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Abstract

State-to-state cross sections and a survey of detailed balance for transitions

among the vibrational and rotational (v, j) states of H2
1∑

g+ below 37 mEh as the

result of collisions in the H2 + H2 system were determined by using the quasiclassical

trajectory (QCT) method. Study of this system is necessary for an improved under-

standing of the kinetics in the interstellar medium to model processes occurring in

the molecular clouds.

The potential energy surface of Boothroyd et al. (J. Chem. Phys. 116, 666,

2002) was used for trajectory calculations. The Discrete Variable Explicit Runge-

Kutta (DVERK) method was used for numerical integration. State-to-state cross

sections were examined for agreement with microscopic reversibility. In the majority

of cases the agreement was poor. Consequently the conclusion is that QCT is not

a viable method for the evaluation of state-to-state rate coefficients in the H2 + H2

system.
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Chapter 1

Introduction

1.1 The H2 + H2 system represents a useful proto-

type to understand interaction of two molecules

Collisions between two hydrogen molecules – H2 being lightest molecule in na-

ture – are among the simplest elementary chemical processes. Quantum effects are

potentially important in H2 + H2 system since the vibrational – rotational energy lev-

els within the molecule are more widely spaced than in the case of heavier molecules

(Figure 1.1). By using this simple system of four nuclei and four electrons (the

H2 + H2 system) a high level of precision can be attained in the theoretical work of

computational chemistry which has direct applications in astrophysics. In spacecraft

modelling1 and in combustion,2,3 the H2 + H2 system has also been of great interest.

The rotational and vibrational transitions in H2 induced by collisions are of practical

importance in models of astrophysical environments.

1.2 H2 is an important species in interstellar medium

In the universe, hydrogen is the most abundant element. In the interstellar

medium, hydrogen is present in the dominant chemical species, mostly as H and H2.

Shock fronts and photodissociation regions in giant molecular clouds have stimulated

considerable interest in the role of molecular energy transfer of H2.
4,5 If collisional

cross sections and rate coefficients of H2 + H2 system can be calculated accurately

then these calculations can be used to build a model that can explain the cooling

mechanism in the interstellar medium where star formation occurs.

1



A number of collisional outcomes result from H2 + H2 collisions (Table 1.1) and

these outcomes can be distinguished in classical calculations and permit the detailed

exploration of dynamic effects.6 The H2 + H2 system allows for theoretical treatments

that are very transparent and can be compared directly with other theoretical and

experimental results.

Figure 1.1: (v, j) levels of the ground state hydrogen molecule, H2(
1Σ+

g ). The dashed
line is the minimum energy required for dissociation. Energy levels above this line
are quasibound. The dotted line is the internal energy boundary for the states that
are studied in this research work.

2



Table 1.1: Collisional outcomes of H2 + H2

Nonreactivea:
H2(vab, jab) + H2(v

′
cd, j

′
cd) → H2(v

′′′
ab, j

′′′
ab) + H2(v

′′′′
cd , j

′′′′
cd )

Reactive:
H2(vab, jab) + H2(v

′
cd, j

′
cd) → H2(v

′′′
ac, j

′′′
ac) + H2(v

′′′′
bd , j

′′′′
bd )

→ H2(v
′′′
ad, j

′′′
ad) + H2(v

′′′′
bc , j

′′′′
bc )

Nonreactive Dissociative:
H2(vab, jab) + H2(v

′
cd, j

′
cd) → H + H + H2(v

′′′′
cd , j

′′′′
cd )

→ H2(v
′′′
ab, j

′′′
ab) + H + H

Reactive Dissociative:
H2(vab, jab) + H2(v

′
cd, j

′
cd) → H2(v

′′′
ac, j

′′′
ac) + H + H

→ H2(v
′′′
ad, j

′′′
ad) + H + H

→ H2(v
′′′
bc, j

′′′
bc) + H + H

→ H2(v
′′′
bd, j

′′′
bd) + H + H

Doubly Dissociative:
H2(vab, jab) + H2(v

′
cd, j

′
cd) → H + H + H + H

aa, b, c, and d identifies the four atoms

1.3 Computational methods in the study of molec-

ular collisions

There are three classes of methods in the computational study of molecular

collisions. These are quantum mechanical, semiclassical, and quasiclassical trajectory

methods. All the methods require a potential energy surface (PES) for computational

study in molecule-molecule interaction.

1.3.1 Quantum mechanical

Quantum mechanical scattering calculations on four-atom reactions have under-

gone significant progress from the computational perspective. All degrees of freedom

are treated quantum mechanically. Like atoms are indistinguishable. Tremendous

challenge has remained for the full-dimensional quantum mechanical treatment of

3



H2 + H2 systems due to the need to treat all bonds as reactive ones.7–13 The size

of quantum calculations rises with the number of channels required for convergence

which in turn rises with increases of total energy. Therefore, quantum calculations

can be possible in principle, but not practically, at higher energies for the H2 + H2

system and its isotopic analogs.

1.3.2 Semiclassical

Semiclassical methods describe some degrees of freedom of a system quantum

mechanically whereas the other degrees of freedom are treated classically.14,15 These

methods are particularly useful for the description of the large-angle elastic scatter-

ing of chemical reactive systems. Examples of semiclassical methods include WKB

approximation and wave packet methods. The theory of elastic scattering of atoms

has been one of the most successful applications of semiclassical techniques. Semi-

classical methods are expensive for the calculation of large number of state-to-state

cross sections in H2 + H2 system.16

1.3.3 Quasiclassical trajectory (QCT)

Using classical mechanics, the quasiclassical trajectory method describes the

collisions of atoms and molecules. All degrees of freedom are treated classically. Like

atoms are distinguishable. This method does not increase in difficulty with increasing

energy. At the present this is the most practical method of obtaining large number

of state-to-state cross sections and rate coefficients for a system like H2 + H2.

1.3.4 Advantages and disadvantages of the quasiclassical tra-

jectory method

The quasiclassical trajectory method uses the classical equations of motion to

describe the collision between a target molecule and a collisional partner. Since the

trajectory is classical, there is a need to assign the trajectory result to a final quantum
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state. Results from the QCT method can be rotationally and vibrationally hot17 if the

trajectory results are assigned to final rotational and vibrational states by using the

bin histogram method. The cross sections of endoergic (upward) transitions calculated

by using QCT method can be shifted to higher rotational or vibrational level compared

to quantum and experimental results.

The QCT method limits the validity of rate coefficients at temperature between

600 and 10000 K. The reason for the lower limit is because QCT does not include

tunneling. There is also a consideration of zero point energy leak in the QCT method

when the potential energy barrier to exchange is traversed classically with less than

the zero point energy that would be required to do this quantum mechanically. The

H4 surface extrapolates to the H3 surface when one H atom is removed to infinite

distance. There is a conical intersection between the ground state and an electronically

excited state of H3 at energy of 100 mEh (63 kcal/mol).18 Above 10000 K, there is a

possibility of electronic excitation and then the system is not described adequately by

the potential energy surface for the ground electronic state.19 For H4 PES Boothroyd

et al. 20 identified the conical intersection with the first electronically excited state but

did not include it in their potential.

1.4 Motivation for this study

H2 molecules are the dominant molecular species in interstellar medium. Quan-

tum calculations are expensive for the determination of large numbers of state-to-state

cross sections and rate coefficients. The QCT method is comparatively inexpensive.

Rate coefficients must obey microscopic reversibility. The rate coefficients cal-

culated by using QCT obeyed microscopic reversibility in H + H2 system except at

low temperatures.19 The H2 + H2 system is a system of light atoms similar to H + H2

including one more atom and more degrees of freedom with a different potential.

Whether detailed balance is obeyed for calculation of state-to-state cross sections and

rate coefficients for H2 + H2 is important to assess the feasibility of using QCT to
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calculate state-to-state cross sections.

1.5 Research objectives

The goal of this study is to do a survey of detailed balance of state-to-state

cross sections for the transitions resulting from the H2 + H2 system by using the

QCT method. The specific objectives of this study are:

1. Use the QCT method to determine state-to-state cross sections for the collisions

in H2 + H2 system for those states of H2 with internal energy below 37 mEh (1 eV).

