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Abstract: 

Disturbance—the death of trees due to external forces such as wildfire or windstorms—

drives forest stand dynamics and shapes ecosystems. Natural disturbances arising from the 

interaction of climate, topography, and established tree species have often occurred with 

some regularity, resulting in apparently perpetual renewal of particular forest structures. 

Minor changes in climate can have profound impacts on these disturbance regimes, 

breaking historically observed cycles and introducing novel stand conditions. Long-term 

historical baselines are critical to understanding such changes. Observational records are 

often inadequate, especially in western North America, where 400 year-old stands are 

common but reliable data are generally unavailable prior to the 20th century. I use tree ring 

analysis to investigate the history of Douglas-fir beetle and western spruce budworm 

infestations, and the influence of partial disturbances on the drought tolerance of surviving 

trees, developing baseline understanding of disturbance interactions in interior British 

Columbia. No evidence is found of any outbreaks of western spruce budworm or Douglas-

fir beetle that exceed the magnitude of outbreaks in the early 21st century, suggesting that 

recent outbreaks represent historically high levels of insect activity. Both natural and 

anthropogenic partial disturbances are demonstrated to positively affect the drought 

tolerance of surviving trees in old-growth remnants and younger managed stands, 

respectively. Access by roots to areas with uninterrupted precipitation throughfall appears 

to be the driving force behind observed drought resistance, and will likely become more 

important under climate scenarios where droughts are prolonged and intensified by warmer 

temperatures. A major growth release ca. 1800 brought previously suppressed trees from a 

number of age classes into preeminence within their respective stands across the study 
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area, forming the basis of the structure we  now consider to be representative of old forests 

in the region. I propose that mountain pine beetle is the leading cause of this regionally 

synchronous growth release, based on the number of sites affected and the survival of 

sapling-sized Douglas-fir. Silvicultural prescriptions designed to provide open growing 

space to residual trees may help reverse overstocking resulting from wildfire exclusion and 

enhance resilience of stands within the timber harvesting area to increased temperatures.   
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1. Introduction 

1.1. Preface 

“After due reproofs of the late impolitic waste and universal sloth amongst us, we should 
now turn our indignation into prayers, and address ourselves to our better-natured 
countrymen, that such woods, as do yet remain entire, might be carefully preserved, and 
such as are destroyed, sedulously repaired: It is what all persons who are owners of land 
might contribute to, and with infinite delight, as well as profit, who are touched with that 
laudable ambition of imitating their illustrious ancestors, and of worthily serving their 
generation.”  

-- J. Evelyn in the preface to the 1678 print edition of Silva 

Forest disturbances shape ecological communities by killing or damaging 

established trees, making growing space and other resources available to survivors or new 

individuals (Oliver & Larson, 1996). In many regions, interactions between climate, 

topography, and established tree species have resulted in repeated patterns of natural 

disturbance and renewal that are taken as normative and used as a benchmark for managed 

forests (Cooper, 1913; Pickett & White, 1985). This perspective is represented by Aldo 

Leopold’s reflections on land health and conservation, which he defined as “the capacity of 

land for self-renewal” and “our effort to understand and preserve this capacity” 

respectively (Leopold, 1949). Under this paradigm, natural disturbances are seen as a part 

of the environment with which species regularly interact, and an understanding of this 

ecological dynamic between forests and disturbances is considered to be the keystone of 

both active conservation in production forestry and stewardship of parks and preserves 

(Smith et al., 1997).  

A question facing ecologists and foresters around the world is whether the range of 

disturbances observed today are a continuation of the patterns that shaped the structure and 

composition of ecosystems in the recent past, or if they are a novel response to human 
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influence and the beginning of an unknown trajectory (Romme & Despain, 1989; Turner, 

2010). Historical knowledge of disturbance type, extent, rate and severity, as well as the 

predisposing factors and outcomes of numerous events, is prerequisite to approaching this 

question on a regional basis: that baseline is the theme of this dissertation.  

A broad range of natural disturbances affect the succession of forest communities 

over time, but insect outbreaks are often among the most common and influential (Dale et 

al., 2001; Bentz et al., 2010). Trees may be predisposed to insect attack by local 

environmental conditions, climate change, stand composition and density, host genetics, 

other biotic and abiotic disturbance events (Manion, 1981), and these factors may interact 

positively and negatively at different spatial scales (Raffa et al. 2008). Mechanisms of 

predisposition include influences on the lifecycle of the pest, the defensive capacity of the 

host, and the triggering of systemic defensive responses in the tree (Franceschi et al., 2005; 

Eyles et al., 2010), while accumulation of susceptible trees on the landscape can promote 

insect population buildup that leads to density-dependent attack behaviors more 

threatening to healthy trees (Burke & Carroll, 2017).  

Interaction between individual disturbances and their respective predisposing 

factors has been a subject of recent study. Increased insect activity has been linked to 

observed changes in local and global climate (Allen et al., 2010), though some have 

suggested that competition between trees has thus far exerted a stronger influence on tree 

growth and mortality than climate change (Zhang et al., 2015). Co-occurrence of several 

predisposing factors can have a synergistic influence on forest insect populations (Powers 

et al., 1999), while some forms of inter-tree competition have been shown to exacerbate 

climatic stresses more than other forms of competition (Mölder & Leuschner, 2014).  



 

3 
 

 

Some of these trajectories from predisposing conditions to actual widespread 

mortality can be interrupted by silvicultural treatments that disturb the stand in a way that 

removes or dulls the effect of a predisposing factor (Smith et al., 1997). This has been 

done by thinning to increase the growth rate and efficiency of individual trees, thereby 

increasing their defensive capacity (Mitchell et al., 1983) and by removing overtopped 

trees that are likely to attract pests to the stand in their decline (Williamson & Price, 1971). 

Other studies of disturbance interactions reveal no preventative measures, but do suggest 

assessment practices to accurately predict disturbance hazard and impact under specific 

conditions (Hood et al., 2007; Day & Pérez, 2013).  

Natural disturbances that kill only a fraction of the trees in a stand have been 

described as thinning agents that confer definite benefits to surviving trees and the overall 

stand, such as Weaver’s “Fire—Nature’s Thinning Agent in Ponderosa Pine Stands”  

(1947). Weaver’s (1947) argument emphasized a point that had been hinted at before, and 

has been rigorously tested since: that regular fire in the dry forests of western North  

America is necessary not only for stand development and the perpetuation of ecosystem 

services that residents have come to rely on, but also as a preventative measure against 

catastrophic fire (Hardy & Arno, 1996; Agee & Skinner 2010). Without using the language 

of modern disturbance ecology, Weaver distilled its key point: disturbances interact with 

one another over the course of decades and centuries, and those interactions shape forest 

ecosystems.  

This principle is not limited to wildfire. Each disturbance consumes its own ‘fuel’ 

and reduces the immediate availability of that fuel in the stand and on the landscape (Raffa 
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et al., 2008). If the disturbance is excluded and its fuel preserved, the next event may 

consume the accumulation in surprising ways. The effects of various disturbances on 

predisposing conditions and ‘fuel loads’ for other disturbance agents over time are still 

being actively investigated, but the net effects are already understood to be constraining 

management options in some regions, especially western Canada (Dhar et al., 2013).  

The Province of British Columbia (BC), Canada has a 25 million hectare timber 

harvesting landbase, and the majority of that area has been affected by insect pests in the 

21st century. Mountain pine beetle (Dendroctonus ponderosae), spruce beetle (D. 

rufipennis), and western balsam bark beetle (Dryocetes confusus) have infested 

approximately 18 million, 1 million and 2.7 million hectares of their respective host trees 

and caused substantial reductions in projected allowable annual cuts in the coming decades 

(BC MoF, 2012). The severity of these outbreaks has been attributed to warm temperatures 

associated with climate change (Bentz et al., 2010) and overstocking of mature host stands 

that has resulted from long-term fire suppression (Whitehead et al., 2001; Shore et al., 

2006).  

Douglas-fir forests offer one of the remaining sources of accessible and 

merchantable live trees in central BC, having weathered a decade of insect outbreaks with 

relatively low mortality. These forests are often overstocked, making density-related 

stagnation and competition stress a serious concern (Day, 1998a). Mature Douglas-fir 

stands also provide critical mule deer winter habitat, and conserving that habitat is the 

primary objective of management over several hundred thousand hectares of public land 

(Armleder et al., 1994; Day, 1998b; Figure 1.1). Designated mule deer wintering ranges 

are established to provide critical thermal and forage habitat, and in the study area are 
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legally protected under the Cariboo-Chilcotin Land Use Plan (CCLUP;  

https://www.for.gov.bc.ca/tasb/slrp/plan129.html accessed 2017). Douglas-fir leading 

stands cover 4.58 million hectares of the British Columbian landscape; this dissertation 

considers 1 million hectares near the northern portion of that range, and 373 000 hectares 

within that area are designated mule deer winter range. 

The interior Douglas-fir ecosystem type under study (Steen & Coupé, 1997) is 

bounded by a moisture limitation at the lower elevation dry bunchgrass zone and a 

temperature limitation at the higher elevation sub-boreal pine-spruce zone. Stands near the 

drier margin will be at higher risk in a warmer climate (Griesbauer & Green, 2010) and 

many are expected to convert to bunchgrass over the course of the 21st century, while the 

cooler margin is expected to advance to higher elevations and latitudes beginning as early 

as 2025 (Hamann & Wang, 2006). These changes may jeopardize the mule deer winter 

range strategy within its current boundaries, forcing an adaptive approach as the effects of 

climate change are realized. Drought stress can kill trees directly and is a key predisposing 

factor for Douglas-fir beetle, but a drought does not impact all stands or trees equally as 

the stand structure and occupancy of the growing space strongly affect the 

microenvironment that individual trees interact with.   

https://www.for.gov.bc.ca/tasb/slrp/plan129.html
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Figure 1.1: Study area and distribution of Douglas-fir leading stands in British Columbia. Douglas-fir leading stands in designated 
mule deer winter range (MDWR) highlighted in black within the study area. MDWRs outside of the study area are not shown.  
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Douglas-fir is commercially important throughout its range as raw material for log 

homes, timber frame homes, glulam beams, utility poles, plywood, and other visual grade 

and structural products. Standing volume is approximately 91 million cubic meters on 1 

million hectares of Douglas-fir leading stands in the study area (BC VRI Rank 1 Polygon 

layer, accessed 2015). This inventory of raw material is in principle worth $6.3 billion 

(CAD) at a rate of $70/m3 (BC Interior Log Market Report, 2016) and substantially more 

once manufactured. Salvage logging of lodgepole pine (Pinus contorta) stands killed by 

mountain pine beetle has been the focus of most harvesting efforts in the study area over 

the past decade, but attention is returning to Douglas-fir as the merchantability of dead 

pine degrades over time (Lewis et al., 2006.). Harvesting of Douglas-fir within mule deer 

winter ranges is permitted under area-specific guidelines, and is often required to prevent 

stagnation and maintain the desired stand conditions in the absence of natural wildfire 

(Dawson et al., 2007). 

The major insect disturbance agents of Douglas-fir in the study area are Douglas-fir 

beetle (Dendroctonus pseudotsugae; DFB) and western spruce budworm (Choristoneura 

freemani = C. occidentalis; WSB), both native to British Columbia (Maclauchlan & 

Buxton, 2016). Douglas-fir beetle has historically been found at the northern limits of its 

host in scattered stands near Fort St. James in British Columbia and Jasper National Park 

in Alberta (Paulson, 1995). Drought stress, windthrow, and wildfire are known 

predisposing factors that have been involved in positive feedback loops with one another 

(Johnson & Belluschi, 1969). Western spruce budworm was recorded in a small infestation 

near Riske Creek in 1975 (Harris et al., 1985) but otherwise no observational records of 

infestation in the study area exist prior to the outbreak that began in 2000. Adjacent areas 
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near Bella Coola to the west and Quesnel Lake to the east were defoliated by western 

spruce budworm in 1970 and 1987/88 respectively (Harris et al., 1985; Forest Insect and 

Disease Survey data accessed June 2016).  

Tree-ring reconstructions of wildfire in the 18th and 19th centuries identified a 

mixed-severity regime with an average return interval of 20–26 years depending on 

location, with forests adjacent to grasslands burning more frequently (Daniels & Watson, 

2003; Harvey, 2017). That regime was interrupted ca. 1920 by fire suppression efforts and 

the proliferation of cattle grazing (which consumes fine grass fuels) on forested range, 

though both lightning and human-initiated fires burned extensively in 1931. The Ministry 

of Forests, Lands and Natural Resources Operations classifies the Douglas-fir type in this 

region as an “ecosystem with frequent stand-maintaining fires” (record accessed January 

2017: https://catalogue.data.gov.bc.ca/dataset/biogeoclimatic-attribute-catalogue) and 

stands adjacent to low-elevation grassland areas are known to have burned more frequently 

than higher elevation areas (Harvey, 2017). Exclusion of wildfire in the latter 20th century 

facilitated a substantial increase in stand density, proliferation of an understory horizon of 

Douglas-fir, and incursion of trees into grassland areas (Strang & Parminter, 1980; Daniels 

& Watson, 2003; Wong & Iverson, 2004).  

Provincial survey records from the 21st century (2000-2015) indicate that wildfire 

and insect disturbances affecting Douglas-fir have been of similar magnitude in the study 

area, though their spatial patterns have been distinct. Wildfire has affected 51 000 hectares 

containing 4.3 million m3 of Douglas-fir inventory volume from 2000–2015 

(https://www.for.gov.bc.ca/hts/vridata/accessed June 2016; Figure 1.2). Douglas-fir beetle 

surveys (https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ accessed 

https://catalogue.data.gov.bc.ca/dataset/biogeoclimatic-attribute-catalogue
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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June 2016) have recorded an estimated 3.2 million trees killed from 2000–2015, 

amounting to approximately 6.2 million m3 loss assuming a merchantable volume of 1.88 

m3 per tree (personal communication, Ken Day, University of British Columbia, 2015; 

Figure 1.3). At a rate of $70/m3 these wildfires and beetle outbreaks have affected $301 

million and $431 million worth of raw material respectively.  Western spruce budworm has 

defoliated approximately 650 000 hectares of Douglas-fir leading forests since 2000 

(https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ accessed June 

2016; Figure 1.4).  

Mountain pine beetle has recently had a devastating effect on the lodgepole pine 

that commonly grew in mixture with Douglas-fir in the study area (Figure 1.5). In three 

years of fieldwork for this dissertation only a handful of surviving pine greater than 20cm 

diameter were found, though standing and fallen snags killed in the 2000–2010 outbreak 

were abundant in many stands (Figure 1.6). This outbreak is discussed thoroughly 

elsewhere (Shore et al., 2006; de la Giroday et al., 2012; Hrinkevich, 2012), but bears 

mentioning here as many Douglas-fir stands in the study area included a component of 

lodgepole pine. Previous mountain pine beetle outbreaks have influenced the growth of 

Douglas-fir in the study area, with more than half of Douglas-fir sampled in mixed stands 

recording growth release following the previous outbreak in the 1970s (Hawkes et al., 

2004). Reconstructed mountain pine beetle outbreaks in the 1890s/early 1900s, 

1930s/1940s, and 1970s are likely to have affected the growth of Douglas-fir throughout 

the study area (Alfaro et al., 2004; Hawkes et al., 2004). The relatively short lifespan of 

lodgepole pine precludes positive identification of outbreaks in the study area prior to 

1890, but it is probable that undescribed infestations have influenced the growth of trees in 

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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mixed stands. 
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Figure 1.2: Distribution of human and lightning initiated fires from 2000 to 2013, 
highlighting affected stands of interior Douglas-fir 
(https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical accessed 2016) 

https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical
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Figure 1.3: Distribution of Douglas-fir beetle from 2000 to 2013 according to provincial 
fixed-wing aerial overview surveys and more detailed regional helicopter surveys. 
Polygons recorded as “trace” severity class (<1% mortality) excluded from the map to 
reduce visual clutter. Helicopter survey data accessed 2015: 
http://www2.gov.bc.ca/gov/content/environment/research-monitoring-
reporting/monitoring/aerial-overview-surveys/methods/standards-for-detailed-surveys 
fixed-wing survey data accessed 2014: 
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ 

http://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/aerial-overview-surveys/methods/standards-for-detailed-surveys
http://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/aerial-overview-surveys/methods/standards-for-detailed-surveys
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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Figure 1.4: Western spruce budworm defoliation identified in provincial aerial overview 
surveys from 2000 to 2013. Survey data accessed 2014: 
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ 

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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Figure 1.5: Distribution of mountain pine beetle in the study area from 2000 to 2013. Areas 
displayed in red are not Douglas-fir leading stands. Shades of red indicate the maximum 
severity recorded at a location in any single year, not the cumulative impact. Severe 
records indicate >30% mortality, moderate 11–29%, and light 1–10%. Data accessed 2014: 
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ 

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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Figure 1.6: Tree PYP02 (ca. 1641) in 2013 surrounded by fallen lodgepole pine and dense 
pine regeneration, with younger Douglas-fir at the edge of the frame to left and right, and 
in the background in front of dense sapling pine.  
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Mean annual temperatures recorded at weather stations in the study have risen 

significantly in the 1950–2001 period, with temperatures at Quesnel Airport increasing at a 

rate of 0.34°C per decade and those at Tatlayoko Lake increasing at 0.22°C per decade, 

implying a 1.1–1.7°C increase (Dawson et al., 2008). Temperatures are projected to 

continue rising in the 21st century, while no significant change in precipitation has been 

observed and relatively minor changes are projected (Dawson et al., 2008). This increase 

in temperature is expected to lead to more severe and widespread outbreaks of many pest 

species, including those affecting Douglas-fir (Rudinsky & Vite, 1956; Woods et al., 2010; 

Murdock et al., 2013). Increased temperature without a substantial increase in precipitation 

is expected to lead to more frequent and severe drought stress, a predisposing factor for 

many disturbance agents including Douglas-fir beetle. Understanding the baseline 

relationships between natural disturbance agents and predisposing conditions under 

historical climatic conditions will provide context necessary to describe change over time 

and identify predisposing factors that may be monitored or managed.  
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1.2. Study objectives and rationale: 

The objectives are 1) to delineate historical relationships between disturbance events 

and subsequent drought tolerance in surviving trees, 2) identify those disturbances that are 

attributable or partially attributable to Douglas-fir beetle, building a historical timeline of 

outbreak activity directly comparable to those developed for wildfire history, 3) to develop 

new methods of tree ring analysis that provide the greatest possible temporal resolution for 

Douglas-fir beetle reconstructions, and 4) to expand and refine western spruce budworm 

outbreak history reconstructions in the study area. The aim of this dissertation is to 

describe disturbance histories and disturbance/drought interactions as they have been 

historically, which may suggest ways of directly reducing the impact of projected climate 

change on the defined objectives of mule deer winter range conservation and timber 

production. 
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1.3. Organization of dissertation 

This dissertation has an introduction, four data chapters, a concluding synthesis 

chapter, and two appendices providing computer code and statistical outputs referenced in 

the text. The first two data chapters are conceptually related, as each explores changes in 

drought tolerance apparent after disturbance: the first is based on known anthropogenic 

disturbances while the second considers natural disturbances inferred from the growth 

response of surviving trees over the past three centuries. The last two data chapters 

contribute to the development of timelines of insect outbreaks over the past three to four 

centuries. The third data chapter builds a chronology of Douglas-fir beetle outbreaks based 

on scars left by failed attacks, while the fourth critically explores the reconstruction of 

western spruce budworm outbreaks based on analysis of growth rates of tree species that 

are and are not hosts of this common forest pest.  

1.3.1. A note on maps: 

All maps of the study area are shown with the grassland benchmark area 

(https://catalogue.data.gov.bc.ca/dataset/grassland-benchmark-for-the-cariboo-region  

accessed January 2017) obscuring stands which are classified in the Vegetation Resources 

Inventory as Douglas-fir leading, but in actuality are sparsely treed and best defined by 

their herbaceous component, especially in a historical context. All GIS data are used under 

the BC Open Government License v2.0; all maps were composed entirely by the author. 

  

https://catalogue.data.gov.bc.ca/dataset/grassland-benchmark-for-the-cariboo-region
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2. Adjacency to a harvest corridor in partially harvested stands increases drought 
resistance of interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) 

Franco) near the grassland interface in central British Columbia 
 

2.1. Abstract:  

Drought tolerance of trees may be modified by competition, but most studies 

quantifying the relationship do not consider the effect of stem clustering. Interior Douglas-

fir forests near the grassland interface in central British Columbia are managed under a 

clumpy retention system to facilitate the conservation of mule deer winter habitat through 

timber harvesting. Climate change projections indicate continued increases in temperature, 

potentially stressing trees and jeopardizing winter range conservation. Trees incidentally 

placed in different states of competition by mechanical harvesting in the 1970s are sampled 

to provide a 40-year comparison of clustered and open growing trees. Tree-ring analysis is 

used to assess the reduction in growth rate during drought years and resumption in 

subsequent years. Following harvest, a clear separation of growth patterns is evident 

between trees that were fully released, partially released, and not directly released. 

Partially released trees show intermediate growth but no difference is found in the long-

term climate/growth relationship compared to fully released trees. Trees growing within 

the matrix between skid trails have stronger correlations with several monthly climatic 

variables and greater growth reduction during drought events. These results suggest 

silvicultural practices recommended for the winter ranges are likely to provide concurrent 

benefits in drought tolerance. 

 

 

Chapter 2 has been submitted for publication with the following authorship: Thompson N.T, Lewis K.J., Poirier L.M. 
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2.2. Introduction 

Climate change projections for central British Columbia indicate a rise in 

temperature over the coming century without a commensurate increase in precipitation, 

leading to more frequent and severe drought stress in forest stands (Dawson et al., 2008). 

Mortality resulting directly from moisture deficit is expected to increase under such 

climate change (Allen et al., 2010), while disturbances from insect pests and pathogens are 

expected to become more frequent (Currano et al., 2008; Woods et al., 2010). Stand 

thinning has been recommended as a means of reducing these risks (Mitchell et al., 1983; 

Sohn et al., 2013) while maintaining productivity in the short- to mid-term (Elkin et al., 

2015; Calev et al., 2016). Thinning reduces canopy interception of rainfall and inter-tree 

competition for soil moisture, resulting in greater moisture availability to residual trees 

(Stogsdili et al., 1992; Bréda et al., 1995). Trees in thinned stands have maintained higher 

transpiration rates during droughts compared to controls (Lagergren et al., 2008) and have 

shown less growth reduction in drought years (Laurent et al., 2003).  

The spatial distribution of trees following thinning may be uniform, random, or 

clustered depending on the objectives, stand conditions, and harvesting equipment used. 

Uniform spacing has been recommended for centuries as a means of maximizing yield, but 

a random pattern often emerges as compromises are made to retain the best growing stock 

(Evelyn, 1662). Clumpy distributions are common in naturally established forests 

(Hamilton, 1984; Harrod et al., 1999) and this pattern is sometimes encouraged to support 

specific wildlife habitats (Long & Smith, 2000; Dawson et al., 2007). Clumpy distributions 

also result from row thinning in plantations (Makinen et al., 2005) and the practice of 

harvesting trees from corridors at more or less equal intervals, referred to as systematic 
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thinning by Makinen (2005) in Finland and partial harvesting by Fuller et al. (2004) in 

Maine.  

Experiments comparing clustered tree distributions with uniform or random spatial 

patterns have found lower growth rates in clumped vs. regularly spaced red pine (Pinus 

resinosa; Stiell, 1982), slash and loblolly pine (Pinus elliotii, Pinus taeda; Baldwin et al., 

1989), and Norway spruce (Picea abies; Makinen, 2005) after treatment. While uniform or 

random spacing may be implied by the absence of modifiers such as row thinning or 

systematic thinning, authors discussing the forest health benefits of thinning often do not 

specify whether the post-treatment stand had a uniform, random, or clustered arrangement 

of trees (Williamson & Price, 1971; Mitchell et al., 1983; Giuggiola et al., 2013; Gebhardt 

et al., 2014). Similar oversights are found in tree-ring evaluations of the climate/growth 

relationship in stands thinned to various residual densities (Kohler et al., 2010; Sohn et al., 

2013). This gap in the literature is problematic as clumped distributions are common in 

regions where row or systematic thinning is employed and in areas where clumped 

distributions are encouraged to meet wildlife habitat objectives.  

Conservation of mule deer (Odocoileus hemionus (Rafinesque)) winter range is 

legally mandated on select public lands in the interior Douglas-fir (Pseudotsuga menziesii 

var. glauca (Beissn.) Franco) forests of British Columbia (Dawson et al., 2007). Mule deer 

in this region migrate to relatively low elevation areas and preferentially utilize mature 

stands of Douglas-fir with moderate crown closure, as interlocking crowns intercept snow 

and provide browse through crown abrasion (Armleder et al., 1986). A system of 

harvesting with clumpy retention in these forest types has been under development since 

1983 to conserve such winter range (Armleder, 1999; Day et al., 2003). These designated 
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ranges cover 373 000 hectares and include some of the driest forested areas in the region, 

receiving a mean annual precipitation of 435mm per year from 1961–1990 

(http://www.climatewna.com/ accessed 2016).  

Studies from other regions suggest that thinning may mitigate the increased drought 

stress introduced by climate change (Elkin et al., 2015; Calev et al., 2016), but there is no 

information available on the net effect of clustered distributions on drought response in a 

dry environment. The percentage of gross rainfall lost to interception has been found to 

progressively decline with increased thinning intensity in established plantations in mesic 

and xeric systems (Teklehaimanot et al., 1991; Molina & del Campo, 2012). Strip thinning 

of a Japanese cypress plantation (1 265mm annual precipitation) reduced total interception 

from 28.7% to 20.8% of gross precipitation (Sun et al., 2015). These studies are based on 

relatively young plantations managed for wood production. The Douglas-fir forests under 

study here are typically older, were not originally established on a regular spacing, and are 

now managed to facilitate canopy interception of snow within clumps.  

Long-term (>30 years) silvicultural trials are not available to assess the drought 

tolerance of clustered Douglas-fir in the study area, but mechanical harvesting in the latter 

half of the 20th century provides regular spatial patterns that are in some cases analogous to 

those recommended for mule deer conservation. Presence of these conditions in the same 

stand provides an opportunity to compare trees growing in different competitive situations, 

addressing the following research questions: 

  

http://www.climatewna.com/
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1. What was the average postharvest growth response among trees in three 

competition classes: open growing, skid trail edge, and matrix interior? 

2. Which monthly temperature and precipitation variables have long-term 

correlations to radial growth and are there differences in climate 

correlations among these three competition classes? 

3. How do drought resistance and resilience (Lloret et al., 2011) vary among 

these three classes? 

4. How do live crown ratio and sapwood basal area vary among the 

competition classes four decades after harvest?  

The first question follows from the existing literature on clumpy spatial 

arrangements, which suggests a reduction in growth and yield at the tree and stand level, 

though only individual tree metrics are applicable in this study (Stiell, 1982). The second 

looks for differences in the long-term climate/growth relationship among classes, while the 

third considers the response to short-term drought events. The final question addresses 

indicators of crown vigor, also following from literature describing reduced canopies in 

clumped trees (Stiell, 1982). 
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2.3. Methods 

2.3.1. Site Selection and Sample Collection 

Candidate sites were first screened using the British Columbia Vegetation Resources 

Inventory dataset (VRI; https://www.for.gov.bc.ca/hts/vridata/, accessed June 2015) to 

identify stands between 80 and 130 years old with intermediate crown closure (30–70%). 

Historical wildfire perimeters were overlaid to ensure that potential sites were not affected 

by recent fires, either natural or human-caused (records extending to 1917 in the study 

area; https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical). Inventory 

polygons meeting these criteria were exported from ArcMap® to Google Earth®, where 

aerial imagery (dated 2005) was examined to confirm the presence of regularly spaced skid 

trails (Figure 2.1). Candidate sites were assessed in the field to determine whether there 

were sufficient numbers of trees in all three competition classes (Figure 2.2): Open (fully 

released from crown competition during the harvest), Edge (on the edge of skid trails) and 

Interior (the unharvested matrix between skid trails).  

Most remotely identified sites had two of the classes in abundance but lacked the 

third; three sites contained all classes and were deemed appropriate for sampling (Figure 

2.3). Both the Colpitt and Sting Lake sites showed visually apparent growth releases in 

1976 consistent with a 1975 harvest, while Vert Lake was released in 1980, suggesting a 

harvest in 1979. These dates are corroborated by harvest records in the VRI database for 

Colpitt and Sting Lake sites, but there are no records for the Vert Lake site, likely due to 

incomplete digitization of datasets. Patterns of cut stumps at all sites suggest that large 

sawtimber was targeted for removal and the smaller stems constituting the population now 

under study were only cut if necessary for removal of the primary product (as in 

https://www.for.gov.bc.ca/hts/vridata/
https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical
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Maclauchlan and Brooks, 2009). 

Vegetation resources inventory (VRI) data were clipped to the designated mule deer 

winter range boundaries (http://www.env.gov.bc.ca/wld/frpa/uwr/approved_uwr.html 

accessed 2015) and total merchantable volumes were calculated by age class and crown 

closure class to describe the stands surrounding the study sites. VRI age estimates were 

consolidated to six 40-year age classes and one class including all trees greater than 240 

years. Percent crown closure values were reduced to five equal classes. Volume estimates 

were the sum of the inventory volume that was calculated with a merchantability threshold 

of 12.5cm top diameter.  

  

http://www.env.gov.bc.ca/wld/frpa/uwr/approved_uwr.html
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Figure 2.1: Aerial image of Vert Lake site showing the regular pattern of harvesting trails radiating from clearings where wood was 
collected and processed. 
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Figure 2.2: Conceptual schematic of interior, edge and open growing trees following 
harvest (trees not drawn to scale). Labeled trees show the relative position of the three 
competition classes within the stand. 
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Figure 2.3: Location of study sites. Douglas-fir dominated stands are those where Douglas-fir is classified as the leading species in 
the Vegetation Resources Inventory; the grassland benchmark describes historical grassland areas that may now be sparsely treed.  
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Subject trees were selected to represent three levels of post-harvest competition: 

between harvest trails, with no potential competitors removed (“Interior”), on the edge of 

harvest trails with potential competitors removed on only one side (“Edge”) and within the 

harvested area with all potential competitors removed (“Open”; Figure 2.2). Only 

dominant and codominant trees were considered as subject trees; no overtopped trees were 

sampled and saplings (less than ½ the height of the subject trees) were not considered to be 

competitors. Subject trees were selected systematically along transect lines established on 

a 50m grid with a random azimuth as a starting point. Subject trees were selected as the 

closest trees meeting the above criteria every 20m, enforcing a minimum 20m distance 

between two trees of the same competition class. Twenty or more subject trees from each 

competition class were selected at each of the three sites, and two increment cores were 

removed from opposite sides of each tree at breast height (1.3m). A variable-radius forest 

inventory plot was centered on each subject tree, using an 8m2/ha glass prism to determine 

plot level basal area.  
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Figure 2.4: Typical examples (left to right) of Open, Edge and Interior class trees indicated 
by white triangles. 

2.3.2. Laboratory Preparation 

Increment cores were dried, glued to wooden mounts, and processed according to 

standard methods, progressing from 120 to 600 grit sanding belts (Stokes & Smiley, 1968). 

The sapwood boundary was delineated based on visual assessment of color change, which 

is readily apparent in Douglas-fir (Figure 2.5). Sapwood width, heartwood width, and 

distance from last measurable ring to estimated pith location were measured to the nearest 

millimeter using calipers and a ruler. Sapwood basal area was calculated by subtracting the 

area of the heartwood from the total basal area of the tree inside bark on each core, and a 

mean of the two measurements was produced for each tree.  
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Ring widths and earlywood/latewood boundary locations were measured in 

Windendro® 2012. Crossdating of series was accomplished by scanning in batches of 20 or 

more cores and visually comparing the graphed ring width measurements in Windendro®, 

beginning with the known date of the final ring and utilizing regionally established marker 

years 2010, 1988/89/90 and 1959 to confirm later dates. When ring width was less than 

0.3mm, both ring width and latewood width values were checked using an Olympus® SZ61 

stereo microscope and Velmex® measuring slide. Correct assignment of calendar years to 

ring width measurements was confirmed using the dendrochronological program 

COFECHA (Holmes, 1983). Ring widths were converted to basal area increments using 

the package dplR (version 1.6.4) in the open source statistical program R (version 3.2.2.).  

2.3.3. Statistical Analysis 

Growth response to thinning was quantified on the basis of 10-year increments to 

provide a dataset statistically analogous to remeasurements in a standard thinning study. 

Basal area (inside bark) was calculated for the years 1955, 1965, 1975, 1985, 1995, 2005, 

and 2015, while mean annual basal area increment (BAI) was calculated on the basis of 

10-year means in the periods 1956–1965, 1966–1975, 1976–1985, 1986–1995, 1996–2005, 

and 2006–2015. Two time steps in the 1950s and 1960s were included to test the 

assumption that the population had similar growth rate prior to the modification of the 

competitive environment in the 1970s, and the 1975 basal area was used to check that trees 

were initially of a similar size. Oneway ANOVA with a Bonferroni post-hoc test (α=0.05) 

was used to assess the significance of differences in 10-year basal area and basal area 

increment among competition classes at each site. Data were tested for normality in Stata 

12.1® and transformed as noted to meet the assumption of normal distribution.  
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Drought events were defined as years in which the total precipitation from the 

beginning of the previous June to the end of the current June was in the 30th percentile 

(1936-2012, (http://www.ec.gc.ca/dccha-ahccd/ accessed 2017) and where study-wide 

mean ring width index was in the 10th percentile (1936-2012). This index was a biweight 

mean chronology generated using a 10-year smoothing spline on raw ring widths to 

minimize the influence of stand dynamics on annual variability, and inter-annual 

autocorrelation was reduced by adding the residuals from an autoregressive model to each 

series prior to averaging to create the mean index (Bunn et al., 2017). Three years meeting 

these criteria were identified after the harvest (1988, 1995, and 2010). Precipitation was 

above the 30th percentile in 1989, but the ring width index was the lowest in the series, so 

that year was averaged with 1988 for analysis (following Lloret et al., 2011). Drought 

resistance was quantified as the ratio of the basal area increment in the event year (mean of 

two years in 1988/1989) to the mean basal area increment in the 5 years preceding the 

event (Figure 2.5; Lloret et al., 2011). Drought resilience was quantified as the ratio of the 

5-year mean basal area increment after the event to the 5-year mean basal area increment 

before. An additional metric particular to this study was the drought resistance relative to 

pre-harvest growth (hereafter “baseline resistance”): the ratio of the basal area increment in 

the event year(s) to the 5-year mean basal area increment in the period 1970–1974, prior to 

harvesting in all stands. Oneway ANOVA (Bonferroni post-hoc test, α=0.05) was used to 

assess the significance of differences in drought resistance and resilience, with variables 

transformed as noted to meet the assumption of normal distribution in the population under 

comparison. 

http://www.ec.gc.ca/dccha-ahccd/


http://www.ec.gc.ca/dccha-ahccd/
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2.4. Results 

2.4.1. Drought conditions in event years 

Average precipitation from the beginning of the previous June to the end of the 

current June (pJJ) was 548mm at the Williams Lake Airport from 1937 to 2012. 1988 had 

the lowest pJJ on record, measuring 394mm. 1989, 1995, and 2010 measured 510mm, 

485mm, and 462mm respectively. Pairwise correlation between pJJ and the mean ring 

width index among all trees at all sites from 1937 to 2012 was significant (n=76, r = 0.58, 

p < 0.0001). 

2.4.2. Stand Conditions and Tree Characteristics 

Differences in height to lowest live branch and lowest live whorl were never 

significantly different among the Open and Edge classes at any site, and ranged from 7.5–

9.7 and 10.4–12.5m respectively among all sites (Table 2.1). Interior trees had significantly 

higher crown bases by both single-branch and three-branch whorl metrics at all sites. Mean 

height of residual trees in 2015 varied by as much as 1.9m among competition classes at 

individual sites, and differences were statistically significant at two of the three sites. The 

1975 diameter inside bark calculated from the tree rings was not significantly different 

among the classes at the Colpitt and Sting Lake sites, but a significant difference between 

the Open and Edge trees was identified at Vert Lake.  
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Table 2.1: Mean 2015 stand characteristics measured in the field and 1975 diameter inside 
bark calculated from tree rings. BA/ha value includes the basal area of subject tree 
(accounting for 8m2/ha). LLB = lowest live branch (single), LLW = lowest live whorl of 
branches (3 or more), DBH = diameter at breast height (1.3m measured on the high side of 
the tree), BA/ha = basal area per hectare measured with 8m2/ha prism. DIB = diameter 
inside bark. Classes that do not share a letter with others at the same site are significantly 
different (Bonferroni post-hoc test, α=0.05); significant differences are in bold. 

