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Abstract

Arctic marine mammals are exposed to numerous environmental contaminants and some 

of these compounds are known to damage mammalian nervous systems. Three methods 

were used to assess neurotoxicological risk o f methylmercury (MeHg) exposure for 

beluga whales (Delphinapterus leucas) in the eastern Beaufort Sea population: 

characterization of mercury (Hg) accumulation and speciation in brain tissue, 

neurochemical and molecular biomarkers, and behavioural observations. To conduct this 

research, I worked closely with the communities o f Tuktoyaktuk, NT and Inuvik, NT to 

conduct three field-sampling seasons on Hendrickson Island, NT, which is a traditional 

beluga-harvesting site used by Inuvialuit. Community members participated in this 

project as mentoring students, mentors, interviewees, and research assistants.

Total Hg concentrations (median; mg kg'1 wet weight, ww) were 2.34 (0.06 to 22.6, 81) 

(range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe 1.84 (0.05 to 16.9, 83) 

in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain 

stem. The concentrations of MeHg ranged from 0.03 to 1.05 mg kg '1 ww and labile 

inorganic Hg (iHg) ranged from below detection limit to 1.59 mg kg '1 ww. Molar 

concentrations of selenium (Sex) consistently exceeded Hgx in the five brain regions 

analyzed. Harvesters (n=l 1) observed differences in evasive strategies used by beluga 

whales during the hunt, which varied with the concentration of Hgj analyzed in brain 

tissue. At molecular and/or neurochemical levels, components of the dopaminergic, 

cholinergic, GABAergic and glutamatergic signaling pathways appeared to be sensitive 

to MeHg exposure. Furthermore, monoamine oxidase activity and muscarinic 

acetylcholine receptor binding were negatively associated with Hgr to Ser molar ratios {p



< 0.05), and mRNA expression for mAChr ml was positively associated with Hgx to Sex 

ratio ip < 0.05).

The weight o f evidence based on the outcomes from these studies suggests that MeHg 

exposure may be o f toxicological concern for beluga whales from the Eastern Beaufort 

Sea population. The implications o f MeHg-exposure for beluga whales from the eastern 

Beaufort Sea population at both physiological and population levels are still unclear.



Table of Contents

Approval Page.......................................................................................................................... ii

Abstract.................................................................................................................................... iii

Table of Contents..................................................................................................................... v

List of Tables........................................................................................................................... xi

List of Figures....................................................................................................................... xiii

Glossary................................................................................................................................ xvi

Acknowledgements.............................................................................................................. xvii

Dedication............................................................................................................................ xviii

Chapter 1. Introduction.........................................................................................................19

Research Aim and Objectives.............................................................................................. 23

Thesis structure and contributions...................................................................................... 24

Structure.............................................................................................................................24

Contribution of Chapters.................................................................................................... 25

Chapter 2. Literature Review.............................................................................................. 27

1. Beluga Whales...................................................................................................................27

l.a Background...................................................................................................................27

l.b Harvesting....................................................................................................................28

l.c Beluga management in Canada..................................................................................... 29

1.d Traditional ecological knowledge................................................................................. 30

1 .e Beluga whale research in the ISR................................................................................. 31

2. Arctic Contaminants........................................................................................................ 33

2.a Background...................................................................................................................33
v



2.b Beluga whale exposure to mercury and organic contaminants........................................34

2.c Policies.........................................................................................................................36

3. Mercury toxicokinetics and toxicity................................................................................. 37

3.a Background...................................................................................................................37

3.b Interaction of MeHg and iHg with neurochemical signaling pathways......................... 41

4. Assessing potential toxicity...............................................................................................45

4.a Characterizing the risk of toxicity in wildlife................................................................45

4 b. Methods.......................................................................................................................46

5. Responsibility and accountability in northern research.................................................50

Chapter 3. Mercury distribution and speciation in different brain regions of beluga

whales (Delphinapterus leucas) ............................................................................................ 52

Names and Affiliations of Authors:......................................................................................52

Abstract................................................................................................................................. 53

Introduction.......................................................................................................................... 54

Material and methods...........................................................................................................56

Sample Collection...............................................................................................................56

Sample analysis..................................................................................................................57

Data analysis......................................................................................................................61

Results and Discussion..........................................................................................................62

Mercury concentration and distribution.............................................................................. 62

Hg and age.........................................................................................................................64

Hg speciation......................................................................................................................65

Co-accumulation of HgT and SeT........................................................................................ 67

Tissue distribution of Hg.....................................................................................................69

4. Conclusions........................................................................................................................70

5. Acknowledgements............................................................................................................78



Bridge....................................................................................................................................... 79

Chapter 4. Mercury and selenium exposure is associated with molecular and

neurochemical biomarkers of Arctic beluga whales (Delphinapterus leucas).............80

Names and Affiliations of Authors:..................................................................................... 80

Abstract................................................................................................................................. 81

Introduction.......................................................................................................................... 82

Methods................................................................................................................................. 85

Sample collection...............................................................................................................85

Membrane preparation........................................................................................................86

Receptor binding assays......................................................................................................87

Expression of mRNA..........................................................................................................87

Data Analysis.....................................................................................................................90

Results................................................................................................................................... 90

Discussion............................................................................................................................ 108

GABAergic signaling pathway..........................................................................................108

Glutamatergic signaling pathway......................................................................................110

Messenger RNA expression and neurochemistry.............................................................. 111

Potential detoxification of mercury by selenium............................................................... 112

Acknowledgements.............................................................................................................. 113

Chapter 5. Methylmercury and selenium exposure were associated with biomarkers 

of the cholinergic and dopaminergic signaling pathways in Arctic beluga whales

(Delphinapterus leucas)........................................................................................................114

Names and Affiliations of Authors:....................................................................................114

Abstract............................................................................................................................... 115

Introduction........................................................................................................................ 117

vii



Methods............................................................................................................................... 120

Sample collection............................................................................................................. 120

Mercury and Selenium analyses........................................................................................120

Receptor binding assays.................................................................................................... 121

Enzyme activity................................................................................................................ 122

Expression of mRNA........................................................................................................ 122

Data Analysis................................................................................................................... 124

Results................................................................................................................................. 124

Cholinergic signaling pathway..........................................................................................125

Dopaminergic signaling pathway......................................................................................127

Discussion............................................................................................................................ 137

Cholinergic signaling pathway..........................................................................................138

Dopaminergic signaling pathway......................................................................................140

Acknowledgements..............................................................................................................144

B ridge.....................................................................................................................................145

Chapter 6. Inuvialuit observations of beluga whale (Delphinapterus leucas) link

mercury exposure and behaviour during harvesting activities................................... 146

Names and Affiliations of Authors:....................................................................................146

Abstract............................................................................................................................... 147

Methods............................................................................................................................... 151

Study area, people and context..........................................................................................151

Sampling.......................................................................................................................... 153

Questionnaire.................................................................................................................... 153

Respondents..................................................................................................................... 154

Data analysis.................................................................................................................... 154



Results..................................................................................................................................155

Mercury concentrations..................................................................................................... 155

Response rate.................................................................................................................... 156

General observations......................................................................................................... 156

Time to harpoon............................................................................................................... 157

Evasive strategies............................................................................................................. 157

Weather............................................................................................................................ 158

Discussion............................................................................................................................ 166

Integration of multiple lines of evidence........................................................................... 166

Behavioural observations as complementary line of evidence...........................................167

Bridging TEK, local observations and science.................................................................. 169

Limitations....................................................................................................................... 171

Conclusions......................................................................................................................... 173

Chapter 7. Conclusions and Recommendations.............................................................177

Objectives and Significance................................................................................................177

The toxicological risk of MeHg exposure.......................................................................... 179

Mercury exposure thresholds............................................................................................179

Neurochemical and molecular variation associated with mercury exposure.......................180

Evasive behaviour during hunt and mercury exposure...................................................... 182

Limitations....................................................................................................................... 183

Community-based research approach............................................................................... 184

Communication................................................................................................................ 185

Conclusions and future research........................................................................................186

References........................................................................................................................... 188

Appendix 1. Scientific Research Licenses........................................................................204

ix



Appendix 2. Ethics Approval............................................................................................. 207

Appendix 3. Harvester questionnaire/informed consent form....................................208

Appendix 4. Authorship Statements.................................................................................211

Appendix 5. Job application and contract for mentoring students............................215

x



List of Tables

Chapter 2

Table 2.1 Overview of management structure for beluga whales (Delphinapterus

leucas) in Canada................................................................................................................30

Table 2.2 Neurochemical variation associated with MeHg exposure in select 

mammalian and avian species........................................................................................... 40

Chapter 3

Table 3.1 Concentrations (median and range, ww) of total Hg, Se and molar ratio o f 

Hg:Se in beluga whales sampled during the summer harvests in the western Canadian

Arctic in 2006, 2008 and 2010.......................................................................................... 75

Table 3.2 The concentrations o f Hgr, and percent MeHg reported for brain tissue from

different mammalian wildlife species............................................................................... 76

Table 3.3 Concentrations (median, range) of labile Hg species (MeHgx and iH g ia b i ie )  

and iHg species complexed to proteins or selenium in the cerebellum, temporal lobe, 

frontal lobe and spinal cord of fetal, juvenile and adult beluga whales (« = 22) 

sampled on Hendrickson Island in 2008.........................................................................  77

Chapter 4

Table 4.1 Sequences of primers and probes used for real time PCR............................. 98

Table 4.2 Summary of backwards stepwise linear multiple regression analysis for the 

cerebellum and temporal cortex with GABAa receptor binding to [3H]-FNP, and 

mRNA expression (fold change) for GABAa ol2 and a4 as the three outcome variables

tested.....................................................................................................................................99

Table 4.3 Summary of backwards stepwise linear multiple regression analysis for the 

cerebellum and temporal cortex with NMDA receptor binding to [3H]-801, and 

mRNA expression (fold change) for NMDA subunit 2b as the three outcome variables 

tested...................................................................................................................................100



Chapter 5

Table 5.1 Sequences of primers and probes used for real time PCR.......................... 130

Table 5.2 Descriptive statistics are presented for total mercury (Hg), methylmercury 

(MeHg), labile inorganic mercury (iHgiabiie) and selenium (Set) concentrations and 

stoichiometric ratio of Hgj to Sex in the cerebellum and temporal cortex from beluga

whales sampled at Hendrickson Island, NT, Canada in 2008 and 2010...................... 131

Table 5.3 Results from backward stepwise multiple regressions conducted for both 

brain regions, with binding o f [3H]-QNB to the muscarinic acetylcholine receptor 

(mAChR) and mRNA expression of mAChR subtype ml as the outcome variables.

.............................................................................................................................................132

Table 5.4 Results from backward stepwise multiple regressions conducted for both 

brain regions, with total monoamine oxidase (MAO) activity and mRNA expression of

MAO A as the outcome variables..................................................................................133

C hapter 6

Table 6.1 Observations o f beluga whale behaviour during harvesting activities (n =

11)......................................................................................................................................165

Chapter 7

Table 7.1 Significant predictors (total mercury, Hg; methylmercury, MeHg; labile 

inorganic H g ,  i H g ia b i i e )  of neurochemical and molecular variation in brain tissue from 

harvested beluga whales....................................................................................................... 182



List of Figures

Chapter 3

Figure 3.1 Map of the Inuvialuit Settlement Region. Sampling sites (Hendrickson 

Island and East Whitefish Station) and summering habitat of the Eastern Beaufort Sea

beluga whale population (Amundsen Gulf and southern Beaufort Sea)........................71

Figure 3.2 Speciation of Hg and Se. Reverse phase HPLC-ICP-MS chromatograms 

showing the peaks of Hg (in black) and Se (in red) species in temporal lobe samples of 

ten beluga whales (A-J) from the Western Canadian Arctic, 2008. U1 and U2 denote

two unidentified Hg and Se peaks, respectively.............................................................72

Figure 3.3 Relationship between age and cerebellar HgT concentration. Positive 

relationship between age and cerebellar HgT concentration in male (square) and female

beluga whales (filled circle) (n = 76)...............................................................................73

Figure 3.4 The non-linear relationship (exponential one phase decay) between percent 

MeHg and Hgr concentrations. The percent MeHg decreased exponentially with 

increasing Hgj in the spinal cord (n = 19), frontal lobe (n = 19), cerebellum (n = 22) 

and temporal lobe (n = 22) in brain samples collected from belugas (fetus, juvenile 

and adult whales) in 2008.................................................................................................. 74

Chapter 4

Figure 4.1 Correlations between GABAa receptor binding and mercury concentration 

(A), labile inorganic mercury concentration (B), selenium concentration (C), and 

stoichiometric ratio of mercury to selenium (D) in the cerebellar cortex of beluga

whales {Delphinapterus leucas)...................................................................................... 101

Figure 4.2 Correlations between mRNA expression ofGABAA subunit a2 (fold 

change) and total mercury (A) concentration (mg kg"1 dw) in the cerebellum (circle, o) 

and temporal cortex (diamond, ♦ ) .  Correlations between mRNA expression of 

GABAa subunit a2 and labile mercury concentration (B), methylmercury 

concentration (C) and stoichiometric ratio of mercury to selenium (D) in the temporal 

cortex (diamond, ♦ ) .  Correlations between mRNA expression of GABAa subunit a2



and selenium concentration in the cerebellum (circle, o) and temporal cortex

(diamond, ♦ ) ...................................................................................................................103

Figure 4.3 Correlations between mRNA expression for target genes and 

corresponding neurochemical expression for GABAergic signaling pathway (A: 

GABAa-R a2  and GABA-R; B: GABAa-R a4 and GABA-R) in the cerebellar cortex

(unfilled circle, o) o f beluga whales.............................................................................. 106

Figure 4.4 Correlations between NMDA receptor binding to 3H MK-801 and Hg (A) 

and selenium (B) concentrations (mg kg'1 dw) in the temporal cortex o f beluga whales 

(Delphinapterus leucas)..................................................................................................107

Chapter 5

Figure 5.1 The correlation between muscarinic acetylcholine receptor binding to [3H]- 

QNB and estimated age, based on tooth analysis (one growth layer per year), in the

temporal cortex of beluga whales (Delphinapterus leucas)........................................ 134

Figure 5.2 The correlation between total monoamine oxidase activity and estimated 

age, based on tooth analysis (one growth layer per year), in the temporal cortex of

beluga whales (Delphinapterus leucas)........................................................................135

Figure 5.3 The correlation between mRNA expression (fold change) and selenium 

concentration in the cerebellum of beluga whales (Delphinapterus leucas). The 

expression of mRNA was normalized to the internal control gene S9 and fold changes 

were calculated based on the lowest-exposed whales (n = 3 ) .....................................136

Chapter 6

Figure 6.1 This map depicts the location of Hendrickson Island, a traditional beluga- 

harvesting site in the Inuvialuit Settlement Region, NT (adapted from Wesche et al.,

2011).................................................................................................................................160

Figure 6.2 Beluga hunting experience (years) o f the 11 participants o f this study. 

Harvesters were counted each time they hunted a beluga and responded to the 

questionnaire...................................................................................................................  161

xiv



Figure 6.3 Harvesters’ observation of normal (black column) and unusual behaviour 

(gray column) in whales during the harvest (w = 11), based on mercury (Hg) exposure

(above or below the median Hg concentration measured)............................................ 162

Figure 6.4 Variables that may have affected time to harpoon and harvesters 

observations (black column = less time to harpoon; gray column = more or the same

time to harpoon)................................................................................................................ 163

Figure 6.5 Observations of evasive strategies (« = 7) demonstrated during beluga 

harvest and related mercury (Hg) exposure (more or less than median Hg)..............164

xv



Glossary
AMAP: Arctic Monitoring and Assessment Program 
CHL: chlordane;
CBz: chlorobenzene
DDT: dichlorodiphenyltrichloroethane
dw: dry weight
EBS: eastern Beaufort Sea
FJMC: Fisheries Joint Management Committee
FNP: flunitrazepam
GABA: y-aminobutyric acid
HBCD: hexabromocyclododecane
HCH: hexachlorocyclohexane
Hg: mercury
iHg: inorganic Hg
ISR: Inuvialuit Settlement Region
OC: organic contaminant
mAChR: muscarinic acetylcholine receptor
MAO: monoamine oxidase
MeHg: methylmercury
MK-801: Dizocilpinehydrogen maleate
NCP: Northern Contaminants Program
nss: Not statistically significant
NMDA: N-methyl-D-aspartate
PAH: polycyclic aromatic hydrocarbon
PBDE: polybrominated diphenyl ether
PCB: polychlorinated biphenyl
PCDD: polychlorinated dibenzo-p-dioxin
PFC: perfluorinated compounds
PFCA: perfluorinated carboxylic acid
PFSA: perfluorinated sulfonic acid
POP: persistent organic pollutant
ww: wet weight
QNB: quinuclidinyl benzilate
Se: selenium
TEK: Traditional Ecological Knowledge 
TSK: Tradtional Scientific Knowledge



Acknowledgements

A heartfelt thank you to the community o f Tuktoyaktuk for sharing your knowledge 
about beluga whales with me. This project would not have been possible without the 
kindness, teachings and support provided by Frank and Nellie Pokiak and their family. 
Thank you Robin Felix, Ronald Felix, Eric Loring, Lisa Loseto, Eddie Lucas, Marie 
Noel, Jocelyn Noksana, Kayla Nuyaviak, Dale Panaktolok, Mikkel Panaktolok, Charles 
Pokiak, James Pokiak, Maureen Pokiak, Myma Pokiak, Rebecca Pokiak, Verna Pokiak, 
Kate Snow, Brandon Voudrach and Ryan Walker for making the sampling program and 
community visits enjoyable and successful.

I have greatly appreciated the opportunity to study with Dr. Laurie Chan and his UNBC 
research team. Laurie gave me the opportunity of a lifetime to study beluga whales in the 
Beaufort Sea with an amazing group of researchers and community members. I am 
grateful for Laurie’s guidance and support on this research journey. I am also very 
thankful for the support, friendship and guidance offered by Dr. Nil Basu and his students 
at the University o f Michigan. I appreciated the opportunity to collaborate with Drs. 
Feiyue Wang, Gary Stern and Marcos Lemes. I have benefitted from the feedback and 
support from my committee members: Drs. Andrea Gorrell, Stephen Raverty, Mark 
Shrimpton, and Gary Wilson.

My family has been incredibly supportive during my entire PhD journey- from the move 
to Prince George, BC from Montreal, QC, to many field seasons in the Inuvialuit 
Settlement Region, and the ups and downs that life has to offer. Thank you Julia and 
Colleen for many inspiring conversations about this project, Sebastian and Dave for your 
support and understanding, Joachim and Matthias for your encouragement and positivity, 
and my grandparents for your curiosity, love and prayers.

Living and learning in Prince George, British Columbia would not have been as fulfilling 
without the energy and dedication of the PGSO, PGCM, CNSC and the Sea to Sands 
Conservation Alliance. Thank you Maria for teaching me about balance and mindfulness 
through our many sessions together. Finally, thank you to all o f you who became my 
Prince George family and are working towards making this world a better place. I have 
appreciated your friendship and company on the adventures that have been plentiful in 
the last seven years.

Finally, this research would not have been possible without the generous financial 
support from Aboriginal Affairs and Northern Development Canada, BC Leadership 
Chair in Environmental and Aboriginal Health, Fisheries Joint Management Committee, 
Nasiwik Centre for Inuit Health and Changing Environments, the Natural Sciences and 
Engineering Research Council and University of Northern British Columbia.



Dedication

This thesis is dedicated to 

Alyssa, for your knowledge and friendship; 

Anthony, for your youthful energy; and 

My grandmothers, for your love, prayers and chocolate.



Chapter 1. Introduction

Contaminants are transported from southern latitudes to the Arctic via atmospheric and oceanic 

circulation, and river discharges (Braune et al., 2005). Heavy metals, organic contaminants 

(OCs), and radionuclides bioaccumulate in Arctic aquatic ecosystems (Atwell et al., 1998; Dietz 

et al., 2000; Loseto et al., 2008b; Mackey et al., 1996; Stern et al., 2005; Tomy et al., 2004). The 

far-reaching impacts of pollution were only recognized in the 1970s, when it was discovered that 

the Arctic was contaminated with organic pollutants (Barrie et al., 1992). Unlike most OCs, 

mercury (Hg) occurs naturally; however, anthropogenic activities are responsible for the release 

of the majority o f Hg into the environment (Nriagu and Pacyna, 1988). Marine mammals and 

humans are susceptible to accumulating contaminants such as persistent organic pollutants 

(POPs) and Hg due to their long life-spans and high trophic position (Chan et al., 1995; Dewailly 

et al., 1993; Hoekstra et al., 2003; Loseto et al., 2008b). Inuit continue to harvest marine 

mammal species including beluga whales (Delphinapterus leucas), narwhal (Monodon 

monoceros), polar bears (Ursus maritimus) and ringed seals (Pusa hispida), for food, 

employment, or both (Hovelsrud et al., 2008). Therefore, the accumulation o f persistent organic 

pollutants and heavy metals in the Canadian Arctic is an issue o f concern for both humans (Van 

Oostdam et al., 2005) and wildlife (Fisk et al., 2005).

Past research has shown that beluga whales accumulate higher levels of OCs and heavy metals 

than terrestrial mammals due to their trophic position and long life span (Dietz et al., 2000; 

Lockhart et al., 2005; Stern et al., 2005). Animal feeding trials have demonstrated that a number
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of these contaminants are also capable of disrupting components o f mammalian systems integral 

to animal health (Bimbaum and Tuomisto, 2000; Clarkson, 1997; Costa et al., 2007; Fisk et al., 

2005; Fournier et al., 2000; Lehmler et al., 2005; Mathieu et al., 1997). Contaminants in wildlife 

lead to increased exposure to toxins for consumers o f traditional foods (Van Oostdam et al.,

2005), but may also cause adverse impacts to animal health. The effects of contaminants on 

marine mammal health are poorly understood in part due to the challenges associated with 

correlating contaminant exposure to various adverse health outcomes in wild populations (Fisk et 

al., 2005). Recent studies detected levels of Hg in the brains of belugas in the western Arctic that 

exceed thresholds o f effect in other animal species (Lockhart et al., 2005), which suggests that 

mercury exposure could lead to adverse effects in beluga whales at current levels.

Mercury is neurotoxic and may affect brain function in highly-exposed animals (Clarkson,

1997). Mercury neurotoxicity could lead to loss of critical components of animal function 

required for thriving and surviving in the wild. For example, acute MeHg exposure in humans 

has been associated with negative impacts to the visual system and neuro-motor function, 

peripheral neuropathy, dysarthria, tremor, cerebellar ataxia, gait disturbance and audiological 

impairment (Council, 2000). Although lab-based studies are useful for addressing specific 

biochemical or physiological effects, field studies are essential for understanding the real-world 

effects of chronic exposure to multiple contaminants (Rhind, 2009). Bringing together the results 

from diverse studies is necessary for the action o f pollutants on multiple species and ecosystem 

function to be elucidated (Rhind, 2009). Neurochemical changes may represent early and 

reversible indicators of neurological harm because they occur prior to the onset o f overt
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functional or structural damage (Manzo et al., 1996; Manzo et al., 2001). Neurochemical 

biomarkers from diverse signaling pathways have been used to assess potential 

neurotoxicological risk o f MeHg exposure in terrestrial mammals, avian species and marine 

mammals; results have suggested that environmental exposure to MeHg was associated with 

neurochemical variation in diverse species (Basu et al., 2005a; Basu et al., 2006a; Basu et al., 

2005c; Basu et al., 2007b; Basu et al., 2007c; Basu et al., 2009; Hamilton et al., 2011; 

Rutkiewicz et al., 2010; Scheuhammer et al., 2008). Therefore, a neurochemical biomarker 

approach may provide valuable information about potential neurotoxicity in wildlife exposed to 

MeHg and other neurotoxins.

Inuvialuit harvest beluga whales for food in the western Canadian Arctic, and through 

collaboration with northern organizations and harvesters, researchers have collected high quality 

samples for monitoring and research. Inuvialuit have a strong interest in conservation of the 

environment; as Inuit Elder, Billy Day noted:

“The land, the animals, the waters, the whales, and the fish were very important to our 

ancestors and still are to us. Even during negotiations for our land claim-settlement, our 

elders told us that the land and waters had looked after them for centuries and would 

look after us for many more if  we looked after our environment” (Day, 2002). 

Therefore, the Fisheries Joint Management Committee (FJMC) was established under the 

Inuvialuit Final Agreement to provide advice on the administration o f the rights and obligations 

related to fish and marine mammals (Inuvialuit Final Agreement, 1987). Beluga whale research 

fits within one of the main objectives o f the FJMC’s beluga management plan “to provide for a
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harvest that generates the greatest net benefit to the Inuvialuit while ensuring the long-term 

sustainability of beluga in the Canadian Beaufort Sea” (FJMC, 2001). Aboriginal knowledge has 

been increasingly recognized for its contribution to co-management and environmental impact 

assessments (Usher, 2000). Furthermore, it is likely that scientific and local observations of 

environmental change could be brought together to identify new avenues for further exploration, 

compare observations from different scales and discuss potential mechanisms that explain both 

sets of observations (Huntington et al., 2004). Inuit knowledge about beluga whales is gained 

through observations made during harvesting activities and travel (Byers and Roberts, 1995; 

Mymrin et al., 1999). Recent studies have attempted to bridge traditional ecological knowledge 

(TEK) and traditional scientific knowledge (TSK) in Arctic ecological research (Gagnon and 

Berteaux, 2009; Gilchrist et al., 2005; Huntington et al., 2004); finding ways to bridge TEK and 

TSK could potentially further our understanding of beluga whale health in a changing 

environment.

My thesis research was conducted over six years, which included three sampling seasons, three 

community visits and one large community workshop. My thesis reflects a collaborative 

approach to beluga research; I was a member o f a comprehensive beluga-sampling team for the 

Hendrickson Island Beluga Study (HIBS) from 2008 to 2012. The HIBS was a multi-year 

research program, aimed at studying the risk of contaminants and assessing the health of 

harvested beluga whales. Samples were collected on Hendrickson Island from hunter-harvested 

beluga whales and the process of collecting samples from harvested whales gave me the 

opportunity to learn about a different culture and way of life, and taught me first-hand about the
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value placed on beluga whales by Inuvialuit. Although this thesis is focused on the assessment of 

neurotoxicologicla risk o f MeHg exposure for beluga whales, this work would not have been 

possible without learning extensively about the relationship between people and their 

environment in the Arctic, and the linkages between environmental and human health research. 

Navigating the social dimension o f Arctic research is extremely important because poor 

communication strategies regarding contaminants have resulted in fear, confusion and health 

impacts in the communities involved (Furgal et al., 2005). Given that researchers conducting 

studies in the Arctic are predominantly non-Inuit, in part due to the low high school completion 

rates among Inuit residing in the Arctic (Richards, 2008), they must learn to communicate 

effectively to ensure that research studies taking place in the Arctic are addressing community 

needs and responding to community concerns.

Research Aim and Objectives

The central nervous system is particularly sensitive to MeHg toxicity (Clarkson and Magos,

2006) and preliminary analyses of Hg in beluga brains suggested that recent exposure to MeHg 

might reach levels associated with toxicity in other animals (Lockhart et al., 2005). However, 

brain tissues samples are not routinely collected and analyzed in beluga whale biomonitoring 

programs to study Hg accumulation and potential toxicity. Therefore, the principle objective of 

this thesis was to investigate the potential risk o f neurotoxicity associated with Hg exposure in 

beluga whales harvested in the Mackenzie Delta Estuary of the Inuvialuit Settlement Region.

Consistent with the aim o f this research, four objectives were developed:
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1. to assess toxicological risk of Hg exposure in harvested beluga by comparing Hg 

concentrations and speciation to threshold levels of toxicity observed in mammals;

2. to determine the relationship between Hg concentration, speciation and stoichiometric 

relationship with selenium, to neurochemical and molecular biomarkers o f neurosignaling 

pathways;

3. to investigate the relationship between harvesters’ observations of beluga whale 

behaviour during harvesting and Hg exposure; and,

4. to assess the toxicological significance of Hg accumulation in beluga whales from the 

eastern Beaufort Sea population.

Thesis structure and contributions 

Structure

This thesis is made up o f four separate manuscripts that have been published or are in review for 

publication in peer-reviewed journals. The manuscripts were prepared with co-authors, whose 

contributions are outlined in the written statement (Appendix 4). Collaboration with co-authors 

has been particularly important for sample analysis, due to the diversity of methods used and 

tissue samples analyzed for the studies included in this thesis. Overall, collaboration with co

authors provided the opportunity for the scope and depth of analysis to be expanded for the 

research presented in this thesis.
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Contribution of Chapters

Chapter 1 provides the context for this research, outlines the goals and objectives, and presents 

the structure and contributions of the following five chapters.

Chapter 2 provides a review of the literature related to beluga whales, beluga whale research, Hg 

in the Arctic, and Hg toxicity. This chapter does not attempt to be an exhaustive review o f the 

literature, and instead strives to provide the context for the research studies presented in this 

thesis.

Chapter 3 presents the first manuscript, “Mercury distribution and speciation in different brain 

regions o f beluga whales (Delphinapterus leucasf, which is published in the journal Science o f  

the Total Environment (Ostertag et al., 2013). The article provides analytical data on the 

distribution and speciation o f Hg in five brain regions sampled from hunter-harvested beluga 

whales. Furthermore, the stoichiometric relationship between Hg and selenium (Se) was 

explored, and the predictability of mercury concentration in brain tissue based on Hg 

concentrations measured in more frequently sampled tissue (e.g. kidneys, liver, muktuk, muscle 

and blood).

Chapter 4 presents the second manuscript, “Mercury and selenium exposure is associated with 

molecular and neurochemical biomarkers in two brains regions of Arctic beluga whales 

(Delphinapterus leucas)”. In this manuscript, I assessed the relationship between Hg 

concentration, speciation and co-accumulation with Se, with variation of neurochemical and
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molecular components of the GABAergic and glutamatergic signaling pathways in beluga 

whales.

Chapter 5 presents the third manuscript, “Methylmercury and selenium exposure were associated 

with biomarkers of the cholinergic and dopaminergic signaling pathways in Arctic beluga whales 

(Delphinapterus leucas)”. In this manuscript, I assessed the relationship between Hg 

concentration, speciation and co-accumulation with Se, with variation o f neurochemical and 

molecular components of the cholinergic and dopaminergic signaling pathways.

Chapter 6 presents the fourth manuscript “Inuvialuit observations during harvesting activities 

linked mercury exposure to differences in beluga whale (Delphinapterus leucas) behaviour”. In 

this manuscript, I documented local observations o f beluga whale behaviour during harvesting 

activities, to assess whether differences in beluga whale behaviour were associated with mercury 

concentration.

Chapter 7 provides a summary of key findings from the four research papers, presents 

conclusions regarding the toxicological risk of Hg exposure for beluga whales from the eastern 

Beaufort Sea population, and discusses potential next steps for community-based monitoring in 

the I SR.
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Chapter 2. Literature Review

1. Beluga Whales 

l.a  Background

Beluga whales (Delpinapterus leucas) have a semi-circumpolar distribution with significant 

populations inhabiting the northern coasts o f Alaska, Canada, Greenland and Norway (Jefferson, 

2008). The main diet of beluga whales in the western Canadian Arctic is fish, squid and 

invertebrates (Loseto et al., 2009; Loseto et al., 2008a). Worldwide, the population of beluga 

whales exceeds 150 000, with summering populations concentrated in western Hudson Bay and 

eastern Beaufort Sea (Jefferson, 2008). The eastern Beaufort Sea (EBS) beluga stock migrates 

seasonally to the southeastern Beaufort Sea and Amundsen Gulf; they are larger and older than 

animals harvested from eastern Arctic beluga populations (Luque and Ferguson, 2010).

