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Abstract

We show that a particular five-element algebra is dualized by a particular alter-ego. We also show

that, in some limited sense, the alter ego we chose is minimal. The algebra that we examine is a

{0,1}-valued unary algebra with 0. It has meet and join as homomorphisms.
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Chapter 1

Introduction

A new branch of mathematics, called universal algebra, was first developed in Garrett Birkhoff’s

1935 paper, “On the structure of Abstract Algebra” [15]. He stated a famous theorem, now call

the Birkhoff’s theorem. It says that the equational classes of algebras are closed under H,S, and

P; where H,S, and P stand for the closure operations of homomorphism, subalgebra, and product

respectively. Duality starts with Birkhoff for finite distributive lattices. Later Duality theories

were developed. These included Pontryagin’s duality for Abelian groups and Stone’s duality for

Boolean algebras [10]. In 1975 H.A. Priestley provided a duality theory for distributive lattices [8].

An overview of duality theory from 1980 to 1992 was submitted by Brian A. Davey in his paper,

“Duality Theory on Ten Dollars a Day” [9].

Now we discuss work related to dualizability, full dualizability, strong dualizability, unary

algebras, unary algebras with zero, rank, and finitely based quasi-equational theories. In 2000

Jennifer Hyndman and Ross Willard displayed the first known example 3-element algebra which

is dualizable but not fully dualizable by any alter-ego of bounded cardinality [2]. In 2002 Jennifer

Hyndman showed that mono-unary algebras have rank at most two and are thus strongly dualiz-
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able [7]. In 2003 Clark, Davey, and Pitkethly classified of three-element unary algebras that are

dualizable [13]. In 2004, J. Hyndman showed that a finite unary algebra with a certain positive

primitive formula does not have enough algebraic operations, and consequently does not have a

finite basis for its quasi-equation [5]. In 2005 J. Hyndman and J.G. Pitkethly showed that, within

the class of three-element unary algebras, there is a tight connection between a finitely based quasi-

equational theory, finite rank, enough algebraic operations and a speacial injectivity condition [6].

Under the supervision of Jennifer Hyndman, in 2006 E. Beveridge generalized the work of J. Hyn-

dman and R. Willard [2] and defined escalator algebras that have infinite rank, and are dualizable

but not strongly dualizable in her master’s thesis [16]. In 2006 E. Beveridge, D. Caspersion, J.

Hyndman, and T. Niven provided sufficient conditions on a finite algebra to prove that certain

unary algebras are not strongly dualizable [18]. In 2015 D. Casperson, J. Hyndman, J. Mason, J.B.

Nation, and B. Schaan looked at {0,1}-valued unary algebras with zero with respect to having a

finite for the quasi-equations [3]. Under the supervision of Jennifer Hyndman, in 2014 B. Schaan

provided results regarding the natural dualisability of certain {0,1}-valued unary algebras with

zero in his master’s thesis [19]. In 2014 D. Casperson, J. Hyndman, and B. Schaan defined tangled

functions which need to be included for an extension of the algebra to be dualizable [4]. Under

the supervision of Jennifer Hyndman, in 2016 J. Danyluk looked at {0,1}-valued finite unary al-

gebras with zero where meet is defined on the algebra and join is partially defined in her master’s

thesis [20].

Our result fits in to the works by Beveridge [16] and Schaan [19]. In this thesis we look for

when an alter ego is a minimal dualizing structure. In Chapter 2, we present preliminary materials

such as notations, definitions, examples, theorems for algebras, lattices, quasivarieties, topology,

and dualizability. In Chapter 3, we define a five-element algebra, an alter ego and conclude that our

defined alter ego satisfies the interpolation condition relative to the algebra and thus dualizes the

algebra. In Chapter 4, we show that the set of relations is a necessary part of a dualizing structure
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for a five-element algebra by finding a specific morphism that is a non-evaluation morphism. In

Chapter 5, we summarize the main points of this document and give our future research idea.
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Chapter 2

Preliminary and Background Materials

2.1 Algebras

In this section we discuss the concept and notions of algebras from universal algebra. All materials

came from [1] which are used throughout this paper.

First we start with definitions and examples of algebras. If A is a non-empty set, called the

universe or underlying set of A and F is a language or type of algebras then an ordered pair

〈A,F〉

is written A and is called an algebra of type F , where F is a family of finitary operations on A

indexed by F such that there is an n-ary operation f A on A if for every n-ary function symbol

f ∈ F . This non-negative integer n is called the arity of f and f A’s are called fundamental

operations of A. An operation whose arity is one is called unary. Similarly, an operation f on A

is called a binary or nullary if its arity is two or zero respectively. If all of an algebra’s operations

are unary, then an algebra A is also called unary.
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For example an algebra 〈G, ·G,−1G,1〉 or 〈G, ·,−1 ,1〉 with a binary, a unary, and a nullary

operation respectively can define a group if the following three identities:

• x1 · (x2 · x3) = (x1 · x2) · x3,

• x1 ·1 = x1 = 1 · x1, and

• x1 · x−1
1 = 1 = x−1

1 · x1

are true for all x1,x2,x3 ∈ G where the language of type F is {·,−1 ,1}. If x1 · x2 = x2 · x1 then the

group G is called Abelian or commutative.

Similarly, a semigroup is an algebra 〈G, ·〉 satisfying

x1 · (x2 · x3) = (x1 · x2) · x3

for x1,x2,x3 ∈ G.

For another example, we define a ring of type F = {+, ·,−,0} to be an algebra 〈R,+, ·,−,0〉

where + and · are binary, − is unary, and 0 is nullary which satisfies the following four properties:

• The algebra 〈R,+,−,0〉 is a commutative group,

• x1 · (x2 · x3) = (x1 · x2) · x3 [ the algebra 〈R, ·〉 is a semi-group ],

• x1 · (x2 + x3) = (x1 · x2)+(x1 · x3), and

• (x1 + x2) · x3 = (x1 · x3)+(x2 · x3)

for all x1,x2,x3 ∈ R.

We often write A = 〈A, f1, . . . , fk〉 for 〈A,F〉 and say the algebra is of finite type if F =

〈 f1, . . . , fk〉 is finite. If for all f in F the operation f is unary, then A = 〈A,F〉 is called a unary
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algebra. A unary algebra A = 〈A,F〉 is called a {0,1}-valued unary algebra if the range of f is

contained in {0,1}, for each f ∈ F which is not identity map.

Example 2.1.1. An algebra A = 〈{0,1,2,3}, f1, f2〉 shown in the Table 2.1 contains two unary

operations f1 and f2 which take each element in {0,1,2,3} to either 0 or 1.

f1 f2

0 0 0

1 1 1

2 0 1

3 1 0

Table 2.1: A is a {0,1}-valued unary algebra.

We define the rows of A of a unary algebra A = 〈A,F〉 of finite type by the following k-ary

relation

Rows(A) = {row(a) | a ∈ A}

where row(a) = 〈( f1(a), . . . , fk(a)) | a ∈ A〉 and { f1, . . . , fk} is a fixed enumeration of the non-

constant, non-identity operations in F .

Now we suppose X ⊆ A and f : A→ B and α : X → B are two functions such that for all x ∈ X

α(x) = f (x)

then α is called the restriction of f to X , and is denoted f �X . If A and B are two algebras of the

same type, B⊆ A, and f B = f A�B for all f ∈ F then B is a subalgebra of A, denoted B≤ A. Any

subset C of A that is closed under every operation in F is called a subuniverse of A. If B is a

subalgebra of A then B is a subuniverse of A. For every X ⊆ A, the subuniverse generated by
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X is

SgA(X) = ∩{B : X ⊆ B and B is a subuniverse of an algebra A}.

Note that SgA(X) is a subuniverse.

Let A and B be two algebras of the same type F . A mapping α : A→ B is called a homomor-

phism from A to B if

α( f A(a1, . . . ,ak)) = f B(α(a1), . . . ,α(ak))

for each k-ary f in F and each sequence a1, . . . ,ak from A. An isomorphism is a homomorphism

which is one-to-one and onto.

If A is a non-empty set and n is a positive integer, then an n-ary relation on A is a subset of An,

the set of all n-tuples of A. If α : A→ B is a homomorphism, then the kernel of α , written ker(α),

is defined by

ker(α) = {〈a,b〉 ∈ A2 : α(a) = α(b)}.

The kernel of α is a binary relation on A.

Let A be an algebra of type F . For every 1≤ i≤ k, we have a k-ary projection operation πi

on a non-empty set A defined by

πi(a1, . . . ,ak) = ai

for all ai ∈ A. For a k-ary operation β , and k j-ary operations {γi}k
i=1, there is a j-ary operation α

defined by composition of operations, that is,

α(a1, . . . ,a j) = β (γ1(a1, . . . ,a j), . . . ,γk(a1, . . . ,a j)).

Moreover, all the operations constructed by the composition of operations using the basic op-

erations of A and the projections on A are called the term functions or term operations of A.
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2.2 Lattices

In this section we introduce the idea of a lattice that came from [1]. We define lattice in two

standard ways which are based on the same (algebraic) footing as groups or rings, and the notion

of order.

The first way is to define a lattice as an algebra

L = 〈L,∧,∨〉

where L is a nonempty set with two binary operations ∧ (meet) and ∨ (join) on L in which the

following identities hold:

• Commutative: a∧b = b∧a and a∨b = b∨a

• Associative: a∧ (b∧ c) = (a∧b)∧ c and a∨ (b∨ c) = (a∨b)∨ c

• Idempotent: a∧a = a and a∨a = a

• Absorption: a = a∧ (a∨b) and a = a∨ (a∧b)

for all a,b,c ∈ L.

Moreover if the above commutative, associative and idempotent identities are true for only one

binary operation ∧ on a set S, then the algebra

S = 〈S,∧〉

is called a ∧-semilattice.

The second way to define a lattice comes from the notion of a partial order. A binary relation

≤ on a set X is called a partial order on X if for each x,y,z∈ X , the following three identities hold

in X :
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• Reflexivity: x≤ x,

• Antisymmetry: x≤ y and y≤ x imply x = y, and

• Transitivity: x≤ y and y≤ z imply x≤ z

We also say that ≤ on a set X is a total order on A if x≤ y or y≤ x for each x,y ∈ X . A partially

ordered set is defined by a set X with a partial order on X . We write x < y to mean x≤ y but x 6= y

in X . Note that every lattice has a partial order given by defining x ≤ y to mean x∧ y = x. When

the relation is a total order we call the partially ordered set totally ordered.

Let S be a subset of a partially ordered set X . An element x ∈ X is an upper bound for S if

s ≤ x for every s ∈ S. An element x ∈ X is the supremum of S, written supS, if x is an upper

bound of S, and s ≤ y for every s ∈ S implies x ≤ y. A supremum is unique if it exists. Similarly,

an element x ∈ X is a lower bound for S if x ≤ s for every s ∈ S. An element x ∈ X is called the

infimum of S, written infS, if x is an lower bound of S and y ≤ x for all lower bounds y of S. An

infimum is unique if it exists. A partially ordered set X is a lattice if and only if for every x,y ∈ X

both sup{x,y} and inf{x,y} exist in X .