2. Survey how well those cross sections follow detailed balance.

3. Assess the feasibility of the QCT method for the calculation of state-to-state rate

coefficients in H2 + H2 system.

1.6 Thesis outline

The objectives of this research are addressed in the following chapters of this

thesis. Chapter 2 is a survey of H2 + H2 literature including a survey of experiments

on the H2 + H2 system and of H4 potential energy surfaces and calculations thereon.

Chapter 3 describes the QCT method including issues for the binning method.

There is also a discussion about numerical integration and calculation of cross section

and rate coefficients in Chapter 3. Microscopic reversibility and application of micro-

scopic reversibility in the calculation of cross sections and rate coefficients are also

discussed in this chapter. The assessment of detailed balance with statistical analysis

are included in Chapter 3.

Chapter 4 reports on the examination of the microscopic reversibility calcula-

tions for H2 + H2 system and results with the survey of internal energy distribution.

The results of internal energy distributions and their significance of differences are

also included in Chapter 4. Chapter 5 concludes with the major findings of this study

and provides suggestions for the future research directions.
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Chapter 2

Survey of H2 + H2 literature

Collisions that occur between two H2 molecules in interstellar molecular clouds

are of great relevance in astrophysics. In the interstellar medium, H2 may act as a

coolant in giant molecular clouds of low densities where star formation occurs. Within

these clouds, strong shock waves can cause rotational and vibrational excitation of

the H2 molecules which can lead to dissociation of H2 into free H atoms21 or to the

emission of photons. McCaffery and Marsh used a computational model of energy flow

to study translation-to-internal energy conversion in a gas ensemble consisting of H2

in a bath of H atoms.22 Their study suggested that the translation-to-internal energy

conversion within H2 could enhance the cooling mechanism in interstellar clouds. The

presence of H atoms has the potential to change the kinetics of the system because H

atoms are more efficient colliders with respect to energy transfer and dissociation than

are H2 molecules. Dissociative cooling arises from the collisions leading to dissociation

of the molecules. When a molecule dissociates, some of the kinetic energy and internal

energy are used in dissociation and this energy can never again be available because

of the low probability of recombination. The cloud cools after losing some energy in

dissociation.

The cooling processes can also involve the conversion of kinetic energy to radiant

energy as photons which can escape from the system. This typically occurs through

collisional excitation, followed by radiative decay through quadrupole emission. Cool-

ing is necessary for star formation. Information about these phenomena is necessary

to understand the cooling mechanisms in the interstellar medium.
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2.1 H2 + H2 experimental

In 1975, the vibrational relaxation rate of ortho- and para-H2 between 40 and

500 K was measured by Audibert et al .23 Nearly 12 years after this experiment, the

rotational relaxation in vibrationally excited H2 and D2 in collisions with H2, D2

and He at 300 K was studied by Meier et al.24 in 1986. From their studies it was

found that, in general, the pure rotational energy transfer rate coefficients are larger

than the corresponding vibrational energy transition rate coefficients. For the v = 2

vibrational level, the direct measurement of energy transfer of vibration-vibration and

vibration-translation rate coefficients near 300 K were reported by Kreutz et al.25 in

1988.

Farrow and Chandler26 presented experimental results in the same year for the

rovibrational energy transfer rate coefficients between H2 molecules at 295 K colliding

in their ground and first excited vibrational levels. Theoretical and experimental rate

coefficients for rotational excitations in p-H2 – p-H2 collisions between 2 and 110 K

were reported by Maté et al.27 in 2005. Quantum mechanical calculations based on the

coupled channel method were used for their theoretical study. From their experimental

studies, it was found that the pure rotational energy transfer rate coefficients are larger

than the corresponding vibrational energy transfer rate coefficients.

Experimental rate coefficients for vibrational-vibrational transitions for v=0-5

at 300 K were reported by Ahn et al.28 in 2007. They studied both non-resonant

and resonant VV process. For non-resonant VV process they studied H2(v=1) +

H2(v=1) → H2(v=2) + H2(v=0) and for resonant VV process, H2(v=1) + H2(v=0)

→ H2(v=0) + H2(v=1). For both processes, the measured rate coefficients were found

to be comparable to previous experimental results of Kreutz et al.25 and Farrow and

Chandler.26

Some significant differences exist between theory and experiment for both the

non-resonant and resonant vibration-vibration transitions discussed above. The semi-
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classical results for the resonant vibration-vibration process of Ahn et al.28 are found

to be about a factor of 30 smaller than the experimental value. The non-resonant

vibration-vibration process (1,1→ 2,0) is more efficient than the resonant process pre-

dicted by semiclassical calculation while experiment showed the latter rate coefficient

is 2.5 times larger.28

In 2009, Kelley29 studied vibration-vibration and vibration-translation energy

exchange in H2 + H2 collisions. He reported results of VV and VT using a semiclas-

sical approach in which relative translational motion is treated classically and both

rotation and vibration were treated quantum mechanically. The dependence of the

H4 interaction potential on the H-H separations was modeled based on a He-H2 po-

tential and transition probabilities were calculated by using first order perturbation

theory. For the resonant vibration-vibration process described above, this approach

produced improved agreement with experiments but it is less satisfactory for the other

non-resonant vibration-vibration processes for the diatom-diatom system.

2.2 H4 potential Energy Surface and Calculations

A potential energy surface is generally developed within the adiabatic and Born-

Oppenheimer approximation to model chemical reactions and interactions in simple

chemical and physical systems. In the test case of molecule-molecule interactions, the

potential energy surface of H4 is of great importance for quantum chemistry since it is

needed for quantum calculations. Being the simplest test case, the H4 energy surface is

necessary for the basic understanding of intermolecular energy transfer and chemical

reactions between molecules. It is also important for the comparison of theoretical

predictions against experimental results.

For a detailed study of the calculation of recombination rate coefficients for

hydrogen containing compounds in the gas phase, Schwenke2 constructed a new po-

tential hypersurface for H4 in 1988. This new potential was a faithful representation

for ab initio electronic structure calculations at that time. They used high accuracy
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level ab initio energies at 92 geometries with C2v symmetry. This potential is un-

changed under the exchange of H atoms and reproduces the H3 potential when one

H atom is removed. They used resonance complex theory and an energy transfer

mechanism over the temperature range 100-5000 K to estimate the rate coefficients

of three-body recombination by using quasiclassical trajectory calculations. Over a

broad temperature range, the predicted rate coefficients were approximately a factor

of two smaller than experimental results.

In 1991 Boothroyd et al.30 reported an extensive study of the H4 PES pre-

senting ab initio energies at 6101 geometries. They used the multiple reference con-

figuration interaction (MRD-CI) program with a large basis set. In 1992, Wind and

Roeggen calculated the potential energy surface of H4 within the rigid rotor approx-

imation by using an extended geminal model.31 The total electronic energies for 16

different internuclear distances from 3 to 12 au, and 7 relative orientations for each

distance were calculated by using a [8s, 4p, 2d] subcontracted Gaussian type basis

set and the numerical model EXRHF3. The semiclassical calculations of Billing and

co-workers32 16 33 34 were the most widely cited results of that time. They used an

angle-averaged potential based on the functional form of the potential energy surface

suggested by Schwenke.2

Using an extension of Schwenke’s2 approach to fitting the H4 potential this

was carried out both by Keogh35 and by Aguado36 et al.. The initial 6101 points

of Boothroyd et al.30 were fitted to a six-dimensional many-body expansion form by

Aguado, Suarez, and Paniagua (ASP)36 in 1994. They performed a four-body gen-

eralization of the global fitting procedure proposed by Aguado et al.37 for triatomic

systems. With respect to the permutations of the H atoms this global H4 potential en-

ergy surface is totally symmetric and satisfied the strategies that are used in quantum

scattering calculations.

A slightly-improved version of the PES of Keogh35 using an extension of

Schwenke’s approach to fitting H4 was developed by Martin et al.38 and used by
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Mandy et al.6 for quasiclassical trajectory calculations of H2 + H2 collisions.

Another potential energy surface has been calculated by Diep and Johnson for

the rigid monomer model of (H2)2
39 in 2000. They have employed the complete basis

set limit using coupled-cluster theory with single, double and perturbational triple ex-

citations [CCSD(T)]. A four-term spherical harmonics expansion model was selected

to fit the surface. This potential energy surface generated the quadrupole moment to

within 0.58% and the experimental Van der Waals well depth to within 1%. From

the fitted potential energy surface the second virial coefficient has been computed.

