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Abstract

Furbearer populations across the central-interior of British Columbia, Canada, are 

exposed to the cumulative impacts of landscape change, particularly as a result o f forest 

harvesting. I elicited knowledge from furbearer experts to develop habitat models for three 

furbearer species: fisher (Pekania pennanti), Canada lynx (Lynx canadensis), and American 

marten (Martes americana), and applied the models to reference landscapes to quantify 

changes in habitat availability and quality from 1990 to 2013. Where forest harvesting was 

extensive, the models predicted substantial declines in habitat for each focal species. I used 

trapping records and negative binomial count models to investigate the relationship between 

habitat change and population abundance of lynx and marten. The top-ranked count models 

identified combinations of trapping effort, trapline area, and habitat availability and quality 

as having significantly positive effects on capture success. These results demonstrate the 

utility o f expert knowledge for studying cumulative impacts of landscape change on 

furbearers.
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Chapter 1: General Introduction

Background

Natural resource managers must consider the importance of the cumulative impacts of 

anthropogenic and natural landscape change when managing wildlife habitat and populations 

(Schneider et al. 2003, Johnson 2011). Cumulative impacts can be complex and difficult to 

understand when compared to acute, immediate changes to habitat. They can be a result of 

natural or anthropogenic activities at a range of temporal and spatial scales and they can be 

interactive, additive, or synergistic in nature (Nitschke 2008, Johnson 2011). Rapid resource 

extraction can result in cumulative impacts that affect economic, cultural, and ecological 

resources including the distribution and abundance of wildlife (Nitschke 2008). Species that 

are dependent on continuous tracts of late-seral habitat may be particularly susceptible to 

habitat loss and fragmentation associated with cumulative landscape change (Schneider et al. 

2003, Nitschke 2008). Conversely, generalist species may increase as a result of landscape 

changes that create openings, young forests, and edge habitat.

Furbearer populations found across the central-interior of British Columbia (BC), 

Canada (Figure 1.1), are exposed to the cumulative impacts of landscape change. This 

region has been subjected to unprecedented levels of timber harvesting following the rapid 

development of the forestry sector. Levels of timber harvest were historically high, but have 

accelerated over the past ten years in response to a mountain pine beetle (Dendroctonus 

ponderosae) epidemic that has killed 53% of merchantable pine stands province-wide (BC 

Ministry of Forests, Mines, and Lands 2010). Natural disturbance, including fire, insects, 

disease outbreak, and wind events may also reduce the availability of habitat for furbearers. 

The cumulative impacts of anthropogenic and natural disturbance are especially concerning
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for some species of furbearers thought to be sensitive to human disturbance and the loss of 

late successional forests.

Furbearers play important roles within the ecosystem and have significant cultural 

and economic importance for the fur-trapping industry throughout North America (Webb and 

Boyce 2009). Local trapping organizations have reported declines in the abundance of a 

number of furbearer species across central-interior BC (M. Bridger unpub. data), yet there is 

a lack of monitoring and management in response to those observations (Webb et al. 2008). 

There is an immediate need to investigate the long-term impacts of cumulative landscape 

change on the habitat and abundance of furbearer populations.

Many furbearer species act as indicators of healthy ecosystems (Buskirk 1992, Wiebe 

et al. 2013). American marten (Martes americana) and fisher (Pekania pennanti), for 

example, are often associated with intact, late-successional forests (Thompson and Colgan 

1994, Payer and Harrison 2003, Weir and Harestad 2003, Proulx 2006, Proulx 2011). These 

forests provide structural complexity and other attributes that are vital to the persistence of 

furbearers and other old-growth dependent species (Buskirk 1992, Payer and Harrison 2003, 

Proulx 2006). Other furbearer species, like Canada lynx (Lynx canadensis), may thrive 

across landscapes where different stages of successional forests are present; old-growth 

forests may provide habitat for denning and resting, while regenerating forests support prey 

(Hoving et al. 2004).

The habitat requirements and disturbance responses of furbearers to landscape change 

are not well quantified, presenting challenges to natural resource professionals. Biologists 

and forest managers, however, recognize that many furbearer species avoid forest openings
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associated with industrial activity and habitat disturbance (Thompson and Colgan 1994, 

Hargis et al. 1999, Potvin et al. 2000, Fuller and Harrison 2005, Proulx 2009). Furthermore, 

fragmentation of habitat at larger spatial scales may affect population productivity (Payer and 

Harrison 2003). The reduction and fragmentation of old forest across landscapes may have 

profound long-term effects on the abundance and persistence of furbearer populations 

(Thompson 1994, Proulx 2000).

Expert-based wildlife studies may serve as an alternative to empirical-based research, 

particularly when the cryptic behaviour of many furbearer species makes them difficult to 

study (Ruette et al. 2003). Where empirical data are lacking, expert knowledge can provide 

useful insights on cumulative impacts and their influence on the distribution and abundance 

of furbearers. Expert-based studies have faced skepticism in the past due to the inherent 

difficulties in assessing the variability, uncertainty, and accuracy of expert knowledge 

(Drescher et al. 2013). Expert-based wildlife studies, however, can achieve scientific 

credibility through the application of rigorous and repeatable methods. Thus, there has been 

an increase in the use and acceptance of expert knowledge in ecological studies over the past 

20 years (Drescher et al. 2013).

When elicited effectively, expert knowledge can be used to parameterise predictive 

habitat models (Store and Kangas 2001, Johnson and Gillingham 2004, O’Neill et al. 2008, 

Burgman et al. 201 lb, Johnson et al. 2012). Additionally, expert-based approaches are 

effective for collecting and evaluating harvest data, such as trapping records, which can be 

used to quantify and explore population change over time (Erickson 1982, Raphael 1994). 

For example, consultations with fur trappers can allow researchers to control for factors 

known to influence capture success, such as trapping effort. By accounting for such factors,
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trapping data can be used to determine the impacts of habitat change on population 

abundance.

Research Objectives

The primary goal of my research was to understand of the influence of cumulative 

landscape change on the availability of habitat and, ultimately, the abundance of furbearer 

populations found across the central-interior of BC. To meet that goal, I developed and 

addressed the following three research objectives:

1) Develop expert-based habitat models for fisher, lynx, and marten, and map 

changes in habitat availability and quality from 1990 to 2013 (Chapter 2). I elicited 

expert knowledge from furbearer biologists and trappers that described the habitat 

relationships of the three focal species. I used that knowledge to develop habitat 

models that were applied to ten registered traplines that served as reference 

landscapes. The experts provided input throughout the study, including the selection 

of focal species and the identification and evaluation of habitat variables that were 

included in the models. I applied the habitat models to the reference landscapes at 

four time intervals (i.e., 1990, 2000, 2005, and 2013) to quantify temporal changes in 

habitat availability and quality. I tested the utility of the expert-based modeling 

approach by quantifying uncertainty and variation in the expert responses.

2) Use trapping records to quantify the harvest, and ultimately population changes, of 

two furbearer species following changes in the availability and quality of habitat 

across the reference landscapes (Chapter 3). I collected trapping records, dating back 

to 1990, from ten trappers for lynx and marten. I used negative binomial count
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models to investigate the factors hypothesised to influence capture success, including 

habitat availability and quality, trapline size, trapping effort, and climatic variables. 

By controlling for confounding variables, I was able to investigate the effect of 

habitat change on the population abundance of lynx and marten, while examining the 

utility of trapping records as a measure of abundance.

3) Identify important issues and concerns, as expressed by trappers and biologists, in 

the management of furbearer habitat and populations, and develop recommendations 

to address the impacts of cumulative habitat change for those species (Chapter 4). I 

conducted semi-structured interviews with furbearer biologists and trappers to discuss 

the management of fisher, lynx, marten, and the broader group of furbearers within 

BC. The interviews guided experts to identify key concerns regarding the 

management o f furbearer habitat and populations, and subsequently to provide 

recommendations in response to those concerns.

Taken together, results of this study provide a broader understanding of the habitat 

ecology of furbearers in BC, including their response to landscape change. This 

understanding is a prerequisite for sustaining, restoring or enhancing furbearer habitat. The 

study process increased the participation of stakeholders in both the extension of research 

results and the management of furbearer habitat. Finally, I investigated the utility o f expert- 

based methods for understanding habitat and population change. A transparent and rigorous 

process, continuous expert engagement, and relatively low uncertainty in model results 

suggested that the methods applied throughout this study were robust and likely suitable for 

rapid studies of cumulative habitat change for other species.
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Figure 1.1. Location of reference landscapes (i.e., registered traplines) for the application of 
habitat models and population analysis for fisher, lynx, and marten across central-interior 
BC, Canada. Cumulative impacts in the form of forestry development were extensive on the 
dark-shaded traplines (West Study Area) during the study period, while the hash-marked 
traplines (East Study Area) had much less harvesting.

The application of habitat models and the population assessments for the focal species 

occurred across ten reference landscapes consisting of 17 registered traplines belonging to 

ten trappers. The reference landscapes were subjected to varying levels of industrial 

development: high levels of forest harvesting (up to 75% of the trapline area harvested in the 

past 40 years; hereafter referred to as the ‘West Study Area’) and minimal levels of 

harvesting (up to 11% of the trapline area harvested in the past 40 years; hereafter referred to 

as the ‘East Study Area’). Intensive salvage logging that occurred in the West Study Area 

was in response to a mountain pine beetle epidemic that began during the early 2000’s. 

Increased harvesting across that area resulted in reduced forestry activity in tenures that did
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not contain a large component of lodgepole pine (Pinus contorta); such areas were found in 

the East Study Area. There were ten traplines in the West Study Area, registered to six 

trappers and encompassing an area of 244,923 ha. There were seven traplines in the East 

Study Area registered to four trappers; these reference landscapes encompassed a total area 

of 357,767 ha.

The reference landscapes were approximately centered on the city of Prince George 

within the central-interior of BC, Canada (Figure 1.1). In the West Study Area, landscapes 

occurred primarily within the Sub-Boreal Spruce (SBS) biogeoclimatic zone (Meidinger and 

Pojar 1991). The climate of the SBS zone is characterized by severe, snowy winters with 

mean monthly temperatures below 0° C for the months of November to February. Summers 

are warm, moist and short with mean monthly temperatures above 10° C. Mean annual 

precipitation ranges from 440-900 mm, 25-50% of which is in the form of snow. The SBS 

zone is generally between 1100-1300 m, and is dominated by upland coniferous forests 

consisting of hybrid spruce (Picea engelmannii x glauca), subalpine fir (Abies lasiocarpa), 

lodgepole pine, or Douglas-fir (Pseudotsuga menziesii) on dry, warm sites. Trembling aspen 

(Populus tremuloides) and paper birch (Betula papyrifera) are common deciduous species. 

The extensive timber harvesting in this area has resulted in a serai distribution that is skewed 

towards younger age classes. The SBS zone contains ideal habitat for a variety of furbearers, 

including marten, fisher, lynx, wolverine {Gulo gulo), and beaver (Castor canadensis), 

resulting in some of the province’s highest fur-harvest levels.

