U5 snRNA- specific proteins studies, RNA-protein interaction, assembly of the spliceosomal Sm complex, and function implications of splicing in *Cyanidioschyzon merolae*

by

Fatimat Almentina Ramos Shidi

B.Sc., Federal University of Alfenas, Brazil, 2015

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOCHEMISTRY

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

September 2018

© Fatimat Almentina Ramos Shidi, 2018

Abstract

Splicing is an interesting step in the processing of the precursor messenger RNA (premRNA) that involves removal of the non-coding sequences (introns) and ligation of the coding sequences (exons). Fifty percent of genetic diseases exert their effects through errors in splicing (López-Bigas et al. 2005). Therefore, a better understanding of this process can ease the development of cures for these diseases through genetic therapy. I proposed to investigate splicing in *Cyanidioschyzon merolae* that possesses a simpler spliceosome comprised of four snRNPs and 68 splicing proteins. I present successful expression of the Dib1 protein, and co-expression and purification of the Sm complex. I was able to prove formation of the ring-shaped Sm complex by electron microscopy analysis and binding of the complex to U2, U4, and U5 snRNAs. This work also initiated an investigation of splicing as a vital process for *C. merolae* by blockage of this mRNA maturation step with morpholino oligonucleotides.

Table of Contents

Abstract	i
Table of Contents	iii
List of Tables	v
List of Figures	vii
Acknowledgment	X
1. Chapter One - Introduction	1
1.1 Processing of precursor messenger RNA: Splicing	1
1.2 <i>Cyanidioschyzon merolae:</i> a suitable model organism for splicing studies	4
1.3 U5 snRNP complex	5
1.4 General thesis objectives	
2. Chapter Two - U5 snRNA reconstitution	19
2.1 Introduction	19
2.2 Materials and Methods	
2.2.1 Preparation of C. merolae genomic DNA	
2.2.2 Construction of expression vectors for ligation independent cloning	
2.2.3 Amplification of the genomic sequences of U5 snRNA-specific proteins polymerase chain reaction (PCR)	•
2.2.4 Insertion of the protein genes into the vector by LIC	
2.2.5 Sequencing of amplified genes	
2.2.6 Construction of a vector for co-expression of the U5-specific proteins	
2.2.7 Expression of the U5-specific proteins	
2.3 Results	
2.3.1 Construction of expression vectors for ligation independent cloning	
2.3.2 Amplification of the genomic sequences of U5 snRNA-specific proteins polymerase chain reaction (PCR)	
2.3.3 Insertion of the protein genes into the vectors	40
2.3.4 Construction of vectors for co-expression of the U5-specific proteins	
2.3.5 Expression and solubility tests	
2.4 Discussion	
3. Chapter Three - Structural and functional studies of C. merolae Sm complex	59

3.1 Introduction	59
3.2 Materials and Methods	62
3.2.1 Two-step purification of recombinantly expressed Sm complex	62
3.2.2 Characterization of the purified Sm complex by Mass Spectrometry	63
3.2.3 Biophysical characterisation of the purified Sm complex by Electron Microscopy	64
3.2.4 Binding assays	64
3.3 Results	66
3.3.1 Two-step purification of recombinantly expressed Sm complex	66
3.3.2 Characterization of purified Sm complex by Mass spectrometry	68
3.3.3 Biophysical characterisation of the purified Sm complex by Electron Microscopy	69
3.3.4 Binding Assays	70
3.4 Discussion	85
4. Chapter Four - An investigation of splicing relevance and 5' splice site recognition in <i>Cyanidioschyzon merolae</i>	89
4.1 Introduction	89
4.2 Materials and Methods	94
4.2.1 C. merolae cell growth for assessment of doubling time	94
4.2.2 Treatment of cells with MO and vivo-MO	94
4.2.3 Delivery of MO by electroporation	97
4.3 Results	98
4.3.1 Assessment of <i>C. merolae</i> cell growth	98
4.3.2 Treatment of <i>C. merolae</i> cells with MO and vivo-MO	. 101
4.3.3 Delivery of MO by electroporation	. 110
4.4 Discussion	. 111
5. Chapter Five - Concluding remarks	. 114
References cited	116
Appendix 1	. 123
Appendix 2	155

List of Tables

Table 1 DNA oligonucleotide sequence of the primers used for amplification of protein genes. 30
Table 2 Thermocycler set-up for amplification of protein genes. 31
Table 3 Presentation of the size of the protein genes in C. merolae
Table 4 Construction of expression vectors. 41
Table 5 Construction of expression vectors containing U5-specific protein genes
Table 6 Presentation of the molecular weight of the proteins in C. merolae
Table 7 Presentation of the CAI and CDF calculated by GenScript, based on the DNA sequence
of the <i>C. merolae</i> proteins
Table 8 Presentation of the data collected after mass spectrometry analysis. 69
Table 9 Assessment of binding of U2 snRNA to the Sm complex by filter binding
Table 10 Assessment of binding of U4 snRNA to the Sm complex by filter binding
Table 11 Assessment of binding of U5 snRNA to the Sm complex by filter binding
Table 12 Assessment of binding of U4 snRNA to the Snu13 by filter binding
Table 13 Assessment of binding of U4 snRNA to the <i>S. cerevisiae</i> Nph2 by filter binding73
Table 14 Comparison between the binding of folded and refolded U2 snRNA to the C. merolae
Sm complex by filter binding
Table 15 Comparison between the binding of folded and refolded U4 snRNA to the C. merolae
Sm complex by filter binding
Table 16 Assessment of binding of U2 snRNA to the C. merolae Sm complex by filter binding.
Table 17 Assessment of binding of U4 snRNA to the C. merolae Sm complex by filter binding

Table 18 Assessment of binding of U4 snRNA to the <i>C. merolae</i> Sm complex by filter binding.
Table 19 Binding parameters: A fluorescent oligonucleotide (ro64) was used as a negative control
when performing FP
Table 20 DNA oligonucleotide sequence of the MO and vivo-MO designed for binding to U2
snRNA: DNA sequences are shown from 5` to 3`
Table 21 Summary of electroporation conditions
Table 22 Summary of the doubling times of control and MO treated <i>C. merolae</i> cells
Table 23 Oligonucleotide sequences of the primers used for sequencing of Prp8, Brr2 and Snu114
genes
Table 24 Summary of the expression of the proteins using different constructs

List of Figures

Figure 1-1 Illustration of the 2 SN2 transesterification reactions	3
Figure 1-2 Proposed binding of U5 snRNA to the 5`splice site.	5
Figure 1-3 Comparison of the predicted C. merolae U5 snRNA to S. cerevisiae U5 snRNA	7
Figure 1-4 Crystal structure and architecture of Prp8 in S. cerevisiae.	8
Figure 1-5 Crystal structure and architecture of <i>S. cerevisiae</i> 's Brr2	9
Figure 1-6 Crystal structure of the S. cerevisiae Snu114	10
Figure 1-7 Crystal structure of the human Dib1	11
Figure 1-8 Comparison of the structure of the Sm complex and Sm-like complex.	12
Figure 1-9 Structure-based sequence alignment of the C. merolae Sm proteins	13
Figure 1-10 S. cerevisiae U1 snRNP Core formation.	14
Figure 1-11 Predicted sequence of the Sm sites in C. merolae U2, U4 and U5 snRNA	15
Figure 2-1 T4 DNA polymerase reaction.	21
Figure 2-2 Construction of expression vectors for co-expression of proteins.	22
Figure 2-3 Vectors construction for insertion of protein genes by LIC	26
Figure 2-4 Complementarity of amplified genes to the modified vectors.	29
Figure 2-5 Construction of expression vectors oligonucleotides	38
Figure 2-6 Amplification of protein genes	39
Figure 2-7 Assessment of insertion of protein genes into expression vectors	41
Figure 2-8 Construction of the U5-specific proteins co-expression vector.	43
Figure 2-9 First step of construction of Sms-containing vector	43
Figure 2-10 Second and third steps of construction of Sms-containing vector.	44

Figure 2-11 Last step of construction of Sms-containing vector.	45
Figure 2-12 Step-wise construction of the vector containing all U5-specific protein genes	47
Figure 2-13 IPTG induction of the U5-specific proteins.	49
Figure 2-14 Induction of expression of Prp8 in Rosetta pLysS	50
Figure 2-15 Expression and Purification of Snu114 fused to MBP	51
Figure 2-16 Induction of expression of Brr2 using two expression systems	52
Figure 2-17 Induction of expression of Dib1 by IPTG induction and auto-induction	53
Figure 2-18 Co-expression and purification of the Sm proteins	54
Figure 3-1 Purification of the recombinantly co-expressed Sm complex	68
Figure 3-2 Electron microscope of the Sm complex.	70
Figure 3-3 Investigation of U5, U4 and U2 snRNA stability.	73
Figure 3-4 Assessment of binding of U4 snRNA to the Sm complex by filter binding	77
Figure 3-5 Assessment of binding of U4 snRNA to the Sm complex by filter binding	78
Figure 3-6 Assessment of binding of U4 snRNA to the Sm complex by filter binding	79
Figure 3-7 Assessment of binding of U6 and U4 snRNA to the Sm complex by EMSA	80
Figure 3-8 Assessment of binding of the Sm complex to the U4 Sm site by FP	81
Figure 3-9 Assessment of binding of U2 snRNA to the Sm complex by EMSA	82
Figure 3-10 Assessment of binding of U5 snRNA to the Sm complex by EMSA	83
Figure 3-11 Assessment of binding of the Sm complex to the U2 and U5 Sm site by FP	84
Figure 4-1 MO structure.	91
Figure 4-2 The mechanism of MO delivery by Endo-Porter	93
Figure 4-3 Region of binding of the MO oligonucleotide.	96

Figure 4-4 Assessment of optimal wavelength for measurement of C. merolae culture optical
density
Figure 4-5 Microscope images of <i>C. merolae</i> cells at different pHs
Figure 4-6 Cell growth of <i>C. merolae</i> cells
Figure 4-7 Microscopic images of the <i>C. merolae</i> cells treated with control MO and Endo-Porter.
Figure 4-8 Microscope images of the C. merolae cells treated with control BPS MO and Endo-
Porter at higher pH values
Figure 4-9 Delivery of MO to <i>P. pastoris</i> and <i>C. merolae</i> at pH 7
Figure 4-10 Cell growth of <i>C. merolae</i> treated with the MO that targets the branch point binding
site of U2 snRNA
Figure 4-11 Cell growth of <i>C. merolae</i> cells treated with vivo-MO
Figure 4-12 Growth of C. merolae cells treated with two concentrations of vivo-MO and
guanidinium
Figure 4-13 24 hours treatment of <i>C. merolae</i> cells with 5 µM of vivo-MO 109
Figure 4-14 Electroporation of <i>C. merolae</i> cells for introduction of MO to cytosol

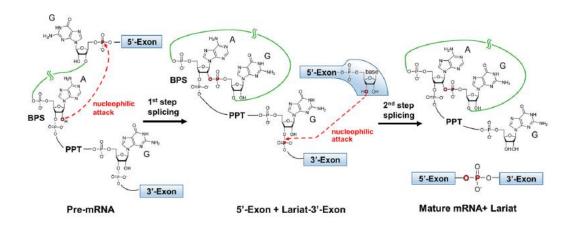
Acknowledgment

First, I would like to thank my supervisor, Dr. Stephen Rader, for giving me the opportunity to be part of the Rader lab in 2014, and for allowing me to continue my research in 2015 as a master's student. All his guidance, along with Dr. Martha Stark's guidance, were key to improve my research skills throughout my graduate research. Also, I would like to thank my graduate thesis committee members, Dr.Kerry Reimer and Dr. Brent Murray, for helping me with my projects. In addition, I want to thank the collaborators of this project, Dr. Calvin Yip for the electron microscopy analysis and for helping with the interpretation of the results, Dr.Marlene Oeffinger for the utilization of the mass spectrometer for analysis of my samples, and Dr. Ute Kothe for allowing me to conduct the filter binding experiments in her laboratory and for teaching me the technique. Also, special thanks to the lab members for the feedbacks throughout my graduate work.

In addition, huge thanks to my parents and my brother, Rasheed Shidi, Andiara Ramos, and Ibraheem Shidi, for encouraging me to come to Canada from Brazil five years ago, and for continuing to encourage me to follow my dreams. I also want to thank all my friends from Brazil and Canada for supporting me all these years.

1. Chapter One - Introduction

1.1 Processing of precursor messenger RNA: Splicing


Occurring in eukaryotic cells, splicing is an interesting step in the processing of the precursor messenger RNA (pre-mRNA) that involves removal of the non-coding sequences (introns) and ligation of the coding sequences (exons). This mechanism is comprised of two transesterification reactions involving nucleophilic substitutions (SN2) coordinated by a megadalton complex called the spliceosome (Wahl et al. 2009). The spliceosome is a dynamic ribonucleoprotein (RNP) that includes five small nuclear RNAs (snRNAs) and over 200 proteins in humans. Each spliceosome subunit - U1, U2, U4, U5 and U6 snRNAs - associates with complex-specific proteins forming small ribonucleoproteins (snRNPs) (Wahl et al. 2009). In addition to these snRNA-specific proteins, the Sm complex associated with all snRNAs, except for U6 snRNA which is bound to the Lsm complex (Wahl et al. 2009). Notably, pre-mRNA splicing is an essential step in gene expression in Eukaryotes. Ninety percent of the human genes contain introns, and splicing is thought to give rise to much of the protein diversity in humans (Sakharkar et al. 2004). Therefore, it is not surprising that a significant number of diseases are linked to defects in splicing. For instance, mutations in the SMN protein cause the human disorder spinal muscular atrophy (Lefebvre et al. 1995). Indeed, 50% of genetic diseases exert their effects through errors in splicing (López-Bigas et al. 2005).

In *Saccharomyces cerevisiae*, the Sm core proteins and U1 snRNA specific-proteins associate with U1 snRNA forming a snRNP, which is responsible for the recognition of the 5`splice site. This interaction is known to be the first step in the assembly of the precursor spliceosome (Zhang et al. 2015). Furthermore, the branch proteins BBP-MUD2 recognise the branch point sequence

(BPS) of the pre-mRNA, and U2 snRNA associates to the Sm complex and specific-proteins forming the U2 snRNP subunit (Dunn et al. 2014). The U2 snRNP binds to Prp5 for the association with the BPS, followed by the release of BBP-MUD2 from the BPS by Sub2. It allows base pairing of U2 snRNP to the intronic region (Dunn et al. 2014). Furthermore, the U4/U6.U5 tri-snRNP formation initiates by the association of U6 snRNA to the LSm complex and Prp24, binding of U4 snRNA to U4 snRNA specific-proteins and the Sm complex. Next, the formation of U4/U6 di-snRNP is catalysed by Prp24, and U5 snRNA associates with the Sm complex and U5 snRNA specific-proteins forming the U5 snRNP (Dunn et al. 2014). The U5 snRNP joins U4/U6 di-snRNP forming the U4/U6.U5 tri-snRNP, which finally associates with the pre-spliceosome (pre-catalytic B complex) (Yan et al. 2015).

Two reactions follow the spliceosome activation. However, before the first reaction occurs, the spliceosome is rearranged by the release of U1 snRNP driven by an ATP-dependent helicase, Prp28 (U5 snRNP component), that disrupts the binding of U1 to the 5'splice site (Zhang et al. 2015; Staley & Guthrie 1999; Stevens et al. 2001). The U6 snRNP then replaces the U1 snRNP (Zhang et al. 2015). The DExD/H-box RNA helicase Brr2 (U5 snRNP component), unwinds the U4/U6 snRNA duplex resulting in the release of U4 snRNA and the binding of U2 snRNA, which initiates interaction with the U6 snRNA (Zhang et al. 2015; Nguyen et al. 2014). Following these rearrangements, conversion of the pre-catalytic B to the activated B complex results in recruitment of the nineteen complex (NTC) for its stabilisation (Yan et al. 2015; Chan et al. 2003). The translation of the activated B complex into the catalytically competent B complex is driven by the ATP-dependent Prp2 that, in cooperation with a G-patch protein Spp2, promotes remodelling of the spliceosome (Warkocki et al. 2015). Prp2 is responsible for the displacement of nine of the eleven proteins that interact with U2 snRNA and allows the first transesterification reaction to

occur (Liu & Cheng 2012). The reactive 2'-hydroxyl of the adenosine in the branch point sequence nucleophilic attacks the phosphorous atom at the guanine nucleotide at the 5'-end of the intron (Hang et al. 2015). Consequently, the 5' exon is released, and the intron lariat-3' -exon is formed (Figure 1-1) (Hang et al. 2015). The transesterification reactions require two Mg²⁺. During the first reaction, one Mg²⁺ activates the 2'-hydroxyl of the adenosine in the branch point sequence, and the other Mg²⁺ stabilises the 3'-OH of the 3'-end nucleotide I of the 5'-exon (Hang et al. 2015). Upon completion of this step, the spliceosome is re-rearranged by the ATP-dependent protein, Prp16 (Schwer & Guthrie 1992). During the second step, the 3' hydroxyl at the 3' end of the released 5'- nucleophilic exon attacks the phosphorous atom of the guanine nucleotide at the 5'- end of the 3'-exon. It results in binding of the two exons and release of the intron lariat (Figure 1-1) (Hang et al. 2015). This second reaction requires two Mg²⁺. The first Mg²⁺ activates the nucleophile, and the second stabilises the leaving group (Hang et al. 2015). Prp22, an ATP-dependent protein, then releases the mature mRNA by unwinding the U5 snRNP/exon junction (Tsai et al. 2005).

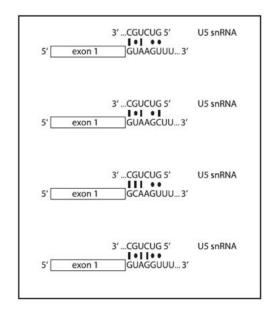
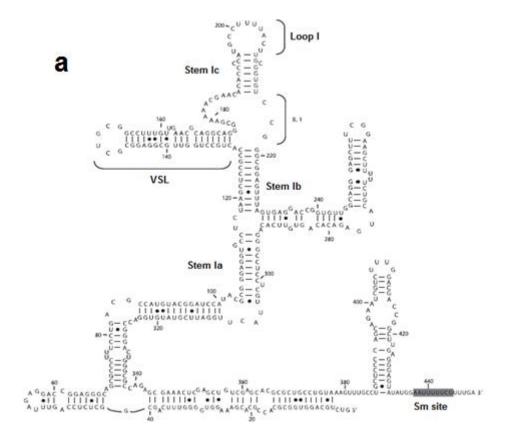


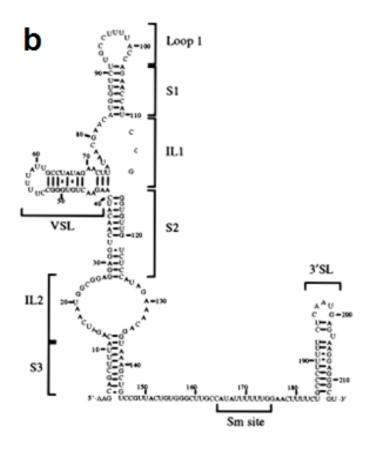
Figure 1-1 Illustration of the 2 SN2 transesterification reactions: The first reaction shows the release of the 5'-exon and formation of an intron lariat-3'-exon. The second reaction shows the release of an intron and ligation of the 3'-exon to the 5'-exon forming a mature mRNA (Hang et al. 2015).

Finally, the post-catalytic spliceosome undergoes disassembly by disassociation of the U5, U2, U6 snRNPs as well as the NTC and the intron lariat. During the disassembly, the NTR complex is recruited, and in an ATP manner, the helicase Ppr43 associates to the Ntr1 and Ntr2. For subsequent rounds of splicing, recycling of the subunits of the post-catalytic reaction is allowed by this arrangement (Graveley 2001).

1.2 Cyanidioschyzon merolae: a suitable model organism for splicing studies

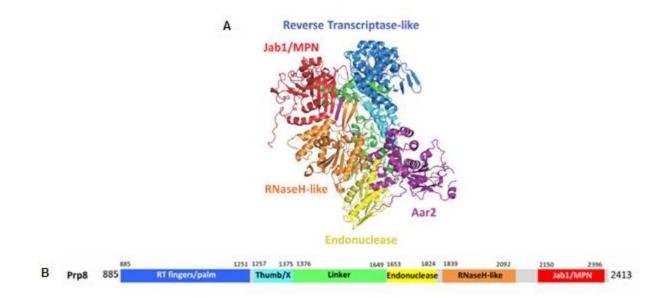
Most investigations of mRNA processing are done in yeast cells, mainly Saccharomyces cerevisiae, due to their simplicity in relation to human cells. However, for this study, Cyanidioschyzon merolae, a unicellular red alga, is proposed as a suitable alternative for splicing studies. C. merolae was the first complete algal genome to be sequenced revealing a similar number of genes compared to some yeasts (Higashiyama et al. 2004). C. merolae belongs to a class of acidothermophilic alga, Cyanidiophyceae, that inhabits thermal acidic environments (pH 1.5 and temperature of 45°C). This primitive class has the cell morphology, reproduction, and biochemical components that suggests a link to both cyanobacteria and rhodophyta. Therefore, Cyanidiophyceae have been proposed to be primitive among the eukaryotes (Seckbach 2012). Through evolution, it has been observed that the less evolved species contain a more reduced amount of DNA keeping only the most critical machineries for sustaining life (Seckbach 2012). For instance, compared to more evolved organisms this algal spliceosome has less subunits. The Rader lab characterized the spliceosome in C. merolae identifying four snRNPs and 68 splicing proteins (Stark et al. 2015). Surprisingly, U1 snRNP, a relevant spliceosome subunit, is missing in this alga. As mentioned previously, U1 recognises the 5'splice site of the mRNA allowing initiation of spliceosome formation; therefore, the absence of this snRNP suggests a different assembly of the spliceosome in this alga. U5 snRNA has been hypothesised to play U1's role due to the complementarity of the 5'end of U5 snRNA to all annotated 5' splice sites in *C. merolae* (Figure 1-2).

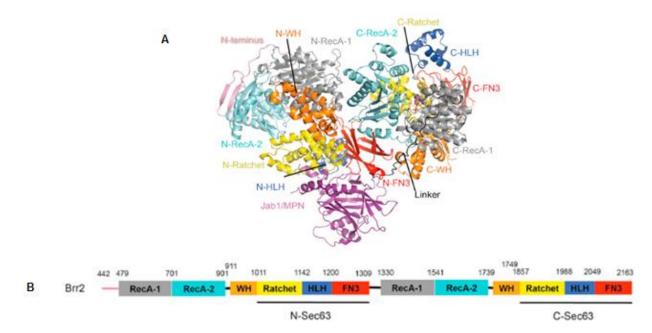



Figure 1-2 Proposed binding of U5 snRNA to the 5'splice site: Figure from Stark et al. (2015) presenting the annotated sequences of the 5'splice site significantly complementary to the U5 snRNA. This suggests that U5 is a valid candidate for recognition of the 5'splice site, playing U1's role in *C. merolae*.

1.3 U5 snRNP complex

In yeast, the U5 snRNP has eight specific proteins and the Sm complex. However, only half of these U5-specific proteins - Prp8, Snu114, Brr2 and Dib1 - were bioinformatically identified (i.e. orthologous genes) in *C. merolae* (missing Aar2, Prp28, Prp6, and Lin1) (Stark et al. 2015). U5 snRNP is one of the subunits of the pre-assembled spliceosome complex U4/U6.U5 snRNP and is also a subunit of the catalytic spliceosome. U2 and U6 snRNA form the catalytic centre of the spliceosome, and the loop I of U5 snRNA can be found close to that core located at the bottom of the catalytic spliceosome (Yan et al. 2015; Hang et al. 2015). During the second


transesterification reaction, the loop I of U5 snRNA aligns and approaches the exon 1 to exon 2 allowing nucleophilic attack of exon 1 to the 3' splice site (Nguyen et al. 2015). Surprisingly, *C. merolae*'s U5 snRNA has a more extended sequence with unique 5' and 3' ends, maintaining conserved region from nucleotides 112-282, when compared to the *S. cerevisiae* U5 snRNA (Figure 1-3). Intriguingly, the 5' end (GUCUGC) is complementary to all annotated 5' splice sites, which presumably explains the absence of U1 in *C. merolae*, as the U5 would initiate assembly of the spliceosome by recognising the 5' splice site.


Figure 1-3 Comparison of the predicted *C. merolae* U5 snRNA to *S. cerevisiae* U5 snRNA: a) Stark et al. (2015) predicted the secondary structure of *C. merolae* U5 snRNA which shows a more extended structure when compared to *S. cerevisiae*. The highlighted box shows the predicted Sm site based on its uridyl-rich sequence. b) Frank et al. (1992)'s secondary structure of the *S. cerevisiae* U5 snRNA showing predicted features by Dix et al. (1998). These figures show that the location of the Sm site is unique in *C. merolae*, since the Sm site does not have a stem-loop in the 3'end. It suggests a different Sm assembly. IL, internal loop; S, stem; SL, stem-loop; VSL, variable stem-loop.

The proteins that associate to U5 snRNA also play essential roles in splicing before and after activation of the spliceosome. The core protein Prp8, the DExD/H-box family helicase Brr2 and the EF2-like GTPase Snu114 are essential for activation and formation of the core of the spliceosome. In yeast, Prp8 is a large protein comprised of six known domains: reverse transcriptase-like domain, thumb/X, linker, endonuclease-like domain, RNase-like domain, Jab/MPN domain, and an N terminal domain (Nguyen et al. 2015).

Figure 1-4 Crystal structure and architecture of Prp8 in *S. cerevisiae***:** a) Crystal of Prp8 shows its association with a U5 assembly factor, Aar2, that is absent in *C. merolae*. The tri-dimensionality shows the Prp8 domains Jab1/MPN (red), RNaseH-like (orange), Endonuclease (yellow), Reverse Transcriptase-like (blue), Thumb/X (light blue) (Galej et al. 2013). b) The figure presents the architecture of the yeast Prp8 domains from residue 885 to 2413 (Galej et al. 2013).

Prp8 is at the core of the spliceosome having close contact with critical RNA residues (Galej et al. 2013). This U5-specific protein crosslinks to critical U6 snRNA residues, to the exonbinding loop I of U5 snRNA, and to three sites of the mRNA (3' splice site, branch point and 5' splice site). Prp8 mutations can suppress splicing-related mutations (Galej et al. 2013). For instance, the 3'splice site, branch point and 5' splice site mutants can be suppressed by mutations on the thumb/X and endonuclease domains. Mutants on the reverse transcriptase-like and endonuclease domains can minimise the effects of U4 mutants (Galej et al. 2013). The active site cavity is located between the RNase H-like and reverse transcriptase domain (Galej et al. 2013). The active site is also proposed to cover the N-terminal and thumb/X-linker, where U2 snRNA, U6 snRNA and the intron lariat are located; therefore, Prp8 is a crucial core protein (Yan et al. 2015). Interacting with the Jab/MPN domain is the helicase Brr2 that plays an important role in unwinding of the U4/U6 snRNA duplex (Nguyen et al. 2015). This process of unwinding also relies on other U5-specific proteins, such as Snu114, that is involved in regulation of Brr2 (Nguyen et al. 2013). *In vivo*, Brr2 was crosslinked to loop 1 of U5 snRNA and close to the 5` and 3` splice sites (Hahn et al. 2012). Brr2 is comprised of an N-terminal domain and two consecutive helicase cassettes, in which each cassette has a helicase core N-RecA-1 and N-RecA-2 (Nguyen et al. 2013). Therefore, each one is comprised of six domains: two RecA domains, WH, Ratchet, helix-loophelix (HLH), and FN3 (Nguyen et al. 2013). Each set of Ratchet (comprised of HLH and FN3 domains), is named Sec63 (Nguyen et al. 2013; Figure 1-5).

Figure 1-5 Crystal structure and architecture of *S. cerevisiae*'s **Brr2**: a) The crystal structure of Brr2 shows its association with the Prp8 domain Jab1/MPN. The tri-dimensionality shows the Brr2 domains RecA 1 (grey) and 2 (light blue), WH (orange), Ratchet (yellow), helix-loop-helix (HLH) (blue), and FN3 (red). b) The architecture of the yeast Brr2 helicases showing the two helicases comprised of six domains RecA 1 and 2, WH, Ratchet, HLH and FN3 (Nguyen et al. 2013).

The N-terminal domain has an unclear function, but it has been proposed to be essential for retention of U5 and U6 snRNP during and after spliceosomal activation (Zhang et al. 2015). In

yeast, in the early stages of Prp8 maturation, it associates with Aar2 in the cytoplasm preventing binding of Brr2 to Prp8. During maturation of U5 snRNA, Prp8 replaces Aar2, where Prp8 is found associated to the ratchet and FN3 domains of the N-terminal region of Brr2 (Nguyen et al. 2013). However, Aar2 is not present in *C. merolae* suggesting a different mechanism of maturation of Prp8 (Stark et al. 2015). In humans, mutations near this region of interaction cause the disease type 13 retinitis pigmentosa (Nguyen et al. 2013; Boon et al. 2007).

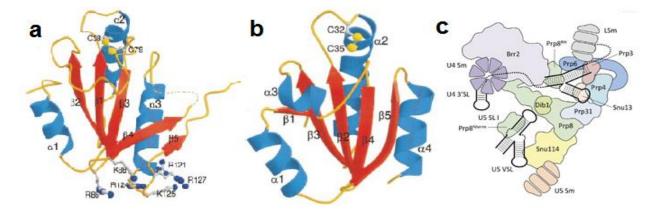

Snull4 is a GTPase comprised of five domains (Figure 1-6). GTPases are known to allow structure rearrangements of ribonucleoproteins, such as ribosomes (Brenner & Guthrie 2006). Snull4 shares similar structure with the translation elongation factor EF2, which catalyzes translocation of tRNA and mRNA (Brenner & Guthrie 2006). Mutations of Snull4 have been shown to affect spliceosome activation by increasing levels of U4 snRNA through changes in Brr2 functionality (Brenner & Guthrie 2006; Small et al. 2006). These modifications can also affect the interaction of U5 snRNA to Prp8 and Brr2 and disassembly of the spliceosome preventing the release of the excised intron and dissociation of the snRNAs (Brenner & Guthrie 2006; Small et al. 2006).

Figure 1-6 Crystal structure of the *S. cerevisiae* **Snu114:** Tri-dimensionality structure of Snu114 arranged in five domains as the eukaryotic translation elongation factor 2 (Nguyen et al. 2015).

Mutations in the guanine-binding pocket have shown a switch of specificity from guanines to xanthines XDP repressing disassembly of the spliceosome. Since its functionality can be recovered by addition of GDP, it suggests that Snu114 can regulate disassembly of the spliceosome (28). GDP is also known to inhibit U4/U6 unwinding. An assay involving XDP and GDP showed that mutations on snu114 prevent inhibition of unwinding when XDP is added. It suggested that Snu114 regulates Brr2 by obstruction of U4/U6 unwinding (28).

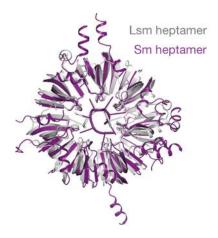

Dib1 is the smallest protein that associates to U5 snRNA. It is an ortholog of the protein *Schizosaccharomyces pombe* Dim1, which plays a relevant role in cell cycle progression (Reuter et al. 1999). Mutations in Dim1 affect cell viability by causing splicing defects that prevent cell cycle progression (Stevens et al. 2001). Previously, Dib1 has been suggested to be an essential splicing protein since its depletion results in accumulation of pre-U3 RNA (Reuter et al. 1999; Stevens et al. 2001). The crystal structure of the human homolog of Dib1 (also called Snu16) shows its similarity to thioredoxins in humans, having a thioredoxin-like fold (Figure 1-7a and b).

Figure 1-7 Crystal structure of the human Dib1: a) Tri-dimensional image of the human Dib1 showing significant similarity to the thioredoxin b) human thioredoxin structure (Reuter et al. 1999). c) *S. cerevisiae* Tri-snRNP model showing Dib1 located in the centre (Nguyen et al. 2015).

A recent reconstruction of the tri-snRNP by single-particle cryo-electron microscopy (cryo-EM) has shown interactions of Dib1 with the RT thumb/X domain of Prp8 and the loop I of U5 snRNA. Indeed, it is observed that Dib1 is in the centre of the tri-snRNP (Figure 1-7c).

In addition to the U5-specific proteins, a protein complex named Sm complex also interacts with U5 snRNA. In humans, the Sm complex is known to bind to all snRNPs (U1, U2, U4, and U5), except U6 that associates with a compound from the same family of proteins, Sm-like (Lsm). The Sm proteins belong to a large family of Sm and Lsm proteins, that are known to be highly conserved among different organisms and to form a doughnut-shape (Figure 1-8).

Figure 1-8 Comparison of the structure of the Sm complex and Sm-like complex: Tri-dimensional structures of the Sm complex (purple) and the Lsm complex (grey) show a similarity of the ring-shaped pentamer (Zhou et al. 2014).

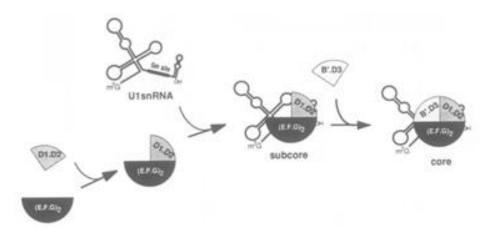

The proteins from this family share a conserved Sm motif comprised of two conserved regions called Sm1 and Sm2 that are linked by a non-conserved sequence (Hermann et al. 1995); Séraphin 1995) (Figure 1-9). The Sm motif has been proven to be involved in the interaction among the Sm proteins encoding for the same folding domain in every Sm protein (Urlaub et al. 2001).

Figure 1-9 Structure-based sequence alignment of the *C. merolae* **Sm proteins:** Alignment of the red alga Sm protein sequences also present a conserved Sm motif comprised of Sm1 and Sm2. As observed in other organisms, the secondary structure of the Sm proteins has an alpha-helix (residues highlighted in red) linked by a non-conserved sequence to beta sheets (residues highlighted in blue). Sm1, three beta-sheets, is linked to Sm2, two beta-sheets, forming the Sm motif.

The spliceosomal Sm complex consists of seven proteins - Sm F, Sm E, Sm G, Sm D3, Sm B, Sm D1, and Sm D2. This protein complex is crucial for biogenesis and recruitment of snRNA particles. In the cytoplasm, the snRNA binds to the Sm complex forming a snRNP core particle termed Sm core RNP. In the absence of the snRNA, the Sm complex forms three heteromeric sub core complexes - Sm E-F-G, Sm D1-D2, and Sm B-D3. In vitro studies have shown that the purified Sms can bind to an oligonucleotide that contains some similarity to the consensus Sm site (Raker et al. 1996). This binding occurs in a stepwise manner when a pentameric complex is formed by binding of Sm E-F-G and Sm D1-D2 resulting in a unique substrate for coupling of Sm B-D3 (Raker et al. 1999; Figure 1-10). Indeed, the presence of the stem-loop 3' of the Sm site and the narrow hole of the ring (Kambach et al. 1999) explain the step-wise assembly of the Sm protein (Figure 1-3 and 1-10). In vitro analysis of the interaction of the Sm protein to the Sm site has shown that the core of the Sm proteins assembles in uridyl-rich sequences. The presence of 5' adenosines downstream this uridyl region has been confirmed to play an essential role in Sm protein association (Jones & Guthrie 1990; Jarmolowski & Mattaj 1993). Since the Sm complex can bind to any RNA or oligonucleotide that has the consensus Sm site, the Sm heterodimers bind to the SMN complex in vivo, followed by the importation of the SMN-Sm complex into the nucleus

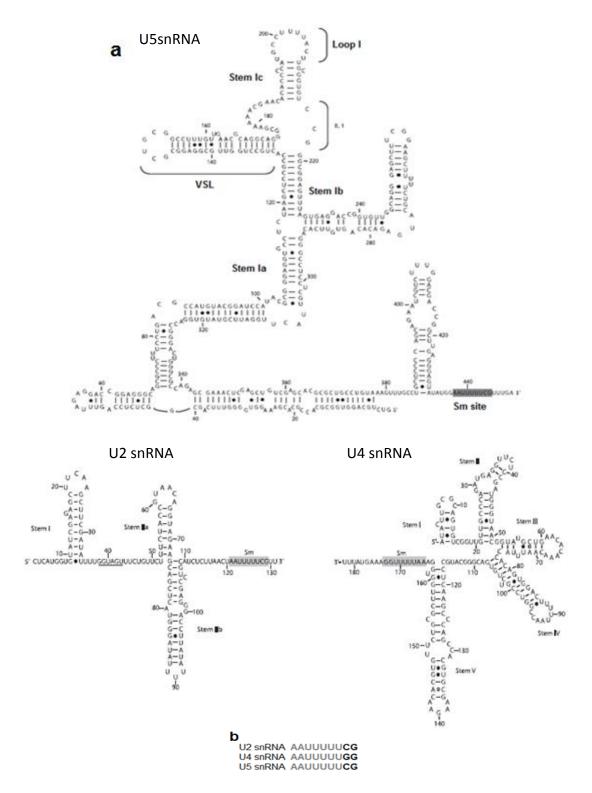

ensuring binding to the snRNAs (Fischer et al. 1997; Liu et al. 1997; Meister et al. 2001; Pellizzoni et al. 2002).

Figure 1-10 S. cerevisiae U1 snRNP Core formation: The binding of two heteromeric sub core complexes, Sm E-F-G, Sm D1-D2, forming a pentamer followed by binding of the U1 snRNA. By formation of the sub-core, the dimer Sm B-D3 joins the other heteromeric complexes forming a U1 snRNP core (Raker et al. 1996).

The Rader lab identified bioinformatically all seven proteins in *C. merolae* and hypothesises that the Sm proteins bind to U2, U4, and U5 snRNA due to the similarity of these sequences to the consensus Sm binding site (AU4-6G) (Branlant et al. 1982; Figure 1-11).

Surprisingly, the predicted Sm site located in the 3'end of the *C. merolae* snRNA lacks a loop. Therefore, the absence of the stem-loop 3' of the Sm site in the *C. merolae* snRNAs implies a different snRNP core formation (Figure 1-3 and 1-11a) (Stark et al. 2015). Presumably, pre-assembly of the Sm ring occurs before binding of the Sm complex to the Sm site. The absence of the SMN proteins, that are known to help in the recognition and stable interaction of the Sm E-F-G and Sm D1-D2, also suggests a different Sm proteins assembly (Zhang et al. (2011).

Figure 1-11 Predicted sequence of the Sm sites in *C. merolae* U2, U4 and U5 snRNA: a) The secondary structure predicted by Stark et al. (2015) presents the Sm site in the 3'end lacking a stem-loop suggesting binding of a pre-assembled Sm ring to the Sm site. b) Due to presence of a uridyl-rich sequence that is conserved in most organisms, it is proposed these Sm binding sites in U2, U4 and U5 snRNA. The highlighted nucleotides show that U2 and U5 snRNA share the Sm site sequence.

1.4 General thesis objectives

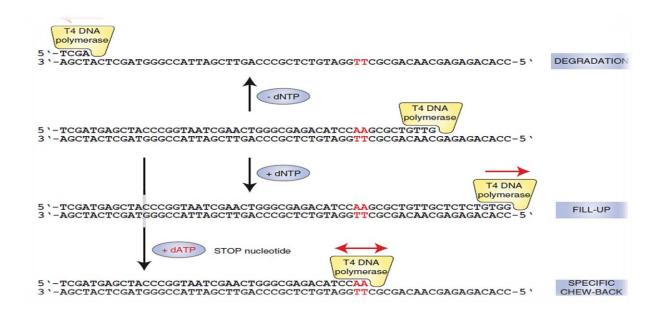
In the past three years, many advances have been made regarding structural studies of the different assembly steps of the spliceosome. These have been enabled by the development of new technologies, such as cryo-electron microscope. This approach has great advantage over X-ray crystallography, since the crystal formation step is skipped (Callaway 2015). Since 2015, several publications have revealed the spliceosome at different assembly stages at a higher resolution. For instance, Nguyen et al. (2015) reconstituted the Saccharomyces cerevisiae tri-snRNP presenting a cryo-electron microscope image of the U4/U6.U5 tri-snRNP complex at a resolution of 5.9 angstroms. This structure allowed for a better understanding of the snRNAs and proteins distribution. In less than a year, Ruixue Wan et al. (2016) revealed the tri-snRNP at an higher resolution, 3.8 angstroms, supporting Nguyen et al. (2015)'s tri-snRNP structure. Both works were crucial for the investigation of the spatial distribution of the snRNAs and their proteins, linking their structure to the role of each snRNP. Yan et al. (2015) published images of the spliceosome at different assembly steps presenting a 3.6 angstroms cryo-electron microscope using the model organism Schizosaccharomyces pombe. This publication revealed the spatial distribution of U2, U5 and U6 and its associated proteins, which was relevant to understand the positioning of these spliceosome components at the active centre of the spliceosome.

Therefore, a reconstitution of *C. merolae* U5 snRNP, for both functional and structural analyses of this splicing component, is one of the main aims of the chapter two. As mentioned, much has been learnt in the past three years by looking at the three-dimensional spatial distribution of snRNA and proteins. Therefore, I propose to assemble the U5 snRNP *in vitro*. This objective is intended to be achieved by co-expression and co-purification of the U5-associated proteins and *in vitro* transcription of U5 snRNA. It is expected that the snRNA will bind to the proteins allowing

structural and functional studies of this splicing component. Although we have seen a significant advance in structural studies of the spliceosome, several questions are challenging to answer due to the complexity of the spliceosome, such as the structure of the U2 snRNP and the roles played by each U2 snRNA-specific protein. Here, it is proposed that the investigation in a `paucity` spliceosome would be less challenging. However, only a few expression strategies have previously been developed in *C. merolae*; therefore, in this chapter two, expression and purification strategies are the initial goal.

In chapter three, I focus on the investigation of a splicing complex that is known to bind to U5, the Sm complex, by functional and structural approaches. As it has been stated previously, in other organisms, that the Sm proteins are known to associate with U1, U2, U4 and U5 snRNAs. Therefore, in C. merolae it is proposed that the Sm complex bind to U2, U4 and U5, since U1 is absent in this organism. Also, the snRNAs predicted secondary structure suggests a Sm site at the 3' end of each snRNA. However, no substantial evidence of the binding of the Sms to these snRNAs has been shown. Therefore, a second objective of this dissertation is to co-express and co-purify the Sm proteins, which would assemble and allow the investigation of the structure and functionality of this complex. Previously, it has been seen that a similar C. merolae splicing protein complex, Lsm proteins, formed a doughnut-shape, when expressed and purified together; therefore, it is expected to see the same ring formation by electron microscope. Successful reconstitution would allow for binding analysis of the Sm complex to the snRNAs, revealing the same functionality observed in other organisms. The predicted secondary structures of U2, U4 and U5 do not show a stem-loop 3' of the Sm site, which suggests that in C. merolae the Sm proteins pre-assemble prior to binding to the snRNAs. Further evidence that supports this pre-assembling step, it is the absence of the SMN complex that is involved in assembly of the Sm proteins around the Sm site in a step-wise manner. Therefore, it is initiated an investigation of the Sm proteins functionality, structure and assembly in *C. merolae*.

In chapter four, a crucial area that will be addressed is the intron recognition within C. *merolae*, since the snRNP that plays this role -U1 – is missing. The complementarity between U5 snRNA and the intron suggests that U5 may have co-opted this intron-recognition role in C. merolae. The Rader lab has been able to confirm that splicing occurs in this alga; however, there is no evidence that this process is vital (Stark et al. 2015). For that, a novel strategy of splicing blockage, morpholino oligonucleotides, is proposed to help this question. This DNA has been previously used to target snRNAs in other organisms, thus preventing splicing. Therefore, this method is intended to address splicing's relevance in C. merolae by prevention of the initial step of the spliceosome assembly. A morpholino oligo that has a higher affinity to U2 snRNA and prevents binding of this snRNA to the branch point site will be used. Presumably, binding of the morpholino to the snRNA will cause a decrease in cell growth or death of the cells, if splicing is in fact essential in this red alga. Since this method has never been attempt in C. merolae, different strategies will be attempted that could achieve successful delivery of the morpholino to the cell, thus optimizing the efficiency of the protocol, and as well assessing splicing blockage by RT-PCR. Furthermore, if this technique addresses the question successfully, a morpholino complementary to the 3' end of U5, that is proposed to recognise the intron region, will be designed to address the intron-recognition hypothesis.


2. Chapter Two - U5 snRNA reconstitution

2.1 Introduction

The U5 snRNP has been thoroughly investigated, mainly in yeast, and most cryo-EM structures of the spliceosome have been able to identify all U5-associated proteins. Structural studies of this component have shown that the U5 snRNA-specific proteins are strategically located in the catalytic region of the spliceosome (Yan et al. 2015; Hang et al. 2015). Indeed, most proteins that associate to this particle play essential roles during splicing activation and the two catalytic reactions. For instance, Brr2 is a helicase that plays a crucial role in activation of the spliceosome by unwinding the U4/U6 di-snRNA (Nguyen et al. 2013). Although much has been learnt about the spliceosome in the past three years, several questions still need to be answered (Yan et al. 2015). Therefore, this chapter will describe my investigation into the U5 snRNP spliceosome component in C. merolae. Interestingly, the Rader lab has presented a reduced spliceosome, where half of the proteins that associated with U5 snRNA are missing. Although Prp8, Snu114, Brr2, Dib1, and the Sm complex were identified, not much is known about the structure of these proteins, and consequently, their function in C. merolae. Thus, different methodologies will be presented to co-express and purify all the proteins that associate to U5. It is proposed that, by co-purification of the U5-specific proteins and presumably self-assembly, an increase in protein yield would assist in any structural investigations of the U5 snRNP. Reconstitution of this spliceosome subunit would lead to a better understanding of its functionality. Furthermore, this work would help to address U5's role in C. merolae. As stated previously, it is hypothesised that U5 plays U1's role in this organism due to its 3'end complementarity to all annotated 5' splice sites.

A cloning strategy performed by Dunn to clone the *C. merolae* Lsm proteins into one vector was used to construct a co-expression vector (Dunn, 2010). By constructing a Lsm-containing vector, Dunn was able to co-express the protein complex in bacteria. Self-assembly of the proteins allowed co-purification of the Lsm complex and higher protein yield. The design of this protocol was essential for this work as it was deemed the most suitable for reconstituting the U5 snRNP.

Ligation-independent cloning (LIC) is a method that has been discovered to be very efficient (Schmid-Burgk et al. 2014). Relatively, conventional methods of cloning are less efficient and more time-consuming due to the consecutive digestions, ligations of DNA to the vector, and transformations. Besides, the number of cleavage sites available decrease proportionally to the number of insertions and the size of DNA segments (Schmid-Burgk et al. 2014). Therefore, for this work, LIC is the best method for introduction of all U5-specific protein genes into a vector for further co-expression. This cloning strategy does not require restriction enzymes and DNA ligase for insertion of DNA segments into the vector. Cloning of long genes, such as the Prp8 gene, is challenging due to the short single-stranded sequence that is used for ligation of the gene to the vector. Therefore, LIC requires the formation of a 12-20 single-stranded overhang that is created by the T4 DNA polymerase segment. This enzyme can delete nucleotides in the absence of dNTPs facilitating insertion of genes. As exemplified in figure 2-1, in the presence of only one dNTP, this enzyme adds back the presented nucleotide, dATPs in this case, allowing the formation of a single-stranded segment (Dyson & Durocher 2007).

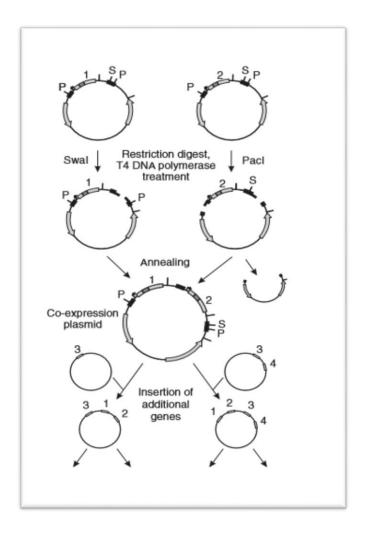


Figure 2-1 T4 DNA polymerase reaction: The presence of all four dNTPs in the reaction results in the fill-up of nucleotides in the $5 \rightarrow 3$ direction. However, in the presence of only one dNTP in reaction, dATPs for instance, the enzyme removes the nucleotides until it finds a dTTP in the single-stranded fragment. Therefore, this mechanism of degradation of the double-stranded segment is used to create long overhangs (Schmid-Burgk et al. 2014).

By the creation of a single-stranded segment both in the vector and in the gene, it is possible to hybridise the vector to the gene due to its single-stranded ends complementarity. The genes are inserted into an expression vector called pQLink that contains the restriction sites SwaI and PacI. These restriction sites allow ligation of several vectors and insertion of all genes into one vector (Addgene plasmid 13667 and 13670; 82) (Figure 2-2).

This chapter describes the process of constructing an expression vector containing all the corresponding genes of the proteins that associate with the U5 snRNA. To express these proteins many different vectors were employed to see which was most optimal. In addition to pQLink, the pMCSG23 vector was found to allow for insertion of genes by ligation independent cloning and was used as an alternative expression vector. For instance, the Prp8 and Snu114 protein genes were inserted into pMCSG23 vector fused to a maltose binding protein (MBP). Expression of the protein

attached to MBP prevents its aggregation enhancing protein solubility. Therefore, this second vector was used when attempting to express large proteins individually.

Figure 2-2 Construction of expression vectors for co-expression of proteins: The presence of the restriction sites SwaI and PacI allow insertion of genes into one vector. SwaI digestion enables linearization of the first vector, and PacI double-digestion of the second vector enables the release of the gene. Therefore, T4 DNA polymerase treatment of the SwaI digested vector and the PacI digested insert permits the creation of complementary overhangs for ligation of the insert into the vector. Consecutive SwaI and PacI digestions and T4 DNA treatments allow insertion of several genes into one vector (Scheich et al. 2007).

Induction of protein expression was performed by Isopropyl β -D-1-thiogalactopyranoside

(IPTG), auto-induction and methanol-induction. Auto-induction is an alternative method that has

produced favourable results when protein expression via IPTG induction was found to be

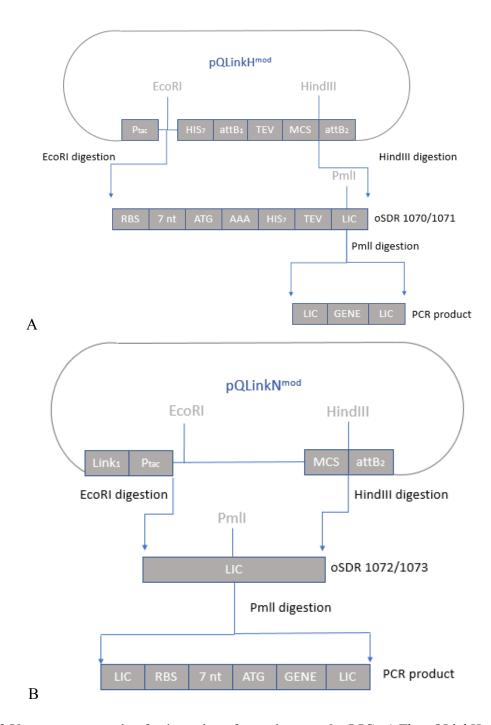
challenging. This technique involves saturating the culture which automatically facilitates use of lactose for induction of protein expression by depletion of inhibitory factors. Therefore, since induction happens during saturation of the culture, it is not necessary to monitor cell growth, thus making it a more convenient strategy to express proteins, as described by Studier (2005). Indeed, saturation of cultures in non-inducing media enables retention of the vector allowing for storage of the culture in the refrigerator for weeks. In addition, protein yield has been found to increase when compared to IPTG induction.

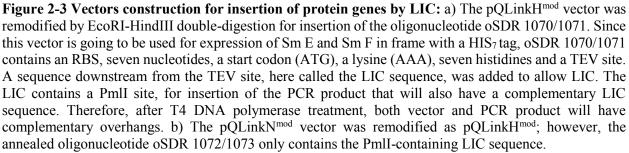
In addition to the use of *Escherichia coli* as a host organism for protein expression by IPTG and auto-induction, protein expression was also performed via methanol-induction in Pichia pastoris. Some proteins are not efficiently expressed in bacteria due to the absence of translation modifications. Indeed, post-translation modifications, such as glycosylation, can compromise protein folding affecting protein stability and functionality (Burgess & Deutscher 2009). Consequently, expression of challenging proteins in Eukaryotic organisms, such as *P.pastoris*, is advantageous. Thus, protein expression of Brr2 was also attempted in yeast by methanol induction. P. pastoris cells are methylotrophic organisms capable of using methanol as their primary carbon source due to the presence of alcohol oxidase (AOX) genes. Therefore, integration of protein genes of interest to the AOX locus allows dramatical transcriptional induction when cells are grown in a methanol-containing medium (Burgess & Deutscher 2009). Thus, another vector containing an AOX promoter was used (pPICZA – Qiagen), and insertion of a protein gene to the vector allows for integration of the vector to the 5' AOX1 region of the host cell. Integration enables the recombinant yeast to metabolise methanol. Therefore, the presence of methanol will activate the AOX gene inducing expression of the protein in a methanol-dependent manner (Burgess & Deutscher 2009). The Brr2 gene was chosen to be inserted into pPICZA, as an alternative strategy for expression of large proteins.

By attempting, troubleshooting, and eventually optimizing the different strategies described above, I successfully expressed eight of the eleven proteins that associate with U5. The approaches described in this chapter will be valuable to future studies that investigate these proteins and will contribute new methods and techniques that can be used generally towards protein expressions.

2.2 Materials and Methods

2.2.1 Preparation of C. merolae genomic DNA


C. merolae 10D strain (NIES-1332) was provided by the Microbial Culture Collection at the National Institute for Environmental Studies in Tsukuba, Japan (mcc.nies.go.jp/). *C. merolae* genomic DNA was prepared by Martha Stark as previously described (Stark et al. 2015).