In the temperature range of 100-500 K, the semiclassical treatment of quantum me-

chanical effect on the second virial coefficient was utilized. By combining Feynman’s

path integral formulation and Monte Carlo integration, they have constructed a new

technique for computing the quantum second virial coefficient and compared it with

published experimental measurements. Diep and Johnson calculated the second virial

coefficient from this PES and it showed good agreement with the experimental results

from 15-500 K.

In 2002, a chemically accurate potential energy surface was calculated by

Boothroyd et al.20 which demonstrated significant inaccuracies in other analytic H4

surfaces available at that time. They had computed 42079 new ab initio H4 energies

and the original 6101 ab initio energies to improve the coverage of the H4 conforma-

tion space. A large portion of conical intersection of the ground state with the first

excited state and both the ground state energy and first few electronically excited

state energies were calculated. The 6101 ab initio H4 energies from Boothroyd et al.30

provided information to fit an H4 PES that could approach chemical accuracy.

Boothroyd, Martin, Keogh, and Peterson (BMKP2)20 reported a more elab-

orate fit of the 48180 ab initio points which is of chemical accuracy over a large

configuration space. The PES of Boothroyd et al.30 provided for the first time full

coverage of the entire six-dimensional conformation space of H4 that can be reached

by a pair of H2 molecules colliding with sufficient energy to dissociate one or both
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of the molecules. They demonstrated that the PES of Schwenke2 had errors of more

than an order of magnitude in the repulsive wall of H4 interaction region.

A six-dimensional potential energy surface for the (H2)2 dimer was constructed

by Hinde40 based on coupled cluster electronic structure calculations in 2008. Large

atom-centered Gaussian basis sets and a small set of midbond functions were em-

ployed at the center of mass of the dimer. The bound and quasibound states of the

dimer are described by this surface. A close-coupled approach was used to compute

the energies of these bound and quasibound dimer states. They have compared the

computed energies for infrared and Raman transitions involving rovibrational levels

(v, j)= (0,0), (0,2), (1,0) and (1,2) with experimentally measured transition energies.

They have used four of the experimentally measured dimer transition energies to make

two empirical adjustments to the ab initio potential energy surface.

Among these potential energy surfaces, only those of Aguado et al., Boothroyd

et al., and Hinde40 are global potential surfaces. Aguado et al. calculated a global

potential energy surface of 6101 ab initio energies with root mean square error (rms)

value of 2 mEh. An accurate global potential energy surface was also calculated by

Boothroyd et al. with an rms error of 1.43 mEh. Based on coupled-cluster electronic

structure calculations a six-dimensional potential energy surface for the H4 was con-

structed by Robert J. Hinde with the objective of achieving spectroscopic accuracy.

For quantum calculations, the ASP PES is more efficient because integration

over the angular coordinates can be done analytically. In QCT calculations, deriva-

tives of the potential are needed to obtain the forces and to do numerical integration

of the equations of motion. Analytical derivatives are not available for the Hinde

or ASP PES. For the BMKP2 PES analytical derivatives are available. Calculating

a trajectory that involves numerical evaluations of the derivatives requires about 10

times as much computer time as does a trajectory where analytical derivatives are

available.

In this work, transitions of the states below 37 mEh (1 eV) energy of two hydro-
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gen molecules are studied by using BMKP2 PES (Table 2.1). The state-to-state cross

sections for transitions among the vibrational and rotational (v, j) states of (0,0),

(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0, 8), (0, 9), (1,0), (1,1), (1,2), (1,3),

(1,4), (1,5) of each H2 molecule as the result of collisions in H2 + H2 system were

determined by using quasiclassical trajectory method.

Table 2.1: States below 37 mEh (1eV)

State v j Eint (mEh) Eint (eV)

Para

0 0 9.892770 0.267929187
0 2 11.50692 0.311645695
0 4 15.21663 0.412116981
0 6 20.89275 0.565845312
0 8 28.34991 0.767810062
1 0 28.85506 0.781491207
1 2 30.38861 0.823024961
1 4 33.91218 0.918454793

Ortho

0 1 10.43247 0.282546005
0 3 13.10638 0.354964485
0 5 17.81936 0.482607774
0 7 24.41199 0.661158062
0 9 32.67760 0.885018332
1 1 29.36784 0.79537891
1 3 31.90798 0.864174376
1 5 36.38355 0.985387811
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Chapter 3

Methods of calculation

3.1 An overview of the quasiclassical trajectory

method

3.1.1 Quasiclassical trajectory method

Using classical mechanics, it is possible to simulate collisions of chemical species

if the interaction energies are described by a well-behaved potential energy surface.

The atoms are moving under the influence of an interaction potential and are assumed

to be point masses moving according to Newton’s equations of motion. The first

derivatives of the potential are used to determine the forces involved. By integrating

the equations of motion, a trajectory of a collision can be determined.

By using the BMKP220 potential energy surface, fully six-dimensional quasi-

classical trajectories have been run. For each hydrogen molecule, the initial rotational

and vibrational energy were assigned precisely to the corresponding quantum states

while the initial translational energy was fixed at the desired value. For the collisions

of H2 + H2, the maximum value of total energy is 480 mEh (13 eV). Above this energy

the electronic ground state potential energy surface is no longer an adequate descrip-

tion of the system. From this total energy, the translational energy is decreased in

intervals of 8 mEh (0.220 eV) until 30 mEh (0.866 eV) above that required for disso-

ciation of both H2 molecules is reached. Translational energies were then decreased

by 2 mEh (0.0433 eV) from that total energy down to ensure adequate characteriza-

tion of the threshold for dissociation and energy transfer. Translational energy was

decreased until all trajectories were observed to be elastic. For the impact parameter,

stratified sampling is used.
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3.1.2 Numerical integration

After initialization, the coordinate system has been transformed from that used

for selection of initial conditions to one more appropriate for integration. The forces

are determined by the derivatives of the interaction potential and the motion of the

atoms was treated as completely classical. Using a variable step Runge-Kutta method

the equations of motion are integrated. Throughout the integration, conservation of

energy and of momentum is monitored.

3.1.2.1 Runge-Kutta Method

The Runge-Kutta technique of any order is one of the general methods for

constructing stable and efficient reaction integrators. For solving ordinary differential

equations (ODEs), Runge-Kutta (RK) methods are among of the most efficient classes

of methods. Some of these Runge-Kutta methods have excellent stability properties

and they are used widely to solve stiff ODEs.41

3.1.2.2 Predictor-Corrector Method

In numerical analysis, a predictor-corrector method is an algorithm that pro-

ceeds in two steps. First, the prediction step calculates a rough approximation of the

desired quantity. Second, the corrector step refines the initial approximation using

another means. Predictor-corrector (PC) methods have been used as one of the ma-

jor classes of methods on parallel computers for solving non-stiff ODEs. A desirable

feature of a multistep method is that the local truncation error can be determined

and a correction term can be included, which improves the accuracy of the answer at

each step.

Predictor-corrector methods need a well-behaved function for integration. The

potential for the H2 + H2 system was shown not to be sufficiently well-behaved for

integration by this method.35 Therefore, the DVERK program is used in this present

research.
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3.1.2.3 Discrete Variable Explicit Runge-Kutta (DVERK) Program

The DVERK Program is a double precision subroutine for solving systems

of first-order ordinary differential equations with initial conditions based on Runge-

Kutta formulas of order 5 and 6. This program attempts to keep the global error

within a tolerance specified by the user. The magnitude of the relative error depends

on three factors. These are: the kind of error control that is used, the function being

integrated, and the range of integration i.e. step size.

There are also various options in this program including different kinds of error

control, restrictions on step sizes, and interrupts that permit the examination of the

state of the calculation as automatic modifications are possible during intermediate

stages. The equations of motion are integrated using a variable step Runge-Kutta

integrator. In this program, any options can be either initiated or altered from a pre-

vious selection prior to re-entry to the subroutine. It does not need user intervention

to successfully complete a trajectory.