The East Study Area includes portions of the SBS and the Engelmann Spruce- 

Subalpine Fir (ESSF) biogeoclimatic zone (Meidinger and Pojar 1991). The ESSF zone 

generally occurs above the SBS zone at elevations ranging from 900-1700 m. Low
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temperatures are common with mean monthly temperatures below 0° C for the months of 

November to April. Mean annual precipitation may range from 500-2200 mm, with snow 

accounting for 50-70% of the total precipitation. Engelmann spruce (Picea engelmannii) 

and subalpine fir are the dominant climax species, but lodgepole pine is also present. Small 

areas of interior cedar-hemlock forests are also found within the East Study Area.
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Chapter 2: Assessing the cumulative impacts of forest development on the distribution 

of furbearers using an expert-based habitat modeling approach

Abstract: Cumulative impacts of anthropogenic landscape change must be considered when 

managing and conserving wildlife habitat. Across the central-interior of BC, Canada, 

industrial activities are altering the habitat of furbearer species. This region has witnessed 

unprecedented levels of anthropogenic landscape change following rapid development in a 

number of resource sectors, particularly forestry. Our1 objective was to create expert-based 

habitat models for three furbearer species: fisher (Pekania pennanti), Canada lynx {Lynx 

canadensis), and American marten (Martes americana) and quantify habitat change for those 

species. We recruited ten biologist and ten trapper experts and then used the analytical 

hierarchy process to elicit expert knowledge of habitat variables important to each species. 

We applied the models to reference landscapes (i.e., registered traplines) in two distinct study 

areas and then quantified the change in habitat availability from 1990 to 2013. There was 

strong agreement between expert groups in the choice o f habitat variables and associated 

scores. Where anthropogenic impacts had increased considerably over the study period, the 

habitat models showed substantial declines in habitat availability for each focal species (78% 

decline in optimal fisher habitat; 83% decline in optimal lynx habitat; and 79% decline in 

optimal marten habitat). For those traplines with relatively little forest harvesting, the habitat 

models showed no substantial change in the availability of habitat over time. These results 

suggest that habitat for these three furbearer species declined significantly as a result of the 

cumulative impacts of forest harvesting. Results of this study illustrate the utility of expert 

knowledge for understanding large-scale patterns of habitat change over long time periods.

11 used first-person plural to acknowledge co-authorship for the publication of thesis Chapters 2 and 3.
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Introduction

Furbearers have significant cultural and economic importance for fur-trapping 

communities (Hamilton et al. 1998, Webb and Boyce 2009). Furthermore, many furbearer 

species act as indicators of healthy ecosystems (Buskirk 1992, Wiebe et al. 2013). For 

example, American marten (Martes americana) and fisher (Pekania pennanti) are often 

associated with intact, late-successional forests (Thompson and Colgan 1994, Payer and 

Harrison 2003, Weir and Harestad 2003, Proulx 2006, Proulx 2011). Other species, like 

Canada lynx (Lynx canadensis), may thrive where different stages o f successional forests are 

present; old-growth forests may provide habitat for denning and resting, while regenerating 

forests support prey species (Hoving et al. 2004). Cumulative landscape change can have 

profound effects for furbearer habitat and populations, yet in many jurisdictions there is little 

to no monitoring and research to document these impacts.

Furbearers are thought to be susceptible to habitat loss and fragmentation (Soutiere 

1979, Thompson and Colgan 1994, Hargis et al. 1999, Potvin et al. 2000, Proulx 2000, Fuller 

and Harrison 2005, Weir and Almuedo 2010, Weir and Corbould 2010). Across the central- 

interior of British Columbia (BC), Canada, levels of timber harvest were historically high, 

but have accelerated over the past ten years in response to a mountain pine beetle 

(Dendroctonus ponderosae) epidemic which has killed 53% of merchantable pine stands (BC 

Ministry of Forests, Mines, and Lands 2010). The magnitude of these impacts, relative to the 

distribution and abundance of furbearers, is unknown. Although many past studies have 

investigated fine-scale changes in habitat, few studies have attempted to address such 

questions at large spatial or temporal scales.
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Anthropogenic activities, such as forest harvesting, may result in the immediate loss 

or fragmentation of habitat. Alternatively, the impacts of many developments accumulate 

over a long timeframe. Compared to acute, immediate changes to habitat, cumulative 

impacts can be complex and difficult to understand (Johnson 2011). These impacts are the 

result of natural or anthropogenic processes and events that may accumulate due to changes 

in environmental and socio-economic systems at varying temporal and spatial scales 

(Nitschke 2008). In addition to being additive, cumulative impacts can be interactive or 

synergistic in nature (Nitschke 2008, Johnson 2011). Cumulative landscape change may 

have profound impacts on the quality and distribution of furbearer habitat that persist for 

many years (Thompson 1994, Proulx 2000).

Species-distribution models can be an important tool for quantifying cumulative 

changes in the availability or quality of wildlife habitat. These models are typically 

empirical, relating field observations of a species’ occurrence to environmental variables 

hypothesised to influence species distribution (Guisan and Zimmerman 2000, Guisan and 

Thuiller 2005, Johnson et al. 2012). When empirical data are unavailable, expert knowledge 

can be used to parameterise such models. Experts can formulate model structure, including 

the identification of important variables, and provide quantitative scores denoting the 

importance of each predictor. When elicited effectively, expert knowledge can be a valuable 

source of information and data for developing and parameterising predictive habitat models 

and subsequent maps (Store and Kangas 2001, Johnson and Gillingham 2004, O’Neill et al. 

2008, Burgman et al. 201 lb, Johnson et al. 2012). Such maps can quantify habitat change 

over time and space, and aid in management and planning decisions (Johnson et al. 2012).
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There has been an increase in the use of expert knowledge in ecological studies in the 

last 20 years (Drescher et al. 2013). Expert knowledge, however, may still face skepticism 

when compared to empirical research (McBride and Burgman 2012). When developed or 

implemented poorly, such studies may be biased by the methods used to acquire the expert 

knowledge (Martin et al. 2011, McBride and Burgman 2012). Furthermore, there are 

inherent difficulties when assessing the variability, uncertainty, and accuracy of expert 

knowledge (Drescher et al. 2013). Wildlife studies incorporating expert knowledge can 

achieve scientific credibility by adopting rigorous methods that include an unbiased sample 

of experts, transparent and repeatable elicitation of knowledge, and the quantification of 

uncertainty (Burgman et al. 201 la, Johnson et al. 2012, McBride and Burgman 2012, 

Drescher et al. 2013). When conducted effectively, expert knowledge can serve as an 

excellent source of information for studying cumulative impacts at a large spatial scale, 

particularly when empirical data are limited.

The objective of this study was to use expert knowledge to quantify the cumulative 

impacts of landscape change relative to the availability and quality of furbearer habitat. We 

elicited expert knowledge and parameterised species-distribution models representing the 

habitat of fisher, lynx, and marten. The models were used to develop a chronology of maps 

displaying habitat change since 1990 across traplines subjected to high levels of forestry 

development (hereafter referred to as the ‘West Study Area’) and traplines subjected to 

minimal levels of forestry development (hereafter referred to as the ‘East Study Area’; Figure 

1.1). We evaluated the utility and consistency of knowledge from two groups of experts with 

different domains of expertise: trappers with intimate knowledge of their trapping areas and 

furbearer biologists with a potentially broader perspective on the habitat ecology o f the focal

13



species. We hypothesised that the distribution and quality of furbearer habitat would decline 

following rapid and extensive cumulative landscape changes.

Methods

We used expert-based habitat models to map and quantify habitat change for three 

focal furbearer species. We recruited experts from two distinct groups and elicited expert 

knowledge that would aid in the development of habitat models for each species. The 

models were applied spatially to ten trapline areas that served as reference landscapes and at 

four time intervals (i.e., 1990, 2000, 2005, and 2013), which represented increasing levels of 

forest harvesting. Using this approach, we quantified cumulative habitat change over time as 

well as the uncertainty in those predictions.

Identification of Experts

We recruited 21 experts from two general categories: professional experts in the form 

of furbearer biologists, and expert practitioners in the form of furbearer trappers. Although 

there are no specific criteria to identify the appropriate number of experts for such studies, it 

is important that the participants represent the knowledge bounds relative to the study 

objectives and that the sample is large enough to prevent significant bias or error from any 

one expert (McBride and Burgman 2012). We used peer-referral techniques to identify a 

collection of potential candidates from both categories of experts. Where a population of 

experts may be difficult to enumerate, peer-referral techniques provided a practical method 

for identifying appropriate individuals to represent the expert community.
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Identification o f Biologist Experts

We used three rounds of peer-referral to identify three seed experts, eight subsequent 

experts, and an advisory expert. The role of the seed experts was to recommend additional 

experts, who in turn, were asked to nominate further experts. The role of the advisory expert 

was to review the suitability and appropriateness of the research surveys, and provide 

feedback or possible revisions before submission to the expert groups.

We conducted a thorough literature review of furbearer research in BC to identify a 

group of candidate biologist experts. We identified one seed expert from each of the 

following disciplines: government biologists, academic researchers, and private-consulting 

biologists. They were selected based on their expertise in the field of furbearer ecology, 

including their knowledge of, and access to, further experts.

We established a set of criteria to ensure candidate experts were credible and 

qualified (Table 2.1). Drawing from these criteria, the seed experts were asked to provide a 

list of furbearer biologists currently working within BC, and subsequently rank the 

candidates in terms of suitability for the study. We then contacted the top four ranked 

candidates and invited them to participate in the study. They were then asked to submit a 

further list and ranking of candidate furbearer biologists (using the set o f criteria for 

guidance). We recruited the top four ranked experts in the second round of referral, 

providing us with a total of ten professional experts (including two of the seed experts; 

Figure 2.1). We then identified the advisory expert from the list of candidates.

15



Table 2.1. Criteria for the recruitment of suitable biologist and trappers experts for the 
development of expert-based habitat models. These criteria served as a guide during the 
peer-referral phase o f expert identification.

General Criteria Thresholds Explanation of Criteria

Biologist Experts
Years of direct experience with 
furbearer ecology

>5 years General research experience with 
furbearer species including habitat use, 
behaviour, and/or landscape change.

Number of relevant 
publications/reports

>3
publications

Peer-reviewed or relevant grey 
literature.

In-depth knowledge of specific 
species biology

>1 species Focused research on one or more 
furbearer species.

Location of past research BC Knowledge specific to British 
Columbia; ideally, knowledgeable of 
furbearer habitat and populations found 
in central-interior BC.

Trapper Experts
Number of years trapping >15 years Total years of trapping furbearers native 

to North America.

Number of continuous years 
trapping on current trapline

>10 years Specific local knowledge of trapping 
landscape, habitat features, habitat use, 
habitat change, etc.

Location of current trapline Central- 
interior BC

Current trapline located in north-central 
BC.

Extent of personal trapping 
records

>10 years Detailed records of captures, effort 
level, etc.

Levels of landscape change on 
trapline

Case-
dependent

Forms and extent of past or present 
landscape change; may range from very 
little to extensive change across 
trapline.
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Round 1

RoundZ

Round3

T o p  ranked  expert 5

T o p  ran k ed  expe rt 4T o p  ranked  expert 1

T o p  ran k ed  expert 6

T o p  ran k ed  expert 3

T o p  ran k ed  expert 7

T o p  ran k ed  expert 2

T o p  ran k ed  expert 8

A cadem ic researcher seed  expert P rivate consu ltan t b io log is t expertG overnm ent b io log is t seed  expert

T o tal o f te n  p ro fessional experts; an additional candidate  w as  se lec ted  as a consulting

expe rt

E ach  o f  the  four top  ranked  experts  subm itted  a  lis t and  rank ing  o f  further cand ida te  experts. 

