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Abstract

This research thesis first examines the ability o f Community Atmosphere Model (CAM) and 

Community Climate System Model (CCSM) in simulating the South Asian Monsoon (SAM) 

summer precipitation in a framework of ensemble. On this basis, the climatic relevant 

singular vectors (CSVs) perturbation theory is applied to investigate the optimal error growth 

of SAM seasonal forecast due to the uncertainties in the Pacific and Indian Oceans. Then, the 

ensemble prediction of SAM constructed by CSVs is evaluated, and further compared with 

one traditional ensemble method.

It is found that CAM4 adequately simulated monsoon precipitation, and considerably 

reduced systematic errors that occurred in its predecessors, although it tends to overestimate 

monsoon precipitation when compared with observations. In terms of monsoon interannual 

variability and its teleconnection with sea surface temperature (SST), CAM4 showed modest 

skill. In the CCSM4 coupled simulations, several aspects of the monsoon simulation are 

improved, including the cross-variability o f simulated precipitation and SST. A significant 

improvement is seen in the spatial distribution o f monsoon mean climatology where a too- 

heavy monsoon precipitation, which occurred in CAM4, is rectified. A detailed investigation 

of precipitation reduction, using sensitivity experiments, showed that the large systematic 

cold SST errors in the northern Indian Ocean reduces monsoon precipitation and delays the 

monsoon onset by weakening local evaporation.

The CSV analysis using CAM4 revealed that the SST uncertainties in Indian Ocean can 

result in much larger error growth o f SAM seasonal forecast than those in the equatorial
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Pacific Ocean. It is seen that the CSVs error growth rate changes significantly depending on 

the initial states whereas the CSVs patterns are insensitive to the initial conditions. The 

CAM4 comparison with CCSM4 coupled model indicated that the CSVs patterns from 

CAM4 are similar to those from CCSM4 while the error growth rate is lower in CAM4 than 

in CCSM4. CAM4 ensemble hindcasts, constructed using CSVs method and Time Lag 

Ensemble (TLE) method, for the period from 2000-2009, showed that the ensemble mean 

prediction by CSVs has a better skill than both TLE and control run prediction, indicating the 

merit of CSV for SAM ensemble forecast.

Overall, this thesis research has theoretical significance in understanding the uncertainties of 

SAM seasonal predictions and practical importance in developing a new ensemble method 

for SAM seasonal predictions.
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Chapter 1

Introduction

1.1 Asian Monsoon

The monsoon is one of the most dynamic and prominent phenomena of the climate system

and has a large effect on weather and climate anomalies at both local and global scales. The

monsoon system is caused by the seasonal reversal of winds due to differential heating

between land and ocean, and results in seasonally changing heavy precipitation patterns. The

dominant monsoon systems around the globe are the Asian, Australian, African and

American monsoons (Webster et al. 1998). Among these various monsoon systems, the

Asian summer monsoon comprising the East Asian Monsoon (EAM) and the South Asian

Monsoon (SAM) (Lau and Li 1984) receives the heaviest seasonal precipitation during the

summer and has a major impact on global atmospheric circulations. The SAM region

includes parts of the Arabian Sea, the Indian subcontinent and the Bay o f Bengal (Goswami

et al. 1999). The Indian subcontinent is characterized by complex topographical features,

such as the Himalayas (in the north and north east) and the Western Ghats (along the western

coast o f India). Both of these extensive mountain ranges strongly influence the SAM

circulations. Figure 1.1 shows the seasonal mean precipitation and 850 mb winds climatology

over South Asian region. In winter (December, January and February, DJF), surface winds

originating from South Asia sweep across the equator to meet the south Indian Ocean trades

winds in the southern hemisphere. The precipitation in winter is therefore mostly confined in

the equatorial Indian Ocean while the Indian subcontinent exhibits dry conditions. During the

summer season in the months o f June, July, August and September (JJAS), the winds blow
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north from the Indian Ocean south of the Indian subcontinent and produce heavy rains 

contributing around 75% of SAM annual precipitation (Hastenrath and Polzin, 2004). The 

seasonal winds reversal in the SAM region is associated with the surface temperature contrast 

between the Indian subcontinent and the Indian Ocean, caused by the different responses of 

land and sea to solar heating during April and May. The onset of the summer monsoon 

involves the formation o f a low pressure region over the SAM region that is called the 

monsoon trough. The monsoon trough is part of the Inter-tropical Convergence Zone (ITCZ) 

between the wind patterns of the southern and northern hemispheres.

The SAM precipitation has a very strong temporal and spatial variation due to the interaction 

between regional topography, atmospheric circulation and slowly varying sea surface 

temperature (SST) anomalies. Many studies have shown that the significant SAM variability 

is linked to El Nino/La Nina and the Southern Oscillation (ENSO), a coupled atmosphere- 

ocean interaction in the tropical Pacific Ocean (e.g. Sikka 1980; Rasmusson and Carpenter 

1983 and Shukla 1987). ENSO influences the SAM regions either through teleconnections or 

ocean current anomalies, or both. In addition to ENSO, SST in the Indian Ocean also 

modulates SAM variability by means o f the Indian Ocean Dipole (IOD; Saji et al. 1999; 

Ashok et al. 2001). Other large scale boundary conditions such as soil moisture (Webster et 

al. 1998) and snow cover (Bamzai and Shukla 1999; Kripalani and Kulkarni 1999) also 

modify the SAM dynamics, intensity and onset. Along with large-scale influences, it is seen 

that any variation in SAM is partially controlled by the atmospheric internal dynamics and 

random fluctuations (Krishnamurthy and Shukla 2000; Goswami and Ajaya 2001; Saha et al. 

2011). The combination o f these interactions result in significant interannual or intraseasonal 

variation of moisture availability over the SAM region either in the form of extreme dry or
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wet conditions or delay of SAM onset. The relative role of these interactions makes SAM a 

very complex dynamical system.

Being a major convective system in the northern hemisphere, the fluctuations in SAM 

intensity affects the lives o f many people due to the agrarian basis o f their society. The 

fluctuations are often associated with delay in the onset of SAM, floods, droughts, and other 

climatic extremes (Malik et al. 2010) and significantly disturb the water budget, agricultural 

practice and economy o f the region causing enormous socio-economic impacts. In view of 

the dependence o f water availability and agriculture on monsoon precipitation, study of 

monsoon dynamics and its forecasting becomes an issue o f immense importance. A detailed 

understanding of the role o f different external forcing and other mechanisms that modulate 

SAM precipitation is essential for skillful SAM prediction as well as for societal and 

economical needs of the South Asian region. An accurate seasonal forecast can help planners 

mitigate the adverse impact in case of monsoon failure or amplification. Indeed, many efforts 

have been made to explain the process, variability and teleconnection o f monsoon, but a lull 

understanding of the phenomenon and its predictability is still being developed.

1.2 Monsoon Simulations

The past few decades have witnessed steady improvements in the skill o f global climate 

models (GCMs) in simulating and forecasting climatic systems. These improvements have 

been largely driven by improved numerical schemes, increased resolution, advanced 

computational power and enhanced quality of input observational data. The overall 

framework o f the dynamical simulations and predictions is refined based on comprehensive 

model tests and evaluation of their outputs on various time scales. The assessment o f a

3
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GCM’s simulation determines the fidelity with which models simulate different processes 

and predict climate.

In the case of the SAM, conceptual models or fully coupled climate models are widely used 

either to understand the mechanisms involved in SAM development or to improve its 

prediction. Using these models, many studies have investigated the SAM dynamics focusing 

on different boundary condition such as SST (Webster et al. 1998; Ju and Slingo 1995; Wang 

et al. 2003; Loschnigg and Webster 2000; Lau and Nath 2000), snow (Shen et al. 1998; 

Becker et al. 2000; Jhun and Lee 2004; Wang et al. 2008), soil moisture (Webster et al. 1998; 

Walker and Rowntree, 1977; Shukla and Mintz 1982; Xue et al. 2006) and orography 

(Rodwell and Hoskins 1995; Wu et al. 2007). These studies, along with many others, have 

been beneficial in identifying the essential mechanisms and processes for SAM, and in 

improving its predictions.

While the current versions o f GCMs can provide credible quantitative estimates o f climate 

and can reasonably well simulate the mean climate anomalies o f many variables (Randall et 

al. 2007, Liang et al. 2009, Lee et al. 2010 and many more), they still show significant 

discrepancies in simulating relatively local-scale systems such as monsoons (Kang et al. 

2004; Wang et al. 2004; Covey et al. 2003; Meehl et al. 2005). The SAM variability at 

seasonal and interannual time scales and its relationship with local and remote SST 

anomalies are not well reproduced in Atmospheric General Circulation Models (AGCMs) 

due to large systematic errors (Kang and Shukla 2006). Although the Coupled General 

Circulation Model’s (CGCMs) mean state could generally lead to a realistic simulation of 

monsoon teleconnection (Lau and Nath 2000; Turner et al. 2005), a comparison between 

uncoupled and coupled model simulations suggested that the SST biases of coupled models
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partially offset the benefits of an active air-sea coupling (Cherchi and Navarra 2007, Islam et 

al. 2013). It is also seen that climate model bias in the mean state and in the seasonal cycle 

could degrade the seasonal and interannual predictability skill (Gadgil and Sajani 1998; 

Sperber et al. 2001). It is therefore important to identify systematic errors in monsoon 

simulations if the models are to be used for prediction. One of the key motivations of this 

thesis is therefore to study the systematic errors in uncoupled and coupled models for their 

simulations of the monsoon system.

1.3 Monsoon Seasonal Forecasts

The tremendous advances in understanding and modeling climate variability and 

predictability have made seasonal prediction an active area o f research. As a result, seasonal 

climate prediction and the related uncertainties using multiple climate models has become 

operational (e.g. Lee et al. 2009; Palmer et al. 2004). In current dynamical models, the skill 

of seasonal predictions for some large scale climate systems is gradually approaching the 

practical limit o f predictability that arise due to the nonlinear scale interactions inherent in 

the atmosphere (Lorenz 1963) coupled with an incomplete knowledge of the initial state (i.e. 

chaos) (Kang and Shukla, 2006). These nonlinear interactions impose a theoretical limit of 

predictability which can be defined as the performance of a perfect model with perfect initial 

conditions. The theoretical (inherent) and practical predictability limits have been estimated 

in many studies to investigate the potentials for further improvement in dynamical seasonal 

predictions (e.g. Younas and Tang, 2013).

Chamey and Shukla (1981) initiated research on SAM seasonal forecasting by reporting its 

potential predictability due to the slowly varying boundary conditions such as SST. They

5



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

documented the potential to predict SAM beyond the limit of deterministic predictability 

based on its close interaction with tropical SST. Therefore the practical value of SAM 

prediction depends on the accurate simulation of forcing’s signal (mainly from tropical SST) 

and its strength compared to the strength of unpredictable variability inherent in the 

atmosphere.

Substantial efforts have been devoted to the study of monsoon predictability either by 

dynamical models (e.g. Rajeevan et al. 2011; DelSole and Shukla, 2012) or by statistical 

models (e.g. Delsole and Shukla, 2002). While many different methodologies are used to 

improve the monsoon forecast skill, the overall skill o f dynamical SAM forecast is 

considerably lower than the model forecast skill over the tropical central Pacific region 

(Kang et al. 2002; Wang et al. 2004). Different initiatives and projects such as “Asia-Pacific 

Economic Cooperation Climate Center/Climate Prediction and its Application to Society 

(APCC/CliPAS, Wang et al. 2009)”, “Development of a European Multimodel Ensemble 

System for Seasonal to Interannual Prediction (DEMETER, Palmer et al. 2004)” and 

“Prediction of climate variations on seasonal to interannual timescales (PROVOST, Doblas- 

Reyes et al. 2000)”, focusing seasonal dynamical forecasting, have been performed using 

both AGCMs (Tier-2) and CGCMs (Tier-1) models. The results from these projects have 

shown that the monsoon prediction skill mainly depends on simulation o f accurate ENSO 

signal in models. The skill of dynamical model is limited mainly by inherent nonlinear 

characteristics of the atmosphere and the inaccurate simulation o f ENSO signal (Kang et al. 

2004). This means that the predictability of the SAM depends on the external forcing and the 

relative contributions from the internal dynamics o f the monsoon system.
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1.3.1 Ensemble Strategies

Practical forecast system requires a careful distinction between model errors and 

uncertainties in initial conditions (states). Both o f these are not realistically distinguishable 

due to the reason that the estimation o f the initial conditions involves a forecast model and 

thus model errors affects initial condition errors (Leutbecher and Palmer, 2008). Even if the 

models become perfect, the error due to the uncertainty involved in its initial conditions can 

degrade the forecast skill. The uncertainties present in initial states may grow due to the 

chaotic nature of the evolution equations o f the dynamical system, thereby significantly 

decreasing the forecast skill. One practical approach to sample these uncertainties is to 

perturb the initial conditions and run the model with each set of perturbed initial conditions. 

The resulting group of model simulations is known as an ensemble which improves the 

forecasting skill by reducing the nonlinear error growth and averaging out unpredictable 

components. Many studies have shown that ensemble prediction can decrease the prediction 

error that originates from the uncertainty in initial conditions (Molteni and Palmer (1993) and 

Buizza et al. 1998; Yoo and Kang 2005).

Generating an ensemble in a forecast system can improve the forecast skill by diminishing 

the initial uncertainties. The crucial issue is to design a reliable ensemble forecast strategy 

that should include the major uncertainties o f forecast initial states. Many operational centers 

still face the difficulty that the ensemble perturbations from a single model have limited error 

growth at early forecast lead times as compared to the amplitude o f the mean error (Palmer et 

al. 2004; Saha et al. 2006, Kug et al. 2011). This implies that their initial perturbations used 

to generate ensemble may not be optimal.
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Thus, it is necessary to treat the uncertainty o f the initial condition in an optimal way so that 

error growth in the forecast system is realistic. It has been a challenge to construct optimal 

ensemble prediction at seasonal time scales for uncoupled or coupled GCM, which is another 

motivation for this thesis research.

1.4 Objectives and Outline

Correct representation o f the monsoon system in climate models and its skillful seasonal 

prediction are important for different socioeconomic sectors o f South Asia such as water 

resources, agriculture and other climate-sensitive sectors. This thesis therefore addresses the 

SAM simulations and ensemble forecasts using state o f the art climate models. The long 

standing objective of this thesis research is to (i) investigate models’ capability in predicting 

SAM variability and in characterizing its teleconnections to SST in Indian and Pacific 

Oceans and (ii) to improve SAM seasonal forecast skill by sampling initial uncertainties 

including the analysis o f the factors and mechanisms that yield these uncertainties. The 

specific objectives of this research are:

i) Evaluate models for their performance in reproducing SAM precipitation with an 

emphasis on the mean climatology, seasonal and interannual variability in an AGCM 

and a CGCM.

ii) Analyze SAM variability and its relationship with SST anomalies o f Indian and 

Pacific Oceans in the AGCM and CGCM, including a detailed comparison of SAM 

response to the prescribed SST in AGCM and to the simulated SST in CGCM. The 

impact o f SST bias on the SAM simulation.
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iii) Implement and analyze the optimum perturbation growth of SAM seasonal prediction 

in AGCM and CGCM. Discuss the main characteristics of the leading optimum 

perturbation patterns, corresponding final patterns, and perturbation growth rate over 

the SAM region. Investigate the sensitivity o f optimum perturbation and optimal 

growth to various parameters.

iv) Use the optimum perturbation to generate ensemble SAM forecasts. Compare the 

forecast skill with that of control forecast and traditional ensemble forecast. 

Investigate the practicality of the optimum ensemble method in maximizing the 

benefit of dynamical forecasts.

To accomplish the above objectives, this thesis is organised into five chapters. Except 

Chapter 1, all chapters independently address one or more objectives described above. 

Chapter 2 is devoted to the detailed investigation of climate models performance in 

simulating SAM. Both coupled and uncoupled models are validated by means of different 

analysis and sensitivity experiments. Chapter 3 extends the analysis presented in Chapter 2, 

by further investigating the teleconnections o f SAM to SST of the equatorial Pacific Ocean. 

The philosophy, design and implementation o f optimum perturbation theory are discussed in 

Chapter 4 followed by the construction o f ensemble SAM forecast. Chapter 5 summarizes 

and concludes the overall findings of the thesis.

This research has theoretical components and practical significance to seasonal forecast 

research. The results from this thesis may leverage existing activities and resources to achieve 

better and skillful SAM seasonal forecasting capability. Indeed, a good perturbation method 

for ensemble generation can effectively improve sub-seasonal to seasonal forecast o f SAM
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which could have profound impacts on agricultural planning, water resource management and 

other socio-economic activities of the region.
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Figure 1.1: Seasonal (winter and summer) mean observed climatology of SAM precipitation

(mm/day) and 850 mb wind vectors (m/s).
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Chapter 2

Asian monsoon simulations by Community Climate Models 

CAM4 and CCSM4

Islam S, Y Tang and P Jackson (2013), Asian monsoon simulations by Community Climate 

Models CAM4 and CCSM4, Climate Dynamics, DOI 10.1007/s00382-013-1752-6

Published version is available at:

http://link.springer.com/article/10.1007%2FsQ0382-013-1752-6 

This paper is reformatted to serve as Chapter 2 in the thesis.
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2.1 Introduction

Climate models have been significantly improved in simulating the mean global climate 

(Randall et al. 2007) and in predicting climate anomalies at the seasonal time scale (Liang et 

al. 2009, Lee et al. 2010; Kang et al. 2002; Kang and Shukla 2006; Wang et al. 2004). These 

models are fairly good at simulating the average atmospheric state and large scale patterns, 

but poorer at simulating relatively small and local atmospheric systems such as the monsoon. 

In some of the studies such as Kang et al. 2004 and Wang et al. 2004, it has been seen that 

even when forced with observed SSTs, GCM performance over the SAM region is not 

satisfactory and presents large systematic biases. Even in CGCMs, which are believed to 

simulate the most realistic physical processes, there are notable biases in simulation of the 

mean climate and its variability (Covey et al. 2003; Meehl et al. 2005). These discrepancies 

include a Pacific cold bias, a double ITCZ, and a westward shift of ENSO variability 

(AchutaRao and Sperber 2006; Covey et al. 2000; Joseph and Nigam 2006). Gimeno et al. 

(2010) have shown that the northern Indian Ocean, particularly the Arabian Sea, is an 

important moisture source for SAM and any changes in Indian Ocean SSTs affect monsoon 

precipitation by altering the amount of moisture available for transport towards South Asia. 

Furthermore, due to the strong air-sea coupling over the Indian Ocean, any variation in the 

strength of the SAM precipitation influences the SST variation which significantly 

complicates the detection of monsoon variability related to other changes in the lower 

boundary o f the atmosphere in the coupled model.

It has been a challenging issue to correctly simulate the monsoon variability at seasonal and 

interannual time scales (Annamalai et al. 2007; Dai 2006; Kripalani et al. 2007; Lin 2007; 

Waliser et al. 2007) and the relationship between SST anomalies and SAM precipitation
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variability (Annamalai and Liu 2005; Meehl and Arblaster 2002; Shukla and Paolino 1983; 

Rasmusson and Carpenter 1983). The link between the SAM precipitation and ENSO has 

been well documented in both observations and modeling. For example, it has been reported 

that the warm phase (El Nino) is associated with weakening of the Indian monsoon and an 

overall reduction in SAM summer precipitation, while the cold phase (La Nina) is associated 

with the strengthening of the Indian monsoon and an enhancement o f SAM summer 

precipitation (Kanamitsu and Krishnamurti, 1978; Krishnamurti et al. 1989; Palmer et al. 

1992; Pant and Parthasarathy, 1981; Rasmusson and Carpenter, 1983; Shukla and Paolino, 

1983; Shukla and Mooley, 1987; Sikka, 1999). Meehl et al. 2012, described SAM as a fully 

coupled air-sea-land system which can be better reproduced by air-sea coupled models. Many 

other studies also reported that coupled models perform better than atmosphere-only GCMs 

in simulating the SAM (e.g. Kumar et al. 2005 and Wang et al. 2005).

As discussed above, an intensive research effort has been made to improve simulation o f 

monsoon systems by climate models and significant progress has been made in recent years. 

Among these models, community climate models developed at the US National Center for 

Atmospheric Research (NCAR) have played an important role in monsoon research due to 

their complete physical dynamics and easy implementation. In this chapter we evaluate 

NCAR climate models, i.e., the Community Atmosphere Model version 4 and version 5 

(CAM4 and CAM5) and the Community Climate System Model version 4 (CCSM4).

The important factors affecting monsoon-SST relationships, such as air-sea coupling and 

SST bias, need to be studied in detail to determine the strengths and weaknesses o f these 

models. A systematic evaluation is also important if  these models are to be used for seasonal 

prediction or climate change studies. In this chapter, we therefore explore in detail the
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strengths and limitations of CAM4, CAM5 and CCSM4 in simulating SAM precipitation 

with an emphasis on the mean climate, seasonal and interannual variability and the 

relationship between SAM and SST (local and remote). Our focus is placed on: 1) the SAM 

interannual variability when simulations are forced with observed SST; and 2) the role o f air- 

sea coupling and the impact of SST bias in simulating the SAM. For the latter (2), using 

sensitivity experiments, we also examine the effect of northern Indian Ocean SST bias on 

SAM.

This chapter is organized as follows. Section 2.2 describes models, data and experiments. 

Section 2.3 investigates the mean climatology, annual cycle and evaluates simulated 

monsoon interannual variability in CAM4 and CAM5. Section 2.4 highlights and compares 

the coupled simulations o f CAM4 (CCSM4) in terms of the mean climatology and SAM-SST 

relationship as well as the effect and importance of air-sea coupling over the SAM region. 

To address the effect o f CCSM4 SST bias on the SAM precipitation, section 2.5 explores 

results of sensitivity experiments followed by summary and conclusions in section 2.6.

2.2 Models, Experiments and Validations

2.2.1 Models

Simulations are performed using the CAM4, CAM5 and CCSM4 models. These models are 

the latest in a succession of AGCMs and CGCMs that have been made widely available to 

the scientific community from NCAR. For the convenience of the reader we briefly introduce 

each model, but refer interested readers to the cited references for full details o f each model. 

