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Abstract 

I present a novel approach utilizing radio frequency identification (RFID) birdfeeders, coupled 

with playback experiments, to investigate the gap-crossing decisions of black-capped chickadees 

(Poecile atricapillus). Results from my RFID experiments revealed that the best predictors of 

gap-crossing behaviors were gap-distance, and vegetation density. Birds were less likely to cross 

as gap distance increased. As the amount of vegetation within gaps increased, birds were more 

likely to cross. Playback experiments showed a decrease in gap-crossing behaviour after the 

RFID sampling period. Because birdfeeders were put out during this time, decreases in gap-

crossing propensity suggests that birds may be engaging in a tradeoff between energy reserves 

and risk taking. Results from both experiments confirm that gaps do restrict movements of 

wintering black-capped chickadees. I recommend the primary way to increase connectivity for 

birds in fragmented habitats is to reduce the distance across gaps. Furthermore, increasing 

vegetation within gaps may also increase connectivity.  
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Chapter 1: Introduction 

Habitat loss changes the spatial configuration of the landscape, often resulting in the division of 

larger habitat patches into smaller and more isolated patches (Didham 2001). Currently, most of 

the world’s forests already lie within 1 km of a forest edge (Haddad et al. 2015). As the earth's 

population increases, habitat fragmentation is likely to have greater impacts on the planet's 

ecological systems (Sala et al. 2000, McLaughlin 2011).  

 Habitat fragmentation can have a number of negative effects on animal populations. 

Habitat fragmentation increases patch isolation by restricting animal movements among patches 

(Haddad et al. 2015). Increased patch isolation can result in limited dispersal of juveniles 

(Beauchamp et al. 1997, With et al. 1997), reduced genetic connectivity among populations 

(Keller and Largiadèr 2003, Adams and Burg 2015), and decreases in biodiversity (Bregman et 

al. 2014). Therefore, it is imperative that we understand the impacts of habitat fragmentation in 

order to implement effective management and conservation strategies.  

 Gaps in forest habitat, as the result of fragmentation, affect the movement behaviours of a 

range of taxa (e.g., Villard et al. 1999, Collinge 2000, Harris and Reed 2001, Bélisle and 

Desrochers 2002, Bakker and Van Vuren 2004, Riley et al. 2006, Janin et al. 2012, Duggan et al. 

2012, Smith et al. 2013, Poessel et al. 2014). Yet because of their ability to fly, habitat 

fragmentation may not be considered a particular threat to birds. However, gaps have been 

shown to act as significant barriers to the movement of forest songbirds (Desrochers and Hannon 

1997; Haddad 1999; Desrochers and Fortin 2000; Bélisle et al. 2001; Harris and Reed 2001; 

Bélisle and Desrochers 2002), leaving birds susceptible to many of the same adverse effects 

observed in other taxa.  
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 The primary reason for birds to avoid crossing gaps has generally been attributed to 

predation risk (e.g., hawks, falcons, and small owls) (Lima and Dill 1990, Rodríguez et al. 2001, 

Tellería et al. 2001, Desrochers et al. 2002). Because depredation imposes such high fitness costs 

on an individual, animals should attempt to minimize predation risk even at the sacrifice of other 

life history requirements. Interestingly, support for this idea has been demonstrated in 

experimental gap crossing studies (Desrochers and Hannon 1997, St. Clair et al. 1998, Bélisle 

and Desrochers 2002). St. Clair et al. (1998) used mobbing calls to attract birds from one side of 

a gap in an attempt to entice the birds to cross. However birds also had the opportunity to fly 

through a longer forested route, therefore circumventing the gap. Birds were more likely to 

traverse the forested route (or “detour”) that was up to twice the distance of the “direct” gap-

crossing route. Presumably this two-to-one threshold is the distance ratio where the energetic 

costs of taking the longer route outweigh the risk of predation. These results suggest that not 

only are there clear costs to forest songbirds moving across gaps, but also decision making based 

on these costs lies within their perceptual range (Lima and Zollner 1996). 

 Perhaps unsurprisingly, the most prominent factor associated with gap-crossing 

behaviours is gap distance. Increases in gap distance are consistently related with decreased gap-

crossing likelihood in birds (Desrochers and Hannon 1997, St Clair et al. 1998, Rodríguez et al. 

2001, Harris and Reed 2001, Bélisle and Desrochers 2002, Tremblay and St. Clair 2009). 

Increases in gap distance are generally thought to negatively impact gap-crossing likelihoods 

because crossing larger gaps exposes birds to increased predation risk. A larger gap takes more 

time to cross, therefore, crossing larger gaps results in greater exposure to predation. Conversely, 

small gaps pose less exposure, therefore birds are more likely to cross small gaps. This may also 
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explain why there appears to be a "gap-crossing" threshold distance. If birds perceive a small gap 

as less risky and a larger gap as more risky, at some distance the risk simply becomes too great.  

 The vegetation structure within gaps influences the gap-crossing decisions of birds, and 

helps to facilitate gap-crossing movements (Rodríguez et al. 2001, Tellería et al. 2001, Bélisle 

and Desrochers 2002). Birds are more likely to cross even moderately sized gaps with some 

intervening vegetation. This increase in gap-crossing propensity is again likely related to 

predation risk. If birds have cover to move though within the habitat gap, their exposure to 

predation is reduced. Vegetation cover may reduce exposure below the threshold risk levels 

noted above, and allow birds to to move across gaps they otherwise may not.     

 In addition to the physical attributes of a gap, differences among individual birds can 

result in varying gap-crossing propensities. For example, differences in gap-crossing behaviour 

in the hooded warbler (Setophaga citrina) have been linked to sex (Norris et al. 2002). In their 

study, Norris et al. (2002) demonstrated that while the movements of both sexes were negatively 

impacted by habitat fragmentation, female hooded warblers had a lower propensity to cross gaps  

than males. The gap-crossing threshold distance for females was also significantly lower than 

males. Additionally, the pairing status of an individual may play a role in gap-crossing 

behaviours. Fraser and Stutchbury (2004) demonstrated that paired males were less likely to 

cross habitat gaps than unpaired males in the scarlet tanager (Piranga olivacea).  Suggesting that 

the motivation to find a mate may increase a bird's likelihood to cross gaps.	These studies 

highlight that the differences among individuals can play a role in influencing gap-crossing 

behaviours. 
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1.1 Investigating the Effects of Habitat Fragmentation on Songbirds 

There are numerous methods for studying animal movements (Rubenstein and Hobson 2004, 

Kays et al. 2015). One method is translocation or homing experiments (Bélisle et al. 2001, 

Gobeil and Villard 2002, Desrochers et al. 2010). These experiments are often used to 

investigate how birds move through fragmented habitats at a landscape scale. Birds are 

translocated some distance away from their home range or territory. Researchers then compare 

how long it takes the translocated individuals to return back to their respective territories, and 

compare these times across landscapes that vary in their degree or type of fragmentation. These 

studies consistently show that habitat fragmentation constrains the movements of songbirds at 

the landscape scale (Bélisle et al. 2001, Gobeil and Villard 2002, Castellón and Sieving 2006, 

Jones et al. 2017). While these studies clearly show that habitat fragmentation has negative 

impacts on songbird movements, they generally do not track the individual movement paths of 

the birds in the experiment.  As such, they are limited to making inferences about the specific 

paths individual birds take through fragmented and non-fragmented habitats. These studies are 

also limited in sample size to the number of birds that are translocated, but then also detected 

back in their territories, making this a time and labor intensive method. It is also difficult to use 

these kinds of experiments to investigate the behaviors of birds as they face each individual gap-

crossing decision.  

 Radiotracking has been employed to investigate patch use and bird movements in 

fragmented habitats (Norris et al. 2002, Fraser and Stutchbury 2004, MacIntosh et al. 2011). 

Radiotracking has the benefit of being a relatively passive technique. Birds do not necessarily 

need to be physically moved (as in translocation studies), or enticed to move through the use of 

mobbing calls or other stimuli in order to track their movements. Therefore, this allows for a 



 5 

more natural observation of bird movements, and minimal interaction from the observer. As with 

translocations, these studies also have the advantage of being able to track the movements of 

individuals, and therefore can be used to study how behaviours may vary between individuals of 

differing age, sex, or condition. However, this method is again somewhat labor intensive, as it 

typically requires investigators to be in the field actively tracking radiotagged individuals. The 

number of individuals that can be tracked at any given time is also limited to the amount of time 

investigators can be in the field tracking tagged individuals.  

 Playback experiments are one of the most common methods for studying the effects of 

habitat fragmentation on bird movements (Desrochers and Hannon 1997, Rodríguez et al. 2001, 

Harris and Reed 2001, Bélisle and Desrochers 2002, Tremblay and St. Clair 2009).  These 

experiments involve calling birds from one location to another using mobbing calls, and then 

comparing responses between playbacks that involve gap-crossing and those that do not. This 

method is particularly well suited for looking at the effects of specific types of habitat barriers, or 

the effects of linear breaks in forest habitat (such as roads, powerlines, or pipelines). Playbacks 

can be effective for investigating gap-crossing decisions of songbirds, as they are easily 

repeatable and can be used to sample a large number of individuals across many sites with 

relative ease. However, it is difficult to use playback experiments to track the movements of 

individuals. Playback studies are also limited to the range which the mobbing calls can be 

detected by birds. In addition, because predation risk is one of the main deterrents to gap-

crossing in birds, these calls might make birds less likely to cross gaps, as mobbing calls 

generally function to alert others of nearby predators (Curio et al. 1978). While there is some 

evidence that mobbing calls do not influence the perception of predation risk in black-capped 

chickadees (Poecile atricapillus) (Desrochers et al. 2002), there is also evidence that mobbing 
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behaviours may be restricted by territory boundaries (Betts et al. 2005). However, this restriction 

of mobbing behaviour based on territory boundaries was observed during the breeding season, 

and in two members of the warbler family (black-throated green warblers, Setophaga virens, and 

black-throated blue warblers, Setophaga caerulescens) rather than in black-capped chickadees. 