  

Height 
(m) 

LLB 
(m) 

LLW 
(m) 

DBH 
(cm) 

BA/ha 
(m2) 

1975 
DIB 
(cm) 

Age 
(2015) 

Colpitt 
Open 23.6 ns 8.7 a 10.8 a 39.6 a 17.6 A 13.4 ns 118 ns 
Edge 23.6 ns 9.7 a 12.5 a 34.9 b 29.2 B 13.5 ns 121 ns 
Interior 23.1 ns 14.1 b 16.4 b 29.6 c 56.4 C 15.4 ns 121 ns 

Sting 
Open 21.9 a 7.5 a 10.4 a 40.4 a 16 A 16.5 ns 130 a 
Edge 21.3 ab 8.7 a 11.7 a 34.5 b 33.2 B 15.3 ns 124 b 
Interior 20.1 b 12.4 b 14.6 b 27.2 c 48.8 C 15.2 ns 152 ab 

Vert 
Open 22.0 a 8.5 a 10.5 a 37.0 a 17.2 A 17.5 a 123 ns 
Edge 20.2 b 9.4 a 11.3 a 31.5 b 28.7 B 14 b 118 ns 
Interior 20.1 ab 11.5 b 13.4 b 28.8 b 46.4 C 16.4 ab 122 ns 
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Annual BAI since 1950 is summarized among all sites by competition class; an 

increase in growth rate is evident ca. 1975 in both Edge and Open classes (Figure 2.6).  

 

Figure 2.6: Mean annual basal area increment plotted by competition class among all sites 
since 1950. Vertical dashed line indicates the first recorded defoliation by western spruce 
budworm in 2001. Black bars above the X axis indicate the drought years under study 
(1988/89, 1995, and 2010). Two sites (Colpitt and Sting Lakes) were harvested in 1975, 
one (Vert Lake) harvested in 1979. 
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Live crown ratios were significantly higher in the Open and Edge classes compared 

to the Interior class in all cases. Values in the Open class were consistently higher than the 

Edge class and these differences were significant in 50% of the comparisons (Table 2.2). 

Sapwood basal area followed a clear high-low gradient from Open to Edge to Interior, with 

significant differences among all classes at all sites. 

Table 2.2: Live crown ratios on the basis of lowest live branch (LCR(B)), lowest live whorl 
of three or more branches (LCR(W)), and sapwood basal area (m2) among three 
competition classes at three sites (Bonferroni post-hoc test, α=0.05); significant differences 
are in bold. 

  
LCR(B) LCR(W) 

Sapwood 
BA (cm2) 

Colpitt 
Open 0.63 a 0.54 a 319 a 
Edge 0.59 a 0.48 a 247 b 
Interior 0.39 b 0.29 b 129 c 

Sting 
Open 0.65 a 0.53 a 290 a 
Edge 0.59 a 0.45 b 221 b 
Interior 0.38 b 0.27 c 105 c 

Vert 
Open 0.61 a 0.52 a 293 a 
Edge 0.54 b 0.44 b 226 b 
Interior 0.43 c 0.33 c 121 c 
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Of the 373 000 hectares identified for conservation as mule deer winter range in the 

Cariboo-Chilcotin region, 309 000 are listed as Douglas-fir leading stands in the BC VRI 

Rank 1 polygon layer (accessed 2015). Total inventory volume in this area is 

approximately 33 million m3, with the majority of both volume and area in mature stands 

(>80 years old) with intermediate crown closure (41–60%; Figure 2.7). Allowing for a 

difference of 20 years between age at coring height and true age (Wong & Lertzman, 

2001), all three sites currently fall in the age class (121–160 years) that contains the 

highest volume on the landscape while occupying the second greatest area. At the time of 

harvest, the stands would have been in the age class (81–120 years) that presently contains 

the second highest volume while occupying the greatest area in the winter ranges.  

 

Figure 2.7: Live volume (m3 based on 12.5cm utilization) in areas designated for mule deer 
winter range conservation by crown closure (%) in 40-year age classes. Total area 
(hectares) in each age class is noted beneath X axis. 
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2.4.3. Postharvest Growth 

Differences in mean basal area and mean annual BAI among classes in the two 10-

year time steps prior to the harvest were not statistically significant at Colpitt and Sting 

Lakes (Figure 2.8).Vert Lake showed a significant difference in BA and BAI prior to the 

harvest between the Open and Edge categories only, with the Open class being the larger 

and faster growing (Figure 2.8).  

Mean annual basal area increment in the first postharvest period (1976–1985) was 

significantly higher in the Open class at all sites, with the Edge trees intermediate between 

the Open and Interior classes (Figure 2.8). Differences in BAI between the Edge and 

Interior classes were significant at Colpitt and Sting Lakes in the first period after harvest, 

but not Vert Lake. All classes were significantly different from one another in the second 

and third decades; by the final period differences in BAI among the Edge and Open classes 

were statistically insignificant at all sites.  

Mean basal area was significantly different among all classes at the Sting Lake site 

by 1995 and Colpitt Lake by 2005 (Figure 2.8). Edge trees at Vert Lake did not achieve a 

significantly higher basal area than the Interior trees by the end of the study period, though 

the Open class had a significantly higher basal area since 1965, a decade prior to the 

harvest, and maintained that position throughout the postharvest period.  
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Figure 2.8: Basal area and mean annual basal area increment at each site (cm2). Raw data 
are displayed below; differences among the classes are significant for a given period if 
values do not share a letter (Bonferroni post-hoc test, α=0.05). 
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2.4.4. Climate Correlations 

Several significant correlations were found between detrended total 

ring/latewood/earlywood widths and monthly weather record (Table 2.3). Total 

precipitation in the November prior to the growing season had a positive correlation with 

both earlywood and latewood width among most of the classes and sites tested, though the 

correlation values were lower for the total ring width series. Previous-December 

precipitation was correlated with earlywood and latewood width in the Interior competition 

class at all sites, and also with the latewood width in the Open class at Sting Lake. 

Precipitation in the current April had a negative correlation with latewood width in most 

classes at all sites. June precipitation and temperature respectively had strong positive and 

negative correlations with latewood width in nearly all classes at all sites, while 

temperature in July was often negatively correlated with latewood width. Previous-summer 

temperature and precipitation variables were inconsistent between sites; the precipitation 

of the previous August was the most common variable with a statistically significant 

correlation in this analysis while the mean temperature of the previous July had a 

significant correlation with earlywood width in all classes at Sting Lake and the Edge class 

at Vert Lake. Correlation values between latewood width and June temperature and 

precipitation were consistently higher in the Interior class than the Open class, while the 

Edge was usually intermediate between the two.  
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Table 2.3: Pearson correlation coefficients between monthly mean temperature and total 
precipitation and total ring, earlywood, and latewood widths each detrended with a 10-year 
cubic smoothing spline. Only significant (p < 0.05) correlation values are shown. Lower 
and uppercase headings indicate months in previous and current year respectively. 
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Early            -0.24      
Late                                 

St
in

g 
La

ke
 In

te
rio

r Total   -0.20                     -0.29     -0.19 
Early  -0.26           -0.28  0.37   
Late                     0.23   -0.40     -0.23 

Ed
ge

 Total   -0.18                     -0.24     -0.18 
Early  -0.29             0.46   
Late                         -0.34 -0.30     

O
pe

n Total   -0.20                     -0.21     -0.19 
Early  -0.34           -0.33  0.43   
Late                         -0.32 -0.32     

Ve
rt 

La
ke

 In
te

rio
r Total                         -0.31 -0.23     

Early             -0.33     
Late                         -0.42 -0.34     

Ed
ge

 Total   -0.21                     -0.29 -0.24     
Early  -0.27 -0.31          -0.29 -0.27  -0.18 
Late                         -0.39 -0.39     

O
pe

n Total                         -0.28 -0.22     
Early             -0.34  0.34   
Late                         -0.36 -0.38     
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2.4.5. Drought Resistance and Resilience 

Drought resistance values were similar between the Open and Edge classes at all 

sites in all years. In all cases where statistically significant differences were found, the 

Interior class underperformed either the Open or the Edge class, and in three cases (all 

years at Colpitt Lake) drought resistance in the Interior class was significantly lower than 

both other classes. 

Table 2.4: Drought resistance values (drought/5-year pre-drought mean) among three 
competition classes at three sites for the years 1988/89, 1995, and 2010 (Bonferroni post-
hoc test, α=0.05). 

 

Drought Resistance 

  
1988/89 1995 2010 

Colpitt   

Open 0.56 a 0.64 a 0.94 a 

Edge 0.52 a 0.72 a 0.88 a 

Interior 0.34 b 0.52 b 0.71 b 

Transformation Log Log Log 

df 2, 57 2, 56 2, 57 

F 13.95 8.90 9.42 

Prob > F <0.01 <0.01 <0.01 

Sting 

Open 0.46 a 0.35 ns 0.39 ns 

Edge 0.39 ab 0.34 ns 0.38 ns 

Interior 0.32 b 0.34 ns 0.33 ns 

Transformation Log Sqrt None 

df 2, 57 2, 57 2, 57 

F 3.55 0.21 1.98 

Prob > F <0.01 0.81 0.15 

Vert 

Open 0.60 a 0.50 ns 0.45 ab 

Edge 0.53 ab 0.54 ns 0.47 a 

Interior 0.40 b 0.46 ns 0.40 b 

Transformation 1/sqrt Inverse Sqrt 

df 2, 59 2, 59 2, 59 

F 4.25 1.48 4.18 

Prob > F 0.01 0.24 0.02 
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Only two statistically significant differences were found among the drought 

resilience values, and the highest value did not belong to the Open class in either case 

(Table 2.5). In one case the Open class significantly underperformed both other classes, 

and in the other the Open class was not significantly different from the interior. Both 

significant comparisons occurred in the 1988/89 period, when all values exceeded 1.0 

indicating a positive resilience (increasing growth trend) among all classes.  

 

Table 2.5: Drought resilience values (5-year post-drought mean/5-year pre-drought mean) 
among three competition classes at three sites for the years 1988/89, 1995, and 2010 
(Bonferroni post-hoc test, α=0.05). 

 

Drought Resilience 

  
1988/89 1995 2010 

Colpitt 

Open 1.31 ns 1.00 ns 1.17 ns 

Edge 1.37 ns 1.04 ns 1.12 ns 

Interior 1.21 ns 0.90 ns 1.09 ns 

Transformation Log 1/sqrt 1/sqrt 

df 2, 57 2, 56 2, 57 

F 0.90 2.68 0.81 

Prob > F 0.41 0.08 0.45 

Sting 

Open 1.16 a 0.70 ns 0.91 ns 

Edge 1.31 b 0.74 ns 0.98 ns 

Interior 1.54 b 0.77 ns 1.01 ns 

Transformation Log 1/sqrt 1/sqrt 

df 2, 57 2, 57 2, 57 

F 4.12 1.00 0.17 

Prob > F 0.02 0.37 0.85 

Vert      

Open 1.22 a 0.83 ns 0.86 ns 

Edge 1.44 b 0.84 ns 1.00 ns 

Interior 1.29 ab 0.73 ns 0.90 ns 

Transformation Log Inverse Log 

df 2, 59 2, 59 2, 59 

F 3.68 2.14 2.81 

Prob > F 0.03 0.13 0.07 
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Significant differences in baseline resistance were identified between one or more 
competition classes at all sites in all the years considered (  
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Table 2.6). Values in the Interior class were significantly lower than the other two 

classes in all cases. Baseline resistance was significantly higher in the Open class than the 

Edge class in two cases; differences between these classes were insignificant in the 

remaining seven tests. Baseline resistance values exceeded 1.0 (indicating higher growth in 

the drought year(s) compared to the pre-harvest average) in eight of nine cases for both 

Open and Edge classes, while the Interior class exeeded 1.0 in one out of nine cases.  
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Table 2.6: Baseline drought resistance values (drought/1971–1975 mean) among three 
competition classes at three sites for the years 1988/89, 1995, and 2010 (Bonferroni post-
hoc test, α=0.05). 

 

Baseline Drought Resistance 

  
1988/89 1995 2010 

Colpitt 

Open 4.37 a 6.46 a 5.29 a 

Edge 2.64 a 4.26 a 3.41 a 

Interior 0.63 b 1.10 b 0.94 b 

Transformation 1/sqrt Log Log 

df 2, 57 2, 56 2, 57 

F 31.39 43.81 24.85 

Prob > F <0.01 <0.01 <0.01 

Sting 

Open 5.00 a 3.91 a 1.74 a 

Edge 1.95 b 1.96 b 0.93 a 

Interior 0.54 c 0.78 c 0.39 b 

Transformation Log Log Log 

df 2, 57 2, 57 2, 57 

F 26.23 20.85 13.44 

Prob > F <0.01 <0.01 <0.01 

Vert 

Open 2.49 a 2.19 a 0.96 a 

Edge 2.08 a 3.08 a 1.18 a 

Interior 0.66 b 0.95 b 0.41 b 

Transformation Log Log Log 

df 2, 59 2, 59 2, 59 

F 17.34 15.96 14.00 

Prob > F <0.01 <0.01 <0.01 
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2.5. Discussion 

Trees growing in the open since the 1970s had higher growth, greater sapwood 

basal area, and larger crowns, but the Open class had no clear advantage over the Edge 

class in terms of drought resistance or resilience.  Interior trees had poorer drought 

resistance, as well as the lowest growth, least sapwood basal area, and shortest crowns. 

Earlywood and latewood widths in the Interior classes showed a correlation with 

precipitation in the month of December that was less pronounced in the other classes, and 

correlation values with current-June precipitation were generally higher in the Interior 

class. These findings suggest a lower sensitivity to drought stress in both the Open and 

Edge classes following harvest, with few distinctions between the two. Negative 

correlations between both earlywood and latewood widths and temperatures in June/July 

suggest that the rise in summer temperatures indicated by climate change projections will 

have a negative influence on Douglas-fir growth.  

Increased throughfall of precipitation in the trails offers an explanation for the lack 

of difference between the Edge and Open class in drought resistance. In conventional 

thinning trials, gaps created between canopies permit rainfall to reach the forest floor 

directly rather than striking and potentially adhering to the canopy, leading to increased 

moisture availability in the soil (Stogsdili et al., 1992; Bréda et al., 1995). The same 

phenomenon has been observed in harvesting trails established to facilitate a thinning 

treatment, and partially linked to the increased growth of trees adjacent to the trails 

compared to the interior of the thinned stand (Wallentin & Nilsson, 2011). When trees are 

harvested exclusively from skid trails in a strip thinning, those corridors experience 

increased throughfall and available moisture (Sun et al., 2015). Trees retained within the 
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trails would have access to this resource in all directions and those on the edges have 

partial access, while those in the interior receive no such benefit from the harvest and some 

face competition from their better-supplied neighbors on the edge of trails.   

Inter-tree competition offers the simplest explanation for the differences found in 

live crown ratio, sapwood basal area, and growth rate, though increased soil moisture in 

the trails likely contributes to growth as well. Mechanical abrasion between crowns 

commonly leaves gaps between tree canopies (Franco, 1986; Meng et al., 2006), an effect 

known as crown shyness that appears to limit the crown dimensions of both Edge and 

Interior trees (Figure 2.9). Crown recession, the process by which lower branches die 

(reflected in live crown ratios), is also attributed to inter-tree competition (Maguire & 

Hann, 1990). Open growing trees have little to no crown abrasion or shading from 

competitors, while Edge trees face that competition on one side and Interior trees are 

entirely surrounded. Greater crown size and conductive structure implies a greater demand 

for moisture, potentially leading to a greater relative loss in growth when that demand 

cannot be met. Dominant Douglas-fir with fully exposed crowns have been found to 

experience increased water stress, with negative consequences for oleoresin exudation 

pressures critical to initial defense against Douglas-fir beetle (Rudinsky, 1966). The 

moderate demand of the smaller-crowned, partly-shaded Edge trees may explain their 

occasionally superior drought resistance and resilience.  

Increased radial growth rate following release from competition also implies 

increased capacity to set aside starch reserves that may carry trees through brief periods of 

stress, especially defoliation (Waring, 1987; Loescher et al., 1990). The mechanisms of 

mobilizing starch reserves are poorly understood, but the general equation for converting 
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starch to glucose includes an input of water (Ray & Behera, 2011). In a study of sudden 

aspen decline in Colorado, substantial loss of hydraulic conductance was observed in 

affected trees, while little difference was found in carbohydrate reserves (Anderegg et al., 

2012). If the process of mobilizing starch reserves is moisture-limited at any step, then the 

starch reserves may not play a substantial role in drought resistance. If starch reserves are 

proportional to stem growth (Mitchell et al., 1983), higher resistance might be expected in 

the Open class compared to the Edge class on account of their significantly higher growth 

rate. This trend is not apparent in the results of this study, providing no support for or 

evidence against the hypothetical relationship between starch reserves and drought 

tolerance.   
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Figure 2.9: Example of crown shyness where the crown of the edge tree (left) has been 
limited by an interior tree (right) of similar height. 

 

The growth reduction apparent among all classes starting in 2002 (Figure 2.6) is 

likely related to the defoliation by western spruce budworm (Choristoneura freemani 

(Razowski) = C. occidentalis (Freeman)) that began in 2001 and continued intermittently 

at the sites through 2012. Western spruce budworm is a defoliating insect native to western 

North America that causes growth reduction by consuming buds and needles of Douglas-

fir, true firs and white spruce (Nealis, 2016). Budworm defoliation was mapped at site 

Colpitt for eight years, beginning in 2002, and sites Sting and Vert for nine years beginning 

in 2001. The negative effect of defoliation on growth is expected to continue for several 

years after defoliation has ended while the tree recovers its foliage (Alfaro et al., 2002). 
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Regeneration in the skid trails was not quantified in this study, but its presence offers 

another explanation for the growth reduction in the overstory. Regeneration has become 

substantial in many of the trails, potentially intercepting rain and snow and competing for 

soil moisture and likely causing growth reduction in combination with western spruce 

budworm defoliation (Figure 2.10; Sterba et al., 1993; Dolph et al., 1995).  

 

Figure 2.10: Regeneration in a skid trail at Vert Lake 
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The mechanical harvests that form the basis of this study differ from mule deer 

conservation practices (Dawson et al., 2007) in several potentially important ways. First, 

mule deer guidelines suggest the creation of discrete clumps of 4–10 trees, while these 

harvests created more or less open corridors several hundred meters in length, with a 

largely unmanipulated matrix between them. “Clumpy retention” silviculture would leave 

far fewer trees in the interior of clumps than were found in these stands, more trees on the 

edge of clumps, and fewer in complete isolation (Dawson et al., 2007). Second, thinning 

from below is recommended during the first pass in a young stand of Douglas-fir in the 

winter ranges, and in subsequent harvests where a substantial pole-size (12–35cm 

diameter) component remains (Dawson et al., 2007). This would control the most severe 

inter-tree competition, while in the study stands there was no such treatment within the 

matrix. Finally, the single-tree selection harvesting recommended for mature stands 

includes a basal area target that varies by habitat class, ranging from 16–29 m2/ha 

depending on the moisture regime of the stand (Dawson et al., 2007). Inventory on a per-

hectare basis is a notoriously unreliable indicator of the competition experienced by trees 

growing in clumped arrangements due to the variability inherent in the structure 

(Hamilton, 1984), but imposing the recommended stand-level maximum basal area may 

further reduce competition stress in clumps maintained for mule deer conservation. 

The methods of this study limit inference to individual codominant and dominant 

trees following the removal of older cohorts from an uneven aged stand. While young 

regeneration and saplings of intermediate age were present at all sites, there were no 

substantially larger or older trees remaining within 50m of any of the subject trees. The 

applicability of these conclusions to other age classes and structures remains to be tested.  
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Coordinates of individual subject trees were not recorded, preventing analysis of 

spatial autocorrelation. Distances between different trees within the same competition class 

ranged from 20m to approximately 50m, with the minimum distance enforced to avoid 

sampling trees directly interacting through root grafts, mycorrhizal networks, or 

competition. Spatial autocorrelation may be positive or negative depending on distance, 

such that growth patterns may be more similar between trees at short distances, more 

different at intermediate distances, and more similar again at greater distances (Dale & 

Fortin, 2014). These correlations may reflect differences in the underlying soil, the 

influence of topography on the water table, or the spatial legacy of the primary-growth 

forest that was partially harvested. Conclusions of this analysis would benefit from further 

investigation in stem-mapped plots to assess autocorrelation at a range of distances, 

perhaps building on work by LeMay et al. (2009), who measured spatial patterns of 

mortality in the same interior Douglas-fir ecosystem type. This would better inform the 

design of the inferential statistical test, as effective sample size may be less than the 

nominal value if spatial autocorrelation is positive (Dale & Fortin, 2014). As it could not 

be determined whether spatial autocorrelation would affect statistical tests positively, 

negatively, or at all, no adjustments were made. If positive autocorrelation was affecting 

the results, less variation would be seen in the sample compared to the overall population, 

while negative autocorrelation would lead to an overestimate of variability.  
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2.6. Conclusion 

Reduction of inter-tree competition through complete release supports larger 

crowns and conductive structures, leading to higher basal area growth rates but providing 

no commensurate increase in drought tolerance relative to partially released trees. 

Increased precipitation throughfall in the harvest corridors, similar to that noted in thinning 

trials, offers the most parsimonious explanation for the similarity in drought resistance 

between fully and partially released trees, though a variety of interacting factors are 

certainly at play. These benefits are likely to be realized operationally in stands managed 

for mule deer conservation as recommended practices include more gaps than were created 

in the harvests of the 1970s. Long-term negative correlations between summer temperature 

and growth indicate a higher risk of drought stress under projected climate change, but 

these risks may be mitigated in the short to mid-term by the creation of canopy gaps and 

either complete or partial release from competition.  
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3.  Drought resistance of old-growth interior Douglas-fir (Pseudotsuga menziesii var. 
glauca (Beissn.) Franco)  in the context of disturbance history in the Cariboo-

Chilcotin region of British Columbia 
 

3.1. Abstract 

Old-growth forest reserves in managed landscapes are threatened by changes to the 

moisture regime under which they developed, and that threat may be magnified by 

exclusion of density-regulating disturbances. In this study I investigate the influence of 

gaps created by natural disturbances on the drought tolerance of surviving interior 

Douglas-fir during seven droughts in the presettlement era (1717–1869) and seven in the 

modern period. I use tree ring analysis to describe the relationship between drought 

resistance (relative growth reduction) and age, and growth response to a disturbance. 

Multinomial logistic regression models explaining drought resilience (return to pre-drought 

growth rate) are compared in an information theoretic approach, assessing the relative 

influence of five site-level and five tree-level factors. Regional growth release rates varied 

from 5–25% per decade in the presettlement era, with the exception of 1800–1809 when 

38% of trees recorded release. Drought resistance is higher in young trees and those with 

ongoing growth release. Adjacency to canopy gaps reduces competition, explaining growth 

release, and canopy gaps are known to facilitate increased precipitation throughfall, 

explaining drought resistance. Density-regulating disturbance of any kind is expected to 

enhance drought tolerance in structurally complex stands of interior Douglas-fir.   
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3.2. Introduction 

Conservation of primary-growth and complex late-successional forests is a 

cornerstone of ecologically oriented landscape-scale forest management in production 

forests around the world (Seymour & Hunter, 1992; Frelich & Reich, 2003). These 

reserves are functionally, aesthetically, and culturally valued. They provide required habitat 

(Müller et al., 2010), serve as a benchmark of ecosystem composition and function for 

managed forests (Fraver et al., 2007), and they are a preferred setting for activities ranging 

from the educational to the spiritual, recreational, and sporting (Ananda & Herath, 2003).  

Climate change threatens old-growth forest structures by altering the moisture regime 

under which the stands developed (Noss, 2001). In dry ecosystems of western North 

America, the direct effects of climate change on moisture availability are potentially 

compounded by decades of fire exclusion (Cocke et al., 2005). Absence of density-

regulating disturbance for a prolonged period has led to higher stand densities with 

increased transpiration demand and canopy interception of rainfall, intensifying the stress 

of reduced moisture availability (Pypker et al., 2005). Increased drought stress in these 

forests has increased both direct mortality and predisposition of stands to disturbance by 

native insects and catastrophic fires (Franceschi et al., 2005; Guarín & Taylor, 2005).  

Thinning has been found to increase drought tolerance of managed stands in a number 

of ecosystems (Sohn et al., 2013; Elkin et al., 2015; Calev et al., 2016), with increased 

precipitation throughfall and decreased competition for available moisture identified as 

underlying mechanisms (Stogsdili et al., 1992; Mazza et al., 2011; Nanko et al., 2016). 

Most studies have focused on relatively young, even-aged stands, often plantations. The 

simplicity of these stands supports straightforward and repeatable experimental design, but 
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it is difficult to translate the conclusions to older and more structurally complex forests.  

Precipitation throughfall in late-successional forests with complex vertical and 

horizontal structure has been found to be directly related to the quantity of plant material 

overhead (Nadkarni & Sumera, 2004). Disturbance can reduce the amount of overhead 

plant material in the short term, leading to increased throughfall (Zirlewagen & von 

Wilpert, 2001) which is known to have a substantial effect on the overall water balance of 

resultant stands (Bouten et al., 1992). Exclusion or suppression of natural disturbances 

may have a substantial effect on the water balance of forest stands by reducing the 

frequency of patches and gaps in the canopy, with measurable effects on the ability of trees 

to tolerate short-term droughts. 

Old-growth interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests without 

evidence of direct anthropogenic disturbance are scattered throughout the Cariboo-

Chilcotin region in central British Columbia. Permanent old-growth management areas 

(OGMAs) limit harvesting on over 200,000 hectares of Douglas-fir forest in the region 

(Figure 3.2; https://catalogue.data.gov.bc.ca/dataset/old-growth-management-areas-legal-

current accessed January 2017), while hundreds of other old-growth stands have been 

avoided by chance or choice. In addition to OGMAs, where harvesting is limited to 

specific situations related to forest health and wildlife habitat, Community Areas of Special 

Concern are protected as socially essential no-harvest areas (Ministry of Agriculture and 

Lands, 2011).  

Unharvested stands tend to be both horizontally and vertically complex, with diverse 

canopy strata punctured by gaps and patches initiated by windthrow, root disease, bark 

beetles or wildfire. The range of common natural disturbances includes factors that act 

https://catalogue.data.gov.bc.ca/dataset/old-growth-management-areas-legal-current
https://catalogue.data.gov.bc.ca/dataset/old-growth-management-areas-legal-current
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from above, mostly killing larger trees, and from below, (Smith et al., 1997) primarily 

killing smaller trees: Douglas-fir beetle (Dendroctonus pseudotsugae) preferentially 

attacks trees over 40cm diameter (Kano, 2006), while wildfire more readily kills smaller 

trees with thinner bark. Wildfire frequency has decreased since the 1920s due to 

firefighting efforts and consumption of fine fuels by cattle (Daniels & Watson, 2003; 

Harvey, 2017), and the general exclusion of this disturbance has led to increases in average 

stand density and proliferation of a dense understory (Wong & Iverson, 2004).  

Most Douglas-fir leading stands in the region historically included a component of 

lodgepole pine (Pinus contorta) that was almost completely destroyed by the mountain 

pine beetle (Dendroctonus ponderosae) outbreak of the 2000s (Figure 1.5), leaving stands 

of pure or nearly-pure Douglas-fir (Figure 3.1). Previous mountain pine beetle outbreaks 

ca. 1890–1900, 1930–1940, and 1970–1985 caused extensive damage to the lodgepole 

pine component of mixed stands, in some cases causing substantial growth release in more 

than half of the Douglas-fir (Hawkes et al., 2004). Lodgepole pine may have been largely 

removed from many stands for the near future, but the past has been defined by a two-

species system, with each conifer species affected by a native bark beetle on a more or less 

regular basis. These insect disturbance regimes are distinct, with mountain pine beetle 

tending to affect extensive swaths of timber periodically while Douglas-fir beetle typically 

affects small groups or patches of trees, but rarely all mature trees within a stand 

(Erickson, 1992). 
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Figure 3.1: Tree PUD18, ca. 1721, surrounded by dead lodgepole pine and regeneration of 
pine and Douglas-fir, with mature Douglas-fir in the background. 
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Precipitation at the nearby Williams Lake Airport averaged 435mm per year from 

1961–1990 (http://www.climatewna.com/) and has not significantly changed in recent 

years, while temperatures have increased and are projected to continue increasing over the 

next century (Dawson et al., 2008). Outbreaks of Douglas-fir beetle have been severe in 

the 21st century, and western spruce budworm (Choristoneura freemani = C. occidentalis)  

is expected to increase its range, frequency and severity in a warmer climate (Murdock et 

al., 2013; Marciniak, 2015). Droughts lasting one or two years are common, and are 

considered to be predisposing factors for both Douglas-fir beetle (Powers et al., 1999) and 

mountain pine beetle (Shore et al., 2004) in addition to wildfire (Daniels & Watson, 2003; 

Harvey, 2017) and potentially western spruce budworm (Flower et al., 2016). 

Susceptibility to Douglas-fir beetle is largely dependent on the tree’s vigor and ability 

to produce and mobilize defensive compounds. Pressure of toxic oleoresin is a major 

determinant of success in rejecting the initial attack, while secondary resins produced after 

the attack can prevent brood development (Rudinsky, 1966). Oleoresin pressure and 

productive capacity are closely related to water balance, which is found to fluctuate 

substantially both within the day and throughout the season. Trees on a southern aspect and 

those with fully exposed crowns record higher daily variation, and pressure levels are 

typically lowest midday and in the afternoon when beetle flights most commonly occur. 

Even a brief period of moisture deficit within the tree is expected to substantially increase 

vulnerability to an attack, making competition for moisture and its overall availability 

particularly important to survival.  

Stand thinning has been found to reduce mortality to Douglas-fir beetle in the long 

term (Williamson & Price, 1971), an effect probably attributable to improved water 

http://www.climatewna.com/
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economy and removal of weak and dying trees responsible for spillover attacks. Prevention 

of natural wildfire over the past century has led to the opposite effect, allowing stands to 

reach densities at which stand stagnation is a major concern due to competition from dense 

populations of seedlings and saplings (Day, 1997).  

In this study I investigate the influence of openings created by natural disturbances on 

drought resistance and resilience in interior Douglas-fir using tree ring analysis (Lloret et 

al., 2011). Radial growth is used to estimate trees’ response to drought, but can be a proxy 

for other allocations of photosynthate, including the generation of carbohydrate reserves 

and the ability to create and mobilize chemical defenses against bark beetles (Waring, 

1987; Franceschi et al., 2005). The specific research questions are: 

1. Does adjacency to gaps created by natural partial disturbances, inferred by a sudden 

increase in basal area increment, correspond to higher drought resistance of 

surviving trees? 

2. Does age at the time of disturbance affect the drought resistance of trees in uneven-

aged stands? 

3. Is the return to pre-drought growth rate (drought resilience) more closely related to 

site-level factors (solar radiation, elevation, annual heat-moisture index, northing, 

easting) or tree-level factors (age, resistance to current drought, basal area, average 

latewood proportion, prior growth rate)? 
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3.3. Methods 

3.3.1. Site Selection and Field Methods 

Study sites were identified using aerial imagery in Google Earth® (dated 2005, 

accessed 2013 and 2014) to locate stands that had not been previously logged and were 

likely to contain old trees. Lack of visual evidence of skid trails was the primary criterion 

for selection of study sites; the size of the stand and presence of trees with large crowns 

was also considered. A number of candidate sites were identified throughout the range of 

Douglas-fir forests in the region. The largest stands were visited first and sampling took 

place immediately if the sites were found to be appropriate. Presence of cut stumps or lack 

of trees >250 years old was grounds for dismissing the site and moving to an alternate. A 

total of 46 sites were sampled (Figure 3.2).  

Approximately 20 sample trees were selected along a transect perpendicular to the 

prevailing slope at each site, with two trees selected at points every 20m (paced distance). 

Sample trees were generally >40cm DBH and evidently older trees were preferentially 

sampled. Charred bark and absence of branches on the lower bole were generally reliable 

indicators of old age. Two 5.1mm increment cores were taken at breast height from 

opposite sides of each tree, perpendicular to the slope to avoid reaction wood. Trees 

obviously damaged by fire (i.e. an open catface), lightning, or wind breakage were avoided 

whenever possible, though minor spike tops (up to 3–4” diameter) and charred bark were 

acceptable. 

Diameter of each subject tree was measured at 1.3m and a photograph showing the 

crown and bole was taken for reference. Forest inventory was recorded in 3–5 fixed-radius 

plots along each sampling transect. Trees greater than or equal to 15cm DBH were 
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measured in 1/40th ha plots while smaller trees were measured in 1/250th ha plots. All data 

were scaled to a per-hectare basis.  
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Figure 3.2: Study sites in the context of Douglas-fir leading stands and permanent old growth management areas (OGMAs).  
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3.3.2. Laboratory Preparation 

Increment cores were air dried, glued to individual wooden mounts, and sanded with 

a progression from 240 to 400 to 600 grit sanding belts (Stokes & Smiley, 1968). 

Automotive polishing paper (1,200 and 2,000 grit) was used where necessary to discern 

miniscule rings. Visual crossdating was performed on all cores under an Olympus® SZ-61 

microscope using a combination of the list method and the memorization method (Speer, 

2010). The list method was used to identify marker years in the first several sites to be 

crossdated until a number of regionally consistent marker years were identified then used 

for visual crossdating of all samples.  

Crossdated increment cores were scanned at 1,200 DPI using an Epson 1640XL 

flatbed scanner. Ring width and latewood width measurements were made using the 

computer program Windendro® (Regent Instruments 2014). Batches of 8–20 cores were 

scanned and processed together so that crossdating could be examined using the in-

program ring width index display. Crossdating was verified at the site level using the 

program COFECHA (Holmes, 1983). Cores or sections that were excessively damaged or 

otherwise impossible to crossdate reliably were discarded from the study, leaving 1,693 

cores from 907 trees at 46 sites (Figure 3.2).  

3.3.3. Statistical Analysis 

I defined a drought event as a year in which the mean ring width index calculated 

among all cores in the study (detrended with a 10-year cubic smoothing spline) was in the 

10th percentile. Previous work (Lloret et al., 2011) used Cook’s tree-ring reconstruction of 

Palmer’s Drought Severity Index (PDSI; Cook & Krusic, 2004) in addition to narrow ring 
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width to identify drought years. I did not use PDSI directly because visual inspection of the 

plotted PDSI reconstruction and the detrended ring width indices revealed a lag in which a 

low reconstructed PDSI value sometimes preceded a narrow ring by one year while in 

other cases both the index value and PDSI value were remarkably low in the same year. 

Dendroclimatic work in the region identified the total precipitation from the previous June 

through current May, not PDSI, as having the greatest correlation value with Douglas-fir 

ring width (Watson & Luckman, 2002). Previous-June through current-June (pJJ) 

precipitation total provided the highest pairwise correlation with detrended ring width 

indices in my work (r = 0.58, n = 76, P < 0.0001), and narrow rings often occurred in years 

with below-average pJJ values.  

While low-growth events are attributed to drought and referred to throughout this 

chapter by the year in which a sharp growth reduction occurred, it is acknowledged that 

this reduction may be attributable or partly attributable to low precipitation in the previous 

summer or an unidentified non-drought factor such as a late frost. One event (1988/89) 

lasted two years and all values were calculated based on the mean of the two years, but the 

event is referred to exclusively by the first year. Longer-term droughts are understood to 

have occurred in the region (Hart et al., 2010), but this analysis is focused only on those 

which lasted one or two years. 

Drought resistance was calculated by dividing the basal area increment in the drought 

year by the mean basal area increment over the five previous years (Lloret et al., 2011). 

Drought resilience was calculated by dividing the five year mean basal area increment after 

the event by the five-year mean basal area increment before (Figure 3.3). 
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Figure 3.3: Increment cores BLU 17A ("17"; release) and BLU 15A ("15"; no release). 
Drought resistance equals Y/X; drought resilience equals Z/X. Core 17 shows an example 
of a false ring in 1931, followed by continued growth that accounts for more than half of 
the ring width and a high drought resistance score. Black dots indicate decade years, from 
the left: 1910, 1920, and 1930. 

Growth releases were identified using the package TRADER in the open-source 

statistical program R (Version 3.3.1; script in Appendix A). Growth release criteria used by 

Hadley & Veblen (1993; 250% increase in mean ring width in subsequent vs. previous five 

years)to identify Douglas-fir beetle mortality were tested and modified by averaging the 

growth over a longer period (20 years) to eliminate false positives that commonly occurred 

following ~10 year periods of growth suppression corresponding to known regional 

droughts (Wolfe et al., 2001; Hart et al., 2010). Ring widths were converted to basal area 

increments to reflect as accurately as possible the actual growth of the tree (as in Lloret et 

al., 2011). The criteria ultimately used to define growth release were:  
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 Period length: 20 years before and after each year 

 Minimum rate of basal area increment increase: 50% 

 Minimum time elapsed before another release can be identified: 15 years 

 Minimum duration: one year 

These criteria were further tested against the data from Chapter 2, where the date of 

disturbance was known. For those data, growth release was identified in 80% of trees 

located on the edge of skid trails and 38% of the trees growing in the matrix between skid 

trails. Individual-tree plots of the interior trees showing release were reviewed, and there 

was in fact an increase over that period of time in these cores, so the criteria were accepted. 

