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Abstract

Meta-heuristic algorithms give a satisfactory solution of complex optimization problems in
a reasonable time. They are among the most promising and successful optimization tech-
niques. However, some problems are highly complex and require improved techniques. A
careful analysis of the existing meta-heuristic algorithms and hybridization among them may
facilitate the research in this direction. To test this hypothesis, the author of the thesis de-
veloped a computational tool using a few meta-heuristic algorithms where these algorithms
can be analyzed in detail and possible hybridization among them can be created. As a case
study, the tool is developed for simplified protein structure prediction. The proper working
of the software is demonstrated by optimizing the two sets of standard previously reported
sequences. Along with testing and analyzing meta-heuristic algorithms, the tool can be used

for simplified protein structure prediction.
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Chapter 1

Introduction

The work done in this thesis is primarily focused on protein structure prediction using meta-
heuristic algorithms. Protein Structure Prediction (PSP) determines the configuration of a
folded protein without actually going through the folding process [3]. The interest to work
on PSP problem for my thesis was originated partly from a Bioinformatics course that I took
in the first term, and partly from my background in physics. Molecular structure optimization
was a part of my Ph.D. thesis in physics. In the Bioinformatics project, my group expanded
the pre-developed tool in our lab for protein folding using a genetic algorithm. Once I de-
cided to work on protein folding using meta-heuristics for my thesis, I was contemplating
whether to expand the existing tool or develop a new tool from scratch. I decided on the
latter approach for several reasons: (1) it is hard to work with code written by someone else,
(2) the existing code was limited in features' and (3) I thought it would be a wonderful op-
portunity to build a comprehensive software from scratch. With this brief history of how I
ended up choosing my research topic, next I will discuss the background information needed

to present my research contributions.

For example, (1) the graphical user interface is not effective for user interactions,(2) only one algorithm
was implemented and hard to expand for multiple algorithms, etc.
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1.1 Optimization

In general, the process of finding the best solution from an available set of alternatives under
some conditions is called optimization. Most natural processes work to attain the best (op-
timized) state/solution from all the potential alternatives. Many of the physical, biological
and psychological processes, and even cultural and historical events are inspired by the idea
of optimization. Physical processes favor minimized energy states, and sometimes lead to
symmetry, which exhibits optimization in physical phenomena. Similarly, evolutionary ac-
tivities of animals and plants follow the concept of optimization for their survival. Moreover,
problems related to profit/loss in business, some complex cognitive problems in psychology,
social welfare in the context of some planning, etc., can be resolved under a suitable opti-
mization framework. Since optimization is the core concept in a wide range of natural phe-
nomena, it can be applied to solve and analyze a diverse range of complex problems [4—11]

related to the fields of physics, mathematics, computer science, economics, etc.

Energy

Initial Structure
Optimized Structure

>

Geometric Parameter

Figure 1.1: Energy minimization of a molecular structure w.r.z. two geometric parameters

Specifically, optimization in economics is the search for the highest achievable perfor-
mance under given constraints by escalating the profit and minimizing undesired factors. In

mathematics and computer science, optimization is the process of maximizing or minimiz-
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ing a real function with the help of systematically allowed input values. Figure 1 explains the
energy optimization process of a molecular structure under two geometric parameters (vari-
ables). Problems considered under optimization generally consist of three basic elements: 1)
an objective function which is minimized or maximized in the optimization process, 2) a set
of variables (unknowns) which changes the objective function and 3) a set of constraints [12].
Constraints are used for limiting the search space; otherwise, the search space will become
very large. Usually, optimization problems are based on a single objective function, but a
multi-objective function is also possible. In terms of these basic elements, the optimization
problem can be described as the search for values that minimize or maximize the objective
function(s) based on some constraints.

The applicability of optimization to a variety of problems gave birth to different op-
timization techniques. Some widely used techniques are dynamic programming, integer
programming, stochastic programming, evolutionary algorithms, etc. In linear program-
ming, both objective functions and constraints, are linear in nature, whereas, non-linear
programming includes at least one non-linear function which could be the objective func-
tion or some/all constraints. Geometric Programming (GP) is a particular type of non-linear
optimization where decision variables must be strictly positive quantities. Dynamic pro-
gramming is an effective type of optimization technique which breaks down the problem
into a collection of simpler sub-problems. Dynamic Programming is extensively used to
solve different bioinformatic problems such as sequence alignment, protein-DNA binding,
protein folding, etc.

In Integer Programming, variables are restricted to integers, and if the function and con-
straints are linear, it is called as Integer Linear Programming (ILP). This is the most common
technique used to solve real world optimization problems. Some optimization problems re-
quire to optimize more than one objective functions which led to the development of multi-
objective programming. There has been a rapid increase in the use of evolutionary computa-
tion to address difficult problems. These efforts are generally followed by three main lines of

investigation: (1) genetic algorithms, (2) evolution strategies, or (3) evolutionary program-
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ming. The solution in evolutionary techniques is searched by sampling from a probability
distribution. Stochastic optimization is a type of programming that is helpful when some of
the data incorporated into the objective or constraints are uncertain [13].

The search for these optimization techniques, appears to have started at least as early
as the time of Newton and Leibnitz with the invention of iterative methods of differential
calculus. Lagrange, Cauchy, Carroll, Fiacco, and McCormick have contributed a lot to Non-
Linear programming. The Simplex method suggested by Dantzig is one of the most widely
used algorithms in the field of linear programming. The dedicated work of these and other
investigators consequently appeared in the form of a number of optimization algorithms. In
computer science most of these methods are divided into three categories: (1) optimization
algorithms which use some definite procedure to find the solution; (2) iterative methods that
converge to a solution; and (3) heuristics (or meta-heuristics) that provide an approximate
solution after a given number of steps. The choice of method or algorithm for an opti-
mized solution is usually problem-dependent. Some conventional problems can be solved
using traditional mathematical techniques, such as Linear Programming (LP), Non-Linear
Programming (NLP), and Dynamic Programming (DP), and guarantees to reach global op-
tima. However, most real world problems are non-linear, and the search for global optima
is feasible only for small sized instances of the problems. These problems could require a
huge amount of computational work. Heuristic/Meta-heuristic algorithms can simply handle
many of these complex problems. In recent years, meta-heuristic algorithms are extensively
used as an alternative approach to the classical methods for solving optimization problems
that include uncertain, stochastic, and dynamic information. This motivates the new re-
searchers to conduct further investigation in this direction. Developing a tool based on some
meta-heuristic algorithms for the optimized solution will be a good step. The tool can be
used to get the optimized solution using different algorithms and the research can be done
by testing and analyzing these algorithms in their base forms or with addition/removal of
different constraints or by mixing possible features of different algorithms. Therefore, we

decided to build an interactive software tool using some meta-heuristic algorithm which can
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be used for research as well as educational purposes. Building a generic tool is a complex

task, and, therefore, we decided to build the tool for a specific problem.

1.2 Protein Structure Prediction (PSP)

As mention in [14], PSP is one of the top 125 problems, and is still unsolved. PSP is a com-
plex task, and scientists from last sixty years have persistently tested different experimental
as well as theoretical, techniques to search their optimized structures. Actually, the experi-
mental work on proteins was started in the nineteenth century, but was somewhat enhanced
with denaturation studies under different experimental conditions during 1930s [15]. A very
first report on high-resolution protein structures was published by Kendrew and Perutz in
1958 [16]. For their work, they were awarded 1962’s Nobel Prize in Chemistry. However,
on the theoretical side, not too much work was reported until 1969 when Levinthal posed a
very important question related to folding speed. He pointed out that protein folding speed
is too high as compared to the exhaustive search in the conformation space [17]. This is
known as the Levinthal paradox. After the Levinthal paradox, it was suggested that protein
folding speeds up due to local interactions, and experimental evidence verified the existence
of intermediate states present during protein folding. Some tests with calorimetric protein
folding did not observe any intermediate state as recorded for tRNA [18], but later partially
folded states were observed during protein unfolding. Garel and Baldwin also confirmed the
presence of intermediate between native and unfolded state [19]. Hughson et al. designed a
model of molten globule [20], and explained that only a portion of the polypeptide has re-
sulted through the intermediate states. Some studies also accepted the existence of partially
folded transmission states [21-24]. Nowadays, there are huge numbers of reports on PSP,
both experimental and theoretical. Different models have also been suggested to accomplish

PSP in fast and easy ways.
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1.3 Protein Structure Prediction Using HP Model

The HP model was proposed by Dill in 1989 [25]. It is one of the simple and effective models
for protein folding. The model is based on the hydrophobic effect 2. It divides the amino
acids into two categories based on their hydrophobic (H) and hydrophilic (polar) (P) nature.
Since the model is based on the nature of amino acids, for simplicity, it considers amino
acids’ residues of the proteins as beads to construct the molecular structure of proteins.
The structure is similar to the molecular structure of small molecules, whereas, in that case
atoms are combined as beads. The search space in this model can be restricted by the use of
different lattice types, i.e., the positions of beads are constrained to these lattice sites. The
PSP is a NP-hard problem [26,27] and with the use of HP model under such constraints,
it is proved to be NP-complete in 2D as well as 3D lattices [28,29]. The model is widely
used, as it is able to predict some behavioral features of the proteins and is well known for its
simplicity. However, still, not much work has been done in developing software applications
on the basis of the HP-model. Therefore, we decided it as the primary objective of my thesis

work via incorporating various meta-heuristic algorithms.

1.4 Contribution of The Thesis

The main contribution of this thesis is the design and development of a software framework
that enables us to implement various meta-heuristic techniques to study the optimal folding
of proteins based on the HP-model. The benefit of this contribution is twofold: (1) for
educational purposes and (2) as a research tool.

As an educational tool, it can be used to teach protein folding using the simplified HP

model. Specifically, the tool can be used to:

o teach different meta-heuristics algorithms in the context of protein folding. Using

ZHydrophobic effect is referred as the tendency of a nonpolar (solute) molecules to get together in water
(polar solvent) rather than to dissolve individually. This causes the poor solubility of nonpolar substances in
water as compared to polar substances.
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the tool, we can demonstrate the design of new and existing popular meta-heuristic

algorithms by combining various tricks and sub-heuristics.

e demonstrate protein folding using the HP model. The HP model is one of the simple
models that is suitable to teach hydrophobic and hydrophilic involvement in protein
folding. The visualization component of the tool adds value for the effective teaching
of the folding process. The 3-dimensional optimized structure can be viewed from
different angles and easy to analyze. The graphical display of the structure is also

helpful for checking the correctness of the meta-heuristic implementation.

As a research tool, it can be tuned and improved in a number of ways. For example:

e [t can be used to compare the effectiveness of different meta-heuristic algorithms for

protein folding.

e Better hybrid optimization procedures can be searched from the available algorithms

and additional features.

e New algorithms/features can easily be added and tested along with existing ones in

order to search for better optimized procedures.

e The conclusions drawn from newly constructed optimization procedures can further

be applied and analyzed for other optimization problems.

e Different constraints, such as twin removal, mirror symmetry, etc., can be applied and
tested with multiple algorithms and better conditions for optimizing under an algo-

rithm can be searched.

e The predicted optimized structure can be further used as the input structure to carry out

fast ab-initio calculations where consideration of hydrophobic effect can be omitted.

To achieve the above-stated goals and benefits we have to address the following research

challenges:
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1. How do we design a graphical user interface for interactive inputs and output?

2. How do we implement different algorithms and identify the common parts among

different algorithms?

3. How do we identify and implement the main components for parallelism on computa-

tionally expensive steps?

4. What procedure can be used to escape from local optima?

5. What is the condition required for an algorithm/algorithmic step to be used in hy-

bridization, and what criteria can be applied to implement them for hybridization?

6. What procedure(s) have to be used to save and display the output results based on user

requirements?

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive back-
ground by explaining PSP, HP model, meta-heuristics, and related work. Next, in Chapter 3,
I present different meta-heuristic algorithms employed in my work. Chapter 4 presents the
design and implementation of the software tool. The correctness of the software has been
confirmand by optimizing the previously reported proteins’ sequences. A brief analysis of
the results of the implemented algorithms is given in Chapter 5. The conclusions and future

work are presented in Chapter 6.
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Related Work

This Chapter is divided into five sections. Section 2.1 discusses Protein Structure Prediction
(PSP) and major interactions involved in protein folding. The next section covers the HP
model, its importance and some of its limitations. Meta-heuristic is discussed in Section
2.3. Section 2.4 presents some reports related to PSP optimization techniques. Finally, the

summary of the chapter is given in Section 2.5.

2.1 Protein Structure Prediction (PSP)

Proteins are the building blocks of our body which form the essential components of all
tissue structures of cell membranes and genetic material. In the living organisms, proteins
serve different functions, such as muscle contraction, transmit nerve impulses, building DNA
and RNA, immune protection, cell growth [30], transport ions, and molecules [31], etc. It
has been observed in a number of reports that proteins function have a parallel relationship
either with the sequence of amino acids or with the structure of folded protein [32,33]. A
small change in the sequence, can cause inimical disease [34] and a number of diseases
such as sickle cell anemia, neurodegenerative disorders, age-related diseases (for example
Alzheimer’s and Parkinson’s diseases), etc., are considered to be caused by incorrect protein

folding [35-39]. These studies insist to understand the proteins folding and their functional
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dependency on their structures.

Protein formation is a two-step process of transcription and translation. A messenger
RNA, formed by the unwinding of a DNA strand (transcription), when interacts with ribo-
some results in a protein or a sequence of amino acids. This sequence of amino acids is
called the primary structure of proteins. At a proper temperature and solvent composition,
the primary structure folds to minimized energy structure called the native or tertiary protein
structure. Proteins always fold to their unique shapes, however, the mechanism involved
in the folding is not yet understood. Also, the misfolding of proteins is responsible for a
number of health related issues. Therefore, it is important to understand how a sequence ac-
quires a particular minimized energy structure. Knowledge of the folding mechanism, when
employed to a given primary structure aids prediction of the native structure. This search
of native structure from a given sequence of amino acids (primary structure) is known as
protein structure prediction.