T o p  fou r cand idates w ere  selected

Each seed  expe rt subm itted  a lis t an d  ranking  o f  candidate  experts. T o p  fou r cand idates

w ere  se lec ted

Iden tify  one seed  expert from  each  o f  the  fo llow ing  disciplines: governm ent b io log ists , 

academ ic researchers, an d  p riva te  consu lting  b io logists

Figure 2.1. The peer-referral method used for identifying biologist experts for the 
development of expert-based habitat models. The first round of peer-referral required the 
identification of seed experts, followed by two rounds of further nominations of experts.

Identification o f Trapper Experts

We sought guidance from the former president of the British Columbia Trappers 

Association who identified two seed experts that had knowledge of, and access to, many 

suitable candidate experts, in this case local experts. As with the biologists, we established a 

set of criteria (Table 2.1) to be used as a reference when selecting trappers. Applying these 

criteria, the seed experts submitted a list of qualified trappers to participate in the study. 

Because traplines were to be used as reference landscapes for modeling habitat, it was critical 

to identify trappers with traplines that were located within the proposed study area. We 

conducted a short survey (Appendix A) and ranked each trapper in terms o f their ability to
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meet the study objective. Of the eight top-ranked candidates, all agreed to participate (Figure 

2 .2).

Two seed experts were identified

Seed experts provided a list of candidate trappers based on established criteria

Consulted with seed experts to verify the suitability of the candidates for the study

Recruitment of eight top-ranked trappers for a total of ten experts (including two seed
experts)

Candidates were contacted and completed a survey to assess whether they met the established 
criteria. Candidates were subsequently ranked based on potential suitability

Figure 2.2. The peer-referral method used for identifying trapper experts for the 
development of expert-based habitat models. Seed experts identified candidates that met 
specific criteria and were selected based on their suitability for the study.

Elicitation of Expert Knowledge

Prior to, and throughout the elicitation process experts were made aware of the time 

commitments expected, the type of information to be elicited, and how that information 

would be used. During the elicitation, we met with individual trapper experts in person or 

via telephone to conduct surveys. Due to travel and time constraints, all surveys with 

biologists were conducted via email and portable document format (PDF) forms. Prior to 

conducting a survey, we submitted the set of proposed questions and topics to the advisory 

expert for review.
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Identification o f Focal Species

The first step in the elicitation process required the experts to complete a survey 

identifying three focal furbearer species for the study (Appendix B). The experts were asked 

to identify those species that were most sensitive to landscape change resulting from 

anthropogenic activities. We tallied the number of selections for each species from the 

biologist experts and the trapper experts separately to observe the agreement within and 

between groups. The expert responses were then combined and totaled and we identified the 

three species with the greatest number of selections.

Identification o f  Habitat Variables

We conducted a thorough literature review and identified 18 candidate habitat and 

disturbance variables (Appendix B) hypothesised to influence the distribution o f the focal 

species. Experts were asked to provide a score from 0-4 for each variable, representing its 

relative importance in contributing to habitat for each focal species (Appendix B). Experts 

were also asked to provide a confidence score on a scale from 1-10, representing the 

confidence that the expert had in assessing each variable.

We used a Wilcoxon rank-sum test to measure the significance of differences in 

scores between expert groups (Stata, ver. 12.1, StataCorp, 2011). Few differences occurred, 

thus the expert scores were combined. We established a model inclusion threshold of ‘2’; 

any variable meeting this threshold was considered to be at least moderately important and 

was included in the respective habitat model. All habitat variables that were included in the 

models for each species were further classified into subclasses, levels, or categories 

(Appendix C). The classifications were based on previous literature, or on-the-ground 

measurements.
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We used the analytical hierarchy process (AHP; Saaty 1977) to develop the expert- 

based habitat models (Appendix B). Analytical hierarchy process is a decision making 

process in which experts provide pairwise comparisons of the relative importance of two 

habitat criteria. A form of multi-criteria evaluation, AHP provides structure to the elicitation 

process so that each variable is evaluated consistently across all participating experts 

(Johnson et al. 2012). Experts provided pairwise scores, on a nine-point scale, of the relative 

importance of every possible combination of habitat variables and associated subclasses of 

those variables (Tables 2.2, 2.3). Before scoring the variables, experts were provided with 

detailed instruction on the AHP protocols and examples of AHP matrices. We also provided 

a handout containing photographic examples of different classifications of most habitat 

variables (Appendix B). This was used to aid the experts in visualizing the features during 

the elicitation process, and increase consistency across expert responses. Experts also 

provided confidence scores for each completed matrix.

After the elicitation process, we calculated eigenvector values and consistency ratio 

scores (Microsoft Excel, ver. 14.0, Microsoft Corporation, 2010). The eigenvector values 

represented the relative importance o f each classification of habitat variables (Saaty 1977). 

Consistency ratios, which tested the probability that the matrices were randomly generated 

(Saaty 1977), were used to assess the matrices for operative errors. Initially, we kept the 

biologist and trapper responses separate and conducted a Wilcoxon rank-sum test to examine 

the differences in eigenvector scores between expert groups. We then combined the expert 

scores for both groups and calculated the mean eigenvector scores, along with the standard 

error and 95% confidence intervals. We used the mean eigenvector scores (representing the 

relative value of each habitat variable) to build the expert-based habitat models.
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Table 2.2. Example of an AHP matrix that evaluates preferred topographic elevation by a 
theoretical species. For example, <500 m compared to itself is of equal importance, 
represented by a score of ‘ 1’, 1000 m -1500 m is very strongly more important than <500 m, 
represented by a score of ‘7’, and >2000 m is moderately less important than <500 m, 
represented by a score of ‘ 1/3’. All shaded columns are the inverse of their respective scores. 
The outputs of each AHP matrix are eigenvector scores, representing the relative value of 
each habitat class.

<500 m
500 m -  
<1000m

1000 m -  
<1500m

1500 m -  
<2000 m

>2000 m

<500 m 1
500 m -< 1000 m 3 1
1000 m-<1500 m 7 5 1
1500 m -<2000m 5 3 1/3 1
>2000 m 1/3 1/5 1/7 1/5 1

Table 2.3. Scoring scheme used by experts for the pairwise comparisons of habitat variables.

Positive Values Negative Values

1 = Equal importance 1 = Equal importance
3 = Moderately more important 1/3 = Moderately less important
5 = Strongly more important 1/5 = Strongly less important
7 = Very strongly more important 1/7 = Very strongly less important
9 = Extremely strongly more important 1/9 = Extremely strongly less important

Mapping Habitat

We used Geographic Information Systems (GIS) to develop a chronology of maps 

showing habitat change across the ten reference landscapes/traplines at four time intervals: 

1990, 2000, 2005, and 2013 (ArcGIS ver. 10.1, ESRI Inc., 2012). Habitat variables were 

represented by a number of spatial data sources (Table 2.4). Primarily, we used a broad- 

scale, forest-cover layer, the BC Vegetation Resource Inventory (VRI; DataBC Distribution 

Service), which contained numerous forest attributes used for the elicitation process 

(Appendix C). The VRI data were unavailable for 10% of one trapline and 25% of another;
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these areas were removed from the analysis. All large water-bodies were also removed from 

the analysis.

Table 2.4. List of habitat variables and spatial data sources used for the development of

Habitat Variable Spatial Data Source

Canopy Cover, Coarse Woody Vegetation Resource Inventory -  DataBC Distribution
Debris, Forest Stand Age, Forest 
Stand Density, Ground Shrub 
Cover, Leading Tree Species, 
Structural Complexity

Service (http://www.data.gov.bc.ca/)

Cutblock Age Vegetation Resource Inventory and Forest Tenure 
Cutblock Polygons -  DataBC Distribution Service 
(http://www.data.gov.bc.ca/)

Forest Fire Age Fire Perimeters -  Historical -  DataBC Distribution 
Service (http://www.data.gov.bc.ca/)

Habitat Connectivity GIS-derived variable

Proportion of Landscape Harvested GIS-derived variable

We used multiple data sources to represent the history of forest harvesting across the 

study landscape. We retrieved the cutblock (logging) polygons from the VRI layer (DataBC 

Distribution Service) and the Forest Tenure Cutblock layer (DataBC Distribution Service).

All polygons within the cutblock layer that had a projected age >40 years old (relative to the 

map date), basal area >10 m2/ha, and canopy cover >10%, were removed from the cutblock 

layer and merged with the VRI layer; these polygons were considered reforested. Habitat 

connectivity was calculated according to the adjacency of mature forest stands with harvested 

or disturbed patches (i.e., cutblocks). High values for connectivity (based on expert scores) 

were applied to forest polygons adjacent to one another, while forest polygons adjacent to, or
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intersected by, disturbances or openings were given lower values. Finally, forest fire age was 

derived from the Fire Perimeters -  Historical layer (DataBC Distribution Service). All fire 

polygons >40 years old were removed from the layer and considered reforested.

There were no corporate data representing the historical growth and composition of 

BC’s forests. Thus, for the historical landscapes (1990, 2000, and 2005), stand attributes 

were back-dated to account for change over time. Because the contemporary VRI layer 

contained cutblock polygons that were harvested after the 1990, 2000, and 2005 time periods, 

those ‘future cutblocks’ required designation of forest attributes that best represented the 

historical forest stand. To do this, we selected for all forest-cover polygons directly adjacent 

to the ‘future cutblock’ polygons and used VRI data to determine the most likely leading tree 

species, and the average canopy cover, basal area, shrub cover, and forest stand age. In order 

to back-date the canopy cover and basal area, we used VRI data to determine the natural rate 

of change based on forest stand age. We assumed that the leading tree species for each 

harvested block was constant over the study period.

All spatial data were rasterized (25x25-m cell) and the mean eigenvector scores for 

each habitat variable were applied to their respective raster layer (IDRISI Selva ver. 17,

Clark Labs, 2011). Raster layers were then combined additively to generate one habitat map 

for each focal species on each reference landscape at four time intervals. For each historical 

map we classified the habitat into four classes (i.e., Poor, Moderate, Good, and Very Good). 

The categorical break points were calculated as the quartile values of the habitat scores for 

the year-2000 map. This allowed for the consistent comparison of the change in habitat area 

over time (i.e., the cumulative impacts of landscape change). These maps also illustrated the 

spatial configuration of habitat across the landscape.
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Map Variation and Validation

Expert-based habitat models can be sensitive to variation in the knowledge elicited 

from the experts (Johnson and Gillingham 2004). Thus, we calculated the upper and lower 

95% confidence intervals for the combined eigenvector scores for the biologist and trapper 

experts and recreated the habitat maps. We recalculated the area of each habitat class and 

used the difference between the upper and lower 95th percentile maps to represent the 

variation around the mean predicted area of habitat. Additionally, we recreated habitat maps 

based on the eigenvector scores of the biologists and trappers separately. We quantified 

habitat change according to the recreated maps and compared these values to the combined 

expert maps in order to determine variation between expert groups.

As one form of validation, we asked each trapper to evaluate the distribution and area 

of ranked habitat for their traplines. Trappers located both good and poor trapping areas on 

generic maps of their traplines, and then compared those locations to the expert-based habitat 

maps for each focal species. For each species, trappers were asked to provide a score from 

0-10 representing the accuracy of the maps of predicted habitat.

