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ABSTRACT 

The Wild Harts Study Area (WHSA) supports a wide range of ecological diversity and 

connects a network of protected areas spanning the length of the Rocky Mountain Cordillera. 

The WHSA occurs within a region of northeastern British Columbia that is poorly 

represented by protected areas. Industrial expansion threatens to fragment the contiguous 

habitats found in the WHSA — reducing the ability of the area to perform important 

landscape functions at local and continental scales. For this research, I employed a systematic 

conservation planning approach to prioritize lands for conservation action in the WHSA. The 

software MARXAN with integer linear programming (ILP) was used to produce optimal 

solutions for conservation, at the lowest cost, and to enforce principles of protected area 

design. Priority lands for conservation action were those that met the science-based targets 

for a selection of ecological surrogates, displayed low edge-to-area ratios, and represented 

intact landscapes outside the influence of resource development. The finalized conservation 

portfolio produced in this research is meant to inform protected area planning in the WHSA.  
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GLOSSARY 

These definitions reflect how terms are referred to and applied within the context of this 
research. 

Aichi Target 11: An initiative established by the Convention on Biological Diversity to have 

17% of terrestrial and inland waters, and 10% of coastal and marine areas, represented by 

some form of conservation tenure by 2020.  

ArcGIS: A geographic information system used to produce maps and complete 

geoprocessing tasks (ESRI, 2011). 

Avoidance Buffers: Spatial representations of distances at which woodland caribou avoid 

permanent development.  

Biodiversity: Refers to the complete range of species and genetic variation that comprises a 

biological community, as well as the interactions that take place amongst these variables 

(Primack, 2010).  

Biogeoclimatic Zone: An ecological classification system representing geographic areas 

with similar patterns of energy flow, vegetation, and soils as a result of a broadly 

homogenous macroclimate (Province of British Columbia, 1995). 

Biophysical Processes: Physical vectors that regulate, organize, and maintain biological 

communities.   

Biodiversity Surrogate: A component of a given ecosystem that is used as a proxy to 

represent the biodiversity of the whole ecosystem (Grantham et al., 2010). 
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Climate Change Resilience: The ability of an ecosystem to maintain self-organizing 

processes and structures in the face of shifting climatological regimes.  (Morecroft et al., 

2012). 

Coarse-filter Conservation Feature: An element within a given planning region that is 

thought to represent ecological patterns and processes of that region. 

Compactness: A dimensionless measure used to describe clusters of selected planning units 

with low edge-to-area ratios. 

Complementarity: The extent to which selecting for one conservation feature results in 

adequate representation of another by default.  

Constraint: Reflective of the combined cost inflicted upon a MARXAN-ILP scenario by 

user-defined inputs.  

Cost Surface: A spatial representation of those elements in a planning region that have been 

identified as having a negative impact on the conservation features being selected for. 

Data-free Conservation Targets: Commonly used targets in systematic conservation 

planning designed to represent a percentage of a given planning region’s overall area. These 

targets are loosely based on theories of landscape ecology and conservation biology, but are 

rarely informed by empirical data (Svancara et al., 2005).  

Edge-to-area Ratio: The length of boundary surrounding a cluster of selected planning units 

in relation to the combined surface area of those planning units. 

Edge-effects: Ecological impacts that occur along the transitionary boundary between 

resource development and contiguous habitats. These include barriers to species dispersal, 
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altered temperature regimes within protected area boundaries, and the creation of entry points 

for invasive species (Primack, 2010). 

Fine-filter Conservation Feature: An element that is thought to represent components of a 

given planning region that are endemic, rare, threatened, or characteristic of multiple other 

values in that region. 

Flagship Species: A species with a high public or political profile (Primack, 2010). 

High Conservation Value: Areas containing multiple overlapping values predetermined to 

be effective surrogates for biotic and abiotic diversity in a planning region. 

Integer Linear Programming: Computational algorithm that increases the processing speed 

of MARXAN and identifies the optimal solution for conservation at the lowest cost.  

Integrated Lands: Planning units of disproportionately high conservation value that occur 

within the integrated resource-use matrix. 

Integrated Resource-use Matrix: Transitionary area, containing varying levels of resource 

development, that occurs between fully-converted landscapes and those placed under 

protection. 

Keystone Species: A species whose presence within a given ecosystem is critical for the 

ongoing maintenance and function of that ecosystem (Primack, 2010). 

Land Facet: An area containing distinct combinations of abiotic variables such as slope, 

aspect, elevation and landform. 

Landscape Function: The ability of a planning region to maintain focal ecosystems, species, 

and ecological processes within the natural range of variability (Poiani et al., 2000). 
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MARXAN: Computational software that prioritizes areas for conservation based on user-

defined targets and constraints.  

Natural Disturbance Regime: An area that has a distinct pattern of both frequency and 

extent of natural disturbance (e.g. fire, insect epidemics, wind, landslides, flood). 

North American Cordillera: A band of contiguous, mountainous landscapes that spans the 

length of the western portions of the North American Continent. 

Permanent Development: Areas in the Wild Harts Study Area where resource use has 

resulted in complete removal of vegetation, alteration of soil structure, and manipulation of 

topography. These areas contain little-to-no resemblance of their natural state. 

Planning Unit: A parcel of land that is made available for selection by MARXAN-ILP. The 

user defines the size, shape, and configuration of the unit.  

Planning Unit Cost: A penalty metric that is assigned to all planning units and is meant to 

serve as a baseline acquisition cost that increases efficiency of selection by MARXAN-ILP. 

Portfolio: A spatial solution for conservation in a given planning area that is designed to 

inform decision-making processes relating to protected area creation. 

Principles of Good Reserve Design Include, but are not limited to, portfolios exhibiting 

clusters of planning units that avoid resource development and have low edge-to-area ratios.   

Priority Lands: Those planning units of disproportionately high conservation value in 

comparison to the rest of a given planning region. Also representative of planning units that 

adhere to principles of good reserve design.  
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Protected Area: A clearly defined geographical space, recognised, dedicated, and managed, 

through legal or other effective means, to achieve long term conservation of nature with 

associated ecosystems services and cultural values (Dudley, 2008). 

Protected Area Design: The method of proactively identifying suitable areas for 

conservation action using spatial tools and the principles of conservation biology and 

landscape ecology. 

Representation: The extent to which the spatial footprint of given conservation feature is 

captured within the bounds of a protected area. 

Resource Development: Refers to the spatial footprint of anthropogenic activity on the land 

base. This includes both industrial and urban forms of development. 

Rocky Mountain Corridor: Contiguous band of high elevation peaks and ridges that run 

down the center of the WHSA on a southeast-northwest line.  

Scenario: An iteration of prioritization completed by MARXAN-ILP that has a distinct 

combination of user-defined inputs and constraints. 

Science-based Conservation Target: Specific representation targets assigned to individual 

conservation features based on what the scientific literature suggests is necessary to ensure 

the persistence of those features (Svancara et al., 2005).  

Simulated Annealing: Refers to the algorithm at the core of MARXAN that identifies a near 

optimal solution for conservation at the lowest cost.  

Solution Space: Used interchangeably with the term ‘portfolio’.   
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Special Features: Those ecosystem components that are sensitive, spatially-limited, or of 

high biodiversity value (Heinemeyer et al, 2004). 

Systematic Conservation Planning: A structured approach for identifying candidate 

protected areas that represent the values, goals, and constraints of a given planning process 

(Margules & Pressey, 2000). 

Temporary Development: The spatial extent of areas in the WHSA that have been logged 

within the last 20 years.  

Traditional Ecological Knowledge: A cumulative body of knowledge and beliefs, handed 

down through generations by cultural transmission, about the relationship of living beings 

with one another and with their environment (Berkes, 1993). 

User-defined Inputs: Refers to the various mechanisms used to place constraint on a 

MARXAN-ILP solution to achieve a desired result. These include features, planning units, 

targets, and cost surfaces.  

Umbrella Species: A species whose life history requirements captures the needs of multiple 

other species (Primack 2010). 

Zone of Influence: Areas containing resource-related impacts that extend past the spatial 

footprint of the development (e.g. noise and light pollution) (Wilson, 2016). 
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1.0 INTRODUCTION 

1.1 Overview of Protected Areas in Canada 

Protected areas (PAs) provide refugia for biotic communities and serve as ecological 

benchmarks from which rates of ecological change can be measured. These areas also 

provide ecosystem services that contribute to human health and economic prosperity. 

Examples of such services include forests that regulate climate through the sequestration and 

storage of atmospheric carbon or the filtering and purifying of freshwater by wetland areas. 

PAs provide a setting for people to engage in recreational and tourism pursuits.  Benefits that 

occur when people use these areas to conduct leisure include the generation of tourism 

revenues, increases in physical wellbeing, and the awakening of an ecological consciousness 

spurred on by meaningful experiences in nature.  

 Setting aside natural areas for the purpose of conservation is not a novel concept 

unique to the western world. PAs are considered to be a cultural artifact with a history dating 

back two millennia (Holdgate, 1999). The sacred groves of ancient India, for example, were 

specifically set aside for the protection of natural resources (Eagles et al., 2002). In medieval 

Europe, vast swaths of land were protected to serve as hunting grounds for the affluent 

(Eagles et al., 2002). Indigenous societies the world over have, and continue to, engage in the 

protection of natural areas for a myriad of reasons including providing food and serving as 

areas for spiritual practice.  

 The emergence of a contemporary or Western PA movement began in the United 

States with the establishment of Yellowstone National Park in 1872. The momentum of this 

movement spread northward to Canada with the creation of Cave and Basin Hot Springs in 

1885 — the first manifestation of what would eventually become known as Banff National 
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Park. Following the establishment of these parks, the importance and associated benefits of 

PAs materialized within the political and social consciousness of Western society. This 

resulted in the growth of the PA system within Canada that continues to expand. The 

Canadian PA system currently encompasses 10.6% of the terrestrial land base (1.05 million 

km2) and 0.9% of marine territories (55,000 km2) (Environment and Climate Change Canada, 

2016).  

During the early 20th century, PAs were created and managed primarily by the 

Federal Government. Today, Canada’s PA system has diversified to include a multitude of 

jurisdictions and approaches to management. Types of PAs in Canada include private land 

trusts, tribal parks, municipal/regional parks, federal national parks, territorial parks and 

provincial parks, conservancies and ecological reserves. Each jurisdiction operates under its 

own mandate that outlines a purpose and objectives for the PA.  

Private conservation areas, which are owned and operated independent of 

government, can be effective in satisfying conservation niches such as the preservation of 

species-at-risk or critical habitats. However, these areas comprise a very small percentage of 

the overall protected land base and have a limited distribution across the northern latitudes of 

the country.  In Canada, the overwhelming majority of lands set aside for protection are held 

by the Crown and managed under a mandate rooted both in biodiversity conservation and 

visitor experiences.  

1.2 The Ecology of the Anthropocene  

We are currently living in a time of ecological crisis. The present geological period is 

more biodiverse than any other time in Earth’s history — yet the current rate of extinction 

surpasses that of any era in the past million years (Primack, 2010). Between 1970 and 2012, a 
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time scale which geologists would consider to be infinitesimal in relation to Earth’s history, 

there has been a 58% decline in overall global vertebrate population abundance (World 

Wildlife Fund for Nature, 2016). The most pronounced declines have occurred in freshwater 

environs (68–89% reduction in aquatic vertebrate abundance) (World Wildlife Fund for 

Nature, 2016). As of 2016, 21% of the Earth’s biomes have had their natural habitats 

converted to some degree — a quarter of which have seen over 50% natural habitat 

conversion (Oakleaf et al., 2015). If current trends continue, by 2020 global vertebrate 

populations are predicted to have declined by 67% from their 1970 levels (World Wildlife 

Fund for Nature, 2016).  

This unprecedented loss in biodiversity can largely be attributed to the degradation of 

natural systems that has come at the hands of humans (Dirzo et al., 2014; World Wildlife 

Fund for Nature, 2016). Since the mid-20th century, human activity and resource 

consumption have increased exponentially. The demands we have placed on the biosphere 

have reached such levels that, by 2012, the equivalent of 1.6 Earths was needed to sustain 

human consumption for a single year. So great has our impact on the natural world become 

that we have now entered an entirely new geological age known as the Anthropocene — a 

period during which human activity has been the dominant influence on climate and the 

environment (Crutzen & Stoermer, 2000; Waters et al., 2016).  

Even those areas set aside for protection have been subjected to human-induced 

stressors. As of 2016, nearly half (46%) of national park ecosystems monitored by Parks 

Canada were given an ecological integrity rating of fair-to-poor (Parks Canada, 2016). Of 

particular concern are forest and grassland parks which are experiencing disproportionate 

declines in biodiversity. These declining trends can largely be attributed to anthropogenic 
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disturbances, such as fire suppression, invasive species introduction, climate change, and 

overuse of PAs for tourism/recreation (Parks Canada, 2016). In order to counteract these 

trends, there is a growing need in Canada to improve management strategies and establish 

additional PAs. 

1.3 Commitments and Challenges 

In keeping with their mandate of using PAs as tools for biodiversity conservation, the 

Federal Government has committed, on behalf of the provinces and territories, to an 

international target of conserving at least 17% of terrestrial and inland waters, and 10% of 

coastal and marine areas, by the year 2020 (Environment and Climate Change Canada, 

2016). This goal of 17%, otherwise known as the Aichi Target 11 under the Convention on 

Biological Diversity (Secretariat of the Convention on Biological Diversity & United Nations 

Environment Programme, 2001), has been criticized as having little grounding in the 

discipline of conservation biology and is considered to be a politically-derived target 

(Mackinnon et al., 2016). The conservation community has suggested that a target of 30–

70% is required to prevent further loss of global biodiversity and is more in keeping with 

evidence-based studies (Locke, 2014). The current percentage of protected land in Canada is 

well under the internationally-agreed upon target of 17%, and the country is faced with the 

interim challenge of identifying and designating additional lands suitable for conservation 

prior to 2020.  

Adding to this challenge is the fact that Canada’s system is currently comprised of 

relatively small (<10 km2) and disconnected PAs. Few Canadian PAs satisfy minimum size 

thresholds (>3000 km2) deemed necessary for ecological persistence (Wright, 2016). These 

inadequacies can be attributed to flawed historical approaches to PA design.  
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In the past, PAs were selected based on opportunity rather than ecological principles. 

In keeping with the utilitarian mindset of the day, PAs were placed first in those areas 

deemed undesirable or unprofitable to humans and, therefore, would go unmissed if tenured 

for conservation purpose. Later strategies targeted areas for protection that would be 

desirable tourism attractions. In efforts to increase visitation, PAs were established near 

population centres, or along travel routes, instead of in the most biologically important areas. 

This approach resulted in the sporadic placement of disjointed PAs in aesthetically-pleasing 

landscapes that typically contained low levels of biodiversity (i.e., rock and ice parks).  

Over time, planning strategies evolved to gradually embrace more ecologically-rooted 

criteria for identifying PAs. For example, practitioners adopted a ‘one and done’ approach 

whereby a single PA representing broad landscape patterns was deemed sufficient protection 

for an ecoregion (Kavanagh et al., 1995). British Columbia applied ecological representation, 

but the provincial approach was biased towards selecting for biodiversity hotspots and 

proved to be insufficient at representing those ecological processes necessary to maintain 

biodiversity itself (Province of British Columbia, 1993). By focussing on representativeness 

alone, these approaches failed to fully incorporate principles of landscape ecology and 

conservation biology that are at the forefront of contemporary approaches to PA design. 

These rudimentary design criteria have produced a system of isolated PAs, selected to 

capture standalone values, rather than a network of PAs containing multiple overlapping 

values. 

1.4 The Wild Harts Study Area: An Opportunity for Conservation 

When compared to the populated areas that comprise the majority of the Global 

South, northern Canada serves as a suitable candidate for more advanced conservation 
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planning practices given its low human population density and relatively intact landscapes 

(Wiersma & Canadian Council on Ecological Areas, 2006). However, the global demand for 

resources has resulted in increased development of fossil fuels and hydroelectric potential 

across the northern extent of most provinces in the country (Wiersma & Canadian Council on 

Ecological Areas, 2006). The Peace Region in northeastern British Columbia, referred to 

throughout this study as the Peace River Break (PRB), is an example of one such area that 

has been subjected to intensive resource development to satisfy global demands. A recent 

analysis of linear disturbances noted that the PRB contains more than 29,000 km of pipelines, 

45,000 km of roads, and 117,000 km of seismic lines that, if strung together, would encircle 

the earth four times (Werring, 2015).  Despite this development, a relatively intact band of 

functioning ecosystems bisect the PRB on a southeast-northwest line. These areas comprise 

what will hereinafter be referred to as the Wild Harts Study Area (Fig. 1).  

The Wild Harts Study Area (WHSA) serves as a corridor joining PA complexes in the 

Central Rocky Mountains to the large PAs in the Northern Rocky Mountains. In addition to 

facilitating critical ecological exchanges between these two reserve systems, the WHSA 

provides refugia for species living in a landscape pressured by competing resource interests. 