Protein Structure Prediction (PSP) is important for both biochemistry as well as medic-
inal purposes. Proteins perform a variety of tasks in the human body, and their functions
depend on their structure [32,33]. Therefore, knowledge about the structure of proteins can
help in many ways to improve/new drugs. The selective structure-based drug design, for ex-
ample; a drug designed targeting the parasites based on structural differences between host
and parasite can exploit the parasites without causing damage to the host. Structure predic-
tion will also be helpful for comparing proteins and be used to establish the evolutionary
relationship with other proteins and protein families.

After realizing the importance of PSP, a number of research groups started to work in
this direction. Some reports suggested that folding is a step-by-step process and confirmed
the existence of intermediate states [40]. The presence of intermediate states also supports
Levanthal’s argument that protein follows the shortest path to native state. It can be assumed
that there might be some genetic code that resides in the sequence or somewhere in the
generic material which helps proteins to get their unique shape. Ramachandran tried to figure

out this hypothesis by using the dihedral angle between different residues. He suggested a
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range of dihedral angle regions, called Ramachandran plot, which might be followed by
the amino acid sequence during folding process [41]. Later some arguments against these
regions have also been reported [42]. Reports also purposed that the tertiary structures are
followed by secondary structures [43], as a significant amount of secondary structures have
been observed at intermediate states. Subsequently, this argument has also been ruled out
and confirmed that it is true only for certain proteins and not in general. However at present,
as a consequence of these efforts, there is a significant amount of articles pertaining to PSP
and with the aid of the advanced experimental and theoretical techniques PSP is somewhat
achievable.

The experimental techniques mainly employ; Electron microscopy, X-ray crystallogra-
phy, and NMR-spectroscopy. X-ray crystallography collects the information about electron
density through 2D diffraction pattern at different orientations. Electron microscopy has
higher resolution than a microscope and is used to obtain the image of the sample. In NMR
spectroscopy different electron shielded environments around the nuclei give rise to different
chemical shifts and is best suitable for studying the structure and protein dynamics [44—46].

Experimental analysis of large molecules, however, is not an easy job. Therefore, more
efforts are needed to improve theoretical approaches. Theoretical studies for PSP need to
take care of different types of interactions (electrostatic, Van der Wall, hydrogen bonding,
hydrophobic effect, peptide bonds, etc.) and surrounding environmental factors ( pH, ionic
composition, and concentration, solvents dielectric constant, etc.). The role of each type of
interaction is still not clear, but evidence shows that the hydrophobic effect plays a major
role in protein folding [15]. However, this conclusion has been drawn after a series of exper-
iments and observations. In early studies, the folding was considered to be due to long-range
electrostatic interaction but later attributed to hydrogen bonding. Over time, the role of the
hydrophobic effect became clearer and is considered as a major factor responsible for protein

folding [15].
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2.1.1 Major Interactions Involved in Protein Folding

Predicting native protein structure is a collective response from different interactions and
environmental factors originated from a large number of atoms/molecules/ions. During
the time of the 1920s, only acids and bases were known and the interactions involved in
protein folding were considered between oppositely charged ionic side chains (called salt-
bridges) [15]. Apparently, the first idea of interaction responsible for protein folding could
be electrostatic interactions. The first electrostatic interactions’ based model was purposed
by Linderstrom-Lang [47] and later improved by some other researchers [48—50]. There
are some observations which favor this model calculation [51], however, some contradictory
results have also been reported [52,53].

Actually, the role of electrostatic interaction is difficult to analyze because the method
used which changes the concentration (adding salt) and produce two-way effects; increase
of dielectric constant increases the net charge on the native state and hence destabilize the
native state but at the same time it can lead to stability if it increases the ion pairing in
the protein structure [15]. Also, the dielectric property alone cannot be used to diagnose
the electrostatic interactions because it is also associated with other solvent properties [15].
Some observations cleared the role of ion binding on stability [54,55]. However, reports
from Jacobsen and Linderstrom-Lang [51] and structural study by Barlow and Thornton [56]
explained that ion-pairing is not the major force in protein folding. Barlow and Thornton [56]
study reveal that only 17% of ion pairs exist inside the core and this amount is too small to
be considered as the major cause of protein folding.

The second major type of force responsible for protein folding could be hydrogen bond-
ing (H-bonds). This type of interactions can occur when hydrogen attached to a highly
electronegative atom come closer to another electronegative atom. Hydrogen bonding is
common in inorganic molecules such as water as well as in organic molecules like DNA.
In proteins, hydrogen bonds are considered to be important because the backbone atoms of

each residue can form two or more hydrogen bonds. Since helices are the common fea-
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ture of globular proteins, it is obvious to consider hydrogen bonding as the folding driving
force [57].

In 1936, Mirsky and Pauling [58] predicted folding in alpha helical and beta sheet struc-
tures by keeping in mind hydrogen bonding as the major force between carbonyl and amide
groups which later supported by X-ray crystal structures of globular proteins [59]. It was
suggested that protein folding follows a hierarchy from a primary structure to secondary
structure and then leads to tertiary structure. This hierarchy has been widely adopted in
predicting the native state using the computational strategy from a given sequence. Based
on hydrogen bonding, different models [60-62] have been suggested for understanding the
helix formation and beta-sheet formation. However, Kauzmann [63] insists that hydrogen
bonding is not the dominating force because there is no explanation related to the inter-chain
H-bonds at folded state having lower free energy than denaturant state.

Hydrogen bonding analysis was also not consistent with the other observations such as
alcohol being more hydrophobic than water and if hydrogen bonding is the dominant force
it should destabilize proteins [15]. Instead, alcohol enhances helix formation. Also, one per-
cent of dodecyl sulfate can unfold the protein, however, it does not destabilize the helix [15].
Dioxane is a hydrogen-bond acceptor and therefore should not denature proteins, but it does.
These solvent studies point out the fact that hydrogen bonding is not the dominant force
responsible for protein folding. However, about 66% of backbone polar groups are buried in
the hydrophobic interiors of proteins which are, generally, hydrogen bonded to a partner as
burying polar groups without hydrogen bonding in non-polar media is energetically expen-
sive [64]. These observations indicate that hydrogen bonding must play an important role
during folding or for stability but it can not be considered as the major force responsible for
protein folding. Its role still requires a proper comprehensive explanation.

The above discussion imply that the hydrogen bonding and electromagnetic interactions
are not the driving force for protein folding. Consequently, the possible cause could be found
in the surrounding environment. It was stated that almost 85% of non-polar side chains in

proteins are buried in the interior of the protein [65]. These non-polar groups shielded from
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solvent and tightly packed with other polar and nonpolar groups. Also, most of the content
in the cell is water and aversion to non-polar molecule from water (polar) molecules can be
considered as the possible cause of non-polar interior and can further lead to protein folding.
Based on the aversion to water (hydrophobic effect) from the interior of the protein, Dill

proposed the HP model [25] which supported by a number of observations.

2.2 HP Model

The HP model [25] was developed using lattice statistical mechanics for heteropolymer fold-
ing such as a protein [15]. In the model, twenty amino acids are divided into hydrophobic
(H) and hydrophilic (P) types and energy is calculated based on non-bonded hydrophobic
interactions. Aversion to water molecules from the hydrophobic amino acids was used as
the underline concept for protein folding. The idea of aversion to water from non-polar
residue was first considered in case of micelle formation and the same was supported by
Kauzmann [66, 67] for explaining protein folding. Some experimental observations such as
non-polar solvents denaturing proteins and stability of proteins is affected at high as well as
at low temperature, are also consistent with Kauzzmann’s view.

The idea was developed from the fact that globular proteins are somewhat soluble in
water and not like fibrous or membrane proteins. However, not all proteins are soluble; a
molecule with majority of hydrophilic residues will prefer to dissolve. Folding is assumed
to be driven by the association of hydrophobic monomers to avoid solvent molecules and
opposed by the chain configurational entropy [15]. The water molecules near polar residues
become more ordered and increase the entropy of the water molecules. This leads to col-
lection of non-polar side chains in the interior of proteins, which in turn causes the collapse
of the protein [15]. In other words, as described in [68], when an a nonpolar molecules
come closer to the water molecules, the hydrogen bonds between water molecules get dis-
turbed, and water molecules get collected around the nonpolar molecules. This form a cage

around the non-polar molecules which is not favored by the Second Law of Thermody-
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namics. Therefore, the non-polar molecules start accommodate together. This tendency of
nonpolar molecules to get-together around themselves rather than to dissolve individually
in the polar solvent is called the hydrophobic effect. The effect actually arises due to the
H-bonding nature of water and not because of solute-solute interactions. However, for con-
venience, the biochemists use the term hydrophobic effect [68].

The protein structures minimization process minimizes the free energy of proteins in-
stead of potential energy, as it involves thermodynamic quantities, and in configurational
space, we deal with the degree of freedom and hence entropy is an important parameter to
consider. From the chemical reaction viewpoint, a reaction is favored if the change in free
energy is negative. In this sense, a solvent can dissolve a solute if the change in free energy
(AG) is negative. The change in free energy of a reaction is defined as AG = AH-TAS. AH is
the change in enthalpy, AS is the change in entropy and T is the temperature. The reaction
is enthalapically favorable if AH is responsible for negative AG (and magnitude >AS) and
said to be entropically favorable if the second term has a larger contribution for negative free

energy, e.g., freezing of water to ice lead to increase in entropy of water molecules.

2.2.1 Significance of HP Model

HP model is subjected to a huge amount of literature, however, there are very few studies [69]
which examine the success of the HP model in terms of correlations between predicted and
actual structures. These studies also indicate that the simulated structures with HP model
are far from the optimal stage. The reason can be attributed to the presence of other forces
of interaction which are not considered in this model. However, the model only considered
the hydrophobic effect. The hydrophobic effect as the driving force in protein folding is
supported by a number of studies [15]. One of the important findings of the HP model is
the prediction of the hydrophobic core. There are other findings of proteins structure such as
uniqueness in structure, two-state-cooperativity, compactness of secondary structures, etc.,

which support the model.
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The uniqueness of native protein structure is an important characteristic of protein struc-
ture which differentiates them from other polymers. Although the exact cause of unique-
ness is still unknown, the simulated results using HP model show some agreement with the
uniqueness property of the native state [15]. The relationship between the length of the se-
quence and number of possible conformations shows that conformations’ number calculated
with the HP model is a strongly decreasing function of the increase in the length of the se-
quence. This implies that maximizing the number of H-H contacts in a sequence results
in fewer possible conformations and thus hydrophobic interactions might lead to a unique
tertiary structure.

Some experimental studies show that secondary structure is correlated with protein com-
pactness [57]. Studies have confirmed that compactness stabilizes secondary structures, al-
though, in the absence of hydrogen bonding, only a small correlation has been observed
between secondary structures and those in proteins. The lattice simulations also predicted
the collapse of polymer chains which helps in the formation of secondary structure. It is
pointed out that if helices and sheets are defined using proper methods, compactness also
results in some secondary structure. This demonstrates that the compactness and steric con-
straints are responsible for hydrophobic collapse and further responsible for the secondary
structure. The hydrophobic collapse is also responsible for the decrease of internal dielec-
tric constant, which increases the hydrogen bonding, helical dipoles, and other electrostatic
interactions within the core, and stabilizes the secondary structures [57].

Cooperativity can be divided into one-state or two-state transitions. One state cooper-
ativity means that the population vs temperature distribution has only one peak over states
(native, first excited, second excited), however, in two state cooperativity, there are two ma-
jor peaks; one corresponds to the denaturant state and other correspond to the native state.
This implies that there are two types of transitions, i.e., at the mid-point two identifiable
states are populated. This implies that there exists a free energy barrier between these two
states. Protein folding show two-state-cooperativity. Homopolymers do not have this ability

to form two states. This two-state nature of proteins is now explained on the basis of the
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ability of a sequence consisting of a hydrophobic core and a polar surface [70].

Some experimental structures correlation explained that a protein can be mutated sub-
stantially without changing its fold [57]. This degeneracy in structure means that hydropho-
bic monomers are largely interchangeable with each other, and polar monomers are inter-
changeable with other polar monomers. Thus the fold is heavily dependent upon the hy-
drophobic and polar nature of the amino acids rather than the actual amino acids. Mutation

in denatured states is also explained on the basis of the HP model [15].

2.2.2 Limitations of HP Model

Even with the above-mentioned successes, the hydrophobic effect fails to explain a num-
ber of important observations. Based on HP model prediction a protein should fold more
strongly as the temperature increased, however, opposite behavior has been observed above
room temperature. Also, hydrophobic interactions are able to explain the origin of secondary
structures present inside the protein core. The model also fails to explain the pressure de-
pendence of protein stability [15].

In 1962, even before the development of the HP model, Tanford [71] and Brandts [72]
calculated the stability and showed that hydrophobicity predicts protein stability. However,
have greater strength than the measured values. This implies that the magnitude of the
hydrophobic force is much larger or there exists an opposite force which opposes folding
[15].

The stability of the globular state also depends on the composition and length of the
chain. Theoretical analysis also predicts that there should be optimal hydrophobicity for
maximum stability [73]. Stability also decreases if hydrophobic residues distribute in ex-
cess over the surface, which requires filling the core for stability. However, it was still a
question that whether the hydrogen bonded polar groups make a favorable contribution to
globular protein stability; some experimental studies concluded the significant contribution

of hydrogen-bonding groups to protein stability [ 74]. Lazaridis et al. concluded that stability
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has no or very little contribution from polar groups [75].

No doubt hydrophobicity give a number of successful explanations, however, there is
still room for questions because of unknown contribution from other types of interactions.
Even with these questions, there are a number of triumphs of the model and further research
on HP model will be helpful for better handling the questions related to PSP. Therefore,
taking PSP using HP model, as a problem under consideration for comprehensive analysis
of optimization algorithms, we conducted a literature survey about the available PSP tools
and especially, HP model algorithms/tools, so that, some possible features can also be put
together for conducive optimization. This is discussed in Section 2.4. However, before that,

there is a brief discussion about meta-heuristics.