The models description discussed below is mostly adopted from the cited reference.
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CAM4 (Neale et al. 2010a) is developed from CAM3 (Collins et al. 2006a) with 

modifications to the deep convection (Neale et al. 2008) and the polar cloud fraction in 

extremely cold conditions parameterization schemes (Vavrus et al. 2008). It uses an updated 

convection parameterization scheme (Neale et al. 2008; Richter and Rasch 2008). This model 

can be used with three different dynamic schemes (an Eulerian spectral scheme, a semi- 

Lagrangian scheme and a finite volume scheme) along with different resolution settings. 

CAM5 (Neale et al. 2010b) is modified significantly compared to CAM4, with a range of 

improvements in the representation of physical processes. It includes a new shallow 

convection scheme (Park and Bretheron, 2009), a stratiform cloud microphysical scheme 

(Morrison and Gettelman 2008), an updated radiation scheme (Lacono et al. 2008) and 3- 

mode modal aerosol scheme (MAM3) (Liu et al. 2011).

The CCSM4 (Gent et al. 2011) coupled model descended from its predecessors, CCSM3 

(Collins et al. 2006b) and CCSM2 (Kiehl and Gent 2004). It contains a new coupler that 

exchanges fluxes and state information among all the embedded models. These embedded 

models are the CAM4 atmospheric model, the Community Land Model (CLM4), the Los 

Alamos Parallel Ocean Program ocean model version 2.2 (POP 2.2) (Smith and Gent 2002) 

and the Community Ice Code version 4 (CICE4) sea ice model (Hunke and Lipscomb, 2008). 

The CLM4 model operates on the same grids as the CAM4 model whereas CICE4 uses the 

same horizontal grid as POP 2.2, which has a displaced dipole grid (Smith and Kortas, 1995).
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2.2.2 Experimental Design

A series o f experiments are performed to achieve three goals: i) exploring and comparing the 

ability o f CAM4, CAM5 and CCSM4 in simulating the SAM; ii) evaluating the contribution 

o f air-sea coupling to the simulation and iii) investigating the effect o f SST bias on SAM 

precipitation. These experiments can be generally categorized as below:

1) Control runs: Thirty-two years (1978 to 2008) o f uncoupled simulations are

performed using the CAM4 and CAM5 atmospheric models forced with observed prescribed 

SST (HadSST, Reynolds et al. 2002) and sea ice data. Both models share the same 1.9° x 

2.5° horizontal resolution using the finite volume dynamical core with 26 (in CAM4) and 30 

(in CAM5 1 ) vertical levels using a hybrid terrain-following coordinate system. Higher 

resolution simulation of CAM4 and CAM5 models are also performed using 0.9° x 1.25° 

horizontal grids.

2) Climatology run: CAM4 is also run forced with the climatological (based on the

observations from 1982-2001) seasonal cycle o f SST and sea ice for thirty years. This is 

referred to as CAM4 CLIM.

3) Coupled run: In the case of the CCSM4 coupled experiment, a 100-year coupled

integration is performed using present day climatological forcing. The output o f the last 30 

years of this coupled simulation is used2 . In this simulation, the horizontal resolution of 1.9° 

x 2.5° and finite volume grids in both the atmospheric and land model is used, whereas the

1 CAM5 is run for different set of schemes. Standard run (control) of CAM5 has 30 vertical levels with all the 
default setting. The remaining set of CAM5 runs will be denoted with their particular name throughout the text.
2 Subject to the computational conditions, the spin-up run was carried out 70 years, which basically allows 
atmospheric states to reach equilibrium.

17



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

ocean and ice models share the same 1° x 1° resolution with a displaced pole grid. To 

facilitate comparison, observational datasets are interpolated to the resolution o f model grids.

4) Sensitivity runs: Idealized experiments using different boundary forcings are 

performed with CAM4 and CAM5. Details o f these experiments are given in the relevant 

sections.

Even a realistic model always contains random components and uncertainties such as those in 

boundary forcing or in initial conditions. To alleviate the inpact o f these random components 

and obtain a deterministic response o f the model behavior to forcing (such as SST), an 

ensemble strategy is used for the above experiments except for the coupled run. For the 

control run, ensembles are constructed through perturbing the initial conditions, which allows 

us to separate the “ SST-forced” (or external) response (Rowell et al. 1995). The perturbation 

of the initial conditions is performed by using the initial conditions lagged in time. For the 

climatology run, the same method is used to construct the ensembles. A detailed summary of 

all the experiments and the ensemble runs is given in Table 2.1. All simulation results from 

the control and climatology runs used for validation and presented in the next sections are the 

ensemble mean, unless otherwise indicated.

2.2.3 Validation

The following validation steps are used to examine the performance of the models in 

simulating the SAM monsoon: i) the simulated SAM precipitation and winds by the CAM4 

and CAM5 control runs are compared against the observed counterparts in terms o f 

climatology, interannual variability, and the relationship to SST. ii) The climatological means 

from the CAM4 runs are compared against those from CCSM4 to explore the effects o f air-
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sea coupling on the SAM simulation, iii) To explore the impact of SST bias on monsoon 

simulations, CAM4 forced with a modified SST climatology that contain SST bias, is 

compared with that forced with the observed SST climatology (CAM4_CLIM).

The metrics and methods used to evaluate the simulations include mean bias, Root Means 

Square Error (RMSE), variance, correlation and regression analysis. In all the uncoupled 

simulations, the first year o f the integration output is discarded as a spin-up time, which is 

considered sufficient for atmospheric-only simulations. In the case o f coupled runs, the first 

seventy years are discarded as the ocean model needs more time for equilibration. Observed 

precipitation data from the Climate Prediction Center (CPC) Merged Analysis o f 

Precipitation (CMAP; Xie and Arkin 1997), on a 2.5° x 2.5° grid, is used for validation of 

precipitation. The All-India Rainfall time series (AIR; Parthasarathy et al. 1995), which is a 

combination of 306 uniformly distributed station measurements, is also used in the analysis. 

National Centers for Environmental Prediction (NCEP; Kistler et al. 2001) reanalysis data, 

also on a 2.5° x 2.5° grid, are used to validate winds. Observed SST (HadSST) data 

(Reynolds et al. 2002) are used for coupled model SST validation.

2.3 Simulations by CAM4 and CAM5

We first examine ensemble mean simulations of CAM4 and CAM5 forced with prescribed 

observed SST and sea ice data. Before focusing on the SAM, we evaluate both models over 

the tropical region.

2.3.1 Climatological Mean and Seasonal Cycle

The distribution o f precipitation bias and root mean square error (RMSE) is shown in Figures

2.1 and 2.2 for the winter (December-February, DJF) and summer (June-September, JJAS)
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seasons. The whole tropical region is shown to assess overall model differences. Bias and 

RMSE are calculated by comparing model output data with observations (CMAP) for the 

time period 1979-2008.

The model bias for winter (DJF) precipitation simulations are shown in Figures 2. la  and 2.lb 

for CAM4 and CAM5 respectively and their corresponding RMSE are shown in Figures 2.1c 

and 2.Id. Significant large-scale spatial biases (Figures 2.1a and 2.1b) over the equatorial 

Indian Ocean and western Pacific Ocean, along with many regional biases, are found in the 

CAM4 and CAM5 simulations. The magnitude of these biases is higher in CAM4 whereas 

CAM5, to a large extent, significantly rectifies them in its simulation. Major improvements 

in the CAM5 simulation occur over the South African land areas where the precipitation 

overestimation seen in the CAM4 simulation is diminished. The RMSE patterns (Figure 2.1c 

and 2.Id) further highlight the improved winter precipitation in the CAM5 simulation. In 

summer, when the precipitation activity over the northern hemisphere is enhanced, both 

models show biases in the form of excessive precipitation over the western Indian Ocean, 

central China, Himalayas, and in the subtropical Pacific Ocean (Figures 2.2a and 2.2b). Over 

the eastern Indian Ocean, China Sea, central parts o f Africa and in the west and east Pacific 

Ocean, the models underestimate precipitation. The spatial patterns o f bias from both models 

are similar, but the magnitude o f biases is higher in the CAM4 simulation whereas CAM5 is 

able to reduce many regional biases. Compared to the land, biases are significantly higher 

over the ocean. High magnitudes o f RMSE (Figure 2.2c and 2.2d) are seen over the northern 

Indian Ocean (Arabian Sea and Bay of Bengal) and the complex topography of the 

Himalayas. Similar to the winter, the summer RMSE of the CAM5 simulation is less than for 

the CAM4 simulation.

20



Ph.D. Dissertation: University of Northern British Columbia

In general it is seen that, while both CAM4 and CAM5 are able to capture many observed 

features, they have regional biases somewhat similar to those in previous versions of these 

models (i.e., CAM3, reported in Meehl et al, 2006). In fact, these precipitation biases 

especially over the Indian and Pacific Oceans are probably an intrinsic error of the 

atmospheric model itself, as seen in Lin (2007) and our simulations. Compared to CAM4, the 

CAM5 simulation is improved with less regional bias.

The magnitudes of tropical two meter air temperature biases (not shown) in both CAM4 and 

CAM5 are small except in areas with complex topography such as the Himalayan region 

which is true for many climate models (IPCC 2007). Both models showed warm biases over 

most o f the tropical domain. Larger errors are in regions of sharp elevation changes which 

may result simply from the mismatches between the models’ smoothed topography and the 

actual topography.

As this chapter mainly focuses on the Asian region, the rest of the analyses for CAM4 and 

CAM5 include only the Asian domain, and particularly discuss the South Asian region 

(summer season only). Figure 2.3 shows seasonal mean summer precipitation and 850 mb 

winds for (a) CAM4, (b) CAM5 and (c) observations (CMAP/NCEP). In the observations, 

there are two precipitation maxima, with heavier precipitation around the northern Indian 

Ocean and a weaker precipitation maximum along the equatorial Indian Ocean. This is an 

important characteristic o f the SAM precipitation. Although both of these maxima are 

captured in the models, significant large-scale biases such as excessive precipitation over the 

Arabian Sea and diminished precipitation in the central and the eastern Indian Ocean 

extending into the Bay of Bengal is seen. Simulations also show reduced precipitation along 

the coast o f Bangladesh and excessive rain over the Western Ghats o f India. CAM4 simulates
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excessive precipitation in the eastern Arabian Sea and in the Bay o f Bengal, with the 

maximum center around the Bay of Bengal shifted to the west o f the observed maximum 

center. This is also true for the CAM5 simulation but the spatial magnitude o f the 

precipitation is reduced bringing its climatology close to the observation. This same 

conclusion regarding the CAM4 simulation is found in the recent study by Meehl et al. 

(2012). Apart from the SAM region, the East Asian monsoon system, covering both 

subtropics and mid-latitudes, is well captured in both models. CAM5 shows spatial patterns 

similar to those observed whereas the CAM4 simulation is drier than observations over the 

South China Sea. All simulations show very good correlation and RMSE skill for the East 

Asian monsoon, compared with the SAM.

In the observed 850 mb winds pattern (Figure 2.3c), the most important features are the 

monsoon westerlies, the northward movement of the low pressure area from the Bay o f 

Bengal and the low level jet stream passing across the equator onto the Indian subcontinent. 

The strengthening of westerly 850 mb winds during the summer monsoon seasons can be 

seen in both models (Figure 2.3a and 2.3b) over the 10°N to 2°5N latitude belt extending 

eastward from the western Arabian Sea through India and Bay of Bengal. The Bay of Bengal 

is considered as the moisture source of heavy precipitation events over the central South 

Asian region (Malik et al. 2010) and precipitation over this central region is mainly caused 

by the northward movement of low pressure areas from the Bay of Bengal (Lai et al. 1995). 

This interpretation is seen in both CAM4 and CAM5 simulations showing strong winds 

flowing from the Bay of Bengal to the north over central South Asia. In general, CAM4 and 

CAM5 are able to simulate the winds circulation at 850 mb (such as the equatorial monsoon
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flow and lower level jet stream) realistically, even though there are biases in the strength o f 

monsoon westerlies over the Indian region.

The simulation o f the seasonal migration of the ITCZ is a challenging issue in GCMs. Many 

studies (such as Hack et al 1998 and Wu et al 2003) reported that most GCMs are unable to 

reproduce the seasonal migration of the ITCZ precipitation. Gadgil and Sajini (1998) found 

that the atmospheric models which can simulate the northward migration o f the ITCZ can 

also simulate the interannual variation of the Indian monsoon reasonably well, whereas in 

models with poor SAM simulation, the ITCZ remains over the equatorial oceans in all 

seasons. Over the SAM region, the seasonal migration of the ITCZ from the equatorial region 

in winter to the heated continent in summer is the most important feature of seasonal 

variation. We therefore briefly analyze the seasonal migration o f ITCZ in our model 

simulations by analyzing the mean January and July surface winds (not shown). It is found 

that this planetary scale feature o f the general circulation is well captured by both CAM4 and 

CAM5. Also the location and strength of both the westerly jets over the northern Indian 

region during January and the tropical jets during July (early Monsoon) are fairly well 

reproduced in simulations which indicate that both models realistically capture the large shift 

o f the ITCZ from January to July.

We have also performed simulations of CAM4 and CAM5 at higher resolution (0.9° x 1.25°) 

to analyze the effect of better resolved topography (which is an important aspect for the 

simulation of precipitation). We found (not shown here) that increasing the resolution 

improved the simulation over areas of complex terrain such as the Western Ghats and 

Himalayas in the SAM region. The Western Ghats capture much of the rain on the Arabian 

Sea-facing side, while the other side o f these mountains (to the east in southeastern India)
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remains dry in the summer season. This is a localized effect and can only be seen in the 

higher resolution simulation. Also in the higher resolution run, heavy precipitation on the 

coastal mountain slopes of Myanmar, across the Bay of Bengal, is well simulated but with 

the same overestimation in the amount as seen in the lower resolution run. Also the excessive 

precipitation over the Tibetan Plateau in CAM4 (also the case in CAM5) is reduced in its 

higher resolution simulation. Both higher resolution simulations are somewhat closer to 

observations for the complex terrain regions of the SAM.

The seasonal evolution of SAM precipitation is examine in time-latitude diagrams averaged 

over the SAM longitudes (50° to 120°E) for observations, CAM4 and CAM5 (Figure 2.4). In 

the observations (Figure 2.4c), a well-defined seasonal precipitation pattern that varies with 

latitude and moves significantly northward from 5°N in winter to 20°N in summer is visible. 

In models (Figure 2.4a and 2.4b), the northward shift o f precipitation starting in winter and 

reaching a maximum in summer is well captured but there are considerable systematic errors 

such as the simulated summer precipitation northward extent reaching too far north with a 

second maximum around 30°N. In the CAM4 and CAM5 simulations, the precipitation 

reaches a maximum at 15°N and exhibits an essentially realistic seasonal migration, but the 

simulations have heavier than observed precipitation over the Western Ghats. The 

overestimation is higher in CAM4 than in CAM5 along with more penetration o f 

precipitation towards the north. In CAM5, the maximum contour o f precipitation is 

somewhat reduced and is comparable to observations. The annual cycle of precipitation 

averaged over the latitude and longitude of the SAM region is simulated quite well in 

models, with a well-defined seasonal cycle as shown in Figure 2.4d. Several characteristics 

of the annual cycle of SAM precipitation, such as the rapid onset between May and June, the
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sustained high precipitation from June to August and the slow withdrawal during September 

to October, are well simulated by both models. As noted earlier in the discussion of spatial 

patterns, both models produce realistic seasonal variation o f precipitation in the SAM region, 

but with considerable overestimation. The annual cycle highlights this overestimation more 

clearly by showing excessive precipitation in the months July, August and September as well 

as in December, January and February.

From the above discussion of mean climatology simulations, it is seen that CAM5 has 

significantly improved simulations compared to CAM4. We further investigate this 

improvement by performing different sets o f CAM5 simulations using the same radiation 

(CAMRT), aerosol (BAM) and boundary layer (HB, Holtslag-Boville, 1993) schemes which 

are used in the CAM4 default configuration. This switching of new schemes (in CAM5) with 

old ones (in CAM4) allowed us to explore the effect o f each individual scheme in improving 

CAM5 simulations over the SAM. We named each individual experiment o f CAM5 as 

CAM5 BAM, CAM5 BAM CAMRT, CAM5 BAM HB and CAM5_BAM_CAMRT_HB 

(see Table 2.1 for details). Figure 2.5 represents the summer precipitation difference o f 

CAM5 BAM, CAM5 BAM CAMRT, CAM5 BAM HB and C A M 5 B A M C A M R T H B  

from observation. Comparing these differences, with the default CAM4 and CAM5 runs 

(Figure 2.2a and 2.2b), reveals that the implementation o f new boundary layer schemes (UW 

moist turbulence) in CAM5 has the greatest effect (in our case) on decreasing the 

overestimation seen in the CAM4 simulation. As reported by Park and Bretheron, (2009), the 

new UW moist turbulence scheme improved the cloud top boundary layers in the CAM 

model. They used the CAM3.5 version to test this scheme and found significant reduction in 

model bias. In our case, although the new RRTMG radiation scheme and the foil
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representation of aerosol indirect effects do not contribute as much to the improved SAM 

simulation, virtually every atmospheric process (revised/replaced) and its physical 

representation in the new version makes an improvement in the simulation (the individual 

discussion of all these new features o f CAM5 is beyond the scope o f this study).

2.3.2 Monsoon Interannual Variability

In this section, the monsoon variability is examined by focusing on the simulation of 

monsoon indices (precipitation and circulation) for both CAM4 and CAM5 models. The 

strong and weak monsoon composite analysis is also discussed to further explore the 

simulation’s interannual variability. It has been well recognized that the interannual 

variability o f many climatological variables on earth can stem from ENSO, which is the 

strongest interannual variability o f the earth's climate system. Thus, the link between 

simulated SAM precipitation and ENSO is also explored using lag correlation. This is also 

performed to explore the relationship between the Indian Ocean Dipole (IOD, Saji et. al, 

1999) and SAM precipitation.

2.3.2.1 Asian Monsoon Indices

We examine the models simulations o f monsoon interannual variability with several 

commonly used monsoon indices, including Indian Summer Rainfall (ISR), the Webster- 

Yang monsoon index (WY index) (Webster and Yang 1992), the Southeast Asian Monsoon 

(SEAM) index or Western North Pacific Monsoon (WNPM) index (Wang and Fan 1999), 

Indian Monsoon (IM) index (Wang et al. 2001) and South Asian Monsoon Index (SAMi, 

here the subscript i denotes “index” to differentiate it from SAM) (Gowani et al. 1999). The 

definitions o f these indices are given in Table 2.2.
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Figures 2.6 and 2.7 show the simulated and observed interannual variability o f ISR, WY, 

IMI, WNPM, and SAMi monsoon indices normalized with their respective standard 

deviation. All these indices are circulation indices except ISR which represents SAM 

precipitation. To analyze model simulations for individual strong and weak monsoons, the 

ISR index is separated from the circulation indices (Figure 2.7) and is presented in Figure 

2.6. In Figure 2.6a, the observed ISR index representing the strength (strong and weak 

monsoon) and interannual variation of SAM precipitation, is shown. Strong monsoon years 

such as 1980, 1988 and 2007 are differentiable in the observations, whereas in CAM4 and 

CAM5 (Figure 2.6b and 2.6c) only the year 1988 has the same sign. Both 1980 and 2007 are 

characterized as weak monsoon years in both models, opposite to the observations. Similarly, 

the observed weak monsoon years 1984, 1986 and 2002 are simulated as strong monsoon 

years in model. This means that both CAM4 and CAM5 failed to capture the interannual 

variability o f the SAM, except in some years. We find that there are large errors in the 

simulation o f some extreme seasons which lead to the overall poor skill. Considering SAM 

extreme precipitation, for those associated with ENSO, both models simulate at least the sign 

of SAM accurately. For example, the La Nina of year 1988 is successfully simulated by both 

models while CAM4 failed to spatially capture the El Nino year of 1987. This analysis 

suggests that the low skill in simulation o f monsoon interannual variation arises mainly from 

a poor simulation ENSO-Monsoon teleconnections rather than the lack o f air-sea interaction 

(coupling). Since the SAM has remote and local SST teleconnections, the poor simulation of 

SAM interannual variability in these atmospheric models (forced with observed SST) can be 

explained by analyzing the ENSO-Monsoon teleconnection and regression of Nino SST on 

SAM precipitation. We will further discuss this issue in the next section.
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In case of circulation indices (Figure 2.7), it is seen that both CAM4 and CAM5 show 

considerable skill in simulating the interannual variation of the WY and WNPM indices with 

significant correlation coefficients (see Table 2.2). For the IM and SAMi indices, correlation 

coefficients are insignificant, meaning that these indices are not well simulated in these 

models. As the WNPM index represents the East Asian summer monsoon, the significantly 

higher correlation o f this index means that East Asian monsoon circulations are better 

simulated in both models compared to the SAM. Analyses of monsoon spatial patterns also 

support this result. This may be due to the fact that the East Asian monsoon has a stronger 

response to ENSO than the Indian monsoon.

To get better insight into the simulated circulation in CAM4 and CAM5 simulations, summer 

mean velocity potential and divergent wind anomalies are calculated for both models and 

observations (NCEP). These show upper-level convergence and lower-level divergence over 

the equatorial central Pacific, and upper-level divergence and lower-level convergence over 

the SAM region (not shown here). In Figure 2.8, we analyze the difference between model 

and observation (NCEP) of the summer mean velocity potential and corresponding divergent 

winds at 850 mb and 200 mb. Although some of the circulation indices have higher 

correlation for CAM4 than CAM5, the overall spatial patterns from the CAM5 simulations 

are better. At both atmospheric levels, over the Pacific and Indian regions, CAM5 have much 

better skill (less difference) compared to CAM4.