2.3 Quasivarieties

First we define isomorphic, direct product and homomorphic images, and then finally look at

quasivariety.

If a mapping α is an isomorphism from an algebra A1 to another algebra A2, then A1 is iso-

morphic to A2, written A1 ∼= A2.

The direct product of two algebras A and B of the same type F is the one algebra whose
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universe is the set of cartesian product of A and B and the operations are defined by

f A×B(〈a1,b1〉, . . . ,〈ak,bk〉) = 〈 f A(a1, . . . ,ak), f B(b1, . . . ,bk)〉

for ai ∈ A,bi ∈ B,1≤ i≤ k and for f ∈Fk (the subset of k-ary function symbols in F is denoted

by Fk).

For i in some set I, if (Ai)i∈I is a collection of algebras of type F , then the product algebra,

written A = ∏i∈I Ai, is the algebra with universe ∏i∈I Ai and whose operations are defined by

f A(a1, . . . ,ak)(i) = f Ai(a1(i), . . . ,ak(i))

for f ∈Fk and 〈a1, . . . ,ak〉 ∈∏i∈I Ai.

Now we can define a quasivariety ISP(M) generated by an algebra M to be the class of

algebras that are obtained by taking all isomorphic copies of subalgebras of products of M, that is

ISP(M), where I is the isomorphic copies, S is a subalgebras, and P is the products of an algebra M.

Similar to Birkhoff’s theorem which says HSP(M) is equationally defined, we note that ISP(M)

is quasi-equationally defined. This explains the interest in determining when the quasi-equational

theory of quasivariety is finitely based.

2.4 Topologies

In this section we state the concept of topological space [11] and some algebraic operation, and

then define topological quasi-variety generated by an alter ego, and some definitions of maps.

The collection of subsets of a set X is called a topology T of a space X if the following three

properties hold:
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• The empty set and X are in T ,

• If {Ti}i∈I ⊂T for any set I, then
⋃

i∈I Ti ∈T ,

• If {Ti}n
i=1 ⊂T is a finite set of sets, then

⋂n
i=1 Ti ∈T .

The ordered pair (X ,T ) is called topological space where X is a set and T is a topology of X

whose elements are called open sets of X . The closed sets are the complements to the open sets

S ∈T . The discrete topology is the topology where all sets are open (and hence closed).

For some finite and non-zero n, an n-ary relation on an algebra A is called an algebraic re-

lation on A if it is the universe of a subalgebra of An. A homomorphism from An to A is called

algebraic (total) operation on A for finite and non-negative n. An algebraic partial operation is

also defined by the homomorphism from a subalgebra of An for some finite non-negative n to an

algebra A.

Let M be a finite algebra. If G is a set of algebraic total operations on M, H is a set of algebraic

partial operations on M, R is a set of algebraic relations on M, and T is the discrete topology on

M, then the structured topological space

M= 〈M;G ,H ,R,T 〉

is called an alter ego of M. Both the algebra M and the alter ego M have the same underlying

set M.

Now using the knowledge of alter ego, we can define a topological quasi-variety, IScP+(M),

which consists of all isomorphic copies of topologically closed substructures of non-zero powers

of the alter ego M, where I is all isomorphic copies, Sc is all closed sub-structured topological

spaces and P+ is all non-zero powers of the alter ego M. See [10] for full definitions.
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Moreover, for a function α from a topological space U to a topological space V if the set

α−1(S) is an open subset of X for all open subsets S ∈ V then α from U to V is called a con-

tinuous function. For U,V ∈ IScP+(M) a morphism is a continuous map α : U→ V which

preserves the total operations, partial operations, and relations on M. This map is called an em-

bedding if α : U→ α(U) is isomorphism and α(U) is a substructure of V. The map α is called a

homeomorphism when α is a bijection and both α and α−1 are continuous.

2.5 Dualizability

In this section we introduce the basic idea of natural duality theory, and we also look into what it

means for an algebra to be dualisable.

Let M = 〈M,F 〉 be a finite algebra. For an alter-ego M = 〈M;G ,H ,R,T 〉, and for any

algebra A ∈ ISP(M), define the dual of A (with respect to M) to be

D(A) = 〈Hom(A,M);G ,H ,R,T 〉

seen as a topologically-closed substructure of MA, where Hom(A,M) is the set of all homomor-

phisms from A to M. Note Hom(A,M) is a subset of MA. This follows from G ,H , and R being

algebraic. It turns out that D(A) is in the topological quasivariety IScP+(M). The proof of this

non-trivial fact is given in Chapter 1 of [10]. See Figure 2.1 on the next page.

Likewise, for any topological structure X ∈ IScP+(M), define the dual of X to be

E(X) = 〈Hom(X,M);F 〉

seen as a subalgebra of MX , where Hom(X,M) is the set of all M-morphisms from X to M. We

have Hom(X,M) is a subset of MX . The proof that E(X) ∈ ISP(M) is given in Chapter 1 of [10].

See Figure 2.2 on page 14.
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ISP(M)

Algebra

IScP+(M)

Topology

A D(A)D

Figure 2.1: The Dual of an algebra is a topological structure.

If an algebra A is in ISP(M) then the evaluation map is a natural embedding eA : A →

E(D(A)), defined by

eA(a)(x) = x(a)

for all elements a ∈ A and homomorphisms x ∈ D(A). The map eA(a) : Hom(A,M)→ A is called

an evaluation.

Similarly, for a structure X ∈ IScP+(M) there is a natural embedding εX, called an evaluation

map from an algebra X to D(E(X)), defined by

εX(x)(a) = a(x)

for all homomorphisms x ∈ X and morphisms a ∈ E(X).

Furthermore, a map β : D(A)→ M is given by evaluation at a on B where B ⊆ D(A) if

β �B= eA(a) �B for a ∈ A.

If for each algebra A in ISP(M) we have A is isomorphic to a double dual of A, (ED(A))

through the evaluation map eA, then an alter ego M is said to yield a duality on the algebra M. If
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ISP(M)

Algebra

IScP+(M)

Topology

E(X)
X

E

Figure 2.2: The Dual of a topological structure is an algebra.

there is an alter ego M such that for every A ∈ ISP(M) we have that

A∼= ED(A)

via eA, then an algebra M is said to be dualizable. See Figure 2.3.

ISP(M)

Algebra

IScP+(M)

Topology

A D(A)

D

ED(A)

E

eA

Figure 2.3: Dualizability of an algebra occurs when eA : A→ E(D(A)) is an isomorphism for

all A.

Moreover, we say that an algebra M is called non-dualizable when no alter ego dualizes M.

14



Example 2.5.1. (Although bounded distributive lattices are not used to this document, we give this

as a example in the area of natural duality theory) H.A Priestley first found that the two elements

bounded distributive lattice,

M = 〈{0,1};∨,∧,0,1〉

is fully dualized by the alter ego

M= 〈{0,1};≤,T 〉

where T is a discrete topology, and the partial operation ≤ is defined on {0,1} with 0 ≤ 1.

See [8, 9].

Example 2.5.2. J. Hyndman and R. Willard showed that the algebra M = 〈{0,1,2}; f ,g〉 (where

f ,g are unary operations shown in the following Table 2.2)

f g

0 0 1

1 0 2

2 1 2

Table 2.2: The escalator algebra

is dualized by the alter ego

M= 〈M,∧,∨,E,R,T 〉

where ∧ and ∨ are the lattice meet and join operations on an order chain 〈M,≤〉 with 0 < 1 < 2,

and E ⊆M2 and R⊆M4, defined by

E = {(x,y) : x≤ y and (x,y) 6= (0,2)},

R = {(x,y,z,w) : x≤ y≤ z≤ w and x = y or z = w},

and T is a discrete topology. However, M is not fully dualizable. See [2].
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2.6 The Interpolation Condition and Duality Theorems

In this section we define the interpolation condition and state some duality theorems which are

helpful for proving that an algebra is dualizable.

First, we provide the following lemma which is explicitly proved in [14] and was used to prove

Theorem 2.6.3.

Lemma 2.6.1. [14] Let M be a finite algebra and A ∈ ISP(M), and let α : D(A)→M and n ∈N.

Then α preserves the set of n-ary algebric relations on M, denoted Rn, if and only if α agrees with

an evaluation on each subset of D(A) with at most n elements.

We say that the alter ego M satisfies the Interpolation Condition relative to M if for each

n ∈ N and each closed substructure X of Mn, every morphism α : X → M extends to a term

function t : Mn→M of the algebra M.

Now we need the definition of a total structure before we introduce the next theorem. An alter

ego M is said to be a total structure if the only algebric operations in M are the total ones. If M

is a total structure with finitely many algebric relations and M satisfies the interpolation condition

relative to M, then the Second Duality Theorem says that M is dualizable.

Theorem 2.6.1 (Second Duality Theorem). ( [10]) Assume that an alter ego M is a total structure

in which R is finitely many algebraic relations. If the interpolation condition holds, then M yields

a duality on an algebra M.

The next theorem allows the use of partial operations in the type of M and was used to prove

Theorem 2.6.3 [14].

Theorem 2.6.2 (Duality Compactness Theorem). ( [10,12]) Let M be a finite algebra and let M

16



be an alter ego of M with finite type. If M yields a duality on each finite algebra in ISP(M), then

M dualizes M.

The following theorem is also helpful to prove the dualisability of a finite algebra.

Theorem 2.6.3. [14] Let M be a finite algebra which has binary homomorphisms ∧ and ∨ such

that 〈M;∧,∨〉 is a lattice. Then the alter ego M := 〈M,∧,∨,R2|M|,T 〉 yields a duality on ISP(M).

We now have the necessary notation and background to formulate the results of this document.
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Chapter 3

An Example of a Finite Algebra and

Dualizing Structure

In this chapter we define a five-element algebra which is our central example in our thesis. Also

we define an alter ego for our algebra. Then we show that the alter ego satisfies the interpolation

condition relative to the algebra and thus dualizes the algebra. We look at this particular alter ego

because it may turn out to be minimal.

3.1 The Five-Element Algebra

In this section we give an example of a finite algebra, and lattice diagram for the algebra. This

five-element algebra is our central example in this paper.

Let M be the algebra 〈M, p,q,r, 0̄〉 where p, q, r and 0̄ are the unary operations defined on the

underlying set M = {0,1,2,3,7} as shown in Table 3.1 on page 20.
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From the concept of the row of an algebra which is introduced in [3], we have the row of an

algebra M as follows:

row(0) = (p(0),q(0),r(0))

= (0,0,0)

or, row(0) = 000,

row(1) = (p(1),q(1),r(1)) = 001,

row(2) = (p(2),q(2),r(2)) = 010,

row(3) = (p(3),q(3),r(3)) = 011,

and row(7) = (p(7),q(7),r(7)) = 111.

Moreover, we have Rows(M) as follows:

Rows(M) = {row(0),row(1),row(2),row(3),row(7)}

= {000,001,010,011,111}.

Note that neither 0̄ nor id are used in computing rows.