2.3 Meta-Heuristic

Heuristic and meta-heuristics are popular techniques for solving optimization problems.
These optimization techniques are intuitive methods as they make few assumptions about
the problem. Specific heuristics are problem dependent; they are designed and applicable to
a particular problem [76]. However, meta-heuristics deal with more general approximate al-
gorithms and a single algorithm can be utilized to solve a number of optimization problems.

The word meta-heuristic is composed of the two Greek words “ heuriskein” and “meta”.
Heuriskein means the art of discovering new strategies and the suffix meta means upper
level methodology [77]. Thus the nomenclature of the words clears that meta-heuristic is
an upper level methodology that can be used as a guided technique to design heuristic for
solving a specific optimization problem. The term meta-heuristic was first time introduced
by F. Glover in his paper [78]. Meta-heuristic is used to solve many real life problems
within a reasonable amount of time which are hard to solve otherwise. These problems
exist in numerous areas of science, engineering, economics, and business. Meta-heuristics
efficiently explore the search space. In addition to fast and robust solutions, meta-heuristics

are simple to design and implement. In some cases, the meta-heuristic algorithms can be
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designed in such a way that they completely avoid to trap into the local minima. Meta-
heuristics are flexible algorithms and can be applied to a variety of problems.

Most of the widely used meta-heuristic algorithms such as immune system, genetic al-
gorithm, annealing process, ant-colony, particle swarm, bee colony, wasp swarm, etc., are
inspired from natural metaphors. Generally, these algorithms are implemented in their base
form, but that is not always the case to obtain the best solution. Different strategies such
as hybridization of algorithms, the addition of some problem specific constraints, etc., have
also been tested to improve the results. In some of the attempts, these strategies proved better
than the base algorithms [79-83].

Optimization has a wide domain of applications in different fields of engineering design,
business, logistics, networking, finance, transportation, bioinformatics and computational bi-
ology, data mining, etc. Researchers are facing new and more complex problems pertaining
to optimization in each field. Therefore, scientists are working to improve meta-heuristic
algorithms to solve these complex problems. However, in most cases, solving a complex
problem is time consuming and expensive. Therefore, heuristic/meta-heuristic algorithms
are usually applied at the early stages to solve the problems which make it considerably
easier and cheaper to fix the problem.

Meta-heuristic, however, requires a certain level of knowledge and experience for their
proper implementation. Sometimes, it is difficult and expensive to find a domain expert.
Also, the evaluator of results and algorithm should be aware of technical limitations on the
design of the algorithm. Heuristic algorithms are loosely structured and may not always be
able to produce the best results. Despite these disadvantages, their evaluations play an im-
portant role in solving a large number of optimization problems and if implemented properly,

they can give efficient results.
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2.4 Related Work

Optimization techniques for PSP mainly employ comparative modeling, physics-based meth-
ods and some alternative physics-based models such as HP Model [25] and Miyazawa-
Jernigan (MJ) matrix model [84, 85]. Comparative modeling compares the primary protein
structure with those available in the databases. It includes homology and threading. Ho-
mology modeling predicts the structure of target protein by comparing its sequence with
the similar sequences of amino acids from the database. It has been observed that more
than 30% correlation in sequences is better for homology structure prediction and is helpful
for generating hypotheses about the protein’s function. Some of the important tools used
for homology modeling are FASTA [86,87], NCBI BLAST [88], CABS, MODELLER and
EasyModeller [89], SWISS-MODEL [90], FoldX [91], HHpred [92], Prime, Yasara, etc.

Threading, however, is more effective than homology and is employed when homology
fails to predict the protein sequence. Homology modeling uses the sequence information
for the alignment, whereas, protein threading extracts both the structure as well as sequence
information to recognize the folds. The predicted structure is strongly dependent on the
size and details of the library chosen for threading. Some important tools available for
threading are LOMETS [93], TASSER [94] and I-TASSER [95,96], Phyre and Phyre2 [97],
HHpred [92], SUPERFAMILY, RaptorX [98], MUSTER [99], etc. LOMETS [93] which
stands for Local Threading Meta-Server, is developed for quick and automated redactions of
tertiary protein structures and spatial constraints. The data obtained from LOMETS can be
used to guide the ab-initio procedures such as TASSER [94] for further PSP.

If comparative methods are unable to predict the structure, models have to be constructed
from scratch. Physics-based modeling, ab-initio modeling, free modeling, or de novo mod-
eling are some of the procedure used in this case. The term ab-initio modeling is gener-
ally used for quantum mechanical modeling. In the physics-based modeling approach, the

search is conducted under the guidance of energy function. The generated conformations
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are called structure decoys and the minimized energy structure among these decoys is se-
lected as the final structure. The energy function can be physics-based or knowledge-based
potentials. Physics-based functions are selected on the basis of molecular dynamics or quan-
tum mechanical calculations, whereas in knowledge-based, the function is derived from the
statistical analysis of the structures submitted to the database.

TASSER and I-TASSER [94-96] and ROSETTA [100] are the main tools available for
de-novo modeling. ROSETTA [100] uses both physics as well as knowledge-based energy
functions. It is a fragment-based method used to compare the protein structure fragments
of sizes three to nine (amino acids) with the unrelated protein structures of similar local
sequences. I-TASSER stands for Iterative Threading Assembly Refinement and is a hierar-
chical method for protein structure and function predictions [101]. I-TASSER was ranked as
the No. 1 server for protein structure prediction in recent experiments of CASP7, CASPS,
CASP9, CASP10, CASP11 [95]. The other de-novo algorithms are CABS, CABS-FOLD,
ABALONE, PEP-FOLD, BHAGEERATH, Rossetta@ home, FALCON @ home [102], etc.

The two techniques mentioned above, comparative modeling and physics-based approach,
have their own advantages and disadvantages. The comparative modeling is an alternative
approach and does not follow the actual physiochemical process. The physics-based tools,
on the other hand, require high-performance computing facilities because the calculations
start from scratch and have to deal with astronomical data points. However, they are most
reliable to map the realistic protein’s structure. Hence, protein structure prediction using
physics-based simulations are favorable only for small protein. However, their realistic ap-
proach to search for minimized energy led to the development of different alternative models.
These kinds of models employ fundamental physics principles under some controlled situa-
tion, i.e., restricting the optimization search within some parameters of energy, space, size,
etc. HP (Hydrophobic-Polar) model [25], Miyazawa-Jernigan (MJ) matrix model [84, 85],
Nuclear Condensation model, Diffusion Collision models [103], etc., are some examples
of alternative models. Due to constraints on parameters, these type of models are compu-

tationally fast but are not considered successful as the gap remains between the prediction
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structure and the actual native structure, however, these studies are helpful to build the first
level approximate structure.

Out of these models, as discussed in the previous chapter, HP model [25] is the most ef-
fective, and popularly used. Since the problem of finding the minimized structure even with
the HP model is proved to be NP-complete, therefore a number of heuristic/meta-heuristic
optimization algorithms are employed [82,82,104—112,112—-120]. Some hybrid optimization
procedures are also present in the literature [115, 116, 121-123]. Most of these algorithms
limit the configurational space to lattice points and use the contact-based energy function to
calculate the energy.

Some of the meta-heuristic algorithms such as evolutionary algorithms, ant colony algo-
rithms, simulated annealing, particle swarm optimization, etc., are frequently used in litera-
ture. PSP using HP model is widely studied by employing genetic algorithm independently
or in hybrid with other algorithms. The genetic algorithm is inspired by Darwin’s theory of
evolution. The key idea behind this algorithm is that evolution is an optimization process
and optimization procedure follows the random evolutionary processes like mutation and
crossover. Unger and Moult [104], employed genetic algorithm in their optimization search
for HP model in 2D cubic lattice space. Subsequently, several 2D as well as 3D on-lattice HP
model reports were published using genetic algorithm optimization search [82, 105-118].

Halm studied the effect of different GA’s parameters in case of 2D cubic lattice [124].
Pull moves in protein structure prediction was described by Lesh ef al. [113] and Berenboym
and Avigal [112] employed them in the genetic algorithm. In different studies by Pedersen
and Moult, the genetic algorithm was revised against three peptides. They also explored
the application of GA for PSP study with a full atomic representation using the solvation
model and free energy function [111, 125, 126]. A 2D and 3D guided search in GA was
performed by Haque et al. [127,128]. Lin and Su used a hybrid genetic-based particle swarm
optimization (PSO) [80]. Yi-Yao Huang et al. [129] applied GA to predict the target proteins
from known primary sequence and secondary structure elements. Twin removal strategy is

also employed to the simplified on-lattice HP model [119, 120] and some modification using
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quasi-random sequences for creating the initial population has also been reported [114].
Shatabda et al. [130] applied the genetic algorithms in case of FCC lattice and in local
search approaches [123, 131]. The group also reported the local search using embedded
GA [130]. A hybrid study of Hill-climbing and genetic algorithm (HHGA) based on elite-
based reproduction strategy in case of 2D triangular lattice [121] is studied by Su et al.

The other algorithms use different search method for PSP such as Tabu search [132],
Tabu Search with Hill Climbing [115], Tabu Search with GA [116] and Tabu-based Stochas-
tic Local Search [122, 123]. Tabu search uses the local search approaches for optimized
solutions which consider a potential solution and searches for an improved solution from
immediate neighbors. Zhang et al. [82] applied the combined tabu search with crossover
and mutation operators. Mansour et al. [118] applied the particle swarm optimization (PSO)
to PSP and Kondov and Berlich [117] studied the PSP employing PSO with distributed par-
allel programming. Ant colony optimization (ACO) [133] is another meta-heuristic method
to study PSP. It is a kind of swarm intelligence approach inspired by foraging of ants. The
ACO algorithm for protein folding was first applied by Shmygelska and Hernandez [134].
Islam et al. worked on memetic algorithms [135-137] and also employed niching technique
on clustered architecture [138, 139].

Tsay and Su [140] proposed a combined method which includes local search, lattice ro-
tation for crossover, k-site move for mutation, and generalized pull move in case of FCC.
Recently, Mahmood et al. [141] applied the GA in cases of FCC lattice for protein structure
prediction. Along with GA, they applied the random walk strategy to recover from stagna-
tion. Kern and Lio [142] calculated the score based on the conformation generated by the
genetic algorithm by taking the case of residue’s positions w.r.t the hydrophobic core on HP,
HPNX and hHPNX lattice models. In another hybrid approach, Ullah et al. [143] proposed
a two-stage optimization by combining constraint programming using CPSP and simulated
annealing.

The optimization under HP model within the square, triangular, and diamond lattices

was tested by Krasnogor ef al. [144]. They further applied fuzzy-logic [145]. Several other
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optimization algorithms such Monte-Carlo simulation [146], simulated annealing [147], Im-
mune Algorithms [148], firefly algorithm [2] and constraint programming [149, 150], are
also reported by different researchers.

Progressive search algorithms are the type of chain growth algorithms. The different
chain algorithms are categorized as Roenbluth methods. These methods apply the self-
avoiding walk strategy by adding a single monomer at a time. The core directed chain growth
strategy and Pruning Enrichment Rosenbluth Method (PERM) are also used to search for the
native protein structure. A new PERM is proposed and applied on lattice heteropolymers to
search the minimized energy state [151]. The new improvement in PERM shows that it
outperforms when compared with the previous versions of the algorithm.

Out of these different optimization algorithms, very few have been utilized for devel-
opment as application tools and the developed ones are mainly focused on constraint-based
approaches. One such tool and the web server is CPSP, which stands for Constraint-based
Protein Structure Prediction (CPSP), was introduced by Backofen and Will [152]. This ap-
proach is based on the hydrophobic core construction and follows three steps, i.e., bounding,
core construction, and threading. COLA, which stands for Constraint Solver for Lattices
(COLA), is another such application which is also based on constraint programming. LAT-
Fold is a Monte-Carlo simulation tool based on metropolis criterion and energy Landscape
library. The pull moves and pivot moves procedure is also utilized in its simulation. Dubey
et al. also suggested an algorithm for HP model calculations and utilized the same for devel-
oping a free tool [153], however, this tool only does optimization for square and triangular
lattices and no three dimension structure prediction is available. The suggested algorithm
has also not reached the optimal H-H contacts claimed by other authors [139, 154-156].
However, we have not encountered any application where we can use and test different

meta-heuristic algorithms to predict optimized proteins structure using HP-model.
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2.5 Summary

In this chapter, we explained the complexity involved in PSP and importance of PSP, HP
model and meta-heuristic algorithms and literature review about PSP tools/algorithms. The
study gives an idea to build a comprehensive meta-heuristic optimization tool for simplified
proteins structure prediction based on the HP model. In fact, the optimized structure obtained
from HP model is far from the actual protein’s structure, however, resultant structure can
further be used to get fast and realistic optimized structure when employed along with ab-
initio methods. In recent studies, it has been suggested that a real space output can be
obtained by hierarchically transfer of the on-lattice fold (obtained from simple model) to
off-lattice one [119, 157].

A number of attempts have already been made for HP model-based PSP, especially,
using the base as well as hybrid heuristic/meta-heuristic algorithms. The wide range of
heuristic/ meta-heuristic algorithms, discussed in the literature review, are employed because
they have many advantages over traditional mathematical techniques. The easy, fast and
cheap (user-based) implementation of the heuristic/ meta-heuristic algorithms have increased
their usability in solving PSP and other complex problems. Also, the literature review about
PSP tools revealed that most of the PSP developed tools are based on comparative modeling.
Thus from the best of our knowledge, except for some single algorithm-based applications,
we have not found any other application available for testing and analyzing basic and/or
hybrid algorithmic procedures for HP model-based optimization study of PSP. Therefore,
we designed a comprehensive tool comprising automation and visualization facilities to test
and analyze some of the optimized meta-heuristic procedures in the context of PSP.