2.3.2.2 Composite Analysis

Modeling extreme events is one of the most challenging issues and validating model extreme 

event simulations is therefore important to assess their performance. In this subsection, we
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focus on several particular years which were recorded as strong and weak monsoon years 

over the SAM region (as seen in Figure 2.6). Strong and weak monsoon years are 

characterized on the basis o f significant weak or strong summer precipitation over the 

monsoon region. Years with anomalies of summer mean precipitation greater than 0.5 

standard deviation above the mean are categorized as strong monsoon years (1980, 1981, 

1983, 1988, 1994, 1996, 1998 and 2007) and those with mean precipitation less than -0.5 

standard deviation below the mean are categorized as weak monsoons (1982, 1984, 1986, 

1987, 1989 and 2002). Composites of weak and strong monsoon years from observations 

(CMAP), CAM4 and CAM5 are shown in Figure 2.9. The observed weak and strong 

monsoon composites have a large-scale structure with anomalies o f the same sign over many 

parts within the SAM region. The observed weak (Figure 2.9a) monsoon composite has 

negative anomalies over the whole Indian region whereas in the strong monsoon (Figure 

2.9b) composite there are positive anomalies over the Indian land area, Bay of Bengal, and 

the maritime continent. The models composites (Figures 2.9c, 2.9d, 2.9e and 2.9f) show that 

the simulations failed to reproduce the observed anomaly patterns with some areas having 

significant differences. For its weak monsoon composite, CAM4 and CAM5 have a much 

different pattern with more intense and large scale positive anomalies (which is opposite 

from the observed composite patterns) over the Western Ghats and Bay of Bengal. CAM4 

and CAM5 to some extent, reproduce the strong monsoon composite over southern India. In 

short, both models show poor skill in differentiating the strong and weak monsoon years. 

This is also seen in the models ISR index (Figure 2.6) as both showed poor skill in simulating 

the interannual variability o f the SAM region. This is probably due to the simulated 

overestimation of precipitation, as well as strong internal dynamics (noise) in the models. An 

examination o f the interannual variability o f CAM4 and CAM5 monsoon simulations show
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that, although the observed SST tends to enhance the variability, the internal dynamics also 

produce considerable interannual variability in these simulations. It is interesting to note that 

the large variance in control runs is dominated by a few events such as 1983, 1988 and 2007. 

For many years, the interannual variability produced by internal dynamics is often larger than 

that in the control runs, suggesting that the interannual variability generated purely by 

internal dynamics is comparable to that forced by the slowly varying SST boundary forcing 

in many cases. This is probably the reason why these models perform poorly in 

differentiating strong and weak monsoon seasons.

2.3.3 Teleconnection of SAM with ENSO and IOD in CAM Simulations

In this section, we explore how well CAM4 and CAM5 capture SAM-ENSO and SAM-IOD 

relationships. We perform regression analysis to analyze spatial patterns of these 

relationships whereas lag-lead correlation is used for temporal analysis. Figure 2.10 shows 

the linear regression of Niiio3.4 (-5°S-5°N, 120°-170°W) and IOD ((-10°S-10°N, 50°- 

70°E) - (-10°S-0°, 90°-110°E)) SST indices with JJAS precipitation and 850 mb winds for 

observations and both models. Unless stated otherwise, all regression maps show the 

covariance of the normalized Nino3.4 and IOD indices. The regression o f precipitation and 

850 mb winds onto the Nino3.4 index is an important key to understand the behavior o f 

CAM4 and CAM5 in simulating realistic ENSO properties as these fields are direct 

indicators of the connection between the ocean and the atmosphere. In Figure 2.10a, the 

regression o f the observed Nino3.4 index with precipitation and 850 mb winds is shown. The 

observations reveal enhanced precipitation over the Bay of Bengal, accompanied by a 

westerly winds anomaly and decreased precipitation over most o f the Indian region. In the 

models’ results, (Figure 2.10c and 2.10e) quite realistic patterns are seen over the equatorial

3 0



Ph.D. Dissertation: University of Northern British Columbia

Indian Ocean whereas over the Western Ghats and central India, both CAM4 and CAM5 

have opposite response compared to observations. In the IOD regression pattern, (Figure 

2.10d and 2.1 Of), spatial modes are well reproduced over the Indian Ocean (enhanced 

precipitation over the western equatorial Indian Ocean and decreased precipitation over the 

Eastern Indian Ocean) whereas over the Indian subcontinent the models have the opposite 

sign similar to the ENSO regression.

The analysis above show that precipitation response to local and remote SST in the models' 

simulations is not preserved. To further investigate this issue, the lagged correlation of 

Nino3.4 and IOD indices with the simulated ISR index is shown in Figure 2.11. The area 

averaged (0°—40°N, 55°-100°E) time series of observed CMAP precipitation (ISR, solid 

black line), observed All-India Precipitation index (AIR, dashed black line) and simulated 

(CAM4, solid blue line and CAM5, solid red line) time series are correlated with observed 

Niiio3.4 and IOD SST indices. The months with negative (positive) sign indicate that SST 

leads (lags) the ISR with maximum lead of 12 months (1 year). Months 0 and 12 indicate 

June whereas months 4 and 8 correspond to February and October (minus sign for previous 

months). Correlations are calculated using a 5-month sliding window. The observed positive 

correlations occur when the SST leads the SAM precipitation and negative correlations occur 

when SST lags the SAM precipitation. A negative correlation is seen for SST from the same 

summer to the following winter, showing a weak (strong) SAM in El Nino (La Nina) 

developing years. The highest negative correlations occurs when the monsoon leads Nino 3.4 

SSTs which suggests, as reported in Kirtman and Shukla 2000, that monsoons can provide 

favorable conditions for triggering or enhancing El Nino or La Nina events in the Pacific 

during the following winter. The observed ISR index has significant lagged and lead
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correlations with SST, with the highest value of around 0.5 when monsoon precipitation is 

slightly led by SST. This suggests a cross-interaction between monsoon and ENSO, namely, 

ENSO impacts on SAM precipitation and meanwhile the monsoon variability may affect the 

ENSO evolution, intensity, and periodicity. The mutual influence between ENSO and SAM 

has been widely reported in other studies as well (Chung and Nigam 1999; Kitoh et al. 1999; 

Meehl and Arblaster 1998; Wang et al. 2004). It is noted that the difference in correlation 

magnitude between Figure 2.11a and those in other studies (Kirtman and Shukla 2000; 

Yasunari 1990) may be accounted for a dramatic change of the ENSO-SAM relationship in 

the late 1970s, since Figure 2.1 la is obtained only using the data after 1979. In the CAM4 

and CAM5 simulations, this relationship is poorly captured, particularly when SST lags 

monsoon. CAM4 shows a somewhat comparable result when SST leads monsoon. Both of 

these models failed to maintain the monsoon and ENSO relationship because, as discussed in 

the composite analysis, the internal dynamics of these models can overwhelm the Pacific 

SST influence on monsoon precipitation. In Figure 2.11b, the lag-lead correlation of SAM 

with IOD is computed. A positive correlation during late spring and the simultaneous 

summer is seen. The correlation changes to negative in the following fall, suggesting a 

negative feedback of SAM on the IO. For the models, the simultaneous response is not clear 

but when IOD leads monsoon, both models show a comparable response to the observations.

Overall the above analysis shows that the interannual skill o f CAM4 and CAM5 in 

simulating SAM is poor. Both models failed to differentiate strong and weak monsoon which 

is indirectly linked to their poor reproduction of the ENSO-monsoon relationship. The correct 

representation of the ENSO-SAM relationship in models is crucial, since it is the basis for 

seasonal forecasts o f SAM using climate models. The poor skill of CAM4/CAM5 interannual
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variability, even when forced by observed SST, is attributed to the models’ poor skill in 

simulating the SST-precipitation relationship over the Indian and Pacific oceans and a lack o f 

atmosphere-ocean coupling that has been reported as critical for skillful simulation of the 

monsoon (Wang et. al. 2005). Since this lack o f atmosphere-ocean coupling in GCMs is one 

o f the possibilities for their poor skill, we focus our analysis on the coupled CCSM4 model in 

the next section and compare its simulation with CAM4 and observations.

2.4 Coupled Simulation using CCSM4

We investigate the mean climatology and relationship between SAM precipitation and SST 

in the CCSM4 coupled model, which will allow insight into the role o f coupling on the 

simulation of SAM precipitation. As previously discussed, CCSM4 uses CAM4 as its 

atmospheric model and POP2.2 as its ocean model. Along with observations, we will also 

contrast CCSM4 with the CAM4 results presented in previous sections. Here we will mainly 

use the CCSM4 climatology run whereas for some sensitivity experiments, data from a 

CCSM4 transient run (CCSM4 TR, downloaded from NCAR) forced with observed forcing 

o f greenhouse gases) is also used.

2.4.1 Mean Climatology of CCSM4

We first analyze, as for the atmospheric simulations, the coupled model over the tropical 

region including both Indian and Pacific Oceans. Figure 2.12b shows the JJAS mean 

precipitation difference (in mm/day) between CCSM4 and CMAP observation. The 

difference between the CAM4 climatology run (CAM4 CLIM) and observations is also 

shown in Figure 2.12a. CCSM4 shows significant differences, particularly over the Indian 

and Pacific Ocean. Specifically, the coupled simulation underestimates precipitation over the
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western and eastern equatorial Pacific and over the eastern Indian Ocean, and it 

overestimates precipitation over the western Indian Ocean and central equatorial Pacific 

Ocean. These differences, shown in Figure 2.12, result from the ocean component of 

CCSM4. The SST bias from the ocean model influences the precipitation directly, making it 

different from the observed precipitation climatology. Comparing CCSM4 with 

CAM4CLIM shows that CCSM4 precipitation biases are at a broad scale (especially over 

oceans). In CCSM4, the negative precipitation bias increases over the equatorial area in the 

Pacific Ocean. This is probably due to the feedbacks o f air-sea coupling in the coupled model 

that amplifies the bias in the atmospheric and oceanic components. Same as reported in Gent 

et al., (2011), CCSM4 has the double ITCZ bias, characterized by heavy simulated 

precipitation over most of tropical Pacific and the equatorial Indian Ocean, and light 

precipitation in the west and central Pacific between 15° and 30° south. The double ITCZ 

problem was also present in previous versions of the CCSM model. Lin (2007) found that 

most o f the current coupled models and uncoupled models have this double ITCZ problem to 

some extent. Focusing on the SAM region reveals that while the CAM4 simulation 

overestimates precipitation over much of this region, the coupled simulation is more realistic 

and comparable to observations although the amounts are still overestimated somewhat. This 

is similar to results from the CCSM3 model reported in Meehl et al, 2006. The CCSM4 

simulation has reduced bias over the Arabian Peninsula and the western coast o f India 

(Figure 2.12b), which is a direct consequence of the thermodynamic air-sea interactions in 

the Arabian Sea, Bay o f Bengal, and South China Sea, which are absent in uncoupled 

simulations. Meehl et al. 2012 also reported that the CCSM4 simulation over the SAM region 

is much better than the CAM4 simulation. It is also reported in Wang et al. (2004) that the 

implementation o f air-sea coupling could improve the model simulation of monsoon
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precipitation and circulation in the Asian monsoon. The absence of air-sea coupling in 

CAM4 results in continuous heating of the atmosphere by the prescribed SST (warm SST) 

which increases the evaporation, resulting in increased precipitation in its simulations. This 

amplifies the SAM variability and therefore CAM4 simulations overestimate precipitation in 

the SAM region. We will further discuss air-sea coupling and role o f SST bias in the next 

section. In general, CCSM4 shows a large reduction in precipitation and less bias over the 

SAM region particularly over Arabian Sea and west equatorial Indian Ocean as compared 

with the CAM4 simulation. The reduction of SAM precipitation in the coupled model can 

also be seen in the seasonal cycle (not shown) averaged over the region.

Seasonal mean summer precipitation and 850 mb winds pattern from CCSM4 simulation, 

shown in Figure 2.13, is more realistic and comparable to the observations as compared to 

CAM4 and CAM5 simulation (Figure 2.3). The extreme high precipitation area over the 

northern West Indian Ocean is diminished in the coupled simulation making it more 

comparable to observations. However, CCSM4 also removed the heavy observed 

precipitation over the Bay o f Bengal making its simulation different than observation. This is 

a significant shortcoming of the coupled simulation. Also, in CCSM4 runs, the precipitation 

is more concentrated in the western Indian Ocean, which was also seen in CCSM3 (Meehl et 

al, 2006). Considering these spatial patterns only, the overall mean climatology of CCSM4 

seems to be more realistic and much better than from the uncoupled simulation, providing 

evidence that coupled air-sea interaction is necessary for climate models.

35



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

2.4.2 Teleconnection of SAM with ENSO in Coupled Simulation

A correct ENSO-monsoon relationship is one of the prerequisites needed for a coupled model 

to produce reliable simulations of the monsoon. Here we document the ability o f CCSM4 to 

reproduce the observed lag-lead relationships between the SAM and ENSO, and to 

understand how systematic errors may affect the simulation o f this relationship. We first 

discuss the simulation of Nino3.4 and IOD indices in the coupled model. Figure 2.14 shows 

the variance spectrums of monthly Nino3.4 and IOD index for (a) observation and (b) 

CCSM4. In the observations, the broad peak shows a probable frequency of ENSO events of 

3 to 6 years (0.24/year) with the maximum variance of about 20. In the CCSM4 simulation, 

the same frequency o f 3 to 6 years is seen with maximum peak at 4 years although the 

CCSM4 Nino3.4 variability is significantly larger than the observed variability. In the 

previous version of CCSM i.e. CCSM3, the ENSO frequency (about 2 years) was reported as 

very poor by Collins et al. (2006). This shows that the new version of CCSM has significant 

improvements in its dynamics and can therefore simulate the ENSO properties more closely 

to observation. For the case of the IOD spectrum, being irregular in its oscillatory period, 

there is no well-defined peak in the observed frequency whereas in CCSM4, the peak o f the 

IOD spectrum remains in phase with that of the Nino3.4 index showing a frequency of 3 to 6 

years. Also these results show that the IOD index varies significantly with ENSO in CCSM4. 

The observed IOD variance is very small whereas the model variability is significantly larger 

showing a similar pattern as the Nino3.4 index.

Figure 2.15 (top) shows the linear regression of the CCSM4 simulated JJAS Nino3.4 (-5°S- 

5°N, 120°-170°W) SST index with JJAS precipitation and 850 mb winds. Comparison of 

this regression pattern with Figure 2.10 reveals the improved spatial Nino3.4 regression
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pattern o f the CCSM4 simulation, which is due to the improved and coherent atmospheric 

response in coupling. This can be also seen in Figure 2.15 (bottom), representing lag-lead 

correlation of CCSM4 simulated SAM precipitation with simulated Nino3.4 SST index. The 

observations show positive correlation when precipitation lags ENSO and strong negative 

correlations when precipitation leads ENSO. The CCSM4 can partially capture the observed 

variation o f correlation timing but with quite different magnitudes. Comparing CCSM4 lag- 

lead correlation with CAM4 (Figure 2.11) shows significant improvement in the coupled 

simulation relationship. This is probably due to an improved or consistent SST simulation 

and its interaction with atmosphere, which is absent in atmosphere-only simulations. The 

response of ENSO to SAM precipitation (i.e. SST lagging the monsoon) is realistic in 

CCSM4, better than in CAM4. The lag-lead correlation for ENSO suggests that in the 

CCSM4, SST has significant biases over the central equatorial Pacific and Indian Ocean. The 

fact that CCSM4 reveals a better connection between ocean and atmosphere in its simulation, 

although the Nino3.4 amplitude is considerably larger than the observed one, supports the 

low sensitivity to SST in the CAM4 model. Apparently, the atmospheric component (i.e. 

CAM4 in CCSM4) shows a realistic response to ENSO variability only when being forced by 

a strong SST signal which is confirmed by CAM4 sensitivity experiments (not shown or 

discussed further here).

Since SST and precipitation are strongly coupled in the tropics, an unrealistic simulation of 

SST distribution should lead to an unrealistic SAM-ENSO relationship. To assess this we 

analyzed the average mean seasonal SST differences between CCSM4 and the observed 

climatology over the Indian and Pacific oceans. This also helps further investigate the SAM 

improvements in coupled simulations. In the observed mean SST climatology (not shown
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here) the most important feature is the warm pool region over the west Pacific with SSTs 

more than 28°C and a cold SST tongue along the east Pacific associated with easterly trade 

winds along with a strong east-west SST gradient across the equatorial Pacific. A north-south 

irregularity is present in the eastern Pacific where warm water is located north of the equator 

and cold water is present along the west coast o f South America. This north-south irregularity 

is important for the formation of the annual cycle (Xie 1994) and ENSO (Cane and Zebiak 

1986). CCSM4 SST patterns, showed almost the same climatology but with significant 

differences in magnitude. Figure 2.16 shows the difference between the simulated CCSM4 

SST climatology and the observed SST climatology for DJF, MAM, JJA and SON seasons. 

In CCSM4, the model simulates warm SSTs over most of the Pacific and Indian Oceans in all 

four seasons whereas over the eastern equatorial Pacific and northern East Indian Ocean, the 

model has cold SST biases in spring and summer. The cold SST bias in the equatorial Pacific 

significantly reduces the temperature o f the warm pool whereas the warm biases near the 

coast of Peru reduce the meridional SST gradient. This may be the cause of the double ITCZ 

in the CCSM4 simulations, as seen in Figure 2.12b. Comparing the SST bias in summer with 

the summer precipitation bias o f CCSM4 (Figure 2.12) reveals that the negative precipitation 

anomalies over much of the Pacific Ocean are largely associated with the cold SST bias in 

the same region. This most likely originates from errors in the atmospheric model. As 

reported in Li and Hogen 1999, and Manganello and Huang 2008, deficiencies in the 

simulated SSTs are likely responsible for some of the unrealistic ENSO properties in the 

coupled model. Although CCSM4 simulated summer monsoon precipitation in South Asia is 

considerably improved, the SST bias over the Pacific Ocean (ENSO region) can still lead to a 

spurious response o f the SAM to ENSO in CCSM4.
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2.5 The Contribution of Air-Sea Interaction to SAM Simulation

In previous sections, we investigated the SAM simulations using CAM4 and CCSM4. Their 

differences were due to two factors: 1) the role o f coupling in CCSM4 which is absent in 

CAM4; 2) the SST consistency in CCSM4. To better isolate the role o f coupling in 

simulating the SAM, we designed another set of experiments referred as to CAM4 POP, in 

which the predicted SST by CCSM4 forces CAM4. These experiments allow us to 

investigate the air sea coupling in CCSM4 and its effect on SAM precipitation. An ensemble 

strategy is used as discussed in section 2.2, and therefore the following discussions are from 

the ensemble mean analysis.

The difference between the CAM4 POP and CCSM4 (Figure 2.17b) reveals that the 

precipitation and westerly winds in the CAM4_POP simulation are enhanced over the 

northern Indian Ocean including the Arabian Sea and Bay of Bengal. These differences show 

that SAM monsoon precipitation is amplified in the absence of the air-sea coupling. A 

considerable increase is also seen in the variance (not shown here), revealing that the 

monsoon variability is amplified by about half as compared with the CCSM4. The absence of 

the air-sea coupling keeps SSTs warm in the Indian Ocean (as discussed previously), which 

increases the local evaporation and precipitation. This suggests that the air-sea coupling 

works to stabilize the monsoon and hence suppress the variability, which is the case in 

CCSM4 simulations. Figure 2.17a shows the difference between observations 

(CMAP/NCEP) and CAM4_POP mean precipitation and winds. The spatial pattern in this 

case is almost same as seen in Figure 2.12b for the SAM region. This means that the 

reduction in excessive precipitation seen in the CCSM4 simulation is not only due to the air- 

sea interaction but also due to the more consistent SST simulation in the coupled model
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integration. In other words, the more consistent SST simulated in CCSM4 (different from 

observation in magnitude) is responsible for decreasing the overestimation of precipitation.

To further elaborate this point we performed another set o f experiments and analyzed the 

CCSM4 SST in the Indian Ocean and its effect on SAM monsoon. For this set of 

experiments, we used the SST data from the CCSM4 transient run (CCSM TR). The 

CCSM4 TR precipitation is similar to precipitation in the CCSM4 run, but the SST bias is 

more significant in CCSM4_TR simulation.

The Indian Ocean SST bias, seen in Figure 2.16, prompted us to find its influence on the 

SAM. Comparison of CCSM4 and CAM4 runs suggests that the coupled model cold SST 

biases significantly reduce monsoon precipitation as seen in Figure 2.17. The role o f these 

biases is for CCSM4 to remove the overestimation (reduction in the monsoon) seen in the 

CAM4 simulation. Gimeno et al. (2010) have shown the northern Indian Ocean to be an 

important moisture source for Indian monsoon precipitation and therefore understanding the 

monsoon dependence on Indian Ocean SST, and correctly representing this in climate 

models, is important in order to realistically predict monsoon fluctuations.

In Figure 2.18a and 2.18b, the annual cycle of SST over the northern Indian Ocean for two 

separate regions, the Arabian Sea and Bay of Bengal, is shown for observation and for both 

the CCSM4 and CCSM4 TR coupled model runs. In CCSM4, the magnitude of the cold SST 

bias in the Arabian Sea is small, diminishing after the summer season, whereas CCSM4 TR 

shows a large cold bias throughout the year, with a slight decrease in its magnitude during the 

fall. Over the Bay o f Bengal, instead of a cold SST bias, both models show a warm SST bias, 

with a larger bias in the CCSM4 climatology run. This means, from January to July, the cold
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bias becomes more confined to the Arabian Sea in these models, while a warming appears in 

the Bay o f Bengal.

