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Abstract

Group mutual exclusion problem generalizes the classical mutual exclusion prob-

lem, a fundamental problem in concurrent programming. It arises in applications

involving sharing resources such as memory and data. In group mutual exclusion, a

process requests for a “forum”; processes requesting the same forum may access the

critical section simultaneously. Several algorithms have been proposed for the group

mutual exclusion problem, but very few studies have been conducted to compare the

performances of these algorithms by means of execution on actual machines. Besides

the studies conducted have been a mere one-on-one comparison. Also, there exists

no testing environment that accommodates multiple algorithms and compare their

executions.

This work aims at testing the performance of group mutual exclusion algorithms

extensively by executing multiple such algorithms in a test framework. We propose

to build an automated test framework to execute these algorithms, both individually

and collectively under various experimental setups and observe their performances

graphically using several performance metrics. Our experiments would constitute

several collective comparison studies of algorithms along with replicating a few one-

on-one comparison experiments from the literature.

To use the algorithms into our framework, we intend to translate them from pseudo

codes to source codes. The aim is to eventually creating a repository of these source

codes such that they could be used for other applications besides our framework.
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Chapter 1

Introduction

1.1 Background

Over the past couple of decades, we witnessed a paradigm shift in computer hard-

ware technology. Multicore processors have taken modern-day computing by storm

as almost all the machines now come equipped with a chipset consisting of two or

more processors capable of executing many programs simultaneously. With the rise of

multicore computers, to exploit the capabilities of multicore processors to the fullest,

concurrent programming is becoming a mainstream activity [14].

In concurrent programming environments, processes sharing resources such as data

structures and databases is a frequent activity where a process is an instance of a

program running. As resource sharing is becoming increasingly common, coordinating

access to shared resources among the processes in the system is a challenge faced

by several applications. One such example is that of a network printer shared by

multiple computers. Here, it is essential to ensure that at any given instance only one

of the multiple printing requests arising from the machines trying to print copies is

processed. This scenario is a well defined in concurrent programming as the mutual

exclusion problem. The problem states that in a system consisting of n competing

processes trying to access a shared resource, at any given instance, only one of the
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competing processes should be able to access the shared resource [3].

One of the generalizations of the mutual exclusion problem is group mutual ex-

clusion (GME) problem, introduced and solved initially by Joung in 1999 [1]. GME

concerns systems or applications where processes with same interests can access the

shared resource simultaneously, while processes with conflicting interests wait for their

turn to access the shared resource. GME problem could be observed in several appli-

cations. For example, in a video conferencing system with an electronic whiteboard,

any of the participating users in the video conference can use the whiteboard to post

information they wish to share and all other participants should be able to view the

contents of the whiteboard simultaneously. Another example is that of a CD jukebox

described by Joung [1]. In this example, a CD jukebox is a resource shared by a

set of processes. Multiple processes interested in the same CD can simultaneously

access it while the processes interested in accessing some other CD must wait until

that particular CD is loaded into the jukebox. In this example, CDs are the forums.

In the group mutual exclusion problem processes trying to access shared resources

request for a forum. A forum denotes the interest of a process. Processes requesting

the same forum are allowed to access the shared resources simultaneously.

GME could also be considered as a generalization of the readers-writers problem,

where all the readers can request for the same forum while the writers can execute

themselves exclusively in separate individual forums [14]. Also, concerning concur-

rency, this problem is similar to k-exclusion problem [21].

1.2 Motivation

Several algorithms have been proposed to provide solutions for the GME problem

[1,2,4–6,8–10,14,17–19]. Most of these algorithms are innovative in their ways. While

innovation aspect is theoretically appealing, the most important metric for them to

be practically attractive is their performance under various conditions suitable for

specific applications.
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Until now, only two performance studies for the GME algorithms were conducted

[2,10]. Each of these studies aimed at one-on-one comparison of two algorithms using

a set of experiments. A comprehensive performance study involving multiple group

mutual exclusion algorithms has not performed until now.

1.3 Research Challenge and Inspiration for the Work

An immediate question would be why such a study has not been performed yet.

There are several reasons, though the primary ones are the technical challenge and

the availability of hardware system to conduct such a study. Conducting performance

study of concurrent algorithms in the shared memory system is complicated as it

involves deeper understanding of complex algorithms to be implemented and machine

level implementation details.

Until recently, systems that can execute programs truly parallel was not avail-

able for general software development community. Shared memory based parallel

computers having such capability were quite expensive and were usually owned only

by high-performance computing groups. Also, these parallel computer systems pri-

marily facilitate synchronized parallelism for a limited set of highly regular parallel

applications using higher level libraries such as OpenMP. Any implementation of

fine-grained asynchronous parallelism using OpenMP-like support is inefficient. The

arrival of multicore systems as a mainstream platform has addressed the later issue.

Although mutual exclusion problem dates back to early 60’s, only recently Buhr

et al. [15] have studied the performance of the mutual exclusion algorithms. The

inspiration for the research presented in this thesis primarily comes from this work.

This thesis mainly focussed providing a testing environment in the form of a

framework where all the algorithms for the GME problem could be tested for their

performances on multicore machines, both collectively and individually. Thus, this

thesis proposes to design a testing framework to conduct performance studies of the

group mutual exclusion algorithms. The objective of designing and developing of a
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testing software framework alone was quite ambitious. However, without actual per-

formance studies conducted using this framework, it would be challenging to demon-

strate its use. So, we decided to implement several GME algorithms and conduct a

few performance studies. My supervisor, Dr. Aravind, is an expert in designing and

proving concurrent algorithms. With his expert advice and the timely availability of

a multicore server (capable of executing maximum 40 threads) from the Department

of Computer Science, we were able to complete the implementation and performance

studies of GME algorithms.

The main steps involved in this research are:

1. Literature survey.

2. Design and development of the test framework to study group mutual exclusion

algorithms.

3. Identification and implementation of performance metrics.

4. Implementation of several group mutual exclusion algorithms

5. Conducting performance experiments on implemented algorithms and illustrat-

ing their performance results

1.4 Contributions

This thesis has several contributions. The main contributions are:

1. Design and implementation of a test framework to study the performance of the

group mutual exclusion algorithms in the shared memory context. The perfor-

mance of group mutual exclusion algorithms can be evaluated under different

experimental settings using this framework.

2. A limited performance study of several group mutual exclusion algorithms.
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3. A repository of the group mutual exclusion algorithms in the form of C pro-

grams. These program files are portable, and therefore could be useful for

designing real-world applications or systems. They could also be used as a ref-

erence for implementing other group mutual exclusion algorithms into sources

codes. Insights for designing a new algorithm or an improvement to an ex-

isting algorithm can be derived by trial and error modifications and from the

observations of the behavior of existing algorithms.

1.5 Organization of Thesis

In Chapter 2, we present the design choices and challenges along with research

questions concerning our framework. In chapter 3, we formally introduce the group

mutual exclusion problem and its properties. In Chapter 4, we lay out the architec-

ture of automated test framework that we have designed for executing the algorithms

for the group mutual exclusion. We also pin down details of each of the components

of our framework and define a few terminologies used in the framework. Besides, we

present the workflow and system primitives used within the system or while translat-

ing algorithms into code bases. These primitives play a vital role in optimizing the

performance of algorithms in our framework. In Chapter 5, we present the perfor-

mance metrics that would be used to evaluate and compare the performance of the

algorithms. We also present all our performance experiments conducted using our

framework, and their respective results followed by analyzing and summarizing these

results. In Chapter 6, we conclude and summarize our thesis, and outline the future

directions to extend the work done in this thesis.
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Chapter 2

Framework: Design Choices and

Challenges

2.1 Research Questions

The primary contribution of this thesis work is the design and development of

a software framework to study the group mutual exclusion algorithms. Let us start

with the main research questions we need to address to achieve this goal.

1. What would be the primary objective of the framework?

2. What are the main features of the framework?

3. What are the main components of the framework?

4. How to model and design these components?

5. What software technologies should we use so that the software portable and

have a wider use?

6. To demonstrate the working of the framework, which group mutual exclusion

algorithms should be implemented and studied?
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7. What performance experiments would we like to conduct?

These questions are not straightforward to answer. Finding suitable solutions for

them require reading literature on not only group mutual exclusion, but also software

design and modeling and simulation of concurrent systems. They also lead us to make

some critical decision choices.

2.2 Design Choices

When we talk about choices involving the design and development of the pro-

posed framework, there are two main choices must be made. What kind of computer

systems that we are planning to adopt - real or a simulation system, and what set

of performance metrics need to be supported. To get an idea to make these choices,

we briefly review the existing work in that direction for the group mutual exclusion

from the literature. As we indicated in the introduction, there are two earlier works

on performance study, one by Keane and Moir [2] and the other by Blelloch, Cheng,

and Gibbons [10].