The majority of the WHSA is not protected under any conservation tenure and is, therefore, 

susceptible to encroaching development (Apps, 2013). The WHSA offers one of the last 

opportunities to conduct systematic conservation planning (SCP) within the Peace Region. 

The placement of additional PAs within the WHSA would ensure the North American 

Cordillera remains a contiguous PA network and would assist Canada in reaching the Aichi 

Target 11 before the year 2020. 
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Figure 1. Boundaries of the Peace River Break and Wild Harts Study Area, British Columbia. 
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1.5 Research Purpose and Associated Questions  

The purpose of this research was to prioritize lands for conservation in the WHSA 

using a systematic conservation planning approach. To achieve this, I was guided by the 

following questions: 

(1) What areas contain high conservation value for select coarse- and fine-filter 

features? 

(2) What areas retain conservation value despite the presence of resource 

development? 

(3) What is an optimal portfolio (i.e., spatial solution for conservation) from which to 

direct conservation planning efforts?  



 
 

9 
 

2.0 LITERATURE REVIEW 

2.1 From Singles to Systems: A Brief History of Protected Area Design in Canada 

 In the late 1800s, railway employees stumbled upon a mineral hot spring tucked away 

in the Canadian Rockies. The Federal Government soon heard about this discovery and the 

aesthetically-pleasing landscapes that made up the surrounding area. The hot spring was 

thought to have high potential as a popular tourism and recreation destination. In 1885, the 

Federal Government acted upon this opportunity and established a 25 km2 reserve boundary 

to encompass the hot springs. The area was soon marketed by the Deputy Minister of the 

Interior as being “the greatest and most successful health resort on the continent” (Lothian, 

1976, p. 23). The establishment of this reserve, now known as Banff National Park, marked 

the beginning of the contemporary PA movement in Canada.  

 Early motivations for PA establishment in Canada had little to do with conserving 

areas of inherent ecological value (Dearden & Rollins, 2009). Instead, the tendency was to 

select areas for protection based on their potential to generate economic stimulus through 

tourism (Dearden & Rollins, 2009). Much like the creation of Banff National Park, early 

planners targeted areas that would provide visitors with the opportunity to gaze upon features 

of the greatest beauty or engage in recreational activities. The utilitarian mindset of the early 

1900s was reflected in the creation of national parks like Banff, Yoho, Jasper, Waterton 

Lakes, and Glacier. Each of these national parks contained world-class scenery, was 

reasonably proximal to large human settlements, and was accessible by major transportation 

corridors making them suitable tourism attractions. These early national parks were strictly 

created out of opportunity and their boundaries were not designed using ecological principles 

(Dearden & Rollins, 2009). 
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 From 1911–1960, the economic stimulus that could be generated by tourism began to 

materialize within the minds of bureaucrats in Ottawa and, as a result of this realization, the 

era saw significant growth in the national parks system (Dearden & Rollins, 2009). The 

growth of provincial and territorial park systems within Canada mirrored that of national 

parks during this time. Like the federal system, many of the earliest provincial parks were 

established primarily out of the opportunity to showcase the natural splendour of the 

provinces (Stevens & Darling, 2004).  

In the west, British Columbia’s first provincial parks were established along major 

railway lines as a means to increase tourism and outdoor recreation (Stevens & Darling, 

2004). This was followed by the creation of multiple small roadside provincial parks — each 

equipped with campsite facilities to address the demand for car-based family recreation 

opportunities that increased in the province following the Second World War. By the end of 

the 1950s, British Columbia’s PA system was comprised of small, disconnected provincial 

parks concentrated around southern population centers. In addition, the majority of provincial 

parks were placed within snow and ice ecosystems that provided visually-appealing 

scenescapes but contained low biodiversity value (Stevens & Darling, 2004). As was the case 

with the national park planning process, the majority of these early provincial parks were 

designed using criteria that had limited or no ecological foundation.  

The 1960s saw the emergence of an environmental ethic within the Canadian 

consciousness (Dearden & Rollins, 2009). As a result of this enlightenment, non-

governmental environmental organizations began to place pressure on parliament to expand 

Canada’s PA system. This new paradigm placed an increased emphasis on establishing PAs 

that would serve as refugia for ecosystems and biotic communities. These pressures incited a 
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shift in policy away from an exclusive focus on tourism and towards targeting those areas 

higher in conservation value (Hummel, 1989).  

In 1964, policy was established that deemed the preservation of significant natural 

features as being the most fundamental and important obligation to national park designation 

and management (Dearden & Rollins, 2009). In 1965, the Province of British Columbia 

developed the first Park Act that placed importance on managing provincial PAs for 

conservation alongside recreation (Stevens & Darling, 2004). These policy shifts coincided 

with the emergence of conservation sciences — leading to broader understandings of the 

need for a systematic approach to resource planning and management (Eagles et al., 2002). 

Building on this new ecological understanding, PA design in the 1970s began to 

embrace the concept of planning for representation of biodiversity (Wiersma & Nudds, 

2009). For example, national parks were now designed to encapsulate a representative 

sample of each of Canada’s unique landscapes. The nation was divided into national park 

natural regions (NPNRs) based on prevailing vegetation types and landscape appearance 

(Government of Canada, 1972). Candidate areas for protection were selected based on how 

well they represented an NPNR’s natural features. The premise of this approach was that the 

designation of a single national park, within an identified NPNR, would be sufficient to 

achieve representation of said NPNR (Government of Canada, 1972).  

The NPNR approach provided limited direction on where national parks should be 

placed, how large they should be, or how they should be configured. In addition, the process 

of delineating NPNRs, based on landscape appearance and prevailing vegetation, was 

considered too coarse and ecologically inadequate (Noss et al., 1995).  Recognizing these 

shortcomings, non-government environmental organizations developed frameworks for 
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selecting PAs, founded on ecological principles, with hopes that they would be applied in 

decision making within government.  

An example of such an initiative was the introduction of the gap analysis planning 

methodology. Developed by the World Wildlife Fund of Canada (WWF), and the Canadian 

Council on Ecological Areas (CEAA), gap analysis is a method for identifying areas of 

natural diversity that are not represented by an existing PA system (Kavanagh et al., 1995). 

This is achieved by overlaying spatial data describing the surficial deposits and quaternary 

geography of a landscape. Landscape units, known as enduring features, are then selected 

based on a combination of topography-relief, parent material origin, and parent material 

texture. The final stage of the method requires the identification of ‘gaps’, where existing 

PAs don’t represent identified enduring features. Though data on individual species were 

included when available, the gap analysis methodology was primarily coarse in that enduring 

features were considered to be foundational elements of ecological diversity (Kavanagh et 

al., 1995). 

This gap analysis approach was the first design methodology aimed at creating an 

inter-related system of PAs rather than a collection of standalone PAs. Some of the 

suggestions contained within the WWF/CEAA approach to gap analysis were incorporated 

into government PA planning processes. For example, the Province of British Columbia’s 

1993 Protected Area Strategy (Stevens & Darling, 2004) drew upon gap analysis as a method 

for identifying new PAs that would help address underrepresentation of mid-low elevation 

ecosystems in the province (Province of British Columbia, 1993). Although the planning 

intent of the Protected Areas Strategy was to incorporate a gap analysis approach, established 

policy targets for conservation, and the existing legacy of PAs that were contrary to 
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representation goals prevented government from fully applying gap analysis methodology. 

The combination of these factors resulted in limited progress towards building a functioning 

system of PAs in British Columbia (Doyle & Province of British Columbia, 2010). 

Despite the efforts of non-government environmental organizations, the Canadian 

system remained comprised of small and disjointed PAs at the turn of the 21st century 

(BEACONS, 2006; Doyle & Province of British Columbia, 2010). It does not resemble a 

connected network designed to promote biodiversity, maintain biophysical processes, and 

accommodate shifting ecological communities. Though planning for these values has since 

become an initiative at the federal and provincial levels (Stevens & Darling, 2004; Parks 

Canada, 2016), both levels of government continued to employ rudimentary representation 

approaches for directing PA establishment. 

The growing fields of conservation science, and accompanying technological 

innovations, are ushering in a new era of PA design rooted in ecological principles. The 

disciplines of landscape ecology, disturbance ecology, and conservation biology have co-

evolved with the development of large-scale data visualization, mapping, and management 

techniques to facilitate the emergence of new planning approaches. With the assistance of 

radio collars and satellite transmitters, researchers now understand that animals are moving 

far greater distances than was previously understood (Chadwick et al., 2000). Remotely 

sensed data, and the ability to process/analyze this information using various spatial tools and 

metrics, enables researchers to grasp the extent of resource development on the landscape. 

The advent and accessibility of these data and tools is allowing for more analytical planning 

processes whereby practitioners model conservation values at multiple spatial scales.  
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In Canada, First Nation groups and non-government environmental organizations 

have been leading the alternative PA design movement. For example, in 2003, the Taku 

River Tlingit (TRT) developed a PA design for their 40,000 km2 traditional territory in 

northwestern British Columbia (Province of British Columbia & Taku River Tlinget First 

Nation, 2011). The design process combined a number of methodologies including: the 

development of habitat models for several focal species; coarse-filter ecological community 

classification and representation analysis; regional connectivity analyses; and spatial 

optimization procedures at multiple scales. Traditional ecological knowledge was used to 

supplement scientific data and verify computer-generated models. Through a combination of 

identified core and connectivity areas, the TRT now have 55% of their traditional territory 

protected under the plan (Province of British Columbia & Taku River Tlinget First Nation, 

2011).   

Additional examples of contemporary PA designs include the Muskwa-Kechika 

Management Area (Heinemeyer et al, 2004) and a number of ecoregional assessments 

conducted by the Nature Conservancy (see for example Horn, 2011). These design 

approaches, which focus on building an interconnected system of PAs using multiple 

representation lenses, require careful consideration of a number of key variables. These 

variables include selection of features, targets, and tools for conservation area design. Each 

of these PA design elements will be discussed below. 

2.2 Deciding What to Conserve 

  Identifying what to conserve, and how to define it, is one of the first, and most critical 

decisions in PA planning. Using representation of a single valued ecosystem component as 

the sole criteria for a design will result in the establishment of PAs that are inadequately 
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equipped to support biodiversity and the biophysical processes needed to maintain it (Noss et 

al., 1995). Therefore, it is crucial to employ multiple lenses when selecting features for 

conservation. Hierarchies of conservation features used in a design can range from species-

level assemblages to biogeoclimatic landscape units, or the natural disturbance regime of a 

given planning area (Noss et al., 1995; Margules & Pressey, 2000; Delong & Province of 

British Columbia, 2011). The use of multiple features, at varying spatial scales, will increase 

the likelihood of the resultant PA system supporting a broad range of biodiversity and 

maintaining ecological processes (Noss et al., 1995). 

 The complexity of ecological systems makes it nearly impossible to quantify all 

facets of biodiversity within a proposed PA (Margules & Pressey, 2000). Therefore, 

practitioners must be targeted in their approach and select those features that will best serve 

as surrogates for biodiversity. Similar to how enduring features are utilized to represent a 

region’s geofeatures, a surrogate is a component of an ecosystem that is used as a proxy to 

represent the biodiversity of the whole ecosystem (Grantham et al., 2010). Biodiversity 

surrogates are often categorized as being either taxonomic or environmental (Margules & 

Pressey, 2000; Groves et al., 2002). Examples of taxonomic surrogates include rare, 

umbrella, flagship, and keystone species; whereas environmental surrogates include, but are 

not limited to, watersheds, natural disturbance regimes, land facets, or climatic zones 

(Margules & Pressey, 2000).    

The use of surrogates carries with it the assumption that one component of 

biodiversity can be considered to be representative of another — an assumption criticized by 

many as being an oversimplification of complex natural systems (Lambeck, 1997; 

Simberloff, 1998; Molles, 1999; Margules & Pressey, 2000; Carroll et al., 2001; Bonn et al., 
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2002; Lindenmayer et al., 2002). Therefore, a comprehensive PA design would include a 

number of surrogates, selected from both taxonomic and environmental categories, in order 

to account for the limitations and assumptions behind single surrogate use. Surrogate 

selection is largely dictated by data availability and comprehensiveness, as well as the 

specified objectives for a given planning process (Margules & Pressey, 2000). For the 

purposes of this study, environmental and taxonomic surrogates are referred to as coarse- and 

fine-filter conservation features respectively.  

2.3 Deciding How Much to Conserve 

 Once the suite of conservation features has been selected, the next step is determining 

how much of each feature should be protected. Typically, this target is expressed 

quantitatively for use at the operational level (Margules & Pressey, 2000). Canada has a long 

history of setting quantitative targets to help drive progress towards expanding the country’s 

PA system. In 1992, Canada was a signatory of the UN Convention on Biological Diversity 

(CBD), and through this agreement committed to expand the Canadian PA system to 

encompass 12% of the nation’s terrestrial ecosystems (Canadian Parks and Wilderness 

Society, 2016). This action came after the World Commission on Sustainable Development 

(i.e., Bruntland Commission) called for a tripling of PAs globally. In 2010, the CBD 

determined the target of 12% had not reduced declines in global biodiversity. Based on this 

analysis, the CBD recommended countries commit to protecting at least 17% of terrestrial 

and inland water areas by the year 2020 (i.e., Aichi Target 11). In 2015, the Canadian 

government committed to achieving Aichi Target 11 in the report 2020 Biodiversity Goals 

and Targets for Canada (Canadian Parks and Wilderness Society, 2016). 
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 Though based on good intentions, global targets for biodiversity conservation are 

criticized as being political abstractions, or data-free initiatives with little scientific 

foundation (Schmiegelow et al., 2006; Locke, 2014; Wiersma & Sleep, 2018). The 12% 

target, recommended by the Bruntland Commission, is considered by the conservation 

community to be grossly inadequate and it is predicted that 50% of all species would be 

committed to extinction if PA expansion was restricted to this target (Schmiegelow et al., 

2006; Locke, 2014). It has been argued that more realistic targets of 30–70% protection of 

terrestrial environs are necessary to prevent further losses in biodiversity (Margules et al. 

1988; Saetersdal et al. 1993; Soulé and Sanjayan 1998; Warman 2001; Rumsey et al. 2003; 

Venter et al., 2014).  

 The policy-based targets described above are premised on the assumption that 

selecting for a fixed percentage of a given planning region’s total area will effectively 

represent the ecology of that region. In a review of 159 studies on conservation targets, 

Svancara et al. (2005) found that the simplistic approach of targeting x% of a planning region 

often leads to inadequate representation of individual species and their respective habitats. 

Instead of blanketing entire planning regions with a single data-free target, it has been 

suggested that a more effective approach is to employ a range of science-based targets in 

SCP processes (Wiersma & Sleep, 2018). Under a science-based approach, each conservation 

feature should be assigned an individualized target that is the product of an in-depth 

understanding of the ecology and spatial extent of that feature within the context of a given 

planning region. In this way, the overall percentage of a planning region’s total area needed 

to achieve conservation is representative of the combined spatial requirements of individual 

conservation features (Svancara et al., 2005). 



 
 

18 
 

 Irrespective of the approach, the setting of conservation targets is plagued by 

assumption and uncertainty (Schmiegelow et al., 2006). To ensure best practices when 

selecting targets for a PA design, Margules and Pressey (2000: 246) suggest planners do the 

following: “focus on scales that are much finer than whole countries or regions; deal with 

natural processes as well as biodiversity patterns; reflect the relative needs of species and 

landscapes for protection; recognize that reserves must be complemented by off-reserve 

management; and leave options open for revision as social and economic conditions change”. 

In order to achieve these requirements, planners must have an understanding of the 

ecological and social dimensions of their planning area prior to establishing targets. 

However, possessing knowledge alone will not result in the design of a PA system that is 

effective at ensuring the preservation of biodiversity. Planners need to employ tools that 

allow them to manipulate targets and assess possible solutions for conservation at multiple 

scales.  

2.4 The Right Tool for the Job 

 Given the complexity attendant to a system with multiple conservation features and 

varying targets, optimization tools are increasingly employed by conservation planners to 

assist in PA selection (Schuster et al., 2016). Through the use of these tools, planners are able 

to explore the extent to which varying PA configurations achieve conservation targets and 

minimize cost. Optimization software identifies a portfolio of high-value conservation lands 

that can contribute to a transparent, inclusive, and defensible decision-making process 

relating to PA creation (Schuster et al., 2016). The majority of these optimization tools are 

strictly computational and have no graphical interface. The outputs of these programs can be 
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uploaded into ArcGIS (Environmental Systems Research Institute, 2011) to be viewed 

spatially (Morrell et al., 2015). 

