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tc aAtsbA 

The aim of this thesis is to study pollutants that are emitted from combustion systems using 

Terahertz time domain spectroscopy (THz-TDS). In particular, this thesis will focus on Nitric 

Oxide (NO), which is present in flue gases and contributes to air pollution. It is also interesting 

from a Physics perspective because it contains an unpaired electron in the valence shell, which 

leads to a complicated energy level structure, and interesting Physics. 

 

 In this thesis, we aim to answer the question: “what is the detection limit of NO, using THz-

TDS, and is it suitable for industrial emissions monitoring?” It is therefore necessary to look at 

detection limits, which in turn requires conducting THz spectroscopy at different gas pressures. 

 

 A gas-cell containing NO is used in a THz-TDS set-up, where the temporal and spectral 

response of a THz pulse propagating through a gas sample of NO molecules is probed. A 

theoretical model for the interaction between the THz radiation and NO is developed, taking into 

account the complicated molecular structure of NO. A direct comparison is then made between 

the experimental data and our theoretical model. The good agreement between theory and 

experiment allows us to project the limits of detection for NO sensing that is possible with 

commercially available THz systems today, and the potential for the technology to be used in 

harsh environments is discussed. 
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Chapter 1 
 Introduction 

The main thrust of my thesis work is to study pollutants that are emitted from combustion 

systems, specifically Nitric Oxide (NO), using Terahertz (THz) spectroscopy. THz spectroscopy 

has strong potential for sensing applications involving molecules with a permanent dipole 

moment as the entire manifold of thermally populated rotational energies can be probed within 

the bandwidth of a typical THz pulse (which is usually about 3 THz).  

 

Nitric Oxide, which is present in flue gases and contributes to air pollution from 

combustion systems, was chosen as it is also interesting from a Physics perspective because it 

contains an unpaired electron in the valence shell, which leads to a complicated energy level 

structure in comparison to CO, for example, which was previously studied in the THz research 

lab at UNBC [1]. The primary goal of this thesis will be to answer the question: “what is the 

detection limit of NO gas using THz technology, and is it suitable for industrial emissions 

monitoring?” In order to answer this question, it will be necessary to look at detection limits, 

which in turn requires conducting THz spectroscopy at different gas pressures.  
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We will develop a model of the interaction between a THz field and NO molecules, 

following the work previously conducted by Grischkowsky [2], but extending it to the more 

complicated NO molecule. This will be used to examine the pressure scaling, and compared to 

experimental data to determine limits of detection. 

 

  In Chapter 1 and Chapter 2, background related to this project is presented to put the 

work into context, followed by a description of how we implemented a THz-TDS system for 

detection of NO gas. In Chapter 3, the model of the interaction between THz radiation and NO 

molecules at a specific temperature and pressure is presented. The THz propagation through NO 

is calculated using the Matlab® programming language by numerically implementing the 

theoretical model. In Chapter 4, experimental results for THz-TDS of NO at atmospheric 

pressure will be presented. Then, by using the Matlab programming environment, experimental 

data and the theoretical model are compared. 

 

 Results are presented for NO partial pressures in the range of 100 mmHg – 750 mmHg, and 

a total pressure of atmospheric pressure (approximately 760 mmHg) by mixing with N2 up to 

atmospheric pressure. Finally, the results are analyzed and discussed, and the theoretical model 

for the THz time-domain response of NO molecules is compared to experimental data at 

different pressures. We tested the validity of the model, and found experimental values for the 

rotational constant and collisional time constant of NO using THz-TDS which are shown to be 

consistent with published literature values.  Then, the results are used to project the ultimate limit 

of detection for commercially available THz systems. 
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Chapter 2 
  Historical background 

Air pollution is an important issue at present, especially for the Prince George region 

because of a long history of poor air quality and significant industrial emissions. In addition, air 

pollution has had a dramatic effect on the climate in the last century, which in turn, has 

significant implications for human health. There are many sources of air pollution such as the 

emissions from vehicles, industrial activities, and combustion systems in general, all of which 

produce pollutant gases and particulate. 

 

 There are different types of pollution which can be categorized according to its type and 

its effect, including smoke (and associated particulate matter), ash, SOx, NOx, CO, VOCs, and 

others. Nitrogen Oxides (NOx) are a very interesting and important family of air-polluting 

chemical compounds. Much attention has been devoted to NO because of its toxicity and also 

due to its possible effects on neurotransmitters, where NO is synthesized by NO-synthase (an 

enzyme that catalyzes a synthesis process), then NO molecules simply diffuse from nerve 

terminals, which causes harm to the human body by changing the brain chemistry [3]. 

https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Catalyse
https://en.wikipedia.org/wiki/Biosynthesis
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NO also transforms easily into nitrogen dioxide (NO2), which has negative health effects 

associated with it. The small size of NO makes it diffusible in both aqueous and lipid 

environments which allows rapid spreading even through membranes [4]. Furthermore, NO is a 

minor constituent of Earth’s atmosphere with a prominent role in the catalytic decomposition of 

ozone in the stratosphere [5]. The decomposition of the ozone layer increases the amount of 

ultraviolet radiation received at the surface of the earth, which has harmful effects on human 

health (causing such diseases as skin cancer and cataracts) as well as negative effects on the 

environment (climate change for example) [6]. 

  

Diatomic molecular nitrogen (N2) is an inert gas that makes up about 80% of the air we 

breathe. However, the chemical element nitrogen (N), as a single atom, is highly reactive 

exhibiting ionization levels from +1 to +5, which allows the formation of several different oxides 

[7].  The family of NOx compounds and their properties are listed in Table 1 [7]. 

 

Table 1. Some examples of Nitrogen Oxides (NOx) 

 
Formula Name Nitrogen Valence Properties 
N2O Nitrous Oxide 1 colorless gas,  

water soluble 
NO 
N2O2 

Nitric Oxide 
Dinitrogen Dioxide 2 

colorless gas 
slightly water soluble 

N2O3 Dinitrogen Trioxide 3 
black solid, water soluble, 
decomposes in water 

NO2 
N2O4 

nitrogen dioxide 
dinitrogen tetroxide 4 

red-brown gas, very water  
soluble, decomposes in water 

N2O5 dinitrogen pentoxide 5 
white solid, very water 
soluble, decomposes in water 
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NO is formed in high temperature combustion and is easily oxidized to NO2, which reacts 

to form nitrates. When rain forms around certain types of pollutants, such as NO and SO2, 

raindrops condense around microscopic pieces of material called Cloud Condensation Nuclei 

(CCN). The sulphate and nitrate particles (< 1μm) can act as CCN, resulting in acid rain [8].
  

Visibility can also be reduced by the presence of such particles (especially by sulphate and nitrate 

particles).  

 

NO has two distinct electronic energy states resulting in far-infrared rotational absorption 

spectra having two distinct manifolds of rotational energies, one for each electronic state. The 

distinct electronic states result from spin-orbit coupling of the single unpaired valence electron [9].  

 

NO is polar with a permanent dipole moment, which comes about because oxygen has a 

higher electronegativity than nitrogen, and gives the molecule an intrinsic electric dipole moment. 

This dipole interacts strongly with radiation whose frequencies lie in the far-infrared [10]. 

 

Furthermore, NO is unique in having an excited electronic state            so near (123 cm-1) 

to the ground electronic state           such that it is appreciably populated at room temperature 

[11]. These two molecular electronic states (2Π1/2  and 2Π3/2 )  derive their labels from the well-

known atomic orbital s, p, d, and f nomenclature, where instead, molecular states are labeled as  Ʃ, 

Π,  , and ɸ, corresponding to a molecular orbital angular momentum of l = 0, 1, 2, and 3, 

respectively. 
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 These two molecular electronic states are created because of the Spin-Orbit coupling, 

which is an effect of how the spin angular momentum of the electron and the orbital angular 

momentum add to give a total angular momentum J (=s+l).  J therefore has contributions from 

spin angular momentum s and orbital angular momentum l, so that J can take on values of 1/2 or 

3/2, leading to the two different states          and         .  These two states, each with their 

own rotational manifold of absorption lines, lead to a complicated pure rotational spectrum in the 

far-infrared, for which we will develop a theoretical model and compare to measurements in this 

thesis. 

 

2.1 Recent methods of detection of nitric oxide 

For molecular detection in an atmospheric environment, we can use rotational spectroscopy, 

where the energies of transitions between quantized rotational states of molecules in the gas phase 

are measured.  

 

NO is not easily detected in the atmosphere employing rotational spectroscopy because of its 

small dipole moment of 0.15872 Debye (D) [12]. Detection of NO is also challenging because of 

its unique chemical and physical properties, including its reactivity (with other chemical 

components in the air), and rapid diffusion (because of its small size). NO is also highly reactive 

and rapidly scavenged by endogenous compounds including oxygen (O2), heme-proteins (e.g. 

hemoglobin) and others. This reactivity causes NO to have a short half-life (few seconds), thus 

complicating its detection in the atmosphere [13]. 

 

https://en.wikipedia.org/wiki/Spectroscopy
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Gas_phase
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  These reasons make it difficult to detect NO, so that techniques with a wide dynamic 

response range are required [13]. High-resolution IR spectroscopy of its fundamental band is 

commonly used, which allow us to measure NO concentrations as low as 0.01 parts per million 

(ppm) in a gas volume of 1 cm3  in a time of ~ 4 seconds [14]. 

 

 Several methods have been developed to detect NO based on the rotational transitions, 

including far-infrared (FIR) spectroscopy and photoacoustic spectroscopy.  These two techniques 

are sensitive enough to detect tens of (ppm) of NO pollution in air [14].    

 

The first technique, FIR spectroscopy, relies on the fact that NO molecular rotational 

energies lie in the FIR portion of the electromagnetic spectrum, and typically rely on FIR 

radiation produced using Quantum Cascade Lasers (QCLs), which are small semiconductor 

lasers that emit light in the mid- and far-infrared portion of the electromagnetic spectrum. These 

sources can be tuned to specific wavelengths to conduct absorption spectroscopy and probe the 

characteristic fingerprints of the absorbing molecules for identification and quantification. This 

technique provides molecular information by measuring vibrational and rotational transitions in 

NO molecules. 