Keane and Moir conducted their performance using the Augmint simulator [22],

developed at the University of Illinois, Urbana-Champaign. Augmint [22] simulates

a cache-coherent multiprocessor by switching between multiple threads of execution

and runs on a single machine. Blelloch, Cheng, and Gibbons performed their study

using an actual machine, a Sun UltraEnterprise 10000 with 64 250 MHz UltraSparc-II

processors. So we have two choices, and apparently, the preferred one is using real

computers that can capture the performance in real life implementations. Therefore,

we decided to go with the choice of using real machines. Since we don’t have Sun

system in our lab, our choice here is Intel processor-based system. Specifically, we use

Dell PowerEdge FC630 rectified blade server controlled using Integrated Dell Remote

Access Controller (iDRAC8). The machine comes equipped with two chipsets of

Intel(R) Xenon(R) CPU E5-2650 v3, each comprising of 10 cores (20 threads) and

operating at the speed of 2.30GHz. We have Ubuntu 14.04 LTS as the operating
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system running on our machine.

Some of the key advantages of using real systems are:

• The framework could run on multiple machines, each with a different processor

architecture.

• Most of the multicore machines (or the compiler within) support or provide a

built-in instruction set while simulation would require simulating many higher

level instructions.

• The total lines of code to be written are lesser as the code base for creating a

simulation environment is being eliminated.

For the choice of performance metrics, we again look at the works of Keane and

Moir, and Blelloch, Cheng, and Gibbons. Keane and Moir conducted five experiments

to test and compare their algorithm’s performance with Joung’s algorithm:

i Mutual exclusion - concurrency level is reduced to 1;

ii Contention-free - only one process exists in the system that executes CS 1000

times without performing any work inside CS;

iii Variable concurrency - involves a set of 32 competing processes, each of them

requesting a forum number from range 1..M. The experiment runs until all the

processes execute their CS code 1000 times;

iv Non-empty CS - here the processes perform some work when inside CS unlike

other three experiments where no work is done inside CS; and

v Threshold - used a set threshold for potential concurrency attainable using the

algorithms.
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Blelloch, Cheng, and Gibbons performed similar sets of experiments, and key change

is they varied demand for various forums (setting a fixed probability for each forum).

These algorithms were run for 1000 rounds (that each thread executes).

We decided to provide options to conduct these experiments. The main difference

is that our framework allows the user to set the time duration (in seconds) for the sim-

ulation, instead of a fixed number of rounds. Also, our framework allows computing

the number of forum entries, fairness, delays in forum entries, and forum switches. An

attractive feature of our framework is automating the workload generation, simulation

process, result collection, and performance visualization.

2.3 Design and Implementation Challenges

Recently, Buhr et al. [15] designed a test environment [16] to evaluate and com-

pare the algorithms for the mutual exclusion problem. This work is the first to study

of comparing performances of multiple algorithms for mutual exclusion problem si-

multaneously under one testing environment for shared memory systems. While we

draw primary inspiration from this work, it’s functionality is very limited, and it is

command-line based. We would like to fully automated framework having started to

finish functionality - automatic load generation to performance graph visualization

integrated. Designing such a comprehensive test framework is a challenging task, and

we adopt a modular approach for designing our framework. We break down the entire

process into several stages with each of them resulting in the formation of a module.

Apart from the requirements specified above, the framework needs to be relatively

simple and easy to use. It should consist of all the components that would be essential

for performing end to end experiments. Concurrent Locking framework [16] provided

a good test environment for mutual exclusion algorithms. However, their system

lacked a few useful components which when included within the system would make

it complete. We aim to address those limitations by providing those key components

that were missing in their work.
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Along with conducting performance studies, designing a test framework that can

be used for comparing performance complexities for all the possible algorithms would

just be an ideal testing environment for algorithms proposed for the group mutual

exclusion problem. It would be even better if this framework could be scalable such

that incorporating new experimentation settings into it could be done with ease along

with accommodating newer algorithms designed in future. Having an automated test

framework that is scalable helps setup first standard platform for studying perfor-

mance complexities of algorithms in group mutual exclusion.

The first component is the Graphical User Interface (GUI) for ease of usage. Since

their system is designed to run on UNIX based operating systems, in the absence of

a GUI, it is often tedious for users to operate a software or a framework in console

mode operation. Having GUI provides ease of usage for the users. The second key

component that we would want to include in our system which wasn’t available in

Concurrent Locking [16] work is that of graphically displaying performance results.

Having the test framework plot results generated from performance experiments in

graphical form within the system would certainly be useful as it would eliminate the

burden of porting results to plotting tools for generating graphical results.

By implementing the algorithms into programs codes, we could help create a

repository of all the existing algorithms under one roof and that too, in the form

of program files. This repository could be a useful resource for the implemented

algorithm codes could be used for various applications and because of the portable

nature of these source files, it could be distributed to larger audiences.

First, based on the literature review, an automated test framework with compo-

nents that can be useful in executing any group mutual exclusion algorithm is designed

and implemented. Second, the components necessary for studying the performances

of these algorithms are determined and added to the framework. Third, we work

to implement algorithms into the code base which is a daunting task. We overcome

this by focusing on thoroughly understanding the logic behind each of the algorithms

10



implemented which helped us in retaining their core essence even after the imple-

mentation. Finally, the functionality of the proposed framework is demonstrated by

executing all the implemented algorithms in the framework and then illustrating their

performances through performance metrics.

2.4 Summary

In this chapter, we discussed the comparison studies conducted for evaluating the

performances of algorithms for the group mutual exclusion. Also, we derived motiva-

tion for this thesis by investigating the related work and identifying open problems

that could be addressed. In the process, we specified our design approach and the

research methodology we used for achieving our proposed goals and highlighted the

contributions of this thesis. We discuss these contributions extensively in the follow-

ing chapters.
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Chapter 3

Group Mutual Exclusion Problem

3.1 System Overview

The system contains a set of n independent cyclic processes that are interested

in accessing a shared resource. These processes communicate only via shared vari-

ables. Each process interested in accessing the shared resource, at any given time,

either perform some local computation or communicates with other processes through

shared memory, using variables or data structures as shown in Figure 3.1.

Figure 3.1: Tasks of a cyclic process in shared memory system
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Figure 3.2: Process execution in shared memory system

If processes get the access to the shared resources, they can write the shared

variables while the other processes read those shared variables, simultaneously. Upon

accessing the shared resources, the process notifies other processes through these

same shared variables of the availability of the shared resources. Each process in

such systems loops continuously to perform the actions as shown in Figure 3.1. The

code segment of processes in the (group) mutual exclusion could be categorized into

two parts: Critical Section (CS) code which is the code segment that is responsible

for accessing the shared resource and Non-Critical Section (NCS) which consists of

all the remaining code. With the terminologies defined above, Figure 3.1 could be

modified as shown in Figure 3.2. The following assumptions are made for the given

system:

1. The execution speed of processes is arbitrary but finite.

2. Time to execute CS code for each process may be arbitrary but finite.

3. No process can fail while executing its CS code.
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Figure 3.3: Solution for the group mutual exclusion problem

The system would be relatively simple to implement if each process had its re-

sources for its execution. However, with the set of resources being shared among

processes for their execution, there arises inconsistency in accessing the resources

with multiple processes trying to access them.

At any given time, there could be multiple processes requesting access to the

shared resource. In this instance, the communication between the processes plays

a vital role in the efficient functioning of the system. The concurrent algorithms

provide a solution to this problem of inconsistency by enabling proper communication

and coordination between processes before and after accessing the shared resource.

The section of code that is responsible for communication between processes before

they access the shared resources is called as Entry Section and the section that is
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responsible for communication by processes after accessing the shared resources is

called as Exit Section. Thus, Entry Section and Exit Section when inserted before

CS and after CS respectively, form the desired solution which is shown in Figure 3.3.

In the Entry Section, the processes choose a forum. This is followed by the

doorway, which is a non-waiting code section, followed by a waiting section and an

optional opening section section. It is executed by a process if it is the first process

initiating the request for a forum, say f1, or when no other process is requesting access

to a forum when the process is in it’s waiting section. Executing this section ensures

that the process does wait for entering it’s CS code. The request is acknowledged

when the process enters it’s CS code. A forum f1 is opened when there are processes

interested in it that can enter their CS code in a bounded number of its steps and is

closed when there are no processes interested in it that can enter their CS code. A

forum f1 is said to be active when the processes interested in f1 are executing their

CS code [14].

There are two primary memory models for which the existing solutions for the

group mutual exclusion problem are based on shared memory context. They are,

the Distributed Shared Memory (DSM) model and the Cache Coherent (CC)

model. The primary difference between the two models is where the variables are

stored and how the processes access those variables. In the DSM model, every variable

is associated with exactly one process [18]. Trying to access a variable associated with

some other process results in the process making a Remote Memory Reference

(RMR). In CC model, the variables are shared, and global as well as are not related to

any processes. The consistency in CC model is ensured using cache coherent protocols

which instantaneously update all the copies.

3.2 Properties and Preliminaries

In [1], Joung introduced two preliminary logical components that are essential for

designing any algorithm for the group mutual exclusion. These components include:
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• Mutual Exclusion component to achieve Mutual Exclusion among forums

• Concurrent Entering component to facilitate concurrent access to processes in-

terested in the same forum

In the following section, we will discuss the properties that have been presented

from the existing algorithms proposed thus far for the group mutual exclusion problem

in shared memory context.

3.2.1 Properties under the mutual exclusion component

In any group mutual exclusion algorithm, the properties of the mutual exclusion

component ensure exclusiveness among forums to be active at any given instant,

thereby facilitating processes interested in the same forum to execute their CS to-

gether. The following are the properties of the mutual exclusion component:

P1. Safety: At any given point of time, only one forum must be set to active. That

is if a process p requesting for forum f is executing it’s CS code, then no other

process requesting a forum other than f should not be able to execute it’s CS

code simultaneously.