 To date, the most commonly used decision support software for conservation 

planning is MARXAN (Ball et al., 2009). MARXAN is designed to select planning units 

based on the presence/absence of identified conservation features (Morrell et al., 2015). The 

user can manipulate how aggressively MARXAN works to select conservation features by 

adjusting each feature’s associated target. Planners can also adjust the software to align with 

additional goals for the PA design. For example, MARXAN can be manipulated to minimize 

boundaries (edge) or avoid highly fragmented portions of the planning landscape — as these 

would be considered as being costs to the overall effectiveness of the PA design. The 

software is designed to maximise targets for conservation while minimizing costs (Morrell et 

al., 2015).  

The traditional MARXAN platform uses the heuristic method of simulated annealing 

(SA) to produce portfolios of conservation lands (Morrell et al., 2015). SA is simply an 

algorithm that produces ‘near optimal solutions’ for a problem given user-defined parameters 

(i.e., planning units, features, targets, and costs) (Morrell et al., 2015). Planners have 

recognized the problem-solving abilities of this software and, as a result, MARXAN has been 

employed in multiple contemporary PA designs (Airamé et al., 2003; Evans, 2003; Leslie et 

al., 2003; Stewart et al., 2003; Banks et al., 2005; Geselbracht & Torres, 2005, Loos & 

Canessa, 2006; Horn, 2011; Venter et al., 2014). However, the traditional MARXAN model 

has recently come under criticism for producing solutions of questionable quality (Beyer et 

al., 2016). This is because the heuristic method of SA is limited to selecting PA designs that 

are near optimal and, thus, may exclude important features from a prioritization.  In addition, 
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SA can take hours/days to calculate a solution and processing time increases with the 

complexity of datasets used and the size of a reserve planning area (Beyer et al., 2016).  

 Recent advances in algorithms and computing power have now increased the 

capabilities of decision support software (Beyer et al., 2016). Integer linear programming 

(ILP) is an example of a state-of-the art approach to optimization problems that has 

superseded simulated annealing (Schuster et al., 2016). When used in conjunction with 

MARXAN, ILP is capable of analyzing large, complex datasets to find an ‘optimal solution’ 

to identified biodiversity goals based on user-defined parameters (Schuster et al., 2016). ILP 

is superior to SA in computational speed (seconds-minutes vs hours-day) and solution quality 

(optimal vs near-optimal) (Beyer et al., 2016). These advantages allow planners to explore 

trade-offs, assess the complementarity of selected surrogates, and evaluate effectiveness of 

targets in near real time. When compared to the static portfolio of hypothetical PA designs 

produced by MARXAN with SA, MARXAN with ILP offers an interactive platform that can 

facilitate conversations with stakeholders and decision makers regarding the establishment of 

PAs (Beyer et al., 2016; Schuster et al., 2016). 
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3.0 CASE STUDY 

3.1 Overview of the Peace River Break 

The Peace River Break (PRB) is a geographic designation coined by the Yellowstone 

to Yukon Conservation Initiative to describe a 135,400 km2 section of the North American 

Cordillera that straddles the Peace River in northeastern British Columbia (Fig. 1) (Apps, 

2013). Ten ecoregions merge here to create a hotspot of biotic and abiotic diversity. The 

Peace River itself has the unique distinction of being one of the only watercourses in Canada 

that travels eastward through the Rocky Mountains. Where arctic air typically dominates this 

region, the Peace River provides a channel for warm Pacific air to flow through, resulting in 

a moderated climate and unique ecological conditions (Apps, 2013).  

This west-east pathway, and the temperate climate it provides, made the PRB a 

logical area for multiple First Nations groups to inhabit (Apps, 2013). The arable soils of the 

Peace River valley later drew agricultural interests to the region at the turn of the 20th 

century. By the 1950s, two major transportation corridors (i.e., Alaska Highway and John 

Hart Highway) had been constructed, providing access to what was previously a remote and 

isolated area. This led to the development of a natural resource industry in the area and, 

consequently, the establishment of several communities to support the growing sector (Apps, 

2013).  

In recent times, the PRB has become one of British Columbia’s most prominent 

regions for resource-related industry and extraction (Apps, 2013).With construction of the 

Site C Dam underway, and other large-scale development proposals pending approval, such 

as TransCanada’s Prince Rupert Gas Transmission Project, the area could see considerable 

growth in population and resource-related infrastructure.  Considering the PRB is currently 
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underrepresented by PAs (approximately 9% of the land base is conserved), landscape 

connectivity and associated biodiversity values in the area are quickly becoming vulnerable 

to the cumulative effects of industrial expansion (Apps, 2013).  

3.2 The Wild Harts Study Area 

A preliminary analysis of industrial activity in the PRB revealed the spatial footprint 

of linear development on the land base (Fig. 2). Industrial expansion has formed an 

ecological bottleneck in the region — whereby the mountain ranges that bisect the PRB on a 

southeast-northwest line represent the only ecologically functional landscapes within this 

section of the North American Cordillera. When compared to the rest of the PRB, these areas 

remain relatively intact and form a natural corridor for species moving amongst existing PAs 

(Fig. 2).    

Given their ecological significance within local and regional contexts, the lands that 

comprise the abovementioned corridor were selected to be the focus of this research. The 

borders of the Eastern System Physiographic Region capture the corridor and, thus, served as 

a logical reference from which to delineate longitudinal study area boundaries.  Horizontal 

boundaries were established in areas where lands beyond were thought to have sufficient 

representation by existing PAs. All lands that fell within the finalized boundary comprised 

what was referred to in this study as the Wild Harts Study Area (WHSA) (Fig. 2). 
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Figure 2. The Wild Harts Study Area juxtaposed against the Eastern System Physiographic Region and linear 
development in the Peace River Break. 
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3.2.1 Geography & Natural History 

The lands that make up the WHSA occupy 70,000 km2 of the Eastern System 

Physiographic Region. This section of the Eastern System is predominately comprised of the 

Northern and Central Canadian Rocky Mountain ecoregions — with small portions of the 

Eastern Continental Ranges and Southern Alberta Upland ecoregions occupying the 

southeastern corner (Demarchi, 2011). Elevation in the WHSA increases in a southerly to 

northerly direction and decreases from west to east (Demarchi, 2011).  

At the ecosection scale, the portions of the WHSA that fall below the Peace River are 

largely characterized by the steep-sided, round-topped mountains of the Hart Ranges 

(Demarchi, 2011). Moving eastward, the Hart Ranges subside into the low, rounded 

mountains and wide valleys that make up the Hart Foothills. The remaining southeasterly 

portions are comprised of the ridges and valleys of the Front Ranges and rolling uplands of 

the Kiskatinaw Plateau (Demarchi, 2011).  

The central portions of the WHSA contain rounded mountains characteristic of the 

Peace Foothills and Misinchinka Ranges ecosection (Demarchi, 2011).  Moving northward, 

above the Peace River, these rounded mountains are disrupted by the deep valleys and rugged 

peaks of the Muskwa Ranges which represent the highest mountains in the WHSA.  The 

Muskwa Foothills make up the remaining northeastern portion of the study area and are 

characterized by rounded mountains and wide valleys (Demarchi, 2011).  

The climate in the WHSA consists of cold winters and warm summers (Demarchi, 

2011). Extreme cold events are frequent during winter and early spring when Arctic air 

moves unhindered from north to south across the area. The rugged topography of the WHSA 

results in unique patterns of surface heating at high-elevation slopes and cold-air drainage in 



 
 

25 
 

low valleys. Precipitation is strongly influenced by warm Pacific air that is brought across the 

central interior by prevailing westerly winds. The Rocky Mountains serve as a barrier that 

causes said warm air to rise, resulting in high precipitation in windward areas and the 

occurrence of rain shadows in leeward areas. In general, precipitation levels are relatively 

constant throughout the year (Demarchi, 2011). 

The WHSA is unique in that its boundary captures portions of ten major watersheds 

that serve as tributaries to both the Pacific and Arctic oceans (Demarchi, 2011). From north 

to south, these include the Kechika, Fort Nelson, Finlay, Halfway, Peace, Pine, Parsnip, 

Smokey, Kiskatinaw, and McGregor watersheds (Demarchi, 2011; Apps, 2013).  The 

complex relief of the WHSA causes drainage to radiate out in all directions. However, the 

majority of streams are relatively short in length and either flow westward into the 

Parsnip/Fraser watersheds, or eastward into the Peace (Demarchi, 2011). 

 The area’s disturbance regime is predominately comprised of stand-replacing fire 

events and insect epidemics (Delong & Province of British Columbia, 2011). Vegetation 

pattern in the WHSA is defined by six prevailing biogeoclimatic zones (Demarchi, 2011). 

These include the Sub-boreal Spruce, Englemann Spruce – Subalpine Fir, Boreal Altai 

Fescue Alpine, Interior Cedar – Hemlock, Boreal White and Black Spruce; and Spruce – 

Willow – Birch zones (Demarchi, 2011; Apps, 2013).  

The unique combination of topography, climate, hydrology, disturbance, and 

vegetation pattern enables the WHSA to support a high diversity of native wildlife and fish 

species. Characteristic mammalian species include wolverine, moose, caribou, mountain 

goat, mule deer, elk, lynx, marten, black bear, Stone’s sheep, and grizzly bear (Demarchi, 

2011; Apps, 2013). The area is said to support 57% of all avifauna known to occur in British 
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Columbia. Bull trout and Arctic grayling are the dominant fish species (Demarchi, 2011; 

Apps, 2013). 

3.2.2 The Human Element 

The WHSA boundary captures traditional territories of the Halfway River First 

Nation, McLeod Lake Indian Band, West Moberly First Nation, Saulteau First Nation, 

Simpcw First Nation, Blueberry River First Nation, Horse Lake First Nation, and Lheidli 

T’enneh First Nation. Four significant urban settlements (i.e., population > 1000) are within, 

or directly proximal to, the study area. These include the towns of Mackenzie, Tumbler 

Ridge, Chetwynd, and Hudson’s Hope. Residents of these communities rely heavily upon 

natural resources for recreation and employment. The WHSA boasts some of the best 

hunting, fishing and snowmobiling opportunities in British Columbia. Main employers in the 

area include the oil, natural gas, coal, hydro-electric, forest, and resource-related-tourism 

industries (Apps, 2013).  

3.2.3 Resource Development 

Where oil and gas dominate in the larger PRB area, forestry is the most prolific 

resource-based industry in the WHSA (Apps, 2013). Harvesting activities within the WHSA 

supply major pulp, lumber, and particle board mills situated in the communities of Chetwynd 

and Prince George. The study area captures the majority of TFL 48 — a 640,000 ha tree farm 

licence managed by Canadian Forest Products Limited that has an allowable annual cut of 

1,550,000 m3 (Province of British Columbia, 2015a).  

Mining is another major industry in this area. There are two major coal mines (i.e., 

Sukunka and Murray River) that occur within the bounds of the WHSA along with multiple 
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small placer and aggregate operations. There is some agricultural activity in the far southwest 

and northeast portions of the study area. Several wind power proposals occur within the area 

but remain in the investigative phase due to the potential energy surplus that the Site C Clean 

Energy Project is expected to create. The WHSA is also bisected by John Hart Highway, two 

railroads, and a myriad of access roads that are associated with the abovementioned 

industries.  

When compared to the rest of the Peace River Break, there is limited oil and natural 

gas extraction/infrastructure in the WHSA. However, TransCanada’s Prince Rupert Gas 

Transmission proposal is currently under review. If approved, this initiative would increase 

the rate of natural gas extraction from the Peace River Break which would then be sent 

overland by pipeline to Prince Rupert. There is a high likelihood that, in order to keep up 

with increasing demands associated with this project, and others like it, natural gas 

exploration and development will encroach upon the WHSA in the near future.  

3.2.4 Conservation in the Wild Harts Study Area 

At the North American scale, the WHSA joins large PA systems in the Central Rocky 

Mountains to the Muskwa-Kechika Management Area (M-KMA) and territorial parks in the 

north. In this way, the WHSA serves as an integral section of the Yellowstone to Yukon 

corridor — an initiative centered on establishing a contiguous PA network stretching from 

Wyoming to the Yukon Territory (Fig. 3). Fragmentation of the WHSA may create barriers 

to species movements and effectively split the trans-continental corridor into two 

ecologically disjointed PA networks. This limits the ability of biological communities to 

adapt to shifting climate regimes by migrating along latitudinal gradients. It may also isolate  
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Figure 3. The position of the Wild Harts Study Area in relation to the Muskwa-Kechika Management Area, 
Central Rocky Mountains, and Yellowstone to Yukon Corridor. 
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populations and reduce the amount of biological/genetic exchange occurring along the North 

American Cordillera.  

Similar to the Peace River Break, there is relatively little PA representation within the 

WHSA (Fig. 4).Total PA coverage equals approximately 1,067,000 ha or 17.4% of the 

WHSA’s total area. Northern Rocky Mountains Provincial Park and Kakwa Provincial Park 

occupy the terminal ends of the study area and comprise approximately half of the total area 

under protection in the WHSA. The remaining half is comprised of small and disjointed PAs 

(Fig. 4). The creation of new PAs within these poorly-represented sections would limit 

fragmentation of the WHSA and facilitate connectivity across the northern portion of the 

North American Cordillera.  In addition, PA creation in the WHSA could assist Canada in 

achieving its international agreement of protecting 17% of the nation’s terrestrial land base 

by 2020.  
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Figure 4. Existing protected area representation in the Wild Harts Study Area. 
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4.0 METHODS 

To address each of my research questions, I used a variation of the methods for 

conservation area design described in Margules and Pressey’s (2000) systematic conservation 

planning (Table 1). The four steps involved in my SCP methods were: (1) select and develop 

conservation features; (2) identify conservation goals and targets for the WHSA; (3) review 

existing conservation areas; and (4) use MARXAN-ILP to identify lands suitable for 

protection in the WHSA. 

Table 1. The four steps of systematic conservation planning used to prioritize lands for conservation in the Wild 
Harts Study Area. 

1. Select and Develop Conservation Features  
• Review literature and existing data to identify multi-spatial surrogates for biodiversity in 

the WHSA. 
• Select those datasets that have sufficient rigor and consistency to support the construction 

of spatial layers for the WHSA. 
• Develop spatial layers in ArcGIS that represent each conservation feature’s extent across 

the WHSA. 
2. Identify Conservation Goals and Targets 
• Employ knowledge gained in the literature review to set goals for conservation in the 

WHSA centered on promoting biodiversity, maintaining natural disturbance regimes, and 
increasing resilience to climate change. 

• Translate goals into a series of quantifiable targets for operational use. 
3. Review Existing Protected Areas 
• Determine the extent to which existing protected areas achieve my targets for conservation 

in the WHSA.  
• Identify gaps in the current WHSA protected areas system.  
4. Use MARXAN-ILP to Identify Lands Suitable for Protection in the WHSA 
• Apply the conservation software MARXAN with ILP to identify gaps in the current 

protected areas system in order to spatially prioritize lands for conservation in the WHSA. 
• Select a portfolio of priority lands that achieve optimal targets for conservation while 

minimizing user-defined costs. 
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4.2 Step 1 Selection and Development of Conservation Features  

I conducted a review of existing literature on the biodiversity and biophysical 

processes present in the WHSA in order to identify a suite of possible surrogates for use in 

the SCP process. Expert opinion was drawn upon informally to assess the extent to which 

select surrogates represented other facets of biodiversity in WHSA. I analyzed databases to 

identify which surrogates had geospatial layers that were most available, reliable, and 

consistent across the WHSA (Appendix 1).  Multiple datasets were combined, using 

geospatial analysis in ArcGIS to create full layers for surrogates.  

The combination of literature, expert opinion, and data availability resulted in the 

selection of coarse-filter and fine-filter surrogates, hereinafter referred to as conservation 

features, for use in the subsequent ILP scenarios. The conservation feature layers described 

below were developed in binary form (0, 1). There is no continuous gradient that would 

suggest one portion of a conservation feature is of higher value than another.  

4.2.1 Coarse-filter Conservation Features 

 In SCP, coarse-filter conservation features are typically representative of ecological 

patterns and the biophysical processes that define those patterns (Schneider et al., 2011). The 

coarse-filter approach is grounded in the assumption that, by representing a wide array of 

ecosystems and their constituent processes, the habitat needs of multiple species will be 

accommodated in a resultant PA design (Schneider et al., 2011). In this way, coarse-filter 

conservation features are an efficient means by which to compensate for a lack of data on the 

ecology of individual species when prioritizing lands for conservation across a large region 

such as the WHSA. Coarse-filter conservation features used in this study included land facet 
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diversity, land facet rarity, and a set of features displaying an intersection of natural 

disturbance, biogeoclimatic zone, and forest age.  

4.2.1.1 Land Facets 

Ecological pattern and process is largely determined by underlying abiotic variables 

such as slope, aspect, elevation, and landform (Beier & Brost, 2010).  A land facet is a 

recurring landscape unit with uniform combinations of these abiotic variables. In 

contemporary conservation planning, land facets are used as a coarse-filter conservation 

feature to build climate change resilience into PA designs. This is because topography and 

geology represent those components of an ecosystem that are relatively stable and unlikely to 

undergo abrupt reorganization in response to a shifting climate regime. Essentially, land 

facets serve as the static stage for temporary biological assemblages to pass across and for 

evolutionary processes to play out upon (Beier & Brost, 2010).   

