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Abstract

The sediment source fingerprinting approach is based on the assumption that the 

potential sources of sediment within a watershed can be linked to in-stream sediment by 

using the inherent physical or biogeochemical characteristics of the sediment (i.e., sediment 

properties) as fingerprints. At present, one of the main limitations of the sediment source 

fingerprinting approach is the ability to link sediment back to their sources due to the non-

conservative nature of many sediment properties. Ideally, sediment properties do not change 

as the sediment (i.e., transported unconsolidated soil or rock particles) move through a 

watershed allowing for a direct comparison between sources and sediment. However, 

sediment collected downslope or downstream from its source is often found to have a finer 

grain-size distribution and a higher organic matter content as compared to the source material

as the smaller and less dense particles are preferentially mobilized and transported. 

Accounting for changes in both particle size distribution and organic matter content are 

important as many fingerprint concentrations are correlated with both properties, but it is 

unclear as to what is the best approach to account for these changes. In an effort to provide a 

more reliable and robust link between sources and sediment, a series of experimental and 

observational studies were conducted to investigate the factors that control particle size and 

organic matter selectivity and their subsequent effect on a broad suite of geochemical 

fingerprints. These studies investigated particle selectivity at the landscape scale, represented 

by a sequence of hillslope, riparian and fluvial environments. Processes within each of these 

three environments were found to preferentially mobilize and transport fine-grained and 

organic-rich particles. Many commonly used particle size and organic matter correction 
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factors assume that the relation between both particle size and fingerprint concentrations are 

similar for all fingerprints. However, this research has demonstrated that these relations are 

fingerprint specific in terms of the magnitude, direction and linearity which suggests that the 

use of correction factors needs to be given careful consideration. In addition, a watershed-

scale application of the sediment fingerprinting approach found that the scale of observation 

and the geomorphic connectivity of the watershed influenced the apportionment results. 

Overall, this research can be used to guide sampling design and protocols, fingerprint 

selection, data correction factors and the interpretation of apportionment results.

iii



Table of Contents

Abstract.....................................................................................................................................ii

Foreword................................................................................................................................xiv

Publications.............................................................................................................................xv

Acknowledgements..............................................................................................................xvii

 1 Introduction..........................................................................................................................1

 1.1 Non-point source pollution in agricultural watersheds.......................................................1

 1.2 Identifying sources of sediment..........................................................................................4

 1.3 Sediment fingerprinting......................................................................................................6

 1.4 From source to sink...........................................................................................................12

 1.5 Dissertation goals and objectives......................................................................................15

 1.6 References.........................................................................................................................17

 2 The behavioural characteristics of sediment properties and their implications for 
sediment fingerprinting as an approach for identifying sediment sources in river basins
..................................................................................................................................................23

 2.1 Abstract.............................................................................................................................23

 2.2 Introduction.......................................................................................................................24

 2.3 The sediment fingerprinting approach..............................................................................25

 2.4 Nature and properties of soil and sediment particles........................................................34

 2.5 Hillslope processes............................................................................................................42

 2.6 Riparian and wetland processes........................................................................................53

 2.7 Aquatic processes..............................................................................................................58

 2.8 River basin processes........................................................................................................68

 2.9 Implications for sediment fingerprinting..........................................................................71

 2.10 Conclusions.....................................................................................................................78

 2.11 References.......................................................................................................................80

 3 The role of soil surface properties on the particle size and carbon selectivity of 
interrill erosion in agricultural landscapes..........................................................................95

 3.1 Abstract.............................................................................................................................95

 3.2 Introduction.......................................................................................................................96

 3.3 Materials and methods......................................................................................................99

iv



 3.4 Results.............................................................................................................................112

 3.5 Discussion.......................................................................................................................124

 3.6 Conclusions.....................................................................................................................135

 3.7 References.......................................................................................................................137

 4 Suitability of particle size and organic matter correction factors in sediment source 
fingerprinting investigations: the example of two contrasting watersheds in Canada..144

 4.1 Abstract...........................................................................................................................144

 4.2 Introduction.....................................................................................................................145

 4.3 Methods...........................................................................................................................149

 4.4 Results.............................................................................................................................156

 4.5 Discussion.......................................................................................................................170

 4.6 Conclusions.....................................................................................................................174

 4.7 References.......................................................................................................................174

 5 Particle size and organic carbon selectivity within edge-of-field and riparian zones 
and its implications for sediment fingerprinting...............................................................179

 5.1 Abstract...........................................................................................................................179

 5.2 Introduction.....................................................................................................................180

 5.3 Materials and methods....................................................................................................185

 5.4 Results.............................................................................................................................190

 5.5 Discussion.......................................................................................................................199

 5.6 Conclusions.....................................................................................................................205

 5.7 References.......................................................................................................................206

 6 The role of gravel channel beds on the particle size and organic matter selectivity of 
transported fine-grained sediment: implications for sediment fingerprinting and 
biogeochemical flux studies.................................................................................................212

 6.1 Abstract...........................................................................................................................212

 6.2 Introduction.....................................................................................................................213

 6.3 Methods...........................................................................................................................220

 6.4 Results.............................................................................................................................226

 6.5 Discussion.......................................................................................................................235

 6.6 Conclusions.....................................................................................................................243

 6.7 References.......................................................................................................................244

v



 7 Investigating the role of connectivity and scale in assessing the sources of sediment in 
an agricultural watershed in the Canadian prairies using sediment source 
fingerprinting.......................................................................................................................249

 7.1 Abstract...........................................................................................................................249

 7.2 Introduction.....................................................................................................................250

 7.3 Study catchment..............................................................................................................255

 7.4 Methods...........................................................................................................................260

 7.5 Results and discussion....................................................................................................267

 7.6 Conclusions.....................................................................................................................279

 7.7 References.......................................................................................................................281

 8 Conclusion and synthesis.................................................................................................286

 8.1 Hillslopes........................................................................................................................289

 8.2 Riparian zones.................................................................................................................291

 8.3 Fluvial transport..............................................................................................................292

 8.4 Watersheds......................................................................................................................294

 8.5 Implications for sediment fingerprinting........................................................................295

 8.6 Overall synthesis.............................................................................................................303

 8.7 References.......................................................................................................................305

vi



List of Figures

Figure 2.1: Fundamental properties of earth materials, which might be used for dating and 
tracing sediment sources. From Foster and Lees, 2000, reproduced with permission of John 
Wiley & Sons, Ltd....................................................................................................................27

Figure 2.2: Number of publications per year between 1990 and 2013 based on a search of the 
Web of Knowledge citation index, using (“sediment”) and (“tracing” or “fingerprinting”) as 
topic keywords (April 2013)....................................................................................................29

Figure 2.3: Existing blackbox approach to the sediment fingerprinting approach, whereby 
there is the underlying assumption of a direct link between hill slope and downstream 
sediment in terms of property conservativeness. Processes within the box and their influence 
on sediment properties are not accounted for in this approach................................................31

Figure 2.4: Conceptual diagram demonstrating the complexity of the sediment continuum, at 
multiple scales of observation, that is incorporated into the sediment fingerprinting approach.
..................................................................................................................................................34

Figure 2.5: Distribution of total pools of potentially toxic elements (PTE) in soils — the size 
of the different fractions and the most relevant soil processes vary according to the element 
of interest and environmental conditions. From Rodrigues et al. 2010, reproduced with 
permission of Elsevier..............................................................................................................39

Figure 2.6: Demonstrating the friable nature of shale bedrock entering a small stream in the 
South Tobacco Creek watershed in southern Manitoba, Canada. Bed rock sample was easily 
reduced in grain size by manipulation in the hand (April 2011)..............................................61

Figure 2.7: Average end members (ο, Δ, □) from MCMC runs transformed into principal 
component space and connected to emphasize the simplex (greenstones ■, granites▲, 
phyllites ♦, diagenetic component Y; the larger symbols indicate the mean scores for each 
group, sediment samples o).From Palmer and Douglas, 2008, reproduced with permission of 
the Royal Statistical Society.....................................................................................................67

Figure 3.1: Maps showing a) the provinces of south-western Canada and the locations (inset 
boxes) of the two sampling sites: b) Beaver Valley (BV) watershed and c) South Tobacco 
Creek (STC) watershed..........................................................................................................101

Figure 3.2: Schematic showing the sample preparation, subsampling and analysis for the 
effective particle size distribution (EPSD; see inset), dispersed particle size distribution 
(DPSD), absolute particle size distribution (APSD), particulate organic matter (POM), soil 
organic matter (SOM) and soil organic carbon (SOC)..........................................................107

Figure 3.3: The significant (p-value < 0.05) correlations between soil surface properties and 
soil loss. See Table 3.2(A) for additional details....................................................................113

vii



Figure 3.4: Enrichment ratios for the eroded sediment with respect to the source soil for the 
different absolute particle size classes (mineral component only). Investigating the: a) total 
sediment (< 2000 μm) and b) silt and clay only (< 63 μm). Error bars indicate ± 1 standard 
error and * denotes a significant difference (p-value < 0.05) between the 0 – 20 and 20 – 40 
min runoff periods..................................................................................................................116

Figure 3.5: Enrichment ratios for the eroded sediment with respect to the source soil for the 
different effective particle size classes (mineral and organic components; < 2000 μm) Values 
have been log10 back-transformed. Error bars indicate ± 1 standard error and * denotes a 
significant difference (p-value < 0.05) between the 0 – 20 and 20 – 40 min runoff periods.117

Figure 3.6: The significant (p-value < 0.05) correlations between soil surface properties and 
the amount silt and clay (< 63 μm; mineral component only) enrichment ratio of eroded 
sediment with respect to the source soils. See Table 3.2(B) for additional details................119

Figure 3.7: Enrichment ratios for the eroded sediment with respect to the source soil for 
particulate organic matter (POM), soil organic matter (SOM) and soil organic carbon (SOC) 
fractions. Investigating the: a) total sediment (< 2000 μm) and b) silt and clay only (< 63 
μm). Error bars indicate ± 1 standard error and * denotes a significant difference (p-value < 
0.05) between the 0 – 20 and 20 – 40 min runoff periods.....................................................121

Figure 3.8: The significant (p-value < 0.05) correlations between soil surface properties and 
the soil organic carbon enrichment ratio of eroded sediment with respect to the source soils. 
See Table 3.2(C) for additional details...................................................................................122

Figure 3.9: The correlations between aggregated (ASC index) and absolute particle size (clay 
+ silt) and the soil organic carbon content for the source soils and the eroded sediment. See 
Table 3.3 for additional details...............................................................................................123

Figure 3.10: An example of two sampling sites demonstrating the change in the percent 
vegetative cover between the spring and autumn seasons for the Beaver valley (BV) and 
South Tobacco Creek (STC) watersheds with the percent cover in brackets........................126

Figure 4.1: Maps showing a) the provinces of south-western Canada and the locations (inset 
boxes) of the two sampling sites: b) Beaver Valley (BV) watershed and c) South Tobacco 
Creek (STC) watershed..........................................................................................................150

Figure 4.2: Particle size (SSA), organic matter (SOC) and combined (SSA + SOC) correction
factors based on the 0 – 20 and 20 – 40 min runoff periods for the Beaver Valley, BC, and 
South Tobacco Creek, MB, watersheds. Values are mean ± the standard error and * denotes 
significant difference between runoff periods (p-value < 0.05).............................................157

Figure 4.3: The percent difference in As and Mn concentrations for uncorrected, particle size 
corrected (SSA), and the combined particle size and organic matter corrected (SSA + SOC) 
source soils relative to the eroded sediment for the Beaver Valley, BC, and South Tobacco 
Creek, MB watersheds. Values are mean ± the standard error and * denotes significantly 
different than 0 (p-value <0.05).............................................................................................160

viii



Figure 4.4: Summary of the model parameter estimates (mean ± 1 standard error) for the 
relation between geochemical concentration and SSA for the Beaver Valley, BC, watershed. 
Model parameters: (a) SSA; b) sample type (source soil as the reference level); and c) 
interaction between SSA and sample type (source soil as the reference level). * low analytical
resolution ** data transformation needed to meet model assumptions.................................164

Figure 4.5: Summary of the model parameter estimates (mean ± 1 standard error) for the 
relation between geochemical concentration and SSA for the Beaver Valley, BC, watershed. 
Model parameters: (a) SSA; b) sample type (source soil as the reference level); and c) 
interaction between SSA and sample type (source soil as the reference level). * low analytical
resolution ** data transformation needed to meet model assumptions.................................165

Figure 4.6: The relations between As concentration and SSA and SOC in the source soils and 
eroded sediment for the Beaver Valley, BC, and South Tobacco Creek, MB, watersheds. See 
Table 4.2 for additional details...............................................................................................168

Figure 4.7: The relations between Mn concentration and SSA and SOC in the source soils and
eroded sediment for the Beaver Valley, BC, and South Tobacco Creek, MB, watersheds. See 
Table 4.2 for additional details...............................................................................................169

Figure 5.1: Map of southern Manitoba, showing the locations of the two study sites..........188

Figure 5.2: Soil profiles in site 1 showing: a) total 137Cs inventory; b) elevation profile and 
landscape position; c) percentage clay + silt; d) median particle size (d50; μm) within the < 
63 μm fraction; and e) soil organic carbon concentration (%) within the < 63 μm fraction..194

Figure 5.3: Soil profiles in site 2 showing: a) total 137Cs inventory; b) elevation profile and 
landscape position; c) percentage clay + silt; d) median particle size (d50; μm) within the < 
63 μm fraction; and e) soil organic carbon concentration (%) within the < 63 μm fraction..195

Figure 5.4: Examples of the geochemical concentrations in different landscape positions and 
with depth for site 1. Concentration have been normalized between 0 and 1 so direct 
comparisons can be made between elements.........................................................................197

Figure 5.5: Principal components analysis (PCA) score and loading plots of the first two 
principal components (PC1 and PC2) for site 1 depicting the differences in geochemical 
composition between: a) landscape positions; and b) surface and subsurface samples.........201

Figure 6.1: Recirculating flume schematic showing the setup of the flume and sampling 
locations for suspended sediment and gravel-stored sediment (not drawn to scale).............224

Figure 6.2: The change in: (a) suspended sediment concentration (corrected for dilution); (b) 
specific surface area (calculated using E-SSA); and (c) organic matter content of suspended 
sediment, with time (distance travelled) over three channel bed conditions. Dilution factors of
1, 1.07 and 1.53 were determined for the 0, 5, and 40 cm gravel beds, respectively.............231

ix



Figure 6.3: Properties of the gravel-stored fine-grained sediment along the length of the 
flume for the 5 and 40 cm gravel bed treatments. Sediment properties measured include: (a) 
total stored mass; (b) specific surface area (calculated using E-SSA); and (c) organic matter 
composition. See Fig. 6.1 for sampling locations..................................................................233

Figure 6.4: The relation between specific surface area (calculated using E-SSA) and organic 
matter content for the suspended sediment over three channel bed conditions.....................236

Figure 6.5: Three examples of the different relations between geochemical concentration and 
specific surface area (calculated using A-SSA), including the hypothetical size corrected 
concentration. Arsenic, positive relation (p < 0.1); Cadmium, nonlinear relation; and 
Lanthanum, negative relation (p < 0.1)..................................................................................238

Figure 6.6: Conceptual diagram showing the influence of gravel beds on the deposition, 
storage and resuspension of fine-grained sediment. The gravel bed increases bed roughness 
slowing the velocity near the channel bed which promotes deposition. Increasing the depth of
the gravel bed modifies the intra-gravel flow resulting in greater storage and limiting the 
resuspension of sediment.......................................................................................................245

Figure 7.1: (a) Stream network extracted from the 5-m LIDAR DEM of the South Tobacco 
Creek watershed (Manitoba, Canada) using the FlowMapR program (Li 2011). Also shown 
are the locations of sediment sampling sites and their associated drainage areas (ha). (b) 
Longitudinal profile showing the elevation and sediment sampling sites along the stream and 
the Manitoba Escarpment.......................................................................................................260

Figure 7.2: Daily discharge measurements for 2009 – 2011 at two locations in the South 
Tobacco Creek watershed (data from Environment Canada 2012).......................................262

Figure 7.3: Geochemical and radionuclide fingerprints for the three potential sediment source
types and for the suspended sediment collected from the six sampling sites along the South 
Tobacco Creek (error bars represent ±1 standard deviation).................................................273

Figure 7.4: Geochemical and radionuclide fingerprints for the three potential sediment source
types and for the bed sediment collected from the six sampling sites along the South Tobacco 
Creek (error bars represent ±1 standard deviation)................................................................274

Figure 7.5: Box and whisker plots of values of sediment proportions of the three potential 
sediment source types for the suspended sediment collected from the six sampling sites along
the South Tobacco Creek.......................................................................................................279

Figure 7.6: Box and whisker plots of values of sediment proportions of the three potential 
sediment source types for the bed sediment collected from the six sampling sites along the 
South Tobacco Creek.............................................................................................................279

x



Figure 8.1: A conceptual model of the sediment source fingerprinting approach (a) 
(reproduced from Davis and Fox 2009), an approach for processing geochemical fingerprint 
data for sediment source apportionment (b) (reproduced from Collins et al. 2013) and the 
processes and controlling factors which are incorporated into the sediment fingerprinting 
approach (c) (adapted from Weltje and von Eynatten 2004).................................................291

xi



List of Tables

Table 2.1: Applications of the sediment fingerprinting technique...........................................30

Table 2.2: The particle size correction factor, ν, for the soil properties included in the 
sediment source models for three river basins in the UK (from Russell et al. 2001, reproduced
with permission from Elsevier)................................................................................................49

Table 2.3: Factors affecting sediment property conservativeness............................................72

Table 2.4: Common approaches in dealing with issues of the conservative behaviour of 
sediment properties..................................................................................................................75

Table 3.1: Summary of soil surface (0 – 2 cm) characteristics for both the Beaver Valley and 
South Tobacco Creek watersheds...........................................................................................106

Table 3.2: Results of linear mixed effects models looking at the correlation between soil 
surface properties and: (A) soil loss; (B) enrichment ratio (ER) of fine-grained sediment; and 
(C) enrichment ratio (ER) of soil organic carbon (SOC). Runoff period contrasts compares 0 
– 20 min to 20 – 40 min.........................................................................................................114

Table 3.3: Results of linear mixed effects models looking at the the correlation in soil organic
carbon with soil aggregation (A), and soil organic carbon with the amount of clay and silt 
(B). Sample type contrasts compares Source vs 0 – 20 min (1) and 20 – 40 vs 0 – 20 min (2).
................................................................................................................................................124

Table 4.1: Summary of the uncorrected, particle size (SSA) corrected and combined particle 
size and organic matter (SSA + SOC) corrected geochemical concentrations that are 
significantly higher or lower (p-value < 0.05) relative to the runoff generated sediment for 44 
different geochemical elements. Overall summary statistics across all elements showing the 
% difference relative to the generated sediment....................................................................158

Table 4.2: Results of linear mixed effects models assessing the the correlation in the 
concentrations of Mn and As with SSA and SOC in the Beaver Valley and South Tobacco 
Creek watersheds...................................................................................................................170

Table 5.1: Pearsons correlation coefficients, for different sample groupings, between 
elemental concentrations soil organic carbon (SOC), median particle size (d50) and depth at 
site 1. Bold indicates significant correlation (p-value < 0.05)...............................................199

Table 6.1: Results of linear models looking at the correlation in concentration (a), specific 
surface area (b) and organic matter content (c) of suspended sediment with hour (distance 
travelled), channel bed and particle type. Channel bed contrasts compares 0 cm to 5 cm 
gravel (1) and 40 cm to 5 cm gravel (2).................................................................................232

Table 6.2: Results of piecewise regression looking at the correlation in organic matter content
for small SSA (a) and large SSA (b) with specific surface area, channel bed and particle type 
for suspended sediment. Channel bed contrasts compares 0 cm to 5 cm gravel (1) and 40 cm 
to 5 cm gravel (2)...................................................................................................................237

xii



Table 7.1: Summary of the hydrological characteristics of the South Tobacco Creek 
watershed (from Li 2011).......................................................................................................263

Table 7.2: Summary of suspended and bed sediment sampling.............................................266

Table 7.3: Mean values for sediment fingerprint properties and sediment source 
discrimination procedure........................................................................................................272

Table 8.1: Areas of concern with respect to the robustness and reliability of the sediment 
fingerprinting approach and protocol recommendations that can begin to address these 
concerns.................................................................................................................................299

xiii



Foreword

This dissertation was completed and supported as part of a larger Natural Science and 

Engineering Research Council (NSERC) strategic project – development of fingerprinting 

techniques for sources of sediment and associated phosphorus within agricultural watersheds 

of Canada – to David A. Lobb, Philip N. Owens and Ellen L. Petticrew. The overall goals of 

the larger strategic project were to: 1) enhance environmental fingerprinting techniques for 

use in agricultural watersheds in Canada and elsewhere in the world; and 2) enhance the 

understanding of the sources of sediments and phosphorus, and use this understanding to 

improve conceptual and predictive models for improved management of watershed resources.

The author of this dissertation gratefully acknowledges the financial support of the 

NSERC of Canada through the Alexander Graham Bell Canada Graduate Scholarship 

Program, the University of Northern British Columbia and the Dr. Karl C. Ivarson 

Scholarship for students in soil science.

xiv







Acknowledgements

I want to acknowledge Phil Owens and Ellen Petticrew for being great supervisors 

and mentors to me throughout the course of this project. It has been a very positive and 

rewarding experience for me. I would also like to thank my advisory committee: David Lobb 

for his expertise in soil erosion, 137Cs and watershed science; Kerry Reimer for his expertise 

in environmental and analytical chemistry; and Dan Ryan for his expertise in experimental 

design and statistics. Everyone involved has been extremely supportive of both my PhD 

program and professional development endeavours and I am very grateful for this. 

I would like to extend my thanks to the staff and students of the UNBC Landscape 

Ecology Research Group, UNBC Quesnel River Research Centre, UNBC Northern 

Analytical Services, and the the University of Manitoba Watershed System Research 

Program for technical and field support as well as friendship.

A very special thanks to Steffi, without you this dissertation would not have been 

possible. You have been exceptionally supportive in all aspects of my life - meow.

xvii



 1 Introduction

It has been argued that the fictional character Sherlock Holmes, created by Arthur 

Conan Doyle, is one of the world’s first forensic geoscientists (e.g., Ruffell and McKinley 

2005; Dawson and Hillier 2010). For example, the story titled “The five orange pips” written 

by Conan Doyle and first published in 1891 tells of how Sherlock Holmes deduced the origin

of his client, John Openshaw, when John came to 221B Baker Street to seek his help. 

“You have come up from the south-west, I see.” [Sherlock Holmes]
“Yes, from Horsham.” [John Openshaw]
“That clay and chalk mixture which I see upon your toe caps is quite 
distinctive.” [Sherlock Holmes]

-- AC Doyle, The Adventures of Sherlock Holmes, Project Gutenberg, Champaign, Ill.

In this case, Sherlock Holmes was able to identify the source of the soil/sediment particles on

John Openshaw's shoe based on the unique physical characteristics of that material. While 

forensic geoscience was used to solve mysteries within the stories of Sherlock Holmes, 

similar principles can be used to identify watershed sediment sources which help improve 

both soil and water quality management.

 1.1 Non-point source pollution in agricultural watersheds

According to 2009 polls, a majority of Canadians believe that fresh water is Canada’s 

most important natural resource and that water pollution is the greatest threat to the nation's 

fresh water resources (Ipsos 2009; Nanos 2009). Agriculture has been identified as one of the

major threats to water quality in Canada as a result of high sediment and nutrient loads in 

runoff as well as other agricultural products including pesticides, herbicides, bacteria and 

antibiotics (Vörösmarty et al. 2010). Agriculture in Canada covers approximately 7% (6.8 
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million ha) of the total land area, and within the last 50 years, the number of farms in Canada 

has decreased while the average size and productivity of farms has increased (Environment 

Canada 2001). This intensification has been achieved through advances in crop and animal 

genetics, chemical inputs, technological improvements and innovative farming practices 

(Burkart 2007). These trends can have unintended consequences including a high risk of 

erosion and a nutrient surplus in soils which then have high potential to be lost through runoff

and sediment transport, which in turn can compromise environmental and human health 

(Berka et al. 2001).

 Excessive nutrient loading, mainly nitrogen and phosphorus, in surface waters can 

lead to eutrophication (i.e., excessive plant and algal growth in an aquatic ecosystem) which 

has a wide range of effects including hypoxia, fish kill, algal blooms, toxicity, increases in 

turbidity and changes in the quantity and composition of aquatic plants and animals (Heisler 

et al. 2008; Conley et al. 2009; Nixon 2009). Nutrients are lost from agricultural land in 

either the dissolved or the particulate form and the dominant form of the nutrient is primarily 

controlled by the interactions between physical and biogeochemical properties of the nutrient

and the soil. For example, the majority of the total phosphorus loss from land is in the 

particulate form because of the high affinity of the element towards soil particles due to 

reactions with clay and Fe-, Al- and Mn-oxides (Correll 1998; Owens 2008; Withers and 

Jarvie 2008). Due to these properties much of the phosphorus is lost through erosional 

processes whereas, in contrast, the majority of nitrogen is lost in the dissolved form as 

soluble organic nitrogen or nitrate as these compounds are not readily adsorbed by soil 

particles and are easily lost through leaching and surface runoff water (Correll 1998; Owens 

2008). 
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While nutrients and other contaminants that move in association with sediment can 

result in water quality problems the physical presence of sediment itself can also impact 

aquatic ecosystems. Increasing the suspended sediment concentration results in greater 

turbidity which reduces the amount of energy available for photosynthesis and plant material 

is an important food source for many aquatic species. It has also been demonstrated that an 

increase in turbidity will interfere with the foraging success of visual predators. Both of these

processes can result in a change the abundance and composition of aquatic plants and 

animals (Waters 1995). In addition, the deposition of fine-grained sediment on to a gravel 

channel bed can damage important aquatic habitat. For example, the siltation of gravel 

channel beds reduces the survival of salmonids eggs and alevins by creating a physical 

barrier that can prevent emergence and lower the dissolved oxygen within the redd (Chapman

1988). Furthermore, continued accelerated sediment deposition in reservoirs and harbours 

will result in a reduction in both capacity and overall lifespan as well as impact navigation 

(Vörösmarty et al 2003).

Agricultural research over the past century has produced an enormous amount of 

information on both sediment and nutrient dynamics within agricultural watersheds. In 

addition, researchers have developed and evaluated numerous soil erosion and nutrient 

management practices to reduce soil erosion and improve nutrient efficiency in an effort to 

reduce the negative environmental impacts while maintaining production. One tool that can 

be utilized is a nutrient management plan which is concerned with balancing nutrient inputs 

(i.e., fertilizer application) with nutrient outputs (i.e., crop removal though harvesting). 

Within this approach considerations are given to the type, rate, timing and application method

of nutrients and the crop requirements. This type of approach aims to prevent the 
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accumulation of nutrients within the soil profile and reduces the amount of nutrient available 

to be lost to the aquatic environment (Beegle et al. 2000; Sharpley et al. 2004). Another 

approach aims to reduce the transport of sediment and nutrients off the land into the aquatic 

environment. This is achieved by employing practices that limit erosion and surface water 

flow or intercept and immobilize sediment and nutrients. Some of the more common 

practices include retaining or installing riparian zones (also known as buffers or vegetative 

filter strips), cover crops and conservation tillage (Sharpley et al. 2004; Kleinman et al. 2005;

Zhang et al. 2010).

Issues of excessive sediment and nutrient pollution in agricultural watersheds often 

arise from diffuse, or non-point, sources. The problems of sediment and nutrient pollution are

best managed at the watershed scale because the watershed is the morphological unit which 

controls water, sediment, chemical and energy fluxes and because management decisions 

need to be made within this context (Owens 2008). However, watersheds can have a large 

land area and encompass many different land uses and stakeholders, Furthermore, the 

processes and pathways in which sediment and nutrients are delivered to the aquatic 

environment are different and the controlling factors are both temporally and spatially 

variable. With no clearly defined entry points, high spatial and temporal variability, large land

base and multiple stakeholders, this type of pollution is difficult to allocate, manage and 

mitigate (Owens et al. 2005; Smith et al. 2011).

 1.2 Identifying sources of sediment

 Identifying the sources of sediment within a watershed is useful for both watershed 

management (e.g., sediment pollution abatement) and for understanding Earth surface 
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processes (e.g., landscape evolution). The identification of the dominant sources of sediment 

is an important requirement in the design of effective sediment management plans as it 

allows for the most effective use of financial and human resources by targeting the most 

problematic sediment sources (Walling 2005). Walling (2005) contrasts watershed-scale 

sediment source identification with soil conservation programs whereby the former is 

concerned with down-stream sediment issues and needs to consider a greater number of 

potential sources (e.g., streambanks, channel incision, in-field), while the latter only seeks to 

reduce on-site (i.e., within a field) soil erosion. As a result, soil conservation programs may 

not dramatically reduce the sediment yield of a watershed if soil surface erosion is not the 

dominant source of sediment and other management actions may need to be taken (e.g., 

streambank stabilization) to reduce the sediment yield. Sediment source identification is also 

an important component part of the study of Earth surface processes and dynamics. Sediment

source identification has been used to help build and constrain sediment budgets (e.g., 

Minella et al. 2014), assess the geomorphic connectivity of a watershed (e.g., Wethered et al. 

2015), interpret and model sediment yield data (e.g., Fox and Martin 2015) and understand 

the interactions between geomorphology and land use activities (e.g., Belmont et al. 2011).

There are several approaches to identifying and assessing the sources of sediment and

quantifying the relative contributions of each source to the total sediment load. A review by 

Collins and Walling (2004) identified two broad categories of methods that can be used to 

identify the sources of sediment within a watershed. The first category is the indirect 

approach whereby soil erosion and sediment mobilization are measured or evaluated in situ 

and the relative contributions of each sediment source are then inferred. The indirect 

approach uses techniques including: mapping, surveying (e.g., erosion pins, GPS, cross-
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profiling), photogrammetry, erosion plots, suspended sediment flux monitoring, remote 

sensing and soil erosion tracers. The second category is the direct approach where there is an 

attempt to directly link sediment sources to in-stream sediment. The techniques used in the 

direct approach include: erosion vulnerability indices, sedigraphs and hysteretic loops and 

sediment fingerprinting. Furthermore, Walling (2005) described three main limitations of the 

techniques used with the indirect approach to assessing the sources of sediment: 1) they often

require a priori assumptions as to the likely sources of sediment, which in some cases may 

not be clear; 2) difficulty scaling up plot-scale estimates of erosion to watershed-scale 

estimates due to high spatial and temporal variability; and 3) these techniques provide 

information only on the mobilization of sediment and lack information concerning sediment 

delivery and fluvial transport. It is because of these limitations that a direct approach to 

identifying and assessing the sources of sediment is typically preferable. Sediment source 

fingerprinting shows promise as an effective tool for gathering information on the sources of 

sediment and sediment-associated nutrients and contaminants within a watershed (Walling et 

al. 2008; Davis and Fox 2009; Owens et al. 2016). 

 1.3 Sediment fingerprinting

The sediment fingerprinting approach refers to working in an upstream direction in an

inferential manner to determine the relative contributions from different sources of sediment 

to collected downstream sediment. The approach is based on the idea that one or more of the 

natural physical or biogeochemical properties of the sediment will reflect the source from 

where it originated and can be used to trace it back to its source(s). Walling (2013) reviewed 

and documented the history and evolution of the sediment fingerprinting approach. The 
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development of sediment fingerprinting began in the mid 1970's and its use and continued 

refinement has since grown exponentially due to both an increasing need for information on 

sediment sources (see Section 1.2) and technological advances (e.g., characterization of new 

sediment fingerprint properties) (Walling 2013). Early sediment fingerprinting studies were 

often qualitative in nature, used ≤ 2 fingerprints and were able to discriminate between two 

source types (e.g., surface and subsurface sources). Developments in analytical techniques 

have expanded the range of fingerprint properties (e.g., compound-specific stable isotopes; 

Reiffarth et al. 2016), which subsequently has also expanded the number and types of 

potential sediment sources that can be successfully discriminated among (e.g., forest, pasture 

and cultivated land; Hancock and Revill 2013). Furthermore, there have been developments 

in the statistical methods and models used to both select fingerprints (Section 1.3.3) and 

estimate the relative contributions of each sediment source (i.e., mixing models; Section 

1.3.4).

Overall, the sediment fingerprinting approach consists of four main steps: 1) 

identification and characterization of potential sediment sources; 2) characterization of 

collected sediment; 3) selection of sediment fingerprints; and 4) estimating the relative 

contributions from each source using a statistical mixing model. These four steps are 

described in detail below.

 1.3.1 Identification and characterization of potential sources

Identifying the potential sources of sediment within a watershed is the first step in the 

sediment fingerprinting approach and can include either, or both, spatial- (e.g., agriculture 

and forest land use) or process-based (e.g., rill and gully erosion) source types. There are 
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many possible sources of information that can be used to help in the process of identifying 

the potential sources of sediment within a watershed including: land use, geology, soil and 

topographic maps, air photos and satellite imagery, previous research as well as visual field 

observations. The types of potential sources that are identified are typically driven by 

research or management goals and by using different groupings of sediment sources (i.e., 

based on land use and geology) the information provided can be used to understand the 

interactions between multiple factors. After potential sources of sediment within a watershed 

are identified, a sampling campaign is designed to collect samples that are representative of 

the potential sediment sources. However, the importance of the sampling campaign including

the number of samples collected, sampling methods, and the sampling design used to 

characterize sources cannot be understated as it has been shown to influence the final 

sediment apportionment results (e.g., Du and Walling In press). In some studies, the 

classification of potential sediment sources is an iterative process whereby two or more 

potential sediment sources, previously identified, are grouped together as the fingerprints 

provide poor discrimination between them (i.e., fingerprint properties are similar between the

potential sediment sources) (e.g., Barthod et al. 2015).

Sample preparation prior to measuring fingerprints is also a major consideration 

within the sediment fingerprinting approach and the most common method is drying 

followed by sieving (e.g., < 63 μm) to remove coarse-grained particles from analysis. This is 

done in an effort to limit differences in particle size and organic matter between the source 

and sediment (see Section 3.1 for additional information). However, different grain-size 

fractions have unique temporal and spatial patterns of erosion and transport (e.g., Haddadchi 

et al. 2015) and it is important that the grain-size fraction selected is both representative of 
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sediment being transported through the watershed and relevant to the research question being

asked. 

There is a wide range of soil and sediment properties that have been used as 

fingerprints including: geochemical, biochemical, radiochemical, isotopic, morphometric, 

optical and magnetic properties (for a review of fingerprint properties, see Foster and Lees 

2000). In many cases, the soil and sediment properties that are measured are a function of 

budget, timeline, equipment, expertise or prior knowledge of the potential sources, or a 

combination of these factors. 

 1.3.2 Characterization of sediment

Many different types of sediment have been used in sediment fingerprinting projects 

including: suspended, channel bed, floodplain, lake or reservoir sediments (for more detail 

regarding the different sediment types, see Haddadchi et al. 2013). Suspended and bed 

sediments from river channels are the most common type of sediment used as this type of 

sediment has the greatest environmental impact and often reflects contemporary watershed 

processes. Sediment deposited on floodplains and lake beds are often used to reconstruct a 

historical record of the changes in the sources of sediment (for a review on fingerprinting 

historical sediment fluxes, see D’Haen et al. 2012). Sediment is typically collected at the 

watershed outlet and conclusions are made based on the results from these samples at this 

location, which are then extended to the entire watershed. The sample preparation and 

fingerprint characterization methods should be consistent with those of the potential sediment

sources to ensure the two data sets can be directly compared.
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 1.3.3 Fingerprint selection process

The discrimination of sediment sources is based on identifying a fingerprint, or a suite

of fingerprints, that can differentiate between the different potential sources of sediment. The 

fingerprinting approach typically uses a sequence of statistical tests to narrow down a large 

set of fingerprints to select a subset that can best discriminate between the different potential 

sediment sources (e.g., Collins and Walling 2002). In this process, fingerprints that provide 

little discrimination between potential sources or that are redundant are removed. Similar to 

the issue of sampling approaches, there is no standardized protocol to identify the optimum 

fingerprints. Typically, the first part of the fingerprint selection process is to eliminate 

fingerprints where the concentration in one or more samples is below the level of detection. 

Second, fingerprints where the concentration in collected sediment is outside the range of the 

sources are also commonly removed as it is assumed that these fingerprints do not behave in 

a conservative manner.

The first statistical step is to use a parametric or non-parametric analysis of variance 

to remove any fingerprints that have no discriminatory ability. Subsequently, discriminant 

function analysis, principle component analysis or canonical correlation analysis are used to 

further reduce the number of fingerprints. Ideally, the fingerprints should provide a clear 

distinction between the sources of sediment identified. However, recent research by Palazón 

et al. (2015) demonstrated that different fingerprint selection methods yielded different 

subsets of fingerprint properties that were able to successfully discriminate between different 

potential sources of sediment and that the method of fingerprint selection ultimately 

influenced the sediment apportionment results. Furthermore, if the fingerprints are unable to 
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provide good discrimination between potential sources then the sources may need to be 

grouped together (Section 1.3.1).

 1.3.4 Mixing models

Mixing models (also known as unmixing or source apportionment models) are tools 

that quantitatively link sources and sediment in terms of the proportion derived from each 

potential source; at their core, mixing models are a mass balance equation (i.e., source 

contributions must equal unity). Currently there are two main groups of mixing models, 

frequentist-based (i.e., multivariate) (e.g., Collins et al. 1997) and Bayesian-based methods 

(e.g., Parnell et al. 2010), and there is little consensus as to which type of mixing models are 

most appropriate for sediment fingerprinting. Furthermore, recent research comparing 

different mixing models has demonstrated that the apportionment results are sensitive to 

model selection (e.g., Haddadchi et al. 2014). Some of the main assumptions of mixing 

models, adapted from Ward (2012), are: 1) all sediment samples come from the same set of 

sediment sources; 2) all sediment sources are equally available in terms of amounts of 

sediment being delivered to the stream; 3) no potential sources of sediment are missing; and 

4) sediment sources are fully characterized in terms of their sediment fingerprints. Some 

models will have other assumptions and caveats (e.g., normality of data) and it is important 

to ensure that all of the assumptions are reasonably met, or to have an understanding of how 

it will affect the outcome. 

It is also assumed that the properties of the sediment do not change (i.e., behave in a 

conservative manner) as it moves through the watershed from source to sink and a direct link 

between source and sediment can be made. However, this is rarely the case and these changes
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in sediment properties need to be accounted for. The two main processes that result in the 

non-conservative behaviour of fingerprint properties are particle selectivity and 

biogeochemical transformations and are discussed below.

 1.4 From source to sink

 1.4.1 Physical transformations: particle selectivity

Particle selectivity as a result of erosional, delivery and fluvial processes is one of the 

main factors influencing the non-conservative behaviour of sediment properties and is the 

primary focus of this dissertation. The selectivity of these processes often results in the in-

stream sediment becoming enriched in both fine-grained and organic-rich particles as 

compared to the source material as the smaller and less dense particles are preferential eroded

and transported through the watershed (Walling 1983). Both the particle size distribution and 

the organic matter content of soils and sediments have been demonstrated to strongly 

influence the concentration of many fingerprints. For example, it has been demonstrated that 

the concentration of many trace metals within sediment is positively correlated to both 

particle size and organic matter content (Horowitz 1991).

Issues of differences in grain size between source and sediment are often minimized 

by limiting the analysis to the <63 μm grain-size fraction, as it is assumed that this fraction 

comprises the bulk of suspended sediment (Walling et al. 2000) and is less susceptible to 

particle selective processes. Furthermore, an allowance is still typically made for any 

additional particle size differences between sources and sediment (i.e., of the <63 μm grain-

size fraction) using a particle size correction factor and sometimes an organic matter 

enrichment factor (e.g., Collins et al. 1997; Walling et al. 1999; Owens et al. 2000). The most
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commonly used correction factors are based on the ratio of specific surface area (SSA) or 

organic carbon content of the sediment to the SSA or organic carbon content of each source. 

This value is then multiplied by the fingerprint concentration for each source (Collins et al. 

1997). However, such approaches are controversial (e.g., Russell et al. 2001), thus some 

researchers do not always use correction factors (e.g., Martínez-Carreras et al. 2010; Koiter et

al. 2013). For example, Russell et al. (2001) demonstrated that the relation between 

concentration and SSA was not uniform across different trace elements or watersheds. 

Furthermore, there is also evidence that the relative contribution of organic matter to the 

geochemical fingerprint varies between elements (e.g., Bakircioglu et al. 2010). 

Despite this, few studies have taken these problems into account and a single 

correction factor is commonly used for all fingerprints. The use of a single particle size 

correction factor for all parameters will likely to result in incorrect adjustment of some 

fingerprint values, which in turn will influence the results obtained from mixing models. The 

question remains as to whether correction factors are needed to compensate for other 

properties such as Fe- and Mn-oxides or carbonates, as these have also been shown to 

influence the concentrations of many trace elements (Horowitz 1991); clearly further work is 

needed to asses this. Furthermore, abrasion and disaggregation of soil particles can also result

in a downstream change in particle size and further complicate the issue of particle size (e.g., 

Dyer and Olley 1999).

 1.4.2 Biogeochemical transformations

The other major group of processes that can prevent drawing a direct link between 

source and sediment are biogeochemical processes. These include: ion exchange, 
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adsorption/desorption, complexation, dissolution/precipitation and biologically mediated 

reactions. For example, Parsons and Foster (2011) discuss the many limitations of using 137Cs

as a result of biogeochemical transformations that can occur within soils and sediment. 

Changes in downstream environmental conditions (e.g., pH, redox potential) are likely to be 

a concern for transformation of sediment properties and the distortion of the fingerprint 

signal. Within many sediment fingerprinting studies these types of issues are often 

overlooked. In some cases, the behaviour of a fingerprint under changing environmental 

conditions have been assessed experimentally (e.g., Poulenard et al. 2012), but the more 

common approach is to eliminate fingerprints which behave in a non-conservative manner 

based on previous studies (e.g., Smith and Blake 2014).

 1.4.3 Radionuclide transformations

There is a long history of using cosmogenic (e.g., 7Be), anthropogenic (e.g., 137Cs) and

natural occurring (e.g., 210Pb) fallout radionuclides (FRN) as fingerprints to measure rates of 

soil erosion and to assess the sources of sediment within watersheds (Mabit et al. 2008; 

Guzmán et al. 2013). Many FRN's have a strong affinity to fine-grained particles and organic 

matter and as a result tend to accumulate near the soil surface and, therefore, provide good 

indicators of soil redistribution and discrimination between surface and subsurface sediment 

sources (Evrard et al. 2015). Radionuclides, by their very nature, are a non-conservative 

fingerprint property due to the loss of unstable isotopes through radioactive decay. However, 

the characteristics of the decay process (i.e., half-life) are well understood and quantified 

which allow for their use within sediment fingerprinting studies. For example, if source and 

sediment samples are collected and the activity of these samples are determined over several 
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years all of the samples can be back-corrected to the same date ensuring any observed 

differences in activity are not related to the sample collection times (e.g., Li et al. 2008). 

Furthermore, the differences in half-life between different isotopes (e.g., 210Pb; half-life of 

22.2 years and 10Be; half-life of 1.3 million years) can be exploited to differentiate between 

contemporary and legacy sediment sources (e.g., Belmont et al. 2011).

 1.5 Dissertation goals and objectives

The primary goal of this dissertation was the continued development and refinement 

of the sediment fingerprinting approach. This was accomplished through: i) a review of the 

literature; ii) a series of small-scale experiments; and iii) a watershed-scale application of the 

sediment fingerprinting approach. The dissertation focuses primarily on the particle 

selectivity process, and to a lesser extent the biogeochemical process, and its subsequent 

influences on the behaviour of sediment fingerprints as sediment moves through a watershed.

The overall objectives of this dissertation were to: 

1) assess the particle size and organic matter selectivity of soil erosion, sediment 

delivery and fluvial transport processes;

2) explore the influence of particle size and organic matter selectivity on geochemical 

fingerprint properties;

3) evaluate commonly used approaches to account for particle selectivity;

4) investigate the role of scale and geomorphic connectivity on the sediment 

fingerprinting approach; and

5) provide recommendations to improve the reliability and robustness of the sediment 

fingerprinting approach.
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One of the main purposes of this dissertation is to build a set of guiding principles that can be

used for the successful implementation of sediment fingerprinting studies. 

The dissertation begins with a review of the literature (Chapter 2) which the stage for 

the remaining chapters as it discusses the relevant literature with respect to the behaviour of 

soil and sediment properties at a range of scales, from individual soil and sediment particles 

through to the watershed scale. The landscape unit, represented by a sequence of hillslope, 

riparian and fluvial environments provides an appropriate scale at which to investigate the 

processes that mobilize, transport and deposit sediment in watersheds and is the logic behind 

Chapters 3 – 6. Specifically, in Chapters 3 and 4, the particle selectivity of hillslope processes

was assessed using a rainfall simulator to mobilize sediment. Chapter 3 investigated the role 

of soil surface properties on the particle selectivity process, and Chapter 4 assessed 

commonly used correction factors and examined the effects of both particle size and soil 

organic matter on the concentration of a broad suite of geochemical elements. In Chapter 5, 

the role of the riparian zone was investigated by examining a series of soil profiles along 

transects that extended from the upper landscape position into the riparian zone. This 

approach allowed for the patterns of erosion and deposition to be assessed, which provided 

context for investigating the changes in particle size and organic matter content along the 

transect. The geochemical composition of the soil was also evaluated both along the transect 

and with depth. In Chapter 6, the influence of fluvial transport on the particle selectivity (size

and organic matter content) was assessed using a large recirculating flume under contrasting 

channel bed conditions. Chapter 7 discusses the role of scale and connectivity in a watershed-

scale application of the sediment fingerprinting approach. Finally, Chapter 8 presents an 

overall synthesis and conclusions of this thesis, and provides protocols for improved 
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sediment source fingerprinting.
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 2 The behavioural characteristics of sediment properties and 

their implications for sediment fingerprinting as an approach for 

identifying sediment sources in river basins

 2.1 Abstract

Sediment fingerprinting is a technique that is increasingly being used to improve the 

understanding of sediment dynamics within river basins. At present, one of the main 

limitations of the technique is the ability to link sediment back to their sources due to the 

non-conservative nature of many of the sediment properties. The processes that occur 

between the sediment source locations and the point of collection downstream are not well 

understood or quantified and currently represent a black-box in the sediment fingerprinting 

approach. The literature on sediment fingerprinting tends to assume that there is a direct 

connection between sources and sinks,while much of the broader environmental 

sedimentology literature identifies that numerous chemical, biological and physical 

transformations and alterations can occur as sediment moves through the landscape. The 

focus of this paper is on the processes that drive particle size and organic matter selectivity 

and biological, geochemical and physical transformations and how understanding these 

processes can be used to guide sampling protocols, fingerprint selection and data 

interpretation. The application of statistical approaches without consideration of how unique 

sediment fingerprints have developed and how robust they are within the environment is

a major limitation of many recent studies. This review summarizes the current information, 

identifies areas that need further investigation and provides recommendations for sediment 
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fingerprinting that should be considered for adoption in future studies if the full potential and 

utility of the approach are to be realized.