3.1.3 Analysis of the quasiclassical trajectory results

The behaviour of a quasiclassical trajectory is completely described by classical

mechanics. Therefore some conventions need to be used in assigning the trajectory

result to the final quantum states. The atoms are paired for analysis of final momenta

and energy on the basis of the shortest interatomic distance. Angular momentum is

determined for each pair and then within the pair, motion along the line of centers is

considered and examined to determine whether the pair is bound. If the pair is bound,

then quasiclassical quantum numbers are calculated. This produces continuously

valued (v′′, j′′) quantum numbers, which are then assigned to the discrete (v′′′, j′′′)

and (v′′′′, j′′′′) states by using a binning method (Figure 3.1). In this study, four

dimensional bins are used, based on the final vibrational and rotational quantum

numbers of both H2 molecules.
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3.1.3.1 Binning Method

The cross sections can be calculated by using the bin histogram method.42 In

this method, the continuously-valued (v′′, j′′) state values are assigned to a product

(v′′′, j′′′) quantum state in accordance with the following criteria:

(v′′′ − 1/2) ≤ v′′ < (v′′′ + 1/2)

(j′′′ − 1) ≤ j′′ < (j′′′ + 1) (when j′′′ 6= 0)

0 < j′′ < 1 (when j′′′ = 0)

where j′′′ is odd for ortho and j′′′ is even for para.

The v′′′ value was taken as the nearest integer to v′′.

In non-reactive collisions, ortho-para interconversion is forbidden and when the

initial values of j are even, then only the even j′′′ values are permitted. Similarly,

when the initial j values are odd, then only the odd j′′′ values are permitted in non-

reactive collisions. Thus from a para-para initial state, non-reactive trajectories lead

only to para-para final states. Similarly non-reactive trajectories from an ortho-ortho

initial state lead only ortho-ortho products and from an ortho-para state to ortho-para

products.

The exchange reaction produces both para and ortho products, so the results

of exchange trajectories must be assigned appropriately to the para and ortho states.

The classical calculation does not include spin but the 3:1 ratio for nuclear spin is

considered in the calculation of cross sections. The reactive trajectories are binned

four times. When the final state is ortho-ortho, a weighting of 1
16

is used to calculate

the cross sections. When the final state is para-para, a weighting of 9
16

is used. When

the final state is ortho-para, a weighting of 3
16

is used to calculate the cross sections.

When the final state is para-ortho, a weighting of 3
16

is used.
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Figure 3.1: Schematic of binning method. The axes delineate (v′, j′) space. The ×
indicates the trajectory result (v′′, j′′). The dotted lines represent the boundaries of
the bins common to all methods.
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3.1.3.2 Calculation of Cross Sections

When a batch of trajectories has been converged with respect to impact param-

eter the integral cross sections, σ, can be determined by using following formula:19

σ ± dσ =
∑
i

PiAi ±

√√√√√√√
∑
iA

2
i

[
Pi(1−Pi)

Ni
+ 1

N2
i

+ 1
N3

i

]
[
(1 + 3

Ni
)(1 + 2

Ni
)2
]

By summing over the annuli of area Ai, the cross sections and their errors are obtained.

The number of trajectories run in annulus i is Ni. Here ni represents the number of

trajectory events that lead to the outcome of interest. The probability is Pi = ni

Ni
.

For non-negligible probabilities, Pi >>
1
Ni

and the formula for the error reduces to

that of a binomial distribution.

3.1.3.3 Calculation of Rate Coefficients

For a gas at equilibrium, the distribution of thermal energy is described by

the Maxwell-Boltzmann distribution. To determine rate coefficients, the Maxwell-

Boltzmann distribution is convolved with the excitation function, σ(E). The thermal

rate coefficient, γ(T ), is:19

γ(T ) =
(

8kT

πµ

)1/2 ∫ +∞

E◦

E

kT
σ(E)exp

(−E
kT

)
d
(
E

kT

)

The value of γ(T ) is sensitive to E◦ which must be determined. For endoer-

gic processes E◦ is the energy difference between the final and initial states and, for

exoergic processes, E◦ is zero. At lower temperatures, the most significant contribu-

tions to γ(T ) come from the cross sections near threshold. Cross sections need to be

determined at finely-spaced translational energies near threshold.

19



3.2 An overview of microscopic reversibility

3.2.1 Microscopic reversibility

Microscopic reversibility or detailed balance relates the cross section for a tran-

sition from state 1 to state 2 to that for the transition from state 2 to state 1. The

equation is:

σ(1→ 2;E1,rel)g1E1,rel = σ(2→ 1;E2,rel)g2E2,rel

where E2,rel = E1,rel −∆E, ∆E is E2,int − E1,int, that is the difference of internal

energies in the states, g is the statistical weight for each state, and E1,rel and E2,rel

represent translational energies for respective states. Therefore, for each transition

connecting states 1 and 2, two independent estimates of the cross section can be

obtained.

The cross sections which are obtained from trajectories originating in state 1

are defined as direct cross sections and those obtained from the trajectories originat-

ing in state 2 are defined as indirect cross sections. In QCT calculations, microscopic

reversibility is not expected to be obeyed rigorously because of the way of the quan-

tization is imposed. Direct trajectories start precisely at the initial (v, j) and (v′, j′)

bin and they end anywhere of the final (v′′′, j′′′) and (v′′′′, j′′′′) bin. Indirect trajecto-

ries are the reverse and may be thought of as starting precisely at the (v′′′, j′′′) and

(v′′′′, j′′′′) bin and ending somewhere in (v, j) and (v′, j′) bin.

3.2.2 Microscopic reversibility and rate coefficients

Microscopic reversibility can be applied with a thermal distribution of transla-

tional energy. The rate coefficients obey:

γ(1→ 2)g1 = γ(2→ 1)g2 exp
(
−∆E

KT

)
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It is then possible to obtain two estimates of rate coefficients for a particular transition.

The first is directly from state 1 to state 2. The second one is to apply microscopic

reversibility or detailed balance to the rate coefficient from state 2 to state 1 to obtain

a rate coefficient from state 1 to state 2. These two estimates may be combined to give

improved rate coefficients that obey detailed balance. Microscopic reversibility must

be obeyed if equilibrium is to be attained. If it is not obeyed, the rate coefficients will

not be able to be used in a meaningful way.

3.2.3 Microscopic reversibility in H + H2 system

It has been shown that for H + H2 system, the rate coefficients may differ when

microscopic reversibility is applied.17 At high temperature, microscopic reversibility

was obeyed well for rate coefficients but at low temperature it showed discrepancies.

Hence, after applying microscopic reversibility the rate coefficients determined are not

precisely equal to those generated directly from cross sections with a piecewise linear

excitation function convolved with the Maxwell-Boltzmann distribution. At high

temperature, the forward and reverse rate coefficients may be combined to produce

rate coefficients that rigorously obey microscopic reversibility. This fact suggests

that the application of microscopic reversibility can be used to seek to improve the

evaluation of cross sections and rate coefficients in the H2 + H2 system.

The quasiclassical cross sections for a transition in the upward or endoergic

direction are susceptible to a systematic error in cross sections near threshold leading

to an over-estimation of their value. This is due to trajectory results being assigned to

a particular (v, j) box when the center of the box is not energetically accessible (See

figure 3.1). This is known as the barely-in-the-box phenomenon. This leads ”hotness”

in calculating cross sections by using QCT.
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3.2.4 Microscopic reversibility in H2 + H2 system

The H2 + H2 system is more complicated system than the H + H2 system.

For H2 + H2 system, four quantum numbers are required to describe each of the

initial and final states. This means that a four-dimensional bin is used instead of a

two-dimensional bin to assign the trajectory outcome to a state. In this system, the

transition of one molecule may be downward in energy and other one is upward in

energy. Therefore, the applicability of microscopic reversibility may be a challenge

for this system with more degrees of freedom. The rate coefficients of a system must

obey microscopic reversibility. The applicability of detailed balance to cross sections

for the H2 + H2 system is assessed in this study.

3.3 Enumeration of transitions considered

There were 16 states considered for each hydrogen molecule below 37 mEh (1

eV) energy (Table 2.1). Among these 16 states, there are 136 possible combinations

of quantum numbers for two hydrogen molecules. There are 36 para-para, 36 ortho-

ortho, and 64 ortho-para or para-ortho combinations for two hydrogen molecules to

be considered.

