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Abstract 

Incorporating climate information into hydrologic streamflow forecasts has allowed for 

significant advancement in the ability to predict seasonal streamflow. The City of Dawson 

Creek (CDC), BC, has depended on the Kiskatinaw River (KR) as its sole source of 

municipal water for over 60 years. Hydro-meteorological changes in the KR along with 

increasing population and growing industry have put stress on the CDC water supply. In this 

study regional surface climate observations aggregated over the winter accumulation period 

(15 November–25 March) integrated with global circulation indices were input into a series 

of regression models providing spring runoff predictions in the KR. The surface climate 

observations, indices of global circulation and snow cover provided good predictability of 

both cumulative streamflow timing and volume in the KR. This study provides the CDC with 

a tool for better informed releases and withdrawals from the KR during the spring freshet. 
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Chapter 1: Introduction 

1.1 Overview 

 Water-supply forecasting is the science of predicting the volume of water that will 

flow past a given point over a specified time period (USDA, 1990). Water supply is an 

important consideration for both local and regional water-resource planners. Depending on 

the region, the amount and timing of available water can affect municipal supply, ecological 

needs, and agricultural as well as industrial uses. In addition, water quality and permitted 

polluted discharges often depend on water supply, affecting river ecology and recreational 

opportunities (Dunne & Leopold, 1998). Accurate hydrologic forecasts are particularly 

important in municipal water supply and hydropower production because they are highly 

sensitive to changes in climate (Alemu, Palmer, Polebitski, & Meaker, 2011). 

 Measurements that determine the amount of water stored in the snowpack, or snow 

water equivalent (SWE), are frequently used to estimate and forecast the total amount of 

runoff derived from snowmelt (USDA, 1972). Typically, seasonal water-supply forecasts are 

generated monthly from January–June for most locations. In some cases, mid-month or more 

frequent forecasts are generated by requests from users. Forecasts are updated monthly to 

account for changes in weather and hydrologic conditions.  

 Models implemented for the purpose of generating prediction of streamflow can 

typically be categorized as either deterministic or stochastic and spatially-lumped or 

distributed (Beven, 2012). Deterministic models output a single prediction as a function of a 

set of input variables, whereas stochastic models output a range of outcomes based on a 

statistical distribution of input variables. Most continuous rainfall-runoff models historically 

are deterministic. Stochastic models, however, are often applied for the purpose of predicting 
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spring streamflow totals using snowpack and precipitation measurements as inputs with 

reasonable results (USDA, 1990). 

 Two approaches to modelling in hydrology are widely utilized. The first takes an 

inductive approach relating inputs to outputs without adhering to the physics of the system. 

The other, a deductive approach, requires that the model must adhere as close as possible to 

our understanding of the physical processes at play, providing the ability to predict with 

confidence values not within the range of the input data. Although the inductive approach is 

often criticized for revealing little about the behaviour of the system, in many cases a data-

based analysis will lead to different conclusions about the behaviour of a system than a 

theoretical counterpart may suggest. An inductive approach often suggests that our 

theoretical understanding of the system may be incomplete. This quality makes the inductive 

approach a suitable start for any rainfall-runoff modelling study (Beven, 2012). The most 

commonly applied approach for making operational seasonal streamflow predictions is 

through regression techniques. In the past, forecasts were usually made by a single 

“optimized” regression and required the assumption of average future conditions. More 

recently, different equations that change with time are utilized, and use only inputs available 

at the time of the forecast. This approach is more difficult, but consistently provides 

improved forecasts (USDA, 1990). 

 By incorporating climate information into hydrologic streamflow forecasts, 

significant advancement in the ability to predict streamflow at seasonal leads (~4 months) has 

been made over the past decades. The three main contributors to improved forecast skill are: 

accurate forecasting of meteorological anomalies, the quantification of the water held within 

the snowpack, and knowledge of soil-moisture conditions (Mahanama, Livneh, Koster, 

Lettenmaier, & Reichle, 2012). The role of large-scale climate states such as the El Niño-
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Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on regional 

streamflow variability in British Columbia (BC) and elsewhere has been affirmed in 

numerous studies (e.g., Gobena, Weber, & Fleming, 2013; Grantz, Rajagopalan, Clark, & 

Zagona, 2005). Researchers often utilize links between these large-scale atmospheric 

circulation features (e.g., anomalies in 700 hPa geopotential heights, sea-surface 

temperatures, etc.) and hydrologic conditions for forecasting streamflow at seasonal lead 

times. Despite the strong links between these teleconnections and hydro-climatology in 

north-western North America, there is significant spatiotemporal variation in the strength and 

duration of effects on annual cycles of precipitation and temperature (Fleming & Whitfield, 

2010). In addition, slight changes in large-scale atmospheric patterns commonly result in 

major differences in surface climate suggesting that the standard indices of these atmospheric 

patterns may not be optimal for describing variability in hydro-meteorology at a given 

location and nonstandard indices might increase predictive performance (Regonda, 

Rajagopalan, Clark, & Zagona, 2006).  

 In this study: (i) I explore the ability of regional surface climate inputs aggregated 

over winter in combination with global circulation indices to make predictions of cumulative 

streamflow in the Kiskatinaw River (KR) during spring runoff. (ii) I present spatial 

correlations between climate metrics at the surface and runoff in the KR. (iii) I implement a 

logistic regression model to predict the probability of exceeding the pumping threshold of 

500 nephelometric turbidity units (NTU) based on the forecasted discharge. (iv) I discuss the 

spatial structure of the correlations between regional surface climate and streamflow in the 

KR, and relate them to established global circulation patterns. (v) I present a series of 

regressions for predicting cumulative streamflow in the KR from aggregated surface climate 

metrics.  
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1.2 Uncertainty in Hydrology 

 Models in hydrology serve as a sound method through which we can explore the 

effects of alternative water-resource policies and systems, or predict future conditions. 

Because all hydrologic models are simplifications of reality, and many driving factors are 

only known so far into the future, they can only serve as an informed estimate of future 

conditions (Loucks & Beek, 2005). There are three forms of uncertainty inherent in 

hydrology: informational, model, and numerical uncertainties. Informational uncertainty 

includes the spatial and temporal variability of hydrologic input data, as well as errors 

associated with measuring both independent and dependent variables. Model uncertainty 

includes incomplete conceptualization of model structure, uncertainty in parameter values, 

and issues with inconsistency along temporal and spatial scales. Numerical uncertainty stems 

from the wide use of algorithms that suffer from errors associated with truncation when 

performing approximations, such as Taylor approximations (Loucks & Beek, 2005). A type 

of uncertainty specific to operational streamflow forecasting is that associated with future 

weather. Examples include abnormally intense storms and warm spring rains during 

snowmelt; both would affect the timing and volume of runoff considerably (USDA, 1990). 

As the melt season progresses, uncertainty associated with weather diminishes (Table 1.1). 

Table 1.1: Typical percentage of streamflow inputs (snowmelt and rain) known in snowmelt 
dominated watersheds (northern hemisphere) with increasing time. Table recreated from 
USDA (1972).  

Date Snow Water Content  
(% Known) 

Spring and 
Summer Rainfall 
(% Known) 

Factors Affecting 
Streamflow Volumes 
(% Known) 

1 Jan ~50 ~0 ~25 
1 Mar ~75 ~0 ~50 
1 Apr ~100 ~25 ~75 
1 May ~100 ~50 ~90 
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1.3 Hydrologic Response to Global Climate Change 

 Operational seasonal streamflow forecasting is complicated by the variability in the 

water balance that is introduced as anthropogenic warming and land cover change continue to 

affect global climate and hydrology (Koster et al., 2017). Snowmelt-dominated regions of the 

globe, generally occurring at latitudes greater than about 45° north and south, are 

significantly impacted by the effects of global warming (Barnett, Adam, & Lettenmaier, 

2005). For instance, earlier onset of springtime snowmelt and streamflow has been observed 

for most of western North America in response to warmer winter and spring temperatures 

and increased precipitation as rainfall (Stewart, Cayan, & Dettinger, 2004). Throughout BC, 

the projected impacts of climate change on hydrologic regimes vary. In the Nechako River 

Basin, climate change is projected to result in warmer, wetter conditions, and have important 

implications on releases at the Nechako Reservoir (Sharma & Déry, 2015). Snow water 

equivalent (SWE) is projected to decline throughout the Peace and Campbell River Basins 

and at lower elevations within the Columbia River Basin for the A1B scenario ensemble 

median. At higher elevations (~1800 m) within the Columbia River Basin, SWE is projected 

to increase in response to more winter precipitation. In these three watersheds, timing shifts 

in runoff are expected (Schnorbus, Werner, & Bennett, 2014) (Figure 1.1). Coastal rain and 

snowmelt-dominated regimes are the most sensitive to these changes, shifting to more 

rainfall-dominated systems by the middle of the century. The two interior basins are 

projected to remain as nival regimes by mid-century; however the timing of streamflow is 

projected to shift to earlier freshet onsets due to increased mid-winter rainfall and snowmelt 

(Schnorbus, Werner, & Bennett, 2014). In the Fraser River Basin, precipitation is projected 

to increase slightly; however the fraction of precipitation falling as snow is projected to 

decrease by nearly 50% by the 2050’s mainly over low to mid elevations. The onset of  



6 
 

 

Figure 1.1. Contour plot of monthly change in snow water equivalent (SWE) and runoff as a 
function of elevation for the Peace River Basin and the Upper Columbia River, British 
Columbia based on the Intergovernmental Panel on Climate Change A1B scenario ensemble 
median. Figure reproduced from Schnorbus, Werner, & Bennett (2014), used with permission 
from the American Meteorological Society. 
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snowmelt is projected to be 25 days earlier than the historical average, resulting in increased 

winter and spring runoff and reduced low-flows during summer (Islam & Déry, 2017). The 

changes in climate imposed by anthropogenic warming make it imperative that the 

assumption of stationarity be carefully examined when employing statistical techniques in 

hydrology (Montanari & Koutsoyiannis, 2014).  

1.4 City of Dawson Creek and the Kiskatinaw Watershed 

The KRB is defined by the Farmington Water Survey of Canada (WSC) hydrometric 

station (ID 07FD001). The CDC and surrounding areas have utilized the KRB as a sole water 

supply since the mid 1940’s, withdrawing water at the Arras pump house. The KR 

headwaters originate in Bearhole Lake, ~60 km southwest of the CDC. During the Second 

World War, the US Army established the water system for the CDC to aid in the construction 

of the Alaska Highway. Since then there have been a number of enhancements to the system 

to improve both water quality and quantity. Upwards of 20,000 people rely on the water from 

the KR above the intake at the Arras weir. There is a single intake on the KR located at Arras 

16 km west of the city limits. An intake pipe withdraws water at the Arras pumping station. 

The pumping capacity of the station is 7,570 m3 per day. A weir to raise water levels during 

periods of low flow was constructed 100 m downstream in 1992. Between the Arras pump 

house and the water treatment plant (16 km) there is a booster pump and five reservoirs. 

There is a total storage capacity of 704,087 m3 within the system. The KR is a naturally 

turbid river; the CDC is forced to shut down pumping when turbidity levels exceed 500 

nephelometric turbidity units (NTU) to avoid damage to pumping infrastructure. Periods of 

high turbidity tend to be correlated with the spring freshet in the KR, and the times when the 

CDC is licensed to pump. During periods exceeding 500 NTU, the CDC depends on stored 



8 
 

water. It can take considerable time to replenish what is lost during these periods (Dobson 

Engineering Ltd. & Urban Systems, 2003). 

Peak water demand typically occurs during June with a volume about 18% higher 

than the rest of the year. Although little information is available regarding the timing of 

withdrawn water by other uses, it can be estimated that the majority (~80%) of this volume 

would be abstracted either during the spring freshet or during the summer. Additionally, the 

natural gas industry has substantial permitted annual abstractions, but the actual amounts and 

timing of these abstractions is poorly recorded, if at all. The potential issue for water 

managers at the City lies in the seasonality of water use by the natural gas industry, and the 

assumption that the bulk of water withdrawn by industry occurs during periods of high flow 

(Forest Practices Board, 2011). There is potential for water shortage during periods of low 

flows if this is not true. 

1.5 Hydro-Meteorological Changes in the Kiskatinaw Watershed 

There is a large body of evidence identifying global warming (Pachauri & Meyer, 

2014). In general, studies have shown that the effect of climate change in the Peace River 

region by 2050 will result in higher discharges during winter and an earlier freshet with 

reduced flows during summer and fall in response to region-wide warming and increased 

precipitation in the fall, winter and spring (e.g., Murdock, Sobie, Werner, & Shresthra, 2014; 

Schnorbus, Werner, & Bennett, 2014). Several studies have reported changes in hydrology in 

response to a changing climate in the KRB. These shifts in the hydrologic regime of the KRB 

were confirmed in a cumulative effects assessment carried out by the Forest Practices Board 

in 2011. One of the findings of the study was that peak discharge at WSC 07FD001 

Farmington gauge for the period 1987–2007 declined by 45% from the prior period of 1966–

1986. However, these finding are likely influenced by the phase shift of the PDO from 
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negative to positive around 1978. More recently, peak discharge in response to snowmelt 

occurs 13 days earlier, and a 14% reduction in peak flows exists between periods 1966-1991 

and 1991-2016 (Figure 1.2).  

 The reduced flows during the latter period are likely in response to warming air 

temperatures, particularly in winter and spring, leading to reduced winter snow accumulation 

and earlier snowmelt. In the study Climate change induced precipitation effects on water 

resources in the Peace Region of British Columbia, Canada, the Gridded Surface Subsurface 

Hydrologic Analysis (GSSHA) modelling system was used to study the impacts of future 

climate change induced precipitation on runoff in the KRB under the A2 and B1 greenhouse 

gas emissions scenarios for 2020–2040 from the Intergovernmental Panel on Climate Change 

(IPCC) (Saha, 2015). Projections from this study resulted in 5.5% and 3.5% increases in 

annual precipitation for the A2 and B2 scenarios, respectively, compared to the reference 

period (2000–2011). Annual mean temperature increases of 0.76°C and 0.57°C for the A2 

and B2 scenarios were also projected, respectively. The projected result of the increasing 

precipitation and air temperatures under climate change is a mean annual streamflow increase 

of 15.5% and 12.1% for the A2 and B2 scenarios, with the greatest increase occurring during 

spring for both scenarios (Saha, 2015). 