The automation and visualization tools are important because they allow higher produc-
tivity. Graphical user interfaces allow users to interact with computers using a mouse and
other input tools. This allows the user to interact more freely with how they display in-

formation, images, and other attributes. In the same context, the graphical user interface,
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automation characteristic provide great accessibility and the user does not need to remember
the procedure to solve the problem. Similarly, the graphical user interface provides the facil-
ity to input parameters and the chances of mistakes are possibly zero. A less skilled person
can also use these types of tools with minor knowledge about the problem and solution of
the procedure.

Furthermore, a careful analysis of the reports suggests that a number of meta-heuristic al-
gorithms for PSP are hybridized [79-83, 158] to improve the results, however, hybridization
is limited to two algorithms in a particular manner. This also evokes the possibility of fur-
ther improvement in results when the hybridization among algorithms can be done by mixing
them in other possible ways or using more than two algorithm’s steps. Some features such
as pull moves, twin removal, mirror symmetry, local optimization, etc. which are suggested
for particular algorithms, can also play an important role to improve the minimized energy
state when employed with other algorithms. Therefore, we have also included hybridization
and some constraints’ applicability options in our software framework. Thus, the software
can work for base algorithms as well as design a demand-based optimization procedure. The

next chapter talks about the implemented meta-heuristic algorithms and optional constraints.
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Meta-Heuristic Algorithms

Proteins are long molecules that consist of hundreds to thousands of amino acids’ residues.
The search space to optimize these big atomic structures of a high degree of freedom is very
large. Therefore, Protein Structure Prediction (PSP), optimized protein’s structure, is com-
putationally very expensive and alternative approaches are used. In our work, we restrict
the search space by the use of cubic lattice to obtain the simplified structure. The use of
meta-heuristic algorithms further speeds up the optimization process. The following dis-
cussion includes the three-dimensional design of the cubic lattice and the five implemented
meta-heuristic algorithms used for HP model-based structure optimization. Some optional

characteristics introduced in the developed tool are also discussed at the end of the chapter.

3.1 HP Model Using Cubic Lattice

3-dimensional cubic lattice is simple and widely used in literature for HP model based struc-
ture prediction. The structure prediction using 2-dimensional representation have also been
reported in the literature. However, in the present tool we preferred to use 3-dimensional
representation because it is more realistic and hence, constructed structures can easily be
compared with the actual structures. In lattice based HP model residues are considered as

beads. The locations of the residues are restricted to the lattice sites and bonds between

27
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residues are represented using sides of the unit cell. In cubic lattice, a lattice site can con-

nect with other by one out of six possible sides, i.e., in (i), out (0), up (u), down (d), left

(1) and right (r) (shown in Figure 3.1). Thus, the structure representation, instead of using

coordinates of residues, can also be represented in terms of these six possible directions.

In our present implementation, the first
residue is placed at the origin (0,0,0) and oth-
ers are specified by one out-of six directions
which connect them with their previous residues
in the sequence. The bonding must follow self-
avoiding criteria, i.e., no two resides should
overlap each others’ position. Thus, there are N-
1 directions for N residues, and the structure of
a protein is represented as a sequence of these

directions. A structure with directions "liloui-

Figure 3.1: Six possible directions in cu-

bic lattice.

ildrruooulirriiuoldi” for HP sequence ("HHPPHHHPPPHHHHHHPHPHHHHPPHH") of

length 27 is illustrated in Figure 3.2.

Structure optimization is obtained by minimiz-

fitness score(fs) =

Figure 3.2: Structure for the direc-

tion list "lilouiildrruooulirriiuoldi”.

ing the energy of the structure. However, in our
present work of HP model-based optimization, we try
to maximize the fitness score which is just the nega-
tive of the energy value. Fitness score of the structure
measured as the number of non-bonded hydrophobic-
hydrophobic contacts of distances equal to the unit

length and calculated as
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and the energy is given by
1 N N
E=—3 Y. Y cijei (3.2)

Here ¢;; equals to 1, if i and j are non-bonded and consecutive (neighbors), otherwise, its
value is 0. Also, ¢;; is equal to 1 if both i"" and j'" residues are hydrophobic and 0 in all
other cases. For example, the fitness score of the structure given in Figure 3.2 is equal to 8
and is calculated as fs = (04+2+0+0+14+14+2+0+0+04+04+0+1+14+24+0+0+
1+404+0+14+140+04+0+2+1)/2=16/2 = 8. The eight hydrophobic-hydrophobic

contacts are also shown in the figure using dotted lines.

3.2 Meta-Heuristic Algorithms

The tool presented in this thesis incorporated with five meta-heuristic algorithms. All these
are population based meta-heuristic algorithms which initially creates a set of user-defined
(Pop) protein’s structures called the initial population (popList). The term individual is used
to indicate the structure of a protein (sequence of directions or direction list) as suggested
for genetic algorithm [159] and set of individuals are called as individuals’ population or
simply population. The basic criteria for optimization in all the implemented algorithms are
almost similar. In the beginning, they all select some individuals from the existing popula-
tion, perform their operations on selected individuals to create new individuals and finally,
update the population with higher scored individuals. In order to search for optimized struc-
ture, the process repeated again and again for a fixed number of cycles. These number of
cycles are called the number of generations or simply generations (Gens). Thus, during each
generation, new structures are created and their scores are compared with the previous pop-
ulation. If fitness scores of the newly generated structures are higher, they replace the lower
scored individuals from the population. This may create a better population during each
generation. The process is repeated for all generations, or until no improvement occurs for
a certain number of generation (stopGen). It is clear that the basic optimization approach

in all implemented algorithms is similar but they all have distinct operations. The following
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discussion talks, specifically, about each algorithm in detail:

3.2.1 Genetic Algorithm

Genetic Algorithm (GA) is the outcome of John Holland’s research work during 1960 but
it becomes popular in the *90s. The algorithm is an alternative approach to solve large and
complex problems. The basic GA is based on the mechanism of natural selection and natural
reproduction criteria. The pseudo-code for GA is given in Algorithm 1.

The algorithm starts with the creation of

an initial population (popList). During each

[moer]
generation, GA performs two genetic oper-

Parent1 |y [ u [ [.... 08

ations, known as Crossover and Mutation,
Parent2 |1 [ ol i u ] ] on the selected number of individuals called
Child 1 || | u ’ | | ----------- l l | U| -------- I i | parents (parentList). The newly obtained
w2 | i | - ‘ S ‘[ - | i ’| N ‘ structures are called offsprings (offSpringList).

The Crossover operation is similar to the genetic
Figure 3.3: One point Crossover process ~ CrOSSOver where different chromosomes mix to-
in GA. gether, exchange their genes, and give birth to
new offspring. In HP model, Crossover opera-
tion exchanges the subparts of the parents between each other (shown in Figure 3.3) and
produces the same number of offsprings. Mutation operation also similar to a genetic muta-

tion. Here, it alters the direction of the individual at a random position (Figure 3.4).

It might happen that the offsprings obtained

after these operations, do not satisfy the self-
chidt | [ L] L] o

avoiding condition. Therefore, a procedure is

used to remove the overlapped positions of the  ©ffsrine? TN

residues. The process is called offspring adjust-
Figure 3.4: One point Mutation in GA.
ment (AdjustOffSpring). If these adjusted off-

springs are superior in fitness scores than the individuals in the population they replaced
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input : HPSeq,Pop,Gens,CrPt,MuPt,MuStrt, MuEnd, PrNo,StopGen
output: Optimized Individual(directionList)

popList(0) < get Pop no. of individuals
for i < 1 to Gens do
parentsList < SelectParents(popList(i — 1), PrNo)
of fSpringList < Crossover(parentsList,CrPt)
of fSpringList < Mutation(o f fSpringList, MuPt, MuStrt, MuEnd)
of fSpringList < AdjustOffSpring(of fSpringList)
popList (i) < Replacement(of fSpringList, popList(i — 1))
end
return BestIndividual (popList(Gens))

Algorithm 1: Genetic Algorithm’s pseudo code.

those individuals (Replacement). The process runs for a given number of generations and
during each generation, attempts are made to form a better population.

In traditional GA, only two parent individuals are selected to perform genetic operations.
However, in the present tool, the user can choose the number of parents (PrNo). Therefore,
instead of two individuals, a list of parent individuals is selected. The Crossover operation
on this list replaces the sub-part of each parent individual with the next individual in the
parents’ list. The operation is performed once in a cyclic manner and sub-part of the last
individual goes with the first individual in the parents’ list. Options are also available for the
use of multi-point Crossover and Mutation operations, i.e., Crossover is performed for user-
specified (CrPt) numbers at randomly selected positions and Mutation randomly alter the
user specified (MuPt) directions at random positions in each parent. The Mutation operation
can also be chosen on a rate basis. The rate of mutation during each generation depends on
the generation number. The user needs to enter the initial (MuStrt) and final (MuEnd) values

of mutation rate. The rate of mutation for each generation is calculated as

rate = (MuStrt — MuEnd  f) % 100 (3.3)

Here f = (generation number)/(total generations) and MuStrt > MuEnd.
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3.2.2 Parallel Genetic Algorithms

We have implemented two types of parallel models of genetic algorithms. The first type is
similar to the parallel Island model (PGA-IM) discussed in [160]. The pseudo code of the
PGA-IM is shown in Algorithm 2. The optimization search in this method is done by divid-
ing the population into subpopulations called Islands. The number of islands chosen is based
on the number of threads (Threads) selected by the user. The genetic algorithm is applied,
separately, on each island for a user-specified number of cycles per generation (CylPerTh).
After completion of these cycles populations of all Islands merged together as the total popu-
lation. This process is repeated for user-defined number of generation, i.e., new islands again
formed for next generation and run again for cycles per generation (shown in Figure 3.5 (a)).
There are three island formation methods (IslandMethod) available in the present tool, i.e.,
"Random", "Close" and "Far". The "Random" method divides the total population just using
the random individuals, whereas, "Close" and "Far" island methods form the islands based
on the fitness scores of the individuals. In the former selection procedure the individuals are
chosen together which have similar/close fitness scores, and in the latter case, the population
of each island is created from individuals with diverse fitness scores.

The second parallel genetic algorithm is similar to the parallel grid model (PGA-GM)
[160]. In this parallel approach, each thread separately performs genetic operations on the
user-specified number of parent individuals. The process of parent selection in this approach
randomly selects the individuals and their neighbors!. Finally, the adjusted offsprings from
all threads get together and replace the inferior individuals with superior offsprings. The
process is repeated for all generations, or until stropping conditions are met. The individual
with the highest fitness score from the final population is taken as the minimized energy
structure. Figure 3.5 (b) illustrates the calculation process of this method. The pseudo code

is given in Algorithm 3.

ISince the calculation process uses the population as a sorted list of individuals in decreasing order of their
fitness scores, the neighbor(s) of an individual are selected from both sides of that individual from the sorted
list and might have same or close value of fitness scores.
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Figure 3.5: Calculation process for single generation in case of (a) PGA-IM and (b) PGA-
GM.

input : HPSeq,Pop,Gens,CrPt, MuPt,MuStrt, MuEnd,CylPerTh,IslandMethd,
Threads,StopGen
output: Optimized Individual(directionList)

popList(0) < get Pop no. of individuals
for i < 1 to Gens do
islandSizeList + GetlslandsList(popList(i — 1), Threads)
for th < I to Threads do
islandPop(th)<« SelectPop(IslandSize(th),IslandMethd), popList(i —
1))
islandPop(th)+ GA(HPSeq,islandPop(th),CylPerTh,CrPt,MuPt, MuStrt,
MuEnd,PrNo,StopGen)
end
Synchronize
popList (i) < popList(i) + islandPop(th)
for th < I to Threads do
| Join threads
end
popList (i) < Arrange(popList(i))
end
return BestIndividual (popList(Gens))

Algorithm 2: Pseudo code of PGA-IM Algorithm.
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input : HPSeq,Pop,Gens,CrPt,MuPt,MuStrt, MuEnd, T hreads,StopGen
output: Optimized Individual(directionList)

popList(0) < get Pop no. of individuals
for i < 1 to Gens do
for th < I to Threads do
of fSpringList(th) < GA(HPSeq, popList(i—1),1,CrPt,MuPt,MuStrt,
MuEnd,PrNo,StopGen)
end
Synchronize
popList (i) < Replacement(of fSpringList(th), popList(i — 1))
for th < I to Threads do
| Join threads
end
popList (i) < Arrange(popList(i))
end
return BestIndividual (popList(Gens))

Algorithm 3: Pseudo code of PGA-GM Algorithm.

3.2.3 Immune Algorithm

Immune Algorithms are based on the process of the biological immune system. Artificial
Immune Systems (AIS) are adaptive systems which are a sub-field of Computational In-
telligence inspired by theoretical immunology. Artificial Immune systems can be divided
into three sub-categories, i.e., clonal selection, negative selection, and immune network al-
gorithms. These techniques are used in the field of pattern recognition, optimization, clus-
tering, and other machine learning domains. In the present work of HP model based opti-
mization, we have implemented the clonal selection Algorithm suggested by Vincenzo and
Giuseppe [148].