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) recognizes seven 

distinct populations of beluga whales in Canadian waters based on their summer distributions 

and genetic differences (COSEWIC, 2004). Population estimates of whales are based on aerial 

surveys followed by corrections for whales missed due to diving behaviour (O'Hammill et al., 

2004). In the east, the estimated population of the St. Lawrence population is 900-1000, the 

Ungava Bay population is too small to estimate and the eastern Hudson Bay population numbers 

around 2000 individuals but is declining rapidly. The western Hudson Bay population is a 

minimum of approximately 23 000 animals, the eastern High Arctic -  Baffin Bay population is 

estimated to be 20 000 animals, but it may be potentially two distinct populations: the west 

Greenland population numbering around 5000 belugas and the north Water population, which
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numbers approximately 15 000 belugas. The Cumberland Sound population is made up of 

approximately 1500 animals (may have increased since the 1980s), and a conservative estimate 

of the EBS population is 39 000 animals. Genetic techniques have been used to distinguish 

stocks o f belugas based on mitochondrial DNA; however, there is evidence that stocks mingle 

during their seasonal migrations and the summer distribution o f whales in Hudson Bay do not 

reflect distinct stocks (DFO, 2001). The ranges of some beluga populations are known to overlap 

and the distinction between eastern and western Hudson Bay stocks is disputed by Inuit in 

Nunavik (O'Hammill et al., 2004; Tyrrell, 2007).

l.b  Harvesting

Beluga whales are harvested for subsistence throughout their circumpolar range, excluding 

Svalbard. Commercial hunting of belugas in eastern Canada reduced their numbers and 

populations in the St. Lawrence Estuary and eastern Canadian Arctic, and many o f these stocks 

have not fully recovered (DFO, 2001; DFO, 2007). Hunting o f the High Arctic population in 

Greenland may be causing a significant decline in their population (Alvarez-Flores and Heide- 

Jorgensen, 2004). Commercial hunting is permitted in Greenland and the harvest rate has not 

declined, although the harvest has been regulated in recent years (Sejersen, 2001).

Based on the archeological record, beluga whales made up approximately half of the diet o f pre 

contact Inuit o f the Mackenzie Delta (Friesen and Arnold, 1995). Beluga hunting typically 

occurs in the month o f July, when beluga whales migrate through the warm waters o f the 

Mackenzie Delta Estuary (Harwood and Smith, 2002). Inuvialuit beluga hunters commonly hunt
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from 4.6 m long aluminum boats and harpoon the whale before killing it, to make retrieval easier 

(Harwood and Smith, 2002). Between 1990 and 1999, the total annual number o f landed beluga 

whales on the shores of the Beaufort Sea and Amundsen Coast was 111 (Harwood and Smith, 

2002). Beluga whales from this population are also harvested by residents of some coastal 

villages in Alaska (average 64 per year between 1995 and 2000) and possibly by residents of 

Chukotka, Russia (Harwood and Smith, 2002). Beluga whales travel through Kugmallit Bay in 

the Mackenzie River Estuary during their summer migrations (COSEWIC, 2004). Hunters from 

Tuktoyaktuk butcher beluga whales on Hendrickson Island following the hunt and generally 

return to Tuktoyaktuk immediately after butchering the whale to process the muktuk (skin and 

blubber) and mipku (dry meat).

l.c  Beluga management in Canada

Local, regional and federal organizations manage the marine mammal resources in the three 

Canadian Inuit land claim regions in which belugas are harvested (table 2.1). In the Inuvialuit 

Settlement Region, the Fisheries Joint Management Committee (FJMC) was established under 

the Inuvialuit Final Agreement, in which the DFO and Hunters and Trappers Committees co- 

manage the fisheries and beluga populations (FJMC, 2001). The beluga management plan was 

developed by the FJMC to ensure that Inuvialuit can continue to harvest beluga whales from the 

Canadian Beaufort Sea, while ensuring the long-term sustainability of beluga in the Canadian 

Beaufort Sea” (FJMC, 2001). The St. Lawrence Estuary Beluga population is currently listed as 

threatened under Canada’s Species at Risk Act; Fisheries and Oceans Canada has led the 

recovery strategy, and responsibility for the recovery o f this population is shared between the

29



DFO, and other jurisdictions and agencies (DFO, 2012).

Table 2.1 Overview of management structure for beluga whales {Delphinapterus leucas) in 
Canada.

Region Local Regional Federal International
Inuvialuit
Settlement

Region

Hunters and 
Trappers 

Committees

Fisheries Joint 
Management 
Committee

Department 
of Fisheries 
and Oceans

Alaska and 
Inuvialuit Beluga 

Whale Committee

Nunavut
Hunters and 

Trappers 
Associations

Nunavut Wildlife 
Management 

Board

Canada/Greenland 
Joint Commission 

on the Conservation 
and Management of 
Narwhal and Beluga

Nunavik

Hunting 
Trapping and 

Fishing 
Association

Nunavik Marine 
Region Wildlife 

Board N/A

Nunatsiavut
Hunters and 

Trappers 
Organization

Tomgat Joint 
Fisheries Board

l.d  Traditional ecological knowledge

In recent decades, there has been increasing recognition that Indigenous knowledge could 

contribute to governance processes such as co-management and environmental impact 

assessments (Usher, 2000). This recognition was one of the outcomes o f sustained advocacy, the 

negotiation of comprehensive land claims across the north, and the development of formal 

Environmental Impact Assessments and review processes, in addition to legal developments 

within the Supreme Court of Canada and lower court rulings (Usher, 2000). In northern Canada, 

Indigenous knowledge is recognized in the Northwest Territories as “a valid and essential source 

o f information about the natural environment and its resources” (Territories, 2005). 

Internationally, specific recommendations to establish marine and Arctic programmes that
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include the use o f traditional ecological knowledge (TEK) for the conservation o f biodiversity 

were presented during the workshop on traditional knowledge and biological diversity 

(Programme, 1997). More recently, efforts have been made in to integrate or bridge TEK with 

traditional scientific knowledge in Arctic ecological research (Gagnon and Berteaux, 2009; 

Gilchrist et al., 2005; Huntington et al., 2004).

There are many definitions of TEK, and one broad definition o f TEK is “knowledge gathered 

and maintained by groups o f people, based on intimate experience with their environment” 

(Huntington et al., 2004). Traditional ecological knowledge has provided valuable information 

about marine mammals in the Arctic (Carter and Nielsen, 2011; Ferguson et al., 2012). Inuit 

knowledge and wisdom about beluga whales is associated with decades of observations, and 

includes hunters’ and elders’ knowledge of beluga whale behaviour and predation (Byers and 

Roberts, 1995). Observations of beluga whale diving behaviour, feeding, migration, 

communication and response to disturbance were made by Indigenous hunters and elders of 

Chukotka, Russia while hunting beluga whales or pursuing walrus (Odobenus rosmarus 

divergens) and seals (Phoca spp. and Erignathus barbatus) (Mymrin et al., 1999).

l.e Beluga whale research in the ISR

Beluga whales have been sampled periodically since the 1970s in the Mackenzie Delta Estuary 

(Lockhart et al., 2005) in conjunction with beluga harvesting activities. The Pokiak family has 

sampled beluga whales for the DFO beluga-monitoring program since 2000 and whale monitors 

were hired annually by the FJMC to document information about harvested whales. The
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Hendrickson Island Beluga Study (HIBS) began in 2008, to inform scientists, policy makers and 

Inuvialuit about the effects of contaminants and climate change on beluga health. The HIBS is 

one of several community-based monitoring programs in the Inuvialuit Settlement Region, 

NWT. The main goals of this study were to increase our understanding of beluga health, and to 

determine a baseline for beluga health as their summering habitat (Eastern Beaufort Sea) is 

undergoing changes.

The HIBS research team was composed of four researchers from government and university 

institutions: L. Loseto (Victoria, BC; Winnipeg, MB), M. Noel (Victoria, BC), S. Raverty 

(Abbotsford, BC) and S. Ostertag (Prince George, BC). During fieldwork, the research team 

worked alongside N. Pokiak and F. Pokiak (Tuktoyaktuk, NT), mentoring students and the local 

whale monitors. Students from Tuktoyaktuk and Inuvik, NT were hired in 2008, 2009, 2010 and 

2011 to assist or lead with sampling and lab analyses. The research team collaborated with an 

extensive network of researchers including Gary Stern (Winnipeg, MB), Feiyue Wang 

(Winnipeg, MB), Marcos Lemes (Winnipeg, MB), Brian Laird (Ottawa, ON), Laurie Chan 

(Ottawa, ON), Lois Harwood (Yellowknife, NT), Ole Nielsen (Winnpeg, MB), Gregg Tomy 

(Winnipeg, MB), and Peter Ross (Victoria, BC).
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2. Arctic Contaminants

2.a Background

Mercury is released into the environment from natural and anthropogenic sources; gaseous 

elemental Hg(0) is degassed from soils and surface waters, and released during the combustion 

of fossil fuels and incineration of waste (Council, 2000). Elemental Hg(0) is easily volatilized 

and may be transported for a year or more on wind currents, before it is oxidized to its divalent 

state (Hg(II)) and deposited in the environment (Martin et al., 2011). Although the Arctic lacks 

point sources of Hg emissions, up to 300 tonnes of Hg are transported annually to the Arctic 

from southern latitudes (AMAP, 2003; Outridge et al., 2008; Skov et al., 2004). Following 

deposition, methylating bacteria can convert bioavailable inorganic Hg(II) to the highly toxic 

monomethylmercury (MeHg) (Kirk et al., 2008; Lindberg et al., 2007). Methylmercury is readily 

absorbed by organisms, with approximately 95% of MeHg in fish being absorbed into the 

bloodstream of humans (Clarkson and Magos, 2006). Methylmercury biomagnifies in aquatic 

ecosystems, and there is a millionfold increase in MeHg concentration from seawater to top 

predators (Clarkson and Magos, 2006).

Mercury is transported to the Arctic from southern latitudes at a rate o f200 to 300 tonnes per 

year, from both anthropogenic and natural sources (Dietz et al., 2009). Mercury levels in Arctic 

biota are an order of magnitude higher today than in the pre-industrial period and approximately 

74 to 94% of Hg in biota is estimated to originate from anthropogenic Hg emissions (Dietz et al., 

2009). Mercury levels are consistently higher in biota from the western Canadian Arctic than the 

European Arctic (Riget et al., 2005). Concentrations o f cadmium, lead and arsenic have also
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increased in the Arctic due to anthropogenic activities including agriculture and the combustion 

of coal (Barrie et al., 1992).

Organic contaminants of concern in the Arctic include ‘legacy’ contaminants that were used in 

high volumes in the past and are now strictly regulated or banned (e.g. polychlorinated 

biphenyls, PCBs; dichlorodiphenyltrichloroethane, DDT), and current-use chemicals such as 

perfluorinated compounds (PFCs) and endosulfan (Barrie et al., 1992). Organic contaminants 

found in Arctic biota can be classified as industrial and commercial organic compounds (e.g. 

PCBs), chlorobenzenes, dioxins, PFCs and brominated flame retardants), organic pesticides (e.g. 

DDT, toxaphene, hexachlorocyclohexanes and chlordane) and polycyclic aromatic hydrocarbons 

(e.g. Benzo(a)pyrene) (Barrie et al., 1992; Letcher et al., 2010). Many OCs in the Arctic are now 

included in the Stockholm Convention due to their persistence, long-range transport and toxicity. 

From the 1970s to the 1990s, decreasing trends o f most ‘legacy’ contaminants have been 

observed; however, emerging contaminants of concern have also surfaced (e.g. PFCs, 

brominated flame retardants) (Braune et al., 2005). In general, the concentration o f OCs in 

marine mammals were found in the following decreasing order: ZPCB > ECHL « EPFS A > 

ECBz * EHCH « EToxaphene * PFCA > EPBDE > HBCD (Letcher et al., 2010).

2.b Beluga whale exposure to mercury and organic contaminants

Environmental contaminants of primary concern for beluga health in the Arctic have been 

identified as organic pesticides, polycyclic aromatic hydrocarbons (PAHs) and heavy metals 

(Fisk et al., 2005). Elevated Hg concentrations have been observed in marine mammals,
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including beluga whales in the western Canadian Arctic compared to the eastern Canadian Arctic 

(Wagemann et al., 1998). Furthermore, a spike in age-adjusted Hg concentrations was observed 

in belugas from the Beaufort Sea in the 1990s (Braune et al., 2005). Although Hg concentrations 

have decreased in recent years in the eastern Beaufort Sea beluga population, Hg concentrations 

in this population of whales are significantly higher than concentrations observed in the 1980s 

(Lockhart et al., 2005). Furthermore, modern beluga whales have Hg concentrations that are 4- to 

17- times higher than pre-industrial levels, according to the analysis o f Hg in beluga whale teeth 

collected from archeological sites and harvest camps (Outridge et al., 2002; Outridge et al.,

2009). However, Hg concentrations were consistently higher in belugas from the St. Lawrence 

Estuary (1.42 -  756 pg/g (n=35)) than the Arctic (0.04 -  182 pg/g (n=94); Beland et al., 1993).

Concentrations of OCs in Arctic belugas were highest in the eastern Canadian Arctic, east 

Greenland and Svalbard. Arctic beluga whales were exposed to PCBs (geometric mean, range 

for males only; 3690 (1250 - 10900) ng g'1 lw), DDT (2521 (695 -  9150) ng g’1 lw), cyclodienes 

(473 (48 -  4690) ng g'1 lw), chlorobenzenes (377 (149 -  957) ng g '1 lw), cyclodienes (473 (48 -  

4690) ng g '1 lw), hexachlorocyclohexane (lindanes, 119 (32 — 440) ng g '1 lw) and poly brominated 

diphenyl ethers (34 (13-96) ng g '1 lw) (Kelly et al., 2008). In previous studies, OCs were 

consistently found at lower concentrations in brain tissue than in other organs (i.e. blubber, liver, 

kidney and muscle) of east Pacific gray whales {Eschrichtius robustus, (Krahn et al., 2001)), 

Black Sea harbor porpoises (Phocoena phocoena relicta, (Weijs et al., 2010)) and harbor seals 

(Phoca vitulina) from the southern coast of Norway (Bernhoft and Skaare, 1994). My thesis 

focused on the potential neurotoxicity associated with MeHg exposure for beluga whales because
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‘legacy’ OC concentrations appear to be decreasing in Arctic biota (Braune et al., 2005), the 

blood-brain-barrier may reduce the transfer of OCs to the brain (Bemholt and Skaare, 1994), and 

OC concentrations are lower in biota from the western Canadian Arctic than other regions of the 

Arctic (Letcher et al., 2010). Although concentrations o f OCs in brain tissue of beluga whales in 

the Beaufort Sea may be relatively low and decreasing, OC exposure could be of 

neurotoxicological concern given the neurotoxicity of certain PCB congeners associated in 

particular with in utero and lactational exposure (Kodavanti, 2005).

2.c Policies

The ‘Minamata Convention on Mercury’ is a global, legally binding treaty developed to reduce 

Hg emissions to the environment. On January 19, 2013, governments agreed to the text of the 

Minamata Convention and on October 10, 2013 the treaty was adopted and signed by 93 

countries. The temporal trends from the past decades are inconsistent in biota; however, there is 

strong evidence that Hg levels have increased from pre-industrial times to the present in some 

Arctic biota (Braune et al., 2005; Dietz et al., 2009). Although Hg emissions have been reduced 

in many countries in recent years, one new coal-burning energy plant is coming on line every 

week in India and China (Berry and Ralston, 2008), therefore anthropogenic mercury releases 

will continue to be of global concern.

36



3. Mercury toxicokinetics and toxicity

3.a Background

The half-life of MeHg in the body has been estimated to be approximately 44 d in humans, 

although the half-life of the body burden of Hg was 98 d (Smith et al., 1994). In the brain, the 

half-life of MeHg likely varies between species, but it has been estimated to be on the order of 

days or weeks for MeHg and months to years for iHg (Aschner and Aschner, 1990). 

Methylmercury is removed from the body by demethylation followed by excretion of inorganic 

Hg (iHg) in feces and urine (Smith et al., 1994). In whale livers, it has been observed that iHg 

may form granules made up of Hg and selenium (Se), to become inert (Lockhart et al., 2005).

Mercury neurotoxicity varies with its speciation (i.e. inorganic or MeHg) (Clarkson and Magos, 

2006; Michalke et al., 2009) and the complexes it forms with other molecules (e.g. MeHg- 

cysteine or tiemannite). Methylmercury and iHg are both neurotoxic; however, Se may bind to 

iHg to form HgSe, a non-toxic Hg complex (Bjorkman et al., 1995). Demethylation of MeHg 

followed by the formation o f compounds similar to mercury selenide (HgSe) was linked to 

successful detoxification o f Hg-exposed humans (Korbas et al., 2010). Marine mammals and 

perhaps also some bird species are able to demethylate MeHg and immobilize it in the liver as 

HgSe (Riget et al., 2007). Previous studies have suggested that Se may be involved in a bio

transformation process in the brain, which may be initiated by the demethylation of MeHg 

followed by the formation of inert HgSe granules (Nigro and Leonzio, 1996). Therefore, Se may 

also reduce the toxicity of Hg by reducing oxidative stress associated with Hg exposure, and by
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forming inert compounds with Hg and forming bis(methylmercury) selenide (Khan and Wang, 

2010).

Modern day MeHg-poisoning events in Iraq and Japan increased our understanding o f the 

neurotoxicological risks of MeHg exposure for adults and the developing fetus (Mergler et al.,

2007), and similar outcomes have been observed in mammalian wildlife (Basu and Head, 2010). 

Methylmercury exposure has been linked to neurochemical disruption with resulting sensory and 

motor deficits (Sirois and Atchison, 1996). At a cellular level, Hg poisoning was associated with 

the loss of neuronal cells in the granular layer of the cerebellum and visual cortex of adult 

humans (Hunter and Russell, 1954). Clinical symptoms o f Hg toxicity include cerebellar ataxia, 

constriction of the visual field and damage to the auditory region of the temporal lobe (Clarkson, 

1997; Ekino et al., 2007). Clinical symptoms of Hg intoxication include the loss o f motor 

coordination (Bellum et al., 2012), abnormal movements and convulsions (Takeuchi et al., 1977) 

and loss of balance (Farina et al., 2005). Macaque monkeys had impaired high-frequency hearing 

and visual damage following postnatal MeHg exposure (Newland and Paletz, 2000). Prenatal 

exposure to MeHg caused mental retardation, severe neurological impairments, and diffUse 

damage to the brain (Clarkson, 1997; Mergler et al., 2007). Exposure to MeHg in utero has been 

linked to neurobehavioural deficits and decreases in fine motor function in the Faroe Islands and 

the Seychelles longitudinal studies, respectively (Mergler et al., 2007).

Exposure to MeHg has been associated with neurochemical disruption in environmentally- 

exposed wildlife (see Table 2.2). Biomarkers of neurochemical variation associated with Hg
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exposure have been used in previous wildlife studies on piscivorous fish and mammals to relate 

MeHg exposure to neurochemical endpoints. Methylmercury exposure in loons, eagles, mink, 

otters and polar bears was associated with changes in receptors (density and/or binding affinity) 

and enzyme activity: NMDA receptor decreased with increasing total Hg (Hgr, EMeHg and iHg) 

levels in polar bears (Basu et al., 2009), wild mink (Basu et al., 2007c), loons and eagles 

(Scheuhammer et al., 2008); muscarinic receptor levels was positively correlated to Hg 

concentrations in wild mink (Basu et al., 2005a), loons and eagles (Scheuhammer et al., 2008) 

but the opposite relationship was found in river otters (Basu et al., 2005d). A negative correlation 

between Hgi and the dopamine receptor was also observed in wild river otters and wild mink 

(Basu et al., 2005a). A negative relationship between GABAa receptor binding levels and Hg 

was observed in captive mink (Basu 2010), while monoamine oxidase and acetylcholinesterase 

activities were negatively correlated to brain Hg in wild river otters (Basu et al., 2007b).
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Table 2.2 Variation of monoamine oxidase (MAO) activity, muscarinic acetylcholine receptor (mAChR), gamma- 
aminobutyric acid receptor (GABA-R) and N-methyl-ZD-aspartate receptor (NMDA-R) associated with MeHg exposure in 
select mammalian and avian species. _________________________________________ ___________________________

Animal MAO mAChR GABA-R NMDA-R Reference

Mink (captive) 
(Mustela visori) - (Basu et al., 2008; Basu et al., 

2010; Basu et al., 2007c)
Wild mink 
(mustela vison) - 7t -

(Basu et al., 2005a; Basu et 
al., 2007c)

River otter 
(Lontra cade is)

- - (Basu et al., 2005d; Basu et 
al., 2007b)

Polar bear 
(Ursus maritimus) - - - (Basu et al., 2009)

Bald eagle
(Haliaeetus
leucocephalus)

- 71 - (Rutkiewicz et al., 2011; 
Scheuhammer et al., 2008)

Common loon 
(Gavia immer) - 71

ns - ns
(Hamilton et al., 2011; 
Scheuhammer et al., 2008)

Herring gulls 
(Larus argentatus) - ns - ns (Rutkiewicz et al., 2010)

Little brown bats 
(Myotis lucifugus)

i l 1
T P 2 - - (Nam et al., 2010)

Spotted seatrout 
(Cynoscion nebulosus) - - - - (Adams et al., 2010)

Salmon
(Salmo salar L.)

* - - - (Berntssen et al., 2003)

1 = contaminated site; 2 = non contaminated site; 
a = ml and m2 subunits for mAChR
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3.b Interaction of MeHg and iHg with neurochemical signaling pathways

Previous studies have suggested that the interaction of MeHg or iHg with cysteine residues may 

inhibit, stimulate or damage components of the dopaminergic (Gomes et al., 1976), cholinergic 

(Castoldi et al., 1996), y-aminobutyric acid (GABA) (Huang and Narahashi, 1997; Narahashi et 

al., 1994), and glutamatergic (Albrecht and Matyja, 1996) signaling pathways. The following 

subsections provide a brief background about the cholinergic, dopaminergic, GABA-ergic, and 

glutamatergic signaling pathways, including an overview of potential interactions of MeHg and 

iHg with select components of these signaling pathways.

3.b.l Cholinergic signaling pathway

Cholinergic signaling pathways have been linked to essential physiological processes including 

learning, memory, stress response and modulation of sensory information (Reis et al., 2009). The 

muscarinic acetylcholine receptor (mAChR) may play a critical role in physiological processes 

including thermoregulation, motor function and feeding (Bymaster et al., 2003; Wess, 2004). 

There are five mAChR subtypes (ml-m5) in mammals, and they each have distinct 

pharmacological and functional properties (Wess, 1996). The distribution of mAChR subtypes is 

heterogeneous in mammalian brains, with ml abundance greater in the forebrain (i.e. cerebrum) 

and m2 more abundant in the hindbrain (i.e. cerebellum) (Wess, 1996). There are differences in 

signaling associated with the receptor subtypes. In particular, m l, m3 and m5 are coupled to G 

proteins of the Gq/u family, which mediate the activation of phospholipase C and subsequent 

release of Ca2+; the m2 and m4 mAChR subtypes are selectively linked to G-proteins of the Gi/0 

class, which mediate the inhibition of adenylyl cyclase but are not linked to Ca2+ release (Wess, 

1996).
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Methylmercury has a high affinity for sulfhydryl groups and was found to inhibit agonist binding 

to ml and m2 muscarinic receptors in rat brain cortical membranes (Castoldi et al., 1996). The 

ml subtype may be more sensitive than m2 to Hg exposure based on in vivo and in vitro 

experiments (Basu et al., 2008; Castoldi et al., 1996). Mercuric chloride and MeHg may modify 

mAChR activity by binding to the binding site of the mAChR and competitively inhibiting 

ligand- binding (Abd-Elfattah and Shamoo, 1981). The binding of MeHg to mAChR has been 

linked to disruption of Ca2+ homeostasis in cerebellar granule cells, and has been suggested as a 

cause o f cell-regulated death (apoptosis) or the downregulation of mAChR (Limke et al., 2004). 

Furthermore, inhibiting binding of the m3 mAChR reduced the effect o f MeHg on the amplitude 

of Ca2+ elevations (Limke et al., 2004). Methylmercury and Hg2+ inhibited radioligand binding 

(in vitro) to the mAChR receptor in ringed seal brain homogenate (Basu et al., 2006a). An 

increase in mAChR density was observed in rat hippocampus and cerebellum following chronic 

exposure to low doses o f MeHg, which may have been due to the inhibition o f acetylcholine 

synthesis and the competitive antagonism of MeHg at the receptors (Castoldi et al., 2003).

3.b.2 Dopaminergic signaling pathway

Dopamine plays an important role in cognition, emotion, memory processes and learning (Dailey 

and Everitt, 2009). Monoamine oxidase (MAO) is present in two forms in the brain, and is 

responsible for the oxidative deamination of a number of biogenic amines including dopamine 

(Shih et al., 1999). Two forms of MAO exist, MAO-A has higher affinity for the substrates 

serotonin, norepinephrine, dopamine, and the inhibitor clorgyline, whereas MAO-B has higher 

affinity for phenylethylamine, benzylamine, and the inhibitor deprenyl (Shih et al., 1999). Both
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MAO-A and B are located throughout the brain in the outer membrane of mitochondria (Green 

and Youdim, 1975) and are encoded by different genes (Bach et al., 1988; Grimsby et al., 1991). 

Methylmercury may exert an effect on MAO either by directly binding to thiol groups on the 

enzyme (Chakrabarti et al., 1998) or by altering mitochondrial function (Komulainen et al.,

1995).

3.b.3 The GABA-ergic signaling pathway

The GABAa receptors form GABA-gated chloride ion channels that are responsible for 

inhibitory synaptic transmission (Penschuck et al., 1999). The major GABAa receptor subtypes 

are made up of a pentameric assembly o f distinct subunits (a, p and y2) including six unique a 

subunits (ai- a6) that have been cloned to date (Vicini and Ortinski, 2004). The decarboxylation 

o f glutamate gives rise to GABA, which is an inhibitory neurotransmitter. GABAa receptors are 

associated with sedation, sleep induction, and myorelaxation, as well as anxiety, seizures and 

amnesia (Vicini and Ortinski, 2004). Furthermore, the benzodiazepine binding site on the 

GABAa receptor modulates the activity of the GABAa receptor (Chebib and Johnston, 1999).

In cell cultures, MeHg chloride and mercury chloride (HgCh) inhibited the uptake of GABA by 

cultured astrocytes from newborn rat cerebral cortex (Brookes and Kristt, 1989) and HgCh 

increased the affinity of GABAa receptor for GABA (Huang and Narahashi, 1996). Mercury was 

found to modulate GABA-induced inward currents: HgCh induced a larger inward current and 

MeHg suppressed this inward current (Arakawa et al., 1991; Narahashi et al., 1994). In 

cerebellar granule cells in culture, inhibition of GABAa receptor-mediated currents was 

observed when cells were exposed to 0.1 uM MeHg (Yuan et al., 2005). Following MeHg
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exposure, a decrease in GABAa receptor levels could occur to maintain homeostasis of 

GABAergic signaling following Hg exposure (Basu et al., 2010). Decreased GABAa receptor 

levels occur in neurons following exposure to GABA and various GABAa receptor agonists 

(Barnes, 1996). Inhibition of the GABAa receptor could potentially lead to an excitatory effect 

(Sunol et al., 2008); therefore, receptors and enzymes that mediate GABAergic signaling are 

tightly regulated to protect neurons from excitotoxicity (Reis et al., 2009). Regulation o f GABAa 

receptors may include desensitization of the receptor, endocytosis and degradation o f subunit 

polypeptides and the repression of subunit gene expression (Barnes, 1996).

3.b.4 Glutamatergic signaling pathway

The N-methyl-D-aspartate receptor (NMDA-R) is a separate class of glutamate-gated ion 

channels, and is activated by the artificial glutamate analogue N-methyl-D-aspartate. Glutamate 

is thought to be one of the major excitatory transmitters in the brain and may be used by up to 

40% of synapses (Coyle and Puttfarcken, 1993). NMDA receptors are double-gated and open 

only when two conditions are met simultaneously; glutamate must be bound to the receptor and 

the membrane must be strongly depolarized (Johnson and Ascher, 1987). NMDA receptors are 

critical for longterm potentiation (Harris et al., 1984); however, overstimulation o f the NMDA - 

R can cause neuronal excitotoxicity, and has been linked to the loss of neurons, Alzheimer’s 

disease, and other neurodegenerative diseases (Cull-Candy et al., 2001).

A glutamate-mediated excitotoxic mechanism of MeHg neurotoxicity is supported by several 

studies. Methylmercury induced an increase in extracellular glutamate (Juarez etal., 2002); the
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activation of NMDA receptors was found to play a key role in glutamate-associated 

excitotoxicity of astrocyte cultures (Albrecht and Matyja, 1996). The NMDA receptor was linked 

to increased release o f dopamine following MeHg and iHg exposure in vivo, and the inhibition of 

nitric oxide synthase (NOS) activity reduced the release of dopamine (Faro et al., 2002; Vidal et 

al., 2007). Astrocytes play a key role in regulating the transport and clearance of 

neurotransmitters in the synaptic space (Fitsanakis and Aschner, 2005).

Excitotoxicity can be caused by the overstimulation o f the NMDA receptor (Coyle and 

Puttfarcken, 1993); therefore, MeHg-associated increases in extracellular glutamate could have 

implications for neurotoxicity. Furthermore, the NMDA receptor was linked to DNA damage 

with MeHg exposure in vivo (Juarez et al., 2005), and increased Ca2+ influx and apoptosis of 

cerebellar granule cells following Hg2+ exposure (Rossi et al., 1997).

4. Assessing potential toxicity

4.a Characterizing the risk of toxicity in wildlife

In general, two approaches have been taken to identify and characterize the risk o f toxicity 

associated with contaminants in Arctic species (Dietz et al., 2013). The first approach used a 

comparison of the concentration o f contaminants in Arctic species and toxicity thresholds or 

known levels of toxicity. The extrapolation of risk was based on threshold levels that are usually 

taken from laboratory studies or field studies. Challenges with extrapolation include the 

differences in exposure regimes between laboratory animals and wildlife (e.g. chronic vs acute, 

short term vs long-term, single contaminant vs mixtures of contaminants), inter-species
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differences in sensitivity, and differences in additional stressors faced by free-ranging animals 

(Dietz et al., 2013). The second approach investigated potential toxic effects by studying the 

response of biomarkers (indicators o f biological response) to contaminants (Skaare et al., 2002). 

Although biomarkers can involve any biological change from a molecular to ecosystem level, the 

term generally refers to changes at lower levels of biological organization that are associated 

with exposure to contaminants (Skaare et al., 2002).

To identify potential behavioural effects o f MeHg exposure, contaminant exposure data must be 

linked to whole-animal observations. Inuit observe beluga whales during harvesting activities 

and travel, and thereby gain substantial knowledge about these animals (Byers and Roberts,

1995; Mymrin et al., 1999). Collecting information about beluga whales using both traditional 

scientific knowledge (TSK) and traditional ecological knowledge (TEK) could provide the 

opportunity to compare observations made at different scales (i.e. chemical and whole-animal) 

(Huntington et al., 2004).