 

The second technique, photoacoustic spectroscopy, relies on the same principles as 

absorption spectroscopy, however, the sensitive nature of microphonics is exploited to achieve 

increased sensitivity when the gas under study absorbs laser light at particular wavelengths via 

molecular transitions causing acoustic modes inside the sample cell to be excited.  
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The absorbed energy induces local heating, which can in turn generate a pressure wave and a 

faint acoustic signal [15], which can be detected with high sensitivity using microphones. 

Photoacoustic spectroscopy is a useful technique for monitoring chemical composition because 

the detection limit scales favorably with miniaturization. Also, in photocoustic spectroscopy the 

signal is increased by miniaturization because the coupling of temperature to pressure is 

inversely proportional to volume [16].  

 

In fact, many industrially relevant gases such as carbon sulfide, carbon monoxide, nitrogen 

monoxide, carbonyl sulfide, and others, have absorption lines in this portion of the spectrum 

[17]. That is, each gas has a unique set of absorption lines related to the molecular structure 

through the allowed rotational (and vibrational) energies of the molecule.  

 

In FIR spectroscopy, light of different wavelengths is passed through a sample of gas, and 

these absorption lines are mapped in frequency to extract the fingerprints, which can then be 

used for identification and quantification. There are several methods that can be used for 

performing FIR spectroscopy. Fourier transform spectroscopy (FTS) is perhaps the most 

common technique used for studying molecular resonances [18]. 

 

A survey of methods for detecting NO, collected from the literature, is presented below in 

Table 2. The typical limits of detection are in the single ppb (part per billion), or ppm (parts-per-

million) range. 
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Table 2. Summary of methods for detecting NO, and their respective detection limits. 
 

Method Name Detection Limit 

Spectroscopic chemiluminence  

Luminal/H2O2-based [19] 

0.3 ppb 

Spectroscopic of NO by fluorescence 

 and chemiluminence [20] 

5 ppm (in Nitrogen atmosphere) 

QEPAS system was demonstrated  

using an external-cavity (QCL) [21] 

15 ppb 

Tunable external cavity (QCL)- based 

detection [22] 

96 ppb 

Photoacoustic detection of  NO with a 

 Helmholtz resonant (QCL) [23] 

100 ppb 

Conventional photoacoustic 

 spectroscopy systems [24] 

500 ppb 

Quartz-enhanced photoacoustic 

 Spectroscopy (QCL-based) [25] 

10 ppm (in Nitrogen atmosphere) 

2.5ppm (Mixture 80% N2 and 20% O2) 

 
 

 
As can be seen, the majority of the techniques are QCL-based and are conducted in 

laboratory research environments. The “Quartz-enhanced photoacoustic spectroscopy [25]”, 

which is considered an applied outdoor technique (in an atmospheric environment), will be used 

to compare to our final results for limits of detections (as our work is also related to detection of  

NO in atmospheric environments). 
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2.2 Terahertz portion of the electromagnetic spectrum 

This thesis work employs a new method to detect NO molecules, using THz-TDS. THz-

TDS is currently being researched extensively as it is a promising, non-destructive method for 

testing samples that range from packaged goods to artwork and biological tissues [26]. Terahertz 

(1 THz = 1012 Hz) frequencies, extending from tens of GHz to a few THz, lie in the FIR portion 

of the electromagnetic spectrum as shown in Figure 1. These frequencies are suitable for probing 

the rotational absorption lines of many common molecules.  

Figure 1. THz spectral region (40GHz to 4THz) 

 

  THz-TDS relies on coherent detection of pulsed electromagnetic fields, which measures 

the electric field directly in the time-domain. THz pulses typically have a large bandwidth (which 

usually spans a range of 0.1 to several THz) because of being composed of short pulses. As a 

result, the entire manifold of thermally populated rotational energies of many molecules can be 

probed simultaneously. What is more, the approximately evenly spaced rotational lines in the 

frequency domain (a signature of linear diatomic molecules) translate to the radiation of periodic 

“commensurate echoes” in the time domain. For example, see Figure 2.A and 2.B below [2]. 
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The propagation of a THz pulse through a molecular vapour simultaneously excites the 

manifold of rotational transitions (the absorption lines visible in Figure 2.B), thereby causing the 

molecules to radiate a Free Induction Decay (FID) signal [27]. 

 

 

 
Figure 2.A Measured transmitted THz  
signal through 2.27 cm of 666 hPa of methyl 
 halide vapors. The insets show the first 
 commensurate echoes on an expanded scale: 
 
 (a)methyl fluoride, (b) methyl chloride,  
 (c) methyl bromide. 

 

 
Figure 2.B Measured THz-TDS absorption  
spectra from the THz pulses transmitted 
 through 2.27 cm of 666, 1333, and 2000  
hPa pressures:  
 
(a) methyl fluoride, (b) methyl chloride,  
(c) methyl bromide. 



12 
 

This rephasing process is manifest as a train of sub-picosecond THz pulses with a 

repetition rate equal to the inverse of the frequency separation between adjacent rotational 

absorption lines in the frequency domain. These periodic pulses are termed “THz commensurate 

echoes” [27].  

The measured time-resolved THz echoes carry almost complete information about the 

molecular system. Molecular constants such as the rotational constant (related to the moment of 

inertia of the molecule), the centrifugal stretching constant (resulting from increased bond length 

with increasing rotational energy), as well as the coherence relaxation time dictating the decay 

time-scale of the echoes, are all reflected in the temporal profile of the transmitted THz signal.  

 

 The latter is determined only by collisional dephasing, since Doppler and lifetime 

broadening are negligible under the conditions studied in our work [2]. Therefore, the time-

domain echoes contain information about the molecules present, their amount, as well as the 

pressure and temperature of the molecular system.  

 

In this thesis, we will develop a theoretical model that predicts the temporal profile of the 

transmitted THz pulses, which will allow us to make measurements of the key molecular 

parameters discussed above by fitting experimentally measured transmitted THz signals to the 

theoretical model. This thesis then aims to exploit the echoes directly in the time domain as 

temporal signatures, to perform characterization of gases in a unique way, different from 

traditional techniques of absorption spectroscopy, which relies on spectral signatures.  This is 

what we will refer to as Terahertz time domain spectroscopy (THz-TDS), which we will describe 

more fully in the next section of the thesis. 
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2.3 THz time-domain spectroscopy 

THz-TDS was first demonstrated in 1985 by Auston and Cheung at Bell Laboratories 

[28]. THz-TDS does not measure the frequency-dependent intensity of an electromagnetic wave, 

but rather, time-dependent electric fields directly. This type of detection is referred to as coherent 

detection, and these measurements contain both amplitude and phase information allowing the 

extraction of the full complex dielectric function of materials. This makes THz-TDS much more 

powerful than traditional frequency domain measurements. 

 

2.4 Generation and detection of THz pulses 

There are many ways to generate pulsed THz radiation, however, the most common for 

THz-TDS is using photoexcited carrier transport (photoconductive antennas for example) [29].  

THz pulses are also generated through optical rectification, a nonlinear optical process based on 

degenerate difference frequency mixing [30]. Both methods require an ultrafast (~100 fs) optical 

laser source to drive the processes.  

 

In the case of photoexcited free carrier transport, the short optical pulse is required to 

generate a transient current with a rapid rise time, which in turn radiates electromagnetic waves 

with THz frequencies. In the case of optical rectification, the short pulses are required for the 

high intensities needed for efficient nonlinear optical interactions to build up the radiated THz 

field. 
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Optical rectification is a popular and efficient technique used for the generation of THz 

radiation, as it only requires a nonlinear optical crystal with a second order nonlinearity to be 

placed in an intense laser beam. The optical excitation pulse undergoes degenerate difference 

frequency generation, which induces a DC polarization of the crystal lattice. The nonlinear 

process depends on the optical excitation intensity, and so the induced DC polarization tracks the 

intensity profile of the excitation pulse, and the transient polarization then radiates a THz wave 

[31].  

 

THz generation from a semiconductor-based photoconductive antenna with external bias 

can be thought of as occurring in several steps. An optical pulse creates carriers in the 

conduction band of a semiconductor substrate which experience a static bias field.  The photo-

injected electrons and holes are accelerated in the DC bias field, creating a current transient with 

a rise time on the order of the optical excitation pulse width. The time-dependent current leads to 

a radiated THz electric field (Figure 3) according to Maxwell’s equations.  

 

In the case of strong illumination, large photo-carrier densities can be produced, and 

carrier separation by the bias field can lead to an opposing field which screens the applied DC 

field.  This space-charge screening typically limits the output power of photoconductive switches 

that generate THz radiation. These processes all happen on a sub-picosecond timescale. On a 

much longer time scale of approximately nanoseconds between laser pulses, the photocarriers 

either recombine or travel to the electrodes, and the THz emitter system goes back to its initial 

state, ready to repeat these processes again. 
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 In the experiments conducted in this work, we use photoconductive sources and 

detectors, and so we will focus on the physics of these types of sources for the remainder of my 

thesis. 

Figure 3. Photoconductive THz emitter. 

 

As described previously, when a fs laser (high-intensity optical pump) excites a biased 

semiconductor with photon energies greater than its bandgap, electrons and holes are produced in 

the conduction and valence bands, respectively. The rapid change in photocarrier density within 

a photoconductive antenna, because of absorption of the fs pump and subsequent acceleration in 

the applied dc bias field, Eb, produces an electromagnetic field radiating into free-space [32].  
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The production of ultrashort current transients with a FWHM of 1 ps (or less) requires the 

carrier lifetime in the semiconductor to be short [32]. Although some semiconductors have a 

carrier lifetime of hundreds of ps, there are techniques (eg. radiation damage and ion 

implantation) which allow the carrier lifetime to be significantly reduced to even sub-ps 

durations. For example, low-temperature grown GaAs (LT-GaAs) has a photocarrier lifetime    

of 0.25 ps [32]. Furthermore, the short duration of the pulse in the time domain leads to a broad 

bandwidth [33]. 

 

 In a photoconductive THz emitter, when the radiation emerges from the rear surface of 

the substrate, it is strongly divergent as a result of the dipole nature of the source. The emitted 

radiation is first collected with a substrate lens to collimate the radiation, followed by 

conventional far-infrared optics to work with the collimated beam.  

