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ABSTRACT 

Increased awareness of the key ecological role of natural disturbance in 

maintaining ecological integrity and function coupled with forest harvesting becoming a 

dominant disturbance process has lead to an increasing desire to study natural disturbance 

at multiple scales. The eventual goal is to design harvesting regimes that achieve the 

ecological conditions that are maintained in nature by natural disturbance. Legacies of 

natural disturbance such as unburned forest remnants left by wildfire commonly occur 

scattered throughout large wildfires. The objective of this dissertation is to develop a 

better understanding of the role of unburned forest remnants in providing ecological 

diversity and sources of natural conifer regeneration. 

Two separate studies were undertaken. The first study characterized remnant 

habitats and compared them to large contiguous patches of remnant free young, mature 

and old forest. The second study examined post-fire recruitment surrounding remnant 

patches ofDouglas-fir. 

Remnants could be discriminated from other stand types based on measures of tree 

and snag density. Some remnants displayed a unique unevenaged lodgepole pine 

regeneration structure compared to other stand types. Differences between remnants and 

other stand types appear to stem from the influence of the wildfire through which they 

survived. Remnants displayed high variability in all ecological variables examined which 

appears to relate to the variable influence of wildfire on them. Remnants share many 

ecological characteristics with old forest and thus could provide some of the same 

functions. Douglas-fir remnants provide a positive influence on Douglas-fir recruitment in 

the post fire regenerating forest. 

Patches of mature forest left in managed cutovers could serve similar functions as 

wildfire remnants. However, selection and management criteria must be developed to 

ensure that the ecological characteristics of wildfire remnants are duplicated within these 
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reserves. The alternate regeneration dynamics demonstrated by some remnants could 

provide a model for the development of an alternate silviculture system for lodgepole pine 

dominated stands. 

There are many limitations to our ability to incorporate characteristics of natural 

disturbance into managed forests. For instance, removal of the trees to make wood 

products restricts our ability to leave large numbers of standing snags. However, leaving 

patches of trees behind which emulate the ecological characteristics of island remnants is 

achievable and can bring us closer towards achieving ecological sustainability in the 

managed forest. 
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CHAPTER 1 -INTRODUCTION 

1.1 BACKGROUND 

Today, land managers and scientists are being asked to develop, evaluate and apply 

management approaches that sustain ecological function and biological diversity while 

maintaining a viable forest industry. The traditional approach of setting aside wilderness and 

other protected areas within an overall matrix of intense resource extraction was directed at 

preserving wilderness and natural systems. Because such protected areas were considered 

pristine and inviolate, management was largely restricted to emergency measures such as fire 

control. On the remainder of the land area a single species emphasis approach was usually 

applied, featuring habitat management guidelines for large game species. For example, in 

British Columbia, management guidelines have been developed for mule deer ( Odocoileus 

hemionus) (Armleder et. a/. 1986) and mountain caribou (Rangifer tarandus) (Stevensen et. 

a/. 1994). 

The spatially explicit management strategy of preserves and intensely managed land 

was deemed adequate for the provision of renewable sources of timber, recreational 

opportunities, and game species and met perceived public concern over the protection of 

alternative forest values. Today, however, the biological values of natural ecosystems such as 

regulation of water and nutrient flows, cycling of carbon and organic matter, are also 

recognized. Within this context, the protected area approach has become inappropriate. 

Protected areas often do not include low elevation ecosystems where net primary productivity 

is greatest and are generally too small to protect wide ranging large mammals (Harris and 

Eisenburg 1989). Prior to the more comprehensive protected areas strategies of recent years, 

such as the one recently adopted in British Columbia (1995), protected areas were often 

chosen for their visual majesty or recreation value (Gotmark and Nilsson 1992). Given these 

and other limitations it is unlikely that maintenance of biological values will be achieved by a 

collection of protected areas that represent a small portion of the land base. Rather, the 
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maintenance of biological values requires management strategies that encompass all 

landscapes and address multiple temporal and spatial scales (Franklin 1993). 

Public criticism of past practices and better understanding of natural systems has 

resulted in the emergence of new ideas about forest management (Maser 1988, Franklin 1989, 

Hansen et al. 1991). One such idea is that managed disturbances should be designed to 

achieve the landscape patterns and habitat conditions that are maintained in nature by natural 

disturbance regimes. This suggestion is derived in part from emerging evidence that 

disturbance has a key ecological role in many forested ecosystems (Zackrisson 1977, Van 

Wagner 1978, Hessburg et al. 1994). The underlying assumption is that the biota of a forest is 

adapted to the conditions created by natural disturbances and thus should cope more easily 

with the ecological changes associated with timber harvest if the patterns created resemble 

those of natural disturbances (Hunter 1993, Swanson et al. 1993, Bunnell1995). 

Natural disturbances maintain plant and animal diversity over time and space by 

maintaining structural complexity within stands and by influencing the size, distribution, edge 

characteristics, and dispersion of stands across the landscape (Zackrisson 1977, Hansen et al., 

1991, Hessburg et al. 1994). The size, shape, and location of individual forest patches or 

stands profoundly affect forest community stability and productivity (Franklin and Forman 

1987, Frank and McNaughton 1991). Biological legacies of natural disturbance such as old 

large diameter trees, snags and woody debris play a fundamental role in maintaining the long 

term ecological functioning of the ecosystem (Hansen et. al. 1991, Maser 1992, Ammaranthus 

1994, Franklin 1994). The impacts of forest management appear now to exceed and confound 

those of natural disturbance agents (Swanson et. al. 1993, DeLong and Tanner 1996). Hence, 

understanding how forest landscape and stand elements were affected by natural disturbance is 

needed in order to develop alternative management systems which more closely approximate 

natural disturbance in their effects. 
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Developing an understanding of natural disturbance requires research at a variety of 

scales. Some progress has been made within the northern1 forests of British Columbia in 

documenting particular aspects of pattern and process in natural forests all of which have 

relevance to this study. Two landscape level studies have been undertaken, one comparing 

wildfire and harvesting patterns (DeLong and Tanner 1996) and another investigating how 

simulated landscape mosaic patterns change under the imposition of alternative disturbance 

rules (Andison 1996). Both these studies determined the prominent historic role of wildfire in 

determining landscape pattern. Andison (1996) found that age-class distribution in his study 

area was unstable illustrating a dynamic temporal aspect of natural disturbance. DeLong and 

Tanner (1996) concluded that wildfires had more complex shapes and contained more residual 

structure, in the form of surviving islands of trees, when compared to harvested areas. There 

have also been two stand level studies, one examining the successional changes in natural 

forests following wildfire (Clark 1995) and another involving analysis of stand structural 

attributes associated with "old-growth" forests (Kneeshaw 1992). Both studies determined 

that succession best fit an initial floristics model with the recruitment pattern involving early 

invasion of lodgepole pine (Pinus contorta) with lesser amounts of subalpine fir (Abies 

lasiocarpa) and hybrid white spruce (Picea glauca x engelmannii) and a gradual shift in time 

to stands dominated primarily by subalpine fir and hybrid white spruce. Old growth stands 

were characterized by a broad range in stem diameter, negative exponential stand age 

structure and large numbers of large logs and snags. Clark (1995) also documented stands 

where understory and overstory or just understory trees had survived wildfire. Remnant 

islands of surviving trees have been documented in other studies and appear to be an 

important feature of stand replacement wildfires (Eberhart and Woodward 1987, DeLong 

I will consider the term "northern forests" to be forests within the sub-boreal and boreal regions of Canada 
and more specifically those within British Columbia which are dominated by lodgepole pine (Pinus 
contorta) and hybrid white spruce (Picea glauca x engelmanii). 
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andTanner 1996). These "island remnants" occur scattered throughout all wildfires that have 

been examined and may play an important function in these forests. To date, aspects of the 

amount of area occupied, size and landscape pattern of island remnants has been described, 

but stand level characteristics of these habitats is lacking. Island remnants have been 

hypothesized to play an important role as wildlife habitat and as important seed sources for 

natural regeneration ofnon-serotinous species (Eberhart and Woodward 1987). This later role 

is of special interest with respect to Douglas-fir (Pseudotsuga menziesii) due to recent 

concern that its presence in sub-boreal landscapes of the Prince George Forest Region is at 

risk due to large Douglas-fir bark beetle outbreaks and lack of artificial regeneration success 

(Oniel et. a/. in prep.). Examining island remnant habitats may have important management 

implications; specifically, what might the consequences be of not managing for equivalent 

habitats in future managed landscapes? 

1.2 GOALS AND OBJECTIVES 

The overall purpose of this research is to investigate whether ecological features 

associated with island remnants may add a dimension of ecological diversity or provide 

important functions beyond that provided in "remnant free" mosaics of young, mature, and old 

forest. Specifically, I am interested in whether aspects of stand structure, vegetation, and 

regeneration in island remnants are distinct in comparison to remnant free areas of young, 

mature, and old forest. 

My approach is to characterize the stand structure and composition of island remnants 

and to compare these characteristics to those in large contiguous patches of young, mature 

and old forest. I will interpret and discuss the potential significance of any differences and 

examine the role of island remnants as sources of cavity trees for wildlife and seed for natural 

regeneration ofDouglas-fir. My specific objectives are as follows: 
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1) To determine if island remnants differ significantly with respect to stand structure, 

amount and decay state of coarse woody debris and floristic composition compared to 

young, mature, and old large contiguous forest patches. 

2) To determine if the abundance of trees containing bird-excavated cavities within island 

remnants is different from that in young, mature, and old large contiguous forest 

patches. 

3) To determine if differences exist in regeneration status of island remnants compared to 

large contiguous forest patches of a similar age. 

4) To describe the patterns ofDouglas-fir regenerating in previously burned areas where 

remnant patches ofDouglas-fir occur. 

The main body of the thesis is organized into two sections (Chapters 2 and 3), each 

with its own introduction, methods, results and discussion. Chapter 2 examines the general 

hypothesis that island remnant stand structure and vegetation characteristics are significantly 

different from those of large contiguous forest patches on ecologically similar sites. The 

implications for wildlife are also discussed. Chapter 3 examines the hypothesized role of island 

remnants as a seed source for Douglas-fir regeneration in the surrounding forest. Overall 

conclusions and recommendations are presented in Chapter 4. 

1.3 STUDY AREA DESCRIPTION 

I conducted the study within the plateau portion of the Mossvale moist cool variant of 

the Sub-boreal Spruce Zone (SBSmk1)(DeLong et. a/. 1993), which extends approximately 

54"N- 55° Nand 122° 30' W- 124° Wand ranges 800- 1000 min elevation (Figure 1.1). 



Figure 1.1. 
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Map of study area showing plot locations (2 denotes where 2 plots are located 
close to one another). 
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The area is relatively flat with many features of heavily glaciated terrain including eskers, 

kettle topography and numerous well distributed wetlands. The study area covers 782 213 ha, 

approximately 660 000 ha of which is forested. 

The study area has relatively cool, snowy winters and warm, moist summers that are 

short in duration (Meidinger et. a/. 1991). The SBSmk1 has a mean annual precipitation of 

727 mm and a mean annual temperature of 1.5°C {Reynolds 1989). Mean seasonal 

precipitation (May-Sept.) is 273 mm, mean annual snowfall 306 em and average frost free 

period is 73 days (Reynolds 1989). The climate is transitional between the drier warmer 

portions of the Nechako plateau further south and the wetter, colder mountain slopes at 

higher elevation to the north. 

Soils, geology and landforms 

Bedrock geology in the study area is dominated by volcanic rocks of Mesozoic age, 

with lesser amounts of metamorphic rocks (DeLong et. a/. 1993). Soils have developed on 

predominately morainal and lacustrine materials. Morainal deposits generally have gravelly 

loam and clay textures, associated with Gray Luvisolic soils (DeLong et. a/. 1993). Much of 

the level morainal deposits are very compact at depth (> 15 em) due to heavy glacial action. 

Organic soils (Fibrisols) occur in depressional sites in rolling drumlinized landscapes (DeLong 

et. a/. 1993). Gray Luvisolic soils have formed on fine-textured (silty clay, clay) lacustrine 

deposits which occur in scattered pockets throughout the study area (DeLong et. a/. 1993). 

Vegetation 

Upland forest stands are generally dominated by lodgepole pine (Pinus contorta) or 

hybrid white spruce (Picea glauca x engelmannii), with localized areas dominated by 

trembling aspen (Populus tremuloides) and -scattered patches dominated by Douglas-fir 

(Pseudotsuga menziesii) or paper birch (Betula papyrifera). Subalpine fir (Abies /asiocarpa) 
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occurs commonly in the understory of all but the driest stands and occasionally forms a 

significant portion of the main canopy on wetter sites. Black spruce (Picea mariana) 

commonly occurs in the understory of stands on compact till and lacustrine soils and forms the 

main canopy of wetland forests which are common throughout the study area. Black 

cottonwood (Populus balsamifera ssp. trichocarpa) occurs as pure stands along major water 

courses and as scattered individuals across the landscape where there is abundant water 

available in the soil. 

Common shrubs on mestc sites are Vaccinium membranaceum, Rosa acicularis, 

Rubus parvif/.orus, Lonicera involucrata, and Spiraea betulifolia. On drier and poorer sites 

Shepherdia canadensis and Vaccinium myrtilloides are more prevalent whereas on wetter 

sites Oplopanax horridus, Viburnum edule, or Lonicera involucrata tend to dominate. 