I used datasets developed by Michalak et al. (2015) and Carroll et al. (2017) to 

construct a land facet diversity (LFD) and land facet rarity (LFR) layer for application in 

MARXAN-ILP. Land facets were defined in these datasets as raster cells containing unique 

combinations of 4 abiotic variables: elevation, landform, modified heat load index (HLI), and 

soil order. Landform was referred to as coarse topographic features such as headwaters, 

hilltops, ridges, valleys, and canyons. Modified heat load index was a measure of radiation 

exposure relative to aspect and slope. Soil order was described as patterns in surficial 

deposits at a scale of 1 km2. Michalak et al. (2015) and Carroll et al. (2017) delineated 

individual land facets by categorizing the four abiotic variables into discrete classes for 

application in the following equation: 

Land Facet ID = (Landform + HLI + Elevation)*100 + Soil Order 
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4.2.1.1.1 Land Facet Diversity 

Areas of high diversity occurred where clusters of land facet cells had dissimilar 

combinations of abiotic variables relative to neighboring cells. Details on the formulas used 

to generate diversity metrics can be found in the R script of the land facet diversity dataset 

(see Carroll et al., 2017). In ArcGIS, I scaled the dataset produced by Carroll et al. (2017) to 

the WHSA and ranked diversity on a scale of 1 (high LFD) to 10 (low LFD). The 

mountainous terrain of the WHSA made it so that the majority of the area received a 

diversity value of <3. Therefore, only those areas containing a diversity value of 1 were 

selected to serve as a surrogate for LFD — as these areas represented the most diverse 

combinations of abiotic variables in an already highly diverse landscape.  

4.2.1.1.2 Land Facet Rarity  

Using the dataset produced by Michalak et al. (2015), I assessed rarity based on the 

total area that each land facet covered in the WHSA. The data were scaled to the WHSA and 

each land facet type was assigned a value from 1 (low area) to 10 (high area). Those land 

facets assigned a value of 1 occupied <1000 ha of the WHSA total area and were considered 

to have a rare distribution. Accordingly, the LFR layer reflects those cells containing unique 

combinations of elevation, landform, and HLI that occupy <1000 ha of the WHSA area.  

4.2.1.2 Forest Pattern and Process 

As previously stated, coarse-filter conservation features should represent the full array 

of ecosystems that occur within a given planning region, as well as the biophysical processes 

which create the conditions necessary for the persistence of those ecosystems. To satisfy 

those criteria, I constructed a series of layers that incorporated data on vegetation types, 

forest age, wildfire occurrence, and climatological patterns in the WHSA. Information on 
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vegetation types was included to ensure adequate representation of dominant tree species. 

Old forests were included in the selection as these areas are synonymous with high-value 

habitat features (e.g., coarse-woody debris, wildlife trees, stratified canopy, shrubs, etc.). 

Recently burned areas (≤40 years) were selected as they represent suitable habitat for those 

species that are heavily dependent upon burned, standing forests. Lastly, natural disturbance 

regimes were drawn upon because of their ability to reorganize biological communities and 

initiate ecological succession.  

Provincial datasets from DataBC were used to construct the multiple layers 

representing forest pattern and process in the WHSA (Appendix 1). In ArcGIS, I intersected 

data describing natural disturbance type (NDT), biogeoclimatic ecosystem classification 

(BEC) zone, and stand age to create polygons that represented unique combinations of these 

three input datasets (Table 2). I used the seral stage definitions by NDT/BEC, as described in 

the Biodiversity Guidebook (Province of British Columbia, 1995), to select for mature-old 

stands. Additional datasets describing historical wildfire and harvesting activity were used to 

select stands within each NDT/BEC that were recently burned and free of any harvest 

activity since time of disturbance.  
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Table 2. Nomenclature of the forest pattern and process conservation features used in the MARXAN-ILP 
analysis to prioritize areas for conservation in the Wild Harts Study Area.  

Label* Description 
NDT3-SBS-
Mature/Old 

NDT3: ecosystems with frequent stand initiating events 
SBS: Sub-boreal Spruce biogeoclimatic zone 
Mature/Old: stand age >100 years  

NDT3-SBS-
Burned 

NDT3: ecosystems with frequent stand-initiating events 
SBS: Sub-boreal Spruce biogeoclimatic zone 
Burned: exposed to wildfire within last 40 years 

NDT3-BWBS-
Mature/Old 

NDT3: ecosystems with frequent stand-initiating events 
BWBS: Boreal White and Black Spruce biogeoclimatic zone 
Mature/Old: stand age >80 years 

NDT3-BWBS-
Burned 

NDT3: ecosystems with frequent stand-initiating events 
BWBS: Boreal White and Black Spruce biogeoclimatic zone 
Burned: exposed to wildfire within last 40 years 

NDT2-SWB-
Mature/Old 

NDT2: ecosystems with infrequent stand-initating events 
SWB: Spruce - Willow - Birch biogeoclimatic zone 
Mature/Old: stand age >120 years 

NDT2-SWB-
Burned 

NDT2: ecosystems with infrequent stand-initating events 
SWB: Spruce - Willow - Birch biogeoclimatic zone 
Burned: exposed to wildfire within last 40 years 

NDT2-SBS-
Mature/Old 

NDT2: ecosystems with infrequent stand-initiating events  
SBS: Sub-boreal Spruce biogeoclimatic zone 
MO: stand age >100 years 

NDT2-SBS-
Burned 

NDT2: ecosystems with infrequent stand-initiating events 
SBS: Sub-boreal Spruce biogeoclimatic zone 
Burned: exposed to wildfire within last 40 years 

NDT2-ESSF-
Mature/Old 

NDT2: ecosystems with infrequent stand-initiating events 
ESSF: Englemeann Spruce - Subalpine Fir biogeoclimatic zone 
Mature/Old: stand age >120 years 

NDT2-ESSF-
Burned 

NDT2: ecosystems with infrequent stand-initiating events  
ESSF: Englemeann Spruce - Subalpine Fir biogeoclimatic zone  
Burned: exposed to wildfire within last 40 years 

NDT1-ESSF-
Mature/Old 

NDT1: ecosystems with rare stand-initiating events; 
ESSF: Engelmann Spruce - Subalpine Fir biogeoclimatic zone 
Mature/Old: stand age >120 years 

NDT1-ESSF-
Burned 

NDT1: ecosystems with rare stand-initiating events  
ESSF: Engelmann Spruce - Subalpine Fir biogeoclimatic zone  
Burned: exposed to wildfire within last 40 years 

NDT1-ICH-
Mature/Old 

NDT1: ecosystems with rare stand-initiating events;  
ICH: Interior Cedar - Hemlock biogeoclimatic zone 
Mature/Old: stand age >100 years 

NDT1-ICH-
Burned 

NDT1: ecosystems with rare stand-initiating events 
ICH: Interior Cedar - Hemlock biogeoclimatic zone  
Burned: exposed to wildfire within last 40 years 

*NDT: natural disturbance type; mean disturbance intervals described in Province of British Columbia (1995) 
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4.2.2 Fine-Filter Conservation Features 

A coarse-filter SCP approach will likely identify lands that meet the habitat 

requirements of the majority of species present in a planning region; however, it is inevitable 

that the needs of some species will be missed and excluded from a given portfolio (Tingley et 

al., 2014). To account for those species that pass through the wide mesh of the coarse-filter, it 

is good practice to also incorporate fine-filter conservation features (Tingley et al., 2014).  

The fine-filter approach addresses the individual habitat requirements of those species 

considered to be endemic, threatened, or representative of multiple organisms in a planning 

region (i.e., umbrella). Habitats that are unique, or rarely distributed across a planning region, 

can also be used as fine-filter conservation features. I selected 4 fine-filter conservation 

features to complement the previously discussed coarse-filter features. These included grizzly 

bear, bull trout, woodland caribou, and a special features layer.  

4.2.2.1 Grizzly bear 

I selected grizzly bear to serve as a fine-filter conservation feature because they are a 

wide-ranging omnivore that utilizes a number of different food sources and habitat types 

(Apps, 2013). Grizzly bears that inhabit mountainous terrain of the WHSA have home ranges 

of approximately 300 km2 and are capable of travelling ±10 km/day (Ciarniello, 2006). It is 

because of these generalist life-history traits that grizzly bear is often referred to as an 

umbrella species whose habitat requirements cover the needs of multiple other species by 

default (Noss and Cooperrider, 1994; Noss et al., 1996; Apps, 2013). Accordingly, I mapped 

and selected for suitable grizzly bear habitat in an effort to capture large, intact landscapes 

that represented a multitude of ecosystems. 
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Grizzly bears are blue-listed as a ‘species of special concern’ in British Columbia. 

Population declines are the result of low fecundity rates and direct/indirect mortality caused 

by habitat fragmentation (Apps, 2013). Aside from capitalizing on their utility as an umbrella 

species, seeking to capture large portions of grizzly bear habitat in this prioritization exercise 

would help to promote the persistence of this species.  

I used methodology described in the Draft Cumulative Effects Framework Grizzly 

Bear Value Summary (Province of British Columbia, 2015b) as a baseline to construct a 

grizzly bear layer for use in MARXAN-ILP. In ArcGIS, datasets describing BEC zone and 

stand age/composition (Appendix 1) were used to remove mid-seral, conifer-dominated 

forests, with >30% closed canopy as these stand characteristics are not ideal for grizzly bear 

forage production. Of the remaining stands, only those identified in the Broad Ecosystem 

Inventory (Appendix 1) as ‘capable/suitable’ grizzly habitat were selected for inclusion in the 

layer and all others deleted. To refine the layer further, I only included those areas with >10 

km 2 of roadless habitat to accommodate the daily range of an adult female grizzly bear 

(Province of British Columbia, 2015b). Lastly, I added all Wildlife Habitat Areas (Appendix 

1) set aside for grizzly bears in the WHSA to the finalized layer. 

4.2.2.2 Bull Trout  

 Bull trout was selected for use as a fine-filter conservation feature that represented a 

broad diversity of aquatic values across the WHSA. These fish are associated with cold, 

high-elevation streams that have clean gravel beds and undisturbed riparian vegetation. 

Mapping the known extent of the species across the WHSA allowed me to select for large, 

healthy watersheds that contained relatively little fragmentation.  
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At the provincial scale, suitable habitat has been reduced by large-scale hydroelectric 

projects and forestry-related riparian degradation. These forms of development have 

contributed to bull trout being blue-listed as a ‘species of special concern’.  The recent 

approval of the Site C Dam Clean Energy Project may perpetuate bull trout declines within 

the WHSA and provided further justification for prioritizing the habitat needs of this species.  

  I developed a bull trout layer for the WHSA using 1:50,000 watersheds as selectable 

units (Appendix 1). To be included in this layer, watersheds were required to satisfy one of 

the following criteria: overlap with a Fisheries Sensitive Watershed – Bull Trout (legal or 

proposed), overlap with Wildlife Habitat Area – Bull Trout (legal or proposed), identified by 

experts as critical rearing habitat (Williamson 2017, pers. comm), or identified in Appendix 4 

of Hagen and Decker (2011) as being a tributary large enough to support local populations. 

Provincial bull trout specialists provided supplemental information on which watersheds 

should be included and/or excluded from the resultant layer (Williamson & Peck 2017, pers. 

comm). 

4.2.2.3 Caribou 

Woodland caribou were selected to serve as a fine-filter conservation feature because 

of their association with alpine and subalpine parkland habitats. These two habitat types were 

not represented by any of the other conservation features used in this study. Caribou also 

utilize old, mid-elevation stands containing arboreal lichens (Johnson et al., 2004). Therefore, 

mapping and selecting for caribou habitat would not only capture high-elevation habitats, but 

also provide redundant representation of old-forest alongside the forest pattern and process 

layers.  
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The WHSA contains portions of Southern, Central, and Northern Mountain caribou 

populations — 3 Designatable Units1 identified by the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC) and recognized under the federal Species-at-

Risk Act (SARA). The Northern Mountain population is currently blue-listed as a ‘species of 

special concern’ in the province. Those animals which comprise the Central and Southern 

Mountain populations are red-listed (i.e., threatened or endangered). The status of these 

animals provided further justification for their inclusion in this conservation planning 

exercise. 

I used a core habitat dataset, developed by Jones (2008) to represent mountain 

caribou herds occurring in areas of the WHSA that fell within the South Peace region (i.e., 

Central and Southern Mountain populations). Jones (2008) identified suitable summer/winter 

habitats using resource selection functions (RSFs) and ranked habitat quality based on 

probability of selection from 1 (very low) to 5 (very high). Those areas with a ‘very high’ 

probability of selection were considered to be core habitat. Point locations of GPS-collared 

animals were used to further refine the core habitat polygons and recognise the recent 

distribution of caribou — potentially excluding those high-value habitats that were not 

occupied. For this reason, I decided to merge core habitat polygons, reflective of ‘very high’ 

selection probability and recent telemetry, with those polygons assigned a ‘high’ probability 

of selection. In this way, the overall selection area for South Peace herds was increased and 

represented those habitats currently occupied by caribou, as well as those areas that are 

unoccupied but contain high-value habitat features.  

                                                           
1 The term Designatable Unit (DU) is described by COSEWIC as a significant unit of a taxonomic species that 
is important to the evolutionary legacy of the species as a whole and, if lost, would likely not be replaced 
through natural dispersion. 
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A similar approach to that employed in the South Peace was used by Gustine and 

Parker (2008) to delineate suitable habitat for herds occurring in the northern portions of the 

WHSA (i.e., Northern Mountain population). Gustine and Parker (2008) completed RSFs 

across all seasons and assigned a quality rank by binning probability of selection into deciles 

(1 = low; 10 = high). Where Jones (2008) used telemetry points to refine core polygons, 

Gustine and Parker (2008) used telemetry points to test the predictive capacity of the RSF 

modelling. They found the modelling did well in predicting the habitat selection of collared 

animals across seasons but that increasing the bin size to quintiles would absorb some of the 

error present in RSFs (Gustine & Parker, 2008). Based on this observation, I rescaled Gustine 

and Parker’s (2008) RSF dataset into quintile bins and extracted those habitats given a 

ranking >4. The extracted selections from each season were then merged to create a single 

layer representing the full range of year-round habitats selected by woodland caribou in the 

northern portions of the WHSA.  

I used an RSF model produced by Johnson et al. (2004) to represent those animals in 

the Southern Mountain Population that were not captured by the Jones (2008) data (e.g., Hart 

Range herd). The RSF produced by Johnson et al. (2004) differed from the abovementioned 

datasets in that it only represented winter habitats.  The RSF displayed probability of 

occurrence based on observed distribution of caribou (i.e., survey data) relative to vegetation 

and topography. Johnson et al. (2004) scaled probability of occurrence into four broad classes 

of 1 (rare) to 4 (high). For consistency, I rescaled RSF dataset into quintile bins and extracted 

those habitats given a ranking >4.  

The multi-year collaring programs and RSF modelling described above were 

relatively consistent in methodology and assisted in the development of a robust layer 
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depicting caribou habitat across the majority of the WHSA. There remained some gaps in the 

layer where caribou were known to occur but for which a comparable level of analysis on 

habitat quality and point locations had not been completed. Rather than attempt to extrapolate 

local RSF modelling to herds with potentially dissimilar ecology, it was suggested that 

Ungulate Winter Ranges 7-003 and 7-025 be used to fill these gaps in the layer. These special 

management areas are relatively compatible with the mapping done by Jones (2008) and are 

largely representative of high-elevation summer range as well (Seip 2017, pers. comm). In 

addition to filling in gaps, these data would represent summer habitats utilized by the Hart 

Range herd that were not captured in the RSF produced by Johnson et al. (2004). 

All components described in this section were merged into a single dataset and the 

resultant layer divided into individual herds based on a provincial layer describing legal herd 

boundaries (Appendix 1). The finalized woodland caribou layer thus represented year-round 

habitats that are currently occupied, as well as those areas that are unoccupied but contain 

high-value habitat features.  Before being applied in this study, the layer was validated by the 

researchers whose data contributed to its creation (Seip & Parker 2017, pers. comm.). 

4.2.2.4 Special Features 

In SCP, a fine-filter conservation feature layer is usually developed to represent the 

extent of special features across a given planning region. Special features are described as 

those ecosystem components that are sensitive, spatially-limited, or of high biodiversity value 

(Heinemeyer et al, 2004). For this study, I developed a single layer that represented wetlands, 

karst deposits, and mineral licks across the WHSA. 