 

The resulting THz beam can be focused as a regular Gaussian laser beam, however, the 

long-wavelength radiation diffracts more readily than optical beams and limits the ultimate focal 

spot of the radiation [34]. A well-collimated THz beam of approximately 1 cm radius can 

propagate for several meters before diffraction becomes appreciable [35].  

 

The detection of the THz field occurs on an identical photoconductive antenna to the 

emitter, where instead of an external voltage bias, the THz pulse to be detected serves as the bias 

field for the antenna, which drives the photogenerated carriers in the antenna circuit [35].  THz 

detection is a difficult task since the power of emitted THz signals is weak [32].  
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The output signal is dependent on the incident THz field amplitude, the probe power and 

pulsewidth, and also depends on the physical parameters of the photoconductor itself. The 

detection process uses the same physical principles as the emitter, replacing the bias field with 

the THz field itself. 

 

The photocurrent is sampled by varying the delay of the fs gate beam with respect to the 

THz beam, using an optical delay line. This measured current of photogenerated carriers will be 

a reliable representation of the actual THz field provided that a fast substrate is used (with a sub-

ps carrier recombination time) [35].  

 

The characteristics of the measured THz signals will be described in more detail later in 

this thesis, however, at this point we introduce the model which we use to predict the THz 

interaction with NO in the time domain at specific temperature and pressure. 
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Chapter 3 
Rotational spectroscopy model of nitric oxide  

This chapter develops the physical model we use to treat the interaction of THz radiation 

with NO. We extend the theoretical model proposed by Harde and Grischkowsky [36, 42] to 

include more complicated effects of the unpaired valence electron in NO. Once the model is 

developed, it is implemented in the Matlab programming environment to simulate the 

transmitted THz signal through NO based on an experimentally measured reference waveform. 

The model parameters can be varied and used as fitting parameters, and using experimental data, 

the fitting error can be minimized to obtain a best-fit curve and subsequent measurement of the 

molecular parameters of NO. 

 

3.1 Model for NO 

We now develop the model for the interaction between THz radiation and NO molecules 

at a specific temperature and pressure.  In order for this model to be suitable for comparing to 

experimental measurements, it is necessary to model the time-domain response of a THz pulse 

propagating through a gas of NO molecules at a specific temperature and pressure.   
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First, we need to understand the electronic configuration of the NO-Molecule as shown, 

for example, in figure 4 below. 

 

Figure 4:  Molecular orbital diagram of NO in the electronic ground state. 

 

As shown in Figure 4, the 2S and 2P atomic molecular orbitals of oxygen are slightly 

lower in energy than those of nitrogen, as a result of the larger electronegativity of oxygen in 

comparison to nitrogen. 
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The lower-energy molecular orbitals of NO, such as :   ,   ,    and    are called the 

bonding molecular orbitals, and the higher energy molecular orbitals, such as   
 ,   

 ,   
  and   

  

are called the anti-bonding molecular orbitals (which are labeled by an asterisk) [37], where the 

anti-bonding orbital weakens the bond between two atoms, and the electrons in the anti-bonding 

orbitals are easily released from the atom. The electron in the lower-energy bonding molecular 

orbital is more stable than the electron in the higher-energy anti-bonding molecular orbital. As a 

result, the lower-energy orbitals in NO are filled with the 10 valence electrons, leaving one 

unpaired electron located in the higher-energy orbital    
 . 

 

The unpaired electron of NO is in a 2Π-state, with an angular momentum quantum 

number    . Thus, the total angular momentum has contributions from the spin angular 

momentum and the orbital angular momentum       , and has a value of either 1/2 or 3/2 

due to spin-orbit coupling. This leads to the two different 2Π-states observed in a sample of NO: 

2Π1/2 and 2Π3/2. The fraction of NO molecules that are in the 2Π1/2 state, which represented by 

      
 , and the fraction of NO molecules that are in the 2Π3/2 state, which represented by       

 , 

sum to give the total fraction    of the NO molecules in the lowest vibrational state:  

                                                
   ,                                                ( 1 )  

 

where      at room temperature (≅ 20 oC) because of the relatively large separation of 

vibrational states (≅ 1904 cm-1)  compared to     (≅ 203 cm-1). 
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This molecular response theory must be applied separately for the two different electronic 

states of NO as they have different rotational energies (resulting from the different rotational 

constants associated with the different geometries). Therefore, the fractions of molecules in each 

state must be known, and can be obtained if we assume the NO gas is in equilibrium using 

Boltzmann statistics [38]. 

       
   

        

          , and             
   

        
       ,                            ( 2 ) 

 

where we can determine the fraction of molecules in each state using the ratio: 

                        
       

       

 
       

       

    

   
 
     

        
 

     ,                                              ( 3 ) 

 

where   is a normalization constant,   is the fraction of molecules in each state (the sum of these 

two fractions add to one),   is the energy of the individual states,    is Boltzman’s constant, 

and   is the temperature of the gas in Kelvin. 

 

Following the work of Harde, the molecules in each electronic state are assumed to have 

a van Vleck-Weisskopf line-shape for their rotational transitions [36]. The interaction of the 

electric field with the sample in the frequency domain is calculated by modeling the absorption 

     and the dispersion      , using the van Vleck-Weisskopf line-shape function for the 

absorption and dispersion [39]. 
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For higher frequencies of optical and infrared transitions, the simple Lorentzian line-shape 

[40] provides excellent agreement with experiment, particularly for the central region of 

absorption lines [41]. Lower frequencies (in the range of microwave or far-infrared, and under 

conditions when a linewidth becomes comparable to the transition frequency), the absorption 

profile of a collisionally broadened line is better represented by the van Vleck−Weisskopf line-

shape [41]. 

 

Our measurements are well-fit using a van Vleck-Weisskopf line-shape for an individual 

transition frequency of order ~1 THz. The difference between the Lorentz and van 

Vleck−Weisskopf theory is that the response of a molecule to an external field is considered in 

its two limiting cases [41]. The Lorentz line-shape assumes that after a collision, molecules are 

oriented randomly with respect to the driving field, and therefore no macroscopic polarization in 

the sample will be found. van Vleck-Weisskopf line-shapes take into account Boltzmann 

statistics, assuming instantaneous realignment during a collision such that the molecules are 

oriented as to have a low energy in the field [41]. 

 

The propagation of a plane wave with electric field profile       , which propagates in the 

z-direction, can be calculated from its frequency spectrum, absorption, and dispersion as [36] : 

                                        
 

 
           

 

   
,     ( 4 ) 

where      is the spectral field distribution, which can be found from the Fourier transform of 

the initial THz pulse, which is given by [42]: 
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 ,                                   ( 5 ) 

where        represents the time varying electric field obtained in the absence of a gas sample 

(the reference waveform), t is time,   is the angular frequency, z is the gas cell path length,  and 

the phase change per unit length introduced by an index of refraction, n, of the sample is given 

by: 

         ,                                                    ( 6 ) 

where     is the nonresonant wave vector in the sample and c is the speed of light in vacuum. 

 

The electric field can be expressed in the time domain by the inverse Fourier transform: 

                                  
 

   
  ,                     ( 7 ) 

 

where we can describe the interaction of the electric field with the NO-gas in the frequency 

domain by introducing the linear polarizations as [42]:  

                   ,                                                   ( 8 ) 

where    is the vacuum permittivity,      is the complex electric susceptibility and we have 

     from equation (5), giving: 

                                         
 

   
   ,                        ( 9 ) 

 

where      is given by: 
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≅       
 

   
        

 

   
           ,             ( 10 ) 

 

From linear dispersion theory, the real part of      changes the phase per unit length from 

   to      , with  

                     ,                                                ( 11 ) 

 

and the imaginary part causes the amplitude to be exponentially attenuated with distance, z, 

according to           , so the power absorption coefficient is given by: 

          
         ,                                                     ( 12 ) 

 

where α(ω) is the absorption. By knowing     , we can find      from Equation (10) and by 

using this new value of       in  Equation (4), we know the propagation of the pulse        

through the gas cell.   

 

Finally, by using Equation (11) and Equation (12) we can get a new form for     , 

which can be used in Equation (7) resulting in our final pulse propagation form,       ,  as 

written in Equation (4). In the case of randomly oriented molecules, the absorption coefficient 

   corresponding to a single rotational transition J→ J+1 of a sample of linear molecules of NO 

can be written as [42]: 
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              ,                 ( 13 ) 

where, p is the sample pressure,    is the electric dipole moment of NO,    is the rotational 

constant for vibrational state   , h is Plank's constant, n is the index of refraction of the NO gas, c 

is the speed of light in vacuum, ɛ0 is the permittivity of free space,    is Boltzmann's constant, 

     is the thermal energy,    is the angular frequency associated with the J → J+1 rotational 

transition, and GA(ω, ωJ )  is the van Vleck-Weisskopf absorption line-shape function which is 

given by [36]: 

          
   

       
 
         

   
   

       
 
         

    ,                  ( 14 )  

 

where     is the angular frequency linewidth (FWHM) of the absorption line of the J→ J+1 

rotational transition. The transition frequencies are determined by: 

  

   
                        ,                                 ( 15 ) 

 

where     is the rotational constant of the vibrational state which is related to the moment of 

inertia       ; (  is the reduced mass “                ”, and R is the bond length) of 

the molecule.  
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A diatomic molecule with the atomic masses    and    can rotate around any axis through 

the center of mass as shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Diatomic molecule as a rigid rotor.  M is the mass and R is the distance from the center 

of masses. 

 

The rotational constant,   , of the ground vibrational state (v=0) can be determined by: 

   
 

         
    ,                                                      ( 16 )    

 

and    in Equation (15),  is the centrifugal stretching constant of the ground vibrational state 

(v=0).  
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In some cases, if a chemical bond is weak enough so that the nuclei respond to increasing 

rotational energy by moving farther apart, the molecule experiences centrifugal elongation. In 

other words,    is related to the increase in bond length with increasing rotational energy. 