Now we use Rows(M) to draw the lattice diagram induced by M. (Note that we use Rows(M)

to define the lattice order on M, and that meet ∧ and join ∨ are homomorphisms M2→M.) This is

done by drawing a Hasse diagram using the point-wise order induced by the elements in Rows(M)

by the order induced by 0 < 1. This lattice diagram for this algebra shown in Figure 3.1 on the

following page is drawn by looking at each row of M and comparing them coordinate-wise.
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p q r 0̄

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

7 1 1 1 0

Table 3.1: The five-element algebra M

0 (000)

1 (001)2 (010)

3 (011)

7 (111)

Figure 3.1: The Lattice Diagram for the five-element algebra M.
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3.2 An Alter Ego

In this section we define an alter ego which is our central dualizing structure. First we introduce

the relations Qi for 1≤ i≤ 13. These are gathered together in Table 3.2. Here k is the arity of the

relation being defined. The relation Q′i is all k-tuples that satisfy the co-ordinate restrictions. The

relation Qi is the largest subuniverse of Q′i that excludes βi, given in the fifth column of the tables.

Range(α) Lemma k Name βi Co-ordinate restrictions

{0,7} 3.3.15 2 Q1 〈0,7〉 Y1 ≤ Y2

{0,1} 3.3.14 4 Q2 〈0,1,1,0〉 Y1 ≤ Y2 ≤ Y3; Y1 ≤ Y4

{0,2} 3.3.13 4 Q3 〈0,2,2,0〉 Y1 ≤ Y2 ≤ Y3; Y1 ≤ Y4

{0,3} 3.3.12 4 Q4 〈0,3,3,0〉 Y1 ≤ Y2 ≤ Y3; Y1 ≤ Y4

{0,1,7} 3.3.11 5 Q5 〈0,1,1,7,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4; Y1 ≤ Y5

{0,2,7} 3.3.10 5 Q6 〈0,2,2,7,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4; Y1 ≤ Y5

{0,3,7} 3.3.9 5 Q7 〈0,3,3,7,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4; Y1 ≤ Y5

{0,1,3} 3.3.8 6 Q8 〈0,1,1,3,3,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5; Y1 ≤ Y6

{0,2,3} 3.3.7 6 Q9 〈0,2,2,3,3,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5; Y1 ≤ Y6

{0,1,3,7} 3.3.6 7 Q10 〈0,1,1,3,3,7,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5 ≤ Y6; Y1 ≤ Y7

{0,2,3,7} 3.3.5 7 Q11 〈0,2,2,3,3,7,0〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5 ≤ Y6; Y1 ≤ Y7

{0,1,2,3} 3.3.4 8 Q12 〈0,1,1,3,3,0,2,2〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5;

Y6 ≤ Y7 ≤ Y8 ≤ Y4

{0,1,2,3,7} 3.3.3 9 Q13 〈0,1,1,3,3,7,0,2,2〉 Y1 ≤ Y2 ≤ Y3 ≤ Y4 ≤ Y5 ≤ Y6;

Y7 ≤ Y8 ≤ Y9 ≤ Y4

Table 3.2: Relations Qi in the alter-ego M. Qi omits βi but satisfies the co-ordinate restrictions.
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More precisely, we define sets Q′i and Qi by

Q′i = { 〈Y1, . . . ,Yk〉 ∈Mk : The co-ordinate restrictions hold on 〈Y1, . . . ,Yk〉 }

and Qi = { x ∈ Q′i : βi /∈ SgMk({x}) }

where the co-ordinate restrictions and βi values are given in Table 3.2 on the preceding page.

Note that Qi and Q′i are subuniverses of Mk and Qi is a subalgebra of Q′i.

Lemma 3.2.1. For i 6= 2, we have Q′i = Qi∪{βi}.

Proof. If x ∈ Q′i \Qi then by definition, βi = f (x) for f ∈ {p,q,r, 0̄, id} but βi /∈ {0,1}k, so f = id,

so x = βi.

Let Q be the set of Qi. Let M := 〈M,∧,∨,0,Q,T 〉 be an alter ego for the algebra M. In the

alter ego M, {∧,∨,0} is a set of algebraic total operations on M, Q = {Q1, . . . ,Q13} is a set of

algebraic relations on M, and T is the discrete topology on M. (Here the empty set ( /0) is the set

of algebraic partial operations on M.) Note that ∧ and ∨ are homomorphisms, and 0 is the zero

homomorphism. Also note that all Qi’s are subalgebras and are closed under p, q, r and 0̄.

3.3 Morphism Ranges

In this section we enumerate all possible cases for range(α), where α : X→M is a morphism with

respect to the alter ego M := 〈M,∧,∨,0,Q,T 〉 and X is finite. All possible cases for range(α)

are shown in Table 3.2 on the previous page. This list is exhaustive because range(α) is closed

under meet ∧, join ∨ and contains 0. Note that the alter ego does not contain the unary relation

{0} and for any α : D(A)→M we have 0 (the zero homomorphism) in D(A). We know that 0 is
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the unary operation M→M defined by the homomorphism 0(x) = 0, and α(0(x)) = 0(α(x)) = 0.

So 0 ∈ range(α).

We wish to show that M satisfies the Interpolation Condition relative to M. That is, we have

that a morphism α : X→M is the restriction to the substructure X of an n-ary term operation of

M for each finite n, X≤Mn, and α ∈ Hom(X,M).

3.3.1 Notation

In the following lemmas we consistently use the following notation. We let X be a topologically-

closed substructure of Mn where n is some fixed finite positive integer; α : X→M is a morphism

in the topological quasivariety.

For j ∈ range(α) ⊆M, we set X j = {x ∈ X : α(x) = j}, and set a j =
∧
(X j) and b j =

∨
(X j).

Note that a j and b j are well defined, as these are finite meets and joins respectively.

3.3.2 The General Argument

To show that the term interpolation condition holds, in each case we must show that α(x) = t(x) for

x∈X where t is some term on Mn. Because the algebra is unary, so are all terms, and we must have

t(x) = f (πi(x)) (or t = f ◦πi) for some co-ordinate i, where 1≤ i≤ n, and some f ∈ {p,q,r, 0̄, id}.

In each of the following lemmas, we shall find a co-ordinate i (where 1 ≤ i ≤ n ), and argue

that there must be a function f ∈ {p,q,r, 0̄, id} such that for all j ∈ range(α) we have

j = f (πi(a j)) = f (πi(b j)).
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Lemma 3.3.1. For all j ∈ range(α), if f (a j(i)) = f (b j(i)) = j for some co-ordinate i, where 1≤

i≤ n, and some f ∈ {p,q,r, 0̄, id} then we have α(x) = f (x(i)) for every x ∈ X, and so α(x) = t(x)

for x ∈ X where t is some term on Mn.

Proof. We have for x ∈ X j that

a j ≤ x≤ b j,

which means that each co-ordinate respects the order, so πi(a j) ≤ πi(x) ≤ πi(b j). Because meet

and join are homomorphisms, f is order preserving, and thus

f (πi(a j))≤ f (πi(x))≤ f (πi(b j));

whence

f (πi(x)) = j = α(x).

Because f = id is a possibility, it certainly suffices to show that

j = πi(a j) = πi(b j) for j ∈ range(α).

Now we analyze all possible range (α) and find the term function of M for each range one by one.

Lemma 3.3.2. If range(α) = {0}, then α = 0̄◦π1�X .

Proof. Suppose range(α) = {0}. Since 0̄ is the constant 0 function on the algebra M, we have

α = 0̄◦π1�X .

Lemma 3.3.3. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,1,2,3,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q13. Suppose range(α) = {0,1,2,3,7}. (See Figure 3.2 on the following

page.) With X j, a j, and b j defined as usual, let d2 = b2∧a3, d1 = a3∧b1, d0 = b0∧a1, c7 = a7∨b3

and e0 = a2∧b0.
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a2

b2
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X0

a3
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b7

c7
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e0

Figure 3.2: Diagram for range(α) = {0,1,2,3,7}.
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Here we see that (d0 ≤ a1 ≤ d1 ≤ a3 ≤ b3 ≤ c7) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤

Y4 ≤ Y5 ≤ Y6) and that (e0 ≤ a2 ≤ d2 ≤ a3) is one instance of (Y7 ≤ Y8 ≤ Y9 ≤ Y4).

Let s = 〈d0,a1,d1,a3,b3,c7,e0,a2,d2,〉. Note that s ∈ Q′13 by the above. Suppose also that

s ∈ Q13 then

α(s) = 〈α(d0),α(a1),α(d1),α(a3),α(b3),α(c7),α(e0),α(a2),α(d2)〉

= 〈0,1,1,3,3,7,0,2,2〉.

But 〈0,1,1,3,3,7,0,2,2〉 /∈ Q13, so α(s) /∈ Q13, and thus s /∈ Q13 because α respects Q13. There-

fore there exists a coordinate, say i, with 1≤ i≤ n for which

s(i) = 〈d0(i),a1(i),d1(i),a3(i),b3(i),c7(i),e0(i),a2(i),d2(i)〉 /∈ Q13.

Because

d0 ≤ a1 ≤ d1 ≤ a3 ≤ b3 ≤ c7, and e0 ≤ a2 ≤ d2 ≤ a3

we have that

d0(i)≤ a1(i)≤ d1(i)≤ a3(i)≤ b3(i)≤ c7(i), and e0(i)≤ a2(i)≤ d2(i)≤ a3(i).

So s(i) ∈Q′13 and s(i) /∈Q13, and there exists an f ∈ Clou(M) with f (s(i)) = 〈0,1,1,3,3,7,0,2,2〉

but this forces f = id, as the only term operation of M with 7 in the range is the identity operation.

Thus we have s(i) = 〈0,1,1,3,3,7,0,2,2〉.

Now we show that α is the restriction of the term function πi, that is, that α satisfies the

interpolation condition for this case, and that this means α(x) = x(i) for all x∈X . By Lemma 3.3.1,

this reduces to showing that

j = a j(i) = b j(i) for j ∈ range(α) = {0,1,2,3,7}.

Since c7(i) = b3(i)∨a7(i), and ∨ is a homomorphism, we have 7 = 3∨a7(i), so a7(i) = 7. As

b7 ≥ a7 we have b7(i)≥ a7(i) = 7, so we also have b7(i) = 7.
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We know that a2(i) = 2. Again since d2(i) = b2(i)∧a3(i), and ∧ is a homomorphism, we have

2 = b2(i)∧3, so b2(i) = 2.

Similarly, we know that a1(i) = 1, and since d1(i) = b1(i)∧ a3(i) we have 1 = b1(i)∧ 3, so

b1(i) = 1.

Likewise, since

0 = e0(i)∨d0(i)

= (a2(i)∧b0(i))∨ (a1(i)∧b0(i))

= (2∧b0(i))∨ (1∧b0(i))

we must have b0(i) = 0. As a0 ≤ b0 we have a0(i)≤ b0(i) = 0, so we also have a0(i) = 0.

We already know that a3(i) = b3(i) = 3 from the co-ordinates of s.

Hence, by Lemma 3.3.1 we have α = πi�X , a term function of M.