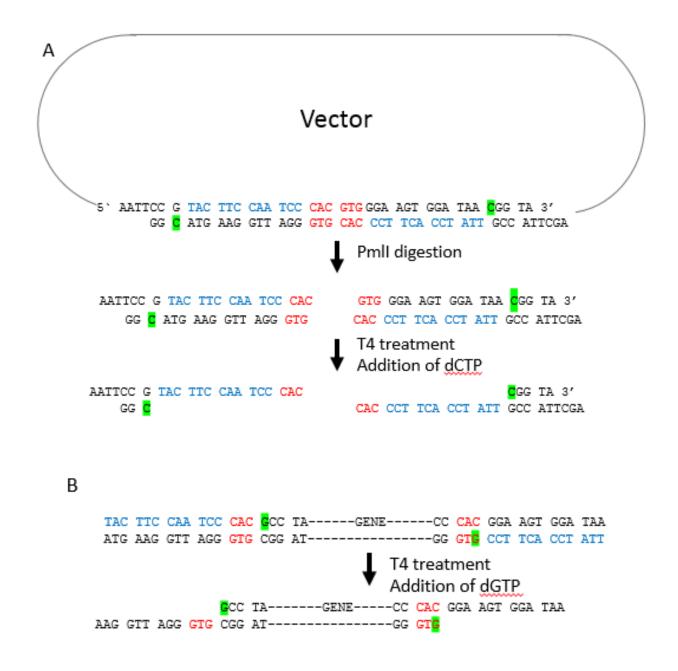

2.2.2 Construction of expression vectors for ligation independent cloning

The construction of the vectors for insertion of U5-specific proteins genes was done by modification of the pQLinkN and pQLinkH vectors by introducing multiple genes into one vector by LIC (Scheich et al. 2007). These vectors were previously modified by Dunn, which a 40 base pairs sequence was inserted to the vector by double digestion with EcoRI and BamHI. Therefore, for this work, modified pQLinkN and pQLinkH (pQLinkN^{mod} and pQLinkHmod) were used to design a vector that would allow insertion of each gene via LIC, followed by a combination of all genes into one vector. In regard to pQLinkH^{mod}, an oligonucleotide containing the PmII restriction

site, a ribosome binding site (RBS), seven histidines (HIS7-tag) and a Tobacco Etch Virus (TEV) sequence was inserted (Figure 2-3a). The HIS7-tag was inserted for purification of the protein expressed, and the TEV cleavage site was added to enable cleavage of the tag after purification. Conversely, only the restriction site PmII was inserted into pQLinkN^{mod} as it would allow for digestion of the vector for later insertion of the genes by LIC (Figure 2-3b). Introduction of the oligonucleotides was accomplished by EcoRI and HindIII restriction digest followed by ligation of annealed oligonucleotides into the vector. The oligonucleotides oSDR 1070/1071 and 1072/1073 replaced the EcoRI-HindIII fragment removed from pQLinkH^{mod} and pQLinkN^{mod} (Figure 2-3).

In order to carry out the above above reactions, five micrograms of both vectors were digested for 3 hours using EcoRI and HindIII restriction enzymes (30U/µg of DNA) followed by gel purification of the vector. The oligonucleotides were annealed by addition of T4 DNA ligase buffer (New England Biolabs), left at room temperature for 10 minutes, heated at 85° C for 5 minutes and cooled down at room temperature for one hour. Ligation of the annealed oligonucleotides (50 fmols) to the digested vectors (150 fmols) was performed by addition of T4 DNA ligase. After the ligation reaction, the DH5α bacterial strain was transformed with modified pQLinkN^{mod} and pQLinkH^{mod}. Cells were screened on LB plates and ampicillin and incubated for 18 hours. Colonies were selected, and vectors were isolated by using a plasmid DNA mini kit (Omega bio-tek). Insertion confirmation of the oligonucleotide was done by digestion of vectors with PmII. The modified pQLinkN^{mod} was named pSR617, and the modified pQLinkH^{mod} was named pSR627.

Table 1 DNA oligonucleotides used to modify pQLinkNmod and pQLinkHmod: DNA oligonucleotides used to modify pQLinkN^{mod} and pQLinkH^{mod}: DNA sequences are shown from 5' to 3'. The oligonucleotides oSDR1070 and 1071 and oSDR1072 and 1073 were annealed for insertion into pQLinkN^{mod} and pQLinkH^{mod}, respectively. The RBS sequence is in blue, the start codon in pink, the seven histidines is in green, the TEV site is in red, and in bold is the PmII restriction site sequence.


Oligonucleotide name	Vector of insertion	Sequence
oSDR1070	pQLinkN ^{mod}	GAATTCAGGAGAAATTAACTATGAAACATCACC
		ATCACCATCACCATGAGAATCTGTACTTCCAAT
		CC CACGTG GGAAGTGGATAACCAGCTT
oSDR 1071	pQLinkN ^{mod}	CTTAAGTCCTCTTTAATTGATACTTTGTAGTGG
	-	TAGTGGTAGTGGTAGTGTTAGACATGAAGGTTA
		GGGTGCACCCTTCACCTATTGGTCGAA
oSDR 1072	pQLinkH ^{mod}	GAATTCCGTACTTCCAATCC CACGTG GGAAGTG
	-	GATAACGGTAAGCTT
oSDR 1073	pQLinkH ^{mod}	CTTAAGGCATGAAGGTTAGGGTGCACCCTTCAC
	_	CTATTGCCATTCGAA

2.2.3 Amplification of the genomic sequences of U5 snRNA-specific proteins by polymerase chain reaction (PCR)

As explained previously, two vectors were constructed for insertion of all genes into one vector and co-expression of U5-specific proteins. The vector pSR627 allows purification of the protein since it was designed to have a HIS₇-tag in frame with the protein's gene sequence. Therefore, it is expected that by co-expression of the proteins they will self-assemble as one complex, making it necessary for only one protein to be tagged for purification of the complex. For this, two proteins were chosen to have a HIS₇-tag: Sm E and Sm F. The other genes were selected to be inserted into pSR617. For insertion of the genes into the vectors, primers were designed that would amplify the genes with 5' and 3'ends complementary to the LIC sequence of the vectors (Figure 2-4). The primers were designed as seen in table 2. An essential guanidine nucleotide (dGTP) is observed in all primers before the gene-specific sequence for formation of a 15 nucleotides overhang that will be complementary to the vector overhang (Figure 2-4). In addition, the genes inserted into pSR617 have a forward primer containing an RBS, seven nucleotides, and a start codon. For the Sm E3 and F genes that will be entered to pSR627, a different 5'end of the forward primer is seen. It contains only a dGTP upstream from the gene.

For insertion of Prp8 into a pMCSG23 plasmid, which was an alternative strategy for expression of Prp8 having an MBP tag, a primer was designed that also allows LIC (Table 2). For insertion of Brr2 into pPICZA, different primers were used as traditional ligation was performed for the introduction of the gene into the vector. Thus, the designed primers contained a restriction site at the 5' and 3'end of the gene, resulting in the KpnI and NotI restriction sites flanking the Brr2 gene. As well, the Kozak consensus sequence was inserted downstream from the KpnI restriction site, as it optimises initiation of translation in eukaryotic cells (Table 2).

Genes were amplified from *C. merolae* genomic DNA by polymerase chain reaction (PCR). For amplification of all genes, but Prp8 and Dib1 genes, Q5 high fidelity DNA polymerase was used. For Prp8 and Dib1, the enzyme 5X Q5 high GC enhancer buffer was used for amplification of the genes since both genes had a high GC content, 60 % and 62% respectively. For each 50 μ l PCR reaction, 10 μ l of 5X Q5 reaction buffer, 1 μ l of 10 mM dNTPs, 2.5 μ l of 10 mM reverse and forward primers, 2 μ l of 1 ng/ul of genomic *C. merolae*, 1 μ l of Q5 high fidelity DNA polymerase, 10 μ l of 5X Q5 high GC enhancer (Prp8 and Dib1) and Milli Q water were added. The thermocycler was programmed for 35 cycles of denaturation, annealing and extension. The details of this PCR set-up are presented in table 3.

Figure 2-4 Complementarity of amplified genes to the modified vectors: a) PmII digestion of the vector enables its linearization. The digested vector is treated with T4 DNA polymerase removing all nucleotides until it reaches a citosine, since dCTPs are in reaction. b) T4 treatment of PCR products with dGTP allows removal of nucleotides and; therefore, formation of overhang complementary to vector.

Table 1 DNA oligonucleotide sequence of the primers used for amplification of protein genes: DNA sequences are shown from 5' to 3'. In bold are the LIC sequences. The dGTP at the 3'end will be used for the creation of the overhang. The first oligonucleotide listed for each gene is the forward primer and the second is the reverse primer. Sm E and F will be in frame with a HIS₇ tag, so two forward primers for these protein's genes were designed. The RBS sequence is in blue, the start codon is in pink, underlined is the KpnI and NotI restriction sites, and highlighted in green is the kosak consensus sequence.

oSDR #	Protein	Primers		
1099	Prp8	TACTTCCAATCCCACGAGGAGAAATTAACTATGCCCAAACGTGCG		
1100	Prp8	TTATCCACTTCCCACG TCAAGTTCCCTCTTCGAT		
1101	Snu114	TACTTCCAATCCCACGAGGAGAAATTAACTATGAGTTCAGCGTTTCG		
1102	Snu114	TTATCCACTTCCCACGTCAGAGGTCGGTCCC		
1103	Brr2	TACTTCCAATCCCACGAGGAGAAATTAACTATGCCTCAGGAACCT		
1104	Brr2	TTATCCACTTCCCACG TCAGATACTCGGATCCGC		
1080	Dib1	TACTTCCAATCCCACGAGGAGAAATTAACTATGGACAGTGCACCG		
1081	Dib1	TTATCCACTTCCCACG CTAGAGTCGGAACGG		
1225	Sm B	TACTTCCAATCCCACGAGGAGAAATTAACTATGGATCTTCTGCCTGT GC		
1226	Sm B	TTATCCACTTCCCACG TCATTCAGATGCGGCAGTTTTC		
1227	Sm D3	TACTTCCAATCCCACGAGGAGAAATTAACTATGAGCGGGTATCGACC		
1228	Sm D3	TTATCCACTTCCCACGTCACACGTTCCGCCG		
1229	Sm D2	TACTTCCAATCCCACG AGGAGAAATTAACTATGCCTCCAGTTGATCA GC		
1230	Sm D2	TTATCCACTTCCCACGTTACGGCTGTGCGCG		
1231	Sm D1	TACTTCCAATCCCACG AGGAGAAATTAACTATGACCCCCTTGCTTTA TTTC		
1232	Sm D1	TTATCCACTTCCCACGTCAGTGTCTCTCTTTCTGATATCG		
1233	Sm E	TACTTCCAATCCCACGAGGAGAAATTAACTATGCCGAAGGACGCTC		
1235	Sm E	TTATCCACTTCCCACGTCACTCCCGAGTCGC		
1236	Sm F	TACTTCCAATCCCACG AGGAGAAATTAACTATGACTGCGACTGGTTT CG		
1237	Sm F	TTATCCACTTCCCACG TCAAGATAGAGGCGGGAC		
1238	Sm G	TACTTCCAATCCCACG AGGAGAAATTAACTATGGCAAAAGACGAGGT CG		
1239	Sm G	TTATCCACTTCCCACGTCAGCTGCTAAGCGAAGAAC		
1240	Sm E-HIS	TACTTCCAATCCCACGCACCGAAGGACGCTCTGG		
1241	Sm F-HIS	TACTTCCAATCCCACGCAACTGCGACTGGTTTCGC		
1300	Prp8-MBP	TACTTCCAATCCAATGCACCCCAAACGTGCGTTTTTC		
1301	Prp8-MBP	TTATCCACTTCCAATG CTAAGTTCCCTCTTCGATCG		
1380	Brr2-pPICZA	CGGATC <u>GGTACC<mark>GCCATGGTG</mark>CCTCAGGAACCTGAACTAGAA</u>		
1381	Brr2-pPICZA	AAGCTG <u>GCGGCCGC</u> TGATACTCGGATCCGCGGT		

Table 2 Thermocycler set-up for amplification of protein genes: PCR reactions were set-up for 35 cycles of denaturation, annealing and extension, and the DNA polymerase Q5 *high fidelity* was used for the amplification of the genes.

PCR steps	Prp8	Snu114	Dib1	Brr2	Sms
Initial	98°C	98°C	98 °C	98 °C	98 °C
denaturation	2 minutes	2 minutes	2 minutes	30 seconds	30 seconds
Denaturation	98 °C	98 °C	98 °C	98 °C	98 °C
	10 seconds	10 seconds	10 seconds	10 seconds	10 seconds
Annealing	60 °C	55 °C	72 °C	59 °C	64 °C
	30 seconds	30 seconds	30 seconds	30 seconds	30 seconds
Extension	72 °C	72 °C	72 °C	72 °C	72 °C
	3.5 minutes	2.5 minutes	20 seconds	2.75 minutes	20 seconds
Final	72 °C	72 °C	72 °C	72 °C	72 °C
extension	10 minutes	2 minutes	2 minutes	2 minutes	12 minutes

2.2.4 Insertion of the protein genes into the vector by LIC

As seen in figures 2-3 and 2-4, digestion and T4 treatments of the vectors and PCR products needed to be performed prior to ligation of the vector to the PCR product. Therefore, the vectors were digested with PmII and then a 15 nucleotides overhang is created by treatment of the digested vector with T4 DNA polymerase. Six micrograms of pSR617 and pSR627 were digested for three hours with five μ l of PmII (20 U/ μ l), and the digested vector was run on a 0.5% Agarose Ethidium Bromide gel for three hours at 100 volts followed by gel extraction. After purification of the digested vectors, creation of the overhang was done by treating 200 nanograms of each vector with 2 μ l of dGTP (25mM), 2 μ l of 10X T4 buffer, 1 μ l of DTT (100 mM), 0.4 μ l of (1U) T4 DNA polymerase (New England Biolabs), and Milli Q water to make a final 20 μ l reaction volume. The PCR products were also treated with T4 DNA polymerase; however, before T4 treatment, removal of all dNTPs was necessary. Removal of dNTPs during the T4 DNA polymerase treatment allows

for only one dNTP to be present in the T4 DNA polymerase reaction, and thus for the creation of an overhang. Therefore, a PCR clean-up was done using an Omega kit. To create the overhang complementary to the vectors, dCTPs were added to the reaction instead of dGTPs. In regard to Dib, Prp8, and Brr2 genes, 200 fmols of PCR product were treated with 2 μ l of dCTP (25mM), 2 μ l of 10X T4 buffer, 1 μ l of DTT (100 mM), 0.4 μ l of (1U) T4 DNA polymerase (New England Biolabs) and Milli Q water was added for creation of a 20 μ l reaction volume. For Sm B/B', Sm D3, Sm D2, Sm D1, Sm E3, Sm F, Sm G genes, 250 fmols of PCR products were mixed with 0.5 μ l of dCTP (100 mM), 1 μ l of 10X T4 buffer, 0.5 μ l of DTT (100 mM), 0.4 μ l de (1U) T4 DNA polymerase (New England Biolabs) and added Milli Q water to create a total volume of 10 μ l.

The T4 DNA polymerase (New England Biolabs) the reactions were incubated at 25° C for 30 minutes followed by inactivation at 70° C for 20 minutes. After creation of the overhangs in both vectors and PCR products, 25 fmols of the T4 treated vector were mixed with 75 fmols of the T4 treated PCR products and incubated at room temperature for 2 minutes. After incubation, 50 µl of DH5 α bacteria were transformed with the vectors and incubated for 18 hours. Confirmation of the insertion of genes into pSR617 and pSR627 was done via either colony PCR or digestion.

For insertion of the Prp8 gene into pMCSG23, the same procedure described above was performed since this plasmid also allows LIC. Insertion of Snu114 to pMCSG23 was completed by another lab member, Mona Amin. For insertion of Brr2 into pPICZA, the vector and the PCR product were double digested with KpnI (20/ μ l) and NotI (20/ μ l), followed by gel purification with a Qiagen QIAquick gel extraction kit. After gel purification, 11 fmols of plasmid was ligated to 40 fmols of the insert by ligation with T4 DNA ligase.

2.2.5 Sequencing of amplified genes

After confirmation of the presence of genes into the vector either by colony PCR or digestion, vectors were sent to the genetics facility at the University of Northern British Columbia (UNBC) for sequencing of the genes inserted. They were checked for the absence of mutations in the gene and confirmation of the correct sequence of the ribosome binding site, start and stop codons using the program CodonCode aligner[®].

2.2.6 Construction of a vector for co-expression of the U5-specific proteins

For reconstitution of the C. merolae U5 snRNP, co-express and co-purify all U5-specific proteins was performed. For that, all genes were inserted into pSR617, and Sm E3 and F genes were inserted into pSR627 via LIC. Therefore, in this section, all genes will be combined into one vector, pSR627, by LIC (Figure 2-8). As seen in figure 2-2, the combination of genes into one vector is facilitated by the presence of the PacI and SwaI restriction sites. Indeed, consecutive PacI and SwaI digestions of the vectors and T4 treatments. The creation of overhangs (as seen described by Scheich et al. 2007 – Figure 2-2) were done to combine all genes into pSR627, which will contain either Sm E3 or Sm F in frame with HIS7-tag. For combination of Prp8, Dib1, Brr2, and Snull4 into one gene, 200 nanograms of each gene were added to 1 µl of 10X smart cut buffer (New England Biolabs), 1 μ l of 10X BSA, 0.5 μ l (5 U) of restriction enzyme (either PacI or Swal) and added Milli Q water to reach a total volume of 10 µl. PacI digests were incubated at 37° C, and SwaI digests were incubated at 25°C for three hours. After digestion, the enzymes were heat inactivated at 65° C for 20 minutes and digests were treated with 1µl of 1M Tris HCl (pH 8), 0.2 µl of 1M MgCl₂, 1µl of 1X BSA, 1 µl of 0.1M DTT, 0.5 µl 100mM of dCTP (PacI digests), and dGTP (SwaI digests), 0.5 µl T4 DNA polymerase (New England Biolabs) and Milli Q for a total volume of 15 μ l. Each reaction was incubated at 25°C for 30 minutes for T4 DNA polymerase activation, and then it was inactivated at 65°C for two minutes. T4 treated vectors and inserts were then combined and incubated at 65°C for 5 minutes, and slowly cooled to room temperature to allow annealing of the insert into the vector. Two microliters of EDTA were added to the reaction and transformed into 50 μ l of DH5 α . For the combination of the Sm proteins into one vector, the vectors underwent an overnight restriction digest with PacI or SwaI. Also, five microliters of the digested vector were T4 treated by addition of 0.5 μ l of 100 mM DTT, 0.5 μ l 100mM of dCTP (PacI digests) and dGTP (SwaI digests), 0.4 μ l T4 DNA polymerase, and Milli Q water for a 10 μ l total volume. Reactions were incubated at 22°C for 30 minutes and 75°C for 20 minutes. One microliter of both the T4 treated vector and insert reactions were combined, and annealing was permitted to happen at room temperature for five minutes. For confirmation of insertion of genes into vectors, colony PCR or digestion of vectors was performed.

2.2.7 Expression of the U5-specific proteins

2.2.7.1 Expression

The expression of the proteins in bacteria (Rosetta pLysS strain) was attempted by inducing with both IPTG and auto-induction. This *E. coli* strain carries genes for rare tRNAs allowing expression of Eukaryotic proteins. When inducing protein expression through the addition of 1 mM IPTG (Amresco), cells were grown in 10 ml of either Luria Bertani (LB) or 2xYT. Media were supplemented with 34 mg/ml of chloramphenicol to select for plasmids carrying tRNA genes, 100 mg/ml Spectinomycin to for select Snu114 and Prp8-containing pMCSG23, and 50 mg/ml Carbenicillin to select for pQLink vectors. Ten millilitres of culture were added to a 200 ml Erlenmeyer flask for better aeration and incubated at 37°C and 300 rpm until an OD₆₀₀ of 0.4-0.6

was reached. Cells were induced by addition of 1 mM IPTG (1:1000 of the total culture volume). Cultures were incubated shaking at 37° C for 1-4 hours. For auto-induction of proteins, Rosetta pLysS cells were first grown in 1.5 ml of MDG non-inducing media, as described by Studier (2005) in a 50 ml Erlenmeyer supplemented with the same antibiotics described above. The culture was incubated at 37° C and 300 rpm for 24 hours and cell density was checked at OD₆₀₀. For an OD₆₀₀ 10, 1:1000 of the total volume of the auto-inducing media, as described by Studier (2005). Media was supplemented with antibiotics and added to a 125 ml Erlenmeyer flask and incubated at 37° C and 300 rpm for 24 hours.

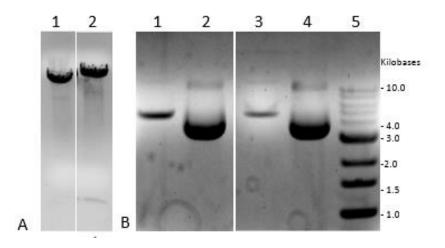
When attempting to express Brr2 in yeast, the instructions from the Invitrogen protocol and Lin-Cereghino et al. (2005) for preparation and transformation of competent Pichia cells were followed. Thus, X-33 strain competent cells were transformed with 3 μ g of PmeI digested vector (zeocin-resistant) and plated on YPD supplemented with the zeocin antibiotic. After two days, colonies from YPD plates were chosen and inoculated in a 125 ml Erlenmeyer containing 10 ml of buffered glycerol-complex medium supplemented with antibiotics, as described by Weidner et al. (2010). Cells were grown at 30° C and 300 rpm for 24 hours. The culture was harvested and centrifuged for 5 minutes at 3000 g at room temperature, and the cell pellet was resuspended to achieve an OD₆₀₀ of 1, with buffered methanol-complex medium containing 0.5% of methanol, as described by Weidner et al. (2010). The culture was returned to the incubator and supplemented with methanol every 24 hours for four days.

2.2.7.2 Solubility tests

Expressed proteins were tested for solubility, since purification conditions require soluble proteins. One OD_{600} unit of culture was centrifuged at 17,000 x G at a cold temperature for ten seconds. The supernatant was discarded, and the pellet was suspended in 20 µl of BugBuster protein extraction reagent (Novagen), 1 µl of Benzonase (0.5 units/µl), and 1 µl of lysozyme (0.4 mg/ml). Cells lysis was done at room temperature for 30 minutes and then centrifuged at 17,000 x G for five minutes. The supernatant contained the soluble fraction (protein, if soluble), and the pellet contained the insoluble fraction.

2.2.7.3 Small-scale purification

Batch binding of proteins to Ni²⁺ -NTA (Thermo Scientific) or amylose (New England Biolabs) resin was performed by harvesting and centrifuging cells for 10 minutes at 3000 rpm at 4°C in a JLA-8.1000 rotor (Beckman Coulter Avanti HP-20 XPI). The resulting cell pellets were washed once by addition of 1.5 ml of buffer A1 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 20 mM imidazole, 5 mM β -mercaptoethanol) and repeated centrifugation. The cell pellet was snap frozen in liquid nitrogen and stored at -80°C. Resuspension of cell pellet was performed by the addition of 1.5 ml of buffer A1 and sonicated four times on ice in ten seconds bursts at five W with ten seconds breaks. Sonicated samples were centrifuged for ten minutes at 1,300 rpm at 4°C. After centrifugation, a Ni²⁺ -NTA or amylose resin was prepared, as described by the manufacturer's protocol. The soluble sample was transferred to a resin-containing column and centrifuged for 2 minutes at 700G at room temperature, followed by two washes with buffer A1. A third washing was done using buffer A2 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 60 mM imidazole, 5 mM β -mercaptoethanol). Protein was then eluted from the resin by addition of buffer B1 (20 mM


HEPES-NaOH, pH 7.5, 500 mM NaCl, 500 mM imidazole, 5 mM β -mercaptoethanol) when using Ni²⁺ -NTA resin, or buffer B2 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 10 mM maltose) when using amylose resin.

2.3 Results

2.3.1 Construction of expression vectors for ligation independent cloning

For reconstitution of U5 snRNP, an expression vector from pQLinkN and pQLinkH expression vectors was constructed that would allow for insertion of the U5-specific protein genes into one vector by LIC. A adaptor sequence that is complementary to the 5` and 3` ends of the amplified genes was inserted. The pQLinkN^{mod} and pQLinkH^{mod} vectors were first double-digested with EcoRI and HindIII, and the EcoRI-HindIII fragment was replaced with oSDR 1070/1071 and oSDR 1072/1073 respectively. Figure 2-5a shows the linearization of pQLinkH^{mod} and pQLinkH^{mod} and pQLinkH^{mod} and removal of a 105 and a 174 base pairs fragments, respectively.

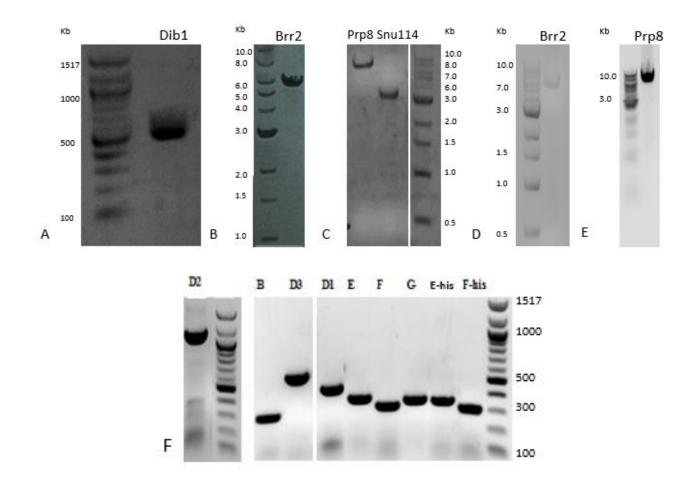

Followed by double-digestion of the vectors, oSDR 1070/1071 and oSDR 1072/1073 were ligated into pQLinkH^{mod} and pQLinkN^{mod} and DH5 α cells were transformed using these vectors. The vectors were digested with PmII for confirmation of insertion of oligonucleotides since pQLink vectors do not contain a PmII restriction site. As observed in figure 2-5b, the introduction of oligonucleotide was confirmed by linearization of the vectors.

Figure 2-5 Construction of expression vectors: a) A 0.7% Agarose Ethidium Bromide gel presenting the EcoRI-HindIII double digestion of pQLinkN^{mod} (lane 1) and pQLinkH^{mod} (lane 2). b) A 1% Agarose Ethidium Bromide gel presenting digestion of the vector with PmII. Lanes 1 and 3 show control samples; therefore, pQLinkH^{mod} and pQLinkN^{mod}, respectively, after PmII digestion. As expected, the vectors do not linearise since PmII restriction site is absent. Lanes 2 and 4 show pQLinkH^{mod} and pQLinkN^{mod}, respectively, after insertion of PmII-containing oligonucleotides. Insertion is confirmed by linearization of the vectors running on gel around 4 kilobases as expected, since vector is ~ 4.7 kilobases long.

2.3.2 Amplification of the genomic sequences of U5 snRNA-specific proteins by polymerase chain reaction (PCR)

After construction of the vectors allowing for insertion of genes, each gene containing 5` and 3`ends complementary to the sequences inserted into the vectors was amplified. Figure 2-6 shows on gel amplification of Dib1, Brr2, Prp8, Snu114, Sm B, Sm D2, Sm D1, Sm E, Sm F, Sm G, where successful amplification of genes is confirmed (Table 4). When amplifying genes for insertion into pSR617, pSR627 and pMCSG2, the genes were 46 base pairs longer since the 5` and 3` ends contain sequences for insertion of genes into the vector by LIC.

Figure 2-6 Amplification of protein genes: A 1% Agarose Ethidium Bromide gel presenting amplification of Dib1 gene (452 bp) (A) Brr2 gene (5515 bp) (B) Prp8 (7234 bp) and Snu114 (3373 bp) genes (C) Brr2 gene for insertion in Ppicza (D) Prp8 gene for insertion in pMCSG23 (E), and SmB (289 bp), SmD3 (559 bp), SmD2 (1045 bp), SmD1 (451 bp), SmE (364 bp), SmF (319), SmG (346 bp) (F). SmE-HIS and SmF-HIS represent the SmE and F genes that will be inserted into pSR627.

Table 3 Presentation of the size of the protein genes in *C. merolae*.

Protein	Gene size (base pairs)
Prp8	7188
Snu114	3327
Brr2	5469
Dib1	426
SmF	270
SmE	315
SmG	300
SmD3	510
SmB	240
SmD1	402
SmD2	996

2.3.3 Insertion of the protein genes into the vectors

After construction of expression vectors and amplification of the genes, the genes were inserted into pSR617, pSR627, or pMCSG2 by LIC. A successful insertion was assessed by either digestion or colony PCR. Brr2 was inserted into pPICZA by traditional ligation. For confirmation of insertion of Dib1 into pSR617, non-gene specific primers were used that annealed to a sequence flanking the gene. Therefore, if the gene was not inserted into the vector, a smaller PCR product (~1 kb) would be amplified. Successful insertion of the gene was confirmed by the presence of a 1.5 kb fragment on the gel (Figure 2-7a). For assessment of insertion of Snu114 gene into pSR617, different primers were used that would also anneal to the vector flanking the region of introduction of the gene. Therefore, it was expected to see a PCR product of about ~4 kb, instead of a 223 bp product (Figure 2-7b). For confirmation of the introduction of Prp8 into pSR617, a gene-specific primer was used as well as a primer that binds to the vector; therefore, if insertion of the gene occurred a ~1 kb PCR product would be expected to be observed (Figure 2-7c).

Detection of the insertion of Prp8 gene in the pMCSG2 vector was confirmed by digestion with NdeI, and the band sizes were expected to be 8704 and 3459 base pairs long (Figure 2-7d). For detection of Sm B, Sm D3, Sm D2, Sm D1, Sm E3, Sm F, and Sm G into pSR617, Sm E3-HIS into pSR627, and Sm F-HIS into pSR627, a colony PCR was done using gene-specific primers. As seen in figure 2-7e, the presence of each gene was assessed by amplification of the genes. Insertion of Brr2 in pSR617 was confirmed by linearization of the vector with SalI. A 10 kb fragment was observed on the gel when Brr2 gene was successfully inserted into pSR617, and a 4 kb fragment is seen when Brr2 was not added (Figure 2-7f). For detection of insertion of Brr2 into pPICZA, the vector was digested with ApaI and expected band sizes were 4707 and 4088 base

bp Dib1 control Snu114 control кb control Prp8 ĸЬ control Prp8 ĸЬ 1517 3.0 1000 10.0 2.0 1.5 3.0 500 10 1.5 300 1.5 0.5 1.0 100 A В C 0.5 D D2 D1 E3 F G E-HIS F-HIS 8/8 D3 ĸЬ bp Brr2 control Brr2 Kb. 10.0 10.0 1517 1000 3.0 3.0 500 4.0 300 1.0 0.5 Е F G 100

pairs long. As seen in figure 2-7g, successful insertion of the gene was observed. Confirmation of insertion of the genes into the vector were performed by sequencing of each vector (Appendix 1).

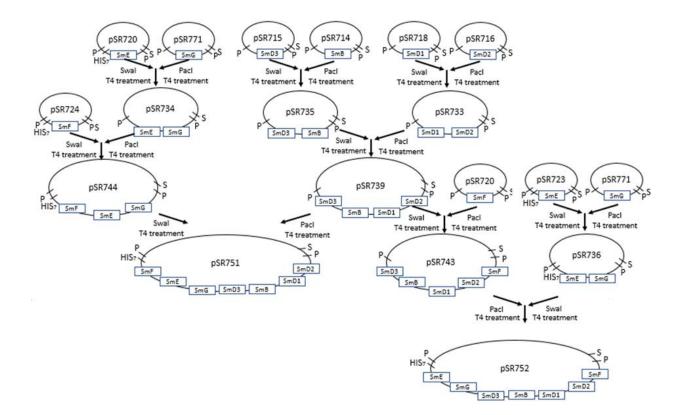
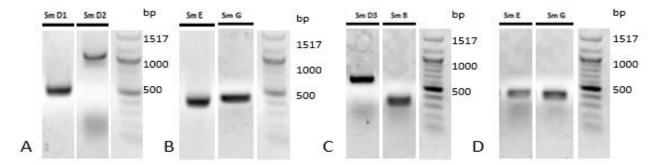

Figure 2-7 Assessment of insertion of protein genes into expression vectors: A 1% Agarose Ethidium Bromide gels presenting confirmation of insertion of all protein genes into the vectors. a) Amplification of ~1.5 kb fragment flanking Dib1 gene confirms the introduction of the gene into pSR617.b) Amplification of ~4 kb fragment flanking Snu114 ensures the presence of gene into pSR617. c) Amplification of Prp8 using gene-specific primers shows the presence of Prp8 gene into pSR617, where a ~1kb fragment is amplified. d) NdeI digestion of vector confirms insertion of Prp8 gene into pMCSG2 presenting ~8 and ~3 kb fragments. e) Presence of all the Sms B, D3, D2, D1, E, F and G is observed since proteins genes were amplified. Sm E-his and Sm-F on the gel represents the Sms E and F that were inserted into pSR627. f) Linearization by SalI digestion confirms the presence of Brr2 into pSR617 since a ~10 kb fragment is observed on the gel. g) ApaI digestion of the vector presents the expected 5 and 4 kb fragments confirming insertion of Brr2 into pPICZA.

Table 4 Construction of expression vectors: After insertion of the genes, each vector was given a name (here called pSR). The Snu114 gene was inserted into pMCSG2 by another lab member. (*) represents the insertion of the gene into pMCSG2. (**) represents the insertion of the gene into pPICZA. (***) represents the insertion of the gene into pQLinkH.

Gene	pSR #	Gene	pSR#	Gene	pSR#	Gene	pSR#
Dib1	634	Brr2**	855	Sm D3	715	Sm B	714
Snu114	647	Brr2	656	Sm D2	716	Sm G	721
Prp8	655	Snu114*	767	Sm D1	717	Sm E***	723
Prp8*	797	Sm F	720	Sm E	719	Sm F***	724

2.3.4 Construction of vectors for co-expression of the U5-specific proteins

After insertion of each protein gene into the pSR617 and pSR627 (one vector with Sm E his tagged and other with Sm F his tagged), the combination of all genes into pSR627 containing either Sm E or Sm F was initiated. Indeed, these two proteins were in frame with six histidines allowing for further purification of the protein complex. LIC step-by-step and confirmation of gene insertions were performed by either colony PCR or restriction digestion of vectors.



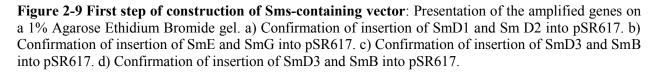
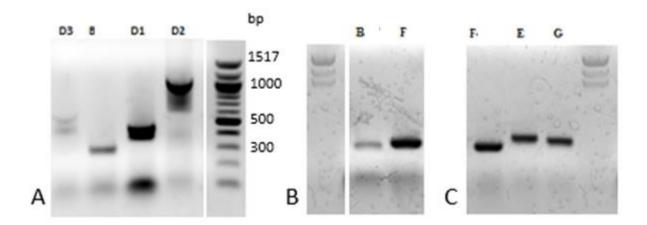


Figure 2-8 Construction of the U5-specific proteins co-expression vector: This scheme presents a stepby-step construction of a co-expression vector. Addition of inserts was done by consecutive SwaI and PacI digestions of vectors followed by T4 DNA polymerase treatments, allowing for the creation of the overhangs and ligation of the inserts into one vector. Each gene contained its own promotor and ribosome binding site.


As seen on the scheme (Figure 2-8), Sms D1/D2, E/G, D3/B and E-His/G vectors were

constructed, and assessment of gene insertions was done by colony PCR (Figure 2-9).

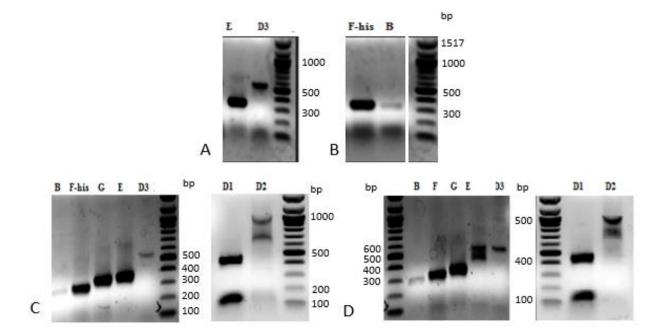
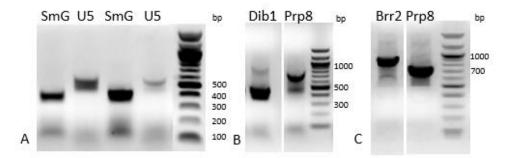
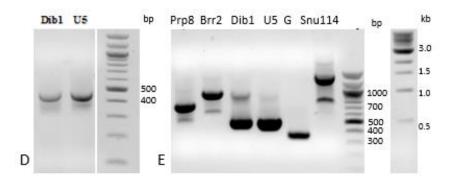

The second step was to combine SmD3/SmB to SmD1/SmD2, and insertions were confirmed by colony PCR (Figure 2-10a). The third part was comprised of two LICs. The vector containing SmD3/B/D1/D2 was combined with Sm F (pSR617), and Sm E3/G was combined with Sm F (pSR627). Construction of the Sm D3/B/D1/D2/F vector was confirmed by colony PCR using Sm F and B primers (Figure 2-10b). To confirm F-HIS/E/G construction, SmF, E and G primers were used (Figure 2-10c).

Figure 2-10 Second and third steps of construction of Sms-containing vector: Presentation of the amplified genes on a 1% Agarose Ethidium Bromide gel. a) Confirmation of the construction of a Sm D3/SmB/SmD1/SmD2-containing expression vector by amplification of the genes. b) Confirmation of insertion of Sm D3, B, D1 and D2 genes into Sm F-containing vector (pSR617) by amplification of SmB and F genes. c) Confirmation of introduction of SmE and G into a SmF-HIS-containing vector by amplification of the genes. Markers on figures b and c are not clear; however, insertion is confirmed.

At the last step, insertion of all seven Sms into pSR627 was performed, where Sm E and Sm F were in frame with six histidines. The construct containing SmD3/B/D1/D2/F was ligated to the SmE3-his/G construct, the construct containing SmF-HIS/E3/G was ligated to the SmD3/B/D1/D2 construct. For confirmation of these ligations, SmE and D3 genes were amplified from the SmE3-his/G/D3/B/D1/D2/F-containing vector (Figure 2-11a), and Sm F-HIS and B genes from the Sm F-HIS/E3/G/D3/B/D1/D2-containing vector (Figure 2-11b). A second confirmation of the

presence of all the Sm genes into the vectors is presented in figures 2-11c and d. SmE3-his/G/D3/B/D1/D2/F-containing vector was named pSR752, and Sm F-HIS/E3/G/D3/B/D1/D2-containing vector was named pSR751 (Table 6).




Figure 2-11 Last step of construction of Sms-containing vector: Presentation of the amplified genes on a 1% Agarose Ethidium Bromide gel. a) Amplification of the SmE and D3 genes confirmed the introduction of the SmD3, B, D1, D2, and F genes into the SmE-his/G construct. b) Amplification of the SmF and B genes confirmed the presence of the SmD3, B, D1, and D2 genes in the SmF-HIS/E/G construct. c) Construction of the F-HIS/E/G/D3/B/D1/D2-containing vector was confirmed by amplification of all the genes. d) Construction of the SmE3-his/G/D3/B/D1/D2/F-containing vector was confirmed by amplification of all the genes.

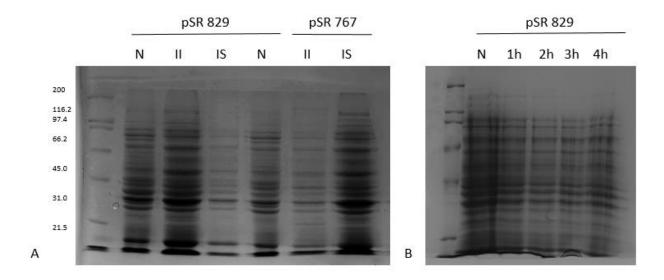
After construction of vectors containing all seven Sm genes, the U5 snRNA gene was combined to both vectors, pSR751 and 752. The U5 snRNA-containing vector (pSR660) was previously constructed by Kirsten Reimer, a former lab member. Insertion of U5 gene to both vectors was confirmed by amplification of SmG and U5 genes (Figure 2-12a). In the last step of constructing a vector containing all U5-specific protein genes, Prp8, Dib1, and Brr2 were inserted into pSR753 and 755 (Table 6). The Prp8 gene was first combined to the Dib1-containing vector,

followed by insertion of Brr2 to this vector. The first ligation was confirmed using Prp8 and Dib1 primers (Figure 2-12b), and for the second construct (pSR712) Prp8 and Brr2 primers were used (Figure 2-12c), Prp8 primers that would amplify only 718 base pairs of the gene were used; therefore, the full-length is not seen on the gel.

The last step was to combine the Brr2/Prp8/Dib1 construct to pSR753 and 755. The pSR712 construct to pSR753 was successfully ligated; however, ligation of pSR712 to pSR753 failed multiple times. Figure 2-12d shows amplification of U5 and Dib1genes to confirm the ligation of pSR712 to pSR753. As previously described, it was deemed appropriated to have two strategies to purify the complex. The first approach was to have all U5-specific protein genes in one vector having either a Sm E or Sm F tag. Another construct would not have the Snu114 gene, and this gene would be inserted into a different plasmid in frame with an MBP gene. Bacteria would be transformed with both vectors and a two-step purification using both HIS and MBP tags would allow purification of the complex. Thus, the Snu114 gene was the last gene to be inserted into the final construct (pSR762). Confirmation of insertion of that gene to this vector was performed by amplification of Prp8, Brr2, Snu114, U5, and Sm G (Figure 2-12e). For amplification of Prp8, Brr2 and Snu114, primers were used that partially amplified the gene, with bands expected to be 718, 958, and 1421 base pairs.

Figure 2-12 Step-wise construction of the vector containing all U5-specific protein genes: Presentation of the amplified genes on a 1% Agarose Ethidium Bromide gel. a) Amplification of the SmG e U5 genes for confirmation of insertion of U5 to Sms-containing vectors. Amplification of U5 was performed using oSDR1125 and oSDR 1126 primers; therefore, an expected 410 bp fragment is observed. Lanes 1 and 2 display the insertion of U5 to pSR751 and pSR752, respectively. b) Combination of Prp8 and Dib1 genes into one vector was confirmed by amplification of Prp8 and Dib1 genes, and bands of 718 and 426 bp were observed. c) Confirmation of insertion of the Brr2 gene into the Prp8/Dib1-containing vector is confirmed by amplification of Prp8 and Brr2 genes, and the correspondent bands of 958 and 718 bp are seen. d) Insertion of the Dib1 and U5 genes. e) Insertion of Snu114 into the final construct was confirmed by the presence of amplification of the Dib1, U5, SmG, and Snu114 genes.

Table 5 Construction of expression vectors containing U5-specific protein genes: Each vector used for the construction of expression vector was named pSR followed by a number.


Gene-containing construct	pSR#
Sm D1/D2	733
Sm D3/B	735
Sm E/G	734
Sm E-HIS/G	736
Sm D3/B/D1/D2	739
Sm D3/B/D1/D2/F	743
Sm F-HIS/ E/G	744
Sm E-HIS/G/ D3/B/D1/D2/F	752
Sm F-HIS/ E/G/ D3/B/D1/D2	751
Sm E-HIS/G/ D3/B/D1/D2/F/U5	755
Sm F-HIS/ E/G/ D3/B/D1/D2/U5	753
Sm Prp8/Dib1	708
Sm Brr2/ Prp8/Dib1	712
Sm F-HIS/ E/G/ D3/B/D1/D2/U5/Brr2/ Prp8/Dib1	829
Sm F-HIS/ E/G/ D3/B/D1/D2/U5/Brr2/ Prp8/Dib1/Snu114	762

2.3.5 Expression and solubility tests

Once construction of expression vectors containing the genes of the proteins that associate to U5 snRNA was accomplished, co-expression of the proteins using the vectors pSR767 and pSR829 was attempted. The vector pSR767 was constructed by Mona Amin, a former lab member and contains the Snu114 gene in frame with the MBP gene and six histidines. Expression the protein by IPTG induction in bacteria was confirmed based on the proteins molecular weights (Table 7). As seen in figure 2-13a, protein expression in both soluble and insoluble fraction could not be seen. Protein expression after 1, 2, 3, and 4 hours of induction was assessed and no differences between the non-induced sample and IPTG induced samples were observed (Figure 2-13b).

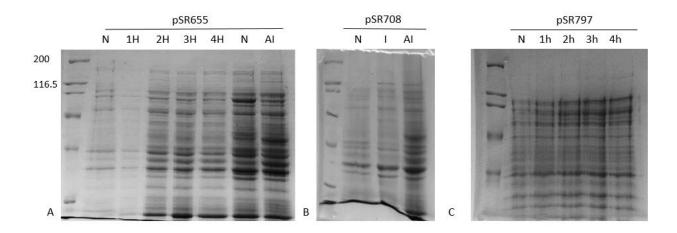

Protein	Approximate molecular Weight (kDa)
Prp8	274
Snu114	122
Brr2	205
Dib1	16
SmF	10
SmF +HIS7 tag	12
SmE	12
SmE +HIS7 tag	14
SmG	11
SmD3	19
SmB	9
SmD1	15
SmD2	36

Table 6 Presentation of the molecular weight of the proteins in C. merolae.

Figure 2-13 IPTG induction of the U5-specific proteins: 8% SDS PAGE gel presenting one of the attempts to express all U5-specific proteins in Rosetta pLysS. When using the vector pSR829 the proteins Prp8 (274 kDa), Snu114 (122 kDa), Brr2 (205 kDa), Dib1 (16 kDa), SmF (10 kDa), SmF with His₇ (12 kDa), SmE (12 kDa), SmE with His₇ (14 kDa), SmG (11 kDa), SmD3 (19 kDa), SmB (9 kDa), SmD1 (15 kDa), SmD2 (16 kDa) were expected to be co-expressed. When using the vector pSR767 the protein Snu114 with MBP (164.5 kDa) was expected to express. a) No changes between non-induced and induced lanes on gel confirms no expression of proteins after 4 hours induction by addition of 1mM IPTG. b) The gel shows no expression of proteins after 1, 2, 3 and 4 hours induction by addition of 1mM IPTG. (N) non-induced, (II) induced, and insoluble material, (IS) induced and soluble material.

The negative results for co-expression of these proteins requires changing the initial strategy. It was deemed most suitable to check for expression of each protein individually since vectors containing each protein genes were available (Table 5). Protein expression was tested using different constructs, such as pSR751, pSR752, and pSR708. Protein expression was attempted by by either IPTG or auto-induction. As seen on acrylamide gels, expression of Prp8 either individually (pSR655 – Figure 2-14a) or in the presence of Dib1 (pSR708 – Figure 2-14b) was not observed, since it was expected to be seen on the gel a protein of 274 kDa. For this protein, Prp8 was inserted into a different vector fused to MBP (pSR797), and the resulting construct was used. However, expression of Prp8 when induced by IPTG induced was also not observed (Figure 2-14c).

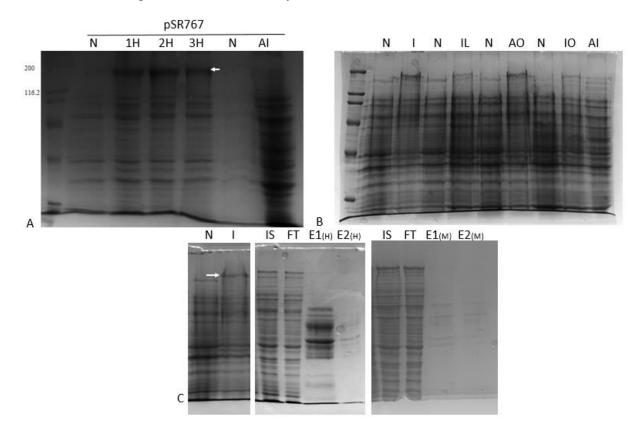
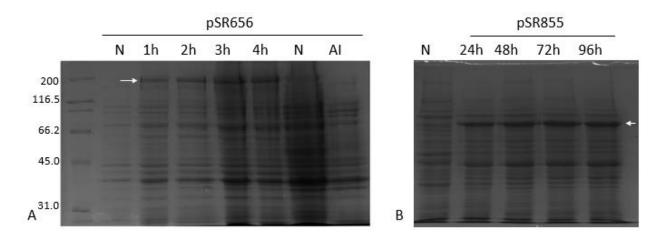


Figure 2-14 Induction of expression of Prp8 in Rosetta pLysS: A 8% SDS PAGE gel presenting different attempts to express Prp8 in Rosetta pLysS. a) No changes between non-induced and induced lanes on the gel confirmed that Prp8 (274 kDa) was not expressed by either IPTG induction or auto-induction. Expression of Prp8 by addition of 1 mM IPTG was checked after 1, 2, 3 and 4 hours of induction. b) No expression of Prp8 (274 kDa) was also observed after to co-expressing Prp8 and Dib1 by either IPTG induction or auto-induction. c) No expression is observed when expressing Prp8 joined to MBP (289.5 kDa) after 1, 2, 3 and 4 hours of induction. (N) non-induced, (AI) auto-induced, (I) IPTG induced.

Expression of Snu114 was also checked using the vector pSR767. This vector (constructed by Mona Amin, a former lab member) contains the Snu114 gene in frame with the MBP gene and six histidines. Snu114 was presumably expressed after adding 1 mM IPTG to the culture since a protein below 200 kDa was observed on the gel (Figure 2-15a). Due to the low protein expression, four different expression conditions were attempted to improve the yield (Figure 2-15b). First, inductions at both 1 mM IPTG and 0.1 mM IPTG were attempted. The second strategy was to grow the culture overnight in non-inducing media followed by dilutions of the cultures and an induction with 1 mM IPTG or auto-induction. In addition to this, auto-induction was also tried after the cells had been grown for 24 hours in non-inducing media. As observed on the gel, a band close to the size of the Snu114 protein is observed; however, any improvement in protein expression is presented (Figure 2-15b).


To confirm expression of Snu114, protein purification was performed by batch-binding after protein expression by a 1 mM IPTG induction (Figure 2-15c). Since the construct allows the

protein to have two tags, His and MBP, purification of Snu114 was attempted using two resins: nickel and amylose. Batch binding utilising a nickel resin is appropriated with His tag, and MBP tag have an affinity to amylose resin. Although a band below 200 kDa is observed in induced, soluble and flow through lanes, no protein in the elution sample is seen. Therefore, the protein found is not binding to either nickel or amylose resins.

Figure 2-15 Expression and Purification of Snu114 fused to MBP: A 8% SDS PAGE gel presenting attempts to express Snu114 in Rosetta pLysS. a) Induction of expression of Snu114 with 1 mM IPTG after 1, 2, 3 hours shows expression of a ~200 kDa protein (white arrow). Auto-induction does not show any protein highly expressed around 160 kDa. b) Different attempts to increase the yield of protein expressed shows no improvement in protein expression. c) Purification of Snu114 by batch-binding indicates that the protein observed on induced, soluble and flow-through lanes (white arrow) does not bind to either nickel or amylose resins. (N) non-induced, (AI) auto-induced, (I) 1 mM IPTG induced, (IL) 0.1 mM IPTG induced, (AO) non-induced cultures grown overnight and auto-induced, (IO) non-induced cultures grown overnight and auto-induced, (E1_H) first elution with 500 mM imidazole, (E2_H) second elution with 500 mM imidazole, (E1_M) first elution with 10 mM maltose.

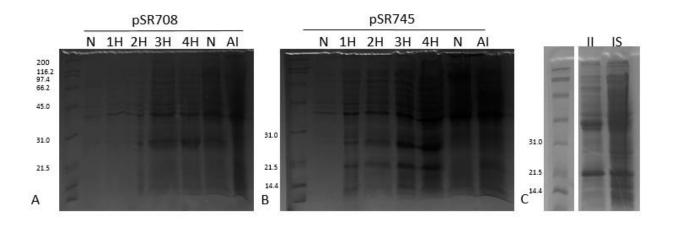
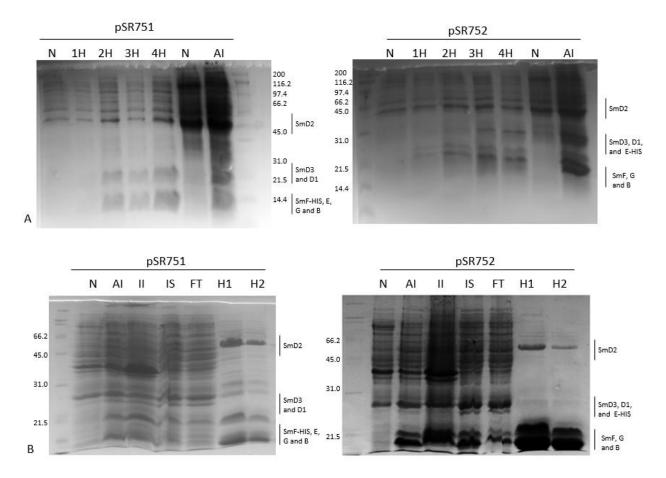

Attempts to express Brr2 were made in two different expression systems: *E. coli* and *P. pastoris*. First, Brr2 expression in bacteria by both IPTG and auto-induction was tried. As seen on the gel, a band is observed on the induced lane (white arrow in Figure 2-16a); however, it was expected to be above the 200 kDa mark, since Brr2 is a 205 kDa protein. Brr2 expression was also tried in another expression system. Yeast was transformed with pSR855 and Brr2 expression was checked after induction with methanol at the 24, 48, 72, 96 hours time points. Expression of Brr2 on the gel could not be observed; however, on all gels the presence of a methanol-induced protein with a molecular weight of ~70 kDa could be observed according to the marker used (Figure 2-16b).

Figure 2-16 Induction of expression of Brr2 using two expression systems: a) A 8% SDS PAGE gel presenting attempts to express Brr2 in Rosetta pLysS. No proteins are observed at 1, 2, 3 and 4 hours after induction via 1 mM IPTG and auto-induction. b) No expression of Brr2 is found when expression was methanol-induced in X-33 strain for 24, 48, 72 and 96 hours. However, expression of a ~70 kDa protein (white arrow) was observed. (N) non-induced, (AI) auto-induced.