 

For the change of the wave vector, the corresponding dispersion response for the J → J+1 

rotational transition is given by [42]: 

     
    

     
   

 

             
      

            
           

  
        ) ,               ( 17 ) 

 

where           is the van Vleck-Weisskopf dispersion line-shape function given by [42]:  

           
      

 

    
 

  
      

       
 
         

   
      

       
 
         

     ,           ( 18 )  

 

The absorption and the dispersion over the whole spectral range of the terahertz pulse is 

found summing equations (13) and (17) over all transitions within the bandwidth of our THz 

pulses. 

 

The absorption and dispersion of the THz pulse can then be obtained by adding the 

corresponding values for all of the transitions that lie within the spectral bandwidth of our 

system. So the total dispersion       and absorption      can be found by taking the sum of 

equation (7) of       and taking the sum of equation (11) of     within the spectral range of the 

incident THz pulse for all the rotational transitions. 

 



28 
 

In principle, we can include all transitions. In practice, there are both a limited number of 

thermally populated rotational energies at room temperature, and a finite number of transitions 

that fall within the bandwidth of the THz pulses.  In applying the model, we therefore restrict our 

attention to the lowest 100 transitions in NO, which we find to be more than sufficient to capture 

the important transitions. Thus, the total absorption and the total dispersion are found by using 

the following equations: 

                                                                  

     

   

 

            

     

   

                                                         

This model can then be used to predict the shape and amplitude of the THz 

commensurate echoes seen in the time domain when THz radiation is passed through a gas 

sample of NO.  In this case, there are three variable parameters for the model:  

1- The rotational constant of the ground vibrational states (2Π1/2  and 2Π3/2),    
   and   

   , 

2- The centrifugal stretching constant for the ground vibrational states (2Π1/2  and 2Π3/2),   

  
   and   

   , and 

3- The collisional time constant,   , which dictates the linewidth (i.e. dictates the angular 

frequency linewidth   , which is the variable parameter in the model;          ). 

 

All of the other parameters are either physical constants, or values taken from the 

literature as we will describe in the next chapter, where we will describe our experimental work, 

so that we can compare this theoretical model with our experimental data. 
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Chapter 4 
Experimental setup and results 

4.1 Experimental setup 

The model described in Chapter 3 will be used to analyze experimental data collected and 

to determine the limits of detection for NO sensing using THz-TDS. We use the THz Menlo-

system GmbH, (Model: TC-1550), available in our lab at UNBC, which generates THz pulses 

using photoconductive switches excited with a frequency doubled, 90 fs, 1550 nm fiber laser. As 

described in section 2.4, the fs laser generates carriers in the conduction band of the 

photoconductive emitter which are accelerated in the DC bias field creating a time dependent 

current transient, radiating the THz electric field.  

 

The THz field is collimated with a substrate lens, followed by conventional far-infrared 

optics to guide the THz beam through a gas cell which can be placed under vacuum or filled with 

a variable pressure of NO. The transmitted THz beam is collected and focused onto a 

photoconductive detector, and by varying the delay of the laser gate beam on the 
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photoconductive detector with respect to the THz beam, the transmitted THz field can be 

mapped out in time. 

 

 The experimental set-up is shown in Figure 6 below.  The NO gas is contained within a 

gas-cell which has a length of 13.64 cm. This cell has high resistivity silicon windows, and is 

used at pressures below 1 atm to avoid leakage. At room temperature (T = 293 K), different 

partial pressures of NO are introduced, and can be mixed with N2 to bring the total pressure up to 

a constant value of approximately 1 atm. 

Figure 6. Menlo system setup. 
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The pulses from the femtosecond-laser are split into two different beams, where the first 

beam is the pump beam (Tx), which excites the photoconductive emitter, and the second one is 

the probe beam (Rx), which samples the THz field in the photoconductive detector.  

 

The pump pulses are focused onto the THz emitter using a microscope objective to 

illuminate the 5 μm gap of the emitter. The other beam passes through the delay stage, which 

introduces a variable delay between the pump beam and the probe beam before the probe is 

focused by a microscope objective onto a photoconductive detector that matches the emitter.  By 

varying the delay of the probe relative to the pump, the THz field can be sampled at different 

points in time, and the full temporal profile of the THz field can be collected. 

 

A stainless steel gas cell with high-resistivity silicon windows was used to introduce NO 

for investigation. The gas cell is connected to a NO-gas cylinder and to a N2-gas cylinder, as well 

as a vacuum pump, which allows us to take a reference scan under vacuum conditions. In 

addition, a secondary N2-gas source is connected to our THz spectroscopy system, where it is 

used to purge the whole system to avoid absorption of the THz beam by atmospheric water 

vapour. 

 

The Menlo system setup (Figure 6) can be used to perform THz spectroscopy in the time 

domain, where the detection is coherent. A Fast Fourier Transformation (FFT) of our 

experimental data can be performed, which allows us to also study the THz pulse in the 

frequency domain. 
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An example of a THz pulse (in the time and frequency domains) is shown in figure 7 . 

Figure 7. Example of THz waveform in the time domain passing through a 13.64 cm gas-cell 

under vacuum. The inset shows the THz field in the frequency domain obtained through FFT. 

 

The coherent detection obtained using the photoconductive antennas is demonstrated in 

Figure 7, where the electric field of the THz pulse is measured directly as a function of time.  

This electric field transient is measured on a sub-ps timescale, and both amplitude and phase 

information is obtained at the same time.  The short (sub-ps) duration of the pulse leads to a 

broad frequency spectrum (shown in the inset of Figure 7) that extends up to about 3 THz. 

 

When we talk about terahertz time-domain spectroscopy (THz-TDS), we are referring to 

transmission spectroscopy using the THz field profile like the one shown in figure 7, and 

studying the effect of introducing NO on the field profile in time (main figure), rather than what 

is traditionally done, which is to study the response in the frequency domain (inset of figure 7).  
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The power of time domain measurements can be seen by looking at the interaction 

between the THz and NO molecules, which leads to commensurate echoes as shown in figure 8.  

Figure 8. Example for the time domain response for NO at partial pressure  p = 750 mmHg (with 

added N2 to the gas-cell to reach total pressure of 1 atm).  The periodic echoes are referred to as 

“THz commensurate echoes.” 

 

Fourier transformation to the frequency domain reveals the periodically spaced 

absorption lines that are traditionally associated with spectroscopy and is shown in Figure 9 

below. 
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Figure 9. The frequency domain response for NO at partial pressure p = 750 mmHg.  The inset 

shows the closely spaced absorption lines present from the two electronic states in NO. 

 

The time domain echo profiles contain information about molecular structure similar to 

what we traditionally gather from the frequency domain (i.e. the fingerprint of the absorption 

lines which is used to study gas spectroscopy).  

 

In the frequency domain (figure 9), the two different states (2Π1/2 and 2Π3/2) are clearly 

observable as each exhibits their own manifold of absorption lines which are closely spaced, but 

of different amplitude. In the time domain, the different states manifest as separate pulses 

(noticeably more separated at longer times in Figure 8).  
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 The difference in amplitude results from the Boltzmann distribution which dictates the 

thermal population fraction in each of the two electronic states. As shown before in section 3.1, 

the absorption coefficient    of a sample of NO can be written as: 

      
      

        
 

             
       

          

              ,                    ( 13 ) 

 

Where the experimental absorption of NO is obtained by using Lambert-Beer’s law, which is a 

relationship between absorbance and concentration of an absorber of electromagnetic radiation, 

which is given by: 

       
    ,                                                      ( 21 ) 

 

where    and   are the initial and final intensity of electromagnetic radiation passing through a 

sample of distance equal to  , which gives the absorption coefficient,  , as a function of the 

electric field,  , as:  

   
  

 
     

 

  
                                                ( 22 ) 

 

The model waveform and the experimental absorption for NO calculated from Figure 9, 

are shown in figure 10. 
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Figure 10. Absorbance spectrum of NO at partial pressure p = 750 mmHg (with total pressure of 

1 atm), showing both electronic states 2Π1/2  and 2Π3/2  which appear as two interlaced manifolds 

of rotational absorption lines (with two different amplitudes). Model waveform is shown in red, 

and data waveform shown in blue. 

 

Notice that the theoretical and experimentally measured absorption spectrum in figure 10 

agree very well, including the relative amplitude of the two rotational manifolds, and the 

distribution in frequency.  The values used for the three variable model parameters are the best-

fit values that are described in the next sections. 

 

The next part of this thesis will be to use the theoretical model that describes the time and 

frequency domain responses, and to compare to experimental measurements. Then, we will use 

this comparison in order to fit and obtain best-fit values of the physical parameters, which gives 

us the minimum difference between the experimental data and the theoretical model. 
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4.2 Fitting the data to the model 

In the previous section, we showed that the model does indeed predict the nature of the 

transmitted THz pulse in the frequency domain (absorbance spectrum in figure 10).  In order to 

obtain the theoretical fit to the transmitted data in the time domain, it is necessary to find the best 

values for the fitting parameters.  In this section of my thesis, we will discuss how the physical 

parameters are extracted from the measured transmission data using the model we have 

developed by using fitting values which minimize the difference between the theoretical model 

and our experimental data.  

 

The minimization is carried out using the Matlab  programming environment to find the 

best fit values which minimize the sum of squared error (SSE) between the fitting model and the 

data. We will show some examples of extracting the best fit value. The value that minimizes the 

SSE is selected, where all of the best-fit values are extracted in the same way.  

 

We iteratively fit the values of  ,    ,    and    until we achieve convergence, where the 

values no longer appreciably change. For example, first, we obtain the best fit value of  , by 

keeping the other physical parameters constant. Then we obtain the best-fit value for    by 

keeping the remaining values constant and using the best-fit value of  . The best fit value of    is 

then calculated using the best fit values of   and    . This process is then iterated using these 

best-fit values, and the procedure is repeated until  ,    ,    and    do not change appreciably. 

The values can then be compared to the values from the literature. 
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Δn ≅ 0.0004 
 
 

4.2.1 Fitting for the refractive index   

The difference in the refractive index,   , (taking       ) changes depending on the 

pressure and gas-mix ratio in the gas cell. As we use higher pressures, we get a larger value of 

the refractive index. This change in   introduces a time-shift between the reference and data 

scans. The index of refraction is therefore left as a free parameter in the model, allowing us to fit 

the transmitted signal appropriately in time. 

