and suggests some future directions.
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Chapter 2

Background and History

Learning is a way for a computer to improve its performance after observing the

world. Machines with learning capability are products using concepts of artificial

intelligence which are developed to a certain advanced stage. In general, machine

learning models are always used to learn information and knowledge autonomously

from data. The first artificial intelligence program is the shopping program developed

by Oettinger [90]. Shoppers simulated a mall with eight stores. When it receives an

order to purchase an item, it will randomly enter a store and searches for the desired

goods one by one until it finds the specified item or searches through eight stores. It

will go directly to the store to look for the specified item when it receives a request to

purchase a specified item again if it happens to remember the store where the object

located. If not, it will repeat the original process. The learning algorithm of Shoppers

is called rote learning, which is the easiest and earliest approach for learning. In

general, learning is divided into four categories: rote learning, learning by being told

(advice-taking), learning by deduction, learning from examples [21].

12



The development of machine learning has gone through three periods: inference

period, knowledge period and sample learning period. Different research ideas and

techniques play different roles, the most important of which are symbolism and con-

nectionism. Symbolism and connectionism have driven machine learning forward in

different periods. From the 1950s to the 1970s, many researchers believed that ma-

chines are intelligent as long as they have logical reasoning capabilities. This period is

also known as reasoning period. As the research progresses, people no longer satisfied

with machines that only had reasoning capabilities. In the mid-1970s, researchers

began to combine logical reasoning with knowledge and established many expert sys-

tems. This period is called knowledge period. But expert systems are not perfect

as well, because they are always difficult to teach people the knowledge they have

learned. Researchers are eager for the machine to learn from samples itself.

From the 1980s to the present, the focus of machine learning research has shifted

to sample-based learning, a period known as the “real” learning period. Due to the

excellent classification prediction ability of statistical learning under limited samples,

this stage of learning machine was quickly occupied by statistical learning in the

mid-1990s. Another mainstream sample-based learning before the mid-1990s was

the connectionism represented by neural networks. Because of the large gaps in the

artificial neural network research field, neural networks were more like a Blackbox.

However, with the deepening of research and the explosion of the hardware revolution,

multi-layered neural networks have demonstrated excellent feature extraction and

representation capabilities, which laid the foundation for deep learning in the field of

machine learning.

Different learning methods during different periods will be introduced in the fol-

lowing sections.
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2.1 Reasoning Period

Symbolism is the most popular faction in reasoning and knowledge period. Symbolists

thought that basic units of human cognition and thinking are symbols. Besides,

they also thought that every person is a physical symbol system and computers is a

physical symbol system as well. In addition, a cognitive process was also considered

as a symbolic representation of operations. They tried to use computers to simulate

human intelligence behaviour, that is, to use computer symbol operations to simulate

human cognitive processes.

Based on logical reasoning and symbolic operations, researchers got some achieve-

ments. The first and vital “intelligent” system with capable of logical reasoning is

the mathematical theorem proving program called “Logic Theorist” (LT). It is also

the first program designed to mimic human skill in problem-solving. LT not only

successfully proved 38 of the first 52 theorems in the Principia Mathematica, but also

found new and more elegant proofs for some [93].

In this program, symbols carry information about the outside world, and think-

ing is a process of symbol transformation. The goal of theorem proof is achieved by

continuous reasoning. In detailed, LT was a search tree model, in which, the root

was an initial hypothesis, and each branch was a deduction based on rules of logic [7].

Somewhere in the tree is the goal: a proposition that the program intends to prove.

The pathway is along branches that result in a proof. Then, to solve the problem of

excessive pathway space, [93] introduced Heuristic strategy that is capable of deter-

mining which pathways were unlikely to result in a solution. The heuristic is a mental

rule-of-thumb strategy that does not guarantee a solution. In other words, it allows

programs to solve complex problems more efficiently and reduce the total number of
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possible solutions by discarding impossible and unrelated solutions to a more man-

ageable set. LT opened prelude reasoning period. Based on previous works, A. Newell

et al. [92] developed General Problem Solver (GPS). It intends to work as a universal

problem solver machine that could be used to solve a variety of different types of

problems. GPS is the first computer program to separate knowledge of problem from

strategies of how to solve it, which defines problem space based on different goals and

transformation rules to be implemented. And it divides overall goal into sub-goals and

attempts to solve each of those using means-end-analysis approach. The principles

and processes of LT and GPS fully demonstrate the core idea of symbolism: logical

reasoning.

However, LT and GPS are still far from the smart machines that people expect.

Because neither LT nor GPS is directly in contact with the real world, their input

information is second-hand information that has been sorted by researchers. Besides,

as the complexity of problems increases, search space becomes extremely large, which

leads search quickly lost in a combinatorial explosion. In addition, Logic Theorist and

General Problem Solver work only for very constrained toy domains. In other words,

they can not solve any real-world problems.

2.2 Knowledge Period

The failure of LT and GPS demonstrates that machines with only logical reasoning

capabilities can’t solve complex problems of the real world. After intensive research,

Feigenbaum et al. [98] thought that we could not expect learning systems to learn

advanced concepts without knowledge. Symbolists believed that the core problems

of machine learning research are knowledge representation and knowledge reasoning
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rather than focus on heuristic computational methods. This period is also known as

knowledge period. At this stage, knowledge was explicitly presented in terms of sym-

bols, and machine performance was enhanced by continually expanding knowledge.

Machine simulated human cognition and thinking behavior with reasoning to solve

complex problems. Based on the above objective, symbolism researcher represented

natural world information by symbolic knowledge in a form, combined with deduc-

tive reasoning to build a knowledgeable decision-making system. This resulted in the

expert system.

The first expert system Dendral [54] was introduced around 1965. It was capable

of identifying domains where expertise was highly valued and complex. Dendral is

composed of a knowledge database and an inference engine. Besides problem-solving

strategy, “heuristic” was also used in Dendral to replicate the process which human

experts infer solutions to problems using rules of thumb [95].

In a typical expert system, knowledge database includes facts and rules that are

representing human knowledge and experiences. It is not only used to search for

possible results that match input data, but also to learn new “general rule” that help

prune searches. The inference engine applies the rules to the known facts to determine

(deduce) how inferences are being made. General processing pipeline of the expert

system has been shown in Figure 2.1 [71].

Dendral laid the foundation for development of expert systems. The structure

of knowledge database and inference engine has successfully spawned off many ex-

pert systems like XCON [3] (computer hardware configuration system), MYCIN [76]

(medical diagnosis system), and ACE [87] (AT&T’s cable maintenance system), PRO-

LOG [16] (natural language process program).
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Figure 2.1: In a general expert model [71], users first type satisfactory information
into the system. And then, the inference engine deduces the advice based on the
information and the knowledge acquired from human experts.

But the expert systems are not perfect intelligence system. The major issue for

expert systems is knowledge acquisition. During developments of expert systems, hu-

man programmer firstly collects knowledge and then encodes the learned experience.

Knowledge acquisition is often seen as a way of discovering static facts of world and re-

lationships of the various events that human uses to solve real-life problems. However,

obtaining the knowledge of domain experts for any system is always tricky [38].

For example, we can imagine how humans learn to walk through practice and

experience in childhood. Such tests and errors cannot be obtained in form of facts

and rules. If people are asked to elaborate a set of rules based on their expertise, they

often do not accurately reflect their skills. More importantly, knowledge systems don’t

learn from their experiences. So sometimes it is difficult for human programmers to

summarize and hand over knowledge to the machine.

Another limitation of expert systems is learning capability. As we all know, expert

systems require humans to summarize accurate information and experience in a given

field as its knowledge. And results are obtained by constantly matching the knowledge
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through chains of reasoning. Although expert systems are capable of applying rules

to known facts to deduct new facts, they still cannot learn knowledge from real-world

data and summarize rules themselves. When people cannot summarize rules from a

certain field, expert systems cannot be applied in the field.

2.3 Inductive Learning Period

As intelligent creatures, induction is the most basic ability of human. Contrary to

deduction, induction is a process of observing specialization examples to summarize

generalization rules. Inductive learning is a process of discovering knowledge, correct-

ing knowledge, and creating new knowledge from given positive and negative samples.