1.6 Turbidity 

Turbidity is an expression of the optical properties of a water sample that causes light 

rays to be scattered and absorbed rather than transmitted in straight lines through the sample 

and can be expressed as NTU (Anderson, 2005). Turbidity results from the presence of 

suspended and dissolved matter such as clay, silt, finely divided organic matter, plankton, 

organic acids, and dyes (American Water Works Association, 2005). The magnitude of  
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Figure 1.2. Average daily discharge at Water Survey Canada (WSC) 07FD001 Farmington 
stream gauge for two 26 year periods 1966–1991 and 1991–2016. Peak spring flow during 
the latter period is reduced by 14% and occurs 13 days earlier. 
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turbidity in streams and lakes is often proportional to suspended 

sediment concentration, and can be related with regressions (Rasmussen, Gray, Glysson, & 

Ziegler, 2009). Suspended sediment can negatively affect water supply, recreation, aquatic 

life, flood control, transportation, fisheries, reclamation, and navigation (Angino & O'Brien, 

1967). 

1.7 Research Objectives 

This study aims to provide the CDC with a decision support system (DSS) that will enable: 

1) Spring runoff predictions of turbidity levels, volume and timing for the KR utilizing 

readily available climate and turbidity data. 

2) Identifying significant relationships between surface regional climate observations and 

streamflow characteristics in the KR.  

3) Building a stochastic model framework that may be extendable to other watersheds / 

municipalities. 

 The first two chapters of this thesis provide context regarding hydrologic forecasting, 

including limitations, and introduces the KRB and its importance to the CDC and 

surrounding areas. Chapters 3 and 4 describe the datasets and methods, respectively, used for 

developing the regression models implemented in predicting spring runoff in the KR. The 

resulting correlations and models are presented in Chapter 5. Finally, Chapter 6 provides a 

brief discussion of the results in the context of global circulation patterns, emphasizes the 

difference between causal and predictive modelling, and suggests areas of future research. 

Finally, the main conclusions of the study are summarised.   
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Chapter 2: Study Area 

2.1 General Description 

 The Kiskatinaw River Basin (KRB) delineated at the Arras weir is a 2,800 km2 

watershed located southwest of the City of Dawson Creek (CDC), BC. This delineation 

defines the land upstream of the CDC’s municipal intake at Arras, 78% of the total KRB 

basin area (3,600 km2). The KRB extends roughly from 55°N-56°N latitude and 

120°W-121°W longitude with elevation ranging from 579 m ASL at the outlet to 1428 m 

ASL above Bearhole Lake (Figure 2.1). The KRB lies within the Boreal White and Black 

Spruce (BWBS) bio-geoclimatic (BGC) zone (Meidinger & Pojar, 2017). The BWBS zone 

contains several upland forest types including mixed stands of trembling aspen (Populus 

tremuloides) and white spruce (Picea glauca) and mixed stands of lodgepole pine (Pinus 

contorta) and black spruce (Picea mariana). Long, cold winters and short, but relatively 

warm summers characterize climate in this BGC zone. The BWBS zone receives relatively 

little precipitation and the least amount of snowfall of all northern BGC zones. Land cover in 

the KRB consists primarily of several forest types, pasture and cropland (Table 2.1). The 

KRB also provides important habitat for the declining woodland caribou (Rangifer tarandus) 

(Committee on the Status of Endangered Wildlife in Canada, 2002). The topography of the 

BWBS zone varies, with the KRB lying within the rolling Rocky Mountain foothills in the 

northwest region of the zone (Meidinger & Pojar, 2017). The hypsometric distribution for the 

KRB defined at Arras reveals that the geomorphology of the KRB is more eroded (Figure 

2.2). The concave form suggests that the basin shows less total runoff with a higher fraction 

of surface response than a convex counterpart primarily due to shallower water-table  
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Figure 2.1. Digital elevation map (DEM) of the Kiskatinaw River Basin (KRB) delineated at 
the Arras weir (circle) where the City of Dawson Creek (CDC) withdraws water and 
delineated at the Water Survey of Canada (WSC) 07FD001 Farmington stream gauge 
(triangle). 
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Table 2.1: Percent of total area of the Kiskatinaw River Basin defined at Arras for existing 
land cover/land use categories in the watershed as of 2010. Recreated from Paul (2013). 
Land Cover Type Total Area (%) 
Cropland 0.7 
Coniferous Forest 39.1 
Deciduous Forest 28.8 
Mixed Forest 12.9 
Planted Forest 5.5 
Forest Fire 0.9 
Cut Block 2.1 
Pasture 0.7 
Water 6.5 
Wetland 1.7 
Built-up Area 1.2 

 

 

 

Figure 2.2. Relative height versus relative area in the Kiskatinaw River Basin defined at 
Arras where a is the area of basin above height h, A is the total basin area, h is the height 
above the outlet, and H is the total relief of the basin.  
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positions and lower surface gradients (Vivoni, Benedetto, Grimaldi, & Eltahir, 2008). The 

bedrock geology of the KRB is composed predominantly of interbedded cretaceous shales 

sandstones while the surficial geology consists mainly of lacustrine deposits with alluvium 

(Dobson Engineering Ltd. & Urban Systems, 2003).  

2.2 Climate 

 Average air temperatures for the KRB are coldest during winter (-11.7°C) and 

warmest during summer (13.1°C). Spring remains relatively dry, accounting for 18% of the 

total annual precipitation, whereas the summer is relatively wet accounting for 39% of the 

total annual precipitation (Table 2.2). 

Table 2.2: Average daily minimum (Tmin) and maximum (Tmax) temperature and the total 
seasonal precipitation (Total Ppt) over the Kiskatinaw River Basin defined at the Arras weir 
(Figure 2.1) for 1950-2010. Values were calculated by Aseem Sharma using the R statistical 
programming language and climate data provided by the Australian National University 
(2017).  
 Variable   Statistic Annual Winter Spring Summer Fall 

Total Ppt (mm) 

Minimum 303.0 40.1 35.1 208.2 41.3 
Maximum 864.8 230.3 177.6 419.7 218.6 
Mean 530.4 105.4 96.7 208.2 119.8 
SD 100.6 40.7 29.7 72.2 39.4 

Tmin (°C) 

Minimum -8.1 -28.0 -9.2 4.7 -8.0 
Maximum -1.7 -9.8 -1.2 8.5 0.0 
Mean -4.5 -17.1 -4.6 6.8 -3.4 
SD 1.3 4.0 1.7 0.8 1.7 

Tmax (°C) 

Minimum 4.5 -15.5 2.3 17.2 1.3 
Maximum 9.3 -0.3 10.8 22.6 11.3 
Mean 7.0 -6.2 7.4 19.4 7.1  
SD 1.2 3.5 1.8 1.2 2.0 

 

  

 On average, about 36% of the total annual precipitation falls as snow (Dobson 

Engineering Ltd. & Urban Systems, 2003). Snowfall has important social, economic and 

ecological implications in cool temperate and subarctic regions. The amount of water held 
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within the snowpack is of particular interest to water managers because its melt replenishes 

water storage infrastructure and groundwater, and dictates the amount of water available for 

irrigation, municipal use, power generation and ecological needs (Dunne & Leopold, 1998). 

Poleward of 45° north and south in latitude, the hydrologic cycle is strongly influenced by 

the accumulation and ablation of snow (Barnett, Adam, & Lettenmaier, 2005). Studies in 

these snowmelt-dominated regions have provided evidence that, particularly in western North 

America, as surface air temperatures rise and precipitation increases in response to 

anthropogenic warming, more precipitation falls as rainfall and snow ablation onset is earlier 

(e.g., Barnett, Adam, & Lettenmaier, 2005; Kang, Shi, Gao, & Déry, 2014; Stewart, Cayan, 

& Dettinger, 2004). Warmer winter temperatures, in combination with a shift in the 

precipitation regime, directly influence the timing of streamflow in response to snowmelt 

(Kang, Gao, Shi, Islam, & Déry, 2016). These shifts in both climate and hydrology have 

important impacts on regional water supplies (Barnett, Adam, & Lettenmaier, 2005). 

2.3 Hydrology 

 Five major sub-basins exist in the KRB delineated at Arras. The East Kiskatinaw of 

the KRB defines one of these basins and has its headwaters in Bearhole Lake, accounting for 

1009.7 km2. Bearhole Lake is a controlled reservoir and represents an important source of 

municipal water supply for the CDC contributing about 396,000 m3 during winter months. 

Groundwater recharge likely represents a substantial input to the total water supply within 

this reservoir with an estimated net groundwater influx of 209,000 m3 (Scruton, 2017). The 

other major headwater basin is the West Kiskatinaw including the West Headwaters and 

Jackpine covering 1004.1 km2, the largest of the basins. The West and East Kiskatinaw drain 

into the Mainstem (430.1 km2) along with the smaller Halfmoon-Oetata and Brassy basins  
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Figure 2.3. Map depicting the major and sub-basins of the Kiskatinaw River Basin delineated 
at the Arras weir where the City of Dawson Creek withdraws water for distribution and 
treatment.  
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(Figure 2.3). Based on the annual hydrograph the lowest flows occur from September–

March, likely consisting primarily of groundwater discharge. This is followed by a swift 

increase in streamflow in response to spring snowmelt lasting into mid-May when sporadic 

summer rains augment flows well into July. By mid to late August a period of low flows 

persists into winter until the next spring snowmelt (Figure 2.4). Fluctuations from year to 

year are largely a result of synoptic-scale climate variations. Highest flows are typically 

associated with spring snowmelt; however, intense summer rainstorms can cause high peak 

flows comparable to those generated by the onset of snowmelt. An example of such an event 

is 15 June 2016, when a low pressure system stalled in the region and upslope flow along the 

northern Rockies caused extensive flooding in the Peace River region including Dawson 

Creek (Figure 2.5). There is a strong link between the onset of snowmelt indicated by the 

rapid decline in snow covered area within the KRB and a seasonal peak in discharge 

occurring near 8 May, emphasizing the importance of snowmelt on both timing and volume 

of spring and summer discharge in the KR (Figure 2.4).  

 The long-term annual discharge for WSC Farmington averages 10.7 m3·s-1 for the 

period 1966–2016. Using this value, the deviations of annual means from the long term 

mean-annual discharge are plotted identifying relatively wet and dry years in the KRB 

(Figure 2.6). The wettest year on record is 1997, and the driest year on record is 1992 (Figure 

2.6). Although seasonal low flows typically occur during the winter months, the lowest flows 

on record occurred in response to drought conditions during August of 1992 (Dobson 

Engineering Ltd. & Urban Systems, 2003). There is evidence in historical streamflow records 

that there may be a trend to higher peak flows during the late summer months (Forest 

Practices Board, 2011). This could result in the KR experiencing bi-modal seasonal peaks,  
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Figure 2.4. Minimum (Min Q), mean (Mean Q) and maximum (Max Q) discharge at Water 
Survey Canada (WSC) 07FD001 Farmington stream gauge, 1966–2016. The black dotted 
line is the mean snow covered fraction of the Kiskatinaw River Basin (KRB) derived from 
satellite imagery over 2002-2015. A significant increase in streamflow during spring at 
Farmington corresponds with onset of snowmelt in the KRB.  
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Figure 2.5. Hydrograph for Water Survey Canada hydrometric gauge at Farmington in 2016. 
During this year a peak discharge in response to snowmelt is seen occurring March–May; 
however, a peak of greater magnitude is also observed in response to an intense cyclone that 
brought copious amounts of rain to the Peace River Region, resulting in severe flooding over 
10–16 June. 
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Figure 2.6. Analysis of wet (above zero) and dry (below zero) years based on mean Water 
Survey Canada Farmington discharge, 1965–2016. Mean discharge for the period is 10.7 m3 

·s-1.  
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one in the spring and one in the late summer. This would likely result in higher suspended 

sediment loads during the summer (e.g., Figure 2.5). 

2.4 Water Consumption  

 There are currently 15 licenses granted by the BC Ministry of Environment under Part 

2 of the Water Act that allow a maximum abstraction of water from the KR totaling 

24,200,000 m3 annually (Figure 2.7) (Government of British Columbia, 2017). This does not 

include non-stream abstractions. Water withdrawals from the KR tend to be seasonal, 

occurring mostly during the peak flow or transition period (Forest Practices Board, 2011). 

Outside of the records kept by the Water and Environmental Department of the CDC 

regarding abstracted volumes at the Arras pump house there is little available information 

about the actual amount of water abstracted from the KR. Water use by the CDC has steadily 

increased since 1960 when abstractions were 0.034 m3·s-1. In 2007, usage increased to 0.077 

m3·s-1. Maximum usage occurs during June with an 18% higher than average volume than for 

the remainder of the year (Forest Practices Board, 2011). As mentioned in Section 1.4, little 

is known about the actual amounts of the total annual allocated water abstracted from the 

KRB.  
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Figure 2.7. Amount of currently licensed water allocations from the Kiskatinaw River by 
purpose represented as the percent of the total annual allocated volume (24,200,000 m3) as of 
15 April 2018. Four categories dominate water usage, the remaining four make up less than 
0.5% of the total volume. Data were obtained from the online Government of British 
Columbia Water License Query tool (Government of British Columbia, 2018). 
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Chapter 3: Data Sources and Assimilation  

 This chapter describes the data sources that were assimilated for the purpose of 

predicting spring discharge in the KR and explains why they were considered for model 

input. A brief synopsis of synoptic-scale weather patterns in BC and their links to regional 

climate anomalies is provided. The second section details specific data sources and where 

they were obtained, including basic statistics performed and quality assurance/quality control 

(QA/QC) measures taken.  