For expression of Dib1, bacteria were transformed using two different constructs pSR708 and pSR745 (construct contains Dib in frame with a HIS₇ tag, which was made by Maya De Vos, a former lab member). Both IPTG and auto-induction were tried. When attempting to co-express Dib1 with Prp8, a ~16 kDa protein band was not observed on the induced lanes (Figure 2-17a).

However, when trying to induce expression of Dib1 alone with a His7 tag by addition of 1 mM of IPTG, the presence of a band near the molecular weight expected was observed (~18 kDa including His tag) (Figure 2-17b). Surprisingly, Dib1 is not expressed by auto-induction. Followed by strong expression of Dib1, the solubility of the protein was checked. As seen in figure 2-17c, the presence of the protein in both soluble and insoluble fractions is displayed.

Figure 2-17 Induction of expression of Dib1 by IPTG induction and auto-induction: A 12% SDS PAGE gel presenting the expression of Dib1 in Rosetta pLysS. a) Dib1 is not induced by either IPTG or auto-induction when co-expressed with Prp8. A ~16 kDa protein is not observed on the gel. b) Dib1 expressed individually attached to a HIS₇ tag with IPTG. c) Solubility test shows the presence of Dib1 in both insoluble and soluble material. (N) non-induced, (AI) auto-induced, (II) induced and insoluble material.

Successful co-expression of the Sm proteins by both IPTG and auto-induction was observed on gels. Both constructs, having Sm E and Sm F HIS₇ tag, showed an excellent protein expression using both methods. However, auto-induction presented a better protein expression (Figure 2-18a). Furthermore, co-purification of the proteins using both construction containing tagged SmE or SmF proteins was performed by batch-binding. In figure 2-18b, bands corresponding to the sizes of the Sms are observed on eluted fractions. Since not only the tagged proteins are seen on gels, but other Sm proteins, it suggests that the proteins are interacting with each other allowing copurification. However, these results do not guarantee the presence of all seven proteins.

Figure 2-18 Co-expression and purification of the Sm proteins: A 8% SDS PAGE gel presenting the expression of Sm proteins in Rosetta pLysS. a) Expression of proteins using both pSR751 and 752 is observed by IPTG and auto-induction. After 4 hours of induction a better expression of protein is seen; however, auto-induction presents a higher protein expression. b) Purification of proteins using nickel resin shows binding of the Sm to the resin suggesting the interaction of the proteins. (N) non-induced, (AI) auto-induced, (II) insoluble material, (IS) soluble material, (FT) flow-through, (H1) first elution with 500 mM imidazole, (H2) second elution with 500 mM imidazole.

2.4 Discussion

This chapter describes different attempts to reconstitute the *C. merolae* U5 snRNP. Indeed, the first strategy proposed in this section was to clone all protein genes into an expression vector for co-expression and purification of the complex. Although insertion of the genes into the

expression vector was successful, the different attempts to co-express all eleven proteins together failed. Two different approaches were attempted to express these proteins in bacteria. IPTG induction and auto-induction and different protein expression conditions were also attempted since recombinant expression of these *C. merolae* proteins has never been done before. An analysis of protein expression at different time courses was also performed. Protein expression assessment was done after 1, 2, 3, and 4 hours after addition of IPTG to cells, since time-life and stability of proteins in the culture conditions are unknown. Failure of all these attempts made it necessary to develop an alternative approach. Therefore, expression of Brr2, Prp8, Snu114 and Dib1 individually by both IPTG and auto-induction was performed. In addition, it was checked for expression of Snu114 and Prp8 by fusion of these proteins to MBP.

At first, it was believed that Snull4 fused to MBP was being expressed, albeit it in a low yield. Therefore, several conditions to increase protein expression levels were tried. However, a considerable increase in protein yield was not observed. Batch binding was attempted since the protein had both His and MBP tags, so nickel and amylose resins were used (Figure 2-15b). As presented in the results section, purification of the protein using the nickel resin was not successful. The expected band is not seen on the elution fraction although it is present in both soluble and flow-through fractions. This result suggests that the band observed on induction lane on the gel was not Snull4. Failure of purification of the protein by batch-binding using the amylose resin confirmed that the protein observed was not the tagged Snull4. Since the same band was seen when trying to express Brr2, it suggests that the protein found on the gel could be some bacterial protein.

As expression of Brr2, Snu114 and Ppr8 failed in *E. coli*, it was proposed that expression of these proteins in another organism could be an alternative to solve the expression problems.

Therefore, expression of these proteins in yeast was attempted, and the Brr2 gene was inserted into pPICZA for expression in P. pastoris. Unfortunately, expression of Brr2 in this organism also failed. Surprisingly, the presence of a protein of approximately 70 kDa was observed. The presence of that band raised some questions regarding the failure in integration, disruption of the AOX1 gene, expression of a truncated Brr2, and expression of yeast proteins that were methanol-induced. Since cells were able to survive in media supplemented with Zeocin, it suggests that the linearised vector was integrated into the genome because the cells are resistant to Zeocin. However, it was not assessed if integration of the gene occurred at the AOX1 locus. The X-33 strain has a Mut⁺ phenotype, and the presence of the AOX1 enables normal growth in methanol-containing media. According to the literature, crossover integration into the AOX1 locus frequently happens (50-80% frequency), permitting survival of cells in methanol-containing culture (Li et al. 2007). However, there is a 10-20% chance that integration of the gene has disrupted the AOX1 gene forcing the cell to rely on a weak AOX2 gene. This event also allows survival of cells in the methanol-containing media, resulting in a Mut^s phenotype (Li et al. 2007). Therefore, it suggests that failure of Brr2 expression could be due to the disruption of the AOX1 gene, and the presence of AOX2 on the X-33 strain was enabling survival of the cell in methanol-enriched media. However, on all the gels, expression of an unknown protein is observed when methanol is added to the media, which implies that the AOX1 is not disrupted and is controlling transcription (Figure 2-16b).

If the AOX1 gene is in fact not interrupted, the protein present on the gel could be a truncated form of Brr2 or some yeast protein that is induced by methanol. Indeed, by searching for genes that are present in methylotrophic organisms on UniProt, it was found that not only the AOX 1 and 2 genes are induced by methanol, but also DAS1 and 2, which encode for dihydroxyacetone synthase proteins. Indeed, all these genes encode for proteins between 60 to 80 kDa, which could explain the presence of a protein being expressed in methanol-containing media. However, further exploration would be necessary to understand why Brr2 is not being expressed in this organism, or if a truncated form of Brr2 is being expressed. Another approach that should be consider to ensure integration of the gene at the right locus is to design primers for the amplification of the 5 ` end of the AOX 1 gene along with the Brr2 gene. Screening of more colonies on zeocin is also an alternative to increase the chances of finding colonies that have an intact AOX1 gene.

Expression of Brr2, Prp8 and Snu114 failed. The reasons that all the attempts to express these proteins in E. coli failed are not confirmed. Expression of large proteins has been found to be challenging due to their complex folding and lack of stability. Therefore, one proposed reason for the failure of expression of these large proteins is the presence of rare codons. Indeed, in vivo and in vitro biochemical studies have shown that codons can be related to translation efficiency and mRNA stability. Thus, expression of some proteins in E. coli can be compromised when codons needed for translation of protein are rare (Boël et al. 2016). In fact, large proteins increase the chances of having rare codons involved in translation. In spite of the fact that the Rosetta pLysS strain possesses genes for rare tRNAs, translation efficiency and mRNA stability could be presumably compromised. A bioinformatical tool called GenScript was used to verify the presence of rare codons on these three large proteins. This tool considers two parameters: codon adaptation (CAI) and codon frequency distribution (CFD). The first parameter is related to the distribution of codon usage frequency along to the length of the protein gene to be expressed in a specific host. CAI values below 0.8 represent a reduced expression of the gene in a specified host. The second parameter considers the percentage of distribution of codons. CFD values below 30% express a reduced efficiency of translation in the chosen host. Thus, this tool was used to check for CAI and

CDF values of these three genes, when expressed in *E. coli* cells. All genes presented low CAI and CDF values suggesting a low translation efficiency (Table 8). Therefore, for future attempts to express these proteins in either bacteria or yeast, it would be useful to do codon optimisation. It might increase translation levels and RNA stability making protein expression more promising. Another alternative to solve protein expression and solubility issue would be to express truncations of each protein, this would allow stability and interactions among proteins, as described in previous publications.

 Table 7 Presentation of the CAI and CDF calculated by GenScript, based on the DNA sequence of the C. merolae proteins.

Protein	CAI	CDF
Brr2	0.62	15%
Snu114	0.63	13%
Prp8	0.65	13%

Only Dib1 was expressed individually by both IPTG and auto-induction, and also displayed high solubility. The Sm proteins also presented strong expression by auto-induction. It was not surprising that co-expression of the Sms would result in solubility of the complex. It has been reported previously by Kambach et al. (1999) and Zaric et al. (2005) that expression of the Sm and LSm proteins individually has shown significant instability of the proteins due to the hydrophobicity of the β 4 and β 5 strands. Indeed, instability of the Sms was solved by co-expression of Sm pairs burying the hydrophobic strands of each other from solvent (Kambach et al. 1999). Therefore, the results regarding expression and solubility of the Sm complex enabled the continued investigation of the Sm complex in *C. merolae*, which will be described in chapter 3.

To conclude, the attempts presented in this chapter will be an excellent reference to propose new strategies to reconstitute the U5 snRNP or to express each of the proteins individually.

3. Chapter Three - Structural and functional studies of C. merolae Sm complex

3.1 Introduction

As previously discussed, the Sm complex has been well investigated in other organisms. This splicing complex is comprised of seven Sm proteins that make up three distinct subunits: Sm E-F-G, Sm D1-D2, and Sm B-D3 (Raker et al. 1996). Binding of the subunits to the snRNAs occurs in a step-wise manner coordinated by a protein complex called SMN (Fischer et al. 1997; Liu et al. 1997; Meister et al. 2001; Pellizzoni et al. 2002). This protein is responsible for the formation of a snRNP core particle called the Sm core RNP. Indeed, the Sms have been found to play a crucial role in both biogenesis and recruitment of recruitment of snRNA particles. Although this protein complex has been found bioinformatically in C. merolae, nothing is known about its structure and functionality in the organism (Stark et al. 2015). It is likely that the uridyl-rich sequences in U2, U4 and U5 snRNA, similar to the consensus Sm binding site, facilitate the binding of the Sm complex to these snRNAs. Since the SMN protein complex is not present in C. merolae, it raises some questions regarding assembly of the Sm proteins. The absence of this assembly factor suggests self assembly of the Sm proteins prior to binding to the snRNAs. As well, the absence of a stem-loop 3' of the Sm site supports this idea, since the complex could move along the 3'end of the snRNA in order to bind to the Sm site. The main objective of this chapter will be to investigate the function, structure and assembly of the Sm complex in C. merolae.

In the previous chapter, the construction of vectors containing all seven Sm genes were described. Two vectors were constructed, with each one containing either Sm E or F in frame with a HIS₇ tag for further co-purification of the complex. After accomplishing this, the Sm proteins were successfully expressed through auto-induction and displayed a high degree of solubility. Here, a two-step purification of the protein complex will be described. The first step involves

nickel affinity chromatography (IMAC). Due to the great affinity of the HIS₇ tag to nickel, a nickel column can be used to separate the protein complex from bacterial proteins. Retrieval of the protein from the nickel column can be done by adding a high concentration of imidazole. Since imidazole is a histidine competitor, it replaces the His-tagged protein by binding to the column allowing elution of the protein. A second purification was applied called size exclusion chromatography. Since this method involves purification of particles by size, it was applied to separate fully assembled complexes from partially assembled complexes. To do this, the IMAC purified protein is applied to a column comprised of pores, which allows small particles to be retained momentarily, while the big particles run freely in the column resulting in premature elution.

After purification of the complex, it was necessary to confirm the presence of all seven Sm proteins in the purified sample. Therefore, the Sm complex was characterized by mass spectrometry (MS). Briefly, this method involves digestion of the protein by proteases, such as trypsin, and the fragmented peptides are ionized and run through a magnetic field. This allows separation of the peptides due to their variety of masses and charges. The proteins are characterized in samples looking for the unique amino acids sequence of each protein. By performing this technique, it was possible to confirm the presence of all seven Sm proteins in the purified sample.

In other organisms, the Sm complex forms a ring shape, which was observed in the LSm complex. Previously, Dunn was able to confirm by Electron Microscopy (EM) that *C. merolae*'s LSms form a complex with a hole in the center (Dunn, 2010). Therefore, the investigation of the functionality of the purified Sm was initiated by the analysis of its assembly. A random interaction of the Sms would suggest a non-functional complex. Samples of the recombinantly expressed and purified complex were sent for EM analysis. In brief, the shape of the protein was assessed through exposure to an electron beam. Electron microscopy results confirmed that the protein complex was

assembled in a doughnut shape, which suggested that the recombinantly expressed and purified Sm complex from *C. merolae* was functional.

In addition, evidence in support of the functionally of the Sm complex was confirmed by binding of the Sm complex to U2, U4 and U5. A filter binding assay, an electrophoretic mobility shift assay (EMSA), and a fluorescence polarization (FP) assay are all described in this chapter and were conducted to assess function of the Sm complex. By performing filter binding, detection of a RNA-protein interaction is enabled by filtration of the RNA-protein mixture through a nitrocellulose filter. Due to the affinity of the protein to the filter, it is possible to measure RNA-protein binding by utilisation of a radioactively labelled RNA. Thus, an increase in signal in the filter should be detected if RNA is interacting with the protein, since the RNA can only be retained on a filter when interacting with the protein. This method was performed in the University of Lethbridge at the Kothe laboratory. The filter binding results regarding binding of U4 to the complex. Therefore, it was necessary to find an alternative method to further investigation of binding of the snRNAs to this protein complex.

The second method, EMSA, assesses RNA-protein binding by running the RNA-protein mixture on a polyacrylamide gel. Binding of the RNA to the protein results in changes of RNA mobility that can be observed on the gel. Gel shifts can be detected by utilisation of radioactively labelled RNA, as bound RNA will not run as far on a gel when compared to free RNA. Since it is expected to see an increase of shifted free RNA with increased protein concentration, the intensity of the bound and unbound RNA bands can be used for binding measurements. By performing this method, it was possible to assess binding of full-length U2, U4, and U5 to the Sm complex and

calculate the equilibrium binding constant, Kd, for U4 and U2. Inconsistencies in the binding of U5 to the Sm complex, made necessary the utilization of a third method: FP.

FP assesses binding of the protein to the RNA by utilisation of a fluorescently labelled RNA. By calculating the anisotropy, a property that relates perpendicular and parallel polarized light, it is possible to determine binding of the protein to the RNA. In brief, if a protein interacts to a fluorescently labelled RNA, an increase in anisotropy will occur since the rotational freedom of the RNA decreases (high polarization). Therefore, it will result in a higher difference between parallel and perpendicular polarization. By knowing this, anisotropy can be related to binding of the protein to the RNA, and consequently, to the percentage of RNA bound. However, for FP there is a limitation on the length of the RNA. Due to this, fluorescent RNA was designed that covers only the U5, U4 and U2 sm sites. This binding assay confirmed binding of all three snRNAs to the Sm complex. This chapter will present a structural, functional and assembly investigation of the recombinantly expressed Sm complex.

3.2 Materials and Methods

3.2.1 Two-step purification of recombinantly expressed Sm complex

The Sm proteins expressed by auto-induction, as described in chapter 2, were co-purified by nickel affinity and size exclusion chromatography. In order to prepare the protein for nickel affinity chromatography, cells were harvested by undergoing centrifugation for 10 minutes at 3000 rpm at 4°C in a JLA-8.1000 rotor (Beckman coulter Avanti HP-20 XPI), and the resulting cell pellet was washed once by addition of buffer A1 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 20 mM imidazole, 5 mM β -mercaptoethanol). A second centrifugation of the sample was performed, and the cell pellet was snap frozen in liquid nitrogen and stored at -80°C. The

resuspension of the cell pellet was performed by adding 5 ml of buffer A1 for every gram of cell pellet and sonicating the mixture five times in one-minute bursts at 5-8 W with one-minute breaks on ice in between. After sonication, streptomycin sulphate (Sigma) was added for a 1% w/v to remove nucleic acids. Cell fragments were cleared by centrifugation for 30 minutes at 25,000 g at 4°C in a JA-25.50 rotor (Beckman coulter Avanti HP-20 XPI). The soluble sample was filtered through a 0.45 µm syringe filter and passed over a HisTrap HP Ni sepharose column (GE Healthcare). The column was equilibrated in five column volumes of buffer A1. The sample was washed in 15 column volumes of buffer A2 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 60 mM imidazole, 5 mM β-mercaptoethanol) and eluted in eight column volumes of buffer B1 (20 mM HEPES-NaOH, pH 7.5, 500 mM NaCl, 500 mM imidazole, 5 mM β -mercaptoethanol). The Sm complex was then loaded at a 0.1 ml/min flow rate onto a size exclusion column (Superdex 200 10/300 GL, GE Healthcare) and equilibrated in buffer A1 without imidazole. Peak fractions were collected, pooled, and concentrated using a YM-30 Centriprep centrifugal filter unit (Millipore). The Superdex 200 column was calibrated using gel filtration standards (BioRad), with the following sizes: thyroglobulin (670 kDa), gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa), and vitamin B12 (1.4 kDa). Protein aggregates were separated in the void volume of the column (7.65 mL). Protein concentration was determined by Thermo ScientificTM NanodropTM.

3.2.2 Characterization of the purified Sm complex by Mass Spectrometry

Assessment of the purity of the Sm complex was performed by in-solution digestion of purified proteins followed by MS. Preparation of the sample for MS analysis was performed by Martha Stark, and the sample was analysed as described by Reimer et al. (2017).

3.2.3 Biophysical characterisation of the purified Sm complex by Electron Microscopy

The purified Sm complex was prepared for EM analysis by the concentration of the sample using a YM-30 Centriprep centrifugal filter unit (Millipore). Concentrated protein sample was shipped to Dr Calvin Yip at University of British Columbia, who obtained EM images of the Sm complex, as described by Reimer et al. (2017).

3.2.4 Binding assays

U2, U4, U5 and U6 samples were prepared by *in vitro* transcription (IVT) and purified by gel purification as described by Reimer et al. (2017). Before end-labelling of the snRNAs, IVT snRNAs were dephosphorylated using Shrimp Alkaline Phosphatase (SAP) (New England Biolabs). Free phosphates were removed by purifying with a G-25 spin column (Santa Cruz Biotechnology), as described by the manufacturer. End-labelling of the snRNAs was done using T4 polynucleotide kinase (PNK) (New England Biolabs) and ³²P-γATP. Unincorporated ³²P-γATP was removed using a G-25 spin column. IVT snRNAs used in filter binding experiments were not dephosphorylated prior to end-labelling, since the PNK manufacturer's protocol assured phosphate group exchange between 5'-P-RNA and ATP. EMSA reactions were 20 µl containing 12 mM HEPES-NaOH, pH 7.5, 1.5 mM MgCl2, 100 mM NaCl, 10% glycerol, 0.1% Triton X-100, 5 µg E. coli tRNA, 2.5 µg of BSA, and 2.5 µl of SUPERase• In[™] RNase Inhibitor (20 U/µL). FP reactions were 100 µl containing the same reagents needed for EMSA, except for the RNase inhibitor. Filter binding reactions were 25 µl containing the same reagents as described for EMSA, except for glycerol and RNase inhibitor. For EMSA and filter binding, ³²P-RNA was added to make a final concentration of 10 nM and 8 nM, respectively. For FP experiments, fluoresceinlabelled U4 Sm site oligo (ro66, IDT) and U2/U5 Sm site oligo (ro67, IDT) were added to reach a final concentration of 15 nM.

Filter binding reactions were incubated for 30 minutes at room temperature, and then filtered through the nitrocellulose membrane (0.2 μ m, Whatman, Maidstone, United Kingdom). The membrane was rapidly washed with 1 ml of pre-cooled buffer. The filter was placed in scintillation cocktail for 30 minutes to enhance the radioactive signal, and radioactivity measured on the membrane using a liquid scintillation counter. Data were fitted using Kaleidagraph (Synergy Software) and measured in triplicate. Three different equations (listed below), Hill equation (Equation 1), and equations described by Buenrostro et al. (2014) (Equation 2) and Kuriyan et al. (2012) (Equation 3) were used to fit the data and generate *Kd* values:

Equation 1: $\theta = \frac{((a)[\text{protein}]^n)}{(Kd+[\text{protein}]^n)}$, where θ is the percentage of RNA bound, maximum asymptote, *Kd* is the equilibrium binding constant, and n the Hill coefficient.

Equation 2: $\theta = \frac{a}{(1 + \frac{Kd}{protein})} + a$, where θ is the fraction of RNA bound, a is the maximum

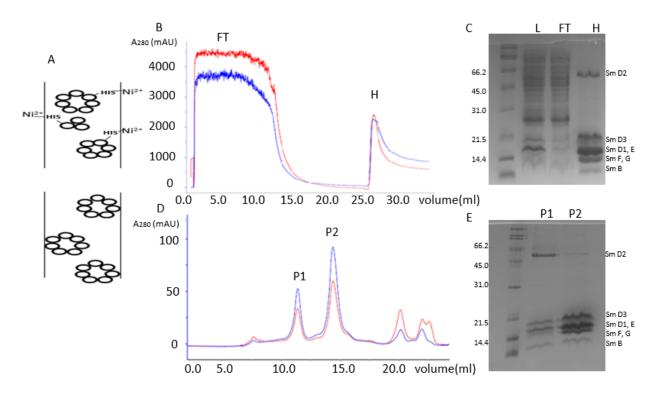
asymptote, and Kd is the equilibrium binding constant.

Equation 3: $\theta = \frac{[\text{protein}]}{([\text{protein}] + Kd)}$ and $\log(\frac{\theta}{1-\theta}) = \log(\frac{\text{protein}}{Kd})$, where θ is the fraction of RNA bound, and *Kd* is the equilibrium binding constant.

EMSA reactions were incubated for 30 minutes at room temperature, then loaded directly onto a 6% native polyacrylamide gel with CHES running buffer and electrophoresed at 200 V. The gels were run at 4 C, and for U2, U4, and U6 were run for 50 minutes; whereas, U5 was run for 1.5 hours. Radioactive EMSAs were imaged on a phosphor imager screen overnight and visualised with a Cyclone Phosphor Imager and OptiQuant software (Perkin Elmer). Data were fitted using Kaleidagraph (Synergy Software) and measured in triplicate. The modified Hill equation (Equation 4) below was used to adjust the data and generate *Kd* values:

Equation 4: $\theta = \frac{a-b}{(1+\frac{Kd}{[\text{protein}]^n})} + b$, where θ is the percentage of RNA bound, a is the maximum

asymptote, b is the minimum asymptote, *Kd* is the equilibrium binding constant, and n the Hill coefficient.


When assessing binding of U2, U4, and U5 Sm sites to the Sm complex, FP was performed, and the anisotropy was measured using a Synergy 2 Multi-Mode reader (BioTek) with black 384well microplates (Nunc Thermo Scientific). Data were fitted using Kaleidagraph (Synergy Software) and measured in triplicate. The modified Hill equation (Equation 4) above was used to adjust the data and generate K_d values.

3.3 Results

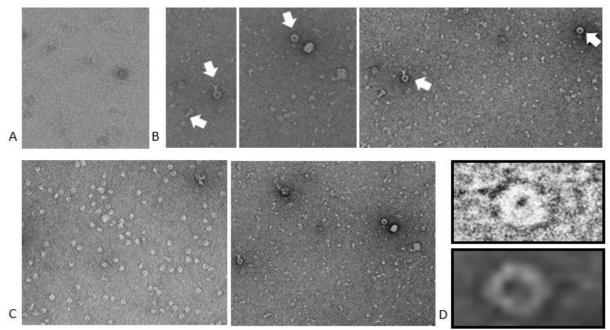
3.3.1 Two-step purification of recombinantly expressed Sm complex

Purification of the recombinantly expressed Sm complex was performed in two steps as summarised in Figure 3-1a. First, the batch binding purifications were compared when using the constructs pSR751 (SmE-HIS₇) or pSR752 (SmF-HIS₇), to determine the best protein yield and purification. Figure 2-18 shows a much cleaner purification of the Sms when SmE is tagged, thus suggesting better accessibility of the His₇-tag to the nickel resin. Therefore, this construct was used to investigate structure and function of the Sm complex. At the first step, the proteins were successfully purified by IMAC, and the presence of a single peak on the FPLC chromatogram suggested an elution of the complex (Figure 3-1b). Samples were collected and run on a 15% SDS-PAGE gel as seen in figure 3-1c. To further purify the complex, size exclusion chromatography was performed to assure the presence of fully assembled complexes. Surprisingly, two peaks were observed in chromatogram coming out at 11.41 ml and 14.29 ml. This suggests separation of two complexes (Figure 3-1d). According to the Superdex200 standard, the first complex should have

a molecular weight higher than 158 kDa, and the second complex should have a molecular weight of ~ 44 kDa. Based on the sum of the molecular weights of the seven Sm proteins, the complex is expected to have a molecular weight of ~112 kDa. Therefore, the first peak (P1) showed an earlier elution of the complex than expected for the intact ring. Both fractions were collected and loaded onto a 15% SDS-PAGE gel, and the observed bands were close to the Sm proteins molecular weight (Figure 3-1e). Surprisingly, both peaks presented the same bands, although the higher band is faded for the second peak sample. It was suggested that this protein of approximately 50 kDa could be SmD2 since this is the largest protein of the Sm complex. However, SmD2 has a lower molecular weight, ~36 kDa, and the presence of this protein on the second peak would not be expected since the purified complex has a molecular weight of ~44 kDa. Therefore, it was necessary to identify of the proteins present on the first peak by mass spectrometry to confirm the presence of all seven Sms on the purified complex.

Figure 3-1 Purification of the recombinantly co-expressed Sm complex: a) A Two-step purification of the scheme. The first step allows purification of the HIS₇-containing compounds by binding of the tag to Ni²⁺. The second step enables separation of small complexes from fully-assembled complexes. b) IMAC chromatogram shows the A280 trace in blue (protein) and the A260 trace (nucleotides) in red. It is presented on chromatogram the flow-through (FT) and the eluted sample (H). c) Collected FT and H samples were run on 15% SDS-PAGE gel, and the observed bands correspond to Sm proteins. d)A size exclusion chromatogram showing the A280 trace in blue (protein) and the A260 trace (nucleotides) in red. The first peak (P1) is observed around 11.41 ml suggesting a ~ 158 kDa complex. The second peak comes around 14.29 ml suggesting a ~ 44 kDa complex. e) Collected P1 and P2 samples were run on 15% SDS-PAGE gel, where the first peak shows a more intense 50 kDa band.

3.3.2 Characterization of purified Sm complex by Mass spectrometry


Successful identification of the unique peptides of all seven Sm subunits and fair coverage of the protein sequences by mass spectrometry confirmed the presence of proteins in the copurified sample in Table 9. Therefore, the purified protein complex, as presented on the first peak of chromatogram (Figure 3-1d), contained all expected proteins. Indeed, the presence of SmD2 was confirmed in sample (coverage of 63%), although it was not expected to be running higher (slower) on the 15% SDS-PAGE gel. Table 8 Presentation of the data collected after mass spectrometry analysis of the recombinantly coexpressed and purified Sm complex (peak 1 from size exclusion chromatography). Highlighted in grey, are the peptides identified.

Description		Identifica		Cov	erage	#	Unique peptides	5	# AA	MW (kDa)
SmE		probabi		4	40/		4		40	10
SmF		100%	*		4%		4		40	~10
		~	GNRVS	SVRLKW	DLEYTGL	LAS	YDSYFNLELE	HA	EELQPDGS	SLPLGDMIIR
CNNVLYIRDL	RS	TVPVPPLS								
SmE		100%	, 0	9	0%		15		94	~12
MPKDALDRRI	VP	EQLLATLA	RQQAF	VEVWL	FENTRYS	LEG	TLRGFDEHTN	LV	'LVDTVEQW	GSTAKHKRRT
VALGTILLKG	EN	VVLVRSLG	MPTQF	RKEVTH	SATRE					
SmG		100%	/ 0	9	5%		10		95	~11
MAKDEVDTAE	LE.	ALLFHSVQ	VYLNA	NRCVR	GKLSGFD	HYA	NLVLSDALDC	RT	GAQLGQVW	IRGNSVVSVD
LLRDVNADRT	EP	PTGTGSVA	DDPVG	SSLSS						
SmD3		100%	0	2	7%		4		46	~19
MSGYRPAAFD	LP	RALLREAK	NQIVS	VETKN	GMEYRGR	LDN	VSSRMNLVLS	AV	TVLNATGE	RTQKNRVLVR
GDSIVLVVLP	EA	LEDAPQLD	VLLQV	KQARK	AAMHVNN'	TDR	KSRGAGRSEA	DV	HERSGAST	LPLPQSESQP
QLKRTRVFLS	GN.	AETVQRTK	EGGDS	SNRRNV						
SmB		100%	/ 0	8	0%		7		64	~9
MDLLPVLRSQ	VH	VQTTDGRL	LAGKI	LAFDA	HSNLLLS	HCT	ERRGESAKRY	LG	MVLVRGEH	VLAVITPRIT
ETEQKTAASE										
SmD1		100%	ý 0	7	6%		10		102	~15
MTPLLYFLTR	LR	GATVTVEL	KDGTF	ATGTV	QRVDNEM	NVY	LLNASVTGKP	PA	ELPSASLE	THAAQVVAPW
TERFSEPDAS	AM	SRRNQPQQ	KAREY	RIRGS	TVRYIIL	PES	LNLESALKET	RK	FSPRTRYQ	KERH
SmD2		100%	/ 0	6	3%		17		209	~36
MPPVDQPTAL	EA	GAVAGLTV	AQLRF	ELAAR	EAPTSGR	KAE	LQKRLLDLLG	VK	LEQEARDE	DSSVAPGATQ
GEAGRATNLG	DA	TTTSSAQQ	QEQQQ	EQQQE	QQQEQQQ	EQQ	QEQQQEQQQE	QK	LAQTLDPA	ALSPSPIQSS
AYPQSTTTTQ	RR	KRRWAEPA	SAPPI	'APRKR	RPLDAHD'	THL	DQAGATPAAS	EI	SAAAEAST	SYQTLIAATT
PATTQSIPNS	SE	SAASALKP	AVHAA	NGSPR	TPFTLLD	RCI	TDRVPCLVSC	RH	NKKLYGTL	RAYDKHFNLI
MEHVREIWQE	SQ	PDRPPDLR	ERFIS	RLFVR	GRGVIFI	VRP	CVSATSTARA	QF		

3.3.3 Biophysical characterisation of the purified Sm complex by Electron Microscopy

Following the identification of the recombinantly expressed and co-purified complex, a biophysical method was performed to characterise the shape of the assembled complex. Co-purification of the complex suggested assembly of the seven Sms; however, it did not confirm how the proteins are interacting with each other. Therefore, EM was performed on the IMAC purified complex to assure formation of a globular complex instead of a randomly assembled complex. At a magnification of 48,000 (Figure 3-2a) and 98,000 (Figure 3-2b), the formation of a few complexes assembled in ring shape were observed. These results suggest that the co-purified and expressed proteins are interacting in a functional form. A comparison between the Lsm (92 kDa)

and Sm (112 kDa) complexes supports a bigger Sm ring (Figure 3-2c). However, it is observed that more Lsm rings when corelative to Sm complexes, which suggests a significant instability of the Sm complex.

Figure 3-2 Electron microscope of the Sm complex: a) An EM image of the Sm complex at a magnification of 48,000 times. b) EM images of the Sm complex at a magnification of 98,000 times, where the ring-shaped Sm complexes are indicated by the white arrow. c) A comparison between the Lsm complex (92 kDa, left) and the Sm complex (112 kDa, right) EM results appear to present a comparable size, as expected. d) Comparison between the Lsm (top) and Sm (bottom) rings.

3.3.4 Binding Assays

In addition to the EM results that suggested the formation of a functional Sm complex, the functionality of the recombinantly co-expressed and purified Sm proteins was confirmed by binding of the complex to snRNAs. It has been reported in other organisms that the Sm complex plays a critical role binding to U1, U2, U4, and U5 forming the Sm core RNP. Therefore, three binding assays were performed to assess the binding of this complex to U2 (Table 10), U4 (Table 11), and U5 (Table 12) in *C. merolae*. After performing filter binding, I expected to observe a more radioactive nitrocellulose membrane as the concentration of protein increased, and 100% of RNA binding to the protein when the protein concentration is high. Indeed, since the protein interacts

with the nitrocellulose, interaction of the ³²P-end-labeled RNA with the protein resulted in an increase of RNA retained on the membrane. The first results did not show a significant rise in the signal measured on the nitrocellulose filter, when increasing the protein concentration from 0 to 2000 nM (Tables 10, 11, and 12). For instance, approximately 10% and 5% of the U4 and U5 snRNA was bound, respectively, at a protein concentration of 2000 nM.

Table 9 Assessment of binding of U2 snRNA to the *C. merolae* Sm complex by filter binding: The percentage of RNA bound was calculated based on the radioactivity (4577 dpm) of 8 nM of U2 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	33	0.72
25	47	1.03
50	42	0.92
100	80	1.75
125	138	3.02
150	59	1.29
175	94	2.05
200	65	1.42
500	134	2.93
2000	230	5.03

Table 10 Assessment of binding of U4 snRNA to the *C. merolae* **Sm complex by filter binding:** The percentage of RNA bound was calculated based on the radioactivity (4251 dpm) of 8 nM of U4 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	38	0.89
25	64	1.51
50	28	0.66
100	101	2.38
125	88	2.07
150	99	2.33
175	82	1.93
200	98	2.31
500	243	5.72
2000	455	10.70

Table 11 Assessment of binding of U5 snRNA to the *C. merolae* **Sm complex by filter binding**: The percentage of RNA bound was calculated based on the radioactivity (3319 dpm) of 8 nM of U5 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	49	1.48
25	41	1.24
50	86	2.59
100	86	2.59
125	86	2.59
150	67	2.02
175	74	2.23
200	76	2.29
500	122	3.68
2000	188	5.66

The low binding of the snRNAs to the protein complex raised questions regarding RNA degradation and protein precipitation. Analysis of labelled snRNAs on 6% urea PAGE gel presented a fair amount of labelled U2 and U4 and possibly degraded U5 (Figure 3-3). In addition, the figure shows that the samples are not running well on the gel since a single band, representing each labelled snRNA, is not observed. Since two proteins that are known to bind to U4 snRNA in other organisms were available, their binding to U4 was assessed. The *C. merolae* Snu13 protein binds to U4 (Black et al. 2016); therefore, it is likely binding to the yeast Nhp2 since it is a Snu13 homolog. Surprisingly, measurement of the membrane radioactivity at 0 and 1000 nM of protein suggests no binding of CmSnu13 to U4 (Table 3-13). Unexpected results are also observed when assessing binding of yNph2 to U4 (Table 3-14). As presented in table 14, ~25% of RNA is bound to the protein (1054 dpm) at Sm concentration of 1000 nM; however, the counts surprisingly decrease as the protein concentration increases to 5000 nM.

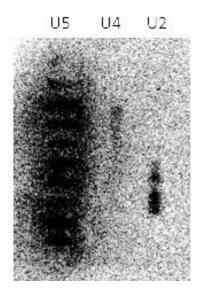


Figure 3-3 Investigation of U5, U4 and U2 snRNA stability: 6% urea PAGE gel presenting ³²P-end-labelled RNA.

Table 12 Assessment of binding of U4 snRNA to the *C. merolae* **Snu13 by filter binding**: The percentage of RNA bound was calculated based on the radioactivity (4251 dpm) of 8 nM of U4 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	34	0.80
50	27	0.64
200	47	1.11
1000	38	0.89

Table 13 Assessment of binding of U4 snRNA to the *S. cerevisiae* Nph2 by filter binding: The percentage of RNA bound was calculated based on the radioactivity (4251 dpm) of 8 nM of U4 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	34	0.80
1000	1054	24.79
2000	865	20.35
5000	639	15.03

Since the U4 gel analysis and binding of U4 to yNh2 and Snu13 were not consistent, not much could be concluded from these divergent results. Therefore, it was suggested that the RNA labelling was not efficient, which would explain the low counts observed. In addition, the little

binding of the RNA to the protein could be due to the wrong folding of the RNA. Therefore, the concentration of RNA was increased from 8 to 15 nM added. U2 and U4 were unfolded at 70°C and allowed to refold at room temperature. A comparison between the snRNAs used previously to refolded RNA is presented in tables 3-15 and 3-16. Two times and four times increase in binding was observed for U2 and U4 snRNA to the protein complex, this improvement only represents 5.66 and 4.28% of the U2 and U4 bound, respectively.

Table 14 Comparison between the binding of folded and refolded U2 snRNA to the *C. merolae* **Sm complex by filter binding**: The percentage of RNA bound was calculated based on the radioactivity (7197 dpm) of 15 nM of U2 snRNA added to each reaction (n=1).

	Protein, nM	dpm	% of RNA bound
	0	32	0.44
	150	203	2.82
FOLDED	200	90	1.25
	2000	234	3.25
REFOLDED	0	36	0.50
	150	66	0.92
	200	104	1.45
	2000	407	5.66

Table 15 Comparison between the binding of folded and refolded U4 snRNA to the *C. merolae* Sm complex by filter binding: The percentage of RNA bound was calculated based on the radioactivity (9385 dpm) of 15 nM of U4 snRNA added to each reaction (n=1).

	Protein, nM	dpm	% of RNA bound
	0	62	0.66
501050	150	48	0.51
FOLDED	200	51	0.54
	2000	114	1.21
	0	66	0.70
	150	83	0.88
REFOLDED	200	78	0.83
	2000	402	4.28

These results raised questions regarding the protein stock concentration. Therefore, the concentration of the purified Sm complex was assessed by the utilisation of a NanodropTM spectrophotometer (Thermo Fisher Scientific). A lower concentration of the protein was observed than expected, suggesting protein precipitation. Therefore, the protein concentrations was corrected and repeated refolding of the RNA was followed by filter binding. As observed in table 17, an improvement in binding of U2 to the Sm complex was not observed, since the maximum percentage of RNA bound is 4.67%. However, an increase in the binding of U4 snRNA to the Sms occurred, with bound RNA bound reaching 12.42% at 2000 nM (Table 18).

Table 16 Assessment of binding of U2 snRNA to the *C. merolae* **Sm complex by filter binding**: Filter binding was performed after correction of the concentration of the protein stock sample. The percentage of RNA bound was calculated based on the radioactivity (7197 dpm) of 15 nM of U2 snRNA added to each reaction (n=1).

Protein, nM	Dpm	% of RNA bound
0	41	0.57
150	113	1.57
200	147	2.04
2000	336	4.67

Table 17 Assessment of binding of U4 snRNA to the *C. merolae* **Sm complex by filter binding**: Filter binding was performed after correction of the concentration of the protein stock sample. The percentage of RNA bound was calculated based on the radioactivity (9385 dpm) of 15 nM of U4 snRNA added to each reaction (n=1).

Protein, nM	dpm	% of RNA bound
0	48	0.51
150	160	1.70
200	215	2.29
2000	1166	12.42

Since a substantial change in binding of U4 to the Sms was seen after refolding and correction of the protein concentration, filter binding was repeated increasing the binding reaction

volume from 25 to 50 μ l. This change facilitates spreading of the binding reaction over the nitrocellulose membrane resulting in a higher coupling of protein-snRNA to the membrane. However, results showed a higher background noise that could be due to the higher reaction volume making it challenging to wash off unbound snRNA from the membrane. The data collected by filter binding presented improvement in binding of U4 to the Sm complex since at 3500 nM of protein ~17% of snRNA was bound. However, a higher binding was expected, and a considerable deviation was observed between the three trials (Table 19). The average data (n=3) was fitted using three different equations, and an estimation of the dissociation constant, *K*_d, was obtained for the full-length U4. Curves were fitted with the assumption that the final binding is 100%. First, the data were fitted using equation 2 plotting the fraction of RNA bound against the concentration of protein (Figure 3-4). As already expected, a high *K*_d was generated, 8000 ± 5000 nM, due to the weak data. As observed in the graph, a plateau was not reached when 3500 nM of the protein was added suggesting a low affinity of the snRNA to the protein.

Table 18 Assessment of binding of U4 snRNA to the C. merolae Sm complex by filter binding: The
table presents the average of the signal (dpm) collected from three trials. The percentage of RNA bound
was calculated based on the radioactivity (7086 dpm) of 10 nM of U4 snRNA added to each reaction.

Protein, nM	dpm (average)	Standard deviation	% bound
0	108.33	56.09	0.00
50	101.33	17.15	-0.12
100	131.66	11.95	0.41
125	177.33	66.21	1.22
150	146.33	19.77	0.67
175	164.00	67.00	0.98
200	180.50	29.50	1.27
500	290.00	72.00	1.91
2000	785.00	241.39	11.94
3500	1093.00	0.00	17.37

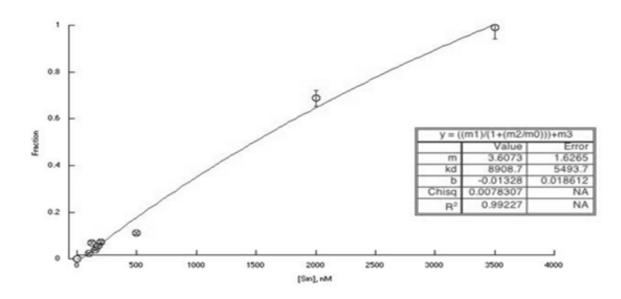


Figure 3-4 Assessment of binding of U4 snRNA to the Sm complex by filter binding: Equation 2 was utilised for generation of the K_d .

When plotting data using equation 1, it was fitted with data for the generation of the Hill coefficient (n) and the K_d . As presented in figure 3-5, a high K_d of 40000 ± 3600 nM is also seen for that data fit and a Hill coefficient of 1, suggesting pre-assembly of the Sm complex (Figure 3-5a). Thus, when fixing n=1, a K_d of 10000 ± 7000 nM (Figure 3-5b) was obtained. A third equation was also used to fit the data, which seemed to be more suitable to fit the curve since the maximum fraction does not fluctuate (fmax = 1), reaching a more reasonable plateau value (Figure 3-6a). The calculation of the K_d was done by plotting the graph using logarithm axis since this facilitates visualization of the data, spreading the more informative points out (Figure 3-6b). Therefore, since log of Kd is the intercept of the line on the horizontal axis, the Kd is 700 nM.

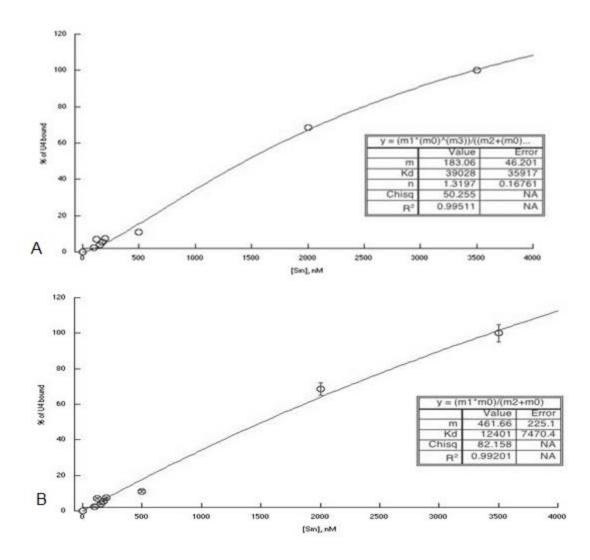
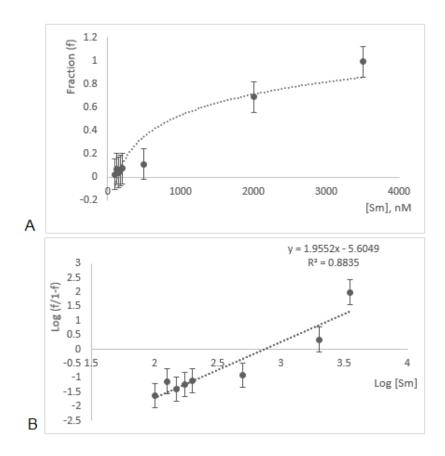
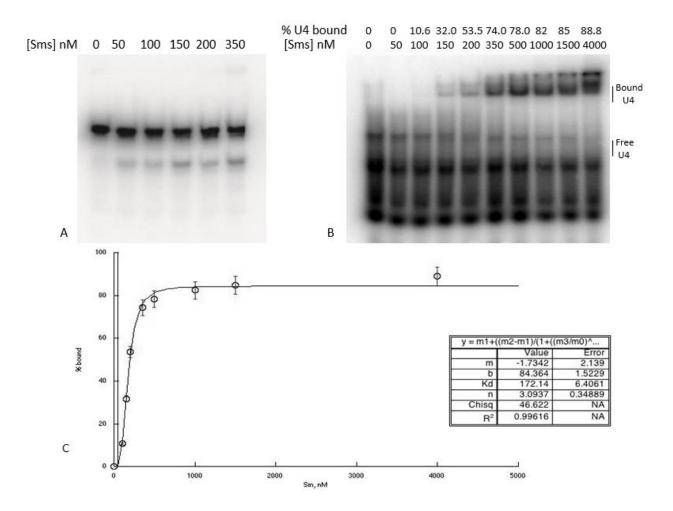




Figure 3-5 Assessment of binding of U4 snRNA to the Sm complex by filter binding: a) Equation 1 was utilised for generation of the K_d and n values. b) Generation of the K_d using equation 1 considering n=1.

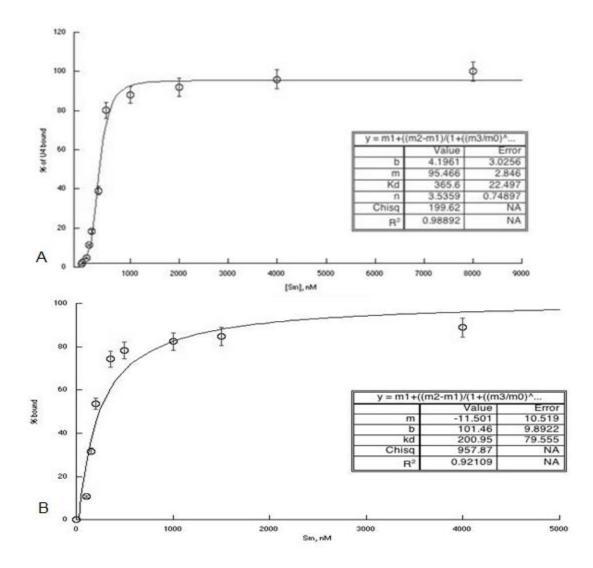
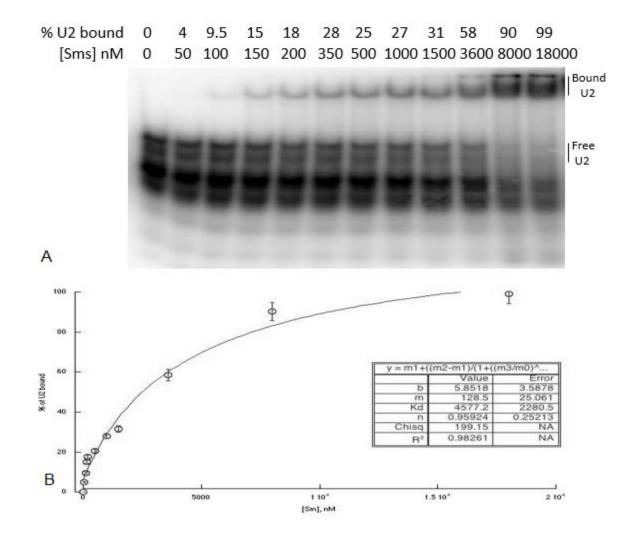
Figure 3-6 Assessment of binding of U4 snRNA to the Sm complex by filter binding: a) Normal binding isotherm using equation 3. b) Data from the graph (a) plotted using logarithm axes, which log of K_d is equal to the intercept (2.87); therefore, the K_d is 700 nM.

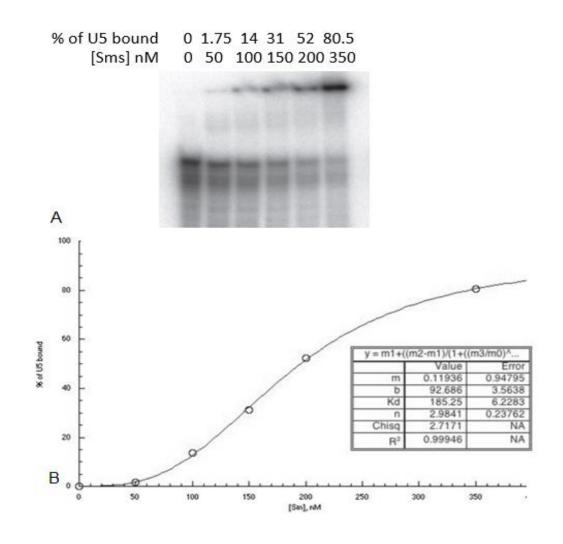
Due to the inconsistent results and low binding affinity observed when performing filter binding, binding of U2, U4, and U5 to the Sm complex was assessed by EMSA and FP. As a negative control, binding of U6 to the protein complex was assessed by EMSA. As expected, U6 does not bind to the Sm complex (Figure 3-7a). For assessment of binding of U4 snRNA to the Sms, EMSA was performed using a full-length *in vitro* transcribed U4. Binding of U4 to the Sm complex was confirmed since a shift from free-RNA to bound-RNA was observed on the native gel (Figure 3-7b). Data collected from the four trials was utilised to generate the K_d using equation 4 since this equation considers more parameters to better fit the curve. The K_d for the full-length U4 was calculated to be 170 ± 6 nM, and the line fit gave an n value of 3 ± 0.3 (Figure 3-7c). Surprisingly, this hill coefficient value suggests that pre-assembly of the Sm complex before binding to the RNA does not occur.

Figure 3-7 Assessment of binding of U6 and U4 snRNA to the Sm complex by EMSA: a) 6% native polyacrylamide gel presenting no binding of radio-labelled U6 snRNA to the Sm complex. b) 6% native polyacrylamide gel presenting binding of radio-labelled U4 snRNA to the Sm complex, as a shift between unbound and bound U4 is observed. c) The % bound of U4 was graphed against the concentration of protein using equation 4.

To further investigate this binding, FP using a fluorescent oligonucleotide of the predicted Sm site in U4 was performed. Triplicate data were collected and used to generate the K_d using

equation 4. The K_d for the U4 Sm site was 400 ± 20 nM, and line fit gave an n value of 3 (Figure 3-8a). When fitting both EMSA data and FP data considering n=1, the K_d was calculated to be 200 ± 80 nM and 365 ± 20 nM, respectively, suggesting that affinity of the Sms to the Sm site doubles when bound to full-length U4 (Figure 3-8b).


Figure 3-8 Assessment of binding of the Sm complex to the U4 Sm site by FP: a) The % bound of the U4 Sm site was graphed against the concentration of protein, which the K_d was generated using equation 4. b) Generation of the K_d using equation 1 considering n=1.

Binding of U2 and U5 to the purified Sm complex was also assessed by EMSA and FP. The binding of full-length U2 to the Sm is observed on the native gel. However, it is seen at a lower affinity of U2 to the complex when compared to U4, since protein interaction initiates at a concentration of 100 nM (Figure 3-9a). By fitting the data collected from four trials, using equation 4, the K_d was calculated to be 4600 ± 2000 nM with an n value of 0.9 ± 0.2 nM, indicating a lower affinity compared to U4 (Figure 3-9b). The Hill coefficient value (n=1) suggests that the Sm complex is pre-assembling prior to binding to the snRNA.

Figure 3-9 Assessment of binding of U2 snRNA to the Sm complex by EMSA: a) 6% native polyacrylamide gel presenting binding of radio-labelled U2 snRNA to the Sm complex. b) The % bound of U2 was graphed against the concentration of protein using equation 4.

Performing of EMSA using full-length U5 also presented the interaction between U5 and the Sm complex; however, this binding was observed on the native gel twice and was unable to be reproduced for unknown reasons (Figure 3-10a). Although enough data to support binding of U5 to the Sm complex was not collected, a graph was plotted using data from two trials to estimate the K_d . A K_d of 185 ± 6 nM and n = 2.8 ± 0.2 were estimated (Figure 3-10b). These data suggest a cooperative event occurring.

Figure 3-10 Assessment of binding of U5 snRNA to the Sm complex by EMSA: a) 6% native polyacrylamide gel presenting binding of radio-labelled U5 snRNA to the Sm complex. b) The % bound of U5 was graphed against the concentration of protein using equation 4.

Since the EMSA data suggested a low affinity of the Sms to U2 and inconsistent binding of U5 to the Sms, a different binding assay was performed to confirm these results. As seen in figure 1-11, U2 and U5 share the same Sm site sequence enabling the usage of the same oligonucleotide to verify binding of the Sms by FP. As seen in figure 3-11, binding of the Sms to the Sm site is confirmed, and calculation of K_d from triplicate data is done by using equation 4. For the U5 and U2 Sm site, the K_d was calculated to be 430 ± 20 nM, and line fit gave an n value of 4.7 ± 0.9 .

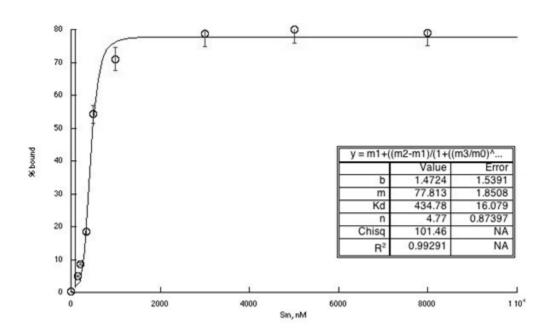


Figure 3-11 Assessment of binding of the Sm complex to the U2 and U5 Sm site by FP: The % bound of the U2 and U5 Sm site was graphed against the concentration of protein, which the K_d was generated using equation 4.