 

The fitting of the refractive index allows us to get a minimum time-domain shift between 

our experimental data and the theoretical model. This effectively aligns the two waveforms over 

the commensurate echoes as shown in figure 11. As an example, if we have a difference in the 

refractive index equal to          , we will get a notable shift of the model waveform as 

shown in figure 11. The best-fit value for    is found by minimizing the sum of the squared 

diffrence (SSE) in the same manner as shown for the rotational constant in the next section. 

 

 

 

 

 

 

 

 

Figure 11. Fitting of the refractive index n of NO at partial pressure p = 750 mmHg (with total 

pressure of 1 atm).  Model waveform is shown in red, and data waveform shown in blue. 
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4.2.2 Fitting of the rotational constant    

The best-fit values of the rotational constant for the ground vibrational states (2Π1/2 and 

2Π3/2),   
   and   

   are obtained by computing the SSE for each assumed value, and then 

selecting the value that gives a minimum SSE as shown in Figure 12 for    
   .  

 

Where the fitting of   
   and    

    is carried out by using a fixed value of the centrifugal 

stretching constant of the ground vibrational state (2Π1/2 and 2Π3/2),   
   and   

   , which is 

obtained by finding the best fit values of   
   and    

    while having a pure NO inside our gas-

cell ( 1 atm) as described in section 4.4. 

 

Figure 12. Fitting statistics of the model waveform of rotational constant for the ground 

vibrational state   
    at p = 760 mmHg to obtain best fit value for   

   . 
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In the same way, we can find the best fit value of   
     as shown is in figure 13 

 

Figure 13. Fitting statistics of the model waveform of rotational constant for the ground 

vibrational state   
    for NO at p = 760 mmHg to obtain best fit value for   

   . 

 

 

As we see in figure 12 and figure 13, it is possible to determine a minimum difference 

between our theoretical model and the experimental data, which we take as the best fit for the 

parameter of interest. This best-fit value can be compared to literature values, where some of the 

published literature values of the rotational constant of the ground vibrational state (2Π1/2 and 

2Π3/2),   
   and    

    are listed in table 3 below: 
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Table 3. Some examples of the published values of   
   and   

    in literature. 

published literature 

values of   
    cm-1 

published literature 

values of   
    cm-1 

1.64471    [43] 1.70509    [43] 

1.66300    [44] 1.71100    [44] 

1.67185    [45] 1.720178    [45] 

1.68860    [46] 1.98000   [46] 

1.69606    [47] 1.98600  [47] 

 

These published literature values can be compared to the values which we have measured 

by using THz-TDS.  Our results discussed later yield values of   
   

                cm-1, 

and   
   

               cm-1, which are in the range of the published values. 
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4.2.3 Fitting of the time constant     

 In the same way we calculated a best fit value for the rotational constant, we can find a 

best fit value of the time constant   . This is done by fitting    , the angular frequency linewidth 

FWHM, as in Equation 14, where    
 

   
 :  

Figure 14. Fitting statistics of the model waveform for the angular frequency linewidth     for 

NO at  p = 760 mmHg 

For this particular pressure (p = 760 mmHg), the best fit value of     = 2.7x1010 rad/sec 

as shown in  figure 14 corresponds to a collisional time constant of: 

    
 

   
 

 

               
     0.37 ps 

The measured values of the angular frequency linewidth,    , will be compared to the values 

published in the HITRAN database later in the results section (shown in figure 24, and 25). 
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4.2.4 Statistical error estimation and analysis 

The error associated with the measurement of the rotational constant of the ground 

vibrational state (2Π1/2 and 2Π3/2),   
   and    

   , or with any of the other parameters obtained by 

fitting procedure used in this thesis, can be estimated by considering the effect of random noise 

present in the measured and computed signals.   

 

For the case of the rotational constants of the ground vibrational state   
    and   

   
 , we 

can estimate the minimum and the maximum values from the difference between our measured 

and computed signals in the sum-of squared residuals statistic. 

 

To carry out this estimate, we use Matlab to find the minimum difference between our 

theoretical model and our experimental data as the fitting parameter is varied, and we plot the 

sum of squared residuals, S, as a function of the fitting parameter as we have earlier in this 

section.  We quantify the noise, and add     confidence intervals for S, using the     width of 

the sum of squared error (SSE) curve to define the error in the fitting parameter. 

 

As an example, we apply this procedure to find the error estimate for the rotational 

constant   
    at a pressure of 100 mmHg. This will serve as describing a representative 

calculation, and can be applied directly to find the error in the estimates of   
   at different 

pressures, as well as the errors associated with extracting the other fitting parameters. The 

mathematical details of the calculation are presented in Appendix A. 
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In Figure 15, the SSE is plotted as in previous sections as the red curve.  Introducing the 

quantified statistical error, the     confidence intervals are plotted in blue (above) and green 

(below), respectively.   

 

The range of possible values that we take as the error in the fitting parameter is obtained 

by the intersection of a horizontal line through the minimum of the     SSE curve with the      

SSE curve. The error in best-fit values for all fitting parameters is reported in an identical 

manner in this thesis. 

Figure 15. Fitting of   
   at pressure p = 750 mmHg. With best fitting for   

   (red), best fitting 

for   
   +1σ (blue), and best fitting for   

   -1σ (green). 
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4.2.5  Comparison of model and experimental data 

Once all of the fitting parameters are obtained by iterating the fitting procedure to 

convergence as outlined in the previous sections, the goodness-of-fit can be looked at to see how 

well the model actually describes the experimental data. As an example, both the model and the 

experimental data for THz-TDS of NO at p = 525 ±5%  mmHg are illustrated in figure 16: 

Figure 16. THz scan of NO at partial pressure of p = 525 ±5%  mmHg (with total pressure of 1 

atm). Model waveform is shown in red, data waveform in blue, with an inset of an echo located 

around 61ps. 

 

By plotting the residuals (the difference between our theoretical model and our 

experimental data as it is shown in figure 16), we can check to see if there are any systematic 

errors in the fitting procedure. One would expect simple noise in the residuals if the fitting 

procedure was working as expected, whereas a systematic difference would indicate a problem 

with the fitting procedure.  
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The residuals from the best fit for all four free parameters are shown in figure 17  below 

(for NO at p = 760 mmHg). As can be seen from the residual (shown in purple), the differences 

are mostly small with no systematic error compared to the electrical background noise (shown in 

black in the inset). However, there is a notably larger residual during subsequent echoes which 

possibly results from an imperfect alignment of the signals in time because of the finite grid 

spacing in time. Note that the signal level is three orders of magnitude larger than the residual 

(comparing the y-axis of Figures 16 and 17), noting that while the y-axis scale is arbitrary, the 

units are relative between Figures 16 and 17. 

Figure 17.  Residual between model and data for NO at p = 760 mmHg.  The inset shows the 

electrical noise in the measured signal before the main THz pulse. 

 

The residual amplitude (purple) is close to the electrical noise amplitude (black), 

therefore, we conclude the fitting procedure is valid and working well. With confidence in the 

model, we can now turn our attention to looking at how the THz response of NO scales with 

pressure in order to be able to project limits of detection. 

ps 
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4.3 Pressure scaling 

In this part of my thesis, we will apply the theoretical model of the interaction between 

THz radiation and NO at different partial pressures up to approximately 1 atmosphere of NO in 

increments 50 mmHg. Reference measurements and sample measurements are made at each 

pressure, and the model is applied to extract best-fit parameters as described in the previous 

sections. 

  

The pressure of NO is varied experimentally as follows.  A specific amount (e.g. 100 

mmHg) of NO gas is introduced into the gas-cell, then nitrogen gas (N2) is added to the gas cell 

until a total pressure of 760 mmHg is achieved. Bringing the total system pressure to be around 1 

atm serves two purposes. First, it simulates measurements of NO in ambient conditions, allowing 

a valid extrapolation to detection limits. Second, it is expected that the collisional time 

(impacting the collisional rephasing of the system) depends on total pressure of the system (i.e. 

fitting parameter   ).  

 

By keeping the total pressure constant, it was expected that this fitting parameter    

would also remain constant during the various experiments. The latter point will be revisited, as 

it will be shown not to be the case. A schematic diagram of the gas filling system is shown in 

figure 18.  A vacuum system is attached to the gas cell, allowing the cell to work under vacuum.  

 

 



48 
 

 A fixed partial pressure of NO can be introduced to the gas cell by simply opening the 

NO valve and monitoring the pressure measured by the attached pressure gauge. Subsequently, 

N2 can be added to bring the total system to 1 atm of pressure by opening the valves on the N2 

side of the system. 

 

 In other words, our target is to keep NO at a specific pressure (e.g. take p = 100 mmHg) 

during the acquisition of a set of experimental data, but the challenge is how to open the gas-cell 

valve again (to add the N2 , so we can reach a total system pressure of 1 atm) while preventing 

the NO from escaping outside of our gas-cell (which will cause an error in our pressure 

measurements). So, to overcome this issue, we used a high pressure N2-gas cylinder (of a few 

thousand mmHg). This high pressure of N2 will force NO to stay inside the gas-cell, and by 

controlling the N2 valve, we can allow a specific amount of N2 (e.g. take p = 660 mmHg of N2) 

until we reach a total pressure (of the mix between NO and N2) of 1 atm inside the gas-cell. 

 

Because of the procedure used for gas filling where two valves were opened 

simultaneously to allow N2 into the system, the uncertainty in pressure introduced a ±5% error in 

our pressure measurements. This 5% value comes from the fact that the volume of the 

connecting tubes is around 10.2% of the volume of the gas-cell, and depending on how the 

valves were opened, could introduce between 0 and 10.2% error. We therefore take ±5% error as 

a reasonable estimate of the introduced error. For example, if the reading of the NO inside the 

gas cell is equal to 100 mmHg, we take a pressure of 96±5%  mmHg for the model, which covers 

all of our 10.2% error range. For this reason, we have horizontal error-bars for our pressure 

measurements in the forthcoming graphs. 
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Experimental procedure summary for gas-mixing 

1- Open the valve-1 and valve-4, and make sure it is connected to vacuum system as shown. 

2- Open valve-4 of vacuum pump to keep the gas-cell under vacuum. Then close it. 