Inductive learning also can be described as a search problem for rules space: finding

rules that are consistent with samples description in rules space. Modern symbol

learning is to learn the rules representation of examples by summarizing examples.

Due to the limitations of expert systems, knowledge engineering had entered a

bottleneck period. In the 1980s, researchers attempted to create a machine that

could directly extract knowledge and summarize rules from samples. Since symbolism

made great achievements in artificial intelligence from the 1950s to 1980s, it was still

mainstream in the early stages of learning phase. Symbolists proposed two kinds of

models: decision tree learning and inductive logic programming.

The essence of decision tree learning is to generalize a set of classification rules

from a training set. Its goal is to build a decision tree that fits well with the training

set and has satisfied generalization capabilities. Moreover, it could be visualized

through graphics, which makes it easy to interpret and understand. Therefore even
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if people do not have the same knowledge as an expert, they can understand the

solutions of decision trees after a brief explanation. The decision tree models have

better adaptability that allows them to process numeric type data and as well as

classification type data. Not only that, but decision tree models are also reliable

because they are easily verified by statistical tests. In addition, decision trees are

capable of processing datasets with missing or erroneous data.

In 1979, Quinlan proposed the decision tree-based algorithm ID3. After that,

Classification and Regression Trees (CART) was proposed by [8] based on previous

work. CART not only expands the function of decision trees, but also greatly promotes

the decision trees algorithm. Now CART has been widely used in the industrial field.

For example, [88] introduces a decision tree to implanted devices to identify features.

Moreover, decision trees are also used for target recognition, control systems, financial

analysis, physics remote, sensing pharmacology and so on [77].

Unfortunately, there are also some limitations on the decision tree algorithm. In

general, the performance of decision trees cannot be as accurate as other models. And

the robustness of decision trees is poor: a small change in training data may cause a

huge change in entire model, and it will also cause the biggest change in final prediction

result. In addition, trees produced by decision tree learning models are still prone to

overfitting despite with previous pruning and post-pruning methods [91]. Decision

trees are quite difficult to represent complex concepts. In addition, the optimal tree

in decision tree learning process is an NP problem.

Inductive logic programming (ILP) is another representative of symbolism based

on clause logic framework. It combines first-order representations with inductive

methods and completes inductions of examples by modifying and expanding logical

expressions iteratively. First ILP implementation was built by Shapiro and Ehud in
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1981 [75]. After that, Stephen et al. [64] proposed the GEOLM, in which, bottom-up

ILP inductive learning framework was introduced. In 1991, the term “Inductive Logic

Programming” was proposed by [62].

The typical ILP learning process can be divided into three steps. First, directly

select some specific facts corresponding to one or more positive examples as initial

rules and adopt a bottom-up generation strategy to gradually generalized rules. After

that, delete examples that already covered by learned rules and repeat step 1 so that

the learned rules can cover as many positive examples as possible while excluding as

many negative examples as possible. At last, adopt inverse resolution algorithm to

learn more to obtain new rules that do not exist in background knowledge.

ILP has been successfully applied in many fields, especially in bioinformatics [84].

In the process of learning protein folding structure, it is necessary to find a language

that can clearly describe structural information. Traditional attribute-value meth-

ods cannot describe relationships between objects, therefore unable to reasonably

represent three-dimensional structure of protein molecules. First-order logic tool of

ILP: clause logic, is a suitable language for describing this relationship. It plays a

significant role in predicting protein structure information and generation of protein

substructures. Moreover, ILP with knowledge engineering significantly improves the

performance of inference engine of expert systems. In addition, ILP is also applied to

many fields like natural language processing, software analysis and data mining [63].

ILP models learn general theories from examples and combine inductive methods

with first-order language to obtain powerful example expression capabilities. Unlike

Blackbox models such as neural networks, ILP systems are white-box models, they

take background knowledge and structural data into account to learn some concepts

that people are able to understand. However, ILP models have high requirements for

20



time and space, which makes them difficult to deal with larger datasets [63].

2.4 Machine Learning Period

2.4.1 Shallow Learning

Shallow learning, has become increasingly popular since the 1990s. Their algorithms

are capable of extracting features, abstracting presentation, discovering knowledge

from datasets and constructing a probabilistic model to predict and to analyze future

inputs.

It can be divided into two categories: supervised learning and unsupervised learn-

ing. In training stage, supervised learning algorithms accept labeled data pair as

training set. Each supervised learning algorithm attempts to learn mapping func-

tions from the training set and uses the learned functions to predict future inputs.

Unsupervised learning such as Clustering analysis or Sparse Coding is to find some

functions to describe native data (i.e. unlabeled data).

Statistical learning is one of the most famous representatives of supervised learning.

The earliest and simplest statistical learning model is linear regression, which can help

people predict price of houses, rise and fall of stocks, trends in human epidemics and

so on. Until the 1970s, Vapnik and A. Chervonenkis [85] proposed VC dimension that

is the size of the largest finite subset of instance space X shattered by hypothesis

space H. Subsequently, [30] proposed Structural Risk Minimization to reduce VC

dimension of learning systems while ensuring classification accuracy (experience risk),

and control expected risk of learning systems over entire sample set. In 1995, Cortes
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and Vapnik proposed [19] support vector machine based on VC dimension theory

and structural risk minimization. SVM models have many unique advantages in

solving small sample, nonlinear and high-dimensional pattern recognition. So they

are applied to many machine learning problems such as function fitting, text and

hypertext categorization, and pattern recognition [61].

In general, statistical learning theory assumes that data is Independent Identically

Distributed (I.I.D.), that is, the same class of data has certain statistical rules. Super-

vised statistical learning systems learn a mapping function from some given input-out

pairs (i.e. training set). In other words, learning systems attempt to find an opti-

mal decision function from hypothesis space to describe relationships between input

variables and output variables. In prediction phase, the decision function outputs the

most likely result based on inputs.

A typical supervised statistical learning model could be formally described as

follow: X, Y , and F are represented as input space, output space, and hypothesis

space, respectively. Therefore, the learning problem is to find a decision function f

from F such that loss function L(Y, f(x)) is as small as possible. L is the difference

between predicted value f(x) and actual value y. Then the goal of learning is to

choose a model with the minimum expected risk:

Rexp(f) = Ep[L(Y, f(x))] =

∫
x×y

L(y, f(x))P (x, y)dxdy (2.1)

Since the joint distribution P (X, Y ) is unknown, R cannot be directly calculated.

According to the law of large numbers, when N tends to infinity, empirical risk tends

to expected risk, so empirical risk can be used to estimate expected risk. Finally, the

goal of supervised statistical learning became the problem of minimizing the empirical
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risk:

min
f∈F

1

N

N∑
i=1

L(yi, f(xi)) (2.2)

The goal of unsupervised learning is to find some function to model hidden struc-

ture information from unlabeled data. Unlike supervised learning, there is no explicit

way to evaluate the learned structures [20]. The most studied and widely applied

unsupervised learning method is Sparse Coding.

Sparse coding is inspired by a study of the human nervous system. [4] believes that

an important function of biological vision systems in the initial stage of recognition

is to remove statistical redundancy from inputs stimulus as much as possible. This

study indicates that the response of optic nerve cells of the primary visual cortex to

external environment satisfies characteristics of sparse coding. The so-called sparse

coding refers to making the number of activated nerve cells as small as possible while

representing input as completely as possible. Only a small number of components

are simultaneously in an apparent activation state after data is sparsely encoded.

This approach is capable of capturing high-level semantic features from original data.

Sequently, Olshausen and Field [66] proposed a well-known sparse coding model,

which expresses images by linear superposition of basis function. That makes the

reconstructed image as close as possible to the original image in the sense of minimum

mean square error, and the “response” is as sparse as possible. After training, the

model has the properties of simple cells in the visual cortex, which is in good agreement

with the results of neurophysiological experiments.

In short, Sparse Coding uses information theory to establish a quantitative connec-

tion between statistical properties of natural environment and biological (or machine)

visual system functions (responses). Moreover, it provides a new method for designing

23



machine vision system by mimicking coding properties and biological vision system.

Supervised and unsupervised learning and other learning methods(for example,

Clustering and PCA) together constitute shallow learning methods. The shallow

models were the most popular learning methods before deep learning was introduced.