3.1 Synoptic Weather Patterns and Surface Climate Variability in British Columbia  

 Typical data inputs utilized for the purpose of water supply forecasts in snowmelt-

dominated watersheds include SWE, precipitation, and antecedent streamflow. Of the inputs 

affecting watershed runoff, melted snow and rain are most directly related to seasonal 

streamflow (USDA, 1990). Variability of these inputs has been linked to variation in synoptic 

weather processes (Moore & McKendry, 1996). Many studies have identified correlation 

between major Pacific climate indices and surface climate in BC (e.g., Moore & McKendry, 

1996; Shabbar & Khandekar, 1996; Shabbar, Bonsal, & Khandekar, 1997). Furthermore, 

associations between the frequency of certain synoptic circulation types and surface climate 

anomalies over BC have been identified in relation to major Pacific climate indices (Stahl, 

Moore, & McKendry, 2006). Snow-covered fraction (SCF) at the basin scale has also been 

shown to be a critical predictor of spring runoff response (Tong, Déry, & Jackson, 2009).  

3.2 Data Sources 

 To determine the ability of surface-weather observations to capture the variability in 

winter climate driving snow accumulation and precipitation in the KRB, several data sources 

were assimilated. These sources included active weather station data within 1200 km 

(features of ~1000 km are said to be of synoptic scale, or roughly the size of a mid-latitude 



25 
 

cyclone) of the geometric centroid of the KRB, manual observations of SWE on 1 March and 

1 April at established snow courses, several indices capturing ocean-atmosphere-streamflow 

teleconnections and the fraction of basin area covered in snow (SCF) for the KRB defined at 

WSC Farmington obtained from satellite imagery (Figure 3.1). There were 78 climate 

stations and 68 snow survey sites obtained within 1200 km of the KRB. Discharge data were 

retrieved from Environment and Climate Change Canada’s (ECCC) WSC 07FD001 

Farmington stream gauge because of the long period of record, and the reliability of its 

measurements (Figure 2.1). The specific datasets and their providing agencies are detailed in 

Table 3.1. 

 Environment and Climate Change Canada historical climate data. The ECCC 

maintains a network of manual and automated weather stations throughout Canada. The 

climate variables recorded at each station vary, but typically include air temperature, 

atmospheric pressure, precipitation, solar radiation, wind speed, and wind direction. Past data 

from the ECCC stations were obtained from the ECCC Historical Climate Data webpage 

(Environment and Climate Change Canada, 2017a). To identify the optimal set of climate 

stations to include, the same physiographic regions identified in Moore & McKendry (1996) 

were utilized. Only active climate stations with a period of record longer than ten years were 

retained. For each region the active stations were sorted by elevation, obtaining suitable low, 

medium and high stations. The period of record of the stations was also taken into account, 

giving preference to stations with longer records. A daily time step was implemented for 

analysis. For each station the entire period of record was downloaded back to 1965 if data 

were available. Temperature was averaged and precipitation was totaled for the period 15 

November–25 March, following Moore & McKendry (1996). Additionally, snow depth at 

each climate station was averaged for the period 24–25 March, capturing snow  
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Figure 3.1. Map displaying the location of active automatic weather stations from both 
Environment and Climate Change Canada and the BC Ministry of Transportation and 
Infrastructure. Also included are the locations of manual surveys of snow water equivalent 
obtained from the BC Ministry of Forests, Lands, Natural Resource Operations, and Rural 
Development. The black circle denotes the 1200-km synoptic radius encompassing the 
Kiskatinaw River Basin. 
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Table 3.1: Summary of datasets utilized for predicting spring runoff in the Kiskatinaw River 
along with host organization and observation details. 
Organization  Dataset Observation Type 
Environment and Climate 
Change Canada, 2017a 

Past weather and climate Surface temperature, 
precipitation, and  snow 
depth (daily) 

Environment and Climate 
Change Canada, 2017b 

Water Survey Canada Historical discharge (daily) 

BC Ministry of 
Transportation and 
Infrastructure, 2017 

Avalanche and weather Surface temperature, 
precipitation, pressure and 
snow depth (daily) 

Ministry of Forests, Lands, 
Natural Resource 
Operations, and Rural 
Development, 2017 

Manual snow survey 
observations 

Manually surveyed snow 
water equivalent 

National Snow and Ice Data 
Center, 2017 

MOD10A2 Remotely sensed eight day 
snow cover 

National Oceanic and 
Atmospheric 
Administration, 2017a 

NCEI Pacific Decadal 
Oscillation Index 

Based on NOAA’s extended 
reconstruction of SSTs 
(ERSST version 4) 

National Oceanic and 
Atmospheric 
Administration, 2017b 

Oceanic Niño Index (ONI) Three-month running mean 
of ERSST.v4 SST 
anomalies in the Niño 3.4 
region (5°N–5°S, 120°W–
170° W) 

National Oceanic and 
Atmospheric 
Administration, 2017c 

Southern Oscillation Index 
(SOI) 

Standardized index based on 
the observed differences in 
sea level pressure between 
Tahiti and Darwin, Australia 

National Center for 
Atmospheric Research, 2016 

North Pacific (NP) Index by 
Trenberth and Hurrell 
(1994) 

Area-weighted mean sea 
level pressure over the 
region (30°N–65°N and 
160°W–140°W) 
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accumulation near the beginning of ablation, much like peak SWE. For each hydrologic year 

(HY) associated with the start of the snow accumulation period starting on 1 September, 

average temperature, atmospheric pressure, and total precipitation were calculated only if 

95% of total possible observations were present over the period 15 November-25 March to 

avoid introducing biased observations.  

 BC Ministry of Transportation and Infrastructure: Avalanche and Weather 

climate data. The BC Ministry of Transportation and Infrastructure (MOTI) weather station 

network is intended primarily for winter use and is maintained from October–May. Some 

stations remain operational over the summer, but many are decommissioned due to the risk of 

lightning strikes (BC Ministry of Transportation and Infrastructure, 2017). Data are recorded 

hourly and include temperature, atmospheric pressure, humidity, precipitation, snow depth, 

wind speed, and wind direction. All active stations within BC were considered for model 

input (Figure 2.1). Similar to ECCC climate data, MOTI stations were selected based on their 

elevation and period of record for each physiographic region within BC. Atmospheric 

pressure and temperature were averaged and precipitation totaled annually over the period 15 

November–25 March for each station. Additionally, snow depth at each location was 

averaged for the period 24–25 March. For each HY, average temperature, atmospheric 

pressure, and total precipitation were calculated only if 95% of total possible observations 

were present over the period 15 November-25 March to avoid introducing biased 

observations.  

 Manual snow survey observations. One of the services provided by the BC Ministry 

of Forests, Lands, Natural Resource Operations, and Rural Development (FLNRORD) is 

gathering data about snowpack conditions through manual snow surveys. Snow-survey 

measurements have been conducted by FLNRORD since 1935 in BC. Because quantifying 
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the entire snowpack over the extent of a watershed is an especially difficult task, snow 

surveys carried out in the same location from one season to the next serve to provide a good 

index of relative snowpack conditions. This information is valuable in water supply and flood 

forecasting (Ministry of Forests, Lands, Natural Resource Operations, and Rural 

Development, 2017). 

 In this study, active snow surveys within BC were obtained online from the Ministry of 

Environment Manual Snow Survey Observation Data Archive (Ministry of Environment, 

2017). Average SWE occurring on 1 March and 1 April were obtained for each year only if 

there were no survey issues indicated by the survey flag code. The 1 March and 1 April snow 

surveys were used in this study because these dates generally coincide with peak SWE 

depending on the region. Survey locations were selected based on physiographic regions and 

elevation in the same manner as the weather station data.  

 Satellite-derived snow covered fraction. The Earth Observing System (EOS) is one 

of the main contributions to the NASA initiated Mission to Planet Earth now known as 

NASA’s Earth-Sun Systems Missions. As part of this program two key satellites were 

launched into polar orbits: Terra in 1999 and Aqua in 2002. The focus of these missions was 

to provide scientific understanding of the earth-sun system and its response to human induced 

changes. Of the five sensors included on the Terra platform, one consists of the Moderate 

Resolution Imaging Spectro-Radiometer (MODIS). The MODIS sensor provides a two-day 

repeat global coverage at spatial resolutions of 250, 500 or 1000 m, depending on the 

wavelength and has 36 spectral bands with 12-bit radiometric sensitivity. The total field of 

view of MODIS is ±55°, resulting in a swath width of 2330 km. These properties make it an 

ideal sensor for various atmospheric, oceanic, and land surface tasks (Lillesand, Kiefer, & 
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Chipman, 2007). One of these products is the snow cover eight day L3 Global 500 m Grid 

(MOD10A1) derived from Terra. The spectral bands on MODIS allow it to determine snow 

cover on the landscape via the Normalized Difference Snow Index (NDSI). Snow on land is 

typically highly reflective in the visible bands and poorly reflective in the shortwave infrared 

bands, with the magnitude of this difference being exploited by the NDSI. Maximum snow 

cover extent is determined by reading eight days of 500 m resolution MOD10A1 tiles and if 

snow is observed in a cell on any day it is classified as snow covered for the eight day period. 

If no snow is present it is classified by the clear view observation that occurred most often 

(Hall & Riggs, 2016). 

 For this study, all MOD10A1 tiles back to 1999 were obtained from the National Snow 

and Ice Data Center. The MOD10A1 tiles were gridded in the MODIS Sinusoidal Tile Grid, 

comprised of 460 non-fill tiles each covering 10° × 10° at the equator. The H11V03 grid cell 

is used for this study as the KRB is contained within it. Cloud coverage adversely affects the 

overall accuracy of MODIS snow products to detect snow because visible and mid-infrared 

radiation cannot penetrate. A spatial-filter method developed in Tong, Déry, & Jackson 

(2009) reduces the error introduced by cloud cover through a reclassification process using a 

moving window that determines cell identity based on the eight cells surrounding it, 

improving the overall accuracy of snow cover detection. This method was applied to all of 

the H11V03 tiles. Using a 10 m × 10 m resolution digital elevation map, the extent of the 

KRB at Farmington was determined (Figure 2.1). The raster was resampled to the resolution 

of the H11V03 tiles. The snow covered fraction (SCF) of the KRB for each tile was obtained 

by dividing the number of pixels classified as snow by the total number of pixels within the 
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KRB. The date that SCF reached 50% during melt was correlated with streamflow timing and 

volume during runoff in the KRB.  

 Ocean-Atmosphere teleconnections. Climate variability tends to manifest itself in 

certain patterns that allow improved hydrologic forecasting at seasonal lead times (Garbrecht 

& Piechota, 2006). Improving understanding of the interactions between atmospheric 

circulation and variation in the hydrology and climate at the surface permits a more complete 

interpretation of that variability in the context of climate change (Trenberth, 1990). The 

influence of the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), 

and variation in the intensity of the Pacific North American (PNA) circulation pattern have 

been linked to variations in temperature, precipitation, snowpack storage and seasonal 

streamflow in western Canada (e.g., Gobena, Weber, & Fleming, 2013; Moore & McKendry, 

1996; Woo & Thorne, 2003). Because of the influence of these teleconnections on surface 

hydrology in BC, correlations between the timing and volume of spring runoff in the KR and 

major Pacific teleconnections were explored. 

 El Niño/Southern Oscillation. The El Niño-Southern Oscillation (ENSO) is the 

phenomenon of anomalous warming of sea-surface temperatures (SSTs) over the eastern 

equatorial Pacific Ocean with corresponding changes in the atmospheric sea-level pressure in 

the tropical Pacific (Garbrecht & Piechota, 2006). The warm phase of ENSO is referred to as 

El Niño, while the cool phase is known as La Niña. Typically ENSO has a periodicity of 2–7 

years. Normally equatorial trade winds blow towards the west and push along warm surface 

water towards the western Pacific, resulting in sea-surface levels and temperatures that are 

higher in Indonesia than off the coast of Ecuador. The SSTs are warmer in Indonesia because 

of upwelling of cold water off the coast of South America. Under these conditions the warm 

water in the west results in rising air and concurrent precipitation, leaving the eastern Pacific 
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relatively dry. Under El Niño conditions, the trade winds weaken causing the thermocline to 

fall in the eastern Pacific. The reduction in the thermocline in the eastern Pacific initiates 

eastward flow of warm surface waters, which in turn results in changes in the global 

atmospheric circulation. Conversely, under La Niña conditions the thermocline falls in the 

western Pacific and inclines in the eastern Pacific, resulting in warmer SSTs in the western 

Pacific, and overall drier conditions. Western (including BC), Northwestern and Central 

Canada experience anomalously mild winters and springs during El Niño. El Niño has been 

shown to affect streamflow volumes and patterns in streamflow timing because of its 

influence on both winter temperature and precipitation fields over BC (Fleming & Whitfield, 

2010).  

 To capture the influence of ENSO on spring runoff characteristics in the KR, the 

Oceanic Niño Index (ONI) was obtained online and used as a potential predictor of spring 

runoff in the KR. This index is based on a three-month running mean of Extended 

Reconstructed Sea Surface Temperature (ERSST.v4) anomalies in the Niño 3.4  region 

(5°N–5°S, 120°–170°W) (Huang et al., 2014). In addition, the Southern Oscillation Index 

(SOI), a standardized index based on the observed differences in sea-level pressure between 

Tahiti and Darwin, Australia, was included as a possible predictor of spring runoff in the KR. 

This index captures the large-scale fluctuations in air pressure occurring between the western 

and eastern Pacific during ENSO episodes. The SOI index is highly correlated with changes 

in ocean temperatures across the eastern tropical Pacific (National Oceanic and Atmospheric 

Administration, 2017c).  

 Pacific Decadal Oscillation. The Pacific Decadal Oscillation (PDO) is another Pacific 

atmospheric pattern that has been associated with variations in the Pacific Basin and North 

American climate (Zhang, Wallace, & Battisti, 1997). The PDO has a warm and a cool phase 
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similar to ENSO, and is defined by SSTs in the northeast and subtropical Pacific Ocean. 

When SSTs are anomalously cool in the central North Pacific and warm along the eastern 

Pacific coast, and sea-level pressures are correspondingly below average over the North 

Pacific, the PDO is in its warm phase. Conversely, when SSTs are warm in the central North 

Pacific and cool along the North American coast or above average sea-level pressures exist 

over the North Pacific, the PDO is in its cool phase (Trenberth & Hurrell, 1994). There is 

evidence of only two full cycles of the PDO occurring over the past century. The PDO has 

expressed its cool phase for 1890–1924, and again from 1947–1976. The PDO has reflected 

its warm phase for periods 1925–1946, and again from 1977 to around 1995 (Minobe, 1997). 