Given the conflicting results with respect to how birds respond to and perceive mobbing calls, 

the extent to which using mobbing calls in playback experiments may be influencing the results 

of gap-crossing studies remains uncertain.  

 The goal of my research was to identify the factors influencing the gap-crossing decisions 

of individual black-capped chickadees when faced with linear gaps in forest habitat. My work 

differs from several of the previous studies I review above, as many of these studies considered 

how habitat openings (e.g. clearcuts) fragment the landscape and influence movements to 

circumvent these gaps. My research focused on fragmentation of the landscape via linear gaps 

that must be crossed and cannot be circumvented. Therefore, radiotracking and homing 

experiments were less suited for use in my study. In contrast, playback experiments have been 

well developed to study the impacts of linear gaps, and have been used extensively to do so 

(Desrochers and Hannon 1997, Rodríguez et al. 2001, Harris and Reed 2001, Bélisle and 

Desrochers 2002, Tremblay and St. Clair 2009).  

 I was interested in how the responses of birds to gaps may differ between individuals, and 

given the limitations of playbacks outlined above, I also developed a novel technique. This 

technique was passively tracking the movement of birds visiting feeders fitted with Radio 

frequency identification (RFID) loggers set in a network on the landscape. RFID is well suited to 

address many of the limitations associated with the other techniques I have described.  
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1.2 Radio Frequency Identification 

RFID is becoming an increasingly popular method to investigate a wide range of phenomena in 

ornithological studies (reviewed by Bonter and Bridge 2011). RFID loggers detect individuals 

fitted with passive integrated transponders (PIT tags) that come within range of the system's 

antenna. RFID has a number of benefits over other songbird tracking techniques (Bonter and 

Bridge 2011). These benefits lend themselves to investigating the decisions of birds when faced 

with linear gaps. RFID allows for the automated detection of individuals with minimal 

disturbance from the observer. Therefore, by tracking sequential reads from multiple RFID 

readers, it is possible to track the movements of individual birds with minimal disruption of their 

natural movement patterns. Because the tags that are detected by the reader boards are small and 

lightweight (~2mm/ < 0.15g), they can be effectively utilized on small animals, such as birds 

(even as small as humming birds - Hou et al. 2015). The lack of a battery on the tags aids in their 

small size, and also allows for increased longevity of the tags, as compared to radio-telemetry 

transmitters. The tags and reader boards (Bridge and Bonter 2011) are also relatively low cost 

allowing researchers to deploy a large number of tags and readers when compared to other 

techniques, such as GPS or geolocator tags. Importantly, RFID also has potential for integration 

with other technologies, instruments, or equipment.  

 I incorporated RFID reader boards into the base of birdfeeders I constructed from a 

combination of PVC pipe and 3D printed parts. My RFID system was composed of four main 

parts: 1) an RFID reader board which interprets and writes the data to an SD card, 2) a scanning 

antenna, 3) transponder tags, and 4) a power source. The RFID reader boards were built to the 

specifications outlined by Bonter and Bridge (2010). The scanning antenna in our system was 

located in the perch of the feeder, and detected tagged birds that landed on the feeder. These tags 
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were mounted within standard leg bands and attached to the bird. When a tag is detected by the 

bird feeder, it records the date, time, and ID number of the tag, thus giving precise information 

about a specific bird’s location at a given time.  

 

1.3 Study Species 

Black-capped chickadees are a forest-dwelling species resident in the winter months when birds 

are most active at feeders. Black-capped chickadees range in size from roughly 10–14 grams, 

and between 12–15 cm in length (Foote et al. 2010). Black-capped chickadees can be found 

across most of North America, and as far north as Alaska and as far south as northern New 

Mexico. Black-capped chickadees are abundant and highly gregarious in winter making catching 

and banding large numbers of individuals practical (Foote et al. 2010). Gap-crossing behaviours 

have also been extensively studied in black-capped chickadees (Desrochers and Hannon 1997, St 

Clair et al. 1998, Desrochers and Fortin 2000, Bélisle et al. 2001, Bélisle and Desrochers 2002, 

Turcotte and Desrochers 2003, Groom 2009, Tremblay and St. Clair 2009, St-Louis et al. 2014, 

Adams and Burg 2015) making them a useful subject to determine the relative capacity of RFID 

tracking to investigate gap-crossing behaviour compared to other techniques, such as playbacks.  

 

1.4 Study site 

I conducted field work within Prince George BC, Canada (53°55′ N, 122°44′ W) at three 

separate study areas located within the sub-boreal spruce ecosystem common for the area (Figure 

1.1). Study sites were selected among areas of mature (Figure 1.1 A, C) and young (Figure 1.1 

B) growth local forest consisting of a mix of conifers (Douglas Fir, Pseudotsuga menziesii, Sub-

boreal Spruce, Picea sp., Lodgepole Pine, Pinus contorta) and deciduous species (Trembling 
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Aspen, Populus tremuloides, Cottonwood, Populus sp., Birch, Betula sp., Willow, Salix sp.), 

which were intersected by gaps ranging from: walking trails; roads of varying size and activity 

level; and, major powerline transmission corridors. Field work took place between November 

2015–March 2016 and October 2016–March 2017, beginning roughly when birds settled into 

winter flocks and ending near the disbanding of winter flocks prior to the onset of breeding.  

 

1.5 Outline of Thesis 

The goal of this thesis was to quantify the effects gaps have on the movements of black-capped 

chickadees, and to identify factors that influenced their gap-crossing decisions. Furthermore, I 

also developed and evaluated a novel method for investigating these phenomena. I organized this 

thesis into four chapters, consisting of an introduction, two data chapters, and a concluding 

chapter. In Chapter 2, I used RFID to investigate the gap-crossing decisions of black-capped 

chickadees, and model the factors that best predict their gap-crossing decisions. In Chapter 3, I 

used playbacks to further assess the permeability of habitat gaps to black-capped chickadee 

movements, and to evaluate and verify the results from the experiments described in Chapter 2. 

This thesis concludes with Chapter 4, where I provide context for the research I have conducted, 

provide suggestions for future research directions, and outline the potential conservation and 

management implications of my work.  
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1.7 Figures 

 

Figure 1.1 Locations of the three study areas near Prince George BC.  Within each area, we 

tested gap-crossing behaviour at multiple sites.  The study areas include The University of 

Northern British Columbia Campus (area A, n = 6 sites), a forest service road and major power 

transmission corridor (area B, n = 5 sites), and newly developed road planned for residential 

construction (area C, n = 3 sites). Study area A consisted of 4 sites where the habitat gap was dirt 

road, and 2 that were walking trails. Study area B consisted of 3 sites where the habitat gaps 

were dirt roads, and 2 that were power line transmission cuts. Study area C consisted of 3 sites 

where the habitat gaps were all dirt roads. 
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Chapter 2: Using Radio Frequency Identification (RFID) to Investigate the Gap-Crossing 

Decisions of Black-Capped Chickadees (Poecile atricapillus) 

 

2.1 Abstract 

Gaps in forest habitat are well documented to negatively impact the movements of forest 

songbirds. However, much past research has utilized playback experiment designs, making it 

difficult to investigate long term movement patterns and identify factors that influence the 

movements of individuals. Here, we present a novel approach utilizing RFID to investigate gap-

crossing decisions in black-capped chickadees. Using bird feeders outfitted with RFID readers, 

we were able to track the movement patterns of wintering black capped chickadees within forests 

and across gaps. We used logistic regression and an information theoretic approach to identify 

the factors that best predicted gap-crossing behaviours. There was evidence that gaps impeded 

movements of wintering black-capped chickadees, and that the best predictors of gap-crossing 

behaviours were site-specific factors. Birds were more likely to cross gaps with decreasing gap 

size and greater vegetation density over 1m high within the gap. We recommend that the primary 

way to increase connectivity for birds in fragmented habitats is to reduce the distance across 

gaps. Additionally, it may be beneficial to increase shrubby or woody vegetation within the gap 

to a height of over 1m, as this also increases the likelihood of gap-crossing.  
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2.2 Introduction 

Anthropogenic development and deforestation are causing increasing habitat fragmentation 

worldwide (Haddad et al. 2015). The result is a matrix of forest patches separated by deforested 

gaps that must be navigated by forest-dwelling animals. These gaps affect the movements and 

distribution of many taxa (e.g., Villard et al. 1999, Collinge 2000, Harris and Reed 2001, Bélisle 

and Desrochers 2002, Bakker and Van Vuren 2004, Riley et al. 2006, Janin et al. 2012, Duggan 

et al. 2012, Smith et al. 2013, Poessel et al. 2014), and can result in reduced connectivity 

between populations (Keller and Largiadèr 2003, Riley et al. 2006, Adams and Burg 2015) and 

decreased potential for juvenile dispersal (Beauchamp et al. 1997, With et al. 1997).  

 Gaps in forest habitat can impede movement between patches for many forest bird 

species (Desrochers and Hannon 1997, Harris and Reed 2001, Norris et al. 2002, Fraser and 

Stutchbury 2004). Generally, gap-crossing decisions are investigated using playbacks, a design 

that has become one of the standard methods for examining gap-crossing decisions in birds 

(Rodríguez et al. 2001, Harris and Reed 2001, Bélisle and Desrochers 2002, Tremblay and St. 