To further analyze the role o f this Indian Ocean bias, we designed two different sensitivity 

experiments with CAM4 using climatological SST repeated every year but with the addition 

of the CCSM4 northern Indian Ocean SST bias into the SST climatology. In the first 

experiment, we added the annual cycle o f CCSM4 TR SST bias (bounded in the Ocean 

region 7°-30°N, 40°-100°E) covering the whole northern Indian Ocean to the annual cycle of 

climatological SST (named as CAM4_AS_BoB). To remove any discontinuity at the 

boundary o f the modified region, the bias is added in a tapered manner over the region, being 

highest at the center and approaching zero at its boundaries. In the second set of the 

experiments, the bias o f CCSM4_TR SST is confined only to the Arabian Sea covering 7°- 

30°N, 40°-80°E (named as CAM4_AS). Both of these experiments are compared against the 

CAM4 climatology run (CAM4 CLIM) forced with the climatological SST cycle (see Table 

2.1 for details). To account for uncertainties, each simulation is performed three times 

starting with three different initial conditions. As mentioned previously, CAM4 is not very 

sensitive to the small changes in its boundary conditions which means that only a strong 

anomaly added to its boundary condition will produce a significantly altered simulation. We 

therefore use the CCSM4 TR simulated SST in this case which has larger magnitude o f SST 

bias, especially in the Arabian Sea. In Figure 2.18c and 2.18d, precipitation differences of 

both of these experimental setups from the CAM4 CLIM run are shown. In 

CAM4_AS_BoB, a significant reduction in the precipitation is seen over the whole Indian 

subcontinent, Arabian Sea and Bay o f Bengal. Also the increased precipitation is seen over 

the West Indian Ocean around 10°N. In the second experiment (CAM4 AS) where we used
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the SST bias only over the Arabian Sea, the reduced precipitation over the Bay o f Bengal 

diminished while the Arabian Sea continued to be affected by the bias. Both these 

experiments support our conclusion that the reduction o f CCSM4 SAM precipitation is 

mainly due to the SST bias in northern Indian Ocean. The weakened (reduced precipitation as 

compared to CAM4) monsoon seen in the CCSM4 run is therefore mainly caused by 

systematic cold SST biases of northern Indian Ocean particularly in the Arabian Sea. This 

cold bias keeps the ocean cool, and thus reduces evaporation, which results into the reduction 

of SAM precipitation. This issue needs more attention in the coupled model to improve 

monsoon simulation. CCSM4, while being revised with improved physics and dynamics, 

needs improvement in its oceanic component.

2.6 Summary and Conclusions

The SAM precipitation is an important climatic feature due to its profound influence on 

droughts and floods over Asia, along with its influence on the global general circulation. 

Improved and accurate simulation of the SAM system is therefore crucial to predict decadal 

and seasonal climate as well as projecting long-term climate change in the region. Also it is 

necessary to assess whether climate models can realistically simulate monsoon systems 

before using them for such predictions. This chapter discussed selected features of the SAM 

precipitation in the simulations of NCAR's versions of the uncoupled (CAM) and coupled 

(CCSM) climate models. Simulations using CAM4, CAM5 and CCSM4 models are 

performed and compared against observations to identify improvements and discrepancies in 

these newly updated models. Along with the simulated mean climatology of the region, the 

interannual variability and SAM-ENSO/IOD teleconnections are evaluated using lag-lead
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correlation and regression analysis. The improvements due to air-sea interactions and impact 

of SST biases from the CCSM4 are assessed in coupled model simulations.

It is found, in the comparison of atmosphere-only simulations, that the improvements in 

CAM4 and CAM5 dynamics and convection parameterizations have eliminated many 

regional differences (especially for CAM5). Many improvements in these simulations, 

compared to previous versions, are seen in both models. The detailed structure of spatial 

patterns and the seasonal cycle o f monsoon precipitation are well reproduced in both CAM4 

and CAM5. The annual cycle of average precipitation is well simulated along with its major 

characteristics such as the rapid monsoon onset between May and June, the high precipitation 

during June-August and slow withdrawal during September-October. The large northward 

shift of the ITCZ from January to July is also well simulated by both CAM4 and CAM5 and 

its location and strength are fairly well reproduced. Increasing the resolution shows a 

pronounced improvement in precipitation simulation with a reduction in many regional 

biases, especially over regions o f complex terrain. The CAM5 new dynamics and physics 

showed improved simulation results over the SAM region. Sensitivity experiments using 

CAM5 showed that the implementation o f new boundary layer schemes (UW moist 

turbulence) in CAM5 contributes to decreasing the CAM4 simulation overestimation.

Analysis showed that both CAM4 and CAM5 poorly simulate the ENSO-monsoon 

teleconnection. These models partially captured the monsoon interannual variability with 

inconsistencies in oscillatory period and amplitude. It is also found that the simulation o f East 

Asian summer monsoon is much better than the simulation o f the SAM in both CAM4 and 

CAM5. The better simulation of the WY and WNPM monsoon indices and poor simulation 

of the IM, SAMi and ISR monsoon indices in both CAM4 and CAM5 also supported this
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conclusion. Both the models are able to simulate the winds circulation such as equatorial 

monsoon flow and lower level jet stream very well. Both models simulate excessive 

precipitation over the western Indian Ocean and subtropical Pacific Ocean whereas decreased 

precipitation is simulated over the eastern Indian Ocean, China Sea and South America. Over 

the SAM region their simulations show significant large-scale biases such as excessive 

precipitation over the Arabian Sea and over the Western Ghats of India, and reduced 

precipitation over the eastern Indian Ocean extending into the Bay of Bengal.

The CCSM4 simulated SAM precipitation is considerably improved compared with CAM4 

with the reduction of many biases particularly over the Arabian Peninsula and the western 

coast of India. The results showed that the air-sea coupling has significantly improved the 

monsoon simulation. Along with these improvements, interrupted northward progression and 

delayed onset of the monsoon over the SAM region is seen. The CCSM4 underestimated the 

precipitation over the equatorial area in the Pacific Ocean. Also CCSM4 still has the double 

ITCZ problem that was also present in the previous versions o f the CCSM model (CCSM3). 

CCSM4 showed a systematic cold bias in the simulation of SSTs over the tropical Pacific 

Ocean and hence showed problems in simulating the observed SST-precipitation relationship. 

Analysis over the whole tropical region revealed that biases in CAM4 and CCSM4 are 

somewhat similar to those in previous versions of these models.

The frequency o f ENSO in CCSM4 is found to be more realistic than was simulated in its 

previous version (CCSM3). The SAM-ENSO teleconnection in the CCSM4 climatology run 

is partially captured. Significant cold biases over the equatorial Pacific Ocean are found in 

CCSM4, particularly in winter and early summer. It is seen that the air-sea coupling can 

improve the simulation of precipitation. Forcing CAM4 with coupled model SST clarified the
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impact o f the air-sea coupling in the interannual variability o f the SAM precipitation. The 

local air-sea coupling over the SAM region acts to modulate the activity o f the SAM summer 

monsoon as well as the remote SST forcing. The SST continuously warms over the SAM 

region as the feedback from the atmosphere to the ocean does not exist in the CAM4 model 

forced with SST from the coupled model. The SST warming contributes to increased 

evaporation, which results in the monsoon destabilization over the SAM region. Another 

impact, the absence of the air-sea coupling, enhances heavier precipitation in the SAM. It is 

found that, along with air-sea interaction, SST bias in the CCSM4 model plays an important 

role in simulation of SAM precipitation variability and magnitude. Using CAM4 sensitivity 

experiments, the influence of the coupled model SST bias in the northern Indian Ocean on 

SAM precipitation is investigated. It is found that the reduction o f SAM precipitation in the 

coupled simulation, as compared to the uncoupled simulation, is mainly due to cold SST bias 

in the Arabian Sea.

The strengths and limitations in simulating Asian summer monsoon in CAM4, CAM5 and 

CCSM4, depend mainly on how well they simulate the mean state o f atmosphere, its 

variability, the internal dynamics o f monsoon systems and ocean-atmosphere interactions. 

Although these recent model versions have many improvements and are able to capture the 

observed features of SAM precipitation, many biases are still present. This chapter shows 

that while the NCAR systems models can serve as tools in simulating and understanding 

Asian monsoon climate systems, they still have simulation errors that need further 

consideration. Along with the improvements in the model physics and resolution, 

understanding of the coupled physical processes in conjunction with the complex topography 

over the SAM region is crucial. As the ocean dynamics also play an important role in Indian
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Ocean SST, further studies are needed to clarify its relative importance compared with the 

role of air-sea interaction in SST cooling during the SAM. It is necessary for the coupled 

model to simulate realistic SST variation to improve the SST climatology, which can then 

improve the SAM precipitation teleconnection in CCSM4. In general, modeling monsoon 

fluctuations mainly depends on understanding the fundamental processes that affect local 

climate, good parameterization and representation o f these processes and the methods used 

for numerical implementation of these processes.
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Table 2.1: List o f experiments used in CAM4, CAM5 and CCSM4 validation.

Experiment Name Model
Used

Time
Period

Description / 
Boundary Conditions 

(BC)

Ensemble
size

CAM4 CAM4
1978-
2008

1.9° x2.5° horizontal 
resolution and 26 
vertical levels. 
Prescribed observed 
SST data as BC

10

CAM5 CAM5
1978-
2008

1.9°x2.5° horizontal 
resolution and 30 
vertical levels. 
Prescribed observed 
SST data as BC

10

CAM4_CLIM CAM4 30 years

1.9°x2.5° horizontal 
resolution and 26 
vertical levels. 
Climatology SST data 
repeated each year

05

CCSM4 CCSM4
100

years

1.9°x2.5 “ horizontal 
resolution and 26 
vertical levels for 
CAM4 and l°xl° 
horizontal resolution 
with 60 vertical levels 
for POP2.2. Present 
day climatology 
forcing

01

CAM 5BAM CAM5
1978-
2008

1.9°x2.5° horizontal 
resolution and 30 
vertical levels with 
Bulk Aerosol Model 
(BAM) scheme. 
Prescribed observed 
SST data as BC

01

CAM 5BAM CAM RT CAM5
1978-
2008

1.9°x2.5° horizontal 
resolution and 30 
vertical levels with 
BAM and CAMRT 
(radiation) schemes.

01
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Prescribed observed 
SST data as BC

C A M 5 B A M H B CAM5
1978-
2008

1.9°x2.5° horizontal 
resolution and 30 
vertical levels with 
BAM and HB 
(Holtslag-Boville, 
boundary layer 
turbulence) schemes. 
Prescribed observed 
SST data as BC

01

C A M 5 B A M C A M R T H B CAM5
1978-
2008

1.9°x2.5° horizontal 
resolution and 30 
vertical levels with 
BAM, HB, and 
CAMRT schemes. 
Prescribed observed 
SST data as BC

01

CAM4POP CAM4
1971-
2000

Same as CAM4 but 
with predicted SST 
from CCSM4 
climatology run

03

CAM4_AS_BoB CAM4
1978-
2000

Same as CAM4 CLIM 
but with climatology 
SST data modified in 
the AS and BoB region

03

CAM4AS CAM4
1978-
2000

Same as CAM4_CLIM 
but with climatology 
SST data modified in 
the AS region only

03

CLIM = climatology, B O  Boundary Conditions, AS = Arabian Sea, BoB = Bay of
Bengal
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Table 2.2: Details of frequently used Asian monsoon indices. The correlation coefficient of 

simulated indices with observations is shown in last two columns.

Name of the 
Index

Type of 
Index

Definition Reference Correlation

CAM4 CAMS

Indian 

Summer 

Rainfall (ISR)

Precipitation PREC (5°- 40°N, 60°- 

100°E)

averaged JJAS precipitation 

over the domain

-0.13 -0.31

Webster-

Yang

monsoon

(WY)

Circulation U850 - U200 (0°-20°N, 

40°- 110°E) 

vertical shear o f zonal 

winds between 850 mb and 

200 mb levels

Webster 

and Yang 

1992

0.38 0.45

Western North 

Pacific 

Monsoon 

(WNPM)

Circulation U850 (5°-15°N, 90°- 

130°E) - U850 (22.5°- 

32.5°N, 110°-140°E) 

difference of 850 mb zonal 

winds

Wang and 

Fan 1999

0.66 0.60

Indian

Monsoon (IM)

Circulation U850 (5°-15°N, 40°-80°E) 

- U850 (20°-30°N, 70°- 

90°E)

difference of 850 mb zonal 

winds

Wang et al. 

2001

-0.037 -0.11

South Asian 

Monsoon 

Index (SAMj)

Circulation V850 - V200 (10°-30°N, 

70°- 110°E)

vertical shear of meridonal 

winds between 850 mb and 

200 mb levels

Goswami et 

al. 1999

-0.26 -0.13

4 9



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

Precipitation (DJF Bias)CAM4
p r  j p p

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0
CAM5 Precipitation (DJF Bias)

20N -

30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W

Precipitation (DJF RMSE)
 -1 -  1 ■ ^ .  ...40N

20N -

20S
0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0
CAM5 Precipitation (DJF RMSE)

40N

20N

20S
30E 60E 90E 120E 150E 180 150W 120W 90W 60W SOW0 0

Figure 2.1: Seasonal mean (December-February; DJF) precipitation differences (biases) and 

root means square error (RMSE) from observation (CMAP) for (a, c) CAM4 and (b, d) 

CAM5. Units are in mm/day.
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Figure 2.2: Same as Figure 2.1 but for the summer season (June-September; JJAS).
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Figure 2.3: Seasonal mean (June-September; JJAS) precipitation and 850 mb winds from: 

(a) CAM4, (b) CAM5 and (c) observations (CMAP/NCEP). Precipitation (shaded) in 

mm/day and 850 mb winds (vectors) in m/s.
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F igure  2.4: Time-latitude evolution of precipitation averaged over (50°-120°E) for: (a) 

CAM4, (b) CAM5 and (c) observations (CMAP). Precipitation annual cycle area averaged 

over SAM region is shown in (d). Units are in mm/day.
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Figure 2.5: Seasonal mean (June-September; JJAS) precipitation differences from 

observations (CMAP) for: (a) CAM5 BAM (CAM5 with Bulk Aerosol Model (BAM) 

scheme), (b) CAM5 BAM CAMRT (CAM5 with BAM and CAMRT (radiation) Schemes), 

(c) CAM5_BAM_HB (CAM5 with BAM and HB (Holtslag-Boville, boundary layer 

turbulence) schemes) and (d) C A M 5 B A M C A M R T H B  (CAM5 with BAM, HB and 

CAMRT schemes). Units are in mm/day.
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Figure 2.6: Time series of Indian summer rainfall (ISR) index for (a) CMAP, (b) CAM4 and 

(c) CAM5. Details o f this index are given in Table 2.1. The time series are normalized and 

thus unitless.
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Figure 2.7: Time series of (a) Webster-Yang (WY) index, (b) Indian Monsoon index (IMI), 

(c) Western North Pacific monsoon (WNPM) index, and (d) South Asian monsoon (SAM;) 

index o f observation (CMAP/NCEP, black line), CAM4 (blue line) and CAM5 (red line).

Details of all the indices are given in Table 2.1. The time series are normalized and thus 

unitless.
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Figure 2.8: Difference between model (CAM4 and CAM5) and observed (NCEP) JJAS
f t  “}mean velocity potential (10 ' m /s) and corresponding divergent winds (m/s) at (a), (b) 850 

and (c), (d) 200 mb.
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Figure 2.9: June-September (JJAS) anomaly precipitation composites o f weak (1982, 1984, 

1986, 1987, 1989 and 2002) and strong (1980, 1981, 1983, 1988, 1994, 1996, 1998 and 

2007) monsoon years for (a, b) observation (CMAP), (c, d) CAM4 and (e, f) CAM5. Units 

are in mm/day.
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Figure 2.10: The linear regression of observed June-September (JJAS) Nino3.4 (-5°S-5°N, 

120°-170°W) and IOD ((-10°S-10°N, 50°-70°E) - (-10°S-0°, 90°-l 10°E)) SST indices with 

June-September (JJAS) observed and simulated precipitation and 850 mb winds, (a, b) 

observation (CMAP/NCEP), (c, d) CAM4 and (e, f) CAM5.
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Figure 2.11: Lag-lead correlation of monthly mean precipitation with (a) Nino3.4 (-5°S-5°N, 

120°-170°W) and (b) IOD ((-10°S-10°N, 50°-70°E) - (-10°S-0, 90°-110°E)) indices. Area 

averaged (0°-40°N, 55°-100°E) time series (ISR) of observed CMAP (solid black line) 

precipitation, observed All-India Precipitation (AIR - dashed black line) time series and 

simulated (CAM4, solid blue line and CAM5, solid red line) time series are correlated with 

observed Niiio3.4 and IOD SST indices. The month with negative (positive) sign indicate 

that SST leads (lags) the ISR with maximum lead of 12 months (1 year). Month 0 and 12 

indicates June whereas month 4 and 8 correspond to February and October (minus sign for 

previous month). Correlations are calculated using a 5 month sliding window.
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Figure 2.12: June-September (JJAS) mean differences between simulation and climatology 

(CMA) for: (a) CAM CLIM (CAM4 climatology run) and (b) CCSM4. Shading corresponds 

to the precipitation difference in mm/day.
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Figure 2.13: Same as Figure 2.3 but for CCSM4. Precipitation (shaded) in mm/day and 850 

mb winds (vectors) in m/s.
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Figure 2.14: The variance power spectrum for (a) observed SST (HadSST) and (b) CCSM4. 

Nino3.4 (-5°-5°N, 120°-170°W) SST index is in a solid red line and IOD ((-10°S-10°N, 

50°-70°E) - (-10°S-0°, 90°-l 10°E)) index is in a solid blue line.
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CCSM4 (WAS Regression Nino3.4)
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Figure 2.15: The linear regression (Top) of CCSM4 June-September (JJAS). Nino3.4 (-5°S- 

5°N, 120°-170°W) SST index with June-September (JJAS) simulated precipitation and 850 

mb winds. Lag-lead correlation (Bottom) of CCSM4 monthly mean precipitation with 

CCSM4 Nino3.4 (-5°S-5°N, 120°-170°W) SST index. Area averaged (0°-40°N, 55°-100°E) 

time series (ISR) of observed CMAP (solid black line) precipitation and observed All-India 

Precipitation (AIR - dashed black line) time series are correlated with observed Nino3.4 SST 

index. Correlations are calculated using a 5 month sliding window.
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Figure 2.16: Seasonal SST differences between CCSM4 and observation (HadSST) for a 

thirty year mean climatology during: (a) December-February (DJF), (b) March-May (MAM), 

(c) June-August JJA and (d) September-November SON. The shading corresponds to model 

SST bias in °C (red for warm SST and blue for cold SST).

65



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

C A M 4_P O P  - O B S
40N \  1---------1.........   1

’ [3

(JJA S  D ifference)
l ' 'V

20N -

20S

60E 90E
CAM 4 P O P  - C C S M 4

120E 150E
(JJA S  D ifference)

40N C F

20N -

I - - - ♦

20S

60E 90E 120E 150E

-8 -6 -4 -2 8

Figure 2.17: June-September (JJAS) differences o f (a) CAM4 POP (simulation forced with 

the predicted SST of CCSM4) from observation (CMAP/NCEP) and (b) from CCSM4. 

Shading corresponds to the difference in mm/day whereas vector represents 850 mb winds in 

m/s.

66



Ph.D. Dissertation: University of Northern British Columbia

Arabian Sea (AS) Bay of Bengal (BoB)
30.0 30.0

29.0 - 29.0 -

28.0 28.0 -

27.0 - 27.0 -
CO
CO26.0 - 26.0 -

25.0 - 25.0 - CCSM4 TR

CCSM424.0 - 24.0 -

■OBS23.0 23.0
J F M A M J  J A S O N O J F M A M J J A N D

CAM4 POP AS BOB CAM4_POP_AS
40N

m

ton -

60E ME

-6 -5 -4 -3 -2 -t 0 1 2 3 4 5 6 -6-5-4-3-2-1 0 1 2 3 4 5 6

Figure 2.18: Annual cycle o f observed SST (HadSST, solid black line) and simulated SST 

(CCSM4, blue dotted line and CCSM4 TR, red dotted line) over (a) Arabian Sea (40°-80°E, 

7°-30°N) and (b) Bay of Bengal (80°-100°E, 7°-30°N). (c) June-September (JJAS) mean 

precipitation difference of CAM4_AS_BoB (CAM4 climatology SST run with SST 

modification in both Arabian Sea and Bay of Bengal) from CAM4 CLIM (CAM4 

climatology SST run), (d) Same as (c) but for CAM4 AS run (with SST modification in 

Arabian Sea only). The shading corresponds to the difference in mm/day.

67



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

Chapter 3 

Further Investigation of ENSO-Monsoon relationship in climate 

models: A new validation strategy

Islam S, Y Tang and P Jackson (2015), Further Investigation o f ENSO-Monsoon relationship 

in climate models: A new validation strategy, in review process, to be submitted to 

Atmosphere-Ocean Journal

This manuscript is reformatted to serve as Chapter 3 in the thesis.
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3.1 Introduction

The relation between ENSO and SAM summer precipitation is one o f the earliest observed 

teleconnections in global climate studies (Walker 1924). As discussed in Chapter 2, SAM 

tends to experience a below (above) normal monsoon during an El Nino (La Nina) or the 

tropical eastern Pacific Ocean warm (cold) event (Sikka 1980; Ropelewski and Halpert 1987). 

In the last few decades, many efforts have been made to understand the ENSO-monsoon 

relationship including its physical mechanisms (Mooley and Parthasarathy 1984; Shukla and 

Paolinol983; Webster and Yang 1992; Ju and Slingo 1995 and many others). The ENSO- 

SAM relationship can be explained by the variation of the Walker circulation (Shukla and 

Wallace 1983; Palmer et al. 1992; Soman and Slingo 1997). For example, during El Nino, the 

ascending branch of the Walker circulation moves eastward due to the abnormal warming in 

the central and eastern Pacific and accounts for below normal precipitation over the SAM 

region.

Apart from the remote impact of the Pacific Ocean, either through atmospheric circulation or 

oceanic currents, on the SAM, the Indian Ocean can also influence the SAM variability 

(Boschat et al. 2012). The Indian Ocean affects SAM variability in many different ways 

particularly through the IOD positive and negative modes. Its complex linkage with SST in 

Pacific Ocean can also modulate the SAM variability which can be seen in the frequent co

occurrence of IOD and ENSO events. Several studies have investigated the effect of Indian 

Ocean in modulating the ENSO-Indian monsoon teleconnection (Webster et al. 1999; Ashok 

et al. 2001) and have shown that the role of air-sea interaction in the Indian Ocean related to 

the monsoon dynamics is crucial for the ENSO-monsoon teleconnection.

6 9



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

Many studies have investigated the link and feedback between the Indian Ocean SST and 

ENSO in observation or in models (Saji et al. 1999; Webster et al. 1999). It has been found 

that both Indian and Pacific Oceans SST anomalies affect SAM in different ways depending 

on their phases, amplitudes and interactions. For example, Schott (2009) found that the 

impacts of both the Pacific and Indian Oceans on SAM are complicatedly linked due to the 

frequent co-occurrence of ENSO and IOD events. Krishnamurthy and Shukla (2008) have 

also shown that ENSO and the Indian Ocean variability may act together or against each 

other in certain years.

As ENSO is a key source o f SAM variability, a realistic ENSO-Monsoon relationship is one 

of the prerequisites of a climate model for reliable monsoon simulations and predictions. 