Common mesic site dwarf shrubs, herbs and grasses include Comus canadensis, Linnaea 

borealis, Vaccinium caespitosum, Clintonia unif/.ora, Geocaulon lividum, Lycopodium 

annotinum, Epilobium angustifolium, and Aralia nudicaulis. Arctostaphylos uva-ursi, 

Oryzopsis asperifolia, Melampyrum lineare, and Chimaphila umbellata are common in the 

herb layer of drier or poorer sites and the ferns Gymnocarpium dryopteris, Tiarel/a unifoliata 

and trifoliata, and Athyrium .ftlix-femina are common on wetter sites. The feathermosses 

Plerozium schreberi, Ptilium crista-castrensis, Hylocomium splendens and Dicranum 

polysetum commonly dominate the forest floor except on drier sites where there can be 

significant lichen cover predominately composed of Cladina spp., Cladonia spp., Peltigera 

spp. and Stereocaulon spp. and on wetter sites where the leafy mosses Mnium and 

Brachythecium spp. are common. Vascular plant nomenclature follows Douglas et. a/. (1991, 

1990, 1989) and moss nomenclature follows Schofield (1992). 
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CHAPTER 2- COMPARISON OF ISLAND REMNANTS TO MATRIX FOREST 

2.1 INTRODUCTION 

"Biological legacies" of natural disturbance such as old large diameter trees, snags and 

woody debris play a fundamental role in maintaining the long term ecological functioning of 

forest ecosystems (Ammaranthus 1994; Franklin 1994; Hansen et. a/. 1991). Remnant patches 

of forest, which commonly occur scattered throughout the area burned by large wildfires, are 

one such legacy. Studies by DeLong and Tanner (1996) in the sub-boreal forest and by 

Eberhart and Woodward (1987) in the boreal forest indicate that remnants comprise 3 - 15%· 

of the total area of a wildfire and that the proportional amount of island remnant area tends to 

increase with the size of the wildfire. Carried over from the pre-disturbance to the post-

disturbance ecosystem, these biological legacies may strongly influence the structure, function, 

and composition of the recovering ecosystem (Franklin 1994). They may be important for the 

maintenance or re-establishment of a variety of organisms. 

In many forest types~ wildfire has played a critical role in controlling the distribution of 

habitat types across the landscape and in shaping stand structure, composition and biological 

diversity (Agee 1993, Duchesne 1994, Whelan 1995, DeLong and Tanner 1996). Prior to fire 

suppression, stand replacing wildfires were the main natural disturbance shaping the forests of 

sub-boreal and boreal plateau landscapes dominated by lodgepole pine (Pinus contorta), white 

spruce (Picea glauca) and trembling aspen (Populus tremuloides) (Rowe and Sc6tter 1973, 

Zackrisson 1977, Van Wagner 1978). Patterns of vegetation on the landscape resulted 

primarily from infrequent, large, highly intense fires (Johnson 1992). The overall area burned 

by individual stand-replacing wildfire events often exceeds 10 000 ha (Eberhart and 

Woodward 1987, Andison 1996) and average fire return interval ranged from 80 to 125 years 

(Johnson 1992, Bunnell 1995, Andison 1996). These natural fires caused extensive mortality 

in canopy and understory plants; and because active crown fires were so common, high levels 

of tree mortality was usual (Johnson 1992). Natural regeneration of burned stands was 
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probably prompt as suggested by the vigorous and prompt natural stocking by lodgepole pine 

after clearcutting within the sub-boreal landscape (Eremko 1990). This leads to the relatively 

even-aged stands of lodgepole pine which dominate the landscape. 

Although the temporal and spatial patterns generated by boreal and sub-boreal 

wildfires may be simpler than those generated in some natural systems, the patterns are 

considerably more complex than those created by current clearcut harvest disturbances 

(Andison 1996, DeLong and Tanner 1996). Shifts in wind and the complex internal wind 

patterns generated during wildfire contribute to shape complexity which increases as fire size 

increases (Eberhart and Woodward 1987, DeLong and Tanner 1996). In contrast, clearcuts 

are characterized by uniform edges and low shape complexity regardless of size (DeLong and 

Tanner 1996). Fires rarely if ever bum completely uniformly, and typically include unburned 

or lightly burned areas and trees that survive the fire (Eberhart and Woodward 1987). In 

contrast, up until the past few years clearcut harvest disturbances contained few or no mature 

trees within them (DeLong and Tanner 1996). 

In northern forests remnant unburned islands commonly occur scattered throughout 

the burned area of large wildfires and can comprise up to 15% of the total disturbed area 

(DeLong and Tanner 1996). Their occurrence appears to be related to combinations of 

topography and soil moisture which reduce fire intensity, changes in wind during the fire, 

timing of bum relative to diurnal temperature and wind patterns and disruption of the 

horizontal continuity of the fuel bed by such factors as water bodies or rock (Foster 1983, 

Eberhart and Woodward 1987). Island remnants in northern forests are generally small. 

DeLong and Tanner (1996) found that within wildfires less than 1000 ha in total area all 

remnants were < 10 ha. On average, 50% of the remnants within a wildfire were less than 2 

ha. The small size of these island remnants is likely to affect the microclimate within them. 

Edge effects on microclimate and vegetation dynamics have been demonstrated to extend at 

least 2 tree heights into forest patches (Oke 1978, Chen et. a/. 1992); hence the majority of 

island remnants consist mostly of edge habitat. 
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The usefulness of wildfire remnants as wildlife habitat was demonstrated by Gasaway 

and DuBois (1985) in a study of the ecological impacts of large fires on moose. They found 

that 67% of the moose observed within a burned perimeter were located in unburned islands 

which represented only 15% of the total fire area. Remnants may also act as biological refugia 

for certain organisms. Hypogeous fungi have been demonstrated to be more abundant in 

remnant Douglas-fir stands than in the surrounding young forest (Ammaranthus 1994). The 

role of island remnants may be especially important in landscapes where dispersed residual 

habitat features such as scattered individual live trees or snags are uncommon. DeLong and 

Tanner (1996) found that within wildfires in a portion of the sub-boreal landscape there was 

only an average of 0.75 live and 0.26 dead dispersed remnant trees per hectare when island 

remnants were not considered. Since island remnants are older than the surrounding forest 

which regenerates around them they should typically contain habitat attributes such as larger 

diameter live and dead trees that are rare in the surrounding young forest. Thus, they may 

represent critical habitat in landscapes where the biota are adapted to conditions maintained by 

stand replacement wildfire. 

Many studies have examined spatial and temporal dynamics in temperate forests. 

Current works emphasize habitat comparisons of old growth forest to younger forests (Spies 

and Franklin 1991, Arsenault and Bradfield 1995), gap dynamics (Collins and Pickett 1988, 

Mladenoff 1990; Philips and Shure 1990) and habitat change along edge gradients (Chen et. 

a/. 1991). A successional chronosequence study (Clark 1995) and a study examining 

characteristics of old growth forest (Kneeshaw 1992) have been conducted within the sub-

boreal forests of British Columbia. I have found no studies that examine habitat differences 

between remnants of natural disturbance and large contiguous "matrix" forest. 

In this study, I examine stand structural data such as tree density, basal area, CWD 

volumes, presence absence and abundance of tree regeneration, and presence/absence and 

abundance of the understory vegetation to determine if there are differences between island 

remnants and contiguous forest which would suggest functional importance. Previous studies 
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have used these same variables to investigate structural and functional relationships of old 

growth forests (Spies and Franklin 1991, Arsenault and Bradfield 1995). 

The overall hypothesis is that island remnants constitute distinct habitats within SBS 

landscapes, and that their uniqueness derives from their small size and from changes caused by 

the wildfire that created them. My approach is to test whether selected attributes of island 

remnant habitats differ from those in large contiguous patches of remnant free forest of 

different age classes. My specific hypotheses are: 

1) Island remnants can be discriminated from large contiguous forest patches of different 

ages on ecologically similar sites based on differences in diameter class distribution and 

density of live trees and snags above certain thresholds. 

2) Island remnants can be discriminated from large contiguous forest patches of different 

ages on ecologically similar sites based on differences in volume of different decay 

classes of coarse woody debris. 

3) Island remnants can be differentiated from large patches of old forest based on 

differences in presence/absence and abundance of understory tree species 

regeneration. 

4) Island remnants are floristically different from large contiguous forest patches of 

different ages on ecologically similar sites. 

2.2 METHODS AND ANALYSIS 

In this study, an island remnant is defined as a patch of older forest surrounded by 

younger forest where the size of the patch is not larger than 10 hectares. The definition 

invokes the findings of DeLong and Tanner (1996) that wildfires less than 1000 ha in total 

area have remnant sizes of< 10 ha. 

I used quadrat plot sampling techniques to compare vanous ecological attributes 

between island remnants and large contiguous forest patches. I used maps of stand age of the 

whole study area and more detailed maps of individual wildfires to identify potential sample 
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sites. Potential island remnant sample locations were also outlined on air photos to assist in 

field location. 

I used the following selection criteria to minimize between-site variation in my sample. 

1) sites must have been mesic in moisture regime and range from poor to medium in 

nutrient regime; 

2) sites must be classified into either the PlSb - Feathermoss site series (SBSmk1/06) or 

Sx- Huckleberry site series (SBSmkl/01) (DeLong et. a/. 1993); 

3) sites must occur on morainal or lacustrine soils; 

4) slope position must be either level or mid-slope; 

5) slope gradient must be less than 20%; 

6) sites must have no evidence of prior tree cutting due to harvesting or thinning 

operations; and 

7) sample plots must be at least one tree length (approx. 20-30m) from obvious clearings, 

stands of another age, or other stands not meeting these criteria. 

Once a suitable stand was located a 30m by 30m plot was established in it. I placed the 

plot within the stand in the first available location that satisfied the selection criteria. The 

method of plot location approximates the releve method which represents a compromise 

between complete subjectivity and complete randomness (Barbour et. a/. 1987). I sampled a 

total of 40 plots, 10 each in three different age classes of fire origin stands ( 40-70, 71-140, 

141 +) and 10 in island remnants within the 40-70 year old stands. Sampling occurred between 

May and September in 1994 and 1995. 

At each sample plot I described the site and soil according to the methods outlined in 

Luttmerding et. a/. (1990). Site description included slope gradient (%), aspect (<) and slope 

position. I described the soils in one pit which was a minimum of 50cm into the mineral soil. 

For all soil layers with strongly contrasting physical characteristics, I recorded percent coarse 

fragment content (>2 mm) and soil texture of::;; 2mm fraction. I also estimated effective 
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rooting depth and identified any root restricting layers (Luttmerding et. a/. 1990). I estimated 

the depth of the humus layer by measuring the depth in 5 randomly located positions within 

the plot. I also recorded evidence of visible damage to trees within the plot due to disturbance 

agents (e.g. windthrow, fire scarred trees). 

I conducted all statistical analysis using SYSTAT software (Systat Inc. Evaston, Ill) 

except for some ofthe vegetation data analysis for which PC-VTAB (B.C. Min. For. Victoria, 

B.C.) and DECORANA (Cornell University) were used. I used Slidewrite Plus (Advanced 

Graphics Software Inc. Carlsbad, CA) and Microsoft Excel (Microsoft Corp.) for all final 

graphics. 

I assigned stands to four categories for the purposes of analysis. Assignment to the 

categories was first based upon stand type (remnant or matrix forest) and then stand age 

within matrix forest types (40-70, 7l-140, >141). 

I tested each variable used in Analysis of Variance (ANOVA) for homogeneity of 

variance using the Fmax test (Sokal and Rohlf 1969). Where noted in the results, I removed 

young and mature stands prior to ANOVA testing because, when included, the assumption of 

homogeneity of variance was violated. During ANOV A testing of the variables the residuals 

were saved and plotted against expected values for a normal distribution to assess normality 

(Wilkinson et. a/. 1996). These plots were compared to plots of 10 different random variables 

plotted against expected values for a normal distribution using a feature within SYSTAT. For 

all cases where ANOV A results are provided the variables met the assumptions of 

homogeneity ofvariance and normality. 

Overstory Stand Structure 

I collected the following data for of all live and dead standing trees ~ 7.5 d.b.h. within 

each 30m x 30m plot: 

1) diameter (em) at breast height (1.3m); 
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2) decay level (snags only): (intact, intact to partially soft, hard large pieces, small soft 

blocky pieces, or soft and powdery); 

3) presence of cavities: (large (:2: 3cm), small ( < 3cm) or both); 

For the species dominating the main canopy, generally lodgepole pine, I measured 

heights and ages for a minimum of 6 trees from the main canopy. For other species present in 

the canopy I sampled a minimum of 2 trees. I selected measurement trees which were free of 

major defects (e.g., broken top) and represented the range of heights in the main canopy. I 

also measured heights and ages of all survivors from earlier disturbances present in the 

canopy, as indicated by fire scars or obvious larger size. I measured all heights using a 

Criterion laser and all ages were counted from cores extracted using an increment borer. 

I computed basal area and density of trees and snags by species and 5 em diameter 

classes for each sample plot. I used this data to construct plots of density by diameter class for 

each plot and for testing of the hypothesis relating to stand structure. I also computed average 

tree diameter for each plot and the number of trees containing wildlife feeding cavities. A 

large number of potential variables could be constructed using species, condition and diameter 

criteria. Therefore, I used one or more of the following criteria to decide which variables to 

include in analysis of variance (ANOVA) and discriminant analysis: the variable was related to 

a characteristic that was documented to be selected for by a particular group of bird species 

(e.g., snags >25cm for certain cavity nesters); the variable was likely to show sharp contrasts 

between some or all of the stand types (e.g., live tree density); and/or the variable could be 

easily measured in future in order to classify stands. Table 2.1 shows the variables selected 

and reasons for their inclusion. Basic statistics were computed for each selected variable. I 

used Analysis of Variance (ANOVA) and Tukey's pairwise multiple comparisons tests for 

significance testing of selected variables (Wilkinson et. al. 1996). All selected variables were 

used to conduct discriminant analysis to determine if certain stand attributes could be use~ to 

discriminate between stand types (Wilkinson et. a/. 1996). 
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Table 2.1 . List of attributes included in statistical analysis and reasons for inclusion. 