4 b. Methods

Given the sensitivity o f the central nervous system (CNS) to the neurotoxic effects o f Hg, it is 

relevant to determine Hg concentrations, distribution, speciation and potential detoxification in 

the CNS to assess health risks due to MeHg exposure. Analysis of potential neurochemical 

disruption associated with MeHg exposure in beluga whales would provide much needed 

information about potential risk of current MeHg exposure levels for these cetaceans. Finally,
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integrating TSK and TEK could provide evidence of a physiological effect o f MeHg exposure on 

beluga whales. The methods used for the studies presented in this thesis are outlined below.

4.b.l Radioligand binding assays

Radioligand binding assays use a ligand that is labeled with a radioactive isotope (e.g. 3H, l25I or 

35S) that binds to a receptor to make detection of the receptor possible (Leysen et al., 2010). 

Either homogenized or sliced tissue, or cells in culture can be used for these assays. The tissue 

preparation is first incubated with the labeled ligand, and the bound labeled ligand is collected 

and detected using various techniques (e.g. filtration techniques combined with radioactivity 

counting) (Leysen et al., 2010). For 3H-labeled ligands, a liquid scintillation cocktail is added to 

the filters, the energy emitted by the radioisotopes first excites the aromatic solvent molecules in 

the cocktail, and the fluor molecules absorb and re-emit this energy, which is detected by a 

photomultiplier detector (Staff, 2004). To determine the maximum number o f receptor binding 

sites in the tissue preparation (Bmax), the specific binding is calculated by subtracting the non

specific binding from the total binding (Leysen et al., 2010). The kd value is equal to half o f the 

maximum binding, and is calculated by nonlinear regression using a curve fitting program (e.g. 

GraphPad Prism; GraphPad software, La Jolla, USA) (Leysen et al., 2010).

4.b.2 Monoamine oxidase assay

Monoamine oxidase activity may be quantified through a horseradish peroxidase-coupled 

reaction using Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine ). Briefly, tyramine is a
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substrate for both MAO-A and MAO-B, and the oxidation o f tyramine by MAO produces 

hydrogen peroxide. Amplex Red combined with horseradish peroxidase reacts with hydrogen 

peroxide in a 1:1 stoichiometry, to produce the fluorescent compound resorufin (Held, 2003). 

Quantification of resorufin produced occurs via fluorescence spectroscopy, which records the 

excitation and emission spectra (Lakowicz, 2006). A microplate reader uses a xenon flash lamp 

as a light source, and the specific excitation wavelength is selected with a monochromator 

(Lakowicz, 2006). A mirror with a hole is used to transmit the excitation and also to direct the 

fluorescence toward the detector optics (Lakowicz, 2006).

4.b.3 Real Time Polymerase Chain Reaction

Reverse transcriptase is a ribonucleic acid (RNA)-dependent DNA polymerase that synthesizes 

DNA complementary to an RNA template, using a mixture of the four deoxyribonucleotides in 

the presence of a short oligonucleotide primer or random hexamers (Rapley, 2010). Real time 

Polymerase Chain Reaction (RT PCR) generates an exponential increase in copies o f a DNA 

template, which can be quantified based on the relationship between the amount o f starting target 

and the amount of PCR product (Arya et al., 2005). Specific detection o f PCR product 

(amplicons) is carried out based on two available chemistries: double-stranded DNA (dsDNA) 

binding dyes and fluorescent probes (Arya et al., 2005). In the case o f DNA-binding dyes, 

SYBR® Green 1 binds to dsDNA and emits a strong signal (Arya et al., 2005). The fluorescence 

signal increases during polymerization and decreases upon denaturing; therefore, measurement 

o f fluorescence occurs at the end of the elongation step of each PCR cycle (Arya et al., 2005). 

SYBR® Green 1 binds all dsDNA; therefore, amplification of non-specific PCR products and
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primer-dimers reduces the specificity o f the assay (Arya et al., 2005). Fluorescent probes (e.g. 

TaqMan probes) can be used in combination with specific forward and reverse primers; 

fluorescence emission increases during PCR amplification when the probe anneals to the target 

and Taq polymerase cleaves the probe (Arya et al., 2005).

Absolute quantitation depends on quantifying the initial number o f target copies through the use 

of a standard curve (Livak and Schmittgen, 2001). The Pfaffl method provides a model for 

relative quantification of a target gene transcript in comparison to a reference gene transcript 

(Pfaffl, 2001). With this method, PCR efficiency ( E )  for each target and reference gene is 

calculated based on the crossing point (CP) cycle number and the input o f cDNA (ng), according 

to the equation: E  = 10(' l/slope) (Pfaffl, 2001). The ratio is defined as the expression o f a target 

gene in the sample versus the control, compared to the reference gene: ratio = ( E ta r g e t ) ACP torget 

(control -sa m p ie )/(E reference)ACP ref (con tro l-sample >_ The comparative threshold method is another commonly

used method for calculating relative changes in gene expression, and does not require a standard 

curve (Arya et al., 2005). The 2"AACt is calculated based on the relative expression of the target 

compared to the reference gene or calibrator (-AACt = ACt (sample) - ACt (control)) (Arya et al., 

2005). This method requires similar amplification efficiencies for the target and reference genes 

(Arya et al., 2005). An internal reference gene or calibrator is required to minimize the errors 

associated with the starting amount of RNA, the quality of RNA, differences in cDNA synthesis 

efficiency and PCR amplification (Arya et al., 2005). Reference genes must be selected to 

normalize the RNA values, and their expression should be consistent at all stages of development 

and throughout different experimental conditions (Arya et al., 2005). Typically, housekeeping
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genes such as beta-actin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal RNA are 

used for normalization (Arya et al., 2005).

4.b.4 Traditional ecological knowledge questionnaires

There are many definitions of TEK, and one broad definition of TEK is “knowledge gathered 

and maintained by groups of people, based on intimate experience with their environment” 

(Huntington et al., 2004). Questionnaires have been identified as one o f many methods for 

documenting TEK (Huntington, 2000). The strength o f questionnaires is that they provide 

consistency and allow comparisons to be made between respondents and over time; however, 

semi-directed interviews provide a greater depth and breadth o f knowledge and may reveal 

unanticipated information (Huntington, 2000). Traditional ecological knowledge has provided 

valuable information about marine mammals in the Arctic (Carter and Nielsen, 2011; Ferguson 

et al., 2012). Inuit knowledge and wisdom about beluga whales is associated with decades of 

observations, and includes hunters’ and elders’ knowledge o f beluga whale behaviour and 

predation (Byers and Roberts, 1995).

5. Responsibility and accountability in northern research

Research that takes place in the north must abide by a number of ethical principles (ACUNS, 

2003; ITK and NRI, 2007) and regulatory requirements. In particular, Inuit communities expect 

meaningful consultation, inclusion and communication throughout the research process (ITK and 

NRI, 2007). Reporting of research results is of particular concern among Inuit communities,
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especially the timing and formatting of researchers’ reporting procedures (ITK and NRI, 2007). 

In fact, early and frequent communication, local training, and community participation in 

research activities were identified as being critical for building trusting research relationships in 

natural science research in Nunavut (Gearheard and Shirley, 2007). This may be o f even more 

importance in beluga whale research, given the high cultural and nutritional value of beluga for 

many Inuit. The significance of beluga extends beyond the consumption of meat and muktuk, 

and includes the whale-hunting complex (Tyrrell, 2007), and food-sharing, which reinforces 

social relations (Condon et al., 1995). In general, whales play an important role in maintaining 

Inuit identities, culture and well-being (Freeman et al., 1998). Traditional harvesting activities 

are also linked to Inuit well-being: ‘the land teaches us not only the technical skills o f aiming a 

gun or harpoon or skinning a seal, but also what is required to survive, giving confidence to our 

people’ (Watt-Cloutier, 2003).
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Abstract

The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood.

We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal 

cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the 

eastern Beaufort Sea, Canada, and measured total mercury (HgT) and total selenium (SeT) by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Hg analyzer, and the chemical 

forms using a HPLC-ICP-MS. At least 14% of the beluga whales had HgT concentrations higher 

than levels of observable adverse effect (6.0 mg kg'1 wet weight (ww)) in primates. The 

concentrations of HgT differed between brain regions; median concentrations (mg kg"1 ww) were 

2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 

(0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) 

in brain stem. Total Hg concentrations in the cerebellum increased with age (p < 0.05). Between 

35 and 45% of HgT was water-soluble, of which, 32 to 41% was methylmercury (MeHg) and 59 

to 68% was labile inorganic Hg. The concentration of MeHg (range: 0.03 to 1.05 mg kg"1 ww) 

was positively correlated with HgT concentration, and the percent MeHg (4 to 109%) decreased 

exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and 

temporal lobe. There was a positive correlation between SeT and HgT in all brain regions (p < 

0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The 

concentration of HgT in cerebellum was significantly correlated with HgT in other organs. 

Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies 

could be used to estimate HgT concentrations in the cerebellum, which is the target organ of 

MeHg toxicity.
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Introduction

Beluga whales (Delpinapterus leucas) have a semi-circumpolar distribution with significant 

populations inhabiting the northern coasts of Alaska, Canada, Greenland and Norway (Jefferson,

2008). Worldwide, the population of beluga whales exceeds 150 000, with summering 

populations concentrated in western Hudson Bay and eastern Beaufort Sea (Jefferson, 2008). The 

eastern Beaufort Sea beluga stock is known to migrate seasonally to the southeastern Beaufort 

Sea and Amundsen Gulf (Figure 3.1); they are larger and older than animals harvested from 

eastern Arctic beluga populations (Luque and Ferguson, 2010). The main diet of beluga whale is 

fish, squid and invertebrates (Loseto et al., 2009; Loseto et al., 2008a). Beluga whales can 

accumulate high concentrations o f organic and metal contaminants due to their trophic position 

(Dietz et al., 2000; Lockhart et al., 2005; Stern et al., 2005) and long lifespans (Luque and 

Ferguson, 2010).

Mercury (Hg) is a global pollutant and a potent neurotoxicant (Gladden et al., 1999). Elevated 

concentrations of Hg (> 1 mg kg'1 ww) were reported in brain tissue o f beluga collected in the 

western Arctic from 1998 to 2002 (Lockhart et al., 2005). Mercury exposure has been associated 

with neurochemical disruption in environmentally-exposed wildlife (Basu et al., 2005b; Basu et 

al., 2005d; Basu et al., 2009; Scheuhammer et al., 2008). Therefore, beluga whales may be at 

risk of Hg-related neurochemical disruption.

Mercury concentrations in the Arctic have increased significantly due to anthropogenic activities, 

and current estimates suggest that 72 to 94 % of Hg in biota in the Arctic comes from
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anthropogenic emissions (Dietz et al., 2009). A previous study of beluga teeth collected from 

recent harvests, and archeological sites in the Inuvialuit Settlement Region (ISR), NT, Canada, 

indicated that Hg concentrations have increased by an order o f magnitude since the 16th century, 

with Hg concentrations in older animals harvested in 1993 estimated to be 16.7 times greater 

than expected in their pre-industrial counterparts (Outridge et al., 2002). The risk of increased 

Hg exposure in beluga whales is poorly understood. As beluga whale is an important part o f the 

Inuit diet, the well-being of the beluga whale population has implications for food security and 

public health (Wesche and Chan, 2010).

To assess toxicokinetics associated with Hg exposure in beluga whales, it is necessary to 

determine the concentrations, speciation and distribution of Hg in the brains o f exposed animals. 

Beluga whales are primarily exposed to methylmercury (MeHg) from the diet (Loseto et al., 

2008b), which is the most neurotoxic Hg species (Yokel et al., 2006). More than 95% of ingested 

MeHg is absorbed (Aberg et al., 1969) and may cross the blood brain barrier via neutral amino 

acid transporters (Aschner and Aschner, 1990). Methylmercury may undergo demethylation in 

the brain (Shapiro and Chan, 2008; Yokel et al., 2006), and co-exposure to selenium (Se) and Hg 

may increase the rates of MeHg uptake, demethylation, and inorganic Hg (iHg) retention in the 

brain(Bjorkman et al., 1995; Magos and Webb, 1980; Newland et al., 2006).

In this study, we analyzed Hg concentration, distribution and speciation in beluga tissue samples 

from different brain regions in order to assess the toxicological significance of current Hg and 

MeHg concentrations in the Arctic beluga whale populations.
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Material and methods

Sample Collection

Five brain regions from harvested beluga whales were sampled at Hendrickson Island between 

June 30 and July 25 in 2006, 2008 and 2010, and at East Whitefish station in 2006 (Figure 3.1). 

These locations are two traditional beluga-hunting camps in Kugmallit Bay (KB), Inuvialuit 

Settlement Region (ISR), NT. Prior to each sampling season, a research permit and scientific 

license to fish were obtained from the Aurora Research Institute and Department o f Fisheries and 

Oceans. The sampling program was approved and supported by the Tuktoyaktuk and Inuvik 

Hunters and Trappers Committees for all sampling years.

Grey matter (cortex) from the cerebellum (C), frontal lobe (FL), and temporal lobe (TL), and 

white matter from the brain stem (BS; only in 2010) and spinal cord (SC) were dissected and 

placed into pre-weighed, acid-washed scintillation vials. Whole brains were collected and frozen 

in the field in 2006 (« = 46) and later dissected at UNBC; in 2008 {n = 24) and 2010 (n = 15), 

samples were dissected in the field and frozen immediately (approx -20 °C). Whole blood was 

collected into BD Vacutainer® blood collection tubes (with K2 EDTA; Becton Dickinson) from 

the neck of harvested whales in 2008. Kidney, muscle, muktuk (skin and fat), and liver samples 

were collected on Hendrickson Island and frozen on site in a portable freezer at -20 °C. Animal 

age was estimated from a thin section of a tooth by counting individual growth layer groups in 

the dentine at the Freshwater Institute, Winnipeg, Manitoba, Canada (Stewart, 2006).
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Sample analysis

Brain samples were freeze-dried for 72 hours at -80 °C and homogenized individually with a 

glass rod. Blood samples were thawed at room temperature and vortexed thoroughly prior to 

analysis. Total Hg (Hgj) in blood and 2008 brain samples were measured using a total mercury 

analyzer (MA-2000, Nippon Instruments Corp., Osaka, Japan) and the methods are described in 

more detail elsewhere (Basu et al., 2005d). In brief, -10  mg freeze-dried sample or 100 pL 

blood (29 v/v % in RNA preservative solution; 70% ammonium sulfate (Omnipur), 25 mM 

sodium citrate (Omnipur), 10 mM EDTA disodium salt dihydrate (Omnipur) was embedded in 

carbonate powder (sodium carbonate (Sigma Aldrich), calcium hydroxide (Fisher) and activated 

alumina (Nippon Instruments Corp.), followed by thermal decomposition at 800 °C for six 

minutes. Mercury vapour was then trapped by gold amalgamation, thermally desorbed and then 

measured by cold-vapour atomic absorption spectrometry (wavelength = 253.7 nm). Recovery of 

Hgr in the standard reference material (DOLT-4; Dogfish Liver Certified Reference Material for 

Trace Metals; National Research Council) was 98.8 ± 0.7% of the certified value and Hgr in 

blanks samples were -0.02 ± 0.06 ng mg'1 for a 10 mg sample. Total Hg concentration data from 

the MA-2000 were correlated to values obtained following acid digestion (r = 0.99, p  < 0.05), 

and measured with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as described 

below.

Total Hg and total selenium (Sej) in all brain samples (2006, 2008 and 2010) were analyzed by 

ICP-MS (Agilent Technologies, 7500 CX) following a modified acid digestion (Armstrong and 

Uthe, 1971). In brief, -10  mg dry weight (dw) homogenized sample was rinsed with acetone
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(Omnisolv) to remove lipids, and digested using trace metal grades nitric acid (Fisher), 

hydrochloric acid (Sigma) and H2O2 (Fisher), and heating at 100 °C for five hours. Total Hg 

(average o f mass 200, 201 and 202) and Ser (mass 82) were quantified by ICP-MS under the 

following parameters: plasma power 1550 W, nebulizer gas flow rate 1.05 L/min, Micromist 

Nebulizer (Glass Expansion™) flow rate 0.4 mL/min with a standard quartz 2.5 mm torch 

injector. Quantification was based on a four-point calibration curve, using 115In and 193Ir as 

internal standards for Se and Hg, respectively. Quality assurance/control (QA/QC) was 

monitored by including one blank, DOLT-4 in triplicate, and one sample in triplicate within each 

batch of 36 samples. Recovery of Hgr and Ser were 88 ± 1.6 and 92 ± 2.6 %, respectively (n = 

18); Hgr and Set concentrations in the blanks were 0.30 ± 0.05 mg kg'1 diy weight (dw) and 0.21 

± 0.06 mg kg'1 dw for a 10 mg sample, respectively (« = 17). Detection limits were 0.001 and 

0.01 mg kg"1 dw for a 10 mg sample, for Hgx and Set, respectively.

Mercury speciation analysis was carried out following the method o f Krey et al. (2012). In brief, 

Hg species were extracted in triplicate from approximately 10 mg dw sample using a solution 

made up of 0.1% hydrochloric acid, 0.1% 2-mercaptoethanol (Sigma), and 0.15% potassium 

chloride (Sigma) in ultrapure H2O. Samples were sonicated for 30 minutes at 35 °C. Mercury 

species were collected from the sample by centrifugation at 3000 rpm for ten minutes at 30 °C, 

the supernatant was saved and the pellet was rinsed by centrifugation with extraction solution 

(same procedures as before). The combined supernatants were centrifuged at 4000 rpm for 10 

minutes at 24 °C, filtered through a 0.45 p.m filter and analyzed using HPLC (Agilent 1200 series 

HPLC system, Agilent Technologies Canada Inc., Mississauga, ON, Canada), equipped with
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autosampler, quaternary pump, and 100 ml injection loop. A ZORBAX Eclipse XDB- 

C18 Column (2.1 x 50 mm, 5 pm) was connected to an ICP-MS (Agilent Technologies™, 7500 

CX). Fifty pL of sample was injected into the guard column at 0.45 mL/min; the mobile phase 

used was an isocratic mixture of 94% mobile phase (0.1 % (v/v) 2-mercaptoethanol and 0.06 mol 

L-1 ammonium acetate (Fluka) plus 6% methanol (Sigma). The instrument parameters were as 

follows: plasma power (1550 W), nebulizer gas flow rate (Argon, 1.05 L/min), micromist 

nebulizer (Glass Expansion™) and standard quartz 2.5 mm torch injector. Acquisition was 

carried out over 500 seconds and Retention Times (RT) were 1.78 and 2.14 for MeHg and Hg, 

respectively; Hg isotope m/z monitored was 202, with 193Ir used as an internal standard. 

Quantification was based on five point external calibration curves for Hg and MeHg. With this 

method, the labile fraction of iHg (iHgiabiie) bound weakly to proteins or thiols was extracted; 

however, Hg associated with strong structural proteins ( H g b o u n d )  may not be extracted efficiently 

with this method (Wang et al., 2007). One blank and DOLT-4 in triplicate were included in each 

sample batch (n = 33) to ensure quality within and between batches. Recovery o f total MeHg and 

iHg (MeHgi and iHgx) in DOLT-4 were 130 ± 4.7% and 98.9 ±5.8 % ( n =  28), respectively. 

Both MeHgx and iHgx concentrations were below the level of detection in all blanks analyzed (n 

= 7). The concentration o f Hgbound was estimated by subtracting the concentration of MeHgx and 

iHgiabiie from the concentration of Hgx (Equation 1).

[ H g b o u n d ]  =  [Hgx] -  ([MeHgx] +  [ i H g „ b a e ] )  (Eq 1)

The temporal lobe samples collected in 2008 were further analyzed for MeHg and Se speciation 

at the Ultra-Clean Trace Elements Laboratory at the University of Manitoba, as detailed
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elsewhere (Lemes and Wang, 2009; 2011). In brief, 100 mg o f freeze-dried brain tissue was 

extracted, in a 15-ml polypropylene centrifuge tube, with 20 mg trypsin in a 10-ml acetate buffer 

solution (0.05 M ammonium acetate with 0.5% sodium dodecyl sulphate; pH = 8). The 

extraction was carried out at 37 °C inside an Isotemp oven (Fisher Scientific) on a tube rotator 

with rotisserie at 20 rpm for 4 h in the dark to prevent any possible photochemical reaction 

during the process. The extractant was centrifuged and the supernatant was decanted and filtered 

through a 0.2 pm pore-size hydrophilic polypropylene membrane (Pall), and diluted 10 times 

with ultrapure water. The diluted extractant was then analyzed for MeHg and Se speciation using 

reversed phase HPLC-ICP-MS (Lemes et al., 2011).

Quality assurance and quality control o f the MeHg speciation analysis was monitored by 

analyzing the certified reference material DOLT-3 (CRM; dogfish liver, National Research 

Council of Canada). Speciation analysis showed that MeHg in DOLT -3 was present exclusively 

as CHsHgSCys with a concentration o f 1.41 ± 0.16 mg/g (dry wt; n=9), which agreed very well 

with the certified MeHgx value o f 1.59 ± 0.12 mg/g (dry wt). Because no CRM was available for 

individual MeHg species, further quality assurance/quality control for the MeHg speciation 

analysis in the beluga temporal lobe tissue samples was performed by comparing the sum of all 

the MeHg species (MeHgs) against the MeHgx concentration analyzed independently by HPLC- 

ICP-MS, as described above. The temporal lobe showed a good agreement for MeHgs / MeHgx = 

75.2 ± 20.5 % (n=10) (Lemes et al., 2011).
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The analytical method for selenium speciation monitored the following analytes: inorganic 

selenite Se(IV) and selenate Se(VI)), and organic selenomethionine (SeMet), 

methylselenocysteine (d-hSeCys), and selenocystine (CysSeSeCys). Details can be found 

elsewhere (Hu et al., 2009).

As shown in Figure 3.2 below, some o f the speciation chromatograms showed a slight shift in the 

retention time. This was because analyses were done on different days with different batches of 

columns and mobile phases. However, the retention times of MeHg species were corrected on a 

daily basis using the standards before and after the sample analysis.

For total Hg analysis o f kidney, liver, muktuk, and muscle, samples were weighed to 

approximately 0.15 g wet weight (ww). Samples were digested with a hydrochloric/nitric acid 

mixture (Aqua Regia) heated to 90 °C. The digested samples were analyzed for Hgx by Cold 

Vapour Atomic Absorption spectroscopy (CVAAS) (Armstrong and Uthe, 1971). The detection 

limit was 0.005 mg kg'1.

Data analysis

The concentrations of Hgx, Sex, MeHgx and iHgiabiie were recovery-corrected based on the 

recovery o f DOLT-4, prior to data analysis. All brain values were converted from dw to ww 

concentrations based on the measured moisture for each sample.

Data are reported as the median, followed by range in parentheses unless otherwise stated. All
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statistical analyses were conducted using STATA vl2 (College Station, Texas) except for non

linear regressions for exponential relationships that were conducted using GraphPad Prism for 

Mac v6.0b (La Jolla, CA). A p-value < 0.05 was selected to indicate a statistically significant 

result for all analyses, and all statistical tests were two-tailed. Scheffe post hoc multiple means 

comparison test was used to test differences in means following one-way analysis o f variance. 

Pearson and Spearman coefficients were used to analyze parametric and non-parametric data, 

respectively. Linear regressions of ln-transformed HgT data were used to assess the relationship 

between cerebellar Hgr concentrations and blood, liver, kidney, muscle and muktuk Hgx 

concentrations.

Results and Discussion

Mercury concentration and distribution

Total Hg concentrations in five brain regions are provided in Table 3.1. The difference in HgT 

between brain regions was statistically significant in the 37 whales for which we had samples 

available for all five brain regions (p  < 0.05). Total Hg concentrations increased in the following 

order: Spinal cord (SC)a < Brain stem (BS)ab < Frontal lobe (FL)b < Cerebellum (C)b < Temporal 

lobe (TL)b (different superscripts designate brain regions that had significantly different HgT 

concentrations from each other). Relative Hgx concentrations in discrete brain regions 

normalized to Hgx in SC were: 1 : 1.6 : 1.9 : 2.3 : 2.8, respectively.
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Total Hg concentrations in brain tissue of beluga whales were similar to those reported in 

dolphins (G. griseus, S. coeruloalba and T. truncates) (Capelli et al., 2008; Meador et al., 1999), 

and much higher than concentrations reported for other mammals such as wild river otter (Lutra 

lutra) (Basu et al., 2005d), polar bear (Ursus maritimus) (Krey et al., 2012), Arctic sledgedogs 

(Hansen and Danscher, 1995), wild mink (Mustela vison) (Basu et al., 2005a) and raccoon 

(Procyon lotor) (Porcella et al., 2004) (Table 3.2). Interspecies differences in brain Hgr 

concentrations cannot be explained simply by trophic position. For example, polar bears are top 

predators in the Arctic and are known to bioaccumulate high concentrations o f Hg in their livers 

(Rush et al., 2008), yet the concentrations of HgT in cerebellar cortex samples o f polar bears (n -  

22, age: 2 to 9 yr for 13 animals) harvested in Nunavik, northern Quebec were 0.23 ± 0.07 mg 

kg'1 dw (mean ± se, approx 0.06 ± 0.02 mg kg'1 ww) (Krey et al., 2012). Therefore, interspecies 

variation in HgT concentration in the brain may be associated with different rates o f MeHg 

excretion.

Due to the absence of Hg toxicity data pertaining to cetaceans, we compared HgT concentrations 

in beluga brain tissue to reported concentrations associated with neurotoxicity in humans, 

primates and fish-eating wildlife. The lethal concentration ofH gT in human brain tissue was 16.8 

mg kg'1 ww in the cerebellum of one individual (Eto et al., 1999). Dietary MeHg dosing studies 

on primate species indicated that Hg intoxication was associated with brain HgT concentrations 

between 6.0 and 12.0 mg kg"1 ww (Berlin et al., 1975a; Evans et al., 1977; Luschei et al., 1977; 

Stinson et al., 1989). Furthermore, concentrations below ~2 to 5 mg kg'1 ww were likely below 

thresholds o f overt MeHg intoxication in mink (Suzuki, 1979; Wobeser et al., 1976). In this
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study, one whale (1 %) had cerebellar Hgx above 16.8 mg kg'1, four whales (5%) had cerebellar 

Hgi that exceeded 6.0 mg kg'1 and 44 whales (53%) had cerebellar Hgr below 2 mg kg'1. In the 

temporal lobe, Hgx exceeded 16.8 mg kg'1 in three whales (3%), 6 mg kg'1 ww in 11 whales 

(14%) and was below 2 mg kg'1 in 38 whales (47%). The results from this study indicate that at 

least 14% of the beluga whales had Hgx concentrations in the temporal lobe exceeding 

concentrations associated with intoxication, but 47 to 53% had brain Hgx concentrations below 

thresholds of overt intoxication, assuming that the toxic threshold concentration for beluga is 

similar to other mammalian species.

Hg and age

The ages o f whales were the following (mean ± se): 26 ± 8 yr in 2006 (n = 47), 33 ± 15 yr in 

2008 {n = 19) and 23 ± 5 yr in 2010 (w = 15), and ranged from 0 (full-term fetus) to 60 yr. Males 

were predominantly sampled in all years; only three females were sampled in 2006, three 

females (including one pregnant female) were sampled in 2008 and no females were sampled in 

2010. The concentration of HgT was positively correlated to age in cerebellum (p < 0.05, n = 74; 

Figure 3.3). The lowest Hgx concentration was observed in the full term fetal cerebellum (0.05 

mg kg'1 ww). The median concentrations o f cerebellar Hgx were 0.77 and 3.37 mg kg'1 ww in the 

youngest (first quartile: 0-19 yr) and oldest (fourth quartile: 30 -  60 yr), respectively. 

Interestingly, the most elevated cerebellar Hgx concentrations (15.0 mg kg'1 ww and 16.9 mg kg'

1 ww) were not observed in the oldest whales, but in whales that were 47 yr and 36 yr, 

respectively. We are unsure about the reason for the elevated Hg in these two whales; however, 

these concentrations may reflect differences in feeding behaviour (Loseto et al., 2008a) and
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therefore greater exposure to MeHg in these whales compared to their older counterparts. 

Elevated Hgx concentrations observed in brain tissue from beluga whales could be explained in 

part by accumulation of Hg throughout their long lifespans.

The developing brain is extremely sensitive to Hg exposure (Clarkson and Magos, 2006). 

Maternal transfer o f Hg to her fetus was investigated by collecting tissue samples from one 

female beluga (23 yr) and her full term male fetus. Total Hg concentrations in fetal tissues were 

(mg kg'1 ww, «=1): SC= 0.02, C = 0.05, FL = 0.07, TL = 0.06 and liver = 0.28. HgT in the fetal 

brain ranged from 3 to 14% of maternal brain Hgx, with the frontal lobe bearing the most 

elevated Hg for the fetus compared to the temporal lobe for the mother. Previously reported Hgx 

concentrations in one St. Lawrence Estuary neonate were 0.049 mg kg'1 ww in brain tissue and 

0.145 mg kg"1 ww in liver (Gauthier et al., 1998). Therefore, the Hgx concentrations observed in 

the full-term fetus from this study were similar to the concentrations observed from the neonate, 

although in general, adult belugas from this area have more elevated Hgx concentrations than 

their counterparts in the Arctic (Wagemann et al., 1990). The clinical significance o f in utero 

exposure on the developing beluga brain remains to be studied.

Hg speciation

Between 34 and 44% of Hgx in the four brain regions was soluble Hg (17 to 20% MeHgx and 18 

to 28% iH g ia b i i e )  and the remaining 56 to 66% was bound to cell membranes (Table 3.3). O f the 

soluble fraction, 32 to 41% was organic Hg (MeHgx) and 59 to 68% was iH g b o u n d -  The 

concentration o f MeHgx was positively correlated to concentration of Hgx in all brain regions (p
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< 0.05): SC (rs = 0.80,/? < 0.0001, n = 19), FL (rs = 0.77,/? = 0.0001, n = 19), C (rs = 0.68,/? = 

0.0005, w = 22) and TL (rs = 0.73,/? = 0.0001, n = 22). The percent MeHgr of Hgr decreased 

exponentially with increasing HgT concentration (p <0.05) in SC (R2 = 0.95; t'A — 0.18 mg kg'1), 

FL (R2 = 0.93; t'A = 0.31 mg kg '). C (R2 = 0.96; t'A = 0.37 mg kg'1) and TL (R2 = 0.94; t'A = 

0.37 mg kg'1) (Figure 3.4). The concentrations o f iHgiabiie were consistently higher than MeHgx 

in all brain regions, with the exception of the full-term fetus, which had 100% MeHgx and one 

adult whale with the lowest brain Hgx concentration measured.

The ratio o f organic mercury expressed as a percentage of total mercury in brain samples varied 

greatly across species and suggests interspecies differences in in situ demethylation o f MeHg in 

the brain (Table 3.2). Previous studies have suggested that MeHg may be demethylated in the 

brains of cetaceans (Augier et al., 1993; Cardellicchio et al., 2002; Joiris et al., 2001; Meador et 

al., 1999). Unlike cetaceans, the majority of brain Hgx was composed o f MeHg in polar bears 

(Basu et al., 2009; Krey et al., 2012), raccoons (Porcella et al., 2004), and mink (Basu et al., 

2005b).

Demethylation of MeHg followed by the formation of compounds similar to mercury selenide 

(HgSe) was linked to successful detoxification o f Hg in organic Hg-exposed humans (Korbas et 

al., 2010). The low percentage of MeHgx in brain tissue from beluga whales could be indicative 

of demethylation taking place in the four brain regions analyzed. When we compared the 

concentration of MeHgx to threshold levels, we found that 100% of the whales had MeHgx 

concentrations below 2 mg kg'1 in the four brain regions analyzed (n = 19 to 22). Therefore, if
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MeHg is indeed the neurotoxic form of Hg, biological monitoring o f beluga whales and other 

cetaceans must focus on the concentration of MeHg in brain tissue to evaluate risk o f Hg 

exposure.