3- Open valve-2 of NO until we reach the required pressure inside the gas-cell, then close it. 

4- Close the valve-1 of the gas-cell. 

5- Turn on the vacuum pump, to make sure there is no more NO inside the connector tubes. 

6- Open “valve-3 of  N2“ and “valve-1 of the gas-cell” simultaneously, letting N2 into the cell 

until we reach 1 atm total pressure. Finally, close valve-1 and start our THz scanning. 

 

 

 

 

 

 

 

 

 

Figure 18. Schematic diagram for NO and N2 gas mixing. 

 

Using this procedure, other partial pressures of NO (between 50 mmHg  and 750 mmHg 

in 50 mmHg increments) were studied, the fitting process applied, and the physical parameters 

extracted for each pressure.  The results are presented in the next section. 
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 4.4  Experimental results and analysis 

We have already developed a theoretical model (in chapter 3), which we can use to 

extract the physical parameters of NO. The next part of my thesis will show the experimental 

results, and compare to our theoretical model.  

 

 A long scan (~200 ps) of NO at a pressure of 760 mmHg (1 atm) is shown in figure 19, 

where we have our model waveform in red and our collected data is in shown in blue. This scan 

is important because it is for pure NO-gas so we have a certainty about the pressure (we take it as 

760 mmHg). This allows us to extract the physical parameters (e.g. the centrifugal stretching 

constant of the ground vibrational states (2Π1/2 and 2Π3/2),   
   and    

    in Equation 15), which 

we will fix to be constant during the fitting procedure of the other parameters at different 

pressure scales. That is, the centrifugal stretching constant is assumed to be independent of 

pressure. We find the best fit values of the centrifugal stretching constant for the two NO states 

2Π1/2 and 2Π3/2 to be: 

  
   

                             , and     
   

                             

Which compare well to published literature values for the centrifugal stretching constant [45]: 

  
   

                          , and     
   

                             

 

Our values therefore are consistent with the literature values within error margin. The 

calculations of the error in   
   and   

   
 is carried out the same way as shown before in section 

4.2.4 (statistical error analysis). As the value of   
   and   

    is small compared to our statistical 

error (which is calculated in terms of the electric noise floor), we have a large uncertainty of the 
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exact values of   
   and   

   .  That is, the SSE curve is very broad rather than sharp as was the 

case for the rotational constant shown in the statistical error analysis section. 

 

Therefore, by using these to values of the centrifugal stretching constant in our theoretical 

model, we can plot the two waveforms together as presented in figure 19 below: 

Figure 19. A long 200 ps scan for NO at atmospheric pressure of 760 mmHg. The model 

waveform is shown in red, and the measured data is shown in blue. 

 

It is interesting to look at the echoes and relate their structure to the physical behavior of 

NO. At earlier times (closer to the main THz peak), the echoes appear as one pulse with a 

complicated pattern, which results from the complex beating of the individual echoes from the 

manifold of transitions of each of the two electronic states of NO (2Π1/2 and 2Π3/2). 
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 Interestingly, at later times, because the rotational constant for the two electronic states is 

different, the individual echoes become separated in time, and the echoes of the individual 

electronic states become identifiable. 

 

 As an example, we plot both the model and the NO-scan for three different pressures 

(96, 430 and 717±5% mmHg) on the same graph with a vertical offset for the 430 mmHg and 

717 mmHg scans as shown in figure 20 below.   

 

Figure 20. NO model (red) and data (blue) waveforms at a pressure of 100 mmHg, showing 

echoes for pressures around 100, 450 and 750 mmHg. The larger pressure curves in the vicinity 

of the echoes are offset for clarity, and placed on an expanded scale in the inset so that the 

excellent fit is visible. As expected, the peak height of the echoes increases with increasing 

pressure. This trend is observable for the all measured NO pressures (100 – 750 mmHg). 
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4.4.1 The results of the rotational constant   
    and   

      

In Table 4, the results for the rotational constant at different partial pressures of NO is 

presented. The estimated error is also given, which is calculated as described previously in 

section 4.3. The error in all pressure measurements is ±5% mmHg, and results from the 

procedure used for introducing partial pressures of NO into the gas cell with the valving system 

described previously.  As can be seen in table 4, the rotational constants for the two electronic 

states do not vary significantly over the tested pressure range, and are consistent with published 

values (as shown before in table 3). 

Table 4. The rotational constant for the two electronic states (2Π1/2 and 2Π3/2) with respect to 

change of the NO partial pressure. 

The Pressure 

 P ± 5% (mmHg) 

The Rotational constant 

  
   (x 1010) cm-1 

The Rotational constant 

  
   (x 1010) cm-1 

96 1.6762 ±0.00058 1.7247 ±0.00120 

143 1.6763 ±0.00046 1.7248 ± 0.00093 

191 1.6762 ± 0.00036 1.7246 ± 0.00070 

238 1.6763 ± 0.00031 1.7248 ± 0.00060 

287 1.6763 ± 0.00028 1.7248 ± 0.00053 

334 1.6762 ± 0.00001 1.7248 ± 0.00056 

382 1.6763 ± 0.00028 1.7248 ± 0.00051 

430 1.6763 ± 0.00026 1.7249 ± 0.00050 

478 1.6763 ± 0.00046 1.7248 ± 0.00045 

525 1.6763 ± 0.00025 1.7248 ± 0.00043 

573 1.6763 ± 0.00023 1.7248 ± 0.00041 

621 1.6763 ± 0.00021 1.7249 ± 0.00035 

669 1.6764 ± 0.00018 1.7249 ± 0.00031 

717 1.6763 ± 0.00016 1.7248 ± 0.00028 
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It is useful to plot the effect of changing the pressure on the rotational constants of the 

ground vibrational state (2Π1/2 and 2Π3/2),   
    and   

    with respect to changing the pressure 

from 100 mmHg to 750 mmHg, as shown below in figures 21 and 22, and also comparing to 

some of the published literature values. 

Figure 21. The change of    
    with pressure and compared to literature values.  The associated 

error is shown on the expanded scales on the right. The horizonatal (blue) error bars cover the 

uncertainity in measuring the pressure, the vertical  (green) error bars cover the uncertainity in 

measuring   
    due to the pressure error, and the vertical  (red) error bars cover the uncertainity 

in measuring   
   due to the statistical error (system electrical noise floor).  The black error bar 

represents the sum of statistical and pressure error added in quadrature as described in the text. 
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Figure 22. The change in   
    with pressure and compared to literature values.  The associated 

error is shown on the expanded scales on the right. The horizontal (blue) error bars is to cover 

the uncertainity in measuring the pressure. The vertical (green) error bars is to cover the 

uncertainity in measuring   
    due to the pressure error. The vertical  (red) error bars is to cover 

the uncertainity in measuring   
    due to the statistical error (system electric noise floor). The 

vertical (black) error bars are calculated by adding both the green error-bar and the red error-bar 

in quadrature. 

 

  In figure 21 and figure 22, it is clear that the rotational constant is approximately constant 

over the pressure range considered (within error).  The values for the rotational constant are well 

within the range of published values.  The error bars on our values are obtained as follows.  The 

horizontal error bars (shown in blue) are ±5% of the measured pressure, which is the uncertainty 

in our pressure measurments as a result of the gas filling procedure described previously.  
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Also we have two different vertical error bars which are included to show the relative 

contributions. The first error-bar (green), which covers all of the possible values of   
   and   

    

under the effect of considering the maximum pressure or the minimum preesure with respect to 

the middle pressure (which is our middle data points), and the second error-bar (red) which 

covers all of the possible values of   
   and   

    considering the effect of the electrical noise of 

our system as described in section 4.2.4. 

 

  For example, for p = 96 ±5% mmHg, we use three different possible values for the 

pressure (i.e. the maximum pressure pmax ≅ 100 mmHg, the  middle pressure pmid ≅ 96 mmHg, 

and the minimum pressure pmin ≅ 91 mmHg). For each one of these three pressures, the 

fitting procedure is used to find the best fit value of of   
   and   

    (i.e. we will get the 

values of       
,      

, and      
) ,where these three values of   

   and   
    are coverd by the 

green error-bars in Figures 21 and 22.  

 

The red error bars are calculated as described in section 4.2.4, so we can cover all of the 

possible values of   
    and   

    by accounting for the background electrical noise in our 

calculations. Both of these two errors affect the measurments of   
   and   

    (i.e. pressure 

error,   , and statistical error,    ). Then, these two errors are added together in quadrature to 

give the total error,        , shown as the black vertical error bar in Figures 21 and 22: 

            
      

                                             ( 23 ) 
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Also, as we can see in figure 21 and in figure 22, the error-bars decrease with increasing 

pressure, which is because at the higher partial pressures of NO, the echo height is large relative 

to the electrical ground noise, so we have high certainty in our results. But at the lower pressure, 

the echoe height is close to the electrical noise floor, which leads to a larger error.   

 

As a comparison, if we plot figure 21 and  22 of   
    and   

    together in one graph, as 

shown in figure 23, we can see the change in   
   and   

    with respect to pressure change, and 

compare it to some of the published literature values (we can see that our measurments are 

located among the published values), with error bars as described before and shown in figures 21 

and 22. 

Figure 23. The change in   
    and   

    with pressure and compared to literature values. The 

error bars on the data points are as calculated in figures 21 and 22. A selection of published 

literature values of   
    and   

    are shown in brown and black dots respectively.  
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4.4.2 The results of the angular frequency linewidth  

In Table 5, we present the experimental results of the angular frequency linewidth,    . 

As we described before in Equation 14, the FWHM is directly related to the collisional time 

   
 

   
 .  Since there are two different states for NO (2Π1/2 and 2Π3/2), we modified our Matlab 

fitting model to check if it is possible to find a distinguishable difference between the collisional 

time of these two different NO states, which would then have FWHMs of        and       ,  

Table 5. The change in the angular frequency linewidth    ,       , and      with respect to 

the change in NO partial pressure. 