 2.2 Introduction

Sediment fluxes within river basins are natural processes and are part of global 

erosional, weathering and biogeochemical cycles that are important for maintaining aquatic 

ecosystem health, resiliency and function (Owens 2008). As a society, we are altering the 

landscape at an unprecedented scale for the purposes of urbanization, agriculture, resource 

extraction, industry and recreation (Foley et al. 2005). These changes within the landscape 

are affecting sediment fluxes which in turn are resulting in the degradation of both the 

terrestrial and aquatic environments (Allan 2004; Syvitski et al. 2005; Owens et al. 2010). 

Some land use practices result in unsustainable soil losses, where the rate of erosion is 

greater than the rate of soil production leading to a reduction in productivity. This is of 

particular concern within agricultural areas as there is limited new land suitable for sustained 

cultivation (Montgomery 2007).

Both the quantity and quality of sediments can have an impact on the aquatic 

environment. Increases in sediment can reduce light penetration, act as a scouring agent and 

result in the sedimentation of the river bed. Sediment also acts as a vector for nutrients and a 

variety of contaminants including pathogens, industrial chemicals and metals, and plays an 

important role in the downstream conveyance of this material. Changes in the amount and 

composition of sediment can have an impact on the ecology of the aquatic ecosystem though 

the alteration or elimination of habitat, shifts in community composition and abundance, 

changes in the food web, increased mortality and a decrease in reproductive success (Henley 
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et al. 2000; Palmer et al. 2000; Shaw and Richardson 2001; Rabení et al. 2005; Harrison et al.

2007). In addition, increases in sediment delivery to the aquatic environment can also result 

in reduced reservoir capacity, a decline in drinking water quality, impairment of navigation, 

and impact recreational activities (Vörösmarty et al. 2003; Vörösmarty et al. 2010).

The impacts of sediment and associated nutrients and contaminants on water and 

aquatic habitat quality are well documented and represent a widespread problem facing many

countries (Bilotta and Brazier 2008; Horowitz 2009). As the global population continues to 

increase, the pressures placed on our soil and water resources will also increase, and there is 

a need to design new resource management systems which can meet the growing demand for 

water, food, fibre and fuel, while safeguarding the environment. Good management of these 

resources requires a solid understanding of sediment dynamics, however, the often diffuse 

nature of sediment pollution makes obtaining reliable information as to the dominant sources 

of sediment and associated nutrients and contaminants within a river basin difficult (Smith et 

al. 2011). 

 2.3 The sediment fingerprinting approach

Sediment tracing and sediment fingerprinting are terms that are often used 

interchangeably but can have different meanings and, therefore, it is important that a clear 

distinction be made. Sediment tracing in many instances refers to direct tracing or tracking of

sediment in a downstream direction from its origins through the landscape with the 

assumption that the source of sediment is known. Specifically, the sources are identified 

using prior knowledge and the origins and behaviour of the tracers are generally well 

understood. Typically, the movement of the tracer and, by inference, the sediment is followed
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in a downslope or downstream direction. Sediment tracing studies often use artificially 

introduced tracers including foreign particles (e.g., fluorescent particles; Granger et al. 2011),

rare earth elements (e.g., lanthanides; Polyakov and Nearing 2004; Spencer et al. 2011) as 

well as fallout radionuclides (e.g., 137Cs; Ritchie and McHenry 1990; Wilson et al. 2012) to 

track the movement of sediment (for a review see Guzmán et al. 2013). In contrast, sediment 

fingerprinting generally refers to working in an upstream direction in an inferential manner to

determine the source(s) of sediment, i.e., the contribution from a given source of sediment is 

unknown. The approach is based on the idea that one or more of the natural physical or 

biogeochemical properties of the sediment will reflect its source, and therefore can be used 

diagnostically to identify the origin(s) of the sediment. There is a wide range of natural soil 

and sediment properties that can be utilized as fingerprints and are related to three 

fundamental properties; nuclear properties, molecular identity and orbital electron properties 

(for a review, see Foster and Lees (2000) and Fig. 2.1). The unique sediment properties, 

which comprise the fingerprint, are measured in both the source and sediment samples and a 

statistical un-mixing model is subsequently used to estimate the contribution of sediment 

from each potential source (for an overview of the methodology and application of sediment 

fingerprinting, see Gellis and Walling (2011)). For the purposes of this review, the focus will 

be sediment fingerprinting as opposed to sediment tracing. 
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Sediment fingerprinting is a technique that has been used to investigate sediment 

dynamics at a variety of spatial scales ranging from individual field plots (<10 m2) (e.g., 

Wilson et al. 2011) to large river basins ( >100,000 km2) (e.g., Wang et al. 2009), at temporal 

scales ranging from event-based (<24 hr) (e.g., Martínez-Carreras et al. 2010b) to geological 

sediment records (>10,000 yr) (e.g., Yang et al. 2006), in environments ranging from forested

(e.g., Smith et al. 2011) to agriculture (e.g., Russell et al. 2001) to urban (e.g., Carter et al. 

2003). It has been used to determine the provenance of sediment size classes from sand (250 

- 355 μm) (e.g., Maher et al. 2009) to very fine-grained (<10 μm) sediment (e.g., Wilkinson 

et al. 2009). A search of the Web of Knowledge citation index (April 2013), using 
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Figure 2.1: Fundamental properties of earth materials, which might be used for 
dating and tracing sediment sources. From Foster and Lees, 2000, reproduced 
with permission of John Wiley & Sons, Ltd.



(“sediment”) AND (“tracing OR fingerprinting”) as topic keywords and excluding 

inappropriate subject categories (e.g., health sciences), returned over 450 entries that 

encompassed more than 150 different journals between 1990 and 2012. The increase in the 

number of publications per year over the past 23 years (Fig. 2.2) reflects the increased 

attention that these techniques are receiving as a tool to help understand sediment dynamics. 

Furthermore, the rapid uptake of the technique also reflects increasing concerns over water 

quality and its potential as a tool for river basin managers for improved decision-making in 

light of increasing policy and legislation (Owens and Xu 2011). The large number and 

diversity of journal titles demonstrates that the technique is multidisciplinary, covering 

subject areas including geology, geomorphology, environmental science, soil science, 

oceanography, agriculture and forestry, and it is being used to answer a wide range of 

research questions. Table 2.1 summarizes some of the main applications of the sediment 

fingerprinting technique.

28



29

Figure 2.2: Number of publications per year between
1990 and 2013 based on a search of the Web of 
Knowledge citation index, using (“sediment”) and 
(“tracing” or “fingerprinting”) as topic keywords 
(April 2013).



At present, one of the main limitations of the sediment fingerprinting approach is the 

ability to quantitatively link sediments back to their sources in a robust and reliable means 

due to the non-conservative behaviour of the properties of transported sediment (Davis and 

Fox 2009). Ideally, the composition of the sediment, including geochemical (e.g., trace metal 

content), biological (e.g., organic matter content) and physical (e.g., texture) properties, 

would not change (i.e., remain conservative) as the sediment moves through the landscape 

such that direct comparison between sources and sediment can be made. However, this is 

rarely the case and the changes in sediment properties that occur as the sediment moves 

through the landscape need to be taken into consideration. Davis and Fox (2009) have 

suggested that accounting for the fate of sediment and fingerprint properties is the least 

understood part of the sediment fingerprinting approach and that future research should be 

directed at addressing these issues as it is critical to the advancement of the technique. The 

processes that link the sources of sediments (e.g., cropland, channel banks) to the collected 

sediments (e.g., suspended sediment, channel bed sediment) are often ignored and currently 

represent a black-box in the sediment fingerprinting approach (Fig. 2.3). 
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Table 2.1: Applications of the sediment fingerprinting technique.

Application Example

Climate change Gingele and De Deckker, 2004
Contaminant dynamics Bird et al., 2010
Criminal forensics Dawson and Hillier,2010 
Environmental forensics Saber et al., 2006
Evaluation of management practices Collins et al., 2010a
Decision making support Evans et al., 2006
Nutrient dynamics Walling et al., 2008
Sediment budgets Walling et al., 2002
Contemporary sediment fluxes Smith et al., 2011
Sourcing organic matter McConnachie and Petticrew, 2006 
Historical reconstruction Dearing et al., 2001



The black-box approach is viewed in terms of its inputs (sediment sources) and 

outputs (collected sediments) with very little knowledge of how processes (e.g., erosion and 

transport processes) within the black-box might change the properties of the sediment during 

transport within the system (Fig. 2.3). The literature on sediment fingerprinting tends to 

assume that there is a direct connection between sediment sources and sediment samples 

collected downstream, while much of the broader environmental sedimentology literature 

identifies that there are numerous chemical, biological and physical processes that can alter 

sediment properties as it moves through the landscape, which can have serious implications 

as the sediment may no longer be representative of its source. Understanding and modelling 

the processes that link the sources to the sediments in terms of the non-conservative 
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Figure 2.3: Existing blackbox approach to the 
sediment fingerprinting approach, whereby there is 
the underlying assumption of a direct link between 
hill slope and downstream sediment in terms of 
property conservativeness. Processes within the box 
and their influence on sediment properties are not 
accounted for in this approach.



behaviour of sediment properties is, therefore, an important aspect of improving the 

robustness and the utility of the sediment fingerprinting approach.

In an effort to better understand the role of sediment fingerprinting for addressing the 

impacts of anthropogenic activities on sediment dynamics and associated implications for 

water quality, this review will focus on fine-grained (<63 μm) contemporary (<100 yr) 

sediment fluxes. For reviews on tracers of coarse sediment see Sear et al. (2000) and tracers 

of longer-time scale sediment fluxes see D'Haen et al. (2012). The objectives of this review 

are twofold: (1) to identify the main processes that influence sediment properties and their 

implications for sediment fingerprinting; and (2) to identify concerns and recommend 

directions for future research. The emphasis will be on two key issues that have been 

demonstrated to strongly influence sediment properties. First, the issue of particle selectivity 

(i.e., changes in the particle size distribution and organic matter content) due to preferential 

mobilization, transportation and sedimentation and secondly, the physical and 

biogeochemical transformations that can result in the enhancement or depletion of fingerprint

properties. Each issue will be discussed within the context of interpreting data based on the 

standard sediment fingerprinting approach and secondly how improved sampling and 

analytical techniques can better link sediment to sources.

Figure 2.4 demonstrates the complexity of the movement of sediment through the 

environment that the sediment fingerprinting approach attempts to accommodate. This 

conceptual framework shows the multiple spatial scales over which processes can affect the 

properties of soils and sediments and helps to identify the key issues to consider based on the 

scale of observation. Fig. 2.4 also provides the framework for the structure of this review 

paper, initially by looking at the nature and properties of soil and sediment particles, which 
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are the basis of the sediment fingerprinting technique. The scale of observation is then 

broadened to the landscape unit represented here by a sequence of hillslope, riparian and 

aquatic environments. This landscape unit provides an appropriate scale to evaluate the 

processes that mobilize, transport and deposit sediments and as well links the terrestrial and 

the aquatic environments. Finally, the river basin scale is used here as it is most often the unit

of observation for sediment fingerprinting and budgeting studies (Slaymaker 2003; Owens 

2005; Walling and Collins 2008); here the challenges of scaling up, linkages and the 

interactions of processes are discussed.
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 2.4 Nature and properties of soil and sediment particles 

Traditionally, much of the research in soil and sediment science has used the 

dispersed mineral fraction and gross organic matter content for the interpretation and 

prediction of the movement of sediment and associated nutrients, metals and other 

contaminants in terrestrial and aquatic systems (Horowitz 1991). However, there is increasing
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Figure 2.4: Conceptual diagram demonstrating the complexity of the sediment continuum, at 
multiple scales of observation, that is incorporated into the sediment fingerprinting approach.



recognition that soils and sediments are complex materials composed of four main 

components: mineral, organic matter, water and gases. The composition and physical 

structure of soil will reflect the interaction of parent material, climate, hydrology, amount and

types of vegetation, age, weathering processes and anthropogenic activities. It is the net result

of these properties and processes which makes it possible to discriminate between multiple 

sediment sources using natural soil properties. Potential sediment sources are commonly 

delineated between spatially distributed sources based on geology, soils, land use and 

vegetation and also vertically distributed sources including surface soils, subsurface soils and

channel banks. It is the particular environmental conditions at the source that impart unique 

physical and biogeochemical signatures which can be utilized as fingerprints. The processes 

that lead to signature formation operate over longer time scales than the sediment 

redistribution processes involved, which in many cases is the underlying basis for their use. 

Knowledge of the processes that lead to signature development is key in selecting and 

assessing the robustness of fingerprint properties during transport through the river basin. It 

is also important in understanding the limitations due to the spatial and vertical distributions 

of fingerprint properties at the source as well as the enrichment or depletion of fingerprints 

during the fluvial transport of sediment. Sediment properties commonly used in sediment 

fingerprinting can be broadly separated into three categories; (1) geochemical, (2) 

biochemical and (3) physical fingerprints.

 2.4.1 Geochemical properties

The geochemical properties, which include inorganic elements, radionuclides and 

mineral magnetism, of soils and sediments are among the most widely used fingerprints in 

35



sediment fingerprinting studies (Walling 2005; Mabit et al. 2008). Atmospheric fallout 

radionuclides, such as 7Be, 10Be, 137Cs, 210Pb, 239Pu and 240Pu, effectively tag surface sediments

such that the concentration declines markedly with depth in the soil profile and are 

preferentially absorbed to clay minerals and organic matter due to their high specific surface 

area which renders them chemically reactive (Horowitz 1991). In recent articles, Parsons and 

Foster (2011) and Taylor et al. (2012) discuss the adsorption behaviour of 137Cs and 7Be in 

soils, respectively, and highlight the implications for sediment fingerprinting. Fallout 

radionuclides are commonly employed to discriminate between surface, subsurface and 

channel bank sources. In addition, these properties can also provide discrimination between 

cultivated and non-cultivated land, and between eroded and depositional areas as cultivation 

and erosional processes redistribute the fallout signal down through the soil profile and 

across the landscape. Fallout radionuclides, by the very nature of their radioactive decay, are 

non-conservative fingerprints and the characteristics of a watershed, including the magnitude 

of sediment storage features, are important to consider when assessing the suitability of 

radionuclide properties as fingerprints and interpreting the data they provide. However, most 

have a sufficiently long half-life and predictable decay rate to still be effective fingerprints in 

the study of contemporary sediment dynamics. With the exception of 137Cs, an 

anthropogenically derived radionuclide, most fallout radionuclides are naturally occurring 

and are continually being deposited on the surface. This can have implications for the 

fingerprinting technique as eroded and exposed subsurface sediments will begin to acquire a 

new radionuclide signature as they move through the landscape and continue to receive 

fallout products (Wilkinson et al. 2009). Similarly, buried sediments begin to lose the 

radiochemical signature due to radioactive decay. This type of non-conservative behaviour 
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can be advantageous as it can be used to differentiate between recently eroded (e.g., 7Be, 

half-life of 53.4 days) and legacy sediments (e.g., 210Pb, half-life of 22.3 years) but raises the 

question as to what point in time these sediments begin to represent a new source.

Mineral magnetic properties have been used as fingerprints to discriminate between 

various sediment sources (Yu and Oldfield 1993; e.g., Hatfield and Maher 2009) and have 

also been included along with other soil properties as part of a composite fingerprint (e.g., 

Walling et al. 1999; Gruszowski et al. 2003). Magnetic susceptibility and remnant magnetism

are the two main properties used to characterize the magnetic properties of sediment and are 

largely related to the mineralogy of the sample (e.g., the presence of iron oxides) and the 

magnetic grain size. Soils have a primary magnetic signature largely related to the 

mineralogy of the parent material but can acquire a secondary or an enhanced signal due to 

minerals formed through pedogenesis, weathering, bacterial action, anthropogenic inputs and 

fire (Dearing et al. 1996). While these secondary processes may contribute to the ability to 

discriminate between sources, they may also result in post-depositional diagenesis which can 

obscure the linkage between the source and sediments. In addition, mineral magnetic 

properties have been shown to discriminate soil burned at different severities as well as 

unburned areas, however, recent research by Blake et al. (2006) demonstrated that there was 

a lack of dimensionality in the data that limits their use in sediment fingerprinting (also see 

Smith et al. 2013). Particle-size also exhibits a strong influence on the magnetic properties of 

sediment and needs to be taken into consideration in the characterization and interpretation of

these properties (Oldfield and Yu 1994; Hatfield and Maher 2009). In many cases the 

relationship between particle size and measures of mineral magnetic properties is complex 

(Foster et al. 1998; Blake et al. 2006; Oldfield et al. 2009) and this complexity can make it 
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difficult to discriminate between sources and make comparisons between sources and 

sediments as a result of differences in particle size distributions.

Inorganic properties, including concentrations of heavy and trace elements and base 

cations, and mineral assemblages vary spatially through the landscape and vertically through 

the soil profile due to differences in parent material, soil forming processes and land use. 

Geochemical analysis of soils and sediments is commonly used in fingerprinting studies as it 

is a relatively quick, inexpensive and widely available technique that can yield information 

on 50 or more different elements depending on the analytical instrument used. As with other 

geochemical properties there is a strong relationship between elemental composition and 

particle size and organic matter content primarily due to the high specific surface area and 

reactivity. Secondary minerals, including clays, metal oxides (Fe, Mn, Al) carbonates and 

sulphates, and organic matter are important sites for chemical exchanges and reactions to 

occur. The dominant processes controlling the soil and sediment geochemistry include ion 

exchange, adsorption/desorption, precipitation/dissolution, complexation, and biologically 

mediated reactions. As indicated by Römkens et al. (2009) and Rodrigues et al. (2010), 

elements can be coarsely divided into three different fractions; available, reactive and inert. 

The distribution of element concentrations among the different fractions and the most 

relevant processes are shown in Fig. 2.5. Under unchanging environmental conditions (e.g., 

pH, temperature, redox potential) the proportion of an element within a given fraction will 

remain in equilibrium. However, stable conditions rarely exist in nature, and according to Le 

Châtelier's principle, if a system at equilibrium experiences a change (e.g., change in pH, 

redox potential, etc.) then the equilibrium shifts to counteract the imposed change and a new 

equilibrium is established (Olmsted and Williams 2005). This can have implications for 
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sediment fingerprinting because as sediment moves through the river basin the proportion of 

a given fingerprint (element) in solution or in the particulate form may not remain static, and 

therefore, no longer reflect the original source of sediment. The mineralogy of soil and 

sediment, determined using optical or X-ray diffraction techniques, has also been used as a 

fingerprint in sediment fingerprinting studies (e.g., Rhoton et al. 2008). This type of 

characterization may provide a more robust fingerprint property as it is related to the primary 

mineral structure and is less affected by transformation processes (Fig. 2.5).

It can be difficult to identify if, where and to what extent transformations might be 

occurring within the watershed. Changes in the redox potential and pH are important 

watershed characteristics to consider. Therefore, identifying: (i) the location and magnitude 

of anaerobic (reducing) zones (e.g., wetlands and floodplains); (ii) changes in the underlying 
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Figure 2.5: Distribution of total pools of potentially toxic elements 
(PTE) in soils — the size of the different fractions and the most 
relevant soil processes vary according to the element of interest and
environmental conditions. From Rodrigues et al. 2010, reproduced 
with permission of Elsevier.



geology (e.g., changes in pH due to the occurrence of carbonate minerals); and (iii) 

anthropogenic influences (e.g., sewage and industrial effluent) with respect to sediment 

sources and sampling locations, are important aspects to consider when assessing the 

conservative behaviour of sediment properties.

 2.4.2 Biochemical properties

Biochemical properties, including organic elements (e.g., C, N, P), stable isotopes 

(e.g., δ15N, δ13C), biomarkers (e.g., lignins, sugars, fatty acids), organic chemicals (e.g., 

pesticides) and DNA, reflect the vegetation, microbial community and the land use practices 

of sediment sources. The use of biochemical properties in sediment fingerprinting studies has

been receiving increasing attention as it has the potential to provide better spatial constraints 

for sediment sources compared to other fingerprint properties, and/or differentiate between 

sources that other, more conventional, properties are unable to (McConnachie and Petticrew 

2006; Granger et al. 2007). Geochemical properties are generally used to differentiate 

between broad categories of sediment sources (e.g., forested, cultivated and pasture land), 

and the information generated, while providing information on sediment sources, may not be 

of sufficient detail for river basin managers to make effective and well informed decisions. In

contrast, biochemical properties have the potential to discriminate between a greater number 

and different types of sediment sources (e.g., differentiate between different crop types, or 

tree species) and provide greater detail on sediment sources. This will allow managers to 

better target mitigation strategies (Gibbs 2008; Blake et al. 2012). 

Biochemical processes are continually cycling carbon, nutrients and metals through 

the processes of immobilization and mineralization. Soil organic matter is often divided into 
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three fractions - active, slow and passive - which are related to their stability over time. The 

active fraction represents the pool of organic matter that is the most susceptible to microbial 

decomposition (< 2 yr), the slow fraction is moderately susceptible, and the passive fraction 

is the most resistant to microbial decomposition (500 - 5000 yr) (Brady and Weil 2001). This 

becomes important as the conveyance time of sediment through a river basin can vary widely

from days to decades to centuries and some of the organic matter can be lost through 

decomposition. As well, organic matter is composed of many different organic compounds 

including carbohydrates, amino acids, lignin and polyphenols, which decompose at different 

rates (Brady and Weil 2001). Decompositional processes can result not only in changes in the

quantity of organic matter but also in the composition (e.g., C/N ratio, organic compounds) 

which can be difficult to characterize. Researchers are developing compound-specific stable 

isotope fingerprints that target compounds that are more resistant to decay and that bind 

strongly to soil and sediment particles, thereby providing a more robust fingerprint (Gibbs 

2008; Blake et al. 2012; Hancock and Revill 2013).

Biological activity can not only deplete an organic signal through decomposition, but 

sediments during their conveyance through the river basin may also acquire new and 

different organic properties such that they may no longer reflect their original source. 

Microbial activity can also transform inorganic forms to organic forms (e.g., biomethylation 

of mercury) which can behave differently in the environment (e.g., bio-availability) (Thayer 

2002). Furthermore, there is a large difference between the density of organic particles (0.9 - 

1.3 Mg m-3) and mineral particles (2.6 - 2.75 Mg m-3) (Brady and Weil 2001) which can result

in the preferential transport and enrichment of organic matter of eroded material in 

comparison to the source material.
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 2.4.3 Physical properties 

Spectrometric methods (e.g., colour) can be used to characterize soils and sediments 

and can be broadly separated into two groups; reflectance/absorbance and fluorescence. 

There is a growing interest in using visible and near-infrared spectroscopy as an inexpensive 

and rapid method to characterize soils and sediments for use in sediment fingerprinting 

studies (Martínez-Carreras et al. 2010a; Martínez-Carreras et al. 2010b). Similarly, ultraviolet

fluorescence spectroscopy has been used to characterize organic matter (Bridgeman et al. 

2011), however, it has not yet been demonstrated as an effective method to characterize soils 

and sediments within sediment fingerprinting studies. Spectrometric characterization is 

sensitive to moisture content and physico-chemical alterations that can occur during transport

(e.g., oxidization of iron, decomposition of organic matter, texture) (Levin et al. 2005; 

Summers et al. 2011). Particle shape, or morphology, is another physical property that has 

been used to fingerprint sediment (Krein et al. 2003; Petticrew 2005). This physical property 

is determined by imaging sediment particles and describing qualitatively (e.g., platey) or 

quantitatively (e.g., fractal dimension) the morphology of sediment particles. The shape of a 

particle is influenced by abrasion, disaggregation and aggregation (flocculation) that can 

occur as sediment moves through the landscape; such issues are discussed below.

 2.5 Hillslope processes

Soil erosion refers to the detachment, entrainment, transport and deposition of soil 

particles through the forces of wind, water and tillage, and the pattern of total soil erosion 

within a landscape is the sum of these three main erosional processes (Lobb et al. 2004). 

While the majority of research to date has primarily focused on quantifying the amount of 
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soil erosion and its controlling factors (e.g., Revised Universal Soil Loss Equation; Renard et 

al. 1991), there is a growing body of literature investigating the role of linkages and 

interactions between the different erosional processes (e.g., Lobb et al. 2004) and the 

physical and biogeochemical properties of the eroded material (e.g., Ballantine et al. 2008; 

Zhang et al. 2011). This is in response to the need for better characterization of the sediment 

and sediment-associated nutrients and contaminants moving off the land and entering surface 

waterways, which is in turn driven by the need to protect water quality and aquatic habitat.

 2.5.1 Particle selectivity

Eroded sediments are often found to have a finer grain-size distribution and a higher 

organic matter content compared to the source material as the smaller and less dense particles

are preferentially mobilized and transported. However, some studies have found eroded 

sediments to be coarser (e.g., Meyer et al. 1992) or have a bimodal (e.g., Asadi et al. 2007) 

grain-size distribution and also to be depleted in organic matter (e.g., Nadeu et al. 2011) 

compared to the source material. Because of the strong relationship between particle size and 

organic matter content for many fingerprints (Horowitz 1991; Russell et al. 2001) it is 

important to have a solid understanding of the selective nature of erosion and transport 

processes. It is difficult to make generalizations about the influence of soil erosion on 

sediment properties as different erosion and transport processes and patterns will exhibit 

differences in particle selectivity. Therefore, it is important to consider the dominant forms of

soil erosion and transport pathways for assessing the influence of particle selectivity on 

sediment properties as unrecognized particle selectivity can lead to false conclusions about 

changes in grain-size and organic matter. 
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An in-depth investigation of particle selectivity within the context of soil erosion 

warrants a closer look at what is meant by the term soil particle. In its simplest form, the term

can refer to the primary mineral particles (e.g., sand, silt, clay), however, much of the soil is 

moved as aggregates which are a cohesive agglomeration of both inorganic and organic 

matter, which may have different physical and biogechemical characteristics in comparison to

the primary particles of which they comprise (Buffle and Leppard 1995a; Buffle and Leppard

1995b; Droppo et al. 1997; Droppo 2001). Therefore, making conclusions about the 

mobilization and transport of sediment based on absolute (i.e., physically and/or chemically 

dispersed) particle size distribution may result in errors as soil moves as aggregates and, 

therefore, the effective or aggregate particle size distribution may be more informative 

(Slattery and Burt 1997).

Erosional processes are selective in each step - detachment, entrainment, transport 

and deposition - of sediment movement (Leguédois and Bissonnais 2004). With all forms of 

erosion the degree of selectivity will be a function of environmental factors including soil 

characteristics (e.g., texture, aggregate stability, moisture content), surface characteristics 

(e.g., slope, ground cover, micro-topography) and the nature of the erosive force (e.g., wind, 

water or tillage erosion) (Issa et al. 2006; Asadi et al. 2011). The selectivity of soil erosion is 

generally well correlated to the energy of the erosive process with increasing erosive force 

resulting in less selectivity. Armstrong et al. (2011) found that there was a greater enrichment 

of fine-grained sediments and organic matter under lower rainfall intensities and slopes. 

Similarly, Schiettecatte et al. (2008) found that interrill erosion was a selective process 

resulting in an enrichment of organic matter while rill erosion was found to be a non-

selective process. Generally, gully erosion is not considered to be a selective process due to 
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concentrated flow and higher stream power. It is also important to consider interactions 

between different erosional processes, for example, tillage erosion may deposit sediments 

into a rill which will subsequently be moved by water erosion (Lobb et al. 2004). The 

pathways by which sediments are routed through the landscape and the degree of 

connectivity between hillslopes and surface waterways will also influence the particle size 

distribution and organic matter content. Gullies and subsurface drains provide a more direct 

pathway and result in less selectivity while inter-rill and rill erosion provide a more tortuous 

pathway and sediments undergo more cycles of mobilization, transport and deposition, which

may result in a greater degree of sorting. The preferential removal of fine-grained sediment 

by erosional processes can lead to the armouring of the soil surface by the coarse fraction 

thereby limiting any additional erosion. The importance and validity of particle size 

correction factors can be better assessed by understanding the dominant erosional process 

and transport pathways.

There can also be significant spatial variations in the surface particle size distribution 

and organic matter content across areas as small as 35 ha (Mzuku et al. 2005). This spatial 

variability in soil properties adds an additional layer of complexity in the predicting of the 

properties of eroded sediments entering surface waterways. Studies (e.g., Sutherland 1994; 

Kariuki et al. 2009) have investigated the spatial variability of soil properties and provided 

advice on the number of samples required to obtain a statistically representative measure of 

soil properties (e.g., mean ± 2SD). Such information can help develop sampling strategies 

that improve the reliability of the fingerprint property data of the sources.

 2.5.1.1 Particle size and organic matter correction factors

Issues of differences in grain size between source and sediments are often minimized 
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by limiting the analysis to the <63 μm grain-size fraction, as it is assumed that this fraction 

comprises the bulk of suspended sediments (Walling et al. 2000) and is less susceptible to 

selective processes. Furthermore, an allowance is still typically made for additional particle 

size differences between sources and sediments (i.e., of the <63 μm grain-size fraction) using

a particle size correction factor (e.g., Collins et al. 1997; Walling et al. 1999), and sometimes 

an organic matter enrichment factor. These correction factors are based on the ratio of 

specific surface area or organic matter content of sediment and source samples and assumes a

linear relationship. These corrections are commonly employed as both particle size and 

organic matter are known to influence biogeochemical properties. However, such approaches 

are controversial because little is known about the potential errors associated with the use of 

correction factors, such that some researchers do not use correction factors (e.g., Martínez-

Carreras et al. 2010b; Martínez-Carreras et al. 2010a). Furthermore, some studies overcome 

the issues of differences in particle size by limiting the analysis to the <10 μm fraction (e.g., 

Wilkinson et al. 2009). While this approach reduces errors due to particle size differences, it 

may have limitations in terms of the representativeness of transported sediment. 

Russell et al. (2001) used 31 sediment properties within three catchments in the UK 

and found that there was a large range in specific surface areas (SSA) between the different 

sources and sediment and concluded that a linear particle size correction factor would be 

inappropriate. It was demonstrated though a particle size fractionation experiment that the 

relationship between particle size and the fingerprint properties was not linear or uniform 

across the different properties or catchments (Table 2.2). The particle size correction factor v 

was calculated as the slope/intercept of the log-linear relationship between SSA and 

fingerprint concentration, except in the case of 137Cs and unsupported 210Pb where v is equal 
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to the exponent as the concentration of the fingerprint is entirely particle size dependant (i.e., 

0 intercept). The fingerprint properties were corrected by substituting the corresponding 

value of v in Eq. (1) for geochemical and mineral magnetic properties or Eq. (2) for fallout 

radionuclides.

(1) CC= {(1+v(lnSX))/(1+v(lnSS ))}C

(2) CC=(SX/SS)VC

where C is the measured property concentration, CC the property concentration corrected for 

particle size, SX is the SSA of suspended sediment collected at location x, and SS is the SSA 

of the sample to be corrected. As shown in Table 2.2, Russell et al. (2001) found that the 

fingerprint properties had particle size correction values (ν) ranging between 0.12 and 4.55 

and they demonstrated the wide range that could occur across catchments and within a single 

catchment. For example, within the Smisby catchment particle size exerts a greater influence 

on Na (ν = 4.55) than Mn (ν = 0.19). The property dependent correction factors are a result of

differences in mineralogy and the affinity and selectivity of different ions to particle surfaces 

between the different size classes. This highlights the limitations and the potential errors 

associated with using a single correction factor for all property concentrations as it will over-

correct for some elements and under-correct for others, which in turn will influence the 

results obtained from un-mixing models. Despite these findings, few studies have taken this 

into account and a single correction factor is commonly used for all properties. However, 

linear particle size correction factors may be useful when applied in studies where there is 

narrow range in particle size differences between sources and sediment and especially where 

relationships have previously been established between particle size and fingerprint property. 

For example, the relationship between 137Cs and 210Pb (e.g., He and Walling 1996; Bihari and 
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Dezső 2008) and phosphorus concentration (e.g., Owens and Walling 2002) and particle size 

has been investigated. Furthermore, there is evidence that a single organic matter correction 

factor may also be inadequate for the adjustment of geochemical properties. For example, 

Bakircioglu et al. (2010) found through sequential extractions that the proportion of metals 

associated with the oxidisable fraction (organic matter) in agricultural soils varied by more 

than 15% with the organic matter accounting for ~20 % and ~5% of the total Zn and Co 

content, respectively. However, property specific organic matter corrections have yet to be 

tested within the sediment fingerprinting technique and there is the potential to over-correct 

due to the correlation between grain-size and organic matter content. The question remains as

to whether there needs to be correction factors to compensate for other properties such as Fe- 

and Mn-oxides or carbonates as these have also been shown to influence the concentrations 

of many trace elements (Horowitz 1991), and clearly further work is needed to assess this.
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Table 2.2: The particle size correction factor, ν, for the soil 
properties included in the sediment source models for three 
river basins in the UK (from Russell et al. 2001, 
reproduced with permission from Elsevier).

Property Simisby Belmont Jubilee
Al 0.97 0.51 0.51
As 1.79 0.7 0.7
Ca - - -
Cu 1.1 - -
Fe 0.52 0.42 0.43
K 1.37 0.82 0.82
Mg 0.44 0.3 0.3
Mn 0.19 0.31 0.31
Na 4.55 1.15 1.15
Ni 3.54 - -
Pb 0.36 0.33 0.51
Sr 1.9 0.65 0.65
Zn 0.66 0.52 0.52

0.69 0.61 0.61

0.45 - -

- 0.12 0.12

1.37 0.66 0.66

0.37 -

- -
Fet 1.21 0.65 0.65

0.41 -

- 0.15 0.15
TP 0.81 0.64 0.53
TN 0.84 0.76 0.76
TC 0.58 0.6 0.6

0.73 0.25 0.25

- - -
ARM 1.84 0.16 0.16
SIRM 0.85 0.41 0.41
IRM 0.58 0.36 0.36

0.77 0.51 0.51
0.71 0.68 0.68

Fe
p

Mn
p

Al
p

Fe
p

Mnd
d

Al
d

Mn
t

Al
t

χ lf
χ fd

137Cs
Unsupported 210Pb

The particle size correction factor is derived from the curvilinear 
relationship between concentration and specific surface area. 
Particle size exerts a greater influence on the concentration of 
soil properties with increasing values of v (v = 0, no effect of 
particle size).



Despite research showing that eroded sediments have different physical and 

biogeochemical properties compared to their source, few sediment fingerprinting studies 

have fully taken this into account and there is currently a gap in our knowledge. Motha et al. 

(2002) evaluated the influence of the sediment generation process on fingerprint properties 

on five different sources by collecting eroded sediments generated under simulated rainfall 

and comparing it to source materials after accounting for differences in particle size and 

organic matter content. The results demonstrated that the sediment generation process, after 

accounting for differences in particle size and organic matter content, had an effect on some 

geochemical properties for some of the sources (i.e., non-conservative behaviour), had no 

effect on radiochemical properties and was inconclusive for the mineral magnetism 

properties. The results from that study were subsequently used to develop corrections for 

fingerprint conservativeness and were utilized in conjunction with particle size and organic 

matter corrections to adjust fingerprint properties in a sediment fingerprinting study (Motha 

et al. 2004). Particle selectivity is governed by a suite of conditions and processes that vary 

between river basins and it becomes difficult to make generalizations about the effects of 

erosional processes on particle selectivity. Therefore, it is important to consider the 

conditions and processes within each basin of interest before samples are collected.

 While the development of more realistic correction factors may be an important 

research need, the misuse of untested correction factors would result in inappropriate 

manipulation of soil and sediment property data. Better sampling design, including the 

collection of more representative samples, may be a better approach. The common approach 

of using soil surface scrapes (approximately 0 – 2 cm) to characterize some sediment sources 

(e.g., topsoil) may not provide a good representation of the source. Other sampling methods, 
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including the collection of actively transported sediment from hillslopes during runoff events,

are likely to provide a better indication of the properties of sediment coming from a given 

source.

 2.5.2 Transformations

Particle selectivity is likely the main process affecting the non-conservative behaviour

of fingerprint properties on the hillslope. However, there are some transformation processes 

that may play an important role. There will be some loses or translocation of elements 

through leaching, overland flow and plant uptake. For example, in a recent review, Parsons 

and Foster (2011) highlighted a number of limitations in using 137Cs as a tracer in soil erosion

studies, and one of the limitations discussed was the non-conservative behaviour of 137Cs as a 

tracer. Parsons and Foster (2011) concluded that 137Cs can be (i) lost through plant uptake and

permanently removed by subsequent crop harvesting; (ii) released from recalcitrant sites due 

to weathering of minerals or the addition of NH4 or K; and (iii) leached from the soil column 

through the decomposition of organic matter or carried away by water soluble organic 

substances. Similarly, Taylor et al. (2012) characterized the adsorption behaviour of 7Be on 

agricultural soils and assessed its stability under changing environmental conditions. These 

types of investigations provide critical information on the distribution of fingerprint 

properties across the landscape and through the soil profile and can provide an assessment of 

the robustness of fingerprints within the context of the sediment fingerprinting approach 

(Taylor et al. 2012).

There is also evidence that sediments may become enhanced in concentrations for 

some properties as they move through the landscape as there will be continual additions of 
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some elements through atmospheric deposition (e.g., N, S, 210Pb). For example, both Owens 

et al. (2012) and Wilkinson et al. (2009) found that eroded sediment within burnt catchments 

had higher 210Pbunsupported concentrations than that of the sediment sources indicating that 

sediment received additional 210Pb fallout during transit. To recognize the importance of 

transformations, within the context of hillslope processes, it becomes critical to understand 

the processes that lead to formation of a unique signature. For example, weathering is largely 

responsible for the distribution of geochemical elements through the soil profile. Because 

weathering processes operate over longer time-scales than the sediment redistribution process

involved it can provide a reliable means to discriminate between surface and subsurface 

sources. Changes in downstream environmental conditions (e.g., pH, redox potential) are 

likely to be a greater concern for transformation of sediment properties and the distortion of 

the fingerprint signal and this is discussed in subsequent sections.

The impact and the relative importance of these transformation processes on the 

sediment fingerprinting technique are not well understood or quantified and represent another

gap in our knowledge (Owens and Xu 2011). In many cases, sediment sources are 

characterized by collecting soil samples that are 'likely' to erode in that they are from areas 

strongly connected to the fluvial environment. By measuring the properties of soils 'awaiting 

delivery' to the aquatic system an effort is made to minimize any changes in fingerprint 

properties that may occur during transit. However, the location of sampling points can often 

be subjective and the connectivity can be difficult to detect in areas where the drainage is 

controlled by subtle features in the landscape. This sampling approach also assumes that 

areas that are not well connected do not directly contribute to the sediment load. However, 

this may not be the case during periods of high runoff and flooding (Thompson et al. 2012).
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 2.6 Riparian and wetland processes

The riparian zone is the interface, or transition zone, between the terrestrial and 

aquatic environments and is characterized by very distinct gradients in environmental 

conditions and processes. There are a wide range of types of riparian zones ranging from 

natural to engineered and intensively managed. In some cases, the movement of sediment and

water through riparian zones is circumvented through surface and subsurface drains. While 

the characteristics of the upland areas will determine the quantity, properties and pathways of

sediment being delivered, the riparian zone - through the processes of infiltration, 

immobilization, sedimentation and dilution - tends to attenuate, buffer, distort and intercept 

the flow of this material (both dissolved and particulate) to the aquatic environment (Lacas et

al. 2005; Owens et al. 2007; McGuire and McDonnell 2010). Because of this, the riparian 

zone is of particular interest in terms of the effects it is likely to have on the conservative 

behaviour of sediment and associated fingerprints.

 2.6.1 Particle selectivity

Both laboratory and field studies have demonstrated that riparian buffer features are 

effective at trapping sediments (for a review, see Zhang et al. 2010). Gharabaghi et al. (2006) 

found that larger particles and aggregates are generally trapped within the first few meters of 

a buffer strip and finer material was transported further distances. Consequently, this results 

in the selective enrichment of fine-grained sediments and associated fingerprint properties 

being exported from the buffer to adjacent water-bodies (Owens et al. 2007). In addition, the 

efficiency of riparian areas to trap and retain sediment can vary over time. Borin et al. (2005) 

found that the efficiency of riparian areas varied over the first four years after planting and 
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Dillaha et al. (1989) demonstrated that the efficiency decreased as the vegetation became 

inundated with sediment. Currently, it is uncertain as to the extent of the effect that riparian 

zones have on particle selectivity and, therefore, the particle size distribution and organic 

matter content of sediments entering surface waterways.

Riparian floodplains buffer the transfer of fluvial sediment between upstream and 

downstream reaches of a river (Trimble 2010). Floodplains are formed by both lateral and 

vertical accretion of sediment. As a channel migrates across the valley floor, lateral accretion 

occurs as sediment is deposited on the inside of meander bend due to the decrease in velocity.

Lateral accretion deposits are largely comprised of bed sediment and can account for 60 – 90 

% of the total sediment accumulation in a floodplain (Fryirs and Brierley 2012). Vertical 

accumulation of sediment on floodplain surfaces can occur during periods of flooding when 

the flow is above bank-full stage and deposition of sediment is promoted by the decrease in 

depth and consequently the velocity and the transport capacity of the water. Walling and He 

(1998) found that there was significant spatial variability in sedimentation rates due to local 

micro-topography and flow patterns and the particle size distribution. However, it was noted 

that aggregated particles can complicate the relationship between sedimentation rates and 

particle size due to the higher settling velocities compared to individual discrete particles 

(Nicholas and Walling 1996; Walling and He 1998). Sediment fingerprinting studies have 

utilized floodplain deposits to provide information on longer-term (e.g., decadal scale) trends 

in sediment sources (e.g., Owens et al. 1999). The spatial variability in depositional rates and 

particle size distributions, and the concentrations of sediment properties (Walling et al. 1998),

need to be considered in both sampling protocols and interpretation of the data.

Accumulation of fluvial sediments on floodplains can represent a significant storage 
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component in the overall sediment budget of a river basin. For example, Walling and Quine 

(1993) found that during the period between 1986 – 1989 approximately 23% of the total 

suspended sediment load in the main channel of the River Severn was deposited on the 

floodplain. Conversely, floodplains contribute sediment through the remobilization of stored 

sediment by lateral channel migration. While floodplains are a source of sediment in river 

basins, they do not necessarily represent a unique source as it is comprised of sediment 

previously derived from upstream sources. An evaluation of sediment collected downstream 

of floodplain features needs to consider that some of the sediment is being derived from 

floodplains, which depending on environmental conditions and storage times may be 

different from the fingerprint properties associated with the original sources. In addition, both

the deposition of sediment onto floodplains and the subsequent remobilization through 

surface or lateral erosion are particle size selective processes and therefore will influence the 

particle size distribution of sediment being transported through reaches with such features.

Wetlands and dams/reservoirs also act as buffering features within river basins. Like 

riparian buffer zones, wetlands and reservoirs slow the flow of water resulting in the 

deposition of sediments and the trapping efficiency is largely related to the geomorphic and 

hydraulic conditions of these features. O'Green et al. (2010) concluded that constructed and 

restored wetlands receiving agricultural runoff generally exceed a sediment removal 

efficiency of 50%. Similarly, research by Teissen et al. (2011) found that small dams in an 

agricultural river basin were able to retain approximately 70% of the annual sediment load. 

However, there is little information about the particle size distribution and organic matter 

content of sediment leaving the wetlands or dams although it would be expected that coarser 

sediments would be retained and the fine sediment would be exported from these features.
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As sediments from riparian buffers, wetlands and dams have often been used to 

provide information on the sources of sediment within river basins (e.g., Pittam et al. 2008), 

consideration needs to be given to the representativeness of the sampled sediment. For 

example, sediments that are deposited on floodplains during periods of high flow may have 

different characteristics to sediment transported during periods of lower or base flow due to 

differences in sediment transport capacity. In addition, as these features are likely to 

influence the characteristics of sediment and fingerprint properties (Walling et al. 1998), the 

location of these features in relationship to the sediment source and the sampling point are 

important considerations in interpreting the data it provides. In some cases it may be 

important to sample up- and downstream of these features to get a more complete picture of 

any changes in sediment dynamics. A large proportion of the sediment will be stored in these 

features and the full extent of the contribution of these upstream sources to the channel will 

not be fully captured at downstream sampling sites. This would result in the relative 

contribution of the upstream sediment source to the channel being underestimated and this 

can lead to poor management decision based on the incomplete assessment of sediment 

sources.

 2.6.2 Transformations

Not only are riparian zones and wetlands important features in the landscape for 

sediment trapping but these features are also known and used to capture and immobilize 

nutrients and metals; properties that are commonly employed as fingerprints. The majority of 

nutrient and metal retention is due to sedimentation and the absorption of elements from 

solution onto both the organic and inorganic sediments, resulting in an enrichment of these 
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constituents in the riparian/wetland features (e.g., Hoffmann et al. 2009). The anaerobic 

environmental conditions often found in riparian areas and wetlands can also facilitate the 

precipitation of minerals including Cd-, Pb- and Zn- sulphides (Du Laing et al. 2010). Plants 

will also cycle these elements but generally represent a temporary storage, however, under 

saturated conditions decomposition is retarded and there is a net accumulation of organic 

matter and associated elements. Some elements including N, C, S and Hg, can be lost to the 

atmosphere through microbially mediated processes (Vidon et al. 2010). For example, Poe et 

al. (2003) found that a significant amount (8 - 81 kg N month-1) of nitrogen was lost through 

the process of denitrification in a 5.1 ha constructed wetland receiving agricultural runoff. 

While the focus of the study by Poe et al. (2003) was not sediment fingerprinting it serves as 

a good example to highlight the transformations and subsequent loss of a commonly used 

fingerprint. Similarly, Taylor et al. (2012) suggested that changes in redox conditions in 

storage zones could result in a reduced 7Be fingerprint. These transformation processes have 

implications for the sediment fingerprinting technique because the sediment fingerprint 

signal passing through buffering features can become distorted leading to errors in the source 

apportionment if not accounted for. This highlights the importance of assessing the behaviour

of each sediment fingerprint property within the context of the environmental conditions that 

exist within the study river basin.

The complexity of riparian zones and wetlands presents numerous challenges in 

investigating the influence that landscape buffering features have on the conservative 

behaviour of sediment and fingerprint properties. Nevertheless, they are important features of

the landscape and their effects on sediment properties warrants further investigation and 

consideration in assessing the behaviour of sediment properties used for sediment 
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fingerprinting. The extent to which these features will result in significant transformations 

will be river basin specific and dependent upon a number of environmental conditions.

 2.7 Aquatic processes 

Fine-grained sediments (<63μm) are often thought to be transported easily and 

unimpeded through rivers (e.g., wash load). This assumption is one of the main reasons why 

this type of sediment is used in sediment fingerprinting studies as it is thought to be 

minimally affected by particle selectivity, making direct comparisons between sources and 

suspended sediment easier. However, sediment transport within the aquatic environment is 

episodic as sediments are continually being transported, deposited, stored and re-mobilized. 

Furthermore, fine-grained sediments are chemically reactive which raises concerns over the 

role of chemical transformations on the concentration of fingerprint properties as sediment is 

transported.