Especially in learning tasks with small samples, statistical learning algorithms showed

excellent classification and regression performance. Shallow learning methods have

been widely applied in computer vision, natural language processing, pattern recog-

nition, and even some commercial activities [41].

2.4.2 Deep Learning

As a branch of machine learning, deep learning differs in structure from traditional

shallow machine learning. A deep learning model is composed of multiple non-linear

layers. It implements complex function approximation and distributed representation

of input data by training a deep nonlinear network.

In general, the deep structures we refer to are multilayer artificial neural networks,

such as Deep Convolutional Neural Networks (DCNNs), Deep Belief Networks (DBNs)

and Recurrent Neural Networks (RNNs). Deep learning methods succeed in many

fields such as object recognition and detection, pattern recognition, natural language

processing.

Deep learning methods allow systems to discover representations of potential fac-

tors from native data automatically. Deep models are capable of learning representa-

tion of data by stacking some multi-layer nonlinear modules. Each module converts

a lower representation (starting from the original input) to a higher and slightly ab-
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stract representation. Animal’s nervous system inspires this multi-level, step-by-step

abstract representation. Medical research shows that information processing of the

human visual system is hierarchical. The human vision system firstly extracts edge

features from lower-level regions and then extracts shapes or portions of targets in

higher-level areas. That is to say, the high-level features are a complex combination

of low-level features, and they are capable of expressing more abstract semantics or

intentions.

Although deep learning is a relatively new term that was proposed in 2006, it

actually can be traced back to the late 1940s when it was part of cybernetics. The

first artificial neural point McCulloch-Pitts(McP) model [97] was proposed in 1943,

which contain a single neuron node. The inputs of McP are 1 or 0 corresponding

to excitatory or inhibitory. McP sums the inputs with corresponding weight and

compares them to threshold T . If the sum is greater than the threshold, then output

is 1: the neural point is excitated. Otherwise, the neutral point is inhibited. McP is a

straightforward linear model with some fixed weights that require operator settings.

As the first artificial neuron, it was not accepted by a wide range of researchers.

In the 1950s, Rosenblatt [73] proposed a purest form of feedforward neural network

and named it “perceptron”. Perceptron model is a binary linear classifier composed

of single-layer neurons. It learns a function that is mapping from the input vector to

output value. Mathematically, it was defined as,

f(x) =

 1 if w · x+ b > 0

0 otherwise
(2.3)

where x is an input vector, w is a vector of weights obtain by training and b is bias. The

learning process of the perceptron can be seen as finding a boundary that is capable
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of dividing hyperplane into two parts accurately. It is the first pattern recognition

model with the capability of learning weights from given examples. Not only that, but

the introduction of perceptron has laid foundations for multilevel feedforward neural

networks.

During the same period, single linear neural network “Adaptive Linear Neu-

ron”(ADALINE) with multiple nodes based on McP (Figure 2.2 shows the difference

in structure of McP and ADALINE.) was proposed by Widrow [89]. In ADALINE,

weighted sum of inputs will adjust weights along with a target output. The weights

are updated as follows:

y =
n∑
j=1

xjwj (2.4)

w ← w + η(o− y)x (2.5)

where o is target output, y is output of model, η is learning rate, x is input vector

and n is the number of the inputs. Least squares error E = (o−y)2 was introduced in

ADALINE as learning rule. In fact, this learning rule is the simplest form of random

gradient descent algorithm.

But then, Minsky et al. [59] proved that models such as perceptrons based on

linear models could not solve linear indivisible problems. For example, perceptrons

don’t fit exclusive disjunction (XOR) function. That is, perceptrons are unable to

learn a function where f([0, 1], w) = 1 and f([1, 0], w) = 1 but f([1, 1], w) = 0 and

f([0, 0], w) = 0.This conclusion makes research of artificial neural network fall into

the first “winter”.

In 1962, Hubel et al. [39] discovered a series of complex constructed cells in visual

cortex through a study of cat’s brain visual cortex. These cells are sensitive to local
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(a) The structure of McP (b) The structure of ADALINE

Figure 2.2: By comparing structure of the two models, it clearly shows that ADALINE
is capable of automatically adjusting the parameters according to marked information.

areas of visual input space and are referred to as ”receptive fields”. The receptive

field covers the entire visual domain and it plays a local role in the input space,

in such a way to better extract the strong local spatial correlation existing in the

natural images. Based on Hubel’s model and some related neural network concepts,

Fukushima et al. [85] proposed Neocognitron. Neocognitron is an iterative stack of

simple cell layers and complex cell layers that accurately recognize input patterns with

displacement and slight deformation as Figure 2.3 [26]. It has been demonstrated to

have the ability to learn how to identify visual patterns.

The release of Neocognitron enables researchers to find potentials of multilevel
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feedforward neural networks. Many of concepts in Neocognitron continue to be used

to this day. In particular, the way of top-down connections guides establishment of

many neural networks. Some years later, Rumelhart et al. [74] applied Back Propaga-

tion (BP) algorithm to neural network. The BP algorithm takes derivative (gradient)

of loss function of neural networks and iteratively propagates gradients of each layer

back through chain rules. Until today, BP remains dominant training algorithm for

deep learning models. Moreover, Kurt et al. [37] demonstrate a potential of feedfor-

ward neural networks as a universal approximator. In other words, they show that

multilayer perceptron overcomes the linear indivisibility problem. Because of the un-

remitting efforts, a cascade of researchers in artificial neural network made significant

progress from the 1980s to 1990s.

Figure 2.3: Neocognitron [26] extract representation hierarchically from image by
“receptive field”. Local features and these features’ deformation, such as local shifts,
are tolerated and integrated gradually in higher layers.

The expert systems and logistic regression models mentioned earlier require hard-

coded manual features and engineering designed features. For example, Cycs is a

famous expert system, but it can’t understand that a person called Fred shaving in

the morning. In Cycs’s knowledgebase, people do not have electronic modules, so when

it receives “Fred while shaving”, its reasoning inference will fall into chaos and then

naturally ask “whether Fred was still a person while he was shaving” [27]. A typical
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application of logistic regression model is cancer prediction system, which receives

some pieces of information that are defined by people and extracted manually. But

it does not know how people define these features. If a logistic regression algorithm

is able to receive medical images and automatically discover potential factors, then it

will help doctors make decisions more effectively.

Another idea proposed by Hinton et al. [33] is Distributed representation. It

emphasizes that machines learn factor directly from samples, rather than looking

for relevance from features defined by human experts. In a nutshell, distributed

representation means that every neuron in a neural network does not represent a

feature independently. Each concept is represented by multiple activated neurons,

and each neuron is also involved in many conceptual expressions. Based on the idea

and BP algorithm, Lecun et al. [49] proposed a modern convolutional neural network

framework: LeNet-5.

Although feedforward neural networks represented by MLP and CNN have been

successful in many fields, they are unable to process information sequences because

information sequences are rich in a large amount of content and every single infor-

mation has a complex time correlation with each other. To solve sequential tasks,

Hopfield [36] proposed a kind of temporal multi-layer neural network: Recurrent Neu-

ral Network. The biggest difference between RNN and CNN is that the connections

between internal neurons in one layer are also established in RNNs. Unlike tradi-

tional deep neural networks that use different parameters at each level, RNNs shares

the same parameters in all iteration steps.

That structure allows RNN models to remember the state of input information

so far. Some years later, a more complete enhanced RNN model Long Short-Term

Memory (LSTM) was proposed by Hochreiter and Schmidhuber [35]. Due to the
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addition of the Long Short-Term Memory unit, the LSTM model has a longer memory

capacity and thus repress long-term dependency problem. LSTM greatly improved

accuracy and practicability of the RNN model. Initially, RNN models were applied

to handwriting recognition tasks. Later, scientists found recurrent structure is skillful

for timing inputs, and now they are mostly used in natural language processing.

Deep learning has entered the second winter because traditional back propagation

algorithm is inefficient and tend to fall into the local minima and vanishing gradient

problem. After a long period of lack of progress, introductions of the layer-by-layer

pre-training algorithm and some better optimization algorithms alleviate these prob-

lems. In the last decade, developments of deep learning algorithms and hardware

technology (GPU) allow training convolutional neural networks to remove the need

of layer-by-layer pre-training algorithm. In 2015, Szegedy et al. [82]. introduced a

convolutional neural network model with 48 layers called Inception v3 and it achieved

state of art result with ILSVRC 2012. The advantages of deep networks on structures

are widely studied, which significantly improve the performance of deep models in

computer vision and natural language processing.