Since 1995, the PDO has primarily reflected its cool phase. The influence of the PDO on the 

spring hydrologic response in the KR is explored through use of NOAA’s PDO index that is 

based on the ERSST.v4 dataset integrated with the Mantua Index (National Oceanic and 

Atmospheric Administration, 2017a). The PDO index values were averaged seasonally 

(three-month periods) for the year leading up to the runoff period.  

 Pacific North American pattern. The PNA pattern is a predominant mode of low 

frequency climate variability in the Northern Hemisphere extratropics acting primarily during 

winter (Wallace & Gutzler, 1981). The pattern materializes as anomalies in the 500 hPa 

geopotential height fields. Regionally, 500 hPa field anomalies south of the Aleutian Islands 

and over the southeastern United States correspond to anomalies of similar sign over the 

Aleutian climatological low. Anomalies of opposite sign occur near Hawaii and over central 

Canada during fall and winter (National Oceanic and Atmospheric Administration, 2017d). 

The pattern has four centres of action: near Hawaii (20°N, 160°W), over the North Pacific 

Ocean (45°N, 165°W), over Alberta (55°N, 115°W) and over the Gulf Coast of the United 

States (30°N, 85°W). The PNA index is defined as a linear combination of the normalized 
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height anomalies at the four pattern centres (Wallace & Gutzler, 1981). An alternative index 

to the PNA is the North Pacific (NP) index developed by Trenberth & Hurrell (1994) 

computed as the area-weighted mean sea-level pressure over the region 30°N–65°N and 

160°W–140°W. This index is generally more robust than the PNA and better captures the 

intensity of the Aleutian low during winter (Trenberth & Hurrell, 1994). In this study, the NP 

anomaly index (National Center for Atmospheric Research, 2016) based on the 1008.9 hPa 

sea-level pressure mean over 1925–1989 averaged from November through March was 

correlated with runoff metrics in the KR. Seasonal averages of the NP index were also 

correlated with runoff metrics in the KR.  

 Discharge data. There are two sources of discharge data available on the KR. Because 

the CDC withdraws water at the Arras weir, discharge at Arras would be the optimal choice 

for a source of historical discharge data in the KR. However, the logging system used to 

record stage at the Arras weir has been plagued by a communication error resulting in 

erroneous spikes in the recorded stage. In addition, the period of record with available 

discharge data at Arras is relatively brief (January 2013–2018) and is insufficient for multiple 

regression analysis. As an alternative, the WSC Farmington (07FD001) stream gauge has 

data beginning in 1944, and is reliable from 1965 to present day. Because it is downstream of 

Arras, it adds 800 km2 to the total basin area (Figure 2.1). Using a simple non-linear 

regression between concurrent discharge at Arras and Farmington, however, should provide 

adequate means of estimating flows at Arras from simultaneous daily average flows at 

Farmington. Therefore, discharge data at Farmington were used to calculate incremented 

annual cumulative discharge in the KR, as well as total runoff volume during the runoff 

period.  
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Chapter 4: Methods  

 This chapter describes the derivation of streamflow metrics regarding volume and 

runoff timing from the Farmington discharge data. Methods for determining spatial 

correlations between the streamflow metrics and aggregated climate inputs are discussed. 

The regression modelling approach for predicting spring runoff in the KR is explained. 

Finally, the use of logistic regression for predicting turbidity exceedances in the KR is 

outlined.  

4.1 Timing of Cumulative Discharge and Total Runoff Volume  

 Discharge data at Farmington were used to calculate cumulative discharge for each 

hydrologic year (HY) during the spring runoff period, defined here as 25 March–1 July, since 

1965. The hydrologic day of year (HDOY), or days since 1 September, that cumulative 

discharge reached 5% intervals (RX%, where X refers to the interval) of total runoff volume 

(TRV) for the spring runoff period (25 March–1 July) was also determined (Figure 4.1). The 

HDOY that the incremented RX% occur, and the TRV in the KR are what this study aimed 

to predict from the aggregated winter climate data, and global circulation indices described in 

Chapter 3.  

4.2 Spatial Correlations 

  Correlation analysis was used to determine the spatial relationships among the 

surface climate variables described in Chapter 3 with the incremented RX% and TRV in the 

KR. To quantify the degree of association, the Spearman rank correlation was used because it 

does not require assumptions about the distribution of the input climate data (Woo & Thorne, 

2003). For average winter temperature, atmospheric pressure, total 15 November-25 March 

winter precipitation and 1 April SWE at each station or survey location, correlations with the 

R25%, R50%, R75% and TRV were calculated. The 1 March SWE and snow depth were not  
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Figure 4.1: Diagram depicting the model structure implemented for making predictions of 
spring runoff in the Kiskatinaw River. Climate observations obtained at weather stations and 
manual snow survey locations were aggregated over the winter accumulation period (15 
November-25 March). Cumulative discharge at the Farmington stream gauge (maroon curve) 
was determined for each runoff period (25 March-1 July) from the raw discharge data 
(dashed line). The day of year that discharge reached specified percentages of total runoff 
volume was determined in 5% intervals. For instance, the R50% above (centre vertical red 
line) would be the day of year that 50% of the total runoff volume was reached for that year 
(2003 in this case). The R25%-R75% depicts the interquartile range. The aggregated winter 
climate observations were input into a regression analysis where candidate models were 
identified for each RX% and the total runoff volume. The selected models were then used to 
predict the cumulative runoff for that runoff period in discrete 5% intervals.  
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included in the correlation analysis, but were still included as potential model input. The 

correlations were then plotted spatially and contoured from an inverse distance weighted 

interpolation. The contour maps of the Spearman rank correlations between the surface 

observations and streamflow were then used for identifying any spatial patterns present.  

4.3 Predicting Runoff Timing and Volume  

 Multiple regression analysis was used to make predictions of the RX% and TRV in 

the KR from the input climate variables described in Chapter 3. Because this study aimed 

only to make predictions of streamflow and not necessarily attribute causation, no initial 

hypothesis specifying relationships between timing and volume of discharge in the KR to the 

various predictors was proposed. To this end, the objective of the regressions was predictive 

in nature. For a dataset with one response variable and n predictors there are (2n-1) possible 

regression models. Given these many predictors, there was a large number of possible 

regressions, even with modern computing capabilities. These ranged from models with just 

one predictor, to the fully saturated model (n = 396). This raised the dilemma as how to 

choose the best model. To avoid choosing models biased by the data, a resampling technique 

(described below) was applied to determine unbiased coefficients, and improve out of sample 

predictive reliability.  

 Resampling. To reduce predictive error and quantify bias in the regression 

coefficient (β) estimates, a jackknife technique was applied when estimating the β 

coefficients. This technique provided a first-order unbiased estimator for the β coefficients in 

the multiple regressions (Tukey, 1958). To illustrate, let 𝛽̂ be the value of a β when estimated 

from the entire dataset, and let 𝛽̂(𝑗) be the estimate of β with the jth observation omitted, 
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where j=1,…,N. The pseudo-value 𝛽̂𝑗∗ for the jtth observation is determined by Equation 

(4.1):  

𝜷̂𝒋∗ = 𝑵𝜷 − (𝑵 − 𝟏)𝜷̂(𝒋). (4.1) 

 The mean of the pseudo-values is the alternative, first-order unbiased estimator of the 

β coefficient, and the standard error around the mean of the pseudo-values is an estimator of 

the standard error of 𝛽̂.The bias of an estimator is found as the difference between the 

expected value of the estimator, 𝛽̂, and the unbiased jackknife estimator 𝛽̂𝑗. In this study, the 

decision to determine bias of the model coefficients through resampling was an effort to 

improve out of sample predictive performance, and to confirm that the estimated coefficients 

were not overly biased by the modelling approach, or by measurement error of the climate 

variables. The jackknifed standard error was used in model selection to establish confidence 

intervals for each coefficient, rejecting models with insignificant (p > 0.05) coefficients. The 

final adj-r2 was calculated from the unbiased model coefficients and used in model selection.   

 Model Selection. In multiple regression analysis the objective is to choose a model 

that has sufficient variables to properly account for the variation in the data and minimize the 

residual sum of the squares, but is not simply fit to random noise in the data (Gotelli & 

Ellison, 2013). In this study the performance of a model was measured using the adj.-r2 value 

as defined in Equation (4.2): 

𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅 𝒓𝟐 = 𝟏 − (
𝒏−𝟏

𝒏−𝒌
) (𝟏 − 𝒓𝟐), (4.2) 

where n is the sample size, k is the number of parameters in the model, and r2 is the 

coefficient of determination (Gotelli & Ellison, 2013). Information criterion statistics balance 

reduced performance (sum of the squares) with the addition of parameters. The adj-r2 is 

essentially the coefficient of determination penalized for additional predictors. There were a 
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number of model selection strategies including forward selection, backward elimination, and 

stepwise methods. In this study, all permutations of one, two or three input variables were 

iterated using Java and the Apache Commons (2017) Math Version 4.0 statistical package in 

Eclipse Neon. For each permutation, the adj.-r2 was determined from the resampled β 

estimates. Only models with an adj.-r2 ≥ 0.85 (based on jackknifed coefficients), and n ≥ 15 

were retained. For each RX% and the TRV models with the highest adj.-r2were chosen if 

they did not violate the assumption of linear regression. These assumptions include linearity, 

homogeneity of variance, absence of outliers, and independence. Linear relationships were 

confirmed through plots of residuals for each model. To test for heteroscedasticity, the 

Breusch-Pagan / Cook-Weisberg test was applied to the final candidate models (Breusch & 

Pagan, 1979). To test for outliers, studentized residuals ≥ 2 were flagged for each model. In 

addition, possibly influential observations were detected using the DFFIT command (Belsley, 

Kuh, & Roy, 1980). DFFIT values that exceeded the threshold 2√
𝑘

𝑛
 were assessed for 

validity. Independence of variables was determined via the variance inflation factor (VIF). 

The VIF provides an index to determine how significantly the variance of an estimated 

regression coefficient increases due to collinearity (Belsley, Kuh, & Roy, 1980). Models with 

any VIF score > 10 were discarded.   

 Forecast Validation. Once a model was selected for each RX% and the TRV, a 

prediction of the cumulative discharge curve for HY 2002 was carried out to demonstrate the 

forecasting procedure. To account for uncertainty in the predicted RX% and the TRV, the 

residuals for each model were simultaneously predicted and stored. The minimum, first 

quartile, third quartile and maximum value for the set of residuals was determined for each 

model capturing the uncertainty inherent around each prediction given past observations. To 
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determine the accuracy of the discharge predictions, the Nash-Sutcliffe Efficiency (NSE) 

coefficient was calculated from the resulting forecast to provide a metric of the model’s 

ability to accurately predict discharge (World Meteorological Organization, 1986).  

4.4 Predicting Turbidity Exceedance 

 The CDC is not only concerned with the timing and volume of runoff, but the 

associated turbidity levels. Although there are several methods for predicting sediment 

transport in streams, this study utilized a logistic regression model for determining the 

probability of exceeding 500 NTU in the KR (the limit at which pumps at the Arras weir 

must be shut down to avoid damage). Logistic regression cannot be fit using least squares 

methods, but is instead fit using maximum log likelihood estimation. The log likelihood (LL) 

was calculated with iteration using maximum likelihood estimation (MLE). The LL serves as 

the primary test statistic for logistic regression (Gotelli & Ellison, 2013). To determine the 

accuracy of the logistic model, the area under the receiver operating characteristic (ROC) 

curve was determined. The ROC is an estimate of predictive accuracy of logistic models that 

is not biased by threshold probabilities and is the preferred measure when presence and true 

absence data are available (Fielding & Bell, 1997). The ROC score is calculated by plotting 

the occasions when turbidity exceedance is correctly predicted divided by the total number of 

exceedances (sensitivity), against the fraction of incorrect cases where exceedance is 

predicted (1-specicifity) across thresholds (Psyllakis, 2006). ROC values of 0.5 indicate that 

the explanatory variables do not improve discrimination beyond random assignment and a 

score of 1.0 indicates perfect discrimination (Manel, Williams, & Ormerod, 2001). 
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Chapter 5: Results 

 In this Chapter, the HDOY for which incremented RX% are reached during the runoff 

period and the TRV are summarized. A significant relationship between snow covered area 

and spring runoff response exists in the KRB during the early stage of the runoff period. The 

correlations between the global atmospheric circulation indices and incremented timing RX% 

and TRV in the KR indicate that streamflow early on is significantly correlated with both the 

ONI and SOI index. The PDO also demonstrated significant correlations with early runoff 

response in the KR. The resulting correlation fields between the aggregate winter climate 

inputs and the R25%, R50%, R75% and TRV demonstrated that regional surface climate is 

significantly correlated with runoff response in the KR. Several multiple regression models 

were identified that provide good predictive skill of runoff volume and timing, with inputs 

shown to be significantly correlated with runoff timing. An example prediction is made 

validating the forecast procedure. The results of the logistic regression analysis predicting 

probability of exceeding 500 NTU at Arras as a function of discharge reveal that turbidity 

exceedance can be predicted with moderate sensitivity.  

5.1 Average Timing and Volume of Cumulative Streamflow 

 Descriptive statistics summarizing the minimum, mean, interquartile range (IQR) and 

maximum HDOY for each incremented RX% and the TRV are found in Table 5.1. Based on 

the IQR, the greatest variability in streamflow timing occurs over the R60%, with less 

variability during early and late runoff. The distribution of annual RX% and TRV over time 

since HY 1965 is seen in Figure 5.1. 