 2.7.1 Sediment dynamics

There is a shift in particle size distribution towards fine-grained and an enrichment of 

organic matter as particles move from the steep gradients found in headwater streams 

towards lower gradients found at the outlet of the river basin. The relationship between 

particle size and water velocity on the entrainment, transport and deposition (hydrodynamics)

of sediments within river channels has been characterized as early as 1935 (e.g., Hjulström, 

1935). This is, however, an oversimplification of the processes influencing the movement of 

sediments downstream as there are other factors that will influence particle size distribution. 

Aquatic plants including periphyton and macrophytes play a role in storing sediments as they

trap suspended sediments by reducing the flow velocity to a point where sediments fall out of
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suspension (Petticrew and Kalff 1991); they can also stabilize channel bed sediments making 

them more resistant to erosion (Wharton et al. 2006; Heppell et al. 2009). The stream 

morphology including pools, riffles and meanders will also influence the deposition and 

mobilization of sediments through variations in velocity. Sedimentation of coarser-grained 

sediment occurs at slope discontinuities along the channel (e.g., when a steep tributary meets 

a low-gradient trunk channel), reaches with a large decreases in slope with respect to 

drainage area (i.e., high concavity) and behind points of flow restriction such as culverts, 

bridges and weirs. These features and structures can cause considerable sedimentation to 

occur upstream onto floodplains (Fryirs 2013). Consideration needs to be given to the 

sediment sampling location with respect to these features and structures in terms of the 

representativeness of the sediment and the interpretation of the data they provide.

Sediments are delivered to the aquatic environment as either primary or aggregate 

particles but once within this environment can undergo transformations such as flocculation 

and disaggregation. Flocculation refers to aggregation of living and non-living biological 

material and mineral particles that can occur within the water column (Droppo et al. 1997). 

Much of the flocculation within freshwater is to due to the presence of extra-cellular 

polymeric substances which act as a glue binding the minerogenic grains together (Droppo et

al. 1997) and in estuarine and marine environments flocculation increases due to salts 

modifying the charges on fine-grained particles. For a comparison of the processes of 

flocculation in different aquatic environments, see Wotton (2007). These flocs have very 

unique physical properties including a change in the effective particle size, shape, density and

porosity as compared to the primary particles from which they are made. This results in 

changes in the hydrodynamics of particles and an increase in the preferential settling and 
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storage of fine-grained sediments when hydraulic theory predicts that they should stay in 

suspension (Droppo 2001). For example, research by Rex and Petticrew (2008), has 

demonstrated the importance of the flocculation process on the in-stream retention of marine 

derived nutrients (i.e., salmon decay products) in British Columbia, Canada. The interaction 

between the organic salmon decay products and inorganic mineral sediment particles, such as

silt and clay, produced larger particles, enriched in N, which were preferentially deposited 

into the gravel bed, thereby increasing the N content of the channel bed sediment. Similarly, 

research has also demonstrated the importance of flocs in the sequestration of metals in to 

bed sediments (Plach et al. 2011).

Disaggregation and abrasion are other processes that occur in moving water that can 

influence both sediment grain-size and particle shape. The literature (e.g., Lamb et al. 2008), 

has mainly focused on abrasion and breakage through particle collision, and tended to 

assume that this process is predominantly relevant over long travel distances and in systems 

with high stream power, suspended sediment concentrations (SSC) and bedload transport 

capacity; over short (<10 km) distances and low stream power, suspended sediment 

concentrations and bedload transport capacity, such processes are assumed to be negligible. 

However, Fig. 2.6, demonstrates the friable nature of sediments entering a small stream in 

southern Manitoba, Canada and how quickly the sediment grain-size is likely to change 

during fluvial transport. In situations where abrasion and disaggregation may be significant, 

limiting the analysis to the <63 μm grain-size fraction and applying typical approaches for 

accounting for differences in particle size distribution (e.g., correction factors based on the 

ratio of specific surface area of sediment and source samples) may not be appropriate. For 

example, Belmont et al. (2007), proposed that the disaggregation of 10Be-deficient gravels 
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resulted in the dilution of 10Be concentration within the sand fraction in a tributary of the 

Clearwater River, in western Washington, USA.

Understanding the role of transport processes on the particle size distribution of 

sediment is important in determining an appropriate sampling techniques and locations as 

well as interpreting the data they provide. Within sediment fingerprinting there are two types 

of sediment commonly used; suspended and bed sediments. The effective particle size of 

transported sediment and the local flow conditions will ultimately determine the partitioning 

between suspended and bed sediment and is key in understanding the relative composition of 

each type, in terms of the particle size distribution, of the collected sediment. A combination 

of sampling approaches may be necessary to get a complete assessment of the sediment 

dynamics within a river basin. An assessment of the strength of material entering the fluvial 

environment is also an important consideration as attrition of low-strength, friable material 
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Figure 2.6: Demonstrating the friable nature of shale bedrock entering a small stream 
in the South Tobacco Creek watershed in southern Manitoba, Canada. Bed rock 
sample was easily reduced in grain size by manipulation in the hand (April 2011).



(e.g., Fig. 2.6) can make it difficult to fingerprint the sources of sediment as the coarse 

fragments become a source of fine-grained sediment. Multiple sampling locations along the 

main stem of a channel may help in elucidating the role of attrition on the fingerprint 

properties of fine-grained sediments.

 2.7.2 Transformations

 2.7.2.1 Transformations during transport

Although abrasion and disaggregation of particles can influence grain-size and shape, 

Crockford and Olley (1998) found that they had a substantial effect on the mineral magnetic 

properties of several sediment sources. This was likely due to removal of iron oxide coatings 

from particles and their subsequent concentration in smaller grain-size classes. The 

magnitude of the effect was variable and differed among initial particle sizes and between the

different soil sources investigated. Furthermore, Crockford and Olley (1998) concluded that 

these processes could influence the results from sediment tracing studies, but that it would be

difficult to assess the proportion of sediments derived from breakage and abrasion. 

Conversely, Dyer and Olley (1999) concluded that abrasion and disaggregation (equivalent to

a transport distance of 8 km) did not have a significant effect on the concentration of 137Cs in 

the fine–grained sediment fraction (<40 μm). 

 Sediment moving from the hillslope to a river channel enters into a new environment 

with very different conditions (e.g., pH and Eh) and it would be expected that sediment 

would undergo transformations as it begins to reach an equilibrium with its new environment 

(i.e., Le Châtelier's principle). Most biogeochemical reactions that take place within the 

aquatic environment occur at phase discontinuities, such as solid–liquid (sediment–water) 
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interfaces (Stumm and Morgan, 1996). This is one of the reasons that sediments play such a 

critical role in controlling water chemistry. Furthermore, colloidal, fine-grained and 

flocculated materials generally have higher specific surface areas and therefore are more 

chemically reactive (Horowitz 1991). The chemical equilibrium and rates of reaction at the 

sediment–water interface have been studied in detail in the laboratory and to a lesser extent in

natural waters. The acidity and the redox potential are among the most important 

environmental variables that control the biogeochemical processes occurring at the sediment–

water interface (e.g., precipitation). These variables are related to both abiotic (e.g., stream 

morphology) and biotic (e.g., decomposition) factors. 

Biogeochemical processes within aquatic environments can result in significant 

changes in sediment properties. For example, phosphorus has been used as a fingerprint in 

sediment fingerprinting studies (Collins et al. 2010b) as it often provides good discrimination

between agricultural soils and other land uses due to the higher concentrations of phosphorus 

as a result of fertilization. However, a review of phosphorus delivery and cycling in rivers by 

Withers and Jarvie (2008) identified several biogeochemical processes including 

sorption/desorption, precipitation/dissolution and biological cycling, that can influence the 

partitioning between particulate and dissolved forms of phosphorus. Owens and Walling 

(2002) and Withers and Jarvie (2008) also identified that point sources (e.g., sewage 

treatment works) can deliver significant amounts of dissolved phosphorus which can be 

subsequently adsorbed by sediments increasing the phosphorus concentration of sediment 

during transport in river channels from source to sink. The dynamic nature of phosphorus 

within the aquatic environment highlights the potential non-conservative behaviour of this 

element and would suggest that it may not be a suitable fingerprint in many situations. 
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However, phosphorus that is part of the primary mineral structure of the sediment offers good

potential as an effective fingerprint as many phosphate minerals (e.g., apatites) have very low

solubility. 

The organic content of sediment transported within the riverine environments is 

composed of two components: (i) derived from the original source location (i.e.. 

allochthonous component); and (ii) derived from within the river (i.e., autochthonous 

component). This may have implications for using organic sediment fingerprints as some of 

the organic composition of the fluvial sediment reflects processes within the river opposed to 

the original sediment source location. For example, Rex and Petticrew (2008) found that 

spawning salmon can contribute significant quantities of salmon-decay products (an 

autochthonous component) to sediment in rivers in British Columbia, Canada. Other in-

channel sources of organic matter include biofilms, algae, invertebrates and periphyton. The 

addition of autochthonous sources of organic matter to river sediment implies that simple 

organic matter correction factors which are based mainly on the principle of organic matter 

selectivity during sediment transport along the hillslope–river continuum should not be used. 

Sediment fingerprints that use the biological properties of the sediment (e.g., δ15N, δ13C; 

McConnachie and Petticrew 2006) can, however, provide useful information on the relative 

contributions of allochthonous and autochthonous organic matter sources. 

As sediment moves from freshwater through estuarine to marine environments it 

undergoes changes in pH, salinity and organic matter content which will result in changes in 

sediment properties as it equilibrates with its new environment (Buckley and Cranston 1991).

In an investigation of the dispersal of metals in the LaHave River and Estuary system in 

Nova Scotia, Canada, Buckley and Cranston (1991) found changes in the distribution of 
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metals between bed sediment, suspended sediment and the dissolved form between the river, 

estuary and marine environments. A rapid decrease in dissolved Fe by >100 ppb was found 

between the river and the estuary environments concurrent with an increase of the same 

magnitude in the Fe content of the suspended sediment. There was also an increase in the Fe 

concentration in the bed sediments of the estuary and similar trends were found with Cu, Zn 

and Pb. The highest concentrations of metals were found in the sediments of the estuary 

compared to both the river and marine environments demonstrating that the estuary was a 

significant sink of these metals. The suggested mechanisms for the removal of dissolved 

metals within the estuary are the coprecipitation with Fe oxyhydroxides, as a result of the 

increase in the pH from 6.4 to 7.2, and by adsorption onto flocs, as the increase in salinity 

from 0.8 to 4.0 ppt promoted flocculation (Buckley and Cranston 1991). This study again 

highlights the non-conservative behaviour of some elements in the context of both chemical 

transformations and particle size effects and emphasizes the need to assess the effect of 

changing environmental conditions from the headwaters to the river basin outlet on the 

behaviour of properties selected as fingerprints.

 2.7.2.2 Post-depositional transformations

Research has demonstrated that radionuclides and metals can become mobilized from 

stored sediments and subsequently released into the water column. Foster et al. (2006) 

demonstrated that 137Cs was mobilized from sediments deposited in a coastal lagoon in 

southern England. The authors suggest that the mobilization was due to differences in 

hydrostatic pressure between sea level and standing water levels in the lagoon which forced 

salt water up through the sediment column resulting in the replacement of 137Cs by 

monovalent cations on exchange sites leading to the upward migration and loss of 137Cs to the

65



water column. Similarly, Hudson-Edwards et al. (1998) presented evidence of chemical 

remobilization and the downward translocation of Pb, Cd, Cu and Zn from floodplain 

deposits in the UK. This was due to several processes including: the breakdown of metal-

bearing minerals; shifts in the chemical fractions towards more soluble and reactive phases 

due to low pH; and accumulation of secondary Fe and Mn oxyhydroxides due to a fluctuating

water-table or to the breakdown of organic matter. 

Post-depositional change in sediment properties is a serious concern as it may result 

in sediment no longer being representative of the original source. The change in 

environmental conditions suggest that some sediment properties may not be suitable as 

fingerprints in sedimentary environments (Owens et al. 1999). Palmer and Douglas (2008) 

included a diagenetic component in their un-mixing model as part of an investigation of 

sediment sources in the North Pine Dam in Australia. As shown in Fig 2.7 the principle 

component analysis revealed a cluster of points not associated with one of the three sediment 

sources and further examinations indicated that it could be interpreted as a diagenetic 

component. 
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There are many aquatic processes that can affect sediment properties. While the 

different aquatic processes and their controlling factors are generally well known there is 

currently a need to revisit these in terms of the influences they may have on sediment 

properties (e.g., post-depositional mobilization) within the context of the sediment 

fingerprinting approach. In particular, there is a need to evaluate each potential fingerprint 

and establish if it is suitable to be used in that particular river basin.
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Figure 2.7: Average end members (ο, Δ, □) from MCMC runs transformed into 
principal component space and connected to emphasize the simplex (greenstones 
■, granites▲, phyllites ♦, diagenetic component Y; the larger symbols indicate the
mean scores for each group, sediment samples o).From Palmer and Douglas, 
2008, reproduced with permission of the Royal Statistical Society.



 2.8 River basin processes

One of the biggest gaps in our understanding of the movement of sediment at the river

basin scale is the ability to identify, quantify and link the different processes discussed in 

earlier sections. Small scale and tightly constrained experiments provide valuable insight on 

individual processes but there is little information as to how the different processes identified 

within each component of the landscape are connected to other landscape components and 

how they interact. For example, Stone and Walling (1997) found no clear relationship 

between the properties, including effective and absolute particle size, of sediment being 

mobilized under simulated rainfall and the properties of the sediment being transported 

within a stream. This may be due to the fact that the processes that connect the mobilized 

sediments to the sediments collected within the stream were not identified or fully accounted 

for. In addition, as the scale of observation increases from plot to river basin there will be 

new and emergent properties. For example, particle selectivity at plot scales may be 

dominated by slope and soil properties, at the landscape unit scale topography will exert a 

larger influence, and at the river basin scale the geomorphological connectivity may be the 

dominant property influencing particle selectivity. In many cases connectivity may be 

controlled by very subtle features in the landscape that are difficult to detect.

Sediment does not move through watersheds in a smooth and continuous conveyor 

belt-like fashion but in-stream suspended sediment samples are the end result of many 

different intermediary processes that occur during the sediment transport continuum from the 

upland areas to the point of collection (Burt and Allison 2010). The discontinuities (points of 

storage) in sediment transport are caused by various features of the landscape, which, as 
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suggested by Fryirs (2013), can be broadly classified as buffers, barriers and blankets. The 

effective time scales for the different storage components range from event-based (e.g., fines 

stored in intergravel pores) to thousands of years (e.g., floodplain deposits) (Fryirs 2013). 

The effective storage times can have a large influence on sediment properties and have raised

questions as to which point these stored sediments represent a new and unique source of 

sediment. For example, Belmont et al. (2011) were able to differentiate between legacy and 

contemporary topsoil-derived sediment stored in floodplains by utilizing the differences in 

the half-life of 10Be (half-life of 1.36 × 106 years) and 210Pb (half-life of 22.3 years). Due to 

the long storage time (100 - 1000 years) and the relative short half-life of 210Pb, the legacy 

sediments were depleted in 210Pb whereas the change in 10Be concentration was negligible 

over that time scale.

In a recent article, Parsons (2012) highlighted the short-comings of use of storage 

terms in catchment sediment budgets suggesting that it is a poor substitute for a thorough 

understanding of the transit times (velocity) of sediments. The transit time of sediments 

through a river basin will vary depending on a number of river basin characteristics including

the size of the catchment, slope and climate. Sediment transit time is an important aspect to 

consider when evaluating the assumption of sediment and fingerprint property 

conservativeness. The longer the transit time, the less likely the sediment will still be 

representative of its original source which may lead to erroneous results in determining the 

relative contribution of sediment sources. Researchers have used fallout radionuclides 

including 7Be, 137Cs and 210Pb, to determine the transit time of sediment at a variety of river 

basin scales and the residence times for a variety of sediment storage features. On one end of 

the spectrum, Wallbrink et al. (1998) estimated an average transit time of 10 ± 5 years for 
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sediments being transported in a large (13,500 km2) catchment in New South Wales, 

Australia, however, there was evidence that some of the material had transit times on the 

order of weeks to months. On the opposite end of the spectrum, Bonniwell et al. (1999) found

the transit times of sediment in a mountainous catchment (389 km2) in central Idaho to be in 

the range of 1.6 days in the headwaters during the rising limb of the hydrograph (snowmelt) 

to 130 days near the outlet during the falling limb of the hydrograph (midsummer). Even 

storage within the channel can have a significant influence on sediment transit times. For 

example, Gartner et al. (2012) found fine-grained sediment infiltrating into the bed had 

residence times ranging from 4 to >300 days in unregulated rivers in east-central Vermont, 

USA. Similarly, Skalak and Pizzuto (2010) found that the residence times of fine-grained 

sediments trapped behind large woody debris ranged between 1 and 60 years with an average

residence time of 1.75 years. This research demonstrates there is a wide range in sediment 

transit times.

 The approximate residence times of larger and longer-term sediment storage features 

in river basins can be estimated through a variety of means. Historical records can provide 

information as the timing of construction and decommissioning of structures including 

reservoirs and other flood control structures that retain sediment. Aerial photography and 

other survey techniques can be used to estimate changes of stored sediment over time (e.g., 

Brasington et al. 2003). Channel patterns and migration rates can be used to constrain 

floodplain residence times (e.g., Beechie et al. 2006). It is important to have good 

understanding of sediment transit and residence times when evaluating the assumption of 

sediment and fingerprint property conservativeness, as many biogeochemical transformations

are slow processes (Fig. 2.5) and, therefore, changes in environmental conditions coupled 
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with long residence times can result in significant changes in sediment properties. This 

suggests that in larger river basins with numerous storage elements, and thus long sediment 

residence times, determining the sources of contemporary transported sediment using 

sediment fingerprinting may not be suitable.

 2.9 Implications for sediment fingerprinting

The non-conservative behaviour of sediment properties has significant implications 

for the sediment fingerprinting technique. Table 2.3 provides a summary of the different 

factors that can result in the non-conservative behaviour of sediment properties. The 

performance and reliability of the sediment fingerprinting can be greatly improved if the 

concerns surrounding the non-conservative behaviour of sediment properties are addressed. 

Research should be directed at lifting the lid on the black-box (Fig. 2.3) of the sediment 

fingerprinting technique and by incorporating the processes that link the inputs (sediment 

sources) to the output (collected sediment). There are three main research priorities identified

that will help to address these concerns: (1) accounting for the fate of sediment and 

fingerprint properties; (2) fingerprint selection processes; and (3) assessment of limitations 

and uncertainty.
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 2.9.1 Accounting for the fate of sediment and fingerprint properties

Accounting for changes in sediment properties that occur as it moves though the river

basin is an important step in the sediment fingerprinting technique that has received 

insufficient attention to date. Table 2.4 shows the wide range of different approaches that 

have been used in dealing with the issues surrounding the non-conservative behaviour of 

sediment properties. The most common approaches include particle size corrections, organic 

matter content corrections and limiting the analysis to a particular sediment size fraction. 

There is no clear relationship between the approaches used and the scale of investigation, 

although one would expect to see a great deal more transformations as the size of river basin 

moves from small (<10 km2) to local (10 – 100 km2) to regional (>100 km2) scales. 

Furthermore, the values for these correction factors are rarely given in the literature, which 

makes the interpretation of the uncertainty associated with the methodology difficult to 

assess. There are also several cases in which there are other considerations given to the non-
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Table 2.3: Factors affecting sediment property conservativeness.

Factor Implication

Physical

Particle selectivity

Changes in hydrodynamic properties

Abrasion/disaggregation Changes in particle size distribution

Biochemical

Geochemical

Adsorption/desorption Changes in the sediment – water partitioning of geochemical elements

Dissolution/precipitation Minerals have varying degrees of solubility 

Oxidation/reduction Changes in the mobility of geochemical elements 

Radioactive decay/fallout

Difficult to correct for differences in particle size and organic matter 
content between source and sediment

Aggregation/flocculation

Immobilization/mineralization
Temporary storage of geochemical tracers
Loss or overprinting of organic tracers

Radionuclide activity concentration can change during transport



conservative behaviour of sediment properties. Table 2.4 highlights how problematic it is to 

use the literature for deciding which approach or methodology is most appropriate to follow.

Despite our increased understanding of the various physical and biogeochemical 

processes that occur within landscapes, there exists a need to integrate this information and 

produce process- or empirical-based corrections to account for changes in sediment 

properties. The ratio of the specific surface area or organic matter content of sediment 

samples to the average values for each source (enrichment ratio) are commonly used as 

correction factors to account for changes in the particle size distribution, and organic matter 

content (Owens et al. 2000). This method of correction is a simplification of the process of 

particle selectivity and can result in the incorrect adjustment of fingerprint values. In 

addition, Russell et al. (2001) demonstrated that the particle size correction factor is not 

uniform across the different geochemical properties or between catchments (Table 2.2) and 

there is evidence that a single organic matter correction factor may also be inadequate for the 

adjustment of fingerprint values, especially as river sediment is composed of both 

allochthonous and authochthonous organic components. Further research is needed to better 

characterize the influence of both particle size distribution and organic matter content on 

sediment fingerprints.

This review has identified many different transformation processes that can change 

the physical and biogeochemical properties of sediment throughout the sediment transport 

continuum. Currently, these transformation processes are generally not included despite the 

potential for a distortion in the fingerprint signal. Davis and Fox (2009) have suggested that 

there is a need to develop and include process-based corrections, including the modelling of 

biodegradation of organic fingerprints and chemical modelling to account for the 
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equilibrating of sediment as it moves from the terrestrial to the aquatic environment. It is also

essential to account for the effects of continued radionuclide fallout and decay on the radio-

chemical properties of sediment as it moves though the environment.

The challenge remains to develop practical predictive models for large areas (e.g., 

river basin) over longer time-scales (e.g., seasonal), and not just for a particle at a given 

location and moment in time. The aim should be to accurately predict changes in sediment 

properties from the fewest, most readily and inexpensive variables. This may include 

identifying and ranking the relative importance and interactions of processes and 

environmental factors that influence the conservative behaviour of sediment fingerprints. 

These corrections will need to be site specific as the major factors (e.g., soils, vegetation, 

hydrology) regulating sediment dynamics will vary between river basins.
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Table 2.4: Common approaches in dealing with issues of the conservative behaviour of 
sediment properties.

Other considerations References

N N <63 NA 4.4

N N <63 NA 985

N N <63 NA 22

Y N <63 Y 1.36 Smith et al. 2011

Y N <63 Y 1.5 – 3.6 Russell et al. 2001

Y N <63 N 3315 – 818 Walling et al. 1999

Y Y <63 N 19 – 100 Collins et al. 2010b

Y Y <63 N 214 Collins et al. 2012

Y N <63 N 1932 Carter et al. 2003

N N <10 NA 17 – 629

N Y 11.1 Motha et al. 2004

Y N <2000 N 0.05

N N <2000 NA 189

N N <2000 NA 907 Evrard et al. 2011

N N bulk*** NA 347

Y = yes
N = no
NA = not applicable
OM corr = organic matter correction
TC corr = tracer conservativeness correction
PS corr = particle size correction
*See Table 2.2 for the tracer specific particle size correction factor values
**Size fractionation of sediment was used in place of particle size correction factors
***Samples contained < 5% sand

Particle 
size 

correction

Organic 
matter 

correction

Size 
analyzed 

(μm)

Correction 
values 

provided
Watershed 
size (km2)

Martínez-Carreras 
et al. 2010b

Rahaman et al. 
2010

Conservativeness of tracer 
properties were assessed 
experimentally

Poulenard et al. 
2012

Tracer specific particle size 
corrections*

Excluded elements being 
discharged form point 
sources in solution

Corrected for natural decay 
of 137Cs and 210Pb

xs

Wilkinson et al. 
2009

<2, 
2–20 20–
40 40–

63**

Tracer conservative 
correction factor 
(empirically-based)

N – OM corr
Y – TC corr

NA – PS corr

Used eroded material 
collected on hillslope plots 
as source material

Fukuyama et al. 
2010

Excluded non-conservative 
elements

Mukundan et al. 
2010

Excluded gypsum due its 
rapid dissolution

Included a diagenetic 
component in the end 
member analysis

Palmer and Douglas 
2008



 2.9.2 Fingerprint selection process

While it may be difficult to develop procedures to account for the biogeochemical 

transformations given the complexity of a river basin, focusing on selecting fingerprints that 

are less likely to be subject to transformations might be a more practical approach to deal 

with this issue. However, there are no clear guidelines in place for the selection of fingerprint

properties for use in the sediment fingerprinting technique. Sediment fingerprints, especially 

geochemical properties, are often selected on the basis of their ability to statistically 

differentiate between multiple sediment sources with little discussion surrounding how the 

properties selected behave in the environment. An approach to determining sediment sources 

that is dominated by statistical tests without due regard for sediment behaviour, that is used 

by some researchers, may not always be the most appropriate method as some elements (e.g.,

Ti, Al, Li) are known to behave more conservatively (Horowitz 1991) and other elements 

(e.g., nutrients) tend to be more mobile and perhaps should be excluded from fingerprinting 

studies. Differences in geochemistry that are related to the primary mineral structure (inert 

fraction, see Fig. 2.5) of the sediment may provide a more robust fingerprint as it is less 

subject to biogeochemical transformations. There is a need to develop a framework to guide 

the selection of sediment properties that would be suitable to use for a given river basin. 

River basin variables including erosional processes, depositional environment, water 

chemistry, sediment transit times, size of river basin, presence of buffering features, climate 

and hydrology need to be taken into consideration when selecting sediment properties as 

fingerprints as all of these will influence the conservative behaviour of sediment properties. 

Selection of sediment properties best suited for the environment in which they are being used
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will result in increased confidence in the sediment source apportionment results.

 2.9.3 Assessment of limitations and uncertainty

Multiple lines of evidence can decrease the uncertainty of source apportionment 

results from sediment fingerprinting. There is a wide range of techniques that can be 

combined with sediment fingerprinting to help constrain and support sediment source 

apportionment results, including field observations and survey, direct tracing, aerial 

photography and written historical records. For example, Collins et al. (2013) combined 

geochemical fingerprinting with particle tracking using the application of fluorescent-

magnetic grains to assess the sources of sediment in the River Glaven basin (115 km2) in 

eastern England. The application of artificial tracers was to provide preliminary sub-

catchment scale information on sediment loss from key components of the landscape. 

Similarly, Pittman et al. (2008) used the sediment fingerprint technique in conjunction with 

historical documentary evidence of land use to identify and evaluate the relative significance 

of sources of sediments collected from Aqualate Mere, a shallow lake in Staffordshire, UK. 

Navratil et al. (2012) used a similar approach using sediment cores from a mountainous 

catchment (905 km2) in the French Alps. Belmont et al. (2011) assessed the sources of 

sediment in the Le Sueur watershed (2880 km2), a tributary of the Minnesota River, by 

combining sediment fingerprinting and a suite of geomorphic change detection techniques 

including aerial lidar analysis, repeated terrestrial lidar scans, radiocarbon and optically 

stimulated luminescence dating, air photo analysis, field surveys, and water and sediment 

gauging with a sediment budget for the watershed.

Recent advancements in statistical un-mixing models (e.g., the use of Markov Chain 
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Monte Carlo algorithms) have produced results with very small margins of error (in some 

cases ±1%) surrounding estimates of the relative contribution of individual sediment sources.

While these advancements have been important in addressing concerns over analytical errors 

associated with the statistical technique, caution needs to be taken in interpreting the results. 

The small margins of error do not include the uncertainty associated with the sampling error, 

or the assumptions surrounding the conservative behaviour of sediment properties. There are 

also issues surrounding the reporting of pertinent information including information on the 

environmental conditions of the river basin, data on the primary fingerprint signature of the 

source material and sediments, the process by which fingerprints were selected and the 

methodology used in source apportionment. Without this information it becomes difficult to 

clearly assess the research and put the results in the appropriate context. There is a need to be

more forthcoming in discussing limitations of the sediment fingerprinting approach. This will

allow the user of the information to better assess the uncertainty surrounding the results as it 

is an important part of any subsequent management or mitigation decision-making process. 

 2.10 Conclusions

This review identifies numerous processes that drive particle size and organic matter 

selectivity and biological, geochemical and physical transformations from particle (μm) to 

river basin (km) scales. Understanding and accounting for these processes is complex due to 

the high spatial and temporal variability and this limits the ability to reliably link sediments 

back to their sources. While the development of methods to account for changes in sediment 

properties (e.g., particle size correction factors) remains a significant research challenge, 

there are several ways in which these issues can be addressed including: (1) consideration of 
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river basin characteristics when selecting sampling locations and when interpreting the data; 

(2) better characterization of sediment sources through improved sampling techniques and 

design; (3) improved fingerprint selection including consideration of how sediment 

fingerprints have developed and how robust they are within the environment; (4) the 

inclusion of multiple lines of evidence to constrain apportionment estimates; (5) better 

reporting of methodology and fingerprint property data for sources and sediment; and (6) a 

clear assessment of the sources of error and limitations of the sediment fingerprinting study.

Sediment fingerprinting has the potential to be an effective management tool to 

address sediment pollution. However, Mukundan et al. (2012) stressed that in order for it to 

move from a research tool to a management tool there needs to be streamlining of the 

sediment fingerprinting technique and the establishment of standardized procedures. An 

important part of the process of moving the sediment fingerprinting technique from a 

research to management tool will be to have better accounting for changes in sediment 

properties, improved fingerprint selection criteria, and a clear assessment of the limitations of

the techniques. These developments will improve the robustness and the utility of the 

sediment fingerprinting approach. However, the scientific community needs to find a balance

where the sediment fingerprinting approach provides reliable information while at the same 

time remaining a cost- and time-effective tool for river basin management. For this, the 

approach also needs to be relatively simple in concept (i.e., easy to understand) and all the 

methodological steps need to be clear and concise (i.e., easy to understand). This will 

ultimately lead to better tools for determining how anthropogenic activities are affecting 

sediments dynamics and to the development of better management practices and improved 

soil and water quality.
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 3 The role of soil surface properties on the particle size and 

carbon selectivity of interrill erosion in agricultural landscapes

 3.1 Abstract

The selective nature of interrill erosion – the preferential mobilization and transport of soil 

particles – can lead to the enrichment of fine-grained soil particles (< 63 μm) and organic 

carbon (OC) within the mobilized soil. This study investigated the effects of slope gradient, 

vegetative cover, soil moisture content, texture and organic matter content, as well as their 

interactions on soil loss, particle size distribution and organic carbon content of soil 

mobilized under simulated rainfall within two contrasting agricultural regions in Canada. 

Overall, it was found that the eroded material was enriched in both fine-grained and carbon-

rich particles relative to the source soil. It was demonstrated that dispersing and sieving both 

the source soil and the mobilized soil to < 63 μm (i.e., removal of sand and large particulate 

organic matter) reduced the relative enrichment of both fine-grained soil particles and OC, 

which would allow for a more direct comparison of physical and biogeochemical properties 

between the soil and mobilized soil. Furthermore, it was demonstrated that while the soil loss

and the degree of enrichment were negatively correlated, there were differences in which soil

surface properties had a significant effect in determining soil loss and the selectivity of both 

fine-grained and organic-rich soil particles and how these surface properties interacted. This 

suggests that while soil loss may be a good predictor of the degree of enrichment, the factors 

that control these two processes are different, which is important in understanding the process

of selectivity. It was also shown that the OC content of both the source and mobilized soil 
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was positively correlated to the degree of soil aggregation in addition to the silt and clay 

content.

 3.2 Introduction

Soils are important natural resource that are depended upon for the majority of the 

global food and fibre production for human consumption and use. However, the growing 

global population has decreased the per capita arable land area and the productivity of this 

land is being diminished by degradation (Foley et al. 2005; Lal 2006; Pimentel 2006). One of

the main causes of land degradation is soil erosion by water, wind and tillage (Lal 2006; 

Montanarella et al. 2016). Soil erosion reduces crop yields through the loss of organic- and 

nutrient-rich topsoil. Furthermore, the sediment produced by soil erosion, when delivered to 

surface waterways, can result in the degradation in water quality through increased turbidity 

and nutrient loading (Bilotta and Brazier 2008). In an effort to address these issues there has 

been a tremendous amount of research over the past century investigating the process of 

interrill erosion and its controlling factors (Dotterweich 2013). 

The rate of interrill erosion is often modelled as a function of the combined effects of 

the inherent erodibility of the soil, slope and rainfall intensity (Elliot et al. 1987). Adjustment 

factors are often used to account for different site conditions, including canopy cover, ground

cover, and sealing and crusting (Alberts et al. 1995). In contrast, there has been less research 

on the effects of these factors on the physical and biogeochemical properties of the 

mobilized, transported and deposited material despite the fact that soil erosion has been 

identified as a selective process in terms of both particle size and organic matter content 

(Ballantine et al. 2008; Chartier et al. 2013). For example, selectivity occurs when mobilized 
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soil (eroded material) has a finer grain-size distribution and a higher organic matter content 

as compared to the source material (soil) as the smaller and less dense particles are 

preferentially mobilized and transported. However, the influence of properties at the soil 

surface (e.g., ground cover, slope gradient and soil texture) on the preferential mobilization of

soil particles has not been fully evaluated.

The preferential mobilization and transport of organic-rich soil particles are important

processes as organic carbon (OC) has a large impact on soil physical (e.g., water retention), 

chemical (e.g., nutrient retention), biological (e.g., biodiversity) and ecological (e.g., carbon 

sequestration) qualities (Lal 2014). Interrill erosion and more generally, soil erosion, is an 

important, albeit a poorly understood, component of the global carbon (C) cycle (Van Oost et 

al. 2007). The erosion of OC results in the redistribution of the total OC pool within the 

landscape at the field-scale, both laterally and vertically, resulting in a decline in OC in 

eroding areas and a corresponding increase in OC in depositional areas (Van Oost et al. 

2007). Fine-grained and organic-rich soil particles can act as a vector for nutrients and other 

contaminants (Quinton and Catt 2007; Oliver et al. 2007; Zheng et al. 2012; Yang et al. 

2013). The higher concentrations of nutrients within the fine-grained and organic-rich 

fraction coupled with their preferential mobilization and transport results in a lateral and 

vertical redistribution of nutrients across the landscape increasing the environmental 

significance of erosion (Zhang et al. 2014). Soil erosion can also have an influence on other 

soil physical and chemical properties including pH, stone content, carbonate concentration 

and bulk density (Li et al. 2007). The net effect of soil erosion processes on the C balance 

and nutrient distribution depends on the scale of investigation which can range from plot- to 

field- to watershed-scale. Synthesizing information about the processes that regulate C and 
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nutrient dynamics at different spatial scales will help clarify the role soil erosion has on the 

global C cycle. Information on how properties of the soil surface determine the organic 

matter selectivity of soil erosion will also provide additional predictive capabilities regarding 

C and nutrient dynamics in agricultural systems.

Particle size and organic matter selectivity and the resultant enrichment within the 

eroded material is primarily driven by the energy regime of the raindrop impacts and 

overland flow, with higher energy erosional processes being less selective (Proffitt and Rose 

1991; Issa et al. 2006; Schiettecatte et al. 2008; Armstrong et al. 2011). However, soil surface

properties can also influence the process of selectivity. The influence of a range of soil 

surface properties including texture, organic matter content, vegetative cover and slope 

gradient on both particle size distribution and organic matter composition of eroded material 

have been investigated (Quinton et al. 2001; Armstrong et al. 2011; Defersha and Melesse 

2012; Shi et al. 2013; Chartier et al. 2013). Information on the selectivity of interrill erosion 

processes is needed as input for watershed management tools including sediment budgets and

the assessment of geomorphic connectivity, as fine-grained and organic-rich particles can 

have different patterns of erosion, transport and deposition (Stone and Walling 1997; Di 

Stefano and Ferro 2002). Another important watershed management tool that is influenced by

particle selectivity is sediment fingerprinting (Koiter et al. 2013). The sediment 

fingerprinting technique uses the physical or biogeochemical properties of soils as tracers, 

and is employed to identify sediment sources and estimate their contributions to the total 

sediment load in streams (Owens et al. 2016). However, many of the properties commonly 

used as tracers (e.g., trace metal concentrations and fallout radionuclide activities) are 

sensitive to changes in particle size distribution and organic matter content. Knowledge 
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regarding the process of selectivity is needed to account for these changes so that a more 

direct comparison between source soils and sediment collected down-stream can be made 

(Koiter et al. 2013; Smith and Blake 2014).

The purpose of this research was to identify the significance of a range of naturally 

occurring soil surface properties in agricultural landscapes and their interactions on interrill 

erosion in terms of the enrichment of fine-grained particles and SOC. The soil surface 

properties examined include: vegetative cover, slope gradient, silt content, soil organic matter

content and antecedent soil moisture content. The objectives of this research were: (1) to 

assess the enrichment of fine-grained particles (< 63 μm) and SOC of mobilized soil with 

respect to their source soils; (2) to identify how properties of the soil surface influence soil 

loss and the enrichment of fine-grained particles and SOC in the mobilized soil; (3) to 

investigate the relation between SOC and particle size distribution (primary and aggregated) 

in both the source soil and the mobilized soil; and (4) to characterize the implications of the 

selectivity of interrill erosion for C, nutrient and geochemical fluxes.

 3.3 Materials and methods

 3.3.1 Site descriptions

Two contrasting agricultural regions in Canada were used to investigate particle size 

and organic matter selectivity of soil erosion under a range of soil surface properties (e.g., 

vegetative cover and texture). The first region was the South Tobacco Creek (STC) 

watershed, which is situated in south-central Manitoba (Fig. 3.1). The STC watershed is 75 

km2 and is predominately agriculture with the majority of land under annual crops including 

wheat, canola, flax and barley. The STC watershed extends across the Manitoba Escarpment; 
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its upper reaches lie in undulating glacial tills and its lower reaches lie in the lacustrine 

sediments of glacial Lake Agassiz (Agriculture and Agri-Food Canada 2011). The soils above

the escarpment are Dark Grey Chernozems with a clay-loam texture, below the escarpment 

the soils are Black Chernozems with a clay texture and the valley walls soils are Regosols 

(Hope et al. 2002). The second region was the Beaver Valley (BV) watershed which is 

situated in the Fraser Plateau, located in central British Columbia (Fig. 3.1). The BV 

watershed is predominately forested with pasture and forage land uses in the flatter valley 

bottom sections. This study targeted a 10 km stretch of agricultural land in the valley bottom 

where the soils are Dystric Brunisols and Orthic Regosols, with a sandy loam texture with 5 –

10 % coarse fragments (> 2 mm) (Lord 1984). 
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hillslopes were identified that spanned the different physiographic regions of the watershed: 

above, within and below the Manitoba Escarpment. The hillslopes identified above and 

below the escarpment were cultivated fields and the hillslope within the escarpment was a 

forested site containing a cattle trail going down a steep valley wall towards the creek. 

Similarly, in the BV watershed a total of six hillslopes were identified with the disturbance 

ranging from winter feeding sites, areas with high grazing pressure and cattle and vehicle 

paths. 

On each hillslope, a transect was established extending from the hilltop down to 

either the field or riparian edge. On each transect, rainfall simulation runoff plots were 

established on the upper, mid and lower slope positions. Different hillslope positions were 

used as this exploited the natural and contemporary patterns of soil erosion and served to 

expand the quantitative range of soil and surface properties investigated. Furthermore, each 

runoff plot was investigated on two or three occasions to obtain a broader range of soil and 

surface properties, particularly a broader range in antecedent soil moisture content and 

vegetative cover. The research sites within the BV watershed were investigated on three 

occasions: spring (June), summer (August) and autumn (October) of 2012 for a total of 60 

rainfall simulations. However, the sites within the STC watershed were only investigated on 

two occasions: spring (June – prior to crop emergence) and autumn (October – post-harvest) 

of 2013 as the tall and dense crops created unsuitable conditions for the rainfall simulation 

experiment during the summer growing season for a total of 30 rainfall simulations. The 

runoff plots were not located in the exact same location between seasonal site visits due to 

soil disturbance during the rainfall simulations, but all plots for a given transect and slope 

position were located within 2 – 3 m of each other. By locating the runoff plots on different 

102



hillslope positions, across different transects and in two distinctive agricultural locations, this 

rainfall simulator experiment reflects some of the spatial variability at the soil catena, 

landscape and regional scales. In addition, the measurements made during different seasons 

allowed for some of the temporal variability to be accounted for (e.g., vegetation cover, soil 

moisture, aggregate stability). For example, Stone and Walling (1997) found that the relative 

proportion of different grain-size fractions of sediment generated under simulated rainfall 

changed over the course of the year. Capturing this spatial and temporal variability allows 

generalizations to be developed about the significance of the various properties of the soil 

surface and their interactions in determining soil loss and the enrichment of fine-grained soil 

particles and SOC.

 3.3.2 Rainfall simulator

A field-portable rainfall simulator, based on the design of Clarke and Walsh (2007), 

was used to generate runoff at the field sites described above. Briefly, this simulator requires 

no power, is gravity fed and is capable of producing rainfall intensities between 50 - 200 mm 

hr-1 with a drop size distribution and kinetic energies similar to natural rainfall (Clarke and 

Walsh 2007). For an intensity of 200 mm hr-1 Clark and Walsh (2007) reported a median drop

size of 4.15 mm and a total storm kinetic energy of 727 J m-2 (over a 20-minute storm event). 

Due to the small footprint of the rainfall simulator used in this study, the area of the runoff 

plots was limited to 0.16 m2. The small runoff plot dimensions limited this study to the 

investigation of then selectivity of interrill or sheet erosion processes as the short slope length

limited the formation of rills. The plot boundaries were constructed from stainless steel plates

(40 cm long and 15 cm tall) and the plates were pushed 5 – 10 cm into the soil; care was 
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taken to minimize soil disturbance and to ensure a water tight seal with the soil during the 

installation process. On the down-slope edge a shallow triangular gutter collected the runoff 

into 1 L polyethylene bottles, similar to the design reported in Cao et al. (2015). Deionized 

water was used in the rainfall simulations to ensure consistency across all simulations. A 

rainfall intensity of 200 mm hr-1 was used; while this intensity is high, it can provide 

information on the characteristics of the soil mobilized under rainfall and, importantly, within

the requirements of this research, provide an adequate sample mass (> 2 g) for analyses 

within a reasonable time frame. The rainfall simulation was run until there was 40 min of 

continuous runoff and the runoff was divided into two separate samples, again to ensure 

adequate sample mass for analysis. Within the literature, the reported time to reach a steady-

state condition using rainfall simulators ranges from < 5 min (e.g., Asadi et al. 2007) to > 20 

min (e.g., Armstrong et al. 2011) and this variability is related to differences in the applied 

rainfall rate and soil surface properties (e.g., texture, antecedent moisture, slope) (Proffitt et 

al. 1991). Within this study, the first 20 min of runoff (0 – 20 min) is likely more 

representative of easily erodible material while the second 20 min (20 – 40 min) is more 

representative of erosion under steady-state conditions. This sampling design is similar to the 

approach of Jin et al. (2009) where rainfall rates of 65 – 105 mm hr-1 were applied over a 

0.27 m2 plot and runoff samples were collected in 15 min segments over a 90 min period. 

Due to low samples masses, Jin et al. (2009) aggregated the samples into two discreet 

samples (0 – 60 and 60 – 90 min) to allow for nutrient, SOC and particle size analysis. 

Despite the runoff sample aggregation Jin et al. (2009) found an effect of sampling period on 

the enrichment of SOC.

Source soil samples (0 – 2 cm) were collected immediately outside the plot 
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boundaries prior to the start of the rainfall simulation in order to characterize the antecedent 

soil moisture content, SOC content and particle size distribution. The percent vegetative 

cover of the runoff plot was measured using digital photography and ImageJ image analysis 

software (Schneider et al. 2012). Photographs were taken with a Fujifilm FinePix Z33WP 10 

mega pixel camera held parallel to, and approximately 1.5 m from the surface. Each digital 

image covered the entire plot area (0.16 m2) and was analyzed for vegetative cover by 

contrasting the difference in light-coloured vegetation with the dark-coloured soil (Koiter and

Lobb 2008). The gradient of the soil surface was measured using a clinometer (Jordán and 

Martínez-Zavala 2008). A summary of the soil surface properties for both watersheds can be 

found in Table 3.1.
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 3.3.3 Laboratory analysis

 3.3.3.1 Source soil and mobilized soil

A process flow diagram describing the sample preparation, subsampling and the 

analysis for both the source soil and mobilized soil is found in Fig. 3.2. The collected source 

soils were passed through a 2-mm sieve, the coarse stone fragments and large pieces of 

organic matter were removed and the sample was oven-dried. Prior to drying, a subsample 

was removed and stored at 4 °C and was used to measure the aggregated, or effective particle

size distribution (EPSD) and for determination of the gravimetric moisture content. Runoff 

samples were left to settle in a cool dark room for 48 hrs and then the clear supernatant was 
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Table 3.1: Summary of soil surface (0 – 2 cm) characteristics for both the Beaver Valley and 
South Tobacco Creek watersheds.

Beaver Valley watershed
Min. 4.5 22.4 17.6 2.1 4.1 3.2 1.7 2.8 6.4 3.3

6.2 33.3 44.3 4.6 38.7 13.8 5.2 5.0 10.8 5.3
Median 8.4 42.9 47.5 7.7 68.9 31.9 8.7 6.3 12.9 7.2
Mean 8.6 41.3 50.1 12.3 62.8 35.2 8.9 6.1 12.9 10.2

10.0 46.1 60.3 16.2 86.7 50.7 10.5 6.8 14.1 12.7
Max. 17.4 67.2 72.8 40.6 100.0 110.7 21.3 9.6 19.5 33.8

South Tobacco Creek watershed
Min. 10.9 47.0 9.3 0.0 2.0 12.7 1.7 1.2 3.6 0.7

11.9 57.8 15.8 0.1 9.5 23.0 1.7 2.8 6.4 1.2
Median 14.7 61.3 24.0 3.3 20.3 31.3 5.2 3.5 8.4 1.5
Mean 15.7 61.1 23.3 5.2 34.0 32.0 11.7 3.3 8.4 2.1

19.7 65.0 31.1 7.9 51.0 38.2 14.5 4.2 10.7 1.9
Max. 22.6 75.4 34.9 24.4 98.0 61.8 51.0 5.1 12.8 17.4

Overall
Min. 4.5 22.4 9.3 0.0 2.0 3.2 1.7 1.2 3.6 0.7

7.2 39.9 27.8 3.5 19.5 20.6 5.2 3.9 9.1 2.0
Median 10.0 46.2 44.2 6.1 55.8 31.7 8.7 5.1 11.3 5.4
Mean 10.9 47.9 41.2 9.9 53.2 34.1 9.8 5.2 11.4 7.5

13.5 58.8 53.0 12.9 83.5 45.3 10.5 6.4 13.5 9.0
Max. 22.6 75.4 72.8 40.6 100.0 110.7 51.0 9.6 19.5 33.8

Clay* 
(%)

Silt* 
(%)

Sand 
(%)

> 2mm 
(%)

Veg. 
cover 
(%)

Soil 
moisture 

(%)
Gradient 

(%)

Soil org. 
carbon 

(%)

Soil org. 
matter 

(%)

Particulate 
org. matter 

(%)

1st Quartile

3rd Quartile

1st Quartile

3rd Quartile

1st Quartile

3rd Quartile

* Measured using laser diffraction which tends to underestimate clay and over estimate silt proportions 
relative to more common sedimentation techniques



siphoned off and the samples were oven-dried and weighed. Prior to settling, the runoff 

samples were gently stirred to resuspend the soil particles and a representative subsample 

was removed and stored at 4 °C and used for the determination of the EPSD.