P2. Lockout Freedom: A process p requesting for a forum f should eventually be

able to access it.

P3. Bounded Exit: If a process enters the Exit Section code, then it should be

able to reach NCS in a finite number of steps.

3.2.2 Properties under concurrency

Joung introduced the property of concurrent entering [1] to facilitate maximum

forum utilization.

P4. Concurrent Entering: ensures that the processes requesting the same forum

are able to access it concurrently. Which means, if a process p requests for a
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forum f1 and no other process requests a different forum, then process p enters

forum f1 in bounded number of it’s own steps. However, to ensure Lockout

Freedom, the given forum should be active only for a finite period of time.

However, his definition was not precise, and several papers following that at-

tempted to give more formal and precise definition of concurrent entering which

eventually leads to introducing new properties. Here are the properties under con-

currency:

3.2.2.1 Concurrent Entering vs Concurrent Occupancy

Several algorithms presented for the group mutual exclusion have attempted to

give Concurrent Entering a stronger and precise definition. As argued in [4],

Hadzilacos points out that Keane and Moir in [2] gave a precise, but weaker definition

as compared to Joung which was vague. According to Keane and Moir, if a process p

request for a forum p.t and no process q such that q.t p.t is executing outside its NCS,

then p eventually executes its CS code even if no other process accessing the same

forum comes out of it is defined as concurrent entering. This definition was termed

as Concurrent Occupancy (P5) by Hadzilacos. According to Hadzilaocs, using

Concurrent Occupancy, a process’s execution of CS may be delayed which would not

be the case with Concurrent Entering in the absence of contention.

Some of the papers in the literature argue that concurrent entering is effective only

when there are no conflicting requests. In fact, few of the algorithms proposed for

the group mutual exclusion do not satisfy the concurrent entering property [2, 5, 10].

Without a proper concurrency property, in scenarios of conflicting requests, the group

mutual exclusion problem tends to act as a simple mutual exclusion problem.

The property ofNo Late Entry introduced in [10], is effective even in scenarios of

conflicting requests. However, this property is restrictive as it prohibits concurrency

after a particular moment during the time when forum f is active.

P6. No Late Entry: No process p is allowed to enter an active forum f if p initiated
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its request after forum f was set to active.

In one of their recent studies [14], Aravind, and Hesselink compared various ver-

sions of concurrent entering property introduced in the past. They proposed a new

concurrency property called Simultaneous Acceptance that would be effective to

handle conflicting request and assure a reasonable level of concurrency.

P7. Simultaneous Acceptance: Let S be the set of processes that have completed

their requests for a forum f, when a process p with interest f enters it’s entry

section. Then, when p completes its entry section, every process in S enters f

within a bounded number of it’s own steps.

3.2.3 Fairness Properties

One important area that has been addressed by several works done for this problem

is the Fairness property. Hadzillacos [4] and Jayanti [6] introduced First Come

First Served (FCFS) and First In First Enabled (FIFE) properties respectively

for the group mutual exclusion followed by Aravind and Hesselink [14] introducing

the Forum First Come First Served (F-FCFS) properties which are as follows:

P8. FCFS: If a process p requests a forum before another process q requests for a

different forum, then process p will execute it’s CS before process q [4].

P9. FIFE: If a process p requests a forum before another process q requests for the

same forum, and process q enters forum before process p, then process p will

enter the forum within bounded number of it’s own steps [6].

P10. F-FCFS: If forum f1 is requested before any request for forum f2 is initiated,

then forum f1 is opened before forum f2 [14].

In this chapter, we look at the work done in this area for the comparison of

existing algorithms. Incorporating insights from a few open areas to be addressed for
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this problem, we draw our motivation from work done for this thesis and present the

contributions of this thesis.
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Chapter 4

Framework - Design and

Implementation

In this chapter, we present the first contribution of this thesis, the framework, which

is used to evaluate and compare the performance of the group mutual exclusion al-

gorithms in shared memory context. We present the architecture of this framework

along with its components. We also define a few terminologies and introduce the

parameters that we use in this framework. Finally, we explain the working of the

framework and present system primitives.

4.1 Essential features

For an efficient design of our framework, it would be nice to have the following

features being supported by our framework:

• Graphical User Interface for ease of usage

• Plotting graphical results extensively from the results generated

• Easy and faster workload generation for executions

• Automated flow control to minimize human efforts
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• Modular design to optimize development process and expand scope of using

multiple technologies

• scalable enough to accommodate multiple algorithms and performance metrics

and add future algorithms and newer metrics

Concurrent Locking [16], which serves as the basis of our framework design, is

the environment designed to conduct performance comparison studies for mutual ex-

clusion algorithms. Buhr et al. in 2014 conducted a comparison study of mutual

exclusion algorithms [15] by implementing those algorithms into programming codes

and running them on multicore machines using this test environment. They even

created a repository of algorithms by implementing all the algorithms into program

codes. From the features mentioned above, several features like automated flow con-

trol and scalability have already been introduced in Concurrent Locking. Having these

features as reference considerably reduced our efforts while we worked on including

those features into our framework.

4.2 Concurrent Locking

Before we discuss our framework’s architecture, we briefly look at Concurrent

Locking test framework [16].

4.2.1 System Overview

Concurrent locking is designed to run on the UNIX-based operating system. The

codebase of almost the entire environment, including the algorithms, is written in C

language. It consists of a centralized controller that manages the flow of execution.

This controller channelizes every executing component in the system. It accepts a

given number of processes and execution time as parameters along with the algorithm

name. Each execution comprises of 5 Runs, each of which lasts for, a time specified.

During this period, the generated processes execute the given algorithm’s code base

in cycles. The traces of execution are stored and updated at the completion of each
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process cycle. Computations are performed on these trace values at the end of each

run and results are generated as performance metrics. This environment is designed

to be used via console mode operation only. It allows a user to run an algorithm

individually using a single workload as well as in batches of multiple workloads. It also

provides the functionality of automating the entire cycle using shell scripts. Along

with individual executions, comparison experiments could also be performed using

this automated system controlled by scripts. These scripts when executed, generate

workloads, and each algorithm is executed using the generated workloads.

4.2.2 Dependencies

The framework uses a few assembly level instructions like fetch and add and

test and swap. P-threads(POSIX threads) are used in the system for creating a

set of competing processes. Also, this system uses C99 standards. Hence, there

are a few dependencies on the compiler to support these essentials. We use this

execution framework as the basis of our scalable and automated test framework for

the group mutual exclusion problem. We have modified this framework to use it for

executing algorithms for the group mutual exclusion problem. We will now look at

the architecture of our framework.

4.3 Architecture and Components

Our framework is based on the principles of layered architecture, a commonly used

pattern for constructing complex software architectures where the overall software is

segmented into modules (sections). This approach helps in reducing the complexity of

the system along with proportionately distributing functionalities across each module

and is a useful technique as changes can be made in one module without affecting the

others.

The architecture of our automated test framework, in its modular form, is pre-

sented in Figure 4.1. There exists three main section in our framework:
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Figure 4.1: Architecture of Scalable and Automated Test Framework
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• Execution Engine

• Connecting scripts

• GUI wrapper

Each of these sections contains a few logical components. These logical compo-

nents control the overall execution of the system. Due to their modular nature, these

sections are independent of each other for their respective execution. However, for

the overall progress of the system, they are invoked coherently. Understanding the

purpose of each section requires us to understand each of its logical components.

4.3.1 Execution Engine

The execution engine the core, or the heart, of our framework. As the name

suggests, this part is responsible for the execution of algorithms for group mutual

exclusion. All the components of this part are written in C language. This part

consists of 4 main logical components: the execution controller, solution source, trace

handler and trace Writer.

4.3.1.1 Execution Controller

The execution controller is the most significant component of execution engine

as it controls the other three components, Solution Source, Trace Handler and Trace

Writer, as it channelizes workflow across all the other components. It keeps track of

the overall progress of the system. The following are the key responsibilities of the

execution controller:

• define and initialize system primitives like system variables, macros, and func-

tions

• define and initialize thread handler data structures

• invoke the relevant solution source
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• initialize the shared variables and data structures in solution source

• assign processor/core to the processes (P-threads) and assign them starting

positions

• invoke the trace writer

4.3.1.2 Source Solution

The source solution is the component that holds source code of algorithms im-

plemented into programs, individually into a separate C file. It is in this component

where the execution of the algorithm takes place, and the processes cycle through the

Entry Section, Critical Section, Exit Section and Non-Critical Section of codes. All

the shared variables and data structures and local variables and data structures are

defined in this component. In our framework, five execution Runs are performed to

compare and contrast consistencies and thus, generating better results.

4.3.1.3 Trace Handler

This component stores the traces locally during each run. It primarily comprises

of data structures to record values for parameters for performance calculation. Upon

each process cycle during each Run (execution), the data structures in the trace

handler are written, and the relevant values are recorded. The values for these data

structures are recorded before using variables which are strategically placed before

and after the CS execution code in each of the source files which helps us achieve

standardization for recording the results and ensuring that any overheads resulting

from these operations have identical effects on all the algorithms.