Reasons for Inclusion in Discriminant Analysis 
Attribute 
> 7.5-cm-d.b.h. tree density likely to show sharp contrasts between stand types due to high 

initial densities in young stands and self-thinning over time; 
commonly measured attribute during operational surveys 

> 7.5-cm-d.b.h. basal area likely to show sharp contrasts between stand types due to 
changes of basal area over time; commonly measured attribute 
during operational surveys 

> 7.5-cm-d.b.h. snag density likely to show sharp contrasts between stand types due to high 
levels of tree mortality in intermediate-aged stands; 
commonly measured attribute during operational surveys 

> 15-cm-d.b.h. tree density represents trees large enough to meet the requirements of 
certain small cavity requiring bird species1 

> 25-cm-d.b.h. tree density represents trees large enough to meet the requirements of 
certain large cavity requiring bird species 

> 15-cm-d.b.h. snag density represents snags large enough to meet the requirements of 
certain small cavity requiring bird species 

> 25-cm-d.b.h. snag density represents snags large enough to meet the requirements of 
certain large cavity requiring bird species 

based on tree and snag requirements for birds in Thomas et. a/. 1979 and Neitro et. a/. 
1985). 
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Coarse Woody Debris 

I gathered coarse woody debris (CWD) information along 90m transects using a line 

intercept method adapted from Trowbridge et. a/. (1989). The first 60m of the line transect 

consisted of two edges of the 30m x 30m quadrat plot at right angles to one another. To 

complete the transect, I used a diagonal line from the plot comer, where the first 60m of 

transect ended, through the plot centre. I recorded the following information for each piece of 

woody debris~ 7.5cm dbh, that intersected the tape: 

1) diameter (em) at the point of interception; 

2) height (em) above the ground (measured to bottom oflog); 

3) decay level: (intact, intact to partially soft, hard large pieces, small soft blocky pieces, 

or soft and powdery); 

For stems classed as soft and powdery diameter was measured both parallel and perpendicular 

to the ground surface. An average of these measurements was used for diameter to correct for 

the tendency of these logs to have become elliptical in shape. 

Volume estimates by decay and 5 em diameter class were calculated using the formula 

described in Lofroth ( 1992): 

where Vis volume in m3/ha, dis diameter (em) of each piece of woody debris, and Lis the 

length (m) ofthe transect. I conducted a one way ANOVA to test for significant differences in 

woody debris volume (total, and by decay class) between stand types (Wilkinson et. a/. 1996). 

This was followed by Tukey multiple comparisons procedure to contrast island remnants with 

the other stand types (Wilkinson et. a/. 1996). I also conducted discriminant analysis to 

determine if stand type could be discriminated on the basis of total CWD volume or by 

volume by decay class (Wilkinson et. a/. 1996). 
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Tree Species Regeneration 

I sampled tree species regeneration in 5 each of the quadrat plots established within 

island remnants, young and old large contiguous forest patches. I established nine 3. 99 m 

radius (50 m2
) plots using a systematic grid to assure that there were no overlaps between 

adjacent plots. Plot centres were established at 5, 10 and 15m along each of three lines which 

I established perpendicular to a plot edge at 5, 10, and 15m from that edge. 

I recorded the following data for all trees ~ 60 em but < 10 m: tree species, total 

height (em), and current and previous years height increments (em). 

ANOV A was used to test for differences in total number by species among the stand 

types. A graphical comparison of lodgepole pine regeneration by height class was made 

between young stands and remnants. 

Floristics 

I identified all vascular plant species within the 30 m x 30 m plot and estimated and 

recorded their percent cover. I estimated to the closest 5% for species exceeding 20% cover, 

and to the closest 1% for species with less than 20% cover. A value of either 0.5% or 0.1% 

was assigned to species with less than 1% cover. My ocular estimates of percent cover were 

determined as the proportion of plot covered if leaf area of the species was projected 

vertically to the ground. Non-vascular plants were only recorded when occurring over humus. 

I examined floristic similarity between stand types using coefficients of similarity and 

employed both a classification approach and ordination technique to examine floristic 

differences between stand types. I calculated average coefficient of similarity between stand 

types using all available methods within PC-VT AB, a vegetation classification program used 

in the Biogeoclimatic Ecosystem Classification for British Columbia. The four measures used 

are based on species presence, percent cover, prominence (% cover X sqrt(presence) and the 

Goldstream coefficient (presence X sqrt(% cover). For presence, I used SORENSON's 

presence community coefficient (SPCC): 
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IS.= (2c/A + B)x 100 

where c = number of species common to both stand types, A = total number of species in 

stand type A, and B = total number of species in stand type. 

For the quantitative measures I used the MOTYKA quantitative modification of 

SPCC: 

ISMo = 2 Mw/MA+MB 

where Mw = the sum of the smaller quantitative value (e.g., percent cover, prominence or 

Goldstream coeffecient) of species common to stand types A and B, MA = sum of 

quantitative values of all species in stand type A, MB = sum of quantitative values of all 

species in stand type B. 

I generated vegetation summary tables using PC-VT AB to compare vegetation among 

the stand types. The summary table is a species by vegetation unit (stand type) matrix that lists 

mean cover and presence class for each species (row) and vegetation unit (column). Presence 

class is a value from I-V indicating percent presence of species in a vegetation unit where I = 

1-20%, II= 21-40%, ill= 41-60%, IV= 61-80%, V = 81-100%. I also computed diagnostic 

criteria which indicate the significance of species in a vegetation unit for differentiating it from 

other units using presence and species significance values (Pojar et. al. 1987). Species 

significance values are a function of percent cover where 1 = 0.4-1.0, 2 = 1.1-2.2, 3 = 2.3-

5.0, 4 = 5.1-10.0, 5 = 10.1-20.0, 6 = 20.1-33.0, 7 = 33.1-50.0, 8=50.1-75.0, 9=75.1-100. The 

diagnostic criteria according to Pojar et. a/. (1987) were computed as follows: 

(d) Differential- Species presence class is~ ill in a vegetation unit and at least 2 presence 

classes greater than in other vegetation units. 

( dd) Dominant Differential - Species is not Differential in any vegetation unit, but presence 

class is ~ III and species significance is 2 better than any other vegetation units. 

( cd) Constant Dominant - Presence class = V in only 1 vegetation unit and species 

significance is ~ 5. 

(c) Constant - Presence class = V as in the ( cd) criterion, but species significance is < 5. 
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(ic) Important companion - constant dominant or constant species but shows affinity to a 

particular unit as shown largely by its absence from other units under comparison; 

presence class ~ II, species significance is variable. 

Using this approach, a "diagnostic combination of species" (DCS), which may include any of 

the defined diagnostic criteria, must be exclusive for any unique vegetation unit. Generally, to 

be exclusive the DCS must include a differential of dominant differential species. 

I generated plot summary vegetation tables for each vegetation unit using PCVT AB 

"long veg tables" function. These tables provide species by plot matrix for each vegetation 

unit. 

I examined variation in species composition among stands using indirect ordination 

techniques. I constructed a samples by species data matrix and performed Detrended 

Correspondence Analysis (DCA) as described by Gauch (1980) using DECORANA to 

produce a stand ordination from the matrix. I examined the stand ordinations to determine if 

the island remnant stands could be differentiated from the other stand types based on their 

position along the major axis of the ordinations. 

2.3 RESULTS 

Overstory Stand Structure 

In the young stands ( 40-70 yrs old), most of the lodgepole pine stems were confined 

to the two smallest diameter classes, thus indicating domination by a single cohort that 

initiated following wildfire (Fig. 2.1(a), Appendix 2). In the mature, old, and remnant stands, 

stems were distributed over at least 3 diameter classes and black spruce, white spruce and 

subalpine fir were generally more abundant (Fig. 2.1(b), Appendix 2). Lodgepole pine density 

fell steadily from a single peak in the majority of stands. However, in 2 of the remnants a 

second peak occurred in the smallest diameter class (7.5 - 12.5 em) (Fig. 2.2), indicating the 

establishment of a second cohort of lodgepole pine. 
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Figure 2.1. Density oflive trees by diameter class for a) a young forest stand and b) an old 
forest stand illustrating the larger spread in diameter class distribution in older 
stands relative to young stands. 
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showing two peaks oflodgepole pine density. 
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One way Analysis of Variance (ANOVA) followed by Tukey's multiple comparisons 

test indicated significant differences between stand types for several overstory attributes. Tree 

density was highest in young stands, intermediate in mature stands and lowest in remnant and 

old stands and snag density was higher in mature stands than other stand types (Table 2.2 & 

2.3). Average density of live stems> 15cm (DL15), potentially of use to small cavity nesting 

species, was significantly lower in young stands than in other stand types (Table 2.2, 2.3 & 

Fig. 2.3a ). Average density of snags >15 em (DS15) was lower in young stands than in 

remnant and old stands and higher in old stands than in mature stands (Table 2.2, 2.3 & Fig. 

2.3b). Average density oflive stems >25cm (DL25), potentially ofuse to large cavity nesting 

species, was significantly higher in old stands than in remnants (Table 2.2, 2.3 & Fig. 2.3a). 

Average density of snags >25cm (DS25) was not significantly different between old and 

remnant stands. Trees or snags >25cm were rare or absent in young and mature stands but 

these stand types could not be included in the ANOV A because, when included, the 

assumption of homogeneity ofvariance was violated. DL25 was 9 and 59 s.p.h. and DS25 3 

and 2 s.p.h., respectively, for young and mature stand types (Table 2.2 & Fig. 2.3). Average 

diameter of stems >7.5 dbh was significantly lower in young stands than other stand types and 

higher in old stands than in mature stands (Table 2.2 & 2.3). Greater variability in stand 

structure of remnants and old forest stand types compared to young and mature stands is 

indicated by the larger standard deviations for average tree diameter (Table 2.2). 

Trees containing feeding cavities were found in all stand types and no significant 

differences in average number were detected between stand types. However, the mean number 

of trees with cavities was highest in remnants and 8 of 10 remnant plots had cavity trees 

versus 7, 5, and 4 for old, mature and young stands respectively. 

Density oflive trees greater than 25cm and overall tree density were the most effective 

stand structure variables tested for discriminating among stand types (Table 2.4). The 

discriminant functions correctly classified 34 of the 40 stands demonstrating an overall 
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Table 2.2. Means and standard deviations of selected stand characteristics for young, mature, 
remnant and old stand types and F ratio and p values for ANOV A testing (Df=3 
for ANOVA where all stand types included and Df=1 where only remnant and old 
stands included). 

Stand Type 
Stand Characteristics 

Young Mature Remnant Old F p 

Tree density 2597 (471) 1910 (780) 1165 (394) 984 (263) 24.44 0.000 
Snag density 268 (198) 460 (193) 158 (78) 170 (72) 8.92 0.000 
>15-cm-d.b.h. tree density 408 (273) 860 (189) 693 (171) 698 (215) 7.59 0.000 
>25-cm-d.b.h. tree density 9 (11) nil 59 (55) ni 221 (90) 334 (99) 7.23 0.015 
>15-cm-d.b.h. snag density 12 (17) 59 (52) 73 (45) 126 (54) 11.29 0.000 
> 25-cm-d.b.h. snag density 3 (5) ni 2 (5) ni 15 (17) 31 (27) 2.38 0.140 
# of cavities/ha 13 (18) 9 (11) 30 (34) 18 (20) 1.68 0.189 
Average tree d.b.h. (em) 11.3 (1.2) 15.4 (1.9) 17.7 (3 .7) 20.8 (3.3) 24.31 0.000 

1 stand type not inlcuded in ANOV A due to assumption of homogeneity of variance being violated when 
included. 

Table 2.3. p values for Tukey pairwise comparisons for stand characteristics where all stand 
types were included in the analysis and where ANOVA was significant at <0.05. 

Stand Type Pairwise Combinations 
Stand Characteristics 

Y-Ml Y-R Y-0 M-R M-0 R-0 
Tree density 0.003 0.000 0.000 0.020 0.002 0.822 
Snag density 0.030 0.358 0.461 0.000 0.001 0.998 
>15-cm-d.b.h. tree density 0.000 0.027 0.024 0.325 0.348 1.000 
>15-cm-d.b.h. snag density 0.105 0.020 0.000 0.885 0.008 0.051 
Average tree d.b.h. (em) 0.012 0.000 0.000 0.055 0.000 0.162 

1 Stand types (Y=young, M=mature, R=remnant, O=old) 
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Figure 2.3 . Density of a) live trees and b) snags >15 em d.b.h. and >25 em d.bh. in young, 
mature, remnant and old stands. (error bars equal ±1 SE, different letter above bar signifies 
difference at p<0.05, no letter indicates stand type not included in ANOVA). 
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Table 2.4. Overstory stand structure variables and their F, p and canaonical coefficient 
values for discriminant analysis of stand types. 

Stand Variables F p Canonical Coefficients 1 

>25-cm-d.b.h. tree density 42.7 0.000 -0.730, -0.181, 0.298 

Tree density 24.4 0.000 0.581, -0.317, 0.559 

> 15-cm-d.b.h. snag density 11.3 0.000 -0.304, 0.194, 0.436 

Snag density 8.9 0.000 0.119, 0.645, 0.595 

> 15-cm-d.b.h. tree density 7.6 0.000 0.015, 0.728, -0.245 

> 25-cm-d.b.h. snag density 6.8 0.001 -0.123, 0.036, 0.297 

1 dependent variable canonical coefficients standardized by conditional (within groups) standard deviation for 
3 discriminant factors with canonical correlations 0.933, 0.702, and 0.392. 

Table 2.5. Summary of discriminant classifications of stand type based on stand 
characteristics. 