Co-accumulation of Hgr and Ser

The molar concentration o f Ser was significantly predicted by molar Hgx concentration in all 

brain regions {p < 0.001). The stoichiometric relationship of Hg and Se co-accumulation in the 

BS was [Ser] = 1.0 x [Hgx] + 7.1 (r2= 0.98, n = 39), SC was [SeT] = 1.1 x [Hgx] + 5.5 (r*= 0.95, 

n = 77), FL was [Sex] = 0.98 x [Hgx] + 7.1 (r2 = 0.98, n = 77), C was [Ser] =1.1 x [Hgx] + 6.0 (r2 

= 0.97, n = 83) and TL was [SeT] = 1.0 x [Hgx] + 7.0 (r2 = 0.98, n = 81) for whales harvested in 

2006, 2008 and 2010. The median and range o f molar ratios of Hg:Se in the five brain regions 

were: BS = 0.48 (0.08-0.88), SC = 0.50 (0.03-0.87), FL = 0.55 (0.08 -  0.96), C = 0.60 (0.06 -  

0.93) and TL = 0.58 (0.08-1.01) (Table 3.1). Molar concentrations of Sex consistently exceeded 

Hgx in the five brain regions analyzed. The molar ratio o f Hg:Se was less than one, in 80 of 81 

whales analyzed. These consistent linear relationships between Hg and Se accumulation strongly 

suggest that an interaction occurs between these elements in the brains of belugas. The binding 

o f iHg to Se in a 1:1 ratio has been observed in the liver o f high trophic level mammals, and may 

partially protect organisms from MeHg-associated toxicity (Dietz et al., 2013). Selenium is an 

essential element in the nervous system, it is both a micronutrient and antioxidant, and adverse 

biological effects occur when bioavailable Se is below (deficiency) or above (toxicity) thresholds 

(Khan and Wang, 2009). It was suggested that the toxicity of MeHg could be linked to its high 

binding affinities with Se, limiting the bioavailability o f Se for Se-dependent enzyme activity in
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brain tissues (Watanabe et al., 1999). Our findings that the molar concentration o f Sex 

consistently exceeded Hgx (i.e. Hg:Se < 1:1) in different beluga brain regions suggest that this 

hypothesis of limited availability of Se is not applicable.

Previous studies have suggested that a bio-transformation process may occur in the brain, 

initiated by the demethylation o f MeHg followed by the formation of inert HgSe granules (Nigro 

and Leonzio, 1996). Selenium may also reduce the toxicity o f Hg by reducing oxidative stress of 

Hg, forming inert compounds with Hg and forming bis(MeHg) selenide (Khan and Wang, 2010). 

In beluga brains, 30 to 40 % of Hgx was MeHgx and iHgiabiie, and the remainder was an 

unidentified Hg moiety. An unknown peak (U l) was observed in almost all temporal lobe 

samples at the same retention time as a Se peak. Direct identification of the chemical nature of 

Ul was not successful due to the low concentrations involved. However, based on retention 

times of known Hg and MeHg compounds, Ul cannot be the inert HgSe compound (Lemes et 

al., 2011); instead, it is most likely a mercuric cysteinate (Hg(SCys)2) or its selenocysteinate 

analogue (Hg(SeCys)2). Peaks identified as U2 are attributed to an organoseleno compound 

(Lemes et al., 2011). The co-accumulation of Hg and Se and the detection of an unidentified Hg 

moiety in the temporal lobe, suggests that Se may indeed play a role in the detoxification of Hg 

in the brains of beluga whales.

A previous study showed that no Hg peak was detected along the Se peaks in the Se speciation 

method (Lemes et al., 2011). This suggests that Hg or MeHg is not present as a complex of the 

identified Se species, such as SeMet, CHjSeCys, or inorganic Se (IV or VI). However, two sets
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of Hg and Se peaks overlapped in the MeHg speciation method (Figure 3.2), though the 

identities o f the compounds remain elusive.

The presence of elevated Hg in the brain tissue of beluga whales and other cetaceans may be due 

to the demethylation of MeHg and co-accumulation of Hg and Se. Co-exposure to Se and Hg has 

been linked to increased uptake o f MeHg in the brain (Chen et al., 1975); and the half-life of iHg 

in the brain of primates was estimated to be 230 to 540 d compared to 37 d for MeHg (Vahter et 

al., 1995). Therefore, although Se is likely involved in the detoxification of Hg in the brains of 

belugas, dietary exposure to both Hg and Se may contribute to the elevated concentrations o f Hg 

detected in the beluga brains in this study.

Tissue distribution of Hg

The distribution of H g  in frequently sampled organs o f beluga whales could provide insight into 

neurotoxicological risk of H g  exposure, and contribute to biomonitoring studies. Mercury 

concentration in the cerebellum could be predicted by liver H g  concentration ( ln ( H g cerebeiium) =  

0.77 x ln(Hgiiver) -  1.5; r2 = 0.73; p  < 0.05; n = 49), kidney H g  concentration ( ln (H g cerebeiium) =

0.88 x In(Hgkidney); r2 = 0.64; p  < 0.05; n = 17), muscle H g  concentration (ln(Hgcerebeiium) = 1.3 x 

ln (H g muscie) + 0.63; r2 = 0.57;p  < 0.05; n = 46) and blood H g  concentration ( ln (H g cerebeiium) = 1 -7 

x ln(Hgbiood) -4 .7 ; r2 = 0.32;p  < 0.05; n = 17). Therefore, H g r  concentrations measured in 

frequently sampled organs could be used to predict H g x  concentration in cerebellum and other 

brain regions. Total H g  concentrations measured in blood samples from beluga whales suggest

69



that half o f the whales analyzed in 2008 had H g x  concentrations exceeding the lowest effect level 

for H g x  in blood (200 ng mg'1) from the Minamata and Iraqi outbreaks (Clarkson, 1997).

4. Conclusions

A combination of bioaccumulation and biomagnification of MeHg and retention of demethylated 

inorganic Hg may account for elevated Hgx concentrations observed in brain tissue of beluga 

whales. Although demethylation and possible detoxification appear to occur in beluga whales, 

the effect of Hg exposure on brain function is not known. Total Hg concentrations in some 

beluga whales exceeded thresholds o f toxicity reported for humans and primates; therefore, it is 

possible that Hg exposure in beluga whales from the eastern Beaufort Sea could be associated 

with neurotoxicity. Future work will involve the investigation o f neurochemical disruption and 

behavioural variation associated with Hg exposure in this whale population. Protecting beluga 

whales from Hg exposure and associated toxicity is essential to protecting ecosystem health, 

including the health of humans who rely on belugas for cultural and physical well-being 

(Sejersen, 2001; Tyrrell, 2007).
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Figure 3.1 Map of the Inuvialuit Settlement Region. Sampling sites (Hendrickson Island and 
East Whitefish Station) and summering habitat of the Eastern Beaufort Sea beluga whale 
population (Amundsen Gulf and southern Beaufort Sea).
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Figure 3.2 Speciation of Hg and Se. Reverse phase HPLC-ICP-MS chromatograms showing the 
peaks ofHg (in black) and Se (in red) species in temporal lobe samples often beluga whales (A- 
J) from the Western Canadian Arctic, 2008. Ul and U2 denote two unidentified Hg and Se 
peaks, respectively.
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Males:
ln(Hg) = 1.6 x ln(age) - 4.5 

R2 = 0.33; p< 0.001
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ln(Hg) = 1.3 x In(age) -3.7 

R2 = 0.57, p= 0.05

20 30

Age (# growth layers)

Figure 3.3 Relationship between age and cerebellar HgT concentration. Positive relationship 
between age and cerebellar HgT concentration in male (square) and female beluga whales (filled 
circle) (n = 76).
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Figure 3.4 The non-linear relationship (exponential one phase decay) between percent MeHg 
and Hgr concentrations. The percent MeHg decreased exponentially with increasing Hgx in the 
spinal cord (n = 19), frontal lobe (n = 19), cerebellum (n = 22) and temporal lobe (n = 22) in 
brain samples collected from belugas (fetus, juvenile and adult whales) in 2008.
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Table 3.1 Concentrations (median and range, ww) of total Hg, Se and molar ratio of Hg:Se in 
beluga whales sampled during the summer harvests in the western Canadian Arctic in 2006, 
2008 and 2010.

Tissue n
HgT

(mg kg'1 o r ng m L'1)
Sex

(mg kg ‘)
M olar Ratio Hg:Se

Median Range Median Range Median Range

Brain stem 39 1.32 0.13-15.2 1.22 0.56-6 .79 0.48 0.08 -  0.88

Spinal Cord 77 1.25 0.02-11.1 0.98 0.32-5 .05 0.50 0 .03 -0 .87

Cerebellum 83 1.84 0 .05-16 .9 1.20 0.28 -  7.20 0.60 0 .06-0 .93

Temporal
Lobe 81 2.34 0 .06-22 .6 1.50 0 .30-10 .4 0.58 0.08-1 .01

Frontal
Lobe 77 1.84 0 .07-21 .9 1.26 0.51-8 .98 0.55 0 .08 -0 .96

Liver 50 19.1 0 .28 -108 8.15 0.84-37 .5 0.93 0 .13 -2 .74

Kidney 23 4.90 0 .12-10 .9 3.48 1.13-6.62 0.50 0.04 -  0.95

M uktuk 24 0.35 0 .07-0 .88 3.63 0.62-5 .97 0.04 0 .01-0 .16

Muscle 57 1.10 0 .11-3 .39 0.35 0 .19-0 .86 1.21 0.23 -  2.79
Whole
Blood 17 200 77 .4 -515 N/A N/A N/A N/A

number of samples analyzed. Blood density is approx 1.02 mg pL' . Blood, kidney and muktuk 
samples were only available for 2008. Muktuk refers to blubber and outer skin layers. N/A 
denotes no sample available.
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Table 3.2 The concentrations of Hgi, and percent MeHg reported for brain tissue from different 
mammalian wildlife species. Approximate wet weight (ww) concentrations were calculated 
when necessary based on reported moisture content in brain tissue.

Species Location [Hgr] 
(mg kg'1 ww)

MeHg (%) Reference

Risso’s dolphin 
(G. griseus)

Northwest
Mediterranean

-0 .7 1 -3 9 .1 8 -5 1

(Capelli et 
al., 2008)

Striped dolphin 
(S. coeruloalba) -  0.99, 7.26 34, 90

Bottlenose 
dolphin 

(T. truncates)
-0 .2 1 , 12.5 61, N/A

Polar bear ( Ursus 
maritimus) Nunavik, QC, CA -  0.06 ± 0.02 100 (Krey et al., 

2012)
Raccoon 

(Procyon lotor) FL, USA 0.286 96 (Porcella et 
al., 2004)

Wild mink 
(Mustela vison) NS, ON and YT, CA -0 .0 7 -4 .9 0 88.8 ± 15.4 (Basu et al., 

2005a)
Wild river otter 

(Lutra lutra) NS and ON, CA 0 .02-3 .58 68 ± 3 4 .8 -  
78 ±30.4

(Basu et al., 
2005c)
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Table 3.3 Concentrations (median, range) of labile Hg species (MeHgx and iH g ia b i i e )  and iHg 
species complexed to proteins or selenium in the cerebellum, temporal lobe, frontal lobe and 
spinal cord of fetal, juvenile and adult beluga whales (n = 22) sampled on Hendrickson Island in 
2008. The percentages of each Hg fraction over total Hg measured are presented as median and 
range.

Brain region N
Labile Hg Species (mg kg'1 ww)

Bound Hg 
(mg kg'1 ww)MeHg iHg

Cerebellum 22 0.27 (0.04-0.53) 
12% (5-107% )

0.56 (nd-1 .05) 
20% (0 -  39%)

1.70 (nd -  6.07) 
68% (0 -84% )

Temporal lobe 22 0.44 (0.04-1.05) 
11% (4-109% )

0.74 (nd-1 .59) 
19% (0 -  27%)

2.50 (nd -  19.9) 
71% (0 -89% )

Frontal lobe 19 0.34 (0.08-0.85) 
12% (4-109% )

0.70 (0.01 -  1.55) 
20% (7 -4 1 % )

1.98 (nd -  17.9) 
66% (0 -8 8 % )

Spinal cord 19 0.18(0.03-0.43) 
11% (4-108% )

0.45 (nd-1 .05) 
29% (0 -  44%)

0.88 (nd -  5.78) 
56% (0 -  85%
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Bridge

In the previous chapter, I identified that mercury (Hg) concentrations in brain tissue from beluga 

whales sampled from the Eastern Beaufort Sea population between 2006 and 2010 frequently 

exceeded concentrations previously associated with neurotoxicity and neurochemical disruption. 

Beluga whales in the Arctic may be at risk o f neurochemcial disruption associated with MeHg 

exposure given that neurochemical variation was associated with MeHg exposure in wildlife and 

laboratory animals (Basu et al., 2005a; Basu et al., 2005c; Basu et al., 2009; Scheuhammer et al., 

2008). Therefore, in the next two chapters I use neurochemical and molecular biomarkers to 

assess the potential disruption of neurological signaling pathways associated with MeHg 

exposure in beluga whales.
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Chapter 4. Mercury and selenium exposure is associated with 
molecular and neurochemical biomarkers of Arctic beluga whales 

(Delphinapterus leucas).
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Abstract

Elevated concentrations o f mercury (Hg) were found in beluga whales (Delphinapterus leucas) 

from the eastern Beaufort Sea population but effects o f Hg on brain chemistry are not known. 

Brain tissue samples from the cerebellum and temporal cortex of 35 harvested beluga whales 

from Hendrickson Island, Canada were collected in 2008 and 2010. Neurochemical and 

molecular biomarkers were measured with radioligand binding assays and quantitative Real 

Time polymerase-chain-reaction, respectively. Total Hg (Hgr) and selenium (Sej) concentrations 

were analyzed using inductively coupled plasma mass spectrometry (ICP-MS); methylmercury 

(MeHg) and labile inorganic Hg (iHgiabiie) were measured via high performance liquid 

chromatography ICP-MS. Total Hg concentration ranged from 1.7 to approx. 113 mg kg'1 dry 

weight (dw) in cerebellum and 2.6 — 113 mg kg'1 dw in temporal cortex. Total Hg, MeHg and 

Sex were negatively associated with y-amminobutyric acid type A receptor (GABAa-R) binding 

in the cerebellum (p < 0.05). The expression o f mRNA for GABAa -R subunit a2 was negatively 

associated with Hgr and iHgiabiie concentration (p < 0.05). Furthermore, GABAa-R binding was 

positively correlated to mRNA expression for GABAa -R a2 subunit, and negatively correlated 

to the expression of mRNA for GABAa-R a4 subunit (p < 0.05). Inorganic Hg was negatively 

associated with the expression of N-methyl-D-aspartate receptor (NMDA-R) subunit 2b mRNA 

expression in the cerebellum (p < 0.05). Based on these results, the GABAa-R might be more 

sensitive to Hg, MeHg and iHgiabiie exposure than the NMDA-R. These results suggest that 

variation o f molecular and/or biochemical components o f the GABAergic and glutamatergic 

signaling pathways were associated with MeHg exposure in beluga whales.
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Introduction

Contaminants have been monitored for decades in the eastern Beaufort Sea (EBS) beluga whale 

{Delphinapterus leucas) population in the western Canadian Arctic (Fisk et al., 2005). Mercury 

(Hg) is of particular concern in this population of beluga whales due to elevated concentrations 

observed in samples collected in the 1990s (Wagemann et al., 1998). Furthermore, total Hg 

(Hgi) concentrations in brain tissue of beluga whales sampled from the EBS population between 

2006 and 2010 exceeded concentrations previously associated with neurotoxicity and 

neurochemical disruption (median Hgr concentration was 2.34 mg kg'1 wet weight (range, 0.06 

to 22.6 mg kg'1 ww) in temporal lobe (n = 81)) (Ostertag et al., 2013). For example, the 

concentration of HgT in brain tissue associated with lethal, acute onset MeHg poisoning was 16.8 

mg kg'1 ww in the cerebellum of one adult human (Eto et al., 1999), and Hgi concentrations 

between 4.1 and 15.9 mg kg'1 ww in brain tissue o f captive mink (Wobeser et al., 1976) and 

between 6.6 and 18.0 mg kg'1 ww in primate species were associated with clinical symptoms of 

poisoning (e.g. visual impairment, lesions in the cerebral cortex, anorexia and incoordination) 

(Berlin etal., 1975a; Evans etal., 1977; Shawetal., 1975). Mercury concentrations below ~2 to 

5 mg kg'1 ww were likely below thresholds for overt clinical symptoms of MeHg toxicity in 

mink (Suzuki, 1979; Wobeser et al., 1976); however, Hgr concentrations ranging from 1.5 ±

0.34 to 15.4 ± 3.9 mg kg'1 dry weight (dw) in brain tissue were associated with neurochemical 

variation in captive mink (Basu et al., 2010; Basu et al., 2007c; Basu etal., 2006b).

Methylmercury can pass the blood brain barrier and placenta to exert toxic effects on the central 

nervous system of adults and fetuses (Clarkson and Magos, 2006; Magos and Clarkson, 2006).
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Overall, the toxicity of MeHg has been linked to its reactivity with sulfhydryl groups 

(Chakrabarti et al., 1998). Examples o f how MeHg appears to exert its neurotoxicity include the 

disruption of intracellular calcium homeostasis (Anner et al., 1992; Sirois and Atchison, 2000; 

Yee and Choi, 1996), alteration of neurotransmission (Arakawa et al., 1991; Atchison and Hare, 

1994; Narahashi et al., 1994; Vidal et al., 2007; Yuan et al., 2005) and causing oxidative stress 

(Yee and Choi, 1996; Young et al., 2002). Neurochemical changes are potential indicators of 

neurological harm because they may precede functional or structural damage of the nervous 

system (Manzo et al., 2001). Previous studies have suggested that the interaction of MeHg or 

inorganic Hg (iHg, Hg2+) with cysteine residues may inhibit, stimulate or damage components o f 

the dopaminergic (Gomes et al., 1976), cholinergic (Castoldi et al., 1996), GABAergic (Huang 

and Narahashi, 1997; Narahashi et al., 1994), and glutamatergic (Albrecht and Matyja, 1996) 

signaling pathways. In wildlife studies, MeHg exposure was associated with significant 

reductions in y-aminobutyric acid type A receptor (GABAa-R) binding in lab-exposed mink 

(Mustela vison) (Basu et al., 2010) and decreased N-methyl-D-aspartate receptor (NMDA-R) 

binding in several brain regions of MeHg-exposed bald eagles (Haliaeetus leucocephalus) 

(Rutkiewicz et al., 2011; Scheuhammer et al., 2008), mink (Basu et al., 2007c), and polar bears 

(Ursus maritimus) (Basu et al., 2009). It is believed that such MeHg-associated neurochemical 

changes may have consequences to the whole organism as these receptors are components o f the 

main inhibitory and excitiatory pathways in the central nervous system, and they play important 

roles in animal behaviour, memory and motor function (Popescu, 2005; Reis et al., 2009; Vicini 

and Ortinski, 2004).
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Arctic beluga whales may accumulate elevated concentrations of Hgj in their brains due to their 

diet, long lifespans and the demethylation o f MeHg (Ostertag et al., 2013). Previous studies have 

indicated that Hgr concentrations in brain tissue from Arctic beluga whales may exceed mean 

concentrations observed in other Arctic biota (e.g. polar bears, seals and humans) (Dietz et al., 

2013). Although 14 % of Arctic beluga whales had Hg concentrations that exceeded 6.0 mg kg'1 

ww (Ostertag et al., 2013), a concentration associated with toxicity in feeding trials (Berlin et al., 

1975a; Evans et al., 1977; Luschei et al., 1977), the potential neurotoxicity o f MeHg exposure 

has not been explored to date in beluga whales. Previous research has shown that Hg 

concentrations were lower in the cerebellum than the temporal cortex of Arctic beluga whales 

(Ostertag et al., 2013); however, the cerebellum is particularly sensitive to MeHg exposure and 

destruction of cerebellar granule cells characterizes MeHg intoxication in humans and wildlife 

(Basu and Head, 2010; Clarkson and Magos, 2006). Demethylation o f MeHg in Arctic beluga 

whales is likely, and labile iHg concentrations were consistently higher than MeHg 

concentrations in the temporal cortex, cerebellum, frontal cortex and spinal cord (Ostertag et al., 

2013). Given that iHg cannot easily cross the blood-brain barrier, the presence o f iHg in the brain 

is likely due to in-situ demethylation of MeHg (Clarkson and Magos, 2006). The brain is 

expected to be more sensitive to MeHg than iHg, based on brain pathology and symptoms 

associated with MeHg poisoning (Magos et al., 1985). Our previous findings o f co-accumulation 

o f Se and Hg suggested that Se may play a role in MeHg detoxification in beluga whales 

(Ostertag et al., 2013). Therefore, the potential neurotoxicity of elevated Hgr requires further 

study in beluga whales, and should take into account Hg speciation and postential detoxification 

associated with Se co-accumulation.
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The objective of this study was to characterize the relationship between concentrations of 

different chemical forms of Hg (Hgr, MeHg and iHg), total selenium (Ser), and the molar ratio 

of Hg to Se, and various neurochemical and molecular biomarkers in different brain regions of 

beluga whales. The overall hypothesis was that environmentally relevant Hg concentrations 

currently found in brain tissue o f Arctic beluga whales would be associated with neurochemical 

and molecular variation in components o f the GABAergic and glutamatergic signaling pathways.

Methods

Sample collection

Harvested beluga whales were sampled on Hendrickson Island, NT, Canada in 2008 (n = 20) and 

2010 (w = 15) as described previously (Ostertag et al., 2013). Prior to each sampling season, a 

research permit and scientific license to fish were obtained from the Aurora Research Institute 

and Department of Fisheries and Oceans (DFO), respectively. The sampling program was 

approved and supported by the Tuktoyaktuk and Inuvik Hunters and Trappers Committees for all 

sampling years.

Following the beluga harvest, the animal head was removed from the body by severing the joint 

between the skull and atlas with a knife according to the instructions given by Noel Raymond, an 

Inuvialuit beluga harvester (personal communication, July 1, 2006). The brain was removed 

from the skull using an autopsy saw (MOPEC®, Elmira, Michigan) and subsamples were 

collected and frozen within 3 h o f animal death. Subsamples of cerebellum and temporal cortex 

were collected from harvested beluga whales in 2008 and 2010 to measure metal concentrations
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and speciation, neurochemical biomarkers and mRNA expression. Samples (~ 0.5 -  3 g) for 

metals and speciation analyses were frozen at ~ -20 °C, samples for neurochemical analyses (~ 

0.5-1 g) were flash-frozen and stored in liquid nitrogen, and samples (~ 0.07 g) for mRNA 

expression assays were flash-frozen in 2008. In 2010, samples were placed in RNALater™at 

approx 4 °C for 24 h prior to freezing at -20 °C. Sample numbers varied for the different assays 

due to subsample availability for the separate analyses. Age was estimated by counting 

individual growth layer groups in the dentine from a thin section of tooth at the Freshwater 

Institute, Winnipeg, MB (Stewart, 2006). The concentrations o f Hgi, iHgiabiie, MeHg and SeT 

were determined previously for the cerebellar cortex and temporal cortex (Ostertag et al., 2013). 

Chemical forms of Hg were analyzed following the method developed by Krey et al. (2012) as 

described previously (Ostertag et al., 2013).

Membrane preparation

For receptor binding assays, membrane preparations were prepared by homogenizing frozen 

brain tissue (~ 2 g ww) in Na/K buffer (10 mL/g tissue) with a tissue tearer for 30 s using a 

previously described method (Basu et al., 2005c). Endogenous ligands were removed by 

centrifugation three times with Na/K buffer and membranes were re-suspended in buffer, 

aliquoted, flash frozen in liquid nitrogen and stored at -80 °C. Protein concentration was 

determined with the Bradford assay and bovine serum albumin was used as the standard.
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Receptor binding assays

Receptor binding assays were adapted from previous studies by Basu et al. (Basu et al., 2010; 

Basu et al., 2007c; Basu et al., 2009). In brief, 30 pg of membrane preparation was re-suspended 

in buffer and added to a microplate containing a 1.0 mM GF/B glass filter (Millipore, Boston, 

MA, USA). Membrane protein was suspended in 100 pL Tris buffer (pH 7.4; NMDA: buffer 

contained 100 pM glycine and glutamate) and incubated for 30 min on ice with [3H]- 

flunitrazepam ([3H]-FNP; 0.5 nM) or 120 min at room temp with [3H]-MK-801 (16 nM), 

respectively for GABA and NMDA. All incubation steps were carried out with gentle shaking 

and binding reactions were ended by vacuum filtration. The filters were rinsed three times with 

buffer and were then soaked for 72 h in 25 pL OptiPhase Supermix Cocktail (PerkinElmer). 

Radioactivity retained by the filters was quantified in a microplate detector (Wallac Microbeta, 

PerkinElmer) and counting efficiency was approx 40%. Specific binding was calculated as the 

difference between radioligand binding in the presence and absence of inhibitor: 20 pM 

clonazepam for GABAa-R, and 100 pM MK-801 for NMDA-R. Receptor binding is reported as 

fmol of radioisotope bound per mg of membrane protein (fmol mg'1).

Expression of mRNA

Total RNA was extracted from approx. 80 mg samples using 1 mL Trizol using the Qiagen 

RNeasy™ Lipid Tissue kit. Total RNA was treated with Ambion™ DNase | buffer (6 pL), 

rDNAse | (1 pL) and DNase Inactivation reagent (6 pL), prior to quantification of RNA-40 using 

a spectrophotometer (Nanodrop, ND-1000). Taqman reverse transcription reagents (Applied 

Biosystems) were used for the generation o f complementary DNA (cDNA) for all samples. A

87



master mix made up of 10 pL 10 X Taqman Reverse Transcriptase buffer, 22 pL MgCh, 20 pL 

random hexamers (50 pM), 2 pL RNase inhibitors, 2.5 pL reverse transcriptase was made that 

was sufficient for all samples for one brain region (each sample: 1 pg RNA, total volume o f 100 

pL). Concurrently, the identical reaction was performed without reverse transcriptase, to ensure 

the absence of genomic DNA (No Reverse Transcriptase (NRT) control). The following 

thermocycler parameters were used for the generation o f cDNA archive: 25 °C for 10 min, 37 °C 

for 60 min, and 95 °C for 5 min (DYAD™, DNA Engine).

Primer pairs were designed within conserved nucleotide regions of the genes o f interest based on 

the alignment of genes from multiple species (human, cow, goat, pig, primate (chimpanzee and 

macaque), dog, cat and sheep) using the National Centre for Biotechnology Information (NCBI) 

website. These primers were used in polymerase chain reaction (PCR) reactions on cDNA from 

beluga cerebellum (n = 2) to develop species-specific primers and probes. The PCR products 

were direct-sequenced at UBC Okanagan (Fragment Analysis and DNA Sequencing Services, 

Kelowna, CA), which were then used to design species-specific primers. Chromatograms were 

edited and the retrieved sequences were run through the NCBI website (Standard Nucleotide 

BLAST) to ensure they matched the conserved sequences of genes. The sequence obtained for 

NMDA-2c did not match the conserved sequence; therefore, the data for this target gene are not 

presented in this study. Species-specific primers and fluorogenic probes (IDT, Coralville, Iowa) 

were designed using Genscript RT-PCR primer design (Table 4.1).
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All PCR runs were performed under identical conditions using the 7300 Real-Time PCR System 

(Applied Biosystems). Real time assays were performed in 96-well optical plates in duplicate. 

Simplex assays were run with iTaq™ Supermix with ROX kit (Biorad). PCR mastermix was 

prepared and each 25 pL reaction contained 12.5 pL iTaq mix, 500 nM of appropriate forward 

and reverse primers, 250 nM probes and 2.5 pL template for cerebellar cortex and 5.0 pL 

template for temporal cortex samples. The thermocycle program included an enzyme activation 

step at 95 °C (10 min) and 40 cycles of 95 °C (15 sec) and 60 °C (1 min).

Standard curves were generated for all genes from serial dilutions of cDNA to calculate 

efficiencies for target and reference genes. The mean Ct value for the three lowest Hg-exposed 

animals was used as the control. Pooled sample was included in triplicate for each plate to 

monitor inter-plate variability of s9 expression (reference gene). No-RT samples were included 

in each plate to ensure the absence of genomic DNA. The difference in thermal cycles for the 

control and sample were calculated for each target gene and reference (s9). Fold changes for 

each sample and target gene were calculated relative to the reference gene s9 (Pfaffl, 2001).

RNA purity and quality was evaluated using a NanoDrop (ND-1000, NanoDrop Technologies, 

USA). The optical density (OD) ratio o f260 nm/280 nm wavelengths was used as an indicator of 

RNA quality, with ratios greater than 1.8 indicating good RNA quality (Fleige and Pfaffl 2006). 

RNA integrity was evaluated using Experion (Bio-Rad Laboratories, USA). The ratio of 28S:18S 

and RNA Quality Indicator (RQI) value were used to evaluate degradation, with a 28S:18S ratio 

of 2.0 (Fleige and Pfaffl, 2006) or RQI o f 10 indicating perfect integrity (Taylor et al., 2009).
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Data Analysis

Mercury concentrations were log-transformed to meet assumptions o f normality and 

homogeneity of variance. Fold-change ratios and receptor densities were log-transformed when 

necessary to meet assumptions o f normal distribution and homogeneity of variance. Non- 

parametric tests were used when necessary if  transformations were unable to improve the fit of 

data. The relationship between neurochemistry and the concentration of Hgx, Hg species and Se 

was explored using Pearson correlation coefficients followed by multiple linear regression 

analysis. A backwards stepwise approach was used to evaluate the statistical significance o f age, 

Hg (Hgr, iHgiabiie, MeHg, Sex, and Hg:Se) and sampling year on neurochemical or molecular 

biomarker. We removed influential outliers after examination o f studentized residuals, leverage 

and Cook’s D influence. Pearson correlation coefficients were calculated for the expression of 

target genes and corresponding receptor binding levels. Correlations (Pearson and Spearman), F- 

values, Wilcoxon rank-sum test, and t-tests were considered to be statistically significant \ ip  < 

0.05. The sample size for females was <10 and could reduce our ability to detect a difference in 

biomarkers associated with gender. Data in tables and graphs are displayed in the original scale 

of measurement.

Results

The harvested whales ranged in estimated age from 16 to 60 yr, and the median age was 27 yr. 

Total Hg concentration ranged from 1.7 to ~ 113 mg kg'1 dw in cerebellum and 2.58 -  113 mg 

kg'1 dw in temporal cortex and were correlated between brain regions (r = 0.9, n = 28). Twenty 

whales were sampled in 2008 (16 male, 4 female) and 15 whales were sampled in 2010 (15
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males, 0 females). Total Hg, MeHg and Se concentrations were higher in the temporal cortex 

than cerebellum, but the concentration o f iHgiabiie and molar ratio of Hg to Se did not vary 

between brain regions. Age was correlated to Hgr and Ser in the cerebellum and temporal cortex, 

iHgiabiie and Hgr to Ser stoichiometric ratio in the temporal cortex but not cerebellum. The 

concentrations of iHgiablie and MeHg represented 38 % (11 — 89 %) and 36 % (11 -104 %) of 

total Hg in cerebellum and temporal cortex, respectively. The remaining Hg was not identified or 

quantified in this study because it was not soluble in the extraction solution used for speciation 

analysis (Ostertag et al., 2013).