In summary, deep learning is a branch of machine learning that relies to a large

extent on the human brain, statistics and applied mathematics that scientists have

developed over the past few decades. In recent years, deep learning has made tremen-

dous progress in terms of popularity and usability, mainly because of more powerful

computers, larger datasets, and techniques for training deeper networks. [48]
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Chapter 3

Previous Work

In this chapter, we will introduce several deep and shallow learning method frame-

works which inspired our research. The foundational framework of extracting and

representing features for visual task named “Convolutional Neural Network” is intro-

duced first, followed by a discussion of its working. The next section will focus on

discussing the Recurrent Neural Network (RNN). In the concluding two sections, we

will introduce two outstanding contrast shallow methods: sparse coding and support

vector machines.

3.1 Convolutional Neural Network

A modern convolutional neural network is a multi-layer artificial neural network. Un-

like ordinary neural networks, CNN contains some feature extractors consisting of a

convolutional layer and a sub-sampling layer. In the convolutional layer, one neuron
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is only connected to a portion of its previous layer. A convolutional layer has sev-

eral feature maps where each feature map consists of several rectangularly arranged

neurons, which share same weights (The shared weights also called as convolution

kernels). That weight sharing structure is used to reduce computational complexity

of training process. CNN also has certain invariance to translation, scaling and other

forms of deformation. Its capacity can be adjusted by changing the depth and breadth

of the network.

The structure and training process of CNN will be explained in the following

subsections.

3.1.1 The Structure of CNN

Figure 3.1 [70] shows a whole convolutional neural network architecture. When a

colourful image (three channels input volume) is inputted to this model, the first

layer of convolution kernels is convolved from upper left to lower right of the input

image in fixed step size. After obtaining features by convolution, layer 1 will produce

some feature maps. And the feature maps will be passed to the first pooling layer

and be divided into non-overlap m× n regions. The mean (or maximum) over these

regions will be obtained to pool the features. After several iterations, feature vectors

will enter the fully connected layer and will be combined into larger combinations.

Finally, a highly abstract representation will be classified by SoftMax classifier.

In general, modern Convolutional Neural Network structure consists of input lay-

ers, convolution layers, sampling layers, fully connected layers, output layer and so

on. Convolution layers convolve their input and output feature maps to next layer.

Pooling layers receive the previous output and down sample them to further abstract
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Figure 3.1: A modern convolutional neural network [70] typically consists of hidden
layers and classifier except for input layer. In hidden layers, convolution and pooling
operation iterative extract features and position information to produce new repre-
sentation.

information. Iteratively stacked convolutional and sampling layer are followed by

fully connected layers, which accept and further combine features and output final

representation.

Convolutional Layer: The convolutional layer consists of a number of convo-

lution kernels and produces feature maps. Essentially, kernel is a linear filter with a

set of weights. And every kernel corresponds to a feature map. Each feature map’s

neuron in the convolutional layer is defined as:

zl = g(w ∗ zl−1 + b) (3.1)

Where zl−1 is the input of current layer l, w is the kernel weights and b is bias. g(·)

is the pointed activation function.

In convolution phase, kernels slide input volume (input image or feature maps)

along width and height of input volume with a fixed step as shown in Figure 3.2 [72].
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On each step, products between the entries of the kernel and the input at any position

will be computed. Then, activation function will receive the results and produce a

value. After the whole process is completed, we will get a feature map corresponding

to the convolution kernel.

Each feature map generated by a convolutional layer is a set of learned repre-

sentation of this layer. Typically, first convolutional layer extracts low-level features

such as edges, lines, corners. Its feature maps represent presence or absence of edges

at specific directions and positions in the input volume. Second convolutional layer

typically detects combinations of edges (motif) regardless of positional change of the

edges. Subsequent levels will assemble the previous motif into larger combination and

abstract these large combinations into more advanced representations [48].

Pooling Layer: In a typical CNN, pooling layers usually follow a convolutional

layer and consist of a plurality of feature maps. Each of them uniquely corresponds

to a feature map of its previous layer. The pooling layers down samples each input

feature map by the following formulas:

xlj = f(ulj), ulj = βlj(x
l−1
j ) + blj (3.2)

where f is the activation function, xlj is the activation value of the jth channel on

the pooling layer l, xl−1j is the feature maps of previous layer, blj is the bais. β is the

weights of pooling layer.

As shown in Figure 3.3 [72], the feature map of the pooling layer uniquely corre-

sponds to output feature map of the previous layer. Neurons in pooling layers are also

connected to local acceptance domain of their previous layer, and accepted domains

of different neurons without overlap. Pooling layers aim to obtain spatially invariant
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Figure 3.2: The working principle of convolution process, from [72]. The 3 channelled
input volume are convoluted by 2 filters with biases. A filter slice corresponds to an
input channel, where each local region is mapped to a specified location by the filter
on output volume. The number of filters determines the depth of the output volume.

features by reducing dimensions of feature maps. Also, pooling layer can gradually

reduce the size of the representation space and thus reduce parameters in the network

and control overfitting. The commonly used pooling methods are max-pooling, that

is, taking the largest value in a local accepting domain, and mean pooling, that is,

averaging all values in a local accepting domain.

Fully Connected Layer: In general, fully connected layers follow iteratively

convolutional and pooling layers on the tail of CNN structure. Each neuron is fully
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Figure 3.3: The image [72] shows a slice of input volume of pooling layer is pooled
with maximum value. In essence, the slice is divided into 4 Non-overlapping local
regions with the same size, in where the maximum value will be mapped into the new
feature map.

connected to all neurons of previous layers. The fully connected layers integrate

representation of input volume from previous layer and produce a highly abstract

final representation.

In summary, CNN models are capable of directly receiving raw data and then

implicitly learn from training data to avoid accumulation of errors caused by manual

extraction of features. Through weight sharing, CNNs reduce the amount of trainable

weights and computational complexity of networks. Introduction of pooling operation

also makes CNNs have certain invariance to local transformation of inputs, such as

translation invariance and scaling invariance, which improves generalization ability of

the networks. In the past 30 years, the convolutional neural network model has been

continuously researched and it has always surprised us.
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3.1.2 The Training of CNN

The training process of convolutional neural networks is mainly to learn kernel weights

and network parameters such as inter-layer connection weights. CNN conducts super-

vised learning through back propagation algorithm. The back propagation algorithm

is essentially an iterative learning algorithm that updates any parameter by iterative

computation. It adjusts weights along the negative gradient direction of the weights

for minimizing target loss function.

BP algorithm could be split into two different parts including error calculation and

weight updating. In the error calculation phase, representation of training samples

is firstly propagated layer by layer to output layer in forward passage phase. After

that, errors between outputs and given labels will be calculated and back propagated

from last layer to first layer by the chain rule. Finally, weights are updated along the

negative gradient direction with a learning rate.

Assume an L-layer network with Activation σ and a Loss function, in which layer

l has inputs al−1 and the Activation function with its input zl the training process of

this network is shown below:
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Algorithm 1 Back Propagation Algorithm

Input: Network with L layers, Activation function, Loss function, Learning rate α,

Maximum iterations Max, Stop threshold ε and Training dataset with m samples

:(x1, y1), (x2, y2) · · · , (xm, ym)

Output: Weights Matrix W and Bias b

some description

for iter=1 to Max do

for i=1 to m do

for l=2 to L do

forward propagation to calculate ai,l = σ(zi,l) = σ(W lai,l−1 + bl)

calculate gradient of output layer by Cost function: δi,L

for l=L-1 to 2 do

Back propagation to calculate: δi,l = (Wl+1)
T δi,l+1

⊙
σ′(zi,l)

for l=2 to L do

update layer l parameters W l, bl:

W l = W l − α
m∑
i=1

δi,l(ai,l−1)T (3.3)

bl = bl − α
m∑
i=1

δi,l (3.4)

if the changing of W and b less than ε then

return W and b

return W and b
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3.2 Recurrent Neural Network

Although feedforward neural networks represented by MLPs and CNNs have been

successful in many fields, they are burdensome to process information sequences. In-

formation sequences are rich in a large amount of content, every single information

has a complicated time correlation with each other, and the length of single informa-

tion varies. To solve sequential tasks, recurrent neural networks were proposed on the

1980s, which are a kind of temporal neural network. The most significant difference

between RNNs and convolutional neural networks is that connections between inter-

nal neurons in one layer are also established in RNNs. Unlike traditional deep neural

networks that use different parameters at each level, RNNs share the same parameters

in every iterative step. This property reflects a fact that RNNs model performs same

task at each step with different inputs. The particular structure reduces the total

amount of learnable parameters that make them applicable to tasks such as speech

recognition, natural language processing connected handwriting.