Results 

Identification of Focal Species

Experts identified three species that were most suitable for this study, based on their 

perceived ecological and economic importance, and susceptibility to landscape change. The 

biologists identified marten, lynx, and fisher while the trappers identified marten, lynx, and 

beaver (Castor canadensis). Trappers also suggested wolverine (Gulo gulo) and red squirrel 

(Tamiasciurus hudsonicus), while biologists identified ermine (Mustela erminea), mink
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(Neovison vison), and otter (Lontra canadensis) as other potential candidates. When 

combined, marten, lynx, and fisher were selected as the most suitable focal species.

Identification of Habitat Variables

We provided the experts with a list of 18 candidate habitat variables for each focal 

species. Eleven variables were voted into the habitat models for fisher and marten, while ten 

variables were voted into the lynx model (Figure 2.3).

The combined scores for the inclusion of habitat variables for fisher was highest for 

structural complexity, while cutblock age was highest for lynx, and coarse woody debris was 

highest for marten. Uncertainty in the selection of habitat variables by biologists was lowest 

for fisher (SE = 0.283) and highest for lynx (SE = 0.312). For trappers, uncertainty was 

lowest for marten (SE = 0.279) and highest for fisher habitat variables (SE = 0.333). 

Confidence scores were highest for biologists and trappers when voting for lynx habitat 

variables (x confidence scores = 7.12 and 8.57, respectively) and lowest when biologists 

voted for marten (x = 6.94) and when trappers voted for habitat variables for fisher (x = 

8 . 10).

Overall, there was high consistency in the selection of variables by the two expert 

groups. A Wilcoxon rank-sum test revealed significant differences in scores between expert 

groups for Canopy Cover (z = 1.994, P = 0.046) and Forest Stand Age (z = 2.743, P = 0.006) 

in the marten model. There were no significant differences in voting between expert groups 

for the fisher (All z <1.764; all P >0.078) and lynx habitat variables (All z <1.864; all P 

>0.062).
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Figure 2.3. Combined scores (mean and standard error) from biologists and trapper experts to include variables for habitat models for 
fisher, lynx, and marten. The inclusion threshold (horizontal reference line) was set at a score of 2.



Evaluation of Habitat Variables

We used consistency ratios to test for randomness in the weighting of habitat 

variables by the two expert groups. No ratios surpassed the threshold of 0.1, suggesting that 

there were few or minor operative errors during the survey process (Saaty 1977). Wilcoxon 

rank-sum tests revealed that six variables in the fisher model had significantly different 

eigenvector scores when comparing expert groups. Trappers provided significantly higher 

scores for Open Canopy Cover, Other Conifers, Young Deciduous, and Mid-Age Deciduous, 

while biologists provided significantly higher scores for Cottonwood and Old Deciduous (all 

z < 2.741; all P < 0.041; Appendix D). In the lynx model, biologists provided significantly 

higher scores for Lodgepole Pine (z = 2.001, P = 0.045; Appendix D). The marten model 

had seven variables with significantly different eigenvector scores when comparing expert 

groups. Trappers provided significantly higher scores for Moderate Structural Complexity, 

Minimal Canopy Cover, High Forest Stand Density, Young Deciduous, and Mid-Age 

Deciduous, while biologists provided significantly higher scores for Moderate Canopy 

Cover, and Old Deciduous (all z < 2.551; all P < 0.041; Appendix D).

Quantification of Habitat Change

Habitat models for fisher, lynx, and marten were applied to the ten reference 

landscapes providing a measure of change in habitat availability and quality over time 

(Figure 2.4 and Appendix E). In the West, the combined expert-based habitat model 

revealed a 52% and 79% decrease in ‘Good’ and ‘Very Good’ fisher habitat, respectively 

(Table 2.5). Similar trends in habitat change were observed for lynx and marten habitat. In 

the East, and minimally deforested study area, the availability of habitat changed very little 

since 1990 (Table 2.5).
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Figure 2.4. Predicted habitat for lynx on one example trapline in the West Study Area, central-interior BC, Canada, during 1990 and 
2013.



Table 2.5. Change in availability of habitat for fisher, lynx, and marten from 1990 to 2013 in the West and East Study Area across 
central-interior BC, Canada. The percentages represent the composition of habitat across the study area in 1990 and 2013. The upper 
and lower 95% values represent the variation around the mean habitat change when the maps were constructed using the upper and 
lower 95th percentile eigenvector scores.

West Study Area East Study Area

1990
(%)

2013
(%)

Net Change Lower and Upper 
(ha) 95% (ha)

1990
(%)

2013
(%)

Net Change Lower and Upper 
(ha) 95% (ha)

Fisher Habitat
Poor 18.3 52.2 77916 72006 83826 26.0 25.8 -540 5124 -6204

Moderate 25.1 26.8 3776 -11635 19187 27.5 28.7 4539 12605 -3527
Good 34.1 16.3 -40961 -57105 -24817 23.3 19.6 -13385 -8057 -18713

Very Good 22.5 4.8 -40734 -49959 -31509 23.2 25.9 9387 17118 1656

Lynx Habitat
Poor 17.6 50.9 76537 75374 77700 26.8 25.7 -3983 -1500 -6466

Moderate 21.7 35.7 32344 -24167 88855 24.8 24.4 -1604 6163 -9371
Good 28.8 8.0 -47944 -80279 -15609 22.3 18.8 -12472 -5304 -19640

Very Good 31.9 5.4 -60936 -74123 47749 26.1 31.1 18058 30761 5355

Marten Habitat
Poor 18.1 52.3 78616 69470 87762 26.2 25.9 -983 6327 -8293

Moderate 25.4 24.3 -2500 -10709 5709 27.0 28.5 5305 10552 58
Good 34.5 17.4 -39343 -50077 -28609 23.1 18.3 -17215 -11611 -22819

Very Good 22.0 6.0 -36786 -42471 -31101 23.8 27.4 12896 20557 5235



There was a 16% decrease and 11% increase in ‘Good’ and ‘Very Good’ fisher habitat, 

respectively. Similar trends in habitat change were observed for lynx and marten habitat. 

‘Very Good’ habitat increased by 19% for lynx and by 15% for marten in the East Study 

Area.

We used the mean eigenvector scores from the biologists and trappers separately to 

build habitat models for fisher, lynx, and marten in the West and East Study areas (Figure 

2.5). In the West, scores from both expert groups suggested declines in fisher, lynx, and 

marten habitat. The biologist model predicted an 81% and 71% decrease in ‘Very Good’ 

fisher and marten habitat, while the trapper model predicted an 80% and 73% decrease. 

Similarly, the biologist model predicted a 70% decrease in ‘Very Good’ lynx habitat, while 

the trapper model predicted an 85% decrease. In the East, there was variation in the 

predictions of habitat change for fisher. The biologist model predicted a 1 and 11% increase 

in ‘Very Good’ fisher and marten habitat, while the trapper model predicted a 7 and 8% 

decrease. Similarly, the biologist model predicted a 3% decrease in ‘Very Good’ lynx 

habitat, while the trapper model predicted a 33% decrease.

Map Validation

The trappers were asked to evaluate the accuracy of the habitat maps for each focal 

species based on their perception of the species’ distribution on their individual traplines 

(Figure 2.6). In the West and East Study Areas, the marten habitat maps scored the highest 

with averages of 8.7 (SE = 0.30) and 8.6 (SE = 0.32), respectively. The fisher habitat maps 

in the West and East Study Areas averaged 7.6 (SE = 0.46) and 8.2 (SE = 0.89), respectively. 

The lynx maps had the lowest scores in both the West and East Study Areas, with averages of 

5.5 (SE = 0.91) and 6.7 (SE = 1.96), respectively.
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Figure 2.5. Change in the area (ha) of four habitat classifications (1990 to 2013) for expert-based habitat models for fisher, lynx, and 
marten developed by biologist, trapper, and combined expert models applied to the West and East Study Areas across central-interior 
BC, Canada.



Fisher Marten

Figure 2.6. Mean accuracy (± SE) scores for the habitat maps for each focal species in the 
West (unshaded) and East (shaded) Study Areas. Trappers evaluated the distribution and 
area of ranked habitat for their traplines and provided scores representing perceived accuracy 
from 0-10.

Discussion 

Expert-Based Habitat Modeling

The utility of expert knowledge for predictive modeling has been acknowledged in 

previous wildlife research (Store and Kangas 2001, Yamada et al. 2003, Doswald et al. 2007, 

O’Neill et al. 2008, Hurley et al. 2009). With traditional empirical studies, the collection of 

data is often limited by financial and logistical constraints. For this study, we acquired large 

amounts of data over a short time span, which could then be applied to habitat models that 

were applicable across a large study area (602,690 ha). The consistency in the selection of 

species and AHP scores within and across expert groups, and the strong validation of the
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final maps suggested that expert-based approaches were appropriate for the species and study 

areas modeled in this project.

The selection of experts is a critical step in the elicitation and application of expert- 

based knowledge (O’Neill et al. 2008). Although more robust than ad hoc approaches, the 

peer-referral process can result in selection bias and misrepresentation of the spectrum of 

knowledge, as peer nomination can lead to the referral of likeminded people (Drescher et al. 

2013). To reduce selection bias we identified a diverse range of experts by recruiting seed 

experts from three sub-categories of biologist experts (government, academic, and 

consultant).

Throughout the elicitation process, we maintained rigorous, transparent, and 

repeatable methods; such rigour is necessary to conduct effective expert-based habitat 

modeling (Johnson et al. 2012). The experts were given full opportunity to provide input 

throughout the study, from the identification of focal species and habitat variables to the 

subsequent evaluation of those variables. The relatively high consistency in expert scores 

and lack of operative errors in the AHP suggested that the research design was appropriate 

for the suite of experts involved.

The experts agreed that marten and lynx were ideal species for the study, while 

trappers suggested beaver as the third species and biologists suggested fisher. Overall, fisher 

had more votes than beaver. Fisher, lynx, and marten are sensitive to habitat change, and 

thus fit the objectives of this research (Soutiere 1979, Thompson and Colgan 1994, Buskirk 

et al. 2000, Proulx 2000, Mowat and Slough 2003, Poole 2003, Hoving et al. 2004, Fuller 

and Harrison 2005, Weir and Almuedo 2010). Although similar in their general ecology, the
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three focal species use a range of habitats that may be affected differently by broad-scale, 

forest harvesting. Marten occupy small home-range sizes, averaging 2-3 km2 for females 

and 5 km2 for males, and are heavily dependent on forest structures associated with old- 

growth stands (Buskirk 1992, Thompson and Colgan 1994, Chapin et al. 1998, Payer and 

Harrison 2003, Carroll 2007). Although fisher also depend on old-growth forests, they are 

more likely to use a range of different serai stages of forest (Proulx 2006, Weir and Almuedo 

2010). The home ranges of fisher in BC are typically >100 km2 for males and >25 km2 for 

females (Weir and Almuedo 2010). Lynx also have large home ranges, averaging around 

220 km2 depending on habitat features and prey abundance (Hatler and Beal 2003). Lynx are 

believed to be adaptable to a range of serai stages and may benefit from landscape changes 

that promote habitat for prey (Mowat and Slough 2003, Poole 2003, Hoving et al. 2004).

Experts were consistent in their choice of habitat variables for each species.

Biologists provided their largest confidence scores when selecting habitat variables for lynx; 

however, as a group, there was high variability between individual biologists possibly due to 

the propensity of lynx to use a variety o f habitat types. These experts were most certain 

when scoring habitat for fisher. In contrast, trappers displayed their lowest confidence scores 

and the highest variation when voting for habitat variables for fisher. Low capture rates of 

fisher on most traplines in the study area (likely corresponding to low fisher densities) may 

equate to less knowledge of fisher habitat by trappers.