Growth releases were consolidated to a per-decade rate and the percentage of the trees 

recording release in each decade was calculated by dividing the number of releases by the 

number of trees present at the end of each decade. Initiation dates at coring height were 

estimated based on the oldest ring among the paired cores for each tree. Initiation dates at 

coring height were consolidated to a per-decade basis for comparison against release dates 

on the basis of the percentage of the total sample initiated in any given decade. 

Each tree was assigned to an age class (at coring height) at the time of each drought to 

compare resistance values by age. The age classes were 5–49, 50–149, 150–249, and 250+, 

roughly representing young, mature, old, and very old trees. As the data could not be 

transformed to meet the assumption of normality, the nonparametric Kruskall-Wallis rank-

sum test (CI 95%; Stata® 12.1) was used to assess the differences between age classes and 

to perform a post-hoc test when the fit of the overall model was significant.  

As a point of reference for individual-tree growth trends, mean basal area increments 

across the entire study area were plotted for 50-year age classes based on the current age 
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(at coring height) of specimens: 200–249 (n=175), 250–299 (n=169), 300–349 (n=132), 

350–399 (n=101), and 400+ (n=84). These data were smoothed with a 50-year spline prior 

to averaging to visualize long-term trends at the expense of annual and decadal variability 

(see Figure 3.10). To further describe trends apparent in the data, diameter at breast height 

in the years 1800 and 1840 was calculated by doubling the sum of accumulated ring widths 

at each date. The resulting diameter distributions were graphed by 5cm DBH classes, with 

trees in 1840 separated into ingrowth (trees not present in 1800) and accretion (trees 

present in 1800).  

All trees over the age of 50 were classified as having an ongoing growth release or 

not. Drought resistance values were compared in a two-way ANOVA considering 

release/no release and site code as explanatory variables, including an interaction term. 

Resistance values were transformed as noted in the output table and residuals were tested 

for heteroscedasticity to confirm that residuals had equal variance across the predicted 

range. Conformity of the residuals to the normal distribution was visually assessed using 

histograms.  

Multinomial logistic regression was used to assess the resilience of individual trees 

(mlogit, Stata 14). I placed each tree into one of three equally populated categories based 

on resilience scores. Low resilience trees were those with the lowest 33.3% of values, mid 

resilient trees included those in the middle third of resilience scores, and high resilience 

trees included those with the top third of scores. These categorical scores were regressed 

against a set of independent variables that described site and growth factors for each tree 

(Table 3.1). 

ClimateWNA (http://www.climatewna.com/, accessed 2016) was used to generate 

http://www.climatewna.com/
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annual heat-moisture (AHM) indices for each site. Elevation data (1:50,000 scale) 

(http://ftp.geogratis.gc.ca/pub/nrcan_rncan/elevation/geobase_cded_dnec/50k_dem/ 

accessed 2016) were used to calculate total solar radiation at each study site using the Area 

Solar Radiation tool in ArcGIS. Elevation data were assigned to sites, and the projected 

easting and northing values were calculated in ArcGIS. 

Age and basal area at the time of each drought, and average percent latewood over the 

life of the tree, were calculated from Windendro® measurements. Multinomial logistic 

regression in Stata 14 was used to assess the influence of each of these variables (Table 

3.1) on the probability of a given tree falling into one of the higher resilience categories vs. 

the lowest category. Tolerance scores with a threshold of 0.1 were used to identify 

multicollinearity in model structure. 

An information theoretic approach was used to identify the most parsimonious 

multinomial logistic regression model (Burnham & Anderson, 2004). I used the Akaike 

Information Criterion for small sample sizes (AICc) to identify the best model of the set of 

models that I tested. Models with AICc differences <2 were considered to be similar and 

are reported. In total, nine candidate models were assessed (Table 3.2), and standard errors 

were adjusted within the mlogit model to account for clustering at the site level (Rogers, 

1993). Three models consisted of the complete model less one variable or conceptually-

related pair of variables (northing/easting). Resistance was expected to be a powerful 

variable based on previous work (Lloret et al., 2011); a model excluding that variable was 

included to screen for changes in coefficient sign. A model excluding elevation was 

included to screen for cases of coefficients changing sign as elevation has had an 

overwhelming influence on some model fits (Chris Johnson, UNBC, personal 

http://ftp.geogratis.gc.ca/pub/nrcan_rncan/elevation/geobase_cded_dnec/50k_dem/
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communication 2017). A model excluding northing/easting was included to assess the 

importance of geographic location. Models using exclusively site-level and tree-level 

variables were included to test whether one category or the other best explained the 

observed variation alone. Two models including a subset of site and tree level variables 

were included to assess the explanatory power of more limited combinations in 

comparison to the full model. One model included only elevation to test whether that 

variable alone could provide the most parsimonious explanation for the variation observed. 

AICc scores were used to evaluate the explanatory ability of each model in the context 

of its complexity, accounting for sample size, using the formula  

(LL*-2)+(2*k)+((2*k(k+1))/(n-k-1)  

where k is the number of parameters in the model, n is the sample size, and LL is 

the maximised log likelihood of each model from the mlogit output.   
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Table 3.1: Description of variables used in multinomial logistic regression models used to 
explain the drought resilience of subject trees.  

Dependent Variable 
Resilience = 5-year post-drought/5-year pre-drought growth 

ResilCD 1 = lowest 33.3%; 2 = middle 33.3%, 3 = highest 33.3% 

  Independent Variables 

LW Mean latewood % as a decimal, over the full life of the tree 
AHM Annual Heat-Moisture Index (ClimateWNA) 
Solar Total annual solar radiation; watt-hours per square meter 
Elev Elevation; meters above sea level 
Resist Resistance to the current drought (drought/previous 5-year avg.) 
Prior Average growth rate over the past 20 years; square mm 
Age Age at the time of the drought 
BA Basal area at the time of the drought; square mm 
Easting Projected easting value in meters (NAD 1983 Albers) 
Northing Projected northing value in meters (NAD 1983 Albers) 
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Table 3.2: Candidate variable sets tested using multinomial logistic regression used to 
explain the drought resilience of subject trees 

Model Title Variables 
Full LW+AHM+Solar+Elev+Resist+Prior+Age+BA+Easting+Northing 
Less resistance LW+AHM+Solar+Elev+Prior+Age+BA+Easting+Northing 
Less coordinates LW+AHM+Solar+Elev+Resist+Prior+Age+BA 
Less elevation LW+AHM+Solar+Resist+Prior+Age+BA+Easting+Northing 
Elevation Elev 
Site level AHM+Solar+Elev+Easting+Northing 
Tree level LW+Resist+Prior+Age+BA 
Mixed 1 LW+AHM+Elev+Resist+Prior+BA 
Mixed 2 AHM+Solar+Elev+Prior+Age+BA+Easting+Northing 
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3.4. Results 

Drought years in 2010, 1988/1989 (referred to as 1988), 1959, 1946, 1938, 1931, 

1905, 1869, 1842, 1800, 1772, 1760, 1734 and 1717 were selected for analysis (Figure 

3.4).  

 
Figure 3.4: Detrended ring width index (10-year cubic smoothing spline) calculated from 
all trees in the study. Dotted line indicates 10th percentile (0.7978) used to define drought 
events. Black boxes indicate drought years selected for analysis.  
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All of the selected drought years had a negative reconstructed PDSI value in either 

the preceding or current year (Table 3.3). All years within the period of instrumental record 

(1936 to 2012) had below average previous June through current June precipitation totals, 

ranging from a 16 to 28% departure from the average. Growth rings in Jasper and Banff 

were concurrently narrow in six out of 12 years for which the data overlapped, suggesting 

these years were regional rather than local droughts. 

Table 3.3: Identified drought years and regionally narrow years (negative index values (10-
year spline) in Jasper and Banff chronologies), low reconstructed PDSI (negative values at 
Cook’s reconstruction point #30) in the current and previous year, and below-average 
previous June through current June total precipitation (pJJ). Gray cells indicate no data. 

Year 

Narrow in 
Jasper and 

Banff 

Low 
PDSI 

Current 
Year 

Low 
PDSI 

Previous 
Year 

Below 
Average 

pJJ 
2010       Y 
1988   

 
Y Y 

1959 
  

Y Y 
1946 

  
Y Y 

1938 
 

Y 
 

Y 
1931 Y Y Y   
1905 

 
Y Y   

1869 Y Y Y   
1842 Y Y Y   
1800 Y 

 
Y   

1772 Y 
 

Y   
1760 

  
Y   

1734 
 

Y 
 

  
1717 Y Y 

 
  

 

Study sites ranged from 645 to 1329m ASL, basal area ranged from 23 to 105 m2 

per hectare in trees >15cm DBH, and trees per hectare <15cm DBH ranged from 337 to 

81,330 (Table 3.4). 
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Table 3.4: Site codes, elevation (meters asl), basal area per hectare in trees over 15cm dbh 
(BAPH; m2 per hectare), trees per hectare in trees under 15cm dbh (TPH) and locations 
(decimal degrees). Inventory data not collected at sites with grayed-out cells. 

Site Elevation BAPH >15cm TPH <15cm Latitude Longitude 
ABR 1,133 39 12,818 51.74389230 -123.01188846 
ACS 1,024 82 2,147 52.01175487 -123.29969878 
ALE 959 23 2,147 52.06831024 -123.40771210 
ALK 954 

  
51.78347817 -122.18762809 

BCA 935 32 443 52.09017948 -123.35763661 
BIG 1,261 

  
51.31380538 -122.14807292 

BLU 871 50 6,112 52.33392135 -122.24453402 
CAL 1,248 53 5,725 52.06929872 -122.61526964 
CAM 1,087 53 35,361 51.69793030 -121.61113394 
CHI 906 

  
51.90004686 -121.93915042 

CTI 818 52 5,557 52.65916903 -122.37337676 
DCB 947 52 1,957 51.57270984 -122.22259727 
DOG 1,136 51 3,220 51.47823126 -122.15729418 
ENT 910 

  
51.98366340 -121.87442622 

EPI 1,262 51 573 51.60443734 -122.01334020 
FUZ 1,068 47 337 52.28706360 -122.68007984 
GAR 1,239 29 3,537 51.70913776 -122.43351471 
HAN 1,329 59 2,021 51.96520698 -122.91335345 
HAW 1,306 59 3,199 51.96565471 -122.93040419 
JKY 1,136 105 12,692 51.69171494 -122.20377503 
KCR 831 59 5,999 52.06426670 -121.88228808 
LEE 1,031 55 2,526 51.95623186 -123.07392013 
LEN 1,268 87 2,463 52.03817036 -123.10607239 
MAB 945 47 19,533 51.90773761 -122.27201389 
MAQ 931 59 2,442 52.35246379 -122.51813162 
MAY 1,127 43 6,062 51.88406410 -122.19751849 
MCL 679 39 2,273 52.42191831 -122.36814577 
MEL 939 65 1,452 52.25422122 -122.39560948 
MON 1,127 47 1,452 51.18898694 -121.19581713 
NEE 1,070 74 1,894 52.18793720 -122.63864732 
NOJ 1,016 54 1,137 52.46709374 -122.72308404 
NRA 970 40 1,831 52.21898222 -122.50518352 
PTI 1,005 34 1,326 52.16269145 -123.91295910 
PUD 967 44 1,200 52.18467036 -123.85250382 
PVA 786 54 1,213 52.28627230 -122.18609312 
PYP 1,107 35 1,314 52.03219767 -124.13537884 
REN 988 64 1,011 52.16901851 -123.71319263 
RES 953 28 2,589 52.13741314 -123.74083106 
RIS 1,259 73 1,642 51.94922460 -122.63877948 
SOA 645 

  
52.42216492 -122.41362522 

SUG 658 41 1,642 52.10276261 -122.02310368 
TWA 839 52 1,894 52.54848220 -122.63091856 
WEX 1,013 35 1,326 52.06140806 -123.60929129 
WHI 857 77 1,515 52.21711702 -122.32213471 
WIL 677 48 674 52.15969659 -122.23387497 
YUN 996 38 81,330 51.88829296 -123.10229104 
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Aside from the spikes to 38% and 34% in 1800–1809 and 1930–1939, the 

percentage of trees recording growth release in the presettlement era varied between 5 and 

25% per decade, averaging 14% from 1600–1609 to 1880–1889. No decade has exceeded 

10% of trees recording growth release since the 1930s. Initiation rates (at coring height) of 

sample trees varied between 5 and 13% per decade after 1600.

 

Figure 3.5: Percentage of the total sample reaching coring height in a given decade 
(“Initiation”; grey) and percentage of trees present at the end of each decade showing 
growth release >50% in each decade (black). 
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Mean basal area increments among the four older age classes were synchronized 

ca. 1800–1840, and then separated by age class, with younger cohorts continuing to 

increase their growth rate and older cohorts remaining steady or falling slightly (Figure 

3.6). Growth rate in all cohorts precipitously declined starting ca. 1995. 

 

Figure 3.6: Mean basal area increments by 50-year age class across the entire study area 
since 1615, smoothed with a 50-year spline prior to averaging to display long-term growth 
trends.  
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In 1800 a majority of the sampled trees that had reached breast height were less 

than 20cm DBH, and 80% were less than 30cm. A shift towards the larger diameter classes 

is apparent by 1840 (Figure 3.7), with an average diameter growth of 8.7cm or 2.2mm per 

year in the intervening period. Ingrowth accounted for 102 of the 116 trees less than 10cm 

DBH in 1840, while several newly initiated trees reached the 20–24.9cm class.  

 

Figure 3.7: Overall diameter distributions in 1800 and 1840, with 1840 trees separated into 
accretion and ingrowth, respectively those that had and had not reached breast height by 
1800. 
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Visual inspection of cores and plotted series supports the growth trend identified in 

the analysis, where small, suppressed trees began growing at rates expected of canopy 

dominants beginning ca. 1800  (e.g. Figure 3.8). The length of the suppressed growth in 

most cores (more than 100 years in some trees) is too long to be attributed to climatic 

variation, while 5–10 year periods of more extreme growth reduction correspond to 

regional droughts inferred from tree ring analyses ca. 1770 and 1790 (Wolfe et al., 2001; 

Hart et al., 2010), suggesting that competition was responsible for the slow growth and its 

removal was the cause of the acceleration. Many of the trees showing release ca. 1800 still 

remain without substantial crown competition (Figure 3.9). Tree JKY10 is one example 

among hundreds of trees showing this general pattern, having reached 106cm DBH 

(outside bark) after 213 years without apparent crown competition (Figure 3.10).  
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Figure 3.8: Core GAR14A from 1740 to 1840 with basal area increment. Single pencil 
marks indicate decade years, double mark indicates 1750, and triple mark identifies 1800. 
Radial growth from 1800 to 1840 was 6.5cm, suggesting approximately 13cm diameter 
growth at an average rate of 3.25mm per year. The widest ring (1820) is 2.9mm, 
suggesting a diameter growth of 5.8mm on a tree 26cm DBH. Basal area increment 
continued to increase until 1917, where a period of suppression marks the beginning of a 
slow decline. The crown was completely isolated when sampled in 2014, with live limbs 
beginning at 3–4m height.  
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Figure 3.9: Tree GAR14 (ca. 1609) in 2013. Underexposure of original photograph 
corrected in GIMP 2. 
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The youngest age class (5–49 years) had significantly higher drought resistance in 

nine of 14 years tested (Table 3.5). The oldest age class (250+ years) had significantly 

lower drought resistance vs. the next youngest class (150–249 years) in 1931, 1959, and 

1988. In 1800 and 1959, the second-youngest age class (50–149 years) had significantly 

higher resistance than the next older class (150–249 years). 

Table 3.5: Drought resistance by age class. Kruskall-Wallis rank-sum test (95% CI; age 
classes that do not share a letter within a given year are significantly different in pairwise 
multiple comparisons. Pairwise comparisons not conducted for 1938 when overall model 
was insignificant. No trees under 50 in 2010). 

Age Class 1717 1734 1760 1772 1800 1842 1869 
5–49 0.70 a 0.78 a 0.88 a 0.84 a 1.07 a 0.77 a 0.65 a 

50–149 0.59 b 0.66 b 0.75 b 0.66 b 0.92 ac 0.65 b 0.52 b 
150–249 0.57 ab 0.71 ab 0.69 b 0.60 b 0.79 b 0.62 b 0.50 b 

250+ 0.56 ab 0.64 ab 0.63 ab 0.41 ab 0.76 abc 0.67 ab 0.56 b 
n 302 372 452 501 599 734 784 

Chi-squared 8.88 15.25 38.77 35.96 20.04 25.69 38.92 
d.f. 3 3 3 3 3 3 3 
P 0.03098 0.00162 0.00010 0.00010 0.00017 0.00010 0.00010 

               
               Age Class 1905 1931 1938 1946 1959 1988 2010 

5–49 0.71 a 1.00 a 0.92 ns 0.92 a 0.63 abc 0.60 a     
50–149 0.62 b 0.70 b 0.89 ns 0.71 b 0.62 a 0.65 a 0.68 a 

150–249 0.64 ab 0.67 b 0.86 ns 0.69 b 0.56 b 0.63 a 0.64 ab 
250+ 0.61 b 0.57 c 0.84 ns 0.68 b 0.43 c 0.57 b 0.62 b 

n 845 872 874 879 884 886 878 
Chi-squared 12.62 67.46 5.53 34.76 89.35 9.60 8.49 

d.f. 3 3 3 3 3 3 3 
P 0.0552 0.0001 0.1371 0.0001 0.0001 0.0223 0.0143 
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Trees with an ongoing release had higher drought resistance than trees without an 

ongoing growth release in every year except 1869 (Table 3.6). Site was a significant 

explanatory variable in every year that a test could be conducted, while growth release 

status was significant in seven of the 10 years that tests could be conducted. The 

interaction of site and growth release status was significant in 1842, 1931, and 1946 

(p<0.05; Appendix C). The data for the years 1760, 1959, and 1988 did not meet the 

assumption of normality after transformation. The ANOVA and plot of residual vs. fitted 

values for 1760, 1959, and 1988 are presented in Appendix C for information. 

Table 3.6: Drought resistance in trees with and without ongoing release. Two-way 
ANOVA; full model outputs in Appendix C. Significant variables in bold; α=0.05. 

 

 
1717 1734 1760 1772 1800 1842 1869 

Ongoing Release 0.72 0.72 0.97 0.78 0.99 0.72 0.51 
No Release 0.56 0.66 0.68 0.60 0.78 0.63 0.52 
Transform Sqrt Sqrt  Box-Cox Box-Cox Box-Cox  Box-Cox 
Release F 6.86 19.95  0.52 12.86 2.56  0.50 
Release Prob > F 0.010 <0.001  0.47 <0.001  0.110 0.478 
Site F 7.35 8.02  9.21 6.35  14.19 13.03 
Site Prob > F <0.001 <0.001  <0.001 <0.001  <0.001 <0.001 

               
 

1905 1931 1938 1946 1959 1988 
  Ongoing Release 0.65 0.69 0.88 0.75 0.88 0.64 
  No Release 0.62 0.64 0.85 0.68 0.52 0.56 
  Transform Box-Cox Box-Cox Box-Cox Box-Cox   

 Release F 17.02 10.91 26.22 19.92   
 Release Prob > F <0.001 0.001 <0.001 <0.001   
 Site F 15.62 17.55 12.09 11.43   
 Site Prob > F <0.001 <0.001 <0.001 <0.001   
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AICc differences <2 in two models in 1931, two in 1869, and three in 1717 led to 

17 top-ranked models from the 13 drought years considered (Table 3.7). Among these, 15 

were the full model or its close derivative (seven “Full,” five “Less elevation,” three “Less 

easting and northing”). “Mixed 1” (% latewood, annual heat-moisture, elevation, 

resistance, prior growth and basal area) was among the three top-ranked models for 1717 

and was the exclusive top-ranked model for 1772.  All output tables and AICC calculations 

may be found in Appendix B. 

Table 3.7: Top-ranked multinomial logistic regression models explaining drought resilience 
scores for each drought year 

 
 
 
 
  

Year Top-Ranked Model
1988 Full model
1959 Full model less elevation
1946 Full model less elevation
1938 Full model
1931A Full model
1931B Full model less elevation
1905 Full model less easting and northing
1869A Full model
1869B Full model less easting and northing
1842 Full model
1800 Full model less elevation
1772 Mixed 1
1760 Full model less elevation
1734 Full model
1717A Full model
1717B Full model less easting and northing
1717C Mixed 1
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Resistance to the current drought had an exclusively positive influence on the 

probability of higher drought resilience, and was significant in 13 of 17 top-ranked models 

in the low-resilience vs. mid-resilience categories and 16 of 17 in the low-resilience vs. 

high-resilience comparisons (Table 3.8). Prior growth rate negatively influenced drought 

resilience in eight top-ranked models in the low-resilience vs. mid-resilience comparisons 

and ten in low-resilience vs. high-resilience comparisons. Age at the time of the drought 

provided several significant negative coefficients: one in the low-resilience vs. mid-

resilience comparisons and five in the low-resilience vs. high-resilience comparisons. Site-

level variables and other tree-level variables were occasionally significant, with 

inconsistent coefficient signs between years.   
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Table 3.8: Coefficients of top-ranked models for each drought year. Bold values indicate 
statistical significance in the original mlogit models (95% CI). Coefficients multiplied by 
the value at the top of each column for concise display. Gray boxes indicate variables not 
included in the top-ranking model. “1 vs. 2” indicates the probability of a tree being in the 
middle 33% vs. the lowest 33%; “1 vs. 3” indicates the probability of a tree being in the 
highest 33% vs. lowest 33%. Complete outputs can be found in Appendix D. 

1 vs. 2 
            

1  
            

1  
 

100,000  
        

100  
            

1  
        

100  
        

100  
   

10,000  
   

10,000     10,000  
Year LW AHM Solar Elev Resist Prior Age BA Easting Northing 
1988 0.029 0.053 -0.017 0.356 2.189 -0.050 0.173 -0.008 0.035 0.037 
1959 -0.057 0.007 -0.017   3.138 -0.031 -0.074 -0.023 -0.042 0.092 
1946 0.024 0.066 0.009   0.604 -0.004 0.031 0.005 -0.083 -0.060 
1938 -0.030 -0.057 -0.072 -0.259 2.417 -0.034 -0.298 -0.006 -0.012 -0.082 
1931A -0.012 0.090 0.015 0.098 1.012 -0.086 0.171 0.006 0.084 0.017 
1931B -0.009 0.065 0.018   1.021 -0.085 0.186 0.004 0.057 -0.028 
1905 -0.080 -0.051 0.119 -0.198 3.612 -0.064 -0.045 0.006     
1869A -0.001 -0.074 0.016 -0.258 0.474 -0.067 -0.076 0.024 -0.090 -0.157 
1869B -0.016 -0.002 0.003 -0.015 0.602 -0.079 -0.106 0.035     
1842 0.020 -0.102 0.069 -0.454 3.921 -0.035 0.009 -0.035 -0.005 -0.115 
1800 -0.038 -0.074 0.120   1.945 -0.108 -0.397 0.042 -0.069 -0.068 
1772 -0.030 -0.057   -0.047 3.758 0.022   -0.099     
1760 -0.094 0.041 -0.027   3.276 -0.197 -0.757 0.128 0.137 -0.198 
1734 -0.096 -0.197 -0.029 -0.213 1.633 -0.076 -0.612 0.042 -0.296 -0.109 
1717A 0.056 -0.168 0.091 -0.333 5.449 -0.066 -0.860 0.176 -0.159 -0.048 
1717B 0.025 -0.065 0.090 -0.141 6.326 -0.065 -0.762 0.172     
1717C 0.007 -0.051   -0.100 6.489 -0.047   0.062     

           
1 vs. 3 

            
1  

            
1  

 
100,000  

        
100  

            
1  

        
100  

        
100  

   
10,000  

   
10,000     10,000  

Year LW AHM Solar Elev Resist Prior Age BA Easting Northing 
1988 0.095 0.020 -0.082 1.932 4.817 -0.066 -0.047 0.016 -0.043 -0.156 
1959 -0.021 0.052 -0.039   5.934 -0.107 -0.444 -0.036 -0.025 0.161 
1946 0.071 0.084 0.032   0.691 -0.033 0.220 -0.036 -0.137 -0.115 
1938 -0.049 -0.120 -0.096 -4.057 6.106 -0.107 -0.393 -0.016 0.029 -0.130 
1931A -0.001 0.045 0.061 -0.722 2.183 -0.150 0.250 -0.055 0.028 -0.089 
1931B -0.003 0.061 0.060   2.180 -0.151 0.240 -0.054 0.046 -0.058 
1905 -0.052 -0.058 0.131 -5.186 6.908 -0.159 -0.708 0.018     
1869A 0.010 0.101 0.005 0.405 1.917 -0.163 -0.725 0.042 0.003 0.007 
1869B 0.010 0.097 0.004 0.316 1.883 -0.164 -0.730 0.042     
1842 0.034 0.128 0.069 -0.197 9.251 -0.118 -0.155 -0.026 0.306 0.066 
1800 -0.055 -0.042 0.173   3.820 -0.257 -0.527 0.033 -0.038 -0.172 
1772 -0.035 -0.095   -0.450 7.725 -0.118   -0.104     
1760 -0.067 0.015 -0.103   7.408 -0.401 -1.549 0.263 0.145 -0.363 
1734 -0.159 -0.307 -0.091 -6.162 7.163 -0.470 -1.676 0.226 -0.367 -0.321 
1717A 0.081 -0.032 -0.048 2.905 11.447 0.010 -0.461 -0.171 -0.072 0.189 
1717B 0.064 0.001 -0.045 2.216 12.606 -0.010 -0.329 -0.172     
1717C 0.069 0.016   2.872 12.702 0.008   -0.238     
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3.5. Discussion 

Drought resistance is higher in trees with ongoing growth release and young trees in 

general, and higher resistance to drought increases the probability of superior growth 

resilience. Previous work has shown that exclusion of wildfire from this ecosystem has led 

to stand densities that exceed historical norms, especially in the understory (Wong & 

Iverson, 2004). Stand inventory data collected in this study support the conclusion that 

stands are now largely overstocked, often with extraordinary densities in the understory 

(Table 3.4, Figure 3.11). This work indicates that besides regulation of the understory and 

overall stand density, a side-effect of the historical natural disturbance regime of wildfire 

and bark beetle outbreaks was the alleviation of drought stress in surviving trees.  

Limiting the analysis of drought resilience to mature trees (aged >50 years) was 

intended to avoid confounding the analysis with young trees just initiating within gaps 

rather than being adjacent to gaps. Age had a negative effect on the probability of higher 

drought resilience whenever the variable was significant, so the exclusion of trees <50 

years old may have suppressed a positive influence of youth on resilience. This study has 

no bearing on the management of even-aged stands in the region and conclusions about 

young trees are limited to those growing within uneven-aged stands: only one of the 46 

sites considered in this analysis was even-aged (WEX, coring height ca. 1800), and that 

site contributed very few of the samples in the analysis.  
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Figure 3.11: Site JKY in 2013, with an average 105m2/ha and 12,692 trees per hectare 
under 15cm. Tree at center dates to 1555; tree behind and to the left dates to 1475, both  
have charred bark but no open wound.  
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The mechanism underlying increased drought tolerance in trees adjacent to gaps 

created by partial disturbances is likely a combination of increased precipitation 

throughfall supplementing the available moisture in the soil (Bouten et al., 1992; Nadkarni 

& Sumera, 2004), decreased competition in the rooting zone (Casper & Jackson, 1997), 

and perhaps increased carbohydrate reserve capacity in faster-growing trees (Waring, 

1987). The presence of false rings in some trees, indicating continued growth after a 

temporary shut-down, is a common pattern in tree rings collected in regions driven by late-

summer rains where growth is restarted when moisture becomes available (Griffin et al., 

2011). In this context, false rings observed in some samples with ongoing growth release 

(e.g. Figure 3.3) may have resulted from the reception of moisture later in the season. Late-

summer thunderstorms are common in the study area, but the rainfall is often brief and 

light. It is possible that the effect of these brief summer storms on soil moisture is heavily 

influenced by canopy interception (Bouten et al., 1992), providing a benefit to trees 

adjacent to gaps that is unavailable to their interior neighbors.  

On average, 14% of trees recorded growth release per decade between 1600–1609 and 

1880–1889 (inclusive), varying from 5 to 25% in the presettlement era except for a peak at 

38% in 1800–1809. Rates of initiation varied between 5 and 13% per decade after 1600; 

the drop-off in initiation rates after 1860 is meaningless as older trees were targeted for 

sampling. This variation in regional growth release and initiation rate is consistent with 

previous work describing a mixed-severity fire regime with an average 20-year return 

interval (Daniels & Watson, 2003; Axelson et al., 2010) and periodic mountain pine beetle 

outbreaks with a 30–40 year return interval (Alfaro et al., 2010). Only one site, WEX in 

the Chilcotin region, appears to be even-aged with no surviving remnants of the previous 
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cohort, meeting the definition of a high-severity disturbance used by Heyerdahl et al. 

(2012). Harvey (2017) also reconstructed high-severity disturbances establishing even-

aged stands in two of 27 plots in Douglas-fir forests adjacent to grasslands in the Cariboo-

Chilcotin, suggesting that these events were a part of the historical ecosystem.  

The net effect of a mixed-severity regime is reasonably comparable to the 

recommendations for management on mule deer winter ranges (Dawson et al., 2007), 

which constitute the primary management objective in many of the drier managed forests 

within the study area. These recommendations (Dawson et al., 2007) include a low basal 

area target in the low-snowpack (drier) areas and intermediate basal area in moderate-

snowpack stands. Pole-size trees (12.5–37.5cm) are to be thinned from below. A clumpy 

distribution of mature trees is encouraged to intercept snow and provide browse through 

crown abrasion. Some, but not all trees over a certain maximum size are to be retained. 

The most substantial departure from the historical regime is protection of the youngest 

regeneration horizon during harvest, as even a light ground fire under historic disturbance 

regimes would kill a substantial proportion of the regeneration.  

A mountain pine beetle outbreak severely affecting much of the Chilcotin region 

(Erickson, 1992), corroborated by scars and growth releases attributed to beetle mortality 

by Alfaro et al. (2010), offers a partial explanation for the widespread growth release in the 

1930–1939 decade. The year 1931 was also known to be dry and prone to wildfire, 

including human-initiated wildfires (https://catalogue.data.gov.bc.ca/dataset/fire-

perimeters-historical accessed 2017). The growth releases in Douglas-fir during the 1930s 

likely have several causes, including mountain pine beetle and natural wildfires (Alfaro et 

al., 2010), accidental wildfires may also have played a role.  

https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical
https://catalogue.data.gov.bc.ca/dataset/fire-perimeters-historical
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The effective sample depth at almost all the study sites discussed in Alfaro et al. 

(2010) is exhausted by 1800, but one lodgepole pine series and two Douglas-fir series 

show growth releases starting ca. 1800 that the authors tentatively attribute to mountain 

pine beetle. A number of the stands described in the fire history developed by Daniels and 

Watson (2003) include large cohorts established ca. 1800, but without much evidence of 

extraordinary fire activity. Several tree ring reconstructions in western Canada for the 

period 1790–1799 indicate dry conditions, with low streamflow in rivers in Alberta and 

Saskatchewan to the east (Case & MacDonald, 1995, 2003) and the Chilko River to the 

west (Hart et al., 2010), increased sand-dune mobilization in southern Saskatchewan 

(Wolfe et al., 2001), and depressed growth in Douglas-fir in Banff and Jasper National 

Parks and the trees considered in this study. This prolonged moisture deficit likely 

predisposed stands to Douglas-fir beetle (Jantz & Rudinsky, 1966), mountain pine beetle 

(Alfaro et al., 2010), and wildfire (Harvey, 2017; Daniels & Watson 2003), while extreme 

drought in 1800 may have caused direct mortality in addition to the markedly narrow rings 

observed in nearly all samples. A combination of all four factors may be responsible for 

the anomalous peak in growth release in the 1800–1809 decade, but all occurred before the 

first known European contact in the region (Simon Fraser’s 1808 expedition).  

This extraordinary growth release event in the beginning of the 19th century appears to 

have had a substantial influence on the long-term growth patterns and stand development 

in the region. An inflection in average growth rate occurs ca. 1795 in all four established 

age classes shown in Figure 3.6, and is followed by several decades of similar average 

growth among the previously distinct groups. A sharp release ca. 1800 and rapid 

subsequent growth is visually apparent on many cores, and a major shift in diameter 
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distributions occurred between 1800 and 1840. Though not conclusive, these patterns 

suggest an event that brought a majority of surviving trees into positions of preeminence 

within their respective stands. The rapid initial growth of the cohort initiated after 1800 is a 

further indication of available growing space, further supported by age structure and 

growth rates described at several nearby sites by Daniels and Watson (2003) and Hawkes 

et al. (2004).  

The scale of the series of events starting ca. 1790 and their apparently persistent 

effects may be applicable to landscape management in the area, as one intense and 

widespread combination of disturbances shaped forest structure for centuries, establishing 

the dominance of the large “old veteran” trees that are now considered to be characteristic 

of old-growth forests in the region. Long-term fire exclusion and its effects on forest 

composition and structure are not compatible with the mixed-severity disturbance regime 

identified in this study (see also Harvey, 2017, Heyerdahl et al., 2013, Wong & Iverson, 

2004). Preparation of forests for the warmer and effectively drier decades projected under 

climate change scenarios (Dawson et al., 2008) will require re-establishment of more 

open-grown forests and a reduction in understory density to enable drought resilience in 

residual trees. 
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3.6. Conclusion 

Results of this study indicate that adjacency to canopy gaps created by partial 

disturbance provides significant increases in drought resistance in terms of radial growth, 

which implies concurrent availability of photosynthate for production of chemicals used to 

defend against bark beetle attack (Waring, 1987). The historical disturbance regime was 

such that canopy gaps, inferred by growth release in surviving trees, were more common 

prior to the exclusion of wildfire ca. 1920 and the subsequent proliferation of a dense 

understory (Wong & Iverson, 2004). Changes to the moisture regime driven by 

anthropogenic climate change and development of a dense understory due to wildfire 

exclusion will likely make hands-off preservation a less viable strategy over time. 

Increases in summer temperature are likely to put overstocked stands at a high risk of 

Douglas-fir beetle attack, which, if severe, would remove many of the older trees from the 

stand. This would reduce the density of the overstory substantially, but in the absence of 

low-intensity fire to reduce the density of the lower strata, the result would be a dense 

young stand.  Overstocking is also expected to increase the risk of stand-replacing crown 

fires as accumulated seedlings and saplings provide a route for flames to reach the main 

canopy and a fire can then spread easily between closely-packed canopies (Agee & 

Skinner, 2005). Furthermore, understory seedlings and saplings in multi-storied stands are 

often heavily utilized by western spruce budworm (Maclauchlan & Brooks, 2009), 

potentially increasing the pest population affecting older trees.  

Application of the silvicultural principles recommended for mule deer winter range 

(Dawson et al., 2007), particularly the thinning of young trees and basal area targets for 

larger trees, would provide the kind of structural conditions expected to increase drought 
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resistance based on the results of this study. Within Community Areas of Special Concern 

and other areas where harvesting is not a suitable solution, controlled burning could be 

used to manage understory density and create some canopy gaps, with antiaggregation 

pheromones used to discourage subsequent utilization of dead or damaged trees by 

Douglas-fir beetle (Ross & Wallin, 2008). Outside of mule deer winter ranges and special 

management areas, increased harvest levels in the next planned entry, inspired by the 

general scale and effect of the disturbances of the 1790s, may help bring production forests 

smoothly into a warmer and drier 21st century.   
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4. Douglas-fir beetle (Dendroctonus pseudotsugae) outbreak history inferred from 
tree rings, wood scars and resin pockets in the Cariboo-Chilcotin region of British 

Columbia 

4.1. Abstract 

Douglas-fir beetle is the primary tree-killing bark beetle attacking mature Douglas-

fir in central British Columbia, but its contribution to historical stand dynamics is 

unknown. I used two methods of tree ring analysis to develop a historical timeline of beetle 

activity. I selected tree-ring data from sites that had low lodgepole pine mortality in the 21st 

century mountain pine beetle outbreak with the goal of creating a chronology of growth 

release events driven primarily by Douglas-fir beetle. This approach may have been 

compromised by shifting tree species range margins over the past several centuries. I 

examined cross-sections of Douglas-fir for scars and resin pockets attributable to failed 

Douglas-fir beetle attacks, creating a timeline from 1695 to 2014 and providing further 

evidence for the attribution of these features to Douglas-fir beetle. Abundance of scars and 

resin pockets was less than would be expected in trees exhibiting growth release due to 

pheromone mediated mass-attack killing an adjacent competitor, suggesting that Douglas-

fir beetle has played a secondary role compared to wildfire and mountain pine beetle 

outbreaks in the stand dynamics of the region. Douglas-fir beetle activity appears to have 

passed a historical threshold in 2016 and should be monitored for changes in attack 

patterns.  
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4.2. Introduction 

Outbreaks of Douglas-fir beetle in the first decade of the 21st century appear to 

have exceeded the magnitude of previously recorded infestations in central British 

Columbia, raising concerns about unprecedented attack behavior by this native insect. 