We omit the detailed explanations in the following cases because all are very similar to

the above case.

Lemma 3.3.4. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,1,2,3} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q12. Suppose range(α) = {0,1,2,3}. (See Figure 3.3 on the next page.) With

X j, a j and b j defined as usual, let d2 = b2 ∧ a3, d1 = a3 ∧ b1, d0 = a1 ∧ b0 and e0 = a2 ∧ b0. We

know that α(a j) = j, essentially by definition (and α respects finite meets), and similarly we know

that α(b j) = j. We get α(e0) = 0 and α(d j) = j from definitions and the fact that α respects

meets.
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Figure 3.3: Diagram for range(α) = {0,1,2,3}.
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Here we see that (d0 ≤ a1 ≤ d1 ≤ a3 ≤ b3) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤Y4 ≤

Y5) and that (e0 ≤ a2 ≤ d2 ≤ a3) is one instance of (Y6 ≤ Y7 ≤ Y8 ≤ Y4).

Let s = 〈d0,a1,d1,a3,b3,e0,a2,d2〉. Note that s ∈ Q′12 by the above. Then the tuple α(s) =

〈0,1,1,3,3,0,2,2〉, and so α(s) /∈ Q12. Thus s /∈ Q12 and there exists a coordinate i for which

s(i) /∈ Q12. From this we have s(i) = 〈0,1,1,3,3,0,2,2〉. We now show that for all x ∈ X we have

x(i) = α(x). By Lemma 3.3.1, it suffices to show that for j ∈ range(α) we have a j(i) = b j(i) = j.

For j = 0 we know that

0 = e0(i)∨d0(i)

= (a2(i)∧b0(i))∨ (a1(i)∧b0(i))

= (2∧b0(i))∨ (1∧b0(i))

we must have b0(i) = 0. As a0 ≤ b0 we have a0(i)≤ b0(i) = 0, so a0(i) = 0.

For j = 1 we argue as follows. From the value of s we have a1(i) = 1, d1(i) = 1, and a3(i) = 3.

Now 1 = d1(i) = b1(i)∧a3(i) = b1(i)∧3, so b1(i) = 1.

For j = 2 we argue similarly. From the value of s we have a2(i) = 2, d2(i) = 2, and a3(i) = 3.

Now 2 = d2(i) = b2(i)∧a3(i) = b2(i)∧3, so b2(i) = 2.

For j = 3 we have a3(i) = b3(i) = 3 from the co-ordinates of s.

Hence, by Lemma 3.3.1 we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.5. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,2,3,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q11. Suppose range(α) = {0,2,3,7} (See Figure 3.4 on the following page.)
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With X j, a j, and b j defined as usual, let d0 = b0∧a2, d2 = a3∧b2 and c7 = a7∨b3.

Here we see that (d0 ≤ a2 ≤ d2 ≤ a3 ≤ b3 ≤ c7) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤

Y4 ≤ Y5 ≤ Y6) and that (d0 ≤ b0) is one instant of (Y1 ≤ Y7).

Let s= 〈d0,a2,d2,a3,b3,c7,b0〉. Note that s∈Q′11 by the above. Then α(s) = 〈0,2,2,3,3,7,0〉,

and so α(s) /∈ Q11. Thus s /∈ Q11 and there is some coordinate i for which s(i) /∈ Q11. From this

we have s(i) = 〈0,2,2,3,3,7,0〉. Here we use that fact that the unique solution of

2 = d2(i) = b2(i)∧a3(i) = b2(i)∧3 is b2(i) = 2,

and the unique solution of

7 = c7(i) = b3(i)∨a7(i) = 3∨a7(i) is a7(i) = 7,

and the unique solution of

7 = a7(i)≤ c7(i)≤ b7(i) is b7(i) = 7.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.6. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,1,3,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q10. Suppose range(α) = {0,1,3,7}. (See Figure 3.5 on the next page.) With

X j, a j, and b j defined as usual, let d0 = b0∧a1, d1 = b1∧a3 and c7 = b3∨a7.

Here we see that (d0 ≤ a1 ≤ d1 ≤ a3 ≤ b3 ≤ c7) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤

Y4 ≤ Y5 ≤ Y6) and that (d0 ≤ b0) is one instance of (Y1 ≤ Y7) .

Let s= 〈d0,a1,d1,a3,b3,c7,b0〉. Note that s∈Q′10 by the above. Then α(s) = 〈0,1,1,3,3,7,0〉,

and so α(s) /∈ Q10. Thus s /∈ Q10 and hence there exists a coordinate i for which s(i) /∈ Q10. From
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Figure 3.4: Diagram for range(α) = {0,2,3,7}.
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a7

b7

c7

X1

X0

X3

X7

Figure 3.5: Diagram for range(α) = {0,1,3,7}.
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this we have s(i) = 〈0,1,1,3,3,7,0〉. Here we use that fact that the unique solution of

7 = c7(i) = b3(i)∨a7(i) = 3∨a7(i) is a7(i) = 7,

and the unique solution of

1 = d1(i) = b1(i)∧a3(i) = b1(i)∧3 is b1(i) = 1.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.7. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,2,3} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q9. Suppose range(α) = {0,2,3}. (See Figure 3.6.) With X j, a j, and b j

a0

b0

d0

a2

b2

a3

b3

d2X0

X2

X3

Figure 3.6: Diagram for range(α) = {0,2,3}.
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defined as usual, let d0 = b0∧a2 and d2 = b2∧a3.

Here we see that (d0 ≤ a2 ≤ d2 ≤ a3 ≤ b3) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤Y4 ≤

Y5) and that (d0 ≤ b0) is one instance of (Y1 ≤ Y6).

Let s = 〈d0,a2,d2,a3,b3,b0〉. Note that s ∈ Q′9 by the above. Then α(s) = 〈0,2,2,3,3,0〉, and

so α(s) /∈Q9. Thus s /∈Q9 and hence there is some coordinate i for which s(i) /∈Q9. From this we

have s(i) = 〈0,2,2,3,3,0〉. We now show that for all x ∈ X we have x(i) = α(x). By Lemma 3.3.1

it suffices to show that for j ∈ range(α) we have a j(i) = b j(i) = j.

For j = 0 we have b0(i) = 0. As a0 ≤ b0 we have a0(i)≤ b0(i) = 0.

For j = 2 we argue as follows. From the value of s we have a2(i) = 2, d2(i) = 2, and a3(i) = 3.

Now 2 = d2(i) = b2(i)∧a3(i) = b2(i)∧3, so b2(i) = 2.

For j = 3 we have a3(i) = b3(i) = 3 from the co-ordinates of s.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.8. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,1,3} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q8. Suppose range(α) = {0,1,3}. (See Figure 3.7 on the next page.) With

X j, a j, and b j defined as usual, let d0 = b0∧a1 and d1 = b1∧a3.

Here we see that (d0 ≤ a1 ≤ d1 ≤ a3 ≤ b3) is one instance of the relation (Y1 ≤Y2 ≤Y3 ≤Y4 ≤

Y5) and that (d0 ≤ b0) is one instance of (Y1 ≤ Y6).

Let s = 〈d0,a1,d1,a3,b3,b0〉. Note that s ∈ Q′8 by the above. Then α(s) = 〈0,1,1,3,3,0〉, and
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a0

b0

d0

a1

b1

a3

b3

d1X0

X1

X3

Figure 3.7: Diagram for range(α) = {0,1,3}.

so α(s) /∈Q8. Thus s /∈Q8 and hence there is some coordinate i for which s(i) /∈Q8. From this we

have s(i) = 〈0,1,1,3,3,0〉. Here we use that fact that the unique solution of

1 = d1(i) = b1(i)∧a3(i) = b1(i)∧3 is b1(i) = 1.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.9. Suppose α : X→M is a morphism, where X ≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,3,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q7. We have range(α) = {0,3,7}. (See Figure 3.8 on the following page.)

With X j, a j, and b j defined as usual, let d0 = b0∧a3 and d3 = b3∧a7.

Here we see that (d0 ≤ a3 ≤ d3 ≤ a7) is one instance of the relation (Y1 ≤ Y2 ≤ Y3 ≤ Y4) and
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a0

b0

d0

a3

b3

a7

b7

d3X0

X3

X7

Figure 3.8: Diagram for range(α) = {0,3,7}.

(d0 ≤ b0) is one instance of (Y1 ≤ Y5).

Let s = 〈d0,a3,d3,a7,b0〉. Note that s ∈ Q′7 by the above. Then α(s) = 〈0,3,3,7,0〉, and so

α(s) /∈ Q7. Thus s /∈ Q7 and we get that there is a coordinate i for which s(i) /∈ Q7. From this we

have s(i) = 〈0,3,3,7,0〉. Here we use that fact that the unique solution of

3 = d3(i) = b3(i)∧a7(i) = b3(i)∧7 is b3(i) = 3.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.10. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,2,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q6. Suppose range(α) = {0,2,7}. (See Figure 3.9 on the next page.) With
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a0

b0

d0

a2

b2

a7

b7

d2X0

X2

X7

Figure 3.9: Diagram for range(α) = {0,2,7}.

X j, a j, and b j defined as usual, let d0 = b0∧a2 and d2 = b2∧a7.

Here we see that (d0 ≤ a2 ≤ d2 ≤ a7) is one instance of the relation (Y1 ≤ Y2 ≤ Y3 ≤ Y4) and

that (d0 ≤ b0) is one instance of (Y1 ≤ Y5).

Let s = 〈d0,a2,d2,a7,b0〉. Note that s ∈ Q′6 by the above. Then α(s) = 〈0,2,2,7,0〉, and so

α(s) /∈ Q6. Thus s /∈ Q6 and we get that there exists i for which s(i) /∈ Q6. From this we have

s(i) = 〈0,2,2,7,0〉. Here we use that fact that the unique solution of

2 = d2(i) = b2(i)∧a7(i) = b2(i)∧7 is b2(i) = 2.

Hence, by Lemma 3.3.1, we have α(x) = x(i) for each x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.11. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.
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If range(α) = {0,1,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q5. Suppose range(α) = {0,1,7}. (See Figure 3.10.) With X j, a j, and b j

a0

b0

d0

a1

b1

a7

b7

d1X0

X1

X7

Figure 3.10: Diagram for range(α) = {0,1,7}.

defined as usual, let d0 = b0∧a1, and d1 = b1∧a7.

Here we see that (d0 ≤ a1 ≤ d1 ≤ a7) is one instance of the relation (Y1 ≤ Y2 ≤ Y3 ≤ Y4) and

that (d0 ≤ b0) is one instance of (Y1 ≤ Y5).

Let s = 〈d0,a1,d1,a7,b0〉. Note that s ∈ Q′5 by the above. Then α(s) = 〈0,1,1,7,0〉, and so

α(s) /∈ Q5. Thus s /∈ Q5 and hence there is some coordinate i for which s(i) /∈ Q5. From this we

have s(i) = 〈0,1,1,7,0〉. Here we use that fact that the unique solution of

1 = d1(i) = b1(i)∧a7(i) = b1(i)∧7 is b1(i) = 1.
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Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.12. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,3} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q4. Suppose range(α) = {0,3}. (See Figure 3.11.) With X j, a j, and b j defined

a0

b0

d0

a3

b3

X0

X3

Figure 3.11: Diagram for range(α) = {0,3}.

as usual, let d0 = b0∧a3.