Clair 2009). Although playbacks are a practical and effective method for investigating gap-

crossing behaviours, they are limited in a few ways. First, because birds generally use mobbing 

calls in the presence of predators (Curio et al. 1978), the use of mobbing calls during playback 

experiments may inflate the perception of predation risk. If birds perceive a greater predation 

risk when mobbing calls are played, they may be less willing to cross gaps than under other 

conditions. While there is evidence that mobbing call playbacks may influence risk-taking 

behaviour only at short distances from the playback speaker (i.e., <5m) (Desrochers et al. 2002), 

the degree to which this effect could be influencing bird movements in playback experiments 

remains unclear. Second, playback experiments often only describe short-term movement 
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patterns. In many cases playback trials last only several minutes (e.g., Desrochers and Hannon 

1997, St Clair et al. 1998, Harris and Reed 2001, Bélisle and Desrochers 2002). Finally, because 

it is difficult to both identify and keep track of individuals during playbacks, it is difficult to use 

this type of study to determine what factors may be influencing individual bird movements and 

to investigate how gap-crossing propensities may vary between individuals.  

Here, we use a novel approach with respect to the investigation of gap-crossing decisions 

in birds. We employed RFID as an alternative means to assess the permeability of habitat gaps, 

and to identify the individual factors that best predict avian gap-crossing decisions. By 

incorporating RFID readers into bird feeders (Bonter and Bridge 2011), we were be able to track 

the sequential movement patterns of wintering black-capped chickadees banded with PIT tags as 

they moved both within forests and across gaps. RFID is uniquely suited to address the 

limitations of playback studies, and to provide insight into the individual-specific factors that 

influence movement patterns. This approach enabled us to track the movements of individual 

birds over multiple days, and examine movement patterns over a longer time period than with 

playbacks. Importantly, the use of RFID feeders also allowed us to track birds across gaps 

without the use of mobbing calls which may influence gap-crossing decisions. Using RFID 

feeders to track bird movements, rather than using mobbing calls to entice birds to move, also 

allows us the ability to generalize our results to a broader range of scenarios, such as foraging or 

juvenile dispersal.   

We predicted that birds would move more frequently between feeders that are on the 

same side of a gap compared to feeders placed on opposite sides of a gap. Furthermore, we 

predicted that birds would also be less likely to travel between feeders on opposite sides of gaps 

as the size of the gap increased. We also predicted that smaller and younger birds would be more 
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likely to cross gaps, as these birds may have lower energetic reserves and/or less wintering 

experience than larger and older birds. Younger birds may therefore have greater incentive to 

cross habitat gaps, or less incentive to avoid them (Turcotte and Desrochers 2003, Zollner and 

Lima 2005). 

 

2.3 Methods 

2.3.1 RFID Feeders 

We incorporated reader boards into the base of birdfeeders we constructed from a combination of 

PVC pipe and 3D printed parts. The RFID reader boards were built to the specifications outlined 

by Bonter and Bridge (2011) and were powered by eight C cell 1.5 V batteries. The scanning 

antenna in our system was located in the perch of the feeder, and detected tagged individuals that 

landed on the feeder. Our feeders logged data once per second if a tag was detected, and wrote 

these data to a text file stored on a 2GB SD card. The detection period for the feeder was 200 ms 

with a cycle time of 1000 ms. The detection frequency for both our feeders and PIT tags was 125 

kHz.  Data were only written if a tag was detected by the feeder.  

 PIT tags (IB Technology, Aylesbury UK) contained a microchip programed with a 

unique 10-digit identification code. These tags were mounted within leg bands and attached to 

the bird. Passive transponder tags do not have their own power source, and therefore can only be 

detected within the range of the antenna (approximately 2–3 cm).  

 

2.3.2 Experimental Design 

For each experiment (site), four RFID feeders were placed out simultaneously in a square 

arrangement centred on a linear habitat gap. Movements between feeders on the same side of a 
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gap did not require gap-crossing, while movement between feeders on opposite sides of a gap did 

require gap-crossing. By setting up feeders in this arrangement, we were able to compare the 

number of movements between feeders within the same forest patch and across gaps. 

Furthermore, because we tracked individual birds we were able to investigate factors that 

influenced each individual's movements (Table 2.1).  

Habitat gaps were trails, roads, and power-line cuts that varied in width from 10–84m. 

For a given site, the distance between all feeders was equal, ranging from 90–150m depending 

on the size of the gap. A total of 15 sites were sampled across the 2015/2016 (n = 4) and 

2016/2017 (n = 10) winters. Gap distances were measured using a Bushnell YardagePro Sport 

600 laser rangefinder. At each site feeders were set up for 7 days. Only one set of 4 feeders was 

set up at each of the three study areas at a given time. Feeders were filled every 2–3 days 

(depending on usage) to ensure they were not empty at any time during the trial. Feeders were 

programmed to turn on one hour before sunrise and to turn off one hour after sunset to preserve 

battery power. 

 

2.3.3 Field Methods 

At each site prior to setting up the RFID feeders, we banded 4–24 black-capped chickadees 

(Mean = 12 SD = 5) with PIT-tag mounted leg bands for a total of 192 individuals. For each site, 

birds were banded at two locations – one location on each side of the gap – located halfway 

between where the RFID feeders would subsequently be placed. We caught birds using standard 

passerine mist nets or Potter’s traps. We then banded the birds with a single Canadian Wildlife 

Service aluminum band and a single 2.3 mm PIT tag.  We classified adult birds as either, hatch-

year (HY) second-year (SY), after hatch-year or after-second-year (ASY) by assessing the 
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amount of white edging on their outer rectrices (Pyle 1997). However, as our field season 

spanned the change in calendar year, and thus also the transition for hatch-year to second-

year/after hatch-year to after second-year classifications, we grouped birds into two age classes 

for analysis purposes: birds in their second-year and younger (HY/SY: n = 128), and birds older 

than second year (AHY/ASY: n = 64). We measured flattened wing chord length (mm), tail 

length (mm), tarsus length (mm), and weight (g) for each bird. We also calculated a condition 

index for birds, by regressing weight and tarsus and then using the residuals from that regression 

in our models. We used the birds mass-tarsus residual score as a proxy of bird condition, as 

Schubert et al. (2007) found that dominant birds had leaner mass for a given tarsal length (e.g. 

lower residual scores) than subordinate birds. Because Black-capped Chickadees are sexually 

monomorphic and we were not capturing birds during the breeding season, all birds were sexed 

based on a combination of weight, wing, and tail measurements, and designated as either male, 

female, or unknown (Desrochers 1990). Of the total 192 individuals we banded, we identified 69 

individuals as female (36%) and 57 individuals as male (30%). We were unable to confidently 

identify the sex of the remaining 66 individuals (34%). 

 

2.3.4 Gap Vegetation  

We classified gap vegetation for each site using digital photography to measure the density of 

shrubby vegetation within the gaps. Photos of a 1m2 board divided into a grid of 9 equal sized 

squares were taken at a distance of 5m. The amount of the board that was obstructed by the 

vegetation as a percentage was estimated to the nearest 5percent (i.e., greater the percent of the 

board that was obstructed, the denser the vegetation in the gap). One photo was taken at ground 

level, and another was taken at 1m height. Therefore, gap vegetation was represented from the 
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ground to 1m height and from 1m to 2m height. Vegetation was sampled at half the distance 

across the gap, in direct line with both feeders on opposite sides of the gap. Vegetation was also 

sampled at one location in the centre of the gap, at each site.  We chose these points to sample 

vegetation as to be representative of the assumed path for birds between feeders. Vegetation 

densities were then averaged for each site, and each site was then given this single value for its 

vegetation density score.  

 

2.3.5 Weather Data 

We obtained daily temperature data form the Environment Canada website 

(http://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=48370). Data on daily 

temperature included the maximum, minimum, and mean daily temperatures. These data were 

recorded at a weather station located at the Prince George International Airport (53°53' N, 

122°40' W), roughly 6 km east from study area B and C, and roughly 9 km south-east from study 

area A (Figure 2.1). For 9 days during the study period daily temperature data were not available. 

For these 9 days the maximum, minimum, and mean daily temperatures were estimated by 

averaging the respective values for each variable from the day immediately before and after the 

missing value.  

 

2.3.6 Data Analysis 

We used R (R Development Core Team, 2008, 3.3.1) to organize the data, remove erroneous 

reads, and link the individual visits between feeders into movements using the R package feedr 

(v.0.9.0, LaZerte et al. 2017).  A single read of a tagged individual, or multiple reads of the same 

individual with less than 3s between reads, was considered a single visit. Birds were considered 
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to have made a movement between two feeders if they visited one feeder and then visited a 

different feeder at the same site at a later time on the same day. Only sequential visits between 

different feeders were considered moves. Movements that occurred over multiple days (e.g., 

present at one feeder in the evening and a different feeder the next morning) were not included in 

analysis. We chose to exclude movements over multiple days because as the time between 

movements increases, it becomes more difficult to identify the factors that may have influenced 

that movement. Occasionally tags would be misread by the feeders, recording tag numbers that 

either did not exist or were never put on birds. We cross referenced all recorded tags in our data 

with our banding records and excluded any reads that did not match our records. For all analyses, 

only birds that made at least one movement between two feeders at a single site were included in 

the analysis. One site was excluded from analysis because birds only moved between two of the 

feeders in the grid, hindering our ability to make meaningful inferences about gap-crossing 

behaviours from these data. For all other sites at least 3 feeders recorded movements by birds 

between them.  