3.2.1 The Structure of RNN

An RNN is unfolded into a full network based on time. The numbers of layers depend

on the length of the input sequence. In RNN, the states of neurons and the current

inputs together affect the output of neurons; each neuron seems to have a memory

unit which captures information from the beginning until present moment. Compared

to traditional feedforward neural network, RNN has better the capability to capture

more extended historical information.

Figure 3.4 [78] shows an architecture of typical RNN, where x is a sequential input,
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Figure 3.4: The depth of multilayer recurrent neural network [78] is determined by
length of input sequence x. Current input(x(t)) and state of neurons at time t1 together
affect output at time t.

h is a hidden unit, o is output of the network. Here L also called loss function which

is pointed. And y is a label set of training samples. V , W , and U are weights, and

same type of connection weight is same. The entire network is unfolded based on

times. It is clearly shown that the output of unit h at time t is not only determined

by the input of this moment, but also by time before t.

In forward propagation phase, the state of unit h at time t is,

ht = φ(Ux(t) +Wh(t−1) + b), (3.5)

where φ(·) is an activation function of unit h and b is bias. The output of the unit in
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t is,

o(t) = V h(t) + c, (3.6)

and the final output of RNN model is,

ŷ(t) = σ(o(t)), (3.7)

where σ() is the activation of output layer.

3.2.2 The Training Process of RNN

Training RNN is similar to training convolutional neural network. The Back Prop-

agation Through Time (BPTT) algorithm is a commonly used method for training

RNN. It is essentially also a gradient descent method. The core of the algorithm is to

continuously search for better results along the negative gradient direction of param-

eters until the change in parameters is sufficiently small. Since every time step share

same parameters, current gradient of parameters is not only caused by current time

step calculation, but also by past errors. For example, in order to calculate gradient

at time t3, gradients of all previous time steps (step 1 and step 2) are calculated by

back propagation.

Formally speaking, since the loss occurred in each time step of sequence, the final

loss L could be defined as,

L =
n∑
t=1

L(t), (3.8)
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where n is the total numbers of steps. So that the gradient of V at time t is:

∂L

∂V
=

n∑
t=1

∂L(t)

∂o(t)
· ∂o

(t)

∂V
(3.9)

Since the loss is cumulative, the partial derivative of the entire loss for W and U are:

∂L(t)

∂W
=

t∑
k=0

∂L(t)

∂o(t)
∂o(t)

∂h(t)
(

t∏
j=k+1

∂h(j)

∂h(j−1)
)
∂h(k)

∂W
(3.10)

∂L(t)

∂U
=

t∑
k=0

∂L(t)

∂o(t)
∂o(t)

∂h(t)
(

t∏
j=k+1

∂h(j)

∂h(j−1)
)
∂h(k)

∂U
(3.11)

Finally, parameters are updated along negative gradient direction by back propagation

algorithm.

Since Vanishing Gradient Problem often occurs when training RNN, researchers

always use four effective ways to learn RNN including long-short term memory, hessian

free optimization, echo state networks, and proper initialization with momentum [94].

3.2.3 Deep Belief Network

Deep Belief Network is a probabilistic graphical model that learn to extract deep

hierarchical representation from raw data [47]. It is composed of multiple layers of

hidden units with directed and undirected edges. DBNs are always used for un-

supervised learning which is similar to encoders or used for supervised learning as

classifiers. From the perspective of unsupervised learning, DBNs are to preserve fea-

tures of original data as much as possible while reducing dimensions of the features.

From the perspective of supervised learning, DBNs aim to make classification error
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rate as small as possible. In either case, DBNs training process is essentially a feature

learning process, which leads to get better feature representation.

In general, a DBN model is a deep network composed of several stacked Restricted

Boltzmann Machines (RBM) and a cascade layer. RBM is a generated network with a

visible layer and a hidden layer. Figure 3.5 [80] shows a typical RBM that consists of

visible units (corresponding to visible variables, i.e., data samples) and hidden units

(corresponding to hidden variables). The entire RBM is a bipartite graph with some

internal connections between visible and hidden cells.

Figure 3.5: In Restricted Boltzmann Machine, visible units is connected with hidden
units by a directional way.

RBM model was explained as an energy-based probabilistic model with an energy

function. The energy function is a measurement that describes states of the whole

system. The more ordered the system or, the more concentrated the probability dis-

tribution is, the smaller the energy of the system is. Conversely, the more disordered

the system or, the more uniform the probability distribution is, the higher the energy

of the system is. Energy function was defined as:

E(v, h) = −h′Wv − b′v − c′h (3.12)

43



where W represents weights of connection between visible units and hidden units and

b, c is offset of visible and hidden units, respectively. Based on the energy function,

probability of visible-hidden units was obtained as:

P (v, h) =
exp−E(v,h)

Z
(3.13)

where

Z =
∑
v,h

exp−E(v,h) (3.14)

Z is normalization factor, also known as a partition function. Assuming the visible

and hidden units are conditionally independent given one-another, hence:

P (h|v) =
∏
i

p(hi|v), P (v|h) =
∏
j

p(vj|h) (3.15)

Both visible and hidden units are with binary states (active or not), i.e. their

states hi and vj are taken to be either 0, 1. Based on previous equations((3.12) to

(3.15)) probabilistic activation functions of neuron were obtained as:

P (hi = 1|v) = sigm(ci +Wiv) P (vj = 1|h) = sigm(bj +W ′
jh) (3.16)

where sigm() is the sigmoid function.

The goal of training RBM is to minimize system energy, this is, to maximize log-

likelihood function of the RBM on the training set. Hence, parameters of RBM were

updated along the negative gradient direction of the log-likelihood function like other

networks. In general, Contrastive Divergence algorithm (CD) [34] is the most popular
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approach to train DBN. In other words, training process of RBM is actually to find a

probability distribution that is able to produce training samples. Since decisive factor

of this distribution is the weight W , the goal of training RBM is to find the best

weight.

DBNs training process is mainly divided into two steps. At first, we should sepa-

rately train the RBMs by a layer-wise approach to ensure that feature information is

preserved as much as possible when feature vectors are mapped to a different feature

space. As shown in Figure 3.6 [12], the first layer of RBM is trained with the original

input data and the input feature vectors are represented by V0, which is mapped to

another feature space H0. The extracted features H0 are then trained as input V1

of the second layer RBM to obtain the second layer reconstructed features H1. Af-

ter some iterations, the topmost cascading layer receives the output feature vectors

of RBMs as its input feature vector, and then, it will be trained by the supervised

back propagation algorithm. Each layer of RBMs only ensures that its weights are

optimal for its feature vector mapping. Therefore, when the cascade layer is training,

errors will be propagated from the top to bottom to each RBM layer, and the whole

network will be fine-tuned. The training process of DBN models can be regarded

as the initialization of the back propagation networks’ weights, which makes DBN

overcome shortcomings of the back propagation networks which tend to fall into local

optimums.

3.3 Sparse Coding

Sparse coding is a typical unsupervised dictionary learning method designed to learn

a dictionary consist of overcomplete bases to represent data. As a particular edge
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Figure 3.6: Through layer-by-layer pre-training algorithm, the DBN [12] achieves
learning goal, that is, hidden units of RBM1 are first trained, and then they are used
as visible units to train RBM2 iteratively.

detector, it is capable of extracting boundary features from natural images effectively.

In simple terms, sparse coding models reconstruct input data into a linear combina-

tion of a set of over complete basis vectors with coefficients, and the coefficients as

new features will represent the input data. Sparse coding is an effective method of

representation learning.