Habitat classifications were relatively consistent within and between expert groups, 

and occurred without operator error (according to the consistency ratios of the AHP 

matrices). Trappers reported higher average confidence scores than biologists; however, the 

variation around the actual eigenvector scores was lower for biologists than trappers. The
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trappers’ specific knowledge of furbearer habitat may be limited to, or skewed by, the habitat 

types that are present on their respective traplines, possibly resulting in discrepancies among 

the experts in the group. The agreement among biologists may be a product of exposure to 

similar research studies and literature, or perhaps they possess a broader, general knowledge 

of the focal species’ habitat. Doswald et al. (2007) and Hurley et al. (2009) found similar 

variation when comparing the evaluations of habitat variables obtained from two distinct 

expert groups.

Failure to consider uncertainty when interpreting habitat models and subsequent maps 

can lead to inaccurate representations of habitat, potentially biasing future management 

decisions (Johnson and Gillingham 2004, Johnson et al. 2012). A relatively high consistency 

in the scoring of variables by the two expert groups resulted in no substantive changes to the 

conclusions of the study. The underlying error in the GIS data was an additional source of 

uncertainty that may have had a differential effect across the three species. Although we had 

no means to ground truth or assess the accuracy of the spatial data, the VRI has been verified 

in previous studies focused on furbearers (Proulx 2006, Proulx et al. 2006).

Variation in expert scores was generally greatest for lynx and least for marten and 

resulted in some differences in the predictions of habitat change. The relatively wide range 

of scores in the lynx model may be because this species is a habitat generalist, occurring 

across landscapes with a diversity of serai stages and habitat types (Mowat and Slough 2003, 

Poole 2003, Hoving et al. 2004). This inherent variability in habitat use could have led to 

less certainty by individual experts and greater differences amongst experts when 

parameterising the lynx model. Additionally, there has been little to no previous research of
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lynx in the ecological zones found across the central-interior of BC. Trappers assessed the 

lynx maps as the least accurate of the three focal species.

In the West Study Area, biologists and trappers showed similar predictions of habitat 

change over time for the three focal species. In the East, the consistency in scores between 

expert groups was lower. This raises concerns regarding the application of these habitat 

models across ecosystems. The experts were initially asked to evaluate habitat according to 

their knowledge of the Sub-Boreal Spruce BEC zone, which comprises the majority of the 

West Study Area. The models may not have been compatible with the East Study Area, 

which includes a greater proportion of the Engelmann Spruce-Subalpine Fir zone.

Habitat Change

The expert-based habitat models suggested significant declines in predicted habitat 

for furbearers in the West Study Area, while the East remained relatively stable. The West 

Study Area has been subjected to unprecedented levels o f timber harvesting during the study 

period in response to a mountain pine beetle outbreak. In order to salvage merchantable 

timber, the allowable annual cut in the interior of BC had increased significantly over the 

past decade, peaking at over 60 million m3 per year (BC Ministry of Forests, Mines, and 

Lands 2010). Large-scale clear-cut logging was the principal method of timber removal that 

also included mature spruce and fir species. Although the rate of timber harvesting is now 

decreasing, the rapid extraction of timber has resulted in younger and less diverse forest 

types across much of the interior of BC. Forestry is the driving force for cumulative impacts 

in the region and the reduction in habitat for the three focal species. A lack of mature and 

complex forest stands, widespread openings resulting from clear-cut logging, and habitat 

fragmentation may be limiting the distribution of furbearers.
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The East Study Area has been exposed to relatively low levels of timber harvesting.

In the mid-1980s, this area experienced an outbreak of spruce budworm (Choristoneura 

biennis), which initiated some salvage logging. Since that outbreak, new logging activity has 

been limited. This has allowed forest stands to mature and may be the primary reason for the 

slight increase in optimal habitat for all three focal species. Thus, observed differences in the 

level of forest harvesting across the East and West Study Areas are consistent with the 

structure and ultimately the predictions of the expert-based habitat models.

The combination of late-successional and regenerating forests in the East may 

provide an ideal mix o f habitat for fisher (although they may be limited by high snow depths 

in this area). The abundance of old-growth conifer forests may be ideal for marten. 

According to the expert-based models, habitat availability does not appear to be a limiting 

factor for fisher or marten in that area. The distribution of both species may be restricted by 

other factors such as elevation, overhead cover in recently logged areas, snow accumulation 

(Weir and Harestad 2003), or the availability of elemental habitat features like denning trees 

(Weir et al. 2012). Competition with fisher may also limit marten in areas where they 

overlap (Carroll 2007).

The expert-based habitat model predicted significant decreases in the availability and 

quality of lynx habitat across the West, but not the East study area. Again, the discrepancy is 

likely a result of vastly different levels of anthropogenic impacts. Although the habitat 

model predicted declines in lynx habitat in the West Study Area, the trapping community 

report relatively high numbers of lynx (M. Bridger unpub. data). This suggests that lynx are 

not necessarily tied to what experts perceive as quality habitat, but rather are dependent on 

prey availability or other factors. The presence of widespread regenerating pine forests may
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currently be benefiting snowshoe hare (Lepus americanus) populations, which appear to be 

peaking (M. Bridger unpub. data). Some experts reported that the lynx habitat model may 

have been overly influenced by the attributes of old-forest stands, possibly over-predicting 

habitat quality in areas o f late-successional forests. Although lynx do use old forest stands 

for certain life requisites (Paragi et al. 1997), perhaps not enough emphasis was placed on the 

importance of younger, regenerating forest stands that may provide abundant prey habitat.

Management Implications

Fisher

In BC, fishers are most prevalent across intact landscapes containing habitat features 

associated with late-successional forests (Proulx 2006, Weir and Almuedo 2010, Weir and 

Corbould 2010). These features are particularly important for denning, resting, and 

providing cover from snow accumulation (Weir and Harestad 2003). Given the large home 

ranges and low density of fishers in BC (Weir and Corbould 2006), the maintenance of 

landscape-level habitat connectivity may be critical. Habitat fragmentation is a significant 

concern given the fishers’ propensity to avoid open areas associated with industrial activities 

(Weir and Harestad 2003, Weir and Almuedo 2010).

Although the models depicted fisher habitat at a landscape level, the experts 

recognized the importance o f elemental habitat features throughout the process of model 

development. Certain life requisites are associated with elements found in late-successional 

forests, but fishers are not necessarily old-growth specialists. They are known to use early- 

seral forests, mixed forest stands, and edge habitat (Weir and Almuedo 2010). The structure 

of the forest itself may be more important than stand age or type. Their primary prey species,
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the snowshoe hare, and other small mammalian prey are often associated with young, 

regenerating forests (Weir and Harestad 2003, Weir and Almuedo 2010). These prey 

species, and thus, fisher, still require abundant coarse woody debris (CWD), ground cover, 

and structurally complex forest floors (Weir and Harestad 2003).

In BC, the rearing of young fishers occurs exclusively in tree cavities, primarily 

deciduous tree species (Lofroth et al. 2010). Thus, during denning, female fishers are 

dependent on large, decaying trees, primarily deciduous or conifers such as Douglas fir and 

pine that have heart rot (Weir et al. 2012). Managers must recognize the importance of 

maintaining or promoting den sites, but these features are not directly represented in large- 

scale landscape models (McCann et al. 2014), such as those presented in this work.

Lynx

Anthropogenic disturbance may influence lynx habitat in both positive and negative 

ways. In general, lynx distribution is highly correlated with their primary prey species, 

snowshoe hare (Apps 2000, Poole 2003, Hoving et al. 2004, Simons-Legaard et al. 2013). 

Habitat for snowshoe hare is often associated with densely vegetated, regenerating forests 

that occur following logging or wildfire (Mowat et al. 2000, Poole 2003, Simons-Legaard et 

al. 2013). Consequently, both snowshoe hare and lynx may benefit from landscape 

disturbance (Mowat and Slough 2003, Hoving et al. 2004). Habitat changes stemming from 

forestry activities may not be immediately beneficial, as lynx have been found to avoid 

recently disturbed habitats (Poole 2003, Hoving et al. 2004). Furthermore, an increase in 

openings associated with timber harvesting may fragment lynx habitat. Given the large 

annual range of lynx, habitat fragmentation may be a concern (Buskirk et al. 2000, Mowat 

and Slough 2003).
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Although most foraging habitat is associated with early-successional forests and edge 

habitat, lynx do require mature forest stands to meet certain life requisites. Mature conifer or 

mixed forests provide valuable habitat for denning, resting, and cover from extreme climatic 

conditions (Paragi et al. 1997). It is widely accepted that lynx use mature forest stands, 

although few studies have reported selection for these habitats (Mowat et al. 2000, Poole 

2003, Hoving et al. 2004). Late-successional forests may be of particular importance to lynx 

during low periods of the hare cycle, as lynx often switch to alternate prey found in these 

areas, such as red squirrels (Paragi et al. 1997, Mowat et al. 2000).

Marten

The availability of marten habitat must be managed at a landscape level, as they are 

sensitive to habitat fragmentation (Soutiere 1979, Thompson and Colgan 1994, Hargis et al.

1999, Fuller and Harrison 2005). Home-range sizes o f marten living on fragmented 

landscapes are much larger compared to those inhabiting intact forests (Soutiere 1979, 

Thompson and Colgan 1994, Fuller and Harrison 2005). Marten avoid openings associated 

with anthropogenic disturbances, such as cutblocks, likely due to predation risk (Potvin et al.

2000, Carroll 2007, Cheveau et al. 2013). Previous studies have shown that marten do not 

tolerate landscapes that contain greater than 25-30% unsuitable habitat, including natural 

openings and cutblocks (Hargis et al. 1999, Potvin et al. 2000, Cheveau et al. 2013).

Marten are widely associated with late-successional, coniferous forest stands (Payer 

and Harrison 2003, Proulx et al. 2006, Carroll 2007, Webb and Boyce 2009, Cheveau et al. 

2013). These forests contain elemental features that provide thermal cover during winter, 

cover from predators, foraging habitat, and resting and denning areas (Thompson and Colgan 

1994, Potvin et al. 2000, Carroll 2007, Cheveau et al. 2013). Unlike lynx, and in some cases
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fisher, marten avoid regenerating forests (Soutiere 1979, Potvin et al. 2000, Fuller and 

Harrison 2005); although, they may hunt along edges provided there is adequate overhead 

cover (Chapin et al. 1998). Researchers have emphasized the importance o f maintaining 

forest stands with basal areas greater than 18-20 m2/ha and 30-50% canopy cover (Soutiere 

1979, Fuller and Harrison 2005, Proulx et al. 2006). The maintenance o f CWD in forest 

stands is also critical (Payer and Harrison 2003). Basal area, crown closure, and CWD were 

recognized as important by both expert groups and, thus, were parameterised at the scale of 

the supporting GIS data (Figure 2.3).

Conclusion

Habitat models can be important tools for developing and implementing management 

plans for wildlife species. Although empirical models have value for predicting and mapping 

wildlife habitat (Guisan and Thuiller 2005), a need to develop models quickly and effectively 

may lead researchers to consider expert-based approaches. Where the collection o f empirical 

data is limited by time and financial constraints, expert knowledge provides an efficient and 

rapid alternative. This may be particularly important for cryptic species that are difficult to 

study. The performance of expert-based models has received mixed reviews (Store and 

Kangas 2001, Clevenger et al. 2002, Doswald et al. 2007). The results of this study, 

however, suggest considerable utility in the use of expert knowledge for mapping habitat and 

subsequently examining habitat change over time.