5.2 Streamflow Timing and Snow Ablation 

 A significant correlation between the date that SCF reaches 50% (SCF50) and the 

R25% was identified in the KRB (rs = 0.73, n = 16, p < 0.002).   
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Figure 5.1. Distribution of annual spring runoff timing and volume (25 March–1 July) in the 
Kiskatinaw River since hydrologic year 1965 (calendar year 1966).The left axis identifies the 
total runoff volume of water in cubic meters, whereas the right axis shows the timing of 
cumulative runoff as a Julian day of year for the R5%, R25%, R50%, R75% and R95% 
determined over the runoff period 25 March-1 July.  
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Table 5.1: Statistics describing the observed timing of cumulative runoff (RX%) and total 
runoff volume (TRV) in the Kiskatinaw River, BC, defined at the Water Survey of Canada 
Farmington stream gauge, 1965–2016. Timing is the hydrologic day of year (HDOY, days 
since 1 September) that a given RX% is reached, and TRV is in cubic meters.  
Statistic R5% R10% R15% R20% R25% R30% R35% R40% 
Min 208.6 210.8 212.7 214.6 217.0 219.8 222.5 225.1 
Mean 229.8 234.0 237.3 240.5 243.4 246.2 249.1 252.3 
IQR 13.4 13.6 14.5 14.8 14.8 14.4 14.0 13.2 
Max 244.3 247.6 252.0 258.0 267.2 270.5 274.6 282.1 
         Statistic R45% R50% R55% R60% R65% R70% R75% R80% 
Min 228.5 233.1 236.9 239.3 242.1 244.9 247.5 251.6 
Mean 255.4 258.3 261.6 264.9 268.5 272.2 275.9 279.7 
IQR 13.2 14.0 15.3 18.9 20.6 18.2 19.6 17.8 
Max 287.1 288.4 289.1 289.7 290.3 293.5 296.0 299.9 
         Statistic R85% R90% R95% TRV    Min 251.6 257.7 266.7 4.91 × 107      Mean 279.7 283.3 288.0 2.16 × 108 

    IQR 17.8 14.8 13.0 1.86 × 108     Max 299.9 300.9 302.1 6.26 × 108 
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The mean SCF50 was HDOY 227, with an interquartile range of 17 days. The correlation 

with early timing confirms the importance of input from snowmelt on streamflow response in 

the KR, which is well captured by the reduction in snow covered fraction over the KRB.  

5.3 Correlation with Global Circulation Indices  

 Correlations between the incremented RX% and TRV in the KR with the various 

global circulation indices described in Chapter 3 are summarized in Table A.1. Generally, all 

global circulation indices are more strongly correlated with early streamflow timing (R25%), 

than later during the runoff period (R75%). The SOI and ONI indices are the most highly 

correlated with streamflow timing in the KR. The SOI is positively correlated with the timing 

of runoff and the ONI is negatively correlated with the timing of runoff in the KR.  

 The PDO is generally negatively correlated with the timing of runoff in the KR, 

especially PDO-SON early on in the runoff season. It becomes slightly positively correlated 

with the timing of runoff later in the season (R95%). 

 The NP index is correlated with the SOI and ONI indices, and generally positively 

correlated with the timing of streamflow in the KR, but to a lesser extent than the ENSO 

indices. There also exists a significant positive correlation between the NP over JJA and the 

TRV in the KR (rs = 0.29, n = 50, p < 0.04). The SOI over MAM is also correlated with TRV 

(rs = 0.24, n = 50, p < 0.1).  

5.4 Spatial Correlations 

 For the various climate observations, significant regional Spearman rank correlations 

with streamflow timing and volume exist. The various patterns identified are described in the 

following sections.  
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5.4.1 Timing of spring runoff. 

 Mean winter temperature. Temperature in the BC Central Interior and southernmost 

NE BC region displays strong negative correlations with the R25% (Figure B.1). Local 

temperature in the KR is negatively correlated with the R25%. At the MOTI Braden Rd. 

station within the KRB there is a strong negative correlation with temperature and the R25% 

(rs = -0.74, n = 13, p < 0.004). The widespread negative correlation with temperature and the 

R25% is the result of warmer temperatures leading to less snow accumulation and an earlier 

onset of snowmelt, resulting in earlier runoff. Average winter temperatures in the low 

elevation areas of the BC Northern Interior also display strong negative correlations with the 

R25%. Temperature remains negatively correlated with the R50%, with the most significant 

correlations again occurring in the BC Central Interior, but are generally weaker than 

correlations with R25% (Figure B.2). Temperature is only weakly correlated with streamflow 

timing mid to late in the runoff season (R75%). A region of slightly negative correlation 

exists in southern BC. The low lying regions of NW BC have slight positive correlations with 

the timing of the R75%. Interestingly, temperature becomes generally more highly correlated 

with timing at the end of the runoff period (R95%) (Figure B.4). A region of negatively 

correlated stations exists east of the Rockies in Alberta (AB), with stronger correlations in the 

south near the Kootenays. A region of general positive correlations remains in NW BC, but is 

enhanced relative to the R75%.  

 Total winter precipitation. The timing of early (R25%) streamflow in the KR is 

generally less correlated with observed cumulative winter precipitation than temperature 

(Figure B.5). Still, a trough of significant negative correlations is seen in SW BC, notably 

MOTI Red Bluffs (rs = -0.67, n = 18, p < 0.003) and MOTI Squilax (rs = -0.69, n = 18, p < 

0.002). The region of NW BC also has several stations with positive correlations. Later 
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during the runoff season (R50%), the same trough seen in the correlations with the R25% 

exists in the Thompson-Okanagan region but has expanded into the BC Southern/Central 

Interior and the South Coast region (Figure B.6). Cumulative winter precipitation is only 

weakly correlated with the R75%, and the spatial distribution is convoluted. The stations 

within NW and SW BC are generally negatively correlated with the R75%. While a 

significant positive correlation exists in the Kootenay-Columbia region at ECCC 

Kickinghorse (rs = 0.79, n = 7, p < 0.04), it is based on few observations. Stations in the BC 

Central Interior exhibit modest positive correlations with the R75% (Figure B.7).  

 1 April snow water equivalent. Generally, SWE on 1 April is positively correlated 

with the timing of early runoff in the KR (Figure B.8). In the BC Central Interior near 

Williams Lake and Prince George, there are a few sites with significant positive correlations 

with the R25%, and to a lesser degree the R50% in the KR (Figure B.9). Notably, the snow 

survey site 1C33A (rs = 0.92, n = 9, p < 0.001). The BC Northeast, Central Interior and 

locations in the southern half of the Coast Mountains have significant negative correlations 

with the R50%; i.e., site 4A21 (rs = -0.40, n = 38, p < 0.02) in the NE and 1B06 in the 

Central Interior (rs = -0.46, n = 26, p < 0.02). Snow water equivalent on 1 April is primarily 

no longer positively correlated with runoff timing later during the runoff period (R75%). 

Regions of moderate negative correlation with the R75% exist over the southern half of the 

Coast Mountains (Figure B.10). Regions of moderate negative correlation also occur in the 

BC Central Interior, and NE BC, including the KRB.  

 Atmospheric surface pressure. Average surface pressure during the accumulation 

period at and near ECCC West Twin Creek, BC, is negatively correlated (rs = -0.59, n = 12, 

p < 0.05) with the R25% (Figure B.11). Atmospheric surface pressure at stations within NE 

BC is positively correlated with the R25% in the KR. This pattern remains correlated with 
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the R50%, but weakens slightly in both regions (Figure B.12). Stations within the SE corner 

of BC up into the Kootenay and southern Columbia Mountains are negatively correlated with 

the R75%. Generally, in NE BC, the correlation with streamflow timing in the KR becomes 

slightly negative, as with the R75% (Figure B.13).  

5.4.2 Total runoff volume.  

 Mean winter temperature. Average winter temperature over three prominent regions 

is correlated with TRV in the KR (Figure B.14). Winter temperatures east of the continental 

divide in the prairie regions of AB and Saskatchewan (SK) into the Northwest Territories 

(NT) are negatively correlated with runoff volume in the KR, notably, ECCC High Level (rs 

= -0.40, n = 43, p < 0.008), and ECCC Craigmyle (rs = -0.39, n = 41, p < 0.013). Generally, 

stations in the NE region of BC and SW region of the Yukon (YT) have no coherent 

correlation with TRV in the KR.  

 Total winter precipitation. Correlations between TRV and total winter precipitation 

are less spatially coherent than temperature (Figure B.15). Total precipitation is generally 

positively correlated with TRV. Stations near and local to the KR have significant positive 

correlations with TRV, notably the MOTI 73 Mile station (rs = 0.57, n = 13, p < 0.05), and 

ECCC Chetwynd (rs = 0.51, n = 31, p < 0.004). Stations within the Central Interior of BC 

have significant positive correlations with the TRV, the highest being at MOTI Lee’s Hill 

station (rs = 0.54, n = 18, p < 0.02). Stations in the Central Plains of AB reveal strong 

positive correlations with TRV, i.e., ECCC Entwistle (rs = 0.50, n = 20, p < 0.03), ECCC 

Cold Lake (rs = 0.47, n = 48, p < 0.001), and ECCC Craigmyle (rs = 0.49, n = 41, p < 

0.002). The correlations here indicate a response to the strong influence of El Niño on winter 

precipitation in this region (Figure C.2). 
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 Snow water equivalent. Generally, snow water equivalent on 1 April is positively 

correlated with TRV over BC (Figure B.16). Stations in the BC Central Interior have strong 

positive correlations with the TRV, with the highest occurring at site 1A23 (rs = 0.52, n = 23, 

p < 0.02). Stations occurring near the KRB also have strong positive correlations with the 

TRV, as more snow accumulation leads to greater runoff volumes in response to melt 

including site 4A25 (rs = 0.42, n = 40, p < 0.008). Stations in the BC Southern Interior and 

SW BC have moderately strong positive correlations with TRV, notably site 1C23 (rs = 0.40, 

n = 39, p < 0.02). Surveys in the Cariboo and Kootenay Mountains reveal positive 

correlations with TRV, but surveys are sparse. The 2C15 survey west of Calgary has the 

highest correlation with TRV (rs = 0.50, n = 44, p < 0.001) indicating that more surveys in 

this region should be included as both precipitation and temperature are highly influenced by 

El Niño in this region (Figure C.1 and C.2).  

 Atmospheric surface pressure. Atmospheric surface pressure is generally positively 

correlated with TRV (Figure B.17). There is a general gradient of weaker correlations in 

southern BC, and stronger correlations in the BC Central and Northern Interior. The positive 

correlations are likely the result of higher pressures during winter correlating with colder 

temperatures, and slightly more precipitation in the KRB. Mean pressure at Braden Rd. also 

has a significant positive correlation with the TRV (rs = 0.56, n = 13, p < 0.05), as with 

stations nearby. Stations in the Thompson-Okanagan region also display strong positive 

correlations with TRV.  

5.5 Runoff Timing  

  The winter climate inputs and global circulation indices were shown to provide good 

predictions of streamflow response in the KR. Prediction of early runoff response was 
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typically more accurate than prediction of later runoff response, and this was also indicated 

by the erosion of the contour fields of the Spearman rank correlations with the climate 

observations from the R25% to the R75%. Many of the climate inputs in the selected 

regression models were located in the regions shown to display coherent correlations with 

runoff timing based on visual interpretation of the contoured Spearman rank correlations. 

Multiple regression results for streamflow timing are presented for the three primary stages 

of runoff: early, mid and late season(i.e., R25%, R50% and R75%). The detailed regression 

models for each incremented RX% and TRV can be found in Appendix D. 

 Early runoff. The model selected for predicting the R25% in the KR included total 

cumulative winter precipitation (CPPT) at the MOTI Red Bluffs climate station, mean winter 

temperature (MT) at the MOTI Bella Coola station, and the SOI index over JJA (Table D.5). 

Some evidence of bias in the regression coefficients were identified (Table 5.2). The SOI 

index over JJA shows a slight upward bias, about 8% of the original coefficient. The 

combination of these three aggregated winter climate inputs provided good predictability of 

the R25% (adj-r2= 0.94, F(3,16) = 58.37, p < 0.001). No major violations regarding 

assumptions of linear regression were identified based on regression diagnostics described in 

Chapter 4. Hydrologic years 1997, 1998 and 2015 were identified as influential; however, 

1997 was the highest discharge on record for the KRB. Year 2015 has the largest 

interquartile range (IQR), and 1998 also has a substantial historical IQR (Figure 5.1). 

 Mid-season runoff. The optimal model identified for predicting the R50% in the KR 

included CPPT at the MOTI Red Bluffs climate station, MT at the ECCC Chetwynd station, 

and MT at the ECCC Smithers station (Table D.10). Little evidence of considerable (Percent 

𝛽̂ > 5) bias in the regression results was identified (Table 5.2). The combination of these 

three aggregated winter climate observations provided the most accurate predictions of  
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Table 5.2: Table showing slope coefficients (β̂) and the jackknifed unbiased estimates of the 
slope coefficients (β̂j) in estimating the hydrologic day of year that cumulative discharge 
reaches 25%, 50% and 75% of total runoff volume in the Kiskatinaw River. Bias is provided, 
and also shown as an absolute percentage of the biased coefficient. MT stands for mean 
temperature, CPPT stands for cumulative precipitation, and numbers below reference agency 
stations number. Agency MOTI is Ministry of Transportation and Infrastructure, EC is 
Environment and Climate Change Canada. 
R25% 𝜷̂ 𝜷̂𝒋 Bias Percent 𝜷̂ 
CPPT @ MOTI  
(24225) -0.1223 -0.1232 0.0009 0.7185 

MT @ MOTI 
(47121) -5.9987 -6.0578 0.0591 0.9848 

Avg. SOI-
Summer -5.0373 -4.6149 -0.4224 8.3854 

Const. 249.6216 249.4138 0.2078 0.0832 
 

 

 
R50% 𝜷̂ 𝜷̂𝒋. Bias Percent 𝜷̂ 
CPPT @ MOTI 
(24225) -0.1148 -0.1171 0.0023 1.9835 

MT @ EC 
(1181508) 5.5404 5.3789 0.1615 2.9155 

MT @ EC 
(1077500) -11.8854 -12.1634 0.2780 2.3387 

Const. 270.9989 269.3354 1.6635 0.6138 
 

 

 
R75% 𝜷̂ 𝜷̂𝒋. Bias Percent 𝜷̂ 
MSD @ MOTI 
(47091) 0.4422 0.4391 0.0031 0.7083 

1 April SWE @ 
(1E03A) -0.0399 -0.0444 0.0045 11.2905 

1 April SWE @ 
(4C05) -0.2217 -0.2214 -0.0003 0.1509 

Const. 313.6378 315.8872 -2.2494 0.7172 
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the R50% when input into a multiple linear regression framework (adj-r2 = 0.86, F(3,15) = 

44.66, p < 0.001). Cumulative precipitation at MOTI Red Bluffs showed up as input in many 

of the candidate regressions not selected.  No major violations regarding assumptions of 

linear regression were identified based on regression diagnostics described in Chapter 4. 