Most of the data structures in this component make use of the Fetch And Add

primitive to update the values. The data structures used here are defined in the

execution controller, but their usage is within Source Solution.
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4.3.1.4 Trace Writer

The last component of Execution Engine is responsible for writing traces into

text files. It fetches the values from the trace handler’s data structures and writes

those values into the trace files, which are in text format. For each source solution,

it maintains a separate trace file for each performance metric used for performance

evaluation by using a separate file pointer in C. After this component is successfully

executed, the control of execution shifts out of execution engine and transfers to the

performance calculation unit in the GUI Wrapper part of our framework.

4.3.2 Connecting scripts

Connecting scripts act as a connection point between the GUI Wrapper and execu-

tion engine. This component consists of two Bourne Shell scripts that help automate

the process of execution. Bourne Shells are widely used as interactive command in-

terpreters and, thus, are handy to trigger the operation of the execution engine which

is written completely in C language.

4.3.2.1 Compile Script

One of the two Bourne Shell scripts is the compile script. This script is invoked

by workload generator, a component of GUI-Wrapper. Upon running this script, the

number of processes, number of forums, time for each execution, and the algorithm

name are the parameters passed to the Compile script.These parameters are recorded

by the variables in Compile Script. It is responsible for compiling the file that holds

the execution controller and also passes the solution source file name to invoke the

right algorithm code. Upon compiling the Execution Controller and Solution Source,

it then invokes the Run Script and passes the number of processes, number of forums,

and time for each execution as parameters.
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Figure 4.2: Selection Panel window

4.3.2.2 Run Script

Run script is the second Bourne Shell script used in the framework. When the run

script is executed, it runs the file that holds the execution handler and the control

shifts to Execution Handler component of the execution engine. It passes all the pa-

rameters it received, when invoked by the compile script, to the execution controller.

4.3.3 GUI Wrapper

Today, users find it easier to use a software using the Graphical User Interface

(GUI) instead of Command Line Interface (CLI). As mentioned earlier, Concurrent

Locking framework forms the basis of our framework. Since Concurrent Locking is

operated using CLI, we thought of initially adding the GUI wrapper for the ease of

use. Eventually, we realized that the GUI Wrapper could be extended to incorporate

even the components for performance calculation as well as for viewing results. Thus,

we have four components within our GUI. Each of the components is explained below.
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Figure 4.3: Workload Generator Window

4.3.3.1 Selection Panel

In our framework, we provide several execution settings. In the first setting, the

algorithms are tested and executed individually, while in the second setting, we can

have a comparison of performances of multiple algorithms. In either of the settings,

we select the algorithm(s) for execution. This selection is made using the Selection

Panel as shown in Figure 4.2.

Upon selecting the choice of setting, we must select the desired algorithm(s).

Clicking the Generate Workload button navigates us to the Workload Generator win-

dow.
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4.3.3.2 Workload Generator

When the control reaches the workload generator window, we can generate N

workloads consisting of a given set of parameters that are essential for the execution

of algorithms. The parameters are the number of processes, the number of fo-

rums and the time for each execution as seen in Figure 4.3. These parameters

are defined in the terminologies mentioned above. Clicking the ’Add Workload’

button creates a new workload consisting the set of parameters. Clicking ’Start’

button initiates Java Processes which are used to invoke the compile script for each

workload. The parameters of the workload are passed to the compile script as ar-

guments. The control then shifts to the connecting scripts, which in turn triggers

the execution engine. Once the execution is over, the control comes back to the GUI

Wrapper and shifts to the performance calculation unit.

4.3.3.3 Performance Calculation Unit

Performance Calculation Unit reads the trace files written by Trace Writer and

performs calculations for the performance metrics used for evaluating complexities of

the algorithms using different experimentations. After calculating the values for each

metric for the algorithm, results are written in Java Array Lists. These lists are used

by the Performance View Window to read and present the results. The performance

metrics used in our framework and the calculations performed are detailed extensively

in the next chapter, and the results of our experimentations and their analysis are

presented in Chapter 5.

4.3.3.4 Performance View Window

The performance view window, shown in Figure 4.4, displays the results of the

executions in graphical format. If the individual execution setting is selected for ex-

ecution, then we plot individual graphs for each workload for five Runs(executions)

for the algorithm along with plotting mean of all the workloads for each of the per-
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Figure 4.4: Performance View Window

formance metrics. If the comparison of execution setting is selected, then we plot

individual graphs of each workload for each algorithm as in the previous case. Along

with that, we also plot the mean of all the workloads for each performance metric for

all the algorithms selected.

4.4 Framework Design - A unique approach

Our test framework is designed or written, using three different programming

languages. Each part discussed above is written in a different language. The GUI

Wrapper and its components are written in Java, the Execution Engine, and its

components in C, and the connecting scripts are written using shell scripting. We

describe our rationale behind doing that.

30



4.4.1 Advantages and limitations of C

C is one of the most popular programming languages in computer science. It is

best to work with when using a lot of lower level instructions, for example, assembly

level instructions. Also, when dealing directly with the hardware or accessing machine

cores, (as in our case of using multiple cores of the machine), C provides extensive

support for many such operations. Thus, rightly so, we retained most aspects of the

structure of Concurrent Locking [16], for our Execution Engine. Besides, many of

the algorithms make use of higher level operations such as Compare and Swap(CAS),

Fetch and Add(FAA), Test and Set(TAS) and other locking and unlocking operations.

The C99 compiler used in this framework has these operations predefined which could

be used directly.

4.4.2 Automation

To automate the system, we need to compile the execution controller file, which is

written in C, for every execution. This automation is easily achieved by using Bourne

Shell Scripts for compiling and running C files. However, to have a GUI wrapper for

the ease of use, it would require invoking the script using GUI for each execution.

That lead to our quest for a higher level programming language where using invoking

scripts and having GUI wrapper could be achieved with ease.

4.4.3 Support by java

One of the most widely used programming languages, Java was our answer to the

problem mentioned above. Designing GUI platforms using Java is not a tedious task.

Efficient GUI frames and a plethora of libraries at our disposal, for plotting clean

graphs certainly helps Java gain an edge over the other languages or platforms.

Java Processes offer more support than what we assumed. Using Java Processes

(not to confuse it for Threads in Java), we can compile, run and access almost all

the possible files. Also, we discovered one of the easiest ways to invoke and run
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shell scripts using Java and in turn compile and run C code using shell scripts. This

approach led to us formalizing a new approach of designing cross-platform frameworks

eliminating language dependencies.

4.5 System Primitives

Our framework has a lot of system primitives retained from the Concurrent Lock-

ing framework for mutual exclusion algorithms [16]. In this section, we discuss the

important primitives in our framework. Some of the primitives are critical to the

state change of our framework. On the other hand, other primitives help to ensure

the correctness of the algorithms and replicating close to exact if not the exact be-

havior of the algorithm to preserve the essence they hold. The key system primitives

of our framework are as follows:

1. Self-checking Critical Section: It is tedious to check for the correctness of

an algorithm programmatically and to verify whether all the properties that are

claimed to be true are satisfied in the true sense. Having a self-checking critical

section for group mutual exclusion Algorithms assures of checking for themutual

exclusion property where if there exist processes executing their CS while having

requested for different forums, exit(0) will be executed immediately, and system

run will be terminated instantly.

The shared variables CurrTid and CurrFid in our system hold the id of the

thread and the form number requested by it. CurrFid is initialized at the be-

ginning to active forum’s id. A thread then loops 100 times pretending to

perform the CS, but at the end of each iteration, the thread compares its forum

id with the one in CurrFid for any change. If there is a change, mutual exclusion

principle of the algorithm has been violated, and the program is stopped.

2. volatile: All algorithms for group mutual exclusion have one or more wait

sections in their Entry Section which are executed when competing for accessing
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the shared resource (executing CS) or waiting for a thread to exit the CS. These

wait sections are infinite loops reading one or more shared variables, and a

process spins in these loops until the other competing process stops competing

for CS. Concurrency allows the value of that shared variable to be changed by

another process.Due to the compile time reordering, the process sometimes is

unable to see the value of the shared variable updated by some other process. To

make this waiting loop work, the value of the shared variable must be updated

on each iteration. The technique to achieve this explicit loading in C is to

qualify a variable’s type with volatile. All shared variables used in the Entry

Section and Exit Section code for the algorithms are declared with the volatile

qualifier to prevent this problem.

3. Fence(): In cases of compile time reordering, the processor sometimes reorders

the load operations before the store operations. Hence, write operations may

be performed before the read operations. For example, for two competing pro-

cesses, if they both perform the write operation before the read operation then

they both might end up executing their CS simultaneously. Such activity will

violate the property of mutual exclusion if the two processes executing their CS

codes have requested for different forums. Hence, we insert Fence() between

read-write operations to prevent the compiler in the processor to reorder those

operations. Also, since the volatile qualifier in the C99 standard that we use in

our framework is not as robust as Java, manually inserting memory fences are

essential.

In a sequential program, this optimization is benign because of the single thread;

in a concurrent program, this optimization must be precluded for correctness.

For all the algorithms in our work, the minimal number of store/load fence

instructions are inserted to ensure correctness but allow maximum performance.

Platforms with weaker memory models such as ARM or power-PC may need

additional fences (we use x86 standard architecture based machine for our work).