Pressure P ± 5% 

(mmHg) 

    (x 1010 ) 

(rad./s) 

       (x 1010 ) 

(rad./s) 

      (x 1010 ) 

(rad./s) 

96 1.417 ± 0.42 1.338 ± 0.46 1.688 ± 0.93 

143 1.493 ± 0.33 1.412 ± 0.36 1.769 ± 0.73 

191 1.523 ± 0.25 1.457 ± 0.27 1.740 ± 0.53 

238 1.582 ± 0.22 1.521 ± 0.25 1.777 ± 0.46 

287 1.583 ± 0.19 1.516 ± 0.22 1.794 ± 0.41 

334 1.547 ± 0.21 1.478 ± 0.23 1.760 ± 0.42 

382 1.617 ± 0.19 1.546 ± 0.22 1.830 ± 0.40 

430 1.656 ± 0.18 1.589 ± 0.21 1.853 ± 0.37 

478 1.676 ± 0.17 1.611 ± 0.19 1.865 ± 0.35 

525 1.699 ± 0.16 1.635 ± 0.19 1.878 ± 0.33 

573 1.783 ± 0.15 1.715 ± 0.18 1.969 ± 0.31 

621 1.972 ± 0.14 1.899 ± 0.15 2.166 ± 0.27 

669 2.224 ± 0.12 2.146 ± 0.13 2.428 ± 0.23 

717 2.489 ± 0.11 2.406 ± 0.12 2.704 ± 0.21 
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The values presented in Table 5 show that we can find a slightly different value for the 

collisional time between the two different states for NO (2Π1/2 and 2Π3/2).  These results can be 

visualized more effectively by plotting the effect of changing the pressure on   , as shown 

below in figure 24 and also by plotting the effect of changing the pressure on       , and       

as shown in figure 25.  

Figure 24. The change in the angular frequency line width    with respect to the pressure 

change compared to  literature values (HITRAN Database shown in dashed blue lines), with 

vertical error-bars for    (purple) and horizontal error-bars of the  pressure (blue).  The inset 

shows the error bars at a pressure of p = 430 mmHg,  where the vertical  (green) error bars cover 

the uncertainity in measuring    due to the pressure error, and the vertical  (red) error bars cover 

the uncertainity in measuring     due to the statistical error (system electrical noise floor). 
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The error bars in figure 24 are obtained in the same way as described in the last section. 

The horizonatal error bars reflect the error in pressure of ±5% from the method used to 

indtroduce NO partial pressures. Vertical error bars combine the statistical error from noise in 

the system (green) and the uncertainty introduced into the best-fit values from the uncertainty in 

pressure (pink). Also, from Table 5, and by accounting for the two different states of NO (2Π1/2  

and 2Π3/2), we can plot a graph which shows the effect of changing the pressure on       and 

      (which reflect the values of the collisional time    for the two different states of NO: 2Π1/2 

and 2Π3/2). The results can again be compared to published literature values provided in the 

HITRAN Database [48]  and are shown below in figure 25. 

Figure 25. The change in   ,       and       with respect to the pressure change compared to  

literature values (HITRAN Database shown in dashed blue lines). with horizontal error-bar of the  

pressure (blue).    (purple),       with vertical error-bars (brown) and       with vertical 

error-bars  (black). The error-bars represent the sum of statistical and pressure error added in 

quadrature. 
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In figure 25 the larger error at lower pressures results from the reduced signal to noise 

ratio of the echo measurements at low pressure. At higher pressures, the background electrical 

noise is very small compared to the echo amplitude, so the fitting is more accurate at the higher 

pressures. 

 

Furthermore, in figure 25 we found a good correlation between our results and those 

reported in the HITRAN database. Specifically for the cases of air- and self-broadening values of 

the angular frequency linewidth. The air-broadening value represents our NO measurements at 

low-pressure (around 100 mmHg), where the gas-cell is filled with N2 (more than 650 mmHg), 

so we consider that our gas-cell is almost filled with air, and for this to be reflected in the angular 

frequency linewidth as the air-broadened value, consistent with what we find.  

 

In the same way, the self-broadened value is represented in our NO measurements at high 

pressure (around 750 mmHg), where the gas-cell is almost completely filled with NO (with less 

than 10 mmHg of N2), and we therefore expect to observe the self-broadened linewidth 

consistent with what we observe. 

 

In figure 25, we are also able to distinguish between the two different collisional times 

for           and           in terms of the two different angular frequency lindewidths,       

and      , where the value obtained by using only one angular frequency    in the model is 

located within the error-bars of these two collisional times.  
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This makes sense physically, because NO has two different states 2Π1/2 and 2Π3/2, and 

each state will have a different collisional time due to having different energy, and therefore a 

different valence electron structure, and subsequently a different collisional cross-section. In this 

case, we would expect the higher energy state to exhibit a larger cross section overall.  As such, 

the higher energy state would exhibit a smaller collisional time, and therefore a larger angular 

frequency linewidth (because the linewidth is inversely proportional to the collisional time).   

 

These observations are consistent with the observed larger linewidth for      . But as 

we can see from figure 25, our error-bars are quite large (where the       error-bars almost 

intersect the       error-bars), so we cannot draw this conclusion with high confidence, but 

simply note that it is consistent with what is expected.  That our THz-TDS appears to be able to 

find a difference between the collisional time of the two different Π-states of NO is something 

that has not previously been reported in the literature and is interesting. 

 

Another interesting point is that, while working at different partial pressures of NO, we 

expected the collisional time be constant when maintaining a fixed total system pressure. That is, 

the time constant should be independent of the NO pressure so long as the total pressure inside 

the gas-cell is kept constant (around 1 atm). Experimentally, we realized that the collisional time 

constant (equivalent to the angular frequency linewidth as they are inversely proportional) 

decreases with increasing partial pressure of NO.  
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After comparing to the HITRAN database values, it is clear that the experimentally 

observed change with NO partial pressure should occur because the cross-section of NO with 

itself (self-broadened value) is larger than the cross-section of NO with N2 collisions (air-

broadened value). 

 

The expected air- and self-broadening values are also expected based on the total 

collision cross-sections for NO and N2 which have been measured by the scattering of beams of 

K and Cs by a variety of scattering molecules as summarized in Table 6 from [49] and [50]. 

 

Table 6. Total collision cross sections for NO and N2 with atomic beams of K. 

Molecule µ (D) Q-Calculated (cm2) Q-Observed (cm2) 

N2 0 1 0.97 

NO 0.15872 1 1.06 

 
 

Here, μ is the dipole moment and Q is the total collision cross section (calculated and 

measured). As shown in Table 6, the collisional cross section for K with NO is slightly larger 

than with N2, again consistent with what we observe and what is reported in the HITRAN 

database for the air- and self-broadened linewidths from NO spectroscopy. 

 
In figure 26, an exaggerated diagram of the NO-N2 gas mixing, with the imaginary physical size 

of the molecules representing the collisional cross sections is presented. 
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Figure 26 (a). Example of low partial pressure of NO, and figure 26 (b). Example of large partial 

pressure of NO. where the total pressure of NO in figure (a) and (b) is kept constant ( at 1 atm). 

The size of the molecules is meant to represent the collisional cross section (exaggerated). 

 

At the same total pressure (for example 1 atm), we have different inter-particle spacing 

between NO and N2 due to having different cross-sections and this affects the time between 

collisions, which is inversely proportional to the angular frequency linewidth.  

 

In other words, if we have a fixed number of particles enclosed in a gas-cell, as we 

replace the smaller cross-section N2 molecules by the larger cross-section NO moleucles, and 

under the condition that the number of particles kept constant (as the pressure is kept constant at  

1 atm), the inter-particle spacing will decrease and the collisional time subsequently decreases. 

 

Ultimately, we are interested in determinining the limit of detection for this new type of 

measurement. In order to determine the limit of detection in partial pressure for NO using THz- 

TDS, it is necessary to understand how the echo heights scale with pressure. In order to do this, 

we measured the heights of the echoes in terms of their peak-to-peak height, and compare how 

b) a) 
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these values scale with pressure in the theoretical model and the experimental data. The scaling 

will then be used to project the ultimate limits of detection.   

 

 The peak-to-peak echo-height is shown in figure 27 below as a function of the NO 

partial pressure. In this case, we are studying the third echo (also, we can apply the same rules 

for the other echoes we have). It should be noted that the scaling for all echoes at low pressure is 

approximately linear, however, the scaling deviates from linear at larger pressures. 

 

  The peak-to-peak echo height is scaled to the Root Mean Square (RMS) reference 

electric field of the sample waveform before the main pulse (i.e. to plot the signal to noise ratio). 

This RMS was computed using the 250 available reference data points collected before the initial 

pulse of the sample signal which is found to be 0.0016 (in arbitrary units). The ratio between the 

echo height and the RMS is then given by: 

       
     

    
                                                     (24) 

 

Where we measured the echo height (     ) manually by finding the difference between 

the higher and the lower value of the echoes (from our experimental data points) and also we can 

measure the echo height manually from the model waveform obtained.  The manual calculation 

is carried out by using Matlab, plotting the echoes, and extracting the echoes height values from 

the plot by hand. But due to our uncertainty in measuring the echo heights manually, we estimate 

the error associated with the extraction (assumed to be 0.2% of the echo height), which is 

obtained by making multiple measurements by hand and taking the standard deviation of the 

measurements. The results are reported with error bars in figure 27 and 28. 



66 
 

 By using Matlab, we can measure these heights in terms of relative ratio to the reference 

value. The peak-to-peak values for the third echoes are presented in Table 7. 

Table 7. The peak-to-peak ratio of the 3rd echo with respect to the change in pressure. 

Pressure  

P ± 5% 

(mmHg) 

Peak to Peak 

(E_pk-pk 3rd echo)/E_rms 

(arb. units) 

96 34.60 

143 51.90 

191 71.87 

238 88.55 

287 105.44 

334 111.57 

382 125.26 

430 139.05 

478 160.18 

525 174.19 

573 186.09 

621 196.89 

669 202.52 

717 206.78 

 

The data in Table 7 is plotted from 96 mmHg to 717 mmHg in figure 27. Where we can 

see an almost linear relation between the peak to peak signal and the pressure (particularly at the 

lower pressures below about 300 mmHg) as shown in figure 27. 
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Figure 27. The change of the height of the third echo is plotted with respect to NO partial 

pressure. The model waveform is shown in green and the data waveform is shown in blue. The 

horizontal error-bars (green and blue) are taken as ±5% uncertainty in the pressure measurement, 

and the vertical error-bars are taken to cover our error in measuring the echo height. The dashed 

area identifies the linear region which is expanded and shown in figure 28. 