Hydrologic years 2007 and 2010 were identified as influential; both years had an abnormally 

tardy R50% (Figure 5.1). 

 Late runoff. The model identified for predicting the R75% in the KR includes snow 

depth averaged for 24–25 March (MSD) at the MOTI Lee’s Hill station, 1 April SWE at 

Trophy Mountain, and 1 April SWE at Fort Nelson Airport (Table D.15). Some evidence of 

bias in the regression results were identified (Table 5.2). Notably, 1 April SWE at Fort 

Nelson shows a moderate downward bias, about 11% of the original coefficient. The 

combination of these three inputs were able to predict the R75% well, but with less 

uncertainty then the timing of runoff early during the runoff period (adj-r2 = 0.82, F(3,15) = 

30.38, p < 0.001). No major violations regarding assumptions of linear regression were 

identified based on regression diagnostics described in Chapter 4. Hydrologic year 2010 was 

identified as an outlier and highly influential observation, as the R75% was quite late that 

year (Figure 5.1).  

5.6 Runoff Volume  

 Streamflow volume (ha m) in the KR is predicted by CPPT at ECCC Cold Lake 

Airport station, MT at ECCC Chetwynd Airport station, MT at ECCC Pleasant Camp station, 

and CPPT at ECCC Mayo Rd. (Table D.20). The Mayo Rd. shows slight upward bias (Table 

5.5). A high adj- r2
 was observed suggesting good predictive skill (adj-r2 = 0.89, F(4,23) = 

33.64, p < 0.001). Years 1989, 1994, 1996, 2005, 2006 and 2010 were identified as 

influential observations. Year 1996 had the highest recorded TRV in the KRB, 1989 and  
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Table 5.3: Table showing slope coefficients (β̂) and the jackknifed unbiased estimates of the 
slope coefficients (β̂j) in estimating the total runoff volume (ha m) in the Kiskatinaw River. 
Bias is provided, and also shown as an absolute percentage of the original coefficient. MT 
stands for mean temperature, CPPT stands for cumulative precipitation, and numbers below 
reference agency stations number. Agency MOTI is Ministry of Transportation and 
Infrastructure, EC is Environment and Climate Change Canada. 
TRV (ha m) 𝜷̂ 𝜷̂𝒋. Bias Percent 𝜷̂ 
CPPT @ EC 
(3081680) 540.7233 562.4713 -21.7480 0.0402 

MT @ EC 
(1181508) -7039.12 -7088.6034 49.4834 0.0070 

MT @ EC 
(1206197) 5820.866 5825.4768 -4.6108 0.0008 

CPPT @ EC 
(2100709) -156.0408 -171.5196 15.4788 0.0992 

Const. -28751.83 -29286.2270 534.3970 0.0186 
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2010 were also considerably high. Year 2005 had one of the lowest TRV in the KRB (Figure 

5.1). 

5.7 Model Validation 

 An example forecast for hydrologic year 2002 is provided in this section as validation 

of the resulting regression models’ ability to predict a continuous cumulative discharge 

curve. Because the different data inputs specified in Chapter 2 are not always available for a 

given year, particularly before 2000, there are only a number of years with all inputs for 

timing and volume present. Hydrologic year 2002 happens to have all required inputs 

available that year. Hydrologic year 2002 is a relatively ‘normal’ year in regards to TRV 

(18438.62 ha m) and the timing of the R50% (HDOY 251). Cumulative discharge for HY 

2002 in the KR was predicted from the resulting regression models (Figure 5.2). The 

predicted cumulative curve has been smoothed by a 10-day moving average filter; the 

cumulative curve was differenced daily to compute an average daily discharge (Figure 5.2). 

From the smoothed discharge, the Nash-Sutcliffe Efficiency Coefficient (NSE) was 

calculated. The resulting NSE of 0.70 indicates good predictive ability. 
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Figure 5.2: The observed (black solid line) and predicted (dashed maroon line) cumulative 
discharge at Water Survey of Canada Farmington for hydrologic year 2002, over the runoff 
period 25 March (hydrologic day of year 207) to 1 (HDOY 304) July. The original predicted 
cumulative values are represented by the teal X’s. A 10-day moving average is applied to the 
predictions. The various dots represent the interquartile range of each model’s residuals, 
added to the prediction, in different combinations of timing t, and volume v. For example, the 
P25t is the predicted timing plus the 25th percentile of that model’s residuals. The P75v is the 
predicted volume plus the 75th percentile of the residuals for the total runoff volume model. 
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Figure 5.3. Predicted hydrograph at the Water Survey of Canada Farmington stream gauge in 
the Kiskatinaw River for hydrologic year 2002. The blue line is the predicted discharge and 
the black line is the observed discharge (linearly interpolated from 5% cumulative intervals). 
See Figure 5.1 for legend description. The Nash-Sutcliffe Efficiency Coefficient was 
determined to be 0.70. The prediction is made on 1 April, and a 10-day moving average was 
applied to the prediction (Figure 5.2). The abrupt changes in discharge are the result of 
negative slopes in the predicted cumulative discharge, and can be filtered out.  
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5.8 Predicting Turbidity Exceedance  

 The rate of wash-load sediment transport is determined primarily by the rate of fine-

grained sediment supply from the drainage basin rather than the transporting capacity of the 

flow. High suspended sediment concentrations are generally associated with periods of high 

discharge, and empirical relationships between the two are often established, however 

(Walling & Webb, 1992). To provide some indication of suspended sediment concentrations 

associated with springtime runoff in the KR, logistic regression was utilized to provide 

probabilities of exceeding 500 NTU (The NTU limit at which pumps must be shut down) at 

Arras, as a function of average daily discharge. Average daily turbidity at Arras as a function 

of average daily discharge at the WSC Farmington stream gauge for years 2007 and later 

during the spring runoff period 25 March–30 June were plotted to determine the relationship 

between these two variables in the KR. Generally turbidity increases with daily average 

discharge (Figure 5.4). 

 Discharge at the WSC Farmington stream gauge is found to be a significant predictor 

of turbidity exceedance of 500 NTU at Arras (χ2(1) = 254.46, n = 939, p < 0.001) (Table 5.4). 

The model has moderate sensitivity, only predicting 45.5% of the observed exceedances; 

however, it exhibits robust specificity by correctly predicting 97.7% of observations below 

500 NTU at a threshold probability of 0.5. Overall, 91.6% of observations were correctly 

classified (Table 5.5). The area below the ROC curve is 0.91, indicating that the model has 

good discrimination ability (Manel, Williams, & Ormerod, 2001). However, because of the 

model’s moderate sensitivity, other inputs should be explored to improve the ability to 

predict exceedances of 500 NTU.  
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Figure 5.4. Daily average turbidity measured at the Arras weir as a function of daily average 
discharge at Water Survey of Canada Farmington stream gauge since 2007 during spring 
runoff periods, 25 March–1 July. The horizontal blue line marks the 500 nephelometric 
turbidity units (NTU) threshold value at which water abstraction must cease.  
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Table 5.4: Logistic regression results predicting the probability of exceeding 500 NTU at 
Arras from daily average discharge at the Water Survey of Canada Farmington stream gauge, 
on the Kiskatinaw River. Model based on data since 2007 over the spring runoff period 25 
March-1 July. 
P(Excd. 500NTU) β SE z P>|z| 95% Conf. Interval 
Discharge (m3s-1) 0.0605 0.0050 12.04 <0.001 0.0507 0.0704 
Const. -4.1715 0.2494 -16.73 <0.001 -4.6603 -3.6827 

 

 

Table 5.5: Classification table showing results for logistic regression predicting turbidity 
exceedance at the Arras weir in the Kiskatinaw River. A threshold of 500 Nephelometric 
Turbidity Units (NTU) was used as the classification threshold.  
Classified Obs. NTU≥500 Obs. NTU<500 Total 
Pr(NTU≥500)≥0.5 50 19 69 
Pr(NTU≥500)≤0.5 60 810 870 
Total 110 829 939 
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Chapter 6: Discussion 

 In this chapter relationships between synoptic circulation patterns and teleconnections 

with streamflow timing and volume in the KR are discussed. The difference between the 

causal and predictive modelling approach applied in this study is emphasized. The 

application of this study as a decision support system is explored. Finally, areas of future 

research are mentioned. 

6.1 Teleconnections 

 Of the global circulation indices considered in this study, the ENSO is the most 

highly correlated with variation in early runoff timing in the KR (Table A.1). The significant 

positive (negative) correlations observed between the timing of streamflow in the KR, 

particularly early on, and the SOI (ONI) index, respectively, indicate delayed flows in 

response to more snow accumulation, less mid-winter melt, and gradually increasing spring 

temperatures associated with La Niña conditions in the KR. The fall component of the SOI 

and winter component of the ONI index are highly correlated with streamflow timing, as this 

is when the ENSO signal is most prominent (Woo & Thorne, 2003).  

 The ENSO has a defined influence on temperature fields over Canada. An 

intensification of the Canadian Ridge and a deepening of the Aleutian Low lead to strong 

southwesterly flow along the west coast of Canada producing positive surface temperature 

anomalies in BC, and tropospheric patterns consistent with a positive PNA pattern (Shabbar 

& Khandekar, 1996). Conversely, during La Niña, abnormally low geopotential height 

thicknesses over the Canadian Rockies and a positive anomaly centre over the NE Pacific 

Ocean lead to northwesterly advection of cold air over western Canada. The result is a strong 

influence on snowmelt-dominated rivers in western Canada. The PDO has been shown to 

have a possible enhancing (attenuating) effect on ENSO depending on whether their phases 
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coincide (Gershunov & Barnett, 1998), and also explains much streamflow variation in the 

KR. The positive PDO phase is also highly correlated with early streamflow timing, 

particularly early on (Table A.1). 

 Of the surface observations, temperature was the most highly correlated with 

streamflow timing in the KR (Figure B.1). It would be expected that prior winter 

temperatures would yield strong influence on the timing of streamflow as snow ablation 

magnitude and timing is largely a function of temperature. The regions negatively correlated 

with the R25% and R50% in the KR are consistent with those that express positive 

temperature anomalies in Figure 4 of Shabbar (2006), and Figure 2 of Fleming & Whitfield 

(2010) in response to strong postive ENSO events (Figure C.1). In addition, pressure 

anomalies correlated with timing in the KR correspond regionally with positive anomalies in 

the 500-1000 hPa thickness field associated with El Niño found in Shabbar & Khandekar 

(1996) (Figure B.12).  

 The ENSO is also linked to anomalies in precipitation fields over Canada. 

Precipitation in southern Canada has a significant response to ENSO events, and is most 

pronounced during winter (Figure C.2). These patterns are linked to anomalies in the 500 hPa 

geopotential height circulation, which resemble the positive (negative) phase of the PNA 

pattern that has been linked to ENSO events (Shabbar, Bonsal, & Khandekar, 1997). 

Negative precipitation anomalies over the KRB in response to ENSO are seen in Shabbar 

(2006) (Figure C.2). The correlation between the timing of streamflow in the KR and global 

circulation patterns is less consistent for precipitation than temperature, particularly for 

indices specific to ENSO. Precipitation at several SW BC stations was found to have 

significant negative correlations with the R50% (Figure B.5). Past studies have shown that 

typically, precipitation over southern BC into the Thompson-Okanagan and the Lower 
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Mainland has expressed negative anomalies during positive ENSO conditions (e.g., Fleming 

& Whitfield, 2010; Shabbar, Bonsal, & Khandekar, 1997). In more recent studies, a small but 

significant location of positive precipitation anomaly focused over Vancouver Island 

eastward into the Coast Mountains, in response to El Niño has been identified (Figure C.2). 

Generally, increases in precipitation near this region show negative correlations with timing 

of streamflow in the KR (Figure B.5). There are stations shown to have significant positive 

Spearman rank correlation with ONI over DJF and MAM occurring in this region and 

include the ECCC Whistler station (rs = 0.55, n = 25, p < 0.06) and the MOTI Red Bluffs 

station (rs = 0.55, n = 19, p < 0.02), respectively. The MOTI Red Bluffs station is 

significantly correlated with the ECCC Whistler station (rs = 0.71, n = 12, p < 0.01). In the 

resulting regression models, precipitation in this region, particularly MOTI Red Bluffs, 

proves to be an important predictor of streamflow timing in the KR (see Appendix D). For 

instance, to predict the R25%, precipitation at Red Bluffs along with mean temperature at 

MOTI Bella Coola and the SOI over JJA are used as input. The models predicting early 

streamflow response typically include some variable highly correlated with ENSO (such as 

Red Bluffs), with the other variables that capture the remaining variability not associated 

with ENSO. This study supports the finding that the response of surface meteorological 

regimes to ENSO vary considerably over BC (Fleming & Whitfield, 2010), and play an 

important role in annual hydrologic variability.  

 The NP index averaged over the previous winter (JJA) has a significant positive 

correlation with TRV in the KR (Table A.1). This is in part because an enhanced PNA signal, 

especially during winter, results in widespread reductions in snow accumulation in BC 

(Moore & McKendry, 1996). Winter NP was also found to be positively correlated with total 

precipitation during the spring runoff period in the KR based on the local MOTI Braden Rd. 
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station (rs = 0.42, n = 14, p < 0.2). Summer PNA conditions provide information about both 

snowpack conditions come spring, in addition to summer convective patterns. This would 

explain the strong correlation with TRV in the KR. The PDO, particularly during winter, is 

also highly correlated with spring and summer precipitation at the MOTI Braden Rd. station 

(rs = -0.56, n = 14, p < 0.04), and also frequently occurs as input to models not selected, but 

that provided good predictability of TRV in the KR. 