While the fence instructions prevent reordering of access to lock data, additional
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fence instructions may be required to prevent reordering of application data into

or outside of the protecting mutual exclusion component of the algorithm.

4. Pause(): The waiting section in algorithms can hamper their performance as

processes keep looping around checking for the change in the value of the shared

variable(s). As this loop executes, the processor pipeline fills with load/compare

instructions, which takes resources (CPU), space (instruction cache), and power

(heat). To alleviate such occurrences, we use a pause instruction specifically for

this situation. A Pause() instruction is primarily used to provide the processor

with a temporary delay, which in turn could be used to flush the pipeline of

compare instructions. Their usage is vital, especially for smaller waiting loops.

5. Atomic Operations

All group mutual exclusion algorithms make use of at least one atomic operation.

Apart from the few initial algorithms, most of the newer algorithms (deduced in

past decade or so) make use of higher level atomic operations. These instructions

are used to perform read-write operations, primarily essential to communicate

a process’s intent to other processes within the system. Each of the instructions

used could be formulated manually. However, the GCC compiler provides those

instructions which could be used to interact directly with the hardware.

These instructions guarantee a read, an arbitrary action, and writes occur atom-

ically. For example, a test-and-set instruction reads a value, writes a marker

value, and provides the original value read; no interruption can occur during

the read/write sequence. A fetch-and-increment instruction reads a value, incre-

ments the value, writes the incremented value, and provides the original value

read; no interruption can occur during the three actions. For atomic instruc-

tions, the hardware controls execution order, that is, precluding interruption

between the read and write, which is impossible with software solutions. While

it is interesting that these instructions can be created without any atomic assis-

tance from the hardware, memory instructions are still needed to handle races

on shared variables.
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4.6 Summary

In this chapter, we presented our scalable and automated test framework for eval-

uating and comparing performance complexities of algorithms for the group mutual

exclusion problem in the shared memory context. We explained the architecture of

our framework and described all its components. We also discussed and described our

approach in designing the framework using multiple languages. In the next chapter,

we present the performance metrics used for the performance studies. We also list

the algorithms that we implemented and the updates we made while implementing

them as source codes to overcome systems limitations and improve the performance.
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Chapter 5

Experimentation Results

In this chapter, we discuss our experiments conducted for performance studies with

their results. We also present the experiments that we repeated from the performance

experiments from the literature in order to compare the outcomes of those experiments

in our framework. Lastly, we provide the results of those experiments along with the

similarities and differences observed in the original work.

For our performance experiments, we use Dell PowerEdge FC630 rectified blade

server controlled using Integrated Dell Remote Access Controller (iDRAC8). The

machine comes equipped with two chipsets of Intel(R) Xenon(R) CPU E5-2650 v3,

each comprising of 10 cores (20 threads) and operating at the speed of 2.30GHz. We

have Ubuntu 14.04 LTS operating system running on our machine.

5.1 Past Experimentations

In this section, we present an overview of experimentations performed by Keane

and Moir [2] and Blelloch, Cheng, and Gibbons [10] in their respective studies. We

observe these experiments in the later part of this chapter and present results of a

few of these experiments conducted using our framework.
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5.1.1 Keane and Moir

Keane and Moir performed five performance experiments to compare the perfor-

mance of their algorithm with Joung’s [1] algorithm. They performed experiments

with varying the underlying Mutual Exclusion Algorithms using Young and Ander-

son [20] and MCS [12]. Their experiment aimed at examining the performance of

algorithms acting as mutual exclusion algorithms and evaluating the performance of

each algorithm based on the cycles required for them to attain 1000 CS Entries for

each process. Their second experiment involved having only one active process from a

set of 32 processes where they tested for the algorithm based on the simulation cycles

taken to attain 1000 CS Entries. Their third experiment examined performance un-

der varying levels of concurrency where each process selected a forum number ranging

from 1...M. They used 32 processes for the experiment with each process cycling 1000

times to attain the CS. Their fourth experiment involved processes performing some

task inside of the CS, unlike previous experiments where processes solely entered and

exited CS. For this experiment they had all processes requesting the same forum,

hence eliminating any waiting time for all processes. Their final experiment tested

the performance of their algorithm when modified to define a threshold, which is the

amount of potential concurrency attainable by their algorithm. For this experiment,

they used 32 processes, each of which randomly selects one of two available forums.

5.1.2 Blelloch, Cheng, and Gibbons

Blelloch, Cheng, and Gibbons [10] performed two sets of experiments. In the first

set, the experiments conducted compared the performance of their algorithm with

Keane and Moir’s algorithm [2]. Their second set of experiments gave timings for an

implementation of a shared work stack using their algorithm. We are interested in

observing their first set of experiments.

They implemented Keane and Moir’s algorithm using MCS locks [11] as suggested

by Keane and Moir for their experiments. The experiments involved the varying
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number of processes, the amount of work done inside and outside of CS and the ratio

of requests for the two forums that they used for their experiment. For all their

experiments they use 1-32 processes. They performed experiments using low load

and high load settings for experiments involving varying amounts of work done by

processes. In the low load setting, the processes solely entered and exited CS while

accessing it and they performed no work when inside the CS. For high load setting,

the processes performed significant work, roughly equal work when inside CS as when

executing outside of the CS. The work done inside the room was selected based on

Gaussian distribution with the mean equal to work done outside of CS. For varying

the ratio of selection of one of the two forums, they achieved that with two settings.

In the first setting, the probability of selecting each forum was p = 0.5 while for the

second setting, one of the forums was given a probability of p=0.1 which meant the

other forum had a probability of p=0.9 for being selected. For all the experiments in

the first set, they use n =1000 rounds as a measure of duration for each experiment

to be performed.

5.2 Our Approach

Since our experiments are performed to evaluate performances for algorithms pro-

posed for the group mutual exclusion problem, we exemplify a few experiment tech-

niques from Keane and Moir and Blelloch, Cheng, and Gibbons to design our exper-

iments. However, as our framework is based on the mutual exclusion test package

designed by Buhr et al. in [16], we draw significant inspiration from their ways to

calculate performance results.

We perform several experiments with varying the number of processes, forums and

time for each execution. Unlike Keane and Moir and Blelloch, Cheng, and Gibbons,

whose majority of the experiments involved experiments duration to be equal to

the time elapsed for each execution so as to ensure that each process in the system

attains 1000 CS Entries, our experiments are based on the time specified in a given

workload as a measure to run an experiment. We rely on a few performance metrics
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for evaluating the performances of algorithms in our experiments.

5.2.1 Performance Metrics

For results, we use CS Entries attained collectively by all processes in the system as

the basis of our calculations and evaluate performances of algorithms based on several

performance metrics. We do so, as Buhr et al. [16] perform their calculations and

deduct results following the same approach. Buhr et al. evaluated the performance

of mutual exclusion algorithms based on two metrics:

1. CS Entries which is the aggregate CS Entries attained by all processes collec-

tively in a given workload during execution.

2. Fairness which is the relative standard deviation from the mean of CS Entries

achieved by all the processes collectively from all the executions. (As mentioned

in Chapter 4, we use five Runs for each experiment execution.) It is denoted

as a percentage of the coefficient of variation, which is a normalized measure of

dispersion of fairness for each algorithm. The more the CS Entry counts differ

for each run for a given workload, the higher is the percentage of unfairness.

To provide a considerable evaluation, we use two more metrics to calculate com-

plexities of algorithms.

3. Delay which is the maximum number of CS entries that can occur while a

process is waiting to enter the CS

4 Forum switches which is the maximum number of times that forums can

change while a process is waiting to enter the CS.

Joung and Hadzilacos briefly discussed these metrics in [1] and [4] respectively.

Hadzilacos proposed delay to be measured using the number of CS entries that

occur before a process’s request to access CS is granted and forum switches as the

total number of forums that are activated before a forum requested by a given process
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is set to active. To put delay and forum switches to use as performance metrics,

we calculate them based on the actual entries accounted. We retain the technique

proposed by Hadzillacos to calculate forum switches for our work. However, we

believe, that delay for a given process could be best recorded by calculating the

actual wait time for that process before it accesses CS. Hence, we record wait time in

milliseconds for each process cycle. All our records generated are aggregated before

plotting the results as we have multiple runs for each execution and multiple cycles

for each run.

5.2.2 Implementation of algorithms

For our performance studies, we implemented nine algorithms from the available

group mutual exclusion algorithms. Our algorithms primarily are divided into two

categories, FCFS based algorithms and non-FCFS based algorithms. As discussed in

Chapter 3, fairness has been a key factor for newer algorithms that have been proposed

for the group mutual exclusion problem. FCFS based algorithms ensure that the order

of request for executing CS by the processes is retained when the requesting processes

execute the CS code. On the other hand, non-FCFS based algorithms aim to achieve

maximum performance irrespective of the order of execution of CS by the requesting

processes.

We have implemented Hadzilacos’s [4], Aravind’s bakery group mutual exclusion

[9], Jayanti et al.’s [6] and Aravind’s fair and scalable (2 variants) [14] algorithms

under the category of FCFS based algorithms. For non-FCFS based algorithms,

we have implemented Joung’s [1], Keane and Moir’s [2], Aravind’s queue [17] and

Blelloch, Cheng, and Gibbons’s room synchronization [10] algorithms.