In the cerebellum, non-specific binding represented 35% and 45% of total binding for GABAa-R 

and NMDA-R, respectively. In the temporal cortex, non-specific binding represented 11% and 

34% of total binding for GABAa-R and NMDA-R, respectively. Inter-plate variability ranged 

from 11 to 15% for NMDA-R and GABAa-R binding assays. The optical density ratio was > 1.8 

for all RNA samples indicating acceptable RNA purity. The ratio o f 28S:18S was < 2 and RNA 

quality index (RQI) was < 10 for a subset of samples analyzed via Experion (BioRad). The 

median and range of28S:18S and RQI were 0.83 (0.3-1.87) and 6.9 (3.7-8.9), respectively fora 

subset o f samples (n = 12), which indicated acceptable RNA quality. The Ct values for the 

internal control gene (s9), did not vary with age or Hg concentration in the cerebellum or 

temporal cortex, therefore it was considered a suitable internal control for data analysis. There 

was no amplification of NRT control following RT PCR.

91



GABAergic signaling pathway

Receptor binding was higher in the temporal cortex (median, range: 177,137 -  291 fmol mg'1 

protein) than cerebellum (median, range: 37, 11 - 113 fmol mg'1 protein for GABAa-R ( z =  -4.3, 

p  < 0.0001). Total Hg and iHgiabiie concentrations were negatively correlated to GABAa -R 

binding in the cerebellum (Figure 4.1 A; r = -0.49,/? < 0.001), but not temporal cortex (Figure 

4 .IB; r = -0.51,/? < 0.01)). Gender was not associated with differences in GABAa receptor 

binding in either cerebellum or temporal cortex, and age was not correlated to GABAa receptor 

binding in either brain region (data not shown). Receptor binding levels for GABAa were 

significantly higher in samples collected in 2010 than 2008 (t = -3.89, DF = 29,/? < 0.001) for 

cerebellum samples but not temporal cortex samples (t = -0.7306, DF = 22, p >  0.05). The 

results from three backward stepwise multiple regressions that included Hgr, MeHg or iHgiabiie, 

in combination with animal age and sampling year, for both brain regions, indicated that the 

following models significantly (p < 0.05) predicted log-transformed GABAa receptor binding 

levels in the cerebellum (Table 4.2): 1.8 + 0.17(year) -0.21(log(Hg)), 1.3 + 0.33(year) - 

0.25(log(MeHg)) + 0.008(age), and 1.6 + 0.19(year)* -0.25(log(iHg)). O f the Hg species tested 

as predictor variables, only Hg and MeHg were found to be significant (Table 4.2). The models 

tested did not significantly predict GABAa-R binding levels for the temporal cortex (Table 4.2).

In the cerebellum and temporal cortex, H g r  was negatively correlated to the expression of 

GABAa-R a2 mRNA (Figure 4.2A: cerebellum: r = -0.48, p < 0.01, temporal cortex: r = -0.56,/? 

< 0.01). Methylmercury (r=  -0.44,/? < 0.05) and iH g ia b i ie  (r = -0.43,/? < 0.05) concentrations 

were also correlated to GABAa-R a2 mRNA expression in the temporal cortex (Figures 4.2B
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and 4.2C), but not cerebellum. Gender was not associated with differences in mRNA expression 

for the target genes analyzed. The expression of mRNA for GABAa cl4 was positively correlated 

to age in the cerebellum (r = 0.45,/? < 0.05), but age was negatively associated with GABAa a2 

in temporal cortex (r = -0.38,/? < 0.05). There were differences in mRNA expression between 

sampling years for GABAa oc2 (cerebellum: z = -4.572, p < 0.0001; and temporal cortex: t = - 

3.91, DF = 28, p < 0.001) and GABAa a4 (cerebellum: t = 5.14, DF = 26, p < 0.0001; temporal 

cortex: z = -2.75, p < 0.01). The results from three backward stepwise multiple regressions that 

included Hgi, MeHg or iHgiabiie> in combination with animal age and sampling year, for both 

brain regions, indicated that the following models significantly (/? < 0.05) predicted log- 

transformed GABAa a2 mRNA expression (Table 4.2) in the cerebellum: -300 + 0.15(year) -  

0.15(log(Hg)), -326 + 0.16(year) -  0.13(log(MeHg)) and -340 + 0.17(year) -  0.16(log(iHg)), and 

in the temporal cortex: -283 + 0.14(year) -  0.10(log(Hg)), -315 + 0.16(year) - 0.26(log(MeHg)), 

and -304 + 0.15(year) -  0.09(log(iHg)). O f the Hg species tested as predictor variables, only Hgx 

was a significant predictor for GABAa a.2 mRNA expression in the cerebellum, and MeHg was 

a significant predictor of GABAa a2 mRNA expression in the temporal cortex (Table 4.2). 

However, iHgiabiie was not a significant predictor o f GABAa a.2 mRNA expression (p < 0.1) 

(Table 4.2). Only sampling year was a significant predictor o f GABAa a4 mRNA expression in 

both brain regions (data not shown).

Selenium (r = -0.49,/? < 0.01) and the stoichiometric ratio of Hg to Se (r = -0.40,/? < 0.05) were 

correlated to GABAa-R binding in the cerebellum (Figures 4.1C and 4 .ID), but not temporal 

cortex. The results from two backward stepwise multiple regressions that included Ser or the
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stoichiometric ratio of Hg to Se, in combination with animal age and sampling year, for both 

brain regions, indicated that the following models significantly (p < 0.05) predicted GABAa-R 

binding levels in the cerebellum (Table 4.2): 2.0 + 0.20(year) -  0.49(log(Se)) + 0.0067(age), and 

1.4 + 0.23(year) -  0.39(log(HgSe)). The stoichiometric ratio o f Hg to Se was correlated to 

GABAa-R a2 mRNA expression in the temporal cortex but not cerebellum (Figure 4.2D; r = - 

0.43,/? < 0.05). Total Se concentration was also correlated to mRNA expression for GABAa-R 

a l  in both brain regions (Figure 4.2E; cerebellum: r = -0.57, p < 0.01; temporal cortex: r = -0.59, 

p < 0.001), and GABAa-R a4 mRNA expression (Figure 4.2F; r = -0.49, p < 0.01) in the 

temporal cortex. The results from two backward stepwise multiple regressions that included Sex 

or the stoichiometric ratio of Hg to Se, in combination with animal age and sampling year, for 

both brain regions, indicated that the following models significantly (p < 0.05) predicted log- 

transformed GABAa-R ol2 mRNA expression (Table 4.2) in the cerebellum: -334 + 0.17(year) -  

0.11 (log(HgSe)) and -290 + 0.14(year) -  0.23(log(Se)); and, in the temporal cortex: -319 + 

.16(year) -  0.16(log(HgSe)) and -264 + 0.13(year) - 0.18(log(Se)). However, o f the selenium- 

related predictor variables tested, only the concentration of Se in the cerebellum was a significant 

predictor of log-transformed GABAa-R a4  mRNA expression.

Inconsistent relationships between mRNA expression for target genes and receptor binding or 

enzyme activity were observed. A significant positive correlation between GABAa-R a2 mRNA 

expression and GABAa receptor density was observed in the cerebellum (3A; r = 0.39, p < 0.05). 

A negative correlation was found between GABAa-R a4 mRNA expression and GABAa -R 

density in the cerebellum (Figure 4.3B; r = -0.38,/? < 0.1). Receptor binding and mRNA
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expression were not correlated in the temporal cortex for either the target gene, nor the receptor 

analyzed (data not shown).

Glutamatergic Signaling Pathway

Binding levels were higher in the temporal cortex than cerebellum for NMDA-R (z = -3.5, p  < 

0.001). Total Hg was negatively correlated to NMDA-R binding in the temporal cortex (r = - 

0.42, p  < 0.05) but not cerebellum (Figure 4.4A); however, MeHg and iHg were not correlated to 

NMDA-R binding. Gender was not associated with differences in NMDA-R binding in either 

cerebellum or temporal cortex. Age was not significantly correlated to NMDA-R binding in 

either brain region. Sampling year was associated with statistically significant differences in 

NMDA-R binding levels in the temporal cortex (t = -2.36,p  = 0.03), but not cerebellum (t = - 

0.69, DF = 29, p  = 0.50). The results from three backward stepwise multiple regressions that 

included Hgx, MeHg or iHgiabiie, in combination with animal age and sampling year, for both 

brain regions, indicated that only the following models tested for the temporal cortex (Table 4.3) 

were significant predictors of NMDA-R binding levels: -55 + 0.029(year) -  0.1 l(log(Hg)), -110 

+ 0.055(year) -0.12(log(MeHg)) and -63 + 0.033(year) -  0.15(log(iHg)). However, the HgT, 

MeHg and iHgiabiie were not significant predictors of log-transformed NMDA-R binding levels 

in the temporal cortex.

The expression of NMDA-R 2b was not correlated to Hg, MeHg or iH g ia b i ie  in either brain region 

(data not shown). Gender was not associated with differences in mRNA expression for NMDA-R 

2b. The expression o f mRNA for NMDA-R 2b was positively correlated to age in the cerebellum
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(r = 0.37,p  = 0.053) but not temporal cortex. There were statistically significant differences in 

mRNA expression and sampling year for NMDA-R 2b for the cerebellum (t = 5.99, DF = 28,p <  

0.0001) but not temporal cortex. The results from three backward stepwise multiple regressions 

that included Hgx, MeHg or iHgiabiie, in combination with animal age and sampling year, for both 

brain regions, indicated that only the following models tested for the cerebellum (Table 4.3) were 

significant predictors of mRNA expression for NMDA-R subunit 2b: 352 - 0.17(year) - 

0.16(log(Hg)), 319-0.16(year)-0.13(log(M eHg))and347 -0.17(year) -0.27(log(iHg)). O f the 

H g  species tested as predictor variables, only i H g ia b i ie  was a significant predictor o f NDMA-R 2b 

mRNA expression in the cerebellum (Table 4.3). Furthermore, the expression of mRNA for 

NMDA-R 2b and NMDA-R binding levels were not correlated in the temporal cortex or 

cerebellum (data not shown).

Selenium concentration was correlated to NMDA-R binding in the temporal cortex but not 

cerebellum (Figure 4.4B, r = -0.43, p  < 0.05). The molar ratio of Hg to Se was not correlated to 

NMDA-R binding in either brain region (data not shown). The results from two backward 

stepwise multiple regressions that included Sej or the stoichiometric ratio of Hg to Se, in 

combination with animal age and sampling year, for both brain regions, indicated that the 

following models significantly ip < 0.05) predicted log-transformed NMDA-R binding levels in 

the temporal cortex (Table 4.3): -63 + 0.039(year) -  0.28(log(HgSe)) and -56 + 0.029(year) -  

0.15(log(Se)). However, the stoichiometric ratios of Hg to Se, and the concentrations o f Ser were 

not significant predictors of NMDA-R binding levels in either brain region. Selenium 

concentration and the molar ratio o f Hg to Se were not correlated to NMDA-R subunit 2b mRNA
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expression either brain region (data not shown). The results from two backward stepwise 

multiple regressions that included Sex or the stoichiometric ratio o f Hg to Se, in combination 

with animal age and sampling year, for both brain regions, indicated that the following models 

significantly (p < 0.05) predicted log-transformed NMDA-R 2b mRNA expression in the 

cerebellum (Table 4.3): 325 -0.16(year) - 0.35(log(HgSe)) and 360 - 0.16(year) - 0.30(log(Se)) +

0.003(age). However, o f the selenium-related predictor variables tested, only Sex was a 

significant predictor o f NMDA-R 2b mRNA expression in the cerebellum.
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Table 4.1. Sequences o f primers and probes used for real time PCR.
Target gene Prim er sequence Probe

Fw Rvs

NMDA-R 

subunit 2b

ACAAGCGCTACTTCAGGGAC

a a

TGCGGCGAGGTCTCCTT t g c g g g a c t t c t a c c t g g a c c a g t t c

NMDA-2c c c t t c t a c a g g c a c c t a c t g a

a t g

g g t a c c c a c c a g g g c t g a a c c t g g g a g g g c c g g g a c t t c t c

GABAa-R  

subunit a2

t g t c c a a t g c a c t t g g a g g a t c g c a t a g c t g c c a a a t t t c

a

c g a a t c c a g g a t g a t g g g a c t c t g c t

GABAa-R  

subunit a4

t g t c c c a t g a g a t t g g t g g a t c a t c t c a c t c t t c g g a t a g

g c a t a

c a t g c a t g c c c t t t g a a a t t t g g g a g

S9 g c t g c t g a c g c t g g a t g a g c g c a g c a g g g c a t t g c a a g a c c c g c g g c g t c t g t t t g a a
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Table 4.2. Summary of backwards stepwise linear multiple regression analysis for the cerebellum and temporal cortex with 
GABAa receptor binding to [3HJ-FNP, and mRNA expression (fold change) for GABAa a2 and a4 as the three outcome 
variables tested. The predictor variables tested included total mercury (Hgj), methylmercury (MeHg), labile inorganic mercury 
( i H g i a b i i e ) ,  total selenium (Sex), or the molar ratio of H g j  to Ser, and sampling year, and animal age. Adjusted R squared values 
and F-values are provided for the models as indicated._______________ _____________________________________________

Biomarker
Cerebellum Temporal Cortex

Adjusted
R2 Intercept Slope F-value Adjusted

R2 Intercept Slope F-value

0.4 1.8 0.17(year)'-0.21(log(Hg))* F 2,24 =
8.9*

0.3 3.3 -0.001 (year) - 
0.0.5(log_Hg)

F 2.2 , =  
0.62

w
2Cl 0.4 1.3 0.33(year)* - 0.25(log(MeHg))* 

+ 0.008(age)
F s.is  =  
6.6*

0.2 -21 0.01(year)-
0.04(log_MeHg)

F 2.21 =  
0.34

<
<

0.3 1.6 0.19(year)* -0.25(log(iHg)) 1*2,24 =
7.6*

0.2 -6.9 0.004(year) — 
(0.05(logJHg))

F 2,21 =  
0.45

03
<
o 0.3 1.4 0.23(year)* -  0.39(log(HgSe)) F2.24 =

7.2*
0.08 7.2 -0.002(year) -  

0.05(log_HgSe)
F2.20
0.07

0.5 2.0 0.20(year)* -  0.49(log(Se»* + 
0.0067(age)

F 3.19 =
7.3*

0.07 21 -0.009(year) -  
0.1 l(log(Se))

F2,21 =  
1.05

<
0.8 -300 0.15 (year)* -  0.15(log(Hg))* F  2,24 =

50*
0.8 -283 0.14(year)* -  

0.10(log(Hg))
F 2,24 =
19.8*

E
0.8 -326 0.16(year)* -  0.13(log(MeHg)) II 

*ij
Urn 

^

0.8 -315 0.16(year)* - 
0.26(log(MeHg))*

F 2,25 =
24.2*

N8
Ot1

0.8 -340 0 .17(year)* -  0 .16(log(iHg))t F 2,25 =
44*

0.8 -304 0.15(year)* — 
0.09(log(iHg))

F 2,25 =
19.8*

<
<
03
<

0.8 -334 0.17(year)* -  0.1 l(log(HgSe)) F 2,26 =  
37.1*

0.7 -319 0.16(year)* — 
0.16(log(HgSe))

F 2,25 =  
19.6*

o
0.8 -290 0 .14(year)* -  0.23(log(Se))* F 2,24 =

54*
0.8 -264 0.13(year)* - 

0.18(log(Se))
F2.25 = 
21.8*

*p<0.05
‘ < 0.10
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Table 4.3. Summary o f backwards stepwise linear multiple regression analysis for the cerebellum and temporal cortex with 
NMDA receptor binding to [3H]-801, and mRNA expression (fold change) for NMDA subunit 2b as the three outcome
variables tested. The predictor variables tested included total mercury (Hgy), methylmercury (MeHg), labile inorganic mercury 
( i H g i a b i i e ) ,  total selenium (SeT), or the molar ratio of H g x  to Sej, and sampling year, and animal age. Adjusted R squared values 
and F-values are provided for the models indicated._________________ ________ ____________________________ ______ _

Biomarker
Cerebellum Temporal Cortex

Adjusted
R2 Intercept Slope F-value Adjusted

R2 Intercept Slope F-value

0.2 2.9 0.07(year) + 0.03(log(Hg)) -  
0.002(age)

1*3,19 =
0.71 0.6 -55 0.029(year) -  

0.1 KlogfHg))'
F2,19 =
5.7*

u
2a

0.1 2.9 0.06(year) + 0.09(log(MeHg)) -  
0.002(age)

1*3,19 =
0.83 0.5 -110 0.055(year)* - 

0.12(log(MeHg))
F2J9 = 
4.1*

s
06
<

0.2 2.9 0.08(year) + 0.07(log(iHg)) -  
0.002(age)

t*3,I9 =
0.74 0.5 -63 0.033(year) -  

O.lSOogOHg))'
F2J9 = 
5.6*

Z
0.2 2.9 0.06(year) -  0.003(log(HgSe)) -  

0.002(age)
F3,19 = 
0.66 0.5 -76

0.039(year) -  
O^OogCHgSe))'

F2.19 = 
5.5*

0.2 2.8 0.08(year) + 0.07(log(Se)) - 
0.002(age)

1*3,19 =
0.77 0.5 -56 0.029(year) -  

O.ISOogCSe))'
F2,I9 =
5.3*

0.8 352 -0.17(year)* -0.16(log(Hg)) 1*2,24 = 
26.1*

0.1 -28 0.01(year)-
0.02(log(Hg))

F2.26 = 
0.54

< 0.8 319 -0.16(year)* -0.13(log(MeHg))

_ 
TJ

so 
N

L* 
*

. * 
ii 0.1 -48 0.02(year) + 

0.2(log(MeHg))
F 2,27 
0.85

s
.a 0.8 347 -0.17(year)* -  0.27(log(iHg))* 1*2,24 _ 

28.1*
0.1 -29 0.01 (year)-  

0.05(log(iHg))
F 2,27 = 

1.1

z
0.8 325 -0.16(year)* - 0.35(log(HgSe)) 1*2,24

24.8*
0.05 -39 0.02(year) -  

0.05(log(HgSe))
F2.27 = 
0.95

0.8 360 -0.16(year) - 0.30(log(Se))* + 
0.003(age)

1*3,20 =
15.8*

0.1 -44 0.02(year) -  
0.008(log(Se))

F2,27 =
0.84

*p < 0.05 
‘ < 0.10
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Discussion

This is the first study to investigate the potential effects of Hg exposure in beluga whale brains at 

both molecular and biochemical levels. The major findings from this study were that Hgx and 

Sex concentrations, and different chemical forms of Hg, were associated with variation of both 

neurochemical biomarkers and mRNA expression in the cerebellar and temporal cortex of beluga 

whales. Total Hg, MeHg, iHgiabiie and Se were found to be significant predictors o f receptor 

binding and/or mRNA expression of various components o f the GABAergic and glutamatergic 

signaling pathways. Overall, our results suggested that the GABAa-R might be more sensitive to 

Hg, MeHg and iHgiabiie exposure than the NMDA-R. Although Se may detoxify MeHg in the 

brain, we did not observe a relationship between Sex co-accumulation with Hg that would 

suggest a protective effect o f Se for either signaling pathway, at a neurochemical or molecular 

level. Furthermore, the cerebellum may be more sensitive than the temporal cortex to 

perturbation of molecular and neurochemical components from the GABAergic signaling 

pathway. Regional differences were less apparent for molecular and neurochemical components 

o f the glutamatergic signaling pathway analyzed. The potential mechanisms of action and 

physiological outcomes o f these findings are discussed in relation to previous captive and 

wildlife animal studies, and in vitro studies.

GABAergic signaling pathway

Disruption of GABAergic signaling has been proposed as a basis for many neuropsychiatric 

disorders and pathologies (Reis et al., 2009). Gamma-butyric acid-A receptors have been linked 

to sedation, sleep, anxiety, seizures and amnesia (Vicini and Ortinski, 2004). The activity o f the
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GABAa-R is modulated by benzodiazepines (Chebib and Johnston, 1999), and drugs that 

enhance the function o f the benzodiazepine binding site result in symptoms very similar to 

symptoms of MeHg toxicity, including ataxia, lack o f muscular incoordination, motor 

disturbance and decreased Purkinje cell activity (Concas et al., 1983). The negative relationship 

between GABAa receptor levels and Hgj and MeHg in the cerebellar cortex but not temporal 

cortex was consistent with findings from captive mink in which GABA-R binding to [3H]- 

Muscimol in cerebellum but not occipital cortex were negatively associated with dietary 

exposure to MeHg (Basu et al., 2010). To our knowledge, the negative relationships between 

mRNA expression for GABAa a2, and Hg concentration (Hgj and MeHg) and Sex in the 

cerebellar and temporal cortex, are the first reported observations o f Hg-associated variation in 

mRNA expression for subunits of the GABAa-R.

Disruption of the GABAergic signaling pathway has been associated with dietary exposure to 

MeHg and in vitro exposure to MeHg and iHg. In acute MeHg feeding trials, MeHg-exposed rats 

had increased benzodiazepine binding sites, but not GABA binding sites in various brain regions 

(Concas et al., 1983; Corda et al., 1981). Methylmercury and iHg may disrupt GABAergic 

signaling through the inhibition o f GABA uptake by astrocytes, and the modulation of GABA- 

induced inward currents (Arakawa et al., 1991; Narahashi et al., 1994). Inhibition of the GABAa 

receptor could potentially lead to an excitatory effect (Sunol et al., 2008); therefore, receptors 

and enzymes that mediate GABAergic signaling are tightly regulated to protect neurons from 

excitotoxicity (Reis et al., 2009). Decreasing GABAa receptor levels could occur to maintain 

homeostasis of GABAergic signaling following Hg exposure (Basu et al., 2010). However,
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changes in the function of the GABAa system may adversely affect synaptic transmission if the 

balance between excitatory and inhibitory synapses is not maintained (Narahashi et al., 1994). 

Furthermore, balancing the excitatory and inhibitory signaling pathways may have an energetic 

cost to the whole organism (Basu et al., 2010).

Glutamatergic signaling pathway

NMDA receptors are involved in the formation and maintenance of synapses and are also 

required for learning and memory processes (Popescu, 2005). Glutamate binds to the NMDA-R 

and is the principle excitatory neurotransmitter in the brain; therefore, excessive amounts of 

glutamate in the synaptic space can cause overstimulation of neurons (Fitsanakis and Aschner, 

2005). Previous studies have found significant negative relationships between Hgx concentration 

and NMDA-R in polar bears (Basu et al., 2009), wild mink (Basu et al., 2007c), loons and eagles 

(Scheuhammer et al., 2008). The negative relationship observed for mRNA expression of 

NMDA-R 2b and iHgiabiie concentration are consistent with findings that MeHg exposure in rats 

was associated with a decrease in mRNA expression and protein densities of NMDA subunits 1, 

2A and 2B (Xu et al., 2013).

The activation o f NMDA receptors was found to play a key role in glutamate-associated 

excitotoxicity o f astrocyte cultures (Albrecht and Matyja, 1996). Methylmercury and/or Hg2+ 

interacted with the glutamatergic signaling pathway by increasing extracellular glutamate (Juarez 

et al., 2002), increasing the release of dopamine (Faro et al., 2002; Vidal et al., 2007), and 

increasing Ca2+ influx and apoptosis of cerebellar granule cells (Rossi et al., 1997). Furthermore,
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NMDA-R has been associated with MeHg-associated apoptosis in the cerebral cortex o f rats; 

pre-treatment o f rats with the NMDA-R antagonist MK-801 reduced apoptotic cells compared to 

the MeHg-treated group (Xu et al., 2013). Therefore, downregulation o f NMDA-R subunits may 

protect glutamatergic neurons from MeHg-associate excitotoxicity. Excessive NMDA-R activity 

promotes seizures and contributes to neuronal loss, which in turn is associated with hypoxia, 

brain injury and neurodegenerative diseases (Popescu, 2005).

Messenger RNA expression and neurochemistry

We observed inconsistent correlations between neurochemistry and the expression of mRNA for 

associated target genes. Given the lack of data specific to beluga whales, we provide possible 

explanations for the correlations observed based on the available literature. The positive 

correlation observed between mRNA expression and receptor binding suggests that 

downregulation of mRNA transcription for GABAa-R o2  (cerebellum) and NMDA-R 2b 

(temporal cortex) was associated with a decrease in GABAa-R and NMDA-R binding, 

respectively. However, increased mRNA transcription for GABAa “ 4 was negatively correlated 

to GABAa-R binding to [3H]-FNP. The decrease in GABAa-R binding associated with increased 

GABAa-R a4 mRNA expression may not actually be due to a decoupling of mRNA 

transcription and translation, but instead the insensitivity of receptors composed o f the a4 

subunit to FNP (Whittemore et al., 1996). An inverse relationship between the expression of 

mRNA and density of polypeptides for GABAa-R a2 and a4 was observed in cortical cells 

isolated from mouse fetuses and exposed to ethanol (chronic or chronic intermittent); however, 

mRNA expression was positively associated with polypeptide density for subunit a l  and a4
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(Sheela Rani and Ticku, 2006). Our findings suggest that GABAa-R binding and/or composition 

may be modulated by Hg exposure.

Potential detoxification of mercury by selenium

Previous research has linked Se accumulation in dolphins to potential detoxification of Hg 

(Cardellicchio et al., 2002). However, in this study, the molar ratio of H gto Se did not predict 

receptor binding levels or mRNA expression levels for either the GABAergic or glutamatergic 

signaling pathways. We would have expected the molar ratio o f Hg to Se to be associated with 

the biomarkers explored in this study, if  Se was indeed detoxifying MeHg. Therefore, the 

potential protective effects of Se must be further explored in future studies.
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Abstract

There are increasing concerns about potential subclinical impacts of chronic methylmercury 

(MeHg) exposure in Arctic wildlife and human populations. The objective of this study was to 

characterize the relationship between MeHg and selenium (Se) exposure, and various 

neurochemical and molecular biomarkers in different brain regions o f beluga whales. Samples 

were collected in 2008 in = 20) and 2010 (« = 15) on Hendrickson Island, NT, Canada, from 

hunter-harvested beluga whales. The concentrations o f total mercury (Hgi) and Se, and labile 

inorganic Hg (iHgiabiie) and MeHg, were determined by inductively coupled plasma Mass 

Spectrometry and high performance liquid chromatography, respectively. Receptor binding 

levels for the muscarinic acetylcholine receptor (mAChR) were quantified using radioligand- 

binding assays with a Chameleon™ liquid scintillation counter. Total monoamine oxidase 

activity was quantified using spectrofluorometery (Chameleon™). Quantitative Real Time 

Polymerase Chain Reaction was used to quantify the relative expression of mRNA for mAChR 

subtype ml and MAO-A. Total Hg concentrations ranged from 1.7 to ~ 113 mg kg '1 dw in 

cerebellar cortex and 2.58 -  113 m g kg*1 dw in temporal cortex. In the temporal cortex, mAChR 

binding was negatively associated with the ratio of Hg to Se; MAO activity was negatively 

associated with the concentrations of Hg, MeHg, iHg and molar ratio of Hgi to Se-r. The relative 

expression o f mRNA for mAChR subtype ml was statistically significantly associated with the 

concentrations o f Hg, MeHg, iHg and the ratio of Hg to Se in the cerebellum (temporal cortex 

samples unavailable). These results suggest that MeHg exposure was associated with 

neurochemical variation o f key components of the cholinergic and dopaminergic signaling 

pathways in the temporal cortex, and molecular variation of mAChR subtype ml in the
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cerebellum. Furthermore, these results suggest that accumulation of Sej may provide protective 

effects on mAChR and MAO activity. The response o f beluga whales to MeHg exposure at a 

physiological and population level remains to be elucidated.
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Introduction

Organisms that are high in the Arctic marine food web have elevated mercury (Hg) levels due to 

the length and complexity of Arctic food webs (Fisk et al., 2005). In mammals, methylmercury 

(MeHg) is transported across the intestinal mucosa and is able to cross the blood brain barrier 

(Aschner and Aschner, 1990). The brain is highly sensitive to MeHg, and elevated exposure has 

been associated with adverse neurological outcomes including ataxia, constriction of the visual 

field and damage to the auditory region of the temporal lobe (Clarkson, 1997; Ekino et al., 2007). 

Concerns have been raised about the subclinical impacts of chronic MeHg exposure in Arctic 

wildlife and human populations (Dietz et al., 2013). Total Hg (Hgr) concentrations in brain 

tissue from Arctic beluga whales ranged from 1.7 to ~ 113 mg kg'1 dw in cerebellum and 2.6 -  

113 mg kg'1 dw in temporal cortex (Ostertag et al., 2013). In beluga whales harvested in 2008 

and 2010, variation of molecular and/or biochemical components of the GABAergic and 

glutamatergic signaling pathways was associated with MeHg exposure in different brain regions 

(Ostertag et al., in review). Components o f the cholinergic and dopaminergic signaling pathways 

are known to be sensitive to MeHg exposure (Basu et al., 2005a; Basu et al., 2006a; Basu et al., 

2007b; Basu et al., 2006b; Beyrouty et al., 2006; Chakrabarti et al., 1998; Coccini et al., 2000; 

Coccini et al., 2007; Stamler et al., 2006); therefore, the effect o f the Hg and Hg species on these 

signaling pathways needs further study in beluga whales.

Beluga whales from the eastern Beaufort Sea beluga whale population migrate to the southern 

Beaufort Sea during the summer and are harvested by Inuvialuit for food (Harwood and Smith, 

2002). Contaminant levels have been monitored in this population in collaboration with the
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Fisheries Joint Management Board, local Hunters and Trappers Committees and harvesters 

periodically since 1984 and yearly since 2001 (Lockhart et al., 2005). Results from this sampling 

program indicate that age-adjusted Hg concentration estimates (13.1 yr) in beluga whale liver 

from the Mackenzie Delta peaked in 1996 (29.04 mg kg '' wet weight (ww)) and have since 

decreased. However, recent Hg concentrations (2002: 13.45 mg kg '* ww) are higher than they 

were in the 1980s (7.76 and 5.56 mg kg _1 ww in 1981 and 1984, respectively) (Lockhart et al.,

2005). Furthermore, contemporary Hg concentrations in beluga whale tissue have increased by 

an order of magnitude in the eastern Beaufort Sea population since preindustrial times (Outridge 

et al., 2002). Mercury concentrations ranged from 0.02 to 22.6 mg kg'1 ww in brain tissue 

collected from beluga whales harvested in 2006, 2008 and 2010 in the Mackenzie Delta Estuary, 

and the percentage of MeHg and labile iHg (iHgiabiie) ranged from 4 to 109% and 0 to 89% of 

total Hg concentration, respectively (Ostertag et al., 2013). The significant relationship between 

Hgj and total selenium (Set) in these beluga brain samples suggested potential detoxification of 

MeHg via demethylation followed by binding to Se (Ostertag et al., 2013). However, the 

relationships observed between co-accumulation o f Sex and Hgx, and neurochemical or 

molecular biomarkers in beluga whales did not suggest a protective effect of Se for either 

GABAergic or glutamatergic signaling pathways (Ostertag et al., in review).