3.4 Discussion

Co-expression of the seven Sm proteins proved to be highly advantageous since it enabled co-purification of the complex. As stated previously, expression of the Sms individually is difficult due to exposure of the hydrophobic β strands. Therefore, insolubility of the compound can be solved by co-expression of proteins since the interaction of the Sms has been shown to bury the hydrophobic strands (Kambach et al. 1999). Presumably, this explains the presence of the Sm proteins in both soluble and insoluble fractions (Figure 2-18). The relevant MS results confirmed that the co-purified complex is comprised of all seven Sms. However, this method does not address the stoichiometry of the purified Sm complex. Presence of an insoluble fraction could be due to an abundant expression of some of the proteins. Thus, the proteins in excess would not assemble into complexes, resulting in precipitation of proteins since the hydrophobic β strands are exposed. An investigation of the Sm proteins present in the insoluble fraction would be necessary to identify which proteins are highly expressed.

The EM results demonstrated the formation of a few rings confirming the functional interaction of the Sm proteins. These results are coherent with the successful co-purification of the complex and presence of all seven proteins in the purified sample. Nevertheless, it is surprising that not many rings are observed in the EM results. Presumably, the proteins that have lower expression are limiting the amount of Sm complexes formed. In addition, instability of the complex *in vitro* might suggest that *in vivo* the complex interacts with some unknown *C. merolae* protein to increase its stability. In other organisms, the SMN protein complex is responsible for assembly and stability of the Sm complex for the formation of the Sm core (Pellizzoni et al. 2002). However, the absence of this protein in *C. merolae* raises questions regarding its instability in the cell. Co-immunoprecipitation of the Sms using an antibody against free snRNA proteins could address this

issue by investigation of the proteins that are interacting with this complex. Also, the absence of an assembly factor suggests that the Sm complex pre-assembles before binding to the snRNA. This hypothesis is also supported by the location of the Sm site in the 3'end of U2, U4 and U5 lacking a stem-loop 3' that region. Thus, it would allow the pre-formed Sm complex to slide into the RNA single-stranded 3'-end.

Surprisingly, the binding assays do not support this hypothesis. The calculated Hill coefficient value suggests a cooperative event occurring (n>1) for both the full-length snRNAs and the Sm sites. Cooperative binding indicates that the Sm complex is not pre-assembled, and the assembly takes place on the Sm site without any protein's assistance. Another hypothesis is that the protein complex is being retained at the bottom of the reaction tubes. Indeed, an increase in protein concentration would cause an abrupt change in the percentage of RNA bound as represented by the sigmoidal binding curve. To allow for the homogenous binding reaction, a high concentration of *E. coli* tRNA and BSA was added to the binding reactions. However, even changes of the binding reaction, the n value supports a cooperative binding of the Sm subcomplexes.

Further investigation of the snRNP core assembly would be necessary to address these questions. In other organisms, the Sm proteins are known to form stable subunits: SmE.F.G, SmE.F.G.D1.D2, SmBD3 and SmE.F.G.D1.D2.B.D3. Therefore, the study of the stable heteromeric complexes formed in *C. merolae* would be crucial to address the assembly of the Sm complex. For instance, it has also been identified that SmE/F/G does not interact with SmB/D3 in the absence of dimer SmD1/D2 (Raker et al. 1996). Indeed, immunoprecipitation analysis confirmed no formation of a pentamer comprised of SmE.F.G.B.D3 suggesting that SmE.F.G requires SmD1.D2 for binding to SmB.D3. *In vitro* analysis of stable sub core formation by co-

immunoprecipitation showed that U1 could stably bind to SmE.F.G and SmE.F.G.D1.D2 implying that these complexes are Sm core intermediates (Raker et al. 1996). Therefore, further investigation of stable Sm subcomplexes formation could be performed by co-immunoprecipitation analysis. *In vivo* identification of subcomplexes formation would suggest a step-wise assembly of the Sm complex. In addition, investigation of interaction of SmE.F.G and SmE.F.G.D2.D1 to the snRNAs *in vitro* could be assessed by EMSA. Stable interaction of the subcomplexes with the snRNAs would indicate the formation of sub-core intermediates as seen in other organisms. It is expected to observe a weak interaction of the SmE.F.G trimer and the SmE.F.G.D2.D1 pentamer to the snRNA, if the Sm complex assembles before binding to the snRNAs.

Notably, the full-length U2 presents a higher binding affinity to the Sm complex when compared to U4's *Kd* and the estimated U5's *Kd* (Table 19). Although the EMSA data of U5 binding to the Sms is not reliable, it was surprising to see that U2 and U5 do not present a similar *Kd* of the full-length snRNA since these snRNAs share the same Sm site sequence. Not much can be concluded about these results since there are not enough replicates of U5's EMSA results. However, if the estimated *Kd* is correct, the differences in *Kd* could be due to the secondary structure of the snRNAs. As seen in figure 1-11, a comparison of the predicted secondary structure between U2 and U5 shows the presence of a more extended sequence downstream to the U5 Sm site which might facilitate binding of the Sm complex to U5. Indeed, the presence of only two uridines on the 3' end of the Sm site would ease degradation of the 3'end of U2. An increase in affinity of the Sm proteins to the full-length snRNA compared to Sm site is presented in both EMSA and FP results (Table 20). As shown in figure 1-11, the U4 Sm site differs from the U2 and

U5 Sm site; therefore, the presence of the Sm sites consensus sequence might increase the affinity

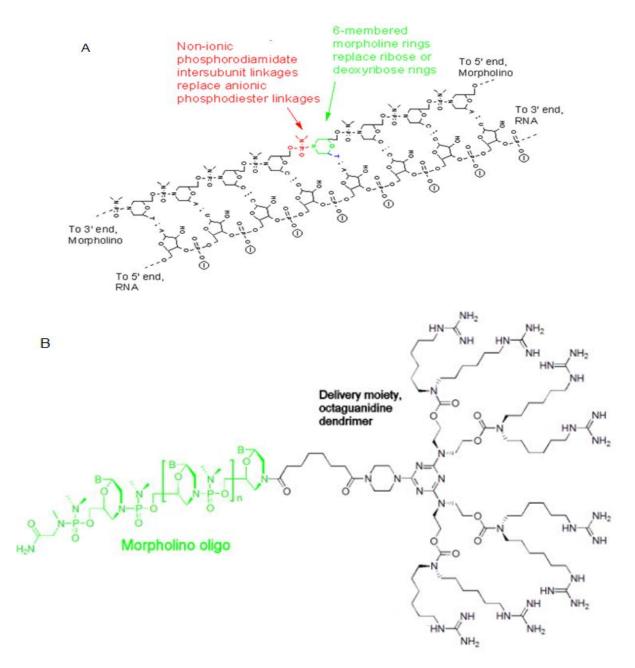
of the Sm complex to U4.

Table 19 Binding parameters: A fluorescent oligonucleotide (ro64) was used as a negative control when performing FP.

Construct	K _d (nM)	Hill coefficient		
Full length U4	170 ± 6	3.0 ± 0.3		
Full length U2	4600 ± 2000	0.9 ± 0.2		
Full length U5	185 ± 6	2.8 ± 0.2		
U4 Sm site (ro66)	360 ± 20	3.0 ± 0.7		
U2/U5 Sm site (ro67)	430 ± 20	4.7 ± 0.9		
Control (ro64)	>10000	n/d		

4. Chapter Four - An investigation of splicing relevance and 5' splice site recognition in *Cyanidioschyzon merolae*

4.1 Introduction


As stated previously in the first chapter, C. merolae was proposed to be a good candidate to study splicing due to its reduced spliceosome. A recent work from the Rader Lab on this alga has demonstrated that this organism lacks several splicing components present in most organisms (Stark et al 2015). For instance, a relevant splicing component, U1 snRNP, has been found to be absent in C. merolae. In other organisms, splicing initiates when U1 snRNA recognizes the 5'splice site on the pre-mRNA followed by binding of U2 snRNA to the branch point site (BPS). Surprisingly, the U5 snRNA has its 5' end sequence complementary to all 5' splice sites in C. merolae (Figure 1-2). Thus, it suggests that U5 initiates spliceosome assembly by recognition of 5'splice sites. In this chapter, the use of morpholino (MO) and vivo-morpholino (vivo-MO) oligonucleotides is explored. These oligonucleotides are capable of blocking RNA-RNA baseparing interactions, thus making them suitable for investigating the proposed U5-5' splice site interaction. Presumably, the blockage of the binding of U5 to the 5'splice site should cause a decay in cell growth or death of the cells; however, splicing has never been proven to be essential in C. *merolae*. Thus, in order to investigate 5'splice site recognition site using this method, it must first be determined whether or not splicing is vital for this alga. To investigation this, I attempt to block the binding of U2 snRNA to the BPS of the pre-mRNA, and therefore block the processing of premRNA. Blockage of this interaction should result in cell death if splicing is crucial for C. merolae cells.

MOs are DNA oligonucleotides widely used for blocking splicing due to their high sequence specificity when compared to short interfering RNAs (siRNAs) and Phosphorothioate-linked DNA

89

(S-DNA) (Summerton, 2007). For instance, Draper et al. (2001) describe efficient blockage of premRNA splicing by usage of MOs complementary to the exon/intron junction resulting in exon skipping in zebrafish. The MO structure has been redesigned to distinguish it from the DNA structure since it is comprised of a 6-membered sugar ring (morpholino ring) rather than a deoxyribose ring (Figure 4-1a). In addition, the negatively charged phosphate linkages present in DNA and RNA are replaced by non-ionic phosphorodiamidate linkages.

The MO backbone presents several advantages, such as sequence specificity. In addition, its non-ionic structure prevents electrostatically binding to proteins and decreases binding to extracellular and cellular structures (Summerton, 2007). Furthermore, the prevention of degradation of MO by RNAse cleavage is achieved by the presence of the morpholino rings. The fact that MOs cannot be degraded biologically is advantageous since they are unable to form degradation products that might be toxic to the cell. Regarding the MO sequence, it is usually comprised of 25 base pairs and a high GC content that increases target affinity. Its sequence content and length enable binding to secondary structures. For instance, the oligonucleotide length increases nucleation of pairing and the probability of binding to single-stranded regions of the RNA secondary structure. In human cells type, a small number of morpholino oligonucleotides bind to intracellular, membrane and extracellular proteins by no Watson-Crick base-paring in S-DNA and siRNA oligonucleotides. (Summerton, 2007).

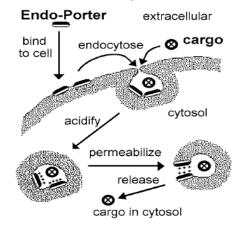


Figure 4-1 MO structure: a) The MO backbone presents some advantages over DNA oligonucleotides. The morpholino rings prevent RNAse cleavage and the non-ionic phosphorodiamidate linkages prevent binding of to proteins. b) The presence of an octaguanidine attached to the MO oligonucleotide and interaction with cell membrane allows delivery of the MO to the cells. These images were drawn at Gene Tools, LLC by Jon D. Moulton.

Among the different approaches to deliver the MO into the cells there is a novel peptide called Endo-Porter (Figure 4-2). This delivery system enables transport of the MO from the membrane into the cytosol of the cell by an endocytosis-mediated process. This method has several

advantages: avoids plasma membrane damage by adsorption, does not require interaction of the cargo with the endo-porter, and delivers high concentrations of cargos that exceed 70 kDa into adherent and non-adherent cells (Summerton, 2005). Notably, the Endo-Porter has been proven to successfully deliver MO oligonucleotides, peptides and proteins into different cells types, such as zebrafish and mammalian cells. This mechanism of transporting molecules to the cytosol occurs by interaction of the Endo-Porter with the cell membrane enabling its endocytosis along with any substance present in the media. Acidification of the endosome results in poly-cationic formation of the endo-porter, permitting exit of the endo-porter from the endosome by permeabilization of the membrane (Figure 4-2). Due to this acid-induced permeabilization of the endosome, the Endo-Porter allows any substance co-endocytosed to be transported from the endosome to the cytosol of cell (Summerton, 2005). Indeed, the presence of a fluorochrome attached to the MO allows assessment of its delivery to the cells by microscopy analysis. Vivo-MOs can also be used for the same purpose; however, they are more advantageous since they do not require the addition of the endo-porter for delivery. Vivo-MOs are morpholino oligos attached to a delivery moiety comprised of an octaguanidine dendrimer (Figure 4-1a). The structure of the vivo-MO enables delivery of the morpholino to the cytosol of the cell by interaction of the guanidinium head groups with phosphates of membrane phospholipids (Morcos et al. 2008). However, none of these methods has been tried in C. merolae cells.

Non-toxic delivery mechanism

Figure 4-2 The mechanism of MO delivery by Endo-Porter: The binding of the Endo-Porter to the membrane allows its endocytosis along with the MO. In the cytosol, acidification of the endosome results in permeabilization of the endosome membrane and release of the MO (Summerton, 2005).

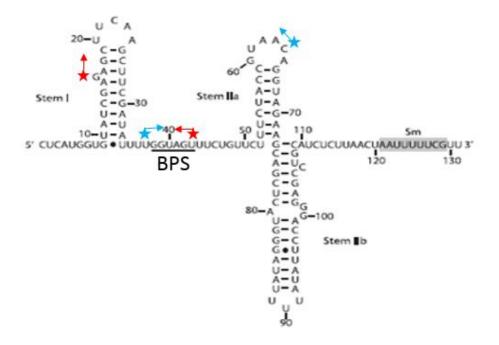
In addition, the transport of the MO oligonucleotides into the *C. merolae* cytosol was attempted by electroporation. This method allows introduction of DNA into the cells by application of an electrical field, which increases permeability of the cell membrane (Potter & Heller 2011). Electroporation has been shown to efficiently deliver genetic material into algal cells, such as *Chlamydomonas reinhardtii*. Unfortunately, not much information regarding electroporation of *C. merolae* cells is available. Although comparison between *C. reinhardtii* and *C. merolae* genomes presented a great conservation of cell wall biosynthesis genes, electron microscope studies suggests the absence of a cell wall in *C. merolae* (Kuroiwa et al. 1994; Misumi et al. 2005). Therefore, the delivery of genetic material from the membrane to the cytosol of the cells by electroporation is presumably less challenging. Thus, in this chapter, different attempts to block splicing through the delivery of MOs to the cytosol of *C. merolae* cells, and the resulting impact this process has on the cell survival were investigated.

4.2 Materials and Methods

4.2.1 C. merolae cell growth for assessment of doubling time

C. merolae (10D strain) cells were obtained from the Microbial Culture Collection at the National Institute for Environmental Studies in Tsukuba, Japan (mcc.nies.go.jp/). Cells were grown in MA2 media in a cultivation chamber exposed to white light at 42.0° C and air was supplied that was supplemented with 2.0% CO₂ (Kobayashi et al. 2010). The assessment of the optimal wavelength for optical density (OD) measurements was performed with a spectrophotometer. Absorbance of the culture at different wavelength was measured, a graph of absorbance versus wavelength was plotted. The survival of the cells at pH values higher than 3 was also tested since morpholino oligos are unstable at pH 3 according to the manufacturer. Cells were grown at pH values of 4 and 4.65 and visualized with an Olympus BX61 fluorescence microscope using the following Semrock (IDEX Health and Science) filters: FITC-3540C, TxRED-4040C, DAPI-5060C for 5 days. Cell survival was checked at higher pHs such as 6, 6.5, and 7, and MA2 media was supplemented with 0.4 mM of sorbitol. The addition of sorbitol to MA2 media allows the cells to survive at this high pH. For assessment of cell culture doubling time, the OD of three 50 mL cell cultures (at 624 and 750 nm) was checked every 8 hours for 5 days at pH 4, and graph of OD versus time was plotted.

4.2.2 Treatment of cells with MO and vivo-MO


To block the binding of U2 snRNA to the BPS, a MO oligonucleotide complementary to the BPS binding sequence of U2 was designed. The BPS MO was purchased from Gene Tools along with a standard control that is not complementary to U2 (Table 21; Figure 4-3). The BPS MO and control contain blue and green emitting fluorescence tags, respectively, for assessment of

introduction of MO into the cell. When attempting to deliver the MO by the Endo-Porter delivery system, *C. merolae* cells were cultured at pH values of 4, 4.65, 6, 6.5 and 7. One millilitre of cell culture at an OD₇₅₀ between 0.8-1.0 was treated with 10 μ M of morpholino and 2, 4 and 6 μ M of Endo-Porter for 1 to 48 hours and exposed to white light at 42.0° C. In addition, the p200 vector that has been used previously to transform *C. merolae* cells was attempted to be delivered by endoporter.

When delivering 20 μ g of the p200 vector using the Endo-Porter, cells were treated with 6 μ M of Endo-Porter. The p200 vector is comprised of a sequence that encodes the GFP protein, which expression of GFP is controlled by the heat-shock CMJ101C promoter (Sumiya et al. 2014). Therefore, transcription occurs when the cells are exposed to elevated temperature, and production of GFP is assessed by microscope visualization. Treated cells were added to a 50 ml culture and incubated at 36.0° C overnight, instead of at 42.0° C, to prevent transcription (Sumiya et al. 2014). After overnight growth, cells were heat shocked for 1 hour at 50.0° C for transcription of GFP mRNA, and protein expression was checked under a microscope.

Hashimoto et al. (2016) describes the treatment of a parasite with MO without usage of any delivery system, and incubation of cells with MO resulted in the delivery of oligonucleotides to the cytosol. Thus, this procedure was replicated, and the cell growth of treated and untreated cells was checked for 8 hours in triplicate. A 50 ml culture was incubated for 2 days until an OD_{750} of 0.2 was achieved, and culture volume was reduced to 250 µL followed by treatment of cells with 10 µM of MO for 8 hours. Control cultures were treated with water. After 8 hours of treatment, cultures were resuspended to their initial volume and left in the incubator for approximately 3 days. Changes in the cell growth of the culture were checked daily by assessment of cell density. The assessment of splicing blockage was done by Radu Pasca, who performed RT-PCR of treated samples.

Blockage of binding of U2 snRNA to the BPS was also attempted by treating cells with vivo-MO oligonucleotides that are complementary to the BPS binding sequence of U2. Vivo-MOs were purchased from Gene Tools flanking the 3' and the 5'ends of the BPS (Table 21; Figure 4-3). Since neither oligos was fluorescent, the introduction of the oligonucleotides was checked by monitoring cell growth. A 150 ml culture was incubated for 36 days until an OD₇₅₀ of 0.2 was achieved, and the culture volume was then divided into three 50 ml cultures. Volume was reduced to 1 liter by centrifugation and treated with 10 μ M of MO for 12 hours. The same procedure was performed to control cultures; however, cells were treated with water. After 12 hours of treatment, cultures were resuspended to their initial volume and left in the incubator for approximately 3 days. Changes in cell growth were checked daily through assessment of cell density. Radu Pasca assessed splicing blockage performing RT-PCR on collected samples.

Figure 4-3 Region of binding of the MO oligonucleotide: The stars represent the 5` and 3` ends of the sequence that the designed MO is binding to. The blue stars cover the region of binding of the 5` flank Vivo-MO, and the red stars cover the 3` flank MO and vivo-MO.

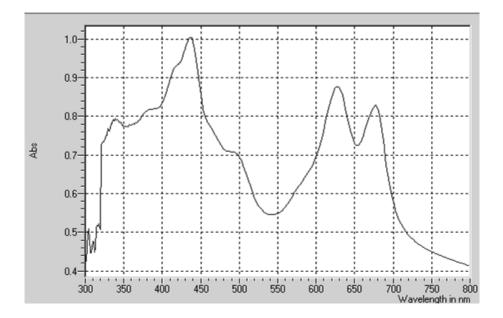
Table 20 DNA oligonucleotide sequence of the MO and vivo-MO designed for binding to U2 snRNA: DNA sequences are shown from 5' to 3'.

Oligo	Oligo sequence				
Vivo MO BPS (5'-flank)	ACTACCAAAATATCGAAGCTTGAAGCTC				
Vivo MO BPS (3'-flank)	GTTACGGTAGAAAGAACAGAAACTACCA				
MO BPS and 3'-flank blue	GTTACGGTAGAAAGAACAGAAACTACCA				
fluorochrome					
Standard Control oligo	CCTCTTACCTCAGTTACAATTTATA				

4.2.3 Delivery of MO by electroporation

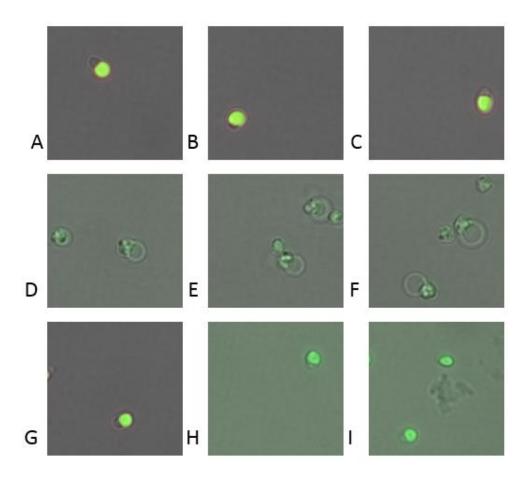
Delivery of MO was attempted under several electroporation conditions. The MA2 media (Kobayashi et al. 2010) was compared to the optimal media for electroporation of protoplasts (Potter & Heller 2011), and the MA2 media was modified accordingly. As described by Potter & Heller (2011), the salt concentration in the electroporation buffer can change the efficiency of electroporation. Therefore, the phosphate concentration was increased from 8 to 10 mM and the CaCl₂ concentration was increased from 1 to 5 mM. Sorbitol was added to the media to allow cell growth of cells at higher pH values. Since there is no available protocol for the preparation of *C. merolae* cells for electroporation, a protocol was designed based on the preparations described by Potter & Heller (2011). A 15 ml culture was grown and harvested at an OD₇₅₀ of 0.8, as *C. merolae* cells present a more efficient transformation at an early stage of growth (Sumiya et al. 2014). Half of the initial cultures were spun down (approximately 2 million cells), at 3000rpm for 10 minutes at room temperature. Cells were resuspended on 1 ml of modified MA2 media. Electroporation was performed in a Gene Pulser Xcell electroporation system (Biorad) as described by manufacturer. A summary of the attempted conditions attempted are presented in table 22.

OD ₇₅₀	Voltage (V)	Capacitance (uF)	Temperature	DNA mass (ug)	Pulses	DNA carrier	Sample volume (ul)	# cells
0.8	200	800	20-25°C and 0-5 °C	1, 10, and 20	1	n/d	40	10 x 10 ⁶ /ml
0.8	300	500	20-25°C and 0-5 °C	1, 10, and 20	1	n/d	40	10 x 10 ⁶ /ml
0.8	1200	25	0-5 °C	1, 10, and 20	1	n/d	40	10 x 10 ⁶ /ml
0.8	1500	n/d	0-5 °C	1 and 0.5	1	n/d	40	10 x 10 ⁶ /ml
0.8	2000	n/d	0-5 °C	1 and 0.5	2	n/d	40	10 x 10 ⁶ /ml
0.8	3000	n/d	0-5 °C	1 and 0.5	1	n/d	40	10 x 10 ⁶ /ml
1.5-3	1500	20	0-5 °C	1	1	n/d	40	4 x 10 ⁶ /ml
1.5-3	1200	25	0-5 °C	1	1	n/d	40	4 x 10 ⁶ /ml
0.3	2000	10	0-5 °C	0.5, 1, and 2	1	n/d	40	4.5x10 ⁵ /ml
1.5-3	1800- 2300	10	0-5 °C	2.5	1	Salmon sperm DNA	250	1 x 10 ⁸ /ml
1.5-3	250	n/d	20-25°C	0.4	2	n/d	40	4 x 10 ⁶ /ml


Table 21 Summary of electroporation conditions

4.3 Results

4.3.1 Assessment of C. merolae cell growth


First, the best wavelength to measure the cell density of *C. merolae* cultures was determined. After measurement of the absorbance of the cultures at different wavelengths, the resulting values were plotted on a graph of absorbance versus wavelength (Figure 4.4). The graph presents the highest absorbance readings at approximately 430, 624, and 684 nm. However, most *C. merolae* publications present measurement of cell cultures at 750 nm. Indeed, the United States Environmental Protection Agency (EPA - 2002) recommends measuring algae growth at a wavelength of 750 nm. It was suggested, when using spectrophotometric absorbance, to construct calibration curves that relate absorbance and cell density. However, some authors state that the correlation of cell density to the light absorbance of chlorophyll better represents the cell growth of algae (Rodrigues et al. 2011; Hersh and Crumpton, 1987; Fargasová, 1996; Rojícková-Padrtová

et al. 1998). The measurement of the absorbance of chlorophyll is around 664 nm, which is consistent with the peak seen on graph (between 624 and 684 nm on the below graph). Although, the highest peak is the 430 nm, it was decided to measure the cell growth of the cells at both 750 and 624 nm, since according to literature cell growth is better correlated to cell density absorbance at these wavelengths.

Figure 4-4 Assessment of optimal wavelength for measurement of *C. merolae* **culture optical density.** Graph presents three possible optimal wavelengths at approximately 430, 624, and 684 nm.

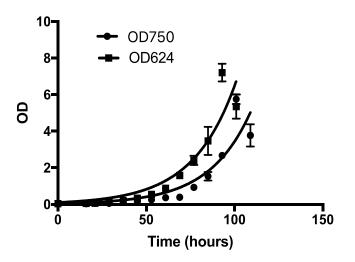

When checking for survival of the cells at pH values of 4.0, 4.65, 6.0, 6.5 and 7.0, the cells were analysed under a microscope at different time points (Figure 4.5). At a pH of 4.0 and 4.65 the cells survived for over 96 hours. At a pH of 6.0, 6.5 and 7.0 the cells died in 2 hours. However, when the media was supplemented with sorbitol, known to reduce osmotic stress, the cells survived at these pHs for over 24 hours (Figure 4.5g, Figure 4.5h and Figure 4.5i).

Figure 4-5 Microscope images of *C. merolae* **cells at different pHs:** Merged bright field and autofluorescence (FITC channel -green). Cells cultured at 4.0 (b) and 4.5 (c) for 96 hours presented similar morphology as the cells cultured at pH 3.0 (a). When growing cells at pH values of 6.0 (d), 6.5 (e) and 7.0 (f) for 2 hours, a different morphology of the cells was observed probably due to the stressed environment. When sorbitol was added to the media, cells survived at pH values of 6.0 (g), 6.5 (h) and 7.0 (i) for over 24 hours.

Calculation of the *C. merolae* doubling time at pH value of 4 was achieved through measuring of the cell density of three cultures for 5 days. The relationship between the average of the logarithm of the optical density (OD) at both wavelengths (624 and 750 nm) was plotted against time. As observed in figure 4-6, when measuring the cell density at 624 nm, the R² value was slightly higher compared to 750 nm. It suggests a better relationship between OD and time at 624

nm. By analysis of the growth curve, *C. merolae* cell density was calculated and found to double every 16.3 ± 0.005 hours at OD₇₅₀ and 16.8 ± 0.004 hours at OD₆₂₄.

Figure 4-6 Cell growth of *C. merolae* **cells:** Relationship between the average (n=3) optical density at 750 and 624 nm and time (in hours).

4.3.2 Treatment of *C. merolae* cells with MO and vivo-MO

The standard control MO (10 μ M) was delivered by treatment of cells (OD₇₅₀ 0.8) with different concentrations of Endo-Porter (2, 4 and 6 μ M) at pH 3. The Endo-Porter has been proven to successfully deliver the MO oligonucleotides to the cytosol mammalian cells via endocytosis; however, it has never been used to deliver oligonucleotides to algal cells. The assessment of the delivery of MO to the cytosol was done by microscope analysis. Since the MO is fluorescently labelled, bright green spots were expected to be observed in the cytosol of the cell under the microscope. Unfortunately, it was concluded that the MO was not delivered (Figure 4-7). Microscopic images of the cells treated with 2 μ M (Figure 4-7b) and 4 μ M (Figure 4-7c) of Endo-Porter presented similar cell morphology to the untreated cells (Figure 4-7a) after 24 hours. However, 6 μ M of Endo-Porter was found to be toxic to cells after 16 hours of treatment (Figure 4-7d). The delivery of the standard control MO by treatment of cells (OD₇₅₀ 0.65) with 4 μ M of

Endo-Porter, was again attempted. Cells were checked under the microscope after 16, 24, 48 and 66 hours (Figure 4-7e). Delivery of MO to the cytosol at these time points was not observed.

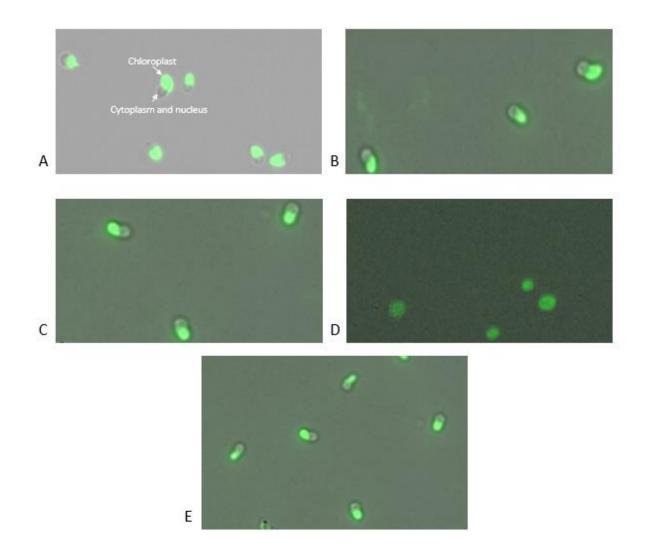


Figure 4-7 Microscopic images of the *C. merolae* cells treated with control MO and Endo-Porter: Merged bright field and autofluorescence (FITC channel - green). a) untreated cells. Arrows indicated the chloroplast, nucleus and cytoplasmic regions. The presence of green fluorescence in the cytoplasm region of the cells when cells were seen when treated for 24 hours with 10 μ M control MO and 2 μ M (b) or 4 μ M (c) of Endo-Porter. d) Cells treated with 6 μ M of Endo-Porter presented a different morphology suggesting toxicity at higher concentration of Endo-Porter. e) After treatment of cells with 10 μ M control MO and 4 μ M of Endo-Porter for 66 hours, delivery of MO to the cytosol of cells was still not observed.

Since the first attempts were done at pH 3, a repeated delivery of the MO was attempted at a higher pH. According to the manufacturer, MO oligonucleotides are unstable below pH 3.

Therefore, since it was confirmed previously that *C. merolae* cells survived at pH 4 and 4.65, the delivery of the BPS MO and control to the cells ($OD_{624} 0.8$) was reattempted at pH 4.5 via Endo-Porter. Microscopy images confirmed no delivery of BPS MO after 24 hours of treatment since no blue fluorescence was observed in the cell (Figure 4-8). Further, it was decided to treat the cells at much higher pH values: 6, 6.5 and 7. At these pH values, the delivery of p200 vector and BPS MO by addition of Endo-Porter was attempted. Microscopic images of the cells after 24 hours of treatment indicated no delivery of vector and MO (Figure 4-8b).

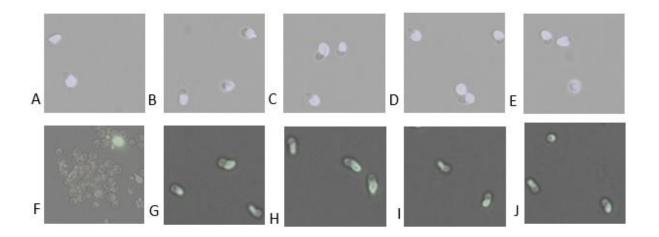


Figure 4-8 Microscope images of the *C. merolae* cells treated with control BPS MO and Endo-Porter at higher pH values: Merged bright field and autofluorescence for visualization of BPS MO (DAPI channel - blue) and GFP (FITC channel -green). (a) untreated cells. The presence of blue fluorescence in the cytoplasmic region of the cells when cells were treated for 24 hours with 10 μ M control MO and 4 μ M at pHs (b) 4.5, (c) 6.0, (d) 6.5, and (e) 7.0. was not observed. (f) Positive control (the cells transformed by via PEG with p200 vector showing GFP fluorescence). (g) Failure of delivery of p200 via Endo-Porter in the cells at pH values 6.0, (h) 6.5 and (i) 7.0.

Since all attempts to deliver MO to *C. merolae* via endocytosis failed, it was hypothesised that a different mechanism of endocytosis in this alga could be making this method of delivery challenging. Indeed, the Endo-Porter has never been used in alga and not much is known about endocytosis in *C. merolae*. Therefore, this procedure was attempted in yeast cells. This cell type can be easily visualized under the microscope and were available; therefore, *P. Pastoris* cells were treated with Endo-Porter and MO. *C. merolae* and *P. pastoris* cells were treated at pH 7 for 20 hours, and microscopy images of the cells showed no delivery of MO (Figure 4-9).

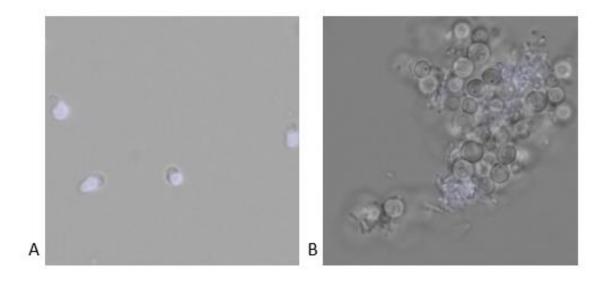
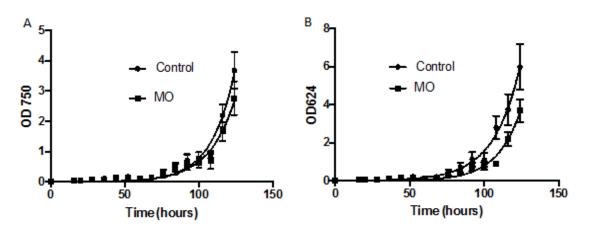
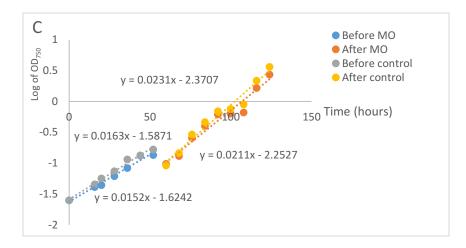




Figure 4-9 Delivery of MO to *P. pastoris* and *C. merolae* at pH 7: Merged bright field and autofluorescence for visualization of BPS MO (DAPI channel - blue). Failure of delivery of BPS MO oligonucleotide to the cytosol of (a) *C. merolae* and (b) *P. pastoris* is observed.

Hashimoto et al. (2016) have described successful introduction of MO in protozoa cells without addition of any reagent to assist delivery of the MO. Therefore, the same protocol was attempted in *C. merolae*. The introduction of the MO to the cytosol and its binding to U2 snRNA were expected to result in changes in cell growth. Thus, the cell growth of treated and untreated cells was compared, and cell growth was plotted against time. Cell density of the cells was assessed at both of 750 and 624 nm wavelengths. Graphs were plotted on logarithmic scale showing exponential growth of cells for both control and treated cells (Figure 4-10). No significant changes were observed in the growth of treated and untreated cells. For a better analysis of data and calculation of doubling time, a linear graph of the log of the OD against time was plotted. Treated

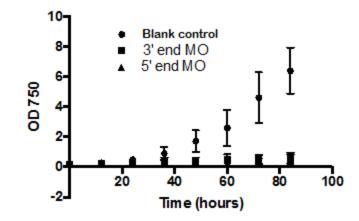

and untreated cells did not present significant changes in doubling time for both graphs using cell densities measured at OD₆₂₄ and OD₇₅₀ (p > 5%). At a wavelength of 750 nm, a doubling was observed after 10.93 ± 0.004 hours for the control cultures and 12.07 ± 0.004 for the treated cultures (Figure 4-10a). At a wavelength of 624 nm, a doubling time of 12.42 ± 0.003 hours was calculated for the control and 10.93 ± 0.004 hours for the treated cells (Figure 4-10b). It was observed that resuspension of cells after treatment of cells caused a decrease in cell density of the culture, which was clearly observed on the graphs after 60 hours. Therefore, the data points were divided into two trendlines (before and after 60 hours) and differences in doubling times were checked between the control and the MO treated cells (Figure 4-10c). The slope of the equation using the data collected before and after 60 hours differs as a drop of cell density is caused by resuspension of cells. However, when comparing the slope value of untreated and treated cells, a significant change in cell growth after 60 hours is not detected. Indeed, the doubling times of cells after 60 hours does not change dramatically since after 60 hours, the control and treated cells present doubling times of 10.8 ± 0.005 and 11.8 ± 0.006 hours respectively (p > 5%). It is concluded that the MO is either not causing changes in cell growth or it is not being delivered since the difference of doubling between control and treated cells is almost the same before 60 hours, 20.41 ± 0.004 and 20.28 ± 0.007 hours, respectively.

Figure 4-10 Cell growth of *C. merolae* treated with the MO that targets the branch point binding site of U2 snRNA: a) Cell growth of untreated and treated cells presenting the relationship between the average (n=3) of optical density at 750 nm and time (in hours). b) Cell growth of untreated and treated cells presenting the relationship between the average (n=3) of optical density at 624 nm and time (in hours). c) Relationship between the average (n=3) of logarithm of the optical density at 750 nm and time (in hours). Equations represent cell growth of treated and control cells before and after 60 hours.

As all methods to deliver the MO to the cells failed, it was decided to try a different approach, vivo-MO, that does not rely on the addition of any delivery reagent. This type of oligonucleotide is comprised of a MO attached to a delivery moiety that is capable to interact to the cell membrane allowing the MO to enter the cells. The cells were treated with vivo-MOs flanking the 3' and 5' ends of the BPS sequence of U2. Since vivo-MOs are not fluorescently labelled, blockage of U2's binding to the BPS was assessed by variations in cell growth. First, cells were treated with 10 μ M of MO (in duplicate), and the cell growth of the treat cells was compared to untreated cells (Figure 4-11). Graphs showed a decrease in cell growth after the addition of vivo-MOs to the cells. A significant increase in doubling time between controls and treated cells was observed. Control cultures presented a doubling time of 18.1 ± 0.038 hours, and cells treated with vivo-MOs flanking the 3' end and 5 'end of the BPS presented doubling times of 49.86 ± 0.014 and 47.94 ± 0.011 hours respectively (p < 5%).

Figure 4-11 Cell growth of *C. merolae* **cells treated with vivo-MO:** Growth of cells treated with 10 μ M of vivo-MOs presenting the relationship between the average (n=2) of optical density at 750 nm and time (in hours). Trendlines represent each equation. Graph presents a decrease in growth when both vivo-MOs were added.

Experiments checking for the toxicity of guanidinium were repeated since vivo-MO has been proven to be toxic at some concentrations depending on the cell type according to Gene Tools. Since vivo-MOs contain guanidinium groups, the cell growth rate difference observed could be due to the presence of the guanidinium. Therefore, cells were treated with 8 and 80 μ M of guanidinium to check it's toxicity. In addition, a comparison of cell growth between cells treated with 10 μ M and 1 μ M of the vivo-MO (flanking the 5' of the BPS) was performed to confirm that the oligonucleotide was not toxic to the cells. Unfortunately, these results were not consistent with previous results, since no significant changes in cell growth of treated cells was observed in the graphs (Figure 4-12; p > 5%). The doubling times for control cells, treated cells with 1 μ M Vivo-MO, treated cells with 10 μ M Vivo-MO and treated cells with 8 μ M guanidinium were 16.83 \pm 0.004, 16.79 \pm 0.005, 17.15 \pm 0.040, and 17.08 \pm 0.044 hours, respectively (Figure 4-12a). The doubling times for control cells, treated cells with 1 μ M Vivo-MO and treated cells with 80 μ M guanidinium were 16.83 \pm 0.040, 17.59 \pm 0.040, 19.1 \pm 0.036, and 16.02 \pm 0.043 hours, respectively (Figure 4-12b). Therefore, the addition of guanidinium (8 and 80 μ M) is presumably not toxic to the cells based on the cell growth and doubling times. In addition, both treatments of cells with 10 μ M vivo-MO (Figures 4-12a and b) confirm that at this concentration the MO are not toxic to the cells since cell growth does not change compared to control and cells treated with 1 μ M vivo-MO.

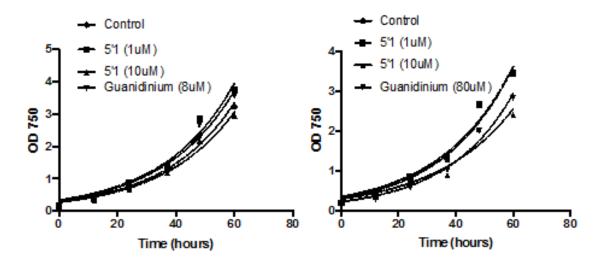
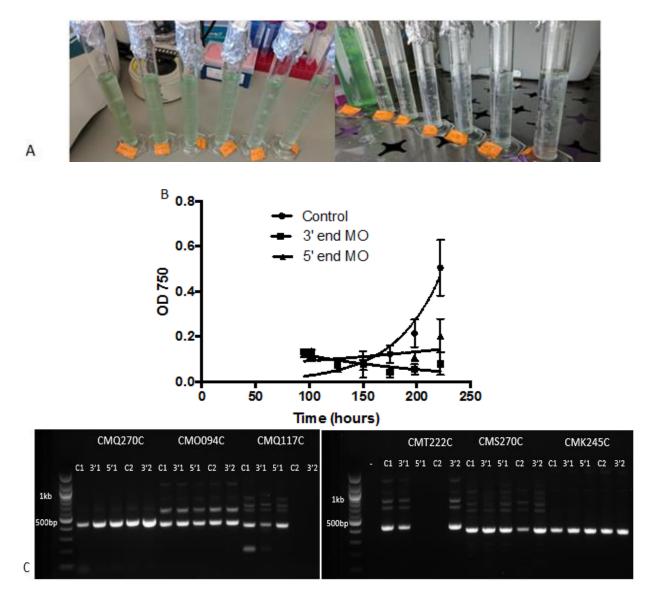



Figure 4-12 Growth of *C. merolae* cells treated with two concentrations of vivo-MO and guanidinium: Growth of cells treated with 1 μ M and 10 μ M of the vivo-MO flanking the 5'end of the BPS was assessed twice in duplicates (a) and (b). Treatment of cells with 8 μ M (a) and 80 μ M (b) of guanidium was also performed in duplicate. Cell growths present no significant difference between control cells and treated cells with both vivo-MO and guanidinium.

Since the treatment of cells with vivo-MO was presenting inconsistent results, it was not possible to conclude that the vivo-MO was affecting cell growth due to binding to U2 (Table 23). It was expected that by increasing the incubation temperature cells would be more stressed favouring acceptance of foreign genetic material, therefore a treatment was conducted at 50°C. 5 μ M of vivo-MOs were added to cells and assessed the growth for 24 hours. A drastic decrease in the growth of cells was observed as indicated on figures 4-13a and b. Conversely, the control cultures presented changes in cell density but were able to recover after incubation at 42°C (after 150 hours of growth). To confirm that the decrease in cell growth was being caused by splicing prevention, Radu Pasca (undergraduate lab member) performed RT-PCR. Gene-containing introns were amplified and showed a clear difference in size between pre-mRNA and mRNA.

Surprisingly, RT-PCR results did not show changes between control and vivo-MO treated cells, suggesting that the MO was not affecting splicing (Figure 4-13c)

Figure 4-13 24 hours treatment of *C. merolae* cells with 5 μ M of vivo-MO: a) A clear colour change of the cultures before (left) and after (right) treatment of cells was observed as a dramatic decrease in cell growth. b) Cell densities of the cells collected over time present an increase in cell density of the initial cultures incubated at 42°C. As the cells are concentrated and split into control and vivo-MO treated cultures for 24 hours incubation at 50°C, a decrease in cell density was observed. However, control cultures recover at 150 hours when cells are incubated at 42° C. The same is not observed for treated cells. c) RT-PCR analysis of untreated and treated cells shows that processing of mRNA is not being prevented. CMQ270C, CMO094C, CMQ117C, CMT222C, CMS270C and CMK245C genes were amplified since clear size difference between pre-mRNA and mRNA PCR products had been previously observed. C – indicates the control cultures; 3'- indicates the cultures treated with vivo-MO flanking the 3'end of the BPS; 5'- indicated the cultures treated with vivo-MO flanking the 5'end of the BPS.

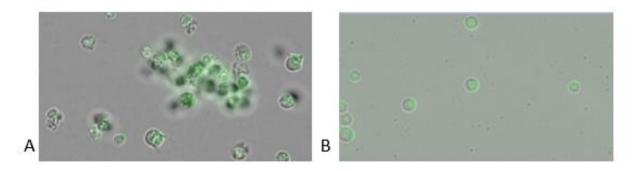

Table 22 Summary of the doubling times of control and MO treated *C. merolae* **cells.** The correlation coefficients are greater than 0.92. Comparative statistics, ANOVA, was applied for comparison of control with treated cells.

Figure	Cell treatment	Doubling time (in hours) + Standard error	Significantly different (ANOVA)
4.13	Control	10.93 ± 0.004	No (p > 5%)
	МО	12.07 ± 0.004	
	Control (before 60 hours of growth)	10.8 ± 0.005	
	MO (before 60 hours of growth)	11.8 ± 0.006	
	Control (after 60 hours of growth)	20.41 ± 0.004	
	MO (after 60 hours of growth)	20.28 ± 0.007	
4.11	Control	18.1 ± 0.038	Yes (p < 5%)
	10 μ M Vivo-MO flanking the 3'end of the BPS	49.86 ± 0.014	
	10 μ M Vivo-MO flanking the 5`end of the BPS	47.94 ± 0.011	
4.12 a	Control	16.83 ± 0.004	No (p > 5%)
	1 μ M of Vivo-MO flanking the 5`end of the BPS	16.79 ± 0.005	
	10 μ M of Vivo-MO flanking the 5'end of the BPS	17.15 ± 0.040	
	8 μM of guanidinium	17.08 ± 0.044	
4.12 b	Control	16.83 ± 0.040	No (p > 5%)
	1 μ M of Vivo-MO flanking the 5`end of the BPS	17.59 ± 0.040	
	10 μ M of Vivo-MO flanking the 5'end of the BPS	19.1 ± 0.036	
	80 μM of guanidinium	16.02 ± 0.043	

4.3.3 Delivery of MO by electroporation

In order to electroporate MO to the cytosol of *C. merolae* cells, several electroporation conditions were attempted and are described in table 22. Unfortunately, all attempts to electroporate MO to the cells failed. Microscopy images of the cells after electroporation confirmed no introduction of MO to the cells since no blue fluorescence was detected in cell

cytosol. As seen on figure 4-14, electroporation of cells would either cause death of cells or result in no delivery of MO to cells.

Figure 4-14 Electroporation of *C. merolae* **cells for introduction of MO to cytosol:** a) Cell death after electroporation at high voltage and low capacitance. b) Failure of delivery of MO after electroporation at low voltage and high capacitance.

4.4 Discussion

This chapter explored different methods to investigate splicing essentiality in *C. merolae*. In the early stages of assembly of the spliceosome, U2 snRNA binds to the BPS; therefore, it was proposed that blocking this early step should prevent splicing. It was expected that prevention of splicing would cause either death of cells or a decrease in cell growth. Thus, blockage was attempted through the use of MOs since these oligonucleotide analogues are known to efficiently block splicing in other organisms. In addition, MOs are capable of stably binding to secondary structures. However, this method of blocking splicing has never been tried in *C. merolae*, which made it necessary to explore different methods to deliver the MO oligonucleotides to the cells.

First, it was attempted to use a novel delivery system, Endo-Porter. To explore the best approach to efficiently deliver MO to the cells by this method, the concentrations of Endo-Porter and pH values of growth media were varied. As presented, all attempts to deliver MO to cells by Endo-Porter failed as the microscopy results did not confirm presence of the fluorescently labelled MO in the cytosol of the cells. The reasons why the Endo-Porter failed to deliver the MO to the cells are unknown. Since the Endo-Porter is an endocytosis-mediated method, failure of delivery of MO might suggest a different mechanism of endocytosis in C. merolae cells. Unfortunately, little is known about endocytosis in C. merolae. However, the presence of the components that are part of the endocytosis machinery in algae have been observed. In addition, the interaction of these components for occurrence of endocytosis has been investigated in Chlamydomonas (Rappoport & Simon 2003). A comparison of the endocytosis system among eukaryotes shows that C. merolae lacks some of the endocytosis components, such as Rab11 and 7, which should result in absence of some pathways (Jékely 2008). Since it is proposed that C. merolae is comprised of a reduced endocytosis system, it might suggest a minimal endocytic activity in this alga. It is unknown what effects endocytosis in C. merolae. Presumably, the C. merolae cells are more likely to accept heterologous genetic material under stress conditions. Also, changes in pH media, for instance, should alter the chances of the Endo-Porter to enter the cell. Indeed, the endo-porter needs a basic environment to enter the cells followed by acidification of the endosome to be released in the cytosol (Summerton, 2005). Therefore, the reason that the Endo-porter failed to deliver the MO at pH 4 should be explained. However, when increasing the pH of the media (6, 6.5 and 7), delivery of MO to the cells was not observed. Presumably a basic environment does not favour endocytosis in C. merolae. Yeast cells were also treated with Endo-Porter. Failure of delivery was observed suggesting that the use of Endo-Porter can be a challenging method in cell types.

Since MO has been successfully introduced into protozoa cells without any additional reagent (Hashimoto et al. 2016), treating *C. merolae* cells with MO using the same approach was attempted. Microscopy results also showed no MO in the cytoplasm of the cells. This suggests that protozoa cells are more acceptable to foreign genetic material than *C. merolae cells*. It was also

attempted to block splicing by treatment of cells with vivo-MO. Since this oligonucleotide is attached to a delivery moiety, it was expected that through the interaction of the guanidinium head groups to phosphates of membrane phospholipids, the vivo-MO would enter the cells. Some of the results presented a decrease in cell growth. However, repetitive treatment of the cells with vivo-MO presented a deviation of results. Survival of cells at both 1 μ M and 10 μ M of vivo-MO suggest that the delivery moiety is not toxic to cells. Indeed, since the delivery moiety is comprised of a octaguanidine, it was decided to add guanidinium to the cells. The addition of guanidinium (8 and 80 μ M) also presented no cell growth changes. Promising results were observed when cells were treated with 5 μ M of vivo-MO; however, the RT-PCR results (provided by Radu Pasca) confirmed that the MO was not preventing splicing. Therefore, it was concluded that the changes in cell growth was not caused by blockage of splicing.

Electroporation was another method that failed to deliver MO to the *C. merolae* cells. Due to the lack of knowledge regarding electroporation in *C. merolae*, several conditions were tried (Table 22). Surprisingly, the absence of the cell wall does not facilitate the introduction of MO since all attempts to electroporate MO to the cells failed. Further investigation of the cell membrane of *C. merolae*, or the use of another types of electroporation equipments would be necessary to investigate these negative results.

In conclusion, it is still unknown if splicing is vital for *C. merolae* cells. The use of MO did not present to be the best method to address this question since delivery of this oligonucleotide has proven to be challenging. In the future, new approaches can be attempted to address these questions, such as by blockage of expression of essential spliceosome core proteins. This should cause death of cells if splicing is vital to *C. merolae*.

5. Chapter Five - Concluding remarks

To conclude, this thesis explores different approaches to investigate processing of mRNA in *C. merolae* by focusing on U5 snRNP. This ribonucleoprotein subunit is comprised of most of the core proteins of the spliceosome playing an important role in both early and late stages of the spliceosome assembly process. In addition to this, it has been proposed that U5 snRNA could be replacing U1 snRNA, recognizing the 5`splice site of the mRNA. Therefore, this thesis describes different techniques to investigate the U5 snRNA associated proteins and methods that could be performed to investigate the 5`splice site recognition.

First, an investigation of the U5 snRNP structure and function by co-expression of the proteins that associate to U5 was performed. A plasmid carrying all protein genes of interest was successfully constructed. Since co-expression of the U5 proteins failed, it was decided to express each protein individually at different expression conditions. Although the largest proteins, Prp8, Brr2, and Snu114, failed to express, the smallest U5 snRNP's protein, Dib1 was expressed. In addition, the Sm complex proteins, Sm B, F, D1, D2, E, G, and D3 were co-expressed.

The successful co-expression of the Sm complex allowed functional and assembly investigation of the complex in *C. merolae*. The third chapter presents a two-step co-purification of the Sm complex. Any additional steps to assemble the Sm complex were required, and the mass spectrometry analysis confirmed the presence of all seven Sm in the co-purified sample. Functional assembly of the Sm complex was first assured by electron microscope, showing formation of a few rings in solution. These results are consistent with the ring formation of this complex in other organisms demonstrating that the assembly of the recombinantly co-purified complex is not occurring randomly. In addition, functionality of the complex was investigated by binding to U2, U4 and U5, since this complex is known to bind to these snRNAs in organisms for biogenesis.

EMSA and FP binding assays confirmed binding of the Sm complex to U4 and U2. U5 presented difficulties to reproduce binding of to the complex by EMSA. However, FP was performed using an oligonucleotide of the proposed U5 Sm site, which happens to be the same Sm site present in U2. Binding of the U5 and U2 Sm site to the Sm complex was observed. Therefore, both electron microscope and binding results confirmed that the recombinantly co-purified Sm complex is functional. Interestingly, the structure of U2, U4 and U5 snRNA and absence of an Sm assembly factor, SMN, suggests that the Sm complex pre-assembles prior to binding to the snRNAs. However, both EMSA and FP binding curves indicate that Sm proteins are cooperatively binding to U2, U4 and U5 (hill coefficient higher than 1). These results raise questions regarding the assembly of the Sm complex in absence of any additional proteins. Indeed, further exploration of the Sm's assembly will be necessary to confirm formation of Sm dimers and trimers prior to binding to the snRNAs.

The fourth chapter focused on the investigation of the relevance of the splicing process to *C. merolae.* To achieve this, blocking the binding of the U2 snRNA to the BPS was attempted. A novel oligonucleotide was used, MO, that had complementarity to the U2 BPS binding region. Two methods to deliver the MO to the cytosol of the cells were attempted: the endo-porter delivery reagent and electroporation. Unfortunately, both methods failed to deliver the MO. Therefore, a third method was performed, vivo-MO. Incubation of cells with vivo-MO showed a disturbance in cell growth; however, the results were not consistent in all trials. Indeed, RT-PCR results confirmed that splicing was not being blocked. Preventing the expression of core proteins would be a great alternative method to investigate if splicing is crucial in *C. merolae*.