5.3 Performance Experiments

Our performance study involves four experiments to be executed on our auto-

mated test framework. In each of these experiments, we generate workloads by varying

one or more parameters. Each algorithm executes for five runs for a given workload.
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No. Experiment Static Parameter(s) Resulting Graphs

1.
Varying Processes

(Processes: 1 - 32)

Time = 2 secs,

Forums = 2
1. Average CS Entries

2. Average Forum Switches

3. Average Delay

4. Fairness

2.
Varying Forum

(Forums: 1 - 32)

Processes = 32,

Time = 2 secs

3.
Varying Exec. Time

(Time: 1 - 5 secs)

Processes = 32,

Forums = 2

4.

Mutual Exclusion

(Processes: 1 - 32,

Forums: 1 - 32)

Time = 2 secs

Table 5.1: Summary of performance experiments

All the algorithms execute sequentially using each workload generated in isolation to

utilize the machine capacity to the fullest. Traces are recorded, and the results are

calculated, and subsequently plotted graphically from these traces.

We present each of our study experiments with their results and identify the trends

observed while executing the algorithms. Our results show performances of the algo-

rithms for each of our performance calculation metric for each experiment. Because

we are dealing with the concurrent system, the traces generated are dependent on the

performance of the machine, and hence some variations are encountered with each

new execution. For our calculations, we use the raw data recorded as traces without

processing them. Also, we do not use any smoothening tools for our graphical results.

We aim to plot the actual values in their raw form resulting in occasional spikes in

our results. Such spikes are observed even in the performance experiments conducted

by Buhr et al. for mutual exclusion algorithms [16]. Besides, some of the algorithms

demonstrate a rise in performance after a certain number of executions during several

of 100s of our executions for each experiment. These rises are nothing but down-

ward spikes encountered in previous execution and hence must not be mistaken for
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an anomaly in the performance or behavior of the algorithms.

5.3.1 Varying Processes

For this experiment set, we vary the number of processes from 2 to 32, keeping the

number of forums constant at 2 and execution time for each run at 2 seconds. Hence,

31 workloads are generated with increasing number of processes, and the domain axis

represents an increasing number of processes for each graph in this experiment.

Figure 5.1: Critical Section Entries for varying processes experiment

With an increase in the number of processes, there is a rise in contention among

them, and thus, the number of CS entries attained by processes decrease with each

subsequent workload. Hence, we witness exponentially decreasing graphs for each of

the algorithms. It is observed that for workloads with the lower number of processes

(less than 16) algorithms like Keane and Moir and Joung with simple read-write
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Figure 5.2: Forum switches for varying processes experiment

operations tend to achieve a higher number of critical section entries in compari-

son to algorithms with higher level read write operations (most of the FCFS based

algorithms).

This observation contradicts the theoretical time complexities for each of the al-

gorithms. We assume such behavior is observed because the algorithms using higher

level read write operations like Compare And Swap, Fetch And Add and Test And

Set which are expensive operations, take more steps in achieving CS entries that algo-

rithms using simple locking mechanisms to perform read-write operations. However,

with an increase in contention, algorithms with higher level read write operations,

which are mostly the FCFS based algorithms, tend to perform better than algo-

rithms with simple read-write operations. Interestingly, similar observations were

made in [16] when Buhr et al. performed performance experiment for comparing

mutual exclusion algorithms. For their experiments, many of the software solutions

performed better than the hardware solutions as they initiated their work believing
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Figure 5.3: Delay for varying processes experiment

that software solutions would be an order of magnitude slower than the hardware

solutions.

Forum switches for this experiment show a decreasing exponential curve for all the

algorithms in most of the executions we performed. With an increase in contention

among processes, CS entries decrease and the wait time increases. Hence, fewer forum

switches are observed with increase in the number of processes. However, we do not

witness a steep decrease in forum switches for most of the algorithms like that of

CS entries. It is because, forum switches is a collective calculation for the processes

where a single forum switch could account for one or more processes in an active

forum, unlike CS entries where each of the entries is individually calculated for each

of the processes, irrespective of the forum they choose.

While observing the delay which is the average time each process waits for its

CS entry, the trend witnessed compliments the results of the number of CS entries.
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Figure 5.4: Fairness for varying processes experiment

With an increase in the number of processes and subsequent rise in contention the

wait time for each process keeps increasing. Hence we witness increasing exponential

graphs for the wait times for all the algorithms. For this experiment, algorithms with

simple read-write operations, which are non-FCFS based algorithms tend to achieve

less wait time than the FCFS based group mutual exclusion algorithms.

For this experiment, it has been observed that non-FCFS based algorithms using

simple read-write operations show better performance than the other algorithms.

However, FCFS based algorithms show better performance for this metric. These

algorithms attain much lesser spikes and achieve fewer deviations which result in

better fairness for them with many of them achieving deviation under 2% for most

of the workloads.
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5.3.2 Varying Forums

For this experiment set, we vary the number of forums from 1 to 32, keeping the

number of processes constant at 32 and execution time for each run at 2 seconds.

Hence, workloads are generated with increasing number of forums, and the domain

axis represents an increasing number of forums for each graph in this experiment. Pro-

cesses experience maximum contention for accessing CS in this experiment. Though

there is no rise in contention among processes, there is an increase in distribution

of processes. With each new workload, they get to choose from a bigger number of

forums. Thus, the number of CS entries attained by processes decrease with each

subsequent workload as it takes longer for a forum to turn active with each new

workload. Hence, we witness exponentially decreasing graphs of CS entries for each

of the algorithms.

Figure 5.5: Critical Section entries for varying forums experiment
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Figure 5.6: Forum switches for varying forums experiment

Most of the algorithms tend to achieve higher CS entries for workloads with less

than three forums. However, it is observed that throughout the experiment, algo-

rithms using higher level read write operations tend to achieve more CS entries de-

spite high contention. This observation strengthens the claims made by several FCFS

based algorithms to produce better performance with a higher number of processes.

We assume such behavior is observed because, under non-FCFS based algorithms,

some of the processes might have to wait longer, thus reducing the total number of

CS entries attained collectively by them.

An interesting observation that was made throughout our experiments was that

Blelloch, Cheng, and Gibbons’s algorithm tend to achieve a higher number of CS

entries while Aravind’s Fair Group Mutual Exclusion Algorithm with constant RMR

shows a decline in performance with the higher number of forums (usually for forums

greater than 16). We believe the increase in performance for Blelloch, Cheng, and

Gibbons’s algorithm is because of the underlying round robin nature of the algo-
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Figure 5.7: Delay for varying forums experiment

rithm. On the other hand, the change in forums has minimal impact on Hadzilacos’s

algorithm as it barely reflects deviation in the CS entries attained by the processes.

Aravind’s Fair and Scalable Group Mutual Exclusion Algorithm demonstrates an ex-

ponential decrease in CS entries with an increase in the number of forums yet achieves

more CS entries than all the other algorithms for most of the workloads.

For workloads with more than two forums, almost all the algorithms show minimal

deviation in the number of forum switches attained. The only algorithms that show

substantial changes are Aravind’s Fair Group Mutual Exclusion Algorithm with con-

stant RMR and Blelloch, Cheng, and Gibbon’s algorithm. Aravind’s algorithm with

constant RMR shows a dip in the number of forum switches while Blelloch, Cheng,

and Gibbons’s algorithms achieve more forum switches with a higher number of fo-

rums. Aravind’s Fair Group Mutual Exclusion Algorithm achieves one of the highest

forum switches and with minimal deviation. Similar to the CS entries, non-FCFS

algorithms using simple read-write operations achieve lesser forum switches than the
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Figure 5.8: Fairness for varying forums experiment

FCFS based algorithms and the ones using higher level instructions for read-write

operations.

While observing the delay which is the average time each process waits for its CS

entry, the trend witnessed compliments the results of the number of CS entries. With

an increase in the number of processes and subsequent rise in contention the wait time

for each process keeps increasing. Hence we witnessed increasing exponential graphs

for the wait times for all the algorithms. For this experiment, algorithms with simple

read-write operations, which are non-FCFS based algorithms tend to achieve less wait

time than the FCFS based group mutual exclusion algorithms which is consistent with

the results for CS entries. For fairness, non-FCFS based algorithms using simple read-

write operations, showed better performance than the FCFS algorithms. However,

FCFS based algorithms show better performance for this metric. These algorithms

attained fewer spikes and achieved fewer deviations which result in better fairness

with many of them achieving deviation under 2% for most workloads.
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5.3.3 Varying Time

For this experiment set, we vary the time of execution from 1 to 5 seconds for

each run, keeping the number of processes and number of forums constant at 32 and

two respectively. Hence, workloads are generated with increasing number of seconds

for execution time, and that forms the domain axis for each graph in this experiment.

Processes experience maximum contention for accessing CS in this experiment.

In the first result, we observe the number of CS entries attained by each algorithm

for the given workloads. Though there is no rise in contention among processes with

each new workload, with an increase in time for each execution, there is scope for

attaining more CS entries. Thus, the number of CS entries achieved by processes

increase with each subsequent workload, and we witness almost linearly increasing

graphs of CS entries for each of the algorithms. Most of the algorithms tend to

perform consistently for all the workloads. For workloads with smaller execution

time, Aravind’s Fair and Scalable group mutual exclusion with RMR and Bakery

group mutual exclusion algorithms almost always achieved highest CS entries along

with Keane and Moir’s and Joung’s algorithms. Throughout the experiment, non

FCFS algorithms tend to outperform many FCFS based algorithms.