Although an adult human suffered Hg poisoning with a H g x  concentration of 16.8 mg kg"1 in the 

cerebellum (Eto et al., 1999), dietary MeHg dosing studies on primate species indicated that 

intoxication was associated with H g x  concentrations in brain tissue ranging from 6.0 to 12.0 mg 

kg'1 ww (Berlin et al., 1975b; Evans et al., 1977; Luschei et al., 1977). Concentrations of MeHg
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below ~ 2—5 mg kg"1 ww were likely below thresholds o f overt MeHg intoxication in mink 

(Suzuki, 1979; Wobeser et al., 1976). However, HgT concentrations measured in the central 

nervous system (CNS) of Arctic beluga whales exceeded concentrations associated with 

neurochemical variation in wildlife and avian studies (Basu et al., 2005c; Basu et al., 2007b;

Basu et al., 2007c; Basu et al., 2009; Basu et al., 2005e; Rutkiewicz et al., 2011; Scheuhammer 

et al., 2008).

Chronic exposure to MeHg has been associated with significant increases in muscarinic 

acetylcholine receptor (mAChR) binding in wild mink (Mustela vison) (Basu et al., 2008; Basu 

et al., 2006b), loons (Gavia immer) and eagles (Haliaeetus leucocephalus) (Scheuhammer et al., 

2008), and decreased mAChR levels in wild river otters (Lontra canadensis) (Basu et al.,

2005c). Furthermore, decreased monoamine oxidase (MAO) activity was associated with Hg 

exposure in experimental studies (Beyrouty et al., 2006) and human populations (Stamler et al.,

2006). Monoamine oxidase plays an important role in the metabolism of neurotransmitters; 

therefore, exposure to MeHg could affect the normal turnover rates o f neurotransmitter amines in 

exposed animals (Chakrabarti et al., 1998). Given that biochemical changes may be an indicator 

of early-stage effects before the manifestation o f disease (Manzo et al., 1996), the objective of 

this study was to characterize the relationship between different chemical forms of Hg, SeT and 

Hg to Se molar ratio, and various neurochemical and molecular biomarkers in different brain 

regions of beluga whales.
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M ethods

Sample collection

Samples were collected in 2008 (n = 20) and 2010 (n = 15) on Hendrickson Island, NT, Canada, 

from hunter-harvested beluga whales, as described elsewhere (Ostertag etal., 2013). Appropriate 

research permits and licenses were obtained from the Aurora Research Institute and Department 

of Fisheries and Oceans (DFO) and the sampling program was approved and supported by the 

Tuktoyaktuk and Inuvik Hunters and Trappers Committees. Subsamples of cerebellum and 

temporal cortex were collected, and samples (~ 0.5 -  3 g) for metals and speciation analyses 

were frozen at ~ -20 °C, and samples for neurochemical analyses (~ 0.5-1 g) were flash-frozen 

and stored in liquid nitrogen. Samples (~ 0.07 g) for mRNA expression assays were flash-frozen 

in 2008 and were placed in RNALater™ at approx 4 °C for 24 h prior to freezing at -20 °C in 

2010. Sample numbers varied for the different assays due to subsample availability for the 

separate analyses.

Mercury and Selenium analyses

The concentrations o f HgT, iHgiabiie, MeHg and Ser were determined previously for the brain 

regions analyzed (Ostertag et al., 2013). Briefly, following a modified acid digestion (Armstrong 

and Uthe, 1971) total metals were analyzed by inductively coupled plasma Mass Spectrometry 

(Agilent Technologies, 7500 CX). The chemical forms of Hg were analyzed via high 

performance liquid chromatography (HPLC; Agilent 1200 series HPLC system, Agilent 

Technologies Canada Inc., Mississauga, ON, Canada), equipped with autosampler, quaternary 

pump, and 100 ml injection loop. A ZORBAX Eclipse XDB-C18 Column (2.1 x 50 mm, 5 pm)
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was connected to an inductively coupled mass spectrometer (ICP-MS; Agilent Technologies™, 

7500 CX), following extraction using a method developed by Krey et al. (2012).

Receptor binding assays

Receptor binding assays were adapted from previous studies by Basu et al. (2010; 2007c;

2006b), following the preparation of membrane homogenate as previously described (Basu et al., 

2005c). Protein concentration was determined with the Bradford assay and bovine serum 

albumin was used as the standard. In brief, thirty pg o f membrane preparation was re-suspended 

in buffer and added to a 96 well plate (Costar™). Membrane protein was suspended in 100 pL of 

50 mM sodium phosphate buffer (pH 7.4) and incubated with [3H]-quinuclidinyl benzilate ([3H]- 

QNB; 1.6 nM for cerebellum, 3.2 nM temporal cortex) for 60 min. Incubation was carried out 

with gentle shaking and binding reactions were ended by vacuum filtration. Sample was filtered 

through glass fiber (Inotech) using a cell harvester (Inotech), the filter was washed 4 times with 

ice-cold NaK buffer. The filter was set in an Omnifilter microplate (PerkinElmer), dried for 60 

min under a heat lamp before 25 pL scintillation cocktail (Universol™, MP Biomedicals) was 

added. Radioactivity retained by the filters was quantified immediately by a Chameleon™ liquid 

scintillation counter (Hidex, Turku, Finland) with approx 19% counting efficiency. Specific 

binding was calculated as the difference between radioligand binding in the presence and 

absence o f 100 pM atropine, a mAChR inhibitor. Receptor binding is reported as fmol of 

radioisotope bound per mg of membrane protein (fmol mg'1).
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Enzyme activity

Total monoamine oxidase activity was analyzed according to a previously described protocol 

(Nam et al., 2010; Zhou et al., 1997). In brief, samples were homogenized in Na/K buffer (10 

mL g '1 tissue), 0.05% Triton-X-100 was added to the homogenate and the sample was sonicated 

for 30 s at setting 10 (Sonic dismembrator: Model 100, Fisher Scientific), prior to centrifugation 

(12 000 x g, 8 °C for 10 minutes). Homogenate (25 pg protein) was incubated with buffer for 30 

min and enzyme activity was quantified following 15 min incubation with 10 mM 10-acetyl-3,7- 

dihydroxyphenoxazine (Amplex Red reagent), 1000 mM Tyramine, 200 mU horseradish 

peroxidase. Fluorescence (540 nm excitation and 590 nm emission) ofresorufin (end product) 

was read every five min for 80 min with a Chameleon™ spectrofluorometer (Hidex). Enzyme 

activities were expressed as nmol resorufin formed per minute per microgram protein (ng pg '1 

min'1) based on the standard curve of resorufin product. Each sample was assayed in triplicate.

Expression of mRNA

Real time Polymerase Chain Reaction (RT-PCR) expression o f mRNA for the mAChR subtype 

ml (mAChR m l) and MAO-A target genes followed the RNA extraction and cDNA archive 

procedures outlined previously (Ostertag et al., in review). Species-specific primers and 

fluorogenic probes (IDT, Coralville, Iowa) were designed using Genscript RT-PCR primer 

design (Table 5.1). In brief, total RNA was extracted using Trizol with the Qiagen RNeasy™ 

Lipid Tissue kit. Total RNA was treated with Ambion™ DNase | buffer (6 pL), rDNAse | (1 pL) 

and DNase Inactivation reagent (6 pL), prior to quantification of RNA-40 using a 

spectrophotometer (Nanodrop, ND-1000). Taqman reverse transcription reagents (Applied
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Biosystems) were used for the generation of complementary DNA (cDNA) for all samples. The 

identical reaction was performed concurrently without reverse transcriptase, to ensure the 

absence of genomic DNA. The thermocycler parameters for the generation o f cDNA archive 

were as follows: 25 °C for 10 min, 37 °C for 60 min, and 95 °C for 5 min (DYAD™, DNA 

Engine).

All PCR runs were performed under identical conditions using the 7300 Real-Time PCR System 

(Applied Biosystems) as described previously (Ostertag et al., in review). Simplex assays were 

run with iTaq™ Supermix with ROX kit (Biorad). The thermocycle program included an 

enzyme activation step at 95 °C (10 min) and 40 cycles of95 °C (15 sec) and 60 °C (1 min). The 

efficiencies for target genes and reference genes were calculated using standard curves generated 

for all genes from serial dilutions o f cDNA. Fold changes for each target and sample gene were 

calculated relative to the reference gene s9 (Pfaffl, 2001) and the mean Cr value for the three 

lowest Hg-exposed animals was used as the control. Inter-plate variability of s9 expression 

(reference gene) was monitored through the inclusion of pooled sample in triplicate for each 

plate. The absence of genomic DNA was ensured through the inclusion of No-RT samples in 

each plate.

We used a NanoDrop (ND-1000, NanoDrop Technologies, USA) to evaluate RNA purity and 

quality. Optical density (OD) ratios (260 nm/280 nm wavelengths) greater than 1.8 indicated 

good RNA quality (Fleige and Pfaffl, 2006). The ratio of 28S:18S and RNA Quality Indicator 

(RQI) value were used to evaluate degradation via Experion (Bio-Rad Laboratories, USA); a
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28S:18S ratio of 2.0 (Fleige and Pfaffl, 2006) or RQI of 10 indicated perfect integrity (Taylor et 

a l, 2009).

Data Analysis

Mercury concentrations, fold-change ratios, receptor density and enzyme activity were log- 

transformed when necessary to meet assumptions of normal distribution and homogeneity of 

variance. The relationship between neurochemical and molecular biomarker, and the 

concentration of Hg, Hg species and Se was explored through multiple regression analysis. A 

backwards-stepwise approach was used to evaluate the following predictor variables: age, 

sampling year, and Hgx, iHgiabiie, MeHg, Sex, or molar ratio of Hg to Se. The outcome variables 

used were mAChR binding, MAO activity and MAO-A mRNA expression in both brain regions, 

and mAChR ml mRNA expression in the cerebellum. We removed influential outliers after 

examination of studentized residuals, leverage and Cook’s D influence. Pearson correlation 

coefficients were calculated for the expression o f target genes and corresponding receptor or 

enzyme. Correlations (Pearson and Spearman), F-values and t-tests were considered to be 

statistically significant ifp  < 0.05. Data in tables and graphs are displayed in the original scale of 

measurement.

Results

Twenty whales were sampled in 2008 (16 male, 4 female) and 15 beluga whales were sampled in 

2010 (15 males, 0 females) and ranged from an estimated age of 16 to 60 yr (median age = 27 

yr). The small sample size for females limited our ability to assess differences in Hg 

concentration/speciation, neurochemistry and mRNA expression based on gender. In the
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cerebellum, MeHg concentrations ranged from 0.5 to 5.2 mg kg'1 dry weight (dw, median: 2.6 

mg kg'1), labile inorganic Hg (iHgiabiie) concentrations ranged from 0.6 to 6.7 mg kg '1 dw 

(median: 2.6 mg kg'1 dw), selenium (Ser) concentrations were 6 to 133 mg kg'1 dw (median: 19 

mg kg'1 dw) and the ratios of Hgj to Sej were 0.2 to 0.9 (median: 0.6) (Table 5.2). The molar 

ratio of Hg to Se was correlated to Hgi concentration in both the cerebellum (r = 0.87, p < 

0.0001) and temporal cortex (r = 0.92, p < 0.0001).

The OD ratio was > 1.8 for all RNA samples; therefore, RNA purity was considered acceptable. 

The ratio o f 28S:18S was < 2 and the RQI was < 10 for a subset of samples analyzed via 

Experion (BioRad). The median and range of 28S: 18S and RQI were 0.83 (0.3-1.87) and 6.9 

(3.7-8.9), respectively for a subset of samples (n = 12), which indicated acceptable RNA quality. 

The Ct values for the internal control gene (s9) did not vary with age or Hg concentration in the 

cerebellum or temporal cortex. There was no amplification o f NRT control following RT PCR.

Cholinergic signaling pathway

Receptor binding levels were greater in the temporal cortex than cerebellum for mAChR (z = - 

4.1, p  < 0.0001). Non-specific binding represented 60% and 15% of total binding in the 

cerebellar and temporal cortex, respectively. Inter-plate variability ranged from 21-23% for 

mAChR assays. Muscarinic AChR binding to [3H]-QNB was not correlated to Hgr, MeHg or 

iHg concentration in either brain region (data not shown). Furthermore, gender was not 

associated with differences in mAChR binding in either cerebellum or temporal cortex (data not 

shown). However, age was negatively correlated with mAChR binding to [3H]-QNB in temporal 

cortex (Figure 5.1, r = -0.58,p  < 0.05), but not cerebellum. The results from three backward
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stepwise multiple regressions that included Hgj, MeHg or iHgiabiie, in combination with animal 

age and sampling year, for both brain regions, indicated that mAChR binding was not 

significantly predicted by the models tested (Table 5.3).

The expression o f mRNA for mAChR ml was not correlated to concentrations of Hgx, MeHg, or 

iHgiabiie- Furthermore, age was not correlated to mRNA expression for mAChR m l, and there 

were no significant differences in mRNA expression for mAChR ml with sampling year or 

animal gender. The results from three backward stepwise multiple regressions that included Hgj, 

MeHg or iHgiabiie, in combination with animal age and sampling year, for both brain regions, 

indicated that the following models were significant (p < 0.05) predictors of log-transformed 

mRNA expression in the cerebellum (Table 5.3; data not available for temporal cortex): 230 - 

0.1 (year) -0.7(log(Hg)) + 0.01 (age), 120 - 0.06(year) -  0.6(log(MeHg)) + 0.01 (age), and 204 - 

0.2(year) -0.8(log(iHg)) + 0.04(age). However, the expression of mRNA for mAChR ml was not 

correlated to mAChR binding to [3H)-QNB in the cerebellum (data for temporal cortex 

unavailable).

Selenium concentration and the molar ratio o f Hg to Se were not correlated to mAChR binding 

(data not shown). However, the results from two backward stepwise multiple regressions that 

included Sej or the molar ratio o f Hg to Se, in combination with animal age and sampling year, 

for both brain regions, indicated that the following models significantly (p < 0.05) predicted log- 

transformed mAChR binding in the temporal cortex (Table 5.3): -140 + 0.07(year) + 

0.3(log(HgSe)) - 0.004(age), and -110 + 0.06(year) - 0.06(log(Se)) -  0.003(age). However, only
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the molar ratio of Hg to Se, animal age and year were significant predictors of mAChR binding 

in the temporal cortex. At a molecular level, the expression of mRNA for mAChR ml was not 

correlated to the molar ratio of Hg to Se or to Sex concentration (data not shown). Yet, the results 

from two backward stepwise multiple regressions that included Ser or the molar ratio o f Hg to 

Se, in combination with animal age and sampling year, for both brain regions, indicated that the 

following models significantly (p < 0.05) predicted log-transformed mRNA expression mAChR 

ml in the cerebellum (Table 5.3): 207 - 0.1 (year) -  1.2(log(HgSe)) + 0.01 (age). The molar ratio 

of Hg to Se was the only significant predictor (p < 0.05) of log-transformed mAChR mRNA 

expression in the cerebellum.

Dopaminergic signaling pathway

Total MAO (z = -2.5, p  = 0.01) activity was greater in temporal cortex (median, range; 352 nM 

pg'1 min'1, 227 - 592 nM pg'1 min'1) than cerebellum (median, range; 161 nM pg'1 min'1, 67 - 

854 nM pg'1 min'1). Total MAO activity was not correlated to H gx, iHgiabiie or M e H g  in either 

brain region. Gender was not associated with differences in total MAO activity in either 

cerebellum or temporal cortex. However, age was positively correlated to total MAO activity in 

the temporal cortex but not cerebellum (Figure 5.2; r = 0.50, p  < 0.05). Sampling year was 

associated with statistically significant differences in total MAO activities in the cerebellum (t = 

-3.91, DF = 28, p < 0.001), but not temporal cortex (t = 0.99, DF = 23, p < 0.35).

The results from three backward stepwise multiple regressions that included Hgx, MeHg or 

iHgiabiie, in combination with animal age and sampling year, for both brain regions, indicated that 

the following models significantly (p < 0.05) predicted log-transformed total MAO activity in
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the cerebellum: -460 + 0.2(year) + 0.3(log(Hg)) + 0.01 (age), -434 + 0.2(year) + 0.1(log(MeHg)) 

+ 0.01 (age), and -395 + 0.2(year) + 0.4(log(iHg)) + 0.01 (age); and, in the temporal cortex: 2.5 + 

0.007(age) - 0.1 (log(Hg)), 2.5 + 0.005(age) -0.3(log(MeHg)), and 2.4 + 0.007(age) - 

0.2(log(iHg)). In the temporal cortex, only animal age, Hgj, MeHg and iHgiabiie in the temporal 

cortex were significant predictors o f log transformed MAO activity (Table 5.4). In the 

cerebellum, only sampling year was a significant predictor o f MAO activity (Table 5.4).

Total Hg, MeHg and iHg were not correlated to the expression of mRNA for MAO-A in either 

brain region analyzed (data not shown). Gender was not associated with differences in mRNA 

expression for the target genes analyzed (data not shown). The results from three backward 

stepwise multiple regressions that included Hgj, MeHg or iHgiabiie, in combination with animal 

age and sampling year, for both brain regions, indicated that none o f the models that we tested 

predicted log-transformed mRNA expression for MAO-A (Table 5.4). Furthermore, the 

expression of MAO-A mRNA was not correlated to MAO-A activity in the cerebellum or 

temporal cortex.

Monoamine oxidase activity was not correlated to molar Hg to Se ratio or Se concentration in 

either brain region (data not shown). In contrast, Ser concentration was negatively correlated to 

mRNA expression for MAO-A in the cerebellum, but not temporal cortex (Figure 5.3; r = -0.36, 

p  < 0.05). The results from two backward stepwise multiple regressions that included Sex or the 

molar ratio of Hg to Se, in combination with animal age and sampling year, for both brain 

regions, indicated that the following models significantly (p < 0.05) predicted log-transformed
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MAO-T activity in the cerebellum (Table 5.4): -452 + 0.2(year) + 0.2(log(HgSe)) + 0.01 (age), - 

491 + 0.3(year) + 0.3(log(Se)) + 0.01(log(Se)); and, in the temporal cortex (Table 5.4): 2.2 +

0.007(age) -0.4(log(HgSe)) and 2.5 + 0.006(age) -0.1(log(Se)). However, of the selenium-related 

predictor variables, only the Hg to Se molar ratio was a significant predictor o f MAO-T activity 

in the temporal cortex. Furthermore, multiple linear regression models that we tested did not 

significantly predict mRNA expression MAO-A (Table 5.4).
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Table 5.1. Sequences o f primers and probes used for real time PCR.

Target gene Primer sequence Probe

Fw Rvs

MAO-A GGCCAGGAACGGAAGTTTGT CCCCGAGGAGGTGCATTA TGGATCTGGTCAAGT A AGCG 

AGCGG

mAChR 

subtype m l

GCAACGCCTCGGTCATG GCCGGGTCACGG AG AAGT A CGGTCAACAACTACTTCCTG

CTGAGCCTG

S9 GCTGCTGACGCTGGATGAG CGCAGCAGGGCATTGC AAGACCCGCGGCGTCTGTTT

GAA
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Table 5.2. Descriptive statistics for total mercury (Hg), methylmercury (MeHg), labile 
inorganic mercury (iHgiabiie) and selenium (Sex) concentrations and stoichiometric ratio 
of Hgx to Sex in the cerebellum and temporal cortex from beluga whales sampled at 
Hendrickson Island, NT, Canada in 2008 and 2010.

Variable
Descriptive Statistics

Temporal Cortex Cerebellum

Sample number (n) 31 35
Total Hg concentration 
(mg kg'1 dw) 15.0(1 .5-113) 10.6(1.7 —  113)

MeHg concentration 
(mg kg'1 dw) 1.9 (0.68 -  5.2) 1.4 (0 .45-5.2)

iHgiabiie concentration 
(mg kg'1 dw) 3.1 (0 .33-8 .1) 2.6 (0 .60-6.7)

Sex concentration 
(mg kg'1 dw) 22.4 (7 .0 -  133) 19.1 (6 .1 -133)

Hg:Se 0.6 (0.2 -  0.9) 0.6 (0.2 -  0.9)
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Table 5.3. Results from backward stepwise multiple regressions conducted for both brain regions, with binding o f [3H]-QNB to the 
muscarinic acetylcholine receptor (mAChR) and mRNA expression o f mAChR subtype ml as the outcome variables. Concentrations 
of mercury (total mercury (Hgx)), methylmercury (MeHg), labile inorganic mercury (iHg)), molar ratio of Hg to Se (HgSe), or 
selenium (Se) concentration, and sampling year and animal age were tested as predictor variables.

Cerebellum Temporal cortex

Dependent
variable

Adjusted
R2

Intercept Slope F-value Adjusted
R2

Intercept Slope F-value

mAChR

-0.05 -44 0.02(year) + 0.01(log(Hg)) + 
0 . 0 0 1  (age) F 3,20 = 0.6 0.45 - 1 1 0

0.06(year)* + 0.05 (log(Hg)) -  
0.003 (age)* F3. is = 6 .8 *

-0.03 -38 0.02(year) + 0.06(log(MeHg)) 
+ 0 . 0 0 1  (age) F3 20 = 0 . 8 0.33 -95 0.05 (year)* -  0.08(log(MeHg)) -  

0.003 (age) F3. ,3 = 3.6*

-0.04 -33 0.02(year) -  0.03(log(iHg)) + 
0 . 0 0 1  (age) F3.20 = 0.7 0.43 - 2 0 0

0.1 (year)* + 0.2(log(iHg)) -  
O.Ol(age)'

F3. , 8  = 6 .8 *

-0.03 -47 0.02(year) + 0.07(log(HgSe)) 
+ 0 . 0 0 1  (age) F 3,20 = 0.7 0.59 -140

0.07(year)* + 0.3(log(HgSe))* - 
0.004(age)* F3,i7= 1 0 .6 *

-0.05 -37 0.02(year) -0.01(log(Se)) + 
0 . 0 0 1  (age) F 3,20 = 0.6 0.46 - 1 1 0

0.06(year)* - 0.06(log(Se)) -  
0.003(age)

F3.18 = 6 .6 *

mAChR ml 
mRNA

0.38 230 -0.1 (year)' -0.6 (log(Hg))* + 
0 . 0 1  (age) F3. , 9  = 5.4*

NA

0.26 1 2 0
-0.06(year) -  0.6(log(MeHg))* 
+ 0 . 0 1  (age) F3, 2o ~ 3.7*

0.25 204 -0.1 (year) -0.7(log(iHg))* + 
0.0 Rage)

F3, , 7  = 3.3*

0.42 207 -0.1(year)— 1,2(Iog(HgSe))* + 
0.0 Rage) F3.21 = 6.8*

0.16 230 -0.1 (year) -O ^log^e))’ + 
0.007(age) F3,22= 2.6

* p < 0.05
‘p<0.10
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Table 5.4. Results from backward stepwise multiple regressions conducted for both brain regions, with total monoamine oxidase 
(MAO) activity and mRNA expression of MAO A as the outcome variables. Concentrations of mercury (total mercury (HgT)), 
methylmercury (MeHg), labile inorganic mercury (iHg)), molar ratio of Hg to Se (HgSe), or selenium (Se) concentration, and

Cerebellum Temporal cortex

Dependent
variable

Adjusted
R2 Intercept Slope F-value Adjusted

R2 Intercept Slope F-value

Total MAO

0.3 -460 0.2(year)* + 0.3(log(Hg)) + 
0.01 (age) F 3,2o =  3 .6* 0.35 2.5 0.007(age)* -0.1 (log(Hg))* F2 20 = 7.02*

0.25 -434 0.2(year)* +0.1(log(MeHg)) 
+ 0.01 (age)

F3,2i=3.7 * 0.47 2.5 0.005(age)* -0.3(log(MeHg))* F 2,2o = 1 0 .7 *

0.26 -395 0.2(year) + 0.4(log(iHg)) + 
0.01 (age) F3,is = 3.2* 0.41 2.4 0.007(age)* - 0.2(log(iHg))* F 2,2o = 8.81*

0.25 -452 0.2(year)* + 0.2(!og(HgSe)) + 
0.0 Rage) F3,2i = 3.7* 0.48 2.2 0.007(age)* -0.4(log(HgSe))* F2,2o= H . 2 *

0.27 -491 0.3(year)* + 0.3(log(Se)) + 
0.01(log(Se)) F3,2i = 3.9* 0.27 2.5 0.006(age)* -0.1(log(Se)) F 2,2o =  5 .1*

MAO-A
mRNA

0.01 -2.3 0.001 (year) -  0.05(log(Hg)) -  
0.002(age) F3.,9 = l .l -0.09 -33

0.02(year) + 0.04(log(Hg)) -  
0.00 Rage) F322 = 0.28

-0.11 -6.8 0.003(year) +
0.06(log(MeHg)) -  0.00 Rage) F323 =0.2 -0.11 -19 0.001 (year) + 0.002(MeHg) -  

0.0003(age) F3.22 = 0.1 1

0.01 28 -O.ORyear) -  0.07(log(iHg)) -  
0.004(age) F 3i18=  1.1 -0.07 -31

0.02(year) + 0.05(log(iHg)) -  
0.00 Rage) F3,22 = 0-3

-0.11 -10 0.01 (year) -0 .1  (log(HgSe)) -  
0.0003(age) F3,23 = 0.14 -0.07 -27 0.01 (year) + 0.1 (log(HgSe)) -  

O.OORage) F3,22 = 0.5

-0.02 11 -0.005(year) -0.14(log(Se)) + 
0.0002(age) F3,23 = 0.9 -0.01 -27

0.01 (year) + 0.04(log(Se)) -  
O.OORage)

F3.22=0.2

*p < 0.05
‘p<0.10

133



2500
c
*53+*oua.
OSs

2000

2 1500 
£
•oeso
a
OB
Z
O '

1000

500

♦
♦  ♦

♦

r  = -0.58 
p = 0.005 
n = 22

♦  ♦  

*  ♦

20 40 60

Estimated age (1 growth layer y r 1)

80

Figure 5.1. The correlation between muscarinic acetylcholine receptor binding to [ H]- 
QNB and estimated age, based on tooth analysis (one growth layer per year), in the 
temporal cortex of beluga whales (Delphinapterus leucas).
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Figure 5.3. The correlation between mRNA expression (fold change) and selenium 
concentration in the cerebellum of beluga whales (Delphinapterus leucas). The 
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Discussion

The major findings from this study were that MeHg exposure was negatively associated 

with total MAO activity in the temporal cortex, and mRNA expression of the mAChR 

subtype Ml in the cerebellum, of beluga whales. Furthermore, our results suggest that co

accumulation o f Se and Hg was associated with variation in MAO activity, mAChR 

binding and mRNA expression for mAChR m l. Variation observed in components of 

both the cholinergic and dopaminergic signaling pathways in association with an increase 

in the molar ratio of Hg to Se, suggests that Se may provide a protective effect from Hg 

exposure for these two signaling pathways. We did not observe a relationship between 

mRNA expression and receptor binding or enzyme activity, which may have been due to 

varied post-transcriptional mechanisms that convert mRNA to protein, variation in in vivo 

half- lives of proteins, and the error and noise associated with protein and mRNA 

experiments (Greenbaum et al., 2003). Furthermore, the prolonged time to collect wildlife 

samples may have resulted in the degradation of RNA. Between 33 and 48 percent of 

mRNA transcripts may have decayed during sample collection and preservation (approx.

3 hrs) based on reported hourly decay rates that ranged from 0.085 to 0.221 for mRNA 

transcripts from human cells (Yang et al., 2003). The post-mortem interval in our study 

may have had limited impact on overall mRNA integrity, given that a decrease in the 

28S/18S ribosomal RNA ratio was only observed in mouse brain samples kept at ambient 

temperatures for 36 hrs after death (Catts et al., 2005).

Overall, the results from this study complement previous findings (Ostertag et al., in 

review), and taken together, suggest that MeHg exposure may indeed be o f toxicological 

concern for beluga whales from the eastern Beaufort Sea population. We explore the
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potential mechanisms o f action and physiological outcomes of these findings in relation 

to previous captive and wildlife animal studies, and in vitro studies.

Cholinergic signaling pathway

Cholinergic signaling pathways have been linked to essential physiological processes 

including learning, memory, stress response and modulation of sensory information (Reis 

et al., 2009). The mAChR may play a critical role in physiological processes including 

thermoregulation, motor function and feeding (Bymaster et al., 2003; Wess, 2004). Our 

findings indicated a statistically significant positive relationship between mAChR density 

and the molar ratio of Hg to Se in the temporal cortex, with a slight negative relationship 

between age and mAChR density. The relationships between mAChR binding and Hg 

(+), MeHg (-), iHg (+) and Se (-) concentrations were not statistically significant. 

Therefore, these results suggest that Se may play a role in modulating the interaction 

between Hg and the mAChR. It is possible that as the ratio of Hg to Se increased, the 

concentration of unbound Hg increased, allowing Hg to interact more effectively with 

sulfhydryl groups and cause a homeostatic response at a neurochemical or molecular 

level. In the cerebellum there was not a significant relationship between Hg 

concentration, Hg to Se ratio, and mAChR binding; however, at a molecular level, the 

expression of mRNA for mAChR ml was negatively associated with Hg species (Hgj, 

MeHg, iHg) and the ratio of Hg to Se. The lack of relationship between mAChR binding 

and expression of mRNA for mAChR ml may be due to differences in agonist-induced 

receptor internalization and downregulation (Thangaraju and Sawyer, 2011).
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In previous studies, an increase in the density of mAChR was observed following MeHg 

dosing of rats in vivo (Coccini et al., 2000; Coccini et al., 2007; Costa, 1988; Rajanna et 

al., 1997) and a positive relationship between Hg and mAChR levels was reported for 

wild mink (Basu et al., 2005a), loons and eagles (Scheuhammer et al., 2008). A negative 

relationship between MeHg and mAChR density was found in the cerebral cortex of river 

otters (Basu et al., 2005c) and in rats exposed prenatally to MeHg (Zanoli et al., 1994). A 

previous avian study found that Hg exposure was not correlated to relative mRNA 

expression of nicotinic receptor a-7 in herring gulls with low brain Hg levels ranging 

from 0.14 -  2.0 pg g'1 dw (Rutkiewicz et al., 2010). Interestingly, we observed a negative 

relationship between mRNA expression for mAChR ml and Hg concentration and 

speciation (Hgx, MeHg, iHg and Hg to Se ratio) in the cerebellum. The concentration of 

Hg and Hg species in beluga cerebellum (median, range; Hgj: 10.6 mg kg'1 dw, 1.7 -  113 

mg kg'1 dw) were much greater than those observed in herring gulls. Therefore, the 

different relationships between MeHg exposure and mRNA expression observed in 

beluga and herring gulls may be due to differences in Hg exposure, differences in 

sensitivity o f the nicotinic receptor a-7 and mAChR ml to Hg exposure, or other 

undetermined differences.

Methylmercury was found to inhibit agonist binding to ml and m2 muscarinic receptors

in rat brain cortical membranes (Castoldi et al., 1996). The binding of agonists and

antagonists to extracellular cysteine residues modulates muscarinic receptor activity;

therefore, MeHg may modify mAChR activity by binding to this critical region o f the

receptor and competitively inhibiting mAChR binding (Limke et al., 2004). The binding

of MeHg to mAChR has been linked to disruption o f Ca2+ in cerebellar granule cells, and
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has been suggested as a cause o f cel I-regulated death (apoptosis) or the downregulation of 

mAChR (Limke et al., 2004). Three subtypes of the mAChR (m l, m3 and m5) are 

coupled to G proteins of the Gq/n family, which mediate the activation of phospholipase 

C and subsequent release of Ca2+ (Ehlert and Thomas, 1995). Therefore, the decrease in 

mRNA expression for mAChR ml associated with MeHg exposure could be explained 

by downregulation o f the mAChR, to protect the cerebellum from a disruption in Ca2+ 

homeostasis.