# of plots classified into each stand type by discriminant function 

Stand type Young Mature Remnant Old 

Young (n=10) 8 2 0 0 

Mature (n=10) 0 10 0 0 

Remnant (n=10) 0 1 7 2 

Old (n=10) 0 0 1 9 
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misclassification rate of 15% (Table 2.5). Seven of the ten remnant stands were classified as 

remnants while two were classified as old forest and one as mature forest. Of the two 

remnant plots missclassified as old forest, one was the largest remnant sampled ( approx. 10 

ha.), while the other was the oldest remnant sampled (i.e., 200 yrs old). The remnant plot 

classified as mature forest was the youngest remnant sampled (i.e., 90 yrs old). The 

discriminant analysis produced equations which can be used to assign new stands to stand type 

based on the stand structural criteria on which the equations are based (Table 2.6). 

In summary, remnant stands can generally be discriminated from young and mature 

stands based on a number of overstory stand structure variables. Using ANOV A, only average 

density of live stems >25cm was significantly different between remnants and old forest. 

However, discriminant analysis indicated that remnants can generally be discriminated from 

old stands based on overstory stand structure characteristics. The data generally support the 

hypothesis that remnants can be discriminated from other stand types based on overstory 

stand structural characteristics. The presence of a second cohort of lodgepole pine in 2 of the 

10 stands was the only unique characteristic demonstrated by remnants. 

Table 2.6. Discriminant functions for predicting stand type membership. New case is 
assigned to the stand type with the largest function value for the case. 

Stand type Function 1 

Young forest 0.013x1 + 0.012x2 + 0.014x3- 0.006'4- 0.031xs + 0.176X6- 23.288 

Mature forest 0.010x1 + 0.019x2 + 0.023x3 + 0.002'4- 0.015xs + 0.193X6- 24.372 

Remnant 

Old forest 

0.006x1 + 0.008x2 + 0.018x3 + 0.033'4- 0.006xs + 0.198x6- 24.372 

O.OOSx1 + O.Ollx2 + 0.016x3 + 0.057x.t- 0.018xs + 0.231X6- 24.847 

1 discriminant function where x1 = live tree density, x
2 
= snag density, x1 = > 15 em d.b.h. tree density, x 

4 
= 

> 25 em d.b.h. tree density, x5= > 15 em d.b.h. snag density, and x
6
= :> 25 em d.b.h. snag density. 
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Coarse Woody Debris 

No significant differences in average total volume of coarse woody debris (CWD) 

>7.5cm in diameter were found among stand types. ANOVA followed by Tukey multiple 

comparisons indicated average volume of larger diameter {>22.5 em) CWD in decay class 

1 (i.e., recently downed) was significantly higher (n=10, p<0.05) in old stands than in 

young and mature stands but not significantly higher in old stands than remnants. Nine out 

of 10 remnant stands had CWD in piece sizes >22.5 em in diameter compared to only 6, 5, 

and 4 out of 10 for young, old and mature stands respectively. An average of 71% of the 

volume ofCWD in young stands was in diameter classes >17.5 em, indicating that a high 

proportion of the CWD originated from the pre-disturbance stand (Table 2.7). 

In young and mature stands, CWD volume was concentrated in the most decayed 

states (i.e., decay class 4 & 5) (Figure 2.4). In old and remnant stands, CWD was more 

evenly distributed, with a higher proportion of total CWD volume attributed to decay 

classes 1, 2 and 3 (Figure 2.4). 

Discriminant analysis using CWD variables indicated that no one decay class was 

important for discriminating between stand types as no decay class showed a high 

correlation with the discriminant factors (Table 2.8). Discriminant analysis using these 

variables correctly classified only 24 out of the 40 stands (Table 2.9). Only 5 of the 10 

remnants was correctly classified. The inability for CWD variables to correctly classify 

stand types is likely related to the wide variation in CWD volume within different stand 

types. The widest variation was in young stands, where volume varied from 1.6 to 590 

m3 /ha, but all stand types showed considerable variation {Table 2. 7). 

In summary, remnants can generally be differentiated from young and mature 

stands by having a higher proportion of CWD in less decayed states but there are no 

detectable differences between remnant and old stands. Variation in the CWD attributes 

examined is high for all stand types. 
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Table 2.8. CWD variables and their F, p and canonical coefficient values for 
discriminant analysis of stand types. 

CWD Variables F p Canonical coefficients 1 

Decay class 1 volume 2.89 0.049 2.52, 1.98, 2.23 

Decay class 2 volume 2.92 0.047 5.51, 3.35, 6.76 

Decay class 3 volume 3.75 0.019 4.91, 2.26, 6.38 

Decay class 4 volume 3.62 0.022 5.08, 4.21, 8.33 

Decay class 5 volume 1.48 0.236 11.66, 8.71, 16.69 

Total volume 1.92 0.143 -17.12, -12.12, -23 .96 

Decay class 5/decay class 1 volume 2.41 0.083 -0.22, -0.25, 0.34 

1 dependent variable canonical coefficients standardized by conditional (within groups) standard 
deviation for 3 discriminant factors with canonical correlations of0.692, 0.566, and 0.221. 

Table 2.9. Summary of discriminant classifications of stand type based on CWD 
attributes. 

# of plots classified into each stand type by discriminant function 

Stand type Young Mature Remnant Old 

Young (n=10) 5 3 2 0 

Mature (n=10) 1 9 0 0 

Remnant (n=10) 1 1 5 3 

Old (n=10) 0 3 2 5 
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Table 2.7. Summary statistics for CWD volume for different stand types (n = 10). 

Total < 17.5 d.b.h. >17.5 d.b.h. 

Stand type Mean Range SD Mean SD Mean SD 

Young 261.8 5.6- 590.3 201.3 76 54.7 188.5 177.3 

Remnant 229.2 33 - 393.4 116.4 104.8 46.7 124.2 86.5 

Mature 174.4 23.4-283 .3 90.5 71.8 37.5 84.1 74.6 

Old 192.6 38.6-286 78.7 82.5 37.6 112.8 61.5 
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Figure 2.4. Distribution of CWD volume in five decay classes for young, mature, 
remnant and old stand types. 



31 

Tree Species Regeneration 

I found some distinct differences between remnants and old forest with respect to the 

regeneration layer {0.6-10 min height). Lodgepole pine was present in the regeneration layer of3 

of 5 of the remnants sampled, but was absent from all 5 old forest stands. Using ANOV A, I found 

weak evidence for statistical differences in density ofhybrid white spruce (n=5, F=4.16, p=0.076) 

and black spruce density (n=5, F=4.73, p=0.061) between the stand types while there was no 

statistical difference for subalpine fir density {Table 2.10 & Fig 2. 5). 

In remnants having a lodgepole pine component, there were up to 20 stems of lodgepole 

pine within a single 0.005 ha subplot {4000 stems per hectare) and an average of 8 stems {1600 

stems per hectare). The height ofthis < 10m regeneration layer ranged between 0.6 m and 6 m, 

with an average height of 1.6 m. Much of the regeneration was in smaller height classes with the 

distribution approaching a negative exponential (Fig. 2.6). In contrast, most of the fire-initiated 

lodgepole pine in the stands surrounding the remnants exceeded ·1 0 m in height. There was a 

maximum of 8 stems <10 m within a single 0.005 ha subplot (1600 stems per hectare) and an 

average of3 stems {1600 stems per hectare.). Average height was 7.5 m and most stems were in 

the taller height classes (Fig. 2. 7). 

I failed to find statistical differences in height growth between the stand types for any of 

the tree species present. 

In summary, the absence of lodgepole pine and lesser amounts of black and hybrid white 

spruce in old forest stands provide support for the hypothesis that there are differences in 

regeneration attributes between these stands and remnants. The height class distribution of 

lodgepole pine regeneration within remnants is distinct from that of the surrounding young forest. 
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Table 2.1 0. Mean and standard error and results of nested ANOV A for density of regeneration > 
0.6-10m in height in remnant and old stands. 

Remnant Old 

Species Mean density SE Mean density SE F p 

{stems/ha} {stemslha} 

Lodgepole pine 449 145 0 na na 

Black spruce 1116 214 160 47 4.73 0.061 

Hybrid white spruce 240 45 49 20 4.16 0.076 

SubalEine fir 596 155 800 193 0.107 0.752 
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Figure 2. 5. Density of live trees 0. 6-1 Om in height for different species within remnants and 
old forests. 
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Figure 2.6. Frequency of lodgepole pine regeneration within 5 height classes in remnant plots. 
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Figure 2.7. Frequency of lodgepole pine regeneration within 7 height classes in young stands. 
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Floristics 

Species composition of understory vegetation was similar among stand types. Of 141 

species present within the total sample of 40 stands, 64 species were represented in all the stand 

types. Ofthe 64, 29 were present in at least 50% of the plots within each stand type. Similarity 

coefficients based on four different criteria (presence absence, species percent cover, species 

prominence, and Goldstream values) averaged above 70% between different stand types with a 

minimum value of 66.1% between young and old forest (Table 2.11 ). Remnants were similar to 

all other stand types (Table 2.11). The lowest similarity was 69.9 between remnants and young 

stands. Basesd on species presence remnants were most similar to old forest but based on all 

quantitative values remnants were most similar to mature stands (Table 2.11 ). 

Most of the floristic differences between stand types were associated with differences 

between old forest and all other stand types. Old forest was the only stand type to have a unique 

diagnostic combination of species (DCS). No other stand types had differential species which are 

required to form a DCS. According to the diagnostic criteria used, there were 3 species classed 

as differential (Listera caurina, Smilacina racemosa, Spiraea pyrimidata), 2 as constants 

(Calamagrostis canadensis, Clintonia uniflora), 1 as a constant dominant (Ptilium crista-

castrensis), and 1 as an important companion (Sorbus scopulina) for the old forest type (Table 

2.12, Appendix 3). Old forest was also characterized by a lack oflichens within the genera 

Cladina and Cladonia, which were more common in all other stand types (Appendix 3). The 

only obvious differences between remnants and other stand types was that Pinus contorta was 

present in the shrub layer of 7 out of 10 remnant stands but absent from the remaining 33 stands 

sampled. Salix spp. were identified as a constant for remnant stands. Alnus tenuifolia was 

identified as an important companion for young stands and Orthilia secunda and Peltigera 

aphthosa were identified as a constants. Dicranum polysetum was identified as a constant for 

mature stands. 
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Table 2.11 . Similarity coefficients for understory vegetation between young, mature, old and 
remnant stand types. 

Stand Type 

Mature 

Remnant 

Old 

Young 

79.81 83.22 83.63 78.64 

79.8 71.8 69.9 75.8 

78.5 66.1 66.3 74.4 

Mature 

77.1 77.2 75.5 78.9 

79.8 73.2 73.3 77.0 

Remnant 

80.8 76.8 74. 7 78.5 

1 SORENSEN's presence community coefficient (SPCC). 
2 MOTYKA's quantitative version of SPCC using percent cover. 
3 MOTYKA's quantitative version of SPCC using prominence (percent cover X sqrt(presence). 
4 MOTYKA's quantitative version of SPCC using Goldstream coefficient (presence X sqrt(cover). 

Table 2.12. Diagnostic species as per Pojar et. a/. (1987) identified for old, remnant, young and 
mature stand types. 

Stand Type 

Old forest 

Remnant 

Young 

Mature 

Diagnostic Type 

Differential! 

Constant2 

Constant dominant3 

Important companion4 

Constant 

Constant 

Important companion 

Constant 

Vegetation Species 

Spiraea pyrimidata, Listera caurina, 

Smi/acina racemosa 

Calamagrostis canadensis, Clintonia 

unijlora 

Ptilium crista-castrensis 

Sorbus sitchensis 

Salix spp. 

Orthi/ia secunda, Peltigera aphthosa 

Alnus tenuifolia 

Dicranum polysetum 

1 species presence class is :<!: III and least 2 presence classes greater than in other stand types. 
2 species presence class = V in only 1 stand type and species significance is <5. 
3 species presence class= V in only 1 stand type and species significance is :<!:5 . 
4 species presence class :<!: II, species significance variable, species absent from other units 
Note: presence classes as percent of frequency are !=1-20, II=21-40, III=41-60, IV=61-80, V=81-100 and species 
significance classes by percent cover are 1=0.4-1.0, 2=1.1-2.2, 3=2.3-5.0, 4=5.1-10.0, 5=10.1-20.0, 6=20.1-33.0, 
7=33.1-50.0, 8=50.1-75.0, 9=75.1-100. (Pojar et. a/. 1987). 
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Detrended correspondance analysis (DECORANA) did not differentiate well between the 

assigned stand types. There was a fairly dense concentration in the centre ofboth axes composed 

of plots representing all stand types (Figure 2.8). This result is consistent with the floristic 

similarity previously described among all plots. The first axis did separate young stands from old 

stands reasonably well. Young stands occurred nearer the origin and old stands nearer the end of 

axis 1 (Figure 2.8). Remnants were well scattered about the two dimensional space indicating a 

high diversity of vegetation among stands of this type (Figure 2.8). Remnant stands accounted 

for a high proportion of the spread of axis 2 with plot 34 occurring near the origin and plot 16 

occurring near the end of the axis. Examination of the vegetation differences which appeared to 

account for this separation indicated higher amounts of subalpine fir and Alnus crispa in the plots 

near the origin of Axis 2 and higher amounts of Shepherdia canadensis and lodgepole pine near 

the axis end. 

I detected differences in total percent cover, within different vegetation layers, between 

stand types. Percent cover of the tree layer was significantly greater for young stands than for old 

and remnant stands (Table 2.13). Lower tree cover in old and remnant stands corresponded to 

higher cover in the shrub layer which was significantly greater than in young or mature stands 

(Table 2.13). The cover of the moss layer within remnant stands was significantly lower than 

within old stands (Table 2.13). 