There are advantages to involving multiple groups of experts that have unique, but 

complementary domains of expertise. For this study, trapper experts can assist with the on

ground validation of model results and link habitat change to population abundance in the 

form of trapping records (Smith et al. 1984, Ruette et al. 2003). Professional experts may
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provide a more general perspective on the habitat requirements of individual species. For the 

three focal species presented in this study, model structure was remarkably similar among 

expert groups.

There are a variety of techniques available for eliciting expert knowledge that can be 

applied to the development of habitat models. These depend on the study objectives, the skill 

o f the research team, the focal species, and the availability of supporting GIS data. The 

identification of suitable experts, application of rigorous and repeatable methods, and 

quantification of uncertainty, however, are key components o f any method (Burgman et al. 

201 la, Johnson et al. 2012, McBride and Burgman 2012, Drescher et al. 2013). This 

research demonstrates strict adherence to those principles. The purposeful and incremental 

assessment of the elicitation process -  including consistency ratios, measures o f confidence, 

parameter variance and validation of predictions -  provides evidence of rigour and a measure 

of the reliability of resulting models and predictions of habitat change. Ultimately, however, 

understanding of the spatiotemporal change in habitat for these three species would be 

impossible or much delayed if there was a strict requirement for empirical data. These study 

findings are transparent and defensible and can be used to influence habitat management and 

strategic decisions relative to past and future cumulative landscape change. The findings also 

suggest that habitat for fisher, lynx, and marten may decrease substantially where intensive 

forestry occurs. Forest and wildlife managers must recognize the importance of maintaining 

furbearer habitat on landscapes subjected to cumulative industrial impacts.
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Chapter 3: Assessing cumulative impacts of forest development on the abundance of 

furbearers using harvest records

Abstract: Understanding the cumulative impacts of landscape change is important when 

managing and conserving wildlife populations. Across the central-interior of British 

Columbia, Canada, furbearer populations are being subjected to the cumulative impacts of 

industrial development. This region has witnessed unprecedented levels of anthropogenic 

landscape change, primarily in the form of increased forestry. We used trapping records to 

investigate the relationship between habitat change resulting from cumulative impacts of 

landscape change and population abundance of Canada lynx (Lynx canadensis) and 

American marten (Maries americana). We applied expert-based habitat models to ten 

reference landscapes (i.e., traplines) in two distinct study areas to serve as measures of 

habitat change over the study period between 1990 and 2013. We elicited fur harvest records 

(1990-2013) from trapper experts and then used negative binomial count models to relate 

capture success to habitat change. We controlled for factors that were hypothesised to 

influence capture success, including effort and climatic conditions, allowing us to observe the 

effects of habitat availability and quality on population abundance. Overall, the top-ranked 

count models identified combinations of habitat availability and quality, trapping effort, and 

trapline area as factors positively ipfluencing the capture success of lynx and marten. These 

results suggest that reduction in high-quality habitat may have a direct and negative effect on 

the abundance of lynx and marten in the study area. Results of this study also illustrate the 

utility of fur-harvest records for investigating population abundance of furbearer species. A 

precise measure of trapping effort, however, is necessary to relate environmental covariates, 

including habitat change, to harvest at the scale of individual traplines.
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Introduction

Furbearer species have significant cultural and economic importance for fur-trapping 

industries across North America (Hamilton et al. 1998, Webb and Boyce 2009). Between the 

years 2000-2012, the fur trapping industry in British Columbia (BC), Canada, grossed nearly 

$17 million in revenue (BC Fur Returns unpub. data). Recent increases in industrial activity, 

however, have led to concerns about the distribution and abundance of furbearer populations. 

Across the central-interior of BC, forestry has had a notable impact on the landscape, largely 

in response to a mountain pine beetle (Dendroctonus ponderosae) epidemic that has killed 

53% of merchantable pine stands (BC Ministry of Forests, Lands, and Mines 2010). Given 

the current understanding of furbearer biology, the large-scale loss of forests and resulting 

salvage harvest is certain to have negative impacts on the habitat of furbearer populations; 

however, the magnitude of these impacts is unknown.

The high rate and large area of forest harvesting occurring across the central-interior 

of BC may result in cumulative impacts for wildlife species that are dependent on old forests. 

Cumulative impacts can be interactive, additive, or synergistic, and can alter the environment 

at a number of temporal and spatial scales (Nitschke 2008, Johnson 2011). Compared to 

acute, immediate changes to habitat, cumulative impacts can be complex and difficult to 

understand (Johnson 2011). Cumulative landscape change may have substantial and long

term negative impacts on the habitats and ultimately the distribution and abundance of 

furbearer populations (Thompson 1994, Proulx 2000, Webb and Boyce 2009).

Canada lynx (Lynx canadensis) and American marten (Martes americana) use a 

range of habitats that may be affected differently by the cumulative impacts of landscape
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change. Lynx have large home ranges and are adaptable to varying serai stages of forested 

habitats (Mowat and Slough 2003, Poole 2003, Hoving et al. 2004). Lynx populations may 

ultimately benefit from some landscape disturbances that promote habitat for prey, provided 

other life-history requirements remain available. In contrast, marten have small home ranges 

and are considered old-forest specialists, dependent on forest structures, such as coarse 

woody debris, associated with late successional forests (Buskirk 1992, Thompson and 

Colgan 1994, Chapin et al. 1998, Payer and Harrison 2003, Carroll 2007). The loss of 

contiguous habitat to timber harvesting is likely to have negative impacts on marten 

populations, a concern which has been voiced by trappers (M. Bridger unpub. data; Chapter 

2).

There are approximately 2600 registered traplines in BC, and 900 licenses issued 

annually. Trappers are required to document their capture totals when selling furs to market, 

which are entered into a provincial database. Additionally, many trappers consider 

themselves stewards of populations on their traplines, and thus, keep personal records of 

trapping activity and harvests. Trapping records have been used to monitor abundance and 

population trends of furbearers (McDonald and Harris 1999, Ruette et al. 2003, Webb and 

Boyce 2009) and they can be particularly useful when the behavior of furbearer species 

makes typical monitoring difficult (Ruette et al. 2003). Also, trapping records represent a 

significant amount of data that can be collected for large geographic areas at a relatively low 

cost (Ruette et al. 2003).

Although trapping records may not be useful for detecting population changes over 

small spatial and temporal scales, they have utility for identifying long-term population 

trends across regional areas (Smith et al. 1984, Raphael 1994, Poole and Mowat 2001, Ruette
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et al. 2003). Such data require careful interpretation, however, and researchers have 

cautioned against the use of databases that report harvest totals only. In particular, a failure 

to report or control for factors that influence harvest dynamics can make interpretation of 

harvest records difficult (McDonald and Harris 1999, Poole and Mowat 2001). The pitfalls 

associated with broad-scale harvest data may be avoided by using site-specific harvest 

records from individual traplines that cover large geographical areas over long timeframes 

(Erickson 1982, Raphael 1994).

Numerous factors may influence trapping success thus biasing capture records or data 

representing fur sales. Of greatest importance may be trapping effort that can be influenced 

by population cycles, quota changes, trap-type restrictions, access, weather, fur prices, and 

socio-economic conditions (Raphael 1994, McDonald and Harris 1999, Poole and Mowat 

2001, Cattadori et al. 2003, Ruette et al. 2003, Webb and Boyce 2009). Failing to account 

for such factors will limit any inference to the underlying population dynamics o f the trapped 

species (McDonald and Harris 1999).

We developed an expert-based approach to quantify variation in the harvest and 

ultimately the population abundance of two species of furbearers following rapid change in 

the quality and availability o f habitat across landscapes. Where previous studies have used 

harvest datasets collected from large geographical areas, we used the personal records of 

trappers specific to their registered traplines to account for both effort and success. We 

related trap data for marten and lynx to the availability and quality of habitat, as modeled 

using expert knowledge. After controlling for trapping effort, this relationship served as an 

index of the population abundance of the two species. Traplines were located within two 

distinct study areas subjected to high levels o f forestry development (hereafter referred to as
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the ‘West Study Area’) and low levels of forestry development (hereafter referred to as the 

‘East Study Area’; Figure 1.1). We hypothesised that the capture success o f lynx and marten 

would be related to trapping effort and habitat availability and quality.

Methods 

Data Collection

We used trapping records (corresponding to registered traplines) and negative 

binomial count models to investigate factors that influenced capture success of lynx and 

marten. We collected harvest data specific to the traplines of ten trappers. We met with 

trappers in person and documented annual catch statistics for each species. Records were in 

the form of personal journals or fur return records (mandatory for the commercial sale o f furs 

in BC). We collected records dating back to 1990 for lynx and marten; records for fisher 

(Pekania pennanti) were also collected, but the capture rate was too infrequent to be used for 

these analyses. Few trappers had complete records from 1990-2013.

We established a number of measures of trapping effort for each set of harvest data, 

depending on the information possessed by the trappers. In one instance, a trapper kept catch 

per unit effort (CPUE) harvest records for each year of trapping. Three trappers recorded 

only the number of days spent trapping per season, while three others were able to 

approximate the number of traps set per season. The three remaining trappers did not record 

data that could be used to quantify effort. In this case, the trappers used their recollection of 

trapping activity to assign a value of effort from 0-10 for each year. These trappers 

identified particular years when effort was highest and assigned a score of 10; scores for the 

remaining years were assessed relative to those years of highest effort. All other measures of
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effort were then standardised on a scale from 0-10 to be used as a covariate in the negative 

binomial count models.

We conducted a brief survey with the trappers to identify other variables that they felt 

influenced trapping effort and success. We also discussed changes in their trapping methods 

over time, as well as the spatial distribution of effort across the trapline. Trappers provided 

map locations of productive trapping areas and noted changes in trapping locations due to 

habitat alteration.

Model Development

We used the literature and consulted with expert participants to identify a set of 

predictor variables that we hypothesised would explain capture success of lynx and marten 

(Table 3.1). Those variables included measures of effort and habitat value, trapline area, fur 

prices, and climatic conditions. Determining the influence of cumulative landscape change 

on capture success was of particular interest. Therefore, we tested three habitat-related 

variables derived from habitat models. Those models were developed through an expert- 

based approach, where biologists and trappers identified and evaluated habitat variables for 

lynx and marten. The expert-based habitat models were used to quantify change in habitat 

availability and quality for lynx and marten on each trapline at four time intervals: 1990, 

2000, 2005, and 2013 (Chapter 2). We extrapolated habitat values (Table 3.1) for all missing 

years between 1990 and 2013 by determining the rate of change between time intervals; this 

assumed a linear rate o f habitat change.

48



Table 3.1. Variables used for the development of count models for predicting capture 
success o f lynx and marten across central-interior BC, Canada.