Douglas-fir beetle is a bark-boring insect that attacks Douglas-fir and western larch in 

pheromone-mediated mass-attacks that are often fatal to the host tree (Walters, 1956). 

Walters (1956) estimated that a fully occupied Douglas-fir could contain 11,000 attacking 

beetles, while Belluschi et al. (1965) estimated that up to 3,000 beetles could be rejected 

by the host’s defenses without causing mortality. Eggs are laid beneath the bark and hatch 

in the same season; the larvae may mature in the same season or overwinter and pupate in 

the spring (Walters 1956). Maturation time is negatively correlated to temperature (Vité and 

Rudinsky, 1957), and spring flights are cued by warming temperatures following a cold period 

(Atkins, 1960). Douglas-fir beetle outbreaks in British Columbia have typically affected trees 

in clumps or small patches dispersed on the landscape (Erickson, 1992). 

Aerial Overview Surveys have identified areas affected by Douglas-fir beetle since 

1957, but survey standards changed in 2004 with the addition of Trace (<1% mortality) and 

Very Severe (>50% mortality) mortality categories. This change in survey standards 

introduces uncertainty into observations of trends in Douglas-fir beetle impacts. This 

survey record is also substantially shorter than the lifespan of the host tree species, 

providing an incomplete picture of the ecology of the host/pest system, which may be 

driven by stand dynamics or predisposing factors occurring at longer timescales. A longer 

baseline of Douglas-fir beetle activity, similar to those reconstructed for other bark beetle 

species using tree ring analysis (Axelson et al., 2010; Sherriff et al., 2011; Hrinkevich & 
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Lewis, 2011), is desirable to put current events in historical context at timescales more 

relevant to the long-lived host tree.  

Daily, seasonal, annual, decadal, and longer-term climatic trends all have an 

influence on the physiology of both bark beetles and their host trees, suggesting a cause for 

changing outbreak behavior as average temperatures in the region have trended upwards 

over the latter half of the 20th century (Dawson et al., 2008). Increased temperatures in 

spring and summer are expected to accelerate the maturation of Douglas-fir beetle larvae 

(Vité & Rudinsky, 1957), increasing the proportion of beetles completing development 

before winter and intensifying the synchronized spring attack in the following year. 

Increased drought stress resulting from observed and projected increases in temperature 

(Dawson et al., 2008) and global circulation anomalies leading to prolonged droughts 

(Mann et al., 2017) are expected to reduce the defensive capacity of the host by increasing 

water deficit and thereby reducing the pressure of oleoresin that provides the first line of 

defense against Douglas-fir beetle (Rudinsky, 1966).  

While the impacts of Douglas-fir beetle are typically dispersed across the landscape, 

they are not minor in an economic or ecological sense. Millions of dollars’ worth of 

standing timber has been affected in almost every year since 2000, and unrecovered 

volume supports extensive recruitment of snags and downed woody debris, providing 

habitats and resources to animals and understory plants (Hunter, 1990). These impacts are 

economically and ecologically significant, but relatively dispersed compared to the effects 

of spruce beetle or mountain pine beetle (Raffa et al., 2008), which have more extensive 

dendrochronological records (Sheriff et al., 2011; Hrinkevich & Lewis, 2011). I use two 

methods of dendrochronological reconstruction in this study to account for the typically 
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dispersed effects of Douglas-fir beetle. 

The first method of Douglas-fir beetle outbreak reconstruction follows the well-

established method of growth-release detection, where synchronous growth releases are 

attributed to mortality of adjacent trees when some evidence of the insect’s presence can be 

established (Hrinkevich & Lewis, 2011). This approach is limited in this situation by the 

powerful influences of wildfire and mountain pine beetle on stand dynamics (Alfaro et al., 

2004) and the typically patchy nature of Douglas-fir beetle (Negrón et al., 2001). Tree ring 

series from Chapter 3 are selected from sites that are predominantly Douglas-fir with 

current and historical evidence of minimal impact from the most recent mountain pine 

beetle outbreak.  

The second line of evidence is the dating of resin pockets and scars left at the location 

of failed Douglas-fir beetle attacks. Similar scars have been observed in a number of 

conifer species (Johnson & Shea, 1963; Belluschi et al., 1965), and have been used to 

support the reconstruction of mountain pine beetle infestations in lodgepole pine in the 

Chilcotin region of British Columbia (Hawkes et al., 2004), spruce beetle near Hudson 

Bay, Canada (Caccianiga et al., 2008), and red oak borer (Enaphalodes rufulus) in 

Missouri, USA (Muzika & Guyette, 2004). Resin pockets found in Douglas-fir have been 

attributed to Douglas-fir beetle since at least 1965, when Belluschi et al. (1965) marked the 

location of each entry wound in a number of attacked trees and waited several years before 

felling the trees and examining the wood at the attacked locations. They found both resin 

pockets and scars at the site of the observed attacks, and dated earlier scars to the year of a 

known spot outbreak in an adjacent patch.  

Douglas-fir beetle is only one disturbance agent among many others that individually, 
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or in combination have shaped the study area over time. Historical wildfires (reconstructed 

by Daniels & Watson, 2003; Hawkes et al., 2004; Axelson et al., 2010; Harvey, 2017), 

droughts (reconstructed by Case & MacDonald, 1995; Cook & Krusic, 2004; Wolfe et al., 

2001; Case & Macdonald, 2003; Hart et al., 2010), and mountain pine beetle outbreaks 

(reconstructed by Alfaro et al., 2010 with early surveys summarized by Erickson, 1992), 

are all potentially involved in the stand dynamics of the old-growth interior Douglas-fir 

forests under study. The interpretation of both growth release and scar/resin pocket 

frequency data to address the following research questions must be considered in the 

context of other disturbances potentially affecting the sampled stands. 

1. Can the evidence of Douglas-fir beetle attacks account for observed patterns of 

growth release, especially the widespread growth release described in Chapter 

3 following the regional drought at the beginning of the 19th century? 

2. Did historical Douglas-fir beetle outbreaks tend to follow periods of drought, 

or precede periods of growth release? 

3. Did historical Douglas-fir beetle outbreaks typically affect sites across the 

region? 

.  
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4.3. Methods 

4.3.1. Field and Lab Methods 

Local foresters provided locations of Douglas-fir beetle salvage logging operations 

that they knew to be inactive and accessible. Sites were visited to confirm the presence of 

cull piles (piled ends of logs that were removed prior to hauling due to undesirable features 

that would affect processing into wood products) that had not yet been burnt and that were 

large enough to provide 25 sample trees, without being so large as to pose a safety risk. Six 

sites that were a minimum of 4 km apart were selected (Figure 4.1).  

Cutoffs from the lower end of the first log were abundant at all selected sites, so 

sampling was focused entirely on sections with evidence that they had come from the 

bottom section of the tree (i.e. falling cuts or paint) to maintain consistency throughout the 

sample. Twenty-five cull sections were identified for sampling and two cross sections 5–

10cm thick were recovered from each: one at approximately the breast height of the tree or 

the highest point available on shorter samples, and the other just above the falling cut or 

lowest section. Nearly all sampled trees had visible evidence of successful bark beetle 

galleries and a few contained live beetles.  
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Figure 4.1: Sampled cull pile locations for Douglas-fir beetle outbreak reconstruction overlaid by a combination of Federal Forest 
Insect and Disease Survey and Provincial Aerial Overview Survey records of beetle-caused mortality identified by insect surveys 
from 1957–2013, Provincial helicopter-based mortality surveys from 2007–2014, and forest stands dominated by Douglas-fir. 
“Trace” severity (<1% mortality) not shown on map to reduce clutter. Five ringwidth chronologies labeled with three-letter codes.  
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Figure 4.2: Top: sampled cull pile at site H; photograph corrected for underexposure and 
white balance in Microsoft Office. Bottom: Cross sections collected at site K. Each site 
filled a midsize pickup truck.  



 

106 
 

Cross sections were flattened with a power plane to remove gouges from the 

chainsaw teeth prior to sanding then were sanded using a progression of grits to120 at 

which point scars and resin pockets could be reliably identified. Further polishing to 600 

grit was focused on the locations around identified scars to avoid the time and expense of 

sanding the entire cookie. 1200 and 2000 grit wet/dry automotive polishing sandpapers 

were used when the location of the scar within the annual ring was not easily discernable. 

Cross sections were sanded on each side as resin pockets at the site of Douglas-fir beetle 

attacks have been demonstrated to be less than 2cm in length in some cases (Belluschi et 

al., 1965).  

Each section was visually crossdated using marker years known from Chapter 3 and 

the year of death was identified to ensure each cross section came from a recently killed 

tree. Growth rings with scars or resin pockets were traced to the dated path, and the 

calendar year of each scar was recorded. Position within the ring was classified into early 

earlywood (first 33% of earlywood), mid earlywood (second 33%), late earlywood (third 

33%), and latewood. Distance to pith was measured to the nearest millimeter using a ruler. 

Each scar was classified as either a pocket (open, filled with resin) or a true scar (closed, 

not filled with resin). Scars appear to be formed where the cambium is interrupted by the 

failed gallery, while resin pockets are found above and below failed galleries and where 

attacking beetles were rejected before establishing a gallery (Belluschi et al., 1965; Figure 

4.7). 

Resin pockets bear resemblance to the phenolic lesions formed in conifers inoculated 

with blue stain fungi associated with bark beetles (diagrammed in Wong et al., 1977). 

Douglas-fir beetle also carries pathogenic blue stain fungi and the phenolic lesion response 
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is probably common among related species, but no studies of lesion formation following 

inoculation could be found in the published literature. With other host species, there is 

rapid expansion of lesions in the second week following inoculation (Raffa & Smalley, 

1988). The formation of necrotic lesions (resin pockets) is a common adaptive response in 

conifers that occurs in advance of the hyphae of the blue stain fungus (Berryman, 1972). 

The formation of a necrotic lesion follows both simple wounding and inoculation with blue 

stain fungi, but the development is faster in the inoculated wounds (Wong et al., 1977).  

Further lines of evidence suggesting Douglas-fir beetle as the agent responsible for 

the scars and resin pockets include observations of brood galleries in the phloem with 

adjacent scars in the xylem, and alignment of the scar dates with dates of recorded red and 

green attack in adjacent stands ( Figure 4.3 and  Figure 4.4). Beetles or parts of beetles 

were also found and many samples contained partially healed scars in the year preceding 

death, in some cases with identifiable frass (Figure 4.5). Scars were distinguished from 

resin pockets by the presence of an open wound subsequently healed over (Figure 4.6).  

Every cross section with one or more scars or resin pockets was scanned at 1200 DPI 

and ring width measurement was performed in the program Windendro (Regent 

Instruments 2014). Visual crossdating was confirmed using the program COFECHA 

(Holmes, 1983). Previously crossdated samples from nearby sites were used to corroborate 

the assignment of calendar years in samples where too few trees were present within the 

site to build a master chronology. Measurement paths were initiated from the estimated 

location of pith on trees left hollow by rot so as to provide an estimate of the basal area at 

particular dates. Ringwidth measurements around rotten sections were allowed to deviate 

from the master series used for crossdating in order to provide the best possible estimate of 
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the size of the tree at a particular date despite the rot obscuring the rings. 
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Figure 4.3: Partially healed injury in the year prior to death of tree D09, photographed 
before (top) and after (bottom) sanding of the bark to reveal resin saturation of the apparent 
gallery. Photographs cropped but not manipulated with regards to color or contrast.  

1 cm 
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Figure 4.4: Injury to tree D09 in the year prior to being killed by DFB. Photograph cropped 
but not manipulated with regards to color or contrast. White arrows mark the bounds of the 
apparent gallery in the bark. 

1 cm 
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Figure 4.5: Progression of scar formation: A: Scar with extensive traumatic resin duct 
formation (top triangle); apparent resin-filled entry tunnel (middle triangle), and frass 
(bottom triangle) from a tree at Esler Canyon (an early reconnaissance site not large 
enough to fully sample). B: Deceased Douglas-fir beetle in current-year gallery, area 
impregnated with resin, tree D10. C: 2013 scar with apparent gallery tree M23; 2014 ring 
beginning to close over wound. D: 1990 scar, mirrored in the bark tree K20. 

A B 

C D 
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Figure 4.7: Mountain pine beetle (black arrow) arrested within the bark of lodgepole pine 
by defensive resins. A resin pocket would be identified in a cross-section above this point 
while a scar would be found at the level of the failed gallery. Underexposure of original 
image corrected in GIMP 2.0. 
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Figure 4.8: Six of eight scars in tree M23 in 2013; note the relative widths of the scar and 
the resin-impregnated area in the phloem, the heavy production of resin ducts radiating 
from all scars in 2013 (circled in E) and 2014 especially in C, and the discoloration of the 
sapwood especially in A and F. Measurements of B were made on the opposite side of the 
cookie; pencil slash is a reminder to not count the same scar twice. 

A 

F E 

D C 
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4.3.2. Selection of ringwidth chronologies for growth release reconstruction 

I subsampled the dataset previously used in Chapter 3 by selecting sites with minimal 

mortality attributed to mountain pine beetle in the 21st century outbreak.  A 500-meter 

radius buffer (78.54 ha) was generated around the locations of all sites using ArcGIS. 

Aerial overview survey records for mountain pine beetle from the years 2001 to 2013 were 

merged into a pair of individual layers. The site buffer layer and merged aerial overview 

surveys were overlaid using the intersect tool in ArcMap Desktop 10.2, resulting in a 

dataset retaining all the records of severity within each buffered area.  

British Columbia standards for aerial overview surveys were used to assign mortality 

coefficients to the severity codes, such that Trace = 1%, Light = 10%, Moderate = 29%, 

Severe = 40% and Very Severe = 60% mortality of Douglas-fir 

(https://www.for.gov.bc.ca/hts/risc/pubs/teveg/foresthealth/assets/aerial.pdf accessed 

2017). These mortality coefficients were multiplied by the area affected within the buffer, 

and extended to the tree level by multiplying by a hypothetical 100 potentially susceptible 

trees per hectare (coefficient*area*100 trees/ha). A pivot table was generated to calculate 

the sum of the total affected trees at the site level. The process was repeated for Douglas-

fir beetle outbreak surveys over the same period for the increment core sites from Chapter 

3 and the six sites sampled for this chapter.  

Estimates of annual tree mortality attributed to Douglas-fir beetle were made by 

assessing overview survey data from 1957 to 2013 based on severity codes and area 

affected. Responsibility for comprehensive forest health surveys passed from the federal 

government to the provincial government in 1999 following a brief period without data in 

some regions of British Columbia. The provincial Aerial Overview Survey added two new 

https://www.for.gov.bc.ca/hts/risc/pubs/teveg/foresthealth/assets/aerial.pdf
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severity classes in 2004: “trace” indicating 1% or less current mortality and very severe 

indicating >50% current mortality. The addition of the “trace” category can exaggerate 

change over time as far more area is recorded under attack compared to older surveys. The 

same severity coefficients as above were multiplied by the total area of each polygon, and 

raw count data from helicopter-based surveys were added where available 

(https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ accessed 2017).  

4.3.3. Analysis: growth releases 

Ring width data for the selected sites were exported to the R package TRADER 

(Altman et al., 2014) for identification of growth releases, and a release event was defined 

as a year in which the 20-year average basal area increment following the subject year 

exceeded the 20-year average preceding the subject year by at least 50% (adapted from 

Nowacki & Abrams, 1997). The selection and validation of these parameters is described 

in Chapter 3. I used two metrics of growth release: initiation of growth release events, 

defined as the year in which the maximum increase in growth rate occurred, and ongoing 

release, defined as years in which the rate of increase was >50%. The latter metric is less 

conservative as it may include years prior to the actual event due to the length of the 

periods considered before and after each subject year, the rapid initial growth in young 

trees, and ongoing growth increase many years after the event that opened the growing 

space. The value of the metric is that it quantifies the duration of the period where growth 

was increasing. The same growth release metrics calculated for the increment core data 

were computed from the ring width series measured from the cross sections.  

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
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4.3.4. Analysis: scars and resin pockets 

Using cross-sections collected from cull piles at the six harvested sites, only scars and 

resin pockets more than 6.35cm from the pith were considered for analysis. This radius 

corresponds to the minimum diameter considered in Douglas-fir beetle risk assessment 

(Hood et al., 2007) and earlier studies of host-finding behavior (Rudinsky, 1966). While 

smaller trees may be attacked, the 12.7cm diameter (6.35cm radius) was used to avoid 

counting scars created by other, normally secondary bark beetle species that favor saplings 

(Walters & McMullen, 1956; McMullen & Atkins, 1962).  Every effort was made to avoid 

counting small sealed fire scars as Douglas-fir beetle scars, and several dozen scars that 

bore some resemblance to those described by Smith et al. (2016) were discarded from the 

final analysis. Sealed fire scars may be formed by heat damage to the cambium that does 

not cause an open wound, and I considered a scar to be suspect and discarded it if I found 

an abundance of traumatic resin ducts after the year of the scar, a misshapen appearance 

unlike the examples photographed here, or saturation of the wood beneath the scar with 

resin (Smith et al., 2016).  

Sampling for scars and resin pockets is expected to be most effective in cases where 

the subject tree is showing a growth response to the death of a competitor in a pheromone-

mediated mass attack: a tree that is close enough to show a growth response to the death of 

its competitor will fall within the zone of attraction created by the female beetle as she 

processes the resins of the host tree. Johnson & Pettinger (1961) calculated the average 

density of Douglas-fir beetle attacks within a radius of an attractive source (a windthrown 

or felled tree), and found all trees within 1.2 meters of the source were attacked, at an 

average rate of 33.3 attacks per square meter. At a range of 1.5–4.5 meters not all trees 
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were attacked, but the rate of attack among all trees averaged 5.6 attacks per square meter.  

At a minimum diameter of 12.7cm and a thickness of 6cm, the smallest samples 

considered in this study have a bark surface area of 239.3cm2, accounting for 479.7cm2 

with two samples from each tree. If the average rate of attack is 5.6 per square meter, there 

will be one attack per 0.178m2, or 1,780cm2, while a rate of 33.3 attacks per square meter 

corresponds to one per 300 cm2. At these rates of attack, one sampled tree in four should 

record an attack if it was within 1.5–4.5 meters of an attractive source, and evidence of 

attack should be left in every tree within 1.2 meters. Extrapolating that rate of attack to a 

range of diameters, any tree 48cm diameter, represented by two cross-sections each 6cm 

thick, would be expected to reliably record evidence of that attack (Figure 4.9).  

 

Figure 4.9: Rate of attack expected within the surface area represented by cross-sections of 
various diameters based on the rates described by Johnson & Pettinger (1961) at a distance 
of 0–1.2m and 1.5–4.5m from the sampled tree, assuming cookie thickness of 6cm and two 
samples per tree. 
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The rate of attack in smaller trees within the 1.5–4.5m radius of an attractive tree 

suggests that multiple trees would be required to record the event, though the odds are 

>50% in trees over 24cm diameter. This estimate serves as a minimum, as other work has 

found that logs with virgin female beetles attract many times more beetles than freshly cut 

logs without females (maximum 105 (fresh-cut log) vs. 3,259 (log with virgin females); 

Jantz & Rudinsky, 1966). In a pheromone-mediated mass attack (vs. the windthrown trees 

studied by Johnson & Pettinger (1961)) that attracted ten times more beetles, a higher rate 

of attack would be expected in adjacent trees, and these would be more likely to preserve 

scars or resin pockets. Trees in the immediate vicinity of a windthrown individual are 

likely to record the event if they are >24cm diameter, while trees close enough to record 

growth release due to the death of a competitor in a mass-attack organized by pheromone 

cues will almost certainly contain scars or resin pockets. 

I produced a simple timeline at the site level of the total number of scars and resin 

pockets per year.  I also aggregated all six sites by dividing the number of scars or resin 

pockets by the number of trees >12.7cm diameter in each year to account for changing 

sample depth over time. Three methods of aggregating data among the six sites were used 

to compare against previously published records of wildfire, drought, and mountain pine 

beetle: years where multiple scars or resin pockets were found within a single tree, years in 

which ten or more scars or resin pockets were found in the complete dataset, and years in 

which three or more sites each had one or more scars or resin pockets.  

4.4. Results 

Surveys conducted by the Canadian Forest Insect and Disease Survey and British 

Columbian Aerial Overview Survey and detailed helicopter surveys suggest periods of 
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Douglas-fir beetle infestation from 1961–1969, 1983–1985, 1989–1996, and 2000–2016 

(Figure 4.10). Within the latter period, 2000–2009 and 2014–2016 are most likely distinct 

events due to the reduction in mortality from 2010–2013. Mortality estimated from the 

2016 survey is markedly higher than any preceding year, or the cumulative total of any of 

the periods outlined in the 20th century. Estimated mortality in the “severe” class 

constituted a small portion of the total in most years in the 21st century, while this class 

was predominant in most years in the 20th century.  

Every site recorded some level of mountain pine beetle activity, while fixed-wing 

aircraft surveys identified Douglas-fir beetle mortality at 30 sites and detailed helicopter 

surveys found patches killed in the vicinity of an additional nine sites (Table 4.2). Five 

sites with the lowest recorded mountain pine beetle activity (BLU, EPI, GAR, SUG, WIL) 

were selected for further analysis.  

Mountain pine beetle accounted for more mortality than Douglas-fir beetle around all 

the locations sampled specifically for this study, though site P had very low mountain pine 

beetle activity compared to the others (Table 4.3). 
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Figure 4.10: Estimated number of trees killed by Douglas-fir beetle recorded by aerial 
surveys since 1957. “Trace,” “Light,” “Moderate,” “Severe,” and “Very Severe” are codes 
used in fixed-wing aerial surveys; “AoS Spot” refers to spot attacks identified in the fixed-
wing aerial survey, and “Helicopter” accounts for all trees tallied in helicopter-based 
surveys (helicopter data 2007-2013). 
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Table 4.1: Estimated mortality within 500m buffer around increment core sites from 2001 
to 2013. DFB = Douglas-fir beetle; MPB = mountain pine beetle. “% Total” columns 
indicate the estimated percentage of the total number of hypothetical trees (n = 7,854) 
affected. Rows highlighted in gray indicate the sites selected for further analysis. 

Code 
Elevation 

(m) 
DFB 
Fixed 

DFB 
Heli 

Total 
DFB 

Total 
MPB 

DFB % 
Total 

MPB % 
Total 

ABR 1,133 0 0 0 2465 0.0% 31.4% 
ACS 1,024 597 20 617 9838 7.9% 125.3% 
ALE 959 1330 62 1392 5542 17.7% 70.6% 
ALK 954 9 109 118 1723 1.5% 21.9% 
BCA 935 0 10 10 860 0.1% 10.9% 
BIG 1,261 73 12 85 1208 1.1% 15.4% 
BLU 871 25 25 50 432 0.6% 5.5% 
CAL 1,248 809 0 809 8088 10.3% 103.0% 
CAM 1,087 769 0 769 2397 9.8% 30.5% 
CHI 906 94 62 156 1780 2.0% 22.7% 
CTI 818 0 0 0 10403 0.0% 132.5% 
DCB 947 394 155 549 783 7.0% 10.0% 
DOG 1,136 149 13 162 1156 2.1% 14.7% 
ENT 910 161 88 249 2991 3.2% 38.1% 
EPI 1,262 442 89 531 120 6.8% 1.5% 
FUZ 1,068 0 24 24 1371 0.3% 17.5% 
GAR 1,239 0 52 52 113 0.7% 1.4% 
HAN 1,329 2 0 2 5172 0.0% 65.8% 
HAW 1,306 9 4 13 8430 0.2% 107.3% 
JKY 1,136 981 16 997 1917 12.7% 24.4% 
KCR 831 1706 29 1735 3557 22.1% 45.3% 
LEE 1,031 3329 37 3366 2468 42.9% 31.4% 
LEN 1,268 432 75 507 5790 6.5% 73.7% 
MAB 945 2797 133 2930 1305 37.3% 16.6% 
MAQ 931 0 0 0 4887 0.0% 62.2% 
MAY 1,127 4 18 22 2289 0.3% 29.1% 
MCL 679 0 19 19 2242 0.2% 28.5% 
MEL 939 0 3 3 5843 0.0% 74.4% 
MON 1,127 0 0 0 4485 0.0% 57.1% 
NEE 1,070 0 0 0 2900 0.0% 36.9% 
NOJ 1,016 0 0 0 3379 0.0% 43.0% 
NRA 970 0 31 31 3323 0.4% 42.3% 
PTI 1,005 0 36 36 4782 0.5% 60.9% 

PUD 967 0 6 6 3136 0.1% 39.9% 
PVA 786 4033 201 4234 872 53.9% 11.1% 
PYP 1,107 0 0 0 7106 0.0% 90.5% 
REN 988 1422 127 1549 2717 19.7% 34.6% 
RES 953 347 141 488 5398 6.2% 68.7% 
RIS 1,259 13 23 36 1927 0.5% 24.5% 
SOA 645 0 20 20 1305 0.3% 16.6% 
SUG 658 901 32 933 30 11.9% 0.4% 
TWA 839 0 5 5 5380 0.1% 68.5% 
WEX 1,013 589 75 664 4152 8.4% 52.9% 
WHI 857 42 54 96 4682 1.2% 59.6% 
WIL 677 53 181 234 524 3.0% 6.7% 
YUN 996 32 16 48 2151 0.6% 27.4% 
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Table 4.2: Summary tabulations of the preceding table: estimated mortality within the 
500m buffer around increment core sites from 2001 to 2013. DFB = Douglas-fir beetle; 
MPB = mountain pine beetle. “% Total” columns indicate the estimated percentage of the 
total number of hypothetical trees (n = 7,854) affected. 

 

Elevation 
(m) 

DFB 
Fixed 

DFB 
Heli 

Total 
DFB 

Total 
MPB 

DFB % 
Total 

MPB % 
Total 

Count 
 

30 36 39 46 
  Average 1,005 468 44 512 3335 7% 42% 

% Total 
 

6.0% 0.6% 6.5% 42.5% 
  min 645 0 0 0 30 0.0% 0.4% 

max 1,329 4033 201 4234 10403 53.9% 132.5% 
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Table 4.3: Estimated mortality of trees within the 500m buffer around cookie collection 
sites. DFB = Douglas-fir beetle; MPB = mountain pine beetle. “% Total” columns indicate 
the estimated percentage of the total number of hypothetical trees (n = 7,854) affected. 

Site Code 
Elevation 

(m) 
DFB 
Fixed 

DFB 
Heli 

Total 
DFB 

Total 
MPB 

DFB % 
Total 

MPB % 
Total 

D 1,303 71 25 96 1799 1.2% 22.9% 
H 1,328 0 19 19 6935 0.2% 88.3% 
K 967 72 16 88 2674 1.1% 34.0% 
M 1,000 831 39 870 3345 11.1% 42.6% 
P 897 63 41 104 311 1.3% 4.0% 
W 1,252 0 119 119 1370 1.5% 17.4% 

Count 
 

4 6 6 6 
  Average 1,125 173 43 216 2739 
  % Total 

 
2.2% 0.5% 2.8% 34.9% 

  min 897 0 16 19 311 0.2% 4.0% 
max 1,328 831 119 870 6935 11.1% 88.3% 
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The first growth release at site BLU was identified in 1760, during the initiation 

phase of the population under study, at a time when 100% of trees were accelerating their 

growth rate (Figure 4.11). Initiation of a growth release was identified in one tree in 1777, 

one in 1801 and three in 1809, at a time when 75% of trees were in accelerated growth 

phases. Two trees initiated growth release in 1847 and 1859, while less than 20% of trees 

were growing faster. Several trees initiated growth release between 1870 and 1910, while 

30% of trees were accelerating their growth rate. Growth releases were identified in one 

tree in a number of years from 1924–1945, and the proportion of trees continuing to 

increase in growth rate increased over that period. Site BLU was known to have been 

harvested in the 1960s, and a number of the trees record a growth release at that time.  
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Figure 4.11: Initiation of growth release and ongoing acceleration of growth in Douglas-fir 
at site BLU. “Light,” “Medium,” and “Severe” refer to 50, 100, and 200% rate of increase. 
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Growth release at site EPI occurred sporadically in no more than one tree per year 

from 1736 to 1796, except 1786 when two trees recorded release (Figure 4.12). Despite the 

continued initiation of new trees, only a small fraction experienced an accelerated growth 

rate prior to 1790. A total of 88% of trees had accelerated growth rates from 1800–1805, 

and nine of the sixteen trees present at the time recorded a growth release in that period, 

and an additional four had recorded a release by 1911. A general increase in growth 

occurred from 1840–1860, and eight trees recorded growth release during that time. 

Growth rates again accelerated in the 1930s, peaking at 55% of established trees in 1938 

and 1939, while 12 of the 20 trees established by that time recorded growth release 

between 1936 and 1941.  
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Figure 4.12: Initiation of growth release and ongoing acceleration of growth in Douglas-fir 
at site EPI. “Light,” “Medium,” and “Severe” refer to 50, 100, and 200% rate of increase. 
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Initiation of trees at site GAR was relatively abrupt, beginning around 1600 and 

completed by 1706 (Figure 4.13). Peaks in growth release and increasing growth rates 

occurred ca. 1650 and 1690 during this period of initiation. Every tree sampled at this site 

had accelerated growth from 1809–1811, while 18 of 20 trees recorded growth release 

between 1800 and 1810 and an additional tree recorded a release in 1812. Ongoing growth 

acceleration was found only in a small proportion of trees following this event, while two 

trees recorded initiation of growth release in 1844, 1861, 1867, 1874, and 1876.   

 

Figure 4.13: Initiation of growth release and ongoing acceleration of growth in Douglas-fir 
at site GAR. “Light,” “Medium,” and “Severe” refer to 50, 100, and 200% rate of increase. 
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Site SUG records several periods of increasing growth corresponding to events 

meeting criteria defining initiation of growth release, beginning ca. 1660, 1680, 1740, 

1770, 1800, 1880, 1900, 1940, and 1980 (Figure 4.14). The proportion of trees recording 

accelerated growth during these events generally decreased with time, as did the number of 

trees recording initiations.  

 

Figure 4.14: Initiation of growth release and ongoing acceleration of growth in Douglas-fir 
at site SUG. “Light,” “Medium,” and “Severe” refer to 50, 100, and 200% rate of increase. 
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Periods of growth release while stand initiation was ongoing at site WIL occurred 

beginning around 1675 and 1740, while growth increase affecting more than 50% of the 

trees at the site occurred ca. 1770 and 1810 after all sampled trees were established (Figure 

4.15). Growth acceleration in a fraction of the trees at this site was ongoing from 1840 

through 1900, and a number of trees recorded the initiation of growth release during that 

period. Only a few trees recorded growth release or accelerating growth during the 20th 

century.  

 

Figure 4.15: Initiation of growth release and ongoing acceleration of growth in Douglas-fir 
at site WIL. “Light,” “Medium,” and “Severe” refer to 50, 100, and 200% rate of increase. 
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The first resin pocket at site D was dated in 1718, followed by two in 1746 and one 

in 1747 (Figure 4.16). Increased frequency of resin pockets was observed in the early 20th 

century, and scar frequency peaked in 1931. Resin pockets were relatively frequent in the 

1967–1974 and again in 1987–1992. Some scarring and resin pockets dated to the first 

decade of the 21st century, and many scars were found in 2013 and 2014 before the stand 

was salvage-logged. Growth releases were recorded throughout the period where new trees 

were reaching sampling height, with peaks in 1760, 1800–1812, 1860, the 1930s/early 

1940s, and the late 1970s/early 1980s. 

 

Figure 4.16: Scars, resin pockets, and growth releases identified in cross sections at Site D. 
Total count of scars (red) labeled where the bar exceeds the standard Y axis. 
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Site H recorded the first resin pocket in 1716, but did not record a year with more 

than one scar or resin pocket until 1909 (Figure 4.17). Six scars and one resin pocket were 

found in 1920, and one scar in 1921. Four resin pockets were found in 1976. One pocket 

and four scars were counted in 1999, three scars in 2004, and two in 2010. The final years 

of the series included 11 scars and one pocket in 2013 and one scar in the process of 

healing in 2014. Growth releases peaked after 1800, in the 1890s, and the 1930s/early 

1940s.  

 

 

Figure 4.17: Scars, resin pockets, and growth releases identified in cross sections at Site H. 
Total count of scars (red) labeled where the bar exceeds the standard Y axis. 
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The first resin pocket at site K was recorded in 1732 (Figure 4.18). Three scars 

were counted in 1797, two scars and two resin pockets in 1798, two resin pockets in 1799, 

and six in 1801. Peaks during the 19th century ocurred in 1818, 1824, 1827/1828, 1839, 

1841, 1843, 1849/1850, 1868, 1873/1874, 1884, and 1898. Three resin pockets were tallied 

in 1935, 1947, and 1952, two in 1964, five in 1965, six resin pockets plus one scar in 1969, 

and two scars and one resin pocket in 1971. A peak in scarring occurred in 1990 with a 

total of 15, followed by five resin pockets in 1991 and five again in 1997. Six scars and 

three pockets were counted in 2009, followed by 11 scars in 2013 and four scars and one 

pocket in 2014 before the stand was harvested. Releases peaked in the 1740s, around 1810, 

and in the 1930s/early 1940s.  

 

Figure 4.18: Scars, resin pockets, and growth releases identified in cross sections at Site K. 
Total count of scars (red) labeled where the bar exceeds the standard Y axis. 
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Site M stands out for recording a large number of scars in 1770, two years after the 

first scar and resin pocket were recorded at the site in 1768 (Figure 4.19). Two resin 

pockets were recorded in 1836, and one scar and one resin pocket were found in 1854; 

throughout the rest of the 19th century no more than one scar or resin pocket was counted 

in any single year. Four resin pockets were counted in 1969, two in 1972, and one each in 

1971/1973. Scarring in the early 1990s peaked with 22 scars in 1993. Sporadic activity 

persisted until 2013, when 26 scars were recorded, and 2014, which contained five scars. 

Growth releases peaked in the 1770s, following 1800, the 1930s/1940s, and around 1980.  

 

Figure 4.19: Scars, resin pockets, and growth releases identified in cross sections at Site M. 
Total count of scars (red) labeled where the bar exceeds the standard Y axis. 
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The first scar at site P was counted in 1706 and the second in 1760; two resin 

pockets and three scars were found in 1794 followed by one scar in 1795 (Figure 4.20). 

Four scars were tallied in 1802, followed by one each in 1803, 1804, and 1806. Eight scars 

were located in 1866. Five pockets were found in 1919, four in 1938 and three in 1941. 

Scars or resin pockets were found in almost every year from 1966–1988, with peaks in 

1967, 1975, 1980, 1986, and 1988. Later peaks in frequency occurred 1992–1994 and 

2001/2002, but only a few scars and resin pockets were found in the final years of the 

series. Growth releases were frequent around 1860, the early 20th century, and in the 1930s.  

 

Figure 4.20: Scars, resin pockets, and growth releases identified in cross sections at Site P 
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Site W contains the earliest recorded resin pockets: a pair in 1695 (Figure 4.21). An 

additional four were tallied in 1750 and 16 scars were found in 1800. The most resin 

pockets were found in 1992 and these 12 were followed by several years in which one scar 

or resin pocket was identified. Five scars were dated to 2010, but only two in 2013 and 

none in 2014. Eight growth releases were identified following 1800, another five around 

1860, and 16 between 1920 and 1940. 

 

Figure 4.21: Scars, resin pockets, and growth releases identified in cross sections at Site W. 
Total count of scars (red) and resin pockets (black) labeled where the bar exceeds the 
standard Y axis. 
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Periods of increased growth release across the six sites occurred 1720–1760, 1770–

1780, 1800–1820, 1840–1880, and 1920–1940, and particularly high rates of growth 

release occurred in 1749, 1760, 1772, 1800, 1859/1860, and 1938 (Figure 4.23). The total 

percentage of the sample initiating growth release within a moving 11-year window 

reflects the percentage of trees increasing their rate of growth, though slightly fewer trees 

are meeting the release initiation criteria at any given time. 

 

Figure 4.23: Sampled Douglas-fir trees recording initiation of growth release (above 0% 
line) and ongoing release (below 0% line) as a percentage of total sample size in each year, 
displayed by site, with 11-year running total of initiations (total percentage, subject year 
plus preceding and following five-year periods). 
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Multiple scars or resin pockets were recorded within a single tree in a given year 

114 times between 1695 and 2014 (Figure 4.24).  

 

Figure 4.24: Years where one or more trees recorded multiple scars or resin pockets within 
a single year. Gray dashed line indicates the proportion accounted for by a single tree. 
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All drought metrics (Cook & Krusic, 2004; Case & Macdonald, 2003; Daniels & 

Watson, 2003; Hart et al., 2010) indicate that the last decade of the 18th century was drier 

than average (Figure 4.25), consistent with what has previously been regarded as a 

prolonged regional drought (Wolfe et al., 2001). Multiple fire scars in Douglas-fir were 

dated by Daniels & Watson (2003) to 1791, 1797, and 1800, and one scar was dated to 

1802 (the two fire chronologies constructed from lodgepole pine do not extend to this 

period). Evidence of Douglas-fir beetle presence from 1790 through 1802 includes several 

years with multiple scars or resin pockets within a given year, one year with 10 or more 

scars or resin pockets (1800), and one year in which three or more sites recorded one or 

more scars or resin pockets (1794; Figure 4.25). An increased frequency of years with 

multiple growth releases began at the turn of the 19th century and continued over the next 

two decades.  