6.2 Predictive Modelling vs. Causal Attribution  

 Statistical modelling has traditionally been applied for determining causal explanation 

in the sciences. One of the consequences of failing to include predictive modelling (data 

mining) as an exploratory approach is losing the ability to test the relevance of existing 

theories and to discover new causal mechanisms (Shmueli, 2010). Regression is a powerful 

tool for testing causal hypotheses. The process of modelling to attribute causation and the 

process of modelling to provide prediction are quite different. One difference between the 

two approaches is that predictive modelling is forward-looking, whereas explanatory 

modelling is retrospective as it is used to test an established hypothesis (Shmueli, 2010). As 

there are numerous regression models in this study, it is important to note that the approach 

taken in this study is in essence an exercise in data mining, and causation should not 

necessarily be attributed. Take the regression model determined for the R50% for instance 

(Table D.10). This model suggests that for every millimeter increase in total winter 

precipitation at MOTI Red Bluffs, the R50% decreases by -0.12 days, if the other 

independent variables remain constant. To imply that precipitation at Red Bluffs is causing 

the R50% to be earlier in the KR would certainly be false. 

 Precipitation at Red Bluffs is significantly correlated with larger synoptic processes 

that are driving hydrologic inputs in the KR during spring runoff, however, and therefore 
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provides good predictability of the R50%. Understanding the underlying physical processes 

of these relationships will be an important step in reducing uncertainty around predictions, 

and furthering knowledge of hydro-meteorology in the KR, however. 

 There is much to be lost if predictive modelling is omitted from scientific research, 

however, and that predictive modelling allows us to learn from data, verifying past theory on 

new data (Feelders, 2002). That said, I emphasise the modelling approach in this study, and 

not so much the models themselves.  

6.3 Decision Support Systems 

 Computer-based models combined with interactive interfaces are typically known as 

a decision support system (DSS). The overall objective of a DSS is to provide timely 

information that supports decision makers (Loucks, 1995). Water-resource systems constitute 

many branches, including environmental, hydrological, social and administrative (Alemu, 

Palmer, Polebitski, & Meaker, 2011). To be considered practical and of utility, a DSS must 

provide required information in a digestible form to those making the decisions. Time is also 

especially important, as decision makers require information when the window of 

opportunity to use that information exists. A DSS consists of two major components: a 

mathematical model to generate the data, and some visual medium to convey the results 

(Loucks & Beek, 2005). Although this study explored possible atmospheric mechanisms 

responsible for variation in runoff in the KR, providing the CDC a practical tool allowing 

timely forecast of spring runoff in the KR was a key objective and influenced the modelling 

approach taken in this study. As an extension to this research, a DSS has been provided to the 

CDC, providing a tool for more informed water management based on available climate data. 

This DSS provides both predictions of discharge at Farmington and the probability of 
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exceeding 500 NTU at Arras, along with a number of programs to aide in data assimilation 

and aggregation.  

6.4 Future Research and Recommendations   

 There are several areas of opportunity for future research as an extension to the 

findings in this study. This effort provides evidence that aggregated winter climate metrics 

(i.e., temperature, precipitation, pressure, SWE, snow cover / depth) in combination with 

global circulation indices can offer accurate predictions of streamflow timing in the KR. 

Studies have shown that non-standard indices of global circulation patterns can improve 

forecast of winter snowpack and streamflow in western North America (Grantz, Rajagopalan, 

Clark, & Zagona, 2005). The aggregated surface climate inputs seem to be achieving this 

goal as they are manifestations of anomalies in synoptic weather patterns. Using clusters of 

synoptic weather patterns derived from daily mean sea-level pressure grids, the frequency of 

synoptic weather pattern types could also be provided as possible model input (Stahl, Moore, 

& McKendry, 2006). These synoptic pattern frequencies could possibly improve predictions 

beyond using surface observations alone, or in combination with surface observations. 

 Although streamflow variation was successfully correlated with large-scale climate 

data in this study, local processes certainly influence the water balance of the KR. Therefore, 

major landscape changes (e.g., from forest fires) would likely result in significant increases 

in predictive uncertainty. Because the regression models are empirical, they are not robust to 

major landscape changes at the basin scale. Therefore, in the case of a major disturbance, 

research will have to be carried out as to what the effects are on the hydrograph, and how to 

interpret the predicted hydrograph in the context of these changes. 

 As many of the regression models identified typically had relatively small sample 

sizes, ~n ≤ 15, updating of the models on new data will be important and should lead to less 
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uncertainty in predictions. In addition, possible new model structures may be identified, and 

the nature of any non-stationarities affecting predictions better understood.  

 Although discharge alone provides moderate predictive skill of turbidity exceedance 

of 500 NTU at Arras, many exceedances were not predicted. The moderate sensitivity is 

likely because the sediment supply from processes not associated with the carrying capacity 

of the flow is not being captured, as these are associated with events such as rainfall and 

upstream land use activities. This makes turbidity particularly difficult to predict. However, 

adding variables such as maximum 24-hr rainfall and upstream turbidity would likely provide 

improved predictions of turbidity up to several weeks ahead of time.  

 This study’s methods used to forecasting streamflow in response to snowmelt in the 

KR could easily be applied to another basin. The only requirements for implementing the 

methods defined in this study are: (a) there must be an adequate record of non-regulated 

discharge data available in the basin of interest; and (b) the basin must be within synoptic 

reach of an adequately dense weather and snow survey network. There is therefore the 

opportunity to apply the methods in this study to other basins and compare performance of 

the modelling approach when applied to other watersheds. 
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Chapter 7: Conclusions  

 There is evidence in this study that climate observations aggregated during the snow 

accumulation period within synoptic range of the KRB including surveys of SWE in 

combination with large-scale atmospheric circulation indices, can provide accurate 

predictions of cumulative spring runoff in the KR. In this study, incremented timing of 

cumulative streamflow (RX%) during spring runoff in the KR was predicted using multiple 

regression. The day of year that cumulative discharge reaches 50% (R50%) can be predicted 

by a combination of mean winter temperature and total winter precipitation at specific 

locations with good accuracy (adj-r2 = 0.86, F(3,15) = 44.66, p < 0.001). The optimal 

regression model selected for predicting total runoff volume also relied on mean winter 

temperature and total winter precipitation as inputs, and provided good accuracy (adj-r2 = 

0.89, F(4,23) = 33.64, p < 0.001). The predicted discharge for (HY) 2002 demonstrated a 

Nash-Sutcliffe Efficiency Coefficient of 0.70.  

 The probability of turbidity exceeding 500 NTU at the Arras weir was predicted using 

logistic regression. Implementing average daily discharge at WSC Farmington as a predictor, 

a ROC score of 0.91 was obtained, indicating good discrimination ability. However, only 

moderate sensitivity was achieved, meriting the exploration of possible other inputs that 

might describe basin processes responsible for suspended sediment supply not captured by 

discharge alone.  

 The resulting regression models are supported by evidence of correlations between 

the aggregated climate metrics at the surface, known global circulation indices, and 

streamflow metrics in the KR. There is compelling evidence that they serve as non-standard 

indices of variation in synoptic weather patterns during the winter into spring and early 

summer, driving much of the observed variation in streamflow in the KR over the last 50 
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years. It will be important to update and test the models identified here on new data as they 

become available, particularly as many of the sample sizes are currently relatively small. This 

will lead to less uncertainty in the predictions. Additionally, the exploration of other, possibly 

non-linear model structures may be implemented as more is understood about the underlying 

physics responsible for the regional correlations identified between winter surface climate 

and runoff response in the KR.  

 Ideally streamflow predictions provided from this work will aid the CDC in 

optimizing the timing of water releases at Bearhole Lake and downstream water withdrawals 

from the Arras weir so that it can be abstracted during periods of high flow and low turbidity, 

allowing adequate storage reserves during the low flow period in late summer and fall. A 

decision support system (DSS) can be easily implemented on any desktop computer. Benefits 

of the modelling approach include the ability to easily update the regression models as 

additional input data become available over time likely improving predictions, adapting the 

model to changes in climate, and improving estimates of predictive uncertainty. Because the 

only requirements for implementing the modelling approach in this study are an adequate 

record of discharge data, and a relatively dense regional network of climate stations and snow 

survey locations, the model can be applied to other basins, an opportunity for future research.  
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Appendix A.  

Table A.1: Spearman rank correlation coefficients between the North Pacific (NP), 
Oceanic Niño Index (ONI), Southern Oscillation Index (SOI) and Pacific Decadal 
Oscillation indices and timing of incremented fractional runoff volume (RX%) and total 
runoff volume (TRV). Intensity of blue (red) shading corresponds to magnitude of the 
negative (positive) rank correlation. Note that at 48 degrees of freedom a correlation of 
0.28 is significant at a probability of 0.05.All seasonal averages were calculated for the 
previous year leading up to the runoff period (25 March-1 July). Blank cells indicate no 
significant correlation exists.  

Index R5% R10% R15% R20% R25% R30% R35% R40% R45% R50% 

NP_ANOM           
NP_FALL           
NP_WINT  0.28         
NP_SPR           
NP_SUM 0.35 0.29 0.30 0.30       

ONI_FALL -0.37 -0.4 -0.37 -0.35 -0.33 -0.33 -0.31 -0.32 -0.35 -0.34 

ONI_WINT -0.35 -0.37 -0.35 -0.33 -0.32 -0.31 -0.31 -0.33 -0.37 -0.36 

ONI_SPR -0.32 -0.36 -0.38 -0.39 -0.41 -0.41 -0.39 -0.38 -0.33 -0.28 

ONI_SUM -0.41 -0.42 -0.40 -0.39 -0.38 -0.38 -0.36 -0.37 -0.38 -0.36 

SOI_FALL 0.42 0.45 0.44 0.44 0.42 0.42 0.4 0.41 0.42 0.41 

SOI_WINT 0.41 0.42 0.38 0.37 0.34 0.34 0.31 0.32 0.36 0.37 

SOI_SPR  0.30 0.33 0.36 0.37 0.38 0.36 0.37 0.33 0.29 

SOI_SUM 0.45 0.45 0.39 0.34 0.31      
PDO_FALL -0.32 -0.34 -0.30 -0.28 -0.28 -0.30 -0.30 -0.28   
PDO_WINT -0.34 -0.36 -0.28        
PDO_SPR           
PDO_SUM           
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Table A.1 (Continued) 

Index R55% R60% R65% R70% R75% R80% R85% R90% R95% TRV 

NP_ANOM           
PNA_FALL           
PNA_WINT           
PNA_SPR           
PNA_SUM          0.29 

ONI_FALL -0.31 -0.31 -0.28        
ONI_WINT -0.34 -0.33 -0.30        
ONI_SPR           
ONI_SUM -0.33 -0.32 -0.29        
SOI_FALL 0.41 0.39 0.35        
SOI_WINT 0.36 0.34 0.28        
SOI_SPR 0.30 0.28         
SOI_SUM           
PDO_FALL           
PDO_WINT           
PDO_SPR           
PDO_SUM           
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Figure B.1. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 25% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) temperature at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations.  
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Figure B.2. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 50% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) temperature at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations.  
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Figure B.3. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 75% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) temperature at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations. 
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Figure B.4. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 95% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) temperature at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations. 
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Figure B.5. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 25% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed total winter (15 
November- 25 March) precipitation  at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations. 
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Figure B.6. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 50% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed total winter (15 
November–25 March) precipitation  at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations. 
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Figure B.7. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 75% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed total winter (15 
November–25 March) precipitation  at Environment and Climate Change Canada and 
Ministry of Transportation and Infrastructure climate stations. 
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Figure B.8. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 25% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and surveyed 1 April snow water 
equivalent from the Ministry of Forests, Lands, Natural Resource Operations & Rural 
Development. 
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Figure B.9. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 50% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and surveyed 1 April snow water 
equivalent from the Ministry of Forests, Lands, Natural Resource Operations & Rural 
Development. 
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Figure B.10. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 75% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and surveyed 1 April snow water 
equivalent from the Ministry of Forests, Lands, Natural Resource Operations & Rural 
Development. 
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Figure B.11. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 25% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) atmospheric surface pressure at Environment and Climate Change 
Canada and Ministry of Transportation and Infrastructure climate stations. 
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Figure B.12. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 50% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) atmospheric surface pressure at Environment and Climate Change 
Canada and Ministry of Transportation and Infrastructure climate stations. 
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Figure B.13. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between hydrologic day of year that 75% of spring total runoff volume (25 
March–1 July) occurs in the Kiskatinaw River, BC, and observed average winter (15 
November–25 March) atmospheric surface pressure at Environment and Climate Change 
Canada and Ministry of Transportation and Infrastructure climate stations. 
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Figure B.14. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between total spring runoff volume (25 March–1 July) in the Kiskatinaw River, 
BC, and observed average winter (15 November–25 March) temperature at Environment 
and Climate Change Canada and Ministry of Transportation and Infrastructure climate 
stations. 
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Figure B.15. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between total spring runoff volume (25 March–1 July) in the Kiskatinaw River, 
BC, and observed total winter (15 November–25 March) precipitation at Environment 
and Climate Change Canada and Ministry of Transportation and Infrastructure climate 
stations. 
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Figure B.16. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between total spring runoff volume (25 March–1 July) in the Kiskatinaw River, 
BC, and surveyed 1 April snow water equivalent from the Ministry of Forests, Lands, 
Natural Resource Operations & Rural Development. 
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Figure B.17. Spatially interpolated Spearman’s rank correlation coefficients (black 
contours) between total spring runoff volume (25 March–1 July) in the Kiskatinaw River, 
BC, and observed average winter (15 November-25 March) atmospheric surface pressure 
at Ministry of Transportation and Infrastructure climate stations. 
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Figure C.1. Winter temperature (°C) departure from the 1951–2000 normal over Canada in 
response to a positive phase of El Niño Southern Oscillation. Figure reproduced from 
Shabbar (2006), used with permission under the Creative Commons Attribution 4.0 License.  
 