Before using climate models for SAM prediction, the systematic errors in simulating the 

ENSO-Monsoon relationship must be addressed, since a poorly represented tele-connection 

consequently limits the prospects for seasonal monsoon prediction. Studies such as Sperber 

and Palmer (1996) and Wang et al. (2004) investigated many AGCMs, forced with 

prescribed SST, and showed that the poor interannual variations o f SAM precipitation are 

mainly due to an incorrect SST-precipitation teleconnection. It is reported that the models 

with better representation o f the ENSO-SAM teleconnection result in the best simulation of 

the mean climate, revealing the link between model climatology and interannual variability. 

Despite the fact that some coupled models can produce a realistic simulation for many 

variables, the monsoon variability and its teleconnections to ENSO is not properly simulated 

in model due to poor representation o f the air-sea interactions and SST bias (Bollasina and 

Nigam 2009). Many coupled CGCMs, where the sea surface is not prescribed but evolves
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naturally, feature systematic biases in their mean climate, particularly in the SST field and 

fail to realistically capture negative ENSO-SAM correlation (e.g. Achuthavarier et al. 2012).

In a recent study, Wu et al. (2012) (WU12 here after) used observations to identify three 

different types of ENSO influences on SAM precipitation variability, and to explore their 

possible physical mechanisms. They showed that the anomalous SAM precipitation can be 

induced by different influences o f east equatorial Pacific SSTs, including the indirect 

influence of the SST anomalies o f the preceding winter (DJF-only), the direct influence o f 

the SST anomalies o f the concurrent summer (JJAS-only) and the combined influence of 

both the preceding winter and concurrent summer SST anomalies (DJF&JJAS). The DJF- 

only type reflects the years with development o f ENSO in the east equatorial Pacific region, 

the JJAS-only type are the years when ENSO decays from its mature phase and DJF&JJAS 

type are the years when ENSO changes its sign from positive (negative) to negative 

(positive). In all o f these different SST influences, the SAM exhibits above or below normal 

rainfall, suggesting its strong response to changes in east equatorial Pacific.

Motivated by the WU12 analysis, which provides the basis for this study, we examine the 

three different ENSO-SAM relationships in atmospheric (CAM4) and coupled (CCSM4) 

model simulations using the WU12 methodology. In Chapter 2, both climate models are 

validated for their mean monsoon climatology and interannual variability including the brief 

analysis o f their ENSO-SAM teleconnection. In this chapter, we extend the ENSO-SAM 

teleconnection analyses by characterizing the models’ performance in the different ENSO- 

SAM types i.e. DJF-only, JJAS-only and DJF&JJAS.
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The primary objective of this work is to investigate which type of ENSO-SAM 

teleconnection is better represented in simulations with and without air-sea coupling, and 

how these teleconnections are affected by SST bias (in the coupled model). We emphasize 

the processes connecting ENSO to the SAM in simulations of each ENSO-SAM type by 

highlighting each model’s systematic biases. We also investigate the role o f the Indian Ocean 

particularly the northern Indian Ocean to explore how it contributes toward anomalous SAM 

rainfall. This is explored by isolating northern Indian Ocean from ENSO by means of CAM4 

idealized experiments by specifying prescribed SST anomalies in the tropical Pacific Ocean 

and climatology SST in the Indian Ocean. It is expected that this kind of models' validation 

will be helpful in their continuous evolutions toward better simulations which indirectly leads 

to a better model forecasting capability, particularly over the SAM region.

This chapter is organized into three sections. Section 3.2 describes the methodology used for 

making composites, the simulation data and the idealized experiments. Section 3.3 

investigates the different ENSO-SAM relationships in CAM4 and CCSM4 simulations. 

Section 3.4 highlights the results of idealized experiments and concludes the discussion.

3.2 Models, Experiments and Methodology

The detailed description o f CAM4 and CCSM4 models is already documented in Chapter 2, 

section 2.2. A brief description will be provided here.

The 32-year (1979 to 2009) CAM4 control ensemble simulations, forced with observed 

prescribed SST and sea ice data (HadSST, Reynolds et al. 2002), are conducted at 1.9° x 2.5° 

horizontal resolution grid using the finite volume dynamical core with 26 vertical levels and 

a hybrid terrain-following coordinate system. To account for the uncertainty in simulations,
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an ensemble strategy is used for the CAM4 experiments by using 6 hourly lagged initial 

conditions. This allows us to separate the “ SST-forced” (or external) response. Ten 

ensemble members are constructed using the time lag ensemble strategy and the ensemble 

mean is used in all the analyses of CAM4 control simulations.

In CCSM4, the last 50 years from a 100-year simulation, forced with present day 

climatological boundary conditions, is used for coupled simulation composites. The first fifty 

years are discarded as the equilibration time for CCSM4 model. The horizontal resolution o f 

1.9° x 2.5° and finite volume grids are used for CCSM4 atmospheric and land models, 

whereas the ocean and ice models share the same 1° x 1° resolution with a displaced pole 

grid.

Two different 32-year (1979 to 2009) sensitivity experiments are performed by CAM4 for 

two ideal scenarios, namely CAM4_ENSO_IO and CAM4ENSO. In the CAM4 ENSO IO 

experiment, the observed SSTs (HadSST) are used to force the CAM4 in both the Indian and 

Pacific Oceans whereas the climatology SST is used elsewhere. In the CAM4 ENSO 

experiment, the observed SSTs are only used for the Pacific Ocean while keeping the 

climatological SST elsewhere. To reduce the uncertainties, ten ensemble simulations are 

performed for both idealized experiments using the same time lag ensemble strategy as used 

for the CAM4 control simulation.

Observed precipitation data from the Climate Prediction Center (CPC) Merged Analysis o f 

Precipitation (CMAP; Xie and Arkin 1997) are used for comparison. National Centers for 

Environmental Prediction (NCEP; Kistler et al. 2001) reanalysis data are used to validate
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winds. Observed SST (HadSST) data (Reynolds et al. 2002) are used for calculating observed 

SST indices and to validate coupled model SST.

Following the WU12 methodology, for constructing composites, the years exhibiting 

different types of ENSO-SAM impacts are selected based on the year-to-year variations of 

SAM and Nino3.4 SST indices in the preceding winter and concurrent summer. The SAM 

intensity is measured by its area averaged precipitation over 5°-25°N and 60°-100°E. The 

anomalous SAM is characterized based on the criteria that the magnitude o f its rainfall 

anomalies exceeds 0.5 standard deviation above the mean in summer during an ENSO year. 

The area averaged anomalies of SST are calculated over -5S°-5°N and 120°-170°W for 

Nino3.4 (ENSO) and 5°-25°N and 60°-100°E for northern Indian Ocean. The ENSO years 

are selected based on the criteria that five consecutive 3-month running mean SST anomalies 

in Nino3.4 region exceed 0.5°C.

Based on the anomalous SAM rainfall criteria discussed above, different years are selected in 

observation and simulation. The bimonthly composite of selected years are made for each 

type o f ENSO-SAM teleconnection using the WU12 methodology, as outlined below. 

Throughout the text, DJF and JJAS months correspond to winter and summer season and 

MAM and SON reflects spring and fall. When required, the physical interpretation of the 

composites based on observation data is mostly adopted from WU12.

DJF-only: A positive (negative) preceding DJF Nino3.4 SST anomaly is followed by a 

positive (negative) SAM anomaly with the requirement that the concurrent JJAS Nino3.4 

SST anomaly is not opposite o f the SAM anomaly. This is to distinguish it from the 

DJF&JJAS type mentioned below. In this type, the Nino3.4 SST anomalies decrease or

74



Ph.D. Dissertation: University of Northern British Columbia

remain unchanged from preceding DJF to concurrent JJAS, indicating that the ENSO either 

decays or persists.

JJAS-only: A positive (negative) concurrent JJAS Nino3.4 SST anomaly is accompanied by 

a negative (positive) SAM anomaly with the condition that the preceding DJF Nino3.4 SST 

anomaly is not o f the same sign as the SAM anomaly. That results in Nino3.4 SST anomalies 

that increase or remain unchanged from preceding DJF to concurrent JJAS, indicating that 

the ENSO either develops or persists.

DJF&JJAS: The Niiio3.4 SST anomaly switches from positive (negative) in preceding DJF 

to negative (positive) in concurrent JJAS and the SAM anomaly is positive (negative). In this 

type, the ENSO switches its phase during the half year period.

In this study, the anomalous SAM years in observations (CMAP) are the same as those in 

WU12 i.e. 1983, 1984, 1985, 1989, 1999 and 2001 for the DJF-only type, 1982, 1996, 2002 

and 2004 for the JJAS-only type and 1988, 1998 and 2007 for the DJF&JJAS type. In CAM4 

simulations, which are forced with monthly observed SST, we consider the same years as 

anomalous SAM years although the magnitude o f the SAM index does not meet our criterion 

at least o f 0.5 standard deviation in some years. For CCSM4 model simulation, both 

anomalous SAM and ENSO years are identified based on the criteria described above, since 

the coupled model does not include any observed information in its simulation. The 

investigation o f SAM and Nino3.4 indices in coupled simulations revealed that there are 6 

DJF-only type, 5 JJAS-only type and 5 DJF&JJAS type years in CCSM4.
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3.3 Results and Discussion

We first focus our attention on the observed and simulated lag-lead correlation o f the SAM 

index with Nino3.4 and northern Indian Ocean indices. Figure 3.1 shows the SAM 

relationships with ENSO and northern Indian Ocean in observation and simulations. 

Observed CMAP (solid black line) and CAM4 (solid blue line) SAM rainfall indices are 

correlated with observed Nino3.4 and northern Indian Ocean SST indices whereas CCSM4 

(solid red line) SAM rainfall indices are correlated with the simulated Nino3.4 and northern 

Indian Ocean SST indices. As discussed in Chapter 2, the observations show that strong 

negative correlations can be found between the SAM summer rainfall and the SSTA from the 

concurrent summer to the following winter, representing a weak (strong) SAM in El Nino 

(La Nina) developing years. In the CAM4 model, the negative correlation relationship is 

quite weak reflecting the lack of correct teleconnection of SSTA to SAM summer rainfall. 

Actually the CAM4 simulations reflect an opposite relationship between ENSO and SAM 

during a boreal summer, with very small correlation coefficients. It also shows there is no 

relationship between SSTA in the late spring and the SAM summer rainfall, which is 

common in many models that have difficulties in capturing summer precipitation, due in part 

to monsoon “ spring prediction barrier” (Webster and Yang 1992). In case of the CCSM4 

model, the negative correlation is captured comparatively better than CAM4 but still is quite 

different from observations. No significant conclusion can be made regarding the spring 

predictability barrier in CCSM4.

In Figure 3.1b, the lag-lead correlation of SAM summer rainfall with northern Indian Ocean 

is computed using observed data. A weak positive correlation can be found between the SAM 

summer rainfall and the SSTA during late spring and summer whereas negative correlation
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can be found between the SAM and SSTA from the concurrent summer to the following 

winter. The negative correlation o f SAM summer rainfall to the SSTA of the following 

winter suggests a negative feedback o f SAM on the northern Indian Ocean. The negative 

feedback features enhanced (reduced) surface winds and evaporation inducing negative 

(positive) SST anomalies (Wu and Kirtman, 2004). The negative feedback of SAM is not 

reproduced in CAM4 and CCSM4 as they only show positive correlation. The CAM4 shows 

more positive values of correlation as compared to CCSM4 due to lack o f an air-sea 

interaction in the Indian Ocean. In the CAM4 model, such a negative feedback is suppressed 

because the SST cannot respond to atmospheric changes.

The lag-lead result suggests that neither model can represent the ENSO-SAM interaction 

correctly. However, this lag lead correlation is based on all the years of model simulations. 

How the model simulates different types of ENSO-SAM teleconnection (as mentioned in the 

introduction) and which type o f relationship is better simulated by the model can lead to a 

more reliable validation o f a model. We therefore further investigate the ENSO-SAM 

relationship based on its different types, and examine the performance o f both models for 

each type separately based on the analysis of composites.

3.3.1 Composite Analysis

We follow the procedure discussed in WU12 in constructing the composite. For each ENSO- 

SAM4 type, composites are constructed by averaging the years mentioned in section 3.2. To 

simplify the analysis and spatial representation, the composite of each ENSO-SAM4 type is 

constructed to reflect positive anomalies of SAM summer rainfall i.e. SAM anomalies are 

reversed (by multiplication o f -1) in the years when it is negative and grouped together with
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the years when it is positive. Although WU12 discussed the physical mechanism o f different 

types of ENSO-SAM relationships using observations, it is important to extend this analysis 

to model data and to explore the models ability in characterizing each type of ENSO-SAM 

relationship.

3.3.1.1 DJF-only Composite

Two month composite anomalies of observed SST for the DJF-only type are shown in Figure

3.2 (1st column) for Dec-Jan (DJ), Feb-Mar (FM), Apr-May (AM), Jun-Jul (JJ), and Aug-Sep 

(AS). This composite shows the yearly evaluation of SST from the preceding winter to the 

concurrent summer. The evolution of ENSO decay is characterized by a gradual decrease in 

SST from its mature phase in the preceding DJ to a weakened phase in the concurrent AS in 

the equatorial Pacific. Opposite to the ENSO decay phase, the positive SST anomalies in 

northern Indian Ocean are developed from the preceding DJ to concurrent JJ, and then 

decreased afterward.

The accompanying bimonthly rainfall variation can be seen in Figure 3.3 (column 1) 

depicting the decay of anomalous rainfall over the equatorial Pacific consistent with the 

decay o f ENSO in east equatorial Pacific while the rainfall anomalies over the SAM region 

grow significantly in summer. Over the SAM region, rainfall anomalies behave in a dipolar 

form over the Indian Ocean with different signs between the east and west in the preceding 

DJ which change from north to south in FM to AM. Above normal rainfall develops over the 

Arabian Sea in JJ spreading over the Indian subcontinent and the Bay of Bengal in AS.

The composite bimonthly rainfall variation o f CAM4 is shown in Figure 3.3 (column 2). 

CAM4 reproduces the rainfall transition over the east Pacific reasonably well whereas
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significant disagreement can be seen over the western Pacific and Maritime continent 

particular in DJ to AM. The model response over the Maritime continent is quite weak. The 

overall simulation in DJF-only type is reliable as the large scale features are similar to the 

observed rainfall anomaly decay over the tropical Pacific and the increase o f rainfall over the 

Indian subcontinent in late monsoon (AS).

CCSM4 bimonthly composites o f rainfall are shown in Figure 3.3 (column 3) whereas its 

simulated SST composites are presented in Figure 3.6 (column 1). In comparison with 

observations and CAM4, the CCSM4 rainfall composite exhibits large disagreements over 

different regions. The double ITCZ is simulated over the tropical Pacific Ocean along with 

significant differences in rainfall anomalies over the Indian Ocean in the preceding winter to 

early spring. The double ITCZ issue was also seen in the analysis o f Chapter 2 (Islam et al. 

2013). The large differences in CCSM4 rainfall composites are mainly due to the systematic 

errors in CCSM4 SST simulation (Figure 3.6 (column 1)) degrading SST atmospheric 

response to rainfall. The ENSO response in CCSM4, to anomalous SAM, is quite strong 

during its mature phase in winter. CCSM4 exhibits poor skill in spring (FM-AM) which is 

probably due to the spring barrier which is seen in many coupled models. Over all the 

anomalous SAM in CCSM4 is quite weak in early summer and comparable to observation in 

late summer. The CAM4 and CCSM4 comparison for this type (in the ENSO decay phase) 

reveal that the CAM4 model is better than CCSM4 in reproducing the anomalous rainfall, 

although both have significant biases.

3.3.1.2 JJAS-only Composite

Figure 3.2 (column 2) represents the bimonthly SST composite for the JJAS only type. The
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developing phase of ENSO can be seen as the negative SST anomalies increase in the east 

equatorial Pacific from AM to DJ. The SST anomalies in the northern Indian Ocean, being 

weak in spring, change to strongly negative in late summer (AS) and DJ. The corresponding 

observed rainfall anomalies are shown in Figure 3.4 (column 1), with negative anomalies 

over the equatorial Pacific typical o f those in La Nina years. These negative equatorial 

anomalies propagate to the eastern Pacific from JJ to DJ whereas positive rainfall anomalies 

increase over the Maritime continent from JJ to ON. Positive rainfall anomalies spread over 

the Arabian Sea, the Indian subcontinent, and the Bay of Bengal in early summer (JJ). In 

early fall (ON), negative rainfall anomalies begins over the tropical Indian Ocean and mature 

in the DJ.

In CAM4, although the equatorial rainfall is well captured, significant disagreements in JJ 

rainfall anomalies over the northern Indian Ocean and western Indian subcontinent can be 

seen in Figure 3.4 (column 2). The CAM4 response is quite dry compared to observations 

over the SAM region. In the CCSM4 model, Figure 3.4 (column 3), significant difference in 

rainfall patterns mainly over whole tropical belt of Indian and Pacific Oceans are seen. These 

are mainly induced by the simulated SST bias. Over the northern Indian Ocean and Indian 

subcontinent, the CCSM4 rainfall anomalies are better captured compare to those in the 

CAM4 simulations.

3.3.1.3 DJF&JJAS Composite

In the DJF&JJAS composite, ENSO switches from positive in winter to negative in summer 

(Figure 3.2 (column 3)). In the whole year evolution, the tropical Indian Ocean shows 

consistent positive SST anomalies. The accompanying rainfall anomalies (Figure 3.5
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(column 1)) over the tropical Pacific follow the switch of east equatorial Pacific SST 

anomalies by being positive in winter and negative in late summer (AS).

CAM4 and CCSM4 simulations for this type are presented in Figure 3.5 (columns 2 and 3 

respectively). CAM4 better reproduces the above normal rainfall anomalies over the northern 

Indian Ocean and Maritime continent in JJ and AS, whereas the CCSM4 model reproduces 

quite poor rainfall response over the same region. This finding shows that this type o f the 

ENSO-SAM relationship is not properly captured in the CCSM4 simulation as compared to 

the uncoupled CAM4 model.

The above analyses are based on bi-monthly composites that reveal the yearly evolution of 

SST and rainfall. To analyze the SAM average JJAS (summer) response, we investigate the 

average composite rainfall anomalies for June, July, August and September months in all the 

three types. A comparison of JJAS means is shown in Figure 3.7 for the DJF-only, JJAS-only 

and DJF&JJAS types based on CMAP, CAM4 and CCSM4 rainfall. This analysis can 

conclude our discussion by showing that in all three types, CAM4 simulations are better for 

DJF-only and DJF&JJAS type whereas CCSM4 shows good simulation only in JJAS-only 

type, particularly over the SAM region. This means that only the concurrent response of SST 

is well represented in CCSM4.

Comparison o f the JJAS mean composites, o f Figure 3.7 with Figures 3.2, 3.3 and 3.4 

indicates that in observations, the late summer (AS) rainfall anomalies contribute more 

towards the total mean SAM summer rainfall in DJF-only and DJF&JJAS types, whereas in 

the JJAS-only type, early summer (JJ) anomalies largely contribute to total JJAS mean 

rainfall. In these models, such contributions are not clear and therefore cannot be
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differentiated due to their systematic errors over the SAM region.

3.3.2 Temporal Evolution of SST and SAM Rainfall

We now explore the temporal evolution o f the ENSO-SAM relationship using area averaged 

indices. The SST index is calculated over the Niiio3.4 and northern Indian Ocean region 

while the SAM index is calculated by averaging the observed or simulated rainfall over the 

SAM region. Figure 3.8 shows the normalized 3-month running mean anomalies of Nino3.4 

SST, northern Indian Ocean SST and SAM rainfall for all the types for both observed 

(CMAP and HadSST) and simulated (CAM4 and CCSM4) rainfalls and SST indices.

As discussed in WU12, in the observations (Figure 3.8a, left column), positive Nino3.4 SST 

anomalies in the preceding winter are followed by positive northern Indian Ocean SST 

anomalies during spring through early summer in the DJF-only type, indicating the effect of 

preceding east equatorial Pacific SST anomalies on SAM through northern Indian Ocean 

SST changes. The SAM rainfall anomalies begin increasing in June and reach a maximum in 

late August and September. The delay o f the SAM rainfall anomaly to the northern Indian 

Ocean SST suggests the positive feedback o f the northern Indian Ocean warming to the SAM 

region in the form of more evaporation. The warm SST anomalies in the northern Indian 

Ocean in summer lead to lower level convergence and anomalous rainfall in summer (Chang 

etal. 2011).

The CAM4 rainfall over the SAM region follows the observed pattern except smaller in 

magnitude in the summer. CCSM4 SST indices, shown in Figure 3.8a (right column) 

basically follow the observed SST variation, whereas its rainfall patterns are different. In 

CCSM4, the warming in northern Indian Ocean region is not strong, probably resulting in
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less impact on the SAM rainfall.

In the JJAS-only type (Figure 3.8b, left column), the northern Indian Ocean SST anomalies 

are negative in summer, leading to less favorable conditions for the SAM rainfall. In this 

type, negative east equatorial Pacific SST anomalies may directly induce an anomalous SAM 

via atmospheric circulation changes (WU12). These circulations modulate and amplify the 

SAM rainfall by increasing the convergence over the SAM area (WU12). In the CAM4 

simulations, due to the absence of local air-sea coupling over the Indian Ocean, the 

atmospheric circulation cannot induce changes in the northern Indian Ocean SST which 

could be the reason that the CAM4 model is not properly reproducing the anomalous rainfall 

in this type. Air-sea coupling is important for atmospheric circulations caused by the large- 

scale ocean temperature gradient. This can be seen in the CCSM4 (Figure 3.8b, right 

column), where anomalous rainfall over the SAM region is better simulated than in CAM4 in 

summer. Another reason for better CCSM4 simulation is that the northern Indian Ocean SST 

warm anomaly in summer significantly contributes toward increasing the SAM rainfall. This 

makes it difficult to decide if the better representation o f JJAS-only type in CCSM4 is purely 

due to the air-sea coupling or if it is due to the warm anomaly in CCSM4 northern Indian 

Ocean SST.