Wetlands were included because they are an aquatic value in the WHSA whose full 

distribution may not be adequately represented by the bull trout layer as wetlands are not 
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necessarily associated with high-elevation watersheds. Wetlands also provide habitat for 

migratory waterfowl and perform valued ecosystem functions such as water filtration. Karst 

formations were targeted as these ecosystems provide habitat for plant and animal species 

that utilize caves for some portion of their life history. Mineral licks were incorporated as 

they are an important nutrient source for ungulates and serve as hunting areas for carnivores.  

Minimal geoprocessing was needed to construct the special features layer. Complete 

and reliable datasets were available for each of the elements described above. In ArcGIS, I 

merged datasets depicting karst deposits, mineral lick locations, and wetlands to produce a 

consolidated layer for use in MARXAN-ILP (Appendix 1). 

4.3 Step 2 Identify Conservation Goals and Targets for the WHSA  

The overarching goal of this study was to prioritize lands for conservation in the 

WHSA that were effective at promoting biodiversity, maintaining disturbance regimes, and 

increasing climate change resilience. The conservation features described in the previous 

section were intentionally selected to serve as mechanisms for meeting this goal. For 

example, land facets build resilience by representing those abiotic elements that are 

unaffected by a shifting climate and provide a foundation for evolutionary processes. The 

forest pattern and process layers represent three distinct disturbance regimes in combination 

with forest types containing high levels of biodiversity. The individual species used for fine-

filter conservation features each represent a wide array of ecosystems and the habitat needs 

of species-at-risk making them effective surrogates for promoting biodiversity across the 

WHSA. 

Though integral to the SCP process, simply identifying these conservation features on 

the landscape would not allow me to achieve the study goal. When conducting SCP in areas 
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such as the WHSA, there is an increased emphasis on using the area efficiently to achieve 

desired conservation outcomes so that opportunities for resource use are maintained 

(Wiersma & Sleep, 2018). With this in mind, I identified a suite of targets for use in this 

study that were informed by relevant literature. These targets were meant to be 

uncompromising in capturing the amount of area needed to achieve desired conservation 

outcomes, but also efficient in that they would reach these outcomes while still allowing 

some lands to be used for non-conservation purposes.  

I drew upon the best available knowledge to assign each conservation feature with a 

target that was reflective of that feature’s ecology and spatial extent within the WHSA (Table 

3). These targets instructed MARXAN-ILP on how much area to include for each 

conservation feature when conducting prioritizations. For example, if a conservation feature 

was assigned a target of 10%, MARXAN-ILP would capture 10% of that feature’s spatial 

extent across the WHSA in the resultant solution space. Effort was made to select those 

targets that would provide each conservation feature enough area to effectively fulfill the 

purpose for which it was designed (see Section 4.2 for purpose descriptions).  

Of note, these targets were drawn from studies whose planning region(s) differed in 

area from that of the WHSA. The percentage of area required for a feature to be adequately 

represented at the scale of one study area may not constitute proportionate representation at 

the scale of another. However, when conducting SCP it is often the case that targets specific 

to a given study area are unavailable and practitioners must extrapolate from those used in 

comparable research. The research used to inform target selection was conducted within, or 

directly adjacent to, the WHSA and represented the best-available data at the time of this 

study.  
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Table 3. Targets assigned to each conservation feature for application in MARXAN-ILP scenarios. 

Coarse-filter Target (%) Fine-filter Target (%) 
Land Facet Diversity 50 Burnt Pine Caribou Herd 90 
Land Facet Rarity 50 Finlay Caribou Herd 90 
NDT3-SBS-Mature/Old 76 Gataga Caribou Herd 90 
NDT3-SBS-Burned 100 Graham Caribou Herd 90 
NDT3-BWBS-Mature/Old 46 Hart Ranges Caribou Herd 90 
NDT3-BWBS-Burned 100 Kennedy Siding Caribou Herd 90 
NDT2-SWB-Mature/Old 83 Moberly Caribou  Herd 90 
NDT2-SWB-Burned 100 Muskwa Caribou Herd 90 
NDT2-SBS-Mature/Old 66 Narraway Caribou Herd 90 
NDT2-SBS-Burned 100 Pink Mountain Caribou Herd 90 
NDT2-ESSF-Mature/Old 75 Quintette Caribou Herd 90 
NDT2-ESSF-Burned 100 Scott Caribou Herd 90 
NDT1-ESSF-Mature/Old 74 Grizzly Bear 60 
NDT1-ESSF-Burned 100 Bull Trout 60 
NDT1-ICH-Mature/Old 75 Special Features 60 
NDT1-ICH-Burned 100   

 

 In efforts to optimize conservation outcomes, targets assigned to individual woodland 

caribou herds (i.e., retention of 90% of preferred habitats) met those objectives outlined in 

Implementation Plan for the Ongoing Management of South Peace Northern Caribou in 

British Columbia (Ministry of Environment, 2013). The Quinette Caribou Herd is assigned 

an 80% target under the implementation plan but was increased up to 90% for purposes of 

this study. The target of 50% assigned to land facet diversity/rarity was consistent with that 

used to represent physical variety/rarity in the Muskwa-Kechika Management Area 

Biodiversity Conservation and Climate Change Assessment (Yellowstone to Yukon 

Conservation Initiative, 2012). I used the ‘higher biodiversity emphasis’ values, described in 

the Biodiversity Guidebook (Province of British Columbia, 1995), to define targets for each 

forest pattern and process layer. For bull trout, I used the aquatic focal species representation 
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target of 60% outlined in Conservation Area Design for the MKMA (Heinemeyer et al, 2004). 

When no consistently referenced target was available, a conservative default target of >60% 

of the feature’s extent was assigned (i.e., grizzly bear, special features). 

4.4 Step 3 Review Existing Protected Areas within the WHSA 

 I combined all PAs within the WHSA into a single polygon to serve as a conservation 

feature in MARXAN-ILP. I then ran a scenario where 100% of the existing PAs were 

selected and all other conservation features left without a target. The result of this scenario 

revealed the extent to which existing PAs in the WHSA contributed towards achieving 

targets for conservation and assisted in identifying gaps within the existing system. The 

percentage of each conservation feature’s total area represented by existing PAs was then 

subtracted from each of the target used in this study. For example, if 10% of the bull trout 

layer fell within existing PAs, an adjusted target would be 50% to achieve a sum total 60% of 

bull trout representation in the WHSA. 

4.5 Step 4 Use MARXAN-ILP to Generate a Portfolio of Priority Lands for Conservation   

I used MARXAN-ILP to prioritize lands for conservation in the WHSA. The tool 

allowed me to assess the adequacy of the existing PA system across the WHSA, observe the 

impact of resource development on conservation features, and identify portfolios of candidate 

lands for protection that met the targets and goals of this study.  

4.5.1 Defining MARXAN-ILP Inputs  

In order for MARXAN-ILP to operate, the user must first define a number of inputs 

that reflect the overall purpose of a given SCP process. Inputs typically required for 
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MARXAN-ILP include a definition of planning units and costs. All inputs used for this study 

are described in the following sections. 

4.5.1.1 Planning Units 

Prior to running MARXAN-ILP, I divided the WHSA into planning units. A planning 

unit is a parcel of land made available for selection by MARXAN-ILP. The size and shape of 

a planning unit is user-defined. Commonly used planning units in SCP include uniform grids, 

surveyed land parcels, administrative boundaries, and those units defined by various 

ecological classification systems (e.g., watersheds, wildlife management units, 

biogeoclimatic zones, etc.). Given the large area of the WHSA, I opted to use 1 km2 planning 

units in this analysis. This was determined after observing that 1 ha planning units used in 

earlier versions of MARXAN-ILP developed for this study made for longer computing times 

and produced a solution space not superior in quality to that produced by the larger 1 km2 

planning units.  

4.5.1.2 Planning Unit Costs  

Once planning unit size and shape has been established, MARXAN-ILP requires a 

cost metric for all units in a planning region. Planning unit cost is representative of the 

expense associated with including a given planning unit in a selection. In this way, planning 

unit cost can reflect property values (acquisition cost), resource potential (opportunity cost), 

or an arbitrary number designed to place constraints on the selection. Whatever the metric, 

planning unit cost forces the tool to be efficient and select high-value areas because the 

acquisition of planning units is expensive. There are minimal private holdings in the WHSA 

that would have an assigned market value, and the available data on resource potential in the 

region was inconsistent and forestry-centric; therefore, an arbitrary planning unit cost of 1 
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was assigned to all planning units in the WHSA. This would force the tool to be economical 

in its selection and target those planning units containing multiple, overlapping conservation 

features as inefficient selection would absorb unnecessary planning unit cost.   

4.5.1.3 Cost Surfaces 

In addition to basic planning unit cost, MARXAN-ILP allows the user to exert further 

constraint on selection through the use of cost surfaces. A cost surface is a spatial 

representation of those elements in a planning region that have been identified as having a 

negative impact on the conservation features being selected for.  A cost surface is mapped 

across the landscape and any planning unit that contains a portion of that surface is given a 

user-defined penalty. This penalty is typically weighted based on the extent to which the 

form of land-use represented in the cost surface degrades the values that make up a 

conservation feature. In this way, the use of a cost surface dissuades the tool from selecting 

those planning units containing elements that may jeopardize the goals of a given SCP 

process. I developed three separate cost surfaces in order to explore the influence that varying 

levels of resource development had on the selection of priority lands for conservation in the 

WHSA. 

4.5.1.3.1 High-Sensitivity  

Of the three cost surfaces produced for this study, the high-sensitivity cost surface 

was designed to be the most conservation-oriented. The intent of this cost surface was to 

make MARXAN-ILP ‘highly sensitive’ to resource development when prioritizing areas for 

conservation in the WHSA. To build the layer, I first mapped the spatial extent of permanent 

development in the WHSA using the layers described in Appendix 1 and the geoprocessing 

steps outlined in Appendix 2. I defined ‘permanent development’ as areas where human-use 
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had resulted in complete landscape conversion that would require substantial restoration 

effort to be returned to a natural state.  

Using ArcGIS, I placed buffers on the various forms of development based on 

distances described in Dyer et al. (2001) and Polfus et al. (2011). The distances were a 

reflection of the extent to which woodland caribou avoid the respective forms of permanent 

development at the foundation for the high-sensitivity cost surface (Table 4). Given their 

large size, these avoidance buffers not only addressed the needs of that species, but also 

increased the likelihood of accommodating the needs of species that exhibited less sensitivity 

to resource development.  

Table 4. Buffer distances used for the construction of the high-sensitivity cost surface to represent the zone of 
influence in the Wild Harts Study Area. 

Development Buffer*  
Roads (paved) 2 km from centerline 
Roads (rough) 1 km from centerline 
Seismic Lines  250 m from centerline 
Urban/Agriculture 9 km radius 
Mines 2 km radius 
Outfitter Cabins 1.5 km radius 
Gas Wells 1 km radius 
*Buffer distances represent woodland caribou avoidance of resource development described in Dyer et al. 
(2001) and Polfus et al. (2011). 
 

Planning units containing the high-sensitivity cost surface were assigned a large 

penalty of 10, making it 10x as costly to select a planning unit containing the high-sensitivity 

cost surface than one where the surface was absent. The rationale behind the large penalty 

and avoidance buffers was to dissuade the MARXAN-ILP from selecting planning units 

within, or proximal to, any form of resource development. Accordingly, the high-sensitivity 

cost surface would be used in scenarios to prioritize those high-value conservation lands 
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occurring outside the ‘zone of influence’ in the WHSA. The term zone of influence (ZOI) is 

used in this context to describe the ability of industry to create impacts that extend past the 

spatial footprint of development.  

4.5.1.3.2 Medium-Sensitivity  

 The intent of this cost surface was to make MARXAN-ILP exhibit a ‘medium-

sensitivity’ to resource development when prioritizing areas for conservation.  The medium-

sensitivity cost surface was built to represent the spatial extent of both permanent and 

temporary development in the WHSA. For the purposes of this study, I defined temporary 

development as harvested areas <20 years old, as this is a threshold commonly used by forest 

managers in British Columbia to identify areas that haven’t recovered fully from harvesting 

activities (Ministry of Sustainable Resource Management, 2005). The surface was 

constructed by merging the data described in Appendix 1 with the permanent development 

layer used in the high-sensitivity cost surface. 

All planning units containing portions of the medium-sensitivity cost surface were 

given a moderate penalty of 5.  No avoidance buffers were placed on temporary or permanent 

development. Similar to the high-sensitivity cost surface, the medium-sensitivity cost surface 

would encourage MARXAN-ILP to select non-developed areas in efforts to produce the 

optimal solution for conservation at the lowest cost. However, in medium-sensitivity 

scenarios, the reduced penalty and absence of buffers would make available for selection 

those high-value planning units that occur proximal to temporary and permanent 

development. These are planning units that would have been avoided in scenarios where the 

high-sensitivity cost surface was used on account of them falling within avoidance buffers 

and carrying high costs. In this way, the medium-sensitivity cost surface would assist in 
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locating areas of high conservation value that fell within the ZOI, but outside the physical 

footprint of development where possible.  

4.5.1.3.3 Low-Sensitivity  

 The intent of this cost surface was to force MARXAN-ILP exhibit a ‘low-sensitivity’ 

to resource development when prioritizing areas for conservation in the WHSA. The low-

sensitivity cost surface only represented the spatial extent of permanent development in the 

WHSA. I built the low-sensitivity cost surface using the layers described in Appendix 1 and 

geoprocessing steps outlined in Appendix 2. When constructing the low-sensitivity cost 

surface I did not include spatial representations of temporary disturbance or avoidance 

buffers. All planning units containing portions of the low-sensitivity cost surface were given 

a menial penalty of 2.  

Similar to the two cost surfaces described above, the low-sensitivity cost surface 

would encourage MARXAN-ILP to select non-developed areas in efforts to produce the 

optimal solution for conservation at the lowest cost. However, the minimal penalty, absence 

of buffers, and omission of forestry data in low-sensitivity scenarios would make those high-

value planning units that occur within temporary and permanent development available for 

selection. These are planning units that would have been avoided in high-to-medium 

sensitivity scenarios as they occur within avoidance buffers, recently logged areas, or fully 

converted landscapes. Accordingly, the low-sensitivity cost surface was intended to assist in 

identifying those areas of the WHSA that retained conservation value despite having 

undergone extensive resource development. 
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4.5.1.5 Protected Areas 

I used the ‘locked out’ option to make existing PAs unavailable for selection when 

running MARXAN-ILP. The contributions of existing PAs were incorporated through the 

completion of Step 3 in the SCP process. Targets had been adjusted based on the extent to 

which existing PAs already achieved them and scenarios run to prioritize remaining 

percentages. The ‘locked out’ option simply ensured that MARXAN-ILP selected planning 

units based on their conservation value and not primarily based on their adjacency to PAs. 

4.6 Running MARXAN-ILP  

Once all of the user-defined inputs had been selected, the model was run using 

MARXAN-ILP software. MARXAN-ILP uses integer linear programming to spatially 

identify a configuration of planning units that represent the optimal solution to the objective 

function: 

Minimize ∑ 𝐶𝑜𝑠𝑡𝑠 s𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠; 

Given that ∑ Conservation 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 s𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 ≥ 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡𝑠; 

and 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 = (0,1) 

Prior to running MARXAN-ILP, the extents of all conservation features in the area were 

mapped across the landscape. The cost surface and conservation features were then blanketed 

by a planning unit grid that contained a planning unit cost for each cell (Fig. 5).  
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Figure 5. Cross-section of the MARXAN-ILP model used to prioritize lands for conservation in the Wild Harts 
Study Area. 
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Figure 6 provides a reductionist model showing the mechanics of MARXAN-ILP. 

When a scenario is initiated, MARXAN-ILP hovers over each planning unit, drills down 

through the layers present, and calculates the overall value of that planning unit. If a 

conservation feature is present with the planning unit, it is assigned a value of (1). If the 

planning unit contains no conservation features, it is given a score of (0). If a planning unit 

contains a cost surface, it is assigned whatever penalty the user has determined is in line with 

the objectives of the study. For the purposes of this example, an arbitrary penalty of 5 was 

assigned to all planning units containing a cost surface (Fig. 6).  

In fulfilling its objective function, MARXAN-ILP attempts to meet conservation 

targets by amassing those planning units that avoid cost surfaces and have the highest amount 

of overlapping conservation features. The fact that each planning unit has an acquisition cost 

of 1 places even further emphasis on efficiency of selection and cost reduction. With this in 

mind, the selected cell in example A has a higher likelihood of being included in a 

prioritization output than does the cell selected in B (Fig. 6).  
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Figure 6. Cross-section of the MARXAN-ILP conservation value calculations used to prioritize lands for 
conservation in the Wild Harts Study Area. 
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4.7 Scenario Development  

I developed four MARXAN-ILP scenarios to address each of my research questions 

(Table 5). Across all scenarios, MARXAN-ILP was instructed to meet conservation targets at 

the lowest cost possible. This was meant to encourage the selection of areas containing 

multiple overlapping features. In doing so, the resultant portfolios would address the first 

research question (i.e., what areas contain high conservation value?) 