Although Principal Component Analysis (PCA) enables us to easily find a set

of “complete” bases vectors to describe input data, it uses second-order statistical

properties between data. This is a global transformation method that is unable to

include phase information. In sparse coding approach, overcomplete bases are capable

of finding structural and potential patterns in input data more effectively. Formally

speaking, sparse coding is to represent an input signal x as a linear combination of a

set of over complete bases dx = Da where a is a sparse representation of x. Sparse
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encoding cost function with m input data is defined as:

minimize
a
(j)
i ,φi

m∑
j=1

||x(j) −
k∑
i=1

ajiφi||+ λ
k∑
i=1

|aji |

subject to ||φi||2 ≤ C, ∀i = 1, · · · , k

(3.17)

where
∑m

j=1 ||x(j) −
∑k

i=1 a
j
iφi|| is reconstructed term, which guarantees that error

between the new representation and the original input is as small as possible. |aji | is

a penalty term, which is used to penalize sparse coefficient that far from zero.

Figure 3.7: Sparse Coding illustration, from [86]. The original local region of the
image will be approximated as much as possible through combinations of the learned
bases(φ1, · · · , φn).

In general, sparse coding approach includes two phases: training and coding. The

goal of training is learning a set of over complete bases Φ (dictionary) through min-

imizing the objective function 3.17 by two iteratively independent optimization pro-

cesses. At first, coefficient a is optimized by the fixed dictionary Φ base on training

set. And then, the learned coefficient vector a will optimize the dictionary Φ on the
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same training set. By iterating through until the error between the reconstructed

representation and the original data smaller than a specified threshold, the model

will obtains a set of over complete bases (dictionary), that able to well represent the

training set x. In the representation phase (as shown on Figure 3.7 [86]): Given a new

data x, the coefficient a is obtained by minimizing the objective function 3.18 based

on the dictionary D. a will as the sparse representation of x.

minimize
a

||x−
k∑
i=1

aiφi||+ λ

k∑
i=1

|ai| (3.18)

3.4 Support Vector Machine

Support vector machine (SVM) is a supervised machine learning method based on

VC dimension theory and Structural Risk Minimization. In general, the SVM model

attempts to find the best hyperplane on feature space to classify samples. Compared

to neural networks, SVM has a solid theoretical foundation and a simple straightfor-

ward mathematical model, which makes it highly respected in the field of statistical

learning.

Structural risk minimization and VC dimension are theoretical cornerstones of

SVM. The VC dimension of hypothesis space H is the cardinality (size) of the largest

set of points that H can shatter on instance space X. For example, a line is capable

of breaking three points into 23 kinds of results but can not break four points into 24

kinds of results, so the VC dimension of the line is three.
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The error accumulation between predictions and real solutions is called risk. When

a classifier is selected, the real error is not known, but it can be approximated by

some known amount. The most intuitive way is employing the difference between

results from classifier and actual labels. The difference is also called Empirical Risk.

Empirical Risk with a penalty term composes a basic Structural Risk function.

The goal of SVM models is to find an optimal classification hyperplane so that the

hyperplane is capable of maximizing Margin on both sides of the hyperplane while

ensuring classification accuracy. In theory, support vector machines are capable of

achieving the optimal classification for linearly separable data. Suppose the given

SVM training dataset is (x1, y1), · · · (x1, yn), with x ∈ Rm and y ∈ {−1, 1}. Then the

task is a typical binary-class problem. Suppose the data is divided by a hyperplane:

wTx+ b = 0 (3.19)

where w is a unit vector and b is the bias. Therefore the distance from a point x to

the hyperplane is:

r =
|wTx+ b|
||w||

(3.20)

Assuming the hyperplane can correctly classify the training samples, for any xi:

 wTxi + b ≥ +1, yi = +1

wTxi + b ≤ −1, yi = −1
(3.21)

As shown in Figure 3.8 [98], the training sample points closest to the hyperplane that

makes 3.21 hold are called support vector. The separation between the hyperplane

and the closest data point for a weight vector w and bias b is called as Margin:
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γ =
2

||w||
(3.22)

The task of support vector machine model is to find w and b to maximize the margin:

max
w,b

2

||w||

subject to yi(w
Txi + b) ≥ 1, i = ∀i = 1, 2, · · · ,m.

(3.23)

Maximizing the γ is equivalent to minimizing ||w||2 so that the learning problem be-

comes to the optimization problem. Through Lagrange function, the original problem

can be transformed into dual problem of convex quadratic programming:

minimize
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to αi ≥ 0, i = 1, · · · , n
n∑
i=1

aiyi = 0

(3.24)

where α is Lagrange multipliers. And there is unique solution α∗, w∗ and b∗ for this

formula. Based on α∗, SVM will learn an optimal classification function:

f(x) = sgn((w∗)Tx+ b∗) = sgn(
n∑
i=1

α∗i yix
∗
ix+ b∗) (3.25)
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Figure 3.8: wTx + b = 0 is the hyperplane [98]. The distance between the positive
and negative classes (distance of two dashed lines to the solid line) is the Margin.

51



Chapter 4

Learning Models

This chapter introduces four outstanding deep architectures and one shallow archi-

tecture model that we have used in our experiments. In section 4.1 and 4.2, two deep

models based on Convolutional Neural Network are introduced. The third section

will introduces a Recurrent neural network model with initialized parameters. Then,

a network based on deep belief network model we implemented will be described. The

last section introduces a shallow sparse coding model and a special SVM model to

compare with deep learning models.

4.1 Standard CNN

We implemented a complex neural network based on LetNet-5 and named Standard

Convolutional Neural Network, which also demonstrates satisfied capabilities on the

CIFAR-10 dataset. It consists of two convolutional layers, each followed by a pooling
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layer. The average pooling or maximum pooling will be adjusted according to different

dataset.

Figure 4.1: This image shows the structure of the Standard CNN in which two con-
volution layers with Relu, and max-pooling, dropout tricks were gathered to improve
performance of the network.

The feature map output from the second pooling layer will be flattened and fully

connected to the next layer. Other fully connected layers will be further combined

with abstract feature vectors. A method called dropout is applied between the fully

connected layer to improve performance of the neural network.

Figure 4.1 shows overall structure and work process of Standard CNN. As shown,

input data will be convolved by some kernel of size 5 ∗ 5 to detect and extract basic

features. To reduce effects of the displacement on feature extraction, feature maps

will then be pooled in to the second layer.

Feature maps, produced from the second layer, will then again convolved and

pooled to get more abstract features.After flattening, features of input data are pre-

sented by a highly abstract vector, which will be passed to the fully connected layers.

During training process, Dropout is used to shut down each node with a certain

probability.
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In other words, a certain percentage of fully connected neurons are turned off

during each training session. But, all fully connected neurons are turned on during

recognition (classification) process, which guarantees performance of the entire neural

network.

4.2 MIN

MIN, proposed by Chang and Chen [10], is a deep convolutional network based on

the framework of Network In Network structure. The MIN model has been shown

to have outstanding capability of feature extraction performance on MNIST [50] and

CIFAR-10[43] datasets, with the state-of-art result on MNIST dataset without data

augmentation.

MIN is composed of stacking three feed forward MIN blocks and a SoftMax classi-

fier as Figure 4.2 [10] shown. On each MIN block, multilayer perceptrons (MLP) are

used as universal approximators to extract features and obtain abstract representa-

tions from receptive fields with rectifier units. The Maxout [28] units are capable of

approximating arbitrary convex functions and mediating vanishing gradients problem

and are used as rectifier units to approximate piecewise linear activation functions in

MIN block. To reduce saturation of the Maxout units, data batches are normalized

before passing to the hidden layer and after processing from the hidden layer.

In the MIN block, inputs data are convolved by convolution layer first. Then,

feature maps will be cross-channel pooled by the Maxout units. In each channel,

batch normalization layer will normalize the feature maps to zero mean with unit

variance. After repeating above operations twice, feature maps will be normalized
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and output to the pooling layer. MIN block-wise extract and combine features and

output highly abstract representation to the classifier.