Here we see that (d0≤ a3≤ b3) is one instance of the relation (Y1≤Y2≤Y3) and that (d0≤ b0)

is one instance of (Y1 ≤ Y4).

Let s = 〈d0,a3,b3,b0〉. Note that s ∈ Q′4 by the above. Then α(s) = 〈0,3,3,0〉, and so α(s) /∈

Q4. Thus s /∈ Q4 and hence there is some coordinate i for which s(i) /∈ Q4. From this we have

s(i) = 〈0,3,3,0〉.
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Hence, by Lemma 3.3.1, we have α(x) = x(i) for every x∈ X , and so α = πi�X , a term function

of M.

Lemma 3.3.13. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,2} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q3. Suppose range(α) = {0,2}. (See Figure 3.12.) With X j, a j, and b j defined

a0

b0

d0

a2

b2

X0

X2

Figure 3.12: Diagram for range(α) = {0,2}.

as usual, let d0 = b0∧a2.

Here we see that (d0≤ a2≤ b2) is one instance of the relation (Y1≤Y2≤Y3), and that (d0≤ b0)

is one instance of (Y1 ≤ Y4).

Let s = 〈d0,a2,b2,b0〉. Note that s ∈ Q′3 by the above. Then α(s) = 〈0,2,2,0〉, and so α(s) /∈

Q3. Thus s /∈ Q3 and hence there is some coordinate i for which s(i) /∈ Q3. From this we have

s(i) = 〈0,2,2,0〉.
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Hence, by the Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term

function of M.

Lemma 3.3.2 and the next lemma are the cases where α might not be the restriction of a

projection.

Lemma 3.3.14. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,1} then α = f (πi)�X , for some i where 1≤ i≤ n.

Proof. Here we use Q2. Suppose range(α) = {0,1}. (See Figure 3.13.) With X j, a j, and b j defined

a0

b0

d0

a1

b1

X0

X1

Figure 3.13: Diagram for range(α) = {0,1}.

as usual, let d0 = b0∧a1.

Let U be the subset of M4 defined by
{
〈Y1,Y2,Y3,Y4〉 ∈M4 : Y1 ≤ Y2 ≤ Y3 & Y1 ≤ Y4

}
. Let S be

the subset of U defined by S = {u ∈U : 〈0,1,1,0〉 ∈ SgM4({u})}. We note that if t ∈U \ S then

〈0,1,1,0〉 /∈ SgM4({t}).

41



Note that Q2 =U \S, and Q′2 =U ∪S. Let s = 〈d0,a1,b1,b0〉. Note that s ∈ Q′2 by the above.

Then α(s) = 〈0,1,1,0〉 /∈ Q2, and therefore s /∈ Q2 and hence there is some coordinate i for which

s(i) /∈ Q2. However d0 ≤ a1 ≤ b1 and d0 ≤ b0, so s(i) ∈U . Thus s(i) ∈ S, and there exists an f ∈

Clou(M), such that f (s(i)) = 〈0,1,1,0〉. We now show that for all x ∈ X we have f (x(i)) = α(x).

By Lemma 3.3.1 it suffices to show that for j ∈ range(α) we have f (a j(i)) = f (b j(i)) = j.

For j = 0 we have f (b0(i)) = 0. As a0 ≤ b0, and each possible f is order preserving, we have

f (a0(i))≤ f (b0(i)) = 0, so f (a0(i)) = 0.

For j = 1 we have f (a1(i)) = f (b1(i)) = 1 from the co-ordinates of s.

Hence, by Lemma 3.3.1, we have α(x) = f (x(i)) for every x ∈ X , and so α = f (πi)�X , the

restriction of a term function of M.

Lemma 3.3.15. Suppose α : X→M is a morphism, where X≤Mn, and M := 〈M,∧,∨,0,Q,T 〉.

If range(α) = {0,7} then α = πi�X , for some i where 1≤ i≤ n.

Proof. Here we use Q1. Suppose range(α) = {0,7}. (See Figure 3.14 on the following page.)

With X j, a j, and b j defined as usual, let d0 = b0∧a7.

Here we see that (d0 ≤ a7) is an instance of the relation (Y1 ≤ Y2).

Let s = 〈d0,a7〉. Note that s ∈ Q′1 by the above. Then α(s) = 〈0,7〉, and so α(s) /∈ Q1. Thus

s /∈ Q1 and there is some coordinate i for which s(i) /∈ Q1. From this we have s(i) = 〈0,7〉. Here

we use that fact that the unique solution of

0 = d0(i) = b0(i)∧a7(i) = b0(i)∧7 is b0(i) = 0,

and the unique solution of

7 = a7(i)≤ b7(i) is b7(i) = 7.
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a0

b0

d0

a7

b7

X0

X7

Figure 3.14: Diagram for range(α) = {0,7}.

Hence, the Lemma 3.3.1, we have α(x) = x(i) for every x ∈ X , and so α = πi�X , a term function

of M.

Now we prove the following Theorem by using Interpolation Condition.

Theorem 3.3.1. The algebra M is dualized by the alter ego 〈M,∧,∨,0,Q,T 〉, where the set

Q = {Q1, . . . ,Q13} as given in Table 3.2 on page 21 .

Proof. For range(α) = {0}, we have shown that α = 0̄◦π1�X ( Lemma 3.3.2).

Moreover, for range(α) = {0,1}, we have proved that

α = f (πi)�X

is a term function of the algebra M ( Lemma 3.3.14).

Furthermore, we have shown (Lemmas 3.3.3, 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8, 3.3.9,

3.3.10, 3.3.11, 3.3.12, 3.3.13, and 3.3.15) that for any range(α) (except range(α) = {0} and
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range(α) = {0,1}), for every x ∈ X , and 1≤ i≤ n we have

α = πi�X ,

a term function of M. This concludes that the alter ego 〈M,∧,∨,0,Q,T 〉 satisfies the interpolation

condition relative to the algebra M, and hence M dualizes M; that means M is dualizable.

The previous Theorem 3.3.1 gives the following corollary.

Corollary 3.3.1. The alter ego 〈M,∧,∨,0,R9,T 〉 yields a duality on ISP(M).

Proof. This follows from Theorem 3.3.1 because Q⊆ R9.

By Theorem 2.6.3, the alter ego 〈M,∧,∨,0,R10,T 〉 yields a duality on ISP(M). From The-

orem 3.3.1, the algebra M is dualized by the alter ego 〈M,∧,∨,0,Q,T 〉. From Corollary 3.3.1,

the alter ego 〈M,∧,∨,0,R9,T 〉 yields a duality on ISP(M). In the alter ego M, a set of algebraic

relations Q is smaller than both R10 and R9. We now are going to show whether or not the alter ego

M is a minimal dualizing structure.
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Chapter 4

Minimality

4.1 Non-evaluation morphisms

We now want to show that the set Q defined on page 22 is minimal. We must show that if Q′ is

a proper subset of Q containing Q12 and Q13 then the algebra M is not dualized by the alter ego

〈M,∧,∨,0,Q′,T 〉. Note that if for some L ∈ ISP(M), we have that L is not isomorphic to ED(L)

because of a non-evaluation morphism, then 〈M,∧,∨,0,Q′,T 〉 does not yield a duality on M.

We first want to prove that the dual of L with respect to 〈M,{∧,∨,0},T 〉 has non-evaluation

morphisms.

Lemma 4.1.1. [17] Let L be a k-ary relation on M. Let β be an element of Mk \ L, where

L′ ⊇ L∪{β} and L≤ L′ ≤Mk are all algebras.

If there is an embedding ι of Hom(L,M) into Hom(L′,M) such that

• ι(h1∧h2) = ι(h1)∧ ι(h2),
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• ι(h1∨h2) = ι(h1)∨ ι(h2),

• ι(0) = 0, and

• [ι(π j)](β ) = π j(β );

then the dual of L with respect to 〈M,{∧,∨,0},T 〉 has a non-evaluation morphism.

Proof. Let ι be the embedding mentioned above. Define α : Hom(L,M)→M by

α(h) = [ιh](β ).

Note that for a ∈ L we have

〈ea(πk)〉k = 〈πk(a)〉k = 〈ak〉k = a 6= β ;

whereas

〈α(πk)〉k = β .

Thus α is not an evaluation morphism. On the other hand, for h ∈ D(L), α(h) is well defined.

Because there is an embedding ι of Hom(L,M) into Hom(L′,M) and α : Hom(L,M)→M we

have

α(h1∧h2) = [ι(h1∧h2)](β )

= [ι(h1)∧ ι(h2)](β )

= [ιh1](β )∧ [ιh2](β )

= α(h1)∧α(h2),

and similarly, α(h1∨h2) = α(h1)∨α(h2), and α(0) = [ι(0)](β ) = 0(β ) = 0, hence α respects ∧,

∨ and 0. Thus D(L) contains a non-evaluation morphism with respect to 〈M,{∧,∨,0},T 〉.
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Any alter ego 〈M,∧,∨,0,Q′,T 〉 that dualizes M must contain relations that the morphisms

provided by Lemma 4.1.1 do not respect.

We want to prove that Hom(Qi,M) embeds into Hom(Q′i,M). We prove this in two separate

lemmas. Firstly, we prove that Hom(Qi,M) embeds into Hom(Q′i,M) for 1 ≤ i ≤ 13 (i 6= 2)

and secondly, we prove that Hom(Q2,M) embeds into Hom(Q′2,M). The general argument in

Lemma 4.1.2 does not work for Q2 as |Q′2 \Q2|> 1, so we need a second lemma.

Lemma 4.1.2. Let Qi, Q′i and βi be defined as in Chapter 3. For 1 ≤ i ≤ 13 (i 6= 2), there is an

embedding ι of Hom(Qi,M) into Hom(Q′i,M) satisfying the properties of Lemma 4.1.1.

Proof. In general, note that we have p(x) ≤ q(x) and p(x) ≤ r(x). Consulting Table 4.1 on the

following page and Table 4.2 on page 49, note that in each case we have bi, ci, di, ui, and vi are all

elements of Qi and that

bi = p(βi) = p(ui) = p(vi),

ci = q(βi) = q(vi), and

di = r(βi) = r(ui).

Let h∈Hom(Qi,M). We know that 〈h(bi),h(ci),h(di)〉 ∈ {0,1}3. We can establish that h(bi)≤

h(ci) and h(bi)≤ h(di) by noting that

h(bi) = h(p(vi)) = p(h(vi))≤ q(h(vi)) = h(q(vi)) = h(ci),

h(bi) = h(p(ui)) = p(h(ui))≤ r(h(ui)) = h(r(ui)) = h(di).