For inelastic non-reactive collisions, transitions are restricted to para-para, ortho-

ortho, and ortho-para or para-ortho states. There are total of 666 [S=36(36+1)/2=666]

transitions for the 36 para-para states. There are total of 666 [S=36(36+1)/2=666]

transitions for the 36 ortho-ortho states. There are total of 2080 [S=64(64+1)/2=2080]

transitions for the 64 ortho-para or para-ortho states. In one direction, the total tran-

sitions are 3276 (3412-136=3276) with exclusion of 136 elastic transitions. For both

directions (endoergic and exoergic), with the exclusion of elastic transitions, a total

of 6552 (3276×2=6552) transitions are considered.
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3.4 Assessment of detailed balance

3.4.1 Statistical analysis

Since a total of 6552 transitions is considered, there is a need for a robust

method to classify whether the cross sections for a transition are following detailed

balance. The translational energy grids of endoergic and exoergic cross sections do

not match each other exactly. In order for detailed balance to be applicable at the

cross section level, the total energy must match.

Etot = E1,int + E1,rel = E2,int + E2,rel

E2,rel = E1,rel + E1,int − E2,int

The translational energy grid E1,rel of one set of cross sections is taken as the

reference set and the other set of cross sections is interpolated to obtain cross sections

and errors at the corresponding E2,rel.

3.4.2 Interpolation of cross sections and errors

The following mathematical calculations were used to evaluate the indirect cross

section at the desired energy to assess the applicability of detailed balance to the cross

sections. The cross section, σ, is assumed to be related to translational energy, E, by

the following piecewise linear relationship where E1 < E2,rel < E2:

σ= slope×E + intercept

Slope =
(
σ2−σ1
E2−E1

)
Intercept = σ1 − E1 × Slope

= σ1 − E1 ×
(
σ2−σ1
E2−E1

)
=
(
E2× σ1−E1× σ1

E2−E1

)
−
(
E1× σ2−E1× σ1

E2−E1

)
=
(
E2σ1−E1σ2
E2−E1

)
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Therefore, σ∗ will be:

σ∗ =
(
σ2−σ1
E2−E1

)
× E∗ +

(
E2σ1−E1σ2
E2−E1

)
=F (σ1, σ2)

Therefore to get dσ∗, σ∗ as a function of σ1 and σ2 is taken into account.

F (σ1, σ2) = σ∗(
∂F
∂σ1

)
=
(
−E∗

E2−E1

)
+
(

E2

E2−E1

)
=
(
E2−E∗

E2−E1

)
(
∂F
∂σ2

)
=
(

E∗

E2−E1

)
−
(

E1

E2−E1

)
=
(
E∗−E1

E2−E1

)

Therefore (dσ∗)2 =
(
E2−E∗

E2−E1

)2

(dσ1)
2 +

(
E∗−E1

E2−E1

)2

(dσ2)
2

After obtaining cross sections and errors for corresponding energies, the Z-test

is used. The Z-test statistic is:

Z =

(
σ − σ∗√

(dσ)2 + (dσ∗)2

)

If σ and σ∗ are two independent measurements of cross sections for the same transition

at the same total energy and they agree then 68% of the time Z will be between +1

and -1 and 95% of the time between +2 and -2. For large batches of trajectories

Ni is large and the binomial distribution approaches the normal distribution when

Pi >>
1
Ni

(Section 3.1.3.2). A typical data set consists of between 180 and 300

points. Results for each data set are classified as follows:

-Direct and indirect cross sections for a transition that agree with detailed

balance within one standard deviation 68% of the time and within the

two standard deviations 95% of the time are classified as Strongly Agree (STA).

-Direct and indirect cross sections for a transition that agree with detailed

balance within one standard deviation 68% of the time or within the two
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standard deviations 95% of the time are classified as Somewhat Agree (SWA).

-Direct and indirect cross sections for a transition that neither agree with

detailed balance within one standard deviation 68% of the time nor within

the two standard deviations 95% of the time are classified as Disagree (DIA).

3.4.3 Histograms of internal energy distribution

Three classes of agreement with detailed balance were categorized from the

assessment of agreement of direct and indirect cross sections. There may be a pos-

sibility for similar internal energy distributions within each class. If there are any

distinct energy distributions among the three classes of agreement then that could

explain why some of the cross sections followed detailed balance and others did not.

To investigate the distributions of internal energy among these three classes of agree-

ment with detailed balance, the distribution of final internal energy is examined for

selected transitions (Figure 3.2).

In this test, there are 20 bins of internal energy that used to generate histograms

of energy distributions. The total energy range used is 66.63 mEh to cover the internal

energy span of the four-dimensional bin associated with the four quantum numbers

of two hydrogen molecules. Four translational energies (approximately 100, 200, 300,

and 400 mEh) were examined.
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Figure 3.2: Selected cases for three classes of agreement of direct and indirect cross
sections. The vertical axis is the cross section in a0

2 and the horizontal axis is the
translational energy in Eh. The square indicates direct cross section and the circle
is for indirect cross section. First three cases from Strongly Agree Class for the
transitions H2(0,1) + H2(1,4) → H2(1,1) + H2(0,6), H2(0,3) + H2(0,6) → H2(0,7)
+ H2(0,2), and H2(0,4) + H2(0,9) → H2(0,8) + H2(0,5) (Top row a1 − a3). Second
three from Somewhat Agree Class for the transitions H2(0,2) + H2(0,9) → H2(0,6) +
H2(0,5), H2(0,2) + H2(1,5) → H2(0,8) + H2(0,3), and H2(0,4) + H2(0,1) → H2(1,2)
+ H2(1,3) (Middle row b1 − b3). Last three from Disagree Class for the transitions
H2(0,1) + H2(0,2)→ H2(0,7) + H2(0,4), H2(0,3) + H2(1,5)→ H2(0,7) + H2(0,9), and
H2(0,3) + H2(0,7) → H2(0,3) + H2(1,3) (Bottom row c1 − c3).
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3.4.4 χ2–test for the histograms of energy distribution

To investigate the significance of differences in distributions of internal energy

distributions among the three classes of agreement of direct and indirect cross sections,

the χ2-test is used. The a priori distribution is taken as the Gaussian distribution

centered on exact quantum energy of the final state. χ2 values were found from the

differences of observed and expected values of the histogram bins. Selected cases from

the three classes of agreement of direct and indirect cross sections were examined to

assess the significance of differences in energy distributions.
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Chapter 4

Insights from examination of micro-

scopic reversibility calculation

4.1 Comparison of direct and indirect cross sec-

tions by using Z-test

4.1.1 Z-test results

A total of 6552 transitions were examined of which 472 (242 in the endoergic

and 230 in the exoergic direction) were classified as in the STA Class, 590 (301 in

the endoergic and 289 in the exoergic direction) as in the SWA Class, and 5490

(2733 in the endoergic and 2757 in the exoergic direction) as in the DIA Class (Table

4.1). The number of points of the translational energy grids for the transition in one

direction are not equal to the number of points of the translational energy grid in the

other direction for the transition. The justification for this energy grid lies in how

the rate coefficients are calculated (Section 3.2.1). As a result of this algorithm the

translational energy grids do not match precisely for endoergic and exoergic direction.

This means that a transition in one direction may be classified differently than the

same transition in the other direction.