Table 5. Description of the MARXAN-ILP scenario inputs used to prioritize lands for conservation in the Wild 
Harts Study Area. 

Scenario Cost Surface Constraint 
A. High-sensitivity High 

 

Low 

B. Medium-sensitivity 
C. Low-sensitivity 
D. None 
 

Cost surfaces were used to help identify areas of the WHSA that retained 

conservation value despite the presence of resource development (i.e., research question 2). 

Scenario A was designed to produce a portfolio of high-value lands unaffected by resource 

development. This was meant to provide a benchmark of intactness from which I could 

observe deviations made by MARXAN-ILP in subsequent scenarios. Scenario B was 

designed to increase selection of high-value planning units in the ZOI. Scenario C was meant 

to increase selection in temporarily developed landscapes. Scenario D was designed to 

increase selection of permanently developed landscapes. When overlaid, these portfolios 

would provide zonation from which to base management objectives.  

 In addition to the avoidance of development, cost surfaces were expected to place 

constraint on MARXAN-ILP by reducing the amount of penalty-free area available to the 

tool for selection.  I predicted that the more constrained a scenario became, the greater the 
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emphasis would be on achieving targets with compact clusters of high-value planning units to 

reduce costs. Within the context of this study, a compact portfolio containing low levels of 

resource development was thought to exhibit principles of good PA design. The portfolio that 

met targets and best emulated those principles would be used to address the third research 

question (i.e., what is an optimal conservation portfolio to direct planning processes?). 

4.8 Statistical Analysis 

Using the ArcGIS Patch Analyst tool, I examined the extent to which common 

landscape ecology fragmentation statistics varied across scenario results. Statistics used to 

compare portfolios included total number of patches, maximum patch area (km2), average 

patch area (km2), average patch perimeter (km), mean shape index, and total core area index. 

Mean shape index (MSI) was used to measure the relative edge-to-area relationship of 

patches that comprised a given solution space. As MSI decreases, so too does the shape 

complexity of a given solution space.  

Total core area index (TCAI%) measures the percentage of core area present within a 

solution space based on user-defined buffers. I calculated TCAI% at 200 m (2x average tree 

height) to determine the percentage of core area unaffected by altered temperature regimes 

along patch edges. A TCAI% was also calculated at 500m from edge as this is a general core 

requirement for wildlife that prefer interior habitats. The purpose of applying these buffers 

was less to determine whether solutions met ‘core criteria’ for any specific value so much as 

it was to assess the extent to which compactness of solution space differed across scenarios 

A–D.  
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5.0 RESULTS 

This section reviews the results of completing the 4 steps of SCP (Table 1). These 

steps included (1) the selection and development of conservation features; (2) the 

identification of conservation goals and targets; (3) a review of existing PAs; (4) and the use 

of MARXAN-ILP to identify lands suitable for protection in the WHSA. Inset maps have 

been included for some figures and are not intended to highlight any specific result so much 

as they are in place to provide the reader with an understanding of fine-scale details. 

5.1 Conservation Feature Layers 

A total of 31 conservation feature layers were constructed, overlain across the entire 

planning region, and made available for selection by MARXAN-ILP.  All conservation 

features were given an equal value of (1) if present within a planning unit. 

5.1.1 Coarse-filter Conservation Features 

I developed 16 coarse-filter conservation features for this study. These features 

included land facet diversity, land facet rarity, and a series of layers displaying an 

intersection of natural disturbance, biogeoclimatic zone, and forest age. 

5.1.1.1 Land Facet Diversity 

The land facet diversity layer occupies 9.6% of the WHSA total area and is 

distributed relatively evenly across the planning region (Fig. 7).  Of particular note is the 

extent to which areas containing high abiotic diversity have a tendency to straddle the band 

of mountainous terrain that bisects the WHSA on a southeast-northwest line (Fig. 7). Aside 

from a few exceptions, the peak-and-ridge dominated landscape that comprises the center of 
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that band is low in abiotic diversity when compared to the transitional landscapes that occur 

along the outer edges of the Rocky Mountain corridor (Fig. 7). 

5.1.1.2 Land Facet Rarity 

Land Facet Rarity occupies 0.5% of the WHSA. An observable pattern in this layer is 

the tendency of areas with rare abiotic attributes to occur in river valley bottoms (Fig. 8). In 

keeping with this observation, there appears to a disproportionate amount of rare land facets 

bordering the Peace Arm of the Williston Reservoir (see inset map) (Fig. 8). This is likely 

due to the fact that the Peace River is the only eastwardly flowing river through the Rocky 

Mountains in the WHSA — a distinction that carries with it unique geological history and 

climatic conditions that have created the rare abiotic features present there.  

5.1.1.3 Forest Pattern and Process: 

Table 6 describes the distribution and amount of area in the WHSA occupied by 14 

forest pattern and process layers shown in Figure 9. The inset map provides insights on the 

scale and detail at which these features were typed out across the landscape (Fig. 9). Alpine 

areas have been excluded as these layers were intended to only capture forested areas. It must 

be noted that although the following figure show layers for mature/old and burned forest on 

the same map, these layers were used as standalone conservation features in all MARXAN-

ILP scenarios. They have only been combined in this figure for efficiency’s sake. 
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Figure 7. Spatial extent of the land facet diversity layer used by MARXAN-ILP to prioritize lands for 
conservation in the Wild Harts Study Area; inset represented by red frame. 
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Figure 8. Spatial extent of the land facet rarity layer used by MARXAN-ILP to prioritize lands for conservation 
in the Wild Harts Study Area; inset represented by red frame. 
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Figure 9. Spatial extent of all forest pattern and process layers used by MARXAN-ILP to prioritize lands for 
conservation in the Wild Harts Study Area; inset represented by red frame. 
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Table 6. Location and size of each forest pattern and process layer in relation to the Wild Harts Study Area 
(WHSA). 

Label Distribution  Percent (%) 
of total area  

NDT3-SBS-Mature/Old Confined to riparian areas and watersheds in the 
northwestern quarter of the WHSA 0.4 

NDT3-SBS-Burned Confined to riparian areas and watersheds in the 
northwestern quarter of the WHSA 0.02* 

NDT3-BWBS-Mature/Old Occupies low-elevation valleys and riparian 
areas that straddle the Rocky Mountain corridor 10 

NDT3-BWBS-Burned 
Occupies low-elevation valleys and riparian 
areas occurring along the outer extents of the 
WHSA 1* 

NDT2-SWB-Mature/Old Occupies high-elevation valleys and riparian 
areas within northeastern quarter of the WHSA 7 

NDT2-SWB-Burned Comprised of a few large burned watersheds in 
the northeastern quarter of the WHSA 0.2* 

NDT2-SBS-Mature/Old 
Occurs in low-elevation valley bottoms 
containing streams in the southern half of the 
WHSA 6 

NDT2-SBS-Burned Occurs sporadically throughout the central 
sections of the WHSA at low elevations 0.2* 

NDT2-ESSF-Mature/Old 
Occurs at mid-elevation across the entire WHSA 
and is densely concentrated in sections that occur 
above the Peace Arm of the Willison Reservoir 11 

NDT2-ESSF-Burned 
Primarily confined to the mid-lower elevations 
on the eastern side of the Rocky Mountain 
corridor 1.4* 

NDT1-ESSF-Mature/Old 
Dominates the forested area on the western 
slopes of the Rocky Mountain corridor at mid-
high elevation 12 

NDT1-ESSF-Burned 
Occurs sporadically along the western slopes of 
the Rocky Mountain corridor at mid-high 
elevation 0.2* 

NDT1-ICH-Mature/Old 
Poorly distributed and confined to mid-high 
elevation landscapes at the most southern extents 
of the WHSA 0.3 

NDT1-ICH-Burned 
Poorly distributed and confined to mid-high 
elevation landscapes at the most southern extents 
of the WHSA 0.1* 

*Below the area required to meet high biodiversity target described in Province of British Columbia (1995) 
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5.1.2 Fine-filter Conservation Features 

To complement the coarse-filter conservation features, an additional 15 layers were 

built that displayed the spatial extent of select fine-filter conservation features across the 

WHSA. Fine-filter conservation features used in this study included woodland caribou, bull 

trout, grizzly bear, and a special features layer displaying a mixture of unique habitats in the 

WHSA.   

5.1.2.1 Woodland Caribou 

With all herds consolidated, the woodland caribou layer occupies 45% of the WHSA 

total area and is distributed across the majority of the planning region (Fig. 10). The layer is 

confined to high-elevation alpine areas and is largely absent from valley bottoms (see inset 

map) (Fig. 10). There is no woodland caribou representation in the upper-half of the planning 

region’s southeastern quarter and the lower-half of the northwestern quarter as herds have 

been extirpated from both these areas (Fig. 10). It must be noted that although woodland 

caribou herds in the WHSA are being presented in the same figure, each herd was used as a 

standalone conservation feature and made available for selection by MARXAN-ILP in all 

scenarios. They have only been combined in this figure for efficiency’s sake. 

5.1.2.2 Bull Trout 

The bull trout layer is evenly distributed across the entire planning region and 

occupies approximately 44% of the WHSA total area (Fig. 11). The majority of major 

watersheds and rivers present in the WHSA are represented by this layer. Of particular note 

is the exclusion of a major drainage at the center of the northeast quarter of the WHSA (Fig. 

11).  This blank space represents the Sikanni Chief River headwaters — a section of river 

where bull trout are absent due to a downstream obstacle outside the bounds of the WHSA 
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(i.e., Sikanni Chief Falls). The Peace Arm of the Williston Reservoir supports bull trout 

populations but was excluded from this layer on account of being a manmade structure that 

represents sub-optimal habitat.  

5.1.2.3 Grizzly Bear 

The grizzly bear layer dominates the majority of the planning region — occupying 

61% of the WHSA total area. The wide distribution of this fine-scale conservation feature is 

likely due to grizzly bear being a generalist species that is able to inhabit a vast array of 

ecosystems and habit types. Despite the wide distribution, the grizzly bear layer is largely 

absent from the southeastern quarter of the WHSA (Fig. 12). The disproportionate levels of 

resource-related disturbance that occur within that section of the WHSA would have 

prevented these areas from being included on account of their inability to accommodate the 

daily range of an adult female grizzly.  

5.1.2.4 Special Features 

The special features layer displays the spatial extent of karst deposits, wetlands, and 

mineral licks across the WHSA. This fine-filter conservation feature occupies approximately 

4% of the WHSA total area. Karst deposits occur in narrow striations within the Rocky 

Mountain corridor and are most abundant in the mid-upper half of the planning region (Fig. 

13). Wetlands are distributed evenly across the WHSA and become most concentrated in 

those low-elevation areas and alongside streams (Fig. 13). Mineral licks have a scattered 

distribution with no noticeable pattern (Fig. 13). In efforts to mask sensitive datasets, all three 

layers were merged into a single, homogenous layer.  
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Figure 10. Spatial extent of the woodland caribou layers used by MARXAN-ILP to prioritize lands for 
conservation in the Wild Harts Study Area; inset represented by red frame. 
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Figure 11. Spatial extent of the bull trout layer used by MARXAN-ILP to prioritize lands for conservation in the 
Wild Harts Study Area; inset represented by red frame. 
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Figure 12. Spatial extent of the grizzly bear layer used by MARXAN-ILP to prioritize lands for conservation in 
the Wild Harts Study Area; inset represented by red frame. 
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Figure 13. Spatial extent of the special features layer used by MARXAN-ILP to prioritize lands for conservation 
in the Wild Harts Study Area; inset represented by red frame. 
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5.2 Gap Analysis 

 Representation of conservation features within PAs in the WHSA was highly variable 

(Table 7). Conservation features that were well represented (>50%) within PAs included the 

Muskwa Caribou Herd and recently burned areas within the Spruce-Willow-Birch 

biogeoclimatic zone, natural disturbance type 2 (NDT2-SWB-Burned). The majority of 

remaining conservation features had mid-to-low levels of representation within existing PAs 

(5–50%). Of particular note are those conservation features with little-to-no (<1%) 

representation. These include the Scott Caribou Herd, Burnt Pine Caribou Herd, and those 

areas in the Sub-boreal Spruce biogeoclimatic zone and natural disturbance type 3 that 

contain late-seral or recently burned stands (NDT3-SBS-Mature/Old & NDT3-SBS-Burned). 

Table 7. Representation of conservation features achieved by existing protected areas in the Wild Harts Study 
Area. 

Coarse-filter % Protected Fine-filter % Protected 
Land Facet Diversity 14 Burnt Pine Caribou Herd 0 
Land Facet Rarity 28 Finlay Caribou Herd 3 
NDT3-SBS-Mature/Old 0.86 Gataga Caribou Herd 42 
NDT3-SBS-Burned 0 Graham Caribou Herd 14 
NDT3-BWBS-Mature/Old 10 Hart Ranges Caribou Herd 14 
NDT3-BWBS-Burned 24 Kennedy Siding Caribou Herd 16 
NDT2-SWB-Mature/Old 26 Moberly Caribou Herd 4 
NDT2-SWB-Burned 67 Muskwa Caribou Herd 96 
NDT2-SBS-Mature/Old 5 Narraway Caribou Herd 21 
NDT2-SBS-Burned 5 Pink Mountain Caribou Herd 26 
NDT2-ESSF-Mature/Old 13 Quintette Caribou Herd 10 
NDT-ESSF-Burned 2 Scott Caribou Herd 0.35 
NDT1-ESSF-Mature/Old 8 Grizzly Bear 19 
NDT1-ESSF-Burned 22 Bull Trout 19 
NDT1-ICH-Mature/Old 30 Special Features 22 
NDT1-ICH-Burned 23   
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5.3 Cost Surfaces  

High, medium, and low-sensitivity cost surfaces placed differential constraints on the 

MARXAN-ILP tool to identify high-value conservation lands within varying intensities of 

resource development.  

5.3.1 High-Sensitivity  

The high-sensitivity cost surface was the largest used in this study, occupying 44% of 

the WHSA total area. The layer dominated the majority of the planning region’s southeastern 

quarter — an area containing extensive oil and gas infrastructure (Fig. 14). The western 

portions of the layer occupy those valleys and river bottoms that provide access for various 

forms of resource extraction within an otherwise impassible and mountainous landscape (Fig. 

14).  

In general, the layer is more concentrated towards the lower half of the WHSA as 

these areas are closer to population centers containing those resources needed to sustain 

extraction activities (i.e., labour, equipment, mill sites, etc.) (Fig. 14). Of particular note is 

the band of relatively intact landscapes running down the center of the WHSA on a 

northwest-southeast line that are not covered by the high-sensitivity cost surface (Fig. 14). 

The absence of the high-sensitivity cost surface in these areas is likely due to the rugged 

topography and the challenges such landscapes create for industry in terms of access. 

5.3.2 Medium-Sensitivity  

The medium-sensitivity layer occupies approximately 3.8% of the study area and, like 

the high-sensitivity layer, dominates the majority of landscapes in the southeastern quarter 

(Fig. 15). Most of the watersheds in the planning region show evidence of harvesting and 
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associated road infrastructure (Fig. 15). The band of relatively intact landscapes mentioned in 

the high-sensitivity results is even more noticeable with the absence of avoidance buffers 

(Fig. 15).  The northernmost portions of the WHSA are almost entirely void of resource 

development save for what appears to be a small number of roads confined to the outer 

bounds of the planning region (Fig. 15). 

5.3.3 Low-Sensitivity 

The low-sensitivity cost surface occupies approximately 2% of the WHSA total area. 

Despite the reduction in area, the low-sensitivity cost surface still dominates the majority of 

landscapes present in the southeastern corner of the planning region (Fig. 16). The presence 

of all three cost surfaces here suggests the area is highly compromised and would require 

substantial restoration effort to return to a natural state. Where the medium-sensitivity layer 

occupied large portions of watersheds in the WHSA, the absence of forestry data in the low-

sensitivity cost surface made it so that the only disturbance in these watersheds was the 

spatial footprint of access roads. The band of intact landscapes down the center of the WHSA 

remains noticeable and the northernmost extents are virtually free of this cost surface (Fig. 

16). 
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Figure 14. Spatial extent of the high-sensitivity cost surface used to constrain MARXAN-ILP when prioritizing 
lands for conservation in the Wild Harts Study Area; inset represented by green frame. 
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Figure 15. Spatial extent of the medium-sensitivity cost surface used to constrain MARXAN-ILP when 
prioritizing lands for conservation in the Wild Harts Study Area; inset represented by green frame. 
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Figure 16. Spatial extent of the low-sensitivity cost surface used to constrain MARXAN-ILP when prioritizing 
lands for conservation in the Wild Harts Study Area; inset represented by green frame. 
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5.4 MARXAN-ILP Scenario Outputs 

The following sections describe the results of the 4 MARXAN-ILP scenarios 

developed to prioritize high-value areas for conservation in the WHSA (Table 5).  