Dopaminergic signaling pathway

Monoamine oxidase plays an integral role in maintaining the homeostasis o f key 

neurotransmitters in the CNS and other organs (Bortolato and Shih, 2011). Our findings 

suggest that total MAO activity may be negatively associated with Hgx, MeHg, iHg 

concentrations, and ratio o f Hg to Se in the temporal cortex. This is consistent with 

findings of decreased MAO activity with Hgx and MeHg in the cerebral cortex but not 

cerebellum of wild river otters (Basu et al., 2007b). The statistically significant effect of 

sampling year on MAO activity in the cerebellum may have obscured a relationship 

between enzyme activity and Hg concentration or speciation in this brain region. Another 

explanation for the regional difference in MAO activity and Hg exposure may be that the 

temporal cortex had more elevated concentrations o f Hg, iHgiabiie and MeHg compared to 

the cerebellum. The results from this study suggest that the ratio o f Hg to Se is a 

significant predictor of MAO activity in the temporal cortex; therefore, Se may play a 

role in reducing Hg availability and toxicity in beluga whales.
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The lack of relationship between mRNA expression for MAO-A and total MAO activity, 

and mRNA expression for MAO-A and Hg concentration or speciation, suggests that 

MeHg exposure may result in disruption o f enzyme function but not mRNA transcription. 

For example, the decrease in total MAO activity in the temporal cortex associated with 

Hg concentration may have occurred due to alteration of the mitochondrial structure 

(Franco et al., 2007; Shenker et al., 1999), leading to decreased MAO activity without 

related changes in mRNA transcription for the MAO-A target gene. The slight positive 

relationship between age and MAO-T activity was consistent with findings that in 

general, MAO-B activity increases with age in humans, although MAO-A activity 

remains stable with age (Nicotra et al., 2004).

Exposure to MeHg has been associated with alterations of neurotransmitter amine 

metabolism in the central nervous system (Chakrabarti et al., 1998). Monoamine oxidase 

is located on the outer mitochondrial membrane and catalyzes the oxidative deamination 

of monoamine neurotransmitters (e.g. dopamine), neuro-modulators and hormones 

(Bortolato and Shih, 2011). Methylmercury may exert an effect on MAO either by 

directly binding to thiol groups on the enzyme or by altering mitochondrial function 

(Chakrabarti et al., 1998). Previous studies have found decreased mitochondrial activity 

associated with MeHg exposure in mitochondrial-enriched fractions of mouse cerebrum 

(Franco et al., 2007; Meinerz et al., 2011), and striatal synaptosomes from rats (Dreiem 

and Seegal, 2007). A decrease in MAO activity was observed in the cerebellum and 

cortex of rats exposed to MeHg (Chakrabarti et al., 1998), and the intrastriatal 

administration of MeHg in rats was associated with a concentration-related increase in 

striatal output of dopamine (Faro et al., 2003). Disruption o f MAO activity could lead to
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downstream impacts on neuronal signaling pathways that involve monoamines that are 

associated with fight-or-flight response, emotion, motor activity and cognition (Beyrouty 

et al., 2006). Clinical observations indicate that disturbance of dopaminergic 

neurotransmission is related to psychiatric symptoms (Reis et al., 2009).

Variation of mRNA expression and neurochemical biomarkers associated with Hg 

exposure in beluga whales may provide complementary evidence o f potential disruption 

of neurosignaling pathways. Our results suggest that MAO and mAChR may be more 

impacted by MeHg exposure in the temporal cortex than the cerebellum, which may be 

due to more elevated concentrations o f Hg, MeHg and iHgiabiie present in the temporal 

cortex. Taken together with our previous findings (Ostertag et al., in review), the 

neurochemical components o f the cholinergic, dopaminergic and GABAergic signaling 

pathways may be good candidates as biomarkers of neurochemical disruption in 

cetaceans. The relationships observed in this study between the molar ratio of Hg to Se, 

and components of the cholinergic and dopaminergic signaling pathways confirms that 

including this ratio or the Se to Hg ratio in wildlife studies is important for evaluating the 

biological effects of MeHg exposure (Burger et al., 2013). Furthermore, the results from 

our study support the use of both molecular and neurochemical biomarkers to improve 

our understanding of potential effects of MeHg exposure on wildlife. However, to fully 

understand the relationship between mRNA and protein expression, requires a better 

understanding of the dynamics of protein synthesis and degradation (Greenbaum et al., 

2003). There is mounting evidence that chronic MeHg exposure in beluga whales is 

associated with variation in components of diverse neurosignaling pathways (Ostertag et 

al., in review). These results suggest that MeHg exposure may lead to neurochemical
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changes associated with maintaining homeostasis in the CNS. The impact o f chronic 

MeHg exposure for beluga health requires further study.
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Bridge

In the previous three chapters we assessed the neurotoxicological risk of methylmercury 

exposure through the comparison of brain mercury concentrations with threshold levels 

and the use o f molecular and neurochemical biomarkers. We found that concentrations of 

Hg in brain tissue exceeded thresholds o f adverse effect, and were also associated with 

neurochemical and molecular variation. A particular challenge in risk assessments is 

determining causal linkages between biological responses to toxicant exposure in wildlife 

studies. Harvesters’ observations of beluga whales may provide a unique and valuable 

line o f evidence to determine linkages between toxicant exposure and biological 

response. Therefore, for the next study, we worked with Inuvialuit beluga harvesters to 

document their observations o f the behaviour of beluga whales during harvesting 

activities. Our primary objectives were to develop a questionnaire to document local 

observations o f beluga whale behaviour during harvesting activities and to assess whether 

Hg levels were associated with differences in beluga whale behaviour.
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Chapter 6. Inuvialuit observations of beluga whale 
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Abstract

Beluga whales in the Beaufort Sea are facing many environmental changes associated 

with global climate change and pollution. Harvesters’ observations of beluga whales’ 

behaviour may provide key insights into linkages between toxicant exposure and 

biological response. The objective o f this study was to determine if there were differences 

in the behaviour o f beluga whales associated with mercury (Hg) exposure. We developed 

and administered a questionnaire (n = 11) to document hunters’ observations o f beluga 

whale behaviour during harvesting activities. The participation rate was 73 % and all 

respondents had ten or more years o f beluga hunting experience. Mercury concentrations 

were measured in cerebellar cortex samples using inductively-coupled plasma mass 

spectrometry, and ranged from 0.32 to 3.27 mg kg'1 wet weight (ww; median, 0.77 mg 

kg'1 ww). There was no evidence that the amount o f time required to harpoon the whales 

was associated with Hg concentrations. However, we detected slight differences in beluga 

whales’ use of evasive strategies associated with Hg exposure. Fewer whales exhibited 

evasive behaviour when they had higher than median Hg than those with lower than 

median Hg (evasive behaviour and > median Hg: n = 1\ no evasive behaviour and > 

median Hg: n = 5). The small sample size precluded the use of statistical tests, but 

suggests that behaviour could vary with Hg exposure in this population of beluga whales. 

We recommend that Inuvialuit harvesters’ observations o f beluga whale behaviour are 

documented in future community-based monitoring studies. In the long term, combining 

traditional ecological knowledge and traditional scientific knowledge may provide greater 

insight into how environmental change could impact this beluga population.
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Introduction

Anthropogenic activities including climate change (ACIA, 2005), industrial development 

(Prowse et al., 2009), shipping (AMSA, 2009) and long range transport of pollutants 

(AMAP, 2011; Dietz et al., 2013; Muir and de Wit, 2010) are causing rapid changes to 

the Arctic. These changes pose a serious threat to the conservation of Arctic marine 

mammals (as reviewed by Huntington (2009)). Recent studies on beluga whales 

(Delphinapterus leucas) from the Eastern Beaufort Sea beluga population in the western 

Canadian Arctic, found concentrations of mercury (Hg) in brain tissue exceeded 

thresholds o f adverse effect (Ostertag et al., 2013) and were also associated with 

neurochemical variation (Ostertag et al., Submitted; Ostertag et al., in review). A 

particular challenge in risk assessments is determining causal linkages between biological 

responses to toxicant exposure in wildlife studies. The use of multiple lines o f evidence, 

including field observational studies may increase confidence in the conclusions o f risk 

assessments (EPA, 1998). Inuvialuit travel every summer to traditional whaling camps 

along the Beaufort Sea coast to harvest beluga whales (Harwood et al., 2002). Harvesters’ 

observations of beluga whales may provide a unique and valuable line o f evidence to 

determine linkages between toxicant exposure and biological response. In the long term, 

combining traditional ecological knowledge (TEK) and traditional scientific knowledge 

(TSK) may provide useful insight into how environmental change is impacting Arctic 

ecosystems.

As a result of global pollution, Hg concentrations in Arctic marine mammals have

increased by an order of magnitude since the preindustrial period (Dietz et al., 2009). The

toxic effects of methylmercury (MeHg) are primarily due to its ability to cross the blood-
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brain barrier (Aschner and Aschner, 1990) and damage the central nervous system 

(Clarkson and Magos, 2006). Methylmercury is the principle form ofHg consumed by 

Arctic beluga whales (Loseto et al., 2008a); Arctic beluga whales have also been 

identified as being particularly vulnerable compared to other Arctic marine mammals to 

MeHg exposure, due to elevated concentrations of total Hg measured in brain tissue 

compared to other species (Dietz et al., 2013). Mercury exposure in beluga whales from 

the western Canadian Arctic exceeded levels associated with neurotoxicity (Ostertag et 

al., 2013) and showed variation in components of neurochemical signaling pathways 

(Ostertag et al., Submitted; Ostertag et al., in review). Biochemical changes may be an 

indicator of early-stage effects before the manifestation of disease (Manzo et al., 1996). If  

beluga whales are equally sensitive to Hg toxicity as primates and mink, we would expect 

clinical symptoms to arise when total Hg concentrations in brain tissue exceeded 6.0 to 

12.0 mg kg'1 wet weight (ww; Berlin et al., 1975b; Evans et al., 1977; Luschei et al.,

1977; Stinson et al., 1989).

Beluga whales inhabit the northern coasts o f Alaska, Canada, Greenland and Norway 

(Jefferson, 2008). Summering populations are concentrated in western Hudson Bay 

(WHB) and eastern Beaufort Sea (EBS) (Jefferson, 2008) and Inuit continue to highly 

value beluga whales as a source of food (Harwood and Smith, 2002). Beluga whale 

monitoring has been taking place in the Mackenzie Delta since the 1970s (Harwood et al., 

2002) and TEK has been fundamental to the success of this program through the 

provision of high quality samples from harvesters’ catch. However, harvesters’ 

observations have been minimally included in this program. Scientific and local 

observations o f environmental change can be brought together to identify new avenues
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for further exploration, compare observations from different scales and discuss potential 

mechanisms that explain both sets of observations (Huntington et al., 2004). Previous 

studies have documented Inuit observations of beluga whale migration, feeding 

behaviour, calving, response to disturbance, changes in prey quantity and quality, and 

health (Carter and Nielsen, 2011; Fernandez-Gimenez et al., 2006; Huntington et al.,

1999; Kilabuk, 1998; Mymrin et al., 1999). Elders and hunters have also provided 

possible explanations for changes in blubber thickness, prey availability, migration 

patterns and feeding behaviour based on their observations (e.g. Carter and Nielsen,

2011; Huntington et al., 1999; Kilabuk, 1998). Although TEK about beluga whales has 

been documented in the Arctic, to date, linking observed behaviour to body burden of 

contaminants or physiological parameters has not been attempted. Such integration may 

provide insight into the potential effects o f neurotoxicants (e.g. MeHg) on beluga whale 

behaviour.

There have been increasing calls to include or consider TEK in decision-making and 

environmental assessment in the north (Bennett, 2012). We chose to use a broad 

definition o f TEK as “knowledge gathered and maintained by groups of people, based on 

intimate experience with their environment” (Huntington et al., 2004). One approach for 

including TEK in assessing ecosystem changes includes observations of animal 

behaviour to assess animal health (Huntington et al., 2004). Traditional ecological 

knowledge has provided valuable information about marine mammals in the Arctic 

(Carter and Nielsen, 2011; Ferguson et al., 2012) and co-management (Dowsley, 2009). 

Inuvialuit knowledge and wisdom about beluga whales has been documented and 

confirms that hunters’ and elders’ knowledge o f beluga whale behaviour and predation is
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associated with decades of observations (Byers and Roberts, 1995). Indigenous hunters 

and elders o f Chukotka, Russia, shared their observations made while hunting beluga 

whales or pursuing walrus (Odobenus rosmarus divergens) and seals (Phoca spp. and 

Erignathus barbatus) of beluga whale diving behaviour, feeding, migration, 

communication and response to disturbance (Mymrin et al., 1999).

In this study, we worked with Inuvialuit harvesters to document their observations of 

beluga whale behaviour made during harvesting activities. Our primary objectives were 

to develop a questionnaire to document local observations o f beluga whale and to assess 

whether differences in Hg concentrations were associated with beluga whale behaviour. 

We hypothesized that if  whales were experiencing Hg-associated neurotoxicity, whales 

with higher concentrations of brain Hg would behave abnormally, be harpooned more 

quickly and/or exhibit different evasive strategies during the hunt.

Methods

Study area, people and context

This study was a component of the Hendrickson Island Beluga Study, which was a 

collaborative study of beluga whales from the Eastern Beaufort Sea population. We 

worked closely with Inuvialuit harvesters from Tuktoyaktuk (69.44° N, 133.03° W), a 

coastal community of 930 people, located on the Beaufort Sea in the Inuvialuit 

Settlement Region (ISR), western Canada. In 2010, beluga whales were sampled and 

harvesters’ observations were collected on Hendrickson Island (69.50°N, 133.59° W), a
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small island located in the southern Beaufort Sea, approximately 20 km west of 

Tuktoyaktuk (Figure 6.1).

Inuvialuit have a long history of hunting beluga whales during their summer migration 

through the Mackenzie River Estuary. The beluga whale is known as qilalugaq in 

Inuvialuktun, the Indigenous language o f the Inuvialuit. Based on the archeological 

record, beluga whales made up approximately half o f the diet o f pre-contact Mackenzie 

Inuit (Friesen and Arnold, 1995). Beluga hunting typically occurs in the month o f July, 

when beluga whales migrate through the warm waters o f the Mackenzie Delta Estuary 

(Harwood et al., 2002). Beluga hunting in the ISR typically occurs from 4.6 m long 

aluminum boats and hunters harpoon the whale before killing it, to make retrieval easier 

(Harwood et al., 2002). The total annual number o f landed beluga whales on the shores of 

the Beaufort Sea and Amundsen Coast was 111 between 1990 and 1999 (Harwood et al.,

2002). Beluga whales from this population are also harvested by residents o f some 

coastal villages in Alaska (average 64 per year between 1995 and 2000) and possibly by 

residents o f Chukotka (Harwood et al., 2002). Beluga whales travel through Kugmallit 

Bay in the Mackenzie River Estuary during their summer migrations. The shallow waters 

in this bay make it an ideal location for harvesters to track and hunt beluga whales. 

Hunters from Tuktoyaktuk butcher beluga whales on Hendrickson Island following the 

hunt and generally return to Tuktoyaktuk immediately after butchering the whale to 

process the muktuk (skin and blubber) and to prepare mipku (dry meat).
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Sampling

Brain sampling occurred immediately following the harvest on the shores o f Hendrickson 

Island, after receiving informed consent from the harvesters. Details about sample 

collection and analysis are provided elsewhere (Ostertag et al., in review; Ostertag et al., 

2013). Briefly, brain samples were collected on Hendrickson Island and the concentration 

ofHgwas analyzed by inductively-coupled plasma mass spectrometry (Agilent 

Technologies, 7500 CX) following a modified acid digestion (Armstrong and Uthe,

1971). Permission to collect samples was obtained from the Tuktoyaktuk Hunters’ and 

Trappers’ Committee and the Aurora Research Institute prior to sampling. Ethics 

approval to carry out this research was received from the Research Ethics Board at 

University ofNorthem British Columbia.

Questionnaire

A questionnaire was developed to document harvesters’ observations of beluga whale 

behaviour during harvesting activities. We chose to use a questionnaire to document 

harvesters’ observations about the behaviour of beluga whales to enable comparison 

between whales, for efficient documentation in a field environment and to increase 

participation (Huntington, 2000). Nine questions were asked; three questions were 

multiple choice, two questions required one-word answers and four questions were open- 

ended questions. Topics covered were the beluga hunting experience of the harvesters, 

the weather and seasonal conditions for hunting and the behaviour of the beluga during 

the hunt. Questions about beluga whale behaviour ranged from general questions such as 

“was there anything unusual about this whale’s behaviour”, to more specific questions
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about the time it took harpoon the whale. Questions about behaviour were both multiple 

choice (“was there anything unusual about this whale’s behaviour”) and open-ended such 

as “how would you describe this whale’s behaviour” and “how did this beluga act when 

you were hunting it” to ensure that more detailed information could be recorded. 

Questions were included about harvesters’ beluga-hunting experience, perceived weather 

conditions for harvesting, and seasonal changes in beluga harvesting. The Tuktoyaktuk 

Hunters and Trappers Committee gave permission for S. Ostertag to administer this 

questionnaire on Hendrickson Island, with consenting harvesters.

Respondents

Generally, two hunters, a harpooner and a boat driver worked together to hunt one beluga 

whale. Occasionally, Elders accompany the harpooner and boat driver during the hunt. 

The questionnaire was administered to the boat drivers (n = 10) or in one case, an Elder 

(« =1), after the whale was brought to shore and the butchering was complete. The 

participants provided informed consent prior to completing the questionnaire. The 

questions were read aloud and S. Ostertag documented the answers. The drivers were all 

fluent in English. O f the 15 whales harvested during the 2010 field season, observations 

were recorded for 11 whales for the purpose of this study. All participants provided 

informed consent and completed the questionnaire within 10 to 20 minutes.

Data analysis

The results from the questionnaire were entered into Microsoft® Excel (v 12.3.5). For

each whale, the observations were cross-referenced with Hg concentration data for brain
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tissue. Beluga whales were categorized as having brain Hg concentrations greater or 

lesser than the median concentration measured. The responses were categorized as 

follows: weather conditions (good or excellent, fair or poor), time to harpoon (more or 

the same time to harpoon, less time to harpoon), general behaviour (normal, unusual), 

swimming speed (fast, medium speed) and observed evasive strategies (yes: turned or 

charged; no: did not turn or charge, straightforward to harvest) (Table 6.1).

The small sample size made statistical analysis unfeasible. Therefore, we grouped whales 

based on behaviour, ‘time to harpoon’, and evasive strategies for whales with relative Hg 

concentration measured in brain tissue, to have a visual representation of the potential 

relationship between behaviour and Hg exposure. To assess variables that were 

associated with the ‘time to harpoon’ the whale, we investigated the potential 

relationships between weather conditions, water level and Hg exposure, with the relative 

time to harpoon the whale.

Results

Mercury concentrations

The median Hg concentration in the cerebellar cortex was 0.77 mg kg'1 ww, and ranged

from 0.32 to 3.27 mg kg'1 ww; therefore, none exceeded threshold levels for clinical

symptoms from primate studies, which are between 6.0 and 12.0 mg kg’1 ww (Berlin et

al., 1975b; Evans et al., 1977; Luschei et al., 1977; Stinson et al., 1989). Five beluga

whales had Hg concentrations between 1.0 and 4.0 mg kg’1 ww, which is the range in

which we would expect to observe biochemical changes but not clinical symptoms (Basu
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et al., 2007a; Basu et al., 2008; Suzuki, 1979; Wobeser et al., 1976). Overall, the 

concentrations o f Hg in brain tissue were below levels of clinical symptoms.

Response rate

The participation rate was 73 %. All respondents had ten or more years o f beluga hunting 

experience (Figure 6.2). In general, the driver had more hunting experience than the 

harpooner, which may be associated with the skill and knowledge required to 

successfully track beluga whales in the murky waters o f the Mackenzie Delta Estuary.

The respondents compared the behaviour o f the harvested whale to the behaviour of 

previously observed whales. The questionnaire was an efficient and effective mechanism 

for experienced hunters to share their observations about the whale’s behaviour with the 

beluga researchers at Hendrickson Island in 2010. Respondents generally provided 

detailed responses to the questions that were asked.

General observations

All of the whales behaved normally when they were being hunted. For ten of the eleven 

whales, no unusual observations were noted about their behaviour (Table 6.1). For 

example, one whale that was described to behave normally “just tried to get away from 

the hunters” and another whale that did not exhibit unusual behaviour “must be a healthy 

whale”. However, one whale that behaved normally prior to harpooning, and took 

approximately the same amount of time to harpoon compared to other whales, began to 

act differently after it was harpooned. For example, it “wouldn’t leave the side o f the boat 

after harpooning” and it was “swimming fast, in circles around the boat” (Elder,
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Tuktoyaktuk). This was the first time that this behaviour was observed in this Elders’s 

experience. This whale did not have an elevated concentration of brain Hg (0.8 mg kg'1 

ww) and was median-aged (approx 16 yo) (Figure 6.3). The cause of this abnormal 

behaviour was not determined; however this whale also had a large number of nematodes 

in the auditory canal (personal obs).

Time to harpoon

Harvesters responded that 6 whales took less time to harpoon compared to other whales, 

and five whales took more or the same amount of time to harpoon (Table 6.1). O f the five 

whales with ‘higher than median’ Hg, three took less time to harpoon, and two took more 

or the same time to harpoon (Figure 6.4). Three whales with ‘lower than median’ Hg took 

less time to harpoon and the remaining three whales in this category took more or the 

same time to harpoon. In this study, therefore, the data indicates that whales with higher 

than median Hg were not harpooned in less time than whales with lower than median Hg 

concentration.

Evasive strategies

Based on the recorded observations about whale behaviour, we compared Hg 

concentrations in the whales that were “easy or straight forward to hunt” and those that 

used evasive strategies such as turning and charging. Four respondents described the 

whales as turning, charging or hiding during the hunt (Table 6.1). Three whales did not 

exhibit evasive behaviour and were straightforward to harpoon. Two whales “didn’t 

charge... didn’t give any trouble” or “never turned on us”. Four whales were
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straightforward to harpoon, but of these four, two also turned or charged; therefore, we 

grouped them with whales that exhibited evasive behaviour. The likely reason that these 

two whales were straightforward to harvest was that they were harvested during good 

weather and low tide and one was “impossible to lose” and the other whale was “easy to 

follow, after finding out what it would do”. Although the sample size was very small, 

fewer whales exhibited evasive strategies with higher than median Hg (n = 1) than with 

lower than median Hg (« = 3; Figure 6.5). Furthermore, whales with lower than median 

Hg exhibited evasive strategies more frequently (n = 3) than not (n = /).

Weather

The weather was predominantly good or excellent for hunting during harvesting activities 

(n = 7) compared to poor or fair (n = 3). Good weather was described as being calm or a 

little choppy with low water. Poor or fair weather was described as being windy with 

high water, “a bit choppy” or “water a bit high”. Harvesters provided explanations for 

differences in the time to harpoon, which included weather conditions or water level. For 

example, the low tide made it “impossible to lose sight of the whale because it had a good 

wake on it”, shallow water made it easier to see the whale, and “[the] weather was good 

for tracking” . Whales that took more time to harpoon were in deeper water “so harder” to 

harpoon, “harder to track than other whales in its group... hiding lots.... waited for a long 

time before coming up for air”, “easy to follow after finding out what it would do”. 

Overall, whales took less time to harpoon when the weather was good (n = 5) and the 

water was low {n = 4), and took more or the same time to harpoon when the weather was 

poor or fair (n = 2) and the water was high (n = 2). There were also cases where whales
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took less time to harpoon in poor weather (n = 1) and more time to harpoon in good 

weather (n = 2). One harvester stated that it was a ‘little harder’ to harvest the whale on 

July 18 than earlier in the season. Whales that were harvested later in the season may 

have been faster than whales harvested earlier; respondents observed whales to be ‘fast’ 

on July 13, 18 and 22.
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Figure 6.1. This map depicts the location o f Hendrickson Island, a traditional beluga- 
harvesting site in the Inuvialuit Settlement Region, NT (adapted from Wesche et al., 
2011).
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Beluga hunting experience (years)

Figure 6.2. Beluga hunting experience (years) of the 11 participants of this study. 
Harvesters were counted each time they hunted a beluga and responded to the 
questionnaire. Therefore, some harvesters are counted more than once.
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Figure 6.3. Harvesters’ observation o f normal (black column) and unusual behaviour 
(gray column) in whales during the harvest (n = 11), based on mercury (Hg) exposure 
(above or below the median Hg concentration measured). Median Hg concentration was 
0.77 mg kg'1 wet weight.
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Figure 6.4. Variables that may have affected time to harpoon and harvesters observations 
(black column = less time to harpoon; gray column = more or the same time to harpoon). 
Median mercury concentration in cerebellar cortex was 0.77 mg kg '1 ww.
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Figure 6.5. Observations of evasive strategies (n = 7) demonstrated during beluga 
harvest and related mercury (Hg) exposure (more or less than median Hg). Whales that 
used evasive strategies (turning or diving; black column) or did not use evasive strategies 
(straightforward, did not turn; gray column) are presented according to Hg exposure. 
Median Hg concentration in cerebellar cortex was 0.77 mg kg’1 ww.
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Table 6.1. Observations of beluga whale behaviour during harvesting activities (n = 11).

Behaviour Observation
Yes No Blank

“Less time to harpoon” 6 5 0
Normal 10 1 0
Swam fast 4 1 6
Straight forward 4 2 5
Turned or charged 4 2 5
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Discussion

To our knowledge, this is the first time that behavioural observations and contaminant 

data were linked directly for individual beluga whales. The use of a questionnaire 

provided the opportunity for harvesters to have their observations o f beluga whales 

documented and cross-referenced with Hg-exposure data. Although conclusions about 

potential neurotoxicity associated with Hg could not be established, the key finding was 

that beluga whales with higher Hg were observed to use evasive strategies less frequently 

during the hunt than whales with lower Hg.

Integration of multiple lines of evidence

Mercury concentrations in brain tissue from the harvested whales were below the lowest 

observable adverse effects levels documented for primates (Berlin et al., 1975b; Evans et 

al., 1977; Luschei et al., 1977; Stinson et al., 1989). We would expect clinical symptoms 

of Hg intoxication to include the loss o f motor coordination (Bellum et al., 2012), 

abnormal movements and convulsions (Takeuchi et al., 1977), loss of balance (Farina et 

al., 2005), and reduced passive avoidance. The harvesters did not observe any abnormal 

movements or behaviour in the beluga whales prior to harpooning, which suggests that 

Hg exposure in the eleven whales analyzed in this study were not exhibiting clinical 

symptoms of Hg intoxication. The difference in evasive strategies observed in whales 

with more elevated Hg concentrations was consistent with behavioural symptoms of Hg 

toxicity including the loss o f motor coordination. This study suggests that documenting 

observations of evasive strategies may provide a sensitive measure o f changes in beluga 

behaviour that could be associated with Hg exposure. However, conclusions based on 

these results are limited by the small sample size. Further study into the potential effects
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of Hg on beluga whale behaviour are merited given that the animal behaviour represents 

the integration o f sensory, motor and associative functions of the nervous system (Tilson 

and Cabe, 1978).

In general, the results from this study suggest that Hg concentrations in brain tissue 

ranging from 0.32 to 3.27 mg kg'1 ww were not associated with unusual behaviour and 

‘time to harpoon’. Many variables could likely affect how quickly a beluga is harpooned 

including weather and timing. To harpoon a beluga, the boat driver has to track the 

beluga by following the wake that it creates in the water. Therefore, the association 

between weather and ‘time to harpoon’ reflects the importance of good weather for 

hunting success and limits the usefulness of ‘time to harpoon’ as an indicator o f the motor 

and cognitive function of belugas.

Behavioural observations as complementary line of evidence

Behaviour has been monitored as an indicator of stress in dogs (Bergeron et al., 2002) 

and macaques (Bercovitch and Clarke, 1995), as a response to physiological differences 

in rhesus monkeys (Laudenslager et al., 1999) or as a modulator o f the neuroendocrine 

and reproductive effects of dominance interactions in baboons (Sapolsky, 1993; Sapolsky 

and Mott, 1987). Behavioural studies have also been used to complement physical 

examinations and blood analyses to assess the fitness of stranded dolphins (Sampson et 

al., 2012). Beluga whale behaviour is particularly difficult to document in the wild 

because beluga whales spend approximately 85 % of their time below water (Kingsley et 

al., 2001). Furthermore, beluga whales are a protected species in Canadian waters under
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the Fisheries Act and may not be disturbed except during fishing activities (Regulation 7, 

Marine mammal regulations, Fisheries Act (Canada, 1993)). Therefore, documenting the 

behaviour o f beluga whales during hunting activities provides a unique opportunity to 

capture detailed information without disturbing the animals unnecessarily. Combining 

behavioural observations with physiological data would be very difficult or impossible to 

achieve without the collaboration of Inuvialuit harvesters. Given that the behavioural 

observations provided a complementary line of evidence regarding potential effects of Hg 

on beluga whales, we suggest that harvesters’ observations of beluga whale behaviour be 

used to complement, where possible, the physiological and toxicological parameters 

measured.

This study documented one case in which a beluga whale was observed to behave very 

unusually after it was harpooned. To our knowledge, this was the first incidence in which 

abnormal behaviour in beluga was documented during harvesting activities. The use of 

the questionnaire provided the only opportunity for the observations of abnormal beluga 

behaviour to be documented in the Hendrickson Island beluga-monitoring program. 

Observations about abnormal behaviour are valuable to document in beluga monitoring 

because they could signal a potential risk to individual and population health, if  increased 

parasite infestation occurred due to environmental change. Nematodes and flukes may be 

located within the external auditory system of beluga whales and narwhal, and there is 

speculation that nematodes and flukes could affect echolocation and cause mass 

strandings (Vlasman and Campbell, 2004). During brain sampling, parasites were 

commonly observed in the auditory canals and brain tissue (pers. obs). Therefore, future

168



studies should systematically document the presence of this parasite to monitor its 

presence, intensity o f infestation and animal behaviour.

Bridging TEK, local observations and science

We recommend that future monitoring be expanded to include harvesters’ observations in 

the ISR. Beluga whales have been harvested for centuries in the Mackenzie Delta Estuary 

and harvesters’ observations may provide key information about changes occurring in the 

marine ecosystem. In this study, harvesters were willing to respond to a brief 

questionnaire at the harvest camp on Hendrickson Island. Questionnaires have been 

identified as one of many methods for documenting TEK (Huntington, 2000). The 

importance of recording harvesters’ observations at the harvest site is that it allows these 

observations to be cross-referenced with health indicators and contaminant data for the 

same individual animal. The strength of questionnaires is that they provide consistency 

and allow comparisons to be made between respondents and over time; however, semi- 

directed interviews provide a greater depth and breadth of knowledge and may reveal 

unanticipated information (Huntington, 2000). Conducting semi-directed interviews in 

this particular field camp would be challenging based on the short time that harvesters 

spend at Hendrickson Island following the hunt. Given that ethnographic, participatory 

and iterative methods may be more respectful and constructive approaches to engaging 

with Indigenous communities and local knowledge-holders (Thornton and Scheer, 2012), 

researchers may benefit from carrying out interviews in a location where harvesters are 

spending more time (i.e. in a permanent settlement or at a harvest camp), provided that 

these observations could be cross-referenced with other data that is collected.
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Bringing together TEK and TSK in this study fit into developments at regional, national 

and international levels to include TEK in resource management and decision-making. In 

recent decades, there has been increasing recognition that Aboriginal knowledge could 

contribute to co-management and environmental impact assessments (Usher, 2000). This 

was the outcome of advocacy, negotiation o f comprehensive land claims across the north, 

and the development of formal Environmental Impact Assessments and review processes, 

in addition to legal developments within the Supreme Court of Canada and lower court 

rulings (Usher, 2000). In northern Canada, Indigenous knowledge is recognized in the 

Northwest Territories as “a valid and essential source of information about the natural 

environment and its resources” (Territories, 2005). Internationally, specific 

recommendations to establish marine and Arctic programmes that include the use o f TEK 

for the conservation o f biodiversity were presented during the workshop on traditional 

knowledge and biological diversity (Programme, 1997). More recently, efforts have been 

made to integrate or bridge TEK with TSK in Arctic ecological research (Gagnon and 

Berteaux, 2009; Gilchrist et al., 2005; Huntington et al., 2004).