Figure 4.2: Based on the Network IN Network structure, MIN [10] includes 3 blocks
with batch normalization and Maxout tricks. In MIN, MLP as universal approximator
with rectifier units to extract features. The feature maps will be pooled and pasted
to SoftMax classier.
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4.3 IRNN

IRNN was proposed by Le et al. [46], which aims to overcome some problems like

Vanishing gradient to learn long-range dependencies. The model introduced rectified

linear units as activation functions on recurrent neural network. Furthermore, a new

way aims initialize recurrent weight matrix by identity matrix with biases 0, were

proposed in the model.

In the RNN model, current hidden state vector is obtained by simply copying

previously hidden vector then adding on effects of current inputs and replacing all

negative states by zero [46]. In other words, the weights of hidden units remain

constant when no extra error-derivatives are added on the stage of error derivatives

backpropagation through time. IRNN has shown an awesome ability to learn local

dependence on MNIST and one billion words language modeling dataset [11].

4.4 DBN

A DBN model was implemented and conducted on experiments based on the Deep

Belief Network framework by Theano [2]. It is a probabilistic generative model con-

sisting of two Restricted Boltzmann Machines (RBM) with associative memory. The

topmost associative memory consists of a multilayer perception machine.

Except for the top layer (associative memory), each layer encodes the distribution

of previous units and could reconstruct its input. The final representation of the input

vector is produced by layer-wise transformation from the lowest to the highest layer.

As shown in Figures 4.3, each RBM layer contains 1000 units without connection with
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Figure 4.3: The image shows our DBN structure, in where 1000 units of each hidden
layer ensure that the original data can be reconstructed as much as possible.

each other. An unsupervised greedy layer-wise algorithm (CD) and BP algorithm are

employed to train this model. In training process, raw data are first used to train the

hidden layer of first RBM to reconstruct them. After that, the hidden layer of the

first RBM is used as the visible layer of the second RBM to train it continuously. The

two trained RBMs model connected to a cascade layer with 2000 units. The cascade

layer connected to the second RBM and label units is used to obtain the gradients of

the cost function. Finally, the BP algorithm also propagates error information from

top to bottom to adjust the DBN.
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4.5 Shallow Learning Models

4.5.1 Sparse Coding

The work of any sparse coding method can be reformatted into a two-stage process:

training stage and mapping stage. In the training stage, a Dictionary(D) is learned

from a training set with some training algorithms; in the mapping stage, features are

extracted from inputs based on the trained dictionary and then mapped into a new

representation space with a mapping function. We employ the coding model proposed

by Coates and Ng [17] as a comparative framework. In the framework, a Dictionary is

obtained by unsupervised learning algorithm that alternately optimizing the objective

function,

minimize
D,s(i)

∑
i

||Ds(i) − x(i)||22

subject to ||Dj||22 = 1, ∀j;

||s(i)||0 ≤ k,∀i

(4.1)

where x(i) is input vector, s(i) is new representation code of x(i). ||s(i)||0 ≤ k means

that each representation code has at most k non-zero elements and ||Dj||22 means

that the dictionary elements Dj all have unit length. The unsupervised orthogonal

matching pursuit algorithm (OMP) [69] will then be used to approximate S and D.

After optimizing S and D alternately, we can get a complete dictionary D. Given

dictionary D, final representations of the input x are obtained by a fixed threshold α,

 fj = max{0, D(j)>x− α}

fj+d = max{0,−D(j)>x− α}
(4.2)

wherefj and fj+d are final representations of the input x.
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Finally, the representation of features will be passed to L2 SVM classifier to pro-

duces category of each sample.

4.5.2 RBF SVM

In this thesis, Radial Basis Function kernel was implemented to increase performance

of the SVM model, and named as RBF SVM. RBF SVM maps/transits sample space

into a high-dimensional feature space. The nonlinear transformation is defined as:

K(x(i), x(j)) =φ(x(i))Tφ(x(j))

= exp(−γ||x(i) − x(j)||2)
(4.3)

where φ() is radial basis function and γ is the learning coefficient. Then, the learning

problem becomes the optimizing object function:

minimize
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, kj)

subject to αi ≥ 0, i = 1, · · · , n
n∑
i=1

aiyi = 0, 0 ≤ ai ≤ C

(4.4)

Where C is a threshold to be specified. Finally, the learnt classification function of

RBF SVM model is:

f(x) = sgn((w∗)Tφ(x) + b∗) = sgn(
n∑
i=1

α∗i yiK(xi, x) + b∗) (4.5)
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Chapter 5

Experiments and Results Analysis

We conducted all deep and shallow models on the public MNIST and CIFAR-10

datasets. In this chapter, the experiment setting as well as the result analysis will be

discussed.

5.1 Experiments

5.1.1 Data Formation

We expect our experiments will conduct on datasets which have been thoroughly

studied by using Deep Learning approaches. Many real data do not have proximity

between neighbouring elements (e.g.,[29, 9, 56]), but there are no experiments using

Deep Learning approaches on these dataset. To make a fair comparison, we used
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image data, CIFAR and MNIST, which have been used for testing DL approaches,

but converted into neighbouring proximity unpreserved data as follows: for any data in

the dataset, (X, Y ), where X = [xij] ∈ Rm×n represent a 2-d image, and Y represents

the category. We convert X:

X =


x11 . . . x1n
...

. . .
...

xm1 . . . xmn

 (5.1)

into Xw:

Xw = F ∗X t =


0 . . . 1

...
. . .

...

0 1 0

 ∗
(
x11, . . . x1n, x21, . . . xmn

)T
(5.2)

where F is a randomly generated 0-1 sparse matrix of size mn × mn, with only

one 1 item in each row and each column, representing a random permutation of

pixels. Finally, the data Xw will be reshaped into a m× n matrix Xf , which is now

neighbouring proximity unpreserved.

5.1.2 Experiments on MNIST

MNIST is a classic handwriting recognition data set. It contains 10 categories of

60,000 training samples and 10,000 test samples without extra illumination and stains.

It has been shown by experiments that the Deep learning approaches (e.g., [15, 52, 79]

) have outstanding ability to representation and expression the MNIST dataset.
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The MINST data (X, Y ) was converted into (Xf , Y ) to removing neighbouring

proximity by above permutation operation before experiment. We called the new

dataset as F-MNIST. We conducted all above deep learning methods on F-MNIST.

In standard CNN, all convolution kernels are of size is 5× 5 and pooling is averaged.

And we applied 10−2 as the learning rate with a decay rate of 10−6. IRNN only

accepts one pixel at each time step, each sample were transferred to a vector of size

784 × 1. We applied 10−6 as the learning rate for achieving faster convergence and

performance improvement. At the same time, the original optimizer is replaced by the

RMSprop, as recommended by [13], which yields more stable and steady improvement.

IRNN stops until convergence or after 1,687,500 iterations. In DBN, we stacked two

RBMs with a multilayer perceptron. Every RBM has 1000 units. Since F-MNIST

is a lightweight dataset, we took the RBF SVM model with C = 5 and γ = 0.05 to

classify neighbouring proximity unpreserved dataset F-MNIST.

Table 5.1: Test accuracy and decline rate of all methods on F-MNIST

Methods Test accuracy Decline rate
Standard CNN 95.43% 3.62%
MIN 97.98% 1.78%
IRNN 72.68% 20.82%
DBN 98.44% 0.31%
RBF-SVM 98.37% 0%
SVM-ploy9 98.60% 0%
RBN-LSTM 95.40% 3.60%

The results are shown in Table 5.1. It is clear that the simple shallow model, RBF-

SVM, has the better performance than other DCNN and RNN models. Furthermore,

another shallow model SVM with ploy9 [49] achieves the best accuracy. As in the third

column, the decline rate is the difference of accuracy between applying the original

dataset and the F-MNIST. From Table 5.1, we can find that the accuracies of all deep
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structure methods are reduced. However, the shallow methods are not affected.

(a) Standard CNN on MNIST

(b) Standard CNN on F-MNIST

Figure 5.1: The training process of Standard CNN on the original MNIST and F-
MNIST. The abscissa indicates the number of iterations of whole dataset.

We also evaluated CNN, MIN and DBN performance on both the original MNIST
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dataset and the neighbouring proximity unpreserved dataset F-MNIST. The results

are shown in Figure 5.1 to Figure 5.3. From these results, we can find that the

performances of CNN, MIN and IRNN converge on F-MNIST dataset are not better

than their performance on original MNIST dataset. Some of the methods even become

unstable.