For forum switches, the performance observed is usually consistent with the results

observed with CS entries. Intuitively, algorithms achieving higher CS entries should

have higher forum switches and less delay. However, for executions where we do not

observe this to hold entirely true for forum switches, its performance observed in

delay compensates for the balance. For example, Keane and Moir’s algorithm tend

to achieve much higher CS entries than many other algorithms in the above graph.

But it achieves substantially lesser forum switches in Figure 5.10. However, it is

compensated with a higher performance in delay which will be discussed shortly. The

same implies for any dip or rise in performance observed for any given algorithm

while executing a particular workload. The dips and rises are due to the system’s

performance and are not due to any specific behavior of the algorithms as they are
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Figure 5.9: Critical Section entries for varying time experiment

Figure 5.10: Forum switches for varying time experiment
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Figure 5.11: Delay for varying time experiment

not observed consistently throughout multiple executions. Such behavior is normal

and is observed through our experiments considering the concurrent nature of the

algorithms and system latency for their performance.

While observing the delay, the trend witnessed compliments the results of the

number of CS entries and forum switches. Though we observe an increase in the

number of seconds for each run, in the absence of any changes in the number of pro-

cesses and forums, we tend to observe that many algorithms show minimal deviation

in the wait time over the workloads. For example, algorithms like Joung, Hadzilacos,

Jayanti, Aravind’s Fair and scalable algorithm where we observed an almost linear

increase in CS entries with an increase in run time, demonstrate minimal deviation

for the delay. Similarly, for algorithms that provided contrasting performance for the

forum switches with respect to the CS entries they achieved, compensate for that with

delay. For example, Aravind’s queue algorithm that achieved more forum switches

than Blelloch, Cheng, and Gibbons’s algorithm and Aravind’s Fair and Scalable algo-
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Figure 5.12: Fairness for varying time experiment

rithms, has substantially more delay than the other two which eventually justifies the

higher number of CS entries by the two algorithms over Aravind’s queue algorithm.

For the fairness results, it has been observed that FCFS based algorithms outper-

form most of the non-FCFS based algorithms. Also, the algorithms that demonstrated

a linear increase in CS entries and minimal deviation in delay with each run of work-

load achieved better fairness results with a relative deviation of average CS entries

under 1% for most of the workloads.

5.3.4 Mutual Exclusion

Since all the existing algorithms for the group mutual exclusion problem are de-

rived from already existing mutual exclusion algorithms, we were keen to test and

observe the performances of these algorithms by using them as mutual exclusion al-

gorithms. To achieve that, we vary both the number of processes and the number
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Figure 5.13: Critical Section entries for mutual exclusion experiment

of forums from 1 to 32 for each workload such that each process chooses its own id

as the forum while requesting to access CS. Workloads are generated with increas-

ing number of processes and forums. For each workload, the number of processes is

equal to the number of forums, consequentially eliminating the use of forums for this

experiment. We keep execution time constant at 2 seconds for each run.

As we have two variants for this experiment, we have a choice to make to choose

either varying number of processes or varying number of forums as our domain axis

for plotting graph. We decided to use the varying number of processes as our domain

axis for each graph in this experiment. Processes experience maximum contention for

accessing CS in this experiment as each process chooses a different forum to access

the CS.

In the first result, we observe the number of CS entries attained by each of the

algorithms for the given workloads. The trends were similar to the CS entries ob-
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Figure 5.14: CS entries for mutual exclusion experiment (processes 17-32)

served for CS entries achieved in the experiment of varying processes. With each

subsequent workload, we observed an exponentially decreasing number of CS entries

for all algorithms. For this experiment, the non-FCFS based algorithms show better

performance than most of the FCFS based algorithms for workloads with less number

of processes. However, for the higher number of processes, some of the FCFS based

algorithms like Hadzilacos, Jayanti and Aravind’s Bakery group mutual exclusion al-

gorithms, achieve a similar number of CS entries. Aravind’s Bakery group mutual

exclusion algorithm and Jayanti’s algorithm achieves the highest number of CS en-

tries for this experiment among FCFS based algorithms and algorithms using higher

level read write operations. Aravind’s Fair and Scalable algorithms, both with and

without RMR and Blelloch, Cheng, and Gibbons’s algorithm achieve a lesser number

of CS entries for workloads with higher processes (more than 16).

For forum switches, the results observed are usually consistent with the results

observed with CS entries. By understanding, the results for the CS entries and forum
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Figure 5.15: Forum switches for mutual exclusion experiment

switches should be same, in the absence of forums, when each process access CS in

isolation.

An interesting trend observed was that, for the lesser number of processes (less

than 16), the number of CS entries achieved by the algorithms is higher than the

number of CS entries achieved by processes for the experiment of varying processes.

We assume that this behavior observed could be arising due to the self-checking Crit-

ical Section where repeatedly, it’s the same process checking for validating its access,

unlike other scenarios where one or more processes might be involved performing the

same task. However, if this isn’t due to the self-checking critical section, it would be

an interesting to compare performances of group mutual exclusion algorithms with

mutual exclusion algorithms.

The results for delay compliment the results in the number of CS entries. Algo-

rithms that achieve lesser CS entries (Aravind’s Fair and Scalable algorithms with and
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Figure 5.16: Delay for mutual exclusion experiment

without RMR and Blelloch, Cheng, and Gibbons’s algorithm) tend to generate the

higher delay. For this experiments, the inter-dependency of metrics is only between

CS entries and delay, unlike other experiments that would involve forum switches as

well.

For fairness, barring the algorithms with lesser CS entries and significant delay

(Aravind’s Fair and Scalable algorithms and Blelloch, Cheng, and Gibbons’s algo-

rithm), all the other algorithms achieved better results with a deviation less than

25% across all the runs. The deviations for Aravind’s Fair and Scalable algorithms

and Blelloch, Cheng, and Gibbons’s algorithm is on the higher side, especially with

the higher number of processes, usually more than 25 processes, occasionally surpass-

ing 300%.
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Figure 5.17: Fairness for varying time experiment

5.4 One-on-one Comparison Studies

We were able to successfully deduct our experiment set by drawing inspiration

from the existing comparison studies for group mutual exclusion algorithms. Apart

from executing algorithms individually, our framework could be used for either one-

on-one comparison or overall comparison using all algorithms.Thus, we performed a

few of those comparison experiments to determine whether or not we were able to

fetch similar results under similar experimental setup. We performed two different

one-on-one performance studies which we present in this section. We performed se-

lected experiments from the pst performance studies conducted by Keane and Moir

and Blelloch, Cheng, Gibbons. Only the experiments that were similar to our experi-

ment set were selected for this study. These experimental set ups required us to make

minimal changes to our existing experiments.We retained our performance metrics for

these comparison studies as we believe our metrics collectively provide for an overall
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comparison. However, we have excluded fairness from our results as neither of the

algorithms is predominantly FCFS or fairness based algorithms.

5.4.1 Blelloch, Cheng, and Gibbons vs Keane and Moir

Our first comparison is between Keane and Moir’s and Blelloch, Cheng, and Gib-

bon’s algorithms. Blelloch, Cheng, and Gibbons conducted their study using two

experiment sets, one with selecting forums with equal probability and the other with

selecting forums with a biased probability.

Figure 5.18: CS Entries - Keane-Moir vs Blelloch-Cheng-Gibbons

We conducted our comparison study with biased probability using our self-checking

critical section, which would facilitate environment similar to their high load setting
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as our processes too, do some work inside the self-checking CS. Since they performed

their experiments varying the number of processes from 1 to 32 and keeping the num-

ber of forums constant at 2, we retained the same setup . We varied the duration of

the execution to 2 seconds per run unlike execution based on attaining 1000 CS entries

in their case. For the comparison study, we retained our performance metrics, CS

entries, forum switches and delay, as we believe they provide an overall comparison

unlike theirs.

Figure 5.19: Forum Switches - Keane-Moir vs Blelloch-Cheng-Gibbons

The number of CS entries achieved by Keane and Moir’s tends to be more than

Blelloch Cheng, and Gibbons’s for the lower number of processes (less than 16). For

higher number of processes, they both perform similar for most runs, with Blelloch,

Cheng, and Gibbons’s achieving slightly more number of CS entries than Keane and

Moir’s during a few runs. This observation is akin to the observations made by them.
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Figure 5.20: Delay - Keane-Moir vs Blelloch-Cheng-Gibbons

The number of forum switches attained by Keane and Moir’s is more than that of

Blelloch, Cheng, and Gibbons’s. The number is much higher for workloads with the

lower number of processes, and the observation was consistent for all our executions.

For delay, Keane and Moir’s clock lesser waiting time than Blelloch, Cheng, and

Gibbons’s for workloads with a lower number of processes during all the executions.

With an increase in the number of processes, we observed that Keane and Moir’s

records a slightly more wait time than Blelloch, Cheng, and Gibbons’s.

5.4.2 Keane and Moir vs. Joung

Our next comparison is between Keane and Moir’s [2] and Joung’s [1] algorithms.