In summary, the vegetation of remnants did not show distinct differences compared to the 

other stand types and thus did not support the hypothesis that island remnants are floristically 

different from the other stand types. However, the presence oflodgepole pine in the shrub layer 

of some remnants but no other stands indicates differences in vegetation development. Remnants 

accounted for most of the floristic variation expressed along axis 2 of the ordination. 
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Figure 2.8. DCA stand ordination for young (Y), mature (M), remnant (R), and old (0) stands. 

Table 2.13. Mean and range in percent cover within four vegetation layers of the young, mature, 
remnant and old stand types (Means followed by a different letter are significantly 
different at p<0.05). 

Stand TYPe Tree Layer Shrub Layer Herb Layer Moss Layer 

Young 43 _5a (31-60) 26.5a (11-34) 21.4a (8-34) 88.5ab (72-99) 

Mature 35.1 ab (18-52) 19.9a (3-41) 28.1 a (9-58) 92. 7ab (78-99) 

Remnant 26.2b (17-59) 38.4b (16-71) 29.2a (9-50) 75_7a (10-99) 

Old 24.1b(12-41) 39.6b (26-50) 36.5a (11-80) 94.4b (74-99) 
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2.4 DISCUSSION 

Are Island Remnants Distinct? 

High variability characterized all measured attributes within the four stand types I 

examined. However, some forest habitat attributes differed among stand types and 

remnant stands can be differentiated from other stand types based on these differences. 

The strongest differences were in overstory and understory tree regeneration; however 

some differences for CWD and floristics were also significant. 

Overstory stand structure 

Attributes relating to overstory stand structure were generally successful at 

differentiating the stands into the 3 different age class matrix stands and remnant stands. 

Overstory attributes have been previously demonstrated to have high discriminating power 

for separating age-classes (Spies et. a/. 1991) but no known studies have demonstrated the 

distinctiveness of remnant forest patches. The discriminating power of overstory attributes 

for differentiating matrix forest in different age-classes is not unexpected since the age-

classes were based on the age of overstory trees. As observed in the data, the two general 

processes of stand development and succession lead to decreased density and increased 

tree size over time. In addition, as the stand opens up the density of late successional 

smaller-diameter, shade tolerant trees such as subapline fir increase, leading to high 

variability in tree diameter. The ability to discriminate remnant stands based on overstory 

stand attributes is more difficult to explain. However, disturbance relating to the wildfire 

event which initiated some of the remnants may explain the differences. Lower density of 

larger (>25 em) trees may relate to stem mortality during the fire and greater total density 

may relate to the influx of new regeneration, particularly lodgepole pine, after the fire. The 

weak ability to differentiate between remnants and old stands may underline the high 

variability in conditions before, during and after the formation of remnant stands and the 

fact that ages of the remnants are most similar to the old stands. Differences in initial stand 
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age, lack of or variability in intensity of fire within the remnant and variability in post-

disturbance factors affecting stand structure such as wind and disease could all lead to 

high variability in overstory stand structure of remnants. Remnant stands most affected by 

wildfire are likely to be the most different from old stands. 

CWD volume was highly variable and CWD attributes were not as useful at 

discriminating between stand types as other stand structure variables. CWD distribution 

across time and space is complex due to the many factors that influence CWD input. 

Spatial distribution and timing of mortality due to biotic agents such as insects and disease 

and abiotic factors such as wind and fire strongly influence CWD distribution precluding a 

strong relationship of CWD with stand type. In younger stands, CWD distribution relates 

more to the previous stand occupying the site than to the current stand. CWD input from 

the new stand is low due to the small size of dead and dying stems but total volumes are 

often high due to the residual CWD from the previous stand (Spies and Franklin 1988). 

A simple model for describing changes in CWD biomass during succession after a 

stand level disturbance has been proposed by Harmon et. a/. (1986) and validated for 

Douglas-fir stands in the Pacific Northwest (Spies et. a/. 1988; Agee and Huff 1987) and 

eastern subalpine forests (Lambert et. a/. 1980). A large initial pulse of CWD from the 

pre-disturbance stand is followed by a decline due to low input from the small diameter 

developing stand and finally an increase due to individual tree mortality in older stands. A 

large initial pulse in CWD production has been substantiated for B.C. coastal western 

hemlock stands but in this case there was no noticeable increase in older stands (Wells 

1996). I also found high average levels ofCWD volume in young stands indicating a pulse 

of CWD from the pre disturbance stands but variability was high. This high variability can 

be accounted for by the broad range in potential stand conditions present prior to 

disturbance. An average fire return interval of 80-100 years estimated for these forests by 
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Andison (1996) and no strong preference for age ofburning would mean that stands could 

bum a number of times in a short period of time (i.e., 40 years) leading to low levels of 

CWD. Andison (1996) also sampled stands over 200 years of age which if burned would 

lead to relatively high levels of CWD. This potential difference in stand age at time of 

disturbance in combination with other factors such as differences in disturbance intensity 

make for a broad range of CWD in young stands possible. The concentration of CWD in 

later stages of decay (i.e., decay classes 4 & 5) indicates that most of the material from the 

pre-disturbance stands had been on the ground long enough to have passed through the 

initial stages of decay. It also indicates a low level of recruitment subsequent to the initial 

pulse from the pre-disturbance stand. A similar pattern was evident in the mature stand 

type but the peak was shifted to decay class 5. By this time a proportion of CWD from the 

pre-disturbance stands could be undetectable having been incorporated into the humus. A 

more balanced level of CWD volume in remnant and old stands indicates a more steady 

input of CWD from factors such as periodic death of individual large trees. 

Regeneration and floristics 

Lodgepole pine regeneration in the understory of some remnants was a key feature 

distinguishing them from old stands. In general, higher amounts of early successional 

species (i.e., lodgepole pine, white spruce and black spruce) could be used to differentiate 

remnants from old forest. This is an indication of the influence on island remnants of the 

disturbance which isolated them. 

There was a high degree of similarity (> 60%) in vegetation among all stand types 

sampled. As a general rule, when similarity coefficients between vegetation units are 

greater then 50%, separation into plant associations is not likely to be ecologically 

meaningful (Mueller-Dombois and Ellenberg 1974). I expected high similarity because all 

stand types were primarily sampled from within one site series, the SBSrnk1/06 (DeLong 

et. a/. 1994). By definition all sites within the same site series will produce the same plant 
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community at climax (Pojar et. a/. 1987). The stands I sampled had all closed crown and 

enough time had elapsed in even the youngest stands (i.e., 40 years) for any shorter lived 

early seral species (e.g., Epilobium angustifolium) to have declined. 

Of the species which formed a unique diagnostic combination for old stands, only 

Smilacina racemosa has been previously found to be associated with old forests. In a 

study of succession in sub-boreal forests by Clark (1996) this species was located at the 

same end of the species ordination as older stands in the stand ordination. For remnant 

stands, the presence of lodgepole pine in the shrub layer, lower moss cover than old 

stands, and high variability indicated by the ordination could all be related to variation in 

disturbance history. In particular it could relate to the presence/absence and relative 

intensity of disturbance within remnants during the wildfire through which they survived. 

Percentage cover of the shrub layer was higher in remnants and old stand types 

than in mature and young stand types and appeared to correspond to lower cover of the 

overstory tree canopy. Increases in shrub cover with stand age were previously 

documented in a study by Clark (1994). 

Effects of Wildfire on Island Remnants 

The stand structure demonstrated by the age-class sequence of the matrix stands 

illustrates the typical development of lodgepole pine stands following stand-replacement 

wildfire in landscapes such as the area being studied (DeLong and Tanner 1996). 

Lodgepole pine produces most of its seed in serotinous cones which release seed only 

under intense heat (Lotan 1974). Thus, after wildfire, seed is released and lodgepole pine 

regenerates readily and rapidly on the burned substrate and the post disturbance stand is 

dominated by a relatively even-aged cohort of lodgepole pine. Once the initial cohort of 

lodgepole pine is established, regeneration of lodgepole pine is restricted since most of the 

seed has been released from the cones and because lodgepole pine is a pioneer species 

which is poorly adapted to shade (Krajina 1982). Other species which only regenerate 
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from live seed sources and are more shade adapted (e.g., spruce and subalpine fir) tend to 

dominate the understory. This pattern of stand development has been previously 

documented in the SBS (Kneewshaw 1991, Clark 1994). 

In 7 out of the 10 remnant stands an alternate pattern of stand development was 

evident as characterized by the presence of a second cohort of lodgepole pine. In 2 of the 

plots the second cohort was indicated by a second peak in the diameter class distribution 

of lodgepole pine. In the other plots it was indicated by the presence of lodgepole pine 

regeneration in the regeneration plots, and/or lodgepole pine presence in the shrub layer 

according to the vegetation surveys. The evidence is strong(> 100 stems/ha) in 3 of these 

plots. In these stands the presence of a large second cohort of lodgepole pine is evidence 

that the fire that replaced the surrounding stand may have disturbed the remnant stand 

enough to initiate a second lodgepole pine cohort. The presence of more lodgepole pine 

and hybrid white spruce, both of which prefer mineral soil substrate for regeneration, 

indicate that mineral soil may have been exposed within some of the remnants during the 

wildfire which initiated them. Evidence of fire within all these remnants was indicated by 

the presence of fire scarred trees whose scar age was similar to that of the surrounding 

young forest. Regeneration plots containing lodgepole pine also had thinner forest floors 

on average than all other plots (3 .5 em vs 5.1 em), suggesting forest floor consumption at 

the time of the disturbance. 

The finding that the stze distribution of the second cohort of lodgepole pine 

initiated within the remnants was distinct from those in the surrounding stand was 

surprising. One might expect the size class distributions to be similar since they were the 

consequence of the same disturbance .. However, there were distinct differences in timing 

and duration of lodgepole pine recruitment. There was very little lodgepole pine in the 

understory of young stands and it was mostly in larger height classes. Thus the structure 

of the young stands is even-aged with lodgepole pine stems almost completely restricted 

to the overstory. In contrast, the height class structure of the remnant stands indicated 
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uneven-aged lodgepole pine regeneration with a peak occurring in the lowest height class 

and a more spread out distribution approximating a negative exponential curve. 

Uneven-aged structure and a negative exponential distribution have been reported 

for lodgepole pine in the Sierra Nevada of California (Parker 1986) and on xeric, nutrient-

poor sties in Yellowstone National Park, Wyoming (Despain 1983). These stands 

experience continuous or intermittent understory lodgepole pine regeneration and are 

characterized by a lack of crown fires. The uneven-aged stand regeneration is a result of 

annual seedfall from non-serotinous cones. Lotan ( 1967) determined that in such stands 

the ratio of serotinous to non-serotinous cone type trees is lower than in landscapes that 

experience stand replacement wildfire. In the sub-boreal landscape I studied however, 

selection would favor serotinous-coned trees due to the frequency of stand replacement 

wildfire. Assuming that lodgepole pine remnants do not reoccur in the same position in the 

landscape studied, the two distinct regeneration patterns displayed by the remnants and the 

surrounding young forest suggest that lodgepole pine may exhibit both serotinous and 

non-serotinous regeneration strategies regardless of long-term selection pressure for cone 

serotiny. The likelihood of a remnant displaying the alternative uneven-aged regeneration 

pattern likely decreases with the size of the remnant since disturbance related to a fire is 

less likely to penetrate into larger remnants. This was supported by the data since the 

largest remnants sampled did not display the alternate regeneration strategy. DeLong and 

Tanner (1996) has indicated that the majority of remnants are< 10 ha in size and thus an 

uneven-aged regeneration pattern in remnants may be fairly common. Whether this 

alternate regeneration system is a response which is initiated by disturbance, or is simply a 

function of the presence of sufficient open-cone bearing trees to facilitate uneven-aged 

regeneration, requires additional research. 

As with the presence of a second cohort of lodgepole pine, the presence of 

reindeer lichens (Cladina spp.) in remnant stands may provide evidence of disturbance of 

the forest floor by the wildfire which initiated the surrounding stand. None of the similarly 
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aged old stands had reindeer lichens present within them. Previous studies have indicated 

the displacement of reindeer lichens by moss over succession (Maikawa and Kershaw 

1976; Foster 1985). These authors relate this displacement to stand closure which occurs 

late in successional development (i.e., 130 - 200 years) in the stands they studied. They 

hypothesize that increased crown closure increases shade and available moisture which 

favours the mosses. Stand closure does not provide a reasonable explanation for the 

reduction of lichen in this study. The stands with the greatest crown closure, as estimated 

by percent cover of the tree layer, are the young and mature stands. Lichens were present 

in these stands but absent in the more open old stands. It is more likely that Cladina and 

Cladonia lichens are displaced by mosses over time due to the build-up of the forest floor 

which appears to favour the mosses. 

The degree of disturbance experienced by remnants may account for the spread of 

remnant plots along axis 2 of the vegetation ordination. The association of lodgepole pine 

and subalpine fir with opposite ends of this axis corresponds to the association, within 

sub-boreal forests, of lodgepole pine with more recently disturbed sites and subalpine fir 

with later successional stages. 

Management Implications 

The finding that remnants could be discriminated from other stand types could be 

useful given the current direction of ecosystem management initiatives in British 

Columbia. Wildlife tree patches are being left in current harvest openings in British 

Columbia under the guidance of Biodiversity Guidelines (B .C. Ministry afForests, 1996). 

One of the premises of the guidelines is that the closer harvest disturbances approximate 

natural disturbances the more likely we are to maintain biological diversity in B.C.'s 

forests. The discriminant equations developed could be used to test the similarity in 

overstory stand structure between wildfire tree patches designed within harvest openings 

and remnants left by wildfire. 
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Remnants contained higher numbers of large(> 25 em d.b.h.) live trees and snags 

than the mature stand type. Since the number of large trees and snags in managed stands 

are unlikely to exceed those found in the mature stand type, leaving remnants within 

managed stands should provide an important legacy of larger diameter trees and snags 

throughout managed stand rotations. This could be very important for species such as the 

black-backed woodpecker which prefers larger diameter trees for nesting. 