Thus, there exists an mi ∈M such that 〈h(bi),h(ci),h(di)〉= 〈p(mi),q(mi),r(mi)〉. By Lemma 3.2.1,

extend h to h′ : Q′i→M by setting h′(βi) = mi. We have

h′(p(βi)) = h′(bi) = h(bi) = p(mi) = p(h′(βi)),
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i βi ui vi

1 〈0,7〉 〈2,7〉 〈1,7〉

3 〈0,2,2,0〉 〈0,0,2,2〉 〈0,2,3,0〉

4 〈0,3,3,0〉 〈0,1,3,0〉 〈0,2,3,1〉

5 〈0,1,1,7,0〉 〈0,1,3,7,0〉 〈0,0,1,7,0〉

6 〈0,2,2,7,0〉 〈0,0,0,7,0〉 〈0,2,3,7,0〉

7 〈0,3,3,7,0〉 〈0,1,3,7,2〉 〈0,2,2,7,1〉

8 〈0,1,1,3,3,0〉 〈0,3,3,3,3,0〉 〈0,0,0,3,3,1〉

9 〈0,2,2,3,3,0〉 〈0,0,0,3,3,2〉 〈0,2,2,2,3,0〉

10 〈0,1,1,3,3,7,0〉 〈0,3,3,3,3,7,0〉 〈0,1,1,2,3,7,0〉

11 〈0,2,2,3,3,7,0〉 〈0,0,0,3,3,7,0〉 〈0,3,3,3,3,7,1〉

12 〈0,1,1,3,3,0,2,2〉 〈0,1,1,1,3,0,0,0〉 〈0,0,0,2,3,0,2,2〉

13 〈0,1,1,3,3,7,0,2,2〉 〈0,3,3,3,3,7,0,2,2〉 〈0,0,0,3,3,7,0,2,2〉

Table 4.1: Elements βi, ui, vi for proof of the Lemma 4.1.2
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i bi ci di

1 〈0,1〉 〈0,1〉 〈0,1〉

3 〈0,0,0,0〉 〈0,1,1,0〉 〈0,0,0,0〉

4 〈0,0,0,0〉 〈0,1,1,0〉 〈0,1,1,0〉

5 〈0,0,0,1,0〉 〈0,0,0,1,0〉 〈0,1,1,1,0〉

6 〈0,0,0,1,0〉 〈0,1,1,1,0〉 〈0,0,0,1,0〉

7 〈0,0,0,1,0〉 〈0,1,1,1,0〉 〈0,1,1,1,0〉

8 〈0,0,0,0,0,0〉 〈0,0,0,1,1,0〉 〈0,1,1,1,1,0〉

9 〈0,0,0,0,0,0〉 〈0,1,1,1,1,0〉 〈0,0,0,1,1,0〉

10 〈0,0,0,0,0,1,0〉 〈0,0,0,1,1,1,0〉 〈0,1,1,1,1,1,0〉

11 〈0,0,0,0,0,1,0〉 〈0,1,1,1,1,1,0〉 〈0,0,0,1,1,1,0〉

12 〈0,0,0,0,0,0,0,0〉 〈0,0,0,1,1,0,1,1〉 〈0,1,1,1,1,0,0,0〉

13 〈0,0,0,0,0,1,0,0,0〉 〈0,0,0,1,1,1,0,1,1〉 〈0,1,1,1,1,1,0,0,0〉

Table 4.2: Elements bi, ci, di for proof of the Lemma 4.1.2
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h′(q(βi)) = h′(ci) = h(ci) = q(mi) = q(h′(βi)),

h′(r(βi)) = h′(di) = h(di) = r(mi) = r(h′(βi)).

Thus h′ is a homomorphism, and every homomorphisms in Hom(Qi,M) extends to Hom(Q′i,M).

The properties of the Lemma 4.1.1 hold because ∧, ∨ and 0 are homomorphism; all Qi’s are

subalgebras and are closed under p, q, r and 0̄; Qi is a k-ary relation on M; β be an element of

Mk \Qi, where Q′i ⊇ Qi∪{β} and Qi ≤ Q′i ≤Mk are all algebras; and there is an embedding ι of

Hom(Qi,M) into Hom(Q′i,M).

Therefore, for 1≤ i≤ 13 (i 6= 2), Hom(Qi,M) embeds into Hom(Q′i,M) in a way that satisfies

the Lemma 4.1.1.

As Q′2 is strictly larger Q2∪{β2}, a slightly different argument is needed for Q2.

Lemma 4.1.3. Let Q2, Q′2 and β2 be defined as in Chapter 3. There is an embedding ι of

Hom(Q2,M) into Hom(Q′2,M) satisfying the properties of Lemma 4.1.1.

Proof. First we determine that Hom(Q2,M) = {0̄,π1,π2,π3 ∧ π4,π3,π3 ∨ π4,π4}, illustrated in

Table 4.3 on the following page.

We can do this by direct calculation (or by using Lemma 4.2.1 and Lemma 4.2.2). It is clear

that each of these extends to D(Q′2). Thus every homomorphism in Hom(Q2,M) embeds into

Hom(Q′2,M) in a way that satisfies the Lemma 4.1.1.

Now we define the maps αi : D(Qi)→ M. Recall that Qi and Q′i are subuniverses of Mk as

defined in Chapter 3. Qi values are given in the fourth column of the Table 3.2 on page 21 and

βi is given in the fifth column of the Table 3.2 on page 21. Recall that for h in Hom(Qi,M) there
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0̄ π1 π2 π3 π4 π3∧π4 π3∨π4

0000 0 0 0 0 0 0 0

0001 0 0 0 0 1 0 1

0010 0 0 0 1 0 0 1

0011 0 0 0 1 1 1 1

0111 0 0 1 1 1 1 1

1111 0 1 1 1 1 1 1

Table 4.3: Homomorphisms of Q2 on {0,1}-elements.

is a unique h′ in Hom(Q′i,M) such that h = h′ �Qi . From Lemma 4.1.1 we see the non-evaluation

morphism αi with respect to 〈M,∧,∨,0,T 〉 for Qi ≤Q′i is given by:

αi(h) = eβi(h
′) for 1≤ i≤ 13.

Note that:

• αi is “evaluate at βi”, an element in Q′i \Qi;

• αi does not respect Qi;

• αi respects ∧, ∨, 0.

Lemma 4.1.4. For 1≤ i≤ 13, we have rangeαi ⊇ {π j(βi) | 1≤ j ≤ n}.

Proof. We have αi(π j) = π j(βi), and βi ∈ range(αi)
k, where βi is k-ary and we are done.
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4.2 When does the Map αi Respect Q j for j 6= i?

In this section, we verify whether or not the map αi : D(Qi)→ M respects all of the relations

Q j ∈ Q \ {Qi}. First recall that the morphism αi : D(Qi)→M respects the relation Q j of arity k,

means if (h1, . . . ,hk) ∈ Qk
i is such that (h1, . . . ,hk) ∈ QD(Qi)

j then (αi(h1), . . . ,αi(hk)) ∈ QM
j . Thus

to check that αi preserves a k-ary relation R, we need to know Hom(Qi,M) =D(Qi). Second recall

that a subset S of a partial ordered set is an up-set if x ∈ S and y≥ x implies y ∈ S. We define

S01(X) := X ∩{0,1}s for X ⊆Ms.

Lemma 4.2.1. Let A ≤Ms be an algebra with the property that for all s, and t in S01(A) where

s < t there is an element u ∈ A such that s = p(u) and t = q(u). Then for h ∈ D(A) we have

S01(h−1(1)) is an up-set of S01(A).

Proof. Let s ∈ S01(h−1(1)) and t ∈ S01(A) be elements such that s < t. Pick u as in the hypothe-

sis. We have 1 = h(s) = h(p(u)) = p(h(u)) ≤ q(h(u)) = h(q(u)) = h(t), so t ∈ S01(h−1(1)), and

S01(h−1(1)) is an up-set.

Corollary 4.2.1. For A ∈ Q∪{Q′i | 1 ≤ i ≤ 13}, and h ∈ D(A) we have S01(h−1(1)) is an up-set

of S01(A).

Proof. This follows from Lemma 4.2.1 because if π j(s) ≤ πk(s) and π j(t) ≤ πk(t) then π j(u) ≤

πk(u) for s ∈ S01(h−1(1)), t ∈ S01(A) and u ∈ A.

Lemma 4.2.2. If h1,h2 ∈ Hom(Qi,M) and S01(h−1
1 (1)) = S01(h−1

2 (1)) then h1 = h2.

Proof. For a ∈ Qi, we have 〈p(a),q(a),r(a)〉 ∈ {0,1}s. Since h1,h2 ∈ Hom(Qi,M) and

S01(h−1
1 (1)) = S01(h−1

2 (1)) we have h2(p(a)) = h1(p(a)), h2(q(a)) = h1(q(a)), and h2(r(a)) =
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h1(r(a)) or, we have p(h2(a)) = p(h1(a)), q(h2(a)) = q(h1(a)), and r(h2(a)) = r(h1(a)). From

this we have h2(a) = h1(a) (because rows of the Table 3.1 on page 20 are unique); that means

h1 = h2.

The previous lemmas allow us to compute Hom(Qi,M) by up-sets of S01(Qi) := Qi∩{0,1}s.

Before launching into the details of the proof, let us examine the logical structure of what

we wish to show. Recall that αi is a map from D(Qi) to M. To say that αi respects Q j, where

Q j is k-ary, means that for all ĥ = 〈h1, . . . ,hk〉 ∈ D(Qi)
k we have that ĥ in Q j implies α(ĥ) :=

〈α(h1), . . . ,α(hk)〉 in Q j, or contrapositively if α(ĥ) is not in Q j then ĥ is not in Q j. There are two

ways to have α(ĥ) not in Q j :

1. α(ĥ) ∈Mk \Q′j,

2. α(ĥ) ∈ Q′j \Q j.

For j 6= 2, α(ĥ) ∈Q′j \Q j means α(ĥ) = β j. We first deal with α(ĥ) ∈Mk \Q′j. For the rest of this

chapter we look at α(ĥ) ∈ Q′j \Q j.

Lemma 4.2.3. For i 6= j, and Q j a k-ary relation, we have that for all 〈h1, . . . ,hk〉 ∈ D(Qi)
k

if 〈αi(h1), . . . ,αi(hk)〉 ∈Mk \Q′j then 〈h1, . . . ,hk〉 is not in Q j.

Proof. We prove the contrapositive. Suppose that 〈h1, . . . ,hk〉 in Q j. Clearly 〈h1, . . . ,hk〉 in Q′j.

Then, because ι is order-preserving, 〈(ιh1), . . . ,(ιhk)〉 in Q′j, and, in particular,

〈(ιh1)(βi), . . . ,(ιhk)(βi)〉= 〈αi(h1), . . . ,αi(hk)〉 ∈ Q′j.

The following lemma is helpful to prove that the map αi respects Q j for j 6= i and j 6= 2.
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Lemma 4.2.4. For i 6= j, j 6= 2, and Q j a k-ary relation, if rangeα j * rangeαi we have that for all

〈h1, . . . ,hk〉 ∈ D(Qi)
k

if 〈αi(h1), . . . ,αi(hk)〉= β j then 〈h1, . . . ,hk〉 is not in Q j.

That is, αi respects Q j.