 

2.3.7 Statistical Analysis 

We used generalized linear models to investigate the movements and gap-crossing decisions of 

monitored birds.  First, we used a count model (negative binomial distribution, log link function) 

to investigate if gaps acted as barriers to bird movements. For this model, movements for each 

bird were summarized by type of movement (either across gap or within forest). Our dependant 

variable was the number of moves an individual bird made, and our independent variable was 

whether or not these movements were within contiguous forest or across gaps. Because many 
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birds made zero movements of one type or the other, and because the count data were 

overdispersed, we used a negative binomial count model.  

 Second, we used logistic regression (binomial distribution, logit link function) to explore 

the factors that predicted gap crossing behaviour by black-capped chickadees. For these models, 

each individual bird movement was recorded as a single observation, with that movement either 

being a non-gap crossing movement (0), or a gap-crossing movement (1). We used 14 variables 

to develop 18 models hypothesized to predict differences in gap-crossing behaviour among birds 

(Table 2.1). Model subsets were grouped by the type of variables included in the models: 

individual black-capped chickadee characteristics, study site characteristics/habitat, and a 

combination of variables from both subsets.  

 For the models predicting gap crossing behaviours, we used Akaike’s Information 

Criterion with the correction for small sample size (AICc) to identify the most parsimonious 

model of the set (Anderson et al. 2000). For the most parsimonious model, we presented the non-

standardized regression coefficients and the corresponding 95% confidence intervals. Confidence 

intervals that did not overlap 0 represented covariates with sufficient magnitude and precision to 

be considered statistically significant. We clustered data on bird ID to correct the variance for 

repeated sampling of the same individuals across time (Rogers 1994). We measured the fit of our 

top model by assessing the receiver operating characteristic (ROC), using a jackknife sampling 

method to produce independent predicted probabilities (Fielding and Bell 1997). We considered 

a model with an ‘area under the curve ’ (AUC) score of 0.7 to 0.9 to be a good predictor and a 

model with a score of >0.9 as an excellent predictor of gap-crossing by monitored birds (Boyce 

et al. 2002). We used tolerance scores to check all variables for collinearity. All analyses were 

conducted with Stata 14 (StataCorp 2015). 
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2.4 Results  

2.4.1 Count Model 

Over the course of our experiment, we recorded 60,522 unique feeder visits. Of these visits, a 

total of 2,677 individual bird movements between feeders fit our criteria for inclusion in analysis. 

Of the total movements, 1,827 were between feeders on the same side of a habitat gap (no gap 

crossing), while 850 were between feeders on opposite sides of a gap. Of the 192 birds banded, 

130 made at least one movement between two feeders that, again, fit our criteria for analysis. On 

average birds made 11.98 (SD = 18.07) movements between feeders on the same side of a gap, 

and 5.07 (SD = 6.35) movements between feeders on opposite sides of a gap. The maximum 

number of movements a single bird made between feeders was 110 and 32 for feeders on the 

same side and opposite sides of the gap respectively.  Overall, birds made significantly fewer 

movements between feeders on opposite sides of habitat gaps compared to movements between 

feeders on the same side of a gap (Wald χ2 = 24.76 , n = 334 , P < 0.001; Table 2.2). 

 

2.4.2 Gap-Crossing Model Selection and Fit  

 Of our proposed logistic regression models predicting gap-crossing behaviours, the 

model with the lowest AICc score belonged to the subset of models relating crossing behaviours 

to a combination of study site and individual bird characteristics (Table 2.3). This model 

included terms for gap distance, vegetation at 0–1m height, and vegetation at 1–2m height, zone 

(study area), age, and sex, (Table 2.4). That model had good predictive performance (ROC = 

0.74 SE = 0.001). However, only the variables gap distance and vegetation at 1–2m height had 

confidence intervals that did not overlap 0 (Figure 2.2). Birds were 1.8 times less likely to cross 

gaps as size increased from 10m to 40m, and 3.7 times less likely to cross as gap distance 
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increased to 70 m (Figure 2.3). Birds were also more likely to cross gaps as vegetation at 1–2m 

height increased. For each 5% increase in vegetation density at 1–2m, crossing likelihood 

increased by 1.7 times (Figure 2.4).  

 

2.5 Discussion  

Our results support previous findings that gaps in forest habitat impede the movements of forest 

songbirds (Desrochers and Hannon 1997, St Clair et al. 1998, Harris and Reed 2001, Bélisle et 

al. 2001, Develey and Stouffer 2001, Norris et al. 2002, Bélisle and Desrochers 2002, Creegan 

and Osborne 2005, Robertson and Radford 2009, Tremblay and St. Clair 2009, Adams and Burg 

2015, ). As expected, gap distance played an important role in influencing gap-crossing 

decisions. Further, a key finding in our study was that the impact of gaps on bird movements can 

be partially mitigated by the presence of shrubby vegetation (1–2m) in the gap, which greatly 

increased the propensity of birds to cross even large openings. The most plausible explanation 

for why gaps impede movement for birds appears to be an increase in predation risk (Rodríguez 

et al. 2001, Tellería et al. 2001, Bélisle and Desrochers 2002), and vegetation in the gap likely 

decreases the birds’ perception of risk exposure by allowing them to cross gaps via “stepping 

stones” of cover. Therefore, vegetation management could be an effective tool to decrease the 

effect of even large gaps acting as barriers to birds.  

 Some authors have suggested that the characteristics of individual birds are important 

when predicting how birds will move though fragmented habitats (Tellería et al. 2001, Bélisle 

and Desrochers 2002, Norris et al. 2002, Cox and Kesler 2012 ). We predicted that older birds, 

generally in better condition than younger birds, would be less likely to engage in a risky 

behaviour such as gap-crossing (Turcotte and Desrochers 2003, Zollner and Lima 2005). We 
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designed our experiment to identify how differences among individual influence movements, 

however we found little evidence that individual variation influenced gap-crossing behaviours in 

black-capped chickadees. Because birds did not differ in their propensity to cross gaps based on 

age, sex, or size/condition, this suggests that increases in energetic costs of gap-crossing and/or 

differences in wintering experience do not adequately explain the reluctance of forest birds to 

cross gaps. In contrast, other studies performed during the breeding season have found evidence 

suggesting male birds may be less adverse than females to gap-crossings potentially as they seek 

out EPCs (Norris et al. 2002, MacIntosh et al. 2011). This suggests that individual differences in 

gap-crossing may perhaps be seasonally dependent.  
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2.7 Tables 

Table 2.1 Description of independent variables and coding used to predict gap-crossing 

behaviours of black-capped chickadees. Variables are split into 2 categories, bird demographics 

and site characteristics, and used to create the three model subsets. Combination models 

consisted of variables from both categories. 

 
Model  Subsets and 
Variable Description 

  Bird Demographics  
Age Bird age class (0 = SY, 1 = ASY). 
Sex Male, Female, or Unknown. 
Weight to Tarsus  Residuals Used as proxy for condition; Larger tarsus and lower weight 

indicated better condition. 
Site  
Gap Distance Average width for the gap for a given site. 
Vegetation (0m) Vegetation density for a gap at 0–1 m height. 
Vegetation (1m) Vegetation density for a gap at 1–2 m height. 
Traffic Presence Whether or not there was vehicle traffic in the gap (i.e., roads had 

traffic while trails and powerlines did not). 
Study Area Indicates study area A, B , or C (See Figure 1.1). 
Elapsed Movement Time Amount of time elapsed between detections at two feeders or 

movement time. 
Min. Daily Temperature Minimum temperature for the day a movement occurred on. 
Max Daily Temperature Maximum temperature for the day a movement occurred on. 
Mean Daily Temperature Mean temperature for the day a movement occurred on. 
Date Modified ordinal date as number of days since October 1. 
Day of Experiment Day number of experiment (e.g., First day of experiment = 1, last 

day of experiment = 7). 
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Table 2.2 Results of the negative binomial count model comparing the number of movements by 

black-capped chickadees between feeders separated by a gap to those in continuous forest (Wald 

χ2  = 24.76 , n = 334 , P<0.001). 

        
  

95% Ci 

Model Variable Coefficient Std. Err. z P Lower Upper 
Gap-
crossing 
count model 

Move type (gap 
or continuous 
movement) 

– 0.74 0.15 – 4.98 <0.001 – 1.04 – 0.45 
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Table 2.3 Proposed candidate models, number of parameters (K), log-likelihoods (LL), Akaike’s 

Information Criterion (AICc) Scores, and AICc differences from the top model (bold) used to 

quantify gap-crossing decisions by monitored black-capped chickadees (n = 2677).  