The theoretical basis of clonal selection was first proposed by Burnet [161]. The theory
explains the response of adaptive immune system on antigens? detection. In our physical sys-
tem, the primary function of the immune system is to protect our bodies from pathogens, i.e.,

viruses, bacteria and other parasites, which can disturb our normal biological system. When

2 Antigens are parts of the pathogen that tell your body it’s being attacked. Pathogens are the germs that
make you sick and antigens are other foreign substance that induces an immune response in the body. The
immune system uses antigens to detect the pathogens.
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input : HPSeq,Pop,Gens,CloSize,c,tp,StopGen
output: Optimized Individual(directionList)

popList(0) < get Pop no. of individuals
for i < 1 to Gens do

Pele < StatiCloning(popList(i — 1),CloSize)
PP HyperMutation(P, ¢, In)
Pacro « HyperMacroMutation(P°/°)
ptot — Pclo + Phyp + pmacro
P'°" <~ RemoveDuplicate(P'")
P%¢ « AgingOperator(P'"',Tp)
popList (i) < (A4 u) Selection(P*¢, Pop)
popList (i) < Arrange(popList(i))
end
return BestIndividual (popList(Gens))

Algorithm 4: Immune Algorithm’s pseudo code

the immune system recognizes antigen, it produces antibodies against pathogens. The im-
mune system, actually, composed of diverse sets of cells and molecules that work together to
maintain homeostatic state. The idea behind the clonal selection principle reveals that those
cells that are capable of recognizing an antigen will increase rapidly in numbers while other
cells are selected against. Clonal selection works on both B and T cells. When the antibod-
ies of the B cells bind with an antigen, clones of B cells are produced and undergo somatic
hyper-mutation, and the B cells get differentiated into plasma or memory cells. Plasma cells
produce antigen-specific antibodies that will work against pathogens. We have used Static
Clonal, Hyper-mutation, Hyper-macro-mutation and Aging operations for simplified PSP as
suggested by Cutello ef al. [148]. The pseudo code in Algorithm 4 describe these operations

in our implemented algorithm and different algorithmic steps are explained as below:

1. Initial Population (P' or popList): The step is similar to GA where the initial popula-

tion is created by generating random individuals.

2. Static Cloning (P°°"): During this operation user defined number of clones (CloSize) or
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duplicate (dup) of each individual are created and produce a clonal population (P°!),
ie.,

Pl = P! x CloSize (3.4)

3. Hyper-mutation: Hyper-mutation perform two operations on P, i.e.,

(a) Inversely Proportional Hyper-mutation (P”P): The mutation operation is given
by

1= £ B)+B), if f(x)=0
mpigy = TP (35)

(1—£5)x B)+B). if f(x) >0

Here f(x) = —E is the energy of the receptor (individual) x € P' and E* the
current best fitness value. B = ¢ x [, where c is constant and / is the length of the

protein (number of residues).

(b) Hyper-macro-mutation (P"™?“'?): A random mutation is performed between two
positions i and j such that (i + 1) < j <[ while maintaining the self-avoiding

property.

4. Aging Operation: In this process, the receptors (individuals) which are surviving more
than a number of generations (tg) are removed from peol phyp and pmacro, irrespective

of their fitness scores.

5. (u+A)-selection with Birth Phase: After aging operation, the number of receptors can
be different than the initial population (P"). If they are less than the initial population,
the required number of individuals are created and merged, and if greater, the lower

scored individuals are removed to keep the population same as initial population.

3.2.4 Ant Colony Optimization

We have also employed the ant colony optimization algorithm as suggested by Shmygelska

and Hoos [162]. Ant Colony Optimization (ACO) uses the basic concept of ant stigmergy,
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i.e., using the environment as a means of communication without direct communication
between participants. The iterative process of the algorithm follows three steps, i.e., Con-
struction, Local Search, and Pheromone. The construction phase is similar to the creation of
the initial population in GA, but here the individuals are generated using a chain growth pro-
cedure. The chain construction starts from a random position and grows in both directions so
that the ratio of the residues in each side is roughly equal. The direction (d) for each residue

is selected based on the probability (p; 4) of the residue at i position, which is calculated as

[Ti.4)*Mi.a]?
Yo [T *Miel?

Pia = (3.6)

Here 7; 4 is the pheromone value, which is updated at each iteration, however, the initial
values of T; 4 are the same for all individuals. The quantity 1; . is called the heuristic func-
tion and is equal to e %4 yis inverse temperature parameter and h; 4 is the number of
H-H contacts that can be made by placing " residue in direction d. During the construction
process attrition® might happen at certain steps. In Shmygelska and Hoos’s procedure, attri-
tion is overcome by starting the folding process again with half of the length of the current
sequence. A different starting point direction is taken from what it had been when attrition
occurred. In our implementation, we try to preserve this higher probability structure by test-
ing different directions starting from attrition point in the reverse direction. If any direction
works at any point, the sequence will start moving forward. If the normal folding procedure
does not start after testing a certain number of attempts at one point, the Shmygelska and
Hoos’s procedure is followed.

The next step is the local search, which is similar to the mutation step. Since the local
search step suggested by Shmygelska and Hoos [162] is time consuming, we have considered
this similar to GA mutation step, i.e., create a local list of individuals (localList) by randomly
changing one direction in of the selected individuals. This step is generally performed on

half of the population, however, in the present software, the user can choose the number of

3The sequence cannot run folding due to overlapping of residues positions with each other.
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input : Pop,Gen,AASeq, o, B,Y,M,9,LocIndNo
output: Optimized Individual (directionList)

popList(0) <— get Pop no. of individuals using eq(3.5)
for i < 1 to Gens do
popList(i — 1) < constructPheremone(popList(i — 1),a,B,7,M,0,At(i —
1), popList(i—1))
localListt < localSearch(popList(i—1),LocIndNo)
popList (i) «+ update(localList,p,At(i— 1))
end
return BestIndividual (popList(Gens))

Algorithm 5: Pseudo code for ACO Algorithm.

individuals for local search. The last step updates the T; ; value using the following equations

Tid = P-Tid (3.7

Tid = Tid +0i4 (3.8)

p lies between 0 and 1, and it is a parameter which moves the information gathered forward
in the last step. 8;4 = E/E”, called the relative solution quantity, is the ratio of energy
during the last cycle (E) to the possible minimum energy (E™*) of the protein (usually taken
from previously reported sequences). The pseudo code for the ACO algorithm is shown in

Algorithm 5.

3.2.5 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was first used by Kennedy and Eberhart
to study social and cognitive behavior. The algorithm is based on the flocking behavior
of birds. Each participant has their own position and speed to move in the search space.
We have not implemented the algorithm in its exact form, but used the concept of global
best and the best positions individual achieved by every participant. In each generation,
every direction of individuals is adjusted on the basis of corresponding directions of the

global best individual and the best-scored structure (local best) achieved by the individual
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under consideration. The PSO converges very fast, but it can get stuck in a local minima
(or maxima). To avoid this situation we have used move back strategy, i.e., the global best
individual is replaced with the lowest scored individual for a certain number of generations.
The pseudo code of the algorithm is written in Algorithm 6.

The first step in PSO, similar to other algorithms, is to generate random solutions (in-
dividuals) called particles which construct the initial population. The algorithm selects the
individuals with highest and lowest scores as gBest and glowest, and marks initially each
individual as local best, i.e., pBest. The algorithm selects two random positions, I and r2
suchthat 1 <rl <N —-1and 1 < r2 <N —1,, of each individual, and alter the directions
between these two positions to increase the fitness score. These directions can be random or
the same as in the pBest or gBest individuals at corresponding positions. During different
generations, the algorithm keeps track of the best scored individuals of each particle pBest
and also keeps updating the gBest, i.e., global best solutions. If the global best score does not
increase for a given number of generations (mF), gBest is replaced by gLowest for a certain

number of generations (mB). This introduces diversity in the structures of the individuals.

3.3 Optional Characteristics

Along with the implementation of the above algorithms, the code also consists of some
additional steps, constraints or features which can be applied during optimization search
calculations. In the current software, we have introduced options for Secondary Structure,
Twin Removal, Mirror Symmetry, and Same Coordinate Search.

The concept of Secondary Structure is taken as suggested by Bui and Sundarraj [159].
They have used it for the 2-dimensional case, however, we further extended the idea to
three-dimensional. The secondary structures ( a-helix, B-strand or B-sheet, and turns or
loops that connect the helices and strands) are the backbone conformations, and along with
their side chains, they are packed tightly to form the three-dimensional tertiary structure. Bui

and Sundarraj used that idea, and take the parts of protein structure which consist of only
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input : HPSeq,Pop,Gens,mF,mB,StopGen
output: Optimized Individual(directionList)

popList <— get Pop no. of individuals
gBest <—individual with highest score
gBestScr <—Score(gBestind)
pBestList <—popList

for i < 1 to Gens do
select random nos r1 and 72, r1 < 12

if (i! = gBest and i! = gLowest) then

for j < rl to r2 do
I < popList.get(i)
pBest<— pBestList.get (i)
pBestScr <—Score(pBestInd)
rI + Replace I’s j' direction with random direction
pl +— Replace I’s j* direction with j' pBest’s direction
if (moveBack=false) then
| gl + Replace I’s j"* direction with j'* gBest’s direction
end
else
| gl «+ Replace I’s j' direction with j' gLowest’s direction
end
I«~—MaxScoredValid(1,rl, pl, gl)
scr<—Score(I)

if scr>pBestScr then
pBest+I

pBestScr—scr
set pBest to pBestList

end

if scr>gBestScr then
‘ gBest+1

gBestScr«—scr
end
end
if moveBack=false and gBestScr is not improved for last mF generations
then
| moveBack=true for next mB generations
end
end
end
return BestIndividual (popList(Gens))

Algorithm 6: Pseudo code for PSO Algorithm with Move Back strategy.
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hydrophobic residues as secondary structures. A separate calculation was suggested for these
secondary structures. We have implemented the same idea and identify the hydrophobic
sequences in the main sequence with user-defined minimum and maximum sizes. We call
these sequences as HH sequences. Separate calculations are performed for these sequences
and no operation is performed in HH regions during main operations of the algorithm. In
case, if any HH sequence violates the self-avoiding criteria then another HH sequence from
the optimized HH population is tested. If no HH sequence passes for a certain number of
times, the calculations are performed without considering HH sequences. In the present
version of the tool, the HH sequence is applicable only for GA, ACO, and PGAs.

Same coordinate Optimization (SCO) is
similar to the local optimization introduced
by Bui and Sundarraj [159]. This prop-
erty can be added as an additional step to
any algorithm. This step works to increase
the score of an individual by making new

connections using the same set of coordi-

nates of that individual. Bui and Sundar-

raj called it local optimization. They de-
Figure 3.6: Same Coordinate Optimization; a)
fined two possibilities in the 2-dimensional

formation of loop when connecting AC and
case when the connection between residues

BD, and removing AB and CD and b) no loop
can be changed. However, in the three-

formation when connecting CE and DF and
dimensional cubic lattice we have imple-

removing CD and EF bonds.
mented only one condition, i.e., if we en-
counter a 4-point configuration such as ABCD as shown in Figure 3.6, then we can exchange
parallel connections CD and EF by CE and DF, respectively, as shown. Now, if the new con-
formation has a higher fitness score, it can be used instead of the previous one. It is possible

that the new conformation may form a loop (e.g., if AB and BD are connected in place of

AB and CD) that separate the sequence into two parts. In such a situation, the algorithm
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searches for another edge of the loop where it can connect to the second part. If no such
edge is found, the conformation is discarded. Thus, the best conformation out of all possible
conformations of SCO is selected for further calculations.

Twin removal is another characteristic which has been tested by some authors for GA
[119]. It is clear from the name that this feature removes the duplicated (twins) structure
from the population. Thus, if this feature is selected, all the individuals in the population
will have distinct structures. The property is also helpful in preventing the algorithm from
getting stuck in local minima/maxima. It is mainly helpful when the whole population starts
moving towards only one structure. We have also implemented the symmetry characteristic
to the individuals. Symmetry is an important property in different molecules and in globular
proteins. Therefore, in this initial stage of constructed software, we have only introduced
Mirror Symmetry. By adding the Mirror Symmetry property to the calculations, the algo-
rithm will allow only those individuals which have Mirror Symmetry in their structures. In

future versions of the code, we will work to add other types of symmetry.
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Design and Implementation of Hybrid Op-
timization Tool for Protein Structure Pre-

diction (HOT-PSP)

4.1 Architectural Plan

Having a software architectural plan is an important step before the development of a soft-
ware. It gives the higher level structure of the system components, their relationships to
each other, and to the environment. The software architecture of the developed application
for simplified protein structure prediction is shown in Figure 4.1. We named the present
application HOT-PSP which stands for Hybrid Optimization Tool for Protein Structure Pre-
diction. Figure 4.1 represents the architecture of the HOT-PSP. The diagram also explains
the workflow between the different components of the front-end and back-end parts. Details

about these components are discussed below:

e Graphical User Interface (GUI) : The GUI can be divided into two parts: an Input
unit and a Display unit. The Input unit takes the input structure of a protein in the form

of a sequence of residues present in that protein. The sequence can be entered in the

43
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Figure 4.1: Architecture of the developed HOT-PSP tool.

form of H(h) and P(p), where letter H corresponds to hydrophobic residues and P for

polar or hydrophilic residues. The sequence can be directly entered from a .pdb file.

The input unit automatically takes the residues’ sequence from the file and convert

them into H and P forms. The three letter or one letter names of the residues can also

be entered as the input sequence. The GUI also consists of input panels (Algorithmic

Configuration) for setting the algorithm and other parameters which are required for

calculations, structure display, and output results.
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o HP Converter : HP model-based calculations are performed only on HP sequences.
Therefore, if the input sequence is not in the form of HP sequence, HP convertor

converts that into the HP sequence.

e Score Calculator : The Score Calculator calculates the fitness score ( -energy) of
the sequence under consideration based on equation 3.1. The main use of the Score
Calculator is during optimization calculations, however, it can also be used to calculate

the fitness score of any given sequence with given direction list.

e Population Generator : The Population Generator generates an initial population.
The population is a set of different possible solutions ( in our case structures in 3D

cubic lattice) which can be generated based on the user’s selected method.

e Solution Selector : In most of the implemented algorithms, the algorithmic operations
are performed only on selected individuals. The Solution Selector selects these given

number of individuals during each generation.

e Process Solutions : This is the main step where the selected individuals are modified
based on the selected procedure. This procedure may include a single algorithm, a

single step or a combination of steps from different algorithms.

e Check/Stop : Normal calculation process stops after the user specified number of
generations, however, the calculations also stop in case the algorithm is stuck in a
local minima. The Check/Stop method stops the calculation process if no increase in
fitness score has been recorded for a certain number of generations, otherwise the next

step of population update is followed.

e Population update : The Population Update component updates the population based
on a user defined procedure, however if the individuals obtained after algorithmic
operations do not meet the required conditions, the next generation cycle starts without

updating the population.
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e Output Files : This component creates the text files that record the output as well as
input information. The input information includes the name of the algorithm or names
of a combination of steps from different algorithms and other input parameters. The
output section of the file includes the optimized structure and final population. The list
of resultant individuals (population) after a given number of generations is also saved.
Other optional information about the interpretation of results can also be saved into

different text files (.cube and .log).