The relatively high number of trees within remnants containing evidence of feeding 

cavities indicates that they may provide important habitat for cavity feeding birds. It was 

also noted that all the trees with presence of feeding cavities within the young stands were 

individuals that had survived the stand replacement wildfire. Preferential selection of 

wildfire remnants by cavity feeding bird species has not been clearly documented. 

However, Hutto (1995) found certain bird species to be highly associated with stand-

replacement wildfire and some species (e.g., the hairy woodpecker) were highly negatively 

correlated with fire intensity. Lower fire intensities would likely be correlated with higher 

levels of live tree retention which would approximate the conditions found in remnants. 

In the young stands ( 40-70 yrs old) that would represent mid-rotation 

managed forests, there is a lack of recently killed CWD (i.e., decay states 1&2), especially 

in larger diameter classes. With higher utilization standards and a general increase in 

utilization level from harvested stands, this lack of recently downed CWD would be 

apparent throughout the rotation. Unmanaged remnants of the natural forest, left within 

harvested areas, could provide an important source of recently downed larger diameter 

CWD throughout the rotation of the surrounding managed stand. 

One of the major concerns of forest managers with leaving wildlife tree patches 

and riparian reserves in cutover areas is that there may be a lot of windthrow within them. 

In the remnant forest patches examined, there was little evidence of recent windthrow 

beyond what might be expected due to the age of the stands. The distribution of CWD 

volume by decay class, and density of larger standing trees in remnants were not different 
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from the old forests. This indicates that the remnants are at least as stable as the old forest 

matrix. Examining wildfire remnants could provide important information about the design 

of windfirm wildlife tree patches. 

The finding that remnants had higher shrub cover than the young stands which 

initially surround them indicates that remnants could provide important areas of forage for 

ungulates. This could be especially important during the period of time when forage 

availability beneath the young stand is limited due to high crown cover. 

CONCLUSIONS 

In landscapes dominated by stand replacement wildfire, island remnants appear to 

provide unique habitat conditions that are not present elsewhere in the landscape. They 

provide the sharpest contrast to the developing young forest which surrounds them and 

therefore likely provide important habitat for species requiring specific habitat elements 

such as large diameter trees or large diameter soft snags. Remnants are most similar to old 

forest (i.e., > 140 years) and thus could provide important old forest habitat in managed 

landscapes where a high percentage of the forest is being managed on shorter rotations 

(i.e., 80 - 100 years). High variability among island remnants indicates differences in 

conditions before, during and after disturbance. Including reserved patches in managed 

stands should be an important technique to provide similar habitat variability to that 

present in natural forests. 

The evidence from this study suggests that the interior of most remnants is affected 

by the disturbance which has isolated them and this leads to a pattern of lodgepole pine 

regeneration that is rare in the remainder of the landscape. This pattern of lodgepole pine 

regeneration illustrates the complex nature of stand dynamics at smaller spatial scales. To 

typify the natural stand dynamics of lodgepole pine as even-aged in the landscape studied 

would be to ignore the uneven-aged regeneration dynamics illustrated by some island 

remnants. Further examination of these natural examples of uneven-aged lodgepole pine 
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regeneration m the sub-boreal landscape could provide managers with an optional 

silvicultural system for the management of lodgepole pine. This is important given the 

demands of the public and the direction of the Forest Practices Code of B.C. to make 

greater use of silvicultural systems other than clearcutting. 

Since the history of high rates of industrial logging in sub-boreal and boreal forests 

is both recent and localized in areas of older forest, the potential still remains for 

fundamental changes in resource management philosophy. The implications of modeling 

forest harvest on the spatial patterns of wildfire needs to be tested at a variety of spatial 

scales. The arguments for altering forest harvest pattern at the landscape level have been 

well documented (DeLong and Tanner 1996; Bunnell 1995; Wallin et. a/. 1994; Hunter 

1993) and the arguments for retaining legacies of the previous stand are numerous 

(Franklin 1993; Hansen et. a/. 1991; Maser 1988). It is important that we now determine 

fundamental differences between natural disturbance and harvesting designed to 

approximate natural disturbance. Wildfire tree patches and riparian reserves are currently 

being left in openings in British Columbia according to direction from the Forest Practices 

Code and Biodiversity Guidelines. Results of this study will enable habitat comparisons 

between these reserves and island remnants. These comparisons may indicate the need for 

alterations to the management of reserves based on differences between them and island 

remnants deemed to be functionally important. 

This study illustrates the potential importance of smaller elements in the landscape 

that may be missed or discounted in coarser scale studies. Island remnants provide habitat 

diversity at intermediate scales and may play functionally important roles in maintaining 

biological diversity. Managing reserves within harvested areas to approximate the habitat 

characteristics of island remnants should be an important consideration in sub-boreal 

landscapes where frequent large wildfires were historically common. 
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CHAPTER 3- ISLAND REMNANTS AND NATURAL REGENERATION 

3.1 INTRODUCTION 

Within northern forests, planting has become the preferred method of regeneration 

after clearcutting for the more difficult species to regenerate such as Douglas-fir and white 

spruce. Recently however, a shift towards greater reliance on natural regeneration within 

northern forests has been suggested based on both economic and ecological arguments (Booth 

et. a/. 1993). Successful natural regeneration requires that seed be dispersed relatively evenly 

over the harvested area. Serotinous species such as lodgepole pine can regenerate from seed 

released from cones during fire or other disturbance. In contrast, white spruce and Douglas-fir 

require live standing trees as a seed source. Eberhart and Woodward (1987) have 

hypothesized that, following wildfire, island remnants played an important role as live seed 

sources for re-establishment of the surrounding forest. 

Seedling establishment at any single location within a disturbance is influenced by a 

variety of factors including: quality of substrate for regeneration; amount and quality of seed 

provided by the seed source; and microenvironmental conditions before and after seed 

dispersal. Distance to seed source has been determined to be important in establishment of 

non-serotinous conifer species. Agee and Smith (1984), working in mixed species subalpine 

forests in the Olympic peninsula, reported very low regeneration of all species at distances 

greater than 200 m from the seed source. Douglas-fir regeneration occurred only in close 

proximity to the seed source. Ryker (1975) reports that most seed from Douglas-fir falls 

within about 1 chain (approx. 20m) of a stand edge. 

My study area represents the northern limits of the range of Douglas-fir. Within the 

study area Douglas-fir is most abundant on drier sites, primarily on coarser-textured ridges 

and hills. Even on sites where it is abundant in the overstory, it is generally absent in the 

understory which is typically dominated by subalpine fir (DeLong et. al. 1993). Given 

Douglas-fir's limited distribution and poor regeneration under its own canopy in northern 
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ecosystems, it is possible that remnant survivors of wildfire are critical in maintaining the 

species' distribution within these forests. Remnants often represent the only live Douglas-fir 

seed source in large burned over areas. It is thus important to determine the role of remnant 

Douglas-fir as a seed source for regenerating the surrounding forest. Understanding this 

relationship is needed to support development of ecologically-based management 

prescriptions in northern forests. This is especially critical now that harvesting has replaced 

wildfire as the dominant disturbance shaping this landscape (DeLong and Tanner 1996). 

I hypothesize that there is a significant negative relationship between Douglas-fir 

recruitment and distance from remnant Douglas-fir patches. If my hypothesis is supported, I 

will interpret this finding relative to Douglas-fir regeneration after wildfire. 

3.2 METHODS 

Using a combination offorest cover maps and aerial photos I selected three patches of 

Douglas-fir remnants within 40-60 year old forests. Remnant patches were considered to be 

patches containing a minimum of 4 Douglas-fir stems that had survived wildfire. I only 

considered remnant patches that were at least 500m from the edge of wildfire boundaries 

and/or 500m from other remnant patches of Douglas-fir stems. 

I established four line transects (NE, NW, SE, SW) that radiated out from the 

approximate centre of the remnant (Figure 3.1 ). Along each transect I established circular 

7.99 m radius (200m2
) sample plots at 20m intervals, and within each recorded height and 

d.b.h. for all Douglas-fir's ~ 1.3 min height. Heights were measured using a Criterion Laser 

and diameter using a diameter tape. Within one randomly located plot per transect I measured 

all tree species in the same manner as Douglas-fir in order to determine proportional 

contribution of Douglas-fir to total stand volume. At each plot I measured humus depth (em) 

at 5 randomly located positions and recorded the average. I also evaluated and recorded 

relative soil moisture regime through assessment of a variety of site 
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Figure 3 .1. Schematic of Douglas-fir remnant spoke plots showing layout of transects and 
measurement plots. 
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Figure 3 .1. Schematic of Douglas-fir remnant spoke plots showing layout of transects and 
·measurement plots. 
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and soil factors (Pojar et. a/. 1991). Any individual remnant Douglas-fir stems within sight of 

the transect were noted. Sampling along each transect was continued until one of the 

following occurred: 5 plots in succession contained no Douglas-fir; 500 m had been reached; 

or a physical barrier (e.g., lake) was reached. 

3.3 ANALYSIS 

I calculated tree density and volume by species for each sample plot. Volume was 

calculated using B.C. Ministry ofForest Inventory equations for whole stem volume. For each 

remnant, I computed summary statistics for density and volume by distance, pooled by 

direction. 

I used multiple regression to examine the relationship between Douglas-fir density and 

independent variables including: distance from the remnant patch (DI); distance from a 

individual Douglas-fir remnant stem (DIS); humus depth (HD); and relative soil moisture 

regime (MR.). After viewing two-dimensional scatterplots of each independent variable and 

Douglas-fir density I used a log transformation ofDI and DIS to achieve a linear fit. I did not 

transform HD and MR since they showed no apparent relationship with Douglas-fir density. I 

analyzed each of the three remnants separately and I initially included all independent variables 

in the regressions. However, after I viewed the results of this analysis I removed any non-

significant variables (i.e., p< 0.05) and repeated the regression with the remaining variables. 

Following the final regression I examined a plot ofthe residuals against predicted variables in 

order to assess homogeneity of variance of the residuals (Wilkinson et. a/. 1996). Initially I 

only examined total Douglas-fir density but a thorough examination of the data revealed that 

small diameter stems had a large influence on the regression. Therefore I completed a second 

set of regressions where smaller diameter stems (<7.5 em d.b.h.) were removed. 

I computed the relative contribution of Douglas-fir volume to total volume by dividing 

Douglas-fir volume for each plot by the average total volume of plots where all species were 

measured. 
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3.4 RESULTS 

Douglas-fir recruits initiated after the disturbance, were present surrounding all of 

the Douglas-fir remnants sampled. Douglas-fir recruits were present in all plots within 

lOOm of a remnant and in 22 of39 of plots 100-300m from a remnant. Nine of 20 plots 

that were further than 300m from the closest remnant contained recruits. Recruits were 

present in 76 of 89 plots within lOOm of any known remnant Douglas-fir stem. 

There was a general trend of decreasing Douglas-fir stem density as distance from 

the remnant increased (Figure 3.2). Of the variation in total Douglas-fir density (TD) 29-

68% was explained by distance from the remnant (DI) (Table 3.1). Humus depth and 

moisture regime were not significant (p>0.05) for any of the multiple regressions which 

included them, so these variables were removed and simple linear regression analysis was 

conducted using distance only. For 2 of 3 remnants, models including distance from the 

closest remnant stem (DIS) violated the assumption of homogeneity of variance of 

residuals. For the remaining remnant, DIS accounted for a greater portion of the variation 

in TD then DI. For the remnant with the strongest distance/density relationship, 75% of 

the variation in TD was explained by DI for distances up to 100m (Figure 3.3). As well, 

ANOV A followed by Tukey's multiple comparisons indicated significant differences in 

total density between 20 m and 60, 80, and 100 m and between 40 m and 100 m (Table 

3.2). Smaller stems (< 7.5 min height) were primarily responsible for the general pattern 

of decrease in stems as distance from the remnant increased (Table 3.3). When these stems 

were removed from the data the amount ofvariability in stem density (MD) explained by 

distance (i.e., r2 of the regression) decreased (Table 3.1 ). The distribution of larger 

Douglas-fir stems, especially those > 17.5 m in height, appeared to be unrelated to 

distance from the remnant (Table 3.3). This pattern was observed in all 3 remnants 

sampled. 
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Figure 3.2 Douglas-fir density as a function of distance from Douglas-fir remnants. 

Table 3 .1. Linear regression equations predicting density of Douglas-fir stems > 1.3 m 
(TD) and >7.5m (MD) in height based on distance from Douglas-fir remnant 
patches (DI) and stems (DIS). 

Remnant Eguation n r2 F 
Remnant 1 TD = 582.1 - 118.2 (DI) 37 0.29 15.60** 

TD = 749.9- 119.7 (DIS) 37 0.40 24.49** 
MD= 487.9 - 72.5 (DI) 37 0.24 12.31 ** 
MD= 397.2- 64.9 (DIS) 37 0.38 21.35** 

Remnant 2 TD = 3633 .5- 677.6 (DI) 35 0.68 74.07** 
MD= 926.0- 162.9 (DI) 35 0.41 24.36** 

Remnant 3 TD = 1879.9- 303.9 (DI) 42 0.27 15.93** 
MD= 549.5-88.4 (DI} 42 0.17 9.54** 

**Significant at p < 0.01 
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Figure 3.3 Douglas-fir density as a function of natural log of distance from center of 
remnant 2 for distances up to 100 m (y = 5541 .7 - 1176.7 x, n = 20, r2 = 0. 75). 

Table 3.2. Mean number of stems per hectare of Douglas-fir stems >1.3m in height at 
different distances from Douglas-fir remnants (means followed by a different 
letter are significantly different at p< 0.05, n=20) . 