Keane and Moir conducted their study using five experiments. Three of our experi-

ments, varying processes, varying forums and mutual exclusion are either similar or

relatable to their experiments. We conducted a comparison study between these two
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algorithms using the above three experiments. We retained each of our experiment’s

setup for this comparison study. We varied the duration of the execution to 2 seconds

per run unlike execution based on attaining 1000 CS entries.

5.4.2.1 Varying processes

Figure 5.21: CS Entries - Keane-Moir vs. Joung

The number of CS entries achieved by Keane and Moir’s and Joung’s algorithms

are similar for workloads with a lower number of processes (less than 16). For higher

number of processes, Keane and Moir’s algorithm tends to achieve slightly higher

number of CS entries.

The result for forum switches for this experiment produces similar trends to that

of the CS entries where both the algorithms perform similarly for the lower number

of processes and Keane, and Moir’s algorithm achieves a higher number of switches
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for workloads with a high number of processes.

For delay, Keane and Moir’s algorithm clocks lesser wait time than Joung’s through-

out the execution for all workloads. With an increase in number of processes, we

observed that the difference in wait times for both the algorithms increases many

folds with the former achieving significantly lesser wait time than the latter.

Figure 5.22: Delay - Keane-Moir vs Joung

5.4.2.2 Varying forums

The number of CS entries achieved by Keane and Moir’s algorithm turns out to be

significantly more than that of Joung’s for all the workloads. The difference sometimes
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tends to be as much as two-fold more in favor of Keane and Moir’s algorithm.

Figure 5.23: CS Entries - Keane-Moir vs Joung

Barring an odd spike encountered occasionally, the number of forum switches at-

tained by Keane and Moir is more than that of Joung and thus, in consistency with

the results of CS entries.

For delay, Keane and Moir’s algorithm clocks lesser wait time than that of Joung’s

algorithm for all the workloads, which is also consistent with the CS entries and forum

switches.
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Figure 5.24: Forum Switches - Keane-Moir vs Joung

Figure 5.25: Delay - Keane-Moir vs Joung
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5.4.2.3 Mutual exclusion

The number of CS entries achieved by Keane and Moir’s algorithm is slightly more

than Joung’s algorithm for the lower number of processes (less than 16), while two

achieve similar results for the higher number of processes. This observation partially

contrasts the observations made my Keane and Moir as according to their experiment,

their algorithm outperforms Joung’s for all number of processes.

Figure 5.26: CS Entries - Keane-Moir vs Joung

Since this experiment is aimed at testing the algorithms when used in their mu-

tual exclusion form, the graphs for CS entries and forum switches turn out to be the

same. This is because the total number of CS entries is equal to the total forum

switches. Hence, we have excluded presenting the results of forum switches for this

experiment. For the results of delay, Keane and Moir’s algorithm achieves less wait
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time than Joung’s algorithm for workloads with less number of processes. However,

the difference is not significantly large. With an increase in number of processes, we

observed that both the algorithms have similar wait time.

Figure 5.27: Delay - Keane-Moir vs Joung

5.5 Summary

In this chapter, we presented experimentation results of our performance study

sets, both comprehensive and one-on-one. We made some important observations

with respect to the results generated from our experiments.

For our overall comparison experiments, we observed that for many of our exper-

iments, few algorithms with higher time complexities outperformed algorithms with

much lesser time complexities. These observations were in sync with the observations

67



made by Buhr et al. [16], where few of the software solutions for mutual exclusion

problem outperformed hardware solutions, which in theory would contract their be-

havior. With that, we deduct that the primary reason for such anomalies could be

system latency and due to different higher and lower level instructions used by the al-

gorithms. We also observed that most of the FCFS based algorithms tend to achieve

consistent CS entries for each of their runs for a given workload in comparison to

other non-FCFS based algorithms. For our one-on-one comparison experiments, we

tried to replicate the existing experiment studies from literature in our framework,

and our observations were mostly consistent with their observations.

In the following chapter, we conclude our thesis and present possible future work

that could be intended to achieve.
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Chapter 6

Conclusion and Future Directions

This research opportunity greatly helped us in sharpening our learning curve. It was

instrumental in helping us understand the essence of academic research along with

gaining extensive knowledge of the concerned area. In this chapter, we discuss the

contributions of this thesis, and the observations made with respect to our experi-

mentations along with our experiences that we encountered during our work.

6.1 Contributions

For this thesis, we successfully developed an automated test framework that could

be used for conduct performance study experiments for group mutual exclusion al-

gorithms and thus observe their comparisons. To demonstrate the working of our

framework, we implemented nine algorithms into code bases. Using these algorithms,

we successfully extensive comparison studies along with one on one comparison of a

few of the algorithms.

We conducted four comparison studies using all the eight algorithms we imple-

mented to observe the performances of all the algorithms and two case studies for

one on one comparison of few algorithms. We also performed a comparison study

between Aravind’s Fair and Scalable group mutual exclusion algorithms (both with
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and without RMR) and Blelloch Chen Gibbons’s room synchronization algorithm.

Though the results of this study aren’t provided in this thesis, it is available in the

experimentation results section of [14].

6.2 Observations

We made some key observations with the results generated from our performance

experiments. Most of our results for one on one comparison experiments were in

sync with the observations made by similar studies in the literature. These results

helped us confirm the accuracy of our framework and correctness of the algorithms

implemented. For few of the extensive comparison experiments, under the given

experimental setup, many algorithms with simple read write operations performed

better than the algorithms using higher level read write operations.

This observation was an interesting one as those algorithms have higher time

complexities that the ones they outperformed. Buhr et al. had a similar observation

[15], where they observed some of the software solutions for mutual exclusion problem

outperformed the hardware solutions. Since their system constitutes the basis of our

framework, such observations were not surprising. We believe, this is due to the

nature of instructions and such variation is observed due to the higher execution time

needed for the higher level instructions to execute along with system latency playing

its part.

6.3 Experiences

Our experiences throughout this research were enthralling, to say the least. We

encountered several challenges and also realized how trivial few of the things turned

out to be which was initially assumed significant. We discuss our experiences with

respect each of the accomplishments achieved through this research.
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6.3.1 Automated test framework

Since there exists no publicly available system or testing environment for con-

ducting performance studies for group mutual exclusion, it was a challenge for us to

set thresholds for our work and to gain an understanding of insights of the system.

Hence we were dependent on drawing inspirations from similar systems designed for

mutual exclusion. The execution engine of our framework is written in C language.

It was important to do so as we are working with executions on actual machine and

not in a simulation environment. Hence, using a lower level language was essential.

At the same time, for the ease of usage and plethora of support, designing our GUI

components in Java, including the plotting of our results in the form of graphs, was

intuitive.

In today’s world, cross platform development and modular nature of the system is

the norm, and we wanted to exploit the same with our work. Our primary challenge

was to establish communication between our components, in particular between the

execution engine written in C and the other components for GUI and calculations

written in Java. Java Native Interface (JNI) was one of the approaches, but a tedious

one. So, we used Java processes to establish this communication. We wrote shell

scripts to automate our process.

6.3.2 Algorithms to source codes

Implementing the pseudo codes of algorithms into code bases was intriguing. Hav-

ing an in-depth understanding of each of the algorithms was a pre requisite for this

work. But the most important aspect was to retain the original essence of the al-

gorithms. Some of the algorithms heavily rely on the underlying mutual exclusion

algorithms from which they are derived. Understanding those algorithms was essen-

tial too. We were fortunate for the fact that the C99 standard GNU that we used

for our work has built in read-write operations, including many of the higher level

operations. Many of the algorithms that we implemented for our work use these
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instructions.

6.3.3 Performance experiments

For this contribution, the knowledge of performance studies from literature came

in handy. Many of our experiments are inspired by the previous comparison studies

accomplished for mutual exclusion and group mutual exclusion algorithms. In fact, all

our One-one-one comparison studies involved repeating the studies for group mutual

exclusion conducted in the past. Hence, the process of finalizing experiment sets was

not a difficult one. However understanding results, observing patterns across execu-

tions and deducing inferences from them was both time-consuming and challenging

process. Each of our experiments has undergone at least 100 executions, and we spent

over 1000 hours of execution time for our experiments.

6.4 Future Directions

In any research, testing an outcome is as important as creating it. Through our

work and our accomplishments, we have initiated a new dimension of testing group

mutual exclusions by execution and conducting comparison studies among them. Hav-

ing an environment is an integral part of the process. With our test framework, we

have provided a testing environment to compare and contrast the performances of

these algorithms collectively. We believe a substantial research could further be ac-

complished in this direction.

More algorithms could be implemented and accommodated into our test frame-

work. The experiment sets could be expanded, and new experiments could be in-

troduced. New performance metrics could be presented for these experiments. The

existing framework could be deployed and used on other different machines. All these

activities will help researchers gain a deeper understanding of the group mutual ex-

clusion problem and meaningful insights to introduce newer solutions for the problem.
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Since ours is the first test framework for the group mutual exclusion problem, we

might have missed out on accommodating few key features into the framework. Tasks

could be taken up to upgrade our environment, add new features to it and rectify any

existing limitation if encountered. Also, newer and better test frameworks could be

proposed and developed using different programming languages with time.
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