4.2 Development and Implementation

The software architecture discussed in the last section suggests the upper-level components
of the software. The development of the software is completed by the joint implementation
of these components. The implementation done using the Java programming language and
the 3D animation view of the protein structure is displayed using JOGL (Java-based Open
GL version 2). Java has many advantages such as object-oriented programming, robustness,
security, ease of distributed computing, etc. Specifically, we prefer Java because of platform
independent and multi-threading characteristics. Moreover, the JOGL library is capable
of rendering the required animation view of the 3D structure. We divided the developed
software into three main panels; an input unit, the display unit, and calculation setup unit.
The following discussion highlights the input parameters/fields, and their use and purposes

present in these three units.

4.2.1 Input Unit

The input unit is used to enter the residues’ sequence of the protein to be optimized. The
input can be entered either with .pdb file or manually using Input Sequence panel. The .pdb
file can be selected by choosing Open option of File tab of the menu bar. This opens up a

selection window to choose the .pdb file. However, the manual input can be entered using
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Input Sequence panel which can be selected from the New option of the File tab. The Input

Sequence window appears as shown in Figure 4.2.

Lattice Type

| Cubic []
|| Buid Manually (Graphically)

Enter HP Sequence/AA Sequence

| | Generate Initial Directions Randomly

Enter Directions List

Create ‘ Cancel ‘

Figure 4.2: Dialog box for input sequence.

In the Input Sequence window the residues’ sequence can be entered in the text field
present under the label Enter HP Sequence/AA Sequence. The sequence can be entered
as HP (hp) letters or using residues names. The Create button can be selected to take the
sequence as input. After selecting the input sequence, a 3-dimensional structure displays
in the display panel. If the entered sequence is not in accordance with any of the naming
convention (three letters/one letter/HP(hp)), an error message is displayed to enter the cor-
rect sequence. Since the checkbox labeled with Generate Initial Directions Randomly is
checked by default, the structure is displayed using random directions. If the user wants
to enter his/her own directions (structure), the checkbox needs to be un-check. This opens
an access to enter directions in the field under the label Enter Direction List. The Create
button can also pop-up an error message if the directions do not follow the self-avoiding cri-
teria. The Cancel button just closes the window and does not have any effect on the present

structure displayed in the display panel.
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An option to do the calculation using a different lattice (lattice type) is also present in
the panel, however, in the present version of the tool only cubic lattice is available. Below
this option, a checkbox is available for building the structure manually using a graphical

interface, but this feature is also not finished in the present work.

4.2.2 Display Unit

The Display unit displays the 3D structure of the user-specified sequence of residues( Figure
4.3). This visual unit displays: the structure when the user initially enters the sequence,
the calculated structure during the optimization process after a user-specified number of
generations, and the final optimized structure.

The structure is constructed from the sequence of directions. The bonds between residues
are represented with six possible directions. These six directions, left (1), right (r), in (i), out
(0), up (u) and down (d), respectively, represent the connections between residues in the
-X, +X, out of screen, towards the screen, upward and downward directions of the monitor
screen. Red is used for hydrophobic residues and green is used for hydrophilic ones. The
residues position in the sequences can be expressed with the help of numbers. The user can
hide/display the numbering using the N button from the keyboard. Similarly, the B button

can be used to hide/display the residues’ spheres.

4.2.3 Calculation Setup

The calculation setup is the main component where all the calculation parameters are spec-
ified by the user. This is the next step of calculations when the user enters the sequence.
The pop-up menu from the Calculate tab present in the menu bar displays option for Native
Structure and Fitness score. The Fitness score option is to calculate the fitness score of the
displayed structure. This Native Structure option is used to setup parameters for structure

optimization. This button opens a new Native Structure window. The window consists
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Figure 4.3: An example to display the protein structure in 3D cubic lattice.

of three tabs, Algorithmic Configuration, Population, and Output Setup, which contain
different input fields required to calculate optimized structure. These tabs and their different

fields are discussed below:

4.2.4 Algorithmic Configuration Tab

The Algorithmic Configuration Tab is used to setup and choose the algorithm/steps for
calculations. The different available options in this tab are shown in Figure 4.4. The Base
Algorithm option is the default option to select the base algorithm for calculations. The
Algorithm drop down box gives the option to select an algorithm out of "GA", "PGA-IM",
"PGA-GM", "IA", "ACO", "PSO". The "GA", "PGA-IM", "PGA-GM", "IA", "ACO", and
"PSO", which are, respectively, represent genetic algorithm, parallel genetic algorithms-
island model, parallel genetic algorithms-grid model, immune algorithm, ant-colony algo-
rithm, and particle swarm algorithms. "PGA-IM" and "PGA-GM" options require the user
to enter the number of threads for parallel calculations using a checkbox field present at the

bottom of the window. Otherwise, using default option of a single thread, these algorithms
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work the same as "GA". The optional Add. Step adds an additional step for calculations
into the base algorithm steps. In the current version of the software only " SCO" (discussed
in 3.7 ) option is available. Beside Add. Step option, two other fields are present to enter
information related to the individuals used in algorithmic operations. The first field is to
enter the number of these individuals or no. of parents, and the Method drop down box is

used to select the individuals’ selection method.

Algorithmic Configuration | Population | Output Setup |

¥l Base Algorithm Add. Step per Cycle Method

Algorithm |GA |V| ‘Nune ‘V| Sel. Ind. IZ ‘ |Randum |v‘

Build Algorithm

Algorithm Step Name Adj. Method
| [ -] -] [ A ]
——
Cr. Point 1
Mut. Point 1|
Mut. Rate Mut. Start Mut. End
[JUse HH [ Use only Largest HH
HH Algorithm |7| Max HH Length Min. HH Length

[ Number of threads ‘ Submit ‘ ‘ Ccancel ‘

Figure 4.4: Native Structure window with Algorithm Configuration tab.

The user can also construct an algorithm using the Build Algorithm option. To do this
the user needs to uncheck the Base Algorithm checkbox, which gives access to the three
drop down boxes. These boxes are for algorithm name (Algorithm), step name (Step Name)
and adjustment method (Adj. Method). The first two boxes are used to select a step from
corresponding algorithms. The adjustment method is required to fit the structure into self-
avoiding criteria. In the current version, only one adjustment method is present. The user

can enter the adjust method after each step, however, if no adjust method is chosen, the tool
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automatically add the default method after last step. To construct an algorithm (sequence of
steps) the user needs to add the chosen steps into the sequence using the Add button. The
user can also remove any step with the help of the Remove button. One can examine the se-
lected steps from the rectangular space available on the top of the three drop-down boxes. All
steps can be used any number of times, however, the sequence of steps should contains inde-
pendent steps or have all dependent steps present at proper positions. In the GA’s, Crossover
and Mutation operations are independent steps. The operators, hyper-mutation and hyper-
macro-mutation, suggested for immune algorithm are also independent. However, in certain
situations, all the user entered steps are not possible to perform. In that case the Submit
button gives an error and the user has to correct the sequence of steps in order to perform
calculations. The Use HH checkbox can be used for separate hydrophobic-hydrophobic
(HH) calculations for HH sequences present in the main HP sequence (discussed in section
3.2). The option is available only for "GA","PGA-IM","PGA-GM" and "ACO" algorithms.
The user can select the algorithm and the maximum and minimum lengths of the HH se-

quence to be considered for HH calculations.

4.2.5 Population Tab

In the Population Tab the user can enter information about the individuals and constraints
on the individuals’ structure. This tab is clearly separated into two sections of fields (shown
in Figure 4.5). The first section contains fields for the individual generation method and total
population. Two options are possible for generation method "Random" and "Ant-Colony".
Both options are available for all algorithms except "ACO", where only "Ant-Colony" option
can work. The next two fields are for population size and number of generations labeled
under Population and Generations respectively. There is also a drop down box for the type
of Symmetry followed by the individuals. In the present work, only "Mirror" symmetry
option is added. The "None" option is the default case which means the individuals are not

required to obey any symmetry property. The Allow Twins checkbox can be unchecked to
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make sure all the individuals in the population have distinct structures. These Symmetry
and Allow Twins constraints are for initial populations. In order to put these constraints
during the calculation process, the user also needs to select them from the second half of
tab space. The same options are also available for HH calculations if the Use HH option is

selected from the Algorithmic Configuration Tab.

| Algorithmic Configuration | Population | Output Setup |

Initial Population
Population Generations Symmetry

Individuals |Randnm ‘v| ‘100 | ‘aouo | ‘Nnne |v‘ ¥ Allow Twins
HH Individuals \:l |j FAllow Twins
[ During generation process(Same as Inital Population)
Symmetry
Individuals D [ Allow Twins

HH Individuals [[] Eallow Twins

[ Number of threads ‘ Submit

| concar |

Figure 4.5: Native Structure window with population tab.

4.2.6 OutputSetup Tab

The OutputSetup Tab contains the fields required to save the output information. This tab
is shown in Figure 4.6. The space labeled with Directory Name is to enter the folder’s name
to save the resultant files. Since the calculations are in the cubic lattice, the output files are
automatically saved with the extension .cube. The second field, File Name, is used to enter
the main parts of the file name. The software automatically adds the number at the end of
the entered file name based on the number of files entered in the No. of Files field. The
user can also specify the number of generations after which the populations can be saved in

the .cube files. One needs to enter these generations in the field labeled with Save every.
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The .Jog checkbox used to saves the optimization structures and corresponding fitness scores

obtained from all the .cube file. This information is saved in a .log file.

| Algorithmic Configuration | Population | Output Setup |

Directory Name ‘ltoryfjavafPSPlOutput Fl\es[GNHHJHHZ?l

File Name ‘5771OOF‘GOOOEVRDVIMU—lCF\rZF‘CVTArlThl Save Every |30 ‘ generation

Mo. of Files 50 [v].log File v].data File Ref. Score |28

Display Every 1000 generation
[l Stop After 1000 (if no improvement)

[INumber of threads | - ‘ ‘ — ‘

Figure 4.6: Native Structure window with output tab.

An analysis file can be created if the user selects the .data file check box. Since this
option require a reference score to compare the resultant fitness score, the user needs to
enter the reference score in the field titled with the Ref. Score. The .data file saves the
final populations information in different contexts; percentage of population with a highest
fitness score (HS), percentage of population with a reference fitness score (PPRS), lowest
generation numbers when the fitness score becomes equal to reference score (FRS), lowest
generation numbers when half population’s fitness scores become equal to the reference
fitness score (HPRS) and lowest generation numbers when the whole population’s fitness
scores become equal to reference fitness score (FPRS). The value entered in the Display
Every field displays the optimized structure after user-specified number of generations. The
Stop After checkbox can be used to stop the calculation if no improvement in fitness score

has been observed after a certain number of generations.
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Simulation Results

The acceptance of a scientific work can be confirmed by the reproducibility of the reported
results within the margins of experimental error. This chapter deals with the simulated results
of the developed tool for optimization of protein structures. The results support the correct
implementation of the genetic algorithm (GA), parallel genetic algorithms with island model
(PGA-IM) and grid model (PGA-GM), immune algorithm (IA), particle swarm optimization
algorithm (PSO), and ant-colony optimization algorithm (ACO). The use of the developed
application for hybridization has also been confirmed by testing some possible combinations
of steps among different algorithms. Further, the analysis of the performance of GA, PGA-

IM, and PGA-GM has been analyzed with the number of parent individuals.

5.1 Experimental Details

The experiments to examine the proper working of the developed tool was confirmed by
comparing the fitness scores of previously tested sequences with their reported values (Table
5.1). These tests were performed for five implemented algorithms and eight hybrid pro-
cedures (C1-C8). C8 hybrid procedure is combination of Genetic Algorithm and Immune
Algorithm. Intel(R) Core(TM) i7-7700 CPU @3.6 GHz processor were used for performing

different calculations except S48-S1 and S48-S2 sequences in case of ACO and C8 algorithm

54
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where Intel(R) Core(TM) i7-8550U CPU @1.80 GHz processor was used.

5.1.1 HP Sequences

Two sets of previously reported sequences were studied for reproducibility. These sets of
sequences are listed in Table 5.1 along with their fitness score. The fitness scores in the Table

5.1 are the best known values reported in [1,2]. The sequences of length of 27 residues

Table 5.1: The standard protein sequences and their HP model-based best known fitness

score (-energy) in 3D cubic lattice used in our calculations [1,2].

ID Length Sequence Fitness Score
S27-1 27 PHPHPHHHPPHPHPPPPPPPPPPPHHP 9
S27-2 27 PHHPPPPPPPPPPHHPPHHPPHPPHPH 10
S27-3 27 HHHHPPPPPHPPPPPHHHPPPPPPPPH 8
S27-4 27 HHHPPHHHHPPPHPHPPHHPPHPPPHH 15
S27-5 27 HHHHPPPPHPHHPPPHHPPPPPPPPPP 8
S27-6 27 HPPPPPPHPHHHPPHHPPPHPPPPHPH 11
S27-7 27 HPPHPHHPPPHPPPPPHPHHPHPHPHH 13
S27-8 27 HPPPPPPPPPPPHPHPPPPPPPPHPHH 4
S27-9 27 PPPPPPPHHHPPPHPHHPPPHPPHPPP 7

S27-10 27 PPPPPHHPHPHPHPHPPHHPHHPHPPP 11
S48-1 48 HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH 32
S48-2 48 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH 34
S48-3 48 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP 34
S48-4 48 PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP 33
S48-5 48 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH 32
S48-6 48 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH 32
S48-7 48 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH 32
S48-8 48 PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP 31
S48-9 48 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH 34

S48-10 48 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH 33
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(S827-1 to S27-10) were taken from Custédio and Barbosa’s work [1]. The sequences have
also been used by other authors [163]. The second set of sequences of 48 residues (S48-1
to S48-10) were chosen from a paper reported by Maher et al. [2]. Albrecht ef al. have also

employed the same set of sequences for their stochastic protein folding [164].