Table 4.1: Detailed balance results for transitions of direct and indirect cross sections
with respect to Z-test

``````````````̀Endoergic
Exoergic

strongly agree somewhat agree disagree total

strongly agree 170 50 10 230
somewhat agree 61 166 62 289

disagree 11 85 2661 2757
total 242 301 2733 6552
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4.2 Survey of histograms of energy distribution re-

sults

4.2.1 Analysis of internal energy distribution

From each of the three classes of agreement three cases (for a total of nine cases)

were selected based on the similar relative errors of the direct and indirect cross

sections for the examination of histograms of internal energy distribution (Section

3.4.3). The final internal energy distribution for the transition H2(0,1) + H2(1,4) →

H2(1,1) + H2(0,6) was examined from the STA Class (Figure 4.1) and was found to

be normally distributed according to the χ2-test. Additional cases for the transitions

H2(0,6) + H2(1,1) → H2(1,4) + H2(0,1) (Figure 4.2), H2(0,3) + H2(0,6) → H2(0,7)

+ H2(0,2) (Figure 4.3), H2(0,2) + H2(0,7) → H2(0,6) + H2(0,3) (Figure 4.4), H2(0,4)

+ H2(0,9) → H2(0,8) + H2(0,5) (Figure 4.5), and H2(0,5) + H2(0,8) → H2(0,9) +

H2(0,4) (Figure 4.6) from the STA Class were examined and were also found to be

normally distributed.

Similarly, the final internal energy distribution for the transition H2(0,2) +

H2(0,9) → H2(0,6) + H2(0,5) (Figure 4.7) was examined from SWA Class. The

histograms for the internal energy distribution were found to be normally distributed

for this case. The internal energy distribution of the additional cases for the transitions

H2(0,5) + H2(0,6)→ H2(0,9) + H2(0,2) (Figure 4.8), H2(0,2) + H2(1,5)→ H2(0,8) +

H2(0,3) (Figure 4.9), H2(0,3) + H2(0,8)→ H2(1,5) + H2(0,2) (Figure 4.10), H2(0,4) +

H2(0,1) → H2(1,2) + H2(1,3) (Figure 4.11), H2(1,2) + H2(1,3) → H2(0,4) + H2(0,1)

(Figure 4.12) from the SWA class were examined. Significant deviations from the

normal distribution were found at 200 mEh for the transition H2(0,2) + H2(1,5) →

H2(0,8) + H2(0,3) (Figure 4.9). Examination of figure 4.9 (a1) showed that at lower

energy, the observed values for number of events was lower than was expected from

the normal distribution. At higher energy, the number of events was greater than
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was expected from the normal distribution. There were no statistically significant

differences from the normal distribution among the other cases in internal energy

distribution in the SWA class.

From the DIA Class, the final internal energy distribution for the transition

H2(0,1) + H2(0,2) → H2(0,7) + H2(0,4) (Figure 4.13) was examined. Significant

differences in internal energy distributions at 100, 200, 300, and 402 mEh were found

for this case. Additional cases for the analysis of internal energy distribution in DIA

Class for the transitions H2(0,4) + H2(0,7)→ H2(0,2) + H2(0,1) (Figure 4.14), H2(0,3)

+ H2(1,5)→ H2(0,7) + H2(0,9) (Figure 4.15), H2(0,7) + H2(0,9)→ H2(0,3) + H2(1,5)

(Figure 4.16), H2(0,3) + H2(0,7) → H2(0,3) + H2(1,3) (Figure 4.17), and H2(0,3) +

H2(1,3)→ H2(0,3) + H2(0,7) (Figure 4.18) were examined. There were no statistically

significant differences from normal distribution among these cases.

The results for the histograms of internal energy distributions were found to

be similar for all three classes of agreement with detailed balance. There were no

statistically significant differences in internal energy distributions among the three

classes of agreement except for the following cases:

H2(0,2) + H2(1,5) → H2(0,8) + H2(0,3) (From SWA Class, Figure 4.9)

H2(0,1) + H2(0,2) → H2(0,7) + H2(0,4) (From DIA Class, Figure 4.13)
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Figure 4.1: Distribution of final internal energy for the transition: H2(0,1) + H2(1,4)
→ H2(1,1) + H2(0,6) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.200 Eh

respectively. Similarly figures b1 and b2 are for translational energy 0.300 Eh and
figures c1 and c2 are for translational energy 0.396 Eh.
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Figure 4.2: Distribution of final internal energy for the transition: H2(0,6) + H2(1,1)
→ H2(1,4) + H2(0,1) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.194 Eh

respectively. Similarly figures b1 and b2 are for translational energy 0.294 Eh and
figures c1 and c2 are for translational energy 0.390 Eh.
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Figure 4.3: Distribution of final internal energy for the transition: H2(0,3) + H2(0,6)
→ H2(0,7) + H2(0,2) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.100 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.200 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.300 Eh and figures d1 to d3 are for translational energy
0.398 Eh.
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Figure 4.4: Distribution of final internal energy for the transition: H2(0,2) + H2(0,7)
→ H2(0,6) + H2(0,3) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.098 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.198 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.298 Eh and figures d1 to d3 are for translational energy
0.396 Eh.
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Figure 4.5: Distribution of final internal energy for the transition: H2(0,4) + H2(0,9)
→ H2(0,8) + H2(0,5) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.100 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.200 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.300 Eh and figures d1 to d3 are for translational energy
0.400 Eh.
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Figure 4.6: Distribution of final internal energy for the transition: H2(0,5) + H2(0,8)
→ H2(0,9) + H2(0,4) (From Strongly Agree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 to a3 are for impact
parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational energy 0.102 Eh

respectively. Similarly figures b1 to b3 are for translational energy 0.202 Eh, figures c1
to c3 are for translational energy 0.302 Eh , and figures d1 to d3 are for translational
energy 0.402 Eh.
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Figure 4.7: Distribution of final internal energy for the transition: H2(0,2) + H2(0,9)
→ H2(0,6) + H2(0,5) (From Somewhat Agree Class). The vertical axis is the proba-
bility and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are
for impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.100 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.200 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.300 Eh and figures d1 to d3 are for translational energy
0.396 Eh.
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Figure 4.8: Distribution of final internal energy for the transition: H2(0,5) + H2(0,6)
→ H2(0,9) + H2(0,2) (From Somewhat Agree Class). The vertical axis is the proba-
bility and the horizontal axis is the final internal energy in Eh. Figures a1 to a3 are
for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational energy
0.105 Eh respectively. Similarly figures b1 to b3 are for translational energy 0.206 Eh,
figures c1 to c3 are for translational energy 0.305 Eh , and figures d1 to d3 are for
translational energy 0.401 Eh.
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Figure 4.9: Distribution of final internal energy for the transition: H2(0,2) + H2(1,5)
→ H2(0,8) + H2(0,3) (From Somewhat Agree Class). The vertical axis is the proba-
bility and the horizontal axis is the final internal energy in Eh. Figures a1 to a3 are
for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational energy
0.200 Eh respectively. Similarly figures b1 to b3 are for translational energy 0.300 Eh

and figures c1 to c3 are for translational energy 0.400 Eh.
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Figure 4.10: Distribution of final internal energy for the transition: H2(0,3) + H2(0,8)
→ H2(1,5) + H2(0,2) (From Somewhat Agree Class). The vertical axis is the proba-
bility and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are
for impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.206 Eh

respectively. Similarly figures b1 and b2 are for translational energy 0.306 Eh. Fig-
ures c1 to c2 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at
translational energy 0.407 Eh respectively.
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Figure 4.11: Distribution of final internal energy for the transition: H2(0,1) + H2(0,4)
→ H2(1, 3) + H2(1, 2) (From Somewhat Agree Class). The vertical axis is the
probability and the horizontal axis is the final internal energy in Eh. Figures a1 and
a2 are for impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy
0.200 Eh respectively. Similarly figures b1 and b2 are for translational energy 0.300 Eh

and figures c1 and c2 are for translational energy 0.398 Eh.
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Figure 4.12: Distribution of final internal energy for the transition: H2(1,2) + H2(1,3)
→ H2(0,4) + H2(0,1) (From Somewhat Agree Class). The vertical axis is the prob-
ability and the horizontal axis is the final internal energy in Eh. Figures a1 and a2
are for impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.162
Eh respectively. Similarly figures b1 and b2 are for translational energy 0.264 Eh and
figures c1 and c2 are for translational energy 0.362 Eh.
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Figure 4.13: Distribution of final internal energy for the transition: H2(0,1) + H2(0,2)
→ H2(0,7) + H2(0,4) (From Disagree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.100 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.200 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.300 Eh and figures d1 to d3 are for translational energy
0.402 Eh.

43



Figure 4.14: Distribution of final internal energy for the transition: H2(0,4) + H2(0,7)
→ H2(0,2) + H2(0,1) (From Disagree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.082 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.182 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.282 Eh and figures d1 to d3 are for translational energy
0.384 Eh.
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Figure 4.15: Distribution of final internal energy for the transition: H2(0,3) + H2(1,5)
→ H2(0,7) + H2(0,9) (From Disagree Class). The vertical axis is the probability
and the horizontal axis is the final internal energy in Eh. Figures a1 and a2 are for
impact parameter range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.099 Eh

respectively. Figures b1 to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and
2.0 - 3.0 a0 at translational energy 0.200 Eh respectively. Similarly figures c1 to c3
are for translational energy 0.300 Eh and figures d1 to d3 are for translational energy
0.399 Eh.
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Figure 4.16: Distribution of final internal energy for the transition: H2(0,7) + H2(0,9)
→ H2(0,3) + H2(1,5) (From Disagree Class). The vertical axis is the probability and
the horizontal axis is the final internal energy in Eh. Figures a1 to a3 are for impact
parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational energy 0.192 Eh

respectively. Similarly figures b1 to b3 are for translational energy 0.292 Eh and figures
c1 to c3 are for translational energy 0.391 Eh.
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Figure 4.17: Distribution of final internal energy for the transition: H2(0,3) + H2(0,7)
→ H2(0,3) + H2(1,3) (From Disagree Class). The vertical axis is the probability and
the horizontal axis is the final internal energy in Eh. Figures a1 to a3 are for impact
parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational energy 0.200 Eh

respectively. Similarly figures b1 to b3 are for translational energy 0.300 Eh and figures
c1 to c3 are for translational energy 0.402 Eh.
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Figure 4.18: Distribution of final internal energy for the transition: H2(0,3) + H2(1,3)
→ H2(0,3) + H2(0,7) (From Disagree Class). The vertical axis is the probability and
the horizontal axis is the final internal energy in Eh. Figure a1 is for impact parameter
range 0.0 - 1.0 and 1.0 - 2.0 a0 at translational energy 0.093 Eh respectively. Figures b1
to b3 are for impact parameter range 0.0 - 1.0, 1.0 - 2.0, and 2.0 - 3.0 a0 at translational
energy 0.192 Eh respectively. Similarly figures c1 to c3 are for translational energy
0.292 Eh and figures d1 to d3 are for translational energy 0.395 Eh.
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4.2.2 Application of χ2–test to histograms of energy distri-

bution

From the χ2–test, it is found that there were no significant differences in energy

distributions for almost all the cases. The cross sections for the transition of H2(0,6)

+ H2(1,1)→ H2(1,4) + H2(0,1) showed significant differences at 95% confidence level

(Table 4.2).

The cross sections for the transition of H2(0,2) + H2(1,5) → H2(0,8) + H2(0,3)

exhibited significant differences at 99.95% and 95% confidence levels (Table 4.3). The

cross sections for the transition of H2(0,1) + H2(0,2) → H2(0,7) + H2(0,4) showed

significant differences at 99.95% confidence level (Table 4.4).
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Table 4.2: Results for the cases of the Strongly Agree Class with respect to χ2–test

Initial statea Final stateb
Energy,

mEh

Cross section
with error, a0

2
Number of
Trajectoriesc χ2 valued

0114 1106 100 (0 ± 2.24)× 10−4 0 -
- - 200 (5.520 ± 0.481)× 10−3 148 6.50
- - 300 (9.794 ± 1.50)× 10−3 208 5.84
- - 396 (7.629 ± 1.76)× 10−3 237 4.71

1106 0114 94 (0 ± 2.24)× 10−4 0 -
- - 194 (3.343 ± 0.384)× 10−3 102 40.77
- - 294 (7.391 ± 1.13)× 10−3 160 31.97
- - 390 (5.834 ± 0.164)× 10−3 177 32.31

0306 0702 100 (1.061 ± 0.007)× 10−1 195 16.20
- - 200 (1.354 ± 0.002)× 10−1 1872 10.81
- - 300 (1.091 ± 0.006)× 10−1 208 8.50
- - 398 (1.061 ± 0.008)× 10−1 70 10.00

0702 0306 98 (1.263 ± 0.008)× 10−1 207 18.81
- - 198 (1.656 ± 0.001)× 10−1 11203 29.10
- - 298 (1.416 ± 0.007)× 10−1 224 6.65
- - 396 (1.281 ± 0.009)× 10−1 93 3.93

0409 0805 100 (9.649 ± 0.072)× 10−2 153 26.40
- - 200 (1.286 ± 0.002)× 10−1 1923 5.32
- - 300 (1.267 ± 0.007)× 10−1 198 5.54
- - 400 (1.023 ± 0.008)× 10−1 81 7.63

0805 0409 102 (8.347 ± 0.068)× 10−2 128 15.01
- - 202 (1.091 ± 0.003)× 10−1 754 13.23
- - 302 (1.083 ± 0.006)× 10−1 157 10.14
- - 402 (1.027 ± 0.008)× 10−1 69 12.33

aInitial states for two hydrogen molecules vjv′j′
bFinal states for two hydrogen molecules v′′′j′′′v′′′′j′′′′
cNumber of Trajectories in impact parameter range 0 - 1 a0 that contribute to the cross section for

a transition
dItalic type indicates differences are statistically significant at 95% confidence level
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Table 4.3: Results for the cases of the Somewhat Agree Class with respect to χ2–test

Initial statea Final stateb
Energy,

mEh

Cross section
with error,a0

2
Number

of Trajectoriesc χ2 valuede

0209 0605 100 (1.182 ± 0.007)× 10−1 206 21.55
- - 200 (1.659 ± 0.003)× 10−1 2461 8.24
- - 300 (1.547 ± 0.006)× 10−1 2819 7.27
- - 396 (1.341 ± 0.009)× 10−1 2915 7.34

0605 0209 105 (8.347 ± 0.699)× 10−2 132 8.45
- - 206 (1.126 ± 0.003)× 10−1 750 11.76
- - 305 (1.005 ± 0.008)× 10−1 839 12.35
- - 401 (9.177 ± 0.809)× 10−2 903 19.06

0215 0803 100 (1.795 ± 1.22)× 10−3 2 4.82
- - 200 (2.088 ± 0.009)× 10−2 466 81.61
- - 300 (2.701 ± 0.339)× 10−2 535 37.80
- - 400 (2.580 ± 0.421)× 10−2 571 23.66

0803 0215 107 (2.243 ± 3.17)× 10−4 1 -
- - 206 (1.052 ± 0.110)× 10−2 102 5.37
- - 306 (1.272 ± 0.207)× 10−2 144 8.78
- - 407 (1.144 ± 0.295)× 10−2 167 9.44

0104 1312 100 (0 ± 2.24)× 10−4 0 -
- - 200 (1.165 ± 0.112)× 10−3 149 13.90
- - 300 (8.168 ± 1.97)× 10−3 182 22.57
- - 398 (8.527 ± 2.54)× 10−3 202 25.72

1312 0104 64 (0 ± 2.24)× 10−4 0 -
- - 162 (1.366 ± 0.273)× 10−3 45 24.63
- - 264 (4.241 ± 1.02)× 10−3 70 34.94
- - 362 (7.629 ± 2.58)× 10−3 83 35.95

aInitial states for two hydrogen molecules vjv′j′
bFinal states for two hydrogen molecules v′′′j′′′v′′′′j′′′′
cNumber of Trajectories in impact parameter range 0 - 1 a0 that contribute to the cross section for

a transition
dItalic type indicates differences are statistically significant at 95% confidence level
eBold type indicates differences are statistically significant at 99.95% confidence level
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Table 4.4: Results for cases of the Disagree Class with respect to χ2–test

Initial statea Final stateb
Energy,

mEh

Cross section
with error,a0

2
Number

of Trajectoriesc χ2 valuede

0102 0704 100 (7.584 ± 0.618)× 10−2 147 95.11
- - 200 (1.937 ± 0.001)× 10−1 12726 166.93
- - 300 (1.899 ± 0.008)× 10−1 13089 166.15
- - 402 (1.638 ± 0.102)× 10−1 13236 165.65

0704 0102 82 (1.054 ± 0.236)× 10−2 20 8.40
- - 182 (2.625 ± 0.120)× 10−2 433 10.47
- - 282 (2.261 ± 0.311)× 10−2 486 15.63
- - 384 (1.638 ± 0.341)× 10−2 509 19.57

0315 0709 99 (1.346 ± 0.249)× 10−2 33 2.48
- - 200 (6.137 ± 0.182)× 10−2 1089 21.69
- - 300 (6.518 ± 0.517)× 10−2 1235 17.28
- - 399 (5.767 ± 0.626)× 10−2 1308 21.64

0709 0315 91 (1.795 ± 1.22)× 10−3 2 9.33
- - 192 (1.640 ± 0.093)× 10−2 321 11.85
- - 292 (2.356 ± 0.317)× 10−2 379 12.08
- - 391 (2.513 ± 0.444)× 10−2 404 13.51

0307 0313 100 (8.975 ± 5.01)× 10−4 4 5.18
- - 200 (2.737 ± 0.116)× 10−2 606 26.65
- - 300 (3.298 ± 0.360)× 10−2 703 29.02