Multiple sources indicate dry conditions in the study area from the mid–1830s 

through the late 1840s; three or more sites recorded scars or resin pockets in four of the 

years within that period and multiple scars within the same tree were found in four of these 

years (Figure 4.25). Multiple Douglas-fir fire scars were found in three years, and two 

years had one fire scar (Daniels & Watson, 2003). Hawkes et al. (2004) found fire scars in 

ten or more lodgepole pine during one year within this period, and Axelson et al. (2010) 

recorded fire scars in two of their three lodgepole pine sites. Growth release was recorded 

in four or more trees during two years within this period, and two or three trees showed 

growth release in two other years.  

Dry conditions in the 1920–1940 period are indicated by all precipitation 

reconstructions, though the pJJ reconstructions presented by Daniels & Watson (2003) 
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suggest a longer period of low precipitation beginning in the late 1890s (Figure 4.25). 

Cook & Krusic’s (2004) PDSI reconstruction point 30 indicates several years of negative 

PDSI in the 1890s and late in the decade of 1900, but does not support a continuous period 

of drought.  Erickson (1992) records a widespread outbreak of mountain pine beetle in the 

Chilcotin region from 1930–1935, also described by Alfaro et al. (2010) on the basis of 

scars left by failed attacks and growth releases in surviving trees. Growth releases occurred 

frequently in the 1930s, and 10 or more fire scars were found in 1922 and 1926 (Hawkes et 

al., 2004). Evidence for Douglas-fir beetle presence in this period includes three or more 

sites with at least one scar or resin pocket in 1920, 1921, 1923, 1926, 1931, 1935, 1937, 

and 1938, and multiple scars or resin pockets were found within a single tree in 1919, 

1920, 1921, 1923, 1924, 1931, 1935, 1936, 1937, and 1938.  

No consistency is found among the reconstructions of drought after 1950 (Figure 

4.25), and the frequency of scars attributed to wildfire drops precipitously over the course 

of the 20th century as human settlements expanded and wildfire fighting became more 

effective (Daniels & Watson, 2003). A severe outbreak of mountain pine beetle was 

surveyed in the late 1970s and 1980s (Erickson, 1992) and was described by both growth 

release and scars in lodgepole pine (Alfaro et al., 2010). Scars or resin pockets in Douglas-

fir identified in this study were found at multiple sites in the majority of years in the latter 

half of the 20th century, while the number of years with 10 or more scars is more limited. 

Aerial surveys suggest that Douglas-fir beetle mortality peaked in 1966, a year when three 

or more sites were affected. Multiple scars or resin pockets were found within one tree in 

1967, and every year from 1969 through 1974.  

The surveyed Douglas-fir beetle mortality in the late 1980s and early 1990s 
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coincides with a number of scars and resin pockets, including multiple scars and resin 

pockets within a single tree in every year from 1983 through 1994 (except 1989), and 10 or 

more scars or resin pockets in 1986, 1987, 1988, 1990, 1992, and 1993. Three or more sites 

were affected in every year from 1983 through 1993 except from 1986 and 1989. Lower 

streamflow in the Chilko River was reconstructed from 1979 through 1988 (Hart et al., 

2010), and 1988 and 1989 are two of the driest years in the instrumental record (Chapter 

2). Mountain pine beetle populations were rising at the time, but did not reach epidemic 

levels until the 21st century (Shore et al., 2004).
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Figure 4.25: Mountain pine beetle, wildfire, and drought histories inferred from tree ring analysis and annual insect surveys 
compared to scars attributed to Douglas-fir beetle attack. “Growth Release” is coded gray when two or three trees and black for four 
or more trees were recording growth release in a given year. “DFB Mortality Estimate” (see Figure 4.10) is coded gray when >5,000 
and black when >50,000 trees were estimated to have been killed. Cook & Krusic’s (2004) PDSI reconstructions are coded gray 
when between 0 and -0.5, and black when below -0.5. Daniels & Watson JJA = reconstructed June, July and August precipitation 
total at their site near Williams Lake; Daniels & Watson pJJ = reconstructed previous-July through current-June precipitation total at 
their site near Williams Lake. All records under the “Drought” heading except Cook’s PDSI reconstruction highlight only prolonged 
periods of low precipitation reconstruction values. Daniels & Watson 2003 fire records coded gray when only one tree at one site 
recorded a fire and black when two or more trees were affected at a single site or trees at two or more sites were affected. Harvey 
2017 indicates years in which >25% of trees at the Churn Creek Protected Area study site recorded a wildfire. Hawkes et al. 2004 
coded black if 10 or more trees recorded a fire scar. Axelson et al. 2010 coded black if two or more sites recorded a fire and gray if 
fire scars were found at only one site. Erickson 1992 coded gray for localized infestations affecting <10,000 trees and black for 
larger infestations. Alfaro et al. 2010 coded black if two or more scars were attributed to beetle attacks in that year.
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4.5. Discussion 

This study corroborates previous work by Belluschi et al. (1965) attributing the scars 

and resin pockets found in cross-sections of Douglas-fir to failed attacks by the Douglas-fir 

beetle. In several cases intact or partial Douglas-fir beetles were found within galleries 

sealed off by defensive resins and there were many examples of apparently failed mass-

attack in years where local beetle populations are known to have been high. The longevity 

of interior Douglas-fir allowed the development of a chronology of failed attacks into the 

18th century (not counting the pair of resin pockets dated to 1695), exceeding a similar 

record established for mountain pine beetle using scars in lodgepole pine in the region 

(Hawkes et al., 2004) and on par with a chronology of resin pockets attributed to spruce 

beetle in white spruce near Hudson Bay, Canada (Caccianiga et al., 2008).  

The prolonged regional drought at the end of the 18th century has previously been 

established as a critical moment in the history of stands across this million-hectare study 

area due to widespread growth release implying mortality of competitors between 1790 

and 1800 (Chapter 3). Evidence for the regional presence of Douglas-fir beetle populations 

during this period is strong, though the frequency of scars and resin pockets is substantially 

less than the frequency of trees experiencing growth release at the beginning of the 19th 

century. Growth release in a survivor implies proximity to a tree that has died. In the case 

of trees killed by beetles, the survivor would be within the zone of attraction generated by 

beetle pheromones, suggesting that the survivor should also show signs of unsuccessful 

attacks. The difference between number of unsuccessfully attacked trees and number of 

trees experiencing growth release suggests another cause of mortality was driving the 
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widespread growth release in the early 1800s. This logic extends throughout the period 

under study, where growth releases affecting substantial fractions of trees at a majority of 

sites do not correspond to any peaks in scar or resin pocket frequency. The long-term 

perspective provided by this work suggests that Douglas-fir beetle is more responsive to, 

than responsible for, the mortality patterns affecting the interior Douglas-fir forest type at 

landscape scales in central British Columbia.  

The frequency of years with multiple scars or resin pockets on a single tree appears to 

have been increasing over the past century, as does the number of years where three or 

more sites were affected. There are several explanations for this phenomenon which may 

interact additively or synergistically. First, there has been an increase in temperature over 

the past 50 years with a statistically significant trend (Dawson et al., 2008), which may 

affect the development time of the beetle. An increase of two degrees Celsius, depending 

on the starting temperature, may allow the beetle to progress from egg to flight-ready adult 

a week to a month faster (Vité & Rudinsky, 1957). The observed  increase in average 

temperature has been of this magnitude from 1950–2001, with Quesnel Airport increasing 

at a rate of 0.34°C and Tatlayoko Lake increasing at 0.22°C per decade, implying a 1.1–

1.7°C increase over the latter half of the 20th century. 

The second explanation is a demographic wave in the host population, resulting from 

disturbances that more or less synchronized the development of stands across this 

landscape, causing a large proportion of forested areas to become vulnerable over the past 

several decades. A synchronous growth release evident in the 1930s has been attributed to 

the widespread mountain pine beetle outbreak affecting the region at the time and to a 

number of natural and accidental wildfires (Alfaro et al., 2010). A disturbance or series of 
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disturbances at the end of the 18th century had a similar effect on tree growth (Chapter 3), 

and all six sites show a growth response following both of these periods. Ingrowth and 

crown expansion would have filled many of the gaps created by the 1930s disturbances by 

the latter half of the 20th century, and most mature survivors would have been of a 

vulnerable size after decades or centuries of free growth. In the sampled stands, very few 

trees recorded growth release after 1950. The ready supply of mature trees facing heavy 

competition from below (Wong & Iverson, 2004) would facilitate the steady growth of 

endemic Douglas-fir beetle populations, which had outbreaks in the late 1980s and early 

1990s, mid to late 2000s, and from 2013 to present.  

Finally, the transition from a fire-driven disturbance regime to a mountain pine beetle-

driven disturbance regime described by Axelson et al. (2010) in lodgepole pine forests in 

the Chilcotin region may also be occurring in the region’s Douglas-fir forests. Fire 

frequencies are known to have declined since the early 1900s throughout the region 

(Daniels & Watson, 2003, Harvey, 2017), and inter-tree competition has increased as a 

result (Wong & Iverson, 2004). An abundance of mature trees that might otherwise have 

died in natural wildfires may be fueling increased Douglas-fir beetle outbreak intensity in 

the same way that mountain pine beetle has been facilitated by abundant mature and over-

mature host stands.  

The sites studied were selected for their lack of mountain pine beetle infestation in the 

current outbreak due to the lack of available lodgepole pine in the stands. Elimination of 

other disturbance agents as the origin of the growth release, leaving only mountain pine 

beetle, suggests that disturbance may have fundamentally altered the species composition 

of low-elevation stands. Stands in the Chilcotin and Fraser River valleys are presently 
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dominated by the Interior Douglas-fir very dry-mild ecosystem subzone, which typically 

has very little lodgepole pine except on glaciofluvial terraces (Steen & Coupé, 1997). 

Lower temperatures during the Little Ice Age (Bradley & Jonest, 1993) could have 

permitted the Interior Douglas-fir dry-cool ecosystem subzone (Steen & Coupé, 1997) to 

extend further downslope. This subzone commonly includes lodgepole pine and was 

heavily impacted by the mountain pine beetle outbreaks of the 1930s, 1970s, and 2000s 

(Alfaro et al., 2010; Figure 1.5). An outbreak coming at a time of climatic change may 

have led to a regeneration failure in lodgepole pine at low elevations, allowing the current 

Douglas-fir dominated stand structure to become established. 

Average summer temperatures in North America and the Northern Hemisphere in 

general are estimated to have been 0.5–1.5°C cooler during the 16th and 17th centuries 

compared to the 1860–1959 baseline (Bradley & Jonest, 1993). Temperatures rose to this 

baseline between 1760 and 1800 (Bradley & Jonest, 1993), coincident with the widespread 

growth release of Douglas-fir. Tree species range expansions have been documented at 

alpine treelines in North America, Europe, and Asia following recovery from local Little 

Ice Age temperature depressions correlating to the rise in temperature (Lescop-sinclair & 

Payette, 1995; Bogaert et al., 2010; Kharuk et al., 2010), coincident with growth 

accelerations in trees within Little Ice Age treelines. Ecosystem change in the valleys of 

the Chilcotin and Fraser Rivers may parallel these alpine dynamics, though only fine-

resolution sediment core analysis could confirm the species shift (e.g. Morris et al., 2017).  
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4.6. Conclusion 

The long-term historical baseline of Douglas-fir beetle activity established in this study 

is consistent with Walters (1956), Johnson & Belluschi (1969), and McGregor (1975), who 

identified DFB outbreaks following droughts, windthrow, and other predisposing events 

but not driving mortality or stand dynamics with the same regularity or magnitude as 

mountain pine beetle or wildfire. There is no evidence in these data that any historical 

outbreak exceeded the magnitude of the 21st century outbreaks. This permits the use of 

2000–2015 aerial survey data as a baseline for comparison of 2016 data, which were all 

collected using consistent survey methods. The magnitude of mortality estimated from 

2016 survey data exceeds that of any other year in the 21st century by a wide margin, and 

suggests that the Douglas-fir beetle population is higher than it has been at any point in 

recent history. Projections of continued regional warming (Dawson et al., 2008), increased 

stagnation of weather systems due to atmospheric circulation anomalies (Mann et al., 

2017), and accumulation of Douglas-fir regeneration providing competition from below 

(Wong & Iverson, 2004) suggest that outbreaks of DFB in the future may exceed historical 

limits due to  changes in stand structure and climate 
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5. Reconsidering western spruce budworm outbreak history inferred from the 
annual growth of host and non-host tree species in central British Columbia 

 

5.1. Abstract 

Western spruce budworm is a common pest of Douglas-fir in western North 

America, and its historical influence in southern British Columbia is well documented. 

Outbreak history at the northernmost extent of its present range in British Columbia is less 

clear. The discrepancy among studies describing outbreak history may stem from the 

dendrochronological approach used, where the mean ringwidth index of a population of 

non-host ponderosa pine is subtracted from the ringwidth index of individual host 

Douglas-fir to compensate for the influence of regional climate. These methods are applied 

to a collection of Douglas-fir ringwidth chronologies from 45 sites distributed throughout 

and beyond the range of the recent 800,000-hectare outbreak, using a ponderosa pine 

chronology from an adjacent region. Periods of relatively low growth in Douglas-fir are 

identified matching those previously identified as outbreaks, but with a synchrony and 

spatial distribution that suggests abiotic mechanisms. The growth differential of Douglas-

fir relative to ponderosa pine that could be interpreted as widespread outbreaks in the 20th 

century and before may be due to differences in precipitation between regions favoring the 

ponderosa pine population.  
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5.2. Introduction 

Western spruce budworm (WSB; Choristoneura freemani = C. occidentalis) is a 

defoliating insect native to western North America, where periodic outbreaks affect 

populations of Douglas-fir (Pseudotsuga menziesii), true firs (Abies spp.), western larch 

(Larix occidentalis) and white spruce (Picea glauca) at landscape scales (Nealis, 2016). 

Adult western spruce budworm moths emerge in July and August and disperse after 

depositing a portion of their eggs on needles remaining at their original site (Nealis, 2016). 

They then fly to seek new host material before laying the remainder of their eggs on 

needles at the new site. The eggs are laid and hatch in the same year. Attraction of the 

freshly-hatched larvae to light leads to overcrowding on the branch tips where the eggs 

were laid, causing many larvae to disperse on silken threads (Wellington & Henson, 1947). 

This dispersal may cause larvae to fall to lower branches or lower canopy horizons, or the 

larvae may be carried by wind above the canopy to new locations (Wellington & Henson, 

1947). When the larvae reach an appropriately rough surface after their initial dispersal, 

they spin hibernaculae, moult, and overwinter (Nealis, 2016). Emerging second-instar 

larvae disperse again, moving to branch tips and potentially falling to lower levels or being 

dispersed on silken threads during windy conditions (Wellington & Henson, 1947). After 

this second dispersal, the larvae feed by mining into old needles or the swelling buds 

(Nealis, 2016).  

Outbreaks of WSB are driven by temperature trends that promote synchronous 

budburst (accumulation of degree days after a certain day length) and larval emergence 

(degree days without regard to day length) (Thomson et al., 1984; Thomson & Benton, 

2007). The larvae must emerge early enough to enter the buds as they begin to swell, thus 
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accessing the foliage while it is still succulent and lacking chemical defenses, without 

being too early, which could expose the larvae to cold temperatures and starvation (Nealis, 

2016). The ideal timing of WSB larval emergence in southern British Columbia has been 

calculated at 18 days prior to budburst (Thomson et al., 1984). The range of WSB is 

expected to expand to higher elevations and latitudes under a warmer climate scenario as 

this temperature shift favors optimal phenological synchrony between larval emergence 

and budburst in these areas (Marciniak, 2015). A widespread outbreak at the northernmost 

known extent of the species range in central British Columbia may represent an example of 

substantial range expansion in the 21st century. This region is known as the Cariboo-

Chilcotin (alternatively the Cariboo forest district) and is located in the Interior Plateau of 

British Columbia (Figure 5.3).  

Western spruce budworm outbreaks are common throughout southern British 

Columbia in the 20th century, affecting Douglas-fir forests most extensively but also 

impacting true first, larch, and spruce (Maclauchlan et al., 2006) . Severe outbreaks 

extended to approximately 51° North in the vicinity of Lillooet during the 20th century 

(Erickson, 1987). North of Lillooet, the Cariboo-Chilcotin region has had no recorded 

infestations except for several patches of defoliation recorded in 1975 near Riske Creek 

and in 1987 near Quesnel Lake (Erickson, 1992; Figure 5.3). This northern region is 

ecologically distinct from interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests 

in southern British Columbia and the Rocky Mountains in the United States. Ponderosa 

pine (Pinus ponderosa) is absent while lodgepole pine (Pinus contorta) is abundant, and 

outbreaks of the mountain pine beetle (Dendroctonus ponderosae) are especially common 

and severe (Alfaro et al., 2010). 
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Ponderosa pine is the typical associate of Douglas-fir on dry aspects in Rocky 

Mountain forests in Idaho and adjacent British Columbia, while pure ponderosa pine 

commonly occupies a belt between mixed Douglas-fir/ponderosa pine forests and 

grasslands where the retention of winter snowpack is insufficient for the survival of 

Douglas-fir seedlings (Daubenmire & Daubenmire, 1968). Only a small population of 

ponderosa pine is found in the Cariboo-Chilcotin, in the lowest elevation areas in the 

Fraser River valley at the southern limit of the study area (Figure 5.1).  

Lodgepole pine in the Cariboo-Chilcotin region is less drought resistant than Douglas-

fir (Brix, 1979). Douglas-fir is found in pure or nearly pure stands in the dry valley 

bottoms and slopes adjacent to grasslands, while lodgepole pine becomes more abundant 

with elevation and becomes the dominant species in the uplands, where it is often mixed 

with spruce. Lodgepole pine in the Cariboo-Chilcotin has one of the most extensive 

records of mountain pine beetle infestation in the province (Alfaro et al., 2010) and the 

influence of these outbreaks on the growth of Douglas-fir is substantial where the two 

species co-occur (Hawkes et al., 2004). Mature lodgepole pine was almost completely 

eliminated from mixed stands by the mountain pine beetle outbreak of the 2000s, and had 

previously experienced widespread mortality in the outbreaks of the 1980s and 1930s 

(Erickson, 1992).  
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Figure 5.1: Present range of ponderosa pine, lodgepole pine, and Douglas-fir in southern 
portion of the study area and adjacent regions, overlaid by Chasm Provincial Park and the 
regional centers of Lillooet and Kamloops. BC VRI data used under Open Government 
License 2.0. 
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The extent of the 800,000-hectare WSB outbreak in the Cariboo-Chilcotin region 

(2001-2015) is without precedent in the written record, but the outbreak was highly 

variable spatially and temporally. At many locations along the northern and western edges 

of the outbreak, defoliation was limited to dry valleys and slopes despite an abundance of 

available host in upland areas. Unfavorable climatic factors may explain the apparent lack 

of defoliation, for example insufficient degree days for maturation or poor phenological 

synchrony between budburst and larval emergence preventing feeding. While upland 

Douglas-fir stands may presently be climatically suboptimal for WSB, they are projected 

to be at higher risk of infestation by the 2020s (Murdock et al., 2013). 

Knowledge of historical outbreak patterns can be used to determine risk of expansion 

of insect infestations into novel areas due to climate change, forest management practices 

or other influences on forest and insect dynamics (Ryerson et al., 2003; Flower et al., 

2014). Tree growth is affected by defoliation (Alfaro et al., 1982), therefore tree ring 

analysis can be used to develop long term outbreak chronologies that go beyond the 

limited extent of historical survey records. Swetnam et al. (1985) developed an outbreak 

reconstruction method for WSB that uses a non-host species as a climate control, which 

has since been applied in the reconstruction of several spruce budworm species, insect 

defoliators in hardwoods and softwoods, and fungal diseases of conifers (Case & 

MacDonald, 2003; Zhang & Alfaro, 2003; Huang et al., 2008; Flower et al., 2014; Welsh 

et al., 2014; Robson et al., 2015). 

An important assumption underlying the use of a non-host as a climate control is that 

both the host species and the non-host respond similarly to climate. A study of the potential 

use of Douglas-fir and ponderosa pine in tree-ring reconstructions of historical climate in 
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the southern Cariboo-Chilcotin found that the growth trends of both species growing in the 

same stands were similar (Watson & Luckman, 2002). They also concluded that there was 

little evidence of differential growth due to insect infestations in the 20th century. 

Comparison of host and non-host species growing in the same stand should result in an 

overestimate of the severity of any outbreak as the defoliation of the host gives adjacent 

non-host trees a competitive advantage (Swetnam et al., 1985).  

A more recent dendrochronological study of WSB outbreaks in the Cariboo-Chilcotin 

identified a number of widespread and severe events prior to the 21st century, notably ca. 

1900–1910 and 1935–1950, both prior to the beginning of aerial forest health surveys in 

1957 (Axelson et al., 2015). This study used a tree ring chronology developed from 

populations of ponderosa pine near Kamloops to account for climatic influences at 11 

Douglas-fir sites in the central, southern, eastern and western portions of the 21st century 

outbreak. Periods were identified as budworm outbreaks when the detrended ringwidth 

index of individual Douglas-fir trees was substantially lower than the mean detrended 

index of the ponderosa pine populations around Kamloops for at least eight years.  

Axelson et al. (2015) demonstrated that the Cariboo-Chilcotin region had a history of 

WSB outbreaks prior to the large scale outbreak starting in 2001. The outbreak history in 

areas further north and upward in elevation from their study was unknown but of great 

interest considering the potential for range expansion and increases in severity of outbreaks 

due to climate change. 
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The objectives of my study were to: 

1. Reconstruct outbreak history of western spruce budworm at and beyond the 

edge of the 21st century infestation 

2. Examine climate factors that contributed to historical outbreaks 

3. Determine whether the timing of historical outbreaks in the western Chilcotin 

region is consistent with immigration, as appears to have been the case in the 

21st century outbreak, or irruption from an endemic population.  

Results of preliminary analyses of data collected for the first objective raised 

questions about the outbreak reconstruction approach, which led to the final research 

objective: 

4. Critically reassess regional western spruce budworm outbreak reconstructions 

by identifying other potential causes of differential growth between the host 

and non-host populations used to describe outbreak history. 
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Figure 5.2: Cumulative years of defoliation near the northern extent of surveyed defoliation in the Fraser River valley, with 
contiguous Douglas-fir forests in the upland region to the west. Contour interval is 25m, with thick contours at 100m. Aerial 
Overview Survey and Vegetation Resources Inventory data used under BC Open Government License 2.0.  
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5.3. Methods 

5.3.1. Site Selection and Field Methods 

As a point of reference for dendrochronological reconstructions, the annual 

progression of surveyed western spruce budworm defoliation from 2001 to 2013 

(https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ accessed 2013) 

was mapped and overlaid by the study site locations. Defoliation records (total years of 

defoliation, years of medium/severe rated defoliation) and mean annual precipitation data 

(www.climatewna.com accessed 2016) were attached to each site using a spatial join in 

ArcGIS.  

Sites used for reconstruction of historical outbreaks were selected in the context of 

their cumulative defoliation history in the current outbreak. Annual defoliation records 

(2000–2013) were retrieved from the BC Ministry of Forests website 

(https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/ accessed 2013) 

and internal boundaries were dissolved using standard tools in ESRI ArcGIS® software, 

yielding annual boundaries of affected area. The 14 resulting data layers were overlaid 

using the “Count Overlapping Polygons” plug-in tool 

(https://blogs.esri.com/esri/arcgis/2012/11/26/spaghetti_meatballs_one_to_many/) in 

ArcGIS®, generating a single data layer describing the total number of years that each area 

had been affected. A final overlay was performed to generate a data layer that identified 

areas with 6 or more years of surveyed defoliation from 2000–2013, of which at least one 

year was coded as medium or severe in the survey data. The resulting data layers were 

used to classify areas as severely affected (6 or more including one medium or severe 

record), moderately affected (3+ years at any level), lightly affected (1–2 years at any 

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
http://www.climatewna.com/
https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/
https://blogs.esri.com/esri/arcgis/2012/11/26/spaghetti_meatballs_one_to_many/
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level), and without any record of defoliation. These layers were exported to Google Earth® 

to inform the site selection process.  

Aerial imagery in Google Earth® (dated 2005, accessed 2013 and 2014) was used to 

identify stands that had not been previously logged and were likely to contain old trees. 

Three main criteria guided the sampling design: 

1. A number of well-distributed sites covering all four categories of defoliation 

defined above: heavy, moderate, light, and no record of defoliation. 

2. Heavy sampling along the Chilcotin River valley, which suffered severe defoliation 

later than the central area. This delay could be due to immigration rather than an 

irruption from a ubiquitous endemic population, which may or may not be a regular 

feature of outbreaks in the region. 

3. Collection of several sites that escaped 21st century defoliation in the higher 

elevation area west of the northernmost “arm” of the current outbreak in the Fraser 

River valley and several adjacent sites in the heavily defoliated lower elevation 

areas for comparison. 

A number of suitable candidate sites were identified for each of the categories above. 

The largest stands were visited first and were sampled immediately if no cut stumps were 

evident and trees over 250 years old were present. A total of 45 sites were sampled in the 

2013 and 2014 field seasons (Figure 5.3). 
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Figure 5.3: Map of study sites overlying the cumulative defoliation history from 2001–2013 and the range of Douglas-fir leading 
stands according to the British Columbia Vegetation Resources Inventory (2016). 20th century defoliation at Quesnel Lake and Riske 
Creek indicated in brown. The Chilcotin region is the area west of the Fraser River; the Cariboo is east of the Fraser. 
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At each site a transect line was established perpendicular to the prevailing slope. 

Every 20m along the transect line, two trees sampled up to a total of 20 trees. Two 5.1mm 

increment cores were taken at breast height from opposite sides of each tree, perpendicular 

to the slope to avoid reaction wood (Speer, 2010). Acceptable trees had no obvious signs 

of damage to the trunk and no dead branches below approximately 2 meters (an indication 

of older trees). A photo of each tree was taken for later reference. Tree and stand attributes 

were measured in 3–5 fixed radius plots along each transect and included diameter at 

breast height, species, and stand density. 

Ponderosa pine chronologies collected near Kamloops, British Columbia, were 

provided by Lori Daniels of the University of British Columbia Tree Ring Lab in 

Vancouver. This chronology provides a sample depth of four or more trees from 1677–

2011. Kamloops is 82km from the southernmost site MON near Monkian Lake, and 302 

km from the westernmost site PYP near Pyper Lake.  
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5.3.2. Laboratory Preparation 

Increment cores were glued to individual wooden mounts and sanded with 

progressively finer grits to 600 (Stokes & Smiley, 1968). All cores were visually 

crossdated using a combination of the list method and the memorization method (Speer, 

2010). The list method was used to identify marker years in the first several sites to be 

crossdated until a number of regionally consistent marker years were identified.  

Visually crossdated increment cores were scanned in batches of 8–20 at 1200 DPI 

using an Epson® 1640XL flatbed scanner. Ringwidth measurements were made using the 

computer program Windendro® (Regent Instruments 2014) and crossdating was confirmed 

using the program COFECHA (Holmes, 1983). Cores or sections that were excessively 

damaged or otherwise impossible to crossdate reliably were discarded from the study, 

leaving 1,651 series from 886 trees at 45 sites.  

5.3.3. Outbreak Reconstruction 

All ring width series, both host and non-host, were standardized using a double-

detrending process where a modified negative exponential curve was fit to each series, 

followed by a 50-year cubic smoothing spline (Axelson et al., 2015). The 

dendrochronological program OUTBREAK (Holmes & Swetnam, 1996) was used to 

reconstruct historical outbreak periods by correcting detrended individual host-tree series, 

consisting of the average of two cores from each tree, with the detrended non-host mean 

chronology to remove the regional climatic trend from the host series. Program default 

settings were used to define outbreak thresholds: minimum 8 years below-average growth 

in the corrected series (allowing up to two years of positive deviation) and at least one year 
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of growth reduction below -1.28 standard deviations from the corrected series mean (as in 

Axelson et al., 2015). Reconstructed outbreaks were classified based on the percentage of 

trees recording an outbreak within each site, using the thresholds of 15, 50 and 75% to 

define light, medium, and severe outbreaks respectively (Axelson et al., 2015). Maps were 

generated for each regionally-synchronous outbreak period, displaying the maximum 

percentage of trees meeting outbreak criteria at each site overlaying the cumulative years 

of defoliation in the 21st century and the range of Douglas-fir leading stands. 

As there were a large number of sites involved in the study, scripts were developed 

utilizing the package dplR within the statistical package R (Version 3.2.2.; Bunn et al., 

2017) to create the detrended input files for the program OUTBREAK.  

Pearson correlation coefficients between detrended site-level chronologies and 

monthly average temperature and monthly total precipitation measured at the Williams 

Lake Airport (previous June to current August; http://www.ec.gc.ca/dccha-ahccd/) were 

calculated for the 1937–2012 period using the package treeclim (version 1.0.16) (Zang & 

Biondi, 2015) in the open source statistical program R (version 3.2.2;  script in Appendix 

A).  

To identify possible alternative explanations for patterns observed from the 

OUTBREAK results, detrended host and non-host chronologies were plotted for 

comparison, and periods of regionally synchronous reconstructed outbreaks were isolated 

from the plotted series for visual assessment. This led to a close re-examination of the non-

host ring width data provided from the Kamloops region, and of available ponderosa pine 

samples previously collected near Kamloops and stored at the UNBC Tree Ring 

Laboratory to confirm apparent growth trends. For initial visual analysis, the average 

http://www.ec.gc.ca/dccha-ahccd/
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detrended ring width chronology from the ponderosa pine series provided by Lori Daniels 

and a combined Douglas-fir chronology (all 45 sites) were plotted together.  

Individual ring width series making up the ponderosa pine chronology were 

converted to annual basal area increments in the R package dplR, and growth releases were 

identified using the R package TRADER (Nowacki & Abrams, 1997; Altman et al., 2014). 

Growth releases were defined as years in which the 20-year mean basal area increment 

following a given year exceeded the 20-year mean preceding the subject year by 50% or 

more. Releases were plotted by both the date of initiation (year of maximum increase) and 

the dates for which a growth release was ongoing (remaining above 50% rate of increase). 

Precipitation totals recorded from the previous June to current June (pJJ) were plotted 

for the Kamloops weather station from 1897 to 2012 and for the Williams Lake weather 

station from 1937 to 2012. Adjusted and homogenized monthly climate data for Kamloops 

(station elevation 345m) and Williams Lake (station elevation 940m) were retrieved from 

Environment and Climate Change Canada (http://www.ec.gc.ca/dccha-ahccd/ accessed 

2017) and pairwise correlations were calculated in Stata 12.1® between monthly 

precipitation totals, seasonal and annual precipitation totals, the sum of previous-June 

through current-June, and June, July and August precipitation at each weather station. 

Cook’s Palmer Drought Severity Index for the period 1640–1990 for the reconstruction 

grid points 30 (122.5W 52.5N, 90km north-northwest of Williams Lake) and 42 (120W 

50N, 76km south-southeast of Kamloops) were plotted as a point of reference for periods 

where weather station data were not available for both regions. Reconstructed PDSI values 

at point 42 were subtracted from those at point 30 to identify periods in which 

reconstructed drought severity was higher at one grid point than the other. 

http://www.ec.gc.ca/dccha-ahccd/
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Forest Insect and Disease Survey data for Douglas-fir beetle infestations 

(https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/FIDS%20data/ 

accessed 2017) were mapped to confirm the presence of aerial survey crews in the vicinity 

of study sites during a period when budworm defoliation was reconstructed.  

  

https://www.for.gov.bc.ca/ftp/HFP/external/!publish/Aerial_Overview/FIDS%20data/
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5.4. Results 

The most recent outbreak was first recorded at four locations in the central 

Cariboo-Chilcotin in 2001, and defoliation progressed outward from this region in 

subsequent years (Figure 5.4). Populations reached Alexis Creek in the central Chilcotin in 

2004 and became severe in that region in 2005. The outbreak reached its maximum 

western extent in 2007 and subsequently retreated, though defoliation remained extensive 

through 2011 (Figure 5.5). Sites in the plateau country immediately east of the Fraser River 

received the most cumulative years of defoliation, while the highest cumulative medium or 

severe defoliation occurred at site WIL near Williams Lake with a total of six years (Table 

5.1). Basal area per hectare in trees >15cm DBH ranged from 23 m2/ha at site ALE to 105 

m2/ha at site JKY, while the density of trees <15cm DBH ranged from 337 trees per hectare 

at site FUZ to 81,330 at site YUN. Lodgepole pine and trembling aspen seedlings were 

present at some sites, but are not included in the totals, which consider only Douglas-fir. 
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Figure 5.4: Annual progression of surveyed western spruce budworm defoliation, 2001–
2008. 
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Figure 5.5: Annual progression of surveyed western spruce budworm defoliation, 2009–
2013; total years of defoliation in the 21st century; maximum severity of defoliation in the 
21st century overlaid by site locations; stands with Douglas-fir listed as the leading, 
secondary, and tertiary species. 
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Precipitation in the previous summer had a greater number of positive correlations 

with ring width than current-summer precipitation, though the correlation with current-

June precipitation was uniform across all sites but MON, the site closest to the Kamloops 

region (Table 5.2). All significant precipitation correlations were positive, except for those 

in February. The Kamloops ponderosa pine chronology had similar correlations with 

precipitation compared to the rest of the dataset: positive in the previous June, July and 

August, negative in February, and positive in the current June.  

Monthly temperature/ring width correlations were less consistent, but when 

significant, were negative in both previous and current-summer months (Table 5.3). 

Growth at several sites showed positive correlations with the temperature of the preceding 

November and current February, while ring width at site GAR had a negative correlation 

with the temperature in March. 

Only a few correlations for either temperature or precipitation were significant in 

March, April and May, and none were significant in the current August (Table 5.2, Table 

5.3).   
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Table 5.1: Site attributes; 21st cent. = total years of defoliation; Med/Sev = years in which 
defoliation was recorded as medium or severe. MAP = mean annual precipitation; BAPH = 
basal area per hectare (m2) in trees >15cm DBH; TPH is trees per hectare <15cm DBH. 

Code 21st Cent. Med/Sev Elevation (m) Latitude Longitude MAP BAPH TPH 
ABR 0 0 1,133 51.7438923 -123.0118885 356 39 12,818 
ACS 4 2 1,024 52.0117549 -123.2996988 341 82 2,147 
ALE 6 2 959 52.0683102 -123.4077121 334 23 2,147 
ALK 10 1 954 51.7834782 -122.1876281 466 

  BCA 6 4 935 52.0901795 -123.3576366 325 32 443 
BIG 8 1 1,261 51.3138054 -122.1480729 430 

  BLU 7 3 871 52.3339213 -122.2445340 480 50 6,112 
CAL 7 2 1,248 52.0692987 -122.6152696 477 53 5,725 
CAM 7 2 1,087 51.6979303 -121.6111339 480 53 35,361 
CHI 7 3 906 51.9000469 -121.9391504 494 

  CTI 0 0 818 52.6591690 -122.3733768 497 52 5,557 
DCB 10 2 947 51.5727098 -122.2225973 412 52 1,957 
DOG 9 1 1,136 51.4782313 -122.1572942 440 51 3,220 
ENT 7 2 910 51.9836634 -121.8744262 473 

  EPI 9 1 1,262 51.6044373 -122.0133402 474 51 573 
FUZ 0 0 1,068 52.2870636 -122.6800798 467 47 337 
GAR 6 2 1,239 51.7091378 -122.4335147 381 29 3,537 
HAN 3 1 1,329 51.9652070 -122.9133535 459 59 2,021 
HAW 5 1 1,306 51.9656547 -122.9304042 457 59 3,199 
JKY 9 0 1,136 51.6917149 -122.2037750 509 105 12,692 
KCR 8 1 831 52.0642667 -121.8822881 484 59 5,999 
LEE 6 2 1,031 51.9562319 -123.0739201 375 55 2,526 
LEN 2 0 1,268 52.0381704 -123.1060724 431 87 2,463 
MAB 9 1 945 51.9077376 -122.2720139 452 47 19,533 
MAQ 0 0 931 52.3524638 -122.5181316 502 59 2,442 
MAY 9 0 1,127 51.8840641 -122.1975185 507 43 6,062 
MCL 7 1 679 52.4219183 -122.3681458 458 39 2,273 
MEL 1 0 939 52.2542212 -122.3956095 459 

  MON 6 2 1,127 51.1889869 -121.1958171 357 47 1,452 
NEE 1 0 1,070 52.1879372 -122.6386473 487 74 1,894 
NOJ 0 0 1,016 52.4670937 -122.7230840 484 54 1,137 
NRA 0 0 970 52.2189822 -122.5051835 465 40 1,831 
PTI 1 0 1,005 52.1626914 -123.9129591 307 34 1,326 
PUD 0 0 967 52.1846704 -123.8525038 317 44 1,200 
PVA 9 1 786 52.2862723 -122.1860931 440 54 1,213 
PYP 1 0 1,107 52.0321977 -124.1353788 375 35 1,314 
REN 2 0 988 52.1690185 -123.7131926 328 64 1,011 
RES 2 0 953 52.1374131 -123.7408311 323 28 2,589 
RIS 9 4 1,259 51.9492246 -122.6387795 404 73 1,642 
SOA 7 2 645 52.4221649 -122.4136252 423 

  SUG 9 6 658 52.1027626 -122.0231037 415 41 1,642 
TWA 0 0 839 52.5484822 -122.6309186 461 52 1,894 
WHI 7 2 857 52.2171170 -122.3221347 456 77 1,515 
WIL 9 6 677 52.1596966 -122.2338750 404 48 674 
YUN 6 5 996 51.8882930 -123.1022910 363 38 81,330 
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Table 5.2: Significant Pearson’s correlation coefficients (p<0.05) between detrended ring 
width indices and monthly precipitation totals. Months in lowercase belong to the 
preceding calendar year; months in uppercase belong to the current calendar year. 