5.1.2 Calculation Parameters

The performance of the implemented algorithms was checked against each sequence with
a fixed set of parameters. Both sets of sequences were tested with a population of 100
individuals. Populations in all tests were created using random directions except in case of
the ACO algorithm. In the case of ACO, the population was produced with the default ACO
method. The number of generations used to test sequences S27 and S48 were 5000 and
10000 respectively. This implies that the total number of algorithmic operations performed
for S27 and S48 were 5000 and 10000 times respectively. In order to maintain the same
number of algorithmic operations among PGA-IM, the number of generations were reduced
to 250 and 500, respectively, for S27 and S48 sequences. Due to the same reason, the
calculations for PGA-GM were employed for 1000 and 2000 generations in case of S27 and
S48 respectively. The data of each sequence of both sets was collected over 50 runs. Other

parameters employed in case of each algorithm are separately listed below:

o GA-Crossover = One-point, Mutation = One-point

PGA-IM-Crossover = One-point, Mutation = One-point, Cycle/gen=20, Ind./gen. = 2,
Island Method =Random, Threads=5.

PGA-GM-Crossover = One-point, Mutation = One-point, Ind./gen. = 2, Threads=5.

PSO-mF=100 generations, mB=10 generations,

ACO-p=0.5,1=0.5,a=0.5,y=0.5, p =0.5, Local Individuals = 10 .
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e [A- Clones No. =10, ¢ = 0.5, Age Limit (tp) = 100, Age List Size = 500.

The seven hybrid procedures (C1-C7) among possible steps and a hybridization test of ge-
netic algorithm and immune algorithm (C8) were analyzed. These combinations were tested
for the S48-1 sequence using a population of 100 individuals and the statistics was analyzed
over 50 runs. The steps and parameters employed in these combinations are given below and

A population of 100 individuals were used except otherwise mentioned:

o CI1-Steps- Crossover (GA) + Micro-Mutation (IA) + Hyper-Macro-Mutation (IA)
Parameters-Generation = 10000, Ind./gen. = 2, Crossover point = 3, Hyper Mutation

c=0.5

e (C2-Steps- Cloning (IA) + Crossover (GA) + Mutation(GA)
Parameters-Generation = 10000, Ind./gen. = 2, Clones No. = 10, Crossover point =

2, Mutation point = 2

o (C3-Steps- Crossover (GA) + Cloning (IA) +Aging Operation (IA)
Parameters-Generation = 20000, Ind./gen. = 2, Crossover point = 2, Age of Individ-

uals = 10, Clones No. = 10 Age List Size= 200

e (C4-Steps- Crossover (GA) + Local Search (ACO) + Aging Operation (IA)
Parameters-Generation = 20000, Ind./gen. = 2, Crossover point = 5, Local Individu-

als = 10, Age Limit = 10, Age List Size= 500

e (C5-Steps- Cloning (IA) + Crossover (GA) + Local Search (ACO)
Parameters-Generation = 20000, Ind./gen. = 10, Crossover point = 5, Clones No. =

10, Local Individuals = 10

o (C6-Steps- Crossover (GA) + Hyper-Macro-Mutation (IA)
Parameters-Generation = 20000, Ind./gen. = 2, Crossover point = 5, Hyper Mutation

¢ =0.5, Age Limit = 10, Age List Size= 500
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o C7-Steps-Crossover (GA) + Local Search (ACO)
Parameters-Generation = 20000, Ind./gen. = 2, Crossover point = 5, Local Individu-

als=10

o (C8-Steps-GA + 1A
Parameters-Generation = 40000, Population= 200, Ind./gen. = 2, Crossover point =
1, Mutation point = 1, Clones No. = 50, ¢ = 0.5, Age Limit (t5) = 50, Age List Size =
500.

The analysis of the selected number of parent individuals per cycle in the case of GA, PGA-
IM, and PGA-GM was performed using One-point Crossover and One-point Mutation. The
study is conducted for the 2, 5, and 10 individuals, and all results were collected over 50

runs for a population of 100 individuals.

5.2 Results and Discussions

5.2.1 Algorithm Analysis

The analysis of the implemented base algorithms has been done by optimizing both sets of
sequences and comparing their fitness scores w.r.t the previously reported best fitness scores.
Both sets of sequences have also been utilized to compare different algorithms in terms of
average fitness scores (AS) and the average time for some fixed number of generations (AT).
Different comparisons of each sets of sequences (S27 and S48) are illustrated with the help
of bar graphs.

The best fitness scores (BS) of all S27 sequences calculated for 50 independent runs
over 5000 generations are shown in Figure 5.1. It can be observed from the graph that all
the algorithms are able to achieve the previously reported best fitness scores. However, ACO
and PSO algorithms in case of S27-7 sequence are not able to achieve the fitness score as

reported by the Patton et al. [163]. This might be because these implemented algorithms are
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Figure 5.1: The best fitness scores of S27 sequences out of 50 runs for implemented GA,

PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.
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Figure 5.2: The average scores of S27 sequences calculated over 50 runs for implemented

GA, PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.
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Figure 5.3: Comparison of generation number for best scores of S27 sequences calculated
over 50 runs for implemented base algorithms. In some sequences ACO is not able to reach
the reported optimal values.

not efficient enough to reach standard value within 5000 generations. Figure 5.2 compares
the AS of the optimized structures obtained for different algorithms of S27 sequences. The
plot clearly indicates that the AS in most sequences are higher for A and lower in case of
ACO and PSO algorithms. The plot also reveals that the AS of S27-1, S27-5, S27-8, S27-9
and S27-10 are almost similar in all algorithms.

A comparison of the lowest generation number to achieve the previously reported best
fitness scores (LG) among all algorithms has also been conducted and Figure 5.3 exhibits the
LG values for S27 sequences. It can be seen that the LG values are lower in case of IA and
highest in PSO and ACO algorithms. The LG values for S27-3, S27-5, S27-8, S27-9 from
most algorithms are lower than S27-1, S27-2, S27-4, S27-6, S27-10, and S27-8. This can
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be attributed to the number of hydrophobic residues, i.e., possible number of hydrophobic
contacts, and also to the internal arrangement of the positions of hydrophobic residues. It
can also be observed that LG values from GA are higher than PGA-IM and PGA-GM. In
the case of PGA-IM and PGA-GM, these values can be further decreased by using greater
number of threads. In our calculations, we have used 5 threads which means that each
generation of PGA-GM is equivalent to five GA generations. Similarly, in case of PGA-IM,
every generation has done the same work as 100 GA generations. The LG values for IA and

PGA algorithms are very close to each other compared to other algorithms.

20
[ 1GA
[ 1PGA-IM
] PGA-GM

[ PSO
I ACO

=
o
1

Average Time for 5000 Generations (seconds)
]
]

[&)]
|

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S27-Sequence

Figure 5.4: The average time taken by S27 sequences to complete 5000 generations for

all the implemented base algorithms. The average is calculated over 50 runs. The average
times in case ACO algorithm are much higher and are not fully covered in the graph. The
exact average times taken is listed in Supplementary Tables A.1. Average times of 5000 ge-
netic operations in case of PGA-IM and PGA-GM are taken for 250 and 1000 generations,
respectively.
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Figure 5.4 illustrates the bar graph of the average times of calculations (AT) of all the S27
sequences for all implemented algorithms. The graph shows that AT values of S27-1, S27-2,
S27-3, S27-5, and S27-8 sequences are lower than the rest of the sequences. This observation
is neither in accordance with the number of hydrophobic residues present in the sequence,
nor due to the number of possible hydrophobic-hydrophobic contacts. Also, since except
for the ACO algorithm, the individuals have been generated using a random procedure, the
reason cannot be associated with the positions of the residues in the sequence. Performance
wise, the fitness score graph reveals that the IA is better than other algorithms, however in
most cases, the average time of calculations of IA is higher as compared to GA and PGA-IM.
The average time of calculations of all the S27 sequences from PGA-GM, PSO and IA have
almost the same values. The ACO algorithm seems much more expensive in the context of

average time.
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Figure 5.5: The highest scores of S48 sequences out of 50 runs for implemented GA,
PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.

The results of the S48 sequences are illustrated in Figures 5.5, 5.6 and 5.7. The analysis is
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done for the highest fitness score (HS), average score (AS) and average time (AT) calculated
for 10000 generations over 50 runs. Figure 5.5 shows the highest values of the fitness scores
obtained by different algorithms within 10000 generations. The fitness score values are
quite reasonable and close to the previously reported best fitness scores to predict the proper
implementation of the algorithms. The graphs reveal that the [A also out-performed over all
other algorithms as in case S27. Except for S48-2 sequence, the calculated HS values from
PGA-GM are lower than those from the GA and PGA-IM. The graph between AS vs S48-
sequences for different algorithms is plotted in Figure 5.6. The AS of different sequences of
different algorithms increases in the following order: ACO, PSO, PGA-GM, GA, PGA-IM
and IA. This order is similar to S27 (Figure 5.2), however, due to the larger length of the S48

sequences, the differences are higher.

Average Score

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S48-Sequence

Figure 5.6: The average scores of S48 sequences calculated over 50 runs for implemented
GA, PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.

The average time graph for S48 sequences is illustrated in Figure 5.7. It represents that

the ACO algorithm takes much higher time than the other algorithms. Average time taken
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Figure 5.7: The average time taken by S48 sequences to complete 10000 generations for
all the implemented base algorithms. The average is calculated over 50 runs. The average
times in case the ACO algorithm are much higher and are not fully covered in the graph.
The exact average times are listed in Supplementary Table A.2. Average times for 10000
genetic operations in case of PGA-IM and PGA-GM are taken for 500 and 2000 genera-
tions respectively.

Table 5.2: Average score (AS) and Best score (BS) for differ-

ent set of hybrid procedures.

Cal. Set AS BS
Cl 23.58 28
Cc2 25.00 25
C3 22.24 27
C4 25.08 29
(O8] 18.88 22
Cco6 28.98 29
C7 26.26 28
C8 24.74 27
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Figure 5.8: The average scores of S27 sequences calculated over 50 runs for implemented
GA, PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.
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Figure 5.9: The average scores of S48 sequences calculated over 50 runs for implemented
GA, PGA-IM, PGA-GM, IA, PSO, and ACO algorithms.
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by GA, PGA-IM, and PGA-GM
are almost same for all the se-
quences. The average time taken
by PSO algorithm is higher than
GA but lower than IA. The similar
trend among different algorithms
for each sequence clearly suggests
that the reason of the differences in
average times of calculations can-
not be attributed to the internal ar-
rangement of residues in the se-
quences which could be one pos-
sibility in case of S27.

The performance of different
algorithms from both the sets of
sequences are compared using av-
erage fitness score/ average time
(shown in Figures 5.8 and 5.9).
Both the graphs show that in most
of the cases the genetic algo-
rithm and parallel genetic algo-
rithm out-perform than other algo-
rithms. The use of the software for
hybridization has been tested for
eight hybrid procedures (C1-C8).
Only the S48-1 sequence has been
analyzed for this work. The ob-

tained results of the best and aver-
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Figure 5.10: The best generation number over 50 runs
vs S27 sequences for GA, PGA-IM, PGA-GM, in case
of 2, 5, 10 individuals used to perform the algorithmic

operation.
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age fitness scores are illustrated in Table 5.2. The values are quite reasonable and confirm
that the tool can be utilized to search and analyze new hybrid procedures.

The above results ascertain the proper working of the developed tool. We further demon-
strated the use of the software for algorithms’ analysis based on the number of selected
parent individuals. The study has been conducted to analyze the performance of GA, PGA-
IM, and PGA-GM. The work has been accomplished by testing both sets of sequences (S27
and S48). The lowest generation number (LG) to achieve the previously reported best fitness
scores of S27 sequences are shown in Figure 5.10. It can be seen that as the number of
individuals increases, the LG values decreases. The reason can be attributed to the higher
number of individuals involved in each step. The details of the calculated data for S27 and
S48 sequences are, respectively, listed in Supplementary Tables A.3 and A.4.

The Figure 5.10 shows that the average scores in both cases, S27 and S48, increases with
number of parent individuals. These observations suggest that the average time (AT) should
also increase with more individuals, however, in our calculations, we have not observed
this trend. In the case of GA and PGA-IM, the AT does not increase with the increase of
individuals. Similarly, for S48 sequences the PGA-GM does not follow the expected pattern.
This indicates that there is more randomness involved in time calculations. It might be due

to other system processes which were running during calculation time.