- - 402 (3.635 ± 0.515)× 10−2 741 34.42

0313 0307 93 (3.814 ± 1.78)× 10−3 12 6.01
- - 192 (7.324 ± 0.198)× 10−2 1429 10.64
- - 292 (1.116 ± 0.007)× 10−1 1627 12.14
- - 395 (1.124 ± 0.009)× 10−1 1722 27.77

aInitial states for two hydrogen molecules vjv′j′
bFinal states for two hydrogen molecules v′′′j′′′v′′′′j′′′′
cNumber of Trajectories in impact parameter range 0 - 1 a0 that contribute to the cross section for

a transition
dItalic type indicates differences are statistically significant at 95% confidence level
eBold type indicates differences are statistically significant at 99.95% confidence level
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Chapter 5

Conclusions and Future Directions

5.1 Microscopic reversibility results in H2 + H2

system

The results of the examination of detailed balance for the collisions between two

hydrogen molecules below 37 mEh (1 eV) energy were categorized into three classes.

A total of 472 transitions of direct and indirect cross sections were found to follow

detailed balance very strongly, 590 to somewhat follow detailed balance, and 5490 not

to follow detailed balance. The internal energy distributions among the three classes

of agreement show similar normal distributions of energy except in two cases where

the differences from the normal distributions were found to be statistically significant

but were not correlated with the classification.

The agreement of detailed balance of state-to-state cross sections in H2 + H2

system appeared to be random and was not found to be predictable. In QCT calcula-

tions, microscopic reversibility is not expected to be obeyed rigorously because of the

way of the quantization is imposed. Direct trajectories start precisely at the initial

(v, j) states and they end anywhere of the final (v′, j′) bin. Indirect trajectories are the

reverse and may be thought of as starting somewhere in the (v′, j′) bin and precisely

ending at (v, j). The objective of this work was to survey detailed balance for the

state-to-state cross sections in H2 + H2 system by using QCT method. The survey

of detailed balance was hoped to provide an important foundation for the calculation

of cross sections and rate coefficients in H2 + H2 system. By using these calculations

a model system of H2 + H2 can be built which can further used to understand the

cooling mechanism in interstellar medium where H2 molecules are dominant chemical

species. Appraisal of the results of this work demonstrated that the QCT method
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was not to be a feasible method for the calculation of the state-to-state cross sections

in the H2 + H2 system. Since this work began there has been further development in

quantum methods.

In 2014, the state-to-state rate coefficients for selected transitions involving

the (v=0, j≤ 10), (v=1, j≤ 8), and (v=2, j≤ 6) states were calculated by Bohr et

al.7 quantum mechanically. They have used the coupled-states approximation and

set the maximum energy at 23 mEh (5000 cm−1) above the internal energy for the

initial states of two H2 molecules. They have reduced the number of coupled channels

required by using the coupled-states approximation for the initial states of two H2

molecules. They have compared their method with the close-coupling formulation for

54 p-H2 - p-H2 transitions and have found good agreement.

To build a model system of H2 + H2 in the astrophysical environment, the state-

to-state rate coefficients of H2 + H2 among all (v, j) states need to be calculated. A

complete model would need to consider over 60,000 combinations of initial states

and over 35 billion possible transitions. Total energy in excess of 170 mEh would be

needed. Quantum mechanical methods could be used to achieve this if computational

power increases and improved techniques are developed.

5.2 Future directions

Additional cases with varying relative errors of direct and indirect cross sections

can be investigated to assess the significance of differences in energy distributions.

Marsh and McCaffery proposed a statistical mechanical model for the collisions in

diatom-diatom systems based on the assumption of angular momentum conservation

in rotational energy transfer.43 They applied it to the N2 + H2 system and have

found good agreement with experiments. They have examined the final rotational

distributions associated with vibrational energy transfer for several systems.44 Angu-

lar momentum constraints on the formation of products were studied by McCaffery et

al.45 They have suggested strategies for the examination of exit routes from the tran-
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sition state subject to angular momentum constraints. This examination suggested

that the reduction of angular momentum constraints in the exit channels from the

transition state may act as a form of catalysis. In the collisions of different diatomic

molecules, there is an asymmetry in the rotational energy levels that could promote

relaxation over excitation. The quadratic dependence of the rotational energy on

quantum number could be the source of this effect. They examined competitive

partitioning of rotational and vibrational energy in equilibration of a gas ensemble

consisting of diatomic molecules in a bath gas of different diatomic molecules.46 They

have found that the rotational distributions of two different types of molecules were

distinct.

Angular momentum conservation effects on inelastic transitions in H2 + H2

system were examined by dos Santos et al.47 quantum mechanically. They have

found that both energy and angular momentum performed fundamental roles in the

rovibrational transitions. For inelastic processes, the transitions that conserved the

internal rotational angular momentum and involved small changes of internal energy

of the two molecules were found to be favored.

This suggests that the angular momentum distributions for the three classes of

agreement with detailed balance could be explored further. This could be investigated

by rerunning selected batches of trajectories and retaining additional information

about angular momentum. This is beyond the scope of the current study.

5.3 Concluding statement

Detailed balance is not obeyed well for cross sections determined by QCT for

the H2 + H2 system. Therefore, it can be concluded that the QCT is not a robust

method for the evaluation of energy transfer cross sections and rate coefficients in

H2 + H2 system.
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Appendix

TERMINOLOGY AND ABBREVIATIONS USED IN THESIS

QCT-Quasiclassical Trajectory

PES-Potential Energy Surface

ASP-Aguado, Suarez, and Paniagua (J. Chem. Phys. 101, 4004, 1994)

BMKP2-Boothroyd, Martin, Keogh, and Peterson Potential Energy Surface in 2002

(J. Chem. Phys. 116, 666, 2002)

VV- Vibration-vibration

VT- Vibration-transition

DVERK- Discrete Variable Explicit Runge-Kutta

Bin Histogram Method- The continuously-valued quantum numbers is assigned to

a product state by using following criteria-

(v′′′ − 1/2) ≤ v′′ < (v′′′ + 1/2)

(j′′′ − 1) ≤ j′′ < (j′′′ + 1) (When j′′′ 6= 0)

0 < j′′ < 1 (When j′′′ = 0)

j′′′ is odd for ortho state and j′′′ is even for para state

Endoergic Transition- A Transition for which the initial state is of lower energy

than the final state

Exoergic Transition- A Transition for which the initial state is of higher energy

than the final state

Direct Cross Sections- Cross sections for a transition from an initial state to final

state generated from trajectories originating in the initial state

Indirect Cross Sections- Cross sections for a transition from an initial state to final

state calculated from trajectories originating in the final state

DB-Detailed Balance

First Impact Parameter Stratum- Impact parameter range is 0 - 1a0.

STA Class- Strongly Agree with Detailed Balance Class (Direct and indirect cross
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sections for a transitions that agree within the standard deviation 68% of the time

AND within the standard deviation 95% of the time are classified as strongly agree.)

SWA Class- Somewhat Agree with Detailed Balance Class (Direct and indirect cross

sections for the transitions that agree within the standard deviation 68% of the time

OR within the standard deviation 95% of the time are classified as somewhat agree.)

DIA Class- Disagree with Detailed Balance Class (Direct and indirect cross sections

for the transitions that NEITHER agree within the standard deviation 68% of the

time NOR within the standard deviation 95% of the time are classified as disagree.)
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