5.4.1 Observable Patterns  

For each scenario, MARXAN-ILP selected the configuration of planning units that 

met conservation targets at the lowest cost. A noticeable pattern across all portfolios is the 

pronounced corridor of selected lands that stretches from the southwestern extent of the 

planning region to Northern Rocky Mountains Provincial Park in the northeast (Figs. 4 and 

17). Below the Peace Arm, selection is largely concentrated to the western half of the Rocky 

Mountains (Fig. 17). The opposite occurs above the Peace Arm where prioritization has a 

tendency to concentrate in the eastern portion of the Rocky Mountains (Fig. 17).  

Of particular note is the almost complete absence of selected planning units along the 

western boundary of the WHSA above the Peace Arm (Fig. 17). A similar pattern is 

observable in those blank spaces occurring along the easternmost extent of the WHSA below 

the Peace Arm (Fig. 17). The lack of selection here is likely due to the absence of the 

woodland caribou conservation feature and the ability of large conservation features to meet 

targets for small conservation features through complementarity elsewhere. 
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Figure 17. Four portfolios produced by MARXAN-ILP to prioritize lands for conservation in the Wild Harts 
Study Area; A: high-sensitivity cost surface used; B: medium-sensitivity cost surface used; C: low-sensitivity 
cost surface used; D: no cost surface used. 
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5.4.2 Influence of Cost Surface: 

Overlaying the four portfolios produced in this study highlights the influence of each 

cost surface (Fig. 18).  Portfolio A was placed at the top of this overlay to serve as a 

benchmark of intactness. The high-sensitivity cost surface forced MARXAN-ILP to avoid 

the southeastern quarter of the WHSA and heavily-developed watersheds (Fig. 18). The 

portfolio is comprised of 28,018 km2 of intact planning units. However, the large 

conservation targets resulted in 30% of that area falling within the ZOI (Fig. 18). 

Portfolio B was placed underneath A to observe which planning units became 

selected when the level of constraint on MARXAN-ILP was lowered.  The medium-

sensitivity cost surface produced a portfolio similar to A in that the southeastern quarter of 

the WHSA and heavily-logged watersheds were avoided (Fig. 18). The reduced sensitivity to 

industrial activities resulted in 3892 km2 of high-value planning units being selected in the 

ZOI that were avoided in scenario A (Fig. 18). 

Portfolio C was placed underneath B to observe the effect of the low-sensitivity cost 

surface on selection. Low-elevation valleys containing high road density were avoided in this 

scenario (Fig. 18). The lack of sensitivity to recent timber harvesting resulted in 81 km2 of 

high-value planning units being selected in temporarily disturbed landscapes that were 

avoided in scenario B. 

The results of scenario D were placed at the bottom of the overlay to observe which 

planning units were selected when no constraints were placed on MARXAN-ILP. The 

absence of a cost surface resulted in Portfolio D capturing 175 km2 of high-value planning 

units that were avoided in more constrained scenarios (Fig. 18). This is evident by the 

increased selection of planning units within the southeastern quarter of the WHSA (Fig. 18).  
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Figure 18. Overlay of four portfolios produced by MARXAN-ILP to prioritize lands for conservation in the 
Wild Harts Study Area; inset represented by pink frame. 
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5.4.3 Patch Statistics  

As predicted, the level of constraint placed on the scenarios controlled the extent to 

which compactness amongst selected planning units was achieved in the resultant portfolios. 

Of the four scenarios, A was most constrained because of the reduction in penalty-free area 

inflicted by the high-sensitivity cost surface. As a result, Portfolio A met targets with the 

fewest patches and the largest average patch area of any scenario (Table 8). The patches that 

comprised Portfolio A were the least-convoluted of any produced in this study as is made 

evident by the low mean shape index and high total core area (Table 8). 

The results of scenarios B through D were relatively uniform statistically (Table 8). 

When compared to A, these portfolios were comprised of more small patches of planning 

units which resulted in less core area and higher edge-to-area ratios (Table 8). Of particular 

note is the extent to which the patches that comprised Portfolio D were less-convoluted than 

those that made up B and C (Table 8). The increase in shape complexity displayed in 

Portfolio B and C was likely the result of MARXAN-ILP selecting narrow bands of high-

value in-between linear developments that were demarcated by the low and medium-

sensitivity cost surfaces (Fig. 17). 

Table 8. Patch statistics of four MARXAN-ILP scenarios used to prioritize lands for conservation in the Wild 
Harts Study Area. 

Variable Portfolio A Portfolio B Portfolio C Portfolio D 
Total Area (km2) 28018 27555 27577 27533 
Number of Patches 1140 1477 1471 1349 
Maximum Patch Area (km2) 10077 6594 5499 5001 
Average Patch Area (km2) 25 19 19 20 
Average Patch Perimeter (km) 22 21 21 22 
Mean Shape Index (MSI) 1.30 1.32 1.32 1.32 
Total Core Area Index @ 150m (%) 83 78 78 79 
Total Core Area Index @ 500m (%) 59 49 49 51 
 



 
 

81 
 

6.0 DISCUSSION 

 The WHSA in northeastern British Columbia is an area of high ecological importance 

that is currently underrepresented by protected areas (PAs). The underlying purpose of this 

research was to prioritize lands for conservation in the WHSA using a systematic 

conservation planning (SCP) approach. This proved to be a complex exercise as the WHSA 

is a large planning region with multiple biotic and abiotic values. The challenge was 

increased further by the presence of competing land interests that threatened those values 

being targeted for conservation.  Employing the four steps of SCP allowed me to address 

those challenges systematically and answer my three research questions.  

6.1 What Areas Contain High Conservation Value for Select Coarse- and Fine-filter 

Features? 

In a multi-use landscape like the WHSA, planners must use area efficiently to achieve 

conservation objectives so that opportunities for resource development are maintained 

(Wiersma & Sleep, 2018). Recognizing this, I set out to identify sections of the WHSA that 

were disproportionately high in conservation value. To be considered high in conservation 

value, a planning unit needed to contain multiple values predetermined to be effective 

surrogates for biotic and abiotic diversity. Assembling high-value planning units allowed 

MARXAN-ILP to achieve conservation targets at the lowest cost. In meeting targets, each 

portfolio captures the infrastructure that comprises and regulates natural systems in the 

WHSA.  

Each portfolio captures 50% of both the land facet diversity and land facet rarity 

layers. These areas can provide a stable platform for evolutionary processes to play out as 

biological communities reorganize in response to climate change in the WHSA (Beier and 
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Brost, 2010). The abiotic elements that comprise land facets also govern variation in local 

temperature, precipitation, and disturbance regimes (Beier and Brost, 2010). Accordingly, 

each portfolio captures a diversity of physical environments to maintain the processes that 

shape current patterns of biodiversity in the WHSA.  

 All four MARXAN-ILP portfolios met the targets assigned to individual forest 

pattern and process features. Sufficient late-seral forest was captured within each landscape 

unit (i.e., NDT-BEC) to withstand the average fire size for that unit without experiencing a 

collapse in biodiversity (Province of British Columbia, 1995). Although there was not 

enough young natural forest to meet biodiversity objectives for early successional stands, 

each portfolio contained all of the recently burned areas in the WHSA that have not 

undergone salvage operations. As such, the portfolios accommodate habitat requirements of 

fire-obligate species and contain unique features not found in young managed stands (i.e., 

burned snags) (Province of British Columbia, 1995).  

All portfolios capture 90% of year-round habitat for each woodland caribou herd in 

the WHSA. These areas are primarily comprised of intact alpine forests that provide refuge 

from predators and a year-round food source in arboreal lichens. Conserving the majority of 

caribou habitat in the WHSA may assist in the recovery of the species and, in turn, prevent 

the extirpation of a valued component of biodiversity in the WHSA. Selecting for woodland 

caribou habitat also resulted in large portions of the alpine and subalpine parkland 

ecosystems being represented in each portfolio. These areas are not captured by any of the 

other features used in this study and provide suitable habitat for Rocky Mountain bighorn 

sheep, Stone’s sheep, and wolverine among other species.  
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The four MARXAN-ILP portfolios each contain 60% of suitable grizzly bear habitat 

in the WHSA. This resulted in the prioritization of intact landscapes containing low road 

density. Open canopy forests have been included in each portfolio because of their 

association with Vaccinium spp. fruits — an important food source for grizzly bears in the 

summer and fall (Apps, 2013). Similarly, avalanche chutes are captured in each portfolio as 

these areas provide a spring food source in the form of emerging vegetation (Apps, 2013). 

Accommodating the habitat requirements of this generalist species (i.e., contiguous 

landscapes with high productivity rates) not only promotes the persistence of grizzly bears 

but also addresses the needs of multiple species at lower trophic levels such as songbirds, 

furbearers, and ungulates.  

The portfolios each contain 60% of identified bull trout habitat in the WHSA. This 

resulted in the inclusion of healthy watersheds as bull trout are highly sensitive to riparian 

disturbance and pollution (Hagen & Decker, 2011). Streams identified as suitable bull trout 

habitat contain cold water, clean gravels, natural flows, and stable banks with large amounts 

of cover. Conserving streams with these characteristics not only favours the persistence of 

bull trout, but also accommodates the needs of other valued aquatic species in the WHSA 

such as Dolly Varden and brook trout (Hagen & Decker, 2011). Similarly, the inclusion of 

intact watersheds can benefit those non-aquatic species that make use of riparian and 

floodplain habitats in the WHSA (e.g., fisher). 

 MARXAN-ILP included 60% of the special features layer in each portfolio. This 

captured karst ecosystems containing cavities that are utilized by multitude of wildlife for 

nesting and hibernation. Also represented in each portfolio are wetland ecosystems that 

accommodate the needs of migratory waterfowl and perform important ecosystem services 
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such as carbon sequestration and water filtration. Lastly, achieving conservation targets for 

the special features layer resulted in the inclusion of mineral licks within each portfolio. The 

supplementary nutrition provided by these areas can contribute to the persistence of elk, 

moose, mountain goats, and Stone’s sheep, and Rocky Mountain bighorn sheep (Rea et al, 

2004).  

6.2 What Areas Retain Conservation Value Despite the Presence of Resource Development? 

 For the purposes of this study, a portfolio containing low levels of resource 

development was thought to display principles of good PA design. However, to suggest 

undeveloped landscapes were the only option for conservation would create the impression 

that all other areas of the WHSA could be written off as sacrifice zones. In SCP, sacrifice 

zones are those areas that, due to their modified state, are surrendered to accommodate 

natural resource development (Pressey, 1999). In reality, there exist multiple areas in the 

WHSA that retain high conservation value despite the presence of industrial activity. With 

this in mind, I intentionally designed scenarios that would visualize conservation targets 

being met across different landscape types in the WHSA — ranging from untouched 

wilderness areas, to those situated within the integrated resource-use matrix, to areas heavily 

modified by industrial and urban development.    

Figure 18 shows high-value planning units in permanently developed landscapes that 

were selected in scenario D. Within the context of future conservation planning in the 

WHSA, planners could target these areas to assess whether the identified conservation values 

are at risk of being lessened or lost should resource development continue. If a planning unit 

is nearing a threshold where value may be lost, it may be a suitable candidate for restoration 
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efforts. If the values present are relatively stable, stewardship agreements with stakeholders 

could be put in place so that conservation value can continue to persist alongside industry.  

 The low-sensitivity cost surface used in scenario C helped identify pockets of high 

conservation value within landscapes recently affected by forest harvesting (Fig. 18). Given 

their high conservation value, and temporarily disturbed state, these areas could be 

considered suitable candidates for removal from the integrated resource matrix. Protection of 

these areas would allow succession to occur naturally without active restoration. This may 

result in the eventual recruitment of conservation features that are currently absent because of 

habitat degradation from logging activity (e.g., bull trout). In addition to allowing for 

recovery, this would prevent the authorization of conflicting land-use that may further 

degrade the already disturbed landscape and result in the present value being lost. 

Portfolio B identified areas where human activity, industrial light, and noise pollution 

is likely present but the landscape remains virtually void of fragmentation (Fig. 18). In their 

current state, these landscapes can accommodate those conservation features (e.g., land 

facets, forest pattern and process layers) whose ecology is such that they remain largely 

unaffected by stressors present in the ZOI. Given that these stressors are often short-lived, 

such as the noise created by a passing vehicle or seasonal construction, high-value lands in 

the ZOI may represent suitable habitat throughout the majority of the year for species that 

exhibit a high sensitivity to industrial activity  (e.g., woodland caribou) (Wilson, 2016). 

Because of their intactness, these areas should be treated as buffers for high-value lands 

outside the ZOI. 

 The high-sensitivity cost surface applied to scenario A identified high-value areas 

containing little-to-no resource development. The results of this scenario are best suited to 
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anchor a finalized conservation portfolio. The attributes of this portfolio and the associated 

management implications are discussed in the following section.   

6.3 What is an optimal portfolio from which to direct conservation planning efforts?  

High-value planning units in fully-converted or recently-logged landscapes contain 

attributes that limit their utility in planning initiatives aimed at immediate protection 

measures. These areas have sharp edges between ecotones, increased occurrences of invasive 

species, and are often comprised of young managed stands that are low in biodiversity 

(Bannerman & Province of British Columbia, 1998; Delong & Province of British Columbia, 

2011). Identifying high-value sections of these landscapes helped answer the second research 

question and prevent condoning sacrifice zones. However, I wanted to avoid only suggesting 

long-term options for conservation that were predicated on restoration effort, special 

management, or surrender of existing tenures. Conservation initiatives often lack the 

resources needed to perform such interventions.  

Part of the rationale for enforcing principles of good protected area PA design on 

MARXAN-ILP was to identify lands that achieved conservation objectives in their current 

state and provided space on the landscape for other uses. Aside from some areas that fell 

within the ZOI, the majority of lands that make up Portfolio A exist in complete isolation 

from resource development and are free of any land-use conflicts. These areas would require 

the least amount of intervention prior to PA creation and were thus considered to be best 

suited for immediate application in planning processes.  

 In addition to administrative utility, Portfolio A displayed desirable patch 

characteristics that were consistent with principles of good PA design. Of all the scenarios, 

Portfolio A had the highest percentage of core area and the lowest mean shape index (Table 



 
 

87 
 

8). This was likely due to the fact that the portfolio was comprised of few, large patches that 

were the least-convoluted of any produced in this study (Table 8). The high percentage of 

interior forested habitat makes Portfolio A the most compatible with conservation features 

that are sensitive to fragmentation (e.g., woodland caribou, bull trout, grizzly bear). A low 

mean shape index also minimizes the amount of transitionary area between patches where 

harmful edge-effects can occur. Examples of edge-effects include barriers to species 

dispersal, altered temperature regimes within PA boundaries, and the creation of entry points 

for invasive species (Bannerman & Province of British Columbia, 1998). 

The large area requirement of the conservation targets, combined with the reduction 

in penalty-free area induced by the high-sensitivity cost surface, caused a natural corridor of 

prioritized lands to form in Portfolio A. This corridor can be seen across all portfolios but is 

most intact and pronounced in Portfolio A (Fig. 17). The corridor spans the entire length of 

the WHSA on a southeast-northwest line and shows a network of high-value lands prioritized 

amongst existing PAs (Fig. 4 and 17). Achieving connectivity amongst PAs in the WHSA 

has important implications for those species migrating along latitudinal gradients in response 

to shifting climate regimes and could prevent the isolation of populations within the planning 

region. 

In summary, Portfolio A not only achieves the goal of this study by meeting targets 

for all features, but does so with a corridor of contiguous landscapes that contain little-to-no 

conflicting land-use. As outlined above, these characteristics are thought to complement the 

biology of select conservation features and reduce the amount of resources required to 

establish PAs. It is because of these attributes that the lands identified in Portfolio A are 
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considered to be ‘priority lands’ for protection and have been placed at the center of a 

finalized portfolio to direct conservation efforts in the WHSA (Fig. 19).  

 If all priority lands were to be conserved, and consolidated with the 17% 

representation achieved by existing PAs, the result would be a network of protected lands 

covering 63% of the WHSA. This scale of representation is consistent with emergent 

concepts that suggest protecting over half of terrestrial environs is necessary to address the 

current inadequacy of Canada’s PA system and prevent the collapse of global biodiversity 

(Locke, 2014). Though it exceeds political targets, it could be argued that this scale of PA 

representation is what is realistically required to ensure the persistence of conservation 

features and maintenance of landscape function along the North American Cordillera.  