 3.3.3.2 Particle size analysis

The EPSD for the source soil samples was measured by combining field-moist soil 

with deionized water (1:20 ratio of soil to water) in a 25 mL centrifuge tube and placing the 

sample on a reciprocating shaker (25 rpm) for 10 min. The samples were then measured for 
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Figure 3.2: Schematic showing the sample preparation, subsampling and analysis for the 
effective particle size distribution (EPSD; see inset), dispersed particle size distribution 
(DPSD), absolute particle size distribution (APSD), particulate organic matter (POM), soil 
organic matter (SOM) and soil organic carbon (SOC).
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EPSD immediately by laser diffraction (Malvern Mastersizer 3000, Malvern, UK). These 

samples were introduced directly to the dispersion unit (600 mL) and the pumping/stirring 

speed was set low (1800 rpm) to limit aggregate breakdown but fast enough to prevent 

settling. Similarly, the EPSD for the runoff samples was measured by introducing the sample 

directly into the dispersion unit with no prior disaggregation or removal of organic matter. 

For the dispersed particle size distribution (DPSD), the oven-dried samples (up to 15 

g) were weighed and placed in 100 mL beakers and deionized water was added to make a 1:5

ratio (soil to water) slurry. The samples were vigorously stirred for 15 min and allowed to 

settle for 12 hrs and the coarse organic matter that was floating on the surface was removed 

using a scoopula and was dried and weighed. The remaining sample was disaggregated using 

an ultrasonic probe (Misonix S-4000, Qsonica, Newtown, CT, USA) with a power output of 

45 W and the duration of sonication for each sample was adjusted so that the amount of 

energy delivered was 300 J mL-1 (based on the total sample volume) (Yang et al. 2009). The 

samples were sonicated while in an ice bath and the sonication energy was pulsed (2 min on, 

1 min off) to prevent the over-heating of the sample and probe. The disaggregated samples 

were washed, using approximately 500 mL of deionized water, through nested 125- and 63-

μm sieves resulting in three size fractions: 2000 – 125, 125 – 63 and < 63 μm. The two larger 

particle size fractions were back-washed into glass beakers and the < 63-μm fraction was 

transferred into a 1000 mL beaker and all three size fractions were oven-dried and weighed. 

For the primary, or absolute particle size distribution (APSD), both source soil and 

mobilized soil samples received the same particle size analysis protocol that combines both 

sieving and laser diffraction techniques. For the < 63-μm fraction, a subsample of both the 

oven-dried source and mobilized soil were digested with hydrogen peroxide (35 %) to 
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remove organic matter and an aliquot of sodium hexametaphosphate and sodium carbonate 

was added following the procedure of Kroetsch and Cang (2007). The sample was re-

sonicated following the same procedure outlined above. The particle size of the < 63-μm 

fraction was then measured using laser diffraction. The sieving and laser diffraction particle 

size techniques were merged by multiplying the percent < 63 μm (by mass) by the percent in 

each size class measured by laser diffraction (by volume). This method assumes a uniform 

particle density and has been used by other researchers (Nadeu et al. 2011). The mass of the 

organic matter in each size fraction was accounted for based on the loss-on-ignition values. 

 3.3.3.3 Soil organic carbon and organic matter analysis

Organic matter and SOC analyses followed the same protocol for both source and 

mobilized soil. Organic matter was determined for each of three particle size fractions (i.e., 

2000 – 125, 125 – 63 and < 63 μm) using the loss-on-ignition technique (550 °C for 1 hr). 

The total mass of organic matter content was estimated by multiplying the total mass of each 

size fraction by the organic matter content (%). Particulate organic matter (POM) was 

estimated by summing of the organic matter content across the 2000 – 125 and 125 – 63 μm 

size fractions (Yang et al. 2009). Soil organic matter (SOM) was determined as the mass of 

organic matter in the < 63-μm fraction (Yang et al. 2009).

Similar to the SOM analysis, SOC was measured as the C contained within the < 63 

μm size fraction; however, due to the large number of samples the particulate (> 63 μm) 

organic carbon (POC) was not measured. No pretreatment was used to remove inorganic 

forms of carbon as test samples did not effervesce with the addition of 10 % hydrochloric 

acid and the pH (1:2 ratio of soil to water) of the soils were < 7.5 which indicate that 

carbonates are not present in significant quantities. Therefore, total C was used to estimate 
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organic C content. Total C analysis was measured using an elemental analyzer (Elemental 

Combustion System ECS-4010, Costech Analytical Technologies Inc, Valencia, CA, USA). 

The SOC mass in each sample was estimated by multiplying the mass of the <63-μm fraction

by the C content (%).

 3.3.4 Data analysis

 3.3.4.1 Enrichment ratios and aggregation index

Enrichment ratios (ER) are a convenient way to compare the properties of mobilized 

soil to the source soil. Enrichment ratio values > 1 indicate an enrichment, and values < 1 

indicate a depletion as compared to the source soil. For example, the enrichment ratio for 

SOC (ERSOC) for the mobilized soil was calculated as:

ERSOC = [ SOC ]mobilized / [ SOC ]source (1)

Where [SOC]mobilized is the organic carbon content (%) in the mobilized soil and [SOC]source is 

the organic carbon content (%) in the source soil. Enrichment ratios for the different size 

classes and soil organic matter fractions were calculated using the same procedure.

The aggregate silt and clay (ASC) index (Igwe 2000) was used to investigate the 

degree of aggregation in both the source and mobilized soil samples and was calculated as:

ASC = < 63μ mDPSD − < 63μ mEPSD (2)

Where < 63 μmDPSD is the sum of the clay and silt fraction (%) in the disaggregated form 

(DPSD) and < 63 μmEPSD is the sum of the clay and silt fraction (%) in the aggregated (i.e., 

EPSD) form.

 3.3.4.2 Statistical analysis

All statistical analysis was undertaken using R Statistical Software v3.3.2 (R Core 
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Team 2016) through RStudio Integrated Development Environment v0.99.903 (RStudio 

2016). Linear mixed models (R package nlme version 3.1.128 Pinheiro et al. 2016) were used

for all analyses with transect and runoff plot as random factors. Runoff plot was included as a

random factor to control for the fact that the two runoff samples (i.e., 0 – 20 and 20 – 40 min 

runoff samples) are not independent (temporal pseudoreplication). Hillslope position (i.e., 

upper, mid and lower) was added as a covariate to control for any inherent variability along 

the length of a transect. Data were centred (i.e., predictors have mean of 0) prior to analysis 

to improve the interpretation of main effects and interactions. Since interaction between 

variables can influence the interpretation of main effects, all two-way interactions were 

investigated and added to the model in a backward stepwise process based on the likelihood 

ratio test (p-value < 0.1). Normality and homogeneity of variance were assessed visually and 

response variables were transformed, when necessary, to meet these assumptions. All models 

were checked for multiple collinearity (all variation inflation factors (VIF) were < 5 and 

condition numbers (i.e., kappa) were < 20) (Quinn and Keough 2002). 

All graphical plots were created using the R package ggplot2 v0.9.3.1 (Wickham 

2009). Differences in enrichment ratios between the two runoff periods were assessed by 

post-hoc pairwise comparisons with the Bonferroni p-value adjustment method when the 

model showed a significant main effect of runoff period or an interaction between the 

variable (e.g., size class) and the runoff period (R package multcomp version 1.4-0; Hothorn 

et al. 2008). Data were averaged across all runoff plots for each runoff period and plotted 

showing the standard error about the mean. For all other analyses, graphical plots were 

created with non-transformed data and show the model relation (regression line). Each 

relation was plotted while holding all other variables constant. In cases where interactions 
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were significant the modelled relations represent ± 1 standard deviation about the mean and 

data were also categorized based the mean value for a given soil surface property. Pearson 

correlation coefficients were calculated to assess the relation between enrichment ratios and 

soil loss as well as SOM and SOC content.

 3.4 Results

 3.4.1 Soil loss

There was a large range in the total mass of mobilized soil generated under the 

simulated rainfall. The distribution was heavily positively skewed and the soil loss was on 

average 37.5 (+100.1, -27.3) g m-2 per 20 min runoff period (±1 standard deviation, log10 

back-transformed). There was a small difference in soil loss between the two runoff periods 

with the 0 – 20 min runoff period showing a higher soil loss when the antecedent soil 

moisture was high (Fig. 3.3; Table 3.2A). The soil loss was negatively correlated to the 

amount of vegetative cover (%) and showed a significant interaction with the antecedent soil 

moisture conditions and soil organic matter content. Low soil moisture conditions combined 

with low vegetative cover resulted in the higher soil loss and low soil organic matter content 

with low vegetative cover also resulting in higher soil loss (Fig. 3.3). Furthermore, runoff 

plots with a high slope gradient and a high soil moisture content tended to have the greatest 

amount of soil loss and the effect of slope gradient diminished under drier soil surface 

conditions (Fig. 3.3).
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Figure 3.3: The significant (p-value < 0.05) correlations 
between soil surface properties and soil loss. See Table 3.2(A)
for additional details.
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Table 3.2: Results of linear mixed effects models looking at the correlation between soil 
surface properties and: (A) soil loss; (B) enrichment ratio (ER) of fine-grained sediment; and 
(C) enrichment ratio (ER) of soil organic carbon (SOC). Runoff period contrasts compares 0 
– 20 min to 20 – 40 min.

Analysis Parameter Estimate Std. Error df t value P-value

(Intercept) 1.662 0.065 85 25.538 < 0.001 ***
Vegetative cover (%) -0.013 0.001 68 -10.295 < 0.001 ***
Gradient (%) 0.015 0.005 68 3.049 0.003 **
Silt (%) 0.006 0.003 68 1.763 0.082
Soil organic matter (%) -0.003 0.012 68 -0.247 0.806
Soil moisture (%) 0.004 0.002 68 2.077 0.042 *
Runoff period -0.003 0.023 85 -0.118 0.906
Slope position (upper vs mid) -0.172 0.086 68 -1.994 0.051
Slope position (lower vs mid) -0.133 0.084 68 -1.593 0.116
Veg. cover (%) X Soil org. (%) 0.001 < 0.001 68 2.790 0.007 **
Veg. cover (%) X Soil moist. (%) < 0.001 < 0.001 68 2.136 0.036 *
Gradient (%) X Soil moisture (%) 0.001 < 0.001 68 2.254 0.027 *
Gradient (%) X Runoff period -0.004 0.003 85 -1.644 0.104
Silt (%) X Soil org. (%) 0.002 0.001 68 1.981 0.052
Soil moisture (%) X Runoff period -0.003 0.001 85 -2.412 0.018 *

(Intercept) 0.677 0.012 86 58.538 < 0.001 ***
Vegetative cover (%) -0.001 < 0.001 69 -2.554 0.013 *
Gradient (%) 0.003 0.001 69 2.893 0.005 **
Silt (%) 0.011 0.001 69 16.487 < 0.001 ***
Soil organic matter (%) 0.006 0.002 69 2.495 0.015 *
Soil moisture (%) -0.001 < 0.001 69 -3.461 0.001 **
Runoff period 0.056 0.007 86 7.679 < 0.001 ***
Slope position (upper vs mid) -0.011 0.014 69 -0.793 0.431
Slope position (lower vs mid) 0.022 0.014 69 1.582 0.118
Veg. cover (%) X Gradient (%) < 0.001 < 0.001 69 -2.070 0.042 *
Silt (%) X Gradient (%) < 0.001 < 0.001 69 -1.925 0.058
Soil moisture (%) X Gradient (%) < 0.001 < 0.001 69 4.556 < 0.001 ***
Silt (%) X Runoff period -0.002 0.001 86 -4.022 < 0.001 ***

(Intercept) 1.690 0.084 85 20.012 < 0.001 ***
Vegetative cover (%) < 0.001 0.001 66 0.236 0.814
Gradient (%) -0.015 0.007 66 -2.071 0.042 *
Silt (%) -0.023 0.004 66 -5.599 < 0.001 ***
Soil organic matter (%) -0.050 0.013 66 -3.879 < 0.001 ***
Soil moisture (%) 0.003 0.002 66 1.554 0.125
Runoff period -0.152 0.019 85 -7.927 < 0.001 ***
Slope position (upper vs mid) 0.044 0.064 66 0.691 0.492
Slope position (lower vs mid) -0.058 0.059 66 -0.980 0.331
Soil org. (%) X Gradient (%) -0.003 0.002 66 -1.964 0.054
Soil moist. (%) X Gradient (%) < 0.001 < 0.001 66 -2.027 0.047 *
Silt (%) X Soil moisture (%) < 0.001 < 0.001 66 -1.766 0.082
Silt (%) X Soil org. (%) 0.002 0.001 66 2.110 0.039 *
Silt (%) X Runoff period 0.007 0.001 85 4.954 < 0.001 ***

* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001

(A) Soil loss
Log

10 
(g m-2)

(B) Fine-grained soil 
(< 63 μm) ER
1/(< 63

runoff 
/< 63

source
)

(C) Soil organic 
carbon ER
(SOC

runoff 
/SOC

source
)



 3.4.2 Particle size selectivity

The runoff plots (i.e., source soil) investigated had average surface (0 – 2 cm) clay (< 

2 μm), silt (2 – 63 μm) and sand (63 – 2000 μm) contents of 10.9 ± 4.7 %, 47.9 ± 13.3 % and 

41.2 ± 17.3 %, respectively (± 1 standard deviation). Overall, the mobilized soil generated 

under simulated rainfall were enriched in very fine-grained particles (all size fractions < 20 

μm ) and depleted in coarse-grained particles (all size fractions > 63 μm ) as compared to the 

source soil for the APSD (Fig. 3.4a). The two smallest APSD fractions (< 2 and 2 - 20 μm) 

had significantly lower ERs during the second runoff period as compared to the first runoff 

period. In contrast, the largest fractions (125 – 2000 μm) showed a significant increase during

the second runoff period. Considering only the < 63-μm fraction (Fig. 3.4b), there was still an

enrichment of the very fine-grained particles (all size fractions < 20 μm), but the values are 

closer to 1, and the difference between the two runoff periods is no longer significant. For the

coarser silt fractions (20 – 40 μm and 40 – 63 μm), there was a depletion compared to the 

source soil and the ER values are significantly closer to 1 during the second runoff period. 
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The particle size enrichment ratios for the EPSD measurements (i.e., aggregate soil 

particles) show an enrichment in the three smallest particle size classes (< 63 μm), a 

depletion in the largest size class (> 125 μm) and the 63 – 125 μm fraction had values close 

to 1 (Fig 3.5). In comparison with the APSD measurements (Fig. 3.4), the EPSD had ERs 

twice as high for the two finest fractions as well as enrichment ratios > 1 for the size fractions

between 20 and 125 μm whereas the APSD showed a depletion. Furthermore, there was 

higher variability in the ERs and there were no significant differences between the two runoff

periods. 
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Figure 3.4: Enrichment ratios for the eroded sediment with respect 
to the source soil for the different absolute particle size classes 
(mineral component only). Investigating the: a) total sediment (< 
2000 μm) and b) silt and clay only (< 63 μm). Error bars indicate ± 
1 standard error and * denotes a significant difference (p-value < 
0.05) between the 0 – 20 and 20 – 40 min runoff periods.

a) b)
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when the gradient of the runoff plot was higher and this effect diminished with increasing 

vegetative cover. Finally, the soil organic matter content of the surface soil had a small effect 

on the with runoff plots with low soil organic matter resulting in a greater amount of 

enrichment. Overall, there was a negative correlation between ER< 63 and soil loss with a 

Pearson correlation coefficient of -0.34 (p-value < 0.001).
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Figure 3.6: The significant (p-value < 0.05) correlations between 
soil surface properties and the amount silt and clay (< 63 μm; 
mineral component only) enrichment ratio of eroded sediment with
respect to the source soils. See Table 3.2(B) for additional details.



 3.4.3 Organic matter selectivity

The source soils investigated had an average surface (0 – 2 cm) SOC, POM and SOM

contents of 5.2 ± 1.9 %, 7.8 ± 7.3 % and 11.4 ± 3.5 %, respectively. Overall the mobilized 

soil generated under simulated rainfall were enriched in SOC, POM and SOM as compared 

to the source soil (Fig. 3.7a). Both the SOC and SOM enrichment ratios were significantly 

lower during the second runoff period (20- 40 min). Considering only the < 63-μm fraction 

(Fig. 3.7b) there is still an enrichment of the SOC and SOM, however, the values are closer to

1 and the difference between the two runoff periods are no longer significant. The enrichment

of SOC (ERSOC) was negatively correlated to the slope gradient (%), SOM (%) and < 63-μm 

fraction (%) and positively correlated to soil moisture content (%) (Fig. 3.8; Table 3.2C). The

SOM content of the source soil was the variable that has the largest effect on the ERSOC.
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correlation coefficient of -0.34 (p-value < 0.001).

 3.4.4 The relation between SOC and particle size

The SOC content of both the source and mobilized soil was positively correlated with

the ASC index (Fig. 3.9; Table 3.2A). There was not a significant interaction between the 

source and mobilized soil and the ASC index indicating that the relation was similar between 

the source and mobilized soil. Overall, there was a significant positive correlation of the SOC
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Figure 3.8: The significant (p-value < 0.05) correlations between 
soil surface properties and the soil organic carbon enrichment ratio 
of eroded sediment with respect to the source soils. See Table 
3.2(C) for additional details.



content and the amount of fine-grained particles (< 63 μm) as well as a significant interaction

between the amount of clay and silt and the source soil (Fig. 3.9; Table 3.2B). The relation 

between SOC and the amount of fine-grained material for the source soil had a higher 

correlation compared to the mobilized soil and there was no difference between the two 

runoff periods. However, much of variation in the data, for both the ASC index and the clay 

and silt content, was explained by the random factor of transect and accounts for much of the 

spread of the raw data around the modelled relation.
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Figure 3.9: The correlations between aggregated (ASC index) and 
absolute particle size (clay + silt) and the soil organic carbon 
content for the source soils and the eroded sediment. See Table 3.3 
for additional details.



 3.5 Discussion

 3.5.1 Soil loss

The amount of soil loss as it relates to soil surface properties is generally consistent 

with the literature on interrill erosion. The inherent erodibility of the soil is primarily 

controlled by soil texture, SOM, soil structure, and permeability (Renard et al. 1991). Soil 

with a high silt and very fine sand content are typically the most erodible because this size 

class of soil particles does not form stable aggregates and as a result are easily mobilized and 

transported by overland flow (Shabani et al. 2014). Furthermore, silty soil tends to have 

lower infiltration rates as compared to soil with a higher percentage of sand which results in 

larger amounts of overland flow (Rawls et al. 1993). The results from this study are in 

agreement with this as there was a trend (p-value < 0.1) with an increase in the amount of soil

loss with increasing silt content of the source soil (Table 2A). 
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Table 3.3: Results of linear mixed effects models looking at the the correlation in soil organic
carbon with soil aggregation (A), and soil organic carbon with the amount of clay and silt 
(B). Sample type contrasts compares Source vs 0 – 20 min (1) and 20 – 40 vs 0 – 20 min (2).

Analysis Parameter Estimate Std. Error df t value P-value

(Intercept) 8.224 0.814 172 10.102 < 0.001 ***
ASC index 0.051 0.007 172 7.516 < 0.001 ***
Source vs 0 – 20 min (1) -4.264 0.204 172 -20.885 < 0.001 ***
20 – 40  vs 0 – 20 min (2) -0.819 0.191 172 -4.289 < 0.001 ***
Slope position (upper vs mid) 0.120 0.308 77 0.391 0.697
Slope position (lower vs mid) 0.717 0.314 77 2.287 0.025 *

(Intercept) 6.720 1.268 170 5.302 < 0.001 ***
Clay + silt (%) 0.090 0.012 170 7.473 < 0.001 ***
Source vs 0 – 20 min (1) -0.247 0.255 170 -0.970 0.333
20 – 40  vs 0 – 20 min (2) -0.321 0.166 170 -1.929 0.055
Slope position (upper vs mid) -0.291 0.312 77 -0.932 0.354
Slope position (lower vs mid) 1.137 0.319 77 3.561 < 0.001 ***
Clay + silt (%) X Sample type (1) 0.065 0.010 170 6.524 < 0.001 ***
Clay + silt (%) X Sample type (2) 0.015 0.010 170 1.504 0.135

* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001

(A) Soil organic 
carbon (%)

(B) Soil organic 
carbon (%)



Soil with a low SOM content also tended to be more erodible because SOM binds 

smaller soil particles together making them more resistant to mobilization and SOM 

improves infiltration and can reduce overland flow (Le Bissonnais and Arrouays 1997; 

Franzluebbers 2002). In this study, the effect of SOM on reducing soil loss was greatest when

vegetative cover was low, and had a smaller effect under high vegetative cover conditions. 

The role of vegetative cover in this study is consistent with the literature on interrill erosion 

where the amount of vegetative cover is one of the most important factors influencing soil 

loss. For example, the STC watershed had an overall lower vegetative cover (34.0 % ± 31.9) 

as compared to the BV watershed (62.5 % ± 29.0) with a corresponding soil loss of more 

than 100 % higher than the BV watershed. The amount of vegetative cover can change over 

time, and, as a consequence the potential for erosion is not constant throughout the year (Fig. 

3.10). Therefore, during periods of low vegetative cover, SOM content has a greater 

contribution in reducing soil loss.
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Dryer soil with low amounts of vegetative cover resulted in greater soil loss and this 

may be due to the breakdown of aggregates by rapid wetting (slaking and differential 

swelling) and through the impact of raindrops. The aggregate breakdown products result in 

smaller soil particles, which more easily transported by erosional processes (Vermang et al. 

2009). In contrast, low moisture soil with higher vegetative cover resulted in lower soil 

losses. The interception of raindrops by the vegetative cover reduces the amount of energy 

being transferred to the soil surface and the dry soil have a larger capacity to absorb water 

reducing the amount of overland flow. This is in contrast to the results of Li et al. (2015) 

where the antecedent moisture had a larger effect on soil loss as compared to vegetative cover
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Figure 3.10: An example of two sampling sites 
demonstrating the change in the percent 
vegetative cover between the spring and autumn 
seasons for the Beaver valley (BV) and South 
Tobacco Creek (STC) watersheds with the 
percent cover in brackets.



with higher moisture soil generating higher soil losses. This contrast may reflect a difference 

in the relative contributions of both splash and interrill erosion. Splash erosion is more 

sensitive to changes in vegetative cover while interrill erosion is more affected by antecedent 

soil moisture content.

Antecedent soil moisture content can also impact soil erodibility through its influence

on both infiltration and the stability of soil aggregates, as the rapid wetting of dry soil 

aggregates can result in disaggregation (i.e., slaking) (Warrington et al. 2009) which can then 

result in surface sealing reducing the infiltration rate and promoting overland flow (Sajjadi 

and Mahmoodabadi 2015). For example, both Vermang (2009) and Defersha and Melesse 

(2012) found that soil loss under simulated rainfall was greater for low moisture soil as 

compared to high moisture soil. The effect of soil moisture content prior to the rainfall 

simulation in this study was difficult to generalize, as there were significant interactions with 

the percent vegetative cover, slope gradient, and runoff period. There were negative Pearson 

correlation coefficients of -0.29 (p-value < 0.001) and -0.16 (p-value = 0.025) between the 

time since the beginning of the rainfall simulation and the initiation of runoff and both soil 

moisture and slope gradient, respectively. This suggests that, within this study, soil moisture 

may have a larger effect on the rate of runoff and this provides some evidence to explain the 

smaller effect of slope under lower soil moisture conditions. 

The larger effect of slope gradient under wetter conditions may occur as a result of 

increase runoff due to saturation-excess overland flow. In general, wetter soil, when rained 

upon, will become saturated more quickly, causing more rapid initiation of overland flow as 

compared to dryer soil. However, the soil moisture content throughout the soil profile needs 

to have been considered to fully assess the implications of saturation-excess overland flow to 
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both the rate of runoff and soil loss. Interrill erosion is generally greater under steeper slope 

conditions as the gradient is proportional to the runoff velocity which increases the transport 

capacity of the runoff (Fox and Bryan 1999). The overall effect of slope in this study was 

consistent with other research; steeper slope gradients had higher soil losses (e.g., Shi et al. 

2012). Overall, the vegetative cover and the gradient of the runoff plot had the largest effect 

on soil loss, but the interactions with other soil surface properties demonstrate that soil loss 

due to interrill erosion is a complex process.

 3.5.2 Particle size selectivity

It was expected that the larger particle size fractions (> 63 μm; APSD) of the g 

mobilized soil would be depleted with respect to the source soil as larger particles have a 

higher threshold shear stress and are less likely to be eroded (Fig. 3.4) (Shields 1936). The 

response, in terms of the enrichment of the fine-grained fraction (< 63 μm; APSD), was less 

predictable as this fraction has more potential to aggregate into larger particles that are more 

resistant to detachment and require greater amounts of energy to be transported as compared 

to the individual non-aggregated particles that comprise the aggregate soil particle. The 

factors that determine the differences in the particle size enrichment ratios between the EPSD

and APSD (Figs 3.4 and 3.5) are the disaggregation of aggregates during the simulated 

rainfall event and the removal of organic matter (POM and SOM) prior to the APSD 

measurement. It is difficult to separate the contribution of either component when comparing 

the two particle size measurement types. However, what is clear is that smaller particles were

preferentially mobilized and transported as the higher enrichment ratios for the smaller 

particle size classes suggest that not enough energy, from raindrop splash or overland flow, 
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was available to mobilize and transport the larger aggregates. 

There are some interesting parallels in the results between the soil loss and the ER< 63 

analysis (Figs 3.3 and 3.6, respectively). Increases in either the slope gradient or the silt 

content of the source soil generally resulted in lower enrichment ratios and these same factors

also resulted in higher soil losses. These properties, as discussed above, can result in an 

increased velocity and higher amounts of runoff, thus increasing the competence of the 

overland flow. These results are consistent with other research that has also shown that there 

is a significant correlation between soil loss or discharge and particle size selectivity 

(Armstrong et al. 2011; Yang et al. 2013). For source soil with a lower silt content, the 0 – 20 

min runoff period had higher enrichment ratios compared to the 20 – 40 min runoff period 

and this may be due to the flush of small, loose and readily available soil particles at the soil 

surface. These results suggests that supply of the most easily eroded size fraction is limited. 

This finding is consistent with Asadi et al. (2007) where the median particle size of the 

mobilized soil, generated under simulated rainfall, increased over time becoming closer in 

size to the source soil. 

The interaction between soil moisture and the slope of the runoff plot on the ER< 63 is 

similar to soil loss where higher soil moisture and gradual slope gradient result in both lower 

soil loss and higher enrichment and this may be related to the lower transport capacity of the 

overland flow and reduced aggregate disintegration under these conditions. Overall, the 

amount of vegetative cover had a relatively small effect on the ER< 63 suggesting that raindrop

impact on the soil surface had a small effect on the disintegration of soil aggregates and the 

resultant enrichment of fine-grained material. Both Shi et al. (2012) and Wang et al. (2014) 

found that soil mobilized under simulated rainfall had a higher enrichment of fine-grained 
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particles with increasing mulching rates or lower kinetic energy. 

The SOM content of a soil is generally positively correlated to the soil aggregate 

stability and size (Le Bissonnais 2016). The increased stability of soil aggregates prevents the

disintegration into smaller and more easily erodible particles and, therefore, limiting the loss 

of fine-grained soil particles (Leguédois and Bissonnais 2004). Soil with a low degree of 

aggregation would experience less selectivity as a result of interrill erosion and have ER< 63 

values closer to 1.0. It was unexpected that the SOM content of the runoff plot would have an

overall negative correlation with the ER< 63. However, the variability between transects was 

very high and transects with higher SOM content had an overall higher ER< 63, but within a 

transect, plots with a higher SOM content had a lower ER< 63. This suggests that the role of 

SOM on the particle size selectivity is more site specific.

While the same soil surface properties that were significant factors in determining soil

loss were also significant factors in the particle size selectivity, there were differences in their

interactions. This indicates that there are some differences in the determining factors between

soil loss and the particle size selectivity of interrill erosion processes. 

The fact that soil erosion results in the preferential mobilization and transport of fine-

grained soil particles is the one of the main reason that many sediment fingerprinting studies 

have sieved samples to < 63 μm in an effort to limit the differences in particles size between 

source soil and sediment collected downstream. This allows for a more direct comparison in 

terms of biogeochemical properties (e.g., trace metal concentration, colour and cation 

exchange capacity) (e.g., Walling et al. 1999). The results from this study show that the 

sieving approach does reduce the differences in particle size between source and mobilized 

soil, however, it does not eliminate it all together. There is still an enrichment of the very 
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fine-grained particles and a subsequent depletion of the coarse silt-size fraction after sieving. 

Furthermore, this study has also shown that the degree of selectivity is not static and can vary

based on antecedent soil surface conditions and that there was a significant amount of spatial 

variability (i.e., the random factor transect was an important component of the overall 

variance). It is also important to put the relative significance of the selectivity of interrill 

erosion processes in perspective with other watershed processes (e.g., fluvial transport) in 

terms of determining the extent of downstream fining of sediment. For example, Koiter et al. 

(2015) found a reduction of ~ 55 % in the median grain-size in less than one hour of fluvial 

transport in an artificial channel using a recirculating flume. 

The small enrichment of the very fine-grained particles after sieving still may present 

issues in the direct comparisons between mobilized and source soil as the smaller particles 

tend to have a higher SSA and are more chemically reactive (Horowitz 1991) and, therefore, 

geochemical and radiochemical elements of interest may be concentrated in these finer 

fractions. Researchers will sometimes use correction factors in addition to sieving procedures

to account for the differences in particle size. A commonly used approach is to use the ratio 

of SSA between the sediment and source material and multiply it by the geochemical 

concentration of a given element (e.g., Collins et al. 1997). However, these correction factors 

can be problematic as it assumes that the relation between SSA and concentration is the same

for all elements in terms of linearity, magnitude and direction, which is often not the case 

(Smith and Blake 2014; Koiter et al. 2015).

 3.5.3 Organic matter selectivity

The smaller enrichment ratio for the POM fraction as compared to the enrichment of 
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SOM is likely due to the larger particle sizes (i.e., > 63 μm) of this material which, as 

described earlier, requires more energy to mobilize and transport compared to smaller 

particles. However, for the mineral component of the mobilized soil there was a depletion in 

these particle size classes and the difference between the organic and mineral components in 

terms of enrichment is likely due to difference in particle density and shape. There is a large 

difference between the density of organic particles (0.9 – 1.3 Mg m−3) and mineral particles 

(2.6 – 2.75 Mg m−3) (Brady and Weil 2001). Visual observations of the POM showed that 

most of the POM was either crop residues left after harvest (STC soil) or dead grasses (BV 

soil) and the particle shapes were typically blade shaped (long and flat) (Zingg shape 

classification; Zingg 1935). Both the shape and density of the POM require less energy to 

mobilize compared to the mineral component of equivalent size (Le Roux 2005). Both the 

SOM and SOC showed similar trends, as the two characteristics are highly correlated. The 

results show a higher degree of enrichment with the SOM as compared to the POM which is 

likely due to the smaller particle size of the SOM relative to the POM. Similar to the mineral 

fraction, sieving to < 63 μm reduced, but did not eliminate, the difference between the source

soil and the mobilized soil.

There are similarities between the ER< 63 and ERSOC analysis in terms of some of the 

effects of the main factors and their interactions (Figs 3.6 and 3.8). These similarities may, in 

part, be due to the SOC and the < 63-μm size fraction aggregating together and being 

mobilized as aggregated soil particles. For example, the silt content and its interaction with 

the runoff period, as well as the interactions between the slope and antecedent soil moisture, 

have very similar effects on both the ER< 63 and ERSOC. Furthermore, similar to the ER< 63 

analysis, there was a significant negative correlation between soil loss and the ERSOC, which 
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is consistent with other research (e.g., Schiettecatte et al. 2008). Interestingly, the soil with 

the lower SOM, which also corresponds to soil with low SOC, had higher SOC enrichment 

ratios. This may be due to the lower aggregation potential of low SOM content soil and small

non-aggregated and low density SOC-rich aggregate particles being more easily mobilized 

(Fig. 3.8). It is difficult to generalize this relation at a larger scale as the BV watershed soil 

had an average higher SOM content (12.9 % ± 2.9) as compared to the STC watershed soil 

(8.4 % ± 2.5) with a corresponding average ERSOC of more than 20 % higher than the STC 

watershed.

The enrichment of SOC or SOM can have similar effects as the enrichment of fine-

grained soil particles in terms of the influence on geochemical composition of the material as 

organic matter also has a high SSA and is chemically reactive (Horowitz 1991). There are 

also methods available to correct for differences in organic matter content and these are often 

applied in addition to particle size corrections. A commonly used approach is to use the ratio 

of SOM or SOC of the sediment to the source and multiply it by the geochemical 

concentration of a given element (e.g., Collins et al. 1997). However, these correction factors 

can be problematic as they assume that the relations between SOM or SOC and concentration

are the same for all elements in terms of linearity, magnitude and direction. Furthermore, the 

use of a particle size correction factor in addition to an organic matter correction factor also 

assumes that the effects of organic matter and particles size are additive, but the amount of 

fine-grained particles and organic matter are often positively correlated (Ma et al. 2015). 

Further research is clearly needed to assess these correction factors. Consequently, several 

researchers have identified that correcting for both particle size and organic matter selectivity

should be treated with caution and potentially avoided (Smith and Blake 2014). Furthermore, 
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the organic matter selectivity of the water erosion process has implications for the 

redistribution of C within the landscape and its loss to surface waterways. When assessing 

the role of soil erosion in C dynamics this research shows that there is a disproportional 

amount of C being mobilized and transported relative to the source soil (i.e., ERSOC is 

typically > 1) and that total soil loss is insufficient in characterizing C redistribution and loss.

 3.5.4 The relation between APSD, EPSD and SOC

The results for this study show that SOC is positively related to the degree of 

aggregation in soil, which is consistent with the concept of SOC and its associated 

microorganisms acting as a binding agents. The mobilized soil had an overall higher SOC 

content, but a similar relation with the aggregation index, suggests that SOC-rich aggregates 

are being preferentially mobilized and transported and are stable (i.e., do not breakdown due 

to the simulated rainfall). This phenomenon may be related to the differences in densities 

between SOM and the mineral component. In addition, Williams and Petticrew (2009) found 

that the SOC content was an important factor influencing aggregate stability. The amount of 

fine-grained soil particles was positively correlated to the ASC index (data not shown) in 

source soil as clay, similar to SOC, can act to bind particle together and these results are 

consistent with other studies (e.g., Ma et al. 2014).

The amount of fine-grained soil particles mobilized was positively correlated to SOC 

content in both the source and mobilized soil, which is consistent with other research (Feller 

and Beare 1997). This correlation may be due to the long-term higher nutrient and moisture 

content often associated with fine-textured soil which promotes vegetation growth. 

Increasing amounts of clay and silt can promote aggregation and the formation of organo-
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mineral complexes which can protect SOC from decomposition. The steeper regression line 

for the source soil, as compared with the mobilized soil, is likely due to the preferential 

mobilization and transport of fine-grained soil particles as the presence of sand in the source 

soil acts to dilute the SOC measurements (e.g., mass and density differences). The effect of 

sand-sized soil particles on SOC can also be seen by comparing Figs 3.7a and 3.7b whereby 

the removal of sand size particles reduces the difference (i.e., ER closer to 1) between source 

and mobilized soil. The high variance component associated with the random factor transect 

suggests that the exact relation between SOC and measures of particle size (i.e., APSD and 

EPSD) is site-specific.

 3.6 Conclusions

Soil mobilized under simulated rainfall resulted in an enrichment of both fine-grained

soil particles and SOC relative to the source soil. There was an enrichment of both 

aggregated and dispersed soil particles < 20 μm with the aggregated particles having a greater

amount of enrichment. This demonstrates that the EPSD was more affected by interrill 

erosion processes than the APSD. Furthermore, the ERs of SOM, SOC and particle sizes < 20

μm (APSD) were greater for the 0 – 20 min as compared to the 20 – 40 min runoff period 

providing evidence that there is a flush of easily erodible small and organic-rich soil 

particles. This may also provide an indication that there is a change in the erosional process 

(splash vs. overland flow) between the two sampling periods. Furthermore, the mobilized soil

had an overall higher SOC content, but a similar relation with the aggregate silt and clay 

index, providing evidence that the SOC-rich aggregates being preferentially mobilized have a

high degree of stability. Sieving to < 63 μm, a common approach to limit the differences in 
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particle size and SOC between source and eroded soil, did reduce the enrichment ratio but 

did not eliminate it. This demonstrates that further procedural steps, including sieving to a 

smaller particle size or the use of correction factors may be needed to account for these 

differences which will allow a more direct comparison of biogeochemical properties between

source and mobilized soil. 

There were similarities in terms of soil surface properties and their interactions and 

the subsequent effects on soil loss and the selectivity of small and organic-rich particles. The 

soil surface moisture content and its interaction with the gradient of the runoff plot were 

common across all three analysis where high soil moisture coupled with gradual slope 

resulted in lower rates of soil loss and greater enrichment of fine-grained material and SOC. 

There were also some differences in the main factors determining the soil loss including the 

amount of vegetative cover (%); while this had a large effect on soil loss it had a relatively 

small effect on the ER< 63 and no effect on the ERsoc. The enrichment of both fine-grained soil 

particles and SOC were negatively correlated with soil loss providing evidence that the rate 

of soil loss can be used to estimate the degree of selectivity. However, the differences 

between the factors and their interactions that determine soil loss and selectivity demonstrate 

that predictions of particle size and SOC enrichment based on the rate soil loss alone may not

adequately describe the process of selectivity. Overall, it was difficult to rank the relative 

importance of the individual soil surface properties that influence particle size and organic 

matter selectivity as there were significant interactions between some of the soil surface 

properties.

This study investigated the selectivity of interrill erosional processes on the fine-

grained soil particles and SOC under simulated rainfall conditions. However, this research 
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has also only considered interrill erosion by raindrop splash and overland flow over a short 

distance and the assessment of other erosional processes (e.g., rill, gully, wind and tillage 

erosion) and their interactions on selectivity are an important research objective. Soil erosion 

is just the first step in the sediment cascade and there will be additional selectivity in each 

step including the delivery through riparian zones (Syversen and Borch 2005) and fluvial 

transport down-stream (Koiter et al. 2015). There is an important research need to link each 

of these steps in terms of the magnitude and the determining factors of the particle size and 

SOC enrichment (Koiter et al. 2013). This will allow for the improvement of processed-based

watershed models and management tools.
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 4 Suitability of particle size and organic matter correction 

factors in sediment source fingerprinting investigations: the 

example of two contrasting watersheds in Canada

 4.1 Abstract

This study investigated the conservative behaviour of geochemical fingerprints through the 

soil mobilization process. This was accomplished by comparing the concentrations of a broad

suite of geochemical elements of sediment eroded from small plots, in two contrasting 

agricultural regions in Canada, by simulated rainfall. All samples were sieved to isolate the 

fine-grained fraction (< 63 μm) prior to analysis in an effort to limit the differences in both 

particle size and organic matter content. Despite sieving the samples, there were still particle 

size and organic carbon content differences between the source soil and the eroded sediment 

which has been shown to influence the concentrations of many geochemical elements. To 

account for these differences, particle size and sometimes an additional organic matter 

correction factors are often applied to the source soil concentrations in an attempt to make the

two sample types more directly comparable. The particle size and organic matter correction 

factors are typically based on the ratio of specific surface area (SSA), or soil organic carbon 

(SOC) content, between the eroded material and source material and the same correction 

factors are applied to all elements. The effectiveness of these commonly used correction 

factors was evaluated. It was demonstrated that for most elements the particle size correction 

factor resulted in an over-correction of the source soil relative to the eroded sediment and that

using the organic matter correction factor in addition exacerbated this over-correction. For 
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most elements, the uncorrected source soil concentrations showed a smaller difference in 

concentrations relative to the eroded sediment as compared to the corrected source soil. 

Linear mixed effects models were used to further investigate the relation between elemental 

concentrations and SSA and SOC. It was found that the magnitude, direction and interactions

of the relation was generally both element and watershed specific. This study highlights some

of the potential issues with applying the same correction factors to account for difference in 

particle size and organic matter content to a broad suite of elements.

 4.2 Introduction 

Information on the relative contribution from different sources of sediment within a 

watershed is an important part of understanding sediment dynamics and is used for the 

development of sediment management plans. In particular, fine-grained sediment (< 63 μm) 

is one of the greatest environmental concerns as a significant amount of nutrients, heavy and 

trace metals, radionuclides, pharmaceuticals, pesticides and other industrial contaminants are 

transported in association with this fraction (Owens et al. 2001; Oliver et al. 2007; Maskaoui 

and Zhou 2010; Zheng et al. 2012). This is primarily due to the higher specific surface area 

(SSA) and chemical reactivity of this material as compared to coarse-grained sediment (e.g., 

sand and gravel) (Horowitz 1991). However, the high spatial and temporal variability of 

sediment delivery to surface waterways can make the identification of the dominant sources 

of sediment at the watershed scale difficult (Smith et al. 2011). 

Sediment fingerprinting is a technique that is based on the concept that one or more of

the natural physical or biogeochemical properties of the sediment (i.e., fingerprints) will 

reflect its source, and therefore can be used diagnostically to identify the origin(s) of the 
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sediment (see Davis and Fox 2009 for a review of the sediment fingerprinting approach). The

sediment fingerprinting approach has been used for a variety of different applications 

including agricultural (e.g., Koiter et al. 2013a), forest harvesting (e.g., Motha et al. 2003), 

wildfires (e.g., Owens et al. 2012) and urbanization (e.g., Carter et al. 2003). The potential 

sources of sediment that are most often identified within sediment fingerprinting studies 

include topsoil and channel bank or other subsoil sources. However, sediment management 

plans often require more detailed information on the spatial extent of the sources of sediment 

to make appropriate and cost effective land use or remediation decisions. As a result there is 

interest in expanding the range of potential tracers (e.g., biomarkers) to better differentiate 

between land use types (i.e., different crop types within an agricultural region) (Blake et al. 

2012; Reiffarth et al. 2016).

There is a wide variety of soil and sediment properties that have been utilized as 

fingerprints including fallout radionuclides, geochemistry, colour, mineral magnetic and 

stable isotopes (Haddadchi et al. 2013). The sediment properties selected as fingerprints need

to: (1) provide good discrimination between potential sources of sediment; and (2) behave 

conservatively (i.e. fingerprints should not be affected by the sediment generation, delivery 

and transport processes in a way that cannot be quantified). There are many statistical 

approaches that have been used to select the best suite of fingerprints that maximize the 

discriminatory power between the sources of sediment (e.g., discriminant function analysis, 

canonical analysis) (Collins and Walling 2002). However, it is more difficult to assess the 

suitability of fingerprints in terms of the conservative behaviour of sediment as it is 

transported though a watershed. 

Ideally, the physical and biogeochemical properties of the sediment do not change as 
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sediment moves through a watershed and thus a direct comparison of source and sediment 

can be made. However, the particle size and organic matter selectivity of the soil erosion, 

sediment delivery and fluvial transport processes generally results in eroded sediments 

having a finer texture and higher organic matter content due to the preferential mobilization 

and transport of the small and less dense soil particles (Slattery and Burt 1997; Di Stefano 

and Ferro 2002; Asadi et al. 2011). There are also other processes that can alter the physical 

and biogeochemical properties of sediment during transport from source to sink including 

abrasion/breakage, adsorption/desorption and organic matter decomposition (see Koiter et al. 

2013b for a review of these processes). The latter processes have not received much attention

in the literature as it can be difficult to predict the behaviour of fingerprints in the 

environment. However, changes in particle size and organic matter content are often 

accounted for by first limiting the analysis to the fine-grained fraction (i.e., < 63 μm) as the 

larger grain sizes are preferentially deposited upstream. Secondly, particle size, and 

sometimes an organic matter, correction factors are then applied to the fingerprint data set to 

further correct for any remaining differences in particle size and organic matter. The 

commonly used correction factors are based on the ratio of specific surface area (SSA) and 

soil organic carbon (SOC) between the collected sediment and the source material (e.g., 

Collins et al. 1997). The correction factor value(s) are then multiplied by the concentration in

the source material for each fingerprint so as to make the resultant values more comparable to

those of the collected sediment.

There has been an increase in the number of sediment fingerprinting studies that use 

the geochemical composition of the sediment as potential fingerprints as a single standard 

laboratory procedure (i.e., ICP-MS following a digestion with acid) can yield information on 
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a broad suite of elements (> 50) that can each be used as a potential tracer. The basis of using 

particle size and organic matter correction factors in conjunction with geochemical 

fingerprints is that the concentration of many geochemical elements are dependent on the 

particle size and organic matter content (Horowitz 1991). The commonly used correction 

factors assumes a linear and positive relation between both SSA and SOC and the 

geochemical concentration. In addition, applying both a particle size and an organic matter 

correction factors assumes that the effects of SSA and SOC on the geochemical concentration

are additive. However, some researchers do not use both, citing that SSA and SOC are often 

correlated which can result in the over-correction of fingerprint values (e.g., Dutton et al. 

2013). The use of correction factors also assumes that the relations are the same for each 

element; however, there is a growing amount of evidence to suggest that the direction and 

magnitude of these relations is element specific and varies between watersheds (Russell et al.

2001; Smith and Blake 2014). 

The use of correction factors have been shown to affect both the fingerprint selection 

process and ultimately the apportionment results. For example, Smith and Blake (2014) 

found that through the combination of both particle size and organic matter correction factors

the relative differences in the values of excess 210Pb between sources were altered with the 

corrected channel bank source having higher values as compared to cultivated and pasture 

surface soils. This is inconsistent with the atmospheric deposition of 210Pb which has been 

shown to effectively label topsoil and the fact that channel banks are primary composed of 

subsoil and should exhibit the lowest values (Mabit et al. 2014). Furthermore, Smith and 

Blake (2014) demonstrated that the use of the combined correction factors for Tamar 

Gunnislake watershed, UK, resulted in a change to the source apportionment results by 45 %,
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as compared to uncorrected values, and subsequently came to a different conclusion as to the 

dominate source of sediment. Therefore, without an adequate assessment of the relations 

between SSA and SOC with geochemical concentrations prior to using correction factors 

there is an unknown amount of uncertainty and error being incorporated into the sediment 

fingerprinting approach.

In this study, the particle size and organic matter selectivity and its subsequent effect 

on the geochemical composition of eroded sediment was investigated in two contrasting 

agricultural watersheds in Canada, using a rainfall simulator to generate eroded sediment. 

The objectives of this research were to investigate: (1) the physical and biogeochemical 

properties of source soils and eroded sediment; (2) the relations between SSA and SOC and 

their interactions on the geochemical concentration for a broad suite of elements; and (3) the 

suitability of commonly used correction factors to account for differences in particle size and 

organic carbon content between source soil and eroded sediment.