Remnant Distance from remnant (m) 
20 40 60 80 100 

1 525a 412a 287a 263a 3ooa 
2 2025a 122sab 63sbc 425bc 138C 
3 1038a 1162a ssoa 250a 2soa 
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The change in density with distance is much more pronounced in remnant 2 than 

the others and is almost absent for remnant 1. This large difference in distribution with 

distance between the remnants is largely explained by the large differences in the density of 

stems < 12.4m in height (Figure 3.2 & Table 3.3). When these shorter stems are not 

considered the differences between remnants is reduced and no consistent pattern with 

distance is evident. 

Within the 3 sites studied, Douglas-fir volume contributed up to 22% of the total 

volume within a single plot while the average for plots within a 100 metres of the remnant 

was 10%. 

Since a strong relationship between Douglas-fir recruitment and distance was 

found for only 1 of the 3 remnants examined I rejected the hypothesis of a significant 

negative relationship between Douglas-fir recruitment and distance from remnant 

Douglas-fir patches. However, the presence of Douglas-fir recruits surrounding all the 

remnants sampled indicates that they may be an important source of recruitment. 

Table 3.3. Average Douglas-fir density (s.p.h.) for different height classes at different 
distances from remnant 1 (bold), 2 (normal), and 3 (italic) (pooled by 
direction). 

Distance (m) Height class limits ( m) 
< 7.5 7.5- 12.4 12.5-17.4 >17.4 

20 250 1662 625 175 312 288 63 50125 38 0 0 
40 288 812 525 50 250 400 63 125 175 12 38 62 
60 75 225 263 163 288 150 38 75 125 12 5012 
80 100 225 212 50 150 12 88 25 12 25 25 12 
100 100 62 138 88 38 112 100 12 0 12 25 0 
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3.5 DISCUSSION 

The results of this study indicate that 27-75% of the variability in Douglas-fir 

recruitment after wildfire can be accounted for by distance from remnant Douglas-fir 

patches depending on which remnant and what distances were considered. Previous 

information available on the importance of distance to seed source is not consistent. Ryker 

(1975) suggests that in moist habitat types distance from a seed source is not important 

for establishment ofDouglas-fir. Boe (1953) determined that Douglas-fir seeds are cast in 

nearly equal numbers between distances of 4-12 chains (approx. 80-250 m). However, 

Agee and Smith (1984) found that Douglas-fir recruits were only present within a short 

distance of the seed source. Due to the variability in results, the present study could not 

support any of the previous findings. 

Recruits that were established immediately following the wildfire appeared to be 

less affected by distance than more recent recruits. Taller stems which more likely 

represented early recruits were not strongly related to distance from the remnants. 

However, for one of the remnants studied, shorter recruits were strongly correlated to 

distance from the remnant. These differences in recruitment could be related to a number 

of factors which are altered over the course of succession. One such factor which could 

explain the differences is wind dispersal on hard snow. This phenomenon remains 

unstudied but a number of people working in northern forests suggest it as an explanation 

for occurrences of natural regeneration kilometres away from the nearest seed source in 

large clearcuts. The likelihood of wind dispersal on snow likely changes significantly over 

the course of succession. Immediately following wildfire wind velocity at the ground 

surface would be high and greater wind and solar action on the snow surface would make 

hard snow crusts more likely. However, once a relatively dense new canopy has formed 

wind velocity at the ground surface is reduced and snow crusting is less likely. Thus early 

in succession, recruitment would be less spatially restricted due to the increased likelihood 

of wind dispersal on snow. This suggests that models of spatial recruitment of tree 
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seedlings should be developed separately for early post-disturbance conditions and later 

successional stages. This point is made in a recent paper by Ribbens et. al. (1994) on 

modeling seedling recruitment. The authors acknowledge that their model developed using 

data from 90 - 130 year old stands was not directly applicable to clearcuts which are 

subject to different weather and wind dynamics. 

The presence of a higher number of recent recruits in plots adjacent to the remnant 

patches than in plots further away indicates that the remnant trees still form the most 

important seed source even though 40 - 60 year old Douglas-fir trees were present 

throughout the sampled areas. Although the average contribution of Douglas-fir to total 

volume in plots within 100 metres of the remnants was not high (i.e., 10%), it is still 

significant considering that as few as 6 trees made up the remnant patch and Douglas-fir is 

at the limits of its ecological range. 

One factor which could explain the differences in pattern of recruitment with 

distance observed for the 3 remnants is seedbed conditions. However, two factors 

measured that relate to seedbed condition, relative soil moisture regime and humus depth, 

did not appear to influence recruitment over the range measured. Other factors that might 

explain the differences such as the amount of current seedfall, quality of the seed, and 

amount of current seed predation were not measured. 

The fact that Douglas-fir recruits were present in the stands sampled provides 

evidence that wildfire remnants provide an important source of Douglas-fir recruitment in 

the landscape. The average fire return for the study area has been estimated at 90 years 

and there is evidence of fires having returned to an area in as little as 20 years (Andison 

1996). Given this short fire return interval, the fact that seeds for Douglas-fir recruitment 

can only be provided by a live seed source and that cone production increases with the age 

emphasizes the relative importance of Douglas-fir that has survived fires for providing 

recruitment in the landscape. 
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3.5 CONCLUSIONS 

Douglas-fir remnants left by wildfire provide a source of seed for Douglas-fir 

recruitment in the post fire regenerating forest. Recruitment immediately following the 

wildfire appeared to be more randomly distributed than expected but this may be due to 

exceptional dispersal conditions during this time period. Recruitment later in succession 

decreased exponentially as distance increased from the remnant. Patches of Douglas-fir 

left in managed cutovers could provide an important source of recruitment for the 

surrounding stand which will augment planted or natural lodgepole pine and white spruce. 
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CHAPTER 4- CONCLUSIONS 

4.1 CONCLUSIONS 

This research on island remnants has examined elements of the landscape which, 

although representing a small proportion of the total landscape, appear to be ecologically 

distinct and provide important ecological services to the surrounding forest. My findings 

suggest a need to examine natural disturbance at multiple scales and not tgnore rarer 

landscape elements. Previous research on natural systems has tended to focus either on 

examining pattern and process at large spatial scales or in modal stands at smaller spatial 

scales. The finding of unexpected patterns of lodgepole pine regeneration in remnants 

demonstrates that detailed examinations of less common elements in the landscape can lead to 

important insights about the variability and adaptability of natural systems. 

This research provides information to improve forest management based on the 

premise that forest harvesting designed to approximate natural disturbances or regimes will 

lead to more ecologically sustainable forest management practices. For example, the findings 

suggest how wildlife tree patches left in the managed forest may be monitored with respect to 

their ecological attributes relative to their counterparts in the natural forest. Alternate 

silvicultural systems to clearcutting are receiving greater attention in northern forests. This 

research provides the basis for investigating uneven aged regeneration systems for lodgepole 

pine stands in sub-boreal forests. An alternate uneven-aged lodgepole pine regeneration 

system could be useful for maintaining mature forest characteristics where this is desired to 

meet other management objectives (e.g., visual quality). The ecological role ofDouglas-fir in 

northern forests has been the focus of a recent conference and management plan entitled 

"Management of Douglas-fir at its Northern Limits" (Oniel et. a/. in prep.). The findings of 

this study regarding Douglas-fir recruitment provide useful data to assist in predicting the 

potential recruitment from patches of Douglas-fir left in managed cutovers. 
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The high variability in ecological attributes of all stand types indicates that 

conventional statistical approaches which focus on means may be inappropriate for future 

comparisons between natural and managed stands. Examining aspects of the pattern of 

variability may provide more insight into ecological meaningful difference. 

There are many limitations to our ability to incorporate characteristics of natural 

disturbance into managed forests. For instance, removal of the trees to make wood products 

and regulations designed to protect workers restricts our ability to leave large numbers of 

standing snags. However, leaving patches of trees behind which emulate the ecological 

characteristics of island remnants is achievable and can bring us closer to our objective of 

achieving ecological sustainability. 

4.2 RECOMMENDATIONS 

1) Retain existing wildfire remnants in areas of younger forest (i.e., <100 yrs old) and 

create new ones in managed forest by leaving wildlife tree patches that represent 

equivalent landscape positions and have similar ecological characteristics to the 

remnants described in this study. The combination of rarity and uniqueness may make 

existing remnants a target for protection. However, given that remnants are a product of 

disturbance and do not get unusually old, protection may not be the most appropriate strategy. 

Rather, new remnants which emulate those left in the natural forest should be created in the 

managed forest. Harvesting of existing natural remnants occurring in younger (i.e., 0-70 

years) forests should be avoided since this is where remnants likely provide the greatest 

ecological services to the surrounding forest. 

2) Conduct more research on remnant forest patches and other similar legacies of 

natural disturbance. This study has taken the first step in understanding the historic role of 

island remnants in the natural forest. More study is needed in order to make linkages between 

the distinctiveness of remnant forest patches and their role in providing habitat for biota, and 
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provide the necessary information to manage for equivalent habitats in managed stands. In this 

respect, the support received for FRBC projects "Ecological Significance of Remnant Forest 

Patches within SBS Plateau Landscapes: Diversity, Abundance, and Habitat Relationships of 

Forest Birds (FR-95/96-57) and "Investigation of the Positional, Dimensional, Structural, and 

Ecological Attributes Which Determine the Relative Windfirmness of Riparian Reserves and 

Wildlife Tree Patches" (FR-96/97-073) is encouraging. 

3) Include more flexibility within forest management guidelines in order to manage for 

similar variability in ecological characteristics to that of the natural forest. Managing for 

variability may be one of the more difficult challenges facing forest managers. Historically, 

forest managers have applied relatively simple silvicultural systems over large areas and have 

built up a set of standards which measure "success" based on targets such as a certain number 

of well-spaced trees. Greater overall flexibility in silvicultural prescriptions and targets based 

on attaining some level of variability is necessary if the goal of sustaining forest ecosystems is 

to be met. 

4) Encourage more field tours which demonstrate research findings. This study 

reemphasizes the importance of field demonstrations of research findings. Although certain 

measurable differences between island remnants and the young stands surrounding them 

appeared to be ecologically significant and could be expressed in statistical terms, many 

intangible differences may be as or more important. It is not until one has trudged through a 

maze of dense juvenile trees and deadfall to break out into an open brighter remnant to the 

sound of singing birds that one realizes the limits of our ability to measure and express 

ecological findings. 
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APPENDIX 1. SUMMARY OF SOME STAND, SITE AND SOIL FEATURES OF 
SAMPLE STANDS. 
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Plot Type Age range (yrs) Density (sph) Slope position Soil Texture! 
1 Remnant 101- 144 711 level SiL 
2 Young 46-56 2544 level LISL 
3 Remnant 112- 147 1044 mid slope (15%) LS 
4 Young 47-55 3133 level LS 
5 Mature 121- 132 1478 level SiL/SiCL 
6 Old 162- 186 911 level L/SiCL 
7 Old 134- 146 655 level SiL 
8 Old 136- 165 844 level SL 
9 Old 109- 147 1389 level SiCL 
10 Mature 84- 109 1489 mid slope (15%) SiCL/SiC 
11 Old 108 - 196 678 level SiL/SiCL 
12 Mature 99- 112 1544 level SL 
13 Remnant 67- 125 1133 level SL 
14 Young 49-55 2678 level LS 
15 Remnant 169- 177 567 level SL 
16 Remnant 72-97 1311 level SL/SiCL 
17 Old 161 - 193 1400 level SL/L 
18 Young 58-70 2144 level L 
19 Remnant 106- 124 1744 level SL 
20 Young 47-50 3089 level SL/L 
21 Mature 104- 124 1589 level SL/LS 
22 Old 178- 196 967 level CL 
23 Mature 98- 114 1133 level CL/SiCL 
24 Old 164- 177 1156 level SiCL 
25 Mature 113- 129 1344 mid slope (5%) LS 
26 Mature 109- 111 3311 level SL/CL 
27 Remnant 206-227 1355 mid slope (10%) LS/SL 
28 Remnant 151-223 1622 crest (3%) SiL/SiCL 
29 Mature 76-82 3178 level SiCL 
30 Young 56-61 2244 mid slope(3%) SiL 
31 Mature 88-99 2444 mid slope (2%) SL/SiL 
33 Young 61-69 2644 mid slope (12%) LICL 
34 Remnant 110- 131 1400 lower slope (5%) SL 
35 Old 128- 155 1000 mid slope (8%) L 
36 Mature 62-74 1578 level L/SL 
37 Old 212-238 1022 level L 
9317 Young 60-62 2800 level LS 
9319 Remnant 142- 165 767 level SL 
9322 Young 65-66 2544 level SiL/Si 
9324 Young 65-66 3089 level SiL/Si 

1 Soil textural classes according to soil textural triangle as follows: CL - clay loam, L - loam, LS - loamy 
sand, Si- silt, SiL- silty loam, SiCL- silty clay loam, SL- sandy loam. 
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APPENDIX2. DENSITY lllSTOGRAMS FOR ALL SAMPLE STANDS. 
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Young Stand (Plot 9322) 

1400 

1200 

";' 1000 .e 
j 800 
"' '-" 

.€' 600 

5 400 Cl 

200 

0 
10 15 20 25 30 35 40 45 

Midpoint of diameter class (em) 

Young Stand (Plot 33) 

1400 

1200 

";~ 1000 .e 
j 800 
"' '-" 

.€' 600 

5 400 Cl 

200 

0 
10 15 20 25 30 35 40 45 

Midpoint of diameter class (em) 



2500 

2000 
';j' 
o:E 
"' 1500 j 
"' '-" 

.~ 1000 
5 
0 

500 

0 

3000 

2500 
"<;;' 
o:E 2000 
"' e ! 1500 

.~ 5 1000 
0 

500 

0 

10 15 

10 15 

75 

Young Stand (Plot 9317) 