0 50 100 150 200 250

Epoch

0

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

o
r

Train

Test

(a) MIN on MNIST
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(b) MIN on F-MNIST

Figure 5.2: The results of MIN on original MNIST and F-MNIST.

Table 5.2 shows the runtime1 of deep and shallow methods on the MNIST (F-

MNIST) dataset. It is important to note that all deep methods are speed up by a

high-performance graphic card2. Even so, IRNN took much longer than RBM-SVM (If

1The runtime of all methods on this paper is calculated based on the same operating platform:
Intel(R) Xeon(R) 2609v3, 80GB RAM.

2Nvidia Titan Xp
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(a) IRNN on MNIST
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(b) IRNN on F-MNIST

Figure 5.3: The results of IRNN on original MNIST and F-MNIST.
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Table 5.2: The runtime of deep and shallow methods on F-MNIST

Methods Runtime(unit:hours)
Standard CNN 0.5
MIN 4.35
IRNN 112.5
DBN 0.75
RBF-SVM 0.27

we remove the graphic card, the runtime of standard CNN with the simplest structure

in all deep methods is over five hours). In the sense of efficiency, the shallow methods

are much better than deep methods on the MNIST (F-MNIST) dataset.

5.1.3 Experiments on CIFAR-10

The CIFAR-10 dataset consists of 10 categories of natural colour images. It is divided

into 50000 training and 10000 test images. It has been removed the neighbouring

proximity by the formation operation introduced by Section 5.1.1. we called the new

dataset as F-CIFAR-10.

In standard CNN, 10−3 was applied as the learning rate with decay rate of 10−6.

For the best performance of MIN, we applied the structure and parameters proposed

by [10]. For IRNN, each neutron unit accepts three intensity values (i.e. RGB) at each

time step. We have tried a variety of different combinations of parameters in order

to achieve the best performance. For the shallow approach, we following the coding

model explained in Section 4.5.1. The standard process of [17] is applied: extracting

6× 6 local patches with stride 1 to yield a bank of feature vectors, then, normalizing

and applying Zero-Phase Component Analysis (ZCA) whitening. Dictionary is trained

by the feature vectors with OMP-1 algorithm (i.e. k = 1); the feature representation
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is accepted with a soft threshold α = 0.25 for encoding. Finally, global representation

is form through average-pooling on a 2× 2 grid and passed to SVM for classification.

The experiment results are shown in Table 5.3. We can easily see from the table

that all the shallow coding method achieves best results.

Table 5.3: The test accuracy and decline rate of deep and shallow methods on F-
CIFAR-10

Methods Test accuracy Decline rate
Standard CNN 48.81% 19.07%
MIN 56.68% 35.47%
IRNN 36.67% 9.45%
DBN 49.48% 0.32%
Coding+SVM 58.16% 23.69%

Figure 5.4 to Figure 5.6 show the comparison results of Standard CNN, MIN

and IRNN on the original CIFAR-10 and on the neighbouring proximity unpreserved

dataset F-CIFAR-10. We get similar results with the experiments with MNIST; the

deep methods on neighbouring proximity unpreserved dataset F-CIFAR-10 did not

stabilize as it would on the original dataset. Moreover, IRNN needed more iterations

to converge. The runtime of all deep and shallow methods on the CIFAR-10 (F-

Table 5.4: The runtime of deep and shallow methods on F-CIFAR-10

Methods Runtime(unit:hours)
Standard CNN 0.5
MIN 9.18
IRNN 191.97
DBN 0.77
Coding+SVM 4.62

CIFAR-10) is reported in Table 5.4. We can see that although the runtime of the
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shallow method was increased, it was still shorter than the runtime of standard CNN

without GPU (over 9 hours).

(a) Standard CNN on CIFAR-10

(b) Standard CNN on F-CIFAR-10

Figure 5.4: The train process of Standard CNN on CIFAR-10 and F-CIFAR-10.

68



0 50 100 150 200 250

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

o
r

Train

Test

(a) MIN on CIFAR-10
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(b) MIN on F-CIFAR-10

Figure 5.5: The results of MIN on original CIFAR-10 and F-CIFAR-10.
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(a) IRNN on CIFAR-10
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Figure 5.6: The results of IRNN on original CIFAR-10 and F-CIFAR-10.
70



5.2 Possible Reasons For The limitations of Deep

Methods

5.2.1 CNN

In the CNN hierarchical structure, the inputs of the present layers’ neurons are ac-

tually a dense set of outputs of previous layers’ local patches with local dependency.

Essentially, CNN achieves global dependencies and global representations by itera-

tively stacking local patches dependencies and representations. The neighbouring

proximity enables information extractions from local patches with limited training

samples. However, as shown in the experiments of Section 5.1, the local dependencies

(i.e., neighbouring proximity) do not exist starting from the first layer (the inputs do

not have neighbouring proximity). Therefore, the kernels of local patches lost their

power in extracting meaningful information from limited training samples. Based on

that, regardless of the number of layers is used, the global dependency cannot be

effectively extracted, which affect the capacity of global representations.

5.2.2 IRNN

RNN is capable to “remember” long histories if it is provided enough capacity. How-

ever, large capacity means large-scales, and large-scale neural networks always en-

counter difficulties in optimization ([6, 68]). Therefore, the length of the dependencies

caused the performance drop of RNN. In order to verify this hypothesis, we carried an

advanced experiment: in data formation phase, we gradually scaled up the operation
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units.

(a) Original MNIST data (b) New generated data

Figure 5.7: Each green block is an atomic operation unit. Original blocks are shuffled
with a random permutation to generate new data without neighbouring proximity

Table 5.5: The performance of IRNN conducted on the shuffled MNIST with different
operation unit

Unit Test accuracy
1× 1 70.82%
2× 2 79.63%
4× 4 81.38%
7× 7 83.25%
14× 14 87.52%

As shown in Figure 5.7, original MNIST data (image matrix) was divided into

several blocks (i.e. operating unit). Then, the blocks of every MNIST data are

shuffled with a fixed random permutation. In order to retain more neighbours of

elements, the size of these blocks was gradually scaled up. The final results are shown

in Table 5.5. From Table 5.5, we can see that the performance of the RNN improves

gradually as the operating unit increasing.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Deep learning has become one of the most popular methods in many applications

(e.g., natural language processing, pattern recognition and generation, computer vi-

sion, etc.), especially since it was introduced into self-driving. In the past two decades,

the advantages of deep learning have been continuously explored and advanced struc-

tural components have been introduced, but its limitations have not been well studied.

Leading to the idea that traditional approaches are completely replaced by deep learn-

ing approaches.

In this thesis, we have performed some outstanding deep structure methods, such

as Standard CNN, MIN, IRNN, and DBN, on datasets where proximity is removed and

compared results with such methods running on the original datasets. The comparison

clearly shows that these deep structures have significantly reduced performance on
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the datasets without neighbouring proximity. Also, the most important conclusion

obtained with results produced by shallow method is that the performance of the deep

methods is worse than the shallow methods when applied to neighbouring proximity

unpreserved datasets.

Even though RNN has the capacity of long distance memory, in practice the

“length” of long distance memory is still very limited. This leads to problems with

input size 30×30, if neighbouring proximity is removed and the performance of RNNs

is far behind traditional shallow approaches. In such situations, deep structures do

not have any advantages over traditional shallow methods.

Therefore, based on the series of contradistinctive experiments, we can conclude

that proximity among neighbouring elements significantly affects the performance of

deep structures. And our experiments show potential risks of applying deep learning

to autopilot and also give a warning to deep learning’s safety. At last, we should not

expect that deep approaches will end traditional AI and machine learning research.

6.2 Future Work

The conception of further improvements for the deep learning approach is listed below:

• Introducing a new operator: Our experiments show that the deep structure

model is not sensitive to neighbouring proximity unpreserved dataset. In the

future, new mapping/learning operators can be further introduced to improve

the performance of deep structure models.

• Combining with shallow structure methods: The dataset could be preprocessed

74



by the shallow methods before it is applied to the deep structure model.

• Streamlining parameters: Reduce the parameters to improve the training speed

of the deep structure model.
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