5.3 Conclusions

The results obtained for different base algorithms and hybridization of possible algorithmic
steps, illustrate that the developed tool (HOT-PSP) is working as purposed. Since this is a
comprehensive tool to study simplified protein structure, the detailed analysis of different
algorithms and hybrid procedures can be performed in a simple manner. Our simulated
analysis of the base algorithms shows that the Immune algorithm performs better than other
algorithms, however, it takes more time for the same number of generations as compared to

PGA-IM and PGA-GM. The performance of the implemented ACO and PSO to calculate
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the fitness scores is not the same as stated in the literature. The use of different values of
input parameters might raise the fitness scores in these algorithms. The hybrid procedures
tests suggest that the software can be used to search new optimization procedures. The
hybrid of GA and IA algorithm (C8) is tested and the C8’s average score is higher than
GA’s average score, however, reduces the performance to reach the optimal score. The user
can test other hybrid procedures or can use other parameters in order to search for better
algorithm. The calculation time in case of PGA-IM and PGA-GM can be further decreased
by having access to the more threads. The comparison of average fitness scores among GA,
PGA-IM and PGA-GM suggests that the fitness scores in case of PGA-IM’s is higher than
GA for both sets of sequences. The GA, PGA-IM and PGA-GM analysis of the number of

parents indicates that it is better to use a higher number of individuals per generation.
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Summary and Future Plan

Protein structure prediction (PSP) is one of the important optimization problems. The im-
portance of PSP can be advocated from the significance of proteins and their functional
dependency on their structure. The HP model is a simple model which is widely used for
simplified protein structure prediction. This thesis presents an automation and visualization
application for simplified protein structure prediction using the HP model. The optimized
structure can be obtained from meta-heuristic algorithms or using a possible combination
of different algorithmic steps. The working of the tool is tested with the help of two differ-
ent sets of standard benchmark sequences. The results of these benchmark sequences are
consistent with the reported studies. The simulated analysis further reveals that Immune
algorithm performed better than other implemented algorithms, however, the average time
for the same number of generations were much lower in the case of PGA-IM and PGA-GM.
These results indicate the successful accomplishment of the main objective to develop an op-
timization tool for simplified protein structure prediction. For efficient and effective working
of the developed software, we incorporated it with some important characteristics which are

summarized as below:

e The software consists of an interactive GUI which is a user friendly environment for
calculation setup as well as to display the output results based on a user-defined num-

ber of generations.
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e The software provides the facility to display the HP model-based protein structure in

three-dimensional cubic lattice.

e The fitness score (or energy) of a given sequence can be calculated for randomly gen-
erated directions. The fitness score can also be calculated for the user-specified direc-

tions (structure).

e Hybridization among possible steps of implemented algorithms can be performed on
demand bases, and software itself handles (warning) unacceptable algorithmic config-

urations.

e Constraints such as mirror symmetry and twin removal can be introduced on demand

basis.

e Separate calculations can be performed for hydrophobic-hydrophobic (HH) sequences
present inside the main HP sequence. Parallelism can be performed on some compu-

tationally expensive steps using a higher number of threads.

e The development work has been done using the Java programming language and Java
based OpenGL. Java has many advantages such as object-oriented, cross-platform,

robust, secure, easy for distributed computing.

e The user can set or define save options for output results. Multiple output files can be
generated for a given set of calculation parameters and data obtained from all these

files can be saved in a single text file.

6.0 Future Goals

We have developed the software for simplified protein structure prediction using a few al-
gorithms and some additional features. However, there are different directions in which the

present tool can be extended in the future:
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e Symmetry is an important feature of globular proteins and many other molecules. In
the present version we have only introduced the mirror symmetry constraint, however,

we would like to add options for other types of symmetry constraints

e The code can be further extended to compare other optimization algorithms and/or
with some other features which can be helpful to optimize the proteins closer to the

real picture.

e We would also like to add features for manual designing and editing of protein struc-
ture from the graphical display. This feature will be useful for easy construction of the

initial structure and also for editing the structure during the calculation process.

e The designed software will be more useful if it can compare the calculated structure
with the experimentally obtained structure. Introducing features such as root mean
square differences (RMSD), standard deviation, curve fitting, etc. will be helpful for

this purpose.
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Appendix A

Supplementary Tables

Table A.1: Average time (AS) for 5000 genetic operation using different algorithms.

Sequence | GA | PGA-IM | PGA-GM | 1A PSO ACO
S27-2 | 0.22872 | 1.84372 | 1.0483 | 1.0483 | 1.0483 | 306.7157
S27-3 | 4.05338 | 7.55668 | 0.36844 | 0.3684 | 0.36844 | 274.1049
S27-4 | 6.04402 | 4.62814 | 11.67556 | 11.676 | 11.67556 | 395.1094
S27-5 | 0.23732 | 1.09966 | 0.9981 |0.9981 | 0.9981 |330.4955
S27-6 | 6.50526 | 4.9391 8.4034 | 8.4034 | 8.4034 | 345.8957
S27-7 | 7.04414 | 3.29914 | 7.40184 | 7.4018 | 7.40184 | 333.2862
S27-8 | 5.38876 | 0.98846 | 0.84968 | 0.8497 | 0.84968 | 224.273
S27-9 1258402 | 2.797 6.53052 | 6.5305 | 6.53052 | 328.9415

S27-10 | 7.49116 | 4.0719 | 10.27574 | 10.276 | 10.27574 | 381.5363
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Table A.2: Average time (AS) for 10000 genetic operation using different algorithms.

Sequence | GA | PGA-IM | PGA-GM IA PSO ACO
S48-1 | 1.11384 | 2.15876 | 10.61186 | 715.79 | 123.8914 | 472.093
S48-2 | 4.58684 | 4.72002 | 126.79692 | 553.47 | 10.8961 | 578.582
S48-3 1.0809 | 3.5095 | 7.66898 | 314.66 | 107.9051 | 2917.597
S48-4 | 6.96378 | 7.00798 | 17.60004 | 311.93 | 105.1294 | 3391.136
S48-5 | 1.13172 | 4.46694 | 6.4812 | 175.21 | 117.1708 | 3215.338
S48-6 | 1.17684 | 4.18524 | 6.67534 | 546.06 | 142.0506 | 1589.532
S48-7 | 1.78526 | 4.24546 | 11.31568 |249.33 | 147.4582 | 3358.413
S548-8 3.239 | 6.7699 0.9844 | 256.57 | 136.2474 | 3308.206
S48-9 | 1.16476 | 4.62698 | 13.16068 | 355.5 | 139.0251 | 949.432

S48-10 | 3.40942 | 3.41216 | 3.30178 |391.97 | 114.284 | 3447.318

Table A.3: Benchmark fitness score (F) of S27 sequences and comparison of the cal-
culated best score (BS) and lowest generation number to achieve BS out of 50 runs,
average score (AS) and average time (AT) for 5000 generations. The data is collected
for GA (GA-2, GA-5, GA-10), PGA-IM (PGA-IM-2, PGA-IM-5, PGA-IM-10), PGA-
GM (PGA-GM-2, PGA-GM-5, PGA-GM-10), in case of 2,5, 10 parent individuals.

Sr.No.|F[BS| BG | AS | AT |BS|BG| AS | AT |[BS|BG| AS | AT
Sequence GA-2 GA-5 GA-10
S27-11919|741|8.30|0.259 | 9 (172|838 | 0.535| 9 |174|8.28 | 1.000
S27-2{10{10| 761 | 9.02 | 0.229 | 10|416| 9.22 | 0.494 | 10{129]9.26 | 0.945
S27-3 18| 8[589|7.70|4.053 | 8 |162]|7.78 | 8.933 | 8 |125|7.68 | 3.967
Continue on next page
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S27-4
S27-5
S27-6
S27-7
S27-8
S27-9
S27-10

15

11
13

15

11
13

11

900
123
868

1326

358
709

13.94
7.38
10.02
11.90
4.00
6.48
10.32

6.044
0.237
6.505
7.044
5.389
2.584
7.491

15

12
13

11

357
85
286
518
86
72
394

14.24
7.40
10.12
11.92
4.00
6.48
10.24

4.233
0.531
2.682
2.107
3.249
3.968
6.221

15

12
13

11

252
51
233
267
14
86
116

14.16
7.26
10.22
11.86
4.00
6.52
10.52

3.577
0.940
5.799
3.119
1.142
4.789
11.300

Sequence

PG

A-IM-

PGA-IM-5

PG

A-IM-

10

S27-1
S27-2
S27-3
S27-4
S27-5
S27-6
S27-7
S27-8
S27-9
S27-10

10

15

11
13

10

15

11

13

11

10

16

17
25

10

8.40
9.20
7.78
14.14
7.40
10.04
12.18
4.00
6.48
10.28

0.462
1.844
7.557
4.628
1.100
4.939
3.299
0.988
2.797
4.072

10

15

11

13

11

27

o O O W

8.34
9.18
7.20
14.10
7.32
10.30
12.04
4.00
6.58
10.48

0.562
0.919
5.039
3.797
0.463
4.140
2918
1.798
2.277
3.076

10

15

11

13

11

O N S N " e ]

~ B~ O

8.38
9.20
7.90
14.04
7.52
10.24
12.20
4.00
6.70
10.62

1.623
1.844
5.659
5.917
1.872
4.349
3.875
0.414
3.047
4.068

Sequence

PGA-GM-2

PGA-GM-5

PGA-GM-10

S27-1
S27-2
S27-3
S27-4
S27-5
S27-6
S27-7

10

15

11

10

15

11
13

129
239
40
235
46
171
68

8.28
8.88
7.28
13.38
7.04
9.82
11.68

0.555
1.048
0.368
11.676
0.998
8.403
7.402

10

15

11
13

86
96
19
94
30
49
140

8.34
8.98
7.78
13.92
7.34
10.10
11.80

0.695
1.199
0.436
11.284
1.162
9.523
8.156

10
8
15
8
11
13

42
35
15
40
7
30
51

8.42
9.36
7.70
14.12
7.40
10.24
12.06

0.903
1.669
0.820
11.830
2.106
9.769
8.435

Continue on next page
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S27-8|414| 1 [1.00[0850 (4| 1 |400]|1.127|4 | 1 |4.00 | 1.575
S279 |77 | 64 [622]6531 |7 [29]|6.48|11.227| 7 | 10|6.74 [13.093
S27-10{11| 11| 87 [10.04{10.276{ 11| 80 [10.32| 9.993 | 11| 40 |10.34|12.667

Table A.4: Benchmark fitness score (F) of S48 sequences and comparison of the calcu-
lated highest score (HS), average score (AS) and average time (AT) for 10000 generations.
The data is collected for GA (GA-2, GA-5, GA-10), PGA-IM (PGA-IM-2, PGA-IM-5,
PGA-IM-10), PGA-GM (PGA-GM-2, PGA-GM-5, PGA-GM-10), in case of 2,5, 10 parent

individuals.

Sr.No. | F | BS| AS AT BS| AS AT BS| AS AT

Sequence GA-2 GA-5 GA-10

S48-1 | 32| 28 | 2436 | 1.114 |28 (2476 | 3.315 | 27 | 25.00 | 7.625
S48-2 |34 | 27 | 2452 | 4587 |30 |24.76 | 7.844 | 28 | 25.40 | 12.418
S48-3 [ 34|29 [25.18| 1.081 |30 |25.14| 2.874 | 31 | 25.50 | 6.926
S48-4 | 33| 28 | 2440 | 6.964 | 28 | 2496 | 11.571 | 28 | 24.90 | 11.455
S48-5 [ 32|29 (2442 | 1.132 |29 |24.94 | 2707 | 28 |25.00|7.770
S48-6 | 32| 27 [24.08 | 1.177 | 28 |23.94| 3.159 | 28 | 24.50 | 8.502
S48-7 32129 12400 | 1.785 |27 [24.30| 4.644 | 29 | 24.70 | 10.681
S48-8 | 31| 28 | 24.00 | 3.239 | 27 [24.60 | 5.261 | 28 |24.10 | 8.392
S48-9 |34 | 28 [25.26| 1.165 | 30 |2536| 4.810 | 29 |25.60|10.918
S48-10 | 33 | 28 | 24.48 | 3.409 | 29 | 24.42| 5.852 | 28 |25.00|9.119

Sequence PGA-IM-2 PGA-IM-5 PGA-IM-10

S48-1 |32 28 | 25.10 | 2.159 |29 | 25 0.562 | 29 | 24.80 | 13.994
S48-2 [ 34|29 [25.12| 4720 |29 | 25 0919 |29 ]25.90|17.112

Continue on next page
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S48-3 [ 34|29 [2540| 3.510 |29 | 25 5.039 | 30 | 25.68 | 13.481
S48-4 | 33| 28 [25.04| 7.008 |30 | 25 3797 | 28 | 25.20 | 18.909
S48-5 |32 28 | 25.18 | 4.467 |27 | 24 0.463 | 29 | 25.26 | 13.605
S48-6 | 32| 27 | 2398 | 4.185 |27 | 24 4.140 | 27 | 24.36 | 15.859
S48-7 | 32| 28 |24.58 | 4.245 |27 | 25 2918 | 28 | 24.42 | 18515
S48-8 | 31| 28 | 24.08 | 6.770 |27 | 25 1.798 | 28 | 24.68 | 13.408
S48-9 | 34|29 | 2574 | 4.627 |29 | 26 2.278 | 29 | 26.00 | 16.654
S48-10 (33 | 28 | 24.12| 3412 | 30| 25 3.076 | 28 | 24.60 | 14.287
Sequence PGA-GM-2 PGA-GM-5 PGA-GM-10
S48-1 [ 32|27 |24.00| 10.612 | 29 | 25.10 | 11.677 | 28 | 25.08 | 8.821
S48-2 | 34| 28 | 24.40 | 126.797 | 29 | 25.08 | 116.881 | 29 | 25.52 | 42.653
S48-3 |34 29 [24.770| 7.669 | 29 |25.04| 9.9204 | 29 | 25.84 | 6.958
S48-4 | 33| 27 | 24.00| 17.600 | 28 | 24.54 | 2.327 | 28 | 24.86 | 3.629
S48-5 32129 | 2350 | 6481 |29 (2486 | 7.561 |29 |24.72|3.331
S48-6 | 32| 26 | 23.10 | 6.675 | 26 [24.10 | 12.205 | 29 | 24.28 | 8.619
S48-7 [ 32| 28 |23.50 | 11.316 | 27 | 23.86 | 15.178 | 27 | 24.76 | 11.725
S48-8 | 31| 27 |23.30| 0.984 | 28 |24.18 | 3.7137 | 28 | 24.18 | 7.787
S48-9 | 34| 27 | 2450 | 13.161 | 30 [ 25.30 | 16.499 | 29 | 25.68 | 11.592
S48-10 [ 33 | 26 | 23.10 | 3.302 | 29 | 24.30 | 221256 | 28 | 25.02 | 5.627