In the DJF&JJAS type, shown in Figure 3.8c (left column), positive northern Indian Ocean 

SST anomalies persist from the preceding winter to summer. In this type, the ENSO switches 

from a warming phase in winter to a cooling phase in summer, suggesting that the persistence 

o f positive northern Indian Ocean SSTA is mainly due to the preceding winter positive east 

equatorial Pacific SST anomalies that cause the anomalous SAM. As in the JJAS-only type, 

the concurrent negative east equatorial Pacific SST anomalies may contribute to an
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anomalous SAM via a direct atmospheric circulation change (WU12). Thus, both the 

preceding (via northern Indian Ocean) and concurrent (via atmospheric circulation) east 

equatorial Pacific SST anomalies result in an anomalous SAM rainfall (WU12). The CAM4 

simulation reproduces this type remarkably well as compared to the DJF-only and JJAS-only 

types. This could be due to the persistent warm northern Indian Ocean SST anomalies, which 

are reflected in CAM4 simulations. In CCSM4 simulations, although the Niiio3.4 pattern is a 

partial match for the observations, the rainfall response is quite the opposite. The likely 

source o f CCSM4 failure to simulate the anomalous SAM summer rainfall is probably due to 

a decrease of persistence positive SST anomalies in the northern Indian Ocean in spring 

(3.8c, right column), causing less moisture evaporation. Indeed the CCSM4 ocean response is 

not consistent from preceding winter to concurrent summer in this type.

3.3.3 Response of Atmospheric Circulations

As discussed above in the JJAS-only and DJF&JJAS types, the anomalous SAM rainfall 

strongly modulates via the atmospheric circulation changes over the SAM region. We 

explore this in Figure 3.9 by plotting the JJAS mean composite anomalies o f velocity 

potential and divergent winds at 850 mb and 200 mb heights for the JJAS-only and 

DJF&JJAS type. Observed winds are from NCEP reanalysis data sets whereas simulated 

winds are from CAM4 and CCSM4.

In the JJAS-only type, the anomalous SAM rainfall is induced by a direct SST forcing in the 

Pacific Ocean through large scale circulation changes. This can be seen in the observations 

for the upper level convergence and lower level divergence over the equatorial central Pacific 

and upper level divergence and lower level convergence over the Maritime continent,
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Australia and SAM regions (Figure 3.9, row 1). In CAM4, while the low level convergence is 

captured over the Maritime continent, the SAM convergence zone is not reproduced which 

causes the poor anomalous SAM rainfall simulation in the JJAS-only type. CCSM4 shows 

strong convergence over the SAM region and this intensifies the anomalous SAM.

In the DJF&JJAS type (Figure 3.9, row 2) as discussed in WU12, the preceding positive east 

equatorial Pacific SST anomalies induce positive northern Indian Ocean SST anomalies 

through atmospheric circulation changes. Negative SST anomalies in the east equatorial 

Pacific produce lower level divergence and upper level convergence over the tropical Pacific. 

This leads to upper level divergence and convergence at the surface causing moisture to 

intensify over the SAM region. CAM4 convergence and divergence zones are comparable to 

observations whereas CCSM4 circulations are weak in these types and cannot reproduce the 

observed circulation patterns.

3.3.4 Response of Humidity and Land-Sea Thermal Contrast

It has been shown that land-sea heating contrast is a fundamental mechanism powering the 

summer monsoon circulation (Webster 1987; Young 1987). The relationship between land- 

sea thermal contrast and SAM has been investigated in many studies (Fu and Fletcher 1985; 

Meehl 1994a; Li and Yanai, 1996) where they found that the intensity of the SAM is related 

to the strength o f the temperature gradient due to the land-sea thermal contrast. Increasing the 

temperature gradient increases the intensity of the SAM and vice versa. In this section, we 

compare the surface moisture and thermal contrast form observation and models in each 

ENSO-SAM type. Following the methodology o f WU12, the surface air humidity is averaged 

over the western Indian Ocean (0°-10°N, 50°-80°E), as the increased moisture in this region
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may be transported to the SAM region by mean southwesterly winds and thus may contribute 

to a stronger SAM rainfall. The thermal contrast is represented using a 500-200-hPa 

thickness difference between the zones from 20°- 40°N, 50°-100°E and from 0°-20°N, 50°- 

100°E.

In Figure 3.10 (left column), negative thickness difference anomalies persist from winter to 

summer for the DJF-only type. Positive anomalies of surface air humidity are present in early 

spring and summer in western Indian Ocean and cause an increase in the moisture 

availability for the SAM region. The air humidity increases due to the positive SST 

anomalies during late spring and early summer (as in Figure 3.9). Although the CAM4 

atmospheric response to thickness difference is quite consistent with observations, its 

moisture content peaks in late winter instead of summer. This means that the anomalous 

SAM summer rainfall is underestimated in CAM4 while its thermal contrast is negative over 

the SAM region. The positive moisture availability is found to have a reliable performance 

for the DJF-only type. In CCSM4 (Figure 3.10, right column), the thermal contrast difference 

remains negative throughout the year similar to observations, but a significant 

underestimation can be seen in moisture availability in spring and early summer (as 

compared to 3.10, left column). This demonstrates the lack of its ability to simulate 

anomalous SAM (as seen in spatial patterns previously).

In the JJAS-only type, the small positive anomalies of thickness difference in summer lag the 

rainfall anomalies (similar to that seen in WU12), indicating that the enhanced monsoon 

rainfall is due to thermal contrast. Surface air humidity anomalies are small corresponding to 

Indian Ocean negative SST anomalies (Figure 3.1) and contribute less to anomalous SAM 

than the SSTA does. In CAM4, the thickness difference becomes positive in late summer
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instead of early summer, as seen in observations. The moisture content anomaly is near zero 

in early summer and becomes negative afterward. This is a probable source for the poor 

simulation o f anomalous SAM rainfall. In CCSM4, the thickness difference is negative in 

spring and the accompanying moisture peaks at the same time. In summer the thickness 

difference becomes positive with a reduction in moisture. As seen in the spatial patterns 

(Figure 3.4, last column), the CCSM4 shows strong anomalous rainfall over SAM region in 

summer. This means that the CCSM4 atmospheric circulations have a larger contribution in 

modulating the intensity o f anomalous rainfall than the thermal contrast does.

In the DJF&JJAS type, negative thickness difference anomalies appear in winter and spring 

and become positive after midsummer. Air humidity anomalies are quite large and positive in 

western Indian Ocean from winter to early summer. Positive SST anomalies during late 

spring and early summer, as shown in Fig. 3.8, induced an increase in surface air humidity 

and thus favor a stronger SAM rainfall (WU12). The thermal contrast makes a limited 

contribution to the SAM late summer anomalies. In CAM4, the moisture content and 

thickness difference are in-phase with observation and produce good simulations. In the late 

summer and early fall, the moisture persists due to the lower values o f thickness difference 

whereas the observed moisture decreases sharply at that time. In CCSM4, the thickness 

difference and moisture content are almost in out of phase with maximum and minimum 

amplitude appearing in the early spring and in the summer, respectively. This is very 

different from the observations and CAM4.
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3.3.4 Idealized Experiments

We now explore how the Indian Ocean controls the ENSO-SAM relationship with the help o f 

CAM4 idealized experiments. As the role o f the Indian Ocean in amplifying the anomalous 

SAM rainfall is significant in DJF&JJAS years, we focus only on this particular type. In the 

analyses discussed above, we have seen that the CAM4 performance is much better in 

DJF&JJAS type as compared to the DJF-only and JJAS-only type. This is another reason to 

conduct the idealized experiments for the DJF&JJAS type.

We performed two different ensemble experiments, namely C A M 4 E N S O IO  and 

CAM4 ENSO, for the period from 1979 to 2009. In CAM4_ENSO_IO experiments, 

observed monthly SSTs are specified in both the Indian and Pacific Oceans whereas in 

CAM4 ENSO experiments, the observed SSTs are only prescribed over the Pacific Ocean. 

The annually repeating climatology SSTs, blended with observed SST, are used elsewhere in 

both experiments. The two experiments are designed to explore the role that the different 

oceans, including the Indian, Pacific, or other play in the anomalous SAM rainfall.

In Figure 3.11, composites o f JJAS rainfall anomalies and 850 mb winds for the DJF&JJAS 

type are presented for CAM4 ENSO IO and CAM4 ENSO experiments. The results for 

CAM4 ENSO IO are similar to the CAM4 control simulation, shown in Figure 3.7, with 

some small scale refinements. This implies that the anomalous SAM is mainly influenced by 

Indian and Pacific Oceans only. In the CAM4 ENSO case, the absence o f the Indian Ocean 

influence can be characterized by a significant removal of rainfall over the tropical Indian 

Ocean and Indian subcontinent. The persistence o f positive northern Indian Ocean SST 

anomalies induced by the preceding winter east equatorial Pacific SST anomalies is absent in
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this experiment, resulting in reduced anomalous rainfall. The weak contribution from 

concurrent negative east equatorial Pacific SST anomalies, via direct atmospheric circulation 

changes, can be seen in Figure 3.12 (spatial plots). Although the negative SST anomalies in 

the east equatorial Pacific induce lower level divergence and upper level convergence over 

the tropical Pacific, their effect on the SAM region is unrealistically confined to the Maritime 

continent only, further reducing the surface moisture and rainfall there. This can be also seen 

in the temporal evolution (Figure 3.12 (bottom plot)) of rainfall for both experiments. The 

rainfall in the CAM4ENSO experiment is suppressed during the summer as compared to the 

C A M 4 E N S O IO  rainfall. These results support the physical mechanisms o f the DJF&JJAS 

type discussed in WU12. Also the importance of the Indian Ocean in modulating (amplifying 

or suppressing) the rainfall in ENSO-SAM teleconnection can be seen in this analysis.

3.4 Summary and Conclusions

This chapter presented a detailed investigation of the ENSO-SAM relationships in the CAM4 

and CCSM4 models simulations. This investigation seeks to identify the strengths and 

weaknesses o f these models in preserving different types o f ENSO-SAM relationships. This 

analysis was performed following the recent work by Wu et al. (2012) where they identified 

three different types of ENSO influences on the SAM from analysis o f observations. We 

have extended their analysis to our simulation results, and further explored the physical 

understanding of particular types o f ENSO influences on SAM using sensitivity experiments.

Composite analysis was performed for both model simulations and observations including 

spatial composite map and temporal variability of the area average. The CAM4 simulation in 

the DJF-only type is better than CCSM4, and can reproduce the realistic anomalous rainfall
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reasonably well over the east Pacific along with some biases over the western Pacific and 

Maritime continent that are particularly significant in the preceding winter and the early 

summer. It can also capture the realistic evolution and propagation o f rainfall anomalies from 

their decay over the tropical Pacific in the preceding winter to their development phase over 

the Indian subcontinent in the late monsoon season. In contrast, the CCSM4 shows large 

systematic errors including significant rainfall anomaly biases in the Indian Ocean from the 

preceding winter to the early spring, probably due to the errors in the SST simulation. The 

CAM4 model performed better than CCSM4 in DJF-only years.

For the JJAS-only type where the concurrent eastern Pacific SST anomalies directly induce 

anomalous SAM through atmospheric circulation, the CAM4 simulations show disagreement 

in SAM rainfall anomalies between the observations and the CCSM4 simulations. It is found 

that ENSO induced warming in northern Indian Ocean via atmospheric circulation is absent 

in CAM4 simulations in the JJAS-only type probably due to the lack of air-sea coupling. The 

CCSM4 shows strong convergence over the SAM region, intensifying the anomalous SAM. 

The CCSM4 results are more realistic than CAM4 in comparison with observations. It is 

found that the atmospheric circulations of velocity potential and the corresponding divergent 

winds at 850 mb and 200 mb heights in CCSM4 contribute more than the thermal contrast in 

modulating the intensity o f anomalous rainfall.

For the third type of DJF&JJAS, the impact of ENSO on the SAM is characterized by a 

switch of the ENSO phase during the cycle from the warm phase in preceding winter to cold 

phase in the summer, amplifying the SAM rainfall. In this type, CAM4 better reproduces the 

realistic anomalous rainfall than the CCSM4 which has very weak simulated rainfall 

anomalies. The convergence and divergence zones in the CAM4 model are comparable to the
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observations whereas the CCSM4 has very weak simulations in these circulations. In 

comparing the other two simulation types, the CAM4 better models the ENSO-SAM 

relationship in the DJF&JJAS type, including the realistic simulation in moisture content and 

thickness difference. In contrast, the CCSM4 simulates the moisture content and thickness 

difference out of phase with realistic evolution.

The CAM4 sensitivity experiment highlights the role of the Indian Ocean in controlling the 

DJF&JJAS type ENSO-SAM teleconnections. It is found that in the absence of Indian Ocean 

SST, the anomalous SAM summer rainfall is suppressed in the DJF&JJAS type, suggesting 

that the important modulation by the Indian Ocean SST probably occurs through the 

preceding winter east equatorial Pacific SST forcing and the atmospheric circulations.

The results presented in this chapter suggest that model biases can significantly affect the 

ENSO-SAM relationship. Although the air-sea coupling is important for better SAM 

simulation and its relationship with ENSO, the bias in the ocean modeling can significantly 

degrade the SAM relationship. The fidelity of the CCSM4 model is most likely not at a level 

where the local air-sea feedbacks could be clearly shown to be an important component of 

the forecast system that improves the seasonal predictability o f SAM. This study also 

suggests that the atmospheric model could be used as an alternative tool for monsoon 

predictions until the coupling biases are better resolved.
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Figure 3.1: Lag lead correlation of monthly mean SAM precipitation with (a) Nino3.4 (-5°S- 

5°N, 120°-170°W) and (b) northern Indian Ocean (NIO, 5°-25°N, 60°-100°E) indices. Area 

averaged (5°-25°N, 60°-100°E) time series (ISM) of observed CMAP (solid black line) 

precipitation, CAM4 (solid blue line) and CCSM4 (solid red line) time series are correlated 

with observed Niiio3.4 and northern Indian Ocean SST indices except for CCSM4 case 

where CCSM4 simulated SST are used. Month with a negative (positive) sign indicate that 

SST leads (lags) the ISR with maximum lead of 12 months (1 year). Month 0 and 12 

indicates June whereas month 4 and 8 correspond to February and October (minus sign for 

previous month). Correlations are calculated using a 5 monthly sliding window.
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Figure 3.2: Bimonthly composite anomalies of observed SST (HadSST) for DJ, FM, AM, JJ, and AS (top to bottom). The 1st, 2nd 
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values in C.
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2nd and 3rd columns represent observed (CMAP), CAM4 and CCSM4 respectively. Shading corresponds to the values in mm/day 

while the contour shows their significance.
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Figure 3.7: Composite JJAS rainfall anomalies (mm/day) for the DJF-only type, JJAS-only type and DJF&JJAS type based on 

observed (CMAP) and simulated (CAM4 and CCSM4) precipitation.
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Figure 3.8: Area averaged composite of normalized 3-month running mean anomalies o f 

Nino3.4 SST (green curves), northern Indian Ocean SST (NIO, red curves), CAM4 or 

CCSM4 precipitation (blue curves) and CMAP precipitation (IMR, black curves) in (a) DJF- 

only type, (b) JJAS-only type, and (c) DJF&JJAS type. SST curves in left column are from 

observation while right column SST curves are from CCSM4 simulation.
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Figure 3.9: Observed (top), CAM4 (center) and CCSM4 (bottom) JJAS mean composite 

anomalies o f velocity potential and the corresponding divergent winds at 850 mb height (left 

column) and at 200 mb height (right column) for the JJAS-only and DJF&JJAS types. 

Shading corresponds to the velocity potential in 106 s'1 and vectors in m/s.
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Figure 3.10: Composites of normalized 3-month running mean anomalies o f surface (2 m) 

air humidity over the region of 0°-10°N and 50°-80°E (solid curves) and 500-200-hPa 

thickness difference (10 m) between area 20°-40°N, 50°-100°E and 08°-20°N, 50°-100°E 

in (a) DJF-only type, (b) JJAS-only type, and (c) DJF&JJAS type. Left column is for CAM4 

and observation while right column shows CCSM4 simulated curves.
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Figure 3.11: Composite JJAS rainfall anomalies (mm/day) and 850 mb winds for the 

DJF&JJAS type based on C A M 4E N S O IO  and CAM ENSO experiments. See text for 

detail of the experiments.
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Figure 3.12: JJAS mean composite anomalies of velocity potential and the corresponding 

divergent winds at 850 mb height (top left) and at 200 mb (top right) for DJF&JJAS type 

based on CAM4 ENSO IO and CAM_ENSO experiments, (bottom) Composite of 

normalized 3-month running mean anomalies for CAM4 ENSO IO and CAM4ENSO 

experiments for DJF&JJAS type.
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Chapter 4

Optimal error growth of South Asian Monsoon Forecast 

Associated with the uncertainties in the Sea Surface Temperature

Islam S, Y Tang and P Jackson (2015), Optimal error growth of South Asian Monsoon 

Forecast Associated with the uncertainties in the Sea Surface Temperature, submitted to 

Climate Dynamics Journal

This paper is reformatted to serve as Chapter 4 in the thesis.
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4.1 Introduction

The chaotic nature o f the atmospheric circulation imposes a deterministic limit on long-term 

weather forecasts (Lorenz 1963) but some large-scale atmospheric features such as ENSO are 

potentially predictable beyond this limit (Shukla 1981). This was initially indicated by GCM 

results which showed that a large part o f the tropical variability is determined by slowly 

varying boundary conditions of SST, soil moisture and snow cover (Chamey and Shukla 

1981; Shukla 1998). Based on these indications, significant progress has been made over the 

past decades in understanding and predicting ENSO and large-scale tropical features 

associated with its variation. Although the correlation skill o f ENSO forecasts have improved 

remarkably (Wang et al. 2009; Jin et al. 2008), seasonal prediction of other climatic features 

such as the Asian monsoon still needs substantial improvement.

Several attempts have been made for the forecast o f the Asian monsoon particularly the South 

Asian Monsoon (SAM or Indian Monsoon hereafter). Many studies have shown that the 

current skill o f Asian monsoon forecasts using dynamical models, is poor on the seasonal time 

scale (Wang et al. 2007, 2008; Drbohlav and Krishnamurthy, 2010; Chowdary et al.2010; 

Sohn et al. 2012) as well as on the sub-seasonal time scale (Fu et al. 2009, 2011). Recent 

studies such as Acharya et al. (2011) and Kulkami et al. (2012b) have also highlighted that the 

GCMs have limited skill in predicting SAM rainfall. Singh et al. 2012a has reported that 

GCMs have large biases in simulating the observed teleconnection pattern, which lower the 

skill o f dynamical seasonal prediction. Beside dynamical models, many statistical models 

have shown inconsistent skill in predicting SAM rainfall (Gadgil et al. 2005).
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In general, the lower SAM forecast skill is mainly due to our incomplete understanding of 

monsoon dynamics which lead to a poor formulation of model physics, large model biases 

(Islam et al. 2013) and the uncertainties involved in specifying the forecast initial states. This 

means that there is potential to increase SAM forecast skill with (i) better climate models 

having more accurate representation of intraseasonal variability and better parameterizations 

schemes and (ii) improved ensemble methodologies used in forecast initialization. Together (i) 

and (ii) can ensure improved SAM forecast skill.

Although climate models are continuously developing with time, improving forecast ensemble 

strategies remains a long-term challenge to advance SAM forecast. To make a reliable 

ensemble, it is important to explore the impact o f uncertainties in initial conditions on SAM 

seasonal predictions. Among many initial uncertainties involved in monsoon forecast, the 

uncertainties in SST can greatly impact its forecast skill. It has been discussed in previous 

chapters that the essential source of SAM predictability at seasonal time scales mainly comes 

through the tropical SST forcings, especially ENSO (Sikka 1980; Shukla and Paolino 1983; 

Nigam 1994; Slingo and Annamalai 2000; Meehl and Arblaster 2002; Annamalai and Liu 

2005). Along with its teleconnection with ENSO forcing, SAM has close interaction with SST 

in the tropical Indian Ocean (Wang et al. 2009; Chowdary et al. 2010; Kosaka et al. 2012). It 

is interesting to investigate how SST uncertainties impact SAM forecast error growth. This is 

important in its own right from the point of view of error dynamics. Additionally, a direct 

application of the uncertainties study is to construct the optimal ensemble.

It is well known that the ensemble mean has usually more reliable and greater skill than a 

single deterministic forecast (Leith 1974). The importance o f ensemble forecast has been 

greatly acknowledged, with many approaches proposed and used to construct optimal
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ensembles. These methods include Time Lag Ensemble, Bred Vectors, Singular Vectors and 

Ensemble Kalman filter etc. (e.g. Toth and Kalnay 1993, 1997; Molteni and Palmer 1993; 

Moore et al. 1996; Chen et al. 2004; Tang et al. 2006). However, these studies mainly focus 

on weather and medium range seasonal forecast on a global domain or ENSO relevant climate 

prediction. There is little research on how to construct the optimal ensemble for SAM seasonal 

prediction in the literature.

In this chapter, we use Singular Vector (hereafter named as SV) to explore the impact of 

initial SST uncertainty on SAM seasonal prediction and to construct the optimal ensemble. 

The SV is a widely used method in studying the optimal growth o f initial perturbations. The 

aim of using SV is to find those perturbations, superimposed on a given initial state, which 

grow most rapidly under the assumption that the perturbations grow linearly in time. As the 

fast-growing mode o f prediction error is often dominated by weather-scale instabilities in a 

full GCM, it is problematic to use the traditional SV method to characterize the fast-growing 

modes associated with long-term timescale variability i.e. at longer lead time. Therefore, when 

applying the SV method in GCMs to study climatologically relevant problems, particular care 

needs to be taken to filter out the fast-growing modes of weather instabilities (Kleeman et al. 

2003).

This chapter focuses on the implementation o f the climatically-relevant SV (hereafter named 

as CSV) method for SAM seasonal forecasts. The CSV method was introduced by Kleeman et 

al. 2003 which was later applied to realistic coupled models (Tang et al. 2006). It addresses 

the fast error growth due to climatically relevant instabilities by running an ensemble to 

average out the weather noise, thereby, filtering out the atmospheric noise but retaining the 

climatic response. This is especially important for seasonal climate forecasts. In addition, the
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CSV is cost-efficient since it does not require tangent linear and adjoint models, which are 

expensive in computation and complicated in technique for a GCM (Tang et al. 2005). 