Model K LL AICc AIC DIFF  
 
Bird Characteristics 

    Age, WT resid., Sex 5 – 1646.55 3297.12 491.52 
WT resid., Age 3 – 1648.89 3299.79 494.19 
WT resid., Sex 4 – 1658.03 3319.08 513.48 
Age 2 – 1659.25 3319.51 513.91 
Sex, Age  4 – 1658.62 3320.26 514.66 
Sex 3 – 1671.67 3345.36 539.76 
 
Site/Habitat Characteristics 

    Gap dist, Veg(0m), Veg(1m), Study area 6 – 1416.02 2837.07 31.47 
Gap dist,Veg(0m), Veg(1m) 4 – 1445.79 2894.59 89.00 
Gap dist,Veg(0m), Veg(1m), Traffic 5 – 1445.77 2895.56 89.96 
Veg(0m),Veg(1m), Traffic  4 – 1488.25 2979.51 173.91 
Gap dist, Max temp, Min temp, Mean temp 5 – 1495.75 2995.52 189.92 
Gap distance 2 – 1528.77 3058.55 252.95 
Max temp, Min temp, Mean temp, Date, Exp day 5 – 1583.39 3170.80 365.21 
 
Site/Habitat + Bird Characteristics 

    Gap dist, Veg(0m), Veg(1m), Study area, Age, Sex 9 – 1398.77 2805.60 0.00 
Gap dist, Veg(0m), Veg(1m), Age, Sex 7 – 1418.79 2843.62 38.02 
Gap dist, Vege(0m), Veg(1m), Age 5 – 1435.21 2874.44 68.84 
Gap dist, Age, Sex  5 – 1502.15 3008.33 202.73 
Gap dist, Age  3 – 1516.80 3035.61 230.01 
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Table 2.4 Coefficients of the top ranked logistic regression model predicting gap-crossing 

behaviours in Black-capped Chickadees. (n = 2677, ROC = 0.741, SE = 0.001). Positive 

coefficients indicate greater likelihood of gap crossing, while negative coefficients indicate 

reduced likelihood of gap crossing. Coefficients of categorical variables are calculated relative to 

the reference category for that variable, and are therefore excluded from this table. Reference 

categories for study area, age, and sex are study area A, SY, and Female, respectively. 

        
 

95% CI 
Variable Coefficient Robust Std Err z P Lower Upper 
Gap Distance – 0.06 0.01 – 4.43 <0.001 –0.09 –0.04 
Vegetation 0-1m 0.01 0.03 0.31 0.76 –0.05 0.06 
Vegetation 1-2m 1.00 0.19 5.37 <0.001 0.64 1.37 
Study area       

B – 0.80 0.43 –1.85 0.07 –0.09 1.30 
C – 0.82 0.45 – 1.8 0.07 –1.71 0.07 

Age (ASY) 0.61 0.35 1.71 0.09 –0.09 1.30 
Sex       

Male – 0.34 0.44 – 0.78 0.44 –1.21 0.52 
Unknown 0.08 0.39 0.21 0.84 –0.68 0.84 
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2.8 Figures 

 

Figure 2.1 Coefficients and 95% confidence intervals from the top ranked logistic regression 

model explaining gap-crossing behaviours in Black-capped Chickadees. Positive coefficients 

represent an increase in gap-crossing likelihood while negative coefficients represent a decrease 

in likelihood.  For categorical variables (Area, Age, and Sex), the value listed on the figure (e.g. 

‘Male’) indicates the coefficient for that category relative to the reference category (e.g. 

‘Female’).  If 95% confidence interval for the coefficient for the presented category crosses 0, it 

indicates no significant difference with the opposing category.  As study area had three 

categories (A, B and C), Area A was used as the reference by which to compare the remaining 

two categories listed. 
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Figure 2.2 Proportion of movements of Black-capped Chickadees between feeders for a given 

distance range. Black area represents the proportion of total movements between feeders that did 

involve a gap crossing, gray area represents movements that did not involve a gap crossing. The 

smallest gap distances (0–20 m) we sampled appear to restrict Chickadee movements very little, 

as at these distances roughly half the movements were across gaps and half were within forest. 

However, as gap distance increases we see a decrease in the proportion of movements across 

gaps. At the largest gaps we sampled (61–80 m), only about 20% of the movements at these 

distances were across gaps. Therefore, these larger gaps appear to restrict Chickadee movements 

much more compared to smaller gaps. 
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Figure 2.3 Examples of two sites with RFID feeder grids.  Both sites are centered on the same 

linear power line cut (both in Study Area B from Figure 1), separated by approximately 0.55 

Km. These grids represent 2 of the 14 sites sampled across three study areas. Both sites have a 

gap distance of 68 m, and would therefore be expected to present a substantial barrier to bird 

movements. However, because the site depicted to the right of the figure (b) had greater density 

of intervening vegetation within the gap, a much larger proportion of the total moves at this site 

consisted of gap crossings compared to the site on the left of the figure (a). Size of circles around 

feeder locations indicate usage for that feeder, with greater usage being indicated by a larger 

circle. Path usage is indicated by line width, again with thicker lines indicating greater path 

usage. 
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Chapter 3: Comparing Gap-crossing Responses in Black-capped Chickadees (Poecile 

atricapillus) Induced by Playback to a Novel RFID Method 

 

3.1 Abstract 

Gaps in forest habitat can limit the movements of many animals, including songbirds. Here, we 

report the results of a playback experiment investigating the gap-crossing decisions of black-

capped chickadees (Poecile atricapillus). We wanted to evaluate the results of our RFID method 

against a well established protocol, specifically to investigate if mobbing calls bias playback 

studies by making birds less likely to cross gaps. We also investigated changes in gap-crossing 

behaviour before and after the food supplementation that was part of our RFID experiments 

described in Chapter 2. We used mixed effects logistic regression to analyze the responses of 

birds to our playbacks. We found that gaps had a significant negative impact on the movements 

of black-capped chickadees during our playback experiments. We also found that food 

supplementation appeared to decrease the likelihood of birds responding to playbacks across 

gaps. We hypothesize that birds may be engaging in a trade off between foraging efficiency and 

predation risk, with increased food availability resulting in a decrease in propensity to take risks. 
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3.2 Introduction 

The ability to move across the landscape is an integral part of an organism’s ability to disperse 

(With et al. 1997) and for populations to maintain genetic connectivity (Keller and Largiadèr 

2003). It is therefore essential that we have a thorough understanding of how individuals will 

react when faced with habitat barriers. Gaps in continuous forest cover, often created by 

anthropogenic disturbances, can limit connectivity not only for ground dwelling organisms 

(Bakker and Van Vuren 2004), but also for more free-moving taxa such as birds (Desrochers and 

Hannon 1997a, Haddad 1999, Desrochers and Fortin 2000, Harris and Reed 2001, Bélisle et al. 

2001, Bélisle and Desrochers 2002).  However, there are practical challenges in studying the 

movement of forest songbirds across gaps.  

 Playback experiments are one of the most widely employed methods to study the impacts 

of gaps on bird movements (Desrochers and Hannon 1997a, St Clair et al. 1998, Rodríguez et al. 

2001, Harris and Reed 2001, Bélisle and Desrochers 2002, St. Clair 2003, Tremblay and St. Clair 

2009). While this method can be practical and efficient, it is difficult to track and identify 

differences in movement behaviour among individuals during these experiments. These 

experiments also represent short-term responses, with trials typically lasting only several minutes 

(St Clair et al. 1998, Tremblay and St. Clair 2009). Therefore, playbacks may not be 

representative of gap-crossing behaviours over longer time periods. Playback studies also require 

the use of a song or mobbing call to entice birds to move. In the case of mobbing calls this may 

be problematic. Mobbing calls are typically used as an intraspecific alert to the presence of 

predators (Evans et al. 1993). Birds hearing the mobbing call playbacks may infer the presence 

of an aerial predator in the area.  Because one of the main factors thought to influence gap-

crossing behaviour is predation risk (Zollner and Lima 2005), the use of mobbing calls may 
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reduce the willingness of birds to cross gaps. This may result in playback studies over-estimating 

the impacts of gaps on forest songbirds. Although Desrochers et al. (2002) concluded that the use 

of mobbing calls likely do not influence bird's perception of predation, they did demonstrate that 

chickadees behaved more cautiously in the presence of mobbing calls.  

 One means of determining whether playback studies suffer from these potential biases is 

to conduct a playback in concert with other independent methods for investigating gap-crossing 

decisions in birds. Here, we present the results of a playback study, performed at the same sites 

as the RFID tracking method described in Chapter 2.  Our primary objective was to compare the 

results from both methods. We wanted to know if using mobbing calls biases the results of 

playback studies by making birds less likely to cross gaps. Also, we wanted to evaluate the 

results of our RFID method against a well established protocol. We conducted playbacks both 

before and after the RFID feeders sampling period. As our RFID method involved the use of 

birdfeeders to detect tagged individuals, our secondary objective was to investigate if food 

supplementation influenced the gap-crossing decisions of birds.  

  

3.3 Methods 

3.3.1 Field Methods 

We adapted our playback protocol from Tremblay and St. Clair (2009) so our results would be 

comparable to similar playback experiments (St. Clair 2003, Tremblay and St. Clair 2009).  We 

conducted 23 playbacks at 12 different sites. At each site we conducted one playback trial before 

any birds were banded and before feeders were placed at that location. At the end of the 7-day 

RFID sampling period, we then conducted a second playback trial at each location. At each site 

we conducted two types of playbacks: 1) playbacks where the origin and destination locations 
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were on opposite sides of a gap (gap trials), and 2) playbacks where the origin and destinations 

were not separated by a gap (forest trials) (Figure 3.1). The playback distances at each site were 

the same for the gap and forest trials. Playback and gap distances ranged from 17 to 80 m. Gap 

distances were measured using a Bushnell YardagePro Sport 600 laser rangefinder. We 

alternated between which trial type (gap or forest) was performed first at each site to control for 

possible habituation to the mobbing call.  

 

3.3.2 Playback protocol 

Each playback trial was conducted by two observers, one positioned at the playback origin and 

the other at the playback destination. Each observer had a speaker (Logitech X100) connected to 

an iPod Touch that was used to broadcast the mobbing call. The speaker was located roughly 

1.5m above the ground and positioned so that the speaker was pointing in the direction of the 

other observer. Volume was standardized across all trials (Approximately 80 decibels at 1m, 

measured with a GoldLine SPL120 sound pressure meter). These volume settings were chosen as 

they were similar to those of natural calling, and were also sufficiently loud enough to be audible 

to the second observer at all distances sampled. 