Figure 19 shows a diffuse buffer on the outside of priority lands labelled ‘integrated 

lands’. Integrated lands are an amalgamation of those areas that were selected in scenarios B 

through D (Fig. 17).  Integrated lands should not be written off as sacrifice zones because of 

their compromised state, but rather be considered as high-value areas that soften the 

transition zone between heavily developed landscapes and priority lands. Integrated lands 

also increase connectivity amongst priority lands and existing PAs in the WHSA (Fig. 19).   
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Figure 19. Finalized portfolio for conservation planning in the Wild Harts Study Area. 
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6.4 Next Steps 

 The next steps in the SCP process would be to identify suitable PA boundaries in the 

WHSA using the finalized conservation portfolio produced in this research. The portfolio 

was designed to serve as a coarse-scale reference of priority lands from which finer-scale 

analyses could be directed. The MARXAN-ILP model used to produce the portfolio is a live 

interface that can be scaled-down and applied to specific areas of interest. Decision makers 

could use the final portfolio to locate areas best suited for immediate conservation action and 

conduct a downscaled MARXAN-ILP analysis within those areas to delineate PA 

boundaries. A downscaled analysis would not need to adopt the MARXAN-ILP inputs 

applied in this model, but rather could apply a different set of user-defined constraints that 

are reflective of the goals for that revised planning region.  

 Integrated lands require further analysis to gauge whether the current conservation 

value present is at risk of succumbing to resource development. The zonation achieved by the 

various cost surfaces displayed in Figure 18 can assist in targeting areas most at risk. The 

results of such an assessment would inform whether special management is required to 

sustain conservation value in these areas. Areas most at risk might be best served by a strong 

form of protection; whereas, those low-risk areas could be managed in such a way that 

accommodates other forms of land-use (i.e., recreation, low impact resource extraction, etc.). 

Equally important is the step of completing a fine-scale connectivity analysis to 

complement the happenstance connectivity achieved by the WHSA conservation portfolio. 

Further investigation is required to determine whether the connectivity achieved within the 

priority lands is reflective of that which actually occurs on the land base. Of additional 
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interest is whether the resource development present within the integrated lands degrades the 

ability of these areas to facilitate movement of species.   
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7.0 LIMITATIONS 

 There were several limitations that emerged during the course of this research. These 

included limitations associated with applying systematic conservation planning to the WHSA 

and limitations built into the MARXAN-ILP model used in this study.  

7.1 Limitations of Conducting Systematic Conservation Planning in the Wild Harts Study 
Area 

 Many of the limitations involved in the SCP process existed in the form of the 

assumptions required to complete the process itself. Principle amongst these was the 

selection of surrogates. I employed surrogates assuming that one component of biodiversity 

was representative of another — an approach that could be criticized as being an 

oversimplification of ecological complexity present in the WHSA. I attempted to address that 

assumption through the use of multiple surrogates at varying spatial scales. However, it is 

still possible that the conservation features did not constitute adequate representation of those 

biological elements being selected for through surrogacy.  

Other limitations arose in the form of data availability, or lack thereof, when building 

the conservation feature layers to drive MARXAN-ILP. The WHSA is of such a large scale 

that consistent and reliable spatial data for the entire area were difficult to obtain or generate. 

Oftentimes those datasets that were available had a commercial element to them or were used 

by licensees and the provincial government to measure the impact of resource use. For 

example, the layers used to build the forest pattern and process layers have a primary purpose 

of analysing timber supply. Similarly, much of the bull trout layer was constructed using 

datasets that were built to measure the impacts of harvesting on riparian areas and watershed 

quality. There were very few datasets available that were produced solely for conservation or 
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ecological research sake. In this way, the selection of conservation features was somewhat 

biased to those elements valued by the natural resource sector and less a reflection of the 

most efficient surrogates for abiotic/biotic diversity.  

 An additional limitation of the SCP process involved translating the goals for 

conservation into quantifiable targets. The goal of this study was to prioritize lands that, if 

protected, would complement existing PAs in promoting biodiversity, maintaining natural 

disturbance regimes, and building climate change resilience within the WHSA. The criteria 

that make up this goal are based on large-scale biophysical patterns and processes. 

Attempting to quantify how much area was needed to account for climatological variables, 

stochastic disturbance events, geomorphological processes, and interactions between 

biological communities proved to be a challenging task. There remains the potential that, 

even if all lands prioritized by conservation targets were protected, the resultant PA network 

would still fall short of achieving all components of the study goal.  

Another limitation was the extent to which the large woodland caribou targets masked 

the full capabilities of MARXAN-ILP. Meaning, the spatial footprint of 90% representation 

for each of the woodland caribou herds resulted in many of the other targets being met within 

that footprint through complementarity. In addition, the woodland caribou conservation 

feature layer had a comparatively low edge-to-area ratio and a tendency to occur outside of 

resource development — both characteristics that lessened the influence of cost surfaces. 

This made for relatively uniform results across all scenarios when compared to some of the 

trial runs conducted in the early stages of this research, at lower representation targets, with 

the same user-defined constraints (Appendix 3). This result was not ideal given the resources 

expended on scenario development, but was welcomed because it highlighted the 
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effectiveness of woodland caribou as a surrogate for other conservation features in the 

WHSA. 

There is potential that I have been overly generous in describing the distribution of 

select conservation features across the WHSA. Given the scale of this analysis, I drew upon 

methodologies that could be applied across the entire planning region when constructing 

conservation feature layers. This resulted in some layers being built using rudimentary 

selection criteria for what was considered suitable habitat (e.g., bull trout and grizzly bear). 

These layers might have resulted in an over-estimation of the amount of area needed to 

ensure the persistence of select conservation features. The inclusion of surplus area could 

have implications if these portfolios are used to delineate administrative boundaries for PAs. 

These implications would come in the form of unnecessary opportunity and acquisition cost 

that occurs when area is used inefficiently to achieve conservation. 

7.2 Limitations of the MARXAN-ILP Model 

 One of the major limitations involved in the construction of the MARXAN-ILP 

model was the WHSA boundary itself, specifically the northern and southern extents. In 

hindsight, Northern Rocky Mountains and Kakwa Provincial Parks should have been 

excluded from the boundary as they are not representative of the WHSA. Northern Rocky 

Mountains Provincial Park is part of the Muskwa-Kechika Management Area and Kakwa 

Provincial Park is more closely associated with the Central Rocky Mountains PA complex 

than with the WHSA. The rationale for their initial inclusion was to assess the extent to 

which selected planning units interacted with borders of these PAs and whether any 

connectivity was achieved naturally. However, including these large PAs created an 

inaccurate representation of how much area in the WHSA is actually protected. In reality, the 
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core sections of the WHSA are poorly represented with only 4.8% falling within PAs once 

Northern Rocky Mountains Provincial Park and Kakwa Provincial Park are removed.  

 The inclusion of these large PAs also raised issues when completing step 3 in the SCP 

process (review existing PAs in the WHSA). These PAs captured large portions of many 

conservation feature’s total area, thus reducing the amount of outstanding area needed to 

achieve the various conservation targets for each feature respectively. Essentially, those large 

parks created the impression that some features were well-represented by PAs when, in fact, 

the actual representation of these features was poor within the core portions of the WHSA. 

Accordingly, MARXAN-ILP would not have selected additional area to accommodate those 

features thus leaving them vulnerable to resource development.  

Another limitation that arose when running scenarios in MARXAN-ILP was the 

similarity in portfolios produced by scenarios using medium and low-sensitivity cost 

surfaces. This was likely due to the large planning unit size of 1 km2. The planning units 

were too coarse a scale for MARXAN-ILP to make the distinction between temporary and 

permanent development as these forms of land use were commonly in close proximity to one 

another. Meaning, the same planning units that were avoided due to cutblocks in the 

medium-sensitivity scenarios would also have been avoided in the low-sensitivity scenarios 

because of the road used for access. Smaller planning unit size would result in differentiation 

between cutblocks and permanent landscape conversion and produce solution spaces whose 

perimeters exhibit greater sensitivity to these different levels of land use.  
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8.0 RECOMMENDATIONS 

This research helped to identify coarse-scale priority areas for conservation action in 

the WHSA. The finalized conservation portfolio can be used to direct the establishment of 

PA boundaries. It can also be used for the assessment of risk to conservation value, and the 

completion of a fine scale connectivity analysis. 

 As noted above, the MARXAN-ILP model is a live interface that can be manipulated 

to achieve alternative solution spaces. With this in mind, a way to improve the current model 

would be to include a conservation feature representing a mid-trophic level carnivore such as 

a furbearing mammal (e.g., fisher, American marten). Small, carnivorous mammals are 

commonly included in conservation planning process as they are often heavily harvested and 

are representative of late-seral stage forests (Apps, 2013).  

The working model would also benefit from research conducted in partnership with 

First Nations whose traditional territories overlap the WHSA. The incorporation of 

traditional ecological knowledge would complement the empirically-based data used in this 

study and would be invaluable for addressing some of the gaps present in those datasets. 

Aside from the ecological contribution, First Nations involvement would add a cultural 

element to the conservation efforts taking place in the WHSA. Additional conservation 

features could be developed that encapsulate areas being used by First Nations within 

contemporary contexts for exercising their constitutional rights of hunting, fishing, and 

gathering. Such research would ensure that inclusivity is built into any portfolio meant to 

inform decision-making processes regarding PA creation in the WHSA.  
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Another avenue for future research would be to explore the extent to which shifting 

climate regimes will interact with lands prioritized for conservation under current state 

conditions. Many of the values targeted in this study have the potential to display latitudinal 

migration in response to changes in temperature and precipitation (e.g., forest pattern and 

process features). Research aimed at predicting these movements, and where climate velocity 

might be most pronounced in the WHSA, would lend insights into which lands should be 

proactively selected to accommodate novel assemblages of species — regardless of whether 

those areas contain high conservation value under current state conditions (Brito-Morales et 

al., 2018). Similarly, this research would also help to identify areas unlikely to retain their 

conservation value. 
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9.0 CONCLUSION  

 At the local scale, the WHSA supports a wide range of ecological diversity and 

represents some of the last remaining intact landscapes in northeastern British Columbia. At 

the continental scale, the WHSA serves as a vital corridor connecting networks of PAs in the 

south to large PAs in the north. To lose landscape function in the WHSA would effectively 

sever the band of contiguous habitats spanning the length of the North American Cordillera 

and create two isolated PA complexes. This has implications for those biological 

communities that migrate along latitudinal gradients and could result in the isolation of 

populations. The WHSA is currently underrepresented by existing PAs and competing 

resource interests from the surrounding Peace River Region threaten to encroach upon the 

ecological values present there. This research was aimed at producing a suite of possible 

options for conservation in the WHSA that could be used to inform decision-making 

processes concerning future PA creation in the area.  

 The SCP approach was effective for conducting a prioritization exercise at the scale 

of the WHSA. The MARXAN-ILP software allowed me to identify areas of high 

conservation value and explore the extent to which varying intensities of resource use 

influenced prioritization. The software performed large computations at high speed and 

consistently achieved the optimal solution at the lowest cost. The results of this research 

represent a wide range of options for conservation in the WHSA and present additional 

research questions.   

 The final conservation portfolio shows priority lands (i.e., Portfolio A) that are best 

suited for immediate protection measures. These areas met targets for all conservation 

features and best displayed principles of good PA design. Complementing priority areas are 
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integrated lands (i.e., Portfolio B, C, and D) that retain high conservation value despite 

containing varying levels of resource development. The integrated lands serve as a 

transitionary buffer between heavily-developed landscapes and the values present within 

priority lands. These areas offer an opportunity to prescribe restorative efforts or special 

management strategies to achieve conservation alongside other forms of land-use in the 

WHSA.  

 The results of this research are not meant to serve as legal boundaries for future PAs. 

More research is required to further refine the selected areas and explore solutions that take 

into account First Nations interests or different climate scenarios. What this research does 

provide is a decision-support portfolio that is repeatable, transparent, and scientifically-

defensible. Land planners can be sure that the areas prioritized in this research represent the 

foundational and mechanistic elements that comprise the ecology of the WHSA on the 

whole. The final portfolio is meant to inform the discussion surrounding protected area 

creation in the WHSA and contribute to the preservation of one of British Columbia’s last 

true wildernesses.  
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APPENDIX 1: Spatial information used for MARXAN-ILP model 

LAYER  LAYER NAME SOURCE 
Land Facet 
Diversity and 
Rarity 

Land Facets Incorporating 
Latitude-adjusted Elevation 

Adaptwest 

Forest Pattern and 
Process 

Vegetation Resource Inventory Data BC 
Biogeoclimatic Zones Data BC 
Natural Disturbance Zones  MFLNRORD - Geospatial Services 

Team Omineca Region 

Woodland Caribou 

Core Habitat Mapping South 
Peace 

MFLNRORD - Ecosystems Branch 
Prince George 

Resource Selection Function 
Northern Mountain  

parker@unbc.ca  

Resource Selection Function 
Southern Mountain  

johnsoch@unbc.ca  

Ungulate Winter Range Proposed 
and Approved 

Data BC 

 Legal Herd Boundaries  Data BC 

Grizzly Bear 

Biogeoclimatic Zones Data BC 
Broad Ecosystem Inventory Data BC 
Wildlife Habitat Areas Proposed 
and Approved  

Data BC 

Bull Trout 

Third-order and Greater 
Watersheds (50,000) 

Data BC 

Fisheries Sensitive Watersheds 
Proposed and Approved 

Data BC 

Critical Rearing Habitat MFLNRORD - Ecosystems Branch 
Prince George 

Wildlife Habitat Areas Proposed 
and Approved  

Data BC 

Special Features  

Reconnaissance Karst Potential 
Mapping  

DataBC 

Freshwater Atlas Wetlands  Data BC 
Mineral Licks  MFLNRORD - Ecosystems Branch 

Prince George 
 
 
 
 
 
 
 
 

Baseline Thematic Mapping 
Urban 

Data BC 

TANTALIS - Residential Leases Data BC 
TRIM Enhanced Base Map 
Urban 

Data BC 

Digital Road Atlas Data BC 
Forest Tenure Road Sections Data BC 
TRIM Transportation Lines  Data BC 

mailto:parker@unbc.ca
mailto:johnsoch@unbc.ca
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Cost Surfaces 

Petroleum Development Roads Data BC 
Petroleum Access Road Data BC 
Crown Tenures Pipelines and 
Processing 

Data BC 

Oil and Gas Right-of-way Data BC 
Oil and Gas Facility Data BC 
Oil and Gas Ancillary Data BC 
Oil and Gas Well Sites Data BC 
Oil and Gas Surface Hole Data BC 
TRIM Well Sites Data BC 
TRIM Pipelines Data BC 
TRIM Seismic Lines Data BC 
OGC 2003-2012, 2002-2006, 
1996-2004 Seismic Lines 

Data BC 

TANTALIS Quarrying Licence Data BC 
TANTALIS Quarrying Lease Data BC 
TANTALIS Right-of-way 
Mineral Production 

Data BC 

Baseline Thematic Mapping 
Mining 

Data BC 

TANTALIS Industrial Licence Data BC 
TANTALIS Industrial Lease Data BC 
TANTALIS Industrial Right-of-
way 

Data BC 

Baseline Thematic Mapping 
Agriculture 

Data BC 

Agricultural Land Reserve  Data BC 
Consolidated Cutblocks  Data BC 
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APPENDIX 2: Cost Surface Geoprocessing Steps 

Step 1. Merge all datasets depicting roads described in Appendix 1. 
Step 2. Buffer road polylines based on surface type: paved = 15 m from centerline; 

FSR = 10 m from centerline; secondary unpaved road = 7.5 m from centerline; 
trail = 3.5 m from centerline 

Step 3. Dissolve buffered roads on a single attribute field to reduce the amount of data 
in the layer 

Step 4. Merge all datasets depicting seismic lines described in Appendix 1 
Step 5. Buffer seismic polylines 6 m from centerline 
Step 6. Dissolve buffered seismic lines on a single attribute field to reduce the amount 

of data in the layer 
Step 7. Merge all datasets depicting oil and gas development described in Appendix 1 

and dissolve on single attribute field 
Step 8. Merge all datasets depicting industrial development described in Appendix 1 

and dissolve on single attribute field 
Step 9. Merge all datasets depicting quarrying/mineral/mining development described 

in Appendix 1 and dissolve on single attribute field 
Step 10. Merge all datasets depicting urban/residential development described in 

Appendix 1 and dissolve on single attribute field 
Step 11. Merge all datasets depicting agricultural development described in Appendix 1 

and dissolve on single attribute field 
Step 12. Merge all dissolved layers into a single polygon and dissolve on single 

attribute field to produce low-sensitivity cost surface 
Option A Prior to completing step 12, add consolidated cutblocks <20 years old to 

produce medium-sensitivity cost surface 
Option B Prior to completing step 12, buffer forms of development based on avoidance 

distances described in Table 4 to produce high-sensitivity cost surface 
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APPENDIX 3: Solution spaces produced in trial scenarios prioritizing areas for conservation 
in the Wild Harts Study Area.  

 

Figure 20. Trial scenarios at 50% target for all conservation features; E. no cost surface used; F. low-sensitivity 
cost surface used; G. medium-sensitivity cost surface used; H. high-sensitivity cost surface used. 