 
Total Monthly Precipitation 

Site jun jul aug sep oct nov dec JAN FEB MAR APR MAY JUN JUL AUG 
ABR 0.22 0.29 0.31 

         
0.36 

  ACS 0.22 0.25 0.33 
     

-0.25 
   

0.44 
  ALE 

  
0.30 

     
-0.23 0.20 

  
0.32 

  ALK 0.26 0.21 0.31 
         

0.37 0.27 
 BCA 

  
0.32 

         
0.36 

  BIG 
 

0.28 0.26 
 

-0.19 
       

0.34 
  BLU 

 
0.22 0.28 

         
0.31 0.26 

 CAL 0.31 
 

0.25 
   

0.24 
     

0.37 
  CAM 0.28 

 
0.36 

   
0.24 

     
0.31 0.30 

 CHI 
  

0.38 
   

0.31 
     

0.33 0.27 
 CTI 0.26 

           
0.34 

  DCB 
 

0.23 0.34 
         

0.37 
  DOG 0.24 0.37 0.34 

         
0.41 

  ENT 0.30 0.18 0.32 
         

0.42 0.30 
 EPI 0.23 

 
0.37 

         
0.34 

  FUZ 0.41 0.23 0.28 
         

0.29 0.17 
 GAR 

 
0.18 0.38 

   
0.30 

     
0.32 

  HAN 0.24 0.43 0.31 
         

0.30 0.29 
 HAW 

 
0.34 0.29 

     
-0.25 

   
0.28 0.24 

 JKY 
 

0.30 0.30 
         

0.23 
  KCR 0.32 

 
0.26 

        
0.43 0.39 

  LEE 
 

0.29 0.28 
     

-0.21 0.20 
  

0.44 
  LEN 0.24 0.33 0.30 

     
-0.25 

   
0.33 0.27 

 MAB 0.21 0.24 0.40 
   

0.24 
     

0.38 
  MAQ 0.29 0.23 

          
0.27 

  MAY 0.36 0.34 0.31 
   

0.20 
     

0.33 0.25 
 MCL 0.33 

 
0.27 

  
0.23 0.26 

    
0.27 0.22 

  MEL 0.37 0.26 0.30 
         

0.26 0.21 
 MON 0.31 0.24 0.23 

     
-0.23 

      NEE 0.28 0.21 0.26 
         

0.23 0.25 
 NOJ 0.33 

           
0.28 0.30 

 NRA 0.23 0.22 0.29 
         

0.25 0.21 
 PTI 0.22 

 
0.39 

   
0.23 

     
0.27 0.26 

 PUD 
  

0.28 
   

0.29 
 

-0.23 
   

0.29 
  PVA 

 
0.38 

          
0.31 0.33 

 PYP 0.22 
 

0.30 
         

0.32 
  REN 

  
0.27 

  
0.26 0.24 

  
0.27 

  
0.34 0.24 

 RES 
  

0.25 
   

0.27 0.21 
 

0.24 
  

0.33 0.25 
 RIS 0.27 0.20 0.30 

   
0.26 

     
0.33 0.25 

 SOA 0.29 
     

0.27 
     

0.30 0.23 
 SUG 0.33 0.24 0.32 

   
0.24 

     
0.39 0.22 

 TWA 0.28 0.32 
      

-0.28 
   

0.26 
  WHI 0.39 0.36 0.33 

         
0.32 0.26 

 WIL 0.30 
 

0.26 
   

0.24 
     

0.30 0.25 
 YUN 

 
0.21 0.39 

     
-0.27 

   
0.31 

  PIPO 0.20 0.22 0.39 
     

-0.27 
   

0.31 
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Table 5.3: Significant Pearson’s correlation coefficients (p<0.05) between detrended ring 
width indices and monthly average temperature. Months in lowercase belong to the 
preceding calendar year; months in uppercase belong to the current calendar year. 

 
Mean Monthly Temperature 

Site jun jul aug sep oct nov dec JAN FEB MAR APR MAY JUN JUL AUG 
ABR 

 
-0.31 -0.14 

            ACS 
 

-0.27 
          

-0.26 -0.29 
 ALE 

            
-0.23 -0.22 

 ALK -0.23 
           

-0.26 -0.16 
 BCA 

            
-0.28 -0.26 

 BIG 
 

-0.29 
             BLU 

        
0.25 

   
-0.23 

  CAL -0.28 -0.34 
   

0.24 
         CAM -0.24 -0.24 

          
-0.19 -0.19 

 CHI -0.30 
           

-0.23 -0.18 
 CTI 

 
-0.24 

          
-0.35 -0.24 

 DCB 
            

-0.21 
  DOG 

 
-0.29 

          
-0.24 

  ENT -0.31 
            

-0.18 
 EPI 

            
-0.27 

  FUZ -0.32 -0.38 
   

0.34 
  

0.23 
      GAR 

         
-0.23 

     HAN 
 

-0.33 
   

0.21 
         HAW 

 
-0.24 

             JKY 
               KCR 
            

-0.29 
  LEE 

            
-0.26 -0.23 

 LEN 
 

-0.32 
   

0.27 
         MAB 

            
-0.20 

  MAQ -0.28 -0.31 
      

0.26 
   

-0.26 
  MAY 

 
-0.32 

   
0.21 

         MCL -0.29 
           

-0.20 
  MEL -0.29 -0.30 

      
0.30 

      MON 
 

-0.26 
   

0.23 
         NEE -0.28 

       
0.23 

      NOJ -0.29 -0.23 
   

0.22 
         NRA -0.26 -0.23 

      
0.27 

      PTI 
            

-0.26 -0.24 
 PUD 

            
-0.23 -0.24 

 PVA 
            

-0.24 -0.17 
 PYP 

             
-0.24 

 REN 
            

-0.31 -0.23 
 RES 

            
-0.31 -0.32 

 RIS -0.25 -0.30 
   

0.29 
       

-0.17 
 SOA -0.32 

           
-0.23 

  SUG -0.26 
 

-0.23 
         

-0.28 
  TWA -0.22 -0.33 

   
0.25 

      
-0.20 

  WHI -0.31 -0.36 
   

0.22 
  

0.23 
      WIL -0.27 

              YUN 
 

-0.28 
      

0.24 
      PIPO 

 
-0.28 

      
0.25 
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My WSB reconstructions using the program OUTBREAK are very similar to those 

of Axelson et al. (2015) (Figure 5.6). All sites meet outbreak criteria several times over the 

course of the tree ring record. Most sites meet outbreak criteria around the turn of the 20th 

century and from 1938-1949, in agreement with Axelson et al. (2015) (Figure 5.6). 

Reconstructions for the 21st century often do not match the surveyed values: sites ALE, 

CAM, ENT, EPI, GAR, JKY, KCR, MON, PVA, SOA, and WHI all survived five or more 

years of surveyed defoliation, but never pass the threshold of 15% of trees meeting 

outbreak criteria after 2000. Sites MAQ and TWA, which received no surveyed defoliation, 

record several years above the 15% threshold in the 21st century and site LEN, which 

received two years of surveyed defoliation, exceeds the 50% threshold for a decade.   

Detrended ring width indices for all Douglas-fir in the study area and those of the 

ponderosa pine non-host are very similar from one year to the next, with differences in 

magnitude (Figure 5.7). In addition to 1899–1909 and 1938–1940, generally synchronous 

periods of reconstructed outbreaks were identified ca. 1744–1752, 1770–1786, 1795–1808, 

1854–1861, and 1870–1882 (Figure 5.8).   
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Figure 5.6: Reconstructed outbreaks based on the percentage of trees at each site meeting 
the defined outbreak criteria. Light gray exceeds the 15% threshold; medium gray 50%, 
and black 75%. 21st=total years of surveyed defoliation in the 21st century outbreak. 
Vertical dashed line at 2001 indicates the beginning of the 21st century outbreak. 
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Figure 5.8: Mean detrended chronology values for all Douglas-fir in the study and 
ponderosa pine, and the Douglas-fir chronology less the ponderosa pine chronology (h-Nh 
= host minus non-host) for eight periods of regionally synchronous reconstructed outbreak 
activity ca. 1744–1752, 1770–1786, 1795–1808, 1854–1861, 1870–1882, 1899–1909 and 
1938–1940, the sporadic period of the 1980s and 1990s, and the known outbreak period of 
2001–2011. 
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The period of the modern outbreak beginning in 2001 includes five sites in the 

Chilcotin River valley exceeding the 50% threshold and 17 exceeding the 15% threshold 

throughout the study area (Figure 5.9). A number of sites in heavily defoliated areas fail to 

meet any of the outbreak thresholds, while two in the upland area northwest of Williams 

Lake which has no recorded defoliation, exceed the 15% threshold.  

 

Figure 5.9: Maximum percentage of trees meeting outbreak criteria in a given year at each 
site in the period 2001–2011, overlaying the cumulative years of defoliation in the 21st 
century outbreak and the range of Douglas-fir leading stands 
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Forest Insect and Disease surveys conducted during the period of sporadic outbreak 

reconstruction in the 1989s and 1990s identified widespread infestations of mountain pine 

beetle and pine needle cast in lodgepole pine and Douglas-fir beetle in Douglas-fir. No 

records were made of western spruce budworm defoliation during this period, but two-year 

cycle budworm (Choristoneura biennis) was mapped northeast of the study area around 

Quesnel Lake (Figure 5.10).  

 

Figure 5.10: Forest Insect and Disease Survey records from 1985 to 1996 showing data for 
two-year cycle budworm, mountain pine beetle, pine needle cast, and Douglas-fir beetle, 
overlaid by site locations displayed by the maximum number of trees meeting outbreak 
criteria during this period. 
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A majority of trees met outbreak criteria at all but two sites in the 1938–1948 

period (Figure 5.11), and 21 sites exceeded the 75% threshold. Five sites northwest of 

Williams Lake with no recorded defoliation in the 21st century exceeded the 50% 

threshold. 

 

Figure 5.11: Maximum percentage of trees meeting outbreak criteria in a given year at each 
site in the period 1938–1948, overlaying the cumulative years of defoliation in the 21st 
century outbreak and the range of Douglas-fir leading stands 
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All but two sites had more than 75% of trees meeting the outbreak criteria in the 

1899–1909 period, while the remainder surpassed the 50% threshold (Figure 5.12).  

 

Figure 5.12: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1899–1909, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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For the 1870–1882 period, three sites that received no recorded defoliation in the 

21st century exceeded the 50% threshold in the region northwest of Williams Lake, while 

sites NOJ and TWA exceeded the 75% threshold (Figure 5.13). 

 

 

Figure 5.13: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1870–1882, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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Every tree at site NEE met the outbreak criteria in the 1854–1861 period, while this 

site received only one year of light infestation during the 21st century event (Figure 5.14). 

Three upland sites northwest of Williams Lake and site ABR in the Chilcotin exceeded the 

50% threshold in this same period, but had no defoliation recorded in the 21st century.

 

Figure 5.14: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1854–1861, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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The 1795–1808 period includes a number of sites exceeding the 75% threshold in 

the plateau country immediately east of the Fraser River, and four exceeding the 50% 

threshold northwest of Williams Lake that received no defoliation recorded in the 21st 

century (Figure 5.15).  

 

Figure 5.15: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1795–1808, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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In the 1770–1786 period, more than 75% of trees met outbreak criteria at two sites 

northwest of Williams Lake that had no defoliation recorded during the 21st century 

outbreak (Figure 5.16). A number of sites in the Chilcotin River valley exceeded the 50 

and 75% thresholds, including sites RES and PUD with two and zero years of defoliation 

recorded in the 21st century.  

 

Figure 5.16: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1770–1786, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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Ten sites exceeded the 75% threshold in the 1744-1752 period, including two sites 

that had only one year of recorded defoliation in the 21st century (Figure 5.17).  

 

Figure 5.17: Maximum percentage of trees meeting outbreak criteria in a given year at 
each site in the period 1744–1752, overlaying the cumulative years of defoliation in the 
21st century outbreak and the range of Douglas-fir leading stands 
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Peaks in growth release initiations in the non-host chronology occurred ca. 1760, 

1800/1801, 1898/1899, 1938/39 and 1976–1990 (Figure 5.18). Peaks in ongoing growth 

releases correspond to peaks in initiation dates, which is expected as the method of 

calculating releases identifies the year with the maximum rate of increase, rather than the 

first year exceeding the threshold (Figure 5.19). Many of these release events appear to 

represent substantial changes in position within the stand, e.g. ascension to a canopy 

position from the understory (1899 in “A” or 1731 in “B” and “C” in Figure 5.19) or the 

death of a competitor (1977 in “D,” 1897 in “E,” or 1976 in “F” in Figure 5.19). 

 

Figure 5.18: Percent of non-host sample initiating growth release and percent with ongoing 
release (growth increase >50%) calculated using 20-year periods. 
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Figure 5.19: Six outputs of the R package TRADER showing growth trends in ponderosa 
pine, displaying the annual basal area increment in black (left Y axis) and the percent 
growth change in blue (right Y axis), growth releases marked by dashed vertical lines. 

A 

F E 

D C 

B 
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PDSI was negative both of at Cook’s reconstruction points in the periods 1661–

1664, 1717–1722, 1756–1760, 1792–1800, 1839–1843, 1869–1873, 1918–1933, and 

1967–1973 (Figure 5.21; Cook & Krusic, 2004). Reconstructed PDSI generally was lower 

at point 30 (closer to Williams Lake) than point 42 (closer to Kamloops) for nine periods 

of the length of the record, and higher for six periods (Figure 5.21).
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Inspection of archived ponderosa pine cores collected near Kamloops consistently 

revealed a low-growth event corresponding to the period of low precipitation reported at 

the Kamloops weather station from 1929–1933. As an example, Figure 5.22 shows a core 

from a tree that was a small sapling at the time of the drought. Growth reduction in this 

specimen began prior to the drought event, perhaps due to its suppressed or intermediate 

status in the canopy. 

 

Figure 5.22: Archived ponderosa pine core PP14 from the UNBC Tree Ring Lab showing 
growth reduction in the late 1920s/early 1930s with growth release beginning ca. 1935 
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Pairwise correlations between precipitation totals recorded at Williams Lake and 

Kamloops weather stations are significant at the annual level and in summer and autumn, 

but not in winter or spring, or the months of December, January, February, and March 

(Table 5.4). All precipitation means were lower in Kamloops than Williams Lake, but the 

differences were more pronounced in the winter months: mean annual precipitation at 

Kamloops is slightly less than half that of Williams Lake, but precipitation in winter at 

Kamloops is only 15% of that recorded in Williams Lake.  

Table 5.4: Mean annual, seasonal, and monthly precipitation total at Williams Lake and 
Kamloops weather stations from 1937 to 2012, with pairwise correlations and significance 
score for each variable. Sample size varies due to missing data values excluded from the 
analysis. pJJ=total precipitation from the previous June to the current June. JJA=total 
precipitation for the months of June, July and August. All values are in mm. Significant 
correlations marked by bolded variables names (P<0.05). 

Variable 
Williams 

Lake Kamloops 
Pairwise 

Correlation P Value n 
Annual 489 225 0.42 0.0003 74 
Winter 119 18 -0.15 0.19 75 
Spring 87 50 0.2 0.078 74 
Summer 166 96 0.55 <0.0001 75 
Autumn 117 60 0.54 <0.0001 75 
pJJ 548 328 0.4 <0.0001 75 
JJA 166 96 0.56 <0.0001 75 
January 44 5 0.12 0.27 75 
February 27 6 -0.12 0.27 75 
March 24 9 0.04 0.74 74 
April 23 15 0.31 0.005 75 
May 40 25 0.38 0.0008 74 
June 62 39 0.61 <0.0001 75 
July 53 29 0.43 0.0001 75 
August 51 28 0.61 <0.0001 75 
September 39 26 0.70 <0.0001 75 
October 38 20 0.42 0.0001 75 
November 40 14 0.26 0.024 75 
December 47 8 -0.08 0.47 75 
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Rates of basal area increment increase calculated by comparing the 20-year means 

preceding and following each year are generally similar between the ponderosa pine and 

Douglas-fir populations under analysis, except for the period 1890–1905, where a peak 

occurs in the ponderosa pine but not the Douglas-fir, and from 1840 through 1880 where 

elevated rates of growth increase are found in Douglas-fir but not ponderosa pine (Figure 

5.23). 

 

Figure 5.23: Percent of total ponderosa pine (PIPO, beneath X axis) and Douglas-fir 
(PSME, above X axis) with ongoing growth release exceeding light (50%), moderate 
(100%), and severe (200%) thresholds on the basis of 20-year average basal area increase. 
Black bars indicate growth differentials meeting outbreak receonstruction criteria on a 
regionally consistent basis. 

  

  

-35

-25

-15

-5

5

15

25

35

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

Light (50%)
Moderate(100%)
Severe(200%)
Light (50%)
Moderate(100%)
Severe(200%)

O
ng

oi
ng

 R
el

ea
se

 P
IP

O
 

O
ng

oi
ng

 R
el

ea
se

 P
SM

E 

Sa
m

pl
e 

D
ep

th
 

 
Sa

m
pl

e 
D

ep
th

 
 

25
0 

   
   

 5
00

   
   

  7
50

   
   

10
00

  



 

195 
 

Peaks in reconstructed western spruce budworm outbreaks tend to coincide with 

peaks of growth increase in the non-host chronology (Figure 5.24). Reconstructed 

outbreaks beginning ca. 1899, 1938, and 1980 respectively correspond to peaks in growth 

increase affecting >35% of trees in the non-host chronology. All of these periods include a 

number of trees increasing at a rate of over 100% and 10–30% of trees exceeding a 200% 

rate of increase on the basis of 20-year averages before and after the subject year.  

 

Figure 5.24: Percentage of sites with reconstructed outbreaks exceeding 15, 50, and 75% 
thresholds, and ponderosa pine trees displaying growth increase exceeding 50, 100, and 
200% thresholds on the basis of five-year averages. 
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5.5. Discussion 

A majority of the periods when outbreak criteria were met in the host/non-host 

analysis coincide with a difference in measured or reconstructed precipitation between the 

locations of the host and non-host populations, and several align with growth increases in 

the non-host population that are not found in the host populations. Growth increases in the 

non-host population may be a release from competition due to the death of neighboring 

trees. This can lead to faster recovery after drought (Erickson & Waring, 2014), leading to 

higher ring width index values. Finally, the spatial pattern of several reconstructed 

outbreaks is different than what was observed in the recent outbreak. Sites that received 

little or no defoliation in the 21st century were reconstructed as being more heavily affected 

than sites that were recently defoliated. It is possible that endemic populations of WSB 

were not near those sites, or some unknown factors resulted in little or no defoliation 

during the recent outbreak. It is also possible that these sites, being upslope and/or further 

north than others, have not experienced WSB outbreaks due to cooler temperatures and 

asynchronous larva and bud development, and that the reconstructed outbreaks are actually 

due to some other factor that caused growth differentials between the host and non-host.  

Seven periods experienced regionally synchronous growth differentials such that the 

average detrended growth of the ponderosa pine was greater than the detrended growth of 

individual Douglas-fir. Each period is discussed below, considering possible confounding 

factors and other evidence regarding the cause of differential growth between Douglas-fir 

in the Williams Lake region and ponderosa pine in the Kamloops region.  

5.5.1. Regionally synchronous periods of differential growth 

Aerial surveys of the 21st century outbreak (2001–2013) observed medium or severe 
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defoliation at 28 of 45 sites and several years of light defoliation at two sites, one or two 

years of light defoliation at seven sites, and no defoliation of any severity at eight sites. 

This distribution is not reflected in the outputs of the program OUTBREAK: 50% of trees 

met outbreak criteria at only five sites (implying at least 50% defoliation of those trees; 

Alfaro et al., 1982), all clustered in the Chilcotin River valley. Each of these sites began 

meeting outbreak criteria 2–3 years before defoliation surveys identified any infestation. 

Nine sites that are known to have been severely impacted by the 21st century outbreak did 

not exceed the 15% threshold in any year between 2001 and 2011, while three sites with no 

record of defoliation did exceed the lowest threshold. This is the only period when a false-

negative result is known to have occurred, where defoliation took place but was not 

identified in the tree rings. 

This difference in surveyed vs. reconstructed defoliation appears to have been caused 

by a depression in the growth of the non-host trees, apparent in both individual and 

aggregate plotted chronologies, coincident with the defoliation of the host trees. This 

growth depression in the non-host may be due to precipitation in Kamloops returning to, 

and sometimes falling below, the historical average after higher levels from the mid 1970s 

to the late 1990s. The decades of above-average precipitation may have allowed stands to 

increase in density beyond the limits of the normal climate, and when precipitation levels 

returned to the historical average, the abnormally dense stands suffered a reduction in 

growth beyond what would result from drought alone.  

While confirmation of this would require further study, a sharp reduction in growth 

rate ca. 2000 is apparent in many of the ponderosa pine samples archived at the UNBC 

Tree Ring Laboratory, and the basal area increment of the ponderosa pine chronology is 



 

198 
 

generally trending downwards in the final decade (Figure 5.9). This suppression would 

account for the very poor relationship between the reconstructed values and the observed 

defoliation because the index value of the non-host would be both lower than average and 

an inaccurate representation of the climate.  

Reconstructed outbreaks 1980s and 1990s were found in the greatest proportion of 

trees at host sites in northern and western portions of the study area. If substantial 

defoliation was occurring in more than half of the trees, the Aerial Overview Survey crews 

that recorded Douglas-fir beetle, mountain pine beetle, pine needle cast and two-year cycle 

budworm in the area would probably have observed it. Western spruce budworm was one 

of eleven pathogens considered to be “major forest insects and diseases” of national 

relevance in the 1990s (Hall et al., 1994). According to the BC Forest Health Aerial 

Overview Survey Standards 

(https://www.for.gov.bc.ca/hts/risc/pubs/teveg/foresthealth/assets/aerial.pdf accessed 2017) 

the optimal timing of survey flights for Douglas-fir beetle is mid-June through late-August, 

while western spruce budworm survey flights should be made from late-June to mid-

August, an almost complete overlap. This suggests that these periods of suppression are 

not attributable to defoliation by the western spruce budworm, and that the reconstruction 

method has resulted in several false-positives. 

Precipitation in Kamloops is substantially above the long-term average in the 1980s 

and 1990s, while precipitation in Williams Lake remained close to its historical average. 

This could account for the differential growth patterns meeting outbreak criteria at some 

sites, but not all the variation within the study area.  

Both ponderosa pine and Douglas-fir populations record a peak in growth increase ca. 

https://www.for.gov.bc.ca/hts/risc/pubs/teveg/foresthealth/assets/aerial.pdf
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1980, but a much greater proportion of the ponderosa pine are affected. A mountain pine 

beetle outbreak was active in the 1980s and 1990s in the study area, and some patches of 

pine were also killed in the vicinity of Kamloops (Erickson, 1987). It is possible that this 

resulted in growth release in surviving trees making up the non-host chronology, while 

simultaneous outbreaks to the north caused growth release in some Douglas-fir growing in 

mixed stands but not others (Heath & Alfaro, 1990). The impact of this infestation on 

Douglas-fir would depend very much on the amount of mature lodgepole pine present in 

the stand at the time. Many sites in the western portion of the study area were heavily 

affected by the mountain pine beetle outbreak of the 1930s (Erickson, 1992) and would 

have only been 45 years old in 1980, too young and small to have a major impact on the 

growth of Douglas-fir even if they were killed by the mountain pine beetle (Heath & 

Alfaro, 1990). Stand dynamics may be at the root of the difference in the number of trees 

meeting outbreak criteria among sites: Douglas-fir in the mixed stands heavily affected by 

the mountain pine beetle in the 1980s and 1990s would have been in a state of growth 

release at the same time as non-host, reducing the differential between them.  

Relatively low growth in Douglas-fir from 1938 to 1948 was recorded across the study 

area, potentially affecting 100,000 hectares more than the budworm outbreak of the 21st 

century. It comes at a time when detrended ringwidth indices of both Douglas-fir and 

ponderosa pine chronologies are well above average, but the ponderosa pine index is 

higher.  

Forest health reports from the Cariboo region recorded two-year cycle budworm 

(Choristoneura biennis) defoliating spruce immediately east of the study area in 10 

different years from 1926 to 1946 (Erickson, 1992). Forest tent caterpillar (Malacosoma 
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disstria) was recorded as defoliating trembling aspen (Populus tremuloides) north of 

Williams Lake in 1937, and in many locations within the study area in 1941, 1942, and 

1943 (Erickson, 1992), during the period identified as an outbreak of WSB (Axelson et al., 

2015; Harvey, 2017). Records of western spruce budworm defoliation in Douglas-fir near 

Lillooet in the 1940s (Erickson, 1987) indicate that the pest and its host were of concern in 

the interior of the province. It seems unlikely that a severe landscape-scale outbreak of 

western spruce budworm would go unnoticed by trained surveyors who would have 

travelled through the affected area on their way to observe defoliation in trembling aspen. 

While minor defoliation in some areas cannot be ruled out, the landscape-scale event is 

most likely a false-positive in the tree ring reconstruction of budworm defoliation.  

The prolonged difference in precipitation trends between Williams Lake and Kamloops 

during this period could account for the differential growth between Douglas-fir and 

ponderosa pine, resulting in the false-positive. Williams Lake is below the long-term 

average in all years during this period except 1942, while Kamloops falls below average 

only in 1943 and 1944.  

Growth suppression in Douglas-fir from 1899–1909 occurs before any written records 

from insect survey crews, so budworm defoliation is a possible cause of the growth 

reduction. As reconstructed, the magnitude of the event is several times that of the 21st 

century outbreak, and the extent would be at least 100,000 hectares greater than the 

recorded infestation. The near-perfect synchronicity of the suppression period, if caused by 

budworm, would require an immediate irruption of endemic populations in every affected 

area. This scale and timing are incongruent with the temperature/elevation gradient which 

is the basis of projections of future range expansion under climate change (Murdock et al., 
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2013), and the spread pattern apparent in modern survey records. The temporal 

synchronicity and severity of the event suggests that some factor other than budworm was 

at play. 

A peak in the proportion of trees showing ongoing growth release in the ponderosa 

pine chronology ca. 1900 is not matched by a peak in the Douglas-fir population, which is 

unusual for these chronologies. The 1890s are known to be a period of more frequent 

groundfire in the Cariboo-Chilcotin region, and the decade is suspected to have been a time 

of mountain pine beetle outbreaks (Hawkes et al., 2004), but the disturbance history of the 

ponderosa stand used as the non-host chronology is unknown. Changes in basal area 

increment in ponderosa pine ca. 1900 are substantial, and appear to represent ascension to 

the main canopy or release from very strong competition. This may have been a defining 

event for the stand dynamics of the non-host site, securing the position of many trees that 

are now canopy dominants. A disturbance of this magnitude affects the hydrology around 

surviving trees, especially in dry ponderosa pine stands (Erickson & Waring, 2014), and 

can weaken the climate/growth relationship (Laurent et al., 2003).  

The indices of ponderosa pine and Douglas-fir closely parallel one another during this 

period, suggesting that they are responding to the same weather systems, and the difference 

in magnitude is what would be expected during a growth release in the ponderosa stand. 

The observed growth release in the ponderosa pine, and the magnitude of that release, 

explains the differential between the growth rates of the two species. Defoliation cannot be 

ruled out as survey records are not available, but the landscape-level growth differential 

pattern could not have resulted exclusively from budworm defoliation. Flower et al. (2014) 

identified outbreaks in Washington, Idaho, and Montana from the 1890s through the 1920s, 
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with initiation and maximum defoliation dates varying by location. Campbell et al. (2006) 

also reconstructed outbreaks from the 1890s through the 1910s at many of their sites in the 

Kamloops region. These outbreaks may have extended to the Chilcotin region, but the 

synchronicity of initiation and cessation of the reconstructed outbreaks in this chapter are 

inconsistent with both of these previous studies, suggesting an abiotic component to the 

tree ring signal.  

The ring width indices of both species trend upwards in the 1870–1882 period 

following a period of suppression in the early 1870s. Cook’s reconstruction of Palmer’s 

Drought Severity Index is negative at both points 42 and 30 from 1869–1873 

(corresponding to the suppression apparent in both ringwidth indices), but values were 

lower (indicating drier conditions) at the point north of Williams Lake than the point south 

of Kamloops from 1875–1881. The upland sites northwest of Williams Lake exceed the 

higher outbreak criteria in this period but based on the reconstructed PDSI, these sites 

would have been experiencing unusually dry conditions in the 1870s. The severity of the 

suppression exceeds the magnitude of the 21st century outbreak in marginal sites in the 

Chilcotin region as well as the upland regions in the north.  

The presence of budworm cannot be ruled out, but the difference in reconstructed PDSI 

between the two regions suggests that moisture was the growth limiting factor in this 

period. Campbell et al. (2006) identified budworm defoliation at only a few of their sites 

near Kamloops during this period, while Flower et al. (2014) reconstructed WSB 

defoliation at approximately half of their sites in Oregon, Idaho and Montana. 

The years 1854–1861 include a depression in the ring width indices of both species that 

is parallel but of greater magnitude in the Douglas-fir chronology. Most sites only 
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exceeded the 15% threshold of trees meeting outbreak criteria, except for a cluster meeting 

the 50 and 75% thresholds in the Chilcotin and northwest of Williams Lake, including sites 

with little or no recent defoliation. Cook’s reconstructed PDSI values vary during this 

period, and the climate data available do not suggest any cause for differential growth. 

However, the pattern of reconstructed outbreak severity is inconsistent with the local 

elevation gradients that seem to have limited the extent of current outbreak.  

It is possible that budworm defoliation did occur concurrently with other factors that 

limited the growth of Douglas-fir at the upland sites, though the nearest WSB 

reconstruction (Campbell et al. 2006) indicates only three of 17 sites experienced 

defoliation during this period.  

Both Douglas-fir and ponderosa pine show sharp growth reduction from 1796–1800 

during the 1795–1808 period, most likely caused by the regional drought of the late 18th 

century (Wolfe et al., 2001), but the Douglas-fir average detrended index is much lower 

than the ponderosa pine index. Cook’s reconstructed PDSI is lower (drier) at point 30 (near 

Williams Lake) than point 42 (near Kamloops) from 1801–1803 and 1806–1814, 

overlapping with much of the period of differential growth.  

The footprint of this differential pattern is again substantially larger and more 

synchronous than the 21st century budworm outbreak, suggesting an abiotic mechanism. 

The relatively low (dry) PDSI values at the point nearer Williams Lake provide a plausible 

explanation for at least a portion of the growth pattern, though defoliation cannot be ruled 

out for this period. Campbell et al. (2006) identified defoliation signatures around this 

time, but there is substantial variation in the beginning and end dates between their sites. 

This is also the case in my reconstruction: at some sites, such as KCR, defoliation is 
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reconstructed as beginning the 1770s and continuing after 1800. This period is not 

identified as a regional outbreak in the northwestern United States by Flower et al. (2014) 

Both ponderosa pine and Douglas-fir ring width indices were trending strongly 

upwards on a parallel trajectory in 1770–1786, but the ponderosa pine exceeded 1.0 in 

several years that the Douglas-fir did not. This period also coincided with a period when 

PDSI values indicate greater moisture deficit in the Williams Lake region, potentially 

causing the growth differential to meet outbreak criteria. This period is generally quiescent 

in reconstructions by Flower et al. (2014) and Campbell et al. (2006). 

The final period, 1744–1752, includes a number of years in which the ponderosa pine 

ringwidth index was above 1.0 while the Douglas-fir followed a trajectory below 1.0. More 

than half of the ponderosa pine trees were in a state of growth release at the time, likely 

due to the initiation of new trees or growth response of surviving trees to the disturbances 

that opened growing space for that recruitment. The period also overlaps with a differential 

in Cook’s PDSI reconstruction where values were lower (drier) at Williams Lake compared 

to Kamloops. All three potential confounding factors were present, with the additional 

influence of young seedlings that may not respond to climate as their established peers 

would. The spatial pattern of the reconstructed outbreaks was skewed towards the western 

sites, where five exceeded the 75% threshold and five exceeded 50% in addition to the 

isolated site ABR, which was also >50%. Several sites in the central area also exceeded 

both of the higher thresholds, but four sites did not meet the 15% threshold.  

Defoliation is recorded by Campbell et al. (2006) at most sites following 1750, but 

only two in the 1740s. Flower et al. (2014) identified widespread WSB defoliation 

beginning in the 1750s and peaking in the 1760s, but less in the 1740s, though some sites 
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do break with the general trend and record extensive defoliation during this period.  

5.5.2. Overview of total record of trees meeting outbreak criteria 

Aerial surveys record the 14 sites as collectively defoliated for 231 years between 

2001 and 2013, a rate of 39.5% (231/585). For the period 1640-2011, OUTBREAK 

identified a similar percentage of site-years exceeding the threshold of 15% of trees 

impacted by WSB (43%). It is unlikely that the same rate of attack has occurred over time 

without recorded cases after the initiation of the Forest Insect and Disease Survey. 

Differences in moisture deficit and disturbance histories may have caused at least some of 

the growth differentials that met OUTBREAK criteria in the host-nonhost procedure. 

5.5.3. Limitations of host/non-host defoliation reconstruction method in this study 

The use of pure host and non-host stands in geographically separate locations (as in 

this study), or the use of host and non-host from the same mixed stand both can result in 

problems. Use of mixed stands in outbreak reconstruction has been discouraged from the 

earliest development of the host/non-host technique, as defoliation of the host may allow 

the non-host a competitive advantage, leading to an overestimation of outbreak severity 

based on the difference between the chronologies (Swetnam et al., 1985). Swetnam et al. 

(1985) also emphasized the importance of selecting host and non-host stands that would be 

likely to experience the same weather systems and respond in a similar way due to shared 

topographic situation and underlying soils. Recognizing that host species may not always 

be available under these conditions, the authors suggest using undefoliated host trees and 

limiting analyses to the present outbreak where these trees are known to have escaped 

defoliation. My study explored the alternative approach of using a non-host growing 
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outside of the immediate study area, but differences in topographic position, soils, and 

weather systems have the potential to affect results.  

5.5.4. A note on regeneration as it relates to western spruce budworm 

Regeneration surveyed in old-growth stands in this study was often found at extremely 

high densities, similar to stands described by Wong & Iverson (2004). This overstocking, a 

historically unprecedented outcome of long-term wildfire exclusion, provides a substantial 

food source for western spruce budworm outbreaks (Maclauchlan & Brooks, 2009). If 

historical insect survey records (Erickson, 1992) are taken at face value, then 21st century 

outbreak may represent the range expansion that has been anticipated under the regional 

warming trend that is already underway, and continued warming will support more 

outbreaks of similar or greater magnitude (Dawson et al., 2008; Murdock et al., 2013). The 

abundance of host material in the understory, where larvae falling from the main canopy 

can find a second chance at feeding, may increase the difficulty of mapping and managing 

future outbreaks.  

5.6. Conclusion 

No firm support for any extensive western spruce budworm outbreaks prior to the 

events of the 21st century was found in this study. The results of the earlier reconstructions 

of western spruce budworm outbreaks in the region (Axelson et al., 2015; Harvey, 2017) 

were broadly replicated using the same host/non-host approach with independent datasets, 

but the synchronous persistence of these same differential growth patterns, including 

improbable locations based on budworm biology and spread dynamics, raises the 

possibility that growth differences in the host-nonhost were actually due to differences in 
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climate and spatio-temporal variation in disturbance history  

Brief and localized events such as the one surveyed at Riske Creek in 1975 (Erickson, 

1992) were not identified using the host/non-host method using standard outbreak 

detection criteria, as differential growth must last at least eight years. The poor description 

of the 21st century outbreak by the host/non-host method, despite the cumulative 

defoliation record of eight or more years at twelve sites, allows for the possibility of 

outbreaks not described in this study or others. Mid-20th century insect surveys identified 

small patches of defoliation in species of lower commercial value within the study area, 

suggesting that had there been major outbreaks between 1930 and 2000, they would have 

been detected. 