References cited

- Black, C. S., Garside, E. L., MacMillan, A. M., & Rader, S. D. (2016). Conserved structure of Snu13 from the highly reduced spliceosome of Cyanidioschyzon merolae. *Protein Science*, 25(4), 911-916.
- Boël, G., Letso, R., Neely, H., Price, W. N., Wong, K. H., Su, M., Luff J. D., Valecha, M., Everett, Acton, T. B. & Xiao, R. (2016). Codon influence on protein expression in *E. coli* correlates with mRNA levels. *Nature*, 529(7586), 358.
- Boon, K. L., Grainger, R. J., Ehsani, P., Barrass, J. D., Auchynnikava, T., Inglehearn, C. F., & Beggs, J. D. (2007). prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. *Nature structural & molecular biology*, 14(11), 1077-1083.
- Branlant, C., Krol, A., Ebel, J. P., Lazar, E., Haendler, B., & Jacob, M. (1982). U2 RNA shares a structural domain with U1, U4, and U5 RNAs. *The EMBO journal*, *1*(10), 1259-1265.
- Brenner, T. J., & Guthrie, C. (2006). Assembly of Snu114 into U5 snRNP requires Prp8 and a functional GTPase domain. *RNA*, *12*(5), 862–871.
- Buenrostro, J. D., Araya, C. L., Chircus, L. M., Layton, C. J., Chang, H. Y., Snyder, M. P., & Greenleaf, W. J. (2014). Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. *Nature biotechnology*, 32(6), 562-568.
- Burgess, R. R., & Deutscher, M. P. (2009). Guide to protein purification. Academic Press, 463.
- Callaway, E. (2015). The revolution will not be crystallized. Nature, 525(7568), 172.
- Chan, S. P., Kao, D. I., Tsai, W. Y., & Cheng, S. C. (2003). The Prp19p-associated complex in spliceosome activation. *Science*, *302*(5643), 279-282.
- Dix, I., Russell, C. S., O'keefe, R. T., Newman, A. J., & Beggs, J. D. (1998). Protein-RNA interactions in the U5 snRNP of *Saccharomyces cerevisiae*. *Rna*, 4(12), 1674-1686.
- Draper, B. W., Morcos, P. A., & Kimmel, C. B. (2001). Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. *genesis*, *30*(3), 154-156.
- Dunn, E. A. (2010). U6 snRNA secondary structure in free U6 snRNPs. doi:https://doi.org/10.24124/2010/bpgub646
- Dunn, E. A., & Rader, S. D. (2014). Pre-mRNA splicing and the spliceosome: Assembly, catalysis, and fidelity. In *Fungal RNA Biology* (pp. 27-57). Springer, Cham.

- Dyson, M. R. & Durocher, Y. (2007). *Expression Systems*. Bloxham, Banbury: Scion Publishing Ltd, 2(14).
- Fargašová, A. (1996). Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda. *Bulletin of environmental contamination and toxicology*, *57*(1), 99-106.
- Fischer, U., Liu, Q., & Dreyfuss, G. (1997). The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. *Cell*, *90*(6), 1023-1029.
- Frank, D. N., Roiha, H., & Guthrie, CH. (1994). Architecture of the U5 small nuclear RNA. *Molecular and Cellular Biology*, *14*(3), 2180-2190.
- Galej, W. P., Oubridge, C., Newman, A. J., & Nagai, K. (2013). Crystal structure of Prp8 reveals active site cavity of the spliceosome. *Nature*, 493(7434), 638-643. D oi:10.1038/nature11843
- Graveley, B. R. (2001). Alternative splicing: increasing diversity in the proteomic world. *TRENDS in Genetics*, *17*(2), 100-107.
- Hahn, D., Kudla, G., Tollervey, D., & Beggs, J. D. (2012). Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. *Genes & Development, 26*(21), 2408.
- Hang, J., Wan, R., Yan, C., & Shi, Y. (2015). Structural basis of pre-mRNA splicing. *Science*, *349*(6253), 1191-1198. doi:10.1126/science.aac8159
- Hashimoto, M., Nara, T., Mita, T., & Mikoshiba, K. (2016). Morpholino antisense oligo inhibits trans-splicing of pre-inositol 1, 4, 5-trisphosphate receptor mRNA of Trypanosoma cruzi and suppresses parasite growth and infectivity. *Parasitology international*, 65(3), 175-179.
- Hermann, H., Fabrizio, P., Raker, V. A., Foulaki, K., Hornig, H., Brahms, H., & Lührmann, R. (1995). snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. *The EMBO journal*, 14(9), 2076.
- Hersh, C. M., & Crumpton, W. G. (1987). Determination of growth rate depression of some green algae by atrazine. *Bulletin of environmental contamination and toxicology*, *39*(6), 1041-1048.
- Jarmolowski, A., & Mattaj, I. W. (1993). The determinants for Sm protein binding to Xenopus U1 and U5 snRNAs are complex and non-identical. *The EMBO journal*, *12*(1), 223-232.
- Jékely, G. (Ed.). (2008). *Eukaryotic Membranes and Cytoskeleton: Origins and Evolution* (Vol. 607). Springer Science & Business Media.

Jones, M. H., & Guthrie, C. (1990). Unexpected flexibility in an evolutionarily conserved protein-

RNA interaction: genetic analysis of the Sm binding site. *The EMBO journal*, 9(8), 2555-2561.

- Kambach, C., Walke, S., Young, R., Avis, J. M., de la Fortelle, E., Raker, V. A., Lührmann, R., Li, J. & Nagai, K. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. *Cell*, 96(3), 375-387.
- Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., & Stamm, S. (2013). Function of alternative splicing. *Gene*, *514*(1), 1-30.
- Kobayashi Y., Ohnuma M., Kuroiwa T., Tanaka K., & Hanaoka M. (2010) The basics of cultivation and molecular genetic analysis of the unicellular red alga *Cyanidioschyzon merolae*. *Endocytobiosis Cell Res*, 20, 53-61.
- Kuroiwa, T., Kawazu, T., Takahashi, H., Suzuki, K., Ohta, N., & Kuroiwa, H. (1994). Comparison of ultrastructures between the ultra-small eukaryote Cyanidioschyzon merolae and Cyanidium caldarium. *Cytologia*, *59*(2), 149-158.
- Kuriyan, J., Konforti, B., & Wemmer, D. (2012). *The molecules of life: Physical and chemical principles*. Garland Science.
- Lefebvre, S., Bürglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani, M. & Le Paslier, D. (1995). Identification and characterization of a spinal muscular atrophy-determining gene. *Cell*, 80(1), 155-165.
- Li, P., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., Düzgüneş, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. *Applied biochemistry and biotechnology*, 142(2), 105-124.
- Lin-Cereghino, J., Wong, W. W., Giang, W., Luong, L. T., Vu, J., Johnson, S. D., & Lin-Cereghino, G. P. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. *Biotechniques*, 38(1), 44.
- Liu, H. L., & Cheng, S. C. (2012). The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. *Molecular and cellular biology*, *32*(24), 5056-5066.
- Liu, Q., Fischer, U., Wang, F., & Dreyfuss, G. (1997). The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. *Cell*, 90(6), 1013-1021.
- López-Bigas, N., Audit, B., Ouzounis, C., Parra, G., & Guigó, R. (2005). Are splicing mutations the most frequent cause of hereditary disease? *FEBS Letters*, 579(9), 1900-1903. doi:10.1016/j.febslet.2005.02.047

Meister, G., Bühler, D., Pillai, R., Lottspeich, F., & Fischer, U. (2001). A multiprotein complex

mediates the ATP-dependent assembly of spliceosomal U snRNPs. *Nature cell biology*, 3(11), 945-949.

- Misumi, O., Matsuzaki, M., Nozaki, H., Miyagishima, S. Y., Mori, T., Nishida, K., ... & Kuroiwa, T. (2005). Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. *Plant physiology*, 137(2), 567-585.
- Morcos, P. A., Li, Y., & Jiang, S. (2008). Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. *Biotechniques*, 45(6), 613-614.
- Nguyen, T. H. D., Galej, W. P., Bai, X. C., Savva, C. G., Newman, A. J., Scheres, S. H., & Nagai, K. (2015). The architecture of the spliceosomal U4/U6. U5 tri-snRNP. *Nature*, *523*(7558), 47-52.
- Nguyen, T. H. D., Li, J., Galej, W. P., Oshikane, H., Newman, A. J., & Nagai, K. (2013). Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. *Structure (London, England : 1993)*, 21(6), 910-919. doi:10.1016/j.str.2013.04.017
- Pellizzoni, L., Yong, J., & Dreyfuss, G. (2002). Essential role for the SMN complex in the specificity of snRNP assembly. *Science*, *298*(5599), 1775-1779.
- Potter, H., & Heller, R. (2011). Transfection by electroporation. *Current Protocols in Neuroscience*, A-1E.
- Raker, V. A., Hartmuth, K., Kastner, B., & Lührmann, R. (1999). Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. *Molecular and Cellular Biology*, *19*(10), 6554-6565.
- Rappoport, J. Z., & Simon, S. M. (2003). Real-time analysis of clathrin-mediated endocytosis during cell migration. *Journal of cell science*, 116(5), 847-855.
- Raker, V. A., Plessel, G., & Lührmann, R. (1996). The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. *The EMBO journal*, *15*(9), 2256.
- Reimer, K. A., Stark, M. R., Aguilar, L. C., Stark, S. R., Burke, R. D., Moore, J., Fahlman, R. P., Yip, C. K., Kuroiwa, H., Oeffinger, M. & Rader, S. D. (2017). The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors. *RNA*, 23(6), 952-967.
- Reuter, K., Nottrott, S., Fabrizio, P., Lührmann, R., & Ficner, R. (1999). Identification, characterization and crystal structure analysis of the human spliceosomal U5 snRNPspecific 15 kD protein. *Journal of molecular biology*,294(2), 515-525.

Rodrigues, L. H. R., Raya-Rodriguez, M. T., & Fontoura, N. F. (2011). Algal density assessed by

spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. *Journal of Environmental Chemistry and Ecotoxicology*, *3*(8), 225-228.

- Rojíčková-Padrtová, R., Maršálek, B., & Holoubek, I. (1998). Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. *Chemosphere*, *37*(3), 495-507.
- Sakharkar, M. K., Chow, V. T. K., & Kangueane, P. (2004). Distributions of exons and introns in the human genome. *In Silico Biology*, *4*(4), 387.
- Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U., & Büssow, K. (2007). Vectors for co-expression of an unrestricted number of proteins. *Nucleic acids research*, 35(6), e43.
- Schmid-Burgk, J. L., Xie, Z., & Benenson, Y. (2014). Hierarchical ligation-independent assembly of PCR fragments. *DNA Cloning and Assembly Methods*, 49-58.
- Schwer, B., & Guthrie, C. (1992). A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. *The EMBO Journal*, 11(13), 5033-5039.
- Séraphin B. (1995). Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J., 14, 2089–2098.
- Small, E. C., Leggett, S. R., Winans, A. A., & Staley, J. P. (2006). The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. *Molecular Cell*, 23(3), 389-399. doi:10.1016/j.molcel.2006.05.043
- Staley, J. P., & Guthrie, C. (1999). An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. *Molecular cell*, *3*(1), 55-64.
- Stark, M. R., Dunn, E. A., William S. C. Dunn, Grisdale, C. J., Daniele, A. R., Matthew R. G. Halstead. Rader, S. D. (2015). Dramatically reduced spliceosome in cyanidioschyzon merolae. *Proceedings of the National Academy of Sciences*, 112(11), E1191-E1200. doi:10.1073/pnas.1416879112
- Stevens, S. W., Barta, I., Ge, H. Y., Moore, R. E., Young, M. K., Lee, T. D., & Abelson, J. (2001). Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. *Rna*, 7(11), 1543-1553.
- Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. *Protein expression and purification*, 41(1), 207-234.
- Seckbach, J. (Ed.). (2012). Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells (Vol. 91). Springer Science & Business Media.

Summerton, J. E. (2007). Morpholino, siRNA, and S-DNA compared: impact of structure and

mechanism of action on off-target effects and sequence specificity. Current topics in medicinal chemistry, 7(7), 651-660.

- Summerton, J. E. (2005). Endo-Porter: A Novel Reagent for Safe, Effective Delivery of Substances into Cells. *Annals of the New York Academy of Sciences*, 1058(1), 62-75.
- Sumiya, N., Fujiwara, T., Kobayashi, Y., Misumi, O., & Miyagishima, S. Y. (2014). Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. *PloS one*, *9*(10), e111261.
- Tsai, R. T., Fu, R. H., Yeh, F. L., Tseng, C. K., Lin, Y. C., Huang, Y. H., & Cheng, S. C. (2005). Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. *Genes & development*, 19(24), 2991-3003.
- Urlaub, H., Raker, V. A., Kostka, S., & Lührmann, R. (2001). Sm protein–Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. *The EMBO Journal*, 20(1-2), 187–196. http://doi.org/10.1093/emboj/20.1.187
- Wan, R., Yan, C., Bai, R., Wang, L., Huang, M., Wong, C. C., & Shi, Y. (2016). The 3.8 Å structure of the U4/U6. U5 tri-snRNP: Insights into spliceosome assembly and catalysis. *Science*, 351(6272), 466-475.
- Wahl, M. C., Will, C. L., & Lührmann, R. (2009). The spliceosome: design principles of a dynamic RNP machine. *Cell*, *136*(4), 701-718.
- Warkocki, Z., Schneider, C., Mozaffari-Jovin, S., Schmitzová, J., Höbartner, C., Fabrizio, P., & Lührmann, R. (2015). The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. *Genes & Development, 29*(1), 94-107.
- Weidner, M., Taupp, M., & Hallam, S. J. (2010). Expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. *Journal of visualized experiments: JoVE*, (36).
- Yan, C., Hang, J., Wan, R., Huang, M., Catherine C L Wong, & Shi, Y. (2015). Structure of a yeast spliceosome at 3.6-angstrom resolution. *Science*, 349(6253), 1182-1191. doi:10.1126/science.aac7629
- Zaric, B., Chami, M., Rémigy, H., Engel, A., Ballmer-Hofer, K., Winkler, F. K., & Kambach, C. (2005). Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. *Journal of biological chemistry*, 280(16), 16066-16075.
- Zhang, L., Li, X., Hill, R. C., Qiu, Y., Zhang, W., Hansen, K. C., & Zhao, R. (2015). Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding. *Nucleic Acids Research*, 43(6), 3286.

- Zhang, R., So, B. R., Li, P., Yong, J., Glisovic, T., Wan, L., & Dreyfuss, G. (2011). Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. *Cell*, 146(3), 384-395.
- Zhou, L., Hang, J., Zhou, Y., Wan, R., Lu, G., Yin, P., Yan, C & Shi, Y. (2014). Crystal structures of the Lsm complex bound to the 3' end sequence of U6 small nuclear RNA. *Nature*, 506(7486), 116.

Appendix 1

Sequencing results

Alignment of the sequenced protein genes (inserted into each vector) with the protein gene sequences using the pairwise BLAST alignment.

Table 23 Oligonucleotide sequences of the primers used for sequencing of Prp8, Brr2 and Snu114 genes. The other genes were sequenced using the same primers presented in table 2. (*) represents the gene inserted into pMCSG2. (**) represents the gene inserted into pPICZA. (***) represents the gene inserted into pQLink.

Gene	oSDR #	Primers	Coverage (bp)
Brr2***	1084	CCATTTGTCGAGAAATCATAAAAAATTTATTTGCTTTGTG	1-720
	1145	TGAGTCATCGCGACTT	712-1444
	1146	ATTGGAGTCCATCACG	1312-2050
	1147	ACGCTGCGGACAATAGA	1974-2753
	1148	ACACGTTGCGTTTCGA	2664-3436
	1149	TGACCCCAAACACTTTG	3219-4008
	1150	TGGGCAACGGCTTTGC	3905-4634
	1151	AAGCGCGTCCTAAGAA	4564-5256
	1085	CAACCGAGCGTTCTGAACAAATCCAG	5257-5469
Brr2**	1382	ATTGACAAGCTTTTGA	2-721
	1145	TGAGTCATCGCGACTT	709-1384
	1146	ATTGGAGTCCATCACG	1382-2094
	1147	ACGCTGCGGACAATAGA	1974-2748
	1148	ACACGTTGCGTTTCGA	2665-3371
	1149	TGACCCCAAACACTTTG	3292-3905
	1150	TGGGCAACGGCTTTGC	3905-4619
	1151	AAGCGCGTCCTAAGAA	4577-5342
	1383	TCAATGATGATGATGA	5133-5366
Snu114***	1084	CCATTTGTCGAGAAATCATAAAAAATTTATTTGCTTTGTG	1-713
	1152	GTGACGCTGATGGATG	676-1519
	1153	TGCTGGTCAATGTGCA	1339-2173
	1164	GCTTGCACCGTGTTT	1965-2775
	1085	CAACCGAGCGTTCTGAACAAATCCAG	2605-3327
Prp8***	1084	CCATTTGTCGAGAAATCATAAAAAATTTATTTGCTTTGTG	1-696
-	1207	ACGAGCGAATCCAACAG	501-1325
	1155	ATTTGCTCTATGCACC	1310-2137

	1156	ATTTGCTCTATGCACC	1966-2743
	1157	AGGTCTCTATCGTTAC	2629-3408
	1158	CGATATTGTACAGATTCGC	3262-4054
	1159	CAAAGACATGCGTTATACG	3916-4673
	1160	CAGCAACTGCAGGGAT	4552-5346
	1161	ATTTCATGCACGACGG	5214-5997
	1162	GCAGCCAAAATCTATTGGA	5859-6646
	1085	TGGACCCGTTGAAGAC	6566-7188
Prp8 *	1283	TGATCAACGCCGCCAGC	4-662
	1154	TAACGATGCAGACGCG	661-1438
	1155	ATTTGCTCTATGCACC	1302-2021
	1156	AGGTCTCTATCGTTAC	1963-2765
	1157	CGATATTGTACAGATTCGC	2605-3264
	1158	CAAAGACATGCGTTATACG	3253-4062
	1159	CAGCAACTGCAGGGAT	3910-4589
	1160	ATTTCATGCACGACGG	4552-5312
	1161	GCAGCCAAAATCTATTGGA	5212-5886
	1342	AATCGCTTGGCGAGAT	5759-6502
	1284	GCAGCGGTTTCTTTACC	6433-7188

Prp8 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR655)

Query	38	TACTTCCAATCCCACGAGGAGAAATTAACT 88	
Sbjct			
Query	89	ATGCCCAAACGTGCGTTTTTCCGGACGCAGAAGAGGCAGATCAGACGCTGGACCTGAAG	148
Sbjct	1	ATGCCCAAACGTGCGTTTTTCGGACGCGACGAAGAGGCAGATCAGACGCTGGACCTGAAG	60
Query	149	CGAAAGCGGCCACGCCGTGCTTTCGGAGCGGATCAGCCATTTTTCAAACCGTATACCTCC	208
Sbjct	61	CGAAAGCGGCCACGCCGTGCTTTCGGAGCGGATCAGCCATTTTTCAAACCGTATACCTCC	120
Query	209	CCCGATATTTTCCCGCAAACTAGCGAGTCTTGCACGGATCGAGTTGGAGCGAAGCGAAAAT	268
Sbjct	121	CCCGATATTTTCCGCAAACTAGCGAGTCTTGCACGGATCGAGTTGGAGCGAAGCGAAAAT	180
Query	269	GACCTGGAAAACAGTGCCCACCGTGGTAACCGAGACCGACATATCTCCCCGGAACACAGAT	328
Sbjct	181	GACCTGGAAAACAGTGCCCACCGTGGTAACCGAGACCGACATATCTCCCCGGAACACAGAT	240
Query	329	GCACTGACACTGAACGCGCTCCCCTACCTTCCGCACGCGGTGTACAAATGGCTGGAACAC	388
Sbjct	241	GCACTGACACTGAACGCGCTCCGCTACCTTCCGCACGCGGTGTACAAATGGCTGGAACAC	300
Query	389	ATGCCGGCCCCTTGGGAGCCAACGCGGTTTGTACCCGTGATTTTCCATCACACTGGTGCG	448
Sbjct	301	ATGCCGGCCCCTTGGGAGCCAACGCGGTTTGTACCCGTGATTTTCCATCACACTGGTGCG	360
Query	449	TTGGCTTTTATCGAGGGTTCACGTCGAGTCCCCGAGGTCGTTCATCGGGCCCAATGGGCG	508
Sbjct	361	TTGGCTTTTATCGAGGGTTCACGTCGAGTCCCCGAGGTCGTTCATCGGGCCCAATGGGCG	420
Query	509	CGTTGGTGCGCCTACCTCGACCGTCGTCGTCATGAGGCACACGTCGCCTCGACAAGCAGC	568
Sbjct	421	CGTTGGTGCGCCTACCTCGACCGTCGTCGTCATGAGGCACACGTCGCCTCGACAAGCAGC	480
Query	569	GGAAAGCGGCAGCGAGATCTGACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGAC	628
Sbjct	481	GGAAAGCGGCAGCGAGATCTGACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGAC	540

Query Sbjct	629 541	GACGATGAGCCGTCACCGAGCTTCCGCGAGTTTGTCTACCATCGAACGCTGCCGACACCA	688 600
Query	689 601	TTTGCTAACGATGCAGACGCGGCAGCTGAATACGAGCGAATCCAACAGCTCGCCGCGAAT	748
Sbjct Query	749	TTGCACACACGCGGGGCGCGCGCCCCCACACGCGCGCGCG	660
Sbjct	661	TTGCACACCCGGAGGCGCGTGCTCCGCGCTCTACCGG 696	
Query	1	GACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGACGACGATGAGCCCGTCACCGAG	60
Sbjct	<mark>501</mark>	GACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGACGACGATGAGCCGTCACCGAG	560
Query	61	CTTCCGCGAGTTTGTCTACCATCGAACGCTGCCGACACCATTTGCTAACGATGCAGACGC	120
Sbjct Query	561 121	CTTCCGCGAGTTTGTCTACCATCGAACGCTGCCGACACCATTTGCTAACGATGCAGACGC GGCAGCTGAATACGAGGCGAATCCAACAGCTCGCCGCGAATTTGCACACACCGGAGGCGCG	620 180
Sbjct	621	GGCAGCTGAATACGAGCGAATCCAACAGCTCGCCGCGAATTTGCACACACCGGAGGCGCG	680
Query	181	TGCTGCGCTCTACCGGATGAGTTTGCCGTGGGCGCCACACCCGAACGATCTGGATCCAAG	240
Sbjct	681	TGCTGCGCTCTACCGGATGAGTTTGCCGTGGGCGCCACACCCGAACGATCTGGATCCAAG	740
Query	241	TCAGTTCTATCTGCGAAATCGCTTGACATTGCGACGAGTGCATCGACTCGAGCATGAGCG	300
Sbjct Query	741 301	TCAGTTCTATCTGCGAAATCGCTTGACATTGCGACGAGTGCATCGACCTCGAGCATGAGCG TGCAAAACCTTCGACGTAAGAGCCTACACGCCGGCTCTTTGCACAGCGAGGGCGCGCGC	800 360
Sbjct	801	TGCAAACCTTCGACGTAAGAGCCTACACGCCGGCTCTTTGCACAGCGAGGGGCGCGCATCT	860
Query	361	GCTCCAGGAGGACTGGGACGATTTCACGGAGCTCGGTATGCATTCCATCCTGCTGGTCA	420
Sbjct	861	GCTCCAGGAGGACTGGGACGATTTCACGGAGCTCGGTATGCATTCCATCCTGCCTG	920
Query	421	ACGTCGCGCTCCAGAACTGCACCAGGCTTATCCGTACCTGTACGACGCATTCGATGAACG	480
Sbjct Querv	921 481	ACGTCGCGCTCCAGAACTGCACCAGGCTTATCCGTACCTGTACGACGCATTCGATGAACG CACCCCGAACCCAGAGCAACCGCTGTGGCACCACCATGCGCCGCGCGCCGCTCATGTGGCC	980 540
Sbjct	981	CACCCCGAACCCAGAGCAACCGCTGTGGCACCACCATGCGCCGCGGCCGCTCATGTGGCC	1040
Query	541	GCCAACACCACCGCACCCGCTCTGGCCGAGTGCGTGGAGCTGGCAGCCTACGCTAGC	600
Sbjct	1041	GCCAACACCACCGCACCCGCTCTGGCCGAGTGCGTGGAGCTGGCAGCCTACGCTAGC	1100
Query Sbjct	601 1101	ACCGCTCCTCCACAGCAGTECACAAGCCGCTGGCGACGCATCATCCCAGACACCAGGA	660 1160
Query	661	AGCCGCCAGCGCTCAGCGCTACCGCGCTCCCGCCGCTGGGCGATTTCGATCT	720
Sbjct	1161	AGCGCCAGCGCTCAGCGTACGCGCTACCGCGCTATCCGGCGCTGGGCGATTTCGATCT	1220
Query	721	GGACGCGTGCGGGGAACGCGTCGGACCTGGCTCGATTTGCTCTATGCACCGCGTCCATA	780
Sbjct	1221 781	GGACGCGTGCGGCGAACGCGTCGGAGCCTGGCTCGATTTGCTCTATGCACCGCGTCCATA TAAGGGCAGATGTGTTCGAAAACGGAAGCGGATGCAGGATATCGA 825	1280
Query Sbjct	1281	TAAGGGCAGATGTGTTCGAAAACGGAAGCGGATGCAGGATATCGA	
Query	36	GGATGCAGGATATCGACATGGAACGCGAGTTGTACTGGCAACTGGAGCGCGTCCATTACA	95
Sbjct	<mark>1310</mark>	GGATGCAGGATATCGACATGGAACGCGAGTTGTACTGGCAACTGGAGCGCGTCCATTACA	1369
Query	96	TGCGCCCGAAAAGTACTGCCGCAGGTCCACAGCTTGTTGAAACGACGCTGTCGACAAGCAG	155
Sbjct	1370	TGCGCCCGAAAAGTACTGCCGCAGTCCACAGCTTGTTGAAACGACGCTGTCGACAAGCAG	1429
Query Sbjct	156 1430	AAGCACAGCGTCTTCGCTACCTGCGAAAGAACGTGGTCGCGGGCGCAAGCAA	215 1489
Query	216	TGGCGATCCAGTCGGCCTCTGGAGACGCTGGCGATGAAGCTGAGAAGCAGCACCGACGGC	275
Sbjct	1490	TGGCGATCCAGTCGGCCTCTGGGACGCCTGGCGATGAAGCTGAGAAGCAGCACCGACGGC	1549
Query	276	CGGATCTGCTGAGGACGTTGCGGCAATCGGGALLLLLLATCGCACCAGTATGGATTGGT	335
Sbjct	1550	CGGATCTGCTGAGGACGTTGCGGCAATCGGGATTTTTTTATCGCACCAGTATGGATTGGT	1609

Query	336	TGGAGGTCGGCATCTGGCTGTGCGACGCTGCACGATCGAT	395
Sbjct	1610	TGGAGGTCGGCATCTGGCTGTGCGACGCTGCACGATCGAT	1669
Query	396 1670	GAAAACGATTCTTCTTGCAGCATGGACTACCATTTTCAGATCGTGCCGTTGCGTACGC	455
Sbjct Query	456	TGACGACCAAAGAACGAAAGCAGTCTCGCTTCGGGAATGCGTTCGATTGATGCGCGGAAT	1729 515
Sbjct	1730	TGACGACCAAAGAACGAAAGCAGTCTCGCTTCGGGAATGCGTTTCATTTGATGCGCGAAT	1789
Query	516	GGATGCGTATGGTGAAGCTGATTGTGGATGTGCATCTGCGGTATCGGGCGGG	575
Sbjct	1790	GGATGCGTATGGTGAAGCTGATTGTGGATGTGCATCTGCGGTATCGGGCGGG	1849
Query	576	CGGATGCCATTCAACTCGCCGACAGCATCACGTACATCGAATCACATATCGGTGAACTGA	635
Sbjct	1850	CGGATGCCATTCAACTCGCCGACAGCATCACGTACATCGAATCACATATCGGTGAACTGA	1909
Query Sbjct	636 1910	CAGGTCTCTATCGTTACAAGTACCGGGTTATGCGCCAAATCCATGCGACCAAGGACCTCA	695 1969
Query	696	AGCATCTTATGTATCAGCGTTTCGGATGGTCCCGGCAAGGCCTGCTGGCAACCCC	755
Sbjct	1970	AGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGCCCTGCTGGCAACCCC	2029
Query	756	TCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTGCTCGAACAGTGGTTGG	815
Sbjct	2030	TCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTTGCTCGAACAGTGGTTGG	2089
Query	816	GTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCCGCTGCGCATGG 863	
Sbjct	2090	GTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCCGCTGCGCATGG 2137	
Query	27	CTCAAGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTGGCAA	86
Sbjct	<mark>1966</mark>	CTCAAGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTGGCAA	2025
Query	87	CCCCTCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTTGCTCGAACAGTGG	146
Sbjct	2026	CCCCTCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTTGCTCGAAACAGTGG	2085
Query	147	TTGGGTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCGCTGCGCATGGCGCAACGC	206
Sbjct	2086	TTGGGTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCCGCTGCGCATGGCGCAACGC	2145
Query Sbjct	207 2146	ACCSTCACAAAGCAACGACTCGCAGTCGCAGTTGATGTGGCGCTACGTCAGGAGACTATA	266 2205
Query	267	GCGCGTCTTCCGCCAACTGTTGCCAGCAGCGCGTCAACCACTATATACGAGGCGTGTTCTC	326
Sbjct	2206	GCGCGTCTTCGGCAACTGTTGCCAGCAGCGCGTCAACCACTATATACGAGGCGTGTTCTC	2265
Query	327	CAGCATATGCACCAGGCGTGGCGCTGCTGGAAGGCCAATATCCCGTGGCACGTACGAGAC	386
Sbjct	2266	CAGCATATGCACCAGGCGTGGCGCTGCTGGAAGGCCAATATCCCGTGGCACGTACGAGAC	2325
Query	387	ATGCCCCCTGAAATCGACAGACTCGTACGGGATTACGTGCAGCAGCGGGCGCAATGGTGG	446
Sbjct	2326	ATGCCCCCTGAAATCGACAGACTCGTACGGGATTACGTGCAGCAGCGGGCGCAATGGTGG ATAGAGGGTGCTCGACGCTTCGCGATTGCGTTCGAAGCGGTCGTTCCATGGATAAGGCA	2385
Query Sbjct	447 2386	ATAGAGGTGCTCGACGCTTCGCATTGCGATTCGAGCGGTCGTTCCATGATAAGGA ATAGAGGGTGCTCGACGCTTCGCATTCGCGTTTCGAGCGGTCCTTCCATGATAAGGA	506 2445
Query	507	CTTGTTCGCCAGATGTACGGGCGACTTGCTCGTCTTGCCGTTCACCATGAGCAGGCGCAT	566
Sbjct	2446	CTTGTTCGCCAGATGTACGGCCGACTTGCTCGTCTTGCCGTTCACCATGAGCAGGCGCAT	2505
Query	567	CAGCGGCAGTATTTGGAGCACGGTCCCTTTCTGTTGCCGACCGA	626
Sbjct	2506	CAGCGGCAGTATTTGGAGCACGGTCCCTTTCTGTTGCCGACCGA	2565
Query	627	TACAGATTCGCAACGTACCTGGAGAAAGCAGGTGTTGCCGACTCATGCCCTTGGCAATTG	686
Sbjct Query	2566 687	TACAGATTCGCAACGTACCTGGAGAAAGCAGGTGTTGCCGACTCATGCCCTTGGCAATTG CCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCGCATTACTGCAACTCGCG	2625 746
Sbjct	2626	CCTTGGTTCGCCGCAGATAACGCGATTCCGGGCTAGCTCCCGCATTACTGCAACTCGCG CCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCGCATTACTGCAACTCGCG	2685
Query	747	ATCGAGCGTCTCCGCCCGGAAACGGAGGGCGAGCACTGTCCCCCGGGGCTCGGCGAAC 8	04
Sbjct	2686	ATCGAGCGTCTCCGCCCGGAAACGGAGGGCGAGCACTGTCCCCCGGGGCTCGGCGAAC	<mark>743</mark>
Query	1	TGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCGCATTACTGCAACTCGCGATC	60
Sbjct	<mark>2629</mark>	TGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCCGCATTACTGCAACTCGCGATC	2688

Query Sbjct	61 2689	GAGCGTCTCCGCCCGGAAACGGAGGGCGAGCATGTCCCCCGGGGCTCGCCGAACTTGTC 	120 2748
Query	121	ACAGAGGCAGAGGCAGCGCCTGCAGCGATGCTGTATAGAATCCGGCAGCGACTGCAGGCG	180
Sbjct	2749	ACAGAGGCAGAGGCAGCGCCTGCAGCGATGCTGTATAGAATCCGGCAGCGACTGCAGGCG	2808
Query	181	GTGCAAATGCGTCACCAGGTGGAACTCCGCTTCTACGATGACGCGGACCTGACGCCTGTG	240
Sbjct	2809	GTGCAAATGCGTCACCAGGTGGAACTCCGCTTCTACGATGACGCGGACCTGACGCCTGTG	2868
Query	241	TATCGGATCGATTCCTTTGAGCGACTGGTGGACGCTTTCCTCGATCAATGGCTCTGGTAC	300
Sbjct	2869	TATCGGATCGATTCCTTTGAGCGACTGGTGGACGCTTTCCTCGATCAATGGCTCTGGTAC	2928
Query	301	AAGGCCACGGAGACGCGCCTTTTTCCGGCCCATGTCCAGCCATGCGACGATGAGTTGCCG	360
Sbjct	2929	AAGGCCACGGAGACGCCCTTTTTCCCGGCCCATGTCCAGCCATGCGACGATGAGTTGCCG CCCGTTCACGTCCCCGTTTCGTCGAACGCTTGGATGCTATACCTCATCTGGGACACTC	2988 420
Query Sbjct	361 2989	CCGTTCACGTCCTCCGTTTCGTCGAACGCTTGGATGCTATACCTCATCTGTGGACACTC	3048
Query	421	GGAACAGCACCAAACAAGAGCTTCCTGGTCCTCATACAAACGCCATTGCCAGGGCTATTT	480
Sbjct	3049	GGAACAGCACCAAACAAGAGCTTCCTGGTCCTCATACAAACGCCATTGCCAGGGCTATTT	3108
Query	481	CAGCGCGCGGATTTGCTGGTTCTGGATCGATCGCTGCGACAGTTGCTCGCACCCGAAATC	540
Sbjct	3109	CAGCGCGCGGATTTGCTGGTTCTGGATCGATTGCTGCGACAGTTGCTCGCACCCGAAATC	3168
Query	541	GTTGATTATCTAATTGCCCGCTGTAATGCAACGATTACGTTCAAAGACATGCGTTATACG	600
Sbjct	3169	GTTGATTATCTAATTGCCCGCTGTAATGCAACGATTACGTTCAAAGACATGCGTTATACG	3228
Query Sbjct	601 3229	CAGTCGGTTGGCATCCTGCCTGGTTGGAGCTTTCAGGTTCCTGCAACAGCTCTATGGT	660 3288
Query	661	CTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATATGGACGCGGACCTGCTGAGCCTG	720
Sbjct	3289	CTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATATGGACGCGGACCTGCTGAGCCTG	3348
Query	721	CCGAGCTGGCCGCCTGCCGAACTCGCTGGCGACCATGACGCACGC	780
Sbjct	3349	CCGAGCTGGCCGCCTGCCGAACTCGCTGGCGACCATGACGTGCGACGCAACGACGCCCGT	<mark>3408</mark>
Query	1		
		TTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATAT	60
Sbjct	<mark>3267</mark>	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3326
Query	3267 61	TTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATAT GGACGCGGACCTGCTGAGCCTGCCGAACTCGCCGCGACCCGGCGACCATGA	3326 120
Query Sbjct	3267 61 3327	TTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATAT GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCTGCCGAACTCGCTGGCGACCATGA GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCTGCCGAACTCGCTGGCGACCATGA	3326 120 3386
Query	3267 61	TTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTTCGCGCACCAGATAT GGACGCGGACCTGCTGAGCCTGCCGAACTCGCCGCGACCCGGCGACCATGA	3326 120
Query Sbjct Query	3267 61 3327 121	TTTCCTGCAACAGCTCTATGGTCTGCCGGCGCGGTAGATCTAGCGTTTCGCGCACCAGATAT GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCGCGCCTGCCGAACTGGCGGCCACCAGA GGACGCGGACCTGCTGAGCCGGCGGCGGCCGCCGCGGCGGCCGCCGCGGCGGCGCGC	3326 120 3386 180
Query Sbjct Query Sbjct	3267 61 3327 121 3387	GGACGCGGACCTGCTGAGCCGCGTAGTTGCCGGCGCGCGC	3326 120 3386 180 3446
Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181	CGTGCGACGGACGCGGACGGGACGCGGGGGGGGGGGGGG	3326 120 3386 180 3446 240
Query Sbjct Query Sbjct Query Sbjct	3267 61 3327 121 3387 181 3447	TTTCCTGCAACAGCTCTATGGTCTGCGGCGCGGTAGATCTAGCGTTTCGCGCACCAGATAT GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCGCCGCGACCATGA GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCGCCGCCGCGCGCG	3326 120 3386 180 3446 240 3506
Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241	Internet	3326 120 3386 180 3446 240 3506 300
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3267 61 3327 121 3387 181 3447 241 3507 301 3567	TTTCCTGAACAAGCCCTATGGCCGAGCTGGCGCGCGCGCG	3326 120 3386 180 3446 240 3506 3506 360 360 3626
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361	Internet	3326 120 3386 180 3446 240 3506 300 3566 360 3626 420
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627	TTTCCTGAACAGCCTGTGGGCGGGGGGGGGGGGGGGGGG	3326 120 3386 180 3446 240 3506 3506 360 3626 420 3686
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361	Internet	3326 120 3386 180 3446 240 3506 300 3566 360 3626 420
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627 421	Internet Internet GACCCCGACCTCATGCTGAGCCTGCCGAGCTGGCCGCCGCCGACCTGCCGACCACGAGAG GGACCGCGACCTGCTGAGCCTGCCGAGCTGGCCGCCCCCCGAACTGCCGCGCGCCACCATGA GGACCGCGACCTGCTGAGCCTGCCGAGCTGGCCGCCGCCGCCGCCGCCGCCGCCACCATGA GGACCGCGAACGACGCCCGTAGTTGCCCGAGCTGCCGAACTGCCTGC	3326 120 3386 180 3446 240 3506 300 3566 360 3626 420 3686 480
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627 421 3687	TTTCCTGCAACAGCCTTATGGTCTGGCGGGCGGCGGCGGACCATGA GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCTGCCGAACTCGCTGGCGACCATGA GGACGCGGACCGCGTGGGGCGGCGGCGGCGCGCGCGCGCG	3326 120 3386 180 3446 240 3506 300 3566 360 3626 420 3686 480 3746
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627 421 3687 481	Initiation Initiation TTTCCTGCAACAGCTCTATGGTCTGGCGGCGCGCGACATCAGCGTTTCGGCGACCAGAAT GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCGCGCCGCCGCGCGCACCAGAA GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCGCCGCCGCGCGCG	3326 120 3386 180 3446 240 3506 360 3666 360 3626 420 3686 480 3746 540
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627 421 3687 481 3747	TTTCCTGCAACAGCTCTATGGCTGGCGGGCGGCGGCGGCGGAGCATCGCGCGCCCAGAGAT GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCGCGCCGCCGCGCGCG	3326 120 3386 180 3446 240 3506 360 3626 420 3686 480 3686 480 3746 540 3806
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3267 61 3327 121 3387 181 3447 241 3507 301 3567 361 3627 421 3687 481 3747 541	Internet Internet GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCGCGCCTGCCGAACTCGCGGCGCACCAGAA GGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCGCCGCCGACCGCGGCGCACCAGAA GGACGCGCACCGCTGGAGCCGCCGAGCTGGCCGCCGCCGCCGCCGCGCGCCACCAGAA CGTGCGACGCACGACGCCCGTAGTTGCCCGCGAGCGGCGCTGCTGCCTACGAACGA	3326 120 3386 180 3446 240 3506 300 3566 420 3686 420 3686 480 3746 540 3806 600

Query Sbjct	661 3927	GCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCCTGTTGATGGCGACCATACA	720 3986
Query	721	TGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTCCACTTTGCCGGCAT	780
Sbjct	3987	TGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTCCACTTTGCCGGCAT	4046
Query	781	GTATCGCC 788	
Sbjct	4047	GTATCGCC <mark>4054</mark>	
Query	1	GTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCTGTTGATG	60
Sbjct	<mark>3916</mark>	GTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGCGCTGGATGTTCAGCGCCTGTTGATG	3975
Query	61	GCGACCATACATGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTCCAC	120
Sbjct	3976	GCGACCATACATGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTCCAC	4035
Query	121	TTTGCCGGCATGTATCGCCAAGTCGCAACGAATGATCCAACCGTACGGCAATTTGTCCAG	180
Sbjct	4036	TTTGCCGGCATGTATCGCCAAGTCGCAGCGAATGATCCAACCGTACGGCAATTGTCCAG	4095
Query Sbjct	181 4096	CATGCCCAAGAGCGCCTACAGAACAGGATCAAGCTGGGTCTGAACTCGAAGATGCCGGTG	240 4155
Query	241	CGCTTCCCACCGGTGGTGTTCTACGCTCCGCGCAGCCTCGGCGCCTCGAAATGATGAAC	300
Sbjct	4156	CGCTTCCCACCGGTGGTGTTCTACGCTCCGCGCAGCCTCGGCGGCCTCGAAATGATGAAC	4215
Query	301	ATAGGCCACGACCCGGTGCGTCGTCGTGGGTCCTTCATACCAAGCTGGCTCGATGAGATC	360
Sbjct	4216	ATAGGCCACGACCCGGTGCCGTCGCTGTGGTCCTTCATACCAAGCTGGCTCGATGAGATC	4275
Query	361	GCTGACGCGGAGTTGCTGGAGCGCGAGCTTCAAGAACGAGCGCAGGCATTTGGGGCACAC	420
Sbjct Query	4276 421	GCTGACGCGGAGTTGCTGGAGCGCGGGCTTCAAGAACGAGCGCAGGCATTGGGGCACAC CTCGATCGGCGACTGCCTGCCACCAGCATGGCTGCATCGCGGGTCTGCCACGTTTGGCTGCA	4335 480
Sbjct	4336	CTCGATCGGCGACTGCCACCACGACGACGGCTGCATCGCGGTCTGCCACGTTTGGCTGCA	4395
Query	481	CGCTATCACCCGCAAGGAGCGTTGTGGACGCTCGATCACGGCTATCGTGTGCGAAGTCTC	540
Sbjct	4396	CGCTATCACCCGCAAGGAGCGTTGTGGACGCTCGATCACGGCTATCGTGTGCGAAGTCTC	4455
Query	541	TTGCGCGTGCACGTTACCGGGCGGAAGAACGCCCTCTGGTGGCTAGATTTCATGCACGAC	600
Sbjct	4456	TTGCGCGTGCACGTTACCGGGCGGAAGAACGCCCTCTGGTGGCTAGATTTCATGCACGAC	4515
Query	601 4516	GGACGCCTTTGGGAGCTGGACGACTACCGGAGTCAGGTTACGCATGCTTTGGGTGGCGTG	660 4575
Sbjct Query	661	CCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACTGGGTATCGAGATTGGCGAGGCATC	720
Sbjct	4576	CCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACTGGGTATCGAGATTGGCGAGGCATC	4635
Query	721	GTCTGGGGGGACCACGGCTTTGAGCACAAACTCGCGGG 758	
Sbjct	4636	GTCTGGGGCGACCACGGCTTTGAGCACAAACTCGCGGG 4673	
Query	1	GCATGCTTTGGGTGGCGTGCCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACTGGGTA	60
Sbjct	<mark>4557</mark>	GCATGCTTTGGGTGGCGTGCCGGCAATCCTGTCGCATACGCTCTTTGCGCAACTGGGTA	4616
Query	61	TCGAGATTGGCGAGGCATCGTCTGGGGCGACCACGGCTTTGAGCACAAACTCGCGGGCAG	120
Sbjct	4617	TCGAGATTGGCGAGGCATCGTCTGGGGCGACCACGGCTTTGAGCACAAACTCGCGGGCAG	4676
Query Sbjct	121 4677	GCCGTTGACGCGGGCCCACCGATCTGGACTTGTCCAGATACCCATCGCCGATTCACGCT	180 4736
Query	181	CTGGTGGTCGCCGACCATCAATCGCAGCCGGGTGTACATCGCCGACCCGGCCCAGCTCGA	240
Sbjct	4737	CTGGTGGTCGCCGACCATCAATCGCAGCCGGGTGTACATGGGCTTCCGCGCCCAGCTCGA	4796
Query	241	TCTGACGGGGATCTTCATGTACGGCAAGCTTTCGACGCTCAAAATCAGCCTTTTGCAGGT	300
Sbjct	4797	TCTGACGGGGATCTTCATGTACGGCAAGCTTTCGACGCTCAAAATCAGCCTTTTGCAGGT	4856
Query	301	GTTCCGAGGCCATCTCGGCAGCGTATTCATGAAAGTCTGGTACTTGATTTGTGCAAAGC	360
Sbjct	4857		4916
Query	361	ATTGGATACAGAGCTGGGGGGCGGGCCGGCCGGGGGGGGG	420

Sbjct	4917	ATTGGATACAGAGCTGGGGGGGCGCGCCGCGGGGGGGGGG	4976
Query	421	GGAACGAATCCATCCGCGCAAGTCTTATCGCATGCACTGGAGCAGCGCGGATATTAGAAT	480
Sbjct	4977	GGAACGAATCCATCCGCGCAAGTCTTATCGCATGCACTGGAGCAGCGCGGATATTAGAAT	5036
Query	481	CGATTTCGAGCAACCGATTCTCGTGTCCGGTGACGCCTTGCCCGTGGACGAGGCCGTCGC	540
Sbjct	5037	CGATTTCGAGCAACCGATTCTCGTGTCCGGTGACGCCTTGCCCGTGGACGAGGCCGTCGC	5096
Query	541	CTTCGAATCCAATGCGGGCGGTCAAGGGCGATCGTCGCTGCGGCCGCCAGGTAGCGACGC	600
Sbjct	5097	CTTCGAATCCAATGCGGGCGGTCAAGGGCGATCGTCGCTGCGGCCGCCAGGTAGCGACGC	5156
Query	601	GGCAGCCAAAATCTATTGGATTGATGTCCAGCTCCGTTGGGGCGACTACGACGACCATGA	660
Sbjct	5157	GGCAGCCAAAATCTATTGGATTGATGTCCAGCTCCGTTGGGGCGACTACGACGACCATGA	5216
Query	661	TGCCGCGCAATACGCAGCGCAAAAATTTCCGGGCGTATACAGCACCGGGAGCGTCGAGTCT	720
Sbjct	5217	TGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCGAGTCT	5276
Query	721	GTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGGTCTGC	780
Sbjct	5277	GTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGGTCTGC	5336
Query	781	TTTTGGGCAC 790	
Sbjct	5337	TTTTGGGCAC <mark>5346</mark>	

Query	1	TGATGCCGCGCAATACGCAGCGCAAAAATTTCCGGCGCTATACAGCACCGGGAGCGTCGAG	60
Sbjct	<mark>5214</mark>	TGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCGAG	5273
Query	61	TCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGGTC	120
Sbjct	5274	TCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGGTC	5333
Query	121	TGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGCCG	180
Sbjct	5334	TGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGCCG	5393
Query	181	GATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTTCA	240
Sbjct	5394	GATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTTCA	5453
Query	241	GCTCTACGTCATGGAGACGGTGGAAAGCGAGACGCTGCAGGCGGCGACGACTACGACATC	300
Sbjct	5454	GCTCTACGTCATGGAGACGGTGGAAAGCGAGACGCTGCAGGCGGCGACGACTACGACATC	5513
Query	301	GGCTTCCGATACGATACCTCTGCTCGTGGGGTGCGGCGGCGACTTGTGGCGGCAACGCCT	360
Sbjct	5514	GGCTTCCGATACGATACCTCTGCTCGTGGGGTGCGGCGGCGACTTGTGGCCGCAACGCCT	5573
Query	361	CTGGATCGTGGATGATCGCACTGCGTACAGGCCACATGCGAACGGTGTTATCTGGATATG	420
Sbjct	5574	CTGGATCGTGGATGATCGCACTGCGTACAGGCCACATGCGAACGGTGTTATCTGGATATG	5633
Query	421	GGAGACGTCGACAGGGCGACTGTTTGTGAAGATTGTCCATCGGACTACGTGGGCTGGCCA	480
Sbjct	5634	GGAGACGTCGACAGGGCGACTGTTTGTGAAGATTGTCCATCGGACTACGTGGGCTGGCCA	5693
Query	481	AACCCGGCGAGCGCAACTCGCCAAGTGGAAATGCGCTGAGCACGTTTTAACCATGCTCCG	540
Sbjct	5694	AACCCGGCGAGCGCAACTCGCCAAGTGGAAATGCGCTGAGCACGTTTTAACCATGCTCCG	5753
Query	541	TTCACAGCCAACTGAAGAGCTACCGCGGGGCATCGTGCTCGCACAAACCGCATCCATGGA	600
Sbjct	5754	TTCACAGCCAACTGAAGAGCTACCGCGGGGCATCGTGCTCGCACAAACCGCATCCATGGA	5813
Query	601	CCCGTTGAAGACGCTCTTGGCAGGCACCGAGTATGCCAAAATTCCTGTGCGTGC	660
Sbjct	5814	CCCGTTGAAGACGCTCTTGGCAGGCACCGAGTATGCCAAAATTCCTGTGCGTGC	5873
Query	661	GGCGGCCATGCCGCTGCAGGCGCTAATGGCGCTGCCGGAGATCCGCGACCGTACTCAGAC	720
Sbjct	5874	GGCGGCCATGCCGCTGCAGGCGCTAATGGCGCTGCCGGAGATCCGCGACCGTACTCAGAC	5933
Query	721	TGCGCGCTCCAGCGAGCTTTCGATCTGGAGTGGCTACGCGGATTGGCTTGAGCATGTGCC	780
Sbjct	5934	TGCGCGCTCCAGCGAGCTTTCGATCTGGAGTGGCTACGCGGATTGGCTTGAGCATGTGCC	5993
Query	781	CGTG 784	
Sbjct	5994	CGTG <mark>5997</mark>	

Query	18	TGTGCGTGCCGGTGCGGCGGCCATGCCGCTGCAGGCGCTAATGGCGCTGCCGGAGATCCG	77
Sbjct	<mark>5859</mark>	TGTGCGTGCCGGTGCGGCGGCCATGCCGCTGCAGGCGCTAATGGCGCTGCCGGAGATCCG	5918