Previous studies have applied the CSV method to estimate CSVs for seasonal forecasting of 

SST in the Pacific Ocean such as ENSO or decadal forecasting o f the North Atlantic Ocean 

(Hawkins and Sutton, 2010). It has not been used for SAM seasonal forecasts. This study is 

therefore the attempt to apply CSV to investigate the optimal error growth of SAM seasonal 

prediction due to uncertainties in SST, using a general circulation model. The overall 

motivation is to use CSV to explore the error dynamics of SAM forecast, and the optimal 

construction of SAM ensemble forecast.

The chapter is structured as follows. Section 4.2 discusses the CSV method and its 

implementation, the estimation of the linear operator R, model description and experimental 

setup and choice of variables. Section 4.3 highlights characteristic o f leading CSVs and 

corresponding final patterns for the Indian and Pacific Oceans. Section 4.4 discusses validity 

o f CSVs and its sensitivity to varying number of EOFs and ensemble members. Ensemble 

SAM forecasts, constructed using CSVs, are discussed in section 4.5. Section 4.6 is a brief 

summary and conclusion.

4.2 M ethod and M odels

4.2.1 Estimation of Singular Vectors

As discussed in the previous section, this study utilizes the CSV method for extracting 

optimum perturbation patterns. The mathematical formulation of the CSV method, based on 

Kleeman et al. (2003) and Tang et al. (2006), is as follows:
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A general dynamical system may be written compactly as

AXO = / W ) ]  (1)

where X ( t )  is a vector representing the system state and ^  is a nonlinear operator. For a 

small perturbation <I>, Eq. (1) can be written as

X ( t )  + AX( t )  = F[X( t ' )  + <t>] (2)

Subtracting Eq. (1) from Eq. (2), we have

= (3)

where the linear operator R in Eq. (3) is the first-order derivative o f F  with respect to X

f t

(at the time o f 1 ). It is often called the propagator of Eq. (1) and gives the time evolution of 

the dynamical system by representing perturbation growth matrices.

The singular vectors of the system, which are the perturbations that amplify maximally over

the time period ( t  — t 1), are the eigenvectors (E) of R 7 R  with the largest real part (e.g.

Buizza and Palmer 1995), where R T is the transpose of ̂ . Thus the SV can be obtained by

two methods: the eigenvector analysis o f the R 7 R  matrix or singular value decomposition 

(SVD) analysis o f R. Mathematically it can be shown that:

R ( t , t ' ) E , = ^ S x ^
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Where ^  represents first singular value and ^  is first SV. Hence can be derived by 

applying the propagator R(t , t ' )  to the initial pattern ^  as shown by (4). is called the 

final pattern. Here 5, is the left vector o f SVD of R . The calculation of R is discussed below.

4.2.2 Calculation of R and Application to the SAM Forecast System

For calculating R o f the dynamical system (1), a perturbation variable (denoted by T ) at the 

initial time and the target variable (denoted by A )  used to measure forecast errors, are 

selected. By definition, the leading SV of A indicates what kind of uncertainty in Tp can

lead to the fastest error growth for predicting A . The detailed procedure for obtaining R is 

similar to that described in Kleeman et al. (2003) and is summarized as:

1. An ensemble of 10 forecasts with lead time of 4 months (June, July, August and

TSeptember, named as JJAS) is constructed by randomly perturbing the initial p field

\j/ (t)
with 10 “very small” random patterns. The ensemble mean of A is denoted by oV .

2. Each of the leading three correlation EOF modes e' o f 1*2,3) ^  a 

multiplication factor of 0.1 to ensure linearity) to the initial condition described in 

step (1) and a new ensemble of 10 forecasts is produced. The corresponding ensemble

vp ( f )
mean of A is denoted by ' .

3. A reduced-state space matrix version r‘J of the propagator R is then obtained taking 

the difference o f both the ensembles. Mathematically it can be represented as

_____ __ __  3
Re, = A¥ ( /)  = y¥ l (/) -  xVa (0  = Y Jr„e , + residual (5)

H
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The residual in equation (5) is generally very small and can be ignored (Kleeman et al. 2003). 

The climatically relevant singular vectors are thus obtained by SVD analysis o f R  as 

aforementioned. These singular vectors are then projected back to real T  space using the

EOF basis vector expansion.

In implementing this method, it is important to note that ensemble experiments are carried 

out to filter the weather noise by averaging in order to extract fast error growth due to 

climatically relevant instabilities. Another advantage o f the CSV method is that the choice o f 

the analysis domain and optimization lead time can be made after the ensembles have been 

completed which allows one to explore the sensitivity to different choices without further 

model experiments.

4.2.3 Experimental Setups

The models used in our seasonal forecast system are CAM4 and CCSM4. The ability o f 

CAM4 and CCSM4 to simulate the summer monsoon has been explored in Chapter 2 and 3. 

It is found that CAM4 overestimates the monsoon rainfall over most of the SAM region 

when compared to observation and CCSM4. The overall simulations o f CAM4 reasonably 

captured the monsoon mean climatology (Islam et al. 2013), allowing its use to study 

predictability.

As discussed above, to implement the CSV method, three leading modes o f the correlation 

EOF are used to perturb the initial conditions. Figure 4.1a and 4.1b show the first three 

correlation EOF modes for SST over the Indian and Pacific Oceans. The major reason for SV 

analysis over the two Ocean domains is to explore the individual effect o f the Indian and
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Pacific Ocean on the error growth of SAM, respectively. As reported in many studies, both o f 

these Oceans can significantly affect SAM and play a key role in SAM variability (e.g. 

Meehl and Arblaster 2002; Annamalai and Liu 2005; Wang et al. 2009; Chowdary et al. 

2010; Kosaka et al. 2012). Leading EOFs are calculated for the month o f June using the 

observed SST data (Hadley Centre SST, Rayner et al. 2003) for the period 1980-2009. In 

case of the Indian Ocean (Figure 4.1a), 1st and 2nd leading EOF mode account for 39% and 

12% of the total variance. EOF1 shows the Indian Ocean Basin (IOB) Mode and EOF2 

depicts the east-west Indian Ocean dipole (Saji et al. 1999, IOD) mode. The former is closely 

linked to ENSO, whereas the latter occurs with and without ENSO (Pokhrel et al. 2012). The 

two modes differ not only in spatial structure, but also in their seasonal dependency. In 

Figure 4.1b, the 1st leading EOF over the Pacific domain represents the ENSO mode. The 

leading mode shows 30.7% explained variance over the Pacific Ocean. The spatial pattern 

associated with the warm phase of ENSO consists o f positive SST anomalies across the 

eastern equatorial Pacific Ocean and weaker negative anomalies over the western tropical 

Pacific. In our CSV implementation, each of these EOFs is used as a perturbation added to 

the initial SST state.

Using the procedure mentioned in section 4.2.2, for each initial condition, eq. (5) can be 

evaluated by averaging 10 different ensemble members. The initial conditions used in 

experiments are from NCAR’s Data Assimilation Research Tool (DART) system (Anderson 

et al. 2009). DART employs an Ensemble Kalman Filter (Houtekamer et al. 2005) which 

nudges the underlying models toward a state that is more consistent with information from a 

set of observations. Overall, these initial conditions are quite close to the National Center for 

Environmental Prediction (NCEP) reanalysis data sets, but are more consistent with the
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CAM4 model. In coupled model experiments (i.e. CCSM4), the atmospheric (CAM4) and 

land (CLM4) counterparts are initialized using the same initial conditions as used in CAM4 

initialization. To generate initial condition for ocean (POP2.2) and sea ice (CICE4) models, a 

multi years ocean control hindcast experiment is performed using the CORE II (Coordinated 

Ocean-ice Reference Experiments - Phase II, Griffies et al. 2012) input data set as boundary 

conditions. The CSV implementation for CCSM4 model is the same as discussed for the 

CAM4 model. The three leading EOF patterns in this case are calculated using the CCSM4 

simulated SST instead of observations. In most of our analysis, we mainly focus on CAM4 

simulations (uncoupled) and its analysis. The results from the coupled model are only used 

for the purpose o f comparison between uncoupled and coupled CSVs.

The experiments are performed for the time period of 2000 to 2009 using DART initial 

conditions. Starting on June 1st of each year, 4-month (lead time) integration is made by 

initializing both atmospheric and land models (embedded in CAM4) at the same time. In the 

CAM4 forecast, boundary forcing such as SST (Hadley Centre SST, Rayner et al. 2003) and 

the May sea ice anomaly (one month prior to the forecast initialization time) is kept persistent 

over the entire forecast period, i.e. June, July, August and September. Figure 4.2 displays 

May SST anomalies from 2000 to 2009. It can be seen that they vary each year, which can 

influence the growth of forecast error when perturbations are applied.

To get a more robust statistical analysis, another set of ensemble forecasts is performed for 

the 1980 to 2009 time period using persistent SST anomalies as boundary forcing. The initial 

conditions in this case are from CAM4 control run forced with observed SST. The CSV 

method is implemented in the same way as in the simulations using DART initial conditions.
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A summary o f all the experiments using different domains, models, time periods, number of 

EOFs and ensemble size is given in Table 1.

4.2.4 Target Variable

In this study, the forecast variable is chosen to be Outgoing Longwave Radiation (OLR) and 

optimum interval (i.e. lead time) is 4 months. The use of OLR, instead o f precipitation, is 

because it is comparatively better predicted than actual precipitation. On the other hand, it 

has been widely used to estimate SAM precipitation often as an index related to convective 

activity as lower OLR values are associated with higher cloud top heights in well-developed 

clouds (Schmetz; Liu, 1988 Kousky and Kayano, 1994; Moron, 1995).

In summary, we use SST as perturbation variable ( Tp) at the time / = 0 and investigate OLR

as target variable ( A )  at t = t ' . As discussed before, the main reason to select SST as 

perturbation variable, over the Indian and Pacific Oceans, is due to the fact that SAM 

variability, at the seasonal time scale, is strongly influenced by the SST in central Pacific and 

Indian Ocean.

4.3 The Optimal Error due to the SST Uncertainties in Indian and 

Pacific Oceans

The precipitation over the SAM region in CAM4 simulation is validated in Islam et al. 

(2013) and it is found that CAM4 can capture the main climatological features o f the SAM 

summer precipitation. Figure 4.3 shows the 30-year (1980-2009) mean OLR climatology 

from NCEP reanalysis data (left column) and CAM4 control simulation (right column).
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Generally, negative (positive) values of OLR indicate more (less) convection and hence more 

(less) cloud coverage. In observations, for all four monsoon months, there is a widespread 

area of heavy convection around the northern Indian Ocean and Indian subcontinent 

reflecting heavier rainfall. In contrast, most of the equatorial Indian Ocean has higher OLR 

values showing less convection. In CAM4, these observed OLR features are well captured 

except in some regions such as suppressed rainfall over the Southern China Sea and 

excessive rainfall over the western Arabian Sea. Overall, the OLR simulated by CAM4 

compares well with the observed OLR climatology.

4.3.1 Results during the 2000 -  2009 Period

We now examine how error growth varies with different initial conditions and lead time 

under different scenarios. In our CSV analysis, the first singular value is significantly larger 

than the remaining singular values. We therefore only discuss the leading CSV and its 

optimum growth i.e. the final pattern (FP hereafter) throughout the text. Over the Indian 

Ocean, the leading CSVs and corresponding FPs, optimized for time interval o f 4 months 

(lead of 3 months), are shown in Figure 4.4 for each individual forecast during 2000 to 2009. 

In case o f leading optimized perturbation (i.e. CSV), a distinct north-south dipole pattern can 

be identified in most of the years (while ignoring the arbitrary sign o f CSVs). In the years 

having the dipole-like CSV pattern, the corresponding FP shows error growth mainly over 

most of the Indian Ocean particularly over the north Indian Ocean and the central Indian 

subcontinent. Although most of the CSVs in individual years are similar, the FPs are quite 

different in each year. Large variation of OLR FPs within different years could be due to the 

low-frequency processes causing asymmetry between the responses of OLR to the SST. This 

could be also due to the different initial SST state anomalies which may significantly change
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the CSV growth. Indeed these SST anomalies, as the background state, play a crucial role in 

modifying the OLR spatial variation. This can be seen in some observed summer OLR 

anomalies over the SAM region for different years. For example, Charabi and Abdul-Wahab 

(2009) found that the July anomaly o f OLR in ENSO years such as 2000 and 2002 are 

significantly different compared to other years. They have seen that the geographical 

variations of OLR anomalies are positive in the west Indian Ocean and negative in the East 

Indian Ocean in 2000 and 2002 whereas the patterns for years such as 1997 (strong El Nino 

year) and 1994 (strong IOD year) are the opposite.

To extract the general characteristic of these CSVs and FPs, we perform the EOF analysis for 

the 10 individual years for each lead time. The first leading EOF mode o f CSVs (left column) 

and FPs (right column) is shown for all lead times in Figure 4.5. As can been seen, the CSV 

patterns now more prominently resemble the dipole structure, which is not dependent on the 

lead time if the arbitrary sign is ignored. The FP has differences for different lead times, due 

to the impact of initial stated on perturbation growth as discussed before. During the 4-month 

optimization interval, the error growth gets concentrated over the northern Indian Ocean and 

Indian subcontinent. Therefore the maximum perturbation growth is over those areas which 

are usually used to measure SAM intensity and variability i.e. the northern Indian Ocean and 

Indian subcontinent.

We now discuss the Pacific Ocean case, where CSVs are extracted over the ENSO region 

and the prediction target is still the OLR of SAM region. The results show that the CSVs are 

not sensitive to the initial conditions as in the Indian Ocean case, although the FPs vary 

significantly (not shown here). Figure 4.6 shows the leading EOFs of CSVs and FPs for all 

initial conditions at different lead times. A prominent structure in CSVs is the equatorial
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ENSO-like mode, representing a large-scale structure with major weighting in the equatorial 

eastern Pacific and less weighting in the western Pacific. The CSVs in this case are similar to 

SVs analyzed in many intermediate models when targeting ENSO forecasts (e.g. Chen et al. 

1997). This resemblance indicates the link between the error growth of ENSO prediction and 

that o f SAM, suggesting ENSO as a major source o f SAM predictability. The FPs (Figure 

4.6) in the Pacific Ocean case have close similarities to the FPs calculated in the Indian 

Ocean case (Figure 4.5) except in some regions.

The above CSV analysis considers the individual impact of the Indian and Pacific Oceans on 

the error growth of SAM prediction where the Indian and Pacific Oceans are perturbed 

separately. We will next explore the total impact of the two Oceans on the error growth of 

SAM prediction. For this purpose, we analyze CSVs for the Indian-Pacific Ocean. In this 

case, the spatial structure of CSVs over the Indian and Pacific Oceans are the same as seen in 

the individual oceans case (not shown here). Figure 4.7 shows the leading EOF computed 

using 10 individual FPs from all years for each lead time. The interesting outcome from the 

joint analysis o f the two oceans is the damped error growth over most o f the Indian 

subcontinent and the Indian Ocean. The SST uncertainties from two different oceans partially 

cancel their growth with increasing lead time. This means that domain size choice is crucial, 

as uncertainties over a large region can suppress its growth and contribute less in error 

optimization. This was also confirmed by running an ensemble forecast using the CSVs over 

the whole Indian and Pacific Oceans which shows lower skill compared to the forecast 

perturbed with CSVs over Indian Ocean only. We will discuss the SAM ensemble forecast 

later.
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The above discussion o f error growth can be further investigated by analyzing singular values 

o f CSVs over the Indian Ocean and over the Pacific Ocean. These values measure the fastest 

growth rate of perturbation during an optimum interval. The annual variation o f singular 

values is shown in Figure 4.8 for the Indian (Figure 4.8a) and Pacific (Figure 4.8b) Oceans. 

The singular values o f all the lead times are averaged each year to show an overall error 

growth. In case o f the Indian Ocean only, the average singular values are higher than those of 

the Pacific Ocean. In Figure 4.8d, the lead time dependence of singular values is shown by 

averaging all the individual years. The gradual increase of singular values from lead times o f 

0 to lead times of 3 months is more prominent in the Indian Ocean case (black line) 

compared to the Pacific Ocean case (red line).

4.3.2 Results during the 1980 -  2009 Period

Due to the availability o f DART initial conditions, based on real observation, we only used 

10 years (2000-2009) of independent experiments in section 4.3.1. For more rigorous 

statistics, in this section we extend the CSV experiment to the period 1980 to 2009 (30 

individual SAM summer forecasts, 1030 hereafter), however the initial conditions in this 

case are not from real observation. All settings in this experiment are the same as those of 10- 

yr previous analyses except the initial conditions, which were produced from the control 

simulation of CAM4 forced by observed SST. As mentioned in the singular values discussion 

in section 4.3.1, the Indian Ocean has a more significant impact on the SAM seasonal 

prediction than the Pacific Ocean. We therefore emphasize results only over the Indian 

Ocean in further analyses. For simplicity, we only focus on analysis at the seasonal time scale 

(i.e. 3-month lead time).
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The leading EOF mode obtained using the 30 individual CSVs and FPs is shown in Figure 

4.9 at a lead time of 3 months. The spatial structures of CSV found in 1030 experiment are 

very similar to CSVs found in the 10-year analysis (Figure 4.5) confirming the robustness of 

CSVs obtained in the analysis of section 4.3.1. The FP has some regional differences along 

with significant year to year variation (not shown here) mainly due to the impact of initial 

state superimposed by CSV as discussed in section 4.3.1. The annual variation of 1030 

singular values (Figure 4.8c) and its lead time variation (Figure 4.8d, blue line) are quite 

consistent in magnitude with the 10-year CSV values.

It has also been found in previous studies that the SVs are insensitive to initial conditions in 

many models (e.g. Chen et al. 1997; Xue et al. 1997a; Zhou et al. 2007; Cheng et al. 2009). 

To explore the sensitivity o f CSVs to initial conditions, we computed the spatial correlation 

between the EOFc and each individual CSV pattern, as in Tang and Deng (2011), where the 

EOFc is the first EOF mode obtained by all CSVs.

If the EOFc and the CSV* are denoted by the normalized one-dimensional vectors eo fc 

and csv,, respectively, the spatial correlation Rsp is calculated as below,

1 N X ,

( 6)
A'O -1  G=1

where N G  is the number of total model grids over the model domain and i = 1,2,.... 10. The

spatial correlation values are calculated for Indian Ocean and Pacific Ocean cases for each 

individual year and are shown in Figure 4.10 (a and b). For most years, the value of the 

spatial correlation coefficient is quite high, for both Indian Ocean (Figure 4.10a) and Pacific
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Ocean (Figure 4.10b) cases. As mentioned in Cai et al. 2003, the positive phase o f the same 

pattern should be regarded as equivalent to the negative phase, at least from a linear system 

perspective. In addition, the pattern sign can be arbitrary from the view of EOF analysis. 

Thus, the preliminary features of CSVs, as represented by the first EOF mode (equivalent to 

the average), are insensitive to initial conditions. This conclusion is further confirmed by 

using CSVs from the 1030 experiment by increasing the individual years to 30 i.e.

i' = l,2,.....30 as shown in Figure 4.10c. Higher values o f individual correlations indicate

independence of the CSVs from initial conditions.

4.3.3 The Results from the Coupled Model CCSM4

The CSVs and FPs discussed above are based on atmospheric model simulation with 

persistent SST boundary conditions. How do the CSVs change in a coupled model? As 

argued in the introduction, the air-sea interaction plays a crucial role in SAM simulation and 

prediction. To explore this issue, we calculate the CSVs for CCSM4. The leading CSVs and 

FPs o f CCSM4 over the Indian Ocean for all lead times are shown in Figure 4.11. We only 

show one particular year here, i.e. 2000, as the CSVs for other years are similar. Interestingly, 

the spatial structure of the CCSM4 CSVs is similar to CAM4 CSVs, but the growth rate 

shown in Figure 4.11 has differences with the CAM4 counterpart in Figure 4.8. The growth 

rate of CCSM4 varies more significantly with lead times than that o f CAM4, so that the 

former is larger than the latter for longer lead time beyond 2 months. This suggests that the 

air-sea coupling could act as an amplifier by positive feedbacks to strengthen the perturbation 

growth for a long lead time. Due to the difference in the growth rate, the CCSM4 show 

stronger anomalies than CAM4 in their FPs, as evidenced in Figure 4.11 and Figure 4.8.
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The similarities of CSVs between CAM4 and CCSM4 suggest that one may be able to use 

the CAM4 to construct an ensemble prediction for the CCSM4, which is more 

computationally efficient and has potential in operational forecast.

4.4 Sensitivity Experiments of CSV to some Parameters

Before using CSVs to construct ensemble forecasts, it is necessary to evaluate CSV 

robustness to the various choices made in the implementation of the methodology. In this 

section we therefore discuss the robustness of CSVs to the number o f EOFs used as initial 

perturbations, and the number o f ensemble members used in calculating means over the 

Indian Ocean with help o f sensitivity experiments.

4.4.1 Convergence of CSV with Number of EOFs

As discussed in previous sections, the first three EOF modes are used to generate the CSVs. 

In the sensitivity experiment, we explore the CSVs with the number o f EOFs used for initial 

perturbations. For simplicity, we randomly choose an initial condition of an individual year 

for the sensitivity analysis. Figure 4.12 shows CSVs computed using different numbers of 

EOFs. The lead time for CSV is 4 months. As we increase the number o f EOF perturbations 

from 3 to 10 EOFs, the CSV structure does not change significantly. The corresponding FP 

gets optimized even with a relatively small number of EOFs i.e. 3 to 5 EOFs. This suggests 

that the dominant features o f the CSVs can be captured by the leading 3 EOF modes. Indeed, 

increasing the number of EOF perturbations means including more noise in the initial 

conditions which can, beyond a certain limit, start degrading the optimization o f perturbation. 

This analysis suggests that our choice of using the three leading SST EOFs in construction of 

CSVs is appropriate. We repeated the same procedure for other years with similar results.
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4.4.2 Convergence of CSV with Number of Ensemble Members

Figure 4.13 shows how the first singular value changes for different numbers o f ensemble 

members, when using three EOFs as perturbations. If only 10 ensemble members are used, 

singular values converge to its minimum values for lead time 3 months and for all individual 

years (colored lines). Beyond 10 to 15 ensemble members, the singular values remain quite 

similar. This means that the true mean can be estimated with the use of only 10 ensemble 

members. A similar convergence is seen for CSV spatial patterns suggesting the use of 10 

ensemble members being reliable for their calculation (not shown here).