Proof. This follows because for all 〈h1, . . . ,hk〉 ∈D(Qi)
k we have 〈αi(h1), . . . ,αi(hk)〉 ∈ (rangeαi)

k,

but β j /∈ (rangeαi)
k.

Now we start to verify whether or not the map αi respects all of the relations Q j for j 6= i.

Lemma 4.2.5. The map α1 : D(Q1)→M respects Q j for j 6= 1.

Proof. Note that Q1 is defined in Table 3.2 on page 21 as {〈Y1,Y2〉 ∈M2 : Y1 ≤ Y2}\{〈0,7〉}. We

now compute Hom(Q1,M). To do this, we make an up-sets table. To get all up-sets we first draw

the lattice diagram of S01(Q1). (See Figure 4.1.) From the lattice diagram we find the up-sets of

q(0)1 := 00

q(1)1 := 01

q(2)1 := 11

Figure 4.1: The Lattice Diagram for S01(Q1).

S01(h−1(1)), the corresponding h ∈ Hom(Q1,M), and α1(h) which are given by Table 4.4 on the

following page.
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S01(h−1(1)) h ∈ Hom(Q1,M) α1(h)

/0 h(0)1 = 0̄ 0

{q(2)1 } h(1)1 = π1 0

{q(2)1 ,q(1)1 } h(2)1 = π2 7

Table 4.4: Up-sets table of S01(Q1)

We can calculate that Hom(Q1,M) = {h(0)1 ,h(1)1 ,h(2)1 }, where h(0)1 = 0̄, h(1)1 = π1, and h(2)1 = π2,

given in Table 4.5.

h(0)1 = 0̄ h(1)1 = π1 h(2)1 = π2

00 0 0 0

01 0 0 1

11 0 1 1

Table 4.5: Homomorphism table of S01(Q1)

We have α1 : Hom(Q1,M)→M is defined by

α1(h) = (ιh)(β1), where β1 = 〈0,7〉.

Suppose that α1 does not respect R, a k-ary relation. Then there exists

{h1,h2, . . . ,hk} ⊆ Hom(Q1,M)

such that 〈h1,h2, . . . ,hk〉 ∈ R, but 〈α1(h1),α1(h2), . . . ,α1(hk)〉 /∈ R. From the up-set table, for

h ∈ Hom(Q1,M) we have α1(h) ∈ {0,0,7}.

Firstly, we prove that α1 respects Q j for j 6= 1,2. We have rangeα1 = {0,7}, which by

Lemma 4.1.4 does not contain rangeα j for j ≥ 3, so by Lemma 4.2.4, the map α1 respects Q j

for j ≥ 3.
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Secondly, we prove that α1 respects Q2. Recall that Q2 is defined in Table 3.2 on page 21. Sup-

pose 〈h1,h2,h3,h4〉 ∈Hom(Q1,M)4 where h1≤ h2≤ h3 and h1≤ h4 such that 〈α1(h1), . . . ,α1(h4)〉

∈ Q′2 \Q2, here (h1,h4) ∈ {h
(0)
1 ,h(1)1 }, h2 = h(2)1 , and h3 = h(2)1 . As rangeα1 = {0,7} this means

〈α1(h1), . . . ,α1(h4)〉= 〈0,7,7,0〉. Thus 〈h1,h2,h3,h4〉(0,3) = 〈0,3,3,0〉 /∈ Q2.

So 〈h1,h2,h3,h4〉 /∈ Q2. Thus α1 respects Q2.

Hence the map α1 respects Q j for j 6= 1.

The above Lemma is looked at in detail. The following Lemmas are simplified.

Lemma 4.2.6. The map α2 : D(Q2)→M respects Q j for j 6= 2.

Proof. Note that Q2 is defined in Table 3.2 on page 21. By drawing the lattice diagram of S01(Q2)

(See Figure 4.2) we determine the up-sets of S01(h−1(1)), the corresponding h ∈ Hom(Q2,M),

and α2(h). See Table 4.6.

S01(h−1(1)) h ∈ Hom(Q2,M) α2(h)

/0 h(0)2 = 0̄ 0

{q(5)2 } h(1)2 = π1 0

{q(5)2 ,q(4)2 } h(2)2 = π2 1

{q(5)2 ,q(4)2 ,q(3)2 } h(3)2 = π3∧π4 0

{q(5)2 ,q(4)2 ,q(3)2 ,q(2)2 } h(4)2 = π3 1

{q(5)2 ,q(4)2 ,q(3)2 ,q(1)2 } h(5)2 = π4 0

{q(5)2 ,q(4)2 ,q(3)2 ,q(2)2 ,q(1)2 } h(6)2 = π3∨π4 1

Table 4.6: Up-sets table of S01(Q2)

We can calculate that Hom(Q2,M) = {h(0)2 ,h(1)2 , . . . ,h(6)2 }, where h(0)2 = 0̄, h(1)2 = π1, h(2)2 = π2,
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q(0)2 := 0000

q(1)2 := 0001q(2)2 := 0010

q(3)2 := 0011

q(4)2 := 0111

q(5)2 := 1111

Figure 4.2: The Lattice Diagram for S01(Q2).
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h(3)2 = π3∧π4, h(4)2 = π3, h(5)2 = π4, and h(6)2 = π3∨π4, defined in Table 4.7.

h(0)2 h(1)2 h(2)2 h(3)2 h(4)2 h(5)2 h(6)2

0000 0 0 0 0 0 0 0

0001 0 0 0 0 0 1 1

0010 0 0 0 0 1 0 1

0011 0 0 0 1 1 1 1

0111 0 0 1 1 1 1 1

1111 0 1 1 1 1 1 1

Table 4.7: Homomorphism table of S01(Q2)

We have α2 : Hom(Q2,M)→M is defined by

α2(h) = (ιh)(β2), where β2 = 〈0,1,1,0〉.

From the up-set table, for h ∈Hom(Q2,M) we have α2(h) ∈ {0,0,1,0,1,0,1}, and from Table 3.2

we get β j /∈ {0,1}k for j 6= 2. By Lemma 4.2.4 the map α2 respects Q j for j 6= 2.

Lemma 4.2.7. The map α4 : D(Q4)→M respects Q j for j 6= 4.

Proof. Note that Q4 = {〈Y1,Y2,Y3,Y4〉 ∈M4 : Y1 ≤ Y2 ≤ Y3 and Y1 ≤ Y4}\{〈0,3,3,0〉}, defined in

Table 3.2. Now we draw the lattice diagram of S01(Q4). (See Figure 4.3 on the following page.)

From the lattice diagram we find the up-sets of S01(h−1(1)), the corresponding h ∈ Hom(Q4,M),

and α4(h). See Table 4.8 on page 60.

We can determine that Hom(Q4,M) = {h(0)4 ,h(1)4 , . . . ,h(9)4 }, where h(0)4 = 0̄, h(1)4 = π1, h(2)4 =

π2∧π4, h(3)4 = π2, h(4)4 = π3∧π4, h(5)4 = π2∨ (π3∧π4), h(6)4 = π4, h(7)4 = π3, h(8)4 = π2∨π4, and

h(9)4 = π3∨π4, defined in Table 4.9 on page 60.
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q(0)4 := 0000

q(2)4 := 0010 q(1)4 := 0001

q(4)4 := 0110 q(3)4 := 0011

q(5)4 := 0111

q(6)4 := 1111

Figure 4.3: The Lattice Diagram for S01(Q4).
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S01(h−1(1)) h ∈ Hom(Q4,M) α4(h)

/0 h(0)4 = 0̄ 0

{q(6)4 } h(1)4 = π1 0

{q(6)4 ,q(5)4 } h(2)4 = π2∧π4 0

{q(6)4 ,q(5)4 ,q(4)4 } h(3)4 = π2 3

{q(6)4 ,q(5)4 ,q(3)4 } h(4)4 = π3∧π4 0

{q(6)4 ,q(5)4 ,q(4)4 ,q(3)4 } h(5)4 = π2∨ (π3∧π4) 3

{q(6)4 ,q(5)4 ,q(4)4 ,q(1)4 } h(6)4 = π4 0

{q(6)4 ,q(5)4 ,q(4)4 ,q(3)4 ,q(2)4 } h(7)4 = π3 3

{q(6)4 ,q(5)4 ,q(4)4 ,q(3)4 ,q(1)4 } h(8)4 = π2∨π4 3

{q(6)4 ,q(5)4 ,q(4)4 ,q(3)4 ,q(2)4 ,q(1)4 } h(9)4 = π3∨π4 3

Table 4.8: Up-sets table of S01(Q4)

h(0)4 h(1)4 h(2)4 h(3)4 h(4)4 h(5)4 h(6)4 h(7)4 h(8)4 h(9)4

0000 0 0 0 0 0 0 0 0 0 0

0001 0 0 0 0 0 0 1 0 1 1

0010 0 0 0 0 0 0 0 1 0 1

0011 0 0 0 0 1 1 1 1 1 1

0110 0 0 0 1 0 1 0 1 1 1

0111 0 0 1 1 1 1 1 1 1 1

1111 0 1 1 1 1 1 1 1 1 1

Table 4.9: Homomorphism table of S01(Q4)
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We have α4 : Hom(Q4,M)→M is defined by

α4(h) = (ιh)(β4), where β4 = 〈0,3,3,0〉.

From the up-set table, we have α4(h) ∈ {0,0,0,3,0,3,0,3,3,3}.

Firstly, we prove that α4 respects Q j for j 6= 2,4. We have rangeα4 = {0,3}, which by

Lemma 4.1.4 does not contain rangeα j for j ≥ 3, so by Lemma 4.2.4, the map α4 respects Q j

for j ≥ 3.

Secondly, we prove that α4 respects Q2. Recall that Q2 is defined in Table 3.2 on page 21. Sup-

pose 〈h1,h2,h3,h4〉 ∈Hom(Q4,M)4 where h1≤ h2≤ h3 and h1≤ h4 such that 〈α4(h1), . . . ,α4(h4)〉

∈ Q′2 \Q2, here (h1,h4) ∈ {h
(0)
4 ,h(1)4 ,h(2)4 ,h(4)4 ,h(6)4 }, and (h2,h3) ∈ {h

(3)
4 ,h(5)4 ,h(7)4 ,h(8)4 ,h(9)4 }. As

rangeα3 = {0,3} this means 〈α4(h1), . . . ,α4(h4)〉 = 〈0,3,3,0〉. Thus 〈h1,h2,h3,h4〉(0,7,7,0) =

〈0,7,7,0〉 /∈ Q2. So 〈h1,h2,h3,h4〉 /∈ Q2. Thus α4 respects Q2.

Hence the map α4 : D(Q4)→M respects Q j for j 6= 4.

Lemma 4.2.8. If 7 ∈ rangeαi and 7 /∈ rangeα j and j 6= 2, then αi respects Q j.

Proof. Let a be an element of Qi gotten by replacing a 7 in βi with a 3. Suppose that η =
∧

k∈K πk.