 We began each playback with a 30-second primer of black-capped chickadee mobbing 

calls at the origin location followed by one minute of silence. Next, we began playing the same 

mobbing call at the origin location for up to a maximum of six minutes, or until no new birds had 

arrived for one minute. If no birds responded after the first two minutes of the 6-minute 

playback, we stopped the playback for two minutes, then restarted the trial. This protocol was 

repeated until either the entire 6-minute playback had elapsed with no birds responding (in which 

case the trials were aborted until the next day – see below), or birds responded to the mobbing 
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call. For a playback trial at the origin location to proceed to testing at the destination location, at 

least one bird had to have been attracted to within 10m of the origin speaker and indicate some 

form of responsiveness (calls, approach) to the mobbing call. Once these conditions had been 

met, the observer at the origin turned their speaker off, and moved to a location half-way 

between the origin and destination speakers to observe and record birds moving from the initial 

location to the destination speaker. Simultaneously, the observer at the destination began their 

mobbing call playback. The destination mobbing call was played for 6 minutes continuously, and 

the conditions for a bird to be considered to have responded to the destination call were the same 

as those used at the origin location. After the first playback type (gap or forest trial) was 

completed, the reciprocal trial was conducted immediately (typically within 1–2 minutes). If only 

one or neither of the gap or forest playback trials was successful in attracting birds to the origin 

location, the playback was postponed then attempted again the following day.  We recorded the 

number of birds at the initial location and the number of individuals that moved to the 

destination, and used this proportion as the dependent variable in our models. 

  

3.3.3 Statistical Analysis 

We performed all statistical analyses using STATA 14 (StataCorp 2015). We based our analysis 

on that of Tremblay and St. Clair (2009). To analyze the responses of birds to our playbacks, we 

constructed mixed-effects logistic regression models with binomial distributions and logit link 

functions. We used the number of birds at the destination (i.e., number of bird that moved in 

response to playback) as our dependent variable with the number of birds at the initial location 

(i.e., total number of bird involved in playback) as a binomial denominator. All of our models 
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included a random intercept for site to account for the two types of trials (gap trials and forest 

trials) being performed at the same sites.  

 To ask whether performing a gap playback trial or a forest playback trial first at a site 

impacted the responsiveness of birds to playbacks overall (i.e., forest and gap trial playbacks 

together), we used the response proportion as the dependent variable and the trial type that was 

performed first at that site as a categorical predictor variable (forest trial = 0, gap trial = 1). 

Using similar analyses, we also asked whether the type of playback trial conduced first impacted 

the responsiveness of birds to forest and gap trial playbacks separately.  

 Because we wanted to investigate how supplemental feeding may influence playback 

responses, we tested if responses differed before and after food supplementation. To test this, we 

used the response proportion as the dependent variable and whether the trial was performed pre-

feeding or post-feeding as a categorical predictor variable (pre-feeding = 0, post-feeding = 1). To 

test if this effect may only be present during gap or forest trials we then partitioned the data into 

gap trials and forest trials, and again tested response proportion as the dependent variable and 

whether the trial was performed pre-feeding or post-feeding as a categorical predictor variable 

(pre-feeding = 0, post-feeding = 1) on both datasets. 

 To ask whether gaps in forest habitat negatively impacted bird movements, we used the 

response proportion as the dependent variable, the trial type as a categorical predictor variable 

(forest trial = 0, gap trial = 1), and the playback distance as a continuous predictor variable. We 

looked at the interaction between playback type and distance because we suspected the effect of 

distance on response proportion may only be evident during gap trials. In this model, we used the 

response proportion as the dependent variable, trial type and playback distance as predictor 

variable, and included a trial type x playback distance interaction term. To further investigate 
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significant interactions between trial type and playback distance, we used the response 

proportion as the dependent variable and playback distance as a continuous predictor variable, 

for both gap trials and forest trials separately.  

 

3.4 Results  

 Likelihood of birds to respond to a playback was not influenced by which trial (gap or forest) 

was performed first (Table 3.1), therefore we did not analyze playbacks separately based on 

which trial at each site was performed first or include it as a random effect in our models. Birds 

were significantly less likely to respond to playbacks during the post-feeding playback trials 

compared to the pre-feeding playback trials (Table 3.2). This was true when all trials were 

analyzed together (Wald χ2  = 17.90 , n = 46, P < 0.001), and when gap trials (Wald χ2  = 9.10 , n 

= 23 , P < 0.01) and forest trials (Wald χ2  = 11.50 , n = 23 , P < 0.001) were analyzed 

separately.  Therefore, all subsequent analysis is separated into pre-feeding and post-feeding.  

 For the pre-feeding trials, increased playback distance did not influence the proportion of 

birds that responded to the playback (Table 3.3). However, birds were significantly less likely to 

respond to gap-trial playbacks compared to forest-trial playbacks (Table 3.3). We found no 

significant interaction between playback distance and trial type. We therefore dropped the non-

significant interaction to derive our final model for the pre-feeding trials (Wald χ2  = 10.79 , n = 

24 , P < 0.01; Table 3.3).  

 When analyzing the post-feeding trials, birds were also significantly less likely to 

respond to gap-trial playbacks compared to the forest trials (Table 3.4).  We again found no 

significant effect of distance on response probability during the post feeding trials (Table 3.4). 

When we looked at the interaction between distance and gap type we found a significant positive 
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effect (Wald χ2  = 11.83 , n = 22 , P < 0.01; Table 3.4). This interaction suggests that, birds were 

more likely to respond to gap-trial playbacks as distance increased. However, when we 

investigated this interaction further playback distance had no significant effect on response 

probability in the post-feeding gap trials (Wald χ2  = 2.08 , n = 11 , P = 0.15; Table 3.5) or in the 

post-feeding forest trials (Wald χ2  = 2.25 , n = 11 , P = 0.13; Table 3.5).  

 

3.5 Discussion  

Black-capped chickadees were significantly less likely to respond to playbacks across gaps 

compared to within forest, indicating that gaps act as barriers to movement. This finding is also 

in agreement with results from our RFID experiments at the same sites, which also demonstrated 

that these gaps act as barriers to movements during foraging. Our results provide further 

evidence that using mobbing calls during playback experiments does not seem to bias bird gap-

crossing decisions by influencing their perception of predation (Desrochers et al. 2002).  

 Perhaps the most interesting result of our study was the decrease in response probability 

between our pre-feeding and post-feeding playback trials.  Because our pre-feeding and post-

feeding trials were separated by at least 7 days, habituation to playbacks is unlikely to explain 

the reduction in response probability. One possibility is that food supplementation may have 

diminished the risk taking propensity of birds in the area. Turcotte and Desrochers (2003) 

demonstrated that birds in forest fragments that were supplemented with food did not venture as 

far beyond forest edges compared to those in unsupplemented fragments. They concluded that 

decreased energy stress, due to greater food resource abundance, resulted in a decrease in risk-

taking behaviour, suggesting a trade-off between foraging efficiency and predation risk (Lima 

and Dill 1990, Walther and Gosler 2001). Because mobbing is a risky behaviour (Sordahl 1990), 
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birds may have been less likely to respond to mobbing calls in our playback experiment when 

food was supplemented. Interestingly, we did not find any decrease in gap-crossing likelihood 

during the duration of our RFID experiments. Birds were no less likely to cross gaps on the final 

day of our 7-day RFID sampling period experiment than on the first. However, as we were 

constrained by a relativity small sample size for our playback experiments, more work is needed 

to investigate how food availability may influence the movements and behaviour of forest 

songbirds in fragmented habitats. 

 When we analyzed the post-feeding playback trials alone we found that birds were more 

likely to respond to gap-trial playbacks as gap distance increased. This unexpected result was 

present for our post-feeding playback trials only. However, this result appears to be due to a few 

outlier responses where birds responded to our playbacks at higher rates than would be expected 

at large gap distances, rather than an overall trend of increasing responses with increased gap 

distance (Figure 3.2).  

 Our playback results run somewhat contrary to our RFID results and to other playback 

studies, in that increased gap distance did not impose a greater impediment to movement 

(Desrochers and Hannon 1997, Rodríguez et al. 2001, Harris and Reed 2001, Bélisle and 

Desrochers 2002, Tremblay and St. Clair 2009). Because gaps at our study site ranged only in 

distance from 17 to 80 m, we were limited to playbacks of these distances compared to similar 

playback studies in which distances were as great as 160 m (i.e., Desrochers and Hannon 1997). 

Had we been able to sample larger gap distances, differences in response probability may have 

been more pronounced. In contrast to our playbacks however, we did observe a negative 

relationship between increased gap-distance and gap-crossing probability using our RFID 

method. Considering the range of gap-distances for both experiments were comparable, these 
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results suggest that RFID data allowed for a more nuanced analysis of bird movements. We were 

able to observe a much greater number of individual movements using RFID (n = 2971) than a 

playback approach (n = 47), this likely gave us greater statistical power to uncover subtle 

differences in gap-crossing behaviours. 

 Playbacks can be an effective method for investigating how habitat features influence 

bird movements, and have a variety of benefits when compared to using RFID. Playbacks are 

inexpensive, and are easily repeatable across a variety of different habitat features. However, 

playbacks are limited in their ability to compare gap-crossing behaviours of individual birds. 