Query	78	CGACCGTACTCAGACTGCGCGCCTCCAGCGAGCTTTCGATCTGGAGTGGCTACGCGGATTG	137
Sbjct	5919	CGACCGTACTCAGACTGCGCGCTCCAGCGAGCTTTCGATCTGGAGTGGCTACGCGGATTG	5978
Query	138	GCTTGAGCATGTGCCCGTGTGGATCGCGTCGGCGCGCTTCCTGCTCCTGCTCCACGCCTT	197
Sbjct	5979	GCTTGAGCATGTGCCCGTGTGGATCGCGTCGGCGCGCTTCCTGCTCCTGCTCCACGCCTT	6038
Query	198	GGACCGGGCGCCAGAGCGTGTCCTGCAGCTGGTGTGGCCTCAGCGGTCGGCGGACGAGGA	257
Sbjct	6039	GGACCGGGCGCCAGAGCGTGTCCTGCAGCTGGTGTGGCCTCAGCGGTCGGCGGACGAGAG	6098
Query	258	GAGCGCGGGCTCCCCGCGAGACTGGCCTGGCCGCGCTTCCCCGAGACTGACT	317
Sbjct	6099	GAGCGCGGGCTCCGCGACACCTTGGCTGTGGCCCGCGCTTCCCGAGACTGACT	6158
Query	318	TCTGGAACTAGAGCTCCAGTCGCTGGTGCCCGTGCGTCTACGCCCTGCCCATGTCGCTGG	377
Sbjct	6159	TCTGGAACTAGAGCTCCAGTCGCTGGTGCCCGTGCGTCTACGCCCTGCCCATGTCGCTGG	6218
Query	378	TGATCAGCCAGGTGGCAGGGATGACGACGGAGCAGGTGCTGGAGCACACACGACG	437
Sbjct	6219	TGATCAGCCAGGTGGCAGGGATGACGACGGAACGGAGCAGGTGCTGGAGCACACACGACC	6278
Query	438	GAAGACGGTTGCCGCATTCGACCGGTATGGCAATGTGATTTCGGTGGAGACCACCACGCC	497
Sbjct	6279	GAAGACGGTTGCCGCATTCGACCGGTATGGCAATGTGATTTCGGTGGAGACCACCACGCC	6338
Query	498	ATTTGAGCGGCAGGAGTACCGCACGTCGTCGGTCACGAATGCAGAACAGCAACG	557
Sbjct	6339	ATTTGAGCGGCAGGAGTACCGCACGTCGTCGGTCACGGTAACGAATGCAGAACAGCAACG	6398
Query	558	GCTACTGTCCTTGTACCGACGACTCCCCAGACGTTCTCGAAAACCTGCACGTTGTCGAGCC	617
Sbjct	6399	GCTACTGTCCTTGTACCGACGACTCCCCAGACGTTCTCGAAAACCTGCACGTTGTCGAGCC	6458
Query	618	TGGACACACCAGTGGCAGTCTGTACGGAGGCGACGAGCGCCCCGGAACAGGCGACGATCTCGGC	677
Sbjct	6459		6518 737
Query	678 6519	GATGCCGCATCTGGCCAAGCGATTCGAGCTCCATCTACCGAGAGGCCTCGTCCGCGGGCT	6578
Sbjct Query	738	TTTGCCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCCAACGCGGGATAC	797
Sbjct	6579	TTGCTCGCGGGTATGACTTGGCCAACTCTGGGCACGCCACCGCCAACGCGCAACGCGGATAC	6638
	798		0030
Query Sbjct			0030
Query	798	AGTGGTTT 805	0038
Query Sbjct	798	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG 	60
Query Sbjct Prp8	798 6639 1 <mark>6566</mark>	AGTGGTTT 805 IIIIIII AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60 6625
Query Sbjct Prp8 Query Sbjct Query	798 6639 1 <mark>6566</mark> 61	AGTGGTTT 805 IIIIIII AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60 6625 120
Query Sbjct Prp8 Query Sbjct Query Sbjct	798 6639 1 6566 61 6626	AGTGGTTT 805	60 6625 120 6685
Query Sbjct Prp8 Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60 6625 120 6685 180
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60 6625 120 6685 180 6745
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG TCGTCCGCGGGTACAGTGGTTTGGATCGCCTGGCCACCACTCTGGGGCACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGCGCTGCTCATCATGACGCCGAGGCAT CCAACGCTGGCATACAGTGGTTGGATCGCCTGGCCGCGCTGCTCATCATGACGCCGAGGCAT CCAACGCTGGCCGAGCATGGTTGGAGCAGCGCCTGCTTCGCCCTGGCCCGAGGCAA CGACACCGTTGCCGAGCATGGTTGAGGCAGCGCCTGCTTTCGCCCTGGTCGAGAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGCCTGCTTTCGCCCTGGTCGGTC	60 6625 120 6685 180 6745 240
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686 181 6746	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG TCGTCCGCGGGTTTTTGCTCGCGGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG CCAACGCGGATACAGTGGTTTGGATCGCCTGGCGCTGCTATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCTTCGCCCTGGCTCGGTGCAAG CCAACGCGGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG	60 6625 120 6685 180 6745
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121 6686 181	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG TCGTCCGCGGGTACAGTGGTTTGGATCGCCTGGCCACCACTCTGGGGCACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGCGCTGCTCATCATGACGCCGAGGCAT CCAACGCTGGCATACAGTGGTTGGATCGCCTGGCCGCGCTGCTCATCATGACGCCGAGGCAT CCAACGCTGGCCGAGCATGGTTGGAGCAGCGCCTGCTTCGCCCTGGCCCGAGGCAA CGACACCGTTGCCGAGCATGGTTGAGGCAGCGCCTGCTTTCGCCCTGGTCGAGAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGCCTGCTTTCGCCCTGGTCGGTC	60 6625 120 6685 180 6745 240 6805
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121 6686 181 6746 241	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	60 6625 120 6685 180 6745 240 6805 300
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG CCAACGCGGATACAGTGGTTGGATCGCCTGGCGCGCTATCATGAGGCCGAGGCAT CCAACGCGGATACAGTGGTTGGATCGCCTGGCGCGCTGCTCATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTGGAGCGCCGGCGCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGCCGCCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGCCGCCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGTTGCCGAGCATGGTTGAGGCAGCGCCGCCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGTTGCCGAGCATGGTTGAGGCCAGCGCCGCCACCAGCGCCAGGACCGGGGG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG TGCATCGGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG	60 6625 120 6685 180 6745 240 6805 300 6865
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG TCGTCCGCGGGTTTTTGCTCGCGGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG CCAACGCGGATACAGTGGTTTGGATCGCCTGGCGCTGCGTCATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCTTCGCCCTGGCTCGAGGCAT CGACACCGTTGCCGAGCATGGTTGGAGCACGGCCTGCTTCGCCCTGGCTCGGTCGAAG CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTCCAAG CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCCGCCTGGCTCGGTCGAAG CGACCGGTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG ACTTGGCATCGCCGTCGCTCGATCGCCACGCAGCCGAGGCGGGCG	60 6625 120 6685 180 6745 240 6805 300 6865 360
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301 6866	AGTGGTTT 805 AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACGG CCAACGCGGATACAGTGGTTTGGATCGCCTGGCCGTCGTCATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCGTCATCATGACGCCGAGGCAT CGACACCGTTGCCGAGCATGGTTGGAGGCAGCGCCTGCTTTCGCCCTGGCTCGGTCAACA CGACACCGTTGCCGAGCATGGTTGGAGGCAGCGGCCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGCTGGATTCAACGTGCTTGAGGCAGCGGCCTGCTTTCGCCCTGGCTCGGTGCAAG CGACCGCTGGATTCAACGTGCTCGATGTGGGCCGCCACCACGGCCAGGACGGGG TGCATCGGCTGGATTCAACGTGGCCCCGATGTGGGTCGGCCACCAGGCCAGGACCGCGGG TGCATGGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG TGCATGGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG ATTTGGCATCGCCGCGCCCGCTCGATCGCCACGCAGCAGGACACACAC	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925
Query Sbjct Prp8 Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301 6866 361	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGGCACCG CCAACGCGGTTCTTTGCTCGCGGGTATGACTGTGGCCAACTCTGGGGCACCGCACCG CCAACGCGGTATCAGTGGTTTGGATCGCCTGGGCGTCGTCATCATGACGCCGAGGCAT CCACCGTTGCCGAGCATGGTTGGAGCACGCGCGCGCTGCTTCGCCCTGGTCGAGGCAC CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGACCGCTGGATTCAACGCGGCCTCGATGGGGCGGCCGCCTGCTTCGCCCGGGCCAGGACGGGGG CGACCGCTGGATTCAAGCGGTCCTCGATGGGGCGGCCACCACGGCGGGGGG CGATCGGCCCCACGATGTGCAGGGTCCTCATCTCACCCAGGCCAAGACCGCGGGG TGCATGCGCCCCACGATGTGCAGGTCATACTCTATCTCCCAGGGCGAAGAACGCCAAATCG HITTGGCATCGCCGTCGTTGCAGGCCACGCAGCCGAGGCAGGACGCCAAATCG ATTGGCATCGCCGTCGCTCGATCGCCACGCAGCCGAGCCAGGACCACACACGATGGC ACGCATCGCGGGCACCGAGTGCCCCCGCAGCCCAGCCGAGCCAGACCACACGATGGC ACGCATCGCCGGCCCCGAGGTCGCCCCCGCCGCCGCCGCCGCCGCCGCAGCACCACGACGCG ACGCATCGCCGGCCCCGAGGCCCCGCCGCCGCCGCCGCCCCACGACCACGCGAGCACGCCAAGCG ACGCATCGCCGCCCCGCGCGCCCCCGCCGCCGCCGCCGCCGCCGC	60 6625 120 6685 180 6745 240 6805 300 6865 300 6865 360 6925 420
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301 6866 361 6926	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG TCGTCCGCGGGTCTTTTGCTCGCGGGGTATGACTTGTGGCCAACTCTGGGGCACGCCGCACCG CCAACGCGGATACAGTGGTTTGGATCGCCTGGCGCTGCGTCATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCGTCATCATGACGCCGAGGCAT CCAACGCGGATACAGTGGTTGGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGACACCGTTGCCGAGCATGGTTGGAGGCAGCGGCCTGCTTCGCCCTGGCTCGGTGCAAG CGACCGGTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCCGCACCAGTGTGCAGGCCACGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCCCCACGATGTGCAGGTCGTCGATGTGGGTCGGCCACCAGCGCCAGGACCGGGGG CGATCGGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG ATTTGGCATCGCCGTCGCTCGATCGCCACGCAGCCGAGGCAGGC	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925 420 6985
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301 6866 301 6866 361 6926 421	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACG TCGTCCGCGGGTCTTTTGCTCGCGGGGTATGACTTGTGGCCACTCTGGGGCACGCGCACG CCAACGCGGATACAGTGGTTTGGATCGCCTGGCCGTGGTCATCATGACGCCGAGGCAT CCACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCTTCGCCCTGGTCGAGGCAT CGACACCGTTGCCGAGCATGGTTGGAGGCAGCGGCCTGCTTCGCCCTGGTCGAGGCAC CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCGCCCTGGTCGAGG CGACGGCTGGATCAAGCGTGCTCGATGTGGGTCGGCCACCAGGCCAGGACGGGG TGCATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGGCCAGGACCGGGGG TGCATGCGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAAGAACGCCAAATCG ATTTGGCATCGCCGTCGCTCGATGGCCACGCAGCCGAGGCAGGACACACAC	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925 420 6985 480
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 61 6626 121 6686 181 6746 241 6806 301 6866 361 6926 421 6986	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCCGCGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCAGGCACGGCGG	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925 420 6985 480 7045
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	798 6639 1 6566 121 6686 181 6746 241 6806 301 6866 361 6926 421 6986 481	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACCG CCCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCGTCATCATGACGCCGAGGCAT CCCAACGCGGATACAGTGGTTGGATCGCCTGGGCGCTGCGTCATCATGACGCCGAGGCAT CCCAACGCGGATACAGTGGTTGGATCGCCTGGGCCGCCGCTGCTTCGCCCTGGCTCGAGGCAT CGACACCGTTGCCGAGCATGGTTGGAGGCAGCGGCCTGCTTCCGCCTGGCTCGGTCCAAG CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTCCGCCTGGCCCACGAGGCAGG CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCGCCACCAGCGCCGGGGCGCGCACGAGGCGGGGC CGACACCGTTGCCGAGCATGGTTGAGGCAGCGGCCGCCACCAGGCCGGGGGG CGACCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGGCCAGGACCGGGGG CGATCGGCCCCACGATGGCCAGGCCAGGCAGGCGCCGCCACGAGGACGGGGGG CGATCGGCCCCCACGATGTGCAGGCCACGCAGCCGAAGCAGGCGAGGACGCAAACGC AGCGATCGCCGCGCGCCGCCGCAGCCAGCCCAGGCGCAGGCGAGGACGCAAGGACGCAAGGA ACGCATCGCGGGGCACCGAGTGCGCACGCACGCAGCGCAGGCGCACGCA	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925 420 6985 420 6985 480 7045 540
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	798 6639 1 6566 121 6686 121 6686 241 6806 301 6866 301 6866 361 6926 421 6986 481 7046	AGTGGTTT 805 AGTGGTTT 6646 TCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGGGGCACGCGCACG CCACCGGGTTTTTGCTCGCGGGGTATGACTGTGTGGCCACTCTGGGGCACGCCACGCACG	60 6625 120 6685 180 6745 240 6805 300 6865 360 6925 420 6985 420 6985 480 7045 540 7105

Prp8 gene inserted into pMCSG2 (The LIC sequence is presented in bold; pSR797)

Query	57	TACTTCCAATCCCAATGCA 76	
Sbjct			
Query	77	CCCAAACGTGCGTTTTTCGGACGCGACGAAGAGGCAGATCAGACGCTGGACCTGAAGCGA	136
Sbjct	4	CCCAAACGTGCGTTTTTCGGACGCGACGAAGAGGCAGATCAGACGCTGGACCTGAAGCGA	63
Query	137	AAGCGGCCACGCCGTGCTTTCGGAGCGGATCAGCCATTTTTCAAACCGTATACCTCCCCC	196
Sbjct	64	AAGCGGCCACGCCGTGCTTTCGGAGCGGATCAGCCATTTTTCAAACCGTATACCTCCCCC	123
Query	197	GATATTTTCCGCAAACTAGCGAGTCTTGCACGGATCGAGTTGGAGCGAAGCGAAAATGAC	256
Sbjct	124	GATATTTTCCGCAAACTAGCGAGTCTTGCACGGATCGAGTTGGAGCGAAGCGAAAATGAC	183
Query	257	CTGGAAAACAGTGCCCACCGTGGTAACCGAGACCGACATATCTCCCCGGAACACAGATGCA	316
Sbjct	184	CTGGAAAACAGTGCCCACCGTGGTAACCGAGACCGACATATCTCCCCGGAACACAGATGCA	243
Query	317	CTGACACTGAACGCGCTCCGCTACCTTCCGCACGCGGTGTACAAATGGCTGGAACACATG	376
Sbjct	244	CTGACACTGAACGCGCTCCGCTACCTTCCGCACGCGGTGTACAAATGGCTGGAACACATG	303
Query	377	CCGGCCCCTTGGGAGCCAACGCGGTTTGTACCCGTGATTTTCCATCACACTGGTGCGTTG	436
Sbjct	304	CCGGCCCCTTGGGAGCCAACGCGGTTTGTACCCGTGATTTTCCATCACACTGGTGCGTTG	363
Query	437	GCTTTTATCGAGGGTTCACGTCGAGGTCCCCGAGGTCGTTCATCGGGCCCCAATGGGCGCGCT	496
Sbjct	364	GCTTTTATCGAGGGTTCACGTCGAGTCCCCGAGGTCGTTCATCGGGCCCCAATGGGCGCGC	423
Query	497	TGGTGCGCCTACCTCGACCGTCGTCGTCATGAGGCACACGTCGCCTCGACAAGCAGCGGA	556
Sbjct	424	TGGTGCGCCTACCTCGACCGTCGTCGTCGTCATGAGGCACACGTCGCCTCGACAAGCAGCGGA	483
Query	557	AAGCGGCAGCGAGATCTGACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGACGAC	616
Sbjct	484	AAGCGGCAGCGAGATCTGACGCGTTCCTTCGTACGTTTGCAAGTGCCGGCGTTCGACGAC	543
Query	617	GATGAGCCGTCACCGAGCTTCCGCGAGTTTGTCTACCATCGAACGCTGCCGACACCATTT	676
Sbjct	544	GATGAGCCGTCACCGAGCTTCCGCGAGTTTGTCTACCATCGAACGCTGCCGACACCATTT	603
Query	677	GCTAACGATGCAGACGCGGCAGCTGAATACGAGCGAATCCAACAGCTCGCCGCGAATTTG	736
Sbjct	604	GCTAACGATGCAGACGCGGCAGCTGAATACGAGCGAATCCAACAGCTCGCCGCGAATTTG	<mark>663</mark>
Query	25	TTGCACACCCGGAGGCGCGTGCTGCGCTCTACCGGATGAGTTTGCCGTGGGCGCCACAC	84
Sbjct	<mark>661</mark>	TTGCACACACCGGAGGCGCGTGCGCTCTACCGGATGAGTTTGCCGTGGGCGCCACAC	720
Query	85	CCGAACGATCTGGATCCAAGTCAGTTCTATCTGCGAAATCGCTTGACATTGCGACGAGTG	144
Sbjct	721	CCGAACGATCTGGATCCAAGTCAGTTCTATCTGCGAAATCGCTTGACATTGCGACGAGTG	780
Query	145	CATCGACTCGAGCATGAGCGTGCAAACCTTCGACGTAAGAGCCTACACGCCGGCTCTTTG	204
Sbjct	781	CATCGACTCGAGCATGAGCGTGCAAACCTTCGACGTAAGAGCCTACACGCCGGCTCTTTG	840
Query	205	CACAGCGAGGGCGCGCATCTGCTCCAGGAGGACTGGGACGATTTCACGGAGCTCGGTATG	264
Sbjct	841	CACAGCGAGGGCGCGCATCTGCTCCAGGAGGACTGGGACGATTTCACGGAGCTCGGTATG	900
Query	265	CATTCCATCCTGCCTGGTCAACGTCGCGCTCCAGAACTGCACCAGGCTTATCCGTACCTG	324
Sbjct	901	CATTCCATCCTGCCTGGTCAACGTCGCGCTCCAGAACTGCACCAGGCTTATCCGTACCTG	960
Query	325	TACGACGCATTCGATGAACGCACCCCGAACCCAGAGCAACCGCTGTGGCACCACCATGCG	384
Sbjct	961	TACGACGCATTCGATGAACGCACCCCGAACCCAGAGCAACCGCTGTGGCACCACCATGCG	1020
Query	385	CCGCGGCCGCTCATGTGGCCGCCAACACCACCACCGCACCCGCTCTGGCCGAGTGCGTGG	444
Sbjct	1021	CCCCGGCCGCTCATGTGGCCGCCAACACCACCACCGCACCCGCTCTGGCCGAGTGCGTGG	1080
Query	445	AGCTGGCAGCCTACGCTAGCACCGCTCCTGCACAGCAGTGCACAAGGCGCTGGCGAGCGC	504
Sbjct	1081	AGCTGGCAGCCTACGCTAGCACCGCTCCTGCACAGCAGTGCACAAGGCGCTGGCGAGCGC	1140
Query	505	ATCATCCCAGACACCAGCGAAGGCGCCAGCGCTCAGCGTACGCGCTACCGCGCTCATCCG	564
Sbjct	1141	ATCATCCCAGACACCAGCGAAGGCGCCAGCGCTCAGCGTACCGCGCTCATCCG	1200

0	5.65		60.4
Query Sbjct	565 1201	CCCTTGGCCGATTTCGATCTGGACGCGTCGGGCGGACGCGTCGGAGCCTGGCTCGATTTG	624 1260
Query	625	CTCTATGCACCGCGTCCATATAAGGGCAGATGTGTTCGAAAACGGAAGCGGATGCAGGAT	684
Sbjct	1261	CTCTATGCACCGCGTCCATATAAGGGCAGATGTGTTCGAAAACGGAAGCGGATGCAGGAT	1320
Query	685	ATCGACATGGAACGCGAGTTGTACTGGCAACTGGAGCGCGTCCATTACATGCGCCCGAAA	744
Sbjct	1321	ATCGACATGGAACGCGAGTTGTACTGGCAACTGGAGCGCGTCCATTACATGCGCCCGAAA	1380
Query	745		02
Sbjct	1381	AGTACTGCCGCAGTCCACAGCTTGTTGAAACGACGCTGTCGACAAGCAGAAGCACAGC	. <mark>438</mark>
01071	27	ACGGAAGCGGATGCAGGATATCGACATGGAACGCGAGTTGTACTGGCAACTGGAGCGCGT	86
Query Sbjct	1302	ACGGAACCGAGATATCGACATGGAACCCGAGTTGTACTGGCAACTGGAGCGCGT	1361
Query	87	CCATTACATGCGCCCGAAAAGTACTGCCGCAGTCCACAGCTTGTTGAAACGACGCTGTCG	146
Sbjct	1362	CCATTACATGCGCCCGAAAAGTACTGCCGCAGTCCACAGCTTGTGAAACGACGCTGTCG	1421
Query	147	ACAAGCAGAAGCACAGCGTCTTCGCTACCTGCGAAAAGAACGTGGTCGCGGGGCGCAAGCA	206
Sbjct	1422	ACAAGCAGAAGCACAGCGTCTTCGCTACCTGCGAAAAGAACGTGGTCGCGGGGGGCAAGCA	1481
Query	207	ATCGACTTTGGCGATCCAGTCGGCCTCTGGAGAGCGCTGGCGATGAAGCTGAGAAGCAGCA	266
Sbjct	1482	ATCGACTTTGGCGATCCAGTCGGCCTCTGGAGACGCTGGCGATGAAGCTGAGAAGCAGCA	1541
Query	267	CCGACGGCCGGATCTGCTGAGGACGTTGCGGCAATCGGGAtttttATCGCACCAGTAT	326
Sbjct	1542	CCGACGGCCGGATCTGCTGAGGACGTTGCGGCAATCGGGATTTTTTTATCGCACCAGTAT	1601
Query	327	GGATTGGTTGGAGGTCGGCATCTGGCTGTGCGACGCTGCACGATCGAT	386
Sbjct	1602	GGATTGGTTGGAGGTCGGCATCTGGCTGTGCGACGCTGCACGATCGAT	1661
Query	387	TTTGAGACGAAAACGATTCTTCTTTCTGAGCATGGACTACAATTTTCAGATCGTGCGTT	446
Sbjct Querv	1662 447	GCGTACGCTGACGAACGAAAGAACGAAAGCAGTCTCGCTTCGGGAATGCGTTTCATTTGAT	1721 506
Sbjct	1722	GCGTACGCTGACGACCAAAGAACGAAAGCAGTCTCGCTTCGGGAATGCGTTTCATTTGAT	1781
Query	507	GCGCGAATGGATGCGTATGGTGAAGCTGATTGTGGATGTGCATCTGCGGTATCGGGCGGG	566
Sbjct	1782	GCGCGAATGCATGCTGAAGCTGATGTGGATGTGCATCTGCGGTATCGGGCGGG	1841
Query	567	TCTCGGCGCGGATGCCATTCAACTCGCCGACAGCATCACGTACATCGAATCACATATCGG	626
Sbjct	1842	TCTCGGCGCGGATGCCATTCAACTCGCCGACAGCATCACGTACATCGAATCACATATCGG	1901
Query	627	TGAACTGACAGGTCTCTATCGTTACAAGTACCGGGTTATGCGCCAAATCCATGCGACCAA	686
Sbjct	1902	TGAACTGACAGGTCTCTATCGTTACAAGTACCGGGTTATGCGCCAAATCCATGCGACCAA	1961
Query	687	GGACCTCAAGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTG	746
Sbjct	1962	GGACCTCAAGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTG	2021
01071	20	GACCTCAAGCATCTTATGTATCAGCGTTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTGG	70
Query Sbjct	20 <mark>1963</mark>	GACCTCAAGCATTATGTATCAGCGTTCGGATGGGGGCCCGGCAAGGCCTGCTGG GACCTCAAGCATTATGTATCAGCGTTCGGATGGTCGGGTCCCGGCAAGGCCTGCTGG	79 2022
Query	80	CAACCCCTCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTTGGTCGAACAG	139
Sbjct	2023	CAACCCCTCTGGCGGCAATGGGTGCACCTACTTCGAGGCCTGATGCCCTTGCTCGAACAG	2082
Query	140	TGGTTGGGTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCCGCTGCGCATGGCGCAA	199
Sbjct	2083	TGGTTGGGTAACCTGCTGAATCGCCATTTTGAAGGACGCGAGCCGCTGCGCATGGCGCAA	2142
Query	200	CGCACCGTCACAAAGCAACGACTCGAGTCGCAGTTTGATGTGGCGCTACGTCAGGAGACT	259
Sbjct	2143	CGCACCGTCACAAAGCAACGACTCGAGTCGCAGTTTGATGTGGCGCTACGTCAGGAGACT	2202
Query	260	ATAGCGCGTCTTCGGCAACTGTTGCCAGCAGCGCGTCAACCACTATATACGAGGCGTGTT	319
Sbjct	2203	ATAGCGCGTCTTCGGCAACTGTTGCCAGCGCGCGTCAACCACTATATACGAGGCGTGTT	2262
Query	320	CTCCAGCATATGCACCAGGCGTGGGGCGCTGCTGGAAGGCCAATATCCCCGTGGCACGTACGA	379
Sbjct	2263	CTCCAGCATATGCACCAGGCGTGGCGCCTGCTGGAAGGCCAATATCCCCGTGGCACGTACGA	2322
Query	380	GACATGCCCCCTGAAATCGACAGACTCGTACGGGATTACGTGCAGCAGCGGGCGCAATGG	439
Sbjct	2323	GACATGCCCCCTGAAATCGACAGACTCGTACGGGATTACGTGCAGCAGCGGGCGCAATGG	2382

Query	440	TGGATAGAGGGTGCTCGACGCTTCCGCGATTGCGTTCCGAAGCGGTCGTTCCATGGATAAG	499
Sbjct	2383	TGGATAGAGGGTGCTCGACGCTTCGCGATTGCGTTTCGAAGCGGTCGTTCCATGGATAAG	2442
Query	500	GCACTTGTTCGCCAGATGTACGGGCGACTTGCTCGTCTTGCCGTTCACCATGAGCAGGCG	559
Sbjct	2443	GCACTTGTTCGCCAGATGTACGGGCGACTTGCTCGTCTTGCCGTTCACCATGAGCAGGCG	2502
Query	560	CATCAGCGGCAGTATTTGGAGCACGGTCCCTTTCTGTTGCCGACCGA	619
Sbjct	2503	CATCAGCGGCAGTATTTGGAGCACGGTCCCTTTCTGTTGCCGACCGA	2562
Query	620	TTGTACAGATTCGCAACGTACCTGGAGAAAGCAGGTGTTGCCGACTCATGCCCTTGGCAA	679
Sbjct	2563	TTGTACAGATTCGCAACGTACCTGGAGAAAGCAGGTGTTGCCGACTCATGCCCTTGGCAA	2622
Query	680	TTGCCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCGCATTACTGCAACTC	739
Sbjct	2623	TTGCCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCTCCCGCATTACTGCAACTC	2682
	740	GCGATCGAGCGTCTCCCGCCCGGAAACGGAGGGCGAGCACTGTCCCCCCGGGGCTCGGCGAA	799
Query	2683	GCGATCGAGCGTCTCCCCCCGGAAACGGAGGGCGAGCACTGTCCCCCGGGGCTCGGCGAA	2742
Sbjct			2/42
Query	800	CTTGTCACAGAGGCAGAGGCAGC 822	
Sbjct	2743	CTTGTCACAGAGGCAGAGGCAGC 2765	
Query	16	GACTCATGCCCTTGGCAATTGCCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCT	75
Sbjct	<mark>2605</mark>	GACTCATGCCCTTGGCAATTGCCTTGGTTCGCCGCAGATAACGCGGATTCCGGGCTAGCT	2664
Query	76	CCCGCATTACTGCAACTCGCGATCGAGCGTCTCCGCCCGGAAACGGAGGGCGAGCACTGT	135
Sbjct	2665	CCCGCATTACTGCAACTCGCGATCGAGCGTCTCCCGCCGGAAACGGAGGGCGAGCACTGT	2724
Query	136	CCCCCGGGGCTCGGCGAACTTGTCACAGAGGCAGAGGCAGCGCCTGCAGCGATGCTGTAT	195
Sbjct	2725	CCCCCGGGGCTCGGCGAACTTGTCACAGAGGCAGAGGCAGCGCCTGCAGCGATGCTGTAT	2784
Query	196	AGAATCCGGCAGCGACTGCAGGCGGTGCAAATGCGTCACCAGGTGGAACTCCGCTTCTAC	255
Sbjct	2785	AGAATCCGGCAGCGACTGCAGGCGGTGCAAATGCGTCACCAGGTGGAACTCCGCTTCTAC	2844
Query	256	GATGACGCGGACCTGACGCCTGTGTATCGGATCGATTCCTTTGAGCGACTGGTGGACGCT	315
Sbjct	2845	GATGACGCGGACCTGACCCTGTGTATCGGATCGATTCCTTTGAGCGACTGGTGGACGCT	2904
Query	316	TTCCTCGATCAATGGCTCTGGTACAAGGCCACGGAGACGCGCCCTTTTTCCGGCCCATGTC	375
Sbjct	2905	TTCCTCGATCAATGGCTCTGGTACAAGGCCACGGAGACGCGCCTTTTTCCCGGCCCATGTC	2964
Query	376	CAGCCATGCGACGATGAGTTGCCGCCCGTTCACGTCCCCGTTTCGTCGAACGCTTGGAT	435
Sbjct	2965	CAGCCATGCGACGATGAGTTGCCGCCCGTTCACGTCCCCGTTTCGTCGAACGCTTGGAT	3024
Query	436	GCTATACCTCATCTGTGGACACTCGGAACAGCACCAAACAAGAGCTTCCTGGTCCTCATA	495
Sbjct	3025	GCTATACCTCATCTGTGGACACTCGGAACAGCACCAAACAAGAGCTTCCTGGTCCTCATA	3084
Query	496	CAAACGCCATTGCCAGGGCTATTTCAGCGCGCGGGATTTGCTGGTTCTGGATCGATTGCTG	555
Sbjct	3085	CAAACGCCATTGCCAGGGCTATTTCAGCGCGCGGGATTTGCTGGTTCTGGATCGATTGCTG	3144
Query	556	CGACAGTTGCTCGCACCCGAAATCGTTGATTATCTAATTGCCCGCTGTAATGCAACGAT	615
Sbjct	3145	CGACAGTIGCTCGCACCCGAAATCGTTGATTATCTAATTGCCCGCTGTAATGCAACGAT CGACAGTTGCTCGCACCCGAAATCGTTGATTATCTAATTGCCCCGCTGTAATGCAACGAT	3204
Query	616	ACGTTCAAAGACATGCGTTATACGCAGGTCGGTTGGCATCCTGCTGGGAGGTTTCA	675
Sbjct	3205	ACGTTCAAAGACATGCGTTATACGCAGTCGGTTGGCATCCTGCTGGTTGGGAGTTTTCA	3264
SDJCL	5205	ACGITCAAAGACAIGCGITATACGCAGCCGGTTGGCATCCTGCTGGTTGGGAGTTTTCA	32.04
0	18	TGGGAGTTTTCAGGTTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTT	77
Query			
Sbjct	<mark>3253</mark>	TGGGAGTTTTCAGGTTTCCTGCAACAGCTCTATGGTCTGGCGGCGGTAGATCTAGCGTTT	3312
Query	78	CGCGCACCAGATATGGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCTGCCGAACTC	137
Sbjct	3313	CGCGCACCAGATATGGACGCGGACCTGCTGAGCCTGCCGAGCTGGCCGCCTGCCGAACTC	3372
Query	138	GCTGGCGACCATGACGTGCGACGCAACGACGCCCGTAGTTGCCCGTCGATGCGGCTGCTT	197
Sbjct	3373	GCTGGCGACCATGACGTGCGACGCACGACGCCCGTAGTTGCCCGTCGATGCGGCTGCTT	3432
Query	198	GCCTACGAACGAATTCTCGATCGACTGTATGCGCTGATTCGGGTTCCCGAAGAGACTGCG	257
Sbjct	3433	GCCTACGAACGAATTCTCGATCGACTGTATGCGCTGATTCGGGTTCCCGAAGAGACTGCG	3492
Query	258	CGTGTGGCTGTTACGCGTCTCGAGCAGCGTTACGAACGCCATCCGGAGCGGGAGACACTT	317
Sbjct	3493	CGTGTGGCTGTTACGCGTCTCGAGCAGCGTTACGAACGCCATCCGGAGCGGGAGACACTT	3552

Query Sbjct	318 3553	CTCGACGCGCGCTGTACCCCAGTCGACGGTGCTGGCCGAGTGCAGTGCGCATGCGCCTG	377 3612
Query	378	CGCCCCTTCGACTGTCTGCTCGGGTCGAGCCCTCTTTGATGCGATTCGCGATCGCATTGGC	437
Sbjct	3613	CGCCCCTTCGACTGTCTGCTGGGTCGAGCCCTCTTTGATGCGATTCGCGATCGCATTGGC	3672
Query	438	CCGGGCGTGAGTGCGCTCCGACCACTCGTCGAGATGCCCGAATCCCAGACTGCGGTAAGC	497
Sbjct	3673	CCGGGCGTGAGTGCGCTCCGACCACTCGTCGAGATGCCCGAATCCCAGACTGCGGTAAGC	3732
Query	498	GTCGTGTCAGGGCCCGAGAATCCCAGTCTTTCTTCGAAATGTTTGGATTCGAGGTGCGA	557
Sbjct	3733	GTCGTGTCAGGGCCCCGAGAATCCCAGTCTTTTCTTCGAAATGTTTGGATTCGAGGTGCGA	3792
Query	558	ATGCTCGCAAGCGGTTTTGACAGAATCCTGCCTGCCTGGCATGGGCAGCGCTCGACCCGCA	617
Sbjct Query	3793 618	ATGCTCGCAAGCGGTTTTGACAGAATCCTGCCTGGCATGGGCAGCGCTCGACCCGCA TCAGAAGCAGCAGCAACTGCAGGGATGGCTTGGTCATTGCCCAGCGGGCGCACCGTGGCG	3852 677
Sbjct	3853	TCAGAAGCAGCAACTGCAGGGATGCGTTGGTCATTGCCCAGCGGGCGCACCGTGGCG	3912
Query	678	TATGTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCTGTTG	737
Sbjct	3913	TATGTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCTGTTG	3972
Query	738	ATGGCGACCATACATGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTC	797
Sbjct	3973	ATGGCGACCATACATGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCACTC	4032
Query	798	CACTTTGCCGGCATGTATCGCCAAGTCGCA 827	
Sbjct	4033	CACTTTGCCGGCATGTATCGCCAAGTCGCA 4062	
Query	16	GCGTATGTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCTG	75
Sbjct	<mark>3910</mark>	GCGTATGTTCGCGTCTCGCCGCACGCGCTGCAGCGATGGGCGCTGGATGTTCAGCGCCTG	3969
Query	76	TTGATGGCGACCATACATGCCCCATTTACGCGCGGCAGCCCGGTGGAATGCGTTAGCA	135
Sbjct	3970	TTGATGGCGACCATACATGCCCCATTTACGCGCGTGGCAGCCCGGTGGAATGCGTTAGCA	4029
Query	136	CTCCACTTTGCCGGCATGTATCGCCAAGTCGCAAGGAATGATCCAACCGTACGGCAATTT	195
Sbjct	4030 196	CTCCACTTTGCCGGCATGTATCGCCAAGTCGCAGCGAATGATCCAACCGTACGGCAATTT GTCCAGCATGCCCCAAGAGCGCGCTACAGAACAGGATCAAGCTGGGTCTGAACTCGAAGATG	4089 255
Query Sbjct	4090	GTCCAGCATGCCCCAAGAGCGCGTACAGAACAGGATCAAGCTGGGTCTGAACTCGAAGATG	4149
Query	256	CCGGTGCGCTTCCCACCGGTGGTGTTCTACGCTCCGCGCAGCCTCGGCGGCGCCTCGAAATG	315
Sbjct	4150	CCGGTGCGCTTCCCACCGGTGGTGTTCTACGCTCCGCCACCCTCGGCGGCCTCGAAATG	4209
Query	316	ATGAACATAGGCCACGACCCGGTGCGTCGTCGTGGGTCCTTCATACCAAGCTGGCTCGAT	375
Sbjct	4210	ATGAACATAGGCCACGACCCGGTGCCGTCGCTGTGGTCCTTCATACCAAGCTGGCTCGAT	4269
Query	376	GAGATCGCTGACGCGGAGTTGCTGGAGCGCGAGCTTCAAGAACGAGCGCAGGCATTTGGG	435
Sbjct	4270	GAGATCGCTGACGCGGAGTTGCTGGAGCGCGAGCTTCAAGAACGAGCGCAGGCATTTGGG	4329
Query	436 4330	GCACACCTCGATCGGCGACTGCTGCCACCAGCATGGCTGCATCGCGGTCTGCCACGTTG	495
Sbjct Query	4330	GCACACCTCGATCGCCGACTGCTGCCACCAGGATGGCTGCATCGCGGGTCTGCCACGTTTG GCTGCACGCTATCACCCGCAAGGAGGCGTTGTGGACGCTCGATCACGGCTATCGTGTGGCA	4389 555
Sbjct	4390	GCTGCACGCTATCACCCGCAAGGACGTTGTGGACGCTCGATCACGGCTATCGTGTGCGA	4449
Query	556	AGTCTCTTGCGCGTGCACGTTACCGGGCGGAAGAACGCCCTCTGGTGGCTAGATTTCATG	615
Sbjct	4450	AGTCTCTTGCGCGTGCACGTTACCGGGCGGAAGAACGCCCTCTGGTGGCTAGATTTCATG	4509
Query	616	CACGACGGACGCCTTTGGGAGCTGGACGACTACCGGAGTCAGGTTACGCATGCTTTGGGT	675
Sbjct	4510	CACGACGGACGCCTTTGGGAGGCTGGACGACTACCGGAGTCAGGTTACGCATGCTTTGGGT	4569
Query	676	GGGTGCCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACTGGGTATCGAGATTGGCGA	735
Sbjct	4570	GGCGTGCCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACTGGGTATCGAGATTGGCGA	4629
Query	736	GGCATCGTCTGGGGGGACCACGGCTTTGAGCACAAACTCGCGGGCAGGCCGTTGACGCGG	795
Sbjct	4630	GGCATCGTCTGGGGCGACCACGGCTTTGAGCACAAACTCGCGGGCAGGCCGTTGACGCGG	<mark>4689</mark>
Query	1	GTTACGCATGCTTTGGGTGGCGTGCCGGCAATCCTGTCGCATACGCTCTTTGCGGCAACT	60
Sbjct	<mark>4552</mark>	GTTACGCATGCTTTGGGTGCCGGCGATCCTGCGCAATCCTGTCGCATACGCTCTTTGCGGCAACT	4611

0	<i>C</i> 1		100
Query Sbjct	61 4612	GGCTATCCAGATTGGCGAGCCATCGTCTGGGGCCACCACGCTTTGAGCACAAACTGCG GGCTATCCAGATTGGCGAGGCATCGTCTGGGGCGACCACGGCTTTGAGCACAAACTGCG GGCTATCCAGATTGGCGAGGCATCGTCTGGGGCGACCACGGCTTTGAGCACAAACTGCG	120 4671
Query	121	GGCAGGCCGTTGACGCGGGCGCAGCGATCTGGACTTGTCCAGATACCCAATCGCCGATTC	180
Sbjct	4672	GGCAGGCCGTTGACGCGGGCGCAGCGATCTGGACTTGTCCAGATACCCAATCGCCGATTC	4731
Query	181	ACGCTCTGGTGGTCGCCGACCATCAATCGCAGCCGGGTGTACATGGGCTTCCGCGCCCAG	240
Sbjct	4732	ACGCTCTGGTGGTCGCCGACCATCAATCGCACCGGGTGTACATGGGCTTCCGCGCCCAG	4791
Query	241	CTCGATCTGACGGGGATCTTCATGTACGGCAAGCTTTCGACGCTCAAAATCAGCCTTTTG	300
Sbjct	4792	CTCGATCTGACGGGGATCTTCATGTACGGCAAGCTTTCGACGCTCAAAATCAGCCTTTTG	4851
Query	301	CAGGTGTTCCGAGGCCATCTCGGCAGCGTATTCATGAAAGTCTGGTACTTGATTTGTGC	360
Sbjct	4852	CAGGTGTTCCGAGGCCATCTCTGGCAGCGTATTCATGAAAGTCTGGTACTTGATTTGTGC	4911
Query	361	AAAGCATTGGATACAGAGCTGGGGGGCGCGCCTCGCGGAGGCGCGTGTTGCGGTCACGGTG	420
Sbjct Querv	4912 421	AAAGCATTGGATACAGAGCTGGGGGGCGCGCTCGCGCGAGGCGCGTGTTGCGGTCACGGTG CAGAAGGAACGAATCCATCCGCGCGAAGTCTTATCGCATGCACTGGAGCAGCGCGGGATATT	4971 480
Sbjct	4972	CAGAAGGAACGAATCCATCCGCCGCAAGTCTTATCGCATGCACTGGAGCAGCGCGCGGATATT	5031
Query	481	AGAATCGATTTCGAGCAACCGATTCTCGTGTCCGGTGACGCCTTGCCCGTGGACGAGGCC	540
Sbjct	5032	AGAATCGATTTCGAGCAACCGATTCTCGTGTCCGGTGACGCCTTGCCCGTGGACGAGGCC	5091
Query	541	GTCGCCTTCGAATCCAATGCGGGCGGTCAAGGGCGATCGTCGCTGCGGCCGCCAGGTAGC	600
Sbjct	5092	GTCGCCTTCGAATCCAATGCGGGCCGGTCAAGGGCGATCGTCGCTGCGGCCGCCAGGTAGC	5151
Query	601	GACGCGGCAGCCAAAATCTATTGGATTGATGTCCAGCTCCGTTGGGGCGACTACGACGAC	660
Sbjct	5152	GACGCCGCCAGACAAATCTATTGGATTGATGTCCAGCTCCGTTGGGGCGACTACGACGAC	5211
Query	661	CATGATGCCGCGCAATACGCACGCGAAAAATTTCCGGCCGTATACAGCACCGGGAGCGTCG	720
Sbjct	5212	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCCGGCGTATACAGCACCGGGAGCGTCG	5271
Query Sbjct	721 5272	AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTA 765	
Query	25	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG	84
Query Sbjct	<mark>5212</mark>		84 5271
Sbjct Query	<mark>5212</mark> 85	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG	5271 144
Sbjct Query Sbjct	<mark>5212</mark> 85 5272	CATGATGCCGCCCATACGCAGGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5271 144 5331
Sbjct Query Sbjct Query	<mark>5212</mark> 85 5272 145	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGGGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGCCGAGGGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGCCGAGGGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGCCGAGGGGATCGCCG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGGTCGTGGACCGTGGACGAGAATCGCCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5271 144 5331 204
Sbjct Query Sbjct	<mark>5212</mark> 85 5272	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5271 144 5331
Sbjct Query Sbjct Query Sbjct	5212 85 5272 145 5332	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGG CTTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCCG	5271 144 5331 204 5391
Sbjct Query Sbjct Query Sbjct Query	5212 85 5272 145 5332 205	CATGATGCCGCCCATACCCACGGCAAAAATTTCGGGCCTATACAGCACCGGGAGCGCCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGCGGTGCTGTGCACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CAGCTCTACGTCATGGAGACGGGGGAAGCGGGACGCTGCAGGCGCGCGC	5271 144 5331 204 5391 264
Sbjct Query Sbjct Query Sbjct Query Sbjct	5212 85 5272 145 5332 205 5392	CATGATGCCGCCATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGGGGCGCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGCGAGGGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGCGAGGGGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTGGTGTGGTCGTGACCGAGGAATCGCGC TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT	5271 144 5331 204 5391 264 5451
Sbjct Query Sbjct Query Sbjct Query Sbjct Query	5212 85 5272 145 5332 205 5392 265	CAGGATGCTTATGCATAACCAGGGACGGGGGACGCGCGACGACGACGACGACGCGCGAGGCGCGACGCGCCCCCC	5271 144 5331 204 5391 264 5451 324
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	5212 85 5272 145 5332 205 5392 265 5452	CATGATGCCGCCCATACGCACGCGCAAAAATTTCGGGCCTATACAGCACCGGGAGCGCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGGCGTGGTGTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTGCGCCTCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CAGCTCTACGTCATGGAGACGGTGGAAAGCGAGACGCTGCAGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	 5212 85 5272 145 5332 205 5392 265 5452 325 	CATGATGCCGCCATAGCACGCGCAAAAATTCCGGGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511 384
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	5212 85 5272 145 5332 205 5392 265 5452 325 5512 385 5572	CATGATGCCGCGCAATACGCAGCGCGAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGACGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	 5212 85 5272 145 5332 6392 6392 5452 5512 385 5572 445 	CATGATGCCGCCATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTGATCTAGCTACGCGAGGGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTGTTGATCTAGCCTACGCGAGGGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGCCCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCCCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCGCG	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	 5212 85 5272 5332 205 5452 325 5512 385 5572 445 5632 	CATGATGCCGCCCATACGCACGCGAAAAATTTCCGGGCTATACAGCACCGGAGCGCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGTTCTACGTCATGAGACGGGGGGACGCTGCGGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504 5691
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	 5212 85 5272 145 5332 6392 6392 5452 5512 385 5572 445 	CATGATGCCGCCATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTGATCTAGCTACGCGAGGGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTGTTGATCTAGCCTACGCGAGGGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGCCCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCCCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGAACGCGCGCG	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	 5212 85 5272 145 5332 205 5452 5512 385 5572 445 5632 505 	CATGATGCCGCCCATACGCAGCGCAAAAATTCCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGCACGTGCGGGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504 5691 564
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	 >212 85 272 145 332 205 5392 2452 385 5572 445 5632 5632 5692 	CATGATGCCGCGCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTGTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGCACCTGCGGGACGCGCGACGAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGACGCGCGCGC	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504 5691 564 5751
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	 5212 85 5272 5332 205 5452 325 5572 445 5632 5652 5652 	CATCATCGCCCCCATACCCACGGCAAAAATTTCCGGCCTATACACCACCGGCAGCGTCG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CCGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CAGCTCTACGTCATGGAGACGGTGGAAAGCGAGACGCTGCAGGCGGCGACGACTACGACA CAGCTCTACGTCATGGAGACGGTGGAAAGCGAGACGCTGCAGGCGGCGACGACTACGACA CCGCTTCCGATACGACGACGGTGGAAAGCGAGACGCTGCAGGCGGCGACGACTACGACA CCGCTTCCGATACGATA	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 564 5691 564 5751
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	5212 85 2272 145 5332 205 5392 245 5392 325 5452 385 5572 445 5052 5052 5632 5652 5652 5752	CATGATGCCGCCCAATACGCACGGCCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCACGCGCGCG	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 504 5691 564 5691 564 5751 624 5811
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	 >212 85 272 145 332 205 5392 2452 385 5572 445 5632 5692 5652 5752 625 	CATGATGCCGCCAATACGCAGCGCAAAAATTTCGGGCGTATACAGCACCGGGAGCGTCG AGTCTGTACCCGTCTACCATGGACTGGTCGTGGTCTTTGATCTAGCCTACGGCGAGTGG AGTCTGTACCCGTCTCACCATGGACTGGTCGTGGTCTTGATCTAGCCTACGGCGAGTGG TCTGCTTTTGGGCACGCCTGCGCCATGGGCGTCGTGTCGATCGTGACCGAGGAATCGCGC CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCTT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGCTCCTTCGTGAACGCATTCGCAAAGCGCT CGGATGCTTATGCATAACCAGGCACTCGCGGCGCCGCGCGCG	5271 144 5331 204 5391 264 5451 324 5511 384 5571 444 5631 564 5631 564 5691 564 5751 624 5811

Query	60	AGCCAACTGAAGAGCTACCGCGGGGGCATCGTGCTCGCACAAACCGCATCCATGGACCCGT	119
Sbjct	<mark>5759</mark>		5818
Query	120	TGAAGACGCTCTTGGCAGGCACCGAGTATGCCAAAATTCCTGTGCGTGC	179
Sbjct	5819		5878
Query	180	CCATGCCGCTGCAGGCGCTAATGGCGCTGCCGGAGATCCGCGACCGTACTCAGACTGCGC	239
Sbjct	5879		5938
Query	240 5939	GCTCCAGCGAGCTTTCGATCTGGAGTGGCTACGCGGATTGGCTTGAGCATGTGCCCGTGT	299 5998
Sbjct Query	300	GGATCGCGTCGGCGCGCTTCCTGCTCCTGCTCCACGCCTTGGACCGGGCGCCAGAGCGTG	359
Sbjct	5999	GGATCGCGTCGGCGCGCCTTCCTGCTCCTGCTCCACGCCTTGGACCGGGGCGCCAGAGCGTG	6058
Query	360	TCCTGCAGCTGGTGTGGCCTCAGCGGTCGGCGGACGAGGAGAGCGCGGGGCTCCGCGACAC	419
Sbjct	6059	TCCTGCAGCTGGTGTGGCCTCAGCGGTCGGCGGACGAGGAGCGCGGGGCTCCGCGACAC	6118
Query	420	CTTGGCTGTGGCCCGCGCTTCCCGAGACTGACTGGCGCCGTCTGGAACTAGAGCTCCAGT	479
Sbjct	6119	CTTGGCTGTGGCCCGCGCTTCCCGAGACTGACTGGCGCCGTCTGGAACTAGAGCTCCAGT	6178
Query	480	CGCTGGTGCCCGTGCGCTCACGCCCTGCCCATGTCGCTGGTGATCAGCCAGGTGGCAGGG	539
Sbjct	6179	CGCTGGTGCCCGTGCGTCACGCCCTGCCCATGTCGCTGGTGATCAGCCAGGTGGCAGGG	6238
Query	540	ATGACGACGGAACGGAGCAGGTGCTGGAGCACACACGACGCGAAGACGGTTGCCGCATTCG	599
Sbjct	6239		6298
Query	600	ACCGGTATGGCAATGTGATTTCGGTGGAGACCACCACGCCATTTGAGCGGCAGGAGTACC	659
Sbjct	6299		6358
Query	660	GCACGTCGTCGGTCACGGTAACGAATGCAGAACAGCAACGGCTACTGTCCTTGTACCGAC	719
Sbjct	6359		6418
Query	720	GACTCCCAGACGTTCTCGAAAACCTGCACGTTGTCGAGCCTGGACACACCAGTGGCAGTC	779
Sbjct	6419		6478
Query	780	TGTACGGAGGCGAGCGCCCGGAAC 803	
Sbjct	6479	TGTACGGAGGCGAGCGCCCGGAAC <mark>6502</mark>	
Query	1	CTCGAAAACCTGCACGTTGTCGAGCCTGGACACACCAGTGGCAGTCTGTACGGAGGCGAG	60
Sbjct	<mark>6433</mark>		6492
Query	61	CGCCCGGAACAGGCGACGATCTCGGCGATGCCGCATCTCGCCAAGCGATTCGAGCTCCAT	120
Sbjct	6493		6552
Query	121	CTACCGAGAGGCCTCGTCCGCGGGTCTTTTGCTCGCGGGTATGACTTGTGGCCAACTCTGG	180
Sbjct	6553		6612
Query	181	GGCACGCGCACCGCCAACGCGGATACAGTGGTTTGGATCGCCTGGGCGCTGCGTCATCAT	240
Sbjct	6613		6672
Query	241 6673	GACGCCGAGGCATCGACCACCGTTGCCGAGCATGGTTGAGGCAGCGGCCTGCTTTCGCCCT	300 6732
Sbjct Query	301	GGCTCGGTGCAAGCGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCG	360
Sbjct	6733	GGCTCGGTGCAAGCGATCGGCTGGATTCAAGCGTGCCTCGATGTGGGTCGGCCACCAGCG	6792
Query	361	CCAGGACCGGGGGTGCATGCGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAA	420
Sbjct	6793	CCAGGACCGGGGGTGCATGCGCCCCACGATGTGCAGGTCATACTCTATCTCCAGGGCGAA	6852
Query	421	GAACGCCAAATCGATTTGGCATCGCCGTCGCTCGATCGCCACGCAGCCGAAGCAGTGCAG	480
Sbjct	6853	GAACGCCAAATCGATTGGCATCGCCGTCGCTCGCTCGCTC	6912

Sbjct	6913	ACACACGATGTGCACGCATCGCGGGCACCGAGTGCGCACGCA	6972
Query	541	AGCACGCATGCGATGTCACGCGCCCTGGGTGTCCTGCAGGCGTGGACTGGTGGCGGCTCC	600
Sbjct	6973	AGCACGCATGCGATGTCACGCGCCCTGGGTGTCCTGCAGGCGTGGACTGGTGGCGGCTCC	7032
Query	601	GGCGACGTGAACGATCCTCAATCCGTGCATGTTCGCCGTTCGACTGCGTGATGATTTGAGT	660
Sbjct	7033	GGCGACGTGAACGATCCTCAATCCGTGCATGTTCGCGTTCGACTGCGTGATGATTTGAGT	7092
Query	661	GCTGTTTTCCTCTACGCAAAAGATGGTCGGCTGATTGCGCGCCCGGGACGTTTATTC	720
Sbjct	7093	GCTGTTTTCCTCTACGCAAAAGATGGTCGGCTGATTGCGCGCCCGCC	7152
Query	721	GAAACGATACCGGCACCGATCGAAGAGGGAACTTAG 756	
Sbjct	7153	GAAACGATACCGGCACCGATCGAAGAGGGAACTTAG 7188	

Brr2 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR656)

Query	30	TACTTCCAATCCCACGAGGAGAAATTAACT 60	
Sbjct			
Query	61	ATGCCTCAGGAACCTGAACTAGCAAGTATCGAGGTGTCGCCCCCGACTCCCGGCGAAAGC	120
Sbjct	1	ATGCCTCAGGAACCTGAACTAGCAAGTATCGAGGTGTCGCCCCCGACTCCCGGCGAAAGC	60
Query	121	TCACATTTCATGGAGGCTATACTCCAAGACACTCCAGAATACCGCGTTATATGTGCTGCA	180
Sbjct	61	TCACATTTCATGGAGGCTATACTCCAAGACACTCCAGAATACCGCGTTATATGTGCTGCA	120
Query	181	GCCGTGCGACGAAAGGCGGCTTTGCCTGTTGTTAGCGCCGACTTGTTCAGCGGTACATGC	240
Sbjct	121	GCCGTGCGACGAAAGGCGGCTTTGCTTGCTGTTGTTAGCGCCGACTTGTTCAGCGGTACATGC	180
Query	241	TCTGAACAGTCTGCGGCGCGGAGCGCTCTTGGTCAGGTCGGTGACGCTTCCGAGTGGAGC	300
Sbjct	181	TCTGAACAGTCTGCGGCGCGGAGCGCTCTTGGTCAGGTCGGTGACGCTTCCGAGTGGAGC	240
Query	301	GAAATGATCATTCAAAGGCCGGGAGACAACTGAAAGTGCGCTATTGAATGATCGTTCATTT	360
Sbjct	241	GAAATGATCATTCAAAGGCCGGAGACAACTGAAAGTGCGCTATTGAATGATCGTTCATTT	300
Query	361	GCTGTCGATGATCTAGCGGGTTACATGAAACCTGCCTTTCAGCATATGCAAGCCTGAAT	420
Sbjct	301	GCTGTCGATGATCTAGCGGGTTACATGAAACCTGCCTTTCAGCATATAGCAAGCCTGAAT	360
Query	421	CCTGTCCAGTCCAGCGTTCTGCTCGGGCGTTACGGATGCATGGAAACGTTCTGGTCTGC	480
Sbjct	361	CCTGTCCAGTCCAGCGTTCTGCTCGGGCGTTACGGATGCATGGAAACGTTCTGGTCTGC	420
Query	481	GCACCAACAGGGTCCGGCAAGACGGATATTGCCGTTGCCCTGATTCTCGCACCCTATTC	540
Sbjct	421	GCACCAACAGGGTCCGGCAAGACGGATATTGCCGTTGCCCTGATTCTTCGCACCCTATTC	480
Query	541	GAGGAATGCGGTGGCGAGCTGCAAGAGTTCAAATGTGTTTATATTGCTCCAATGCGGGCG	600
Sbjct	481	GAGGAATGCGGTGGCGAGCTGCAAGAGTTCAAATGTGTTTATATTGCTCCAATGCGGGCG	540
Query	601	CTCGTGGGGGGGCTTCAGCGTTCGCTGAGCGCTCGCCTGCGAACCTATGGAATCTTGGTA	660
Sbjct	541	CTCGTGGGGGGGGCTTCAGCGTTCGCTGAGCGCTCGCCTGCGAACCTATGGAATCTTGGTA	600
Query	661	ACGGAGTGTACCGGGGAGCAGCGTCTGAGTCATCGCGACTTGTGGCGCTCCCATATCCTG	720
Sbjct	601	ACGGAGTGTACCGGGGAGCAGCGTCTGAGTCATCGCGACTTGTGGCGCTCCCATATCCTG	660
Query	721	GTGACAACTCCTGAAAAATGGGATGTTCTCACTAGAAGAGCCAACGAACG	780
Sbjct	661	GTGACAACTCCTGAAAAATGGGATGTTCTCACTAGAAGAGCCAACGAACG	<mark>720</mark>