Bridging or linking western science with TEK has been recognized as particularly 

important when “identifying problems related to hazardous wastes and industrial 

pollution”(Wavey, 1993). To effectively bridge these ways of knowing, southern 

scientists may not simply impose their views (Stevenson, 1996), but must support “the 

development of permanent technical, scientific and support capacity under the control 

and direction o f Indigenous peoples” (Wavey, 1993). Challenges that have been 

identified in bridging TEK and TSK include the sharing of power (Berkes, 1993) and 

ownership of data (Wavey, 1993). Benefits that arise from bridging TSK and TEK
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include the fact that people who spend long periods o f time on the land will see things 

“more often, for longer, and at more different times and places than is normally the case 

for scientists” (Usher, 2000).

The observations that Inuvialuit beluga harvesters shared reflected knowledge gained 

from decades o f observing beluga during harvesting activities and travel in the 

Mackenzie Delta Estuary. Traditional Ecological Knowledge is comprised not only of 

factual knowledge about the environment and use of the environment (past and present), 

but also values about the environment and a culturally-based cosmology (Usher, 2000). 

This study represents the documentation of factual information gathered from experience 

beluga harvesters; however, this will hopefully be the starting point for greater inclusion 

o f TEK and local observations in beluga monitoring.

Limitations

Although the results from this study do not suggest that the whales sampled for this study 

were at risk of Hg-associated toxicity, these conclusions should not be extrapolated to the 

eastern Beaufort Sea beluga population. Limitations in this study include the small 

sample size, low Hg concentrations measured in these whales compared to previously 

sampled beluga from the eastern Beaufort Sea population and lack o f specificity in the 

questions included in the questionnaire. Furthermore, relying solely on a questionnaire 

for documenting TEK of beluga whales limited the type and quantity of data that was 

gathered.
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The small sample size was due in part to the challenges associated with combining 

biological sampling of belugas with the harvester-questionnaires. One of us (SO) was not 

able to administer the questionnaire to three harvesters (n ~ 3) due to challenges 

associated with collecting samples for laboratory analyses and administering the 

questionnaire before the hunters departed HI. The weather in the Mackenzie Delta 

changes rapidly; there are stronger and more frequent winds experienced by Inuvialuit in 

the summer, which reduces travel safety and shortens hunting trips in the summer 

(Wesche and Chan, 2010). Therefore, there was very little time to administer the 

questionnaire following the harvest. Furthermore, very few beluga whales were harvested 

during the 2010 sampling season compared to the 2006 and 2008 sampling season (n =

24 -  30 whales).

Beluga whales harvested in 2008 had more elevated brain Hg concentrations than beluga 

whales harvested in 2010 (Ostertag et al., Submitted). The difference in Hg 

concentrations observed in 2008 and 2010 could be due to the younger age o f beluga 

whales harvested in 2010, and the small sample size (n = 15) that reduced the sampling 

of whales at the extremes of Hg exposure. Increasing the number o f field seasons and 

sampling sites, and training whale monitors to administer questionnaires would increase 

sample size and provide greater understanding of changes occurring in the eastern 

Beaufort Sea beluga population.

The use of a questionnaire provided a rapid method for documenting harvesters’ 

observations following the hunt. Overall, the questionnaire was effective for documenting 

general observations such as ‘time to harpoon the whale’ and whether the whale behaved
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normally. The use of open-ended questions provided valuable additional information that 

was more specific about the whale’s behaviour. However, the use of open-ended 

questions made it challenging to compare the specific observations for different whales, 

due to variability in the types o f observations that harvesters shared. This further reduced 

the sample size for the analysis of specific behavioural differences in whales related to 

Hg exposure. Including input from harvesters and community members on the content of 

the questionnaire may have increased the specificity of questions regarding behaviour. 

This could have resulted in more comparable responses regarding the specific behaviour 

of the harvested whales.

Results were presented to the harvesters in 2012; however, harvesters were not involved 

in the interpretation o f results. The observations documented in this study were analyzed 

semi-qualitatively, based on the dominant scientific paradigm, which reflects an 

imbalance o f power between the researchers and knowledge-holders (Stevenson 1996). 

We acknowledge that this study is merely a starting point towards a greater inclusion of 

TEK in beluga monitoring research in the ISR.

Conclusions

We recommend that scientists and Inuvialuit knowledge-holders continue to work 

together to include TEK in beluga monitoring programs in the ISR. We suggest that semi

directed interviews and focus groups be conducted with harvesters, elders, whale 

monitors and youth prior to the field season to identify observations that should be 

documented. Future studies that aim to bridge TEK and TSK are encouraged to use less
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extractive methods of documenting TEK and local observations through the use of 

participatory research methods. Furthermore, additional methods for documenting and 

sharing TEK and TSK need to be identified through partnerships between researchers, 

harvesters and co-management boards. A participatory approach to community-based 

monitoring is recommended, in which whale monitors, Elders, harvesters and youth are 

equal participants in the documentation and sharing of beluga TEK. Issues of data 

ownership, interpretation of results and research control must be negotiated in future 

ecological monitoring in the ISR to ensure the equal distribution o f  power in decision

making.

This study clearly shows that harvesters’ observations o f beluga behaviour can quickly be 

documented following the harvest. The observations made by harvesters offered valuable 

information about beluga behaviour. This study suggested a possible relationship between 

observed evasive strategies and Hg exposure; therefore, the link between specific 

behaviour during harvesting and Hg exposure should be studied further. Beluga 

harvesters have a unique ability to observe whale behaviour during the hunt, and these 

observations could be documented and compared to contaminant exposure and other 

parameters in future studies. Further inclusion of TEK and local observations o f beluga 

whales in monitoring programs will improve our understanding of how environmental 

change may affect beluga whales from the eastern Beaufort Sea beluga population.

Beluga whales in the Beaufort Sea face many challenges associated with increased 

shipping, offshore oil and gas exploration, climate change and contaminants exposure. A 

community based participatory research approach would facilitate co-learning and would
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bring together different knowledge-holders to monitor changes in the health o f beluga 

whales and the ecosystem to which they belong. A collaborative and community-based 

approach can guide the ethical and respectful inclusion of TEK in monitoring programs. 

Research partnerships should continue to be developed to bridge TSK and TEK to 

monitor the effects o f environmental change on beluga health at individual and 

population levels.
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Chapter 7. Conclusions and Recommendations

Objectives and Significance

The goal of this dissertation was to further our understanding o f the toxicological risk 

posed by methylmercury (MeHg) exposure for beluga whales in the western Canadian 

Arctic, through community-based research methods. I worked closely with community 

research assistants, harvesters and youth to collect high quality samples, while also 

providing mentoring and training opportunities to northerners. To assess the toxicological 

risk o f MeHg exposure in harvested beluga whales, I measured total mercury (Hgr), 

MeHg and labile inorganic Hg (iHgiabiie) in various brain regions o f beluga whales and 

compared these concentrations to threshold levels. I used a biomarker approach to 

evaluate if Hg exposure was associated with neurochemical and molecular variation of 

components from the dopaminergic, y-aminobutyric acid (GABA), glutamatergic and 

cholinergic signaling pathways. Finally, I documented harvesters’ observations o f beluga 

whale behaviour and compared the behaviour of whales with higher than median and 

lower than median Hg concentrations. The overall hypothesis was that Hgj, iHgiabiie and 

MeHg concentrations would exceed threshold levels, and would be associated with 

behavioural, neurochemical and/or molecular variation, if  MeHg exposure was of 

toxicological concern for this population of beluga whales.

The overarching goals o f this research and the Hendrickson Island Beluga Study were to 

carry out respectful and inclusive research in the Inuvialuit Settlement Region that would 

increase research capacity, respond to community concerns and questions, and develop 

research partnerships for long-term beluga monitoring in the region. Efforts were made
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throughout the study period to engage youth, communicate effectively and provide 

training opportunities for northerners. The efforts made to involve community members 

and especially youth in the research process fostered good working relationships and 

strengthened the beluga-monitoring program.

This dissertation has direct implications for policies at a regional and international level. 

In the Inuvialuit Settlement Region, the Fisheries Joint Management Committee is 

particularly concerned with ensuring that the beluga population is managed to “provide 

for a harvest that generates the greatest net benefit to the Inuvialuit while ensuring the 

long-term sustainability of beluga in the Canadian Beaufort Sea” (FJMC, 2001). 

Therefore, research that furthers our understanding o f the potential negative impacts of 

MeHg exposure in beluga may have management implications. Internationally, there 

have been increasing efforts to develop a legally-binding treaty on Hg emissions, and 

governments recently agreed to the text of a global, legally binding document to reduce 

mercury emissions. High quality contaminants research carried out in the Arctic and the 

advocacy of Arctic peoples contributed to the success of the Stockholm Convention, 

which regulates the production and use of 21 organic chemical substances (Watt-Cloutier,

2003). Therefore, expanding our understanding of the potential neurotoxicity of MeHg 

exposure in beluga whales will feed into policies to reduce Hg emissions and use.

This dissertation represents an extension of previous studies focused on Hg accumulation 

and distribution in beluga whales from the western Canadian Arctic (Lockhart et al.,

2005; Outridge et al., 2002; Outridge et al., 2009; Wagemann et al., 1990; Wagemann et 

al., 1998). We have expanded on the state of knowledge of Hg accumulation in the
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central nervous system (CNS) of beluga whales, and we have provided additional 

information about the forms of Hg present in the CNS and the relationship between Hg 

and selenium accumulation in five brain regions. This dissertation increases our 

knowledge about how Hg accumulation in beluga whale CNS compares to other taxa, and 

provides possible explanations for elevated Hg accumulation in the CNS of beluga 

whales.

To our knowledge, this work represents the first use of neurochemical and molecular 

biomarkers to assess potential neurotoxicity associated with MeHg exposure in cetaceans. 

Furthermore, contaminant exposure assessments are rarely, if ever, combined with 

behavioural studies of wildlife; therefore, this dissertation provides a unique example of 

how behavioural observations can be linked to MeHg exposure studies in beluga whales. 

This method may be adapted and replicated in situations where hunter-harvested animals 

are sampled for contaminants analysis. The overall significance o f this work is that it 

provides the first species-specific analysis o f the potential risk of MeHg exposure for 

beluga whales.

The toxicological risk o f MeHg exposure 

Mercury exposure thresholds

Total Hg concentrations in some beluga whales exceeded thresholds of toxicity reported

for humans and primates; therefore, it is possible that Hg exposure in beluga whales from

the eastern Beaufort Sea could be associated with neurotoxicity. At least 14% of the

beluga whales had HgT concentrations higher than levels of observable adverse effect

(6.0 mg kg'1 wet weight (ww)) in primates. The concentration of MeHg (range: 0.03 to
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1.05 mg kg'1 ww) was positively associated with Hgx concentration, and was below levels 

of observable effect in all animals sampled. The positive association between selenium 

(Se) and Hgx in all brain regions suggests that Se could play a role in the detoxification of 

MeHg in the brain.

Neurochemical and molecular variation associated with mercury exposure

Total Hg concentrations (1.7 to 113 mg kg'1 dw), MeHg (0.5 -  5.2 mg kg'1 dw) and 

iHgiabiie (0.6 to 6.7 mg kg*1 dw) in the samples analyzed exceeded the concentrations of 

Hg associated with neurochemical variation in wild mink (Hgx = 0.27 to 18.84 mg kg'1 

dw; MeHg = 0.26 to 13.52 mg kg'1 dw) (Basu et al., 2005a), river otter (Hgx = 0.09 to 

14.31 mg kg'1 dw; iHg = 0.00 to 10.65 mg kg'1 dw; organic Hg = 0.08 -  8.54 mg kg'1 dw) 

(Basu et al., 2005c), polar bear (Hgx = 0.11 to 0.87 mg kg'1 dw) (Basu et al., 2009), 

common loons (Hgx = 0.2 to 68 mg kg'1 dw) and bald eagles (Hgx = 0.3 to 23 mg kg'1 

dw) (Scheuhammer et al., 2008). My findings suggested that G A B A a - R  binding was 

negatively associated with Hg and MeHg concentrations, NMDA-R binding was 

negatively associated with HgT and and iHgiabiie concentrations (nss), and MAO activity 

was negatively associated with Hgx, MeHg and iH giabiie concentrations (Table 7.1). 

Overall, these findings were consistent with results from previous avian and wildlife 

studies (Basu et al., 2005a; Basu et al., 2007b; Basu et al., 2008; Basu et al., 2007c; Basu 

et al., 2009; Rutkiewicz et al., 2011; Scheuhammer et al., 2008).

The results from our analysis of relative mRNA transcription levels for target genes for 

mAChR subtype m l, GABAa-R a2 and NMDA-R 2b were negatively associated with
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H g x , M e H g  and/or iHgiabiie concenterations (Table 7.1). The expression of mRNA for 

NMDA-2b and GABAa subunit a2 target genes were positively correlated to receptor 

binding levels of the NMDA-R and GABAa-R, respectively. Furthermore, mRNA 

expression for GABAa subunit a4 was negatively correlated to GABAa receptor binding 

levels, which could be explained by the lack of binding affinity o f  the radioligand used 

([3H]-FNP) and the GABAa receptor if  it contains the a4 subunit.

Selenium co-accumulation with Hgx may provide protective effects for MAO activity and 

mAChR binding, based on the relationship between Hgx and Ser molar ratio and receptor 

binding. Futhermore, mRNA expression for mAChR ml was also significantly associated 

with the molar ratio of Hgx to Sex. In contrast, the results from the GABA-R or NMDA- 

R binding assays did not indicate a significant relationship between receptor binding and 

the molar ratio o f Hgx to Sex. Therefore, potential protective effects of Hg and Se co

accumulation for the glutamatergic and GABAergic signaling pathways were less evident 

in these studies.

To our knowledge, these were the first reported data on neurochemical or molecular 

variation associated with MeHg exposure in beluga whales, or cetaceans in general.

In general, the decrease in receptor binding and mRNA expression for target genes from 

neurosignaling pathways associated with Hgx, MeHg and/or iHgiabiie concentration may 

be explained by signaling pathways being downregulated, in response to increased 

stimulation (Duman et al., 1994). These results suggest that although MeHg is 

demethylated and possibly detoxified through an interaction with Se, current MeHg
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exposure may nonetheless be of toxicological concern for this population o f beluga 

whales.

Table 7.1. Significant predictors (total mercury, Hg; methylmercury, MeHg; labile 

inorganic H g , iHgiabiie) of neurochemical and molecular variation in brain tissue from 

harvested beluga whales.

Biomarker Total Hg MeHg iHgiabiie

GABAa-R * h i ' -

M >-s £« u £*
NMDA-R * - h i‘

® iirn O
3 2

Muscarinic ACh-R - - -

z MAO activity hi* h i ' hi * ......

u
8

GABAa-R a2 h i ’ hi* hi

uAs
GABAa-R a4 “ - -

o
'£
ues

NMDA-R 2b “ - h i '

so
Q

Muscarinic AChR ml h i* .... hi*...... hi*

§ MAO activity _ - -

* p  < 0.05

-p  > 0.1

Evasive behaviour during hunt and mercury exposure

Behavioural changes associated with Hg toxicosis in one wild river otter were ataxia,

scleral injection (red eyes) and lack of fleeing response (Sleeman et al., 2010). One cat

with 16.4 mg kg'1 total Hg from White Dog, ON developed convulsions, ataxia, jumping
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and circling around (‘dancing’) after it was fed fish entrails from the English River 

(Takeuchi et al., 1977). Therefore, we would expect a lack of motor coordination (ataxia), 

convulsions and abnormal behaviour from whales suffering mercury toxicosis. Our 

findings suggested a possible relationship between beluga whales’ use of evasive 

strategies and Hg exposure. Given that the harvesters observed the whales behaving 

normally during the hunt, it is unlikely that the Hg exposure in the eleven whales 

analyzed was associated with overt toxicity like that seen in the intoxicated wild river 

otter and cat studies. However, a larger study would allow further exploration o f the 

potential effect o f Hg accumulation on beluga behaviour. Beluga harvesters have a 

unique ability to observe whale behaviour during the hunt, and these observations could 

be documented and compared to contaminant exposure and other parameters in future 

studies. Overall, the inclusion of traditional ecological knowledge and local observations 

of beluga whales in monitoring programs would improve our understanding o f how 

environmental change may affect beluga whales from the eastern Beaufort Sea 

population.

Limitations

Assessing the significance o f the relationships between Hg exposure and neurochemical 

and molecular biomarkers is limited by a number o f factors. Specifically, this study 

lacked negative controls and had small sample sizes in each sampling year because 

samples were collected opportunistically from harvested beluga. Furthermore, sampling 

brain tissue from hunter-harvested whales affected the quality o f samples due to the time 

between whale death and sampling (~ 20 min to 1 h), the time required to remove the
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brain from the harvested beluga (~ 30 min), and the additional time to sub-sample the 

brain tissue (30-60 min). Differences in neurochemistiy and mRNA expression between 

sampling years may have been due to sample instability over time, differences in Hg 

exposure between years, differences in age between years, or other differences in whale 

physiology between years. Other physiological differences in whales that could also 

impact neurochemistry and mRNA expression were not explored in this study due to 

limitations in sample size, and the lack of baseline information about beluga whale 

physiology and neurological signaling pathways.

Community-based research approach

The research process relied on collaboration within the research team and with northern 

partners to sample beluga whales during the field season on Hendrickson Island. Having 

a multi-disciplinary and multi-institutional team made it possible to have more frequent 

and extended contact between the team and our northern partners. Fieldwork on 

Hendrickson Island provided an important interface for the research team and community 

members from Tuktoyaktuk. During fieldwork, the researchers had the unique 

opportunity to live at a traditional whaling site and to learn about Inuvialuit culture, 

traditions, and way of life. Equally importantly, the researchers could learn first-hand 

from the local sampling team, youth, whale monitors and harvesters about the value of 

beluga and other country foods for Inuvialuit health and well-being. Finally, throughout 

the field season, the researchers were reminded of the responsibilities and privilege 

associated sampling and studying beluga whales in the ISR.

The research team relied on a number o f strategies to increase connectivity across the 

worlds of academia and the Arctic. For example, the team connected to their northern
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research partners through a diversity o f communication strategies ranging from 

teleconference and phone calls, emails, research reports and pamphlets. The best way to 

connect remotely was through emails and phone calls directly to the THTC. The research 

team also supported the participation o f mentoring students and northern research 

partners at scientific conferences and workshops in Ottawa, ON, Victoria, BC, and 

Montreal, QC. The best way for the research team to maintain communication and 

dialogue with Arctic partners and organizations was through community visits that 

included meetings, classroom presentations and family visits.

Communication

During fieldwork, the research team communicated with harvesters about the research 

that was taking place on Hendrickson Island. Unfortunately due to time restraints, 

dialogue was generally brief between researchers and harvesters. The intention for 

organizing a ‘Sharing Knowledge’ results workshop was for the Science Team to present 

their research findings to community members, provide a place to address and discuss 

questions from community members about our research, engage youth in learning about 

belugas and beluga research, and to discuss the future direction of beluga 

research/monitoring in the Inuvialuit Settlement Region. Organizing this workshop 

required an extensive time commitment for the research team and Tuktoyaktuk HTC 

resource person. This investment by the team and HTC were made due to the sense of 

responsibility to adequately respond to the community’s questions following a three-year 

study period and ten-year beluga-monitoring program. The communication event in 

Tuktoyaktuk succeeded in bringing together diverse knowledge-holders and stakeholders
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from the Hendrickson Island Beluga Study. The workshop and gatherings provided the 

opportunities for the research team to answer many o f questions about belugas and beluga 

health that were raised by harvesters and their families.

Following the ‘Sharing Knowledge about Belugas’ workshop, the questions that arose 

from community members were summarized and the research team prepared answers to 

these questions. The final report from the Hendrickson Island Beluga Study aimed to 

present information about beluga whales based on the scientific studies that took place at 

Hendrickson Island, knowledge gained from the scientific literature and the knowledge 

held by Inuvialuit in Tuktoyaktuk, NT. The report was then transformed into a photo 

book using photos from fieldwork, conferences and community meetings, using iPhoto 

(Apple®). The draft book was sent to northern research partners and the Tuktoyaktuk 

HTC to receive additional feedback prior to publication. Community input was 

incorporated into the book and the final book was printed (250 copies) and distributed to 

harvesters, youth and community organizations in 2013.

Conclusions andfuture research

The weight-of-evidence from these studies suggests that Hg concentrations are indeed 

reaching levels associated with sub-clinical changes in neurochemistry in beluga whales 

from the eastern Beaufort Sea beluga population. Therefore, current MeHg exposure is of 

toxicological concern for beluga whales from this population. Although the response of 

beluga whales to MeHg exposure at a physiological and population level remains to be 

elucidated, further study is warranted to address potential adverse outcomes (e.g., tissue
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pathologies, behavioural changes, motor impairment) associated with Hg toxicity in this 

population o f beluga whales. Another stressor that needs to be considered for this 

population a warming Arctic, which may have detrimental consequences for beluga 

whales due to increased Hg loading o f the Beaufort Sea from the Mackenzie River 

(Leitch et al., 2007), changes in ice regimes, decreased availability of food (e.g. Arctic 

cod), and increased risk o f predation (IPCC, 2007). Climate change may also affect 

beluga whales and other Arctic marine mammals indirectly, by increasing exposure to 

ships strikes and noise associated with human activities such as shipping, fishing and 

industry in the Arctic (Huntington, 2009). To date, harvest levels by subsistence 

harvesters is sustainable and represents a removal o f less than 0.6% of the estimated 

population (Harwood and Smith, 2002).

Given that beluga whales are unable to change their diet to reduce exposure to MeHg, 

global efforts are required to reduce emissions o f Hg to protect Arctic beluga whales 

from MeHg exposure and potential intoxication. Furthermore, continued monitoring of 

beluga populations is required to ensure that changes in population size or health are 

documented early and mitigation efforts can be effective if possible.
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Prince George, BC
V2N 4Z9 Canada
Phone: (250) 960-5676
Fax: (250) 960-5418
Email: ostertag@ unbc.ca

University of Northern British Columbia

Fisheries Joint Management Committee

Laurie Chan; Gary Stem; Peter Ross; Marie Noel; S tephen Raverty; Lisa Loseto

Linking Neurochemistry to Contaminant Exposure In Belugas of the Mackenzie 
Delta
To collect brain sam ples from beluga whales harvested in the ISR for contaminant 
and brain analyses to establish whether a  link exists between contaminant exposure 
and brain chemistry.

June 15,2010 to August 15,2010

Hendrickson Island (69 degrees N, 134 degrees W) 30 km from Tuktoyaktuk

Licence No.14717 expires on December 31, 2010 
Issued in the Town of Inuvik on May 11,2010

* original signed *

Pippa Seccombe-Hett,
Director, Aurora Research Institute
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Appendix 3. Harvester questionnaire/informed consent form

Information Letter and Consent Form 
Neurochemical changes and behavioral effects associated with mercury exposure in 
beluga whales {Delphinapterus leucas) in the Mackenzie Delta

You are invited to participate in a study entitled Neurochemical and behavioral changes 
associated with mercury exposure in beluga whales (Delphinapterus leucas) in the 
Mackenzie Delta that is being conducted by Dr. Laurie Chan and his PhD student Sonja 
Ostertag from the University o f Northern British Columbia (UNBC). This project is part 
of Sonja Ostertag’s PhD research in the Natural Resources and Environmental Studies 
Program at UNBC. The project is supported by the Tuktoyaktuk Hunters and Trappers 
Committee and is funded by the Natural Sciences and Engineering Research Council of 
Canada and the Fisheries Joint Management Committee.

Purpose and Objectives
Mercury comes to the Canadian Arctic from air pollution. Mercury is toxic to the brain 
and can affect the health o f wildlife and humans. We want to study the effects of 
mercury on beluga whales. The objective is to see if a higher level of mercury in the 
brain is related to changes in brain chemistry and behavioral changes observed by Inuit 
hunters.

Importance of this Research
Results o f this study will help us understand whether pollution is affecting the health of 
beluga whales.

Participants Selection
You are being asked to participate in this study because you have experience in hunting 
beluga whales and your knowledge of beluga behavior.

What is involved
If you agree to voluntarily participate in this research, your participation will include 
filling out the questionnaire regarding the behavior of the whale that you harvested today.

Inconvenience and risks
It will take about 10 minutes to do the questionnaire. There is no perceived risk 
associated with completing this questionnaire.

Benefits
The community as a whole may benefit from knowing more about effects of pollution on 
an important food source. Your observations provide important information about 
whether any observed changes in brain chemistry are also linked to unusual or abnormal 
animal behavior. This study will also help to champion for the control of pollution.

Compensation
You will not receive compensation for participating in this study.
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Voluntary Participation
Your participation in this research is voluntary. If  you do decide to participate, you may 
withdraw at any time without any consequences or any explanation. If you do withdraw 
from the study your responses to the questionnaire will not be used.

Anonymity
We will record your name in case of follow up questions but your name will not be linked 
with any of the data or presented in any way. Your responses will be linked to the ID of 
the beluga you harvested only for the analysis of the data. The whale IDs will be changed 
when we present/report the results o f this study to make sure that your responses cannot 
be linked to you.

Confidentiality
We will destroy the record of your participation within one year. During this year, your 
name record will be kept in a locked file cabinet in Dr. Chan’s office.

Dissemination of results
Results of this study will be shared with the community and regional contaminants 
committee before being published in scientific reports and conference presentations.

Disposal of Data
In 2015, written interviews will be shredded and in 2020, the electronic version will be 
erased.

Contacts
If you have any questions, you can contact Sonja Ostertag at 250 960 5676 or 
ostertag@unbc.ca, or her supervisor Dr. Laurie Chan at 250 960 5237 or lchan@unbc.ca 
at any time.

If you have any complaints, you may contact the Human Research Ethics Office at the 
University of Northern British Columbia (Office of research, Ethics Coordinator Debbie 
Krebs, phone 250 960 5650, email krebsd@unbc.ca) any time.

Consent
I understand the procedures described above. My questions have been answered to my 
satisfaction, and I agree to participate in this study. I have been given a copy o f this form.

Printed Name o f Subject

Signature of Subject Date

Signature of Witness Date

Please retain a copy o f  this letter for your reference.
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Questions for Beluga H unters

Beluga ID ____________ Date
When did you first start hunting whales?
Hunter:_____________________  Driver:____

Weather Conditions:

Hunting Conditions
1. How were the weather conditions for hunting today? excellent good fair poor
2. How does harvesting whales now compare with earlier this season?

Harvesting this whale
3. How did this beluga act when you were hunting it?

4. How does that compare with other belugas you have hunted?

5. Did you find that it took more less the same amount of time to
harpoon this whale compared to other whales? Why do you think it took__________
time to harvest this whale compared to others?

Behaviour
6. How would you describe this whale’s behaviour?

7. Was there anything unusual about this whale’s behaviour? Yes No Unsure

210



Appendix 5. Job application and contract for mentoring 
students

Application: Field Assistant on Hendrickson Island

Job Description
□ Participate in the beluga health research program taking place in the ISR
3 Assist with beluga sampling on Hendrickson Island from July 1 ** to July 20th 
: Leam about human activities that could affect beluga health

□ Initiate your own project of interest
D Participate in camp maintenance and logistics on Hendrickson Island
□ Engage youth back in Tuktoyaktuk and the ISR in beluga research
3 Earn $100/day if this is your first time working on the bel uga research team, $150/day 

if you have previous research experience.
G Travel to university/government labs to leam about sam ple preparation and analysis 

(optional)
□ Attend a conferences in the fall/winter 2010 (optional)

N am e:_____________________________  Phone Number:

Why do you want this jo b ? ________________________________

How often do you go camping? Frequently Som etim es Rarely Never 

Are you currently in: High School College University Other:

Are you interested in research? YES NO Have you helped researchers before? YES NO

Have you worked with children/youth? YES NO

Do you want to attend college or university? YES NO

What are your future g o a ls ? ___________________________________________________________

Please contact Marie Noel (250-363-6414) or Rebecca Pokiak if you have any questions
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Project Description

The Beluga Health Research Program aims to bring together scientists and local 

knowledge-holders to study the health of the Eastern Beaufort beluga population. The 

research team is composed of scientists, graduate students and local researchers 

from Tuktoyaktuk who will share their knowledge of beluga health.

As in the past several years, a group of researchers will be on Hendrickson Island this 

summer to collect beluga samples. We are interested in studying the possible effects 

of contaminant exposure on beluga health. We will collect sam ples of blubber, blood, 

liver, brains, reproductive units and diseased tissues from harvested belugas. 

Sam ples will be analyzed in university and government labs in BC and Manitoba.

A research team led by Myma and Rebecca Pokiak will be collecting information from 

hunters and their families in Tuktoyaktuk to leam about belugas and their health.

We would like to hire one or two students, between the ages of 16 and 29 to work with 

us this summer. In addition to field experience, there may also be opportunities to 

travel to our labs and to conferences in the fall/winter 2010/2011.

R esearch  Team

Dr. S tephen  Raverty is a veterinarian from the animal health care center in BC. He 
will collect sam ples for the assessm ent of illness and disease in the harvested whales.

Sonja O stertag  is a PhD candidate at the University of Northern British Columbia, 
Prince George. She will collect brains to evaluate the effects of contaminants on brain 
chemistry.

Marie Noel is a PhD candidate at the University of Victoria and will collect the blood of 
belugas to examine their health.

Frank and Nellie Pokiak are participants of a  monitoring program for Fisheries and 
O ceans Canada. They sample tissue for contaminants and record their observations.

Myma and R ebecca Pokiak are leading a research program in Tuktoyaktuk to gather 
knowledge from residents about beluga whales and their health.
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Beluga Health Research Team 
Student Employment Agreement

This Agreement made between the following two parties as o f______________ (Date)

BETWEEN:

(Student funded by Sharing Knowledge on Belugas and Beluga Health Team)

And

(Representative [Sonja Ostertag] for Sharing Knowledge on Belugas and Beluga Health Team)

The two parties agree to the following arrangement from June 30, 2010 to July 20,
2010:

The student will:
1. Assist and participate in all sampling activities taking place on Hendrickson 

Island between June 30 and July 20 (weather dependent)
2. Assist with camp duties including cooking, washing dishes and camp clean up
3. Carry out an independent project with guidance from the research team
4. Be available to work at any time of the day or night to sample whales
5. Remain on Hendrickson Island between June 30 and July 20 (weather 

dependent) unless there is a family emergency or the agreement has been 
terminated

The Beluga Health Research Team (Marie Noel, Sonja Ostertag, Stephen Raverty, Lisa 
Loseto) will:

1. Mentor and teach the student the sampling procedures
2. Provide guidance on designing and carrying out the independent project with 

the student
3. Provide a safe and supportive learning environment to the student
4. Provide transportation to and from Hendrickson Island

If the student a t any time does not agree to  th e  terms of this agreement, the 
contract can be term inated.
By signing below, both individuals agree to the arrangements of this agreement.

(Student) (Date)

(Representative [Sonja Ostertag] (Date)

(Witness) (Date)
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