Additionally, because playback observations last only several minutes, repeated sampling is 

required to make observations about how movement patterns may change over time. In contrast, 

RFID is well suited to track the movements of individual birds, making it an excellent tool to 

investigate how individual factors may influence movement decisions. RFID also lends itself to 

investigating long-term movement patterns, as RFID readers can be left in the field to passively 

collect data without the need for researchers to be present. However, this technique does suffer 

from increased set up, cost, and sampling time, in addition to requiring the investigator to band a 

substantial number of birds with PIT tags. Ultimately, the decision to use either technique will be 

dictated by the research question of interest, and the time and resources available to the 

investigator. 

  



 48 

3.6 Literature Cited 

Bakker, V. J., and D. H. Van Vuren (2004). Gap-Crossing Decisions by the Red Squirrel, a 
Forest-Dependent Small Mammal. Conservation Biology 18:689–697.  

 
Beauchamp, G., M. Belisle, and L.-A. Giraldeau (1997). Influence of Conspecific Attraction on 

the Spatial Distribution of Learning Foragers in a Patchy Habitat. Journal of Animal 
Ecology 66:671–682.  

 
Bélisle, M., and A. Desrochers (2002). Gap-crossing decisions by forest birds: an empirical basis 

for parameterizing spatially-explicit, individual-based models. Landscape Ecology 
17:219–231.  

 
Bélisle, M., A. Desrochers, and M.-J. Fortin (2001). Influence of Forest Cover on the 

Movements of Forest Birds: A Homing Experiment. Ecology 82:1893–1904.  
 
Betts, M. G., A. S. Hadley, and P. J. Doran (2005). Avian Mobbing Response is Restricted by 

Territory Boundaries: Experimental Evidence from Two Species of Forest Warblers. 
Ethology 111:821–835.  

 
Bonter, D. N., and E. S. Bridge (2011). Applications of radio frequency identification (RFID) in 

ornithological research: a review. Journal of Field Ornithology 82:1–10.  
 
Desrochers, A., M. Bélisle, and J. Bourque (2002). Do mobbing calls affect the perception of 

predation risk by forest birds? Animal Behaviour 64:709–714.  
 
Desrochers, A., and M.-J. Fortin (2000). Understanding avian responses to forest boundaries: a 

case study with chickadee winter flocks. Oikos 91:376–384.  
 
Desrochers, A., and S. J. Hannon (1997a). Gap crossing decisions by forest songbirds during the 

post-fledging period. Conservation Biology 11:1204–1210.  
 
Desrochers, A., and S. J. Hannon (1997b). Gap Crossing Decisions by Forest Songbirds during 

the Post-Fledging Period. Conservation Biology 11:1204–1210. 
 
Evans, C. S., L. Evans, and P. Marler (1993). On the meaning of alarm calls: functional reference 

in an avian vocal system. Animal Behaviour 46:23–38.  
 
Haddad, N. M. (1999). Corridor Use Predicted from Behaviors at Habitat Boundaries. The 

American Naturalist 153:215–227.  
 
Harris, R. J., and J. M. Reed (2001). Territorial Movements of Black-throated Blue Warblers in a 

Landscape Fragmented by Forestry. The Auk 118:544–549.  
 



 49 

Keller, I., and C. R. Largiadèr (2003). Recent habitat fragmentation caused by major roads leads 
to reduction of gene flow and loss of genetic variability in ground beetles. Proceedings of 
the Royal Society of London B: Biological Sciences 270:417–423.  

 
Lima, S. L., and L. M. Dill (1990). Behavioral decisions made under the risk of predation: a 

review and prospectus. Canadian Journal of Zoology 68:619–640.  
 
Rodríguez, A., H. Andrén, and G. Jansson (2001). Habitat-mediated predation risk and decision 

making of small birds at forest edges. Oikos 95:383–396. 
 
Sordahl, T. A. (1990). The Risks of Avian Mobbing and Distraction Behavior: An Anecdotal 

Review. The Wilson Bulletin 102:349–352. 
 
StataCorp (2015) Stata Statistical Software: Release 14. StataCorp., College  
 Station, Texas, USA. 	
 
St. Clair, C. C. (2003). Comparative Permeability of Roads, Rivers, and Meadows to Songbirds 

in Banff National Park. Conservation Biology 17:1151–1160.  
 
St. Clair, C. C., M. Bélisle, A. Desrochers, and S. Hannon (1998). Winter responses of forest 

birds to habitat corridors and gaps. Conservation Ecology 2:13. 
 
Tremblay, M. A., and C. C. St. Clair (2009). Factors affecting the permeability of transportation 

and riparian corridors to the movements of songbirds in an urban landscape. Journal of 
Applied Ecology 46:1314–1322.  

 
Turcotte, Y., and A. Desrochers (2003). Landscape-dependent response to predation risk by 

forest birds. Oikos 100:614–618. 
 
Walther, B., and A. Gosler (2001). The effects of food availability and distance to protective 

cover on the winter foraging behaviour of tits (Aves: Parus). Oecologia 129:312–320. 
  
With, K. A., R. H. Gardner, and M. G. Turner (1997). Landscape connectivity and population 

distributions in heterogeneous environments. Oikos:151–169. 
 
Zollner, P. A., and S. L. Lima (2005). Behavioral tradeoffs when dispersing across a patchy 

landscape. Oikos 108:219–230.  
  



 50 

3.7 Tables 

Table 3.1 Coefficients of the logistic regression models investigating if black-capped chickadee 

responses to playback experiments are effected by which trial type (gap or forest) is performed 

first. Positive coefficients represent an increased likelihood of playback response while negative 

coefficients represent decreased likelihood of response. Separate models were used to 

investigate the effect of trial order on all trials combined (Wald χ
2  = 0.03 , n = 46, P = 0.86), 

gap trials (Wald χ
2  = 0.50, n = 23, P = 0.48 ), and forest trials  (Wald χ

2  = 0.24 , n = 23, P = 

0.62). 

     
95 % CI 

 Model Coefficient  n Std. Err. z Lower Upper P value 
All trials 

        – 0.08 46 0.45 – 0.17 – 0.97 0.81 0.86 
Gap trials only 

       
 

0.46 23 0.64 0.71 – 0.81 1.72 0.48 
Forest trials only 

       
  

– 0.37 
 

23 
 

0.76 
 

– 0.49 
 

– 1.85 
 

1.11 
 

0.62 
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Table 3.2 Coefficients of the logistic regression models investigating if black-capped chickadee 

responses to playback experiments are affected by supplemental feeding. Positive coefficients 

represent an increased likelihood of playback response while negative coefficients represent 

decreased likelihood of response. Separate models were used to investigate the effect of 

supplementation on all trials combined (Wald χ
2  = 17.90 , n = 46, P < 0.001), gap trials (Wald 

χ2  = 9.10 , n = 23 , P < 0.01), and forest trials (Wald χ
2  = 11.50 , n = 23 , P < 0.001). 

      
95 % CI 

Model Coefficient  n Std. Err.  z Lower Upper P value 
All trials 

        – 1.52 46 0.36 – 4.23 – 2.22 – 0.81 < 0.001 
Gap trials only 

       
 

– 2.56 23 0.76 – 3.39 – 4.04 – 1.08 < 0.001 
Forest trials only 

       
  

– 1.99 
 

23 
 

0.66 
 

– 3.02 
 

– 3.29 
 

– 0.70 
 

< 0.01 
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Table 3.3 Coefficients of the logistic regression models investigating if gaps act as barriers to 

black-capped chickadee movements and the influence of playback distance on playback 

responses for the pre-feeding trials. Positive coefficients represent an increased likelihood of 

playback response while negative coefficients represent decreased likelihood of response (Wald 

χ2  = 10.79 , n = 24 , P < 0.01).  

     
95 % CI 

Variable Coefficient  Std. Err.  z Lower Upper P value 
Distance – 0.001 0.02 – 0.04 – 0.04 0.04 0.97 

Trial type (Gap /Forest ) – 2.13 0.65 – 3.28 – 3.41 – 0.86 < 0.01 
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Table 3.4 Coefficients of the logistic regression models investigating if gaps act as barriers to 

black-capped chickadee movements and the influence of playback distance on playback 

responses for the post-feeding trials. Positive coefficients represent an increased likelihood of 

playback response while negative coefficients represent decreased likelihood of response (Wald 

χ2  = 11.83 , n = 22 , P < 0.01). 

    
95 % CI 

 Variable Coefficient  Std. Err.  z Lower Upper P value 
Distance – 0.03 0.02 – 1.56 – 0.06 0.01 0.12 

Trial type (Gap /Forest ) – 5.65 1.86 – 3.04 – 9.30 – 2.00 < 0.01 

Distance X Trial type 0.08 0.03 2.35 0.01 0.14 0.02 
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Table 3.5 Coefficients of the logistic regression models investigating the significant positive 

interaction between trial type and playback distance for the post-feeding playbacks. Data were 

split into gap (Wald χ2  = 2.08 , n = 11 , P = 0.15) and forest trials (Wald χ2  = 2.25 , n = 11 , P = 

0.13) and tested separately. Response probability was the dependent variable in the models and 

distance as a continuous predictor. Positive coefficients represent an increased likelihood of 

playback response while negative coefficients represent decreased likelihood of response.  