Parameter Abbreviation Description

Effort E Measure of trapping effort on a 
scale from 0-10

Standardised Effort SE Measure of trapping effort 
relative to trapline area, where 
‘Effort’ was multiplied by 
‘Trapline Area’

Trapline Area TA Trapline area in hectares

Habitat Value HV Sum total of the raster habitat 
values on each respective 
trapline, according to expert- 
based habitat maps

Standardised Habitat Value SH Habitat relative to trapline area, 
where ‘Habitat Value’ was 
divided by ‘Trapline Area’

% Good and Very Good Habitat GVGH Percent of the respective trapline 
area composed of ‘Good’ or 
‘Very Good’ habitat, according 
to expert-based habitat maps

Fur Price FP The average fur price from the 
previous year’s trapping season

Mean Minimum Temperature MMT Average daily minimum air 
temperature recorded at Prince 
George Airport weather station 
(Nov-Jan for marten; Dec-Feb 
for lynx)

Extreme Minimum Temperature EMT Average monthly extreme 
minimum air temperature 
recorded at Prince George 
Airport weather station (Nov-Jan 
for marten; Dec-Feb for lynx)

Snow Depth Sum SMS Cumulative snow depth recorded 
at Prince George Airport weather 
station (Nov-Jan for marten; 
Dec-Feb for lynx)
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We acquired historic fur prices through the provincial fur return database, and 

weather data from the Environment Canada weather station at Prince George, BC 

(Environment Canada 2014). We acquired weather data for the peak trapping months for 

lynx (December-February) and marten (November-January). Trappers identified low 

temperatures and snow cover as important factors influencing capture success, thus we 

calculated the mean minimum and extreme minimum air temperatures and snow depth for 

those months.

We used negative binomial regression models (NBRM) to examine factors that 

influenced capture success (Stata, ver. 12.1, StataCorp, 2011). The harvest data from 

individual traplines for each year were used as the dependent variable for the count models. 

We developed sets of models for lynx and marten in the West and East Study Areas 

separately. Due to a relatively high number of zero capture events of lynx in the East Study 

Area, I attempted to fit a zero-inflated negative binomial model (ZINB) to the data (Vuong 

tests; Vuong 1989). However, the ZINB model did not conform well to the data, thus I used 

a NBRM.

Model Selection

Empirical data explaining variation in capture success were lacking, thus we used 

categories o f explanatory hypotheses to guide the model-selection process: trapping effort; 

variation in habitat over time; effort and habitat; effort and weather; habitat and weather; and 

effort, habitat, and weather (Appendix F). In some cases, low sample sizes dictated relatively 

few model parameters, where we followed a rule of approximately one covariate for every 10 

records (Vittinghoff and McCulloch 2007). We used an information-theoretic approach and 

Akaike’s Information Criteria (AICc) for small sample sizes to identify the most
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parsimonious model from each set of explanatory hypotheses (Burnham and Anderson 2002). 

The best model in the set had the lowest AICCI and the highest AICc weight (w,); where 

model separation was uncertain, we selected all models that differed by < 2 A, AIC points.

For the best models in the set, we generated P-coefficients for each parameter, 

representing the positive or negative direction of the effect; we considered a parameter 

statistically significant at a  <0.05. We clustered data on trapline to correct the variance for 

repeated sampling across years on each trapline (Dormann et al. 2007). We used the 

variance inflation factor to test the best-fit models for multicollinearity; no covariates 

surpassed the variance inflation threshold of 10 (Chatteijee and Hadi 2006).

Model Prediction

Information theoretic approaches provide only a relative measure of model 

parsimony, not an absolute measure of model fit. Thus, we used cross-validation to assess 

the predictive accuracy of the most parsimonious models. We used a bootstrapping-type 

method, where each capture record was withheld sequentially from the model fitting process, 

and the resulting model (N-l) and the withheld record was used to predict an independent 

harvest count. We then calculated the unstandardised residuals (difference between observed 

and predicted counts); a mean of zero suggested perfect prediction, a negative value 

suggested over-prediction, and a positive value suggested under-prediction. We used 

Wilcoxon rank sum tests to statistically compare the predicted and observed captures.

Catch per Unit Effort

As a second index of lynx and marten population abundance, we assessed the trends 

in CPUE and trapping effort over time (Microsoft Excel, ver.14.0, Microsoft Corporation,
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2010). Catch per unit effort was derived from the annual number of captures by each trapper 

divided by their effort level. Both trapping effort and CPUE were standardised by trapline 

area. We calculated best-fit linear trend lines to the resulting scatterplots.

Results 

Catch per Unit Effort

Trends in CPUE and trapping effort for lynx and marten varied over time. In the 

West Study Area, CPUE (F1/73 = 5.56, P = 0.021) and trapping effort (Fi,73 = 17.22, P 

<0.001) for lynx increased over time (Figure 3.1a), suggesting that trappers were capturing 

more lynx as they increased their effort levels. We did not analyse the CPUE and trapping 

effort for lynx in the East Study Area, due to low capture numbers. In the West, CPUE (F1,84 

= 6.80, P = 0.011) for marten decreased and trapping effort (Fi,g4 = 9.14, P = 0.003) increased 

with time, suggesting that trappers applied more effort over time, but captured fewer marten 

(Figure 3.1b). In the East, there was no significant relationship between CPUE or trapping 

effort and time (Fi,45 = 1.90, P = 0.175 and Fi,45 = 0.25, P = 0.616, respectively; Figure 3.1c).

Count Models

Lynx

The NBRM was the best model for lynx in the West Study. While the ZINB model 

appeared to be a better fit for lynx captures in the East (Vuong = 2.42, P = 0.008), the ZINB 

model did not conform to the data, thus I used a NBRM. The top-ranked model for lynx in 

the West Study Area (AICc w, = 0.520) included the parameters for ‘Effort’, ‘Trapline Area’, 

‘Good and Very Good Habitat’, and ‘Extreme Minimum Temperature’ (Table 3.2).
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Figure 3.1. Scatterplots and linear regressions displaying catch per unit effort (CPUE) and 
trapping effort for lynx captures in the West Study Area (a) and marten captures in the West 
(b) and East Study Area (c) across central-interior BC, Canada. The CPUE represents the 
number of lynx or marten captured by each trapper in a given year divided by their effort 
level.
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Table 3.2. Summary of model selection statistics for the candidate count models to predict 
lynx captures in the West Study Area (Capture events; N = 75) across central-interior BC, 
Canada. The models were developed from six a priori categories of explanatory hypotheses. 
The top models from each category were selected and then ranked against each other.

Model Category Rank AICc, AlCcWi A AICc

E + TA + GVGH + EMT Effort + Habitat + Weather 1 397.97 0.520 0.000
E+TA+GVGH Effort + Habitat 2 398.14 0.479 0.165
E + TA Effort 3 412.83 <0.001 14.853
E + EMT Effort + Weather 4 428.93 <0.001 30.953
GVGH + TA Habitat 5 468.41 <0.001 70.433
SH + EMT Habitat + Weather 6 470.39 <0.001 72.413
SH + SDS Habitat + Weather 7 471.49 <0.001 73.513
SH + SDS + EMT Habitat + Weather 8 471.78 <0.001 73.805
SH + SDS + MMT Habitat + Weather 9 472.34 <0.001 74.365

The second-ranked model differed by <2 points, but was a subset of the top model. The top 

two models accounted for 99.9% of the AICcw,.

There were only 27 capture events for lynx in the East Study Area. The low sample 

size required the inclusion of few parameters in the models. The top-ranked model (AICcw,

= 0.223) included the parameters for ‘Effort’, ‘Trapline Area’, and ‘Mean Minimum 

Temperature’ (Table 3.3). The top two models accounted for only 58.1% of the AICcw,.

The coefficients generated from the best NBRM suggested that lynx captures in the 

West Study Area were positively influenced by ‘Effort’, ‘Trapline Area’, and ‘Good and 

Very Good Habitat’ (Figure 3.2a). ‘Extreme Minimum Temperature’ did not have a 

significant effect on capture success. In the East, the coefficients generated from the top-two 

NBRMs suggested that ‘Effort’ and ‘Trapline Area’ had a significantly positive influence on 

capture success of lynx, while ‘Mean Minimum Temperature’ and ‘Extreme Minimum 

Temperature’ had a significant negative effect (Figure 3.2b; Appendix G).
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Table 3.3. Summary o f model selection statistics for the candidate count models to predict
lynx captures in the East Study Area (Capture events; N = 27) across central-interior BC,
Canada. The models were developed from six a priori categories o f explanatory hypotheses.
The top models from each category were selected and then ranked against each other.

Model Category Rank AICc A IC cM>, A, AICc

E + TA + MMT Effort + Weather 1 117.86 0.305 0.000
E+TA+EM T Effort + Weather 2 118.06 0.276 0.200
E + TA Effort 3 122.76 0.094 2.357
E + SH Effort + Habitat 4 122.98 0.084 2.577
E + TA + SH Effort + Habitat 5 120.86 0.068 3.000
E + SH + SDS Effort + Habitat + Weather 6 122.28 0.034 4.420
E + TA + GVGH Effort + Habitat 7 122.34 0.033 4.480
E + GVGH Effort + Habitat 8 124.92 0.032 4.517
E + SH + EMT Effort + Habitat + Weather 9 122.52 0.030 4.660
E + SH + MMT Effort + Habitat + Weather 10 122.78 0.026 4.920
E + GVGH +  EMT Effort +  Habitat + Weather 11 123.54 0.018 5.680
HV Habitat 12 166.52 <0.001 43.777
HV + SDS Habitat + Weather 13 165.20 <0.001 44.797
HV + EMT Habitat + Weather 14 166.14 <0.001 45.737

Marten

The top-ranked negative binomial regression model explaining captures of marten in 

the West Study Area (AICc w, = 0.471) included parameters for ‘Effort’, ‘Trapline Area’, 

‘Standardised Habitat’, and ‘Extreme Minimum Temperature’ (Table 3.4). The top three 

models differed by <2 points and accounted for 99.9% of the AICcw,.

In the East Study Area, the top model accounted for 51.0% of the AICcw, and 

included parameters for ‘Effort’, ‘Trapline Area’, and ‘Good and Very Good Habitat’ (Table 

3.5). The subsequent three top-ranked models contained the same parameters, but included 

climatic variables. The top-ranked model was the most parsimonious and differed from the 

second-ranked model by >2 points.
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AICc was < 2 .0 )  representing influences on capture success of lynx in the West (a) and East 
(b) Study Areas across central-interior BC, Canada.
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Table 3.4. Summary o f model selection statistics for the candidate count models to predict
marten captures in the West Study Area (Capture events; N = 86) across central-interior BC,
Canada. The models were developed from six a priori categories o f explanatory hypotheses.
The top models from each category were selected and then ranked against each other.

Model Category Rank AlCrf AICcw/ A A IG

E+TA+SH+EM T Effort + Habitat + Weather 1 660.83 0.471 0.000
E + TA+ SH + MMT Effort + Habitat + Weather 2 661.41 0.352 0.582
E + TA+SH Effort + Habitat 3 662.79 0.177 1.963
E + TA Effort 4 676.34 <0.001 15.515
E + EMT Effort + Weather 5 680.78 <0.001 19.955
E + SDS + EMT Effort + Weather 6 681.83 <0.001 21.003
E + SDS Effort + Weather 7 682.52 <0.001 21.695
HV Habitat 8 745.75 <0.001 84.918
HV + EMT Habitat + Weather 9 746.38 <0.001 85.555
SH + TA Habitat 10 746.56 <0.001 85.735
HV + TA Habitat 11 746.76 <0.001 85.935
GVGH+TA Habitat 12 746.96 <0.001 86.135
HV + MMT Habitat + Weather 13 746.98 <0.001 86.155
GVGH Habitat 14 747.01 <0.001 86.178
HV + SDS Habitat + Weather 15 747.44 <0.001 86.615

The coefficients generated from the best NBRMs suggested that marten captures in 

the West Study Area were positively influenced by ‘Effort’, ‘Trapline Area’, and 

‘Standardised Habitat’, while ‘Extreme Minimum Temperature’ and ‘Mean Minimum 

Temperature’ had a negative effect (Figure 3.3a; Appendix G). The coefficients generated 

from the best NBRM for marten captures in the East suggested that ‘Effort’, ‘Trapline Area’, 

and ‘Good and Very Good Habitat’ had a significantly positive influence on the capture 

success of marten (Figure 3.3b; Appendix G).