 4.3 Methods

 4.3.1 Watershed descriptions

The South Tobacco Creek (STC) watershed is located in south-central Manitoba (see 

Koiter et al. 2013a for a detailed watershed map). The STC watershed is 75 km2 and is 

predominately agriculture with the majority of land under annual crops. The STC watershed 

extends across the Manitoba Escarpment; its upper reaches lay in undulating glacial tills and 

its lower reaches lay in the lacustrine sediments of glacial Lake Agassiz (Agriculture and 

Agri-Food Canada 2011). The soils above the escarpment are Dark Grey Chernozems with a 

clay-loam texture, while below the escarpment the soils are Black Chernozems with a clay 
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have shown that these areas can contribute a disproportionate amount of sediment given there

areal extent (Pietola et al. 2005; Raper 2005; Collins et al. 2010). On each hillslope a transect

was established and plots were setup on the upper, mid and lower slope positions. Each 

watershed was investigated on two to three occasions in order to get a broader range of 

surface properties, particularly a broader range in antecedent moisture conditions and 

vegetative cover. The research sites within the BV watershed were investigated on three 

occasions: spring (June), summer (August) and autumn (October) of 2012 for a total of 54 

rainfall simulations. However, the sites within the STC watershed were only investigated on 

two occasions: spring (June – pre-emergence) and autumn (October – post-harvest) of 2013 

as the tall and dense crops created unsuitable conditions for the rainfall simulation 

experiment during the summer growing season, therby resulting in a total of 30 rainfall 

simulations.

 4.3.2 Soil and sediment sample collection

A gravity-fed rainfall simulator (Clarke and Walsh 2007) was used to generate 

sediment under a high rainfall intensity (200 mm hr-1); while this intensity is high, it can 

provide information on the characteristics of the sediment generated under rainfall and, 

importantly, within the requirements of this research, provide an adequate sample mass (i.e., 

> 1 g) for analysis within a reasonable time frame. The runoff plot was 0.16 m2 (40 X 40 cm) 

with stainless steel plot boundaries and a triangular-shaped collection funnel at the downward

plot edge. The generated runoff was gravity fed to 1 L polyethylene bottles. A total of 40 min 

of continuous runoff were collected and the samples were split in to two runoff periods, 0 – 

20 min and 20 – 40 min. Source soil samples (0 – 2 cm) were collected outside the plot 
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boundaries and sampling tools were cleaned between samples to reduce contamination. 

 4.3.3 Data analysis

 4.3.3.1 Laboratory analysis

The source soil samples were air-dried and passed though a 2 mm stainless steel sieve

to remove coarse fragments and vegetation. The sediment in the runoff samples were allowed

to settle at room temperature (~ 20 °C) for 48 hours and the clear supernatant was siphoned 

off and the eroded sediment allowed to air-dry. Both the the air-dried soil and eroded 

sediment samples (up to 15 g) were weighed and placed in 100 mL beakers and deionized 

water was added to make a 1:5 (soil:water, by volume) slurry. The samples were 

disaggregated using an ultrasonic probe (Misonix S-4000, Qsonica, Newtown, CT, USA) 

with a power output of 45 W and the duration of sonication for each sample was adjusted so 

that the amount of energy delivered was 300 J mL-1 (based on the total sample volume) (Yang

et al. 2009). The samples were sonicated while in an ice bath and the sonication energy was 

pulsed (2 min on, 1 min off) to prevent the over heating of the sample and probe. Previous 

work has shown that sieving to < 63 μm is an effective way to reduce the differences in both 

particle size and organic carbon between source and eroded sediment (Section 3). Therefore, 

each sample was washed through a 63 μm sieve and transferred into a 1000 mL beaker and 

oven-dried. All analyses were confined to the < 63 μm fraction.

Each source soil and eroded sediment sample was subsampled for particle size, 

organic carbon and geochemical analyses. For the absolute particles size analysis, samples 

were digested with hydrogen peroxide (35 %) to remove organic matter and an aliquot of a 

solution of sodium hexametaphosphate and sodium carbonate was added following the 
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procedure of Kroetsch and Cang (2007). The sample was sonicated following the same 

procedure outlined above. The specific surface area (SSA) of the source soil and eroded 

sediment samples were measured using a laser diffraction system (Malvern Mastersizer 3000,

Malvern, UK) (0.01 – 3500 μm diameter measurement range) assuming a constant particle 

density of 2.65 g cm-3.

No pretreatment was used to remove inorganic forms of carbon (C) as test samples 

did not effervesce with the addition of 10 % hydrochloric acid and the pH of the soils (1:2; 

soil:water mixture) were typically < 7.5 which indicates that carbonates are not present in 

discernible quantities. Therefore, total C is used to estimate organic C content. Total C 

analysis was measured on samples using an elemental analyzer (Elemental Combustion 

System ECS-4010, Costech Analytical Technologies Inc, Valencia, CA, USA).

Samples were analyzed for a broad suite of geochemical elements (Ag, Al, As, Au, B, 

Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, 

Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr) using 

inductively coupled plasma mass spectrometry (ICP-MS) following a microwave-assisted 

digestion with aqua-regia (ALS Mineral Division, North Vancouver, BC, Canada). Of the 51 

elements investigated seven (Au,Ta, Re, Ge, Hg, W and Te) were below the detection limit in

one or more of the samples and were removed from subsequent analysis.

 4.3.3.2 Correction factors

In addition to comparing the geochemical concentrations of the eroded sediment 

directly to the source soil (uncorrected), two sets of corrected source soil concentrations were

also assessed. The two correction factors used are based on the differences in SSA and SOC 

between the eroded sediment and the source soil and are commonly used in sediment 
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fingerprinting research (e.g., Collins et al. 1997). The particle size correction factor (SSAcorr) 

was calculated as:

SSAcorr = SSA sediment / SSAsoil (1)

Where SSAsediment is the SSA (m2 g-1) of the eroded sediment and SSAsoil is the SSA (m2 g-1) 

of the source soil. Similarly, the organic matter correction factor (SOCcorr) was calculated as:

SOC corr = SOC sediment / SOC soil (2)

Where SOCsediment is the organic carbon content (%) in the sediment and SOCsoil is the organic 

carbon content (%) in the source soil. 

The particle size corrected geochemical concentration for the source soil was calculated as: 

Me SSAcorr = Mesoil × SSAcorr (3)

Where MeSSA corr is the particle size corrected concentration of a given element (ppm), Mesoil is

the concentration of a given element (ppm) in the source soil and SSAcorr is the particle size 

correction factor as calculated in Equation 1. 

The combined particle size and organic matter (SSAcorr + SOCcorr) corrected geochemical 

concentration of the source soil is calculated as: 

Me SSA+SOC corr = Mesoil × SSAcorr × SOCcorr (4)

Where MeSSA+SOC corr is the is the combined particle size and organic matter corrected 

concentration of a given element (ppm), Mesoil is the is the concentration of a given element 

(ppm) in the source soil, SSAcorr is the particle size correction factor as calculated in Equation

1 and SOCcorr is the organic matter correction factor as calculated in Equation 2. 

The source soil was corrected based on sediment generated in both the 0 – 20 and 20 – 40 

min runoff periods.
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 4.3.3.3 Statistical analysis

All statistical analysis was undertaken using R Statistical Software v3.2 (R Core 

Team 2015) through RStudio Integrated Development Environment v0.98.1103 (RStudio 

2015). Linear mixed models (R package nlme version 3.1-120; Pinheiro et al. 2015) were 

used for all analysis with transect and runoff plot as random factors. Runoff plot was 

included as a random factor to control for the fact that the two runoff samples (i.e., 0 – 20 and

20 – 40 min runoff samples) are not independent (temporal pseudoreplication). Hillslope 

position (i.e., upper, mid and lower) was added as a covariate to control for any inherent 

variability along the length of a transect. The two watersheds were analyzed separately as 

much of the differences in soil geochemistry would be due to differences in the underlying 

geologies. Differences in the geochemical concentration between the corrected source and the

eroded sediment for the two runoff periods were assessed by post-hoc pairwise comparisons 

with the Benjamini-Hochberg p-value adjustment method when the model showed a 

significant main effect of runoff period, correction factor or an interaction between the two 

variables (R package multcomp version 1.4-0; Hothorn et al. 2008). 

To investigate the relation between the geochemical concentration of all 44 elements 

and SSA and sample type (i.e., source soil, 0 – 20 min and 20 – 40 min runoff) and their 

interactions all concentrations were standardized between 0 and 1 to allow for a direct 

comparison between elements. For the investigation between concentrations of As and Mn 

(as examples of geochemical elements), and SSA, SOC and sample type the data were 

centred (i.e., predictors have mean of 0) prior to analysis to improve the interpretation of 

main effects and interactions. Since interaction between variables can influence the 

interpretation of main effects, all two-way interactions were investigated and added to the 
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model in a backward stepwise process based on the likelihood ratio test (p-value < 0.1). 

Normality and homogeneity of variance were assessed visually and response variables were 

transformed, when necessary, to meet these assumptions. All models were checked for 

multiple collinearity (all variation inflation factors (VIF) were < 10 and condition numbers 

(i.e., kappa) were < 20) (Quinn and Keough 2002). 

All plots were created using the R package ggplot2 v0.9.3.1 (Wickham 2009). Data 

were averaged across all plots for each runoff period and plotted showing the standard error 

about the mean. For all other analysis plots were created with untransformed data and show 

the model relationship (regression line). Each relationship was plotted while holding all other

variables constant and in cases where interactions were significant the modelled relationships

represent ± 1 standard deviation about the mean.

 4.4 Results

 4.4.1 Particle size and organic carbon enrichment

Despite limiting the analysis to the the < 63 μm fraction, the eroded sediment in both 

watersheds was enriched in both fine-grained and organic-rich material as compared to the 

source soil. The SSAcorr averaged across both runoff periods was 1.12 and 1.17, the SOCcorr 

was 1.20 and 1.12 and the combined correction factor (SSAcorr + SOCcorr) was 1.35 and 1.33 

for the BV and STC watersheds, respectively (Fig. 4.2). These correction factors are within 

the range reported in other sediment fingerprinting studies (e.g., Collins et al. 1997; Smith 

and Blake 2014). The correction factors were significantly lower for the 20 – 40 min runoff 

period as compared to the 0 – 20 min runoff period for the BV watershed. This indicates that 

the erosional processes were less selective in terms of particle size and organic matter content
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sediment for the BV watershed as compared to the STC watershed. For the uncorrected 

source concentrations within the BV watershed the 0 – 20 min runoff period had more 

elements (34) that showed a significant difference (p-value < 0.05) in concentration between 

the source and eroded sediment as compared to the 20 – 40 min runoff period (27 elements). 

These differences between the two runoff periods may be related to the changes in the 

particle size and organic matter selectivity as it was shown that there was less enrichment in 

both SSA and SOC in latter runoff periods. In contrast, for the uncorrected source soil within 

the STC watershed there were fewer elements overall with a significant difference between 

the source soil and eroded sediment.

For many of the geochemical elements investigated, the use of the particle size 
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Table 4.1: Summary of the uncorrected, particle size (SSA) corrected and combined particle 
size and organic matter (SSA + SOC) corrected geochemical concentrations that are 
significantly higher or lower (p-value < 0.05) relative to the runoff generated sediment for 44 
different geochemical elements. Overall summary statistics across all elements showing the 
% difference relative to the generated sediment.

Beaver Valley

0 – 20 min 20 – 40 min 

Uncorrected SSA SSA + SOC Uncorrected SSA SSA + SOC

No. elements – higher 4 31 43 5 24 43

No. elements – lower 23 2 0 15 2 0

No. elements – no difference 17 11 1 24 18 1

Average % difference -2.48 11.23 36.88 -0.08 9.94 29.85

Max. % difference 71.08 94.08 136.82 68.03 84.25 116.16

Min. % difference -20.18 -9.45 11.51 -15.97 -7.45 9.40

SD % difference 13.91 15.80 19.05 13.66 14.90 17.34

South Tobacco Creek

0 – 20 min 20 – 40 min 

Uncorrected SSA SSA + SOC Uncorrected SSA SSA + SOC

No. elements – higher 3 34 40 3 33 40

No. elements – lower 3 0 0 3 1 1

No. elements – no difference 38 10 4 38 10 3

Average % difference 6.96 25.83 37.56 6.68 21.39 37.45

Max. % difference 57.70 84.77 104.99 54.18 78.38 102.07

Min. % difference -24.10 -12.55 -4.61 -30.43 -22.07 -14.20

SD % difference 13.40 16.20 18.19 12.91 15.45 17.91



correction factor tended to increase the difference between the geochemical concentration of 

the source soil and the eroded sediment (i.e., resulted in an over-correction) as compared to 

the difference in concentrations between uncorrected source soil and eroded sediment (Table 

4.1). The STC watershed had an overall (averaged across both runoff periods) greater 

increase with an average difference of 23.6 % in the SSAcorr corrected source soil 

geochemical concentrations relative to the eroded sediment as compared to an average 

difference of 10.6 % for the BV watershed. The combined SSAcorr and SOCcorr resulted in a 

considerable over-correction for almost all the elements investigated. The two watersheds 

were similar in terms of the overall average difference relative to the eroded sediment of 33.4

and 37.5 % for the BV and STC watersheds, respectively. 

To further illustrate the influence of correction factors, the concentrations are shown 

for two elements, As and Mn, for both watersheds and runoff periods (Fig. 4.2). The 

uncorrected soil As concentrations for the BV watershed showed a significantly lower 

concentration than the eroded sediment for the 0 – 20 min runoff period but no difference for 

the 20 – 40 min period (Fig. 4.2a). However, the uncorrected Mn concentration was 

significantly lower than the eroded sediment for both runoff periods (Fig. 4.2b). For the STC 

watershed, the uncorrected source soil As concentrations showed no significant differences; 

however, the uncorrected source soil Mn concentrations did have significantly higher 

concentrations as compared to the eroded sediment for both runoff periods (Figs. 4.2c and 

4.2d). 
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40 min runoff period (Fig. 4.2b). The SSAcorr resulted in a greater overestimation for As as 

compared to Mn within the BV watershed and the opposite trend is seen in the STC 

watershed where the overestimation is greater for Mn as compared to As. Overall, the over-

correction was higher in the STC with an average overestimation of 28.7 and 65.0 % relative 

to the eroded sediment for As and Mn, respectively. The lack of consistent trends between 

elements and watersheds after correcting for differences in particle size, highlights the 

potential issue whereby the elements selected as fingerprints may be more dependent on the 

correction factor rather than any inherent differences in geochemical composition between 

sediment sources. This uncertainty in particle size correction factors has lead some studies to 

not use correction factors (e.g., Martínez-Carreras et al. 2010).

Both a particle size and an organic matter content correction factor are often used to 

account for differences in both properties between source soils and eroded sediment (e.g., 

Collins et al. 2012). However, the combined use of both particle size and organic matter 

correction factors resulted in an over-correction in both the As and Mn concentrations for the 

source soil relative to the eroded sediment for both watersheds and runoff periods. This is in 

agreement with researchers that do not use both particle size and organic matter correction 

factors citing the risk of over-correction of the data (e.g., Dutton et al. 2013). The relation 

between particle size, organic matter and their interaction on the concentration of many 

geochemical concentration in soils and sediment is not well quantified and it may be difficult 

to generalize. Other methods to account for differences in organic matter include expressing 

geochemical concentration on a mineral basis or ashing samples prior to analysis (e.g., 

Wilkinson et al. 2013).
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 4.4.3 The relation between geochemistry and source soil and eroded sediment 

properties

A summary of the relation between the geochemical concentrations and SSA for the 

BV watershed are presented in Fig. 4.3. For three elements (B, Na and Sn) the relation 

between concentration and SSA were non significant due to the low resolution of the 

elemental analysis for the observed range in concentration. For example, the range in B 

concentration ranged from 10 to 40 ppm and the resolution was 10 ppm. Furthermore, the 

relation between concentration and SSA for six other elements (Cd, Cu, Pb, Sb, Se, Zn) 

required a transformation to meet the assumptions of linear regression. Of the remaining 35 

elements, 24 demonstrated a significant positive relation between concentration and SSA; 

however, 18 of those elements had a significant interaction between SSA and sample type 

(i.e., source soil, 0 – 20 min and 20 – 40 min runoff). Similarly, of the 11 elements that do not

demonstrate a significant relation, 10 also had a significant interaction between SSA and 

sample type. 
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A summary of the relation between the geochemical concentrations and SSA for the 

STC watershed are found in Fig. 4.4. The relation between concentration and SSA were non 

significant due to the low resolution of the elemental analysis for the observed range in 

concentration for B, Na, Sn and Ti. Furthermore, the relation between concentration and SSA

for 11 other elements (Ca, Co, Li, Mg, S, Sb, Sc, Sr, Th, U, V) required a transformation to 
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Figure 4.4: Summary of the model parameter estimates (mean ± 1 standard error) for the 
relation between geochemical concentration and SSA for the Beaver Valley, BC, watershed. 
Model parameters: (a) SSA; b) sample type (source soil as the reference level); and c) 
interaction between SSA and sample type (source soil as the reference level). * low analytical
resolution ** data transformation needed to meet model assumptions.



meet the assumptions of linear regression. Of the remaining 29 elements, 23 demonstrate a 

significant positive relation between concentration and SSA; however, 16 of those elements 

have a significant interaction between SSA and sample type. Similarly, of the six elements 

that do not demonstrate a significant relation all have a significant interaction between SSA 

and sample type. 
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Figure 4.5: Summary of the model parameter estimates (mean ± 1 standard error) for the 
relation between geochemical concentration and SSA for the Beaver Valley, BC, watershed. 
Model parameters: (a) SSA; b) sample type (source soil as the reference level); and c) 
interaction between SSA and sample type (source soil as the reference level). * low analytical
resolution ** data transformation needed to meet model assumptions.



There are few similarities between elements and the two watersheds investigated 

which implies that the use of a single particle size correction factor for a broad suite of 

elements may be problematic. Furthermore, for a subset of elements investigated a significant

interaction between SSA and sample type was present. This interaction provides that the 

relation between the geochemical concentration and SSA is not the same between the source 

soil and eroded sediment. This result indicates that developing a relation between 

geochemical SSA based on the size fractionation of source soils may still not be adequate. 

The interaction may in part be explained by the process of particle selectivity whereby 

changes in organic matter content confound the effect of SSA. In addition, there are a number

of elements where the concentration data needed to be transformed to meet the model 

assumptions suggesting that the assumption of a straightforward linear relation between 

concentration and SSA may not be appropriate for all elements. The role of both SSA and 

organic matter content and their interactions on the geochemistry of both source soils and 

eroded sediment are explored in more detail below.

The relation between the concentration of a geochemical element and SSA and SOC 

was different between elements and also between watersheds and it was difficult to 

generalize the relations due to differences in the direction and magnitude of the slope and 

interactions between the SSA, SOC and sample type (i.e., source soil and eroded sediment). 

To highlight the variety in the relations, two elements, As and Mn were selected as examples 

(Table 4.2 and Figs. 4.6 and 4.7). There was an overall positive relation between the 

concentration of As and SSA within the BV watershed (Fig. 4.6a). However, there was also a 

significant interaction between the SSA and the sample type (i.e., source soil and eroded 

sediment) as illustrated by the different slopes for the regression lines. This indicates that the 
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Similar to the BV watershed, for the STC watershed there was an overall positive 

relation between the As concentration and SSA as well as an interaction showing that the 

relation is different between source soil and eroded sediment (Fig. 4.5c). However, there is 
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Table 4.2: Results of linear mixed effects models assessing the the correlation in the 
concentrations of Mn and As with SSA and SOC in the Beaver Valley and South Tobacco 
Creek watersheds.

Analysis Parameter Estimate Std. Error DF t value P(>|t|)

(Intercept) 865.99 49.06 99 17.65 < 0.001 ***
SSA 925.65 200.33 99 4.62 < 0.001 ***
SOC -11.23 2.82 99 -3.98 < 0.001 ***
Source vs 0-20 min 42.08 19.57 99 2.15 0.03 *
Source vs 20-40 min 23.32 17.02 99 1.37 0.17
Slope position (upper vs mid) -29.27 19.68 52 -1.49 0.14
Slope position (lower vs mid) 2.72 21.20 52 0.13 0.90
SSA X Source vs 0-20 min -584.98 185.63 99 -3.15 < 0.001 ***
SSA X Source vs 20-40 min -549.15 189.10 99 -2.90 < 0.001 ***

(Intercept) 1198.79 117.46 50 10.21 < 0.001 ***
SSA -1330.08 306.66 50 -4.34 < 0.001 ***
SOC 71.71 35.74 50 2.01 0.05 *
Slope position (upper vs mid) -120.38 69.89 50 -1.72 0.09
Slope position (lower vs mid) -101.60 65.15 50 -1.56 0.13
Source vs 0-20 min -31.75 94.49 23 -0.34 0.74
Source vs 20-40 min 56.50 93.68 23 0.60 0.55
SSA X SOC -322.48 199.35 50 -1.62 0.11

(Intercept) 8.10 0.49 99 16.66 < 0.001 ***
SSA 15.84 2.70 99 5.87 < 0.001 ***
SOC -0.24 0.04 99 -5.95 < 0.001 ***
Source vs 0-20 min -0.05 0.26 99 -0.20 0.85
Source vs 20-40 min -0.32 0.23 99 -1.42 0.16
Slope position (upper vs mid) -0.01 0.36 52 -0.04 0.97
Slope position (lower vs mid) -0.67 0.38 52 -1.77 0.08
SSA X Source vs 0-20 min -10.98 2.39 99 -4.59 < 0.001 ***
SSA X Source vs 20-40 min -10.27 2.41 99 -4.25 < 0.001 ***

(Intercept) 10.39 0.61 48 17.14 < 0.001 ***
SSA 16.34 2.43 48 6.72 < 0.001 ***
SOC -0.69 0.23 48 -3.05 < 0.001 **
Source vs 0-20 min -2.26 0.54 48 -4.15 < 0.001 ***
Source vs 20-40 min -1.55 0.54 48 -2.86 0.01 **
Slope position (upper vs mid) 2.16 0.71 23 3.04 0.01 **
Slope position (lower vs mid) 0.49 0.72 23 0.68 0.50
SSA X Source vs 0-20 min -7.88 2.79 48 -2.82 0.01 **
SSA X Source vs 20-40 min -6.17 2.80 48 -2.21 0.03 *
SSA X SOC -4.80 1.41 48 -3.41 < 0.001 ***

* significant at p > 0.05; ** significant at p > 0.01; *** significant at p > 0.001

Beaver Valley
Mn concentration

(ppm)

South Tobacco Creek
Mn concentration

(ppm)

Beaver Valley
As concentration

(ppm)

South Tobacco Creek
As concentration

(ppm)



also a significant interaction between the SSA and SOC indicating that within the STC 

watershed the relation between As and SSA is dependent on the SOC content with soils and 

eroded sediment with a lower SOC having a more positive relation with SSA as compared to 

soils and eroded sediments with a high SOC content. The relation between the As 

concentration and SOC is dependent on the SSA of the source soil and eroded sediment, as 

samples with a lower SSA (i.e., coarser) have a positive relation and in contrast samples with 

a higher SSA (i.e., finer) showed a negative relation between concentration and SOC (Fig. 

4.5d). Furthermore, similar to the BV watershed the relation between elemental concentration

and SOC were similar between source soil and eroded sediment.

The relation between the concentration of Mn and SSA as well as SOC followed a 

similar pattern to the As concentration within the BV watershed. There was an overall 

positive relation between concentration and SSA with a significant difference in the relation 

between the source soil and the eroded sediment (Fig. 4.6a). As well, there was also an 

overall negative relation between the concentration of Mn and SOC (Fig. 4.6b). Within the 

STC watershed, the relation between the concentration of Mn and SSA had had an overall 

negative correlation (Fig. 4.6c) which is in contrast to the positive trend found within the BV 

watershed. In addition, there was an overall positive relation between the concentration of 

Mn and SOC (Fig. 4.6d), however, the opposite trend is observed within the BV watershed. 

Another interesting difference between the two elements, As and Mn, within the STC 

watershed is that there is a significant interaction between SSA and SOC for As but not for 

Mn.

For some of the elements investigated, a considerable component of the variation 

within the models was due to the random factor of transect. For example, the transect 
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accounted for 69 and 34 % of the total variance for Mn for BV and STC watersheds, 

respectively. In contrast, the transect accounted for less of the total variance for As with 

transect accounting for only 25 and < 1 % for the BV and STC watersheds, respectively.

 4.5 Discussion 

 4.5.1 Accounting for particle selectivity

It is typically assumed that the source soil would have lower geochemical 

concentration as compared to eroded sediments due to the presence of coarser-grained and 

less reactive particles in the source soil. This material does not often get eroded due to the 

particle size selectivity of soil erosion processes and this phenomenon results in differences 

in both particle size and organic matter between source soil and eroded sediment. There are 

two basic approaches that can be used individually or in combination for accounting for the 

difference in both particle size and organic matter: 1) sample preparation; and 2) correction 

factors. These two approaches are discussed below.

Limiting the analysis to the fine-grained fraction (< 63 μm) by sieving was shown to 

effectively reduce differences in particle size and SOC between source soil and eroded 

sediment in the two study watersheds (Chapter 3). Some studies sieve to a smaller grain-size 

to further reduce the differences between source and eroded soil (e.g., < 10 μm; Wilkinson et 

al. 2013) but this may reduce the representativeness of the mobilized or transported sediment.

Fractionating soils and sediment in to different fractions (e.g., 40 – 63, 20 – 40, 2 – 20 and < 

2 μm) and comparing similar sediment sizes can be an effective method (e.g., Motha et al. 

2004; Haddadchi et al. 2015) but the fractionation process is time consuming and adds 

additional laboratory costs. In order to isolate the influence of organic matter on geochemical
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properties, Motha et al. (2002) separated the organic matter from the mineral component by 

flotation in water and the organic matter was analyzed for geochemistry, however, this 

technique has not been well described or tested. The method of sample processing prior to 

geochemical analysis is an important consideration and needs to balance the benefits of 

reducing the differences in particle size and organic matter content between source and 

sediment while still remaining representative of transported sediment.

One of the main objectives of this study was to investigate the commonly used 

correction factors, based on the ratio of SSA and SOC between collected sediment and source

soils. The data presented in this study demonstrated that these correction factors are not very 

effective in accounting for the observed differences in the geochemical composition between 

source soil and eroded sediment. Generally, the uncorrected source material had a more 

similar geochemical composition to the eroded sediment as compared to the corrected source.

Furthermore, the influence of the correction factors varied between the two watersheds as 

well as between different elements. The tendency of the correction factors to over-correct 

geochemical concentration and the large range in the observed differences suggests that the 

use of correction factors, within the sediment fingerprinting approach, can change the 

geochemical elements selected as fingerprints and ultimately the apportionment results 

(Smith and Blake 2014). There is currently a need for researchers to be more forthcoming 

about the potential errors and uncertainty associated with the use of untested correction 

factors (Smith et al. 2015).
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 4.5.2 Influence of particle size and organic matter on the geochemical composition of 

soil and sediment

The relation between geochemical concentrations and both SSA and SOC was found 

to vary between elements and watersheds. This suggests that it is difficult to generalize the 

relations and that a detailed study may be needed to fully quantify the effects of particle size 

and SOC on geochemical concentrations. For example, Russell et al. (2001) investigated the 

relations between geochemical, radionuclide and mineral magnetic concentrations and SSA 

of source samples. To accomplish this, source samples were separated into progressively 

smaller grain size fractions and the fingerprint concentrations were measured for each size 

fraction. This information can then be used to develop watershed- and element-specific 

correction factors (e.g., Motha et al. 2002; Gellis and Noe 2013). In addition, this study 

demonstrated that the relations were different between source soil and eroded sediments 

which suggests that collecting actively eroding sediments may provide a better 

characterization of sediment sources in some watersheds as opposed to the more common 

approach of using soil surface scrapes and then correcting for differences in SSA and SOC.

Some of the variability observed in terms of the relation between geochemical 

concentrations and SSA or SOC may be a result of differences in mineralogy and the affinity 

and selectivity of different ions to particle surfaces between the different size classes. For 

example, among three different watersheds, Russell et al. (2001) found that the relation 

between different fingerprint concentrations and SSA was not uniform. In addition, 

Bakircioglu et al. (2010) demonstrated, through sequential extractions, that the partitioning of

the total concentration of trace elements between the water and weak-acid (soluble and 
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exchangeable), reducible (bound to Fe- and Mn-oxides), and oxidizable (bound to organic 

matter and sulphides) fractions varied between elements. As a consequence, the large 

variability observed in this study does not support the application of the same particle size 

and organic matter content correction factors for all elements.

The transect variable accounted for much of the scatter of data points about the 

regression line (Figs. 4.6 and 4.7) and may be attributed to overall differences in either SSA 

or SOC between different transects. This indicates that, for some elements, there was 

considerable variation across the landscape and that the sampling design used to characterize 

the geochemical composition of potential sediment sources needs to consider this spatial 

variability. However, the impact of sampling design (i.e., spatial extent and number of 

samples) on the sediment fingerprinting approach has not been well explored

The resolution of the geochemical analysis for some of the elements was not 

sufficient to have a clear indication as to the influence of particle size or organic matter. 

Furthermore, seven elements were not considered as part of this study as one or more 

samples had concentration below the detection limit, making comparisons between source 

soil and eroded sediment or assessing the relation with both SSA and SOC less 

straightforward. The majority of sediment fingerprinting studies remove fingerprints that 

contain values below the detection limit or replace these values with an arbitrary value such 

as 1/2 the detection limit. This can result in either the removal of elements that may provide 

good discrimination between potential sediment sources or bias the values. There are both 

parametric and non parametric statistical methods available that can accommodate left 

censored data and provide a more robust method of dealing with such data (e.g., Helsel 

2012). However, such methods have not been widely explored within the sediment 
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fingerprinting.

 4.6 Conclusions

Sediment fingerprinting is increasingly being used as a tool to assess the sources of 

sediment at the watershed scale. However, one of the limitations of the technique is the 

ability to link the sources to sediment in a reliable and robust manner. This research begins to

bridge this research gap by investigating the particle size and organic matter selectivity of the

soil erosional processes under simulated rainfall and its subsequent effect on the geochemical

composition of eroded sediment. Despite limiting the analysis to the < 63 μm fraction, there 

was still an enrichment of small and organic-rich particles in the eroded sediment and 

consequently a change in the geochemical composition. The use of correction factors was 

found not be very effective at adjusting for the differences in the geochemical composition 

between source soil and eroded sediment. This raises concerns about the use of correction 

factors and the subsequent effect on the fingerprint selection process and the potential error 

grounding the final apportionment results. It is generally advisable to investigate the relation 

between SSA, SOC and geochemical concentrations prior to correcting fingerprint data as the

relations are both watershed- and element-specific.
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 5 Particle size and organic carbon selectivity within edge-of-field

and riparian zones and its implications for sediment 

fingerprinting

 5.1 Abstract

The unique sedimentological and hydrological processes within riparian zones will buffer 

and intercept the delivery of sediment, nutrients and geochemical elements from up-slope. 

Because of this, the riparian zone is of particular interest in terms of the effects it is likely to 

have on the conservative behaviour of sediment and associated fingerprinting properties. This

study investigated the effects of the riparian zone, within an agricultural landscape, on the 

accumulation of soil, and its subsequent particle size distribution, soil organic carbon (SOC) 

concentration and geochemical composition. This was accomplished by investigating a series

of soil profiles along a transect that extended from the upper landscape position to the 

riparian zone. The greatest amount of soil deposition occurred within the lower landscape 

position, but there was also significant accumulation in the riparian zone. Overall, the soil in 

the riparian zone was finer-grained and had a greater SOC concentration as compared to the 

other landscape positions which suggests that particle size selectivity occurred as material 

entered into the riparian zone. It was not clear whether the difference in SOC concentration 

between the riparian and other landscape positions was resulting from the preferential 

deposition of SOC-rich particles or due to the loss or dilution of SOC due to soil disturbance 

(i.e., tillage). Furthermore, the riparian area had a distinct geochemical composition. While 

particle size and SOC concentration could explain some of the observed trends it is likely that
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biogeochemical processes within the riparian zone contributed significantly to the observed 

geochemical composition. This research helps to explian how the riparian zone may 

influence sediment fingerprint properties and provides guidance on how to characterize 

potential sediment sources. 

 5.2 Introduction

Agricultural land use and intensification has been associated with accelerated soil 

erosion and a subsequent increase in suspended sediment and nutrient loads in surface 

waterways (Vörösmarty et al. 2010). This has a negative impact on the aquatic ecosystem in 

terms of changes in the composition and abundance of aquatic plants and animals (Shaw and 

Richardson 2001; Rabení et al. 2005; Harrison et al. 2007) and it also impacts the quality of 

water used for drinking, irrigation, power generation and recreation (Vörösmarty et al. 2003; 

Vörösmarty et al. 2010). This type of pollution can be difficult to manage as it is typically 

low-dose and has high spatial and temporal variability (i.e., non-point source pollution). As a 

result, identifying and targeting management decisions that will maximize both soil 

conservation and water quality while still being cost effective can be difficult (Owens 2008). 

Reliable and robust information on the contributions of different sources of sediment within a

watershed is required to guide the decision-making process (Smith et al. 2011).

Sediment fingerprinting is a technique that has been used since the 1970's to identify 

the sources of sediment within a watershed and over the past decade its use has risen 

dramatically (Mukundan et al. 2012; Walling et al. 2013; Koiter et al. 2013b). This technique 

is based on two main concepts: 1) that sediment collected down stream will reflect the 

physical, biological, geochemical and radiochemical properties of the original source 
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materials; and 2) different sources of sediment can often be differentiated based on 

differences within these properties (i.e. each source has a unique fingerprint) (Walling et al. 

1999; Mukundan et al. 2012). A statistical mixing model is then used to estimate the relative 

contributions of each source to the collected sediment (for an overview of the technique, see 

Davis and Fox 2009). At the core of this concept is the assumption that the properties of the 

source material remain unaltered as the material is transported from source to sink. However, 

this is rarely the case, because through the processes of soil erosion, sediment delivery and 

fluvial transport there are typically changess in the particle size distribution and organic 

matter content of the sediment (e.g., Walling 1983). This is a result of particle size and 

organic matter selectivity, as the smaller and less dense particles are preferentially mobilized 

and transported (e.g., Koiter et al. 2015). To make a direct link between source material and 

sediment these changes in particle size and organic matter content need to be accounted for 

within the sediment fingerprinting approach as both particle size and organic matter have 

been shown to influence the concentration of some fingerprint properties (e.g, trace metal 

concentrations) through the high specific surface area and chemical reactivity of this material

(Horowitz 1991). In addition, there are other biogeochemical processes that can also change 

the properties of sediment during transport though a watershed, which include 

adsorption/desorption, precipitation/dissolution and microbial mediated transformations 

(Rodrigues et al. 2010). 

How to best account for these changes in sediment properties has been identified as a 

major limitation of the fingerprinting approach (Davis and Fox 2009). Typically both source 

and collected sediment are sieved (e.g., < 63 μm or < 10 μm) prior to characterization in an 

effort to limit the differences in the particle size distribution and organic matter content (e.g., 
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Wilkinson et al. 2015). However, after sieving there is often still a difference, thus a particle 

size correction factor, and sometimes an additional organic matter correction factor, are used 

to adjust the tracer values of the source samples. These correction factors are based on the 

ratio of specific surface area (SSA) or soil organic carbon (SOC) content of the collected 

sediment to the source material (e.g., Collins et al. 1997). This correction assumes that the 

relation between the tracer properties and both SSA and SOC are linear and of the same 

magnitude and direction, which may not always be correct. Research by Smith and Blake 

(2014) demonstrated that the conclusions drawn from sediment fingerprinting were 

dependent on whether or not correction factors were used. Furthermore, biogeochemical 

changes are more difficult to assess and account for and, therefore, these processes are often 

not considered. However, tracers that have been shown to be susceptible to these types of 

changes (e.g., P) are typically excluded from analyses (Owens et al. 1999; e.g., Smith and 

Blake 2014).

 The riparian zone is the linkage between the terrestrial and aquatic environments and 

as a result is characterized by very distinct gradients in environmental conditions and 

processes. The riparian zone has a number of processes, including infiltration, 

immobilization, sedimentation and dilution, that act to buffer and intercept the flow of both 

dissolved and particulate material to the aquatic environment (Lacas et al. 2005; Owens et al. 

2007; McGuire and McDonnell 2010). Because of these properties, the retention or 

installation of riparian zones (also referred to as buffers, vegetated buffer strips or vegetative 

filter strips) along streams is a common best management practice used in agricultural 

regions to moderate stream temperatures, stabilize stream banks and reduce the amount of 

sediment- and nutrient-rich agricultural runoff entering surface waterways (Dillaha et al. 
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1989; Borin et al. 2005; Dorioz et al. 2006). However, the location, design characteristics and

maintenance of riparian zones are important factors to consider when assessing their efficacy 

in achieving water quality goals (Deeks et al. 2012). In addition, the temporal variability of 

material entering the riparian zone (e.g., during intense precipitation and snowmelt events), 

coupled with the spatial heterogeneity of physical and biogeochemical processes (e.g., due to 

topography and vegetation composition) are important considerations when assessing the 

overall buffering capacity of riparian zones (McClain et al. 2003; Vidon et al. 2010). 

Furthermore, the importance of riparian zones in linking sediment sources to in-stream 

sediment, in terms of particle selectivity and biogeochemical transformations is not well 

understood and is rarely, if at all, considered within the sediment fingerprinting approach.

137Cs has been successfully used to both estimate the rate and describe the pattern of 

soil erosion in agricultural landscapes (e.g., Li et al. 2008). 137Cs (half-life of 30.2 years) was 

mostly produced and released into the atmosphere through above ground nuclear weapons 

testing during the 1950s and 1960s. The subsequent deposition (fallout) of this radionuclide 

was regionally uniform and 137Cs is rapidly and strongly absorbed by fine-grained soil 

particles at the soil surface such that its concentration declines rapidly with depth. The 

redistribution of 137Cs across the landscape (i.e., inventory values) reflect the movement of 

soil particles and, therefore, provide information on the pattern and rates of soil erosion and 

deposition within the landscape over the last ~60 years. For an overview of the application of

137Cs to measure soil erosion rates and patterns see Ritchie and McHenry (1990). 

Soil erosion processes on the hillslope determine both the quantity and quality of 

material being transported to the riparian zone. Riparian processes can then modify these 

properties through particle selectivity and biogeochemical processes as material moves 
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through to surface waterways. Both laboratory and field studies have demonstrated that 

riparian zones are generally effective at trapping sediments (reviewed in Zhang et al. 2010) 

and particle size selectivity within the riparian zone occurs through the selective deposition 

of delivered material. For example, Gharabaghi et al. (2006) found that larger soil particles 

and aggregates were generally trapped within the first few meters of a buffer and that fine-

grained particles were transported further distances thereby resulting in the selective 

enrichment of fine-grained sediments and associated tracer properties being exported from 

the buffer to adjacent surface waterways. However, convergent topography within the 

landscape can concentrate runoff which can inundate riparian zones resulting in a decrease in 

the efficiency of riparian zones to trap of sediment (Daniels and Gilliam 1996; Dosskey et al. 

2002; Helmers et al. 2005). A reduction in trapping efficiency can result in a decrease in 

particle size selectivity due to greater flow depth and velocity of the runoff (Bu et al. 2016).

The majority of nutrient and metal retention and accumulation within the riparian 

zone is due to sedimentation, absorption of elements onto soil particles and the uptake by 

vegetation (Hoffmann et al. 2009). The hydrologic regime of the riparian zone is different 

than up-slope positions due to its proximity to the channel environment and is characterized 

by an overall higher moisture status and a fluctuating water table. The anaerobic 

environmental conditions often found in riparian areas can facilitate the precipitation of 

sulphide minerals (e.g., ZnS) and slow down the decomposition of organic matter (Du Laing 

et al. 2010). Furthermore, Rinklebe et al. (2016) found that the concentration of As, Fe and 

Mn in soil pore water increased under reducing conditions while the release of Ba, Cd, Cu, 

and Sr to soil solution increased under oxidizing conditions. These changes in redox 

conditions can have implications for the sediment fingerprinting approach because the 
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fingerprint of material passing through the riparian zone may be altered (Taylor et al. 2012). 

There is little advice in the literature on how best to include riparian zones within the 

sediment fingerprinting approach. Samples taken within the riparian zone may be considered 

representative of: 1) the contributing area up-slope; 2) a unique source separate from up-

slope sources; or 3) a section of the stream bank (i.e., uppermost portion of the stream bank). 

The objectives of this research were: (1) to examine patterns of soil erosion and accumulation

along the transect; (2) to characterize the changes in particle size, soil organic carbon content 

and geochemical composition along the transects; and (3) to discuss the implications of 

riparian processes for sediment fingerprinting.

 5.3 Materials and methods

Soil samples were collected from soil profiles that were setup along transects that 

extended from the upper landscape position through to the riparian zone in two agricultural 

fields in southern Manitoba, Canada. These samples were used to determine how erosional 

and riparian processes affect the particle size distribution, organic carbon content and the 

concentration of a variety of geochemical elements. 

 5.3.1 Site 1

Site 1 was originally sampled and investigated by Vandenbygaart et al. (2012) as part 

of a larger study assessing soil organic carbon (SOC) erosion and burial in Canadian 

cropland. This site is situated in south-central Manitoba (MB), Canada, near the town of 

Miami (Fig. 5.1) the soils in the region are calcareous Black Chernozems with a loam/silt 

loam texture (Vandenbygaart et al. 2012). A soil profile was excavated at upper, mid, lower 

and riparian landscape positions and soil samples were collected in 5 cm intervals throughout
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that the amount of energy delivered was 300 J mL-1 (based on the total sample volume) (Yang

et al. 2009). The samples were sonicated while in an ice bath and the sonication energy was 

pulsed (2 min on, 1 min off) to prevent the over heating of the sample and probe. Samples 

were washed through a 63 μm sieve and transferred into a 1000 mL beaker and oven-dried. 

All further analyses described below were confined to the < 63 μm fraction.

Each soil sample (< 63 μm) was subsampled for particle size, organic carbon (Section

5.2.1.2) and geochemical analyses (Section 5.2.1.3). For the absolute particles size analysis, 

samples were digested with hydrogen peroxide (35 %) to remove organic matter and an 

aliquot of a solution of sodium hexametaphosphate and sodium carbonate was added 

following the procedure of Kroetsch and Cang (2007). The samples were re-sonicated 

following the same procedure outlined above. The median particle size (d50) of the samples 

were measured using a laser diffraction system (Malvern Mastersizer 3000, Malvern, UK) 

(0.01 – 3500 μm diameter measurement range).

 5.3.1.2 Soil organic carbon analysis

Organic carbon (C) was measured as the C contained within the < 63 μm size 

fraction. Similar to Vandenbygaart et al. (2012), no pretreatment was used to remove 

inorganic forms of carbon as test samples did not effervesce with the addition of 10 % 

hydrochloric acid and the pH (1:2 ratio of soil to water) of the soils were < 7.5 which indicate

that carbonates were not present in significant quantities. Therefore, total C was used to 

estimate organic C content. Total C analysis was measured using an elemental analyzer 

(Elemental Combustion System ECS-4010, Costech Analytical Technologies Inc, Valencia, 

CA, USA).
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 5.3.1.3 Geochemical analysis

Samples were analyzed for a broad suite of geochemical elements (Ag, Al, As, Au, B, 

Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, 

Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr) using 

ICP-MS following a microwave-assisted digestion with aqua-regia (ALS Mineral Division, 

North Vancouver, BC, Canada). Of the 51 elements investigated seven (Au, B, T, W and Ge) 

were below the detection limit in one or more of the samples and were removed from all 

analyses.

 5.3.2 Site 2

Site 2 was originally sampled and investigated by Lobb (2012) as part of a larger 

study assessing the efficacy of riparian zones to filter sediment and phosphorus from 

agricultural runoff. The site is situated in south-eastern Manitoba (MB), Canada, near the 

town of Elma (Fig. 5.1). The soils in the region are Gleyed Dark Gray Luvisols with a loam 

soil texture (Smith and Ehrlich 1967). A soil profile was excavated at several points along a 

transect that ran along the dominant flow path from the mid-slope landscape position through

to the riparian zone. Soil samples were collected in 5 cm intervals throughout the entire depth

of the A horizon. The field was characterized as an oil seed and cereal cropping system and 

the riparian zone was comprised predominately of grass and sedge. 137Cs radioactivity was 

measured, and total 137Cs inventories in each profile were calculated (data from Sheppard et 

al. 2012), using the same methodology described for site 1 (Section 5.2.1). The particle size 

analysis methods are described below.
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 5.3.2.1 Particle size analysis

For the absolute particles size analysis, samples were digested with hydrogen 

peroxide (35 %) to remove organic matter and an aliquot of a solution of sodium 

hexametaphosphate and sodium carbonate was added following the procedure of Kroetsch 

and Cang (2007). The samples were washed through a 500-μm sieve to remove coarse sands. 

The median particle size (d50) of the samples were measured using a Malvern Mastersizer 

2000 laser diffraction system (Malvern, UK) (0.02 – 2000 μm diameter measurement range) 

and the range of the analysis was limited to the < 63 μm to be consistent with the particle size

analysis for site 1. 

 5.3.3 Data analysis

All statistical analysis was undertaken using R Statistical Software v3.2 (R Core 

Team 2015) through RStudio Integrated Development Environment v0.98.1103 (RStudio 

2016). All graphical plots were created using the R package ggplot2 v0.9.3.1 (Wickham 

2009). The Kruskal-Wallis H-test was used to select elements that showed a significant 

difference (p-value < 0.05) in concentrations between the sample groups (i.e., landscape 

position and surface/subsurface samples). Principle component analysis (PCA) was then used

to analyze variance in the resulting multi-element dataset to reduce the dimensionality in an 

effort to see how the different sample types differentiated based on the geochemical 

composition. Plots show both the score and loading for the first two principal components. 

Pearson correlation coefficients were also calculated to assess the relation between 

geochemical concentration, d50, SOC and depth for site 1.
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 5.4 Results

 5.4.1 Patterns of soil erosion and deposition

The 137Cs inventories (Figs. 5.2a and 5.3a) can be used to identify the patterns of soil 

erosion and deposition, as a result of both tillage and water erosion processes, by comparing 

inventories along the transect with a reference level (inventory at a location that has 

experienced no or minimal erosion and deposition). Site 1 (Fig. 5.2a) shows a small amount 

of net soil erosion (i.e., 137Cs inventory below the reference inventory) in the upper landscape 

position and a small net accumulation of soil in the mid position (i.e., 137Cs inventory above 

the reference inventory). The lower landscape position had the greatest net accumulation of 

soil with significant quantities of soil also being deposited within the riparian zone, as 

illustrated by the 137Cs inventory. The patterns of soil erosion and deposition have resulted in 

a fairly simple topographic hillslope profile (Fig. 5.2b). Site 2 shows slight net soil erosion in

the upper and mid landscape position and net accumulation from the lower position through 

to, and extending in to, the the riparian zone (Fig 5.3a). The greatest amount of soil 

accumulation occurs near the edge of field, where the hillslope profile (Fig 5.3b) shows the 

presence of a topographical step at the field edge (caused by tillage erosion). Part of this step 

is within the riparian zone and this is thought to be the result of the fence line (edge of field) 

being moved ~3 m at some point during the last ~60 years.
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particles are removed from the analysis, the patterns of particle size become less defined 

(Figs, 5.2d and 5.3d). Interestingly, within the soil profiles in site 1 there were instances 

whiched showed an abrupt change in particle size. For example, in the lower landscape 

position at a depth of 40 – 45 cm (Fig 5.2c) the percentage of clay and silt was 87.1 % while 

the samples above and below were 68.9 % and 61.5 %, respectively. Similar to the patterns of

the particle size analysis, averaging across all depths within a soil profile, site 1 demonstrated

that the concentration of SOC, within the < 63 μm fraction, increased in the down slope 

direction (Fig 5.2e ). For the upper, mid and riparian positions the SOC concentration 

generally decreased with depth, but within the lower landscape position there was a 

significant spike in the SOC concentration (7.0 %) at a depth of 40 – 45 cm which is 

consistent with the data reported in Vandenbygaart (2012).