 
 
Figure C.2. Winter precipitation (mm d-1) departure from the 1951–2000 normal over 
Canada in response to a positive phase El Niño Southern Oscillation. Figure reproduced from 
Shabbar (2006), used with permission under the Creative Commons Attribution 4.0 License. 
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 The following tables detail the resulting multiple regressions chosen for making 

predictions of fractional streamflow timing (RX%) and total spring (25 March–1 July) runoff 

volume (TRV) in the Kiskatinaw River (KR). Models with the highest adj.-r2 were selected if 

no violation of assumptions were found, and if jackknifed (JK) coefficients were significant 

at p = 0.05. See Chapter 4 for more information regarding methods. The following 

abbreviations are used in these tables: (a) 24-25 March Snow Depth (MSD); (b) total 

cumulative precipitation (CPPT); (c) mean temperature (MT); (d) snow water equivalent 

(SWE); (e) Environment and Climate Change Canada (EC); (f) Ministry of Transportation 

and Infrastructure (MOTI). Numbers refer to station or survey identifiers unique to each 

agency. Jackknife replications used to determine coefficients in each case equal n. 

Table D.1: Multiple regression results predicting the R5%. 
n = 17 
F3,16 = 26.77 
p < 0.001 
adj.-r2= 0.86 

R5% JK β JK SE t p 95% Conf. Interval 
MSD @ EC  
(1173242) -0.0693 0.0282 -2.6100 0.0190 -0.1334 -0.0139 

CPPT @ MOTI 
(22123) -0.1016 0.0183 -5.7100 <0.001 -0.1429 -0.0655 

MT @ EC 
(1200560) -2.5656 0.4076 -6.4400 <0.001 -3.4878 -1.7596 

Const. 235.0992 4.2766 55.0100 <0.001 226.2073 244.3392 
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Table D.2: Multiple regression results predicting the R10%. 
n = 17 
F3,16 = 71.91 
p < 0.001 
adj.-r2 = 0.92 
R10% JK β JK SE t p 95% Conf. Interval 
MSD @ MOTI  
(47121) 0.0618 0.0085 7.1600 <0.001 0.0430 0.0792 

MT @ EC 
(3053600) -3.4850 0.9779 -4.0000 <0.001 -5.9801 -1.8340 

Avg. PDO-Spring -5.6196 0.7978 -6.8000 <0.001 -7.1147 -3.7323 

Const. 197.4846 3.6155 54.3100 <0.001 188.6860 204.0152 
 

 

Table D.3: Multiple regression results predicting the R15%. 
n = 17 
F3,16 = 34.54 
p < 0.001 
adj.-r2 = 0.90 
R15% JK β JK SE t p 95% Conf. Interval 
MSD @ MOTI  
(47121) 0.0538 0.0096 5.4600 <0.001 0.0319 0.0724 

MT @ EC 
(3053600) -3.7308 0.8450 -4.7800 <0.001 -5.8323 -2.2495 

Avg. PDO-Spring -5.2803 1.0226 -5.0600 <0.001 -7.3470 -3.0114 

Const. 201.9501 4.3679 46.1200 <0.001 192.1940 210.7129 
 

 

Table D.4: Multiple regression results predicting the R20%. 
n = 17 
F3,16 = 43.48 
p < 0.001 
Adj.-r2 = 0.93 
R20% JK β JK SE t p 95% Conf. Interval 
CPPT @ MOTI  
(24225) -0.1138 0.0120 -9.2600 <0.001 -0.1369 -0.0859 

MT @ MOTI 
(47121) -6.5967 0.8767 -7.4400 <0.001 -8.3776 -4.6604 

Avg. SOI-Summer -4.7667 1.4598 -3.4700 0.0030 -8.1598 -1.9707 

Const. 242.2735 3.6353 66.6300 <0.001 234.5239 249.9371 
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Table D.5: Multiple regression results predicting the R25%. 
n = 17 
F3,16 = 58.37 
p < 0.001 
adj.-r2 = 0.94 
R25% JK β JK SE t p 95% Conf. Interval 
CPPT @ MOTI  
(24225) -0.1232 0.0129 -9.4500 <0.001 -0.1498 -0.0949 

MT @ MOTI 
(47121) -6.0578 0.9118 -6.5800 <0.001 -7.9317 -4.0657 

Avg. SOI-Summer -4.6149 2.2387 -2.2500 0.0390 -9.7832 -0.2914 

Const. 249.4138 3.5725 69.8700 <0.001 242.0483 257.1949 
 

 

Table D.6: Multiple regression results predicting the R30%. 
n = 17 
F3,16 = 71.74 
p < 0.001 
adj.-r2 = 0.94 
R30% JK β JK SE t p 95% Conf. Interval 
CPPT @ EC 
(3081680) -0.1917 0.0316 -6.0000 <0.001 -0.2566 -0.1225 

CPPT @ MOTI 
(24225) -0.1091 0.0126 -9.1100 <0.001 -0.1410 -0.0878 

MT @  MOTI 
(46127) -5.2417 0.5756 -9.3800 <0.001 -6.6172 -4.1770 

Const. 258.2644 4.2974 60.1400 <0.001 249.3445 267.5644 
 

 

Table D.7: Multiple regression results predicting the R35%. 
n = 17 
F3,16  = 51.22 
p < 0.001 
adj.-r2 = 0.92 
R35% JK β JK SE t p 95% Conf. Interval 
MSD @ MOTI 
(46127) -0.2920 0.0612 -4.8500 <0.001 -0.4265 -0.1671 

CPPT @ MOTI 
(24225) -0.1380 0.0148 -9.0700 <0.001 -0.1658 -0.1029 

MT @ EC 
(1113581) -11.1283 1.5566 -7.0800 <0.001 -14.3217 -7.7221 

Const. 282.1729 3.2381 87.0000 <0.001 274.8418 288.5707 
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Table D.8: Multiple regression results predicting the R40%. 
n = 16 
F3,15 = 61.63 
p < 0.001 
adj.-r2 = 0.90 
R40% JK β JK SE t p 95% Conf. Interval 
CPPT @ MOTI 
(24225) -0.1594 0.0137 -11.7400 <0.001 -0.1897 -0.1314 

MT @ EC 
(2100709) 2.7793 0.5861 4.5600 <0.001 1.4243 3.9226 

MT @ EC 
(1077500) -9.6778 1.5140 -6.3300 <0.001 -12.8177 -6.3636 

Const. 281.6419 7.0406 39.8900 <0.001 265.8747 295.8881 
 

 

Table D.9: Multiple regression results predicting the R45%. 
n = 16 
F3,15 = 36.57 
p < 0.001 
adj.-r2 = 0.89 
R45% JK β JK SE t p 95% Conf. Interval 
CPPT @ MOTI 
(24225) -0.126 0.014 -8.910 <0.001 -0.157 -0.096 

MT @ EC 
(1181508) 5.099 1.274 4.060 <0.001 2.451 7.881 

MT @ EC 
(1077500) -12.526 2.259 -5.410 <0.001 -17.039 -7.407 

Const. 264.663 8.449 31.510 <0.001 248.244 284.263 
 

 

Table D.10: Multiple regression results predicting the R50%. 
n = 16 
F3,15 = 44.66 
p < 0.001 
adj.-r2 = 0.86 
R50% JK β JK SE t p 95% Conf. Interval 
CPPT @ MOTI 
(24225) -0.1171 0.0140 -8.2100 <0.001 -0.1446 -0.0850 

MT @ EC 
(1181508) 5.3789 1.3993 3.9600 <0.001 2.5578 8.5230 

MT @ EC 
(1077500) -12.1634 2.3168 -5.1300 <0.001 -16.8235 -6.9474 

Const. 269.3354 9.2389 29.3300 <0.001 251.3068 290.6911 
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Table D.11: Multiple regression results predicting the R55%. 
n = 15 
F3,14 = 123.11 
p < 0.001 
adj.-r2 = 0.91 
R55% JK β JK SE t p 95% Conf. Interval 
CPPT @ EC 
(1181508) -0.1846 0.0370 -5.0200 0.0000 -0.2648 -0.1063 

CPPT @ MOTI 
(38326) -0.0230 0.0098 -2.1200 0.0520 -0.0420 0.0002 

Avg. ONI-Summer   -12.7391 1.1759 -10.7100 0.0000 -15.1160 -10.0719 

Const. 291.2632 7.5034 38.5900 0.0000 273.4660 305.6523 
 

 

Table D.12: Multiple regression results predicting the R60%. 
n = 16 
F3,15 = 54.05 
p < 0.001 
adj.-r2 = 0.89 
R60% JK β JK SE t p 95% Conf. Interval 
MT @ MOTI 
(250921) -5.1234 1.2009 -4.2700 0.0010 -7.6830 -2.5637 

Avg. SOI-Spring 15.6883 1.7109 9.1700 0.0000 12.0416 19.3351 

1 April SWE @ 
(4A09)   -0.1011 0.0195 -5.1700 0.0000 -0.1428 -0.0594 

Const. 280.0379 8.0251 34.9000 0.0000 262.9328 297.1429 
 

 

Table D.13: Multiple regression results predicting the R65%. 
n = 15 
F3,14 = 25.74 
p < 0.001 
adj.-r2 = 0.85 
R65% JK β JK SE t p 95% Conf. Interval 
MSD @ EC 
(3062451) 

0.0412 0.1066 0.3900 0.7050 -0.1874 0.2698 

CPPT @ EC 
(1181508) 

-0.2071 0.0719 -2.8800 0.0120 -0.3613 -0.0530 

Avg. SOI-Spring   12.1430 1.9064 6.3700 0.0000 8.0542 16.2318 

Const. 283.0682 4.9382 57.3200 0.0000 272.4767 293.6596 
 



102 
 

Table D.14: Multiple regression results predicting the R70%. 
n = 15 
F3,14 = 14.44 
p < 0.001 
adj.-r2 = 0.85 
R70% JK β JK SE t p 95% Conf. Interval 
MSD @ MOTI 
(47091) 0.8118 0.1409 5.9500 <0.001 0.5360 1.1406 

1 March SWE @ 
(4B01) -0.0164 0.0045 -3.9500 0.0010 -0.0275 -0.0081 

1 March SWE @ 
(4C05) -0.4026 0.0636 -6.4100 <0.001 -0.5444 -0.2715 

Const. 309.1992 7.1198 43.6200 <0.001 295.2657 325.8064 
 

 

Table D.15: Multiple regression results predicting the R75%. 
n = 16 
F3,15 = 30.28 
p < 0.001 
adj.-r2 = 0.83 
R75% JK β JK SE t p 95% Conf. Interval 
MSD @ MOTI 
(47091) 0.4391 0.1447 3.0600 0.0080 0.1338 0.7507 

1 April SWE @ 
(1E03A) -0.0444 0.0112 -3.5500 0.0030 -0.0639 -0.0159 

1 April SWE @ 
(4C05) -0.2214 0.0245 -9.0700 <0.001 -0.2739 -0.1696 

Const. 315.8872 6.9284 45.2700 <0.001 298.8702 328.4054 
 

 

Table D.16: Multiple regression results predicting the R80%. 
n = 15 
F3,14 = 36.22 
p < 0.001 
adj.-r2 = 0.83 
R80% JK β JK SE t p 95% Conf. Interval 
MT @ EC 
(3060903) -5.0914 0.9377 -5.2000 <0.001 -6.8840 -2.8617 

1 April SWE @ 
(4C05) -0.1735 0.0176 -9.9100 <0.001 -0.2123 -0.1367 

1 March SWE @ 
(1A23) -0.2150 0.0487 -4.0600 0.0010 -0.3024 -0.0934 

Const. 283.5928 4.5164 62.8100 <0.001 273.9963 293.3696 
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Table D.17: Multiple regression results predicting the R85%. 
n = 18 
F3,17 = 120.69 
p < 0.001 
adj.-r2 = 0.85 
R85% JK β JK SE t p 95% Conf. Interval 
CPPT @ EC 
(4031581) 0.0857 0.0250 3.5900 0.0020 0.0369 0.1426 

MT @ EC 
(1168520) -5.0444 0.5619 -9.0800 <0.001 -6.2903 -3.9191 

1 April SWE @ 
(1B07) -0.0507 0.0079 -6.6100 <0.001 -0.0690 -0.0356 

Const. 287.5202 5.1207 56.2500 <0.001 277.2355 298.8430 
 

 

Table D.18: Multiple regression results predicting the R90%. 
n = 17 
F3,16 = 41.07 
p < 0.001 
adj.-r2 = 0.89 
R90% JK β JK SE t p 95% Conf. Interval 
MT @ EC 
(1060841) -9.0833 1.1311 -8.3000 <0.001 -11.7865 -6.9911 

1 April SWE @ 
(1B07) -0.0534 0.0072 -7.6400 <0.001 -0.0699 -0.0395 

1 April SWE @ 
(3B01) -0.00463 0.0010 -4.5400 <0.001 -0.0070 -0.0025 

Const. 335.4224 4.8776 69.0000 <0.001 326.2047 346.8847 
 

 

Table D.19: Multiple regression results predicting the R95%. 
n = 17 
F3,16 = 60.31 
p < 0.001 
adj.-r2 = 0.91 
R95% JK β JK SE t p 95% Conf. Interval 
MSD @ EC 
(1175122) -0.1128 0.0192 -5.6100 <0.001 -0.1481 -0.0668 

MT @ EC 
(1060841) -6.3661 0.5749 -11.2400 <0.001 -7.6825 -5.2450 

1 April SWE @ 
(1B07) -0.0235 0.0041 -5.9500 <0.001 -0.0335 -0.0159 

Const. 327.2625 2.8063 116.6700 <0.001 321.4474 333.3454 
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Table D.20: Multiple regression results predicting total spring runoff volume (ha m). 
n = 24 
F4,23 = 33.64 
p < 0.001 
adj.-r2= 0.89 

Total 
Volume 
(ha m) 

JK β JK SE t p 95% Conf. Interval 

CPPT @ 
EC 

(3081680) 
540.7233 72.7654 7.4300 <0.001 390.1965 691.2500 

MT @ EC 
(1181508) 

-
7039.1200 

1068.9820 -6.5800 <0.001 
-

9250.4780 
-

4827.7620 
MT @ EC 
(1206197) 

5820.8660 1495.6820 3.8900 0.0010 2726.8110 8914.9210 

CPPT @ 
EC 

(2100701) 
-156.0408 51.4442 -3.0300 0.0060 -262.4612 -49.6205 

Const. 
-

28751.830
0 

5272.1310 -5.4500 <0.001 
-

39658.060
0 

-
17845.600

0 
 

 