 

 

The peak-to-peak height of the 3rd echo starts with a linear increase at lower pressure, and 

then it changes to be sub-linear at higher pressures. In order to find our limit of detection (the 

lowest detectable partial pressure of NO in our system), we extend the model waveform in the 

linear range to a horizontal value of 1 (which indicates the lowest experimental pressure we can 

expect to measure). Because the signal to noise ratio (SNR) is being plotted, a y-value of 1 

indicates where our signal level drops to the noise level, and is identified as the limit of detection 

as shown in figure 28. 
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Figure 28.  A plot of the inset of the earlier data points of figure 27, showing the 

extension of the model waveform (green dots) and data waveform (blue dots), with a linear 

fitting line (black). The horizontal error-bars (green and blue) are taken as ±5% uncertainty in the 

pressure measurement, and the vertical error-bars are taken to cover our error in measuring the 

echoes height 

 

The measurements were obtained using a lock-in amplifier with time constant of 75 ms, 

and correspond to a total data collection time of approximately 35 minutes. The limit of detection 

(LOD) was found to be approximately 5±0.3 mmHg, which translates to 6600 ± 400 ppm. 

However, this system is slow in comparison to commercially available THz systems that would 

actually be used for practical applications. We can therefore project what LOD is realistically 

achievable with commercially available systems by translating our SNR to that of other systems. 
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4.5 Future work 
 

THz spectroscopy is increasing the opportunities for the spectroscopic studies of the 

chemical evolution of interstellar clouds. Both in absorption and emission, the detection limits 

for large molecules in the gas phase are expected to improve significantly, allowing the 

observations of more complex chemical species. In contrast to the power measurements typically 

made in the far-infrared for astronomical measurements, the advantage of using THz-TDS relies 

on its ability to study interaction between the THz field and specific molecules (in the 

wavelength range from 1 to 3 THz) directly in the time domain allowing the collection of vast 

amounts of data specific to the individual molecules. 

 

 On the other hand, the disadvantage of THz-TDS is poor detection limits compared to 

other techniques such as the use of QCL’s and incoherent detection which can achieve tens of 

ppb. However, the use of commensurate echoes in the time domain for quantification and 

identification of gas species can be put into a practical context using current state-of-the art, 

commercially available THz time-domain spectrometers [1].  

 

The fastest THz system commercially available is, the Advanced Photonix Inc. T-Ray 

5000 system, which can produce 1000 THz waveforms every second with an 80 ps window and 

a signal to noise ratio approximately the same as what is measured here in 35 minutes. 
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Assuming measurements are made every minute (1000 waveforms/s x 60 s = 60,000 

waveforms/min), and scaling the noise floor by the square root of the number of samples 

collected in one minute (        = 243), This system would obtain a limit of detection of 0.025 

mmHg or 33 ppm [1]. A sensitivity of 40 ppm is not enough for many applications, however, 

THz-TDS can perform in harsh environments with high temperatures and lots of particulate [51, 

52]. 

 

The target of my thesis was to study pollutants that are emitted from bioenergy 

combustion systems, therefore, it is important to identify if THz-TDS is appropriate for real-time 

gas sensing and monitoring at different partial pressures. In particular, is THz-TDS a useful tool 

for characterizing gases in terms of performing the temporal sampling (time domain) instead of 

the traditional spectroscopy in the frequency domain.  

 

We obtained a limit of detection of  6600 ± 400 ppm, which is large compared to the 10 

ppm reported in a nitrogen atmosphere obtained by using the technique of quartz-enhanced 

photoacoustic spectroscopy [25]. However, projecting our LOD to what is expected using 

commercially available THz spectrometers (T-Ray 5000), we would expect a LOD of 

approximately 33ppm. Therefore, based on the present work, the expected LOD for our new 

technique of THz-TDS is competitive with other techniques in a nitrogen environment.   
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The advantage that THz-TDS has over other methods is that because of the coherent 

detection, it is insensitive to thermal background radiation which significantly complicates other 

spectroscopic methods in the far infrared from being useful in hot environments. Further, 

traditional IR ro-vibrational spectroscopy similarly is unsuitable to the harsh environments of 

combustion systems because it is strongly scattered by particulate making quantification and 

detection virtually impossible.  

 

 Combining these key benefits unique to THz-TDS with the fact that there are large 

concentrations of pollutant gasses in the combustion chamber, it becomes possible to implement 

this new technique within combustion systems for optimization and emissions monitoring.  This 

is the area that is expected to benefit most from these types of measurements. 

 

As additional future work, we would suggest using THz-TDS to study different types of 

pollution and gas streams in industrial gasification systems, such as: particulate matter, SOx, 

NOx, ash, smoke, VOCs.  

 

 

 

 

 

 

 



72 
 

 

 

Chapter 5 
Conclusion 

In conclusion, in this thesis we developed a theoretical model for the THz time-domain 

response of NO molecules and conducted a comparison to experimental measurements at 

different pressures to test the validity of the model. By fitting the model to our experimental data, 

we were able to extract experimental values of some physical parameters of NO. We obtained 

experimental values for the rotational constant,   , of the ground vibrational state, v=0. We were 

able to distinguish between the two different electronic state of Nitric Oxide (2Π1/2  and 2Π3/2) by 

getting two different values of the rotational constant,   
   and   

   , both of which were found 

to be consistent with the published literature values.  

  

From our time domain model of the THz response of NO, the distinguishable THz 

response that leads to the different measured values for the two electronic transitions of NO was 

manifest by a separation of the commensurate echoes into two distinct echoes at longer time 

scales, reflecting the larger amount of information carried in the shape of the time-domain 

waveforms.  
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 We obtained an experimental value for the centrifugal distortion constant Dv for the 

ground vibrational state, v = 0, of each electronic state of NO (2Π1/2  and 2Π3/2),    
    and   

   , 

at an atmospheric total pressure of NO, which was subsequently assumed to be independent of 

NO partial pressure and fixed in value in our model.  The experimental value obtained was found 

to be consistent with literature values for the centrifugal distortion constant.  

 

Fitting the model to our experimental data, we were able to extract values for the angular 

frequency linewidth,   , (inversely proportional to the molecular collisional time   ). This 

angular frequency linewidth varied with NO partial pressure, while maintaining a total system 

pressure of 1 atm with (N2) as expected. In particular, it varied from the air-broadened value at 

low NO partial pressure to the self-broadened value at large NO partial pressure, and the 

numerical values obtained were consistent with those reported in the HITRAN database.   

 

Further, and importantly, we were able to distinguish between the two different electronic 

states of NO (2Π1/2  and 2Π3/2) by fitting two different values of the angular frequency linewidths 

in our model,       and      , instead of just one   . In this case, it was observed that both 

are consistent with the published literature values in the HITRAN database, and also consistent 

with what is expected based on the molecular structure of NO in the different electronic states 

with respect to the collisional cross section. 
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 All of these combined measurements indicate that our model is appropriate, and useful to 

extract physical properties of a sample of NO gas in an N2 environment, consistent with the 

excellent fitting of our model to the experimental data in the time domain.  The confidence in the 

model then allows us to determine the limit of detection for NO molecules at atmospheric 

pressure to answer the objective question of this thesis, which is whether or not THz time-

domain spectroscopy can be useful for emissions monitoring in an industrial setting.    

 

We obtained a high limit of detection of 6600 ± 400 ppm, however, this was projected to 

be much lower for fast, commercially available systems (33 ppm). The advantages of using THz-

TDS are that it can perform in harsh environments at high temperatures because it is insensitive 

to thermal background and it is insensitive to even large particulate matter because of the long 

wavelengths.  Furthermore, it gives a lot of information about the chemical composition of the 

gases (which agree with the literature values). 

 

In summary, my thesis contibutes a theoretical model of the interaction of a THz field 

with NO molecules, allowing the response to be predicted in the time domain. The results give 

excellent agreement with experiment, and was used to extract values for the physical parameters 

of NO which are consistent with published literature values.  Finally, we obtained a limit of 

detection of 6600 ± 400 ppm, which is projected to yield a LOD of a few tens of ppm with 

commercially available fast THz spectrometers, useful for quantification and spectroscopy in 

harsh environments where other technologies are problematic. 
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Appendix 

Appendix A.  (Statistical error analysis) 

In order to estimate the error associated with the random electrical noise in our system, 

which fundamentally limits the signal-to-noise ratio (SNR) in this work, we first calculate the 

sum of squared residuals S, as the difference between experimental values and the model at the 

ith  time point as Si . The sum of squared residuals, S, is then given by:                      

      
 

 

   

                                                              

        Here, we assume that S is represented by a normal distribution is therefore represented by a 

normal random variable  X ~ N(,2). 

 

 
We define the statistic T representing the above sum of squared residuals with the 

addition of n random variables, Zi, each normally-distributed with mean equal to μ and variance  

  : T~ N(μ,   ) 

 

            
      

 

 

   

         

 

   

     
 

 

   

 

   

                            

 
 
By substituting the value of S from equation (1) into equation (2), we get: 
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The first term of equation(3) is computed from our data and our model, so it should give 

a constant value of S, and the 2nd term is the sum of normal random variables, so it has a normal 

distribution given by: 

       

 

   

                  
 

 

   

                                          

 

Finally, the 3rd term of equation (3), which is represented by a sum of squared 

independent variables, which is approximately constant for large n and can be determined by the 

measured Root Mean Square (RMS) noise floor of our signals: 

       
 

 
    

 

 

   

                                                   

 
In other words, we take the RMS noise floor to be an estimate of the standard deviation 

parameter of the normally distributed Zi  and justify this view by the above equation (the R.H.S. 

is the biased estimator for    ). Thus the statistic T has essentially a normal distribution: 

 

                                                                          

 

Thus, we can estimate the error in our best fitting results, where we plot the sum of 

squared residuals S as a function of the fitting parameter about a global minima, along with 

upper and lower curves corresponding to     confidence intervals. This is shown in figure 15, 

which was used to extract the error bounds for the parameters estimated by minimizing the SSE. 