 5.4.3 Geochemical analysis

The geochemical analysis for site 1 it was demonstrated that there was no consistent 

trend in geochemical concentrations, for all elements, either across the transect or with depth.

Generally, the riparian position showed the most variation in geochemical concentations, 

across the transect and with depth, as compared with the other landscape positions; however, 

the magnitude and direction of the changes in concentration was element specific. Within the 

riparian zone, the change in concentration with depth of Cu (Fig. 5.4), Ce, Mg, Re, Sb, and 

Se was greater as compared to the other landscape positions. The elemental concentrations of

Co (Fig. 5.4), Mn and Mo had an overall lower concentration and decreased with depth at a 

greater rate as compared to the other landscape positions. Furthermore, elements including Sr

(Fig. 5.4) and Ca did not vary much with depth but had an overall higher concentration as 
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compared the other landscape positions. Overall, the concentrations of P (Fig. 5.4) and K, 

two commonly used agricultural inputs, were the highest in lower landscape position. The 

remainder of the elements (e.g., Ga; Fig. 5.4) showed no discernible trends across the 

landscape or with depth.

Overall, 26 geochemical elements showed a significant correlation between elemental

concentration and SOC, while only two elements showed a significant correlation between 

elemental concentration and d50 at site 1 (Table 5.1). The direction of these correlations was 

element specific with 16 and 10 elements showing negative and positive correlations, 

respectively. In addition, both Te and U had a significant negative correlation between 

concentration and d50. Separating the soil samples into different groupings provided some 

additional information on the observed trend in the geochemical analysis. Comparing the 

within-field to riparian samples and surface to subsurface samples it is clear that the 

significance of the relation between particle size and SOC was dependent on both landscape 
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Figure 5.4: Examples of the geochemical concentrations in different landscape positions and 
with depth for site 1. Concentration have been normalized between 0 and 1 so direct 
comparisons can be made between elements.



position and depth. Within the landscape position grouping, the direction (i.e., positive or 

negative) of the significant correlations of both SOC and d50 was similar between riparian 

and within-field groups (with the exception of As, Cd and Cu). Similarly, for the depth 

grouping, Hf is the only element where the direction of both the SOC and d50 correlations 

was not the same between the surface (0 – 15 cm) and subsurface (15 cm +) soil samples.
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Table 5.1: Pearsons correlation coefficients, for different sample groupings, between 
elemental concentrations soil organic carbon (SOC), median particle size (d50) and 
depth at site 1. Bold indicates significant correlation (p-value < 0.05). 

Landscape position Depth

All samples Riparian Within field

Element SOC d50 Depth SOC d50 Depth SOC d50 Depth SOC d50 SOC d50
Ag 0.21 0.16 -0.21 -0.02 0.17 -0.22 0.59 0.26 -0.24 -0.31 0.00 0.50 0.16
Al -0.47 0.15 0.33 -0.79 0.58 0.39 -0.45 -0.32 0.34 -0.82 0.45 -0.25 0.29
As -0.47 -0.21 0.00 0.76 -0.14 -0.70 -0.58 -0.20 0.05 -0.87 0.65 -0.53 -0.38
Ba 0.10 -0.03 -0.14 0.67 -0.09 -0.88 0.80 0.27 -0.13 -0.72 0.38 0.31 -0.15
Be -0.46 0.07 0.46 -0.89 0.45 0.68 -0.46 -0.35 0.43 -0.70 0.55 -0.27 0.15
Bi -0.23 -0.31 0.05 0.18 -0.54 -0.11 0.03 -0.11 0.05 -0.60 0.09 -0.09 -0.42
Ca 0.66 -0.01 0.00 0.17 -0.55 0.28 0.88 0.02 0.07 0.96 -0.74 0.57 0.21
Cd 0.76 0.01 -0.46 0.72 -0.73 -0.17 0.82 0.56 -0.55 0.90 -0.59 0.79 -0.04
Ce -0.73 0.24 -0.01 -0.90 0.28 0.85 -0.61 0.27 -0.45 -0.92 0.75 -0.54 0.08
Co -0.36 0.11 -0.34 0.42 0.34 -0.85 -0.29 0.53 -0.73 -0.93 0.73 -0.36 -0.12
Cr -0.68 0.15 0.22 -0.97 0.42 0.74 -0.61 -0.12 0.05 -0.96 0.63 -0.46 0.16
Cs -0.54 -0.07 -0.10 -0.40 -0.10 0.54 -0.59 -0.02 -0.19 -0.68 0.42 -0.60 -0.13
Cu 0.13 0.04 0.28 -0.73 -0.06 0.97 0.46 -0.19 0.23 0.27 -0.27 0.34 0.16
Fe -0.47 0.22 -0.10 -0.12 0.64 -0.46 -0.54 -0.12 -0.01 -0.92 0.57 -0.40 0.19
Ga -0.43 0.16 0.31 -0.75 0.52 0.42 -0.47 -0.32 0.32 -0.68 0.39 -0.22 0.28
Hf 0.59 0.29 -0.47 0.09 -0.16 -0.39 0.55 0.47 -0.59 0.88 -0.81 0.57 0.44
Hg 0.48 -0.17 0.01 0.49 -0.40 -0.61 0.10 -0.32 0.28 0.88 -0.82 0.26 0.01
In -0.18 0.15 0.06 -0.57 0.57 0.14 -0.05 -0.12 0.04 -0.47 0.20 -0.02 0.21
K 0.13 0.08 -0.35 0.74 0.17 -0.95 0.53 0.27 -0.38 -0.09 0.05 0.11 -0.01
La -0.78 -0.21 0.51 -0.84 0.42 0.64 -0.75 -0.58 0.49 -0.86 0.58 -0.80 -0.27
Li -0.25 0.22 0.16 -0.94 0.38 0.81 -0.59 -0.17 -0.01 -0.51 0.29 -0.10 0.35
Mg 0.02 0.02 0.22 -0.68 -0.10 0.89 -0.35 -0.23 0.10 0.55 -0.55 0.10 0.14
Mn -0.09 -0.03 -0.31 0.79 -0.12 -0.94 0.52 0.76 -0.74 -0.86 0.72 -0.08 -0.26
Mo -0.03 -0.08 -0.27 0.91 -0.32 -0.88 0.56 0.43 -0.47 -0.68 0.56 0.03 -0.29
Na -0.13 0.16 0.04 -0.48 0.04 0.78 -0.52 0.20 -0.30 0.00 0.45 -0.15 0.16
Nb 0.39 0.19 -0.05 0.16 0.03 -0.20 0.64 0.32 -0.04 -0.15 0.06 0.68 0.13
Ni -0.30 0.24 0.10 -0.70 0.40 0.47 -0.51 -0.08 -0.01 -0.84 0.50 -0.09 0.31
P 0.64 0.15 -0.28 0.75 0.20 -0.96 0.90 0.20 -0.13 0.67 -0.41 0.63 0.21
Pb 0.56 0.11 -0.59 0.87 -0.33 -0.81 0.48 0.46 -0.54 0.62 -0.45 0.46 0.08
Rb -0.54 0.00 -0.06 -0.44 0.47 0.04 -0.42 -0.19 -0.13 -0.67 0.40 -0.51 -0.05
Re 0.08 -0.09 0.23 -0.47 -0.30 0.85 0.02 -0.04 0.16 0.59 -0.54 0.19 -0.02
Sb 0.09 -0.06 0.11 -0.46 -0.33 0.89 0.06 0.36 -0.57 0.25 -0.50 0.20 -0.01
Sc -0.67 0.05 0.23 -0.90 0.39 0.67 -0.68 -0.22 0.11 -0.86 0.60 -0.56 0.04
Se 0.43 -0.15 0.10 -0.03 -0.61 0.56 0.37 -0.11 0.24 0.83 -0.84 0.35 0.01
Sn -0.07 -0.31 0.33 0.03 -0.44 0.08 -0.09 -0.38 0.36 0.47 -0.46 -0.10 -0.23
Sr 0.46 0.02 0.18 -0.50 -0.27 0.86 0.34 -0.50 0.77 0.90 -0.79 0.37 0.28
Te -0.24 -0.37 0.10 0.17 -0.47 0.13 -0.32 -0.15 0.06 -0.17 0.15 -0.37 -0.51
Th -0.76 -0.15 0.11 -0.84 -0.05 0.92 -0.82 -0.18 -0.01 -0.90 0.65 -0.81 -0.25
Ti -0.64 -0.14 0.26 -0.09 0.47 -0.28 -0.63 -0.26 0.37 -0.91 0.57 -0.63 -0.28
Tl -0.32 0.10 -0.47 -0.43 -0.35 0.79 -0.43 0.28 -0.61 -0.84 0.69 -0.34 -0.04
U -0.14 -0.41 0.80 -0.16 -0.53 0.57 -0.27 -0.58 0.85 0.76 -0.83 -0.24 -0.31
V -0.67 -0.18 0.25 -0.70 -0.11 0.97 -0.67 -0.21 0.03 -0.96 0.66 -0.55 -0.27
Y -0.57 -0.15 0.60 -0.85 0.49 0.61 -0.64 -0.68 0.61 -0.58 0.25 -0.61 -0.05
Zn 0.60 0.19 -0.47 0.70 -0.36 -0.28 0.58 0.44 -0.50 0.72 -0.33 0.59 0.20
Zr 0.27 0.19 -0.39 -0.51 -0.37 0.62 0.05 0.33 -0.58 0.72 -0.85 0.19 0.31
# neg. 16 2 8 15 1 8 19 4 11 22 8 11 2
# pos. 10 0 3 7 1 14 13 7 5 12 10 8 1

Surface 
(0–15 cm)

Subsurface 
(0–15 cm)



The results of the Kruskal-Wallis H-test showed that 25 elements (As, Ba, Bi, Ca, Co, Cs, 

Cu, Hf, Hg, K, Li, Mg, Mn, Mo, Na, Nb, P, Rb, Re, Sb, Se, Sr, Ti, U, and Zr) had a 

significant difference (p-value < 0.05) in concentration between one or more of the landscape

positions. The subsequent PCA analysis showed that the geochemical composition of the 

riparian zone, considering all depths, was different than other landscape positions (Fig. 5.5a). 

The first principal component separated the landscape positions based on the concentrations 

of As, Ba, Ca, Co, Cu, K, Mg, Mn, Mo, Re, Sb, Se and Sr. The second principal component 

separated the landscape positions based on the concentrations of Ca, Cs, Cu, Mg, Na, Re, Sb, 

Se, Sr and Ti.

The results of the Kruskal-Wallis H-test showed that 11 elements (Al, Be, Co, Cu, Ga,

K, Mn, Pb, Sn, U, and Y) had a significant difference (p-value < 0.05) in concentration 

between surface (0 – 15 cm) and subsurface (15 cm +) soil samples. In contrast, differences 

in the geochemical composition between groups was not clear as most surface soil samples 

grouped close together, but subsurface samples were more spread out across both principle 

component axes (Fig 5.5b). The first principal component separated the sample groups based 

on the concentrations of Co, K, Mn and Pb. The second principal component separated the 

sample groups based on the concentrations of Co, Cu, K, Mn, Pb and Sn.
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Figure 5.5: Principal components analysis (PCA) score 
and loading plots of the first two principal components 
(PC1 and PC2) for site 1 depicting the differences in 
geochemical composition between: a) landscape 
positions; and b) surface and subsurface samples.



 5.5 Discussion

 5.5.1 Particle selectivity

The lower landscape and field edge positions in both sites showed the greatest net 

accumulation of soil (Figs 5.2b and 5.3b). There was also considerable net accumulation of 

soil in the riparian zone; however, this soil within the riparian zone was composed of a 

greater fraction of fine-grained material as compared to the lower landscape position. These 

results suggest that there is either; 1) a preferential deposition of coarse-grained material in 

the lower landscape positions; or 2) there is a secondary erosional process that is 

preferentially mobilizing and transporting fine-grained soil deposited in the lower position 

and transporting it off field into the riparian zone. Since both sites are under annual crops 

there is frequent soil disturbance through both seeding and tillage operations. Research has 

shown that these types of soil disturbances can result in significant amounts of soil being 

translocated down slope and that tillage erosion may transport significantly more soil in the 

upper landscape positions as compared to water erosion (e.g., Li et al. 2007; Li et al. 2008). 

Furthermore, soil texture in the lower position is more similar to that of the upper and mid 

positions as compared to the riparian zone (Figs 5.2c and 5.3c), which is supported by the 

fact that tillage erosion is not typically a particle size selective process (Xiaojun et al. 2013). 

The process of tillage erosion typically did not deposit soil within the riparian zone; for 

example, the presence of the topographic step along the edge of field in site 2 is evidence that

tillage erosion does not transport significant amounts of soil past the field boundary. 

Therefore, tillage erosion cannot explain the net accumulation of fine-grained soil within the 

riparian zone, which suggesting that a secondary process may be responsible for the observed
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trends in both the net accumulation and texture of the deposited soil within the riparian zone. 

It is likely that water erosion is remobilizing and transporting soil that had previously 

deposited in the lower position by tillage into the riparian zone. In this scenario there is an 

interaction between two different types of erosion where tillage erosion is acting as a 

delivering mechanism for the water erosion process (Lobb et al. 2004). For example, 

previously formed rills may be filled in by the frequent tillage operations. This soil is then 

eroded away as the rills re-form during the next significant rainfall event. This sequence of 

events may be repeated several times a year. Water erosion has been shown to be a selective 

process which preferentially mobilizes and transports fine-grained particles (e.g., Issa et al. 

2006; Armstrong et al. 2011). This may explain the accumulation of finer-grained particles 

within the riparian zone. The topographic step in site 2 provides an interesting case whereby 

any runoff that converges within the landscape and moves down slope will accumulate 

behind the step, encouraging the infiltration of the runoff into the soil and decreasing its 

transport capacity. This would result in deposition of coarse-grained soil in the lower slope 

position and any runoff that does overtop the step and is transported to the riparian zone 

would be enriched in fine-grained soil.

It is also interesting to note some of the abrupt changes in particle size that occur at 

depth in both the lower and riparian positions in site 1 (Figs. 5.2c and 5.2d). For example, 

there is a thin lens of soil with a high d50 (20 – 25 cm) within the riparian landscape zone. 

This layer of soil may have been deposited during an intensive precipitation event whereby a 

large amount of coarser-grained soil was deposited and subsequently buried by finer-grained 

sediment. However, the importance of up-stream contributions, in contrast to up-slope 

contributions, of sediment to the riparian positions during flooding events cannot be 
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discounted as these episodic events may have also contributed to the abrupt changes 

observed.

At site 1, there was a higher concentration of SOC within the riparian zone relative to 

the other landscape positions. There are a few possibilities that could explain this trend: 1) in-

field losses of SOC, or the homogenization of the soil profile, due to agricultural practices; 2)

preferential erosion of carbon-rich particles from up slope; 3) higher carbon input from 

riparian vegetation; or 4) a combination of processes. 

In the case of the first possibility, cultivation, or mixing of the soil profile, can 

increase the loss of C to the atmosphere by promoting decomposition because as the 

vegetative residues are incorporated into the soil the amount of vegetation in contact with the 

soil increases, which makes the residue more readily available for decomposition (Reicosky 

and Lindstrom 1993). Cultivation will also result in the homogenization of the tillage layer as

the high C content surface soil is mixed with the lower C content subsurface soil, resulting in 

the lowering of the overall maximum SOC concentration within a profile (Gregorich et al. 

1998). Both of these processes act to reduce the in-field SOC concentrations relative to the 

uncultivated riparian area.

Secondly, previous research, by Vandenbygaart et al. (2012), at site 1 demonstrated 

that there was a higher total SOC inventory within the lower and riparian positions relative to

the upper and mid positions. This was found to be the result of a loss of C-rich soil in the 

upper and mid positions and the subsequent accumulation in lower and riparian landscape 

positions. While erosion of SOC results in greater SOC inventory in the lower and riparian 

landscape positions, it had effectively buried C-rich soil to a depth at which the rate of 

decomposition was low (Vandenbygaart et al. 2012). This may account for the fact that 
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maximum SOC concentration were located at a depth of 40 – 45 cm in the lower slope 

position (Fig 5.2e ). The lower rates of soil accumulation within the riparian zone may also 

be less effective at burying C-rich soil. This may be due to the fact that the mechanism for 

transporting C-rich soil particles across the field edge boundary may be predominately water 

erosion (e.g., Schiettecatte et al. 2008).

Finally, in contrast to the other landscape positions, the maximum SOC concentration 

within the riparian zone was at the surface which may reflect inputs from the perennial 

vegetation and the lack of harvesting biomass. 

 5.5.2 Geochemistry and implications for sediment fingerprinting

The geochemical analysis from site 1 showed that there was significant spatial and 

vertical variability for most elements (Fig. 5.4). For many elements, it has been previously 

demonstrated that for in-stream sediment there is a negative correlation between 

concentration and d50 and a positive correlation between concentration and SOC (e.g., 

Horowitz 1991) which serves as the basis for particle size and organic matter correction 

factors. If the upper and mid landscape positions are considered to be the source of the 

deposited soil within the lower and riparian landscape positions, it would be expected that the

same correlations described above would hold true. However, very few elements showed this 

expected correlations and many of the elements had correlations in the opposite direction 

(Table 5.1). Furthermore, it is generally accepted that particle size exerts a larger influence on

concentration as compared to SOC (e.g., Horowitz 1991), but in this study more elements 

had a significant correlation with SOC than with the d50. Here correlations between both 

SOC or the d50 and concentrations appear to explain some of the observed vertical 
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variability. The lack of consistency in the direction of the correlations may suggest that the 

effects of SOC and d50 are not additive. Alternatively, other properties, including Al-, Fe- 

and Mn-oxides, might be more important in controlling the distribution of elements both with

depth and across the landscape. This material, similar to clay, has a high SSA and is 

chemically reactive and geochemical elements can concentrate in this fraction. Furthermore, 

the differences in concentration with depth or across the hillslope may also be due to 

biogeochemical transformations or translocation within the soil profile. 

 Hydrology is very different within riparian zones compared to upper, mid and lower 

landscape positions. Soil in riparian zones tend to have both an overall higher moisture status

due to proximity to the channel and a frequent change in redox conditions as a result of 

seasonal changes in the water table (Burt et al. 2002; Vidon et al. 2010). Redox sensitive 

elements such, As, Cr, Cu, Fe, Mn, and U, are of particular interest, as the mobility of these 

elements within the soil profile are linked to the redox potential of the environment (Borch et

al. 2010). For example, a laboratory study by Rezanezhad et al. (2014) compared a soil 

column with a static water table to a column with a fluctuating water table and found that the 

concentration of several metals (Fe, Mn, Si and K) changed with depth. The likely 

mechanism was thought to be due to chemical transport associated with the rise and 

subsequent draw-down of the water table. These hydrological conditions may, in part, be 

responsible for the differences observed in elemental concentration between landscape 

positions in this study. However, further study at site 1 is needed to fully evaluate the role of 

hydrology, particle size and SOC on the distribution of geochemical elements within the 

riparian zone.

Effectively characterizing potential sources of sediment is a key part of the sediment 
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fingerprinting approach (Davis and Fox 2009). In many agricultural case studies, surface 

soils are identified as potential sources, but there is no clear approach on how best to 

characterize this type of source. In some case studies, surface scrapes are taken near the edge 

of the field or within the riparian zone (i.e., sediment deposits along the delivery pathway), 

and this material is identified as having a high potential to be eroded and subsequently 

transported to surface waterways (e.g., Collins et al. 2012). Another strategy is to composite 

soil samples collected as part of a grid or transect pattern, in an effort to capture some spatial 

variability (e.g., Gellis and Noe 2013). In other case studies, samples are taken along 

transects extending from the upper slope position down and through the riparian zone, and 

this material is identified as a contributing source area (e.g., Koiter et al. 2013a). In the latter 

two examples, the depth of sampling becomes important. In cultivated areas samples can be 

taken to the depth of tillage as this layer is homogenized regularly through tillage. The 

appropriate depth to sample in the riparian zone is less clear, but the depth of observed 

erosional features (e.g., rills) should be considered. 

At site 1, taking into consideration the entire depth of the A-horizon, there are many 

elements that had concentrations that were significantly different between one or more of the 

landscape positions (i.e., results of the Kruskal-Wallis H test) and the results of the PCA 

show there were some clear differences in the geochemical composition of riparian soil as 

compared to within-field soil (Fig. 5.5a). In contrast, there were few elements that had 

concentrations that were significantly different between surface and subsurface soil samples 

and differences in geochemical composition between the two groups were less clear (Fig. 

5.5b). Overall, these results suggest that geochemical composition of the soils within the 

riparian is driven more by in-situ biochemical processes than by particle selectivity resulting 

204



from soil erosion processes.

 5.6 Conclusions

In both sites it was found that there was net soil erosion in the upper and mid 

landscape positions and a subsequent net accumulation in the lower/field edge and riparian 

positions. However, the maximum net accumulation occurred in the lower/field edge 

position. There was evidence of particle size selectivity, as soil in the riparian zone was found

to have a greater percentage of clay and silt compared to the soils within the field. However, 

the difference in particle size became less obvious when the analysis was restricted to the < 

63 μm fraction. Similarly, the riparian zone had higher SOC concentrations, but it was not 

clear whether this was a result of preferential deposition of C-rich particles within the 

riparian zone or a overall reduction in C within the fields due soil mixing from tillage. The 

geochemical composition within site 1 varied both spatially and vertically but it was difficult 

to attribute this variability to particle size or SOC content. Other biogeochemical processes 

were also likely to contribute to the observed patterns. 

The soils within the riparian zone had unique particle size, SOC and geochemical 

composition characteristics, which can have implications for the sediment fingerprinting 

approach. Specifically, it has implications on how potential terrestrial sources of sediment are

characterized and more importantly whether or not to include riparian soils as a unique 

source or as part of up-slope sediment source is key. Furthermore, this research suggests that 

careful consideration is needed when designing a sampling campaign and developing 

sampling protocols to effectively characterize potential sources of sediment.
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 6 The role of gravel channel beds on the particle size and 

organic matter selectivity of transported fine-grained sediment: 

implications for sediment fingerprinting and biogeochemical flux 

studies

 6.1 Abstract

The preferential erosion, delivery and transport of sediment within a drainage basin 

can result in downstream changes in both particle size and organic matter content. The 

physical and biological properties of transported and deposited sediment are important 

considerations in many sediment management and investigative tools, including sediment 

fingerprinting, and aid in the interpretation of sediment-associated nutrient and contaminant 

data. A recirculating flume (2m x 2 m x 40 m) was used to assess the changes in particle size,

organic matter content and geochemical composition of fine-grained sediment (< 125 μm) 

over a 31 hr period (representing a travel distance of ~24 km) under three contrasting channel

bed conditions. The three channel gravel bed conditions investigated were 0-, 5-, and 40-cm 

gravel bed depths. Suspended sediment samples were collected throughout the duration of the

experiment and gravel-stored sediment were collected along the length of the flume at the 

end of the experiment. Both suspended and gravel-stored sediment were analysed for particle

size and organic matter content. In addition, suspended sediment samples were analysed for a

broad suite of geochemical elements. The channel bed characteristics had a significant effect 

on both the particle size and organic matter selectivity of the transported suspended sediment.
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Furthermore, it was shown that a smooth planer channel bed compared to a planar gravel bed 

(i.e., 0- vs 5-cm gravel treatments) introduced small-scale roughness which resulted in the 

preferential deposition of larger particles into the channel bed. Increasing the gravel bed from

5- to 40-cm increased the amount of intra-gravel flow and reduced the potential for 

resuspension resulting in a further reduction in the particle size as well as resulting in a 

significant increase in the organic matter content of the suspended sediment. The relationship

between geochemical concentrations and particle size of the suspended sediment, in terms of 

linearity, magnitude and direction, were not consistent between the different elements 

investigated. This research helps to understand the processes that control the particle size and

organic matter selectivity of fluvial transported sediment. This information is an important 

part of many sediment management tools, including sediment fingerprinting, as it provides 

context when selecting sampling sites and interpreting the data they provide. The inconsistent

relationship between particle size and different geochemical elements highlights the 

uncertainty associated with commonly used particle size correction factors. 

 6.2 Introduction

 6.2.1 Sediment management tools and approaches

Particle size and organic matter selectivity, in the context of sediment transport, refers

to the preferential detachment, entrainment, transfer and deposition of sediment based on 

particle size and organic matter content. The sediment cascade is the concept that sediment 

eroded from hillslopes can followed though a series of connected unique geomorphic units to

the watershed outlet. Along the sediment cascade, sediment mobilization on the hillslopes, 

storage within the riparian zones and the fluvial transport in downstream rivers are all 

213



selective processes (Slattery and Burt 1997; Koiter et al. 2013a). Information on the 

processes of particle size and organic matter selectivity is needed for watershed management 

tools including, sediment budgets, geomorphic connectivity and sediment fingerprinting 

(Stone and Walling 1997; Di Stefano and Ferro 2002; Fryirs 2013). Many of the watershed 

tools commonly used can be considered blackbox concepts because there is little 

consideration as to the processes that link the inputs to the outputs, and in particular, the 

process of particle selectivity is often overlooked (Walling 1983; Koiter et al. 2013a). 

The sediment source fingerprinting technique uses naturally occurring physical and 

biogeochemical properties as tracers to discriminate between sediment sources and to 

subsequently estimate the contribution from each sediment source to sediment collected 

downstream (see Davis and Fox (2009) for a review of sediment fingerprinting). Ideally, the 

sediment properties selected as tracers do not change (i.e., exhibit conservative behaviour) 

between the source of sediment and the downstream sediment collection so that a direct 

comparison can be made. However, particle size and organic matter transport selectivity can 

result in the non-conservative behaviour of sediment properties as selectivity tends to result 

in downstream fining and an enrichment of organic matter content. Both of these properties 

have been shown to have an effect on geochemical and radionuclide tracer concentrations 

within the sediment and this is primarily due to the increase in specific surface area (SSA) 

and chemical reactivity (Horowitz 1991). The importance of this phenomenon has been 

recognized within the sediment source fingerprinting community as correction factors for 

both particle size and organic matter are commonly used. These correction factors are 

typically based on the ratio of SSA and organic matter content between collected in-stream 

sediment and potential sediment sources (e.g., Collins et al. 1997). However, the use of these 
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correction factors are increasingly being criticized as they have not been widely tested and 

have little basis in watershed processes (Koiter et al. 2013a; Smith and Blake 2014). 

The importance of incorporating process-based understanding of the changes in 

physical and biogeochemical properties of sediment during transport through watersheds 

have been increasingly recognized as a critical step in linking sediment sources to in-stream 

sediment in a reliable and robust manner. The special issue, Advances in Sediment 

Fingerprinting, in the Journal of Soils and Sediments, is evidence of this as many of the 

research articles focus on the testing of assumptions that link sources to sediment. For 

example, Pulley et al. (2015) investigated the use of different groups of tracers (e.g., 

geochemistry, radiochemistry, mineral magnetics) on the apportionment results; Laceby et al. 

(2015) compared a statistical and geological approach to the tracer selection process; Sherriff

et al. (2015) examined the uncertainty with respect to changes in particle size and organic 

matter content as well as geochemical transformations on the apportionment results; 

Wilkinson et al. (2015) incorporated the erosional history in characterizing sediment source 

tracer concentrations. This research compliments the other contributions in this special issue 

by investigating the particle size and organic matter selectivity of fluvial transported 

sediment and its subsequent influence on the geochemical concentrations of suspended 

sediment.

The sediment delivery ratios for watersheds are particle size dependent as smaller 

particle size classes tend to have higher delivery ratios as the coarser sediment fraction is 

preferentially deposited. For example, Walling (1983) found that within the Jackmoor Brook 

watershed (9.8 km2) located in Devon, England, very fine-grained sediments (<1 μm) had a 

delivery ratio of 100 % while coarser sediment (20 – 63 μm) had a delivery ratio of only 30 
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%. Furthermore, the suspended sediment within the Jackmoor Brook watershed was also 

found to be enriched in organic matter by 60 % as compared to the sources of sediment. 

Stone and Walling (1997) describe the importance of particle size distribution and selectivity 

in assessing the delivery and transport patterns of different particle size fractions and its 

subsequent importance in constructing and interpreting sediment budgets for watersheds. For 

example, Bainbridge et al. (2014) constructed a suspended sediment budget for three 

different particle size classes (< 2, 4 – 16 and >16 μm) for the Burdekin River watershed 

(130,400 km2) located in north-east Queensland, Australia. It was found that a dam, located 

mid-catchment, trapped approximately 66 % of the total incoming sediment, however, the 

dam resulted in the preferential trapping of the coarsest sediment size class (92 % trapped) as

compared to the finest sediment size class (33 % trapped). This preferential deposition of the 

coarser sediment resulted in 80 % of the total sediment being exported at the outlet of the 

watershed being comprised of sediment < 16 μm despite coarser sediment inputs from 

tributaries downstream of the dam. This research highlights the importance of considering 

watershed characteristics when selecting in-stream sediment sampling locations and 

interpreting the data.

The process of particle size and organic matter selectivity also needs to be considered 

when assessing data on carbon, nutrient, contaminant and geochemical fluxes at the 

watershed scale. The fluvial transport of organic and inorganic carbon are key parts of the 

global carbon (C) and nutrient cycles. Approximately 1.9 x 1012 kg of C (inorganic/organic 

and dissolved/particulate forms) from terrestrial sources are delivered to surface waterways 

on an annual basis (Cole et al. 2007). However, only half of this amount is delivered to the 

ocean, a further ~ 40 % is returned to the atmosphere and the remaining ~ 10 % is stored as 
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deposited sediment in lakes, reservoirs and rivers. The predominant form of sediment-stored 

carbon in freshwater systems is particulate organic C (POC) and lakes represent the largest 

and the most understood and quantified C storage compartment. In contrast, the role of C 

storage in rivers is smaller and is less understood and quantified (Cole et al. 2007; Tranvik et 

al. 2009). The particle size and organic matter content of transported sediment are important 

components of the overall characterization of the spatial and temporal patterns of C storage 

as these properties drive the settling velocities of sediment (e.g., Young and Huryn 1997). For

example, in a 75 km2 catchment, located in south-eastern Queensland, Australia, Garzon-

Garcia et al. (2015) found that there were changes in the C content of the sediments for 

different flow magnitudes. This indicats that there was particle size and organic matter 

selectivity occurring which resulted in higher C content sediment being transported during 

lower flow events as compared to higher flow events.

Sediment-associated nutrients, particularly phosphorus (P), are an important nutrient 

source in the external and internal loading of lakes and rivers and can result in eutrophication

(Withers and Jarvie 2008). The concentration of bioavailable P is correlated with particle 

size, with smaller particles having higher concentrations of P; this coupled with the 

preferential transport of fine-grained sediment has important implications for the linking of 

terrestrial P sources to surface waterways and its management (Kerr et al. 2011). For 

example, Ockenden et al. (2014) found that both the total nitrogen (N) and P concentrations 

of sediment trapped in 10 on-farm constructed wetlands were inversely related to median 

particle size. However, the total mass of accumulated N and P within the wetlands was 

dependent on the total mass of sediment trapped. Similar to nutrients, many contaminants 

including metals, organic chemicals, pathogens and pharmaceuticals, also tend to be 
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concentrated in the fine-grained and organic rich sediment (Oliver et al. 2007; Maskaoui and 

Zhou 2010; Zheng et al. 2012).

 6.2.2 Fluvial transport of fine-grained sediment

Within the fluvial environment, fine-grained sediment (< 63 μm) transport and 

depositional patterns, are primarily driven by the settling velocity of sediment particles 

(Naden 2010). The settling velocity of sediment is mainly influenced by the size of the 

particles as the smaller particles tend to remain in suspension as the mass of the particles are 

counteracted by the upward momentum created by eddies and turbulence. The composition, 

specifically the clay and organic matter content, of sediment is also an important factor 

controlling the settling velocity as these components can act as binding agents aggregating 

individual particles into larger aggregate particles. Aggregation can influence the settling 

velocity though changes in size, density, shape and internal structure of sediment particles 

(Droppo et al. 1997).

In addition to particle size, other important aspects of fine-grained sediment 

hydrodynamics include the velocity and transport capacity of the flow. As there is generally 

an overall downstream reduction in these two fluvial characteristics the capacity of streams to

entrain and transport larger particle is reduced, therefore, a downstream fining/gradation of 

sediment is often observed as the coarser particles are preferentially deposited upstream (i.e., 

hydraulic sorting). In addition to hydraulic sorting, abrasion and breakage of sediment 

particles can also result in the downstream reduction in particle size. This is an important 

process in watersheds containing low strength material (e.g., shale deposits) and it can be 

difficult to separate the processes of selectivity from abrasion and breakage (Koiter et al. 
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2013b). There can also be temporal variation in the selective nature of fluvial transport 

processes due to increases in precipitation and runoff which result in greater flow velocities 

and transport capacity (Walling et al. 1992). Similar to changes in the particle size 

distribution, there is generally an overall downstream increase in the organic matter content 

of the sediment (Rhoton et al. 2006). The preferential transport of organic matter is largely 

due to the lower density and the subsequent slower settling velocity of organic-rich particles 

as compared to mineral particles of a similar size.

Reach-scale features can also have a local influence on fine-grained sediment 

dynamics. These features include longitudinal (e.g., pool and riffle sequence, change in 

slope), lateral (e.g., flow characteristics around a meander, changes in channel width) and 

vertical (e.g., due to channel bed roughness, armoured layers) variations in flow velocities. 

These local variations result in the deposition of fine-grained sediments in features including,

alluvial fans, channel bars, floodplains and infiltration into the interstices of gravels. Much of

the literature focuses on the infiltration of sand-sized particles into the gravel matrix (e.g., 

Wooster et al. 2008; Grams and Wilcock 2014) and less on the infiltration of fine-grained 

sediment (< 63 μm) as this material is often considered to move though a river system 

unimpeded (i.e., wash load). However, fine-grained sediment storage within the gravel bed is 

an important consideration as it can reduce hyporheic exchange, compromise invertebrate 

and fish habitat, and act as a legacy source of sediment-associated nutrients and contaminants

(Rehg et al. 2005; Rex and Petticrew 2008; Albers and Petticrew 2012).

In this study, the particle size and organic matter selectivity of fluvial transported 

fine-grained sediment was investigated under three contrasting gravel channel bed conditions

using a large recirculating flume. The objectives of this research were to investigate: 1) the 
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changes in the concentration, particle size distribution and organic matter content of 

suspended and bed sediment over distance travelled; 2) the relationship between particle size 

and organic matter content of the suspended sediment; 3) the changes in the geochemical 

composition of the suspended sediment; and 4) the ability of a particle size correction factor 

to account for the changes in suspended sediment geochemistry. 

 6.3 Methods

 6.3.1 Flume characteristics

A recirculating flume located at the Quesnel River Research Centre (QRRC), Likely, 

British Columbia (BC), Canada, (52°37'08.2"N 121°35'33.3"W) was used to investigate the 

change in physical and biogeochemical properties of fine-grained sediment over time 

(distance travelled) under three different channel bed conditions. The recirculating flume was

constructed from concrete and had dimensions of 2 m x 2 m x 40 m with a gradient of 0.05 %

(see Fig. 6.1 for a schematic of the flume setup). Water was recirculated using two centrifugal

pumps (Goulds, Model 3656 LH 54 BF, ITT Industrial Process, NY, U.S.A.) with a discharge

of 4500 L min-1 and large aluminium screens (1 mm opening) were placed at the front and 

back of the flume to direct the flow of water and dissipate turbulence caused by the pumping 

of water. The flumes were filled with water to a depth of 15 to 20 cm (above the channel bed)

and had a velocity of 25 to 20 cm s-1 (at 60 % of the depth from the surface) measured with a 

propeller driven flow meter (Swoffer Instruments Inc., WA, U.S.A.) at 9 and 27 m from the 

front of the flume, respectively. The water was supplied from on-site groundwater wells and 

had a neutral pH (7.15), low conductivity (180 μs cm-1) and was devoid of any measurable 

particulate matter.
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The gravel used for the channel bed material was sourced from a local aggregate 

quarry and the shape was characterized by selecting 100 stones at random and measuring the 

three axes of each stone. The gravel were determined to be uni-modal and spherical to 

slightly discoid in shape using the Zingg classification (Zingg 1935) with a mean diameter 

(intermediate-axis; D50) of 3.2 ± 0.7 cm (± 1 SD). The porosity of the channel bed gravel was 

30 % and was measured using the water displacement method (12 L gravel sample). The 

gravel was washed prior to placement in the flume to remove any fine-grained sediment; as 

well, the gravel and the flume were cleaned in between experiments. The lack of fine-grained

sediment within the gravel may represent conditions after flushing flows or recent movement 

of the channel bed. The three channel bed treatments investigated were: 1) 0-cm gravel bed 

(0 D50); 2) 5-cm gravel bed (1.5 D50); and 3) 40-cm gravel bed (12.5 D50) which can be 

considered as representing end-members in terms of channel bed porosity and sediment 

storage capacity. This allowed for the examination of bed surface roughness, intra-gravel 

flows and sediment storage capacity on particle selectivity. The gravel depth was uniform 
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Figure 6.1: Recirculating flume schematic showing the setup of the flume and sampling 
locations for suspended sediment and gravel-stored sediment (not drawn to scale).
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throughout the length of the flume creating a flat/planar bed form. 

 6.3.2 Sediment addition description

The fine-grained sediment that was added to the flume were soil surface scrapes (0 – 

5 cm) collected in the lower slope position at the edge of an agricultural field next to the 

riparian area, in the Beaver Valley near Likely, BC (52°30'27.8"N 121°52'14.0"W), to 

represent sediment likely to be eroded and delivered to surface waterways. The soil was air-

dried and passed through a 2 mm sieve to remove stones and vegetation (e.g., grasses). The 

air-dried soil (200 g aliquots) was slaked in water for 10 min prior to being placed in a 125 

μm stainless steel sieve and raised and lowered by hand in a vertical motion with an 

approximate displacement of 10 cm in a container with 15 L of water for 10 min to obtain 

water-stable aggregates < 125 μm in size (methods based on Angers et al. 2007). For each 

treatment, a total of 6.5 kg of air-dried soil was wet sieved which resulted in 2.7 ± 0.1 kg of 

fine-grained sediment (oven-dry weight) being added to each of the three flume treatments.

The fine-grained sediment was delivered in four 15 L aliquots spaced 15 min apart to 

a stock container at the head of the flume (Fig. 6.1) that had a 800 cm2 grid of 0.6 cm holes in

the front and rear central portion of the container. The downstream grid was screened with 

200 μm Nitex mesh (Sefar Inc. QC, Canada) to prevent particles > 200 μm from entering the 

channel (similar to the method used by Rex and Petticrew 2010). The rapid but finite addition

of sediment, as described above, may be characteristic of a channel bank failure or a small 

mass wasting event; channel banks have been identified as a common source of fluvial 

sediment (e.g., Walling 2005; Koiter et al. 2013b).
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 6.3.3 Sampling and analysis

The flume simulations were run for 31 hrs, corresponding to approximately 24 km of 

total distance travelled. The first samples were collected 15 min after the last sediment 

addition (i.e., 1 hr after the initiation of the flume simulation) to ensure complete mixing 

within the flume environment. Suspended sediment samples (1 L) were collected using two 

Isco automatic water samplers (model 3700; Teledyne Isco, Inc, NE, U.S.A.) located at 9 and 

27 m (Fig. 6.1) with the intake at 50 % of the flow depth. The suspended sediment samples 

were split and measured for particle size distribution, suspended sediment concentration and 

organic matter content (Section 2.3.1). Bulk (20 L) suspended sediment samples, for 

geochemical analysis, were collected mid-flume at 18 m at 1, 2, 4, 7 and 13 hrs and these 

samples were allowed to settle at room temperature (~ 20 °C) for 48 hrs and the clear 

supernatant was decanted and the sediment samples were air-dried.

No bed sediment was collected for the 0-cm of gravel treatment as patterns of 

deposited sediment were assessed visually. A total of 12 sediment traps were used to collect 

gravel-stored sediment for the 5- and 40-cm gravel treatments. The sediment traps were 

placed in six rows and within a row traps were spaced equidistant from each other and the 

sidewalls of the flume. Each row was 3 m apart beginning 9 m from the front of the flume 

(Fig. 6.1). For the 5-cm gravel channel bed, gravel-stored sediments were collected using a 

sediment trap consisting of a plastic disk (35 cm diameter), with a small lip around the edge 

(1 cm high) which was placed on the bottom of the flume and covered with 5 cm of gravel. 

For the 40-cm gravel channel bed, gravel-stored sediments were collected using sediment 

traps that consisted of a waterproof bag (20 cm diameter and 35 cm long) secured to a metal 
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ring and buried 20 cm deep into the gravel bed and covered with gravel (Rex and Petticrew 

2008). At the end of the flume simulation run the sediment traps were collected and the 

sample (including gravel) was placed in a 125 μm sieve and the fine-grained sediment 

separated from the gravel by rinsing with water. A subsample of the fine-grained sediment 

was taken for particle size analysis and organic matter content (Section 2.3.1), with the 

remainder being allowed to settle. The clear supernatant was then decanted and the sediment 

was oven-dried and weighed. 

 6.3.3.1 Particle size and organic matter content

The SSA of the sediment samples were measured using a Malvern Mastersizer 3000 

laser diffraction system (Malvern, UK) (0.01 – 3500 μm diameter measurement range) 

assuming a constant particle density of 2.65 g cm-3. The SSA of sediment samples was used 

as the primary measure of particle size as opposed to median particle size because 

comparisons of the median particle size would require that the distributions have similar 

shapes (e.g., normal distribution). However, it is important to note that increases in SSA 

correspond to a reduction in the median particle size diameter (D50). The added, suspended, 

and gravel-stored sediment were measured for the non-dispersed or effective SSA (E-SSA) 

and the dispersed SSA (D-SSA); the latter following 2 min of in-line sonication at 90% 

power (45 W). The suspended sediment samples were filtered using pre-ashed glass fibre-

filters (0.7 μm pore size) to determine the suspended sediment concentration and ashed at 

550 °C for 1 hr to determine the organic matter content. Suspended sediment concentrations 

were corrected using a dilution factor to account for the additional pore water within the 

gravel bed matrix. The dilution factors were calculated using the measured gravel porosity 

and the depth of the gravel bed and were 1, 1.07 and 1.53 for the 0-, 5- and 40-cm gravel bed 
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treatments, respectively. Similarly, subsamples of the added sediment and gravel-stored 

sediment were ashed to determine organic matter content. 

The bulk suspended sediment samples were analyzed for a broad suite of geochemical

elements (51 elements in total) using ICP-MS following a microwave-assisted digestion with 

aqua-regia (ALS Mineral Division, North Vancouver, BC, Canada). Subsamples of the bulk 

suspended sediment were also measured for the absolute SSA (A-SSA) following digestion 

with 30 % hydrogen peroxide to remove organics and disaggregated chemically with a 

solution of sodium hexametaphosphate and sodium carbonate (Kroetsch and Cang 2007) and 

physically with 2 min of sonication at 45 W (Misonix S-4000, Qsonica, Newtown, CT, USA).

 6.3.4 Data analysis

All statistical analysis was undertaken using R Statistical Software v3.1.2 (R Core 

Team 2015) through RStudio Integrated Development Environment v0.98.5 (RStudio 2015). 

All plots were created using the R package ggplot2 v0.9.3.1 (Wickham 2009) with non-

transformed data. For the suspended sediment, the change in concentration, organic matter 

content and SSA over time, as well as differences between the three channel bed conditions, 

were assessed using linear regression with treatment contrasts using the 5-cm gravel 

treatment as the reference level. The relation between organic matter content and SSA for 

suspended sediment was nonlinear and a piecewise linear regression was used. The data were

split based on the largest SSA for the 0-cm gravel treatment which corresponded to 990.2 and

1112.4 m2 kg-1 for the E-SSA and D-SSA, respectively. 

Locally weighted regression, or LOESS, curves were used to help visualize the spatial

patterns for the bed sediment characteristics and were generated using the stat_smooth 
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function and a spanning coefficient of 1.25 was used to prevent over-fitting. 

The relation between geochemical concentrations and A-SSA for the bulk suspended 

sediment samples were assessed using linear regression. A hypothetical size-corrected 

concentration regression line was created using the common correction factor which was 

based on the ratio of A-SSA of suspended to the added sediment (Collins et al. 1997). Using 

the regression line for the measured suspended sediment geochemical concentrations it was 

assumed that at 965 m2 kg-1, where the suspended and the original added sediment A-SSA are 

equal (i.e., correction factor = 1.00), the geochemical concentrations were also the equal. The

concentration at this A-SSA was then multiplied by the calculated correction factors and 

plotted as the hypothetical size-corrected geochemical concentration.

 6.4 Results

 6.4.1 Changes in concentration, particle size and organic matter content

 6.4.1.1 Suspended and gravel-stored sediment concentrations

Given the total mass of the added sediment to the volume of water in the flume 

(excluding the volume of water contained within the gravel bed), the calculated maximum 

suspended sediment concentration, if all sediment remained in suspension with no mixing 

with gravel pore water, was approximately 170 mg L-1 for each flume treatment. The 

suspended sediment concentrations were averaged between the two sampling locations 

(located at 9 and 27 m; Fig 6.1) prior to statistical analysis and the changes in the suspended 

sediment concentration over time are shown in Fig. 6.2a . The maximum recorded suspended 

sediment concentration (1 hr) was 92.3, 90.5, and 57.5 mg L-1 for the 0-, 5- and 40-cm gravel 

bed treatments, respectively. Overall, the concentration decreased over time (Table 6.1a) and 
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was characterized by a rapid decrease followed by a slow but continuous decline in 

concentration. At the termination of each flume simulation (31 hrs) the suspended sediment 

concentration was 25.7, 13.2 and 1.4 mg L-1 corresponding to approximately 12.1, 6.0 and 0.6

% of the total added sediment remaining in suspension for the 0-, 5- and 40-cm gravel bed 

treatments, respectively (Fig. 6.2a). There was a significant interaction between sampling 

time and channel bed conditions. The rate of decline in concentration was the lowest for the 

0-cm gravel treatment followed by the 5-cm gravel treatment and the rate of decline was the 

highest for the 40-cm gravel treatment (Table 6.1a).
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No measurement of gravel-stored sediment was made for the 0-cm gravel treatment, 

however, visual observations showed that the amount of sediment on the bottom of the flume 

increased towards the back of the flume (i.e., the majority of sediment accumulated between 

25 and 36 m; Fig. 6.1). The amounts of gravel-stored sediment for the 5- and 40-cm gravel 

beds are shown in Fig. 6.3a. There is a small difference between the two treatments with an 

average of 28.1 ± 5.4 (±1 SD) and 35.6 ± 5.4 g m-2 for the 5- and 40-cm of gravel treatments, 

respectively. There was no consistent trend in the amount of gravel-stored sediment along the

length of the flume, however, there was evidence of a difference along the width (i.e., left to 

right) of the flume. This was especially evident in the 5-cm gravel treatment near the front (9 
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Table 6.1: Results of linear models looking at the correlation in concentration (a), specific 
surface area (b) and organic matter content (c) of suspended sediment with hour (distance 
travelled), channel bed and particle type. Channel bed contrasts compares 0 cm to 5 cm 
gravel (1) and 40 cm to 5 cm gravel (2).