4.4.3 Validity of CSV

The CSVs and FPs, shown in Figure 4.4, are obtained by a linear approximation approach for 

the nonlinear model CAM4. It is therefore important to inspect whether the CSVs can 

resembled results that are directly obtained by the nonlinear model. This validation can be 

conducted by integrating the CAM4 twice, one from the initial condition superimposed by 

the CSVs (scaled by using a multiplication factor of 0.1), and the other from the initial 

condition only. The difference between two integrations, denoted as Dnon ,  indicates the 

perturbation growth of the CSVs obtained directly by the nonlinear model, which can be 

compared with the FPs and serves as the purpose of the validation. We conduct this 

experiment for each year during the period from 2000 to 2009. Figure 4.14a shows the 

leading EOF of D non over the entire period at 3 months lead time. The leading EOF pattern 

of the FP directly from the CSV method, i.e. applying the propagator R to the CSVs, is also 

shown in Figure 4.14b for comparison. It can be seen that the leading EOF of D non (Figure 

4.14a) is very similar to the FP from the linear approximation (Figure 4.14b) although there
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are some discrepancies. Despite these discrepancies, the overall features very resemble each 

other, indicating that the estimates of the CSVs are robust and correct.

4.5 SAM Ensemble Forecast using CSVs

In the previous sections, we mainly focused on the general characteristics and validation of 

CSV and the FP. We now apply the CSVs to generate ensemble predictions. It is expected 

that such an ensemble prediction should be optimal and more skillful than single predictions 

and non-optimal ensemble predictions. For comparison, we also use the Time Lag Ensemble 

(TLE) method to construct ensemble predictions. The TLE is achieved using different initial 

conditions with the lag of six hours to initialize six forecasts, starting at 1a June of each year.

We construct ensemble predictions by the CSVs extracted over the Indian Oceans. Each 

individual CSV is multiplied by random noise and is superimposed onto the initial conditions 

to generate an ensemble forecast. The ensemble size is 20, by using different random 

numbers. In practice, we use 10 random numbers multiplied by a positive CSV and 10 

random number multiplied by a negative CSV, since the sign of CSVs are arbitrary. The 

ensemble mean of positive and negative ensembles is labeled as CSVp and CSVn in 

discussions below, respectively.

The ensemble prediction is run for the period from 2000 to 2009 and from 1980 to 2009, 

respectively. The RMSE values from the period from 2000 to 2009 are shown in Figure 4.15a, 

for a single control run prediction without perturbation (black line), the ensemble o f CSVp 

and CSVn (blue and red line), and ensemble o f TLE (green line). For each forecast, an error 

bar is drawn using the bootstrap method (Efron et al. 1993) for its significance. The bootstrap
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method is obtained as follows, i) At a given forecast lead month, the observation and forecast 

are paired together, based on same target month. In this way, the forecast and observation 

sampled are paired together for the whole period (2000-2009). ii) The 95% of the paired 

sample is then chosen randomly and used for RMSE calculation, iii) The step (ii) is repeated 

1000 times to obtain 1000 RMSE. iv) The standard deviation o f these 1000 correlation 

coefficients at each lead month is drawn as an error bar.

As shown in Figure 4.15a, the ensemble mean RMSE of CSVp and CSVn forecasts are 

significantly better than the Control and TLE forecasts at lead times beyond 2 months. The 

probable reason for the significant difference in the last two months is that the CSV used to 

construct ensemble prediction is based on the analysis o f an optimal interval o f 4 months. In 

other words, it is due to the fact that the CSVs used for perturbation are optimized for a four 

month period (i.e. from June to September each year).

To investigate the significance on a larger sample size, we also perform 30-year forecasts 

(CSV30p) from 1980 to 2009 using the CSVs extracted from the 1030 experiment. This 

forecast is compared against 1030 control forecast and RMSE is shown in Figure 4.15b. The 

bootstrap methodology is repeated for 1030 forecasts, the same as for the 10-year forecasts. 

The improvement in RMSE for lead time 3 and 4 is significant in this case which increase 

our confidence in the reliability of RMSE results found for 10-year forecasts (Figure 4.15a).
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4.6 Summary and Conclusion

In this chapter we applied a recently developed technique o f climatologically relevant 

Singular Vector (CSV) to examine the error growth of OLR prediction over South Asian 

Monsoon (SAM) region, at monthly time scales using both CAM4 and the CCSM4 model. 

Different perturbation domains and optimal growth intervals are chosen to identify the 

perturbation structures most favorable for the error growth o f SAM prediction. The CSVs are 

computed using both uncoupled and coupled models to investigate the role of coupling in the 

error growth of SAM prediction. The robustness of CSVs is demonstrated through the 

analysis of sensitivity experiments. The CSVs over Indian Ocean are extracted to generate 

SAM ensemble forecasts.

It is seen that the CSV resembles a dipole-like structure over the Indian Oceans and the 

ENSO-like pattern over the Pacific Ocean. The magnitude o f error growth (singular value) is 

different over the Indian Ocean and over the Pacific Ocean. When the CSVs are extracted 

over the Indian Ocean, their growth rates are found to be more consistent with the increase of 

lead time and generally larger than the counterparts over the Pacific Ocean. Different 

parameters such as the number of the EOF modes used for initial perturbation and the 

number o f ensemble members are tested to evaluate CSV robustness over the Indian Ocean.

Ensemble forecasts constructed using negative and positive CSVs over the Indian Ocean are 

compared with forecasts using the Time Lag Ensemble (TLE) method and the single control 

forecast for the period o f 10 years from 2000 to 2009. It is seen that the ensemble forecast 

generated by CSV perturbations has a more reliable ensemble mean compared to both the 

TLE mean and the control forecast, and its RMSE is found significantly better than TLE and
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control forecast at lead times beyond 2 months. To explore the consistency and robustness of 

the hindcast results, we also extended the hindcast to the period o f 30 years from 1980-2009, 

and obtained similar conclusions, namely that, the ensemble prediction by the CSV is better 

than that by TLE and the control forecast, further confirming the merits of the CSV method 

for SAM prediction.

While this study facilitates the investigation of the SAM optimal error growth by using the 

CSV method, some cautions should be mentioned. First, the main model used in this study is 

an atmospheric general model (CAM4), which lacks some key dynamics related to the air-sea 

coupling. Limited validation is conducted using the coupled model (CCSM4) to conduct the 

analysis of error dynamics using the CSV method. Nevertheless this work seems to be the 

first to explore the optimal error growth o f SAM seasonal prediction, and the results reported 

here offer valuable insight to SAM predictability and have practical significance for 

ensemble prediction. These findings have implications for the SAM seasonal forecast in both 

the construction of the ensemble forecast system and the detection of key oceanic areas that 

impact SAM forecast, where the uncertainties can be reduced by adaptive observations and 

data assimilation.
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Table 4.1: List o f experiments used for CSV analysis including detail o f perturbation domain, 

number of perturbation EOFs, number o f ensembles and forecast years.

Exp. Name Description Perturbation
Domain

Time
Span

Initial Conditions (IC) No of 
EOFs 
used

Ensemble 
Members 
for each 

EOF

1030 30 years perturb 
run using EOFs 
as perturbations

Indian Ocean 1980-
2009

Control run IC created 
with prescribed SST

3 10

IOIO 10 years perturb 
run using EOFs 
as perturbations

Indian Ocean 2000-
2009

Observed IC from 
NCAR’s DART system

3 and 
10

10 and 20

PO10 10 years perturb 
run using EOFs 
as perturbations

Pacific Ocean 2000-
2009

Observed IC from 
NCAR’s DART system

3 10

IOCCSM4 4 years coupled 
run using EOFs 
as perturbations

Indian Ocean 2000, 
2004, 

2008 and 
2009

Observed IC from 
NCAR’s DART system 
+ 100 Year control run 

SST

3 10

TLE Time Lag 
Ensemble 
forecast

“ 2000-
2009

6 hours lag observed IC 
from NCAR’s DART 

system

“ 6

CSVp Ensemble 
forecast using 
+ve CSV as 
perturbations

Indian Ocean 2000-
2009

Observed IC from 
NCAR’s DART system

10

CSVn Ensemble 
forecast using -  

ve CSV as 
perturbations

Indian Ocean 2000-
2009

Observed IC from 
NCAR’s DART system

10

CSV30p Ensemble 
forecast using 
+ve CSV as 
perturbations

Indian Ocean 1980-
2009

Control run IC created 
with prescribed SST

10

Control
Forecast

Ensemble 
forecast without 

CSV perturbation

2000- 
2009 and 

1980- 
2009

Observed IC from 
NCAR’s DART system

10

All experiments start from Jun 1st of every year with lead time of 4 months (June, July, August and September, 
JJAS). In CAM4 experiments, persistence SST is used as boundary conditions (BC) whereas in CCSM4, SST is used 
from the multiyear year control run of ocean model.
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Figure 4.1: First three leading correlation EOFs patterns o f the June SST over (a) Indian

Ocean and (b) Pacific Ocean. These patterns are calculated from monthly observed SST for

time period 1980 to 2009, and are added as perturbation in the instantaneous initial states of

persistent SST.
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Figure 4.2: SST anomalies for May of each forecast year. Each anomaly pattern is calculated 

based on the mean SST climatology of 1980-2009 and is kept persistent throughout the 

forecast. Units are in °C.
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Figure 4.3: Mean climatology of June, July, August and September for Outgoing Longwave 

Radiation (OLR). NCEP OLR is shown in left column and CAM4 control run is in right 

column. Mean is calculated over the period 1980 to 2009. The shading corresponds to OLR 

values in W/m2.
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C8VU
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Figure 4.4: The optimal leading Climatology relevant Singular Vectors (CSVs) o f SST and 

corresponding OLR final patterns (FPs) o f  optimized for 4 months (lead time 3) over the 

Indian Ocean domain. Each individual CSV and FP is shown starting from year 2000 to 2009. 

The SST units are °C and OLR is in W/m2
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Figure 4.5: The first leading EOF patterns of the CSVs (left) and FPs (right) computed over 

10 individual CSV patterns for all the 4 lead times. CSVs are extracted over Indian Ocean. 

The SST units are in °C and OLR is in W/m2.
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Figure 4.6: Same as Figure 4.5 but for CSVs calculated over Pacific Ocean and 

corresponding FPs over SAM region. The SST units are in °C and OLR is in W/m2.
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Figure 4.7: Same as Figure 4.6 but for CSV calculated over combined Indian-Pacific Ocean. 

Only FPs are shown here.
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Figure 4.8: Annual variation o f singular values averaged over all the lead times for (a) Indian 

Ocean (b) Pacific Ocean and (c) 1030 experiments, (d) The lead time variation o f singular 

values over all the three cases (see text for detail).
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Figure 4.9: Same as Figure 4.5 but for CSVs and FPs calculated over Indian Ocean using 

1030 experiment. 30 years CSVs and FPs are used for EOF analysis. The initial conditions 

for 1030 experiment are generated using CAM4 prescribed SST run.
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Figure 4.10: The spatial correlation for (a) Indian Ocean, (b) Pacific Ocean and (c) 1030 

experiments. It is computed between the first EOF mode (obtained by all CSVs) and each 

individual CSV pattern, same as in Tang and Deng (2011).
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Figure 4.11: (Spatial) The optimal leading SST CSVs and OLR FPs for lead time 0, 1, 2 and

3 obtained using CCSM4 model. The domain o f perturbation is Indian Ocean. The SST units 

are °C and OLR is in W/m2. (Line) Lead time variation of CCSM4 singular values over 

Indian Ocean.
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Figure 4.12: Spatial patterns o f the leading CSV (left column) based on the increasing 

number of EOFs used in the perturbation. 10 leading SST correlation EOFs are used by 

increasing EOFs from 3 to 10 in each CSV and FPs calculation. The optimization time is 4 

months. Right column shows associated FPs. The SST units are in °C and OLR is in W/m2.
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Figure 4.13: The convergence of the leading singular values with increasing number of 

ensemble members, optimized for 4 month time interval. Each color line represent individual 

year. In each year, 20 singular values are calculated by increasing the ensemble size from 1 

to 20 in the CSV method.
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Figure 4.14: Leading EOF of OLR FPs, at lead time 3, (a) calculated using CSV as 

perturbation and (b) estimated by applying linear propagator R to CSV i.e. by linear 

approximation. For (a), the difference of perturbed and control forecast is calculated each 

year and leading EOF is extracted using all the differences. In (b), EOF pattern is calculated 

using estimated FPs from linear approximation for all the 10 years (2000-2009).
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Figure 4.15: Root mean square error (RMSE) of the SAM ensemble forecast generated using 

CSV perturbation, (a) RMSE calculated over 10 years (2000-2009 using observed initial 

conditions) whereas in (b) RMSE is for 30 years forecast (1980-2009 using CAM4 control 

initial conditions). Error bar is drawn using bootstrap method.
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Chapter 5 

Summary and Discussion

5.1 Thesis Summary

This thesis investigates some important issues related to South Asian Monsoon (SAM) 

simulation and its seasonal predictability using comprehensive climate models. A number of 

findings and conclusions are obtained through detailed analysis o f model experiments and 

simulation outputs, which are summarized below.

The different features of the SAM precipitation in the simulations o f NCAR's uncoupled 

(CAM4/5) and coupled (CCSM4) climate models are discussed in Chapter 2. The 

comparison of simulations is performed against observations to identify strengths and 

discrepancies in these models. The mean climatology of the SAM, its interannual variability 

and air-sea interactions are evaluated using different measures. The impact of SST biases on 

the SAM simulation and the importance o f air-sea coupling are also explored in this chapter.

The results reveal numerous key aspects of CAM4 and CCSM4 in simulating SAM 

precipitation. Compared to the versions previous to CAM4 and CCSM4, improvements in 

eliminating many regional biases are seen in both models. The spatial pattern and the 

seasonal cycle of monsoon precipitation is fairly well reproduced in the simulations along 

with the monsoon onset between May and June, the high precipitation during June-August 

and slow withdrawal during September-October. The large northward shift of the ITCZ from 

January to July is also well simulated. A pronounced improvement in precipitation 

simulation, such as the regional bias reduction over complex terrain, is seen when the CAM4
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resolution is increased. The improved SAM monsoon is seen in CCSM4 simulations with the 

reduction of many biases particularly over the Arabian Peninsula and the western coast o f 

India. The period o f ENSO is found to be more realistic in CCSM4 than in the previous 

version (e.g. CCSM3).

Along with improvements, the systematic errors o f both models are also identified. 

Inconsistencies in the oscillatory period and amplitude of monsoon interannual variability are 

seen in CAM4 simulations. The bias in the CAM4 seasonal mean climatology results in 

excessive precipitation over the Arabian Sea and over the Western Ghats of India and 

reduced precipitation over the eastern Indian Ocean extending into the Bay of Bengal. In 

CAM4, the East Asian summer monsoon precipitation is simulated better than the SAM 

precipitation.

The interrupted northward progression and delayed onset of the monsoon over the SAM 

region is seen in the CCSM4 simulation including the double ITCZ problem that was also 

present in the previous versions of the CCSM model (CCSM3). A systematic cold SST bias 

over the tropical Pacific Ocean is revealed in simulations. Significant cold biases over the 

equatorial Pacific Ocean are found in CCSM4, particularly in winter and early summer.

The importance of air-sea coupling is investigated by forcing CAM4 with coupled model 

SST which revealed that the local air-sea coupling over the SAM region acts to modulate the 

SAM summer rainfall activity. Further, it is seen that along with air-sea interaction, SST bias 

in the CCSM4 model plays an important role in modulating the variability and magnitude o f 

SAM precipitation. The influence of the coupled model SST bias in the northern Indian
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Ocean on SAM precipitation is investigated, with a conclusion that the reduction in excessive 

SAM rainfall in CCSM4 simulation is mainly due to a cold SST bias in the Arabian Sea.

Chapter 3 focuses on a detailed investigation of ENSO-SAM relationships in CAM4 and 

CCSM4, attempting to identify the strength and discrepancies o f these models in preserving 

different types of ENSO-SAM relationships. The analyses in this chapter are performed on 

the basis of a recent classification scheme of the ENSO-SAM relationships by Wu et al, 

(2012). They have identified three different types o f ENSO influences on the SAM using 

observations (DJF-only, JJAS-only and DJF&JJAS). We have extended their analysis to our 

simulation results, and further explored the physical understanding of particular types o f 

ENSO influence on SAM using sensitivity experiments.

Using the composite analysis for model simulations and observations, the performance of 

CAM4 and CCSM4 is evaluated for the ENSO-SAM relationship. It is seen that the CAM4 

simulation in DJF-only type is better than CCSM4, and can reproduce a realistic anomalous 

rainfall over the east Pacific reasonably well along with some biases over the western Pacific 

Ocean and Maritime continent. In contrast, the CCSM4 showed large systematic errors 

including significant rainfall anomaly biases in the Indian Ocean from the preceding winter 

to the early spring, probably due to the errors in SST simulation. In DJF-only years, the 

CAM4 performed better than CCSM4.

For JJAS-only type, the CAM4 showed significant disagreement for SAM rainfall anomalies 

as compared to observations and CCSM4 simulation. It is found that ENSO induced warming 

in northern Indian Ocean via atmospheric circulation is absent in CAM4 simulation o f the 

JJAS-only type, probably due to the lack of air-sea coupling. The CCSM4 simulation has

145



S Islam: Ensemble Simulation and Forecasting of South Asian Monsoon

shown strong convergence over the SAM region, intensifying the anomalous SAM. The 

CCSM4 results are found to be more realistic than CAM4 as compared with observation.

In the DJF&JJAS type, realistic anomalous rainfall is reproduced by CAM4 as compared to 

CCSM4 which has a very weak simulation o f rainfall anomalies. Compared to the other two 

types, the CAM4 has the better simulation of the ENSO-SAM relationship in the DJF&JJAS 

type, including a more realistic simulation in moisture content and thickness difference.

The role of the Indian Ocean in controlling the DJF&JJAS type ENSO-SAM teleconnection 

is further investigated by CAM4 sensitivity experiments. It is found that in the absence of 

Indian Ocean SST anomalies, the anomalous SAM summer rainfall is suppressed in the 

DJF&JJAS type, suggesting the importance of Indian Ocean SST in modulating the east 

equatorial Pacific SST and SAM interaction.

In Chapter 4, both the CAM4 and CCSM4 models are used to implement a recently 

developed technique of climatologically relevant Singular Vector (CSV) to examine the error 

growth of OLR prediction over SAM region. Both the Indian and Pacific Oceans are used as 

perturbation domains and different optimal growth intervals are chosen to identify the 

perturbation structures most favorable for the error growth of SAM prediction. The CSVs 

and corresponding final patterns (FP) are calculated for both uncoupled and coupled 

simulations. The robustness o f CSVs is confirmed by sensitivity experiments. Different 

parameters such as the number of the EOF modes used for initial perturbation and the 

number o f ensemble members are tested in these sensitivity experiments. The CSVs over the 

Indian Ocean are used to perform SAM ensemble forecasts.
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It is seen that the magnitude of error growth (singular value) is different over the Indian 

Ocean and over the Pacific Ocean. The growth rates over the Indian Ocean are found to be 

more consistent with the increase of lead time and generally larger than the growth rates over 

the Pacific Ocean. The CSVs are found to be insensitive to initial conditions whereas FPs are 

much different from case to case.

The optimized CSVs over the Indian Ocean are further used to construct a SAM ensemble 

forecast. The CSV-based ensemble forecast is compared with that by Time Lag Ensemble 

(TLE) and the single control forecast for the period from 2000-2009. A more realistic 

ensemble mean is obtained in the CSV-based ensemble forecast as compared to TLE and the 

control forecast. There is also a significantly lower RMSE in the CSV ensemble forecast than 

in other methods at lead time beyond 2 months. The hindcast is also extended to the period of 

30 years, from 1980-2009, further confirming the merits of the CSV ensemble method for 

SAM prediction.

5.2 Discussion

The simulation o f South Asian summer monsoon by models depends mainly on how 

realistically they simulate the mean state and variability o f the SAM, and how well they 

represent the monsoon internal dynamics and air-sea interactions. In general, modeling SAM 

fluctuations depends mainly on understanding the fundamental processes of SAM, model 

parameterization schemes and the methods used for numerical implementation of these 

processes.

The NCAR climate modeling system, including CAM4 and CCSM4, has been widely used to 

improve our capability in simulating and predicting climate, and made significant progress in
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various aspects. However biases in these models can adversely affect the SAM simulation, 

particularly in the region where the ENSO-monsoon relationship is important. Thus, further 

efforts are required in model development, including improving model physics and model 

resolution as well as coupling processes, particularly over the complex SAM topography. 

The reliability o f current coupled models, due to their SST biases, is not at a level where the 

local air-sea feedbacks can be used to improve the seasonal predictability o f SAM.

In case of the seasonal prediction, the skill of comprehensive climate models may be 

increased up to the theoretical limit of predictability inherent in the nonlinear and stochastic 

processes o f climate system. Since there are uncertainties in initial and boundary conditions, 

a single forecast is of limited value. Instead, an ensemble of forecasts is necessary to capture 

the most likely range o f forecast states that are expected to arise given the uncertainties in the 

initial and boundary conditions. The methods used to sample the initial uncertainty are 

crucial and can be achieved by using the advanced ensemble construction methods such as 

the one discussed in this thesis. The challenging issue is to design and implement a reliable 

ensemble forecast strategy that should include the major uncertainties of forecast initial 

states.

The work reported in this thesis is subject to some cautions. For example, the perturbation 

growth method used in this study can be significantly influenced by the model used in its 

implementation. The main implementation model is an atmospheric general circulation 

model (CAM4), which lacks coupled air-sea dynamics and has systematic biases in SAM 

simulation. The small sample size used in perturbation theory analysis may limit the 

generality and robustness o f results. Nevertheless, this work has theoretical significance and 

practical importance in SAM simulation and prediction. For example, the perturbation
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growth theory presented in this research is to our knowledge the first to explore the optimal 

error growth of SAM seasonal prediction. This research offers a valuable insight on SAM 

predictability and proposes a practical method in constructing optimal SAM ensemble 

predictions.
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