20 25 30 35 40 45 

Midpoint of diameter class (em) 

Young Stand (Plot 9324) 

20 25 30 35 40 45 

Midpoint of diameter class (em) 



600 

500 
";' 
~ 400 

~ 
.:; 300 
~ 
·~ 200 
0 

100 

600 

500 
";' 1 400 

~ 300 "-' 

.~ 
~ 200 

100 

0 

10 

10 

76 

Mature Stand (Plot 5) 

15 20 25 30 35 40 45 

Midpoint of diameter class (em) 

Mature Stand (Plot 1 0) 

15 20 25 30 35 40 45 

Midpoint of diameter class (em) 



600 

500 

~ 1 400 

! 300 
.0 

· ~ 200 
0 

100 

0 

700 

600 

~500 
~ 400 .... 
~ 
.0 300 

·~ 200 
0 

100 

0 

10 15 

10 15 

77 

Mature Stand (Plot 12) 

20 25 30 35 40 45 

Midpoint of diameter class (em) 

Mature Stand (Plot 21) 

20 25 30 35 40 45 

Midpoint of diameter class (em) 



,....., 

500 
450 
400 

CI:S 350 
~ s 300 
! 250 
.€' 200 
5 150 
0 

100 
50 
0 

400 

350 

~ 300 

1 250 

! 200 

.€' 150 5 
0 100 

50 

10 15 

78 

Mature Stand (Plot 23) 

20 25 30 35 40 45 

Midpoint of diameter class (em) 

Mature Stand (Plot 25) 

oLL--LJ~~~~~~LJ~~~~~~LJ--.y 
10 15 20 25 30 35 40 45 

Midpoint of diameter class (em) 



--
2000 
1800 
1600 

.E 1400 
6 1200 
! 1000 
.-6- 800 
5 600 

Cl 

~ 
~ 
Ul 

~ -Ul 
'-" 

.-6-
5 
Cl 

400 
200 

0 

1200 

1000 

800 

600 

400 

200 

0 

10 15 

10 15 

79 

Mature Stand (Plot 26) 
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Mature Stand (Plot 31) 
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Remnant (Plot 34) 
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Old Stand (Plot 6) 
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APPENDIX3 . VEGETATION SUMMARY TABLES BY STAND TYPE. 



Vegetation unit 

Number of plots 

Alnus tenuifolia 
Orthilia secunda 
Peltigera aphthosa 

Dicranum polysetum 

Salix sp. 

Cladina rangiferina 
Cladina mitis 
Cladonia spp. 

Listera caurina 
Smilacina racemosa 
Spiraea pyrimidata 
Calamagrostis canadensis 
Clintonia uniflora 
Ptilium crista-castrensis 
Serbus sitchensis 

Rubus pedatus 
Abies lasiocarpa 
Arnica cordifolia 
Cornus canadensis 
Epilobium angustifolium 
Festuca occidentalis 
Geocaulon lividum 
Goodyera oblongifolia 
Hylocomium splendens 
Linnaea borealis 
Lonicera involucrata 
Melampyrum lineare 
Oryzopsis asperifolia 
Petasites palmatus 
Picea engelmannii xglauca 
Picea mariana 
Pinus contorta 
Pleurozium schreberi 
Rosa acicularis 
Shepherdia canadensis 
Spiraea betulifolia 
Vaccinium caespitosum 
Vaccinium mernbranaceum 
Fragaria virginiana 
Aster ciliolatus 
Galium boreale 
Peltigera sp. 
Alnus crispa 
Aster conspicuus 
Lycopodium annotinum 
Rubus pubescens 
Viburnum edule 
Viola sp. 
Achillea millefolium 
Hieracium albiflorum 
Pyrola asarifolia 
Rubus parviflorus 
Amelanchier alnifolia 
Platanthera orbiculata 
Lycopodium complanatum 
Vaccinium myrtilloides 

92 

diag 

(ic) 
(c) 
(c) 

(c) 

(c) 

(d,c) 
(d) 
(d) 
(c) 
(c) 
(cd) 
(ic) 

I Young 
I Stands 
I 10 

I Mature 
I Stands 
I 10 

!Remnant IOld 
!Stands !Stands 
I 10 I 10 

Presence and Percent cover 

DCS 
II .41 I I I 
V .11III .11 IV .5IIII .11 
V .91 IV 2.21 IV 1.91 IV .61 

DCS 
IIII 1.01 V 1.41 IV 1.21 IV 1.01 

DCS 
I IV .31 II .11 V .31 II .11 

III 
I III 
III 

.11 I 

.21 IV 

.21 II 

. 71 III 
1.71III 

.11 III 

I I 
III 
III 
I IV 
I IV 
I III 
I 

.11 II .11 I 

.11 II .11 II 

.31 II .91 II 

.21 IV .11 IV 

. 8 I IV 1. 2 I I II 
5. 7 I IV 13 . 2 I IV 

I I 

I I .1 
IIII 1.3 
I IV .2 
I v 5.5 
I V .3 
I III .1 
I V 1.2 

I .1 
IV 4.2 
IV .4 
v 9.0 

IV .2 
IV .1 
v 3.6 

II 
v 

IV 
v 
v 

IV 
v 

III 
III 

v 
v .1 

III . 6 
v 3.2 
v 1.3 

III .2 
III .2 

v 1.2 

v .2 
IV 1.8 
v 2.6 
v .2 

III 1.0 
v 

III 
IV 
IV 
v 

IV .7 
III .4 

v 1.7 
IV 6.9 
v 32.0 
v 77.1 
v 3.8 

IV 2.1 
v 8.5 
v 24.3 
v 70.5 
v 3.0 

v 
v 

IV 
v 

IV 3.7 III 
v 2.5 v 
v 2. 7 v 

III . 7 V 
III .1 III 

IV . 3 IV 
III .2 III 

IV . 6 III 
IV 2.4 I 

III .5 II 
IV .8 II 

III .2 II 
III . 3 II 
III .1 II 
III .11 II 
III .11 II 
III .11 I 
III .41 
II .11III 
II .11 III 
II .11 II 
II .31 II 

2.6 IV 
2.11 v 
3.91 v 
2.41 v 

.11 III 

.41 II 

.11 II 

.31 I 

.31 III 

. 7 III 

.1 IV 

.3 III 

.1 III 

.1 IV 

.1 II 

.1 II 

.1 II 
I 

.5 II 

.1 II 

.4 IV 
1.1 III 

.11 

.11 

.11 

I 
I .11 
I .11 
DCS 

.11 

.11 

. 51 

.31 
1. 81 
7.31 

I 

v .21 
IV .21 
IV 2.41 
v .31 
v 1.91 
v 33.51 

II .11 

. 81 III 
5.0 I V 

.21 IV 
7. 71 v 

.11 IV 

.11 III 
3.51 v 

.11 IV 

. 71 IV 
5.0 I V 

.51 v 

.61 IV 

.41 IV 

.31 v 
5.61 v 
8.31 v 

17.31 v 
49.81 v 

1.81 v 
10.01 IV 

1.81 v 
2.91 v 
4.0 I v 

.31 II 

.11 IV 

.1 III 

.4 II 
4.4 IV 

.4 IV 

.4 III 

.1 III 

.1 III 

.1 III 

.1 III 

.1 I 

.1 I 

.2 II 

.1 IV 

.1 IV 

.9 III 

.4 III 

.3 
6.9 

. 6 
15.3 

.2 

.1 
2.9 

.2 
6.0 
2.7 

. 6 

.4 

. 5 

.7 
4.1 
5.2 

18.0 
53.5 
2.2 
4.9 
2.4 
2.4 
6.0 

.1 

.21 

.11 

.21 
3. 51 

.9 

.8 

. 3 

.2 

.1 

.1 

.1 

.1 

.4 

.2 

.1 
1.8 
3.7 



-

Vegetation unit 

Number of plots 

Equisetum sylvaticum 
Agropyron trachycaulon 
Anaphalis margaritacea 
Antennaria microphylla 
Aquilegia formosa 
Aralia nudicaulis 
Arctostaphylos uva-ursi 
Athyrium filix-femina 
Aulacomnium palustre 
Barbilophozia lycopodioides 
Betula papyrifera 
Bromus vulgaris 
Calamagrostis rubescens 
Calypso bulbosa 
Carex sp. 
Castilleja miniata 
Chimaphila umbellata 
Cladina arbuscula 
Coeloglossum viride 
Corallorhiza trifida 
Cornus stolonifera 
Cryptogramma acrostichoides 
Dicranum sp. 
Dicranum pallidisetum 
Disporum hookeri 
Dryopteris expansa 
Elymus glaucus 
Empetrum nigrum 
Equisetum arvense 
Equisetum scirpoides 
Erigeron sp. 
Galium triflorum 
Gaultheria hispidula 
Goodyera repens 
Gymnocarpium dryopteris 
Hieracium albiflorum 
Hypopitys monotropa 
Lathyrus ochroleucus 
Ledum groenlandicum 
Listera cordata 
Lupinus arcticus 
Lycopodium obscurum 
Lycopodium selago 
Maianthemum canadense 
Mitella nuda 
Nephroma arcticum 
Oplopanax horridus 
Oryzopsis pungens 
Osmorhiza chilensis 
Peltigera aphthosa 
Peltigera canina 
Peltigera malacea 
Platanthera obtusata 
Platanthera unalaschcensis 
Polytrichum commune 
Polytrichum juniperinum 
Polytrichum sp. 
Populus balsamifera 
Populus tremuloides 
Pseudotsuga menziesii 
Pyrola chlorantha 
Ranunculus acris 
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!Young !Mature !Remnant IOld 
!Stands !Stands !Stands !Stands 
I 10 I 10 I 10 I 10 

diag Presence and Percent cover 

II .11 I 
I .1 

I 
I .1 I 
I .1 
I . 7 I 

I 

I .5 II 
I 

I .1 
I .1 I 

I 
I 
I 
I 

II .1 I 
I .1 
I .1 
I .1 

I 

II .6 II 
I 

I .1 I 

II .1 I 

I .1 I 

I .1 I 
I .1 I 

I 
I 
I 
I I 
I 

I .11 I 
I .11 
I .11 II 
I .11 II 
I .11 

I 
I I 

I .11 I 
I .11 I 

I 
I I 

II .11 I 
I I 
I 

I .11 I 
I .11 I 

I 
I 1. 0 I 

I I 
I .11 I 
I .11 

II .11 II 
I .11 

II .11 I 
I .11 

.11 
I I 

.11 

.1 I 

.5 I 

.1 I 
I 

.1 I 

.1 I 
I 

.1 I 

.1 

.1 

.1 

.1 I 

.1 I 

.1 

.2 

.1 

.1 

I 

I 

I I 
.11 I 

I I 
.11 I 

I 
.1 
.1 I 
.1 II 

.1 

I 
I 

I 
.1 II 

I 
.1 I 
.1 II 

II 
I 

.1 

.1 I 

.2 II 

.1 II 

.1 

.2 

.1 

.1 

I 

I 
I 

.1 I 

.1 I 
I 

.2 II 

.1 II 

III 
.1 

.1 I 

.1 I 

.2 I 

.1 

.1 

.1 I 

.1 

.1 

.1 

.1 II 

.1 

.1 

.1 

.1 

I 

I 

I 

.1 I 

.1 I 

.1 
I 

.1 

.1 II 

.1 

.1 II 
I 

.1 

.1 II 

.1 I 

.1 II 

.1 I 

.1 I 

.1 

.1 

.4 I 
I 

.1 I 
I 

.1 I 

.1 

. 3 I 

.1 

.1 I 

.1 

.4 I 

.1 II 

.11 
I 
I 

.11 
I 

.11 

.11 
I 
I 

.31 
I 
I 
I 
I 
I 
I 

.1 

.1 

.1 

.2 

.1 

.1 

.2 

.4 

.3 

.11 
I 

.11 

.11 

. 11 

.11 

.11 
I 
I 
I 

.11 

.11 

.11 

.11 
I 

.11 
I 
I 
I 

.11 
I 

.11 
I 

• 51 
I 

.11 
I 



Vegetation unit 

Number of plots 

Rhytidiadelphus triquetrus 
Ribes lacustre 
Ribes laxiflorum 
Ribes triste 
Salix scouleriana 
Senecio pauperculus 
Solidago spp. 
Serbus scopulina 
Sphagnum capillifolium 
Spiraea douglasii 
Stereocaulon sp. 
Stereocaulon paschale 
Streptopus amplexifolius 
Streptopus roseus 
Thalictrum occidentale 
Tiarella trifoliata 
Tiarella unifoliata 
Trisetum cernuum 
Trisetum spicatum 
Vaccinium ovalifolium 
Vicia americana 
Viola spp. 
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!Young !Mature !Remnant !Old 
!Stands !Stands !Stands !Stands 
I 10 I 10 I 10 I 10 

diag Presence and Percent cover 

I 
I 

I 
I 

I 

I 
I 

I 

.11 II 

.11 I 
I 
I 
I I 
I 

.11 

.11 II 
I I 

.11 I 
I I 

.11 I 

.11 
I 

.31 I 
I I 
I I 
I 
I I 
I 
I I 
I 

. 2 

.1 I 

I 
.2 

I 

.1 II 

.1 

.4 I 

.1 

.1 I 
I I 
I I 

.11 

.11 I 

.11 I 
I 

.11 
I I 

.11 
I 

I 
.11 II 

I I 
.11 

I I 
.11 

I 
.11 I 

I 
.11 

I 
.11 
.11 II 
.11 I 

I 
.11 I 
.11 I 

I I 
I 

.11 
I 
I I 

I 
.1 1 
. 11 

I 
.11 

I 
I 

.11 
I 
I 
I 
I 

.11 

.11 
I 

.11 

. 21 

.11 
I 
I 
I 

.11 