Analysis Parameter Estimate Std. Error DF t value P(>|t|)

(Intercept) 1.965 0.018 81 109.34 < 0.001**

-0.566 0.019 81 -29.41 < 0.001**
0 cm vs. 5 cm gravel 0.004 0.025 81 0.14 0.887
40 cm vs. 5 cm gravel -0.214 0.025 81 -8.42 < 0.001**

0.193 0.027 81 7.11 < 0.001**

-0.327 0.027 81 -12.01 < 0.001**

(Intercept) 2.827 0.004 91 646.21 < 0.001**

0.278 0.005 91 57.33 < 0.001**
0 cm vs. 5 cm gravel -0.019 0.006 91 -3.20 0.002*
40 cm vs. 5 cm gravel 0.072 0.006 91 11.36 < 0.001**
Particle type (E-SSA vs. D-SSA) -0.055 0.003 91 -20.37 < 0.001**

-0.123 0.007 91 -17.92 < 0.001**

0.088 0.009 91 9.43 < 0.001**

(Intercept) 0.0588 0.0009 81 63.38 < 0.001**
hour -0.0006 0.0001 81 -7.97 < 0.001**
0 cm vs. 5 cm gravel -0.0078 0.0013 81 -5.92 < 0.001**
40 cm vs. 5 cm gravel -0.0126 0.0013 81 -9.61 < 0.001**
hour x channel bed (1) 0.0003 0.0001 81 3.23 0.002*
hour x channel bed (2) -0.0004 0.0001 81 -3.81 < 0.001**

** indicates P < 0.001
* indicates P < 0.01
DF represents degrees of freedom

(a) Concentration
log

10
(mg L-1)

log
10

(hour)

log10(hour) x channel bed (1)

log10(hour) x channel bed (2)

(b) Specific surface 
area
log10(m

2 kg-1)

log10(hour)

log10(hour) x channel bed (1)

log10(hour) x channel bed (2)

(c) Organic matter 
content
1/(%

organic
)
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 6.4.1.2 Particle size

The added sediment had an average E-SSA and D-SSA of 312.3 ± 89.7 (D50; 19.9 ± 

8.1 µm) and 450.3 ± 78.1 m2 kg-1 (D50 11.9 ± 2.4 µm) (± range), respectively. The D-SSA is 

larger than the E-SSA due to the effect of particle aggregation. The SSA data were averaged 

between the two sampling locations (9 and 27 m; Fig. 6.1) prior to statistical analysis and the 

E-SSA data are shown in Fig. 6.2b. The changes in the particle size had an inverse trend, but 

a similar rate of change, to the suspended sediment concentration. Overall there was a 

significant increase in the SSA (i.e., decrease in particle size) over time (Table 6.1b) and it 

was characterized by an immediate and large increase in E-SSA following the addition of 

sediment as observed during the first suspended sediment measurement (1 hr) with a 

measured E-SSA of 515.3, 586.2 and 630.2 m2 kg-1 (D50; 8.62, 7.13 and 6.24 µm) for the 0-, 

5- and 40-cm of gravel treatments, respectively. There was an initial rapid increase in the E-

SSA over the first few hours and then the rate of change slowed as the flume simulation 

progressed. For the 40-cm gravel treatment there was insufficient suspended sediment after 

10 hrs to make reliable particle size measurements. There was no significant interaction 

between particle type (E-SSA or D-SSA) and sampling time (hrs) (i.e., the relations between 

E-SSA or D-SSA and sampling time had similar characteristics) and this interaction term was

removed from the analysis. The rate of increase in SSA was less for the 0-cm compared to 

the 5-cm gravel bed and the rate of increase in SSA was greater for 40-cm compared to the 5-

cm gravel bed (Table 6.1b).

The E-SSA and D-SSA for the gravel-stored sediment for both 5- and 40-cm gravel 

beds was coarser than the added sediment (shown in Fig. 6.3b). The gravel-stored sediment is

coarser in the 40-cm gravel treatment as compared to the 5-cm gravel treatment. Both the E-
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SSA and D-SSA showed a similar amount of variation with a range in the E-SSA of 69.2 and 

64.2 m2 kg-1 and a range in the D-SSA of 65.5 and 54.9 m2 kg-1 for the 5- and 40-cm gravel 

treatments, respectively. The E-SSA of the stored fine-grained bed sediment showed little 

change along the length of the flume (Fig. 6.3b). 

 6.4.1.3 Organic matter content

The organic matter content of the added sediment ranged between 19.5 and 20.4 % 

with an average of 19.9 %. The organic matter contents of the suspended sediment were 

averaged between the two sampling locations (located at 9 and 27 m; Fig. 6.1) prior to 

statistical analysis and the changes in organic matter content over time are shown in Fig. 

6.2c. Initially, the organic matter of the suspended sediment was similar to the added 

sediment for all three treatments. Overall, as the flume simulations progressed there was an 

increase in the suspended sediment organic matter content (Table 6.1c). At the termination of 

the flume simulation (31 hr), there was only a small (< 10 %) increase in the organic matter 

content compared to the start of the flume simulation (1 hr) for the 0- and 5-cm gravel beds, 

however, there was a large increase in the organic matter content for the 40-cm gravel 

treatment. There was a significant interaction between sampling time and channel bed 

conditions. The rate of increase in organic matter content was less for the 0-cm gravel 

compared to the 5-cm gravel and the rate of increase in organic matter content was greater for

40-cm gravel compared to the 5-cm gravel (Table 6.1c). The organic matter content of the 

bed sediment for the 5- and 40-cm gravel beds were both similar to the added sediment and 

show no spatial trends along the length of the flume with average values of 19.2 ± 1.0 % and 

23.5 ± 1.5 % for the 5- and 40-cm gravel treatments, respectively (Fig. 6.3c).
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 6.4.3 Sediment geochemistry

Only the bulk suspended sediment samples collected in the 0-cm gravel bed treatment

for the first 13 hrs had enough mass for geochemical analysis (0.5 g needed for analysis). The

A-SSA of the added sediment was 959.3 m2 kg-1 (D50; 4.21 µm) and the range of A-SSA for 

the suspended sediment was 964.7 – 1237.0 m2 kg-1 (D50; 2.77 - 3.96 µm). The ratio between 

the A-SSA of the collected suspended sediment to the added sediment corresponds to a 

particle size correction factor ranging between 1.01 and 1.29 over the first 13 hrs of the flume

simulation. The relationship between geochemical concentration and SSA was not consistent 

between the different elements in terms of linearity and the direction and magnitude of the 

slope. Out of the 51 elements investigated, six elements were below detection limits in one or

more of the sediment samples and were removed from the analysis. Of the remaining 45 

elements, 16 elements had a positive slope and two elements had negative slopes that were 
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Table 6.2: Results of piecewise regression looking at the correlation in organic matter content
for small SSA (a) and large SSA (b) with specific surface area, channel bed and particle type 
for suspended sediment. Channel bed contrasts compares 0 cm to 5 cm gravel (1) and 40 cm 
to 5 cm gravel (2).

Analysis Parameter Estimate Std. Error DF t value P(>|t|)

(Intercept) 17.832 1.141 125 15.63 <0.001 *
SSA 0.000 0.001 125 -0.09 0.932
0 cm vs. 5 cm gravel -2.099 1.357 125 -1.55 0.124
40 cm vs. 5 cm gravel 1.534 2.119 125 0.72 0.471
Particle type (E-SSA vs. D-SSA) -0.377 0.208 125 -1.81 0.073
SSA x channel bed (1) 0.006 0.002 125 3.88 <0.001 *
SSA x channel bed (2) 0.003 0.002 125 1.03 0.306

(Intercept) 2.841 2.203 51 1.29 0.203
SSA 0.014 0.002 51 8.53 <0.001 *
40 cm vs. 5 cm gravel 2.444 3.362 51 0.73 0.471
Particle type (E-SSA vs. D-SSA) -2.514 0.603 51 -4.17 <0.001 *
SSA x channel bed (2) 0.002 0.002 51 1.01 0.317

* indicates P < 0.001
DF represents degrees of freedom

(a) Organic matter 
content (%)
Small specific surface 
area
(< 1000 m2 kg-1)

(b) Organic matter 
content (%)
Large specific surface 
area
(> 1000 m2 kg-1)
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and entrainment velocities (Droppo 2001). However, results showed that the patterns of 

change in the particle size distribution over time (i.e., distance travelled) did not significantly 

differ between the E-SSA and D-SSA (Table 6.1b). This suggests that the particles were 

transported as dense water-stable aggregates with similar hydrodynamic behaviour as 

compared to discrete particles. However, it is unclear whether the stability of the aggregates 

reflects the properties of the added sediment, the flow characteristics within the flume or the 

duration of the experiment. To assess whether flocculation was occurring along the length of 

the flume the difference for both E-SSA and D-SSA between the two sampling locations (9 

and 27 m; Fig. 6.1) were calculated for each treatment. There was not a significant (p < 0.05) 

difference in either the E-SSA or D-SSA between the 9 and 27 m suspended sediment 

sampling locations (data not shown). Overall, there was a very small average difference in 

SSA between the two sampling locations of -15.1 and -1.9 m2 kg-1 for the E-SSA and D-SSA, 

respectively. The reduction in both the E-SSA and D-SSA suggests there is some small 

degree of disaggregation or selective deposition of larger particles between the two sampling 

locations. The idea of selective deposition is supported by the small decrease in suspended 

sediment concentration (average difference of 0.4 mg L-1) between the two sampling 

locations. 

Regardless of channel bed conditions there was a significant reduction in suspended 

sediment concentration and a decrease in the particle size and an increase in the organic 

matter content of the suspended sediment over time (i.e., distanced travelled). The presence 

of lower water velocities along the walls of the flume, due to the frictional resistance, and the

greater depth of water and corresponding lower velocities at the rear of the flume will have 

played a role in promoting sediment deposition of the coarser sediment particles. 
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Furthermore, the cohesive nature of the added sediment would have reduced the re-

entrainment of deposited sediment. The Shields (1936) diagram shows that for inorganic 

particles < 200 μm, higher velocities and shear stress thresholds are needed for entrainment 

as the particle size decrease. For example, the median diameter (effective) of the added 

sediment was 20 μm and the corresponding lower limit of entrainment, according to the 

Hjulström (1936) curve is approximately 40 cm s-1, compared to the velocities of 20 – 25 cm 

s-1 in this study.

Comparing the 0- to the 5-cm gravel bed treatments presents an opportunity to look at

the effect of channel bed roughness and gravel bed pore volume on the preferential trapping 

of sediment. The addition of 5 cm of gravel significantly reduced the overall suspended 

sediment concentration, resulted in smaller particle sizes and increased the organic matter 

content of the suspended sediment compared to the 0-cm gravel bed. The roughness elements

created by the gravel changes the vertical velocity profile by slowing the water velocity near 

the bed surface due to drag forces (increased fluid contact at the channel bed boundary) 

(Kirkgöz 1989). The Manning's roughness coefficient for straight uniform concrete channel 

ranges between 0.012 – 0.018 as compared to 0.028 – 0.035 for a gravel bed (Arcement and 

Schneider 1989). The resulting reduction in near bed velocity would allow for smaller grains 

of sediment to settle. In many natural settings the channel bed is not composed of grains of a 

single size class (uniform) but rather composed of a wide range in particle size from clay and 

silts through to coarse sands and gravels. The entrainment of particles from non-uniform beds

tend not to follow the Shields diagram and fine-grained sediments of non-uniform channel 

beds are more difficult to entrain compared to the same sized particles in a uniform channel 

bed (Xu et al. 2008). Within the flume simulation, the addition of a gravel bed created a bed 
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with a bimodal grain size distribution (i.e., the added fine-grained sediment and the coarse 

gravel), and the gravel would have acted as a protecting layer preventing the erosion of the 

fine-grained sediment. Furthermore, the addition of the gravel would have increased the 

amount of turbulence near the channel bed. Turbulence can penetrate below the channel 

surface and can result in the resuspension of sediment stored near the channel bed surface 

(Packman and Salehin 2003). However, this effect diminishes with depth and may, in part, 

explain the lower concentrations and smaller particles in the 40-cm as compared to the 5-cm 

gravel beds.

The comparison of the 40- to the 5-cm gravel channel bed allows for the investigation

of the effects of intra-gravel flow on the dynamics of suspended sediments. Previous research

(Slager 2014), using salt as a tracer in a similar QRRC flume, under similar flow and gravel 

bed conditions, showed that the water residence time quickly increased with depth. The 

residence time within the gravel matrix was approximately 5 and 55 times greater at a depth 

of 5 and 15 cm, respectively, compared to the channel bed surface (Slager 2014). Intra-gravel

flows exhibit a sieve-like removal of all but the very fine-grained sediment as the tortuous 

flow pathways though the gravel would slow the velocity of the flow allowing for a greater 

amount of sediment deposition. For example, Petticrew et al. (2007) demonstrated through 

the use of lidded and non-lidded channel bed sediment traps that a significant amount of fine-

grained sediments can by deposited by lateral flows through gravel. With larger grain sizes 

(e.g., sand), particles can become trapped among the pore spaces near the surface of the 

gravel creating a seal, or cap, preventing the downward migration of sediment, however, 

given the fine-grained nature of the added sediment and the high porosity of the gravel in this

study it is likely that the added sediment would penetrate deep into the gravel bed. The fine-
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grained sediment stored deeper in the gravel bed is less exposed to turbulence, which would 

limit the amount of sediment being resuspended (Gibson et al. 2011; Hamm et al. 2011). 

The nature of the sediment supply is important to consider as it will influence the 

particle size and organic matter selectivity of fluvial transported sediment. For example, a 

sediment pulse, as demonstrated in this study, will be different as compared to a more 

continuous supply of sediment (e.g., surface erosion). The latter would maintain a higher and 

more consistent suspended sediment concentration resulting in a higher fluid density which 

will change the settling velocity of sediment particles. In addition, the continuous deposition 

of sediment will eventually exceed the storage capacity of the gravel bed or create a surface 

seal changing the boundary conditions from a rough and porous to a smooth and 

impermeable surface, similar to the 0-cm gravel treatment.

 6.5.2 Organic matter selectivity

All three flume treatments show an increase in the organic matter content of the 

suspended sediment over time. This is likely due, in part, to the difference between the 

density of organic matter (0.9 – 1.3 Mg m−3) and mineral particles (2.6 – 2.75 Mg m−3) 

(Brady and Weil 2001). The decrease in density generally lowers the settling velocity 

allowing for the preferential transport of organic-rich particles. The aggregated sediment 

particles may have been breaking apart due to the pumps within the recirculating flume setup 

and breaking down the aggregates in to their primary organic and inorganic components. The 

more dense mineral fraction preferentially settles while the organic component remains in 

suspension which results in the organic-rich sediment remaining in suspension.

The relation between E-SSA and organic matter content of the suspended sediment 
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was not linear over the range of E-SSA investigated. Only suspended sediment particles over 

a E-SSA threshold value of 1000 m2 kg-1 showed a significant positive relation between E-

SSA and organic matter content. This suggests that the selective process involved in fluvial 

transport is different, in terms of magnitude of the effect and the trend over time, between 

particle size and organic matter. This was also evident with respect to changes over time for 

each property as particle size had a log-log relation (Fig. 6.2b) while organic matter had a 

reciprocal relation (Fig. 6.2c). Furthermore, making generalizations about the organic matter 

content based on particle size may depend on the range of E-SSA being investigated; i.e., the 

relation may be considered linear over small ranges of E-SSA. Small sample masses 

prevented the investigation of the relationship between A-SSA and organic matter which is 

needed to fully understand the particle size and organic matter dynamics.

 6.5.3 Implications for geochemical composition of suspended sediment

The lack of any consistent trend between the different geochemical elements suggests 

that the mineralogy of the inorganic fraction of the sediment is not uniform across particle 

sizes (Fig. 6.5). The distribution of geochemical elements within sediment, whether it is part 

of the crystalline structure (e.g., primary or secondary minerals) or absorbed onto the surface 

(e.g., exchangeable), may affect the relation between A-SSA and geochemical concentrations.

Other sediment properties may also influence the A-SSA and geochemical concentration 

relation, for example, Fe-oxides have been shown to increase soil aggregation (e.g., Duiker et

al. 2003) as well as have a large influence on the geochemical composition of soils due to 

their high A-SSA (Horowitz 1991). Therefore, a larger single aggregate will have a lower E-

SSA than the sum of the A-SSA for all the individual particles that the aggregate is composed
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of. When these larger aggregates are preferentially deposited they may sequester a 

disproportional amount of other elements compared to the smaller aggregates or discreet 

particles remaining in suspension. The dissolution and desorption of elements from the added

sediment once entering the flume environment would have also contributed to the range of 

trends observed. The organic matter content of the sediment may have also influenced the 

geochemical composition, however, the added effects of organic matter may have been 

limited as there was only a small change (1 – 13 hrs) in organic matter content for 0 cm 

gravel bed treatment for which the geochemistry of the suspended sediment was investigated 

(Fig. 6.2b). Further investigation of the partitioning of geochemical elements into various 

fractions (e.g., exchangeable, bound to organic matter and residual) is needed to fully 

understand the relation between A-SSA, organic matter content and geochemical 

concentrations.

This study highlights the importance of the particle size selectivity process on 

geochemical (e.g., trace metals) flux and transport studies. It is important to establish the 

relations between particle size and elemental concentrations for each element of interest as 

the results from this study show that the relation between particle size and elemental 

concentration can vary between elements. Once the particle size and elemental concentration 

relation has been established this information can be use in conjunction with both the 

suspended sediment concentration and particle size distribution to estimate total load. 

Furthermore, the results from this study demonstrate that the both the particle size and 

organic matter content selectivity can change according to the channel bed conditions, 

specifically the channel bed roughness and the presence of high porosity gravels. Fig. 6.6 

depicts a conceptual diagram showing the changes in particle size, organic matter content, 
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suspended sediment concentration and gravel bed sediment storage with changing gravel bed 

depth as observed in this study. This is important to consider as the channel bed conditions 

can change over time from high flow events that flush out gravel-stored fine-grained 

sediment or result in gravel bed movement. In addition, channel bed condition can also vary 

longitudinal from headwaters towards the watershed outlet as channels transition between 

bed types, for example, from bedrock to gravel through to sand channel bed types. The 

spatial and temporal variations in particle size and organic matter selectivity needs to 

consider when selecting sampling locations and timing and interpreting the data (Koiter et al. 

2013a).

The relation between particle selectivity and geochemical composition is an important

aspect of many sediment fingerprinting studies. Typically there is a difference in both particle

size distribution and organic matter content between potential sources of sediment and 
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Figure 6.6: Conceptual diagram showing the influence of gravel beds on the deposition, 
storage and resuspension of fine-grained sediment. The gravel bed increases bed roughness 
slowing the velocity near the channel bed which promotes deposition. Increasing the depth of
the gravel bed modifies the intra-gravel flow resulting in greater storage and limiting the 
resuspension of sediment.
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downstream collected sediment that is corrected for by using simple correction factors based 

on ratios of A-SSA and organic matter content between source and sediment. However, Smith

and Blake (2014), demonstrated that the particle size and organic matter correction factors 

can have a large influence in the final source apportionment results. Therefore, it is important

to test the validity of such correction factors prior to using them. The results from this study, 

although limited, support the conclusions of Koiter et al. (2013a) for the need to carefully 

consider particle size correction factors and the elements selected as tracers in sediment 

fingerprinting studies, as not all elements have the same A-SSA and concentration relation. 

The range in relatios found between the different geochemical elements in this study are 

similar to the research by others (e.g., Russell et al. 2001; Smith and Blake 2014) and draws 

attention to the assumption made when using particle size correction factors. This research 

highlights the continued need for research and empirical evidence for the processes of 

particle size and organic matter selectivity and their subsequent influence on geochemical 

properties if the sources and sinks are going to be linked in a robust and reliable manner. 

Fluvial transport is one of the last steps of the sediment cascade and further work is need to 

investigate the additional influences of particle selectivity of the erosional and sediment 

delivery processes when linking sediment sources to downstream collection.

 6.6 Conclusions

Using a recirculating flume it was demonstrated that the distanced travelled (i.e., 

transport time), and channel bed characteristics both had a significant effect on the particle 

size and organic matter selectivity of the transported suspended sediment. Furthermore, it 

was shown that a gravel bed (0- vs 5-cm gravel treatments) introduced small-scale roughness 
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which resulted in the preferential deposition of larger particles into the channel bed as 

compared to a smooth planer channel bed. The change from the 5- to 40-cm the gravel bed 

treatments increased the amount of intra-gravel flow and reduced the potential for 

resuspension resulting in further reduction in the particle size of the suspended sediment. 

This information demonstrates that the channel bed conditions are an important factor to 

consider when selecting sediment sampling sites and interpreting the data they provide. The 

geochemical properties of the suspended sediment changed as a result of fluvial transport but 

it was difficult to properly account for these changes based on particle size alone. There are 

other confounding factors, including the relation of aggregate size and stability to sediment 

geochemistry, that need to be considered. This research helps to understand the process of 

particle selectivity, in terms of particle size and organic matter content, which is an important

part of many sediment management tools as well as aiding in the interpretation of sediment-

associated nutrient and contaminant transport dynamics.
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 7 Investigating the role of connectivity and scale in assessing the 

sources of sediment in an agricultural watershed in the Canadian 

prairies using sediment source fingerprinting

 7.1 Abstract

Sediments adversely impact the quality of surface waters and are a significant source of 

contaminants such as nutrients and pesticides in agricultural watersheds. The development of 

effective Beneficial Management Practices (BMPs) to minimize these impacts requires a 

sound understanding of the sources of sediments. The objectives of this study were: (1) to 

determine the sources of sediment in an agricultural watershed in the Canadian prairies using 

sediment source fingerprinting; and (2) to assess the results of the sediment fingerprinting 

study within the context of the scale of observation and the hydro-geomorphic connectivity 

of the watershed. Geochemical and radiochemical fingerprints were used to discriminate 

between the three potential sediment sources identified: topsoil, streambanks and shale 

bedrock. Suspended and bed sediment samples were collected over the course of three years 

at six locations along the main stem of the creek, ranging from 3rd order (48 ha) to 7th order 

(7441 ha) drainage basins. Four sediment fingerprint properties were selected that met 

statistical- and process-based selection criteria and the Stable Isotope Analysis in R (SIAR) 

program was used to estimate the proportion of sediment derived from each source at each 

sampling location in the watershed. The suspended sediments in the upper reaches were 

dominated by topsoil sources (85 – 64 %) while the suspended sediments moving through the

lower reaches and being exported from the watershed had a higher proportion of sediment 
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coming from streambank and shale bedrock sources. The results of this sediment 

fingerprinting study demonstrate that there is a switch in sediment sources between the 

headwaters and the outlet of the watershed. This research highlights the importance of the 

sampling location, scale and and connectivity on the interpretation of results derived from the

sediment fingerprinting technique.

 7.2 Introduction

 7.2.1 Lake Winnipeg Basin

In many river basins, agricultural activities have been identified as a significant 

source of sediment and associated nutrients and contaminants (e.g., pathogens, pesticides). 

Agriculture in Canada covers approximately 7% (6.8 million ha) of the total land area with 

80% situated in the prairie region of the country (i.e., the provinces of Manitoba, 

Saskatchewan and Alberta) (Statistics Canada 2012). The agricultural landscape of the 

prairies is a mosaic of arable cropland, pasture and forage. The Lake Winnipeg basin covers 

more than 1,000,000 km2 and drains a significant portion of this agricultural region. The 

basin encompasses portions of four Canadian provinces (Alberta, Saskatchewan, Manitoba 

and Ontario) and parts of four U.S.A states (Montana, North Dakota, South Dakota and 

Minnesota). Lake Winnipeg is the 10th largest lake by surface area (24,500 km2) in the world, 

and has experienced a significant decline in water quality over the past several decades. Of 

particular concern is the increase in frequency and extent of algal blooms (i.e., 

eutrophication) and its subsequent effect on the aquatic ecosystem and human health 

(Schindler et al. 2012). The eutrophication of Lake Winnipeg is largely due to excessive 

nutrient loading from urban, industrial and agricultural sources. It has been estimated that 
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agriculture in Manitoba contributes approximately 5% of the total nitrogen and 15% of the 

total phosphorus loading into Lake Winnipeg (Lake Winnipeg Stewardship Board 2006). This

represents approximately 11% and 32% of Manitoba's contribution of nitrogen and 

phosphorus, respectively, to Lake Winnipeg. Because P has a high affinity to soil particles 

much of the total loss of P from farmland is due to soil erosion and sediment delivery. 

Therefore, identifying the sources of sediment and understanding the interaction of sediment 

with nutrients within agricultural river basins of the Canadian prairies will play an important 

part of the mitigation and protection of Lake Winnipeg.

 7.2.2 The use of sediment fingerprinting in assessing the sources of sediment in river 

basins

The development and targeting of effective Beneficial Management Practices (BMPs)

to minimize the impacts of agriculture on water quality requires a good understanding of the 

sources of sediments. However, issues of excessive sediment and nutrient pollution in 

agricultural watersheds often arise from diffuse, or non-point sources. With no clearly 

defined entry points, high spatial and temporal variability, large land base, and multiple 

stakeholders, this type of pollution is difficult to attribute to a specific location and to control.

Effective river basin management strategies to address these issues increasingly rely on 

sediment fingerprinting to identify sediment sources at the river basin scale (Owens 2008; 

Mukundan et al. 2012). In brief, sediment fingerprinting utilizes the natural physical and 

biogeochemical properties of sediment as tracers. A suite of sediment properties are selected 

that can differentiate between potential sediment sources (e.g., cropland, streambanks, 

forests). These unique sediment properties, which comprise the fingerprint, are measured in 
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both the source and sediment samples and a statistical and mixing model approach is 

subsequently used to estimate the contribution of sediment from each potential source (for an

overview of the methodology and application of sediment fingerprinting, see Gellis and 

Walling (2011)).

In many sediment fingerprinting studies, sediment is collected only at the river basin 

outlet and conclusions based on these samples on the sources of sediment are then often 

extended to the entire river basin. However, there can be a significant disconnect in the 

sediment cascade between the head waters and the outlet of a river basin. The transport of 

sediment though a river basin has been described as a “jerky conveyor belt” owing to the 

continual cycles of deposition and the subsequent reworking of sediment. Within the 

sediment fingerprinting literature, the processes that link the sources of sediments to the 

collected sediments have been described as a black-box. The black-box approach is viewed in

terms of its inputs (sediment sources) and outputs (collected sediments) with very little 

knowledge of how processes (e.g., erosion and transport processes) within the black-box 

influence the relationship between the inputs and outputs (Koiter et al. 2013). To help 

overcome the problems associated with the black-box approach, there needs to be further 

assessment of the location of sediment sampling sites in relation to the sediment sources and 

how this may influence the interpretation and conclusions made. 

 7.2.3 (Dis)Connectivity in river basin sediment cascades

It has been well documented that only a small proportion of eroded sediment within a 

river basin makes it through to the outlet (i.e., the sediment delivery ratio) (Walling 1983). 

This is the result of the net storage of sediment within different compartments (e.g., hillslope,
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floodplain, river channel) of a river basin. The sediment delivery ratio is dependent on the 

scale of observation due to the non-linearity of river basin processes at different scales. The 

sediment delivery ratio generally decreases with increasing drainage area, as the magnitude 

and residence times of sediment storage increases and there is a decline in the connectivity 

(i.e., a disconnect) between the hillslopes and the river channel (Walling 1983; Fryirs 2013). 

Although the concept of connectivity between different compartments is difficult to define 

and quantify, it remains an important part of our understanding of river basin processes and 

system behaviour (Michaelides and Chappell 2009). 

Within the context of the sediment cascade at the river basin scale, connectivity refers

to the physical connection or linkages between compartments and their effect on sediment 

transfer. The degree of connectivity refers to how efficiently and unobstructed the transport 

of sediment is throughout the river basin. There are three main types of linkages: 

longitudinal, lateral and vertical and when these linkages become blocked, the compartments 

become disconnected and the flow of sediment is disrupted (Fryirs 2013). Fryirs (2013) 

identified three types of blockages: buffers, barriers and blankets and the spatial arrangement 

of these features will exert an influence on the connectivity and subsequently the pattern of 

sediment transport and storage (Kuo and Brierley 2013). It is also important to consider that 

different grain-sizes will have different storage and transport patterns. Furthermore, there is 

also considerable temporal variability in connectivity of the landscape (Parsons 2012). 

Sediment transport processes operate at different time-scales which can create a disconnect as

one process can supply sediment at a faster rate than another can remove it. In addition, 

blockages can be breached and connectivity restored during periods of high flow. Thus, the 

connectivity of a river basin has a large influence on sediment dynamics and needs to be 

253



considered at all spatial and temporal scales of observation.

When developing a sediment fingerprinting study it is important to identify where 

blockages occur within the river basin and determine how they may disrupt the linkages 

between sediment sources and transported sediment in order to properly select sediment 

sampling locations and interpret the data they provide. For example, Smith and Dragovich 

(2008), using multiple sediment sampling locations, found a rapid transition from hillslope to

channel source dominated sediment with increasing distance downstream in a small (1.6 km2)

catchment in New South Wales, Australia. Therefore, sediment collected at the river basin 

outlet may not accurately represent processes affecting sediment dynamics elsewhere in the 

river basin. Despite this, many sediment fingerprinting studies do not fully address the 

influence of basin geomorphology, topography and connectivity on sediment dynamics, and 

therefore the importance of the location of sediment sampling sites, and samples are typically

collected at outlet locations alone. This can lead to poor management decisions based on the 

incorrect assessment of the relative contributions of different sediment sources in different 

parts of the basin.

The present study is located in the South Tobacco Creek watershed in south-central 

Manitoba, Canada, which has been the subject of numerous research projects investigating 

the impacts of agricultural practices on crop yield, hydrology, soil erosion and sediment and 

nutrient dynamics (Li et al. 2007a,b, 2008, 2011; Tiessen et al. 2010, 2011; Liu et al. 2013). 

This study builds upon the existing body of knowledge by providing observations of the 

sources of sediment at the watershed scale using sediment fingerprinting. The objective of 

this study was to assess the sources of sediment at multiple spatial scales using sediment 

fingerprinting within a nested sampling approach (longitudinal study). This type of sampling 
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approach allows for an assessment of the influences of scale, connectivity and basin 

characteristics – including geomorphology, topography and hydrology – on sediment 

dynamics.

 7.3 Study catchment

The 7441 ha (74.41 km2) South Tobacco Creek (STC) watershed (49° 22' N, 98° 14' 

W) is located near the town of Miami, Manitoba, and is part of the Lake Winnipeg basin (Fig.

7.1a). This is a predominately agricultural landscape that includes both annual cropping 

(cereal and oilseed) and perennials (forage and pasture). The annual and perennial cropland 

account for approximately 60% and 12% of the watershed area, respectively, and the 

remainder is mostly forested valley walls that are unsuitable for cultivation, with some roads 

and yard sites (Hope et al. 2002). The watershed was part of a national program aimed at 

assessing the economic and water quality impacts of different agricultural practices across 

Canada (Agriculture and Agri-Food Canada 2012). The watershed extends over the Manitoba

Escarpment; its upper reaches lay in undulating glacial tills and its lower reaches lay in the 

lacustrine sediments of glacial Lake Agassiz. Beyond the STC watershed, the creek joins the 

Tobacco Creek and continues to flow eastward reaching the Red River which flows 

northwards to Lake Winnipeg then onwards to Hudson Bay via the Nelson River. The 

Manitoba Escarpment is a major physiographic feature of the Canadian prairie landscape 

extending for more than 600 km from the Pasquia Hills in Saskatchewan, through south-

western Manitoba, to the Pembina Hills in North Dakota (McNeil and Caldwell 1981). 

Within the STC, watershed the elevation drops dramatically (~200 m) as the creek incises 

through the escarpment and exposes the underlying shale bedrock (Fig. 7.1b). As the point of 
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incision (knickpoint) migrates upstream it has produced steep valley walls and actively 

eroding cut-bank shale bedrock outcrop features (small bluffs) along the channel (some 

exceeding 20 m in height). The Cretaceous shale bedrock is mainly the Pierre Shale and 

Niobrara Formations. This shale is relatively friable (i.e., low strength) and fluvial processes, 

coupled with freeze-thaw and wetting-drying cycles, quickly break down this material into 

fine-grained sediment. The dominant soil series above the escarpment are Dark Grey 

Chernozems with a primarily clay-loam texture, while below the escarpment are Black 

Chernozems with a primarily clay texture (Hope et al. 2002).
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Figure 7.1: (a) Stream network extracted from the 5-m LIDAR DEM of the 
South Tobacco Creek watershed (Manitoba, Canada) using the FlowMapR 
program (Li 2011). Also shown are the locations of sediment sampling sites and
their associated drainage areas (ha). (b) Longitudinal profile showing the 
elevation and sediment sampling sites along the stream and the Manitoba 
Escarpment.
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The climate of the region is classified as sub-humid with a mean annual precipitation 

of 550 mm, with approximately 30% falling as snow, and has warm summers and cold 

winters (+30 to -30 °C) with a mean annual temperature of 3 °C (1971-2000 climate normals;

Environment Canada 2013a). Daily discharge is measured at two locations (gauging stations 

operated by the Water Survey of Canada (WSC); Environment Canada 2013b), the first 

below the escarpment (site 4, WSC station 05OF023) and the second at the outlet of the 

watershed (site 6, WSC station 05OF017) (Fig. 7.2). The hydrology is dominated by snow-

melt runoff events in the spring, ~80% of which occurs over frozen soils, with episodic 

rainstorms in the summer and autumn months (Fig. 7.2). Many of the lower order streams in 

the headwaters are ephemeral and become dry during the summer months. In contrast, during

high runoff and discharge there can be significant flooding throughout the watershed. Due to 

concerns over damaging floods downstream of the STC watershed, 26 small dams and 

reservoirs were constructed between 1985 and 1996 in the headwaters (30% of the total 

drainage area) to reduce peak flows and flooding (Yarotski 1996). In addition, there is also 

considerable natural damming throughout the watershed due to beaver (Castor canadensis) 

activity. The hydrology of the STC watershed has also been modified extensively through 

surface drains, especially in the lower reaches, as these surfaces drains have improved the 

drainage by increasing the hydrological connectivity.
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The climatic, hydrological, topographical and geomorphological characteristics of the

STC watershed influence sediment dynamics at different spatial scales. Therefore, sampling 

at the outlet alone may provide insufficient information to support a meaningful conclusion 

on the sources of sediment for the entire watershed. The hydrologic network of the STC 

watershed was extracted from a 5 m LIDAR Digital Elevation Model (DEM) of the 

watershed (see Fig. 7.1a) (Li 2011). A summary of the watershed characteristics can be found

in Table 7.1. To provide information on the sources of sediment at various spatial scales and 

to isolate the effects of geomorphic features, including the escarpment, six fluvial sediment 

sampling sites were established along the main stem of South Tobacco Creek ranging from 

third order (48 ha; 0.48 km2) to seventh order (7441 ha; 74.41 km2) drainage basins (see Fig. 

7.1).

259

Figure 7.2: Daily discharge measurements for 2009 – 2011 at two locations 
in the South Tobacco Creek watershed (data from Environment Canada 
2012)



 7.4 Methods

 7.4.1 Collection of sediment and source samples

In an effort to assess the impacts of agricultural activities on soil erosion and the 

delivery of sediment and sediment-associated nutrients to surface waterways, three main 

potential sediment sources were identified based on field observations. These sources were: 

(1) topsoil from agricultural fields and riparian zones adjacent to the creek; (2) streambanks; 

and (3) shale bedrock material. Topsoil and streambank samples used to characterize the 

fingerprint of the potential sources were taken upstream at approximately the same locations 

as the fluvial sediment samples (see Fig. 7.1). Several (2 – 4) transects were established at 

each sampling site extending from the edge of the streambank through the riparian zone and 

into the adjacent fields. The sampling transects were established along a toposequence 

parallel to the dominant slope gradient and extended from the edge of the streambank to the 

hilltop. Each transect consisted of 4 – 8 individual sampling points, and at each, the surface 

horizon (e.g., A horizon) was sampled using a 3.18 cm (diameter) soil probe over a depth of 5

– 20 cm, depending on the depth of the horizon. Typically, surface scrapes (0 – 5 cm) are 

collected to characterize topsoil sources, however, in cultivated landscapes the surface soil 
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Table 7.1: Summary of the hydrological characteristics of the South 
Tobacco Creek watershed (from Li 2011)

Counts
1 3790 398 4412 4400 1
2 890 191 1300 4355 5
3 208 107 814 4560 22
4 51 56 438 4719 93
5 13 25 210 4355 335
6 3 17 161 5158 1719
7 1 17 107 7441 7441

Total 4956 812 7441 --- ---

Stream 
order

Total stream 
length (km)

Direct 
catchment 
area  (ha)

Total  
contributing 
area  (ha)

Average 
contributing 
area  (ha)



horizon is regularly mixed and in the riparian zones there is continuous erosion and 

deposition of soil from upstream and upslope. Therefore, to accommodate these processes the

full horizon was sampled. It should be noted, however, the sampling of the full surface 

horizon may misrepresent the topsoil sources due to the depth dependency of some 

fingerprint properties (e.g., 137Cs) as sheet and rill erosion are generally limited to the top 0 – 

5 cm. Transects were used to collect soil samples in order to characterize surface soils, as 

opposed to the often used 'likely to erode' approach (i.e., sampling areas identified as 

susceptible to erosion and that are well connected to the channel) as the latter approach is 

subjective and there is little empirical evidence to support that it adequately characterizes the 

potential sources (Davis and Fox 2009). The transect approach is more systematic and 

captures variation in fingerprint properties due to differences in management, vegetation, 

relief and drainage. It also recognizes that connectivity can be difficult to detect and evaluate,

and it does not assume that areas that are not well connected do not directly contribute to the 

sediment load, which may not be the case during periods of high runoff and flooding 

(Thompson et al. 2012). One transect from each sampling location was included in the 

characterization and each topsoil sample (n = 28) was analyzed separately for geochemistry 

and radionuclides (see section 3.2 for details) in an effort to fully characterize the topsoil as a 

source of sediment. 

Three streambank profiles were also sampled at each of five of the six sites (site 3 has

not yet been sampled as this sediment sampling location was established in 2011). During a 

period of low flow, samples were collected at 10 - 30 cm increments down the bank profile 

using a box-core sampler inserted perpendicular to the streambank face. Detailed profiles 

were collected, as opposed to aggregating samples, in order to better understand the vertical 
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distribution of the fingerprint properties of this sediment source, as this helps with the 

process-based interpretation of the fingerprint properties (see section 4. 1). A total of 75 

individual streambank samples were analyzed, however, prior to fingerprint selection and the 

application of a mixing model, the geochemical and radionuclide properties for the 

streambank sources were first averaged across the depth of each profile giving equal weight 

to individual profiles regardless of the height of the streambank (n = 15). Averaging was used

as the entire bank profile contributes to the sediment load through the undercutting and 

slumping of banks as well changes in the height of erosion due to changing flow levels. 

A large outcrop (15 m in height) of the shale bedrock along the channel (between sites

3 and 4) was sampled in a similar manner to the streambanks which was possible in this 

region due to the friable nature of the bedrock shale; material was collected from five 

different layers of bedrock (n = 5).

Samples of both suspended and channel bed sediment were collected at each site 2-3 

times per year, during the ice-free period (April to November), between 2009 and 2011 (see 

Table 7.2 for a description of the sampling dates). Suspended sediment was collected using a 

passive time-integrated sediment sampler designed by Phillips et al. (2000) and evaluated by 

Russell et al. (2000). The samplers were fixed to the channel bed by anchoring them to 

concrete paving stones using chains. Two samplers were used at each location to ensure a 

representative sample could be collected as these samplers can become clogged, buried, 

destroyed or lost by high flows, debris in flows, ice build-up, animal activity and/or 

vandalism. The sediment samplers were inspected for maintenance two to four times per 

month depending on stream flow conditions with more frequent inspections during periods of

high flow. Sediment from the two samplers (if available) were combined prior to analysis. 
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The amount of sediment collected at each sampling site ranged from 9 to 578 g with an 

average of 104 g. The channel bed consists largely of unconsolidated sediment and shale 

fragments. Field observations indicated that there was considerable bedload transport as the 

pattern of channel bars changed between site visits. Therefore, to complement the suspended 

sediment data, channel bed sediment was also collected using a small trowel to a depth of 5 

cm (see Table 2). The combination of suspended and bed sediment sampling allowed for a 

more complete assessment of the sediment dynamics within the watershed.

 7.4.2 Laboratory analysis

All soil and streambank source material was air-dried, disaggregated by hand or 

gently with a mortar and pestle, and sieved to < 2 mm to remove stones. The shale bedrock 

source material was not sieved but aggressively disaggregated and ground to a powder with a

mortar and pestle. Analysis was conducted on whole shale bedrock source samples because it

is assumed that, due to the friable nature of this material, the entire sample may contribute to 

the sediment load. The suspended sediment samplers were emptied and washed out into 20 l 

buckets and allowed to settle, and the clear supernatant was decanted, dried at room 

temperature and disaggregated by hand. Similarly, the bed sediments were dried at room 
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Table 7.2: Summary of suspended and bed sediment sampling.
Sampling period Sediment sampling site

Season Months 1 2 3 4 5 6

20
09 Spring April – June SS + BS no data SS + BS SS + BS SS + BS

Summer/Fall July – October SS + BS SS + BS no data SS + BS SS + BS SS + BS

20
10 Spring April – June SS + BS SS + BS no data SS + BS SS + BS SS + BS

Summer/Fall July – November SS + BS SS + BS no data SS + BS SS + BS SS + BS

20
11

Spring April – June SS SS SS SS SS SS 
Summer July – August SS + BS SS + BS SS + BS SS + BS SS + BS SS + BS
Fall Sept – Nov SS SS SS SS SS SS 

SS1 + BS2

1SS – suspended sediment
2BS – bed sediment



temperature and disaggregated by hand. In many sediment fingerprinting studies analysis is 

limited to the < 63 μm grain-size fraction to facilitate a comparison between sources and 

sediment by reducing the differences in grain-size. However, there are issues regarding the 

representativeness of this material (Koiter et al. 2013) as it does not consider downstream 

attrition (i.e., disintegration of large particles during fluvial transport) to be a factor 

influencing the relationship between sources and sediment. Within the STC watershed there 

is considerable evidence of the attrition of the shale bedrock through abrasion and repeated 

freeze/thaw and wet/dry cycles, therefore, the range of analysis was increased to < 2 mm and 

whole shale rock was included in the analysis.

Both fallout radionuclides and geochemistry have been widely used in sediment 

fingerprinting studies to discriminate between potential sediment sources. 137Cs radioactivity 

was detected at 662 keV using Broad Energy Germanium Gamma spectrometers (Canberra 

BE3830, Landscape Dynamics Laboratory, University of Manitoba, Canada) with a counting 

time ranging from 24 to 48 hours. The concentrations of a suite of geochemical elements (56 

in total) were determined using ICP-MS following a microwave-assisted digestion with nitric

acid (Northern Analytical Laboratory Service, University of Northern British Columbia, 

Canada). 

All statistical analysis was undertaken using R Statistical Software v2.15.3 (R Core 

Team 2013) through RStudio v0.97 (RStudio 2013). Plots were created using the R package 

ggplot2 v0.9.3 (Wickham 2009).

 7.4.3 Tracer selection and source apportionment model

Tracers, especially geochemical and radionuclide properties, are often selected on the 
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basis of their ability to statistically differentiate between multiple sediment sources. A purely 

statistical approach may not be the most appropriate method as the conservative behaviour of

sediment properties and the underlying processes that lead to their ability to discriminate 

between sources are not considered (Koiter et al. 2013). For this study, a combination of 

statistical- and process-based selection criteria was used to determine appropriate sediment 

properties to include in the mixing model. Similar to Walling et al. (1999), the first step 

involved using the Kruskal Wallis H-test to select properties that showed a significant 

difference (p < 0.01) between the potential sediment source groups. Since the Kruskal Wallis 

H-test is based on ranks and not measures, in the second step, the list of selected properties 

was further reduced to include only properties that showed a difference in the mean property 

values by a factor of > 2 between at least one pair of sediment sources. The remaining 

properties were then further assessed (i.e., third step) as to whether prior knowledge of 

watershed geology or physical and biogeochemical processes could explain the differences in

properties found between sediment sources; i.e., did their selection make sense. As sediment 

fingerprinting works most effectively when large, well-defined differences between 

fingerprints exist, properties were excluded in cases where there was no clear explanation for 

the differences found. Furthermore, many fingerprinting studies use particle size correction 

factors to account for difference in particle size between sediment and sources. However, the 

relationship between particle size and tracer property concentration is complex (Russell et al. 

2001) and there is no standardized approach, such that some studies choose to not use 

correction factors (e.g., Martínez-Carreras et al. 2010). Thus, given the friable nature of the 

shale bedrock and the evidence for significant attrition in the watershed, no effort was made 

to correct for differences in particle size, as it was felt that use of particle size correction 
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factors could inappropriately manipulate the raw tracer property concentration data. 

Furthermore, textural analysis was not conducted on soil or sediment samples as textural 

analysis on low strength materials (e.g., shale) are strongly affected by analytical operating 

procedures and, therefore, it can be difficult to get reliable data (Storti and Balsamo 2010). 

The physical or chemical dispersion pre-treatment of the soil or sediment would break apart 

the friable shale particles and as a result it would be difficult to relate the particle size 

information to erosion or fluvial transport processes.