Query	1	CCTTTGCTACGTTTTCTGAAGATTGTCATCATTGATGAGATCCACGTTCTCGATGATCCA	60
Sbjct	<mark>712</mark>	CCTTTGCTACGTTTTCTGAAGATTGTCATCATTGATGAGATCCACGTTCTCGATGATCCA	771
Query	61	AAGAGAGGGCCCGTCCTTGAGAGATGCGTAGCTCGTCTACACCATGAAACAGCGTTATTC	120
Sbjct	772	AAGAGAGGGCCCGTCCTTGAGAGATGCGTAGCTCGTCTACACCATGAAACAGCGTTATTC	831

Query 121 GCCTATCGAGTACGGCTTGTTGGCCTGAGCGCAACGCTTCCAAACTACGATGACGTGGCG 180 Sbjct 832 GGCTATCGAGTACGGCTTGTTGGCCTGAGCGCAACGCTTCCAAACTACGATGACGTGGCG 891 GTCTTCATTCGCGCCAGGCTTCACGAGGGCGTGTTCGTCTTCTCTGAGAGAAGAACGTCCA 240 Query 181 Sbjct 892 951 Query 241 Sbjct 952 Query 301 CGGTTCGATCAACTTATGAACCATGCTTTGTGGTTCCAGGTCAAAAAATTTGCCGTACAG 360 CGGTTCGATCAACTTATGAACCATGCTTTGTGGTTCCAGGTCAAAAAATTTGCCGTACAG 1071 Sbjct 1012 Query 361 CAGATGGAGCAGGTTTTGGTTTTCGTTCACGAGCGAGCAGATACGCTGAAGACCGCGCAC 420 CAGATGGAGCAGGTTTTGGTTTTCGTTCACGAGCGAGCAGATACGCTGAAGACCGCGCAC Sbjct 1072 1131 Query 421 TGGTTGCTTAACGCTGCAGACGGCGAAAACGCTCCCATCCTACAAAGGCGGGAAACGGAA 480 TGGTTGCTTAACGCTGCAGACGCGCAAAACGCTCCCATCCTACAAAGGCGGGAAACGGA Sbjct 1132 1191 TGGCTTTCGCCTTCAATCCGTGAGCATTTCAAAAACTTTGGTGAGATTCTCGCCACGGTG Query 481 540 Sbjct 1192 TGGCTTTCGCCTTCAATCCGTGAGCATTTCAAAAACTTTGGTGAGATTCTCGCCACGGTG AAGAAAGGCATTGGAGTCCATCACGCCGGTTTACCGCCGAGAAATCCGCCATCTCATGGAG Query 541 600 Sbjct 1252 ${\tt AAGAAAGGCATTGGAGTCCATCACGCCGGTTTACCGCGAGAAATCCGCCATCTCATGGAG$ 1311 Query 601 ${\tt CAATTGTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGGGGA$ 660 CAATTGTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGGGGA Sbjct 1312 1371 GTCAATCTGCCGGCGAACGTGGTCGTCGTCATCAAAGGCACGCAGTACTACGACAGTGAGGAG Query 661 720 bjet 1372 GTCAATCTGCCGGCGAACGTGGTCGTCATCAAAGGCACGCAGTACTACGACAGTGAGGAG 1431 Query 721 GGTCAGACTGTCC 733 Sbjct 1432 GGTCAGACTGTCC 1444

Query	1	GTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGGGGAGTCAA	60
Sbjct	<mark>1317</mark>	GTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGGGGAGTCAA	1376
Query	61	TCTGCCGGCGAACGTGGTCGTCATCAAAGGCACGCAGTACTACGACAGTGAGGAGGGTCA	120
Sbjct	1377	TCTGCCGGCGAACGTGGTCGTCATCAAAGGCACGCAGTACTACGACAGTGAGGAGGGTCA	1436
Query	121	GACTGTCCAACTCGCCCGCTGCACGTCCTGCAGATGCTCGGCAGAGCGGGCCGCTACCC	180
Sbjct	1437	GACTGTCCAACTCGCCCCGCTGCACGTCCTGCAGATGCTCGGCAGAGCGGGCCGCTACCC	1496
Query	181	CTTCCACCAGCGTGGTGTAGGCGTGATCATCACAACCGAACCGGAAGCGCCGCTGTATGC	240
Sbjct	1497	CTTCCACCAGCGTGGTGTAGGCGTGATCATCACAACCGAACCGGAAGCGCCGCTGTATGC	1556
Query	241	TGCTGTCGTAGCGCACAAGGCCCCCATAGAATCGCATCTCATACCGCAGTTGGCAGATAG	300
Sbjct	1557	TGCTGTCGTAGCGCACAAGGCCCCCATAGAATCGCATCTCATACCGCAGTTGGCAGATAG	1616
Query	301	CTTGTTGGCCGAAGTTGCGGGCGGCTCCCTCAGCACGAGAGAGGCAGCAGAGTGGCT	360
Sbjct	1617	CTTGTTGGCCGAAGTTGCGGGCGGCCCCCTCAGCACCGTCGAAGAGGCAGCAGAGTGGCT	1676
Query	361	CAAATACACATTCCTCTCGTTCGAATGCTGCGGAATCCATCTCTCGAGTGGATGCCGCA	420
Sbjct	1677	CAAATACACATTCCTCTTCGTTCGAATGCTGCGGAATCCATCTCTCGAGTGGATGCCGCA	1736
Query	421	TTTCGCGAGCAAGCGGCCTGCCGATGGAGAAGATGTTTCCCTCTGGGGCGTTCGGCTCCG	480
Sbjct	1737	TTTCGCGAGCAAGCGGCCTGCCGATGGAGAAGATGTTTCCCTCTGGGGCGTTCGGCTCCG	1796
Query	481	ACTTTGCCATTCGGTGGCGAAAGAGCTCGCCCGGAATGAGCTGTTGCGCTACGGCGAAAA	540
Sbjct	1797	ACTTTGCCATTCGGTGGCGAAAGAGCTCGCCCGGAATGAGCTGTTGCGCTACGGCGAAAA	1856
Query	541	TCTAGAGATGACTGTAACAGCTCGCGGTAACGTGGCTTCTGCGTTTATGCTTCCCTACGA	600
Sbjct	1857	TCTAGAGATGACTGTAACAGCTCGCGGTAACGTGGCTTCTGCGTTTATGCTTCCCTACGA	1916
Query	601	CACGCTGCGGACAATAGAGGCATACCTTCACCCAACAGGCGCTCTCCCAGAGTTGATCCA	660
Sbjct	1917	CACGCTGCGGACAATAGAGGCATACCTTCACCCAACAGGCGCTCTCCCAGAGTTGATCCA	1976
Query	661	TCTGCTCGCAGTTGCCTCACCTGCACTTCGGAACCTCAGTCTACCACGGGAAAGCGAAAG	720
Sbjct	1977	TCTGCTCGCAGTTGCCTCACCTGCACTTCGGAACCTCAGTCTACCACGGGAAAGCGAAAG	2036

Query Sbjct	721 2037	CCGAGAGTTGCGCA 734	
Query	1	CCATCTGCTCGCAGTTGCCTCACCTGCACTTCGGAACCTCAGTCTACCACGGGAAAGCGA	60
Sbjct	<mark>1974</mark>		2033
Query	61	AAGCCGAGAGTTGCGCAGGTTCTCTTGGCGCCTACTGATACCGCTTTGGGATCCTGACAG	120
Sbjct	2034		2093
Query	121	AGACCTCAAAATCTCGGCATTGTTGCAGGCCGCAGTCCTGCCAACGGGCCTAAGCTCTTC	180
Sbjct	2094		2153
Query	181	GCCCGCATTATCGCAGGACTGCTCTTCGATACTGGAAGAGTCTCAGCGGATGCTGCGTGC	240
Sbjct	2154		2213
Query	241	GGTGCATGCGCTTTCTGCAACCTTGGGAATGGCTGTACCCATGCGTTTGAGCTTGCTACT	300
Sbjct	2214	GGTGCATGCGCTTTCTGCAACCTTGGGAATGGCTGTACCCATGCGTTTGAGCTTGCTACT	2273
Query	301	CGCCAAGAAACTTGAGCATCAACAAACGCGTATTCTGCAAGGCGCCCTCAGGGGCGGAAG	360
Sbjct	2274		2333
Query	361	CAGCAACGATCAGAGCGGTAGCACAAGCTCCGGCATGCAACCCCGTAAGACGCACAACAG	420
Sbjct	2334		2393
Query	421	CAAAGGCCAGCCAGAGCAAACACAGCGAAACCGAGGCGCTGCGTTGCTTTTCGCCTTCAGT	480
Sbjct	2394		2453
Query	481	CGGCGACTGGATGCCTCCCCGGGGTGTTATGCAGCGCTCTGGGGCGTCAGCAGTGTGCCGT	540
Sbjct	2454		2513
Query	541	TCGTTCCTGGATAGCCTTCGAGAGCGCGCTTCTACCCGTTTCAGCAGACACGTTGCGTTT	600
Sbjct	2514	IIIIIIIIIIIIIIIIIIIIIIIIIIIII	2573
Query	601	CGAATGTCGCATCGCGCTGCAGGATAGCTCCTGTATCGACAGTACGGAAGCGCTCTGGGT	660
Sbjct	2574	CGAATGTCGCATCGCGCTGCAGGATAGCTCCTGTATCGACAGTACGGAAGCGCTCTGGGT	2633
Query	661	ATCCCTCGAGGANGCCACTGGTGAAAGANCCTTTTTCGCTGCTCGCCTGGNCCTCCGTGA	720
Sbjct	2634		2693
Query	721	AGCGAAATATCACCTTGTCGGATGCTGTTCGGTTCCACCGTGGCAGCGAACCTCAGTCGC	780
Sbjct	2694		<mark>2753</mark>
Query	1	CTTTTTCGCTGCTCGCCTGGTCCTCCGTGAAGCGAAATATCACCTTGTCGGATGCTGTTC	60
Sbjct	<mark>2664</mark>	CTTTTTCGCTGCTCGCCTGGTCCTCCGTGAAGCGAAATATCACCTTGTCGGATGCTGTTC	2723
Query	61	GGTTCCACCGTGGCAGCGAACCTCAGTCGCTTTCTGGAGAATTGCCGCCGAAGAGCATCT	120
Sbjct	2724	GGTTCCACCGTGCCAGCGAACCTCAGTCGCTTTCTGGAGAATTGCCGCCGAAGAGCATCT	2783
Query	121	GGTTGACGACTTTCTGCAAGCTGACGATGTTTGCGCGAACTCCCGTGGCCAGTTGACGATAA	180
Sbjct	2784	GGTTGACGACTTTCTGCAAGCTGAGTGTTTGCGCGACCTCCCGTGGCCAGTTGACGATAA	2843
Query	181	CCGAATTGCCCCCGAGATCGGCCGCCTTTGTATTTCACGACTTTAGTCGTCTAGCGGCGGC	240
Sbjct	2844	CCGAATTGCCCCCGAGATCGGCCGCTTTGTATTCACGACTTAGTCGTCTAGCGGCGGC	2903
Query	241	CTGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCG	300
Sbjct	2904	CTGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCG	2963
Query	301	ACCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTG	360
Sbjct	2964	ACCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTG	3023
Query	361	CCTCACGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	420
Sbjct	3024	CCTCACGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	3083
Query	421		480
Sbjct	3084	TGAAGTTTTTCGCCAACTCGTACAAAGCTGCAAGTTGCGCTGTGCGGAGCTAAGCATTGA	3143
Query	481	TCCGCAGTGGCATAGAAAACTTTCATGCGCTGACGACGATGAGCACGAAGCGCGCTTCCT	540
Sbjct	3144	TCCGCAGTGGCATAGAAAACTTTCATGCGCTGACGACGATGAGCACGAAGCGCGCTTCCT	3203

Query	541	GATCGGTGACCCCAAACACTTTGCCTCGCTCGTGCATAGCATGCAGTCGGAACAGCTCCG	600
Sbjct	3204	GATCGGTGACCCCAAACACTTTGCCTCGCTCGTGCATAGCATGCAGTCGGAACAGCTCCG TGTGCAAGCACCACTGTGGCTTCTGGACGACCTCGAGTCTGTATCATGGGATCCAAGCTA	3263
Query	601 3264	TGTGCAAGCACCCACTGTGGCTTCTGGACGACCTCGGACCTCGTATCATGGGATCCAAGCTA	660 3323
Sbjct Query	661	CGAGTTTTTGCTCATGAATCTGGCAAGAGCTGAGCAGGTTCTTTTTCGGAGCATTTCCA	720
	3324	CGAGTTTTTGCTCATGATATGGCAAGACCTGAGCAGGTCTTTTTTCGGAGCATTTCCA	3383
Sbjct Query	721	GAATGTCGACCAAGTATTGCGCTGGCTTGGACTGGGATCCGTCTCGAATGCTCC 773	5505
Sbjct	3384	GAATGTCGACCAAGTATTGCGCTGGCTTGGACTGGATCCGTCTCGAATGCTCC 3436	
Query	1	GTGGCTTCTGGACGACCTCGAGTCTGTATCATGGGATCCAAGCTACGAGTTTTTGCTCAT	60
Sbjct	<mark>3279</mark>	GTGGCTTCTGGACGACCTCGAGTCTGTATCATGGGATCCAAGCTACGAGTTTTTGCTCAT	3338
Query	61	GAATCTGGCAAGAGCTGAGCAGGTTCTTTTTTCGGAGCATTTCCAGAATGTCGACCAAGT	120
Sbjct	3339	GAATCTGGCAAGAGCTGAGCAGGTTCTTTTTTCGGAGCATTTCCAGAATGTCGACCAAGT	3398
Query	121	ATTGCGCTGGCTTGGACTGGATCCGTCTCGAATGCTCCAGTTTGAGTGGCAACCTCCGGG	180
Sbjct	3399	ATTGCGCTGGCTTGGACTGGATCCGTCTCGAATGCTCCAGTTTGAGTGGCAACCTCCGGG	3458
Query	181	TGAGGCTTCGCCGCTCATTACCACTGCGGACGAGGCACTTCTGAACCGGCCTCGGCTGGT	240
Sbjct	3459	TGAGGCTTCGCCGCTCATTACCACTGCGGACGAGGCACTTCTGAACCGGCCTCGGCTGGT	3518
Query	241	GGCGAAGCGCTTCTGGCGTGCATTTCGTCGGATAGCGCCTCCTCGAGGACCACAATTCGT	300
Sbjct	3519	GGCGAAGCGCTTCTGGCGTGCATTTCGTCGGATAGCGCCTCCTCGAGGACCACAATTCGT	3578
Query	301	CGCTGTTTGCGCGGTCATGCGCGATGCGCTCTTACTTGGGGCAGAGCTAGCGCGACAGAG	360
Sbjct	3579	CGCTGTTTGCGCGGTCATGCGCGATGCGCCTCTTACTTGGGGCAGAGCTAGCGCGACAGAG	3638
Query	361	TCCGTACCGCAGTGAGTGCCCTGCACGTTTGGCAGCGTCGTTAACCGCCGCGGAGCGAGC	420
Sbjct	3639	TCCGTACCGCAGTGAGTGCCCTGCACGTTTGGCAGCGTCGTTAACCGCCGCGGAGCGAGC	3698
Query	421	GCTCCTCGAGCGTGGCATCTGGTTACCCACGAGGAGTACCAGCTACGAGACAGGTGCACC	480
Sbjct	3699	GCTCCTCGAGCGTGGCATCTGGTTACCCACGAGGAGTACCAGCTACGAGACAGGTGCACC	3758
Query	481	CCCGGGGCACACCAATGTCCGCGTCGTAGTCATCGAGATCGGAGAATTACTCCTGCTCCC	540
Sbjct	3759	CCCGGGGCACACCAATGTCCGCGTCGTAGTCATCGAGATCGGAGAATTACTCCTGCTCCC	3818
Query	541	GAGCGATGGCAATGAATACGCCTTCGCATTCATGGTGGGCAACGGCTTTGCGCAGGCATC	600
Sbjct	3819	GAGCGATGGCAATGAATACGCCTTCGCATTCATGGTGGGCAACGGCTTTGCGCAGGCATC	3878
Query	601 3879	GTCGGCCCCACGGGAGAACCTGTTCCGTTGGAGTTGTCGCAACTTTGCCAGGATATCCAG GTCGCGCCCACGGGAGAACCTGTTCCGTTGGAGTTGTCGCTACTTTGCCAGGATATCCAG	660 3938
Sbjct Query	661	AGGTCCGGTTTCGGTCCTAGTGCCACCGCATCTTGAGGGACTGATGCAGCTGCCGGCGAA	720
Sbjct	3939	AGGTCCGGTTTCGGTCCTAGTGCCACCGCATCTTGAGGGACTGATGCAGCTGCCGGCGAA	3998
Query	721	TTGGCCTCCA 730	
Sbjct	3999	IIIIIIIII TTGGCCTCCA 4008	
Query	1	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC	60
Sbjct	<mark>3905</mark>	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC	3964
Query	61	CGCATCTTGAGGGACTGATGCAGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG	120
Sbjct Ouerv	3965 121	CECATCTTEAGEGACTGATGCAGCTGCCCGGCGAAFTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG	4024 180
Query Sbjct	4025	CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG	4084
Query	181	CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGGTACCTGCAGCATA	240
Sbjct	4085	CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA	4144
Query	241	CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGCAGCGAGCTCGACAGAATAGCTC	300
Sbjct	4145	CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGCAGCGAGCTCGACAGAATAGCTC	4204
Query	301	TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA	360

Sbjct	4205	TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA	4264
Query Sbjct	361 4265	ATGACGGGGGCTTTGATTGTCGCGATGTCGCTCGCCCCGGCTGGCATTCTGTTTCGGTA	420 4324
Query	421	TCGAAGTGCAGACAGCGCGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA	480
Sbjct	4325	TCGAAGTGCAGACAGCGCGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA	4384
Query Sbjct	481 4385	GTGCGCTTTTGGACATGTTCGCTGAACACTGGTTAGCGAACTCGGTCGCGTGGTTGG IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	540 4444
Query	541	CGCGCGACCTCGCATCGAGCGATGAAGCTGGACGCCCTCATTCGCTGTGGCCCCATTCGAG	600
Sbjct	4445	CGCGCGACCTCGCATCGAGCGATGAAGCTGGACGCCCTCATTCGCTGTGGCCCATTCGAG	4504
Query Sbjct	601 4505	GACCAAAAGCGCGTCCTAAGAAAGTGCAGCCCGTTCTCTTTGTACGCACACTGCTGATAT	660 4564
Query	661	GGTTGCTGAGATCGCCACCGACGTCACAGTTTTGCTGGCGGAGGCTTTTGGAGGAGCTCA	720
Sbjct	4565	GGTTGCTGAGATCGCCACCGACGTCACAGTTTTGCTGGCGGAGGCTTTTGGAGGAGGCTCA	4624
Query	721	GTGGCGCTTG 730	
Sbjct	4625	GTEGCGCTTG 4634	
Query	1	TGGTTGCTGAGATCGCCACCGACGTCACAGTTTTGCTGGCGGAGGCTTTTGGAGGAGCTC	60
Sbjct	<mark>4564</mark>	TGGTTGCTGAGATCGCCACCGACGTCACAGTTTTGCTGGCGGAGGCTTTTGGAGGAGCTC	4623
Query Sbjct	61 4624	AGTGGGGCTTGGGAGGGACTACTACCGGCACTGGTGTTTACGGGTCTCGCCCCTCTTGT	120 4683
Query	121	TGGAGCGCTTTCCGCCAGTTCCACAAGATCACTCGAACGCTTTCGTTCG	180
Sbjct	4684	TGGAGCGCTTTCCGCCAGTTCCACAAGATCACTCGAACGCTTTCGTTCG	4743
Query Sbjct	181 4744	ASTGGCTCGCCGTTGCGATCACGAGAGCAGAGCCACCTCACTAAGCCTGCAGACGATTTG	240 4803
Query	241	GATGATGCTGTTGGCGAGGAGCCCGATGGCCGCATAGCACAGATTGAGCATCACATGGGT	300
Sbjct	4804	GATGATGCTGTTGGCGAGGAGCCCGATGGCCGCATAGCACAGATTGAGCATCACATGGGT	4863
Query	301	GCCGAATACCGGGAGCGCTGTACGAGTTACCTGCATCAGATGGATCACgagcagcatgag	360
Sbjct Query	4864 361	GCCGAATACCGGGAGCGCTGTACGAGTTACCTGCATCAGATGGATCACGAGCAGCATGAG cagcatgagcagcatgagcagcatgagcGCCAAGCGGATCTCGGAAACGAGCCGCACCGG	4923 420
Sbjct	4924	CAGCATGAGCAGCATGAGCAGCATGAGCGCCCAAGCGGATCTCGGAAACGAGCCGCACCGG	4983
Query	421	ATAGAACGTCGCCACGTGGACGTCACCTGCAAGCAAAACTGGCGGCAGCGGCGGGGATG	480
Sbjct Query	4984 481	ATAGAACGTCGCGCACGTGGACGTCACCTGCAAGCAAAACTGGCGGCAGCGGGGGGATG GTGGATTCTGGCGGGGAGCATTCAATCCAGAAACGATGCTTGCT	5043 540
Sbjct	5044	GTGGATTCTGGCGGGAGCATTCAATCCAGAAACGATGCTTGCT	5103
Query	541	CAAGGAGGTTCCCTTCGGGTCCAGCAAGCAATACAGCAAGGGACAAGACGGAAACGCGTC	600
Sbjct	5104 601	CAAGGAGGTTCCCTTCGGGTCCAGCAAGCAATACAGCAAGGGACAAGACGGAAACGCGTC ATAGACGTTCACTGTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGTGGATGAG	5163 660
Query Sbjct	5164	ATAGACGTTCACTGTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGTGGATGAG	5223
Query	661	CATATGTACAGGAAGCGACATGCTTGGCTCGTC 693	
Sbjct	5224	CATATGTACAGGAAGCGACATGCTTGGCTCGTC 5256	
Query	421	ACGCGTCATAGACGTTCACTGTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGT	480
Sbjct	<mark>5157</mark>	ACGCGTCATAGACGTTCACTGTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGT	5216
Query	481	GGATGAGCATATGTACAGGAAGCGACATGCTTGGCTCGTCGTCGTCGTCGTCGGCCCCGA	540
Sbjct Query	5217 541	GGATGAGCATATGTACAGGAAGCGACATGCTTGGCTCGTCGTCGTGATGCCGGGCTCCGA TACGGTTGTCTACGCGAACCGCGTTTTCTATCGATTTGGACTGCAAAGATTTTGCTTGAA	5276 600
Query Sbjct	541 5277	TACGGTTGTCTACGCGAACCGCGTTTCTTATCGATTGGACTGCAAAGATTTTGCTTGAA	5336

Query	601	GATCCCCGAGGTCGCCGCATGCAAGCCAACAAAACTCTCCGTTCATGCTTTCGACGAGTT	660
Sbjct	5337	GATCCCCGAGGTCGCCGCATGCAAGCCAACAAAACTCTCCGTTCATGCTTTCGACGAGTT	5396
Query	661	CAGCACGGACGAGGAAATGGAGCGCTGCGTGTTGGTAACATCTGCACAAACGACCGCGGA	720
Sbjct	5397	CAGCACGGACGAGGAAATGGAGCGCTGCGTGTTGGTAACATCTGCACAAACGACCGCGGA	5456
Query	721	TCCGAGTATCTGA 733	
Sbjct	5457	TCCGAGTATCTGA <mark>5469</mark>	

Brr2 gene inserted into pPiczA (Underlined is the KpnI and NotI restriction sites, and highlighted in green is the kosak consensus sequence; pSR855)

Query	62	cggatc <mark>ggtacc</mark> fccatggtecttcaggaacctgaactagaa 92	
Sbjct			
Query	93	TGCCTCAGGAACCTGAACTAGCAAGTATCGAGGTGTCGCCCCCGACTCCCCGGCGAAAGCT	152
Sbjct	<mark>2</mark>	TGCCTCAGGAACCTGAACTAGCAAGTATCGAGGTGTCGCCCCCGACTCCCGGCGAAAGCT	61
Query	153	CACATTTCATGGAGGCTATACTCCAAGACACTCCAGAATACCGCGTTATATGTGCTGCAG	212
Sbjct	62	CACATTTCATGGAGGCTATACTCCAAGACACTCCAGAATACCGCGTTATATGTGCTGCAG	121
Query	213	CCGTGCGACGAAAGGCGGCTTTGCCTGTTGTTAGCGCCGACTTGTTCAGCGGTACATGCT	272
Sbjct	122	CCGTGCGACGAAAGGCGGCTTTGCCTGTTGTTAGCGCCGACTTGTTCAGCGGTACATGCT	181
Query	273	CTGAACAGTCTGCGCGCGGAGCGCTCTTGGTCAGGTCGGTGACGCTTCCGAGTGGAGCG	332
Sbjct	182	CTGAACAGTCTGCGCGCGCGCGGAGCGCTCTTGGTCAGGTCGGTGACGCTTCCGAGTGGAGCG	241
Query	333	AAATGATCATTCAAAGGCCGGAGACAACTGAAAGTGCGCTATTGAATGATCGTTCATTTG	392
Sbjct	242	AAATGATCATTCAAAGGCCGGAGACAACTGAAAGTGCGCTATTGAATGATCGTTCATTTG	301
Query	393	CTGTCGATGATCTAGCGGGTTACATGAAACCTGCCTTTCAGCATATAGCAAGCCTGAATC	452
Sbjct	302	CTGTCGATGATCTAGCGGGTTACATGAAACCTGCCTTTCAGCATATAGCAAGCCTGAATC	361
Query	453	CTGTCCAGTCCAGCGTTCTGCTCGGGCGTTACGGATGGAAACGTTCTGGTCTGCG	512
Sbjct	362	CTGTCCAGTCCAGCGTTCTGCTCGGGCGTTACGGATGCATGGAAACGTTCTGGTCTGCG	421
Query	513	CACCAACAGGGTCCGGCAAGACGGATATTGCCGTTGCCCTGATTCTTCGCACCCTATTCG	572
Sbjct	422	CACCAACAGGGTCCGGCAAGACGGATATTGCCGTTGCCCTGATTCTTCGCACCCTATTCG	481
Query	573	AGGAATGCGGTGGCGAGCTGCAAGAGTTCAAATGTGTTTATATTGCTCCCAATGCGGGCGC	632
Sbjct	482	AGGAATGCGGTGGCGAGCTGCAAGAGTTCAAATGTGTTTATATTGCTCCAATGCGGGCGC	541
Query	633	TCGTGGGGGAGCTTCAGCGTTCGCTGAGCGCTCGCCTGCGAACCTATGGAATCTTGGTAA	692
Sbjct	542	TCGTGGGGGGGGCTTCAGCGTTCGCTGAGCGCTCGCCTGCGAACCTATGGAATCTTGGTAA	601
Query	693	CGGAGTGTACCGGGGAGCAGCGTCTGAGTCATCGCGACTTGTGGCGCTCCCATATCCTGG	750
Sbjct	602	CGGAGTGTACCGGGGAGCAGCGTCTGAGTCATCGCGACTTGTGGCGCTCCCATATCCTGG	661
Query	751	TGACAACTCCTGAAAAATGGGATGTTCTCACTAGAAGAGCCAACGAACG	809
Sbjct	662	TGACAACTCCTGAAAAATGGGATGTTCTCACTAGAAGAGCCAACGAACG	721
Query	1	CGTCCTTTGCTACGTTTTCTGAAGATTGTCATCATTGATGAGATCCACGTTCTCGATGAT	60
Sbjct	<mark>709</mark>	CGTCCTTTGCTACGTTTTCTGAAGATTGTCATCATTGATGAGATCCACGTTCTCGATGAT	768
Query	61	CCAAAGAGAGGGCCCGTCCTTGAGAGATGCGTAGCTCGTCTACACCATGAAACAGCGTTA	120
Sbjct	769	CCAAAGAGAGGGCCCGTCCTTGAGAGATGCGTAGCTCGTCTACACCATGAAACAGCGTTA	828
Query	121	TTCGGCTATCGAGTACGGCTTGTTGGCCTGAGCGCAACGCTTCCAAACTACGATGACGTG	180
Sbjct	829	TTCGGCTATCGAGTACGGCTTGTTGGCCTGAGCGCAACGCTTCCAAACTACGATGACGTG	888
Query	181	GCGGTCTTCATTCGCGCCAGGCTTCACGAGGGCGTGTTCGTCTTCTCTGAGAGAGA	240
Sbjct	889	GCGGTCTTCATTCGCGCCAGGCTTCACGAGGGCGTGTTCGTCTTCTCTGAGAGAGA	948
Query	241	CCATGCCCCTGGAGCTCCGCCTGGTGGCACTTCGCCATCGCGTTGGCCTTCTAAGTAAG	300

SDJCL	249	CCAIGCCCCIGGAGCIGCGCCIGGIGGCACIICGCCAICGCGIIGGCCIICIAAGIAAG	1000
Query	301	ACCCGGTTCGATCAACTTATGAACCATGCTTTGTGGTTCCAGGTCAAAAAATTTGCCGTA	360
Sbjct	1009	ACCCGGTTCGATCAACTTATGAACCATGCTTTGTGGTTCCAGGTCAAAAAATTTGCCGTA	1068
Query	361	CAGCAGATGGAGCAGGTTTTGGTTTTCGTTCACGAGCGAG	420
Sbjct	1069	CAGCAGATGGAGCAGGTTTTGGTTTTCGTTCACGAGCGAG	1128
Query	421	CACTGGTTGCTTAACGCTGCAGACGGCGAAAACGCTCCCATCCTACAAAGGCGGGAAACG	480
Sbjct	1129	CACTGGTTGCTTAACGCTGCAGACGGCGAAAACGCTCCCATCCTACAAAGGCGGGAAACG	1188
Query	481	GAATGGCTTTCGCCTTCAATCCGTGAGCATTTCAAAAACTTTGGTGAGATTCTCGCCACG	540
Sbjct	1189	GAATGGCTTTCGCCTTCAATCCGTGAGCATTTCAAAAACTTTGGTGAGATTCTCGCCACG	1248
Query	541	GTGAAGAAAGGCATTGGAGTCCATCACGCCGGTTTACCGCGAGAAATCCGCCATCTCATG	600
Sbjct	1249	GTGAAGAAAGGCATTGGAGTCCATCACGCCGGTTTACCGCCGAGAAATCCGCCATCTCATG	1308
Query	601	GAGCAATTGTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGG	660
Sbjct	1309	GAGCAATTGTTTCTGCAGGGCAGCCTCCGTATTATGATATCTACCGCAACGCTAGCATGG	1368
Query	661	GGAGTCAATCTGCCGGCGAACGTGGT 686	
Sbjct	1369	GGAGTCAATCTGCCGGCGAACGTGGT 1394	
Query	1	CGGCGAACGTGGTCGTCATCAAAGGCACGCAGTACTACGACAGTGAGGAGGGTCAGACTG	60
Sbjct	<mark>1382</mark>	CGGCGAACGTGGTCGTCATCAAAGGCACGCACGTACTACGACAGTGAGGAGGGTCAGACTG	1441
Query	61	TCCAACTCGCCCCGCTGCACGTCCTGCAGATGCTCGGCAGAGCGGGCCGCTACCCCTTCC	120
Sbjct	1442	TCCAACTCGCCCCGCTGCACGTCCTGCAGATGCTCGGCAGAGCGGGCCGCTACCCCTTCC	1501
Query	121	ACCAGCGTGGTGTAGGCGTGATCATCACAACCGAACCGGAAGCGCCGCTGTATGCTGCTG	180
Sbjct	1502	ACCAGCGTGGTGTAGGCGTGATCATCACAACCGAACCGGAAGCGCCGCTGTATGCTGCTG	1561
Query	181	TCGTAGCGCACAAGGCCCCCATAGAATCGCATCTCATACCGCAGTTGGCAGATAGCTTGT	240
Sbjct	1562	TCGTAGCGCACAAGGCCCCCATAGAATCGCATCTCATACCGCAGTTGGCAGATAGCTTGT	1621
Query	241	TGGCCGAAGTTGCGGGCGGCTCCCTCAGCACCGTCGAAGAGGCAGCAGCAGGTGGCTCAAAT	300
Sbjct	1622	TGGCCGAAGTTGCGGGCGGCTCCCTCAGCACCGTCGAAGAGGCAGCAGAGTGGCTCAAAT	1681
Query	301	ACACATTCCTCTTCGATCGAATGCTGCGGAATCCATCTCTCGAGTGGATGCCGCATTTCG	360
Sbjct	1682	ACACATTCCTCTTCGTTCGAATGCTGCGGAATCCATCTCTCGAGTGGATGCCGCATTTCG	1741
Query	361	CGAGCAAGCGGCCTGCCGATGGAGAAGATGTTTCCCTCTGGGGCGTTCGGCTCCGACTTT	420
Sbjct	1742	CGAGCAAGCGGCCTGCCGATGGAGAAGATGTTTCCCTCTGGGGCGTTCGGCTCCGACTTT	1801
Query	421	GCCATTCGGTGGCGAAAGAGCTCGCCCGGAATGAGCTGTTGCGCTACGGCGAAAATCTAG	480
Sbjct	1802	GCCATTCGGTGGCGAAAGAGCTCGCCCGGAATGAGCTGTTGCGCTACGGCGAAAATCTAG	1861
Query	481	AGATGACTGTAACAGCTCGCGGTAACGTGGCTTCTGCCGTTTATGCTTCCCTACGACACGC	540
Sbjct	1862	AGATGACTGTAACAGCTCGCGGTAACGTGGCTTCTGCGTTTATGCTTCCCTACGACACGC	1921

Query Sbjct	541 1922	TGCGGACAATAGAGGCATACCTTCACCCAACAGGCGCTCTCCCAGAGTTGATCCATCTGC	600 1981
Query Sbjct	601 1982	TCGCAGTTGCCTCACCTGCACTTCGGAACCTCAGTCTACCACGGGAAAGCGAAAGCCGAG	660 2041
Query Sbjct	661 2042	AGTTGCGCAGGTTCTCTTGGCGCCTACTGATACCGCTTTGGGATCCTGACAGA 713	
Query			
Sbjct	1 <mark>1974</mark>	CCATCTGCTCGCAGTTGCCTCACCTGCACTTCGGAACCTCAGTCTACCACGGGAAAGCGA	60 2033

	2154	GCCCGCATTATCGCAGGACTGCTCTTCGATACTGGAAGAGTCTCAGCGGATGCTGCGTGC	2213
Query	241	GGTGCATGCGCTTTCTGCAACCTTGGGAATGGCTGTACCCATGCGTTTGAGCTTGCTACT	300
Sbjct	2214	GGTGCATGCGCTTTCTGCAACCTTGGGAATGGCTGTACCCATGCGTTTGAGCTTGCTACT	2273
Query	301	CGCCAAGAAACTTGAGCATCAACAAACGCGTATTCTGCAAGGCGCCCTCAGGGGGGGG	360
Sbjct	2274	CGCCAAGAAACTTGAGCATCAACAAACGCGTATTCTGCAAGGCGCCCTCAGGGGGGGG	2333
Query	361	CAGCAACGATCAGAGCGGTAGCACACAGCTCCGGCATGCAACCCCGTAAGACGCACAACAG	420
Sbjct	2334	CAGCAACGATCAGAGCGGTAGCACAAGCTCCGGCATGCAACCCCGTAAGACGCACAACAG	2393
Query	421	CAAAGGCCAGCCAGAGCAACACAGCGAAACCGAGGCGCTGCGTTGCTTTTCGCCTTCAGT	480
Sbjct	2394	CAAAGGCCAGCCAGAGCAACAGCGAAACCGAGGCGCTGCGTTGCTTTTCGCCTTCAGT	2453
Query	481	CGGCGACTGGATGCCTCCCGCGGTGTTATGCAGCGCCTCTGGGGCGTCAGCAGTGTGCCGT	540
Sbjct	2454	CGGCGACTGGATGCCTCCCGCGGTGTTATGCAGCGCTCTGGGGCGTCAGCAGTGTGCCGT	2513
Query	541	TCGTTCCTGGATAGCCTTCGAGAGCGCGCTTCTACCCGTTTCAGCAGACACGTTGCGTTT	600
Sbjct	2514	TCGTTCCTGGATAGCCTTCGAGAGCGCGCTTCTACCCGTTTCAGCAGACACGTTGCGTTT	2573
Query	601	CGAATGTCGCATCGCGCTGCAGGATAGCTCCTGTATCGACAGTACGGAACGCTCTGGGT	660
Sbjct	2574 661	ATCCCTCGAGGATGCCACTGGTGAAGAGCCTTTTTCGCTGCCTCGCCTGGTCCTCCGTGA	2633 720
Query Sbjct	2634	ATCCTCGAGGATGCCACTGGTGAAGAGCCTTTTTCGCTGCTGCCGCGGTGCTCCCGTGA	2693
Query	721	AGCGAAATATCACCTTGTCGGATGCTGTTCGGTTCCACCGTGGCAGCGAACCTCA 775	2000
Sbjct	2694	AGCGAAATATCACCTTGTCGGATGCTGTTCGGTTCCACCGTGGCAGCGAACCTCA 2748	
Query	1	TTTTTCGCTGCTCGCCTGGTCCTCCGTGAAGCGAAATATCACCTTGTCGGATGCTGTTCG	60
Sbjct	<mark>2665</mark>	TTTTTCGCTGCTCGCCTGGTCCTCCGTGAAGCGAAATATCACCTTGTCGGATGCTGTTCG	2724
Query	61	GTTCCACCGTGGCAGCGAACCTCAGTCGCTTTCTGGAGAATTGCCGCCGAAGAGCATCTG	120
Sbjct	2725	GTTCCACCGTGGCAGCGAACCTCAGTCGCTTTCTGGAGAATTGCCGCCGAAGAGCATCTG	2784
Query	121	GTTGACGACTTTCTGCAAGCTGAGTGTTTGCGCGGACCTCCCGTGGCCAGTTGACGATAAC	180
Sbjct	2785	GTTGACGACTTTCTGCAAGCTGAGTGTTTGCGCGACCTCCCGTGGCCAGTTGACGATAAC	2844
~			0.4.0
Query	181	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTTAGTCGTCTAGCGGCGGCC	240
Sbjct	2845	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTTAGTCGTCTAGCGGCGGCC	2904
Sbjct Query	2845 241	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA	2904 300
Sbjct Query Sbjct	2845 241 2905	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA IIIIIIIIIIIIIIIIIIIIIIIIIII	2904 300 2964
Sbjct Query Sbjct Query	2845 241	CGAGACCCTGGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCCTCCGGGACAGCGA CCTGGGGTATTGCTGCGATACCGTTCCGGCCCGAACGGATCCGGTCCCGCGGCTGCG CCTGGGGTATTGCTGCGATACCGTTCCGGCCCGAACGGATCGGTCCCGCGCCTGCG	2904 300
Sbjct Query Sbjct	2845 241 2905 301	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCCTCCGGGACAGCGA IIIIIIIIIIIIIIIIIIIIIIIIIII	2904 300 2964 360
Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGCGACAGCGA CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC	2904 300 2964 360 3024
Sbjct Query Sbjct Query Sbjct Query	2845 241 2905 301 2965 361	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTACCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGGCCTCCGGGACAGCGA CCTGGGGTATTGTTGCGATACCGTTCCGACCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGCCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGCCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATGGTTGCGAAAACGCCTCGTGTGCTATGTGTCTCCCACATCGCTCGC	2904 300 2964 360 3024 420
Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCGGGGACAGCGA CCTGGGGTATTGTTGCGATACCGTTCCGGCCCGAACGGATCGGGTCCGGGGCTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	2904 300 2964 360 3024 420 3084
Sbjct Query Sbjct Query Sbjct Query Sbjct Query	2845 241 2905 301 2965 361 3025 421	CGCAGTGGCATAGAAAACTTTCACGACGGCGCGCGCGCGC	2904 300 2964 360 3024 420 3084 480
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025 421 3085	CGAATTGCCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTACCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA CGTGGGGCATTGTTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA CCTGGGGTATTGTTTCCGGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTGC CCTCACGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	2904 300 2964 360 3024 420 3084 480 3144
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025 421 3085 481	CGCAGTGGCATAGAAAACTTTCATGCCTCGCCGCAGCGACGAGCGCCTCCG CCCCGCGGCATAGAAAACTTCCAGCCTGCGCAGCGACGGACG	2904 300 2964 360 3024 420 3084 480 3144 540
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025 421 3085 481 3145	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGGCCTCGGGACAGCGA CCTGGGGTATTGTTTGCGATACCGTTCCGACACGGACCGGGTCCCGGGGCTGC CCTGGGGTATTGTTTGCGATACCGTTCCGCCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGCCCGAACGGATCCGGTGCCTCGCGGCTGG CCTGGGGTATGTTTGCGATACGCTCCGTGTGCTATGTGTCTCCACATCGCTCGC	2904 300 2964 360 3024 420 3084 480 3144 540 3204
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	2845 241 2905 301 2965 361 3025 421 3085 481 3145 541	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTGGCGTCAGCGGGCGG	2904 300 2964 3024 420 3084 480 3144 540 3204 600
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025 421 3085 481 3145 541 3205	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTCGTCTAGCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA CCTGGGGTATTGTTTCCGGCTATCTCAAAATGGTGATGGACTGGCCTCGCGGACAGCGA CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCGGGTCCGGGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CTCACGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	2904 300 2964 360 3024 420 3084 480 3144 540 3204 600 3264
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	2845 241 2905 301 2965 361 3025 421 3085 481 3145 541 3205 601	CGCACTGCCCCAAACACTTCCCCCCCGCACGCCCCGCCC	2904 300 2964 360 3024 420 3084 480 3144 540 3204 600 3264 660
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	2845 241 2905 301 2965 361 3025 421 3085 481 3145 541 3205 601 3265	CGAATTGCCCCGAGATCGGCCGCTTTGTATTTCACGACTTAGTGTGTCTACCGGCGGCC TGTGAGACCCTGATTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA CCTGGGGATTGTTTCCAGGCTATCTCAAAATGGTGATGGACTGCGCTCCGGGACAGCGA CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CCTGGGGTATTGTTTGCGATACCGTTCCGGCCCGAACGGATCCGGTGCCTCGCGGCTTGC CTCACGGTAGCGCGTGAAAAACGCCTCGTGTGCTATGTGTCTCCACATCGCTCGC	2904 300 2964 360 3024 420 3084 480 3144 540 3204 600 3264 660

Query 181 GCCCGCATTATCGCAGGACTGCTCTTCGATACTGGAAGAGTCTCAGCGGATGCTGCGCTGC 240

Query Sbjct	1 <mark>3292</mark>	GACCTCGAGTCTGTATCATGGGATCCAAGCTACGAGTTTTTGCTCATGAATCTGGCAAGA	60 3351
Query	61	GCTGAGCAGGTTCTTTTTTCGGAGCATTTCCAGAATGTCGACCAAGTATTGCGCTGGCTT	120
Sbjct	3352	GCTGAGCAGGTTCTTTTTCGGAGCATTTCCAGAATGTCGACCAAGTATTGCGCTGGCTT	3411
Query	121	GGACTGGATCCGTCTCGAATGCTCCAGTTTGAGTGGCAACCTCCGGGTGAGGCTTCGCCG	180
Sbjct	3412	GGACTGGATCCGTCTCGAATGCTCCAGTTTGAGTGGCAACCTCCGGGTGAGGCTTCGCCG	3471
Query	181	CTCATTACCACTGCGGACGAGGCACTTCTGAACCGGCCTCGGCTGGCGGAGGCGCTCC	240
Sbjct	3472	CTCATTACCACTGCGGACGAGGCACTTCTGAACCGGCCTCGGCTGGTGGCGAAGCGCTTC	3531
Query	241	${\tt TGGCGTGCATTTCGTCGGATAGCGCCTCCTCGAGGACCACAATTCGTCGCTGTTTGCGCG}$	300
Sbjct	3532	TGGCGTGCATTTCGTCGGATAGCGCCTCCTCGAGGACCACAATTCGTCGCCGCTGTTTGCGCG	3591
Query	301	GTCATGCGCGATGCGCTCTTACTTGGGGCAGAGCTAGCGCGACAGAGTCCGTACCGCAGT	360
Sbjct	3592	GTCATGCGCGATGCGCTCTTACTTGGGGCAGAGCTAGCGCGACAGAGTCCGTACCGCAGT	3651
Query	361	GAGTGCCCTGCACGTTTGGCAGCGTCGTTAACCGCCGCGGAGCGAGC	420
Sbjct	3652	GAGTGCCCTGCACGTTTGGCAGCGTCGTTAACCGCCGCGGAGCGACCGCTCCTCGAGCGT	3711
Query	421	GGCATCTGGTTACCCACGAGGAGTACCAGCTACGAGACAGGTGCACCCCCGGGGCACACC	480
Sbjct	3712	GCATCTGGTTACCCACGAGGAGTACCAGCTACGAGACAGGTGCACCCCCGGGGCACACC	3771
Query	481	AATGTCCGCGTCGTAGTCATCGAGATCGGAGAATTACTCCTGCTCCCGAGCGATGGCAAT	540
	3772	AATGTCCGCGTCGTAGTCATCGAGATCGGAGAATTACTCCTGCTCCCCGAGCGATGGCAAT	
Sbjct			3831
Query	541	GAATACGCCTTCGCATTCATGGTGGGCAACGGCTTTGCGCAGGCATCGTCGCGCCCACGG	600
Sbjct	3832	GAATACGCCTTCGCATTCATGGTGGGCAACGGCTTTGCGCAGGCATCGTCGCGCCCACGG	3891
Query	601	GAGAACCTGTTCC 613	
Sbjct	3892	GAGAACCTGTTCC <mark>3905</mark>	
Query	1	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC	60
Query Sbjct	1 <mark>3905</mark>	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC	60 3964
Sbjct Query	<mark>3905</mark>	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC	3964
Sbjct Query Sbjct	<mark>3905</mark> 61 3965	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCCGGTTTCGGTCCTAGTGCCAC CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3964 120 4024
Sbjct Query Sbjct Query	<mark>3905</mark> 61 3965 121	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTTCGGTCCTAGTGCCAC CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG	3964 120 4024 180
Sbjct Query Sbjct Query Sbjct	<mark>3905</mark> 61 3965 121 4025	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTTCGGTCCTAGTGCCAC CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGCGAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTTTTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTTTTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG	3964 120 4024 180 4084
Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181	CGCATCTTGAGGGACTGATGCAGCCGCCGCGCGAATTGGCCCCGGTTCCGGTCCTAGGCCCCGC CGCATCTTGAGGGACTGATGCAGCTGCCGCGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCCGCCGCGGGCAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGGCCGCACCTCTCACCGGTACCGGTACCTGCAGGCACA	3964 120 4024 180 4084 240
Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGGAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA	3964 120 4024 180 4084 240 4144
Sbjet Query Sbjet Query Sbjet Query Sbjet Query	3905 61 3965 121 4025 181 4085 241	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTCGGTCCTAGTGCCAC GCGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGGATCTATCTGGGGGCTGATGCAGCTGCCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGGATCTATTCTGGGAGTTATTATTGTTCATCAGGTAGCACGGGCACACTGCAGAGCTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGAGCTG CCGAGCTGCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGCACACTGCAGACTG CCGAGCAGGTTGCTGGAGCTCATGAGCCGCACCTCTCACCGCTACCGCTACCGCAGCACA CCGAGCAGGTTGCTGAGCCCGACCCCTCTACCGCTACCGTACCTGCAGCATA CCGGACGGGTGCTGAGGCCCGCACTCCTACCGCTACCGTACCTGCAGCATA CGGCCTGCGGAGGCTGTGCGAAGTGATATCGCTGGGCACGCGAGCTCGACAGAATAGCTC	3964 120 4024 180 4084 240 4144 300
Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085	CGGAGCTGCTGGGGGCCGCGGCGAATGCCCGCGGGGCGCGAATGCCCGGCGCGAATGCCCGGCCCGGGGCCAATGCCCCGGCCCGCGCGAATGCCCCGGCCCATGGCCCGCGCGCG	3964 120 4024 180 4084 240 4144
Sbjet Query Sbjet Query Sbjet Query Sbjet Query	3905 61 3965 121 4025 181 4085 241	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTCGGTCCTAGTGCCAC GCGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGGATCTATCTGGGGGCTGATGCAGCGCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGGATCTATTCTGGGAGTTATTATTGTTCATCAGGTAGCACGGGCACACTGCAGGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGAGCTG CCGAGCAGGTTGCTGGGGCTCATGAGCCGCACCTCTACCGCTACCGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCCCGAGCCGCACCTCCTACCGCTACCGCTACCGCAGCACA CCGAGCAGGTTGCTGAGCCCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCACA CCGAGCAGGTTGCTGAGCCCGAACTGATATCGCTGGGCACACGGAGCTCGACAGAATAGCTC CCGGCGGGGCGCGCGCGCGCGCGCGGCGCGGAGCTGGACAGAATAGCTC	3964 120 4024 180 4084 240 4144 300
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTCGGCCAGGGCCCGCGCGAGTGCCGAGGCCCGCTGGGGCCCGCGCGAATTGGCCCGCGGCCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGAGCTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCTGCTGGGGCTCATGAGCCGCACCTCTCACCGCTACCGGCACACTGCAGCTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCACCGCTACCTGCAGCACA CCGGCGGGGGCGCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTCGACAGAATAGCTC CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGGGCCCGCACACTGCAAATAGCTC TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCACTTGCTCCGAATTCGCA	3964 120 4024 180 4084 240 4144 300 4204
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301	Initial initinitial initinitial initinitial initial initial initial initial ini	3964 120 4024 180 4084 240 4144 300 4204 360
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGGCCCGGTTCGGCCAGGGCCCGCGCGAGTGCCGGCGCGCGC	3964 120 4024 180 4084 240 4144 300 4204 360 4264
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361	Initial and an antice of the second secon	3964 120 4024 180 4084 240 4144 300 4204 360 4264 420
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAG GCGATCTTGAGGGACTGATGCAGCTGCCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTCATGAGCCGCACCTCTCACCGCTACCGTACCTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGCGAGCGA	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4224
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421	GTTGGAGTTGTCGCTACTTTGCCAGGATTGCCAGAGGGCCCGGTTTGGGTCCTAGTGCCAG GCGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGAATTGGCCTCCAGTCATAGACTCTGTG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGAATTGGCCTCCAGTCATAGACTCTGTG CGCATCTTATCTGGGAGTTATTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCAGCACCACGAATAGCTC CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGCGCGC	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4224 4324
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4205 421 4325	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAC GCGATCTTGAGGGACTGATGCAGCTGCCGCGCGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTCG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTCGACAGAATAGCTC CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTCGACAGAATAGCTC TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCCCCCGGCTGGCATTCTGTTCCGGTA TCGAAGTGCAGACACGCCGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 422 420 4324 480 4384
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421 4325 481	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAG GCGCATCTTGAGGGACTGATGCAGCTGCCGCGCGGAATTGGCCTCCAGTCATAGACTCTGTG CGGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGAATTGGCCTCCAGTCATAGACTCTGTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTCATGAGCCGCACTCTCTACCGGTACCGTTACCTGCAGACTG CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGACTA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGCACAGAATAGCTC CCGAGCCGGCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTGGCAGCAGAATAGCTC TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCACTTGCTCCGAATTCGCA ATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCCCCCCGGCTGGCATTCTGTTCCGGTA ATGACGGGCGCTTTGATGTCGCGATGTCGTCGCTCCCCGGCTGGCATTCTGTTCCGGTA ATGACGGGCGCTTTGATGTCGCGATGTCGTCGCTCCCCGGCTGGCATTCTGTTCCGGTA CCGAAGTGCAGACAGCGCGCACGCATTTTAGATCGGTTTCCAGGTAGATAACCAGGA CCGAGTGCAGACAGCGCGTACGATTTTAGATCGGTTTCCAGGTAGATACCAGGA CGGCCTTTGGACAGCGCGTACGATTTTAGATCGGTTTCCAGGTAGATAACCAGGA CGGCCCTTTGGACAGCGCGACGCTGCGCGCAGCGGCACCGGTGCGTATACCAGGA CGGCCTTTGGACAGCGCGTACGCTGGCGCGCACCGGCGCCCCGGCGTGCGT	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4384 540
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421 4325 481 4385	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAG GCGATCTTGAGGGACTGATGCAGCTGCCGGCGGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGAATTGGCCTCCAGTCATAGACTCTGTCG CGGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGACGCGCGCTGTGCGAAGTGATATCGCTGGGCAGCGCGCACCAGAATAGCTC TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCTCCCGGCTGGCATCTGTTCGGTA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCCTCCCGGCTGGCATCTGTTCGGTA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCTCCCGGCTGGCATCTGTTCGGTA CCGAAGTGCAGACACGGCGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA GTGCGCTTTTGGACAGGGCGTACGCTGCGCGCTCCGGCAGCCGGCTGTGGTAGCAGAGG GTGCGCTTTTGGACATGTCGCCGAACTGGTTACCGGAACTCGGTCGTGCTGCCGCGCTGGCGATGCCGGCTGTGGTGGTGCGTGC	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4324 480 4384 540
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421 4325 481 4385 541 4445	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCCGGAATTGGCCTCCAGTCATAGACTCTGTG GCGCATCTTGAGGGACTGATGCAGCTGCCGCGGCGAATTGGCCTCCAGTCATAGACTCTGTG CGCATCTTTGAGGGACTGATGCAGCTGCCGCGGGGAATTGGCCTCCAGTCATAGACTCTGTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGACAGGTTGCTGAGGTCATGAGCCGCACTCTCTACCGCTACCGTACCTGCAGCATA CCGACCAGGTTGCTGAGGTCATGAGCGCGCACCGCGCGCG	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4324 480 4384 540 4444 600 4504
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421 4325 481 4385 541 4445 601	Initiation Initiation GTTGGAGTTGTCGCTACTTTGCCAGGATTTGCCAGGATTGGCCCCGGTTTCGGTCCTAGTGCCAG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGGCAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTATCTGGGAGTTATTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGCGCCGCGGTGCGAAGGCAATAGCTCATCAGCGCAGCCGCACCGACAGAATAGCTC CCGCGCCGCGGCGCTGTCCGAAGTGATATCGCTGGGCAGCAGCCGACCTGACAGAATAGCTC TATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCCCCCGGCTGGCATTCTGTTCCGGTA TCGAAGGCGCGTTGCATGCGCGATGCGTCCCCGGCTGGCATTCTGTTCCGGTA TCGAAGGCGCGTTTGATTGTCGCGATGTCGTCGCCCCCCGGCTGGCATTCTGTTCGGTA TCGAAGTGCAGACACGCGCTACGATTTAGATCGGTTTCAGGTAGGCGATAACCAGGA GTGCGCTTTTGGACAGCGCGTACCGTTCGCTGAAACCAGGA GTGCGCTTTTGGACAAGGTCGCGCAACTGGTTGCGCGATCGGTCGG	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4324 480 4384 540 4444 600 4504 660
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4205 421 4325 481 4325 541 4385 541 4445 601	GTTGGAGTTGTCGCTACTTTGCCAGGATATGCAGAGGTCCGGTTTCGGTCCTAGTGCCAG GCGATCTTGAGGGACTGATGCAGCTGCCGCGCGAATTGGCCTCCAGTCATAGACTCTGTG CGCATCTTTGAGGGACTGATGCAGCTGCCGCGCGAATTGGCCTCCAGTCATAGACTCTGTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CTGATCTATTCTGGGAGTTATTTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACTCTCTACCGCTACCGTTACCTGCAGCATA CCGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTCGACAGAATAGCTC CGGCTGCGAGGCCGCTGTGCGAAGTGATATCGCTGGGCAGCGAGCTCGACAGAATAGCTC TAATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCTCCCCGGCTGGCATTCTGTTCGGTA TCGAAGTGCAGACAGCGCGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA GTCGCATTTGGACATGTTCGCTGAACTGGTTTCCGGTAGGGTGATAACCAGGA GTCGCCTTTTGGACATGTTCGCTGAACACTGGTTTCCGGTAGGGTGATAACCAGGA GTCGCAGTCGCCAGGCGGTACGATTTTAGATCGGTTTTCAGGTAGGGTGATAACCAGGA GTCGCCTTTTGGACATGTTCGCTGAACACTGGTTACCGGTATCGGTCGTCGCTCCCGACTCGGTTGGTT	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4324 480 4384 540 4444 600 4504
Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	3905 61 3965 121 4025 181 4085 241 4145 301 4205 361 4265 421 4325 481 4385 541 4445 601	Initiation Initiation GTTGGAGTTGTCGCTACTTTGCCAGGATTTGCCAGGATTGGCCCCGGTTTCGGTCCTAGTGCCAG CGCATCTTGAGGGACTGATGCAGCTGCCGGCGGCAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTGAGGGACTGATGCAGCTGCCGCGGGGGAATTGGCCTCCAGTCATAGACTCTGTCG CGCATCTTATCTGGGAGTTATTATTGTTCATCAGGTAGCACGGGGCACACTGCAGACTG CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGAGCAGGTTGCTGAGCTCATGAGCCGCACCTCTCTACCGCTACCGTACCTGCAGCATA CCGCGCCGCGGTGCGAAGGCAATAGCTCATCAGCGCAGCCGCACCGACAGAATAGCTC CCGCGCCGCGGCGCTGTCCGAAGTGATATCGCTGGGCAGCAGCCGACCTGACAGAATAGCTC TATGACCAGACTCGTCACAGAAAAACTTATCAGCGAATGCAACTTGCTCCGAATTCGCA ATGACGGGCGCTTTGATTGTCGCGATGTCGTCGCCCCCGGCTGGCATTCTGTTCCGGTA TCGAAGGCGCGTTGCATGCGCGATGCGTCCCCGGCTGGCATTCTGTTCCGGTA TCGAAGGCGCGTTTGATTGTCGCGATGTCGTCGCCCCCCGGCTGGCATTCTGTTCGGTA TCGAAGTGCAGACACGCGCTACGATTTAGATCGGTTTCAGGTAGGCGATAACCAGGA GTGCGCTTTTGGACAGCGCGTACCGTTCGCTGAAACCAGGA GTGCGCTTTTGGACAAGGTCGCGCAACTGGTTGCGCGATCGGTCGG	3964 120 4024 180 4084 240 4144 300 4204 360 4204 420 4324 480 4324 480 4384 540 4384 540 4444 600 4504 660 4564