If η(βi) ≤ 3 then η(βi) = η(a) as 3∧ x = x for x ≤ 3. Now we know from the computation of

D(Qi) that h ∈ D(Qi) can be written as the join of meets of projections. If h(βi) ≤ 3 then each of

the joinands is less than or equal to 3, and by the preceding argument h(βi) = h(a).

As 7 /∈ range(α j), if there is a k-tuple of homomorphisms in D(Qi) such that 〈h1, . . . ,hk〉(βi) =

β j then 〈h1, . . . ,hk〉(a) = β j, which proves that αi respects Q j.

Lemma 4.2.9. For i 6= 2, if there is a four tuple ĥ ∈ D(Qi)
4 such that α(ĥ) ∈ Q′2 \Q2 then there is

an element a ∈ Sg({βi})∩Qi such that ĥ(a) = 〈0,1,1,0〉.
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Proof. Suppose that α(ĥ) ∈ Q′2 \Q2. That means there is a term operation f such that f (α(ĥ)) =

〈0,1,1,0〉. Set a = r( f (βi)). Clearly a∈ Sg({βi}). As a 6= βi we have a∈Qi (Lemma 3.2.1). Now

ĥ(a) = ĥ(r( f (a)) = r( f (αi(ĥ))) = r(〈0,1,1,0〉) = 〈0,1,1,0〉 .

Corollary 4.2.2. For i 6= 2, the morphism αi respects the relation Q2.

Now we can prove the following theorem. It implies that removing any Qi with i ≤ 11 results

in an alter ego that is not dualizing.

Theorem 4.2.1. The map αi : D(Qi)→M respects Q j for j 6= i, with the following exceptions.

1. α12 does not respect Q8 or Q9; and

2. α13 does not respect Q10 or Q11.

Proof. From Lemma 4.2.5, the map α1 respects Q j, for j 6= 1. From Lemma 4.2.6, the map α2

respects Q j, for j 6= 2. From Lemma 4.2.7, the map α4 respects Q j, for j 6= 4.

The remainder of the calculations are gathered in Tables 4.10 on page 64, 4.11 on page 65,

and 4.12 on page 66. In these tables, in row αi and column Q j a string of digits (for instance 00070

in α7 row and Q1 column) represents an element ai of Qi and means the following. Suppose that

Q j ≤Ms, and that ĥ is an s-tuple of homomorphisms from D(αi) such that αi(ĥ) = β j where β j is

the element excluded from Q j. Then ĥ(ai) = β j also.

Such a claim is verified by computing D(Qi), which is done by using Lemmas 4.2.1 and 4.2.2.

The lattice diagrams for the up-sets of S01(Qi) are shown in Figure 4.4 on page 67, Figure 4.5

on page 68, Figure 4.6 on page 69, Figure 4.7 on page 70, Figure 4.8 on page 71, Figure 4.9 on

page 72.
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In the four cases where αi does not respect Q j (i 6= j), the calculations were verified by com-

puter analysis by David Casperson.

Now we prove the following theorem:

Theorem 4.2.2. The alter ego 〈M,∧,∨,0,Q,T 〉 is a dualizing structure. The set Q is minimal

with respect to the the alter egos that extend 〈M,{∧,∨,0},{Q12,Q13},T 〉.

Proof. In Chapter 3 we showed that the algebra M is dualized by the alter-ego 〈M,∧,∨,0,Q,T 〉.

In this Chapter we proved that each relation Q j in Q except Q12 and Q13 is a necessary part of a

dualizing structure for the five-element algebra by finding a specific morphism which is an non-

evaluation morphism, when Q j is dropped. Thus the set Q is minimal with respect to the the alter

egos that extend 〈M,{∧,∨,0},{Q12,Q13},T 〉.

From Theorem 4.2.2, the set Q is minimal with respect to the the alter egos that extend

〈M,{∧,∨,0},{Q12,Q13},T 〉.
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Q1 Q2 Q3 Q4 Q5

α1 No, Lem 4.1.1 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 Lem 4.2.5

α2 Lem 4.2.6 No, Lem 4.1.1 Lem 4.2.6 Lem 4.2.6 Lem 4.2.6

α3 Lem 4.2.4 Lem 4.2.9 No, Lem 4.1.1 Lemm 4.2.4 Lem 4.2.4

α4 Lem 4.2.7 Lem 4.2.9 Lem 4.2.7 No, Lem 4.1.1 Lem 4.2.7

α5 00070 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 No, Lem 4.1.1

α6 00070 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 Lem 4.2.4

α7 00070 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 Lem 4.2.4

α8 Lem 4.2.4 Lem 4.2.9 Lem 4.2.4 000330 Lem 4.2.4

α9 Lem 4.2.4 Lem 4.2.9 022220 000330 Lem 4.2.4

α10 0000070 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 0111170

α11 0000070 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 Lem 4.2.4

α12 Lem 4.2.4 Lem 4.2.9 00022022 00033033 Lem 4.2.4

α13 000007000 Lem 4.2.9 Lem 4.2.8 Lem 4.2.8 011117000

See the proof of Theorem 4.2.1 for the meaning of the entries.

Table 4.10: The map αi respects Q j for j 6= i (Part I).
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Q6 Q7 Q8 Q9

α1 Lem 4.2.5 Lem 4.2.5 Lem 4.2.8 Lem 4.2.8

α2 Lem 4.2.6 Lem 4.2.6 Lem 4.2.6 Lem 4.2.6

α3 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4

α4 Lem 4.2.7 Lem 4.2.7 Lem 4.2.7 Lem 4.2.7

α5 Lem 4.2.4 Lem 4.2.4 Lem 4.2.8 Lem 4.2.8

α6 No, (Lem 4.1.1) Lem 4.2.4 Lem 4.2.8 Lem 4.2.8

α7 Lem 4.2.4 No, (Lem 4.1.1) Lem 4.2.8 Lem 4.2.8

α8 Lem 4.2.4 Lem 4.2.4 No, (Lem 4.1.1) Lem 4.2.4

α9 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4 No, (Lem 4.1.1)

α10 Lem 4.2.4 0003370 Lem 4.2.8 Lem 4.2.8

α11 0222270 0003370 Lem 4.2.8 Lem 4.2.8

α12 Lem 4.2.4 Lem 4.2.4 No! (comp) No! (comp)

α13 000227022 000337033 Lem 4.2.8 Lem 4.2.8

See the proof of Theorem 4.2.1 for the meaning of the entries.

Table 4.11: Where αi respects Q j (Part II).
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Q10 Q11 Q12 Q13

α1 Lem 4.2.5 Lem 4.2.5 Lem 4.2.8 Lem 4.2.5

α2 Lem 4.2.6 Lem 4.2.6 Lem 4.2.6 Lem 4.2.6

α3 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4

α4 Lem 4.2.7 Lem 4.2.7 Lem 4.2.7 Lem 4.2.7

α5 Lem 4.2.4 Lem 4.2.4 Lem 4.2.8 Lem 4.2.4

α6 Lem 4.2.4 Lem 4.2.4 Lem 4.2.8 Lem 4.2.4

α7 Lem 4.2.4 Lem 4.2.4 Lem 4.2.8 Lem 4.2.4

α8 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4

α9 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4 Lem 4.2.4

α10 No, (Lem 4.1.1) Lem 4.2.4 Lem 4.2.8 Lem 4.2.4

α11 Lem 4.2.4 No, (Lem 4.1.1) Lem 4.2.8 Lem 4.2.4

α12 Lem 4.2.4 Lem 4.2.4 No, (Lem 4.1.1) Lem 4.2.4

α13 No! (comp) No! (comp) Lem 4.2.8 No, (Lem 4.1.1)

See the proof of Theorem 4.2.1 for the meaning of the entries.

Table 4.12: Where αi respects Q j (Part III).
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0000

0010 0001

0110 0011

0111

1111

Figure 4.4: The Lattice Diagram for S01(Q3), and S01(Q4).
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00000

00010 00001

00110 00011

01110 00111

01111

11111

Figure 4.5: The Lattice Diagram for S01(Q5), S01(Q6), and S01(Q7).
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000000

000010 000001

000110 000011

001110 000111

011110 001111

011111

111111

Figure 4.6: The Lattice Diagram for S01(Q8), and S01(Q9).
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0000000

0000010 0000001

0000110 0000011

0001110 0000111

0011110 0001111

0111110 0011111

0111111

1111111

Figure 4.7: The Lattice Diagram for S01(Q10), and S01(Q11).
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00000000

00001000

00011000

00111000 00011001

0011100101111000 00011011

01111001 00111011 0001111111111000

11111001 01111011 00111111

0111111111111011

11111111

Figure 4.8: The Lattice Diagram for S01(Q12).
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000000000

000001000

000011000

000111000

001111000 000111001

001111001011111000 000111011

011111001 001111011 000111111111111000

111111001 011111011 001111111

011111111111111011

111111111

Figure 4.9: The Lattice Diagram for S01(Q13).
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Chapter 5

Conclusion

5.1 Summary

In this thesis we looked for when an alter ego is a minimal dualizing structure.

To summarize, we covered the required preliminary materials such as notations, definitions,

examples, and theorems for algebras, lattices, quasivarieties, topology, and dualizability in Chap-

ter 2. In Chapter 3, we defined a five-element algebra, an alter ego and concluded that our defined

alter ego satisfies the interpolation condition relative to the algebra and thus dualizes the algebra.

That means, we proved the alter-ego M := 〈M,∧,∨,0,Q,T 〉 dualizes the algebra M. In Chapter

4, we showed that the set of relations is a necessary part of a dualizing structure including ∧, ∨,

and 0 by finding a specific morphism which is an non-evaluation morphism. We proved that the

set Q is minimal with respect to the the alter egos that extend 〈M,{∧,∨,0},{Q12,Q13},T 〉 (see

Theorem 4.2.2).
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5.2 Future Research

In this thesis we showed that our defined alter-ego dualizes the five-element algebra and a particular

relation of a dualizing structure is a necessary part for the alter ego. In this paper we did not show

that M was minimal in the way that we originally claimed it was, we have some obvious material

to include in future research.

For further research, with the current work of this paper, the following questions about unary

algebras and their dualizability are:

In this paper we used tables and 13 cases. Can we simplify the cases of Chapter 3 and Chapter

4 of this thesis to determine the dualizability results?

In this thesis we proved that the set Q is minimal with respect to the the alter egos that extend

〈M,{∧,∨,0},{Q12,Q13},T 〉. Can we show that the set Q is a minimal dualizing structure?

Moreover, can we describe a minimal alter ego for any finite unary algebra with an underlying

lattice structure?

However, we did not look at fully dualizable or strongly dualizable. Can we find that our

defined alter-ego fully dualizes or strongly dualizes on the five-element algebra?

Furthermore, for {0,1}-valued unary algebras with more than five elements, can we find nice

conditions for dualizability, full dualizability or not full dualizability, strong dualizability or not

strong dualizability?

Following the work of this paper, is it possible to find whether or not any {0,1}-valued unary

algebras are dualizable or fully dualizable? Can we research {0,1}-valued unary algebras that do

not have a constant zero-valued function?
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Finally, with the technique of this thesis, can we find that there exists an algebra which is fully

dualizable but is not strongly dualizable?
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