Stable Isotope Analysis in R (SIAR; v 4.1.3) (Parnell et al. 2010; Parnell and Jackson 

2011), a Bayesian isotopic mixing model available as an open source R package, was used to 

estimate the relative contribution of the potential sediment sources at each sediment sampling

site. Sediment samples were grouped by sampling site only as the changes in the relative 

contributions in sediment sources between years or seasons are outside the scope of this 

study. SIAR was developed for use within ecological studies, however, it is a basic mixing 

model and can be used with any fingerprint property (tracer) as long as the assumptions of 

linear mixing are met. The SIAR model uses the mean value and the standard deviation of 

sediment fingerprint properties and is fit using Markov Chain Monte Carlo (MCMC) 

methods producing simulations of possible values of sediment proportions of the various 

potential sediment sources via a Dirichlet prior distribution consistent with the data (Parnell 

et al. 2010). Dirichlet distributions are commonly used as the prior distribution in 

multivariate Bayesian mixture models (Evans et al. 2000; Jackson et al. 2009). The model 

was run using 200,000 iterations with a burn-in of 50,000. In addition, since this is not an 

ecological study, the trophic enrichment and concentration dependence correction factors 

were omitted from the model (i.e., set to 0). The proportion results from the mixing model are
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reported as the range between the 25th and 75th percentiles.

 7.5 Results and discussion

 7.5.1 Source discrimination

The first step of the sediment fingerprint (tracer) selection process based on the 

Kruskall Wallis H-test (P <0.01) identified 13 out of the 56 sediment properties analyzed as 

showing good discrimination potential (Table 7.3). The second step, based on the difference 

in the mean concentrations between sediment sources (see section 3.3), removed an 

additional three elements. Of the 10 elements remaining (137Cs, Na, Ti, Mn, Ga, As, Se, Ba, 

U, Rb) four were selected to be used in the mixing model (137Cs, Ti, As, U) and the reasons 

for their inclusion in the mixing model are described below. 

Both 137Cs and Ti showed higher concentrations in surface soils compared to 

subsurface sediment sources (streambank and shale bedrock) providing good discrimination 

between the two main groups of potential sources (Fig. 7.3 and 7.4). This finding is 

consistent with current knowledge of the environmental behaviour of these two properties. 

For example, 137Cs is an artificial fallout radionuclide derived from the atmospheric nuclear 

weapons testing in the 1950s and 1960s, that effectively tags surface sediments as it is 

quickly and strongly adsorbed to clays and organic matter such that the activity concentration

declines markedly with depth (Ritchie and McHenry 1990). 137Cs has been widely used in 

previous studies as a fingerprint to discrimination between surface and subsurface sediment 

sources (e.g., Wallbrink et al. 1998; Owens et al. 2012). Similarly, Ti is often used to estimate

the rate of weathering, as it is highly resistant to weathering and has low mobility in soils 

(e.g., Taboada et al. 2006). The process of weathering often leads to higher concentrations of 
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Ti in the surface soils compared to subsurface materials because the more mobile elements 

are leached through the soil profile (i.e., the process of negative enrichment) (Kabata-Pendias

2000; Dąbkowska-Naskręket and Jaworska 2001). The higher concentration of Ti within the 

topsoil may also be the result of the cycling of the element by vegetation which would limit 

the downward movement of Ti through the profile (Cornu et al. 1999). Further work is being 

undertaken to investigate the processes underlying Ti as a source fingerprint in this 

watershed. 137Cs and Ti are ideal properties to use in sediment fingerprinting due to their low 

mobility in soils, although there may be exceptions to this that require further investigation 

(Parsons and Foster 2011). The concentration of 137Cs and Ti are particle-size dependent with 

higher concentrations found in the fine-grained fraction of the soil (He and Walling 1996; 

Taboada et al. 2006). 
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Table 7.3: Mean values for sediment fingerprint properties and sediment source 
discrimination procedure

P–value
70.30 54.78 26.63 < 0.01* Enriched in topsoil due to weathering processes

< 0.01* Fallout radionuclides label surface soils
7.96 9.97 18.31 < 0.01* Previously known to be enriched in the shale bedrock
2.49 3.37 7.23 < 0.01* Previously known to be enriched in the shale bedrock

Ba 203 242 112 < 0.01* No prior knowledge or process could explain the trend
Ga 24.55 22.50 12.23 < 0.01* No prior knowledge or process could explain the trend
Mn 1460 1929 394 < 0.01* No prior knowledge or process could explain the trend
Na 165 257 1020 < 0.01* No prior knowledge or process could explain the trend
Sb 0.01 0.02 0.03 < 0.01* No prior knowledge or process could explain the trend
Se 1.73 2.28 7.75 < 0.01* No prior knowledge or process could explain the trend
Rb 32.33 28.24 20.73 < 0.01* Difference in property values by a factor of < 2
Si 606 454 352 < 0.01* Difference in property values by a factor of < 2
W 0.01 0.01 0.01 < 0.01* Difference in property values by a factor of < 2
Lu 0.18 0.24 0.26 0.01
Sr 53.94 89.21 212.13 0.02
La 21.73 24.91 29.18 0.02
Li 16.86 21.67 35.57 0.02
Gd 3.82 4.72 4.84 0.02
Eu 0.84 1.03 1.09 0.02
Pr 5.16 5.97 6.79 0.02
Nd 19.29 22.63 24.63 0.03
K 3732 3052 3006 0.03
Hf 0.32 0.29 0.45 0.04
Sm 3.94 4.72 4.84 0.04
Tm 0.22 0.27 0.28 0.04
Dy 2.98 3.70 3.67 0.05
Ca 14713 27505 67613 0.05
Yb 1.31 1.66 1.72 0.05
Er 1.62 2.05 2.10 0.05
Mg 4644 5364 3425 0.06
Zr 16.04 15.69 27.26 0.06
Fe 16906 15880 12491 0.07
Ho 0.58 0.73 0.73 0.08
Al 17168 15393 17312 0.13
Bi 0.24 0.26 0.33 0.13
Hg 0.13 0.15 0.20 0.16
Ce 43.97 48.97 54.37 0.16
Sn 0.03 0.03 0.02 0.18
Ni 33.75 42.30 39.13 0.23
Th 6.72 7.10 10.00 0.24
Ag 0.15 0.15 0.20 0.33
Cu 22.82 26.33 39.67 0.34
B 23.33 18.40 24.67 0.37
Cs 1.56 1.57 1.12 0.37
Pb 13.58 14.84 18.15 0.38
Co 9.07 10.67 9.67 0.40
Tl 0.56 0.72 0.84 0.40
Ge 1.11 1.16 1.26 0.44
Be 0.76 0.76 0.91 0.49
Nb 0.34 0.31 0.34 0.56
Mo 0.77 1.67 1.55 0.60
Cd 1.52 2.07 1.62 0.67
Te 0.04 0.04 0.05 0.72
P 794 803 731 0.84
Zn 96.09 93.85 106.54 0.86
Cr 31.83 31.32 47.24 0.86
V 81.21 90.64 128.59 0.91
*p < 0.01 (Kruskal-Wallis H test), statistically significant at P <0.01 (Kruskal-Wallis test)

Fingerprint 
Property

Topsoil
(mg kg-1)

Streambanks 
(mg kg-1)

Shale
(mg kg-1)

Process/prior knowledge used in the source 
discrimination process

Tia
137Csa 13.15b 4.21b 0b

Asa

Ua

a Properties selected for the mixing model; b (Bq kg-1)
bIn Bq Kg-1
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Figure 7.3: Geochemical and radionuclide fingerprints for the three potential sediment source
types and for the suspended sediment collected from the six sampling sites along the South 
Tobacco Creek (error bars represent ±1 standard deviation).



The data provided by the transect sampling strategy showed the concentration of 137Cs

and Ti in surface soils was lower in the fields compared to the riparian areas and the 

concentration generally increased from the edge of the field through the riparian area towards

the streambank. This is consistent with the fact that mixing of the soil through tillage will 

homogenize the plow layer resulting in lower 137Cs and Ti concentrations in the field samples 
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Figure 7.4: Geochemical and radionuclide fingerprints for the three potential sediment source
types and for the bed sediment collected from the six sampling sites along the South Tobacco 
Creek (error bars represent ±1 standard deviation)



and that erosional processes will move topsoil enriched in 137Cs and Ti (itself enriched in the 

fine-grained fraction) from the hillslope and deposit it in the riparian zone. 

The streambank profiles showed a high 137Cs concentration in the top 0 – 20 cm, with 

similar values to riparian soils, followed by a sharp decline to 0 Bq kg-1 for the remainder of 

the profile. This is reasonable considering that the top of the streambank can be considered as

the extreme edge of the riparian zone soil. This is important to note because low-order 

streams in the headwaters have very small streambanks (< 40 cm in height) and it can be 

difficult to discriminate between the streambank and riparian soils as they have similar 137Cs 

fingerprints. This is the reason that the 137Cs fingerprint for the streambank source shows 

large variation as it includes banks from both the low- and high-order streams which have 

varying profile depths (see Figs. 7.3 and 7.4). The concentrations of Ti in the streambank 

profiles did not follow the same trend as 137Cs, and this may relate to differences in the 

processes and time-scales that lead to fingerprint formation. The 137Cs fingerprint has 

developed over approximately 60 years through the processes of fallout and subsequent soil 

redistribution, while the Ti fingerprint has slowly been developing since the last glacial 

retreat through the process of weathering.

Both As and U showed higher concentrations in the shale bedrock compared to the 

topsoil and streambank sources providing good discrimination between the potential source 

groups (see Figs 7.3 and 7.4). Shale deposits are often enriched in trace elements as shale is 

comprised of clay which acts as a sink for trace elements. Previous work on the shale in the 

Manitoba Escarpment has shown that it has high concentrations of both As and U (Haluschak

et al. 1998; Garrett and Thorleifson 1999; Nicolas and Bamburak 2011). Under oxidizing 

environmental conditions and a pH < 8.5, As is strongly adsorbed to soil particles making it 
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an ideal sediment fingerprint. However, under reducing conditions there is a change in 

oxidation state, from As(V) to As(III), and As can become more mobile. Under oxidizing 

environmental conditions, U is moderately well adsorbed to soil particles with Fe-, Al- and 

Mn-oxides and organic matter accounting for the majority of the adsorption and 

accumulation in soils (Choi and Park 2005). The adsorption of U on soil surfaces is strongly 

related to pH and mobility can increase in the presence of dissolved carbonates through the 

formation of U-carbonate complexes. It is currently unclear how the environmental 

conditions, in particular the presence of carbonates, in the watershed will influence U 

dynamics. As research in the watershed continues it will be necessary to re-evaluate the 

inclusion of U in the mixing model. The concentration of As and U are both particle-size 

dependent with higher concentrations found in the fine-grained fraction of the soil (Horowitz 

1991; Du et al. 2012). 

Overall, these four sediment fingerprints provide good discrimination between the 

three potential sediment sources identified (see Figs 7.3 and 7.4). Topsoil (field and riparian) 

sources are characterized by high 137Cs and Ti and low As and U concentrations. Streambank 

sediment sources are characterized by intermediate 137Cs and Ti and low As and U 

concentrations. The shale bedrock sources are characterized by low 137Cs and Ti and high As 

and U concentrations. 

The SIAR model assumes that the variability associated with the sources is 

reasonably normally distributed (Parnell et al. 2010). This assumption was met for the 

majority of the sediment source fingerprints, however, in some cases it was not. This may be 

due to low sample numbers or the fact that sediment fingerprints for potential sources are not 

always uniform across the watershed. Violating the assumption of normality may result in a 
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misrepresentation of sediment fingerprint variability in the mixing model. Furthermore, as 

described in section 3.3, there are additional sources of error due to the particle size 

dependency of fingerprint properties, which can make a reliable comparison between sources

and sediment difficult to make. Therefore, emphasis should be placed on the order of 

magnitude of the sediment source contributions.

 7.5.2 Identifying the sources of sediment

Some of the fingerprint properties for both the suspended and bed sediments fall 

towards the extreme range of the potential sediment sources (see Figs 7.3 and 7.4) and this is 

likely due to differences in particle size as all of the fingerprints selected have been shown to 

have a strong relation between concentration and particle size. However, due to the 

significant attrition observed in the watershed, the development of a robust particle size 

correction factor would be difficult and potentially inappropriate (see Koiter et al. 2013). The

concentrations of 137Cs and Ti in the suspended sediment samples (see Fig. 7.3) decrease from

the low-order streams in the headwaters towards higher-order streams closer to the outlet of 

the watershed. The most dramatic decrease occurs at site 3 (6th order stream, 1600 ha 

drainage area) which is the beginning of the major incision (knickpoint) of the creek as it 

crosses the Manitoba Escarpment (Fig. 7.1b). Conversely, the concentrations of As and U in 

the suspended sediment increase from the headwaters towards the outlet of the watershed, 

again the transition occurring at the major incision point. The channel bed sediment samples 

show a similar trend although the changes in fingerprint properties are not as clear (Fig. 7.4). 

In comparison to the suspended sediment, the bed sediment had lower concentrations of both 

137Cs and Ti in the headwaters, higher concentration of As towards the watershed outlet and 
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the concentrations of U were similar throughout the watershed. The distinctive change in the 

suspended sediment fingerprint from the headwaters to the watershed outlet suggests that 

there is a switch in sources of suspended sediment beginning at the incision point.

The SIAR model output using the suspended sediment samples confirms that there is 

a switch in the predominant sediment sources between the headwaters and the outlet of the 

watershed (Fig. 7.5). In low-order streams in the headwaters (site 1, 3rd order stream and 48 

ha drainage area) topsoil is the predominant sediment source accounting for approximately 

64 – 85% (25th – 75th percentile) of the suspended sediment while streambanks and shale 

bedrock sediment sources account for approximately 12 – 33% and 1 – 4% of the suspended 

sediment, respectively. As the scale of observation increased from 3rd order streams (site 1, 48

ha drainage area) to 7th order streams (site 5, 6644 ha drainage area) the proportion of topsoil 

sediment sources declines to 13 – 33%, the proportion of streambanks and shale bedrock 

sediment sources increased to 34 – 52% and 29 – 39%, respectively. The switch to a 

dominance of streambanks and shale bedrock sources is in keeping with the obvious signs of 

bank erosion in the downstream reaches. At the watershed outlet (site 6, 7441 ha drainage 

area) there is a small increase in topsoil sources to 31 – 44% with a corresponding decrease 

in the contributions of the streambank and shale bedrock sediment sources accounting for 29 

– 43% and 22 – 30% of the suspended sediment, respectively. The SIAR model output using 

the channel bed sediment samples shows little change in sediment sources from the 

headwaters towards the watershed outlet (Fig. 7.6). The relative contributions of topsoil, 

streambanks and shale bedrock across the watershed were on average 18 – 42%, 33 – 59% 

and 12 – 33%, respectively. 
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 7.5.3 The role of scale and connectivity

The relative contributions of the three sediment sources to the suspended sediment 
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Figure 7.5: Box and whisker plots of values of sediment proportions of the three potential 
sediment source types for the suspended sediment collected from the six sampling sites along
the South Tobacco Creek

Figure 7.6: Box and whisker plots of values of sediment proportions of the three potential 
sediment source types for the bed sediment collected from the six sampling sites along the 
South Tobacco Creek



varied depending on the scale of observation. The switch in sediments found within the 

watershed is consistent with Fryirs (2013) conceptualization of the sediment cascade. In low-

order streams in the headwaters the hillslopes are well coupled to the channel and become 

decoupled in higher-order streams closer to the outlet of the watershed. The change in the 

connectivity between hillslope and the channel can be seen in the summary of the watershed 

characteristics (Table 1) as the direct catchment area (i.e., the area that directly drains into a 

given stream order) decreases with increasing stream order. This corresponds well with the 

high contribution of topsoil found in the suspended sediments in the headwaters (see Fig. 7.5)

followed by a rapid decline in the relative contribution downstream. It is important to note 

that the majority of the watershed is drained by low-order streams (see Table 7.1). Therefore, 

if the results from site 1 (3rd order stream, 48 ha drainage area) are extended to other streams 

of comparable size it would mean that considerable amounts of topsoil are being eroded.

Currently, it is unclear as to why the channel bed and suspended sediments show 

different trends (Fig. 7.6). The differences in the SIAR apportionment results may be related 

to differences in grain-size between bed and suspended sediment as all the fingerprints have a

strong relationship to grain-size. In addition, the coarser grain-size of the bed sediments 

makes it more likely to be stored behind blockages in the sediment cascade (e.g., beaver 

dams) and as a result bed sediments are likely to have longer transit time compared to the 

suspended sediment. It may also reflect the fact that bed sediments may be the result of the 

slumping of local streambank material onto the channel bed. There are some shale outcrops 

in the headwaters above the major incision point which are likely contributing to the bed 

sediment and due to the friable nature of the shale bedrock and the process of attrition this 

channel bed sediment is likely a source of suspended sediment further downstream. This 
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process may account for the large difference in the proportion of the shale bedrock source 

between the suspended and bed sediment in the headwaters (Figs 7.5 and 7.6). In addition, 

the channel bed sediment may reflect long-term trends in sediment sources while the 

suspended sediment samples represent short-term trends. Further research is needed to 

understand the role of bed sediment and downstream attrition on sediment dynamics within 

the STC watershed.

Putting the suspended sediment apportionment results in a geomorphic context, the 

role of the Manitoba Escarpment on the sources of suspended sediment becomes evident. 

Above the escarpment in the undulating glacial till (sites 1 and 2) topsoil is the predominant 

sediment source. As the creek transitions over the escarpment (site 3) and begins to incise 

into the underlying shale bedrock (knickpoint) the relative contributions of the shale bedrock 

sediment source to the suspended sediment load increases. Previous research has also shown 

that significant amounts of sediment can be generated within this transition zone with limited

opportunities for sediment storage (Belmont 2011; Belmont et al. 2011). There have also 

been significant changes in the hydrological network through the construction of small dams 

and reservoirs in the headwaters which have been shown to be net sediment sinks (Tiessen et 

al. 2011). This also may explain the decline in the contribution of topsoil sediment sources as

the topsoil rich sediment is being stored in these features and not making it through to the 

outlet of the watershed. 

Sedimentation also occurs at slope discontinuities along the main stem of the creek 

and, specifically, behind points of flow restriction such as culverts, bridges and weirs within 

the watershed. These structures can cause considerable sedimentation to occur upstream onto 

floodplains and result in the scouring of the streambanks and streambed (due to increase in 
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sediment transport capacity) downstream of these structures. This also may explain the 

decline in the contribution of topsoil sediment sources as the topsoil rich sediment may be 

stored in these features and not being transported through to the outlet of the watershed. 

Floodplains, constructed dams and beaver dams are common in the watershed, however, 

there is currently little information as to the location, frequency and size of these sediment 

storage features so it is difficult to quantify the effects they will have on the connectivity of 

the sediment cascade. The development of a sediment budget for the watershed will 

complement the fingerprinting study and help elucidate the role of these features on the 

sediment dynamics.

Improved drainage through surface drains in the lower reaches of the watershed may 

also increase the connectivity between the hillslope and the channel (Blann et al. 2009) and 

may explain the slight increase in topsoil sources at the watershed outlet (site 6). Field 

observations showed that tillage was moving topsoil directly into the surface drains as fields 

extended all the way to the edge. This would allow for the quick and efficient delivery of 

topsoil from the fields to the channel. The dredging of these surface drains to maintain 

capacity is a regular occurrence in the watershed and the dredged material is often put 

directly back on to the fields to replace the eroded soil. These observations suggest that 

surface drains coupled with tillage erosion may play an important role in the sediment 

cascade, and further work is needed to assess this. 

 7.6 Conclusions

 In summary, the results of the sediment fingerprinting study in the STC watershed 

based on three years (2009 – 2011) of sediment sampling, demonstrated that there was a 
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switch in suspended sediment sources between the headwaters and the outlet of the 

watershed. The suspended sediment in the upper reaches were dominated by topsoil sources 

while the suspended sediment moving through the lower reaches and being exported from the

watershed had a higher proportion of sediment coming from streambank and shale bedrock 

sources. This research highlights the importance of the location of the sediment sampling 

sites. If the suspended sediment samples were solely collected at the watershed outlet the 

sediment sources would have been assessed as contributing approximately equal amounts 

opposed to identifying the switch in the dominant source of sediment. This type of sampling 

approach would have given an incomplete assessment of the sources of sediment as it would 

have led to the conclusion that the shale bedrock was a significant source of sediment 

throughout the watershed. Therefore, in the STC watershed, sediment collected at the river 

basin outlet does not accurately represent processes affecting sediment dynamics elsewhere 

in the river basin, and this can lead to poor management decisions. The observations over a 

range of spatial scales helped to isolate the major physiographic features and identify where 

changes in sediment source occur and provide information on the processes that drive these 

changes. Additional key aspects required to interpret the sediment source fingerprinting data 

include the need to: (1) understand the physical and geochemical processes controlling tracer 

property selection; and (2) incorporate knowledge of the hydro-geomorphological 

connectivity of the watershed. The utility of sediment fingerprinting can be improved by 

carefully considering which locations to sample and recognizing the effect this choice will 

have on data interpretation.
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 8 Conclusion and synthesis

The current approach to sediment fingerprinting accounts for the input (i.e., sediment 

sources) and the output (i.e., downstream sediment) but the processes which link them are not

well integrated into the approach. This is currently a major limitation of the approach (Fig. 

8.1). Accounting for sediment and tracer fate (i.e., sediment fingerprints), as put forward by 

Davis and Fox (2009), is the methodological step that requires the most scientific inquiry 

with respect to advancement of the fingerprinting approach. This is due to the fact that this 

part of the fingerprinting approach presents a multidisciplinary research topic that has not 

been well studied. To develop a quantitative link the sources to sediment researchers will 

need to draw on the knowledge from a variety of disciplines including soil science, 

geomorphology, sedimentology, environmental science, analytical chemistry, statistics, 

hydrology, landscape ecology and aquatic ecology to develop process-based methods to 

account for changes in sediment properties. Research in this area will not only improve the 

understanding of how landscape processes influence sediment properties but it will also help 

clarify how the hillslope, riparian zone and stream channel environments are interconnected. 

Better accounting for sediment and tracer fate and other areas of uncertainty will improve the

robustness and the utility of sediment fingerprinting approach.

The primary goal of this dissertation was the development and refinement of the 

sediment fingerprinting approach with an emphasis on the methods used to account for 

changes in sediment properties as sediment moves through a watershed. The first step was to 

review and assess the state of the science behind the sediment fingerprinting approach 

(Chapter 2). The review focused on the behaviour of sediment fingerprint properties as 
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sediment moves through the watershed from source to sink and the implications for sediment 

fingerprinting. It was found that the literature on sediment fingerprinting tends to assume 

there is a direct connection between sources and sediment, while much of the broader 

environmental and sedimentology literature identifies that numerous chemical, biological and

physical transformations and alterations can occur as sediment moves through a watershed. 

Particle selectivity was found to be one of the main processes preventing a direct link 

between sources and sediment and, therefore, a major source of uncertainty within the 

sediment fingerprinting approach.

As a result, a series of experiments at the landscape-scale, represented by hillslope 

(Chapters 3 and 4), riparian (Chapter 5) and fluvial (Chapter 6) environments were 

undertaken to specifically investigate the particle selectivity of erosional, transportation and 

depositional processes within each of these key areas of the landscape. Finally, a watershed-

scale application of the sediment fingerprinting approach was used to investigate the role of 

connectivity and scale on sediment dynamics (Chapter 7). 
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Figure 8.1: A conceptual model of the sediment source fingerprinting approach (a) 
(reproduced from Davis and Fox 2009), an approach for processing geochemical 
fingerprint data for sediment source apportionment (b) (reproduced from Collins et al. 
2013) and the processes and controlling factors which are incorporated into the 
sediment fingerprinting approach (c) (adapted from Weltje and von Eynatten 2004).
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 8.1 Hillslopes

A rainfall simulator was used to generate runoff in two contrasting agricultural 

regions in British Columbia (BC) and Manitoba, Canada. The purpose of this experiment was

to: 1) assess the importance of soil surface properties (e.g., vegetative cover, soil moisture) 

and their interactions with particle size and organic matter selectivity of interrill erosion; 2) 

assess the ability of commonly used correction factors to account for the differences in both 

particle size distribution and organic matter content and the concentrations of a broad suite of

geochemical elements; and 3) examine the relation between the concentrations of a broad 

suite of geochemical elements and both particle size and organic carbon. 

Overall, it was difficult to rank the relative importance of the individual soil surface 

properties on the particle size and organic matter selectivity of the soil erosion process as 

there were significant interactions between some of the soil surface properties. Furthermore, 

many of the soil surface properties measured in this study undergo seasonal changes, 

suggesting that the particle selectivity may also vary seasonally. This has implications for 

accounting for differences in particle size and organic matter content when case studies span 

multiple seasons or years. Consistent with other research, total sediment yield did correlate 

with particle selectivity as plots that generated higher amounts of sediment were less 

selective (e.g., Armstrong et al. 2011; Yang et al. 2013). However, the soil surface proprieties 

which affected the sediment yield were not the same as those which influenced particle 

selectivity. Therefore, predictions of particle size and soil organic carbon (SOC) enrichment 

based on sediment yield alone may not adequately describe the process of particle selectivity.

In comparing the geochemical composition of source soil to eroded sediment, it was 
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found that for many of the geochemical elements investigated there was a difference in 

concentration between the source soil and eroded sediment despite limiting the analysis to the

<63-μm fraction. These differences are typically thought to result from differences in particle 

size and organic matter (e.g., Horowitz 1991). A s a result, correction factors are commonly 

applied to allow a more direct comparison between source and sediment (e.g., Collins et al. 

1997). Concentrations in the source soil were adjusted using both particle size and organic 

matter correction factors. However, particle size correction factors tended to over-correct 

concentrations within the source soil relative to the eroded sediment and the further addition 

of the organic matter correction factor resulted in a significant over-correction. The 

magnitude of the over-correction was geochemical element-specific, which highlights that a 

single correction factor applied uniformly across a broad range of fingerprints may not be 

appropriate. The results of this study suggest that the commonly used correction factors may 

not be an adequate approach for accounting for differences in particle size and organic matter

content. This has implications for the sediment fingerprinting approach as fingerprint data 

manipulation by these correction factors can influence the fingerprint selection process and 

ultimately the sediment source apportionment results. For example, in a sediment 

fingerprinting case study, Smith and Blake (2014) demonstrated that the conclusions changed

depending on whether a particle size and an additional organic matter correction factor were 

applied to the data. 

Further investigation revealed that the relation between elemental concentration and 

both particle size and organic matter were geochemical element-specific and were different 

between the two watersheds investigated. There were differences in the magnitude, direction 

and linearity of the relation and in some cases there was a significant interaction between 
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particle size and organic matter content. Furthermore, some elements required data 

transformations (e.g., log transformation) to meet the assumptions of a linear model. These 

results are consistent with Russell et al. (2001) where an analysis using different size 

fractions of source material revealed that the relation between particle size and concentration 

varied between elements and watersheds.

 8.2 Riparian zones

Soil profiles along transects that extended from the upper landscape position to the 

riparian zone, within two agricultural sites in southern Manitoba, Canada, were selected to 

investigate the particle selectivity and biogeochemical processes of riparian zones. While the 

greatest net accumulation of soil occurred in lower landscape positions there were still 

significant amounts of soil accumulation in the riparian zone. The soil within the riparian 

zone had a greater proportion of fine-grained material as compared to the other landscape 

positions. This presented evidence of a possible interaction between tillage and water erosion 

processes whereby tillage erosion (a non-particle size selective process) moves soil to the 

lower slope positions and water erosion (a particle size selective process) delivers soil 

particles into, and through, the riparian zone (Lobb et al. 2004). The soil in the riparian also 

had higher organic matter content as compared to the other landscape positions, which was 

likely related to differences in soil disturbance (i.e., tilled fields and non-till riparian zone) 

and not particle selectivity. 

In addition to differences in particle size and organic matter content, there was also 

some evidence of biogeochemical transformation within the riparian zone. The changes in 

geochemical composition with depth were more prominent in the riparian zone and, overall, 

291



the soils in the riparian zone had a unique geochemical composition relative to the other 

landscape positions. This is consistent with the literature which has characterized the riparian 

zone as a hot spot for biogeochemical processes due to the dynamic hydrologic conditions 

(e.g., fluctuating water table and redox conditions) (Vidon et al. 2010). Results of this chapter

have implications for the sediment fingerprinting approach with respect to the sampling 

design and how best to characterize surface soil sources of sediment within agricultural 

watersheds. The soils within the riparian zone could be considered one of three ways: 1) 

included with samples from the other landscape positions as part of the hillslope continuum; 

2) considered representative of contributions from the upper, mid or lower landscape 

positions; or 3) considered a unique source of sediment distinct from the other landscape 

positions. 

 8.3 Fluvial transport

A large recirculating flume (2 x 2 x 30 m) at the Quesnel River Research Centre, BC, 

was used to investigate the particle selectivity of fluvial transported sediment under different 

channel bed conditions. There was strong evidence of both particle size and organic matter 

selectivity as a result of fluvial transport under all channel bed conditions as the smaller and 

organic-rich particles remained in suspension longer. The results of this experiment showed 

that compared to a planar gravel bed, a smooth planar channel bed introduced small-scale 

roughness which resulted in the preferential deposition of larger particles into the channel 

bed. Increasing the depth of the gravel bed increased the amount of intra-gravel flow and 

reduced the potential for resuspension resulting in a further reduction in the particle size as 

well as in a significant increase in organic matter content of the suspended sediment.
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These results suggest that it is important to consider the channel bed conditions when 

interpreting particle size and organic matter information, high flow events that may flush out 

gravel-stored fine-grained sediment or result in gravel bed movement. In addition, channel 

bed condition can also vary longitudinally from headwaters towards the watershed outlet as 

channels transition between bed types (e.g., from bedrock to gravel through to sand channel 

bed types). These are import aspects to consider when selecting sites for sediment collection 

and interpreting the results they provide.

While the flume experiment (Chapter 6) demonstrated that the physical process of 

selectivity can influence fingerprint concentrations, the experimental setup eliminated the 

influence of many biogeochemical processes which would be present in a natural system. In 

particular, the hyporheic zone, where groundwater and surface water mix, will have an effect 

on both sediment and water geochemistry (Bencala 2000). The characteristics of groundwater

reflect both inputs from the atmosphere and soils and bed rock (Alexakis 2008). 

Consequently, the ground water and surface runoff will have a different chemical profiles, 

including dissolved minerals, pH and dissolved oxygen. The movement of ground water into 

the stream (i.e., gaining streams) will result in a change in stream water chemistry and the 

fingerprint of sediment will adjust (e.g., adsorption/desorption of exchangeable ions) to 

compensate for the change in environmental conditions. Furthermore, the hyporheic zone is a

hotspot for biogeochemical processes (e.g., denitrification) because of high solute residence 

times and steep gradients in dissolved oxygen and pH (Cardenas 2015). Therefore, there is a 

high potential for modification of fingerprint properties in sediment stored in the hyporheic 

zone. The consequences of both ground water exchange and hyporheic zone processes on the 

sediment fingerprinting approach are not well established.
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 8.4 Watersheds

A sediment fingerprint case study was conducted in the South Tobacco Creek 

watershed, a predominately agricultural region located in south-central Manitoba. A 

longitudinal sampling design was used and sediment samples were collected over the course 

of three years at six locations along the main stem of the creek, ranging from 3rd to 7th order 

streams (48 – 7441 ha catchment area). The results of the sediment fingerprinting study 

demonstrated that there was a switch in the source of sediment between the headwaters and 

the outlet of the watershed. The suspended sediment in the upper reaches were dominated by 

topsoil sources while the suspended sediment moving through the lower reaches and being 

exported from the watershed had a higher proportion of sediment coming from streambank 

and shale bedrock sources. This research highlights the importance of the location of the 

sediment sampling sites. If the suspended sediment samples were solely collected at the 

watershed outlet the, contributions of topsoil, streambank and shale bedrock sediment 

sources would have been assessed as contributing approximately equal amounts. This type of 

sampling approach would have given an incomplete assessment of the sources of sediment at 

the watershed scale as it would have led to the conclusion that the shale bedrock was a 

significant source of sediment throughout the watershed. Therefore, sediment collected at the 

watershed outlet does not necessarily accurately represent processes affecting sediment 

dynamics elsewhere in the river basin; failure to account for this can lead to poor 

management decisions. Observations over a range of spatial scales helped to isolate the major

physiographic features, to identify where changes in sediment source occurred, and to 

provide information on the processes that drive these changes. Furthermore, bedrock 
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exposures are often not considered as potential sediment sources as they are often comprised 

of solid rock or high-strength consolidated sediment. However, the low-strength nature of the

shale bedrock within the South Tobacco Creek watershed coupled with freeze-thaw and wet-

dry cycles and abrasion produced significant amounts of fine-grained sediment. The rapid 

changes in particle size of the shale-derived sediment presents a challenging situation in 

which to account for changes in particle size between sediment sources and sediment 

collected downstream. 

 8.5 Implications for sediment fingerprinting

The general introduction (Chapter 1) outlined the sediment fingerprinting approach 

and identified numerous areas of concern with respect to the robustness and reliability of the 

approach. The research and information presented in this dissertation can be used to help 

guide the sampling, sample preparation, data manipulation, fingerprint selection and 

interpretation of results (Table 8.1).

295



 8.5.1 Sample collection and preparation

Sampling locations and method of collection of both source material and sediment are

important aspects of the sediment fingerprinting approach. Locations for source sampling are 

often selected based on prior information (e.g., areas with high rates of soil erosion) and ease 

of access. In many sediment fingerprinting case studies the rationale behind the sampling 

locations for a given sediment source are not well documented, nor are the implications of 

the selected locations considered (e.g., bias sampling). Even within a location the sampling 

design and methodology are not standardized and a range of designs (e.g., transects or grid), 
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Table 8.1: Areas of concern with respect to the robustness and reliability of the sediment 
fingerprinting approach and protocol recommendations that can begin to address these 
concerns.

Area of concern Protocol recommendations

Sample collection and preparation
Sampling design
Sampling methods
Sample storage
Sample preparation
Selecting analysis
Analytical methods
Order of analysis

Data manipulation
Particle size correction factor
Organic matter correction factor
Fingerprint-specific weightings

Fingerprint selection
Below detection limits
Range test
Non-conservative behaviour
Statistical procedures

Interpretation of results

Clear objectives
Complete documentation of design and methods
Watershed characteristics to provide context for decisions
Use prior knowledge of watershed processes as a guide

Justification needs to be given for the use of corrections/weightings
Experimentation to confirm suitability
Complete reporting of correction factor and weighting values

Report basic statistics of fingerprint values and variability
Knowledge of the processes that led to fingerprint development
Knowledge of fingerprint behaviour under changing environmental 
      conditions

Watershed characteristics 
Limitations and sources of error 
Supporting information

Apportionment results need to be put in appropriate spatial and 
      temporal context 
Limitations and sources of error need to be taken into consideration 
      when assessing the reliability and robustness of conclusions
Inclusion of multiple lines of evidence to support/constrain 
      apportionment estimates 



methods (e.g., surface scrapes or soil cores) and quantity of samples per source have been 

used. The goal of the sampling approach, within a spatially defined source area, is to be 

representative of the erosional processes that are transporting and delivering material to 

surface waterways, but this can be difficult to assess (Wilkinson et al. 2015). The lack of 

standardization in selecting and sampling sources of sediment has implications for fully 

characterizing the variability of fingerprints for a given source which introduces uncertainty 

that propagates through the remaining steps and ultimately the apportionment results (Du and

Walling In press). The results from the rainfall simulation study (Chapters 3 and 4) 

demonstrated that there was a significant amount of spatial variability (i.e., inter-transect 

variability) in both the extent of particle size and organic matter selectivity and the 

concentration of geochemical fingerprints. Furthermore, the riparian zone study (Chapter 5) 

demonstrated that the riparian zone had a distinct particle size distribution, organic matter 

content and geochemical composition which raised questions as to whether the riparian zone 

should be considered a unique sediment source or part of the hillslope continuum. This 

information can be used to inform the sampling design to best suit the research needs of a 

particular case study as well as provide information that can be used to estimate the number 

of samples needed to achieve a given confidence level (e.g., power analysis). The 

development of methods of sample collection that better represent the sediment sources 

through the generation and collection of mobilized sediment (e.g., rainfall simulations; 

Motha et al. 2002) may be an option but further research is required to assess this. 

Clear objectives of the sediment fingerprinting study need to be in place prior to 

collection of sediment, as the information they provide is directly linked to where the 

sampling sites are situated. The consideration of watershed characteristics, at a range of 

297



spatial and temporal scales is essential when selecting in-stream sediment sampling locations.

The results of the watershed-scale sediment fingerprinting case study (Chapter 7) 

demonstrated that the sediment collected at the outlet of a watershed was not reflective of 

processes occurring in the upper reaches (head waters), and that the sampling location was 

important to consider when interpreting the apportionment results. At the watershed-scale, 

concepts including the spatial arrangement of sources and the geomorphic connectivity of 

theses sources relative to the site of downstream sediment collection (i.e., proximity to 

sediment sources and sinks) will help to define appropriate sampling sites that best suit the 

objectives of the study (Wethered et al. 2015). The next step is to consider the reach-scale 

properties, including abrupt changes in stream gradient, confinement and other modifications 

(e.g., culverts) as these features can create local patterns of channel erosion and deposition 

and, in many cases, the effects of these features are not considered in the overall study 

objectives. Finally, at the hydraulic unit scale, the flow characteristics (e.g., depth and 

velocity) and channel bed properties (e.g., type of substrate) are important to consider for the 

placement of sampling equipment. For example, the results from the flume study (Chapter 6) 

clearly showed that the extent of particle selectivity and subsequently the geochemical 

composition of the suspended sediment was sensitive to the channel bed substrate conditions.

Of equal importance is the influence of temporal characteristics of the watershed as 

this also needs to be considered when making decisions regarding the length of the study 

period or the frequency and method of sediment collection. As with sediment sampling 

location, clear objectives need to be in place prior to making these decisions. Past case 

studies have investigated the source of sediments at the intra- and inter-storm (e.g., Martínez-

Carreras et al. 2010) and seasonal (e.g., Collins et al. 1997) scales. However, at any of those 
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temporal scales it can be difficult to interpret the results as it is difficult to attribute changes 

in sediment sources to specific events or seasons as it is challenging to separate the 

remobilization of previously stored in-stream sediment and new contributions directly from a

sediment source. This is an example of how short-lived fallout radionuclides (e.g., 7Be; half-

life of 53.2 days) can provide insight in to both the source of the sediment and geomorphic 

connectivity of a watershed. Issues of temporal variability become especially important with 

time-integrated samplers as the relative contributions from any given hydrological event are 

unknown.

Sample preparation, specifically sieving, prior to analysis and its subsequent effect on

the sediment fingerprinting approach has not received much attention in the literature. Source

and sediment are commonly sieved to limit differences in the particle size distribution 

between the two sample types. Sieving to < 63 μm is the most common approach, but studies 

have also limited their analysis to finer fractions (e.g., < 10 μm; Wilkinson et al. 2013) and 

consideration needs to be given as whether the size fraction is representative of sediment 

transported within the watershed. However, results from the rainfall simulation study 

(Chapters 3 and 4) demonstrated that despite sieving there were still significant differences in

both the particle size distribution and organic matter content between source soil and the 

eroded sediment which need to be accounted for if a direct comparison is to be made between

the two sample types (Section 8.5.2). Furthermore, different grain-size fractions will have 

different patterns of erosion, transport and deposition within the watershed. Fingerprinting 

each grain-size fraction individually is one approach that can limit the issues of grain-size 

difference and the representativeness of collected sediment (e.g., Haddadchi et al. 2015). In 

addition, sieving source and sediment samples also assumes there are negligible changes in 
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grain-size due to breakage or abrasion of sediment as it is transported downstream which 

may not be the case in watersheds with low-strength (i.e., friable) material (e.g., shale 

sources in the South Tobacco Creek watershed; Chapter 7). In many case studies, the 

rationale behind the sampling design and methods, as well as sample preparation steps, are 

typically not well documented. Providing appropriate documentation would provide more 

context for, and confidence in, the results presented.

 8.5.2 Data manipulation

The use of particle size and organic matter correction factors is a contentious practice;

while particle selectivity does occur and differences in particle size and organic matter do 

have an effect on many sediment fingerprints, there is increasing evidence that the commonly

used correction factors have unpredictable impacts on the data. As demonstrated in Chapters 

3 and 4, this is because the direction, magnitude and linearity of the relation between 

fingerprint concentration and both particle size and organic matter content can vary 

considerably between fingerprint properties. The use of correction factors then influence the 

tracer selection process and, ultimately, the conclusions drawn for the apportionment results. 

For example, the results from Chapter 4 demonstrated that applying a particle size correction 

factor for Sn in the eroded sediment resulted in an over-correction of the concentration by 94 

% and 15 % as compared to the source soil for the Beaver Valley (BC) and South Tobacco 

Creek (MB) watersheds, respectively. Applying an organic matter correction factor in 

addition to the particle size correction factor increased the percent difference to 136 % and 26

% for the Beaver Valley and South Tobacco Creek watersheds, respectively. In many case 

studies, the correction factor values used are not reported, which makes the assessment of 
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uncertainty difficult to make. 

Other approaches for accounting for differences in particle size and organic matter 

content have included: linear regression (e.g., Gellis and Noe 2013), rainfall simulations 

(e.g., Motha et al. 2003), particle size fractionation of source material (e.g., Russell et al. 

2001), and expression on a minerogenic basis (e.g., Smith and Dragovich 2008), but many of 

these approaches remain untested or are laborious and cost prohibitive. Other data 

manipulation approaches include fingerprint-specific weightings to account for 

discriminatory power, variability, and analytical precision (e.g., Collins et al. 2010). These 

weightings are used to give greater importance within the apportionment model to fingerprint

properties that have large differences between sources, low variability within a source and 

high analytical precision. However, research by Laceby and Olley (2015) using artificial 

sediment mixtures demonstrated that these weightings did not improve mixing model 

accuracy. Justification of data manipulation approaches needs to be properly documented and

results need to be presented in a manner that acknowledges the limitations and uncertainty 

associated with such manipulations.

 8.5.3 Fingerprint selection

Little consideration is given to the results of multi-step statistical procedures that are 

commonly used to select a set of fingerprints that provide good discrimination between 

potential sediment sources. Recent work by Palazón et al. (2015) showed that the subset of 

tracers selected was dependent on the procedure used and that each subset of selected tracers 

resulted in different apportionment results. Furthermore, a purely statistical approach may not

be the most appropriate method, as the conservative behaviour of sediment fingerprints 
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during transport through the watershed or the underlying processes that lead to their ability to

discriminate between sources are not considered (Laceby et al. 2015; Sherriff et al. 2015). A 

hybrid approach, using a combined statistical- and process-based selection process, was used 

in selecting appropriate fingerprint properties for the sediment fingerprinting case study in 

the South Tobacco Creek watershed presented in Chapter 7. Incorporating information on the 

physical or biogeochemical development of sediment fingerprints have developed and how 

they behave within the environment into the fingerprint selection process will improve the 

reliability and robustness of the sediment fingerprinting approach.

Removal of fingerprint properties when one or more samples are below the detection 

limit is also a common approach, but this may also result in the removal of fingerprints that 

have good discriminatory power. As an example, a particular fingerprint may provide good 

discrimination if the concentration within one of the potential sources is at, or near, the 

detection level while the other sources are well above. There are statistical techniques that 

can deal with this type of left-censored data (e.g., Helsel 2012), but its integration into the 

sediment fingerprinting approach remains untested. Fingerprint properties, where the 

concentration of the sediment falls outside of the range of the potential sediment sources (i.e.,

the “range test”), are also removed as these properties are deemed to behave in a non-

conservative manner. Furthermore, there is a need for better reporting of fingerprint property 

data for both sources and sediment so the tracer selection process used and its results can be 

better evaluated.

 8.5.4 Interpretation of results

The previous sections outline some of the issues with the sediment fingerprinting 
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approach and offer suggestions on how the methodology and application of the approach can 

be improved (Table 8.1). Two common themes throughout the previous sections that can help

address some of the issues presented: i) better reporting of methods, watershed characteristics

and fingerprinting data; and ii) a clear assessment of the sources of error and limitations of 

the sediment fingerprinting study. 

Despite the potential short-comings of the sediment fingerprinting approach, it can 

provide valuable information to help guide watershed management decision-making to 

reduce non-point source pollution. To obtain reliable conclusions about sediment dynamics 

within a watershed it is advisable to have multiple independent lines of evidence that come to

similar conclusions. Therefore, the inclusion of multiple lines of evidence will help constrain 

and validate sediment source apportionment estimates. Other lines of evidence that can offer 

support include sediment budgets, assessment of geomorphic connectivity, small-scale 

experimentation and observation (e.g., use of 137Cs to estimate rates of soil erosion), historical

records (e.g., aerial photographs time series) and field visits (i.e., visual observations). In 

cases where the reliability of sediment fingerprinting results are low, due to the limitations 

described in this dissertation, the value of other lines of evidence becomes a very important 

and necessary component of drawing meaningful conclusions.

 8.6 Overall synthesis

Due to the rapidly increasing global population and the subsequent increased 

pressures on our soil and water resources to meet the growing demands for food, fibre and 

fuels, it is critical that resources are managed in a sustainable way (Lal 2006). Sediment and 

sediment-associated nutrient and contaminant pollution in watersheds are a concern both in 
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Canada and around the globe as a threat to both human water security and ecological health 

and biodiversity (Vörösmarty et al. 2010). Successful management of both soil and water 

resources is often achieved at the watershed scale as it can be considered to be a fundamental 

unit of the landscape that controls the flux, timing and pathways of water, sediment and 

chemicals (Owens 2005). Management at the watershed scale also acknowledges that 

decisions made in one part of the watershed will have impacts on other parts of the 

watershed. However, designing and implementing long-term management plans that are 

environmentally, socially and economically acceptable requires information on the locations 

and relative contributions of sources of sediment (Owens 2005). 

Sediment fingerprinting has been identified as a potential tool that can provide this 

information to watershed managers. However, Mukundan et al. (2012) suggests that the lack 

of standardization or a well-defined protocol for the sediment fingerprinting approach is a 

major obstacle in transforming it from a research tool to a management tool. Part of the lack 

of standardization of the approach stems from the fact that the scientific community is still 

exploring and assessing different approaches and methods to better link potential sediment 

sources to collected in-stream sediment. Much of the research focus has been on the tracer 

selection process (e.g., Palazón et al. 2015), data manipulation (e.g., Smith and Blake 2014) 

and mixing models (e.g., Haddadchi et al. 2014), but incorporating process-based 

information has received less attention. Comprehending the physical and biogeochemical 

processes that link the sediment sources to in-stream sediment, and incorporating these 

processes into the sediment fingerprinting approach will improve the robustness and 

reliability of the sediment fingerprinting approach (Fig. 8.1). At this point in time, the 

confidence surrounding information provided by some sediment source fingerprinting studies
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is limited. This is because each watershed presents a unique set of environmental conditions 

and processes which creates a situation whereby many of the individual steps of the 

fingerprinting approach (e.g., fingerprint selection) need careful consideration or 

experimentation to ensure that the approach is sound. However, such considerations and 

experimentation add a layer of complexity and additional work to the approach which, in 

turn, makes the sediment fingerprinting approach a less effective tool. This dissertation 

investigated some of the processes that link potential sediment sources to downstream 

sediment and was able to provide information on how several key watershed processes affect 

sediment fingerprint properties. This information can be used to support both the refinement 

of the sediment fingerprinting approach and the development of standardized protocols. 
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