Query Sbjct	1 <mark>4577</mark>	CGCCACCGACGTCACAGTTTTGCTGGCGGAGGCTTTTGGAGGAGCTCAGTGGCGCTTGGG 	60 4636
Query	61	AGCGACTACTACCGGCACTGGTGTTTACGGGTCTCGCCCGTCTTTGTTGGAGCGCTTTCC	120
Sbjct	4637	AGCGACTACTACCGGCACTGGTGTTTACGGGTCTCGCCCGTCTTTGTTGGAGCGCTTTCC	4696
Query	121	GCCAGTTCCACAAGATCACTCGAACGCTTTCGTTCGAGCTTATGGTTAGTGGCTCGCCGT	180
Sbjct	4697	GCCAGTTCCACAAGATCACTCGAACGCTTTCGTTCGAGCTTATGGTTAGTGGCTCGCCGT	4756
Query	181	TGCGATCACGAGAGCAGAGCCACCTCACTAAGCCTGCAGACGATTTGGATGATGCTGTTG	240
Sbjct	4757	TGCGATCACGAGAGCAGAGCCACCTCACTAAGCCTGCAGACGATTTGGATGATGCTGTTG	4816
Query	241	GCGAGGAGCCCGATGGCCGCATAGCACAGATTGAGCATCACATGGGTGCCGAATACCGGG	300
Sbjct	4817	GCGAGGAGCCCGATGGCCGCATAGCACAGATTGAGCATCACATGGGTGCCGAATACCGGG	4876
Query	301	AGCGCTGTACGAGTTACCTGCATCAGATGGATCACgagcagcatgagcagcatgagcagc	360
Sbjct	4877	AGCGCTGTACGAGTTACCTGCATCAGATGGATCACGAGCAGCATGAGCAGCATGAGCAGC	4936
Query	361	atgagcagcatgagcGCCAAGCGGATCTCGGAAACGAGCCGCACCGGATAGAACGTCGCG	420
Sbjct	4937	ATGAGCAGCATGAGCGCCAAGCGGATCTCGGAAACGAGCCGCACCGGATAGAACGTCGCG	4996
Query	421	CACGTGGACGTCACCTGCAAGCAAAACTGGCGGCAGCGGCGGGGGATGGTGGATTCTGGCG	480
Sbjct	4997	CACGTGGACGTCACCTGCAAGCAAAACTGGCGGCAGCGGCGGGGATGGTGGATTCTGGCG	5056
Query	481	GGAGCATTCAATCCAGAAACGATGCTTTCTTTCATCTTCATCCTCGGCAAGGAGGTTCCC	540
Sbjct	5057	GGAGCATTCAATCCAGAAACGATGCTTGCTTTCATCTTCATCCTCGGCAAGGAGGTTCCC	5116
Query	541	TTCGGGTCCAGCAAGCAATACAGCAAGGGACAAGACGGAAACGCGTCATAGACGTTCACT	600
Sbjct	5117	TTCGGGTCCAGCAAGCAATACAGCAAGGGACAAGACGGAAACGCGTCATAGACGTTCACT	5176
Query	601	GTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGTGGATGAGCATATGTACAGGA	660
Sbjct	5177	GTATTGACATAGCATTGGGGCAGCGAACCGAGAAACCCGTGGATGAGCATATGTACAGGA	5236
Query	661	AGCGACATGCTTGGCTCGTCGTCGTGATGCCGGCTCCGATACGGTTGTCTACGCGAACC	720
Sbjct	5237	AGCGACATGCTTGGCTCGTCGTCCGTGATGCCGGCTCCGATACGGTTGTCTACGCGAACC	5296
Query	721	GCGTTTTCTATCGATTTGGACTGCAAAGATTTTGCTTGAAGATCCC 766	
Sbjct	5297	GCGTTTTCTATCGATTTGGACTGCAAAGATTTTGCTTGAAGATCCC 5342	
Query	421	AATACAGCAAGGGACAAGACGGAAACGCGTCATAGACGTTCACTGTATTGACATAGCATT	480
Sbjct	<mark>5133</mark>	AATACAGCAAGGGACAAGACGGAAACGCGTCATAGACGTTCACTGTATTGACATAGCATT	5192
Query	481	GGGGCAGCGAACCGAGAAACCCGTGGATGAGCATATGTACAGGAAGCGACATGCTTGGCT	540
Sbjct	5193	GGGGCAGCGAACCGAGAAACCCGTGGATGAGCATATGTACAGGAAGCGACATGCTTGGCT	5252
Query	541	CGTCGTCCGTGATGCCGGCTCCGATACGGTTGTCTACGCGAACCGCGTTTTCTATCGATT	600
Sbjct	5253	CGTCGTCCGTGATGCCGGCTCCGATACGGTTGTCTACGCGAACCGCGTTTTCTATCGATT	5312
Query	601	TGGACTGCAAAGATTTTGCTTGAAGATCCCCGAGGTCGCCGCATGCAAGCCAACAAAACT	660
Sbjct	5313	TGGACTGCAAAGATTTTGCTTGAAGATCCCCGAGGTCGCCGCATGCAAGCCAACAAAACT	5372
Query	661	CTCCGTTCATGCTTTCGACGAGTTCAGCACGGACGAGGAAATGGAGCGCTGCGTGTTGGT	720
Sbjct	5373	CTCCGTTCATGCTTTCGACGAGTTCAGCACGAGGAAATGGAGCGCTGCGTGTTGGT	5432
Query	721	AACATCTGCACAAACGACCGCGGATCCGAGTATC 754	
Sbjct	5433	AACATCTGCACAAACGACCGCGGATCCGAGTATC <mark>5466</mark>	

Snu114 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR647)

 Query
 38
 TACTTCCAATCCCACGAGGAGAAATTAACT
 68

Sbjct			
Query	69 <mark>1</mark>	ATGAGTTCAGCGTTTCGTGGTGGCGAAACTGATGAGGTCGGCAGTATCCTGGTTCATGGT ATGAGTTCAGCGTTTCGTGGTGGCGAAACTGATGAGGTCGGCAGTATCCTGGTTCATGGT ATGAGTTCAGCGTTTCGTGGTGGCGAAACTGATGAGGTCGGCAGTATCCTGGTTCATGGT	128 60
Sbjct Query	- 129	GGCGCACGACACGGACGTTCTGACGCTCTGGACGCCGTAGCTTCCCGACGAATGTGTGCCA	188
Sbjct	61	GGCGCACGACACGGACGTTCTGACGCTCTGGAGGCCGTAGCTTCCGACGAATGTGTGCCA	120
Query	189	GCTATCGAGACGCTTACAGCAACCACCCCGGCTTACCGCTAGCGATTCCGCGTCGAAGG	248
Sbjct	121	GCTATCGAGACGCTTACAGCAACCACACCCGGCTTACCGCTAGCGATTCCGCGTCGAAGG	180
Query	249	TTGCGCAAACGTCACCGCATCCAAGAGACACAAACCCCTGAACCAATCCCTGCACTCACT	308
Sbjct	181	TTGCGCAAACGTCACCGCATCCAAGAGACACAAACCCCTGAACCAATCCCTGCACTCACT	240
Query	309	CGCGTACGCACGCGAGCACCAAAGCGACATCAGGCACCGAGGGACGCTGGGTTCTATGTC	368
Sbjct	241		300
Query Sbjct	369 301	CAGGCGCACCACTGCGCTTCAAGGTGTCGCGAAGGTACCTTTTGCATCTTGCGAAACAC	428 360
Query	429	GCCGGTCCCGAGCGTATCTGGAACATTCTGGTTGCGGGTCACTACCATCATGGAAAAACA	488
Sbjct	361	GCCGGTCCCGAGCGTATCTGGAACATTCTGGTTGCGGGTCACTACCATCATGGAAAAACA	420
Query	489	AGCCTCATCGACTTGTTGGTAAGTCACCAGCTGCATCCGGCTGCAGCAACCCGTTACATG	548
Sbjct	421	AGCCTCATCGACTTGTTGGTAAGTCACCAGCTGCATCCGGCTGCAGCAACCCGTTACATG	480
Query	549	ATAGGCCCGCGGCGACACCAGCAACAACCGCGCTGGACGGATACGCGTCGGGACGAACTC	608
Sbjct	481	ATAGGCCCGCGGCGACACCAGCAACAACCGCGCTGGACGGATACGCGTCGGGACGAACTC	540
Query	609	TCCCGAGGAATGTCGCTTCAGCTTGCATGCCGCTCTGGGTACCAGACGAGCACGGT	668
Sbjct	541	TCCCGAGGAATGTCGCTTCAGCTTGCTTTCATGCCGCTCTGGGTACCAGACGAGCACGGT	600
Query	669 601	GTATCTCAACTGGGTGACGCTGATGGATGCTCCCGGACATGCAGACTTCTTCGATCAGGGT	727
Sbjct Query	728	GTGGTGGGTGCAACGCTCGCAGATGCACGACGTCCTCGGTGGTCGACAGTCCTCGCAGGTGCCAACGCTCGCAGATGCACGACGTCCGCAGATGCCGACAGTGCCGACAGTGCGACGACGACGACGACGGACG	660
Sbjct	661	GTGGTGGTGGACACGCTCGCAGATGCAGTGCTCTCGGTGGTCGACAGTGCCGA 713	
Query	1	CTCGCAGATGCAGTGCTTCTGGTGGTCGACAGTGCCGAAGGCGTCCTGCTAGGTACAGAG	60
Sbjct	<mark>676</mark>	CTCGCAGATGCAGTGCTTCTGGTGGTCGACAGTGCCGAAGGCGTCCTGCTAGGTACAGAG	
Query	C 1	CICGCHGHIGCHGIGCIICIGGIGGICGHCHGIGCCGHHGGCGICCIGCIHGGIACHGHG	735
	61	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTTGACGCAGCTC	735 120
Sbjct	61 736		
Query	736 121	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC	120 795 180
Query Sbjct	736 121 796	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTACGCCAGCTC	120 795 180 855
Query Sbjct Query	736 121 796 181	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCCCCTTGGCGCTGGAGATGTCCCCTCCGCTGATCCTGGTGTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC CCCCCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT CCCCCTCGATGCCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT	120 795 180 855 240
Query Sbjct Query Sbjct	736 121 796	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCGCCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855
Query Sbjct Query	736 121 796 181 856	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCGCCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC CICICICICICICICICICICICICICICICICICI	120 795 180 855 240 915
Query Sbjct Query Sbjct Query	736 121 796 181 856 241	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC GACCGCTTGATACTTGAGTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACATGCCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCCTACTTT GACCCAAGGCCACCACATGCCCTATTGCAACGTTTGCAAGCCTCGAAAGGTCCCGTACTT GACCCAAGGCCACCACATGCCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC AGCCCAAGGCCACCACATGCCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC AGCCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC	120 795 180 855 240 915 300
Query Sbjct Query Sbjct Query Sbjct	736 121 796 181 856 241 916	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855 240 915 300 975
Query Sbjct Query Sbjct Query Sbjct Query	736 121 796 181 856 241 916 301	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCC CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCCTTCCGCTGATCCTGGTGTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATACCTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACAGCCTAATGCACGTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACAGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCATGGACATTGTCGAGAAGTGGTATGGTTCGGCTTTGGAGGTGCAGCGTGAACGT AGCCCATGGACATTGTCGAGAAGTGGTATGGTTCGGCTTTGGAGGTGCAGCGTGAACGT CGTGGACCGGTGGCGTTCAGGGCGCCCCGGAAGCGCCGAGCGACACGAACAACCACC	120 795 180 855 240 915 300 975 360
Query Sbjct Query Sbjct Query Sbjct Query Sbjct	736 121 796 181 856 241 916 301 976	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855 240 915 300 975 360 1035
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	736 121 796 181 856 241 916 301 976 361	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTTGACGCAGGCC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855 240 915 300 975 360 1035 420
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	736 121 796 181 856 241 916 301 976 361 1036 421	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTACGCCAGCTC CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCTC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTCAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC AGCCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC AGCCCCAGGCCACCACATGCCAATGTCCTATTCACGTCTGGAAGGTGCAGCGTGAACGT AGCCCCATGGACATTGTCGAGAAGTGGTATGGTTCGGCTTTGGAGGTGCAGCGTGAACGT CGTGGACCGGTGGCGTTCAGGGCGGCCCCGGAAGCGCGAGCGA	120 795 180 855 240 915 300 975 360 1035 420 1095 480 1155
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	736 121 796 181 856 241 916 301 976 361 1036 421 1096 481	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTCGATACTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTCGATACCTAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACATGCCATATGCAACGTTGCAGGCTCAGAAGGTCCCGTACTT GACCCAAGGCCACCACATGCCATATGCACGTTGCAGCGTCGAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC AGCCCATGGACATTGTCGAGAAGTGGTATGGTTCGGCTTTGGAGGTGCAGCGTGAACGT CCTGTGGACCGGTGGCGTTCAGGGCGCGCCCCGGAAGCGCCGAGCGAG	120 795 180 855 240 915 300 975 360 1035 420 1095 480 1155 540
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	736 121 796 181 856 241 976 301 976 361 1036 421 1096 481	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855 240 915 300 975 360 1035 420 1095 480 1155 540 1215
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query	736 121 796 181 856 241 916 301 976 361 1036 421 1096 481 1156 541	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC GACCGCTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT HILLINGGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCAAGGCCACCACATGCCAATGTCCTATTCACGTCTGCAAAGCTGAACATAGCGTTC GACCCCAGGCCACCACATGCCAATGTCCTATTGCAGGCTTGGAGGTGCAGCGTGAACGT CGTGGCCCGCGGCGGCTCCGGAAGGCGCCGAGCGAGGAAACGAACACCC CCTGCGCCGGTGGCGTTCAGGCGGCCCCGGAAGCGCCGACGAGGAAACGAACACCC GCTGCCTCGCCTC	120 795 180 855 240 915 300 975 360 1035 420 1095 480 1155 540 1215 600
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	736 121 796 181 856 241 976 301 976 361 1036 421 1096 481	CGAGTCGTCGCCTTGGCGCTGGAGATGTCGCTTCCGCTGATCCTGGTGTGACGCAGCCG GACCGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ACCACGCTTGATACTTGAGTTGCGGTATCCGCCTGATGCCGTGTACCTTAAGTTGAAAGGC ATCATCGATGCGCTCAACAGCCTTATTGAACGTTTGCAGCCTCAGAAGGTCCCGTACTTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 795 180 855 240 915 300 975 360 1035 420 1095 480 1155 540 1215

Sbjct	1276	CAGCTGCTGGTCAATGTGCAAGCTCTGGGAACTCCGCGTGCTTTCGAGCCTCAAGCAGCA	1335
Query	661	TCGAGTCAGCGAGAGGCGCCTACGGATCTGGAGATGCTCCAGCAGGCGGCAGACTCAGGC	720
Sbjct	1336	TCGAGTCAGCGAGAGCGCCTACGGATCTGGAGATGCTCCAGCAGGCGGCAGACTCAGGC	1395
Query	721	CCATGGGCTCTTCCCGTGTTGTCTTCGACATGGTACTGGGCTCGCCAACAGCGTTGTTT	780
Sbjct	1396	CCATGGGCTCTTCTCCGTGTTGTCTTCGACATGGTACTGGGCTCGCCAACAGCGTTGTTT	1455
Query	781	GGAACGCTGACCCGTCGTCGTCGCCACTCGAAATGGTTCCCGGAGCACTGCGCTGAGACG	840
Sbjct	1456	GGAACGCTGACCCGTCGTCGTCGCCACTCGAAATGGTTCCCGGAGCACTGCGCTGAGACG	1515
Query Sbjct	841 1516	GAGA 844 GAGA 1519	
50]00	1010		
Query Sbjct	1 <mark>1339</mark>	AGTCAGCGAGAGGCGCCTACGGATCTGGAGATCCTCCAGCAGCGGCGAGACTCAGGCCA AGTCAGCGAGAGGCGCCTACGGATCTGGAGATCCTCCAGCAGCCGCAGACTCAGGCCCA	60 1398
Query	61	TGGGCTCTTCTCCGTGTTGTCTTCGACATGGTACTGGGCTCGCCAACAGCGTTGTTTGGA	120
Sbjct	1399	TGGGCTCTTCTCCGTGTTGTCTTCGACATGGTACTGGGCTCGCCAACAGCGTTGTTTGGA	1458
Query	121	ACGCTGACCCGTCGTCGTCGCCACTCGAAATGGTTCCCCGGAGCACTGCGCTGAGACGGAG	180
Sbjct	1459	ACGCTGACCCGTCGTCGCCCACTCGAAATGGTTCCCGGAGCACTGCCGTGAGACGGAG	1518
Query	181	ACCACTGTGCTGGTAGCGACACACTGGCGTTCGCTGGACGGCACCGATACCGTTGCTGTG	240
Sbjct	1519	ACCACTGTGCTGGTAGCGACACACTGGCGTTCGCTGGACGGCACCGATACCGTTGCTGTG	1578
Query	241	GCCCTGTTTGCGGTCACGACCGCTACCGGTGATCAGCTGTTTGCAGTTCAACCGGGC	300
Sbjct Query	1579 301	GCCGATGCAAGCCGTCGCGGTaacaacaacaacaacaacaaCaaCaaCaaCGACCGAA	1638 360
Sbjct	1639	GCTGACCGATGCAAGCCGTCGTCGGTAACAACAACAACAACAACAACAACAACAACAACAACAAC	1698
Query	361	TTGCAGGTGGCTTTCGGACGCGTCTGGTACGACGTTGAGCAAGTCGCCGCCGGCGGTTTA	420
Sbjct	1699	TTGCAGGTGGCTTTCGGACGCGTCTGGTACGACGTTGAGCAAGTCGCCGCCGGCGGTTTA	1758
Query	421	GTGCTTCTGCCCAGGGTTTATCCGCCATCACGCGGAACCTACTGCTTTGGCCTCCGTTGT	480
Sbjct	1759	GTGCTTCTGCCCAGGGTTTATCCGCCATCACGCGGAACCTACTGCTTTGGCCTCCGTTGT	1818
Query	481	TCCGATGGACCGTACTCCAAGACGCTGGACGCGTGCGTTTATCGCTTGCACAGAGCGCTG	540
Sbjct Query	1819 541	TCCGATGGACCGTACTCCAAGACGCTGGACGCGTGCGTTTATCGCTTGCACAGAGCGCTG GGCTATCACGCAATGCCTATCTACGGTATAGCGCTTGCACCGTGTTTGCCGGAGGTGCAC	1878
Sbjct	1879	GGCTATCACGCAATGCCTATCTACGGTATAGCGCTTGCACCGTGTTTGCCGGAGGTGCAC	1938
Query	601	AGAACTGCAGAGAGCTTGACGGCAGATTTGGTTGCGCAGTACAGCACCAGCACAGCGAGC	660
Sbjct	1939	AGAACTGCAGAGAGCTTGACGGCAGATTTGGTTGCGCAGTACAGCACCAGCAAGCGAGC	1998
Query	661	GCTGAGCAGCTTCGCCAAGCTTTGGCAATTATTGTTCGAACAACATCCCGCCACAGGATTT	720
Sbjct	1999	GCTGAGCAGCTTCGCCAAGCTTTGGCAATTATTGTTCGAACACATCCCGCCACAGGATTT	2058
Query	2059	GATGGTAACGGTAGCGTTCATGGTGATGCAGCACCACGGTTTTCGAACAGCTTCAACTGCT	780
Sbjct Query	2059 781	GATGGTAACGGTAGCGTTCATGGTGATGCAGCACACGGTTTTCGAACAGCTTCAACTGCT GGTGTTGTTTACGGCCCAGGGGAACTCTATCTGGATGTTATACTTCATGAGCTTC 835	2118
Sbjct	2119	GGTGTTGTTTACGGCCCAGGGGAACTCTATCTGGATGTTATACTTCATGAGCTTC 2173	
2			
Query	1	TTTGGTTGCGCAGTACAGCACCAGCACAGCGAGCGCTGAGCAGCTTCGCCAAGCTTTGGC	60
Sbjct	<mark>1965</mark>	TTTGGTTGCGCAGTACAGCACCAGCAGCGAGCGCTGAGCAGCTTCGCCAAGCTTTGGC	2024
Query	61	AATTATTGTTCGAACACATCCCGCCACAGGATTTGATGGTAACGGTAGCGTTCATGGTGA	120
Sbjct	2025	AATTATTGTTCGAACACCACCGCCACAGGATTTGATGGTAACGGTAGCGTTCATGGTGA	2084
Query	121	TGCAGCACACGGTTTTCGAACAGCTTCAACTGCTGGTGTTGTTTACGGCCCAGGGAACT	180
Sbjct Query	2085 181	TGCAGCACACGGTTTTCGAACAGCTTCAACTGCTGGTGTTGTTTACGGCCCAGGGAACT CTATCTGGATGTTATACTTCATGAGCTTCGTCGATATTTGGTGCAACGGCATTTGAGTCT	2144
Sbjct	2145	CTATCTGGATGTTATACTTCATGAGCTTCGTCGATATTTGGTGCAACGGCATTTGAGTCT	2204
-			

Query	241	GGTATGGCGTTGCCTGCGTACAAATCCGGTACCCTTTGTGGATGCGTTACGGGAAACGAT	300
Sbjct	2205	GGTATGGCGTTGCCTGCGTACCAAATCCGGTACCGTTGTGGATGCGTTACGGGAAACGAT	2264
Query	301	CCAAGCCGGTGCAGCAAAAGTGCAAGTAGGCTTGCGAGGCCGTGATGGACGCACGC	360
Sbjct	2265	CCAAGCCGGTGCAGCAAAAGTGCAAGTAGGCTTGCGAGGCCGTGATGGACGCACGC	2324
Query	361	CGACCAGACTGCGTTGTGGTCGTCGCCAAAGTCATTCTTGGTTTCGGAAGACGAATTCTT	420
Sbjct	2325	CGACCAGACTGCGTTGTGGTCGTCGCCAAAGTCATTCTTGGTTTCGGAAGACGAATTCTT	2384
Query	421	CTCTCCCGAGCCCAACGAATGGAGCGACAACGAGGACGCGGCATTCATCAGCCGCGAGT	480
Sbjct	2385	CTCTCCCGAGCCCAACGAATGGAGCGACAACGAGGACGCGGCATTTCATCAGCCGCGAGT	2444
Query	481	CGTGCTTTACGTGGAACCGGTGCACGCTTCGCGCCGGGCTCCAGCTCAGCAGGCAG	540
Sbjct Query	2445 541	CGTGCTTTACGTGGAACCGGTGCACGCTTCGCGCCCGGGCTCCAGCAGGCAG	2504 600
Sbjct	2505	GCCGAACGCGGGGCCTCACCCGGTAGTTGTGCATGCCCTGCATCCACTGCCGAATAGCGT	2564
Query	601	TCGTTTTGAGCGACGGAGTCTACCTGCTGAGGCCGCTGTGCAGCCAGAAGCGCTCGAAGT	660
Sbjct	2565	TCGTTTTGAGCGACGGAGTCTACCTGCTGAGGCCGCTGTGCAGCCAGAAGCGCTCGAAGT	2624
Query	661	GGAATTTGCAGCCGATCTGGATGGGACAACAGCGCCGTCTGGGCTGCCGGTGACACTCCA	720
Sbjct	2625	GGAATTTGCAGCCGATCTGGATGGGATGGGACAACAGCGCCGTTGGGGCTGCCGGTGACACTCCA	2684
Query	721	GGCCCTCTGGGAAGGTCTTCGGTTGGCGAGTCGGCGGGGTCCGCTTCTTCAAGGTCCTGT	780
Sbjct	2685	GGCCCTCTGGGAAGGTCTTCGGTTGGCGAGTCGGCGGGGTCCGCTTCTTCAAGGTCCTGT	2744
Query	781	CGTTGGGGTTCGTTACCACGTGCGTGCTCTC 811	
Sbjct	2745	CGTTGGGGTTCGTTACCACGTGCGTGCTCTC 2775	
			4.5.0
Query	114 <mark>2605</mark>	CAGCCAGAAGCGCTCGAAGTGGAATTTGCAGCCGATCTGGATGGGACAACAGCGCCGTCT	173 2664
Sbjct Query	174	GGGCTGCCGGTGACACTCCAGGCCCTCTGGGAAGGTCTTCGGTTGGCGAGTCGGCGGGGG	233
Sbjct	2665	GGGCTGCCGGTGACACTCCAGGCCCTCTGGGAAGGTCTTCGGTTGGCGAGTCGGCGGGGT	2724
Query	234	CCGCTTCTTCAAGGTCCTGTCGTTGGGGTTCGTTACCACGTGCGTG	293
Sbjct	2725	CCGCTTCTTCAAGGTCCGTTCGTTGGGGTTCGTTACCACGTGCGTG	2784
Query	294	TGCGGGAGCTCTGCCTGGGAAGCACCACCTCCATGTTGGTCCGCTTGGCATCGGATGCGA	353
Sbjct	2785	TGCGGGAGCTCTGCCTGGGAAGCACCACCTCCATGTTGGTCCGCTTGGCATCGGATGCGA	2844
Query	354	ACTCGCCTGGTGCTCCTAGCTCGACAGGCAGCGCATAGGGCGCTTCTTGATGCCAAGATG	413
Sbjct	2845	ACTCGCCTGGTGCTCCTAGCTCGACAGGCAGCGCATAGGGCGCCTTCTTGATGCCAAGATG	2904
Query	414	CAGATTCTAGAGCCTTGCTTCCGTTTGCAAGCCGTGGTGCGCGCCGAAAAAGCCGAGCTC	473
Sbjct Query	2905 474	CAGATTCTAGAGCCTTGCTTCCGTTTGCAAGCCGTGGTGCGCCGCGAAAAAGCCGAGCTC ATTTGCCGTCGCTTGGCGCAAGGCTTCTGAACTTGTCGAAATCCGGCAGCAGTGGCCCATT	2964 533
Sbjct	2965	ATTTGCCGTCGCTTGCGCAAGGCTTCTGAACTTGTCGAAATCCGGCAGCAGTGGCCCATT	3024
Query	534	CCAGGCACCTGTTTCGTGATCGTTGACAGTGATGTTCCCGGCGCGGGTGCTTGTTCCCGGC	593
Sbjct	3025	CCAGGCACCTGTTTCGTGATCGTTGACAGTGATGTTCCGGCGCGCGGGTGCTTGTTCCCGGC	3084
Query	594	CTCGAAGTGATGTTGCGATTTCAGAGCCACGGGCAGGCAAGTGTGCAAGCAA	653
Sbjct	3085	CTCGAAGTGATGTTGCGATTTCAGAGCCACGGCAAGGCAAGTGTGCAAGCAA	3144
Query	654	CCAGCTGTCATGCCGACGTGCAGTGCCCGCTGGATTCCAGTTCCAGGTGATGCCGACAGT	713
Sbjct	3145	CCAGCTGTCATGCCGACGTGCAGTGCCCGCTGGATTCCAGTTCCAGGTGATGCGGACAGT	3204
Query	714	GTGGAATGCCCACCTCTAGAGGCAGTTGTTGCCTCGGACGACAGCACCGTAACCGAAAAC	773
Sbjct	3205	GTGGAATGCCCACCTCTAGAGGCAGTTGTTGCCTCGGACGACAGCACCGTAACCGAAAAC	3264
Query	774	ACCCTTGCACCCTGGCTGCGCACCGTACGAATGCGACCGGGGACTCGGGACCGACC	833
Sbjct Query	3265 834	ACCCTTGCACCCTGGCTGGTGCGCATCGTACGAATGCGACGGGGACTCGGGACCGACC	3324
Sbjct	3325	IGA 530 TGA 3327	

Dib1 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR634)

Query	49	TACTTCCAATCCCACGAGGAGAAATTAACT 79	
Sbjct			
Query	80	ATGGACAGTGCACCGTTGGTGCCGGTACTGGGCTCCATGGCGGCGATTCAACAAGCACTG	139
Sbjct	1	ATGGACAGTGCACCGTTGGTGCCGGTACTGGGCTCCATGGCGGCGATTCAACAAGCACTG	60
Query	140	GCTGAGGAAACCGAGCGTCTGGTTGCCCTGCGCTTTAGTAGCGATCCAGCAGCTGTAGAT	199
Sbjct	61	GCTGAGGAAACCGAGCGTCTGGTTGCCCTGCGCTTTAGTAGCGATCCAGCAGCTGTAGAT	120
Query	200	TGTGTCTTCATGGACGAAATCCTCGCAAGATCAGCAGCGCGCGC	259
Sbjct	121	TGTGTCTTCATGGACGAAATCCTCGCAAGATCAGCAGCGCGCGC	180
Query	260	GTGTACGGTGTGGACTTGCGGCAGGTTCCGCAGGCTGCGCGGCGCTTCGGCGTTGAGGCG	319
Sbjct	181	GTGTACGGTGTGGACTTGCGGCAGGTTCCGCAGGCTGCGCGCGC	240
Query	320	TGGCGACCCCTGTCGCTCCAGTTCTATTATCGAAAGCGCCTCATCAAGGTGGACTGTGGT	379
Sbjct	241	TGGCGACCCCTGTCGCTCCAGTTCTATTATCGAAAGCGCCTCATCAAGGTGGACTGTGGT	300
Query	380	ACTGGAGACACGGCGCGTCTGACCCGTCCGGTGCCGAGCGTGCAGCAGCTGGTGGACCTC	439
Sbjct	301	ACTGGAGACACGGCGCGTCTGACCCGTCCGGTGCCGAGCGTGCAGCAGCTGGTGGACCTC	360
Query	440	TTCGAAGTCGTCTATCGACAGGCGTTGCGCGGAAAGGGTCTCGCGATGGCGCCGTTCCGA	499
Sbjct	361	TTCGAAGTCGTCTATCGACAGGCGTTGCGCGGAAAGGGTCTCGCGATGGCGCCGTTCCGA	420
Query	500	CTCTAG 505	
Sbjct	421	CTCTAG 426	

SmB gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR714)

Query	33	TACTTCCAATCCCACGAGGAGAAATTAACT 63	
Sbjct			
Query	64	ATGGATCTTCTGCCTGTGCGATCCCAGGTTCACGTTCAAACGACCGAC	123
Sbjct	1	ATGGATCTTCTGCCTGTGCTGCGATCCCAGGTTCACGTTCAAACGACCGAC	60
Query	124	CTAGCGGGCAAGCTGTTAGCGTTCGACGCTCATAGCAATTTATTACTCAGCCACTGTACA	183
Sbjct	61	CTAGCGGGCAAGCTGTTAGCGTTCGACGCTCATAGCAATTTATTACTCAGCCACTGTACA	120
Query	184	GAACGTCGCGGGGAATCAGCGAAACGCTACTTGGGCATGGTGCTGGTGCGCGGGGAGCAT	243
Sbjct	121	GAACGTCGCGGGGAATCAGCGAAACGCTACTTGGGCATGGTGCTGGTGCGCGGGGAGCAT	180
Query	244	GTGCTCGCAGTTATCACGCCCAGAATCACGGAAACTGAACAGAAAACTGCCGCATCTGAA	303
Sbjct	181	GTGCTCGCAGTTATCACGCCCAGAATCACGGAAACTGAACAGAAAACTGCCGCATCTGAA	240

SmD3 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR715)

 Query
 34
 TACTTCCAATCCCACGAGGAGAAATTAACT
 64

 Sbjct
 ------ ----- ----- ------

Query	65	ATGAGCGGGTATCGACCCGCTGCGTTCGATCTCCCTCGAGCGCTCCTACGCGAAGCAAAG	124
Sbjct	1	ATGAGCGGGTATCGACCCGCTGCGTTCGATCTCCCTCGAGCGCTCCTACGCGAAGCAAAG	60
Query	125	AACCAAATTGTATCGGTAGAGACCAAAAATGGAATGGAGTACCGGGGGCGCCTGGACAAC	184
Sbjct	61	AACCAAATTGTATCGGTAGAGACCAAAAATGGAATGGAGTACCGGGGGGCGCCTGGACAAC	120
Query	185	GTGAGCTCGCGGATGAACCTGGTGCTCAGCGCGGTGACGGTATTGAACGCGACTGGCGAG	244
Sbjct	121	GTGAGCTCGCGGATGAACCTGGTGCTCAGCGCGGTGACGGTATTGAACGCGACTGGCGAG	180
Query	245	CGCACCCaaaaaaaTCGTGTTCTCGTCCGTGGTGACAGTATCGTGCTTGTAGTGCTCCCG	304
Sbjct	181	CGCACCCAAAAAAATCGTGTTCTCGTCCGTGGTGACAGTATCGTGCTTGTAGTGCTCCCG	240
Query	305	GAAGCACTAGAAGACGCACCACAGCTGGATGTCCTATTACAGGTAAAGCAGGCCCGGAAG	364
Sbjct	241	GAAGCACTAGAAGACGCACCACAGCTGGATGTCCTATTACAGGTAAAGCAGGCCCGGAAG	300
Query	365	GCGGCGATGCACGTGAACAACACTGACCGCAAGTCACGTGGAGCGCGTCGTTCCGAGGCA	424
Sbjct	301	GCGGCGATGCACGTGAACAACACTGACCGCAAGTCACGTGGAGCGCGTCGTTCCGAGGCA	360
Query	425	GACGTACACGAGCGTTCAGGTGCCAGCAGCGCGCCACTACCCCAGAGCGAGTCGCAGCCG	484
Sbjct	361	GACGTACACGAGCGTTCAGGTGCCAGCACGCTGCCACTACCCCAGAGCGAGTCGCAGCCG	420
Query	485	CAACTCAAGCGAACTCGAGTTTTCTTGAGTGGTAATGCGGAGACCGTTCAGCGAACCAAA	544
Sbjct	421	CAACTCAAGCGAACTCGAGTTTTCTTGAGTGGTAATGCGGAGACCGTTCAGCGAACCAAA	480
Query	545	GAAGGAGGCGACTCGAACCGGCGGAACGTG 574	
Sbjct	481	GAAGGAGGCGACTCGAACCGGCGGAACGTG 510	

SmD2 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR716)

Query	29	TACTTCCAATCCCACGAGGAGAAATTAACT 59	
Sbjct			
Query	60	${\tt ATGCCTCCAGTTGATCAGCCCACTGCTTTAGAAGCGGGGGCTGTAGCGGGACTGACGGTG$	119
Sbjct	1	ATGCCTCCAGTTGATCAGCCCACTGCTTTAGAAGCGGGGGCTGTAGCGGGACTGACGGTG	60
Query	120	GCGCAGCTCCGTCGGGAGCTTGCCGCGCGGGAGAAGCTCCAACCAGCGGTAGAAAGGCTGAA	179
Sbjct	61	GCGCAGCTCCGTCGGGAGCTTGCCGCGCGAGAAGCTCCAACCAGCGGTAGAAAGGCTGAA	120
Query	180	$\tt CTCCAAAAACGTTTGCTGGACCTGTTAGGTGTGAAACTCGAACAAGAGGCTCGCGATGAG$	239
Sbjct	121	CTCCAAAAACGTTTGCTGGACCTGTTAGGTGTGAAACTCGAACAAGAGGCTCGCGATGAG	180
Query	240	GACTCTAGCGTCGCGCCTGGAGCCACACAGGGAGAAGCTGGTCGGGCTACCAACCTTGGA	299
Sbjct	181	GACTCTAGCGTCGCGCCTGGAGCCACACAGGGAGAAGCTGGTCGGGCTACCAACCTTGGA	240
Query	300	GACGCAACGACATCGTCCGCgcagcagcaggagcagcaggagcagcaggag	359
Sbjct	241	GACGCAACGACGACGATCGTCCGCCGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	300
Query	360	cagcagcaggagcagcaggaggagcagcaggaggaggagg	419
Sbjct	301	CAGCAGCAGGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	360
Query	420	cagAAGTTGGCTCAAACCCTGGACCCTGCTGCTCTATCGCCGTCACCGATCCAGTCTAGC	479
Sbjct	361	CAGAAGTTGGCTCAAACCCTGGACCCTGCTGCTCTATCGCCGTCACCGATCCAGTCTAGC	420
Query	480	GCGTATCCACAGAGCACGACCACCACGCAACGACGAAAACGACGCTGGGCGGAGCCGGCC	539
Sbjct	421	GCGTATCCACAGAGCACGACCACCCACGCAACGACGAAAACGACGCTGGGCGGAGCCGGCC	480
Query	540	AGCGCCCCGCCTACCGCGCCCCGGAAACGAAGACCCCTTGATGCACACGACACGCACTTG	599
Sbjct	481	AGCGCCCCGCCTACCGCGCCCCGGAAACGAAGACCCCTTGATGCACACGACACGCACTTG	540
Query	600	GATCAAGCTGGGGCAACGCCTGCCGCATCAGAGCTCAGCGCTGCAGCAGAAGCTTCGACA	659
Sbjct	541	GATCAAGCTGGGGCAACGCCTGCCGCATCAGAGCTCAGCGCTGCAGCAGAAGCTTCGACA	600
Query	660	TCCTACCAAACGCTAATCGCAGCGACGACCCAGCAACGACGCAG 704	
Sbjct	601	TCCTACCAAACGCTAATCGCAGCGACGACCCCAGCAACGACGCAG <mark>645</mark>	

Query	241	ACCCCAGCAACGACGCAGAGCATTCCGAATAGCAGCGAAAGCGCTGCGTCAGCTCTGAAG	300
Sbjct	<mark>628</mark>	ACCCCAGCAACGACGCAGAGCATTCCGAATAGCAGCGAAAGCGCTGCGTCAGCTCTGAAG	687
Query	301	CCAGCAGTGCATGCCGCAAACGGCTCGCCGCGAACACCGTTCACGCTGCTCGACCGGTGC	360
Sbjct	688	CCAGCAGTGCATGCCGCAAACGGCTCGCCGCGAACACCGTTCACGCTGCTCGACCGGTGC	747
Query	361	ATCACCGATCGAGTGCCGTGTCTCGTGAGCTGTCGTCATAATAAAAAGCTCTACGGCACG	420
Sbjct	748	ATCACCGATCGAGTGCCGTGTCTCGTGAGCTGTCGTCATAATAAAAAGCTCTACGGCACG	807
Query	421	CTGCGCGCCCTATGATAAGCACTTTAACCTCATTATGGAGCATGTACGGGAAATCTGGCAG	480
Sbjct	808	CTGCGCGCCTATGATAAGCACTTTAACCTCATTATGGAGCATGTACGGGAAATCTGGCAG	867
Query	481	GAGTCACAACCCGATCGGCCTCCAGACTTGCGCGAGCGATTCATCTCGCGCCTGTTTGTG	540
Sbjct	868	GAGTCACAACCCGATCGGCCTCCAGACTTGCGCGAGCGATTCATCTCGCGCCTGTTTGTG	927
Query	541	CGCGGTGACGGCGTGATTTTTATCGTTCGACCNTGCGTATCTGCAACGAGTACAGCGCGC	600
Sbjct	928	CGCGGTGACGGCGTGATTTTTATCGTTCGACCCTGCGTATCTGCAACGAGTACAGCGCGC	987
Query	601	GCACAGCCG 609	
Sbjct	988	GCACAGCCG 996	

SmE gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR719)

Query Sbjct	60	TACTTCCAATCCCACGAGGAGAAATTAACT 90	
Query	91	ATGCCGAAGGACGCTCTGGACAGACGGATAGTTCCAGAGCAGTTGTTAGCAACGCTGGCG	150
Sbjct	1	ATGCCGAAGGACGCTCTGGACAGACGGATAGTTCCAGAGCAGTTGTTAGCAACGCTGGCG	60
Query	151	CGCCAACAAGCCCGCGTTGAGGTCTGGTTATTCGAAAACACCAGATACTCTCTGGAAGGC	210
Sbjct	61	CGCCAACAAGCCCGCGTTGAGGTCTGGTTATTCGAAAACACCAGATACTCTCTGGAAGGC	120
Query	211	ACCTTGCGCGGCTTCGACGACACACCAATCTAGTTCTGGTCGACACCGTGGAGCAGTGG	270
Sbjct	121	ACCTTGCGCGGCTTCGACGAACACACCAATCTAGTTCTGGTCGACACCGTGGAGCAGTGG	180
Query	271	GGAAGTACTGCAAAGCATAAGCGGCGGACGGTTGCTCTAGGGACGATCCTCCTCAAAGGC	330
Sbjct	181	GGAAGTACTGCAAAGCATAAGCGGCGGACGGTTGCTCTAGGGACGATCCTCCTCAAAGGC	240
Query	331	GAAAACGTCGTCCTCGTTCGGTCGCTGGGGATGCCAACCCAGCGAAAAGAGGTCACGCAC	390
Sbjct	241	GAAAACGTCGTCCTCGTTCGGTCGCTGGGGATGCCAACCCAGCGAAAAGAGGTCACGCAC	300
Query	391	AGCGCGACTCGGGAG 405	
Sbjct	301	AGCGCGACTCGGGAG 315	

SmF gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR720)

Query	37	TACTTCCAATCCCACGAGGAGAAATTAACT 87	
Sbjct			
Query	88	ATGACTGCGACTGGTTTCGCAGAGGCAGTGAAGCCCACAAACCTTCTGAGCGCGCTCCAG	147
Sbjct	1	ATGACTGCGACTGGTTTCGCAGAGGCAGTGAAGCCCACAAACCTTCTGAGCGCGCTCCAG	60

Query	148	GGAAACAGGGTGTCCGTGCGCCTCAAATGGGACCTGGAGTACACCGGCCTCCTCGCATCG	207
Sbjct	61	GGAAACAGGGTGTCCGTGCGCCTCAAATGGGACCTGGAGTACACCGGCCTCCTCGCATCG	120
Query	208	TATGACTCGTACTTCAACCTGGAGCTGGAGCATGCGGAGGAGCTTCAGCCGGACGGCTCA	267
Sbjct	121	TATGACTCGTACTTCAACCTGGAGCTGGAGCATGCGGAGGAGCTTCAGCCGGACGGCTCA	180
Query	268	AGCCTTCCGCTAGGCGACATGATCATTCGCTGTAATAACGTTCTTTATATCCCGCGACCTT	327
Sbjct	181	AGCCTTCCGCTAGGCGACATGATCATTCGCTGTAATAACGTTCTTTATATCCGCGACCTT	240
Query	328	CGATCCACAGTGCCGGTCCCGCCTCTATCT 357	
Sbjct	241	CGATCCACAGTGCCGGTCCCGCCTCTATCT 270	

SmG gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR721)

Query	67	TACTTCCAATCCCACGAGGAGAAATTAACT 97	
Sbjct			
Query	98	ATGGCAAAAGACGAGGTCGATACTGCGGAACTCGAAGCGTTGCTGTTTCATTCCGTCCAA	157
Sbjct	1	ATGGCAAAAGACGAGGTCGATACTGCGGAACTCGAAGCGTTGCTGTTTCATTCCGTCCAA	60
Query	158	GTGTACCTGAACGCGAACAGGTGCGTGCGCGGAAAACTCAGCGGTTTTGATCACTACGCG	217
Sbjct	61	GTGTACCTGAACGCGAACAGGTGCGTGCGCGGAAAACTCAGCGGTTTTGATCACTACGCG	120
Query	218	AACCTGGTGCTGTCGGATGCTCTAGACTGCCGAACGGGTGCGCAACTCGGTCAGGTTTGG	277
Sbjct	121	AACCTGGTGCTGTCGGATGCTCTAGACTGCCGAACGGGTGCGCAACTCGGTCAGGTTTGG	180
Query	278	ATCCGAGGCAACAGTGTCGTTTCAGTGGACCTGCTTCGGGATGTGAACGCAGACCGCACG	337
Sbjct	181	ATCCGAGGCAACAGTGTCGTTTCAGTGGACCTGCTTCGGGATGTGAACGCAGACCGCACG	240
Query	338	GAGCCACCGGCCCCGGCTCTGTAGCCGATGACCCCGTGGGTTCTTCGCTTAGCAGC	397
Sbjct	241	GAGCCACCGACCGGCACCGGCTCTGTAGCCGATGACCCCGTGGGTTCTTCGCTTAGCAGC	300

SmD1 gene inserted into pQLinkN (The RBS sequence is in blue and the LIC sequence is in bold; pSR717)

Query	39	TACTTCCAATCCCACGAGGAGAAATTAACT 89	
Sbjct			
Query	88	ATGACCCCCTTGCTTTATTTCCTAACTCGCCTTCGAGGTGCCACTGTTACTGTTGAGCTG	147
Sbjct	1	ATGACCCCCTTGCTTTATTTCCTAACTCGCCTTCGAGGTGCCACTGTTACTGTTGAGCTG	60
Query	148	AAAGATGGGACGAAGGCCACGGGAACTGTACAGCGAGTGGATAATGAGATGAACGTTTAC	207
Sbjct	61	AAAGATGGGACGAAGGCCACGGGAACTGTACAGCGAGTGGATAATGAGATGAACGTTTAC	120
Query	208	CTGCTGAACGCTTCCGTTACTGGAAAACCTCCAGCCGAGCTCCCCTCTGCTTCTCTGGAG	267
Sbjct	121	CTGCTGAACGCTTCCGTTACTGGAAAACCTCCAGCCGAGCTCCCCTCTGCTTCTCTGGAG	180
Query	268	ACGCACGCGGCCCAGGTCGTCGCCCCTTGGACCGAGCGATTCAGTGAACCGGATGCCTCA	327
Sbjct	181	ACGCACGCGGCCCAGGTCGTCGCCCCTTGGACCGAGCGATTCAGTGAACCGGATGCCTCA	240
Query	328	GCTATGAGTCGTCGGAATCAACCTCAGCAAAAGGCGAGAAATATCGAATCCGGGGATCT	387
Sbjct	241	GCTATGAGTCGTCGGAATCAACCTCAGCAAAAGGCGAGAGAATATCGAATCCGGGGATCT	300
Query	388	ACGGTTCGATATATCATTCTGCCCGAGTCATTGAACCTGGAGAGCGCTTTGAAAGAAA	447
Sbjct	301	ACGGTTCGATATATCATTCTGCCCGAGTCATTGAACCTGGAGAGCGCTTTGAAAGAAA	360

SmE gene inserted into pQLINKH (The RBS sequence is in blue, the start codon in pink, the seven histidines is in green, the TEV site is in red, and in **bold** is the PmlI restriction site sequence; pSR723)

Query	165	GAATTCAGGAGAAATTAACTATGAAACATCACCATCACCATCACCATGAGAATCTGTACTT	
Sbjct			
Query	129	CCGAAGGACGCTCTGGACAGACGGATAGTTCCAGAGCAGTTGTTAGCAACGCTGGCGCGC	188
Sbjct	4	CCGAAGGACGCTCTGGACAGACGGATAGTTCCAGAGCAGTTGTTAGCAACGCTGGCGCGC	63
Query	189	CAACAAGCCCGCGTTGAGGTCTGGTTATTCGAAAACACCAGATACTCTCTGGAAGGCACC	248
Sbjct	64	CAACAAGCCCGCGTTGAGGTCTGGTTATTCGAAAACACCAGATACTCTCTGGAAGGCACC	123
Query	249	TTGCGCGGCTTCGACGAACACCAATCTAGTTCTGGTCGACACCGTGGAGCAGTGGGGA	308
Sbjct	124	TTGCGCGGCTTCGACGAACACCAATCTAGTTCTGGTCGACACCGTGGAGCAGTGGGGA	183
Query	309	AGTACTGCAAAGCATAAGCGGCGGACGGTTGCTCTAGGGACGATCCTCCTCAAAGGCGAA	368
Sbjct	184	AGTACTGCAAAGCATAAGCGGCGGACGGTTGCTCTAGGGACGATCCTCCTCAAAGGCGAA	243
Query	369	AACGTCGTCCTCGTTCGGTCGCTGGGGATGCCAACCCAGCGAAAAGAGGGTCACGCACAGC	428
Sbjct	244	AACGTCGTCCTCGTTCGGTCGCTGGGGATGCCAACCCAGCGAAAAGAGGTCACGCACAGC	303
Query	429	GCGACTCGGGAG 440	
Sbjct	304	GCGACTCGGGAG 315	

Appendix 2

Table 24 Summary of the expression of the proteins using different constructs: After insertion of the genes, each vector was given a name (here called pSR). The Snu114 gene was inserted into pMCSG2 by another lab member. (*) represents the insertion of the gene into pMCSG2. (**) represents the insertion of the gene into pQLinkH.

Gene-containing construct	pSR#	Sequenced	Expression
Dib1	634	Yes	Successful
Snu114	647	Yes	Failed
Prp8	655	Yes	Failed
Prp8*	797	Yes	Failed
Brr2	656	Yes	Failed
Brr2**	855	Yes	Failed
Snu114*	767	Yes	Failed
Sm B	715	Yes	Not tested
Sm D3	716	Yes	Not tested
Sm D2	717	Yes	Not tested
Sm D1	719	Yes	Not tested
Sm E	720	Yes	Not tested
Sm F	721	Yes	Not tested
Sm G Sm E***	723 724	Yes Yes	Not tested Not tested
Sm L ⁴⁴⁴	733	No	Not tested
Sm D3/B	735	No	Not tested
Sm E/G	734	No	Not tested
Sm E-HIS/G	736	No	Not tested
Sm D3/B/D1/D2	739	No	Not tested
Sm D3/B/D1/D2/F	743	No	Not tested
Sm F-HIS/ E/G	744	No	Not tested
Sm E-HIS/G/ D3/B/D1/D2/F	752	No	Successful
Sm F-HIS/ E/G/ D3/B/D1/D2	751	No	Successful
SmE-HIS/G/ D3/B/D1/D2/F/U5	755	No	Not tested
SmF-HIS/E/G/ D3/B/D1/D2/U5	753	No	Not tested
Sm Prp8/Dib1	708	No	Failed
Sm Brr2/ Prp8/Dib1	712	No	Failed
SmFHIS/E/G/D3/B/D1/D2/U5/Brr2/Prp8/Dib1	829	No	Failed
SmFHIS/E/G/D3/B/D1/D2/U5/Brr2/Prp8/Dib1/Snu114	762	No	Failed