These findings are different than those of Flower et al. (2014) and Campbell et al. 

(2006) who reconstructed historical outbreaks Oregon, Idaho and Montana and southern 

interior British Columbia respectively, using the same host-nonhost approach analyzing 

ponderosa pine from sites near to their Douglas-fir and grand fir sample sites. The defining 

feature of my reconstructed outbreaks in the 20th century is regional synchronicity in dates 

of initiation and cessation, while both of these studies record wide variation in these dates. 

The variation described in these studies is consistent with the spatio-temporal variation of 

the 21st century outbreak in the Cariboo-Chilcotin region.  

Modeling of budburst and larval emergence dates over the past 100 years indicates that 

higher effective latitudes (a combination of latitude and elevation) have been experiencing 

optimal phenological synchrony recently (Marciniak, 2015). The overall effect of the 

observed warming trend in the study area (Dawson et al., 2008) may act on other stages of 

the WSB lifecycle as well, including higher temperatures during autumn and spring 



 

208 
 

dispersal stages facilitating increased movement within and between stands (Wellington & 

Henson, 1947). Anomalously warm temperatures (average June and July daily temperature 

of approximately 18 °C and above) combined with low precipitation have preceded several 

outbreaks southern British Columbia (Thomson et al., 1984). Warmer average 

temperatures in the study area since 1950 (Dawson et al., 2008) suggest that these warm 

summer conditions are more likely to occur. Forest insect and disease surveys (Erickson, 

1992) show that WSB was present in the study area at low levels as early as 1975; 

warming temperatures may have created conditions favorable to the expansion of these 

endemic populations.  

Based on my conclusion that it is unlikely that there were major historical 

outbreaks over the time period and spatial scale studied, the 800,000 hectare outbreak in 

the first decade of the 21st century reflects a range expansion that is probably attributable to 

the regional temperature increase observed in the late 20th century (Dawson et al., 2008). 

Continued warming is expected to cause further expansion of western spruce budworm 

range (Murdock et al., 2013), meaning that more naïve populations will likely experience 

defoliation in the near future.  
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6. Concluding synthesis 

6.1. Abstract 

In this dissertation I consider the history of disturbances in the Cariboo-Chilcotin 

region of central British Columbia and the effect of canopy gaps created by disturbances 

on the drought tolerance of surviving interior Douglas-fir. Adjacency to canopy gaps 

created by natural disturbances or harvesting increased drought resistance of Douglas-fir. 

My reconstruction of the history of Douglas-fir beetle attacks indicated that the rate of 

attack has increased in recent decades, but other disturbance agents have been the primary 

drivers of stand dynamics in the region. My effort to expand western spruce budworm 

outbreak reconstruction to and beyond the margins of the 21st century outbreak revealed 

spatial patterns that did not appear to be caused by defoliation, but may be attributable to 

regional differences in precipitation driving differential growth. Widespread disturbance 

during the drought at the end of the 18th century was found to have had a strong influence 

on stand dynamics, bringing many trees into the position of canopy dominance they still 

maintain. In this synthesis I review major results and discuss the implications of the work 

as a whole. 
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6.2. Summary of chapter results 

Chapter 2: Three sampled stands of interior Douglas-fir were partially harvested in the 

1970s, leaving the sampled population of residual trees averaging 90 years old and 15cm 

DBH at the time. Trees that received growing space on all sides grew significantly faster 

following harvest compared to trees that gained access to growing space on one side, and 

trees that received no new growing space grew more slowly than either open growing or 

edge trees. This difference in radial growth is reflected in higher live crown ratios and 

sapwood basal areas in trees with more growing space, but the relationship does not hold 

for drought tolerance. Growth reduction during drought, measured relative to the growth 

rate over the preceding five years, was not significantly different between fully and 

partially-released trees in most years, though growth reduction in trees with no access to 

open gaps was more severe than either. The only regular and statistically significant 

difference between the fully-released trees and partially-released trees with regards to 

drought tolerance was found when the growth rate during drought was compared to the 

growth rate prior to harvest: higher growth rate in the open growing trees translated into 

relatively high growth rate during drought.  

Among several interacting mechanisms, the key factor driving drought tolerance in this 

situation appears to be precipitation throughfall, as reduced canopy interception in open 

areas allows more rainfall to reach the soil to be taken up by roots. Strong negative 

correlations between ringwidth and the mean temperature of the current June suggest 

warmer temperatures projected under anthropogenic climate change scenarios will have a 

substantial negative effect on tree growth, though the overall detriment to the tree may be 

mitigated by access to open gaps.  
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Chapter 3: Trees experiencing a growth release attributed to the death of a 

neighboring competitor showed higher drought resistance (less relative reduction in growth 

rate during drought) compared to trees not experiencing growth release, and the 

relationship was statistically significant in the majority of drought years tested. Drought 

resilience, or the return to pre-drought growth rate, was positively related to the resistance, 

and the relationship was almost always statistically significant. As in the previous chapter, 

precipitation throughfall is the most likely driver of increased drought resistance, with 

canopy gaps providing areas of higher moisture during the growing season. Resilience was 

often negatively influenced by both age and basal area of trees at the time of drought, 

though the relationship was not statistically significant in a majority of cases. Drought 

resistance of young trees (<50 years old) was found to be significantly higher than that of 

older trees in many of the drought years tested. Few significant differences were found 

between older age classes (50–149 vs. 150–249 and 250+), but in the three cases where a 

difference was significant, the oldest age class (250+) had lower resistance. 

The average rate of trees showing growth release in a given decade was 14% in the era 

prior to European settlement in the late 19th century, while 38% of trees showed growth 

release in the first decade of the 19th century. This event brought a large number of 

previously suppressed individuals into positions of canopy dominance that many have 

retained to the present day. One of the 46 sites appears to have been even-aged, with all 20 

trees apparently initiated in the late 18th or early 19th centuries. The rest were uneven-aged, 

with the oldest trees initiated between the 14th and 18th centuries. Density of understory 

regeneration and basal area of overstory trees in the old-growth remnants sampled was 

generally high, in some cases far beyond historical levels and silvicultural 
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recommendations, and may present risk of stand stagnation or catastrophic fire due to the 

accumulation of ladder fuels.  

 

Chapter 4: Failed Douglas-fir beetle attack was quantified temporally based on evidence 

of attack scars and resin pockets in the annual rings. Scars and resin pockets attributed to 

failed attacks were identified from the end of the 17th century to the death of the sampled 

Douglas-fir trees in 2014, indicating a regular occurrence that appears to have increased 

over the 20th century. Douglas-fir beetle does not appear to have been a major driver of 

stand dynamics compared to other common disturbances, especially wildfire and mountain 

pine beetle. Douglas-fir beetle outbreaks may become more important in the context of 

rising temperatures, increased stand density, and recent wildfire damage.  

 

Chapter 5: My effort to expand upon previous reconstructions of western spruce 

budworm outbreak history, which were based on the comparison of growth rates between 

potential host Douglas-fir trees and a non-host ponderosa pine population in an adjacent 

region, turned into an investigation of confounding factors that became apparent due to the 

expansion of the study to and beyond the margins of the current outbreak. Growth 

differentials between the host and non-host tree populations appear to be influenced by 

differences in climate between the regions where the populations were sampled. The 

annually surveyed 21st century outbreak was poorly described by the same host/non-host 

comparison due to an unexplained suppression in the growth rate of the ponderosa pine. 

This suppression may be due to a complex interaction involving prolonged above-average 

precipitation in the non-host region followed by a return to normal conditions after 
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extensive ingrowth of trees.  

Failure of the host/non-host analysis to accurately describe the known event allows for 

the possibility that previous outbreaks were also undescribed. However, this study does not 

contradict earlier work suggesting no history of major outbreaks (Watson & Luckman, 

2002). If the historical record from insect surveyors is taken at face value since the 1930s, 

then the 21st century outbreak represents substantial range expansion that is likely 

attributable to observed warming trends that are expected to continue under anthropogenic 

climate change.  
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6.3. Ecological implications and silvicultural applications 

Adjacency to canopy gaps created by disturbances conferred definite benefits in 

drought tolerance to surviving trees, as measured by radial growth during the drought, 

whether the canopy gaps were created by natural or anthropogenic disturbances. The 

dominant mechanism supporting this resistance appears to be access by the roots to areas 

where precipitation falls directly to the ground without being intercepted by the forest 

canopy and lost to evaporation. Open space on all four sides does not appear to be a 

requirement. While Douglas-fir beetle does not seem to have been responsible for the 

majority of historical canopy gaps, the presence of gaps created by other disturbances 

likely reduced stand vulnerability to Douglas-fir beetle by increasing the moisture 

available to potential host trees.  

These results all favor the refinement and widespread application of clump-and-gap 

type silviculture within mule deer winter range (Dawson et al., 2007), balancing needs for 

gaps allowing precipitation throughfall and clumps preventing that throughfall for the 

benefit of mule deer mobility and browse. Erring towards smaller clumps (4–6 trees) vs. 

larger clumps (7–10 trees) would likely favor drought tolerance, especially in combination 

with thorough application of the spacing and stocking recommendations already 

established (Dawson et al., 2007). Projections of ecosystem response to climate change 

predict rapid expansion of the bunchgrass zone into what is presently mule deer winter 

range. These results suggest widespread application of established density management 

practices to maintain habitat quality to the greatest extent possible while studies are 

conducted and decisions are made about adapting range boundaries to match the realized 

effects of climate change in the 2020s and 2030s (Hamann & Wang, 2006).  
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Precedent for almost any system of silviculture may be found in the natural history of 

old-growth stands in the Cariboo-Chilcotin region, including the conservative policy of 

infrequent removals roughly equaling net growth over the period since the last entry. It is 

understood that exclusion of natural fires over the past century, both through firefighting 

efforts and consumption of fine fuels by free range cattle, has resulted in overstocked 

conditions and growth stagnation across much of the study area (Wong & Iverson, 2004). 

In the context of overstocking and a warming climate, stand-level growth in recent decades 

may not be a reliable measure of the productive capacity of the land. Density objectives set 

relative to current stocking and stand-level growth rates may provide a misleading target. 

Definition of density objectives and structural goals for each size class under specific 

moisture regimes (e.g. Dawson et al., 2007), is likely the more sound approach, and some 

results of this study may inform goals for stands not covered by recommendations for 

conservation of mule deer winter range.  

The series of disturbances affecting stands in the late 18th century, which resulted in 

nearly three times the average decadal rate of growth release, provides a precedent for 

more substantial harvests in stands outside of mule deer winter ranges that already have 

some history of harvest. The silvicultural objective would be the rapid growth of small but 

established trees that was seen between 1800 and 1840, combined with the increased 

drought tolerance observed after harvest in the 1970s. Accretion on established trees 

provides the greater benefit to the mid-term timber supply, but where that is impractical, 

establishment and density management of new regeneration for the long-term timber 

supply would be a reasonable objective. The utility of this approach is its immediate 

correction of the overstocking attributed to wildfire exclusion (Wong & Iverson, 2004) in 
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operations that are generally profitable due to the timber volume extracted. Correction of 

overstocking would reduce the risk of catastrophic fire and limit the stress of projected 

climate change in the short to mid-term, mitigating two of the major predisposing factors 

for Douglas-fir beetle attack.  

The events of 1790–1800 allowed a large cohort of previously suppressed Douglas-fir 

to reach a position of preeminence across the region. The question remains as to why so 

many suppressed trees were released at this time. Such an extensive wildfire should have 

left more scarred trees than have been found in previous studies (Daniels & Watson, 2003; 

Harvey, 2017), and suppressed trees would not be expected to survive a severe fire that 

killed so many mature Douglas-fir. Windthrow is a possibility, but the region is not known 

to be prone to hurricanes or tornadoes, and windthrow should have led to more extensive 

populations of Douglas-fir beetle than are apparent in the scar/resin pocket data. The only 

serious candidate remaining is mountain pine beetle, which is considered to be responsible 

for growth release on a similar scale in the 1930s and is known to have affected nearly all 

mature pine in the area in the 2000s. A complication in this hypothesis is that the 

geographical footprint of the growth release pattern is greater than could have resulted 

from the modern distribution of lodgepole pine.  

The modern distribution of lodgepole pine follows a gradient from low density in the 

relatively warm and dry valley bottoms to higher density in the uplands, where Douglas-fir 

is limited by temperature (Griesbauer & Green, 2010) and is ultimately relegated to small 

inclusions on advantageous aspects among forests of pine and spruce. If this trend held 

through the Little Ice Age, the effect of lower temperatures in that era could have been that 

those forests which are now pure or nearly pure Douglas-fir were then more reminiscent of 
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stands found at the upland margins of Douglas-fir’s realized niche, such as those near 

Pyper Lake (site PYP; Figure 6.1) or Punti Lake (site PUD; Figure 3.1) in the Chilcotin 

region. The disturbance at the end of the 18th century would have come at the end of the 

Little Ice Age, and may have been the trigger for a substantial compositional shift with the 

study area. 

There is some support for a species shift in a sediment core sampled in the study area 

Hansen (1955), which found an increase in Douglas-fir pollen and a reduction in pine 

pollen in the top 2cm. However there was limited resolution of the dating, and a sample 

size of only one core in this study.  

If lodgepole pine was more dominant in the study area in the late 1700s, then sites at 

lower elevations presently dominated by Douglas-fir may have resembled sites at the 

upland margins of the range of Douglas-fir following the mountain pine beetle outbreak of 

the 2000s (Figure 6.1). Even a light ground fire at any time in the 10–20 years following 

the mountain pine beetle outbreak could wipe out all lodgepole pine regeneration in the 

pictured stand (Figure 6.1) before the young trees could form a substantial reserve of 

serotinous cones. Such a fire would spare most of the mature Douglas-fir, bringing that 

species into the majority and creating an ideal substrate for seed germination, allowing 

Douglas-fir to thoroughly occupy the growing space. Given Douglas-fir’s longevity, 

resistance to wildfire, and intermediate shade tolerance, the shade-intolerant lodgepole 

pine would be slow to re-establish even if it were able to grow under the new climatic 

conditions. With a mean plot-level fire return interval of 16–36 years, depending on the 

location (Harvey, 2017), the odds of a fire at an inopportune time for the regenerating 

lodgepole pine are fair.  
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Another implication of this hypothesis is that the extensive history of mountain pine 

beetle in the Chilcotin region (Alfaro et al., 2010) reflects the ebb and flow of the 

lodgepole pine forest as a viable competitor with interior Douglas-fir according to changes 

in climate at the margin of its range. In this context, mountain pine beetle would not be 

displaying cyclic behavior in the way the word is normally used in disturbance ecology 

(Pickett & White, 1985), but behaving as a consequence of climate change and a facilitator 

of species migration. This is a plausible scenario as the stands in question are in close 

proximity to their climatically-limited range margins on several fronts. If this dynamic is 

supported by future pollen core analyses, it would provide useful information on the future 

trajectory of stands under anthropogenic climate change, especially if developed in 

conjunction with an accurate estimate of local temperature change since the Little Ice Age. 

The combination of temperature change and range margin change reconstructions would 

support more precise projections of anthropogenic climate change scenarios onto the 

landscape to identify locations where planners might favor Douglas-fir over lodgepole 

pine.   
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Figure 6.1: Tree PYP01, ca. 1619, surrounded by several age classes of lodgepole pine 
regeneration and Douglas-fir of at least three cohorts. 
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The history of Douglas-fir beetle attacks apparent in resin pockets and scars 

indicates that at some points in 18th and 19th centuries, there were more widespread 

infestations than were recorded during 20th century aerial surveys. There is nothing in this 

250-year record that suggests an event equaling the magnitude of the 21st century 

outbreaks. Douglas-fir mortality estimated from the 2016 records is more than twice that 

recorded in fixed-wing surveys in any of the preceding 15 years. Based on the combination 

of long-term tree ring evidence and more recent aerial surveys, I conclude that the 2016 

mortality is unusual. The unusually high beetle population warrants close monitoring for 

atypical attack behavior, focusing especially on mass attacks in healthy trees.    

The history of western spruce budworm in the region remains unclear. Based on my 

results, evidence of differential weather patterns that could lead to false positives in 

outbreak reconstruction, and the lack of recorded evidence of past budworm outbreaks, it is 

most likely that the 21st century outbreak is anomalous in its extent and severity. If that is 

the case, the stand density allowed to build over a century of fire exclusion, especially in 

the understory (Wong & Iverson, 2004), warrants re-evaluation as a food source potentially 

intensifying future budworm outbreaks in an interaction with a warmer climate. 

Interior Douglas-fir forests in the dry-belt region of central British Columbia have 

survived the insect outbreaks of the early 21st century mostly intact, and this work suggests 

several practical steps that may be taken to maintain them despite changes to the climate 

that are already being realized. Projections based on anthropogenic climate change 

scenarios forecast conversion of many grassland-margin forests to bunchgrass ecosystems 

over the course of the 21st century, beginning as early as 2025 (Hamann & Wang, 2006). 

The pace of this conversion is not a foregone conclusion. Characteristics of the 



 

221 
 

environment around individual trees can modulate the individual tree’s response to changes 

brought about by climate or disturbance, to a degree that silvicultural intervention can 

prolong the existence of essential habitat features. Most prescriptions would require 

enough trees to be removed that the interventions would be commercially viable timber 

harvests. These harvests will provide time for careful study of the realized effects of 

climate change on the ground, allowing confident long-term planning to meet mule deer 

winter range and Douglas-fir timber production objectives on the landscape.  
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6.4. Suggested topics for future research: 

In addition to the pollen-core analysis addressing the hypothesis of dynamic range 

margins driving disturbance patterns over recent centuries, three other topics of future 

research are suggested:  

1. Mitigation of drought stress by the creation of persistent canopy gaps during 

juvenile spacing or early commercial thinning. This dissertation is focused on 

primary-growth stands and primary-growth stands with large sawtimber 

removed, and may not be transferable to even-aged stands managed from 

initiation. 

2. Extent of Douglas-fir beetle mass-attacks in healthy trees under increased 

Douglas-fir beetle population pressure, and comparison of brood production 

between these healthy host trees and dead, diseased, or fire-damaged trees. This 

study finds that recent mortality is most likely without precedent within the past 

three centuries, and suggests close attention in the context of climate warming.  

3. Population genetics of Douglas-fir extending along river valleys from the dry 

interior Chilcotin region to the Pacific Ocean via the Bute Inlet. The traits 

selectively retained along this narrow ‘bridge’ may add to the basic 

understanding of the effect of climate on the processes of evolution and 

migration of tree species (Figure 6.2).  
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Figure 6.2: Continuity of Douglas-fir from the coast to the interior ‘dry belt’ via the Bute Inlet. Stands containing Douglas-fir (BC 
Vegetation Resources Inventory; primary, secondary, or tertiary species) overlaying the mean annual precipitation (mm; “MAP”) 
from 1961 to 1990 (www.climatewna.com accessed 2017), showing the ‘bridge’ of Douglas-fir from the high-precipitation coastal 
region to the dry interior areas described in this dissertation (study area corresponds to the northeast quadrant of this map

http://www.climatewna.com/
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8. Appendix A: R Scripts Used in Analyses 

8.1. Introduction 

The following scripts are those used for the analyses in this dissertation, in some 

cases modified and noted to be used as examples with data stored in the UNBC Tree Ring 

Lab folder called “R Scripts for Dendro.” If these folders are not available to you and you 

wish to acquire the example data, write to both nthompso@unbc.ca and 

neil.thompson@maine.edu, both of which should be monitored for the foreseeable future. 

These scripts “should” work with any properly formatted ringwidth measurement files in 

Tucson or Heidelberg format (use the program TRiCYCLE available at 

http://www.tridas.org/software.php to convert between formats). Substituting 

[format=c(“tucson”)] for [format=c(“heidelberg”)] or vice versa will allow you to use the 

other format.  

 

  

mailto:nthompso@unbc.ca
mailto:neil.thompson@maine.edu
http://www.tridas.org/software.php
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8.2. Ring width to basal area increments (Chapters 2, 3, and 4) 

# This script converts raw ring width measurements from the Tucson format to basal area 
increments in mm2 
# Last edited by Neil Thompson on January 21, 2016 
# Please copy this script and examples to your own directory so you do not overwrite the 
original 
# Developed using R 3.2.2. 
# Example dataset provided is a subsample of one site from Neil Thompson's Ph.D. 
dissertation work 
 
 
# You may need to use the latest version of dplR to use the tree averaging command. The 
latest version is available here https://r-forge.r-project.org/R/?group_id=1105  
 
# Load dplR (https://cran.r-project.org/web/packages/dplR/index.html) 
library(dplR) 
 
# Set working directory 
setwd(choose.dir(default = "", caption = "Select folder")) 
 
# To confirm success 
getwd() 
# It won't take you to the directory the first time, so you will have to navigate manually. It 
will be automatic after the first one. 
 
 
# Read the raw ring width data file (Tucson format) in as the tag "dro" 
dro <- read.rwl (file.choose (new = FALSE), format = c("tucson")) 
 
# Read the distance to pith data file, measured in millimeters. Two labeled columns 
("series" and "d2pith" in mm)  must be present and match the above format 
d2p <- read.csv(file.choose (new = FALSE)) 
 
# Calculate the annual BAI of each series 
droB <- bai.in(rwl = dro, d2pith = d2p) 
# If no d2pith file is available, then substitute "d2pith = NULL" 
 
# To average the cores within a tree (example COL01B) 
droB.ids <- read.ids(droB, stc = c(3, 2, 1)) 
# where 3 is the number of characters defining site (COL) 
# 2 is the number of characters defining the tree (01) 
# 1 is the character defining core within tree (B) 
 
View(droB.ids) 
# Confirm that there are the correct number of trees, cores, sites 
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# Calculate the tree level mean across cores, retaining years with missing values 
droB.treeMean <- treeMean(droB, droB.ids, na.rm=TRUE) 
# Tree names are dropped but order is retained, will have to add in later 
 
 
# Write a CSV file of the output 
write.csv(droB.treeMean, file = "droB.csv") 
 
 
# Convert mm2 to cm2 if desired 
 
 
# Manually check your output: calculate the basal area increment of a single ring using a 
ruler and the area formula (pi*r2) 
# Calculate the total basal area in Excel by summing each annual increment.  
# Reverse the above area calculation to calculate the diameter [2*(sqrt(area/pi))]. This 
better look something like your field DBH measurements. 
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8.3. Climate correlations and response functions (Chapters 2 and 5) 

# COPY THE EXAMPLE FOLDER TO YOUR OWN DIRECTORY so that you do not 
overwrite or clutter the original 
 
# This script will take you through climate correlations and response functions using the 
latest R package as of January 2016 
# Prepared by Neil Thompson, 12 January 2016 for use in the UNBC Dendrochronology 
lab 
 
# Download R and packages dplR and treeclim 
# http://cran.us.r-project.org/ 
# http://www.r-bloggers.com/installing-r-packages/ 
# https://cran.r-project.org/web/packages/treeclim/index.html 
# https://cran.r-project.org/web/packages/dplR/index.html 
 
# Materials (examples provided in this folder):  
# 1. Crossdated ring width measurements in Tucson format 
# 2. Monthly temperature data in column format (see example; columns are Year, jan, feb, 
mar, etc.) 
# 3. Monthly precipitation data in column format (see example; columns are Year, jan, feb, 
mar, etc.) 
 
# Monthly data for BC are available here: http://www.ec.gc.ca/dccha-ahccd/ but will 
require some curation to meet the format (no heading labels or extra columns) 
 
 
# To use these scripts, copy them to the R command console in the order that they appear 
# My notes are indicated by #hashtags and are ignored by the program; they may be copied 
with commands 
# The following line is a command, having no hashtag 
2+2 
# The following line stores the mathematical argument "2+2" as "y" using the < and - (<-) 
characters 
y <- 2+2 
y 
# This method is used to store complex equations and datasets as simple characters 
throughout the script 
 
 
##############Data input and prep for Treeclim############ 
# Copy and paste everything from here to ########Correlation###### to the command 
console and follow the prompts 
 
# Set the working directory interactively (the version of this folder that you copied to your 
own directory) 
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setwd(choose.dir(default = "", caption = "Select folder")) 
 
# Clear the workspace 
rm(list=ls()) 
 
# Load dplR and bootRes 
library(dplR) 
library(treeclim) 
 
# Load temperature and precipitation tables interactively 
temp <- read.table (file.choose (new = FALSE)) 
prec <- read.table (file.choose (new = FALSE)) 
 
 
# Load site interactively 
X1<- read.rwl (file.choose (new = FALSE), format = c("tucson")) 
 
# Detrending, 50 year cubic smoothing spline (to change spline length to X, set"nyrs=X" 
below) 
X2 <- detrend(X1, y.name = names(X1), make.plot = TRUE, method = c("Spline"), 
nyrs=50, f = 0.5, verbose = FALSE, return.info = FALSE) 
 
# Build a residual chronology using a biweight mean 
X3 <- chron(X2, prefix="xx", biweight = TRUE, prewhiten = TRUE) 
 
 
 
##################Correlation####################### 
 
 
X <- dcc (chrono=X3, climate = list(temp, prec), selection = -6:9, method = "correlation", 
moving = FALSE, var_names = c("temp", "prec")) 
plot(X) 
 
# Save a plot ###########WILL OVERWRITE EXISTING############## 
jpeg("Correlation.jpg", width=12, height=8, units = "in", res =300) 
plot(X) 
dev.off() 
 
XX <- dcc (chrono=X3, climate = list(temp, prec), selection = -6:9, method = 
"correlation", moving = TRUE, win_size=35, win_offset = 5, var_names = c("temp", 
"prec")) 
plot(XX) 
 
# Save a plot ###########WILL OVERWRITE EXISTING############## 
jpeg("Moving Correlation.jpg", width=12, height=8, units = "in", res =300) 
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plot(XX) 
dev.off() 
 
 
XXStat <- dcc (chrono=X3, climate = list(temp, prec), selection = -6:9, method = 
"correlation", moving = TRUE, win_size=35, win_offset = 5, var_names = c("temp", 
"prec"), ci = 0.05, boot = "stationary") 
plot(XXStat) 
 
 
 
#####################Response Function############## 
 
X1 <- dcc (chrono=X3, climate = list(temp, prec), selection = -6:9, method = "response", 
moving = FALSE, var_names = c("temp", "prec")) 
plot(X1) 
 
 
# Save a plot ###########WILL OVERWRITE EXISTING############## 
jpeg("Response Function.jpg", width=12, height=8, units = "in", res =300) 
plot(X1) 
dev.off() 
 
XX1 <- dcc (chrono=X3, climate = list(temp, prec), selection = -6:9, method = "response", 
moving = TRUE, win_size=35, win_offset = 5, var_names = c("temp", "prec")) 
plot(XX1) 
 
# Save a plot ###########WILL OVERWRITE EXISTING############## 
jpeg("Moving Response.jpg", width=12, height=8, units = "in", res =300) 
plot(XX1) 
dev.off() 
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8.4. Generation of .tre files (Chapter 5) 

This script repeats for each of the 45 sites, but only two iterations are shown for brevity. 
 
 
# Load dplR (https://cran.r-project.org/web/packages/dplR/index.html) 
library(dplR) 
 
# Set working directory 
setwd(choose.dir(default = "", caption = "Select folder")) 
 
# To confirm success 
getwd() 
# It won't take you to the directory the first time, so you will have to nagivage manually. It 
will be automatic after the first one. 
 
 
 
#####ABR############################################################## 
 
# Read the raw ring width data file (Heidelberg format) in as the tag "X1" 
X1 <- read.rwl ("ABR(01).fh", format = c("heidelberg")) 
 
# Detrending, modnegexp  
X1a <- detrend(X1, y.name = names(X1), make.plot = TRUE, method = c("ModNegExp"), 
verbose = FALSE, return.info = FALSE) 
 
# Detrending, 150 year cubic smoothing spline (to change spline length to X, set"nyrs=X" 
below) 
X2 <- detrend(X1a, y.name = names(X1a), make.plot = TRUE, method = c("Spline"), 
nyrs=50, f = 0.5, verbose = FALSE, return.info = FALSE) 
 
 
# To average the cores within a tree (example COL01B) 
X2.ids <- read.ids(X2, stc = c(3, 2, 1)) 
# where 3 is the number of characters defining site (COL) 
# 2 is the number of characters defining the tree (01) 
# 1 is the character defining core within tree (B) 
 
View(X2.ids) 
# Confirm that there are the correct number of trees, cores, sites 
 
# Calculate the tree level mean across cores, retaining years with missing values 
X2.M <- treeMean(X2, X2.ids, na.rm=TRUE) 
# Tree names are dropped but order is retained, will have to add in later 
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# Write a tre file of the output 
write.tucson(X2.M, fname = "ABR.tre") 
 
 
#######END######## 
 
 
#####ACS############################################################## 
 
# Read the raw ring width data file (Heidelberg format) in as the tag "X1" 
X1 <- read.rwl ("ACS(01).fh", format = c("heidelberg")) 
 
# Detrending, modnegexp  
X1a <- detrend(X1, y.name = names(X1), make.plot = TRUE, method = c("ModNegExp"), 
verbose = FALSE, return.info = FALSE) 
 
# Detrending, 150 year cubic smoothing spline (to change spline length to X, set"nyrs=X" 
below) 
X2 <- detrend(X1a, y.name = names(X1a), make.plot = TRUE, method = c("Spline"), 
nyrs=50, f = 0.5, verbose = FALSE, return.info = FALSE) 
 
 
 
# To average the cores within a tree (example COL01B) 
X2.ids <- read.ids(X2, stc = c(3, 2, 1)) 
# where 3 is the number of characters defining site (COL) 
# 2 is the number of characters defining the tree (01) 
# 1 is the character defining core within tree (B) 
 
View(X2.ids) 
# Confirm that there are the correct number of trees, cores, sites 
 
# Calculate the tree level mean across cores, retaining years with missing values 
X2.M <- treeMean(X2, X2.ids, na.rm=TRUE) 
# Tree names are dropped but order is retained, will have to add in later 
 
 
# Write a tre file of the output 
write.tucson(X2.M, fname = "ACS.tre") 
 
 
#######END########  
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9. Appendix B: AIC Calculation and Top Ranked Models for Chapter 3 
Calculation tables of Akaike’s Information Criterion for small sample sizes (AICc) 

from the log likelihood and sample size in each drought year. Models with AICc 

differences (“AIC DIFF”) <2 were considered to be ties and are full outputs of the 

multinomial logistic regression are reported in the tables following the AICc calculation.  

1988 
  

minAICc= 1768.4 
   n=907 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -863.72 1767.43 1768.4 0.0 0.87 1.0000 
Less resistance 18 -909.06 1854.13 1854.9 86.5 <0.01 0.0000 
Less coordinates 16 -870.31 1772.61 1773.2 4.8 0.08 0.0887 
Less elevation 18 -868.58 1773.15 1773.9 5.5 0.05 0.0627 
Elevation 2 -964.33 1932.66 1932.7 164.3 <0.01 0.0000 
Site level 10 -924.29 1868.58 1868.8 100.4 <0.01 0.0000 
Tree level 10 -904.74 1829.47 1829.7 61.3 <0.01 0.0000 
Mixed 1 12 -879.44 1782.88 1783.2 14.8 <0.01 0.0006 
Mixed 2 16 -912.74 1857.48 1858.1 89.7 <0.01 0.0000 

        
        
        1959 

  
minAICc= 1692.0 

   n=904 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -827.50 1695.00 1696.0 3.9 0.12 0.1397 
Less resistance 18 -895.96 1827.91 1828.7 136.7 <0.01 0.0000 
Less coordinates 16 -839.66 1711.32 1711.9 19.9 <0.01 0.0000 
Less elevation 18 -827.62 1691.24 1692.0 0.0 0.87 1.0000 
Elevation 2 -981.36 1966.72 1966.7 274.7 <0.01 0.0000 
Site level 10 -952.62 1925.25 1925.5 233.5 <0.01 0.0000 
Tree level 10 -847.31 1714.62 1714.9 22.9 <0.01 0.0000 
Mixed 1 12 -843.89 1711.78 1712.1 20.1 <0.01 0.0000 
Mixed 2 16 -898.13 1828.25 1828.9 136.8 <0.01 0.0000 



 

249 
 

        
        
        1946 

  
minAICc= 1886.5 

   n=896 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -924.59 1889.18 1890.1 3.6 0.11 0.1651 
Less resistance 18 -926.48 1888.95 1889.7 3.2 0.18 0.2023 
Less coordinates 16 -932.89 1897.79 1898.4 11.9 <0.01 0.0026 
Less elevation 18 -924.88 1885.76 1886.5 0.0 0.87 1.0000 
Elevation 2 -983.28 1970.55 1970.6 84.0 <0.01 0.0000 
Site level 10 -941.68 1903.36 1903.6 17.1 <0.01 0.0002 
Tree level 10 -965.66 1951.33 1951.6 65.0 <0.01 0.0000 
Mixed 1 12 -934.68 1893.35 1893.7 7.2 0.02 0.0277 
Mixed 2 16 -930.17 1892.35 1893.0 6.4 0.03 0.0401 

        
        
        1938 

  
minAICc= 1785.8 

   n=893 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -872.43 1784.87 1785.8 0.0 0.97 1.0000 
Less resistance 18 -943.77 1923.55 1924.3 138.5 <0.01 0.0000 
Less coordinates 16 -881.46 1794.93 1795.5 9.7 0.01 0.0078 
Less elevation 18 -878.35 1792.70 1793.5 7.6 0.02 0.0218 
Elevation 2 -974.48 1952.97 1953.0 167.1 <0.01 0.0000 
Site level 10 -964.16 1948.32 1948.6 162.7 <0.01 0.0000 
Tree level 10 -908.38 1836.77 1837.0 51.2 <0.01 0.0000 
Mixed 1 12 -893.08 1810.16 1810.5 24.7 <0.01 0.0000 
Mixed 2 16 -944.57 1921.14 1921.8 135.9 <0.01 0.0000 
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1931 
  

minAICc= 1832.0 
   n=890 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -896.32 1832.65 1833.6 1.6 0.29 0.4456 
Less resistance 18 -911.52 1859.04 1859.8 27.8 <0.01 0.0000 
Less coordinates 16 -903.94 1839.87 1840.5 8.5 0.01 0.0143 
Less elevation 18 -897.61 1831.21 1832.0 0.0 0.64 1.0000 
Elevation 2 -977.49 1958.98 1959.0 127.0 <0.01 0.0000 
Site level 10 -963.51 1947.02 1947.3 115.3 <0.01 0.0000 
Tree level 10 -908.96 1837.92 1838.2 6.2 0.03 0.0458 
Mixed 1 12 -906.91 1837.82 1838.2 6.2 0.03 0.0456 
Mixed 2 16 -911.73 1855.47 1856.1 24.1 <0.01 0.0000 

        
        
        1905 

  
minAICc= 1617.3 

   n=860 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -791.34 1622.68 1623.7 6.4 0.04 0.0410 
Less resistance 18 -858.38 1752.76 1753.6 136.3 <0.01 0.0000 
Less coordinates 16 -792.32 1616.65 1617.3 0.0 0.96 1.0000 
Less elevation 18 -801.37 1638.75 1639.6 22.3 <0.01 0.0000 
Elevation 2 -928.94 1861.89 1861.9 244.6 <0.01 0.0000 
Site level 10 -903.14 1826.29 1826.5 209.3 <0.01 0.0000 
Tree level 10 -838.42 1696.84 1697.1 79.8 <0.01 0.0000 
Mixed 1 12 -815.36 1654.71 1655.1 37.8 <0.01 0.0000 
Mixed 2 16 -862.46 1756.93 1757.6 140.3 <0.01 0.0000 
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1869 
  

minAICc= 1620.0 
   n=794 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -789.47 1618.94 1620.0 0.0 0.47 1.0000 
Less resistance 18 -796.29 1628.58 1629.5 9.4 0.01 0.0089 
Less coordinates 16 -793.84 1619.68 1620.4 0.4 0.80 0.8374 
Less elevation 18 -793.49 1622.97 1623.9 3.8 0.14 0.1473 
Elevation 2 -928.94 1861.89 1861.9 241.9 <0.01 0.0000 
Site level 10 -843.13 1706.27 1706.5 86.5 <0.01 0.0000 
Tree level 10 -808.50 1637.00 1637.3 17.3 <0.01 0.0002 
Mixed 1 12 -800.26 1624.52 1624.9 4.9 0.08 0.0865 
Mixed 2 16 -796.62 1625.24 1625.9 5.9 0.05 0.0519 

        
        