      95 % CI  
 Variables Coefficient n Std. Err. z Lower Upper P value 

Gap trials         
 Distance 0.05 11 0.03 1.50 – 0.01 0.11 0.13 

Forest trials         

 
Distance 

 
– 0.03 

 
11 
 

0.02 
 

– 1.44 
 

– 0.07 
 

0.01 
 

0.15 
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3.8 Figures 

 

Figure 3.1. Example experimental setup for our playback trials for both the forest trials(a) and 

the gap trials (b). Origin speakers represented by (1) and destination speakers represented by (2), 

with bird path represented by dotted lines.  
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Figure 3.2. Proportion of responses to destination playbacks across all playback distances for gap 

(circles) and forest (triangles) trials both pre-feeding (left), post-feeding (right). Post-feeding 

trails had much lower responses overall compared to pre-feeding trials, however in the post-

feeding trials a few responses at large distances likely skewed our results to show a positive 

interaction between gap-trial playback responses and increased gap-distance.  
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Chapter 4: Conclusion 

The primary goal of this project was to gain a better understanding of the behavioral decisions 

made by individual black-capped chickadees when moving through fragmented habitats. My 

results provide strong evidence that linear gaps constrain the movements of black-capped 

chickadees. Further, and that larger gaps impede the movements of chickadees to a greater 

degree than smaller gaps. Greater vegetation within the gap appears to facilitate movements 

compared to those with little or no vegetation. Interestingly, this was only true for vegetation 

over 1m in height. Vegetation over 1m in height likely increases movements across gaps for 

chickadees as they are generally arboreal foragers (Foote et al. 2010), and vegetation above 1m 

is more natural for them to move though compared to lower lying vegetation. However, this may 

suggest that the effective height for vegetation in facilitating movements across gaps may be 

dependent on a species life history or foraging strategy. For instance, while only vegetation at a 

height greater than 1m facilitated movements for chickadees, vegetation below this height may 

still be effective for facilitating the movements of understory birds (Castellón and Sieving 2006).  

 A secondary goal of this project was to compare the results of my RFID experiments with 

the results of playbacks conducted at the same sites. Given that the results from both my RFID 

and playback experiments were in agreement to the extent that gaps negatively impacted bird 

movements, I believe this demonstrates that either method is appropriate to use to investigate the 

gap-crossing decisions of black-capped chickadees. One of the limitations of playback studies is 

the difficulty in investigating behavioural differences among individuals. However, individual 

variation in age, sex, or condition, did not appear to influence gap-crossing behaviours in my 

RFID experiments. Therefore, this limitation of playbacks may not be of consequence if 

individual black-capped chickadees do not demonstrate differences in gap-crossing behaviour.   
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 Inhabiting fragmented habitats can be energetically costly to forest songbirds. Gaps can 

increase the cost of movement by increasing the time it takes to move though the landscape 

(Bélisle et al. 2001), and by decreasing a bird's abilities to forage (Huhta et al. 1998) and 

disperse efficiently (Lens and Dhondt 1994, Desrochers and Hannon 1997, Zollner and Lima 

2005, Cox and Kesler 2012). Due to constraints on individual movements, habitat fragmentation 

could increase the cost of behaviours thought to be adaptive, such as extra pair copulations 

(EPCs) (Norris and Stutchbury 2001), possibly resulting in decreased frequency of such 

behaviours. Although any one of these factors alone does not necessarily make fragmented 

habitats entirely inhospitable for birds, their cumulative effects have clear negative impacts on 

the fitness of birds. On a global scale, the negative impacts of forest fragmentation are possibly 

contributing to the overall trend in decreasing songbird populations world wide (Hoffmann et al. 

2010). With increasing development in the form of agriculture, urbanization, and resource 

extraction further impacting natural landscapes, understanding and predicting how birds will 

react to these changes is essential.  

 Habitat fragmentation may also impact the evolution of birds over time (Desrochers 

2010). Habitat fragmentation is well documented to limit gene flow between populations (Keller 

and Largiadèr 2003, Riley et al. 2006, Adams and Burg 2015). Limited gene flow generally 

results in decreased genetic diversity within populations. Because genetic diversity is essential 

for adaptation, habitat fragmentation may have negative impacts on the ability of black-capped 

chickadees to respond in an adaptive way to increasingly fragmented environments in the future. 

Furthermore, reduced genetic diversity can also make populations more susceptible to the spread 

of pathogens and infection (O'Brien and Evermann 1988). This may be problematic even for 

abundant, generalist species, such as the black-capped chickadee, as human influences are likely 
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to further change the landscape and climate at a rate that will be difficult for many species to 

adapt to.  

 My research helps to expand our knowledge of the individual gap-crossing decisions 

made by black-capped chickadees. Furthermore, my findings demonstrate the efficacy of past 

work using playbacks, and helps to further the use of novel applications of RFID technology in 

ornithology. My research also demonstrates, the large potential for RFID to be used in tracking 

the movements of songbirds, and the potential integration of RFID with other techniques or 

equipment beyond birdfeeders. Beyond black-capped chickadees, my research may also help to 

predict how other winter resident birds (e.g., mountain chickadees, nuthatches, woodpeckers, and 

some owl species) may also be impacted by habitat fragmentation.  

 

4.1.1 Future directions 

RFID technology provides the ability to track movements of songbirds, and to investigate factors 

that influence the movements of individual birds. Although it has been posited that individual 

characteristics may play a role in gap crossing decisions I did  not find this to be the case 

(Tellería et al. 2001, Bélisle and Desrochers 2002, Norris et al. 2002, Cox and Kesler 2012 ). 

During winter, black-capped chickadees move through the landscape as flocks of variable size 

that are comprised of individuals of differing age, sex, dominance rank, and/or body condition 

(Foote et al. 2010). Forest fragmentation has been shown to influence flock structure and 

behaviour in the related blue tit (Parus caeruleus) (Tellería et al. 2001). Therefore, flock 

dynamics and structure may be of greater importance in influencing black-capped chickadee 

movements through fragmented habitats during the winter compared to individual 

characteristics. I suggest that future studies examining the gap-crossing behaviours of black-
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capped chickadees do so at the scale of flocks, and investigate how flock structure and dynamics 

influence behaviour of birds as they move through fragmented landscapes. Furthermore, as 

chickadee winter flocks often interact with other species, such as nuthatches, future work should 

also investigate how interspecific interactions influence flock behaviour, dominance, and 

movement.  

 Although there is research investigating gap-crossing decisions of forest songbirds during 

both the breeding (e.g., Norris et al. 2002, MacIntosh et al. 2011) and non-breeding seasons (e.g., 

St Clair et al. 1998, Tellería et al. 2001), there is still a substantial amount of uncertainty as to 

how individual differences in gap-crossing behaviours translate into breeding success and 

survival, if at all. Examining how individuals respond to habitat fragmentation, and how these 

responses are related to the fitness of an individual is essential for a complete understanding of 

how habitat fragmentation influences the ecology and evolution of a species. Furthermore, it is 

important to understand how associations between responses to habitat fragmentation and 

breeding success vary among species. While it may not be practical to study how every species 

responds to habitat fragmentation, especially in terms of breeding success, it may be useful to 

study how differing life histories or feeding guilds respond, therefore allowing for inferences 

from model species to other species of concern.  

 Given that my research demonstrated the importance of vegetation within the gap as 

influencing gap-crossing behaviour, future work should further investigate how vegetation 

within gaps influences bird movements. To do so, I recommend that investigators use a similar 

RFID experimental design as myself, but rather than choose specific sites based on the amount of 

vegetation, I suggest that researchers deliberately manipulate the landscape. Performing this kind 

of experiment would give researchers greater control over the amount and kind of vegetation 
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within the gap, and also what kind of vegetation best promotes bird movements. Although 

altering vegetation within the gap will likely change gap-crossing propensity of forest song birds, 

it remains unknown if doing so will impact birds immediately or if there will be some temporal 

lag between the time the vegetation is manipulated and changes in the gap-crossing behaviour of 

birds. By studying bird movements before and after creation and manipulation of a gap 

researchers can investigate the effectiveness of different mitigation strategies. Such information 

is important for understanding the impacts of future and current developments, and 

implementing the most practical, efficient, and effective management strategies.  

 There appears to be good evidence that the reluctance of birds to cross gaps stems from 

an increase in predation risk (Rodríguez et al. 2001, Tellería et al. 2001, Turcotte and Desrochers 

2003, Zollner and Lima 2005). This risk likely comes mostly from aerial predators such as 

hawks, falcons, and small owls. One way to further test this hypothesis would be to look at how 

time of day influences gap-crossing behaviours. If songbirds are most concerned about limiting 

their predation risk from aerial predator such as owls, we would expect them to be less likely to 

cross gaps during dusk and dawn, as this is when predation risk from owls is highest (Rodríguez 

et al. 2001, Zollner and Lima 2005).  

 

4.1.2 Implications for Conservation and Management 

The primary way to increase connectivity for birds in fragmented habitats is to reduce the 

distance across gaps. Ideally gaps would be limited in size to roughly less than 30m, as this 

appears to be the threshold distance at which the likelihood of crossing greatly declines 

(Desrochers 1989, St Clair et al. 1998, Harris and Reed 2001, Bélisle and Desrochers 2002, 

Tremblay and St. Clair 2009). Mitigation could be achieved in a number of ways, one possibility 
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being to design habitat gaps with sections of trees/shrubs retained as stepping stones, effectively 

reducing the perceived gap distance to birds and thus increasing connectivity. Another way to 

mitigate the effects of large gaps would be to leave narrower sections of the gap at regular 

spacing (e.g. every 1km) along the length of the gap.  This second approach could be best 

applied to long linear gaps – such as pipeline or power line corridors – to provide regular 

crossing points. However, I acknowledge that these solutions may not be practical in many 

instances. In such cases it appears that it may also be beneficial to place or allow shrubby or 

woody vegetation within the gap to grow back to a height of over 1m (Rodríguez et al. 2001). 
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