        1842 

  
minAICc= 1305.7 

   n=737 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -632.26 1304.52 1305.7 0.0 1.00 1.0000 
Less resistance 18 -704.43 1444.85 1445.8 140.1 <0.01 0.0000 
Less coordinates 16 -669.24 1370.49 1371.2 65.5 <0.01 0.0000 
Less elevation 18 -640.55 1317.11 1318.1 12.4 <0.01 0.0021 
Elevation 2 -792.18 1588.35 1588.4 282.7 <0.01 0.0000 
Site level 10 -731.76 1483.52 1483.8 178.1 <0.01 0.0000 
Tree level 10 -691.11 1402.21 1402.5 96.8 <0.01 0.0000 
Mixed 1 12 -671.40 1366.81 1367.2 61.5 <0.01 0.0000 
Mixed 2 16 -707.07 1446.14 1446.9 141.2 <0.01 0.0000 
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        1800 
  

minAICc= 1097.8 
   n=588 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -529.63 1099.26 1100.7 2.9 0.19 0.2319 
Less resistance 18 -585.78 1207.55 1208.8 110.9 <0.01 0.0000 
Less coordinates 16 -537.19 1106.38 1107.3 9.5 0.01 0.0086 
Less elevation 18 -530.31 1096.62 1097.8 0.0 0.81 1.0000 
Elevation 2 -642.87 1289.75 1289.8 191.9 <0.01 0.0000 
Site level 10 -621.54 1263.07 1263.5 165.6 <0.01 0.0000 
Tree level 10 -551.48 1122.96 1123.3 25.5 <0.01 0.0000 
Mixed 1 12 -549.00 1121.99 1122.5 24.7 <0.01 0.0000 
Mixed 2 16 -586.00 1204.00 1204.9 107.1 <0.01 0.0000 

        
        
        1772 

  
minAICc= 845.6 

   n=475 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -407.38 854.76 856.6 11.0 <0.01 0.0042 
Less resistance 18 -466.93 969.86 971.4 125.7 <0.01 0.0000 
Less coordinates 16 -408.07 848.14 849.3 3.7 0.13 0.1591 
Less elevation 18 -407.96 851.92 853.4 7.8 0.02 0.0205 
Elevation 2 -507.84 1019.68 1019.7 174.1 <0.01 0.0000 
Site level 10 -490.51 1001.02 1001.5 155.8 <0.01 0.0000 
Tree level 10 -414.18 848.36 848.8 3.2 0.16 0.2032 
Mixed 1 12 -410.49 844.97 845.6 0.0 0.81 1.0000 
Mixed 2 16 -467.14 966.28 967.5 121.8 <0.01 0.0000 
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        1760 
  

minAICc= 779.4 
   n=438 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -417.31 874.62 876.6 97.2 <0.01 0.0000 
Less resistance 18 -417.31 870.62 872.3 92.8 <0.01 0.0000 
Less coordinates 16 -399.91 831.82 833.1 53.7 <0.01 0.0000 
Less elevation 18 -370.90 777.80 779.4 0.0 0.81 1.0000 
Elevation 2 -479.51 963.02 963.0 183.6 <0.01 0.0000 
Site level 10 -453.71 927.42 927.9 148.5 <0.01 0.0000 
Tree level 10 -405.30 830.60 831.1 51.7 <0.01 0.0000 
Mixed 1 12 -407.32 838.64 839.4 59.9 <0.01 0.0000 
Mixed 2 16 -421.40 874.80 876.1 96.7 <0.01 0.0000 

        
        
        1734 

  
minAICc= 614.8 

   n=354 
       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -286.14 612.28 614.8 0.0 0.87 1.0000 
Less resistance 18 -320.21 676.42 678.5 63.7 <0.01 0.0000 
Less coordinates 16 -300.78 633.56 635.2 20.4 <0.01 0.0000 
Less elevation 18 -290.24 616.49 618.5 3.7 0.13 0.1547 
Elevation 2 -382.77 769.54 769.6 154.8 <0.01 0.0000 
Site level 10 -354.57 729.14 729.8 115.0 <0.01 0.0000 
Tree level 10 -307.16 634.31 635.0 20.2 <0.01 0.0000 
Mixed 1 12 -306.36 636.71 637.6 22.8 <0.01 0.0000 
Mixed 2 16 -323.07 678.15 679.8 65.0 <0.01 0.0000 
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        1717 
  

minAICc= 473.6 
   n=292 

       

  K 
Log 
Likelihood AIC AICC 

AIC 
DIFF w 

exp(-
1/2delta) 

        Full 20 -215.42 470.84 473.9 0.3 0.27 0.8634 
Less resistance 18 -262.02 560.03 562.5 88.9 <0.01 0.0000 
Less coordinates 16 -219.83 471.66 473.6 0.0 0.31 1.0000 
Less elevation 18 -219.04 474.09 476.6 2.9 0.07 0.2288 
Elevation 2 -311.30 626.60 626.6 153.0 <0.01 0.0000 
Site level 10 -275.15 570.30 571.1 97.4 <0.01 0.0000 
Tree level 10 -227.58 475.16 475.9 2.3 0.10 0.3157 
Mixed 1 12 -224.51 473.03 474.1 0.5 0.24 0.7776 
Mixed 2 16 -266.23 564.45 566.4 92.8 <0.01 0.0000 
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Robust 

     resilcd1988 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean 0.029419 0.03091510 0.95 0.341 -0.0311736 0.0900116 

ahm 0.053303 0.03672830 1.45 0.147 -0.0186831 0.1252893 
solar 0.000000 0.00000039 -0.45 0.652 -0.0000009 0.0000006 
elev 0.003558 0.00125330 2.84 0.005 0.0011011 0.0060138 
resist1988 2.188537 0.79328470 2.76 0.006 0.6337273 3.7433460 
prior1988 -0.000497 0.00023660 -2.10 0.036 -0.0009604 -0.0000329 
age1988 0.001735 0.00189490 0.92 0.360 -0.0019794 0.0054484 
ba1988 -0.000001 0.00000244 -0.33 0.739 -0.0000056 0.0000040 
easting 0.000003 0.00000581 0.60 0.550 -0.0000079 0.0000149 
northing 0.000004 0.00000854 0.44 0.663 -0.0000130 0.0000205 
_cons -13.904640 14.21691000 -0.98 0.328 -41.7692800 13.9600000 

       3 
      lwmean 0.094984 0.03359190 2.83 0.005 0.0291456 0.1608232 

ahm 0.019592 0.07805370 0.25 0.802 -0.1333905 0.1725743 
solar -0.000001 0.00000062 -1.32 0.187 -0.0000020 0.0000004 
elev 0.001932 0.00232020 0.83 0.405 -0.0026160 0.0064790 
resist1988 4.817027 1.08506300 4.44 <0.0001 2.6903420 6.9437110 
prior1988 -0.000658 0.00027130 -2.43 0.015 -0.0011900 -0.0001267 
age1988 -0.000469 0.00227540 -0.21 0.837 -0.0049282 0.0039910 
ba1988 0.000002 0.00000300 0.52 0.605 -0.0000043 0.0000074 
easting -0.000004 0.00000794 -0.54 0.592 -0.0000198 0.0000113 
northing -0.000016 0.00001490 -1.04 0.296 -0.0000448 0.0000136 
_cons 10.989060 24.26692000 0.45 0.651 -36.5732400 58.5513500 
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Robust 
    resilcd1959 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean -0.056653 0.02541890 -2.23 0.026 -0.1064731 -0.0068330 

ahm 0.007371 0.03312190 0.22 0.824 -0.0575471 0.0722885 
solar 0.000000 0.00000043 -0.39 0.694 -0.0000010 0.0000007 
resist1959 3.138056 0.59780630 5.25 <0.0001 1.9663770 4.3097350 
prior1959 -0.000313 0.00021970 -1.42 0.154 -0.0007434 0.0001177 
age1959 -0.000742 0.00120850 -0.61 0.539 -0.0031109 0.0016264 
ba1959 -0.000002 0.00000180 -1.30 0.192 -0.0000059 0.0000012 
easting -0.000004 0.00000370 -1.13 0.260 -0.0000114 0.0000031 
northing 0.000009 0.00000414 2.23 0.026 0.0000011 0.0000173 
_cons -1.192390 6.87437400 -0.17 0.862 -14.6659200 12.2811400 

       3 
      lwmean -0.020750 0.03386960 -0.61 0.540 -0.0871330 0.0456335 

ahm 0.052262 0.04395850 1.19 0.234 -0.0338948 0.1384195 
solar 0.000000 0.00000059 -0.66 0.512 -0.0000015 0.0000008 
resist1959 5.933811 0.77739240 7.63 <0.0001 4.4101500 7.4574720 
prior1959 -0.001067 0.00034140 -3.12 0.002 -0.0017357 -0.0003974 
age1959 -0.004443 0.00223280 -1.99 0.047 -0.0088190 -0.0000667 
ba1959 -0.000004 0.00000209 -1.72 0.085 -0.0000077 0.0000005 
easting -0.000002 0.00000545 -0.45 0.652 -0.0000131 0.0000082 
northing 0.000016 0.00000579 2.77 0.006 0.0000047 0.0000274 
_cons -10.675210 10.70599000 -1.00 0.319 -31.6585700 10.3081500 
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Robust 
    resilcd1946 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean 0.023936 0.03457120 0.69 0.489 -0.0438225 0.0916939 

ahm 0.066024 0.02958000 2.23 0.026 0.0080481 0.1239996 
solar 0.000000 0.00000034 0.27 0.788 -0.0000006 0.0000008 
resist1946 0.603534 0.41210240 1.46 0.143 -0.2041714 1.4112400 
prior1946 -0.000044 0.00024730 -0.18 0.859 -0.0005285 0.0004407 
age1946 0.000312 0.00188680 0.17 0.869 -0.0033860 0.0040102 
ba1946 0.000000 0.00000218 0.21 0.833 -0.0000038 0.0000047 
easting -0.000008 0.00000298 -2.77 0.006 -0.0000141 -0.0000024 
northing -0.000006 0.00000370 -1.63 0.104 -0.0000133 0.0000012 
_cons 11.820400 5.36835100 2.20 0.028 1.2986300 22.3421800 

       3 
      lwmean 0.071153 0.03432550 2.07 0.038 0.0038764 0.1384301 

ahm 0.084156 0.03686400 2.28 0.022 0.0119040 0.1564080 
solar 0.000000 0.00000044 0.72 0.474 -0.0000006 0.0000012 
resist1946 0.691093 0.49570910 1.39 0.163 -0.2804790 1.6626650 
prior1946 -0.000333 0.00022240 -1.50 0.134 -0.0007690 0.0001029 
age1946 0.002199 0.00195790 1.12 0.261 -0.0016384 0.0060364 
ba1946 -0.000004 0.00000222 -1.61 0.107 -0.0000079 0.0000008 
easting -0.000014 0.00000386 -3.55 <0.0001 -0.0000213 -0.0000061 
northing -0.000012 0.00000517 -2.22 0.027 -0.0000216 -0.0000013 
_cons 21.054490 7.47548000 2.82 0.005 6.4028200 35.7061600 
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Robust 
    resilcd1938 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean -0.030118 0.02701030 -1.12 0.265 -0.0830571 0.0228211 

ahm -0.056953 0.05371610 -1.06 0.289 -0.1622350 0.0483282 
solar -0.000001 0.00000035 -2.07 0.038 -0.0000014 0.0000000 
elev -0.002594 0.00156390 -1.66 0.097 -0.0056586 0.0004716 
resist1938 2.416910 0.66871360 3.61 <0.0001 1.1062550 3.7275650 
prior1938 -0.000337 0.00032530 -1.04 0.300 -0.0009743 0.0003007 
age1938 -0.002982 0.00189560 -1.57 0.116 -0.0066972 0.0007335 
ba1938 -0.000001 0.00000196 -0.31 0.755 -0.0000045 0.0000032 
easting -0.000001 0.00000575 -0.21 0.832 -0.0000125 0.0000100 
northing -0.000008 0.00000842 -0.97 0.332 -0.0000247 0.0000083 
_cons 13.006570 15.10658000 0.86 0.389 -16.6017800 42.6149200 

       3 
      lwmean -0.048869 0.03268240 -1.50 0.135 -0.1129254 0.0151871 

ahm -0.120137 0.05914320 -2.03 0.042 -0.2360551 -0.0042180 
solar -0.000001 0.00000052 -1.86 0.063 -0.0000020 0.0000001 
elev -0.004057 0.00194910 -2.08 0.037 -0.0078775 -0.0002370 
resist1938 6.106275 0.74073510 8.24 <0.0001 4.6544610 7.5580890 
prior1938 -0.001065 0.00042090 -2.53 0.011 -0.0018904 -0.0002405 
age1938 -0.003928 0.00255640 -1.54 0.124 -0.0089382 0.0010826 
ba1938 -0.000002 0.00000297 -0.55 0.581 -0.0000075 0.0000042 
easting 0.000003 0.00000679 0.43 0.668 -0.0000104 0.0000162 
northing -0.000013 0.00001130 -1.16 0.247 -0.0000351 0.0000091 
_cons 13.590990 18.67833000 0.73 0.467 -23.0178700 50.1998400 
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       A 

 
Robust 

    resilcd1931 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean -0.012383 0.02634530 -0.47 0.638 -0.0640190 0.0392527 

ahm 0.089744 0.05002070 1.79 0.073 -0.0082946 0.1877829 
solar 0.000000 0.00000045 0.33 0.742 -0.0000007 0.0000010 
elev 0.000976 0.00148320 0.66 0.510 -0.0019307 0.0038835 
resist1931 1.011700 0.46614560 2.17 0.030 0.0980716 1.9253290 
prior1931 -0.000862 0.00023720 -3.64 <0.0001 -0.0013273 -0.0003974 
age1931 0.001713 0.00190230 0.90 0.368 -0.0020158 0.0054412 
ba1931 0.000001 0.00000221 0.27 0.784 -0.0000037 0.0000049 
easting 0.000008 0.00000486 1.73 0.083 -0.0000011 0.0000180 
northing 0.000002 0.00000798 0.22 0.830 -0.0000139 0.0000174 
_cons -15.594400 13.21523000 -1.18 0.238 -41.4957700 10.3069600 

       3 
      lwmean -0.001115 0.03133570 -0.04 0.972 -0.0625314 0.0603023 

ahm 0.044860 0.05945640 0.75 0.451 -0.0716724 0.1613923 
solar 0.000001 0.00000059 1.03 0.305 -0.0000006 0.0000018 
elev -0.000722 0.00204500 -0.35 0.724 -0.0047302 0.0032861 
resist1931 2.182757 0.53656200 4.07 <0.0001 1.1311140 3.2343990 
prior1931 -0.001502 0.00040940 -3.67 <0.0001 -0.0023049 -0.0007000 
age1931 0.002503 0.00227400 1.10 0.271 -0.0019544 0.0069594 
ba1931 -0.000006 0.00000246 -2.26 0.024 -0.0000104 -0.0000007 
easting 0.000003 0.00000607 0.46 0.646 -0.0000091 0.0000147 
northing -0.000009 0.00001040 -0.86 0.390 -0.0000292 0.0000114 
_cons 2.236028 18.06747000 0.12 0.902 -33.1755600 37.6476200 
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       B 
 

Robust 
    resilcd1931 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean -0.008932 0.02674990 -0.33 0.738 -0.0613611 0.0434964 

ahm 0.065470 0.05078140 1.29 0.197 -0.0340598 0.1649995 
solar 0.000000 0.00000046 0.40 0.693 -0.0000007 0.0000011 
resist1931 1.020697 0.46718520 2.18 0.029 0.1050306 1.9363630 
prior1931 -0.000846 0.00023360 -3.62 <0.0001 -0.0013034 -0.0003876 
age1931 0.001858 0.00184020 1.01 0.313 -0.0017491 0.0054643 
ba1931 0.000000 0.00000219 0.17 0.866 -0.0000039 0.0000047 
easting 0.000006 0.00000466 1.23 0.219 -0.0000034 0.0000149 
northing -0.000003 0.00000502 -0.56 0.574 -0.0000127 0.0000070 
_cons -7.095796 9.13467700 -0.78 0.437 -24.9994300 10.8078400 

       3 
      lwmean -0.002931 0.03279180 -0.09 0.929 -0.0672014 0.0613400 

ahm 0.061290 0.04865020 1.26 0.208 -0.0340631 0.1566421 
solar 0.000001 0.00000060 0.99 0.321 -0.0000006 0.0000018 
resist1931 2.179971 0.54427840 4.01 <0.0001 1.1132050 3.2467370 
prior1931 -0.001513 0.00040750 -3.71 <0.0001 -0.0023115 -0.0007143 
age1931 0.002395 0.00218900 1.09 0.274 -0.0018954 0.0066854 
ba1931 -0.000005 0.00000241 -2.23 0.026 -0.0000101 -0.0000007 
easting 0.000005 0.00000463 0.99 0.320 -0.0000045 0.0000137 
northing -0.000006 0.00000505 -1.15 0.252 -0.0000157 0.0000041 
_cons -3.619915 9.06618800 -0.40 0.690 -21.3893200 14.1494900 

       
         



 

261 
 

       
  

Robust 
    resilcd1905 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base outcome) 
     

       2 
      lwmean -0.079674 0.02784780 -2.86 0.004 -0.1342549 -0.0250935 

ahm -0.051085 0.03274720 -1.56 0.119 -0.1152686 0.0130981 
solar 0.000001 0.00000045 2.63 0.008 0.0000003 0.0000021 
elev -0.001980 0.00078470 -2.52 0.012 -0.0035177 -0.0004418 
resist1905 3.612302 0.69772640 5.18 <0.0001 2.2447830 4.9798210 
prior1905 -0.000638 0.00026700 -2.39 0.017 -0.0011614 -0.0001148 
age1905 -0.000451 0.00227290 -0.20 0.843 -0.0049055 0.0040041 
ba1905 0.000001 0.00000249 0.23 0.820 -0.0000043 0.0000054 
_cons 2.837433 1.98128300 1.43 0.152 -1.0458100 6.7206760 

       3 
      lwmean -0.051762 0.03751540 -1.38 0.168 -0.1252913 0.0217664 

ahm -0.058098 0.04932430 -1.18 0.239 -0.1547723 0.0385755 
solar 0.000001 0.00000080 1.63 0.102 -0.0000003 0.0000029 
elev -0.005186 0.00131280 -3.95 <0.0001 -0.0077586 -0.0026124 
resist1905 6.907991 1.19821700 5.77 <0.0001 4.5595290 9.2564520 
prior1905 -0.001586 0.00039300 -4.04 <0.0001 -0.0023566 -0.0008160 
age1905 -0.007084 0.00292880 -2.42 0.016 -0.0128238 -0.0013432 
ba1905 0.000002 0.00000330 0.55 0.580 -0.0000046 0.0000083 
_cons 4.889696 2.84491700 1.72 0.086 -0.6862394 10.4656300 
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       A 
 

Robust 
    resilcd1869 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.001019 0.03927100 -0.03 0.979 -0.0779889 0.0759508 

ahm -0.073960 0.06315590 -1.17 0.242 -0.1977433 0.0498233 
solar 0.000000 0.00000043 0.37 0.714 -0.0000007 0.0000010 
elev -0.002582 0.00199900 -1.29 0.196 -0.0065001 0.0013360 
resist1869 0.474111 0.61583050 0.77 0.441 -0.7328950 1.6811160 
prior1869 -0.000673 0.00030950 -2.18 0.030 -0.0012799 -0.0000668 
age1869 -0.000756 0.00272770 -0.28 0.782 -0.0061023 0.0045899 
ba1869 0.000002 0.00000335 0.71 0.477 -0.0000042 0.0000089 
easting -0.000009 0.00000714 -1.26 0.206 -0.0000230 0.0000050 
northing -0.000016 0.00001030 -1.53 0.126 -0.0000358 0.0000044 
_cons 28.431750 19.28659000 1.47 0.140 -9.3692750 66.2327700 

       3 
      lwmean 0.009676 0.04153380 0.23 0.816 -0.0717285 0.0910808 

ahm 0.100954 0.08113240 1.24 0.213 -0.0580621 0.2599709 
solar 0.000000 0.00000045 0.11 0.914 -0.0000008 0.0000009 
elev 0.000405 0.00253060 0.16 0.873 -0.0045546 0.0053652 
resist1869 1.917497 0.90732760 2.11 0.035 0.1391673 3.6958260 
prior1869 -0.001625 0.00043010 -3.78 <0.0001 -0.0024680 -0.0007820 
age1869 -0.007247 0.00347900 -2.08 0.037 -0.0140654 -0.0004278 
ba1869 0.000004 0.00000435 0.96 0.338 -0.0000044 0.0000127 
easting 0.000000 0.00000828 0.03 0.975 -0.0000160 0.0000165 
northing 0.000001 0.00001530 0.04 0.965 -0.0000294 0.0000307 
_cons -3.869999 25.39381000 -0.15 0.879 -53.6409600 45.9009600 

         



 

263 
 

       B 
 

Robust 
    resilcd1869 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.015949 0.03948870 -0.40 0.686 -0.0933454 0.0614474 

ahm -0.001669 0.03811590 -0.04 0.965 -0.0763750 0.0730367 
elev -0.000145 0.00092450 -0.16 0.875 -0.0019574 0.0016665 
solar 0.000000 0.00000044 0.07 0.947 -0.0000008 0.0000009 
resist1869 0.602097 0.64607140 0.93 0.351 -0.6641794 1.8683740 
prior1869 -0.000787 0.00033760 -2.33 0.020 -0.0014490 -0.0001258 
age1869 -0.001063 0.00283270 -0.38 0.707 -0.0066150 0.0044890 
ba1869 0.000003 0.00000356 0.97 0.331 -0.0000035 0.0000104 
_cons 0.817651 2.57532900 0.32 0.751 -4.2299000 5.8652020 

       3 
      lwmean 0.010486 0.04059950 0.26 0.796 -0.0690874 0.0900597 

ahm 0.097426 0.04403420 2.21 0.027 0.0111206 0.1837314 
elev 0.000316 0.00103380 0.31 0.760 -0.0017103 0.0023420 
solar 0.000000 0.00000046 0.10 0.923 -0.0000009 0.0000009 
resist1869 1.883131 0.85742340 2.20 0.028 0.2026118 3.5636500 
prior1869 -0.001636 0.00045220 -3.62 <0.0001 -0.0025225 -0.0007499 
age1869 -0.007298 0.00356520 -2.05 0.041 -0.0142857 -0.0003105 
ba1869 0.000004 0.00000441 0.96 0.338 -0.0000044 0.0000129 
_cons -2.799774 2.50191000 -1.12 0.263 -7.7034280 2.1038800 
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Robust 
    resilcd1842 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean 0.019515 0.03772090 0.52 0.605 -0.0544167 0.0934464 

ahm -0.101725 0.09004310 -1.13 0.259 -0.2782060 0.0747566 
solar 0.000001 0.00000050 1.36 0.172 -0.0000003 0.0000017 
elev -0.004536 0.00287140 -1.58 0.114 -0.0101634 0.0010922 
resist1842 3.921190 0.96965120 4.04 <0.0001 2.0207090 5.8216720 
prior1842 -0.000349 0.00033240 -1.05 0.294 -0.0010002 0.0003027 
age1842 0.000093 0.00361660 0.03 0.979 -0.0069951 0.0071818 
ba1842 -0.000004 0.00000471 -0.74 0.458 -0.0000127 0.0000057 
easting -0.000001 0.00000985 -0.05 0.957 -0.0000198 0.0000188 
northing -0.000012 0.00001370 -0.84 0.40 -0.0000383 0.0000153 
_cons 14.389920 26.71764000 0.54 0.59 -37.9756800 66.7555300 

       3 
      lwmean 0.033931 0.04281680 0.79 0.428 -0.0499887 0.1178500 

ahm 0.128021 0.14322250 0.89 0.371 -0.1526899 0.4087321 
solar 0.000001 0.00000066 1.05 0.293 -0.0000006 0.0000020 
elev -0.000197 0.00393660 -0.05 0.96 -0.0079128 0.0075183 
resist1842 9.250511 1.30960400 7.06 <0.0001 6.6837340 11.8172900 
prior1842 -0.001181 0.00049230 -2.40 0.016 -0.0021463 -0.0002164 
age1842 -0.001547 0.00426570 -0.36 0.717 -0.0099079 0.0068133 
ba1842 -0.000003 0.00000554 -0.47 0.635 -0.0000135 0.0000082 
easting 0.000031 0.00001650 1.85 0.064 -0.0000018 0.0000630 
northing 0.000007 0.00001610 0.41 0.681 -0.0000250 0.0000382 

_cons -53.179050 39.67630000 -1.34 0.18 
-

130.9432000 24.5850700 
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Robust 
    resilcd1800 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.037723 0.03763700 -1.00 0.316 -0.1114905 0.0360437 

ahm -0.074213 0.03862110 -1.92 0.055 -0.1499088 0.0014832 
solar 0.000001 0.00000054 2.21 0.027 0.0000001 0.0000023 
resist1800 1.945396 0.42645530 4.56 <0.0001 1.1095590 2.7812330 
prior1800 -0.001080 0.00039170 -2.76 0.006 -0.0018478 -0.0003125 
age1800 -0.003965 0.00253790 -1.56 0.118 -0.0089395 0.0010090 
ba1800 0.000004 0.00000436 0.96 0.338 -0.0000044 0.0000127 
easting -0.000007 0.00000512 -1.34 0.179 -0.0000169 0.0000032 
northing -0.000007 0.00000643 -1.05 0.292 -0.0000194 0.0000058 
_cons 15.131330 10.44804000 1.45 0.148 -5.3464570 35.6091200 

       3 
      lwmean -0.054968 0.05378680 -1.02 0.307 -0.1603883 0.0504522 

ahm -0.041501 0.05284630 -0.79 0.432 -0.1450781 0.0620758 
solar 0.000002 0.00000066 2.63 0.008 0.0000004 0.0000030 
resist1800 3.820334 0.54304600 7.04 <0.0001 2.7559830 4.8846840 
prior1800 -0.002565 0.00056750 -4.52 <0.0001 -0.0036772 -0.0014527 
age1800 -0.005268 0.00389990 -1.35 0.177 -0.0129111 0.0023762 
ba1800 0.000003 0.00000996 0.33 0.742 -0.0000162 0.0000228 
easting -0.000004 0.00000706 -0.54 0.588 -0.0000177 0.0000100 
northing -0.000017 0.00000968 -1.78 0.076 -0.0000362 0.0000018 
_cons 17.218410 14.25989000 1.21 0.227 -10.7304600 45.1672800 
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Robust 
    resilcd1772 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.030333 0.03530760 -0.86 0.390 -0.0995351 0.0388683 

ahm -0.057367 0.03599210 -1.59 0.111 -0.1279099 0.0131765 
elev -0.000467 0.00103410 -0.45 0.652 -0.0024939 0.0015599 
resist1772 3.758332 0.77101950 4.87 <0.0001 2.2471610 5.2695020 
prior1772 0.000219 0.00047710 0.46 0.646 -0.0007160 0.0011542 
ba1772 -0.000010 0.00000466 -2.13 0.034 -0.0000190 -0.0000008 
_cons 1.138637 2.06593500 0.55 0.582 -2.9105210 5.1877950 

       3 
      lwmean -0.034600 0.04672490 -0.74 0.459 -0.1261789 0.0569795 

ahm -0.094993 0.05429260 -1.75 0.080 -0.2014041 0.0114189 
elev -0.000450 0.00154890 -0.29 0.771 -0.0034859 0.0025857 
resist1772 7.724760 1.16056100 6.66 <0.0001 5.4501030 9.9994180 
prior1772 -0.001184 0.00087650 -1.35 0.177 -0.0029016 0.0005343 
ba1772 -0.000010 0.00000793 -1.31 0.189 -0.0000259 0.0000051 
_cons -0.164125 3.60135100 -0.05 0.964 -7.2226430 6.8943920 
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Robust 
    resilcd1760 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.093879 0.04237650 -2.22 0.027 -0.1769357 -0.0108227 

ahm 0.040846 0.02584590 1.58 0.114 -0.0098114 0.0915026 
solar 0.000000 0.00000043 -0.62 0.533 -0.0000011 0.0000006 
resist1760 3.276225 0.78583800 4.17 <0.0001 1.7360110 4.8164390 
prior1760 -0.001968 0.00057390 -3.43 0.001 -0.0030928 -0.0008430 
age1760 -0.007572 0.00369560 -2.05 0.040 -0.0148151 -0.0003286 
ba1760 0.000013 0.00000705 1.82 0.069 -0.0000010 0.0000267 
easting 0.000014 0.00000314 4.36 <0.0001 0.0000075 0.0000198 
northing -0.000020 0.00000592 -3.35 0.001 -0.0000314 -0.0000082 
_cons -0.852170 5.62941600 -0.15 0.880 -11.8856200 10.1812800 

       3 
      lwmean -0.067336 0.06409600 -1.05 0.293 -0.1929619 0.0582899 

ahm 0.015304 0.05951870 0.26 0.797 -0.1013508 0.1319584 
solar -0.000001 0.00000084 -1.23 0.220 -0.0000027 0.0000006 
resist1760 7.407947 1.03346500 7.17 <0.0001 5.3823940 9.4335010 
prior1760 -0.004005 0.00067240 -5.96 <0.0001 -0.0053229 -0.0026873 
age1760 -0.015487 0.00507140 -3.05 0.002 -0.0254268 -0.0055472 
ba1760 0.000026 0.00000919 2.86 0.004 0.0000083 0.0000443 
easting 0.000015 0.00000621 2.33 0.020 0.0000023 0.0000267 
northing -0.000036 0.00001010 -3.60 <0.0001 -0.0000561 -0.0000165 
_cons 9.504638 13.08287000 0.73 0.468 -16.1373200 35.1466000 
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Robust 
    resilcd1734 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean -0.096108 0.04631140 -2.08 0.038 -0.1868769 -0.0053395 

ahm -0.196514 0.09787100 -2.01 0.045 -0.3883372 -0.0046900 
elev -0.002129 0.00267750 -0.80 0.427 -0.0073765 0.0031190 
solar 0.000000 0.00000066 -0.44 0.661 -0.0000016 0.0000010 
resist1734 1.632822 0.74054210 2.20 0.027 0.1813863 3.0842580 
prior1734 -0.000762 0.00069580 -1.09 0.274 -0.0021255 0.0006021 
age1734 -0.006116 0.00340190 -1.80 0.072 -0.0127831 0.0005522 
ba1734 0.000004 0.00000759 0.55 0.58 -0.0000107 0.0000191 
easting -0.000030 0.00001250 -2.38 0.017 -0.0000540 -0.0000052 
northing -0.000011 0.00001160 -0.94 0.347 -0.0000335 0.0000118 
_cons 55.870580 27.92960000 2.00 0.045 1.1295670 110.6116000 

       3 
      lwmean -0.158666 0.06342550 -2.5 0.012 -0.2829776 -0.0343541 

ahm -0.307386 0.13068980 -2.35 0.019 -0.5635336 -0.0512390 
elev -0.006162 0.00399390 -1.54 0.123 -0.0139898 0.0016662 
solar -0.000001 0.00000098 -0.93 0.353 -0.0000028 0.0000010 
resist1734 7.162789 1.21212600 5.91 <0.0001 4.7870660 9.5385120 
prior1734 -0.004705 0.00111480 -4.22 <0.0001 -0.0068894 -0.0025196 
age1734 -0.016758 0.00719910 -2.33 0.020 -0.0308684 -0.0026485 
ba1734 0.000023 0.00001500 1.51 0.132 -0.0000068 0.0000520 
easting -0.000037 0.00001670 -2.20 0.028 -0.0000695 -0.0000040 
northing -0.000032 0.00001980 -1.62 0.105 -0.0000709 0.0000067 
_cons 88.211330 39.66616000 2.22 0.026 10.4670900 165.9556000 
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       A 
 

Robust 
    resilcd1717 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean 0.055846 0.04449780 1.26 0.209 -0.0313687 0.1430597 

ahm -0.168046 0.07428980 -2.26 0.024 -0.3136514 -0.0224409 
solar 0.000001 0.00000075 1.21 0.228 -0.0000006 0.0000024 
elev -0.003329 0.00239880 -1.39 0.165 -0.0080301 0.0013729 
resist1717 5.448682 1.07584500 5.06 <0.0001 3.3400640 7.5573000 
prior1717 -0.000656 0.00065940 -0.99 0.320 -0.0019480 0.0006369 
age1717 -0.008596 0.00488160 -1.76 0.078 -0.0181640 0.0009716 
ba1717 0.000018 0.00001210 1.45 0.148 -0.0000062 0.0000413 
easting -0.000016 0.00000989 -1.61 0.108 -0.0000353 0.0000035 
northing -0.000005 0.00001420 -0.34 0.736 -0.0000327 0.0000231 
_cons 27.324910 25.49037000 1.07 0.284 -22.6352900 77.2851200 

       3 
      lwmean 0.081418 0.05579420 1.46 0.144 -0.0279369 0.1907722 

ahm -0.031985 0.13609200 -0.24 0.814 -0.2987205 0.2347502 
solar 0.000000 0.00000087 -0.55 0.58 -0.0000022 0.0000012 
elev 0.002905 0.00366090 0.79 0.428 -0.0042705 0.0100800 
resist1717 11.446810 2.06430900 5.55 <0.0001 7.4008410 15.4927800 
prior1717 0.000096 0.00124900 0.08 0.939 -0.0023518 0.0025442 
age1717 -0.004609 0.00740820 -0.62 0.534 -0.0191285 0.0099111 
ba1717 -0.000017 0.00001980 -0.86 0.389 -0.0000559 0.0000218 
easting -0.000007 0.00001180 -0.61 0.541 -0.0000302 0.0000159 
northing 0.000019 0.00001810 1.05 0.295 -0.0000165 0.0000544 
_cons -15.993710 32.96529000 -0.49 0.628 -80.6045000 48.6170700 

         



 

270 
 

       B 
 

Robust 
    resilcd1717 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean 0.024911 0.05018340 0.50 0.620 -0.0734469 0.1232683 

ahm -0.065385 0.04671330 -1.40 0.162 -0.1569417 0.0261712 
solar 0.000001 0.00000063 1.44 0.151 -0.0000003 0.0000021 
elev -0.001412 0.00088040 -1.60 0.109 -0.0031370 0.0003141 
resist1717 6.325952 1.34646300 4.70 <0.0001 3.6869320 8.9649710 
prior1717 -0.000653 0.00071220 -0.92 0.359 -0.0020489 0.0007428 
age1717 -0.007621 0.00533410 -1.43 0.153 -0.0180760 0.0028331 
ba1717 0.000017 0.00001590 1.08 0.281 -0.0000141 0.0000484 
_cons -0.984830 2.75549300 -0.36 0.721 -6.3854970 4.4158370 

       3 
      lwmean 0.063862 0.06055520 1.05 0.292 -0.0548242 0.1825480 

ahm 0.001412 0.07763640 0.02 0.985 -0.1507524 0.1535767 
solar 0.000000 0.00000073 -0.62 0.534 -0.0000019 0.0000010 
elev 0.002216 0.00170240 1.30 0.193 -0.0011207 0.0055527 
resist1717 12.605840 2.16859100 5.81 <0.0001 8.3554770 16.8562000 
prior1717 -0.000096 0.00121180 -0.08 0.937 -0.0024715 0.0022786 
age1717 -0.003295 0.00738280 -0.45 0.655 -0.0177646 0.0111755 
ba1717 -0.000017 0.00002100 -0.82 0.412 -0.0000583 0.0000239 
_cons -10.798790 3.54756600 -3.04 0.002 -17.7518900 -3.8456850 
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       C 
 

Robust 
    resilcd1717 Coef.  Std. Err. z P>z [95% Conf. Interval] 

       1 (base out come) 
    

       2 
      lwmean 0.007133 0.05077830 0.14 0.888 -0.0923912 0.1066562 

ahm -0.050639 0.05192840 -0.98 0.329 -0.1524163 0.0511392 
elev -0.001004 0.00093700 -1.07 0.284 -0.0028407 0.0008323 
resist1717 6.489108 1.26563700 5.13 <0.0001 4.0085060 8.9697110 
prior1717 -0.000472 0.00063100 -0.75 0.455 -0.0017085 0.0007649 
ba1717 0.000006 0.00000973 0.64 0.524 -0.0000129 0.0000253 
_cons -0.910793 2.66641000 -0.34 0.733 -6.1368600 4.3152730 

       3 
      lwmean 0.069485 0.06571590 1.06 0.290 -0.0593161 0.1982854 

ahm 0.016067 0.07481370 0.21 0.830 -0.1305647 0.1626994 
elev 0.002872 0.00160280 1.79 0.073 -0.0002697 0.0060133 
resist1717 12.702030 2.12768200 5.97 <0.0001 8.5318530 16.8722100 
prior1717 0.000080 0.00115980 0.07 0.945 -0.0021934 0.0023528 
ba1717 -0.000024 0.00001320 -1.80 0.072 -0.0000497 0.0000022 
_cons -12.810780 3.81384800 -3.36 0.001 -20.2857800 -5.3357720 

6 
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10. Appendix C: ANOVA output tables from Chapter 3 
The following output tables include the output of two-way ANOVA models. 

Drought resistance is the dependent variable, transformed as noted in the summary output 

in Chapter 3. Explanatory variables are the growth release status (binary; biyear) and site 

(sitecd). Outputs proceed from the most recent year backwards. Years 1959 and 1760, 

which did not meet assumptions of normality and were excluded from the main results 

table, include scatterplots of residual vs. fitted values for information.  
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