Model Fit

We used Wilcoxon rank sum tests to compare the predicted and observed captures 

from all top models for lynx and marten in the West and East Study Areas. There were 

significant differences in observed and predicted captures of lynx in both study areas 

(Appendix H; all H-statistics >24.09, all P <0.039). There were also significant differences
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Table 3.5. Summary o f model selection statistics for the candidate count models to predict
marten captures in the East Study Area (Capture events; N = 47) across central-interior BC,
Canada. The models were developed from six a priori categories o f explanatory hypotheses.
The top models from each category were then ranked against each other.

Model Category Rank AlCd AICch>, A, AICc

E+TA+GVGH Effort + Habitat 1 429.84 0.510 0.000
E + TA +GVGH + SDS Effort + Habitat + Weather 2 431.96 0.177 2.117
E + TA +GVGH + EMT Effort + Habitat + Weather 3 432.22 0.155 2.383
E + TA + GVGH + MMT Effort + Habitat + Weather 4 432.23 0.154 2.393
GVGH + TA Effort 5 439.31 0.004 9.475
GVGH + EMT Effort + Weather 6 466.25 <0.001 36.415
GVGH + SDS Effort + Weather 7 466.41 <0.001 36.575
SE Habitat 8 468.23 <0.001 38.391
SE + SDS Habitat + Weather 9 470.15 <0.001 40.315
SE + FP Habitat 10 470.17 <0.001 40.335
SE + TA Habitat 11 470.19 <0.001 40.355
SE + EMT Habitat 12 470.31 <0.001 40.475

in observed and predicted captures of marten in the West Study Area (Appendix H; all H- 

statistics >72.23, all P <0.022). There was no significant difference between observed and 

predicted captures of marten in the East Study Area (Appendix H; H = 38.89, P = 0.385).

Discussion

Our results demonstrate the utility of trapping records for investigating furbearer 

abundance in relation to cumulative habitat change. Many studies have attempted to use 

trapping records as a proxy for abundance and for long-term population monitoring (Smith et 

al. 1984, Raphael 1994, McDonald and Harris 1999, Poole and Mowat 2001, Ruette et al. 

2003, Webb and Boyce 2009). Few studies, however, have used trapping records to relate 

population abundance to habitat change (Webb and Boyce 2009). Such records provide a 

large amount of data that can be collected relatively quickly and inexpensively (Ruette et al. 

2003). This may be particularly important for cryptic and inconspicuous species like
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furbearers, where other forms of population monitoring may be difficult (Ruette et al. 2003). 

Although other studies have used large-scale harvest databases with varying success, we 

implemented a novel approach that was dependent on the knowledge and personal fur- 

harvest records of trappers. This allowed us to account for a number of factors that might 

influence inter-annual variation in harvest success, including habitat change and trapping 

effort, important considerations that have been difficult to address in other studies (Smith et 

al. 1984, Raphael 1994, McDonald and Harris 1999, Poole and Mowat 2001).

Erickson (1982) and Raphael (1994) suggested that site-specific harvest records may 

be useful for identifying relative abundance and population trends, contingent on the 

quantification of annual trapping effort. An ideal measure of trapping effort would include 

the number of traps set multiplied by the number of trap days (McDonald and Harris 1999). 

We attempted to quantify trapping effort through a variety of measures, including the number 

of traps set per season or per day, or the number of days spent trapping during the season. 

When quantifiable measures of effort were not available, trappers provided self-evaluations 

of effort for each year of trapping. These elicited data were a reasonable measure of trapping 

effort as indicated by the consistent performance of the effort variables in the count models 

representing annual variation in harvest of each species.

Influences on Capture Success

The most parsimonious count models suggested that changes in lynx and marten 

harvest were influenced by trapping effort and habitat, and in some cases, weather 

parameters were also informative. Trapping effort was included in each model, with a 

positive influence on capture success for both lynx and marten. Size of the trapline also had 

a positive influence on capture success in all cases. For marten in the West Study Area, low
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air temperatures increased capture success. Many trappers suggested that marten captures 

increase with cold temperatures (M. Bridger unpub. data), as marten forage more frequently 

to meet high energetic demands. This is supported by empirical studies of the winter activity 

of marten (Buskirk et al. 1988). Similarly, colder temperatures appeared to contribute to 

increased captures of lynx in the East Study Area.

The top-models for lynx in the West and marten in both study areas included a 

measure of habitat change: capture success on the traplines were positively related to habitat 

availability and quality. This supported our hypothesis that capture success, and ultimately 

population abundance, would vary with cumulative impacts of landscape change. A 

covariate for habitat availability and quality, however, was not present in the top two models 

for lynx captures on traplines located in the East Study Area.

Measures of habitat availability and quality were derived from expert-based habitat 

maps that represented cumulative landscape change for each trapline over time (1990 to 

2013; Chapter 2). A previous study by Webb and Boyce (2009) used harvest records and 

measures of landscape disturbance to model the relationship between inferred habitat change 

and the abundance of marten. Our results were similar to those found by Webb and Boyce 

(2009), where the trapping of marten was positively related to forest cover and inversely 

related to measures of disturbance; however, those authors did not account for trapping 

effort. Our approach explicitly represented habitat change, rather than measures of 

disturbance and we tested a relatively full set of factors that might influence trapping success.

The methods employed in this study reduced many of the biases and limitations 

associated with large data sets of harvest records, typically maintained by management
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agencies. Working with individual trappers at the scale of the trapline, however, is time 

consuming, resulting in fewer data. Although the models identified statistically significant 

predictors of capture success, uncertainty in the model selection and limited predictive power 

may have been a result of these small sample sizes. Model selection was particularly 

uncertain for lynx in the East Study Area, where only 27 capture records were obtained. 

Future studies should include more trapper participants, increasing the sample size of 

trapping records as well as the spatial scale o f the study. Validation of the habitat models 

with empirical data would also be beneficial (Kliskey et al. 1999).

Our results suggested that the availability of habitat influenced trapping success, 

likely representing changes in the distribution or abundance of the trapped populations 

following intensive forestry activity across the West Study Area. The spatial distribution of 

trapping effort should be considered when attempting to understand the impacts of habitat 

change. Over the short-term, habitat loss and population decline may not necessarily be 

represented by low capture success if trappers focus their efforts in large patches of remnant 

habitat; this may result in a lag in reduced capture rate and an apparent lag in population 

decline or collapse (Raphael 1994).

We worked closely with the trappers to understand variation in effort across time and 

spatially across their respective traplines. Most trappers reported that on a yearly basis they 

trapped the same general locations, unless significant habitat disturbance occurred, in which 

case they would abandon those locations. Additionally, there was uncertainty as to whether 

trappers were focusing their efforts in locations that were representative of the highest quality 

habitat for marten and lynx. Wiebe et al. (2013) reported that trappers generally established 

marten sets in habitat that was selected for by marten; however, their study found that
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trapping locations were highly influenced by road or trail access. During our consultations 

with trappers, we found that many trapping locations aligned with areas identified as high- 

quality marten habitat on the expert-based habitat maps (see Chapter 2). For lynx, trappers 

appeared to be applying most o f their effort near or within regenerating forest stands; these 

locations were generally considered moderate lynx habitat, according to the habitat maps.

Aside from effort, there are many other factors that may influence capture success, 

and ultimately the inferences that can be made to population abundance. Such factors 

include season length, quota changes, weather, access, trapper skills and motivation, trapping 

methods, activity on neighbouring traplines, and furbearer population dynamics (McDonald 

and Harris 1999, Poole and Mowat 2001, Ruette et al. 2003). Thus, one should be cautious 

when using trapping records as an index of population abundance. We attempted to identify 

and control for the major confounding factors by interviewing individual trappers. Most 

trappers reported that their capture success was affected by population abundance, effort, 

weather, and habitat availability.

Catch per Unit Effort

The count models suggested that capture success of lynx and marten, and ultimately 

population abundance, varied with habitat availability and quality. This conclusion is further 

demonstrated when evaluating CPUE and trapping effort for marten in the West Study Area. 

Since 1990, trappers increased their effort to capture marten in the West, yet CPUE 

decreased. Over this same time period, the expert-based habitat models predicted substantial 

declines in the availability and quality of marten habitat. Decreases in CPUE may suggest 

overharvest, but in this case, provides further evidence that marten populations may be 

declining in response to habitat loss. This relationship was not found for marten captures in
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the East Study Area, where habitat had remained relatively stable, even increasing on certain 

traplines (see Chapter 2). For lynx captures in the West, however, CPUE increased over 

time, as did trapping effort. This result suggests that lynx populations in the West were not 

declining, or that increased trapping effort or efficiency masked any potential declines that 

may have occurred.

Habitat Change and Population Dynamics of Furbearers

Although many researchers would agree that lynx populations depend heavily on the 

availability of prey (Apps 2000, Poole 2003, Hoving et al. 2004, Simons-Legaard et al.

2013), the link between lynx populations and the availability and quality of habitat is not well 

quantified. Habitat for their primary prey species, snowshoe hare (Lepus americanus), is 

often associated with regenerating forests that occur following logging or wildfire (Mowat et 

al. 2000, Poole 2003, Simons-Legaard et al. 2013). Consequently, both snowshoe hare and 

lynx populations may benefit from landscape disturbance (Mowat and Slough 2003, Hoving 

et al. 2004). Less is known, however, about the dependence of lynx populations on habitat 

associated with mature forest stands. Mature conifer or mixed forests provide valuable 

habitat for denning, resting, and cover from climatic conditions (Paragi et al. 1997). The loss 

of such forests due to timber harvesting could have detrimental impacts to lynx at a 

population level.

Lynx captures appeared to be high in the West Study Area despite a considerable 

reduction in old forests and apparent loss of habitat. This suggests that lynx populations are 

not necessarily dependent on habitat that is associated with old forests; rather they are 

regulated by other factors, like the abundance of snowshoe hare. Accounts from trappers 

suggest that both snowshoe hare and lynx populations are currently high in many portions of
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the West Study Area. Conversely, lynx captures have been historically low in the East 

despite a relatively slow rate of forest harvesting; further evidence that lynx populations may 

not be limited by what experts perceive as quality habitat (see Chapter 2).

Many studies have investigated the impacts of industrial development on marten 

habitat (Thompson 1994, Chapin et al. 1998, Hargis et al. 1999, Potvin et al. 2000, Payer and 

Harrison 2003, Fuller and Harrison 2005, Steventon and Daust 2009, Cheveau et al. 2013); 

however, few have linked habitat change to population abundance. Marten are widely 

associated with old-growth coniferous stands (Payer and Harrison 2003, Proulx et al. 2006, 

Carroll 2007, Webb and Boyce 2009, Cheveau et al. 2013). These forests contain structural 

elements and canopy conditions that ameliorate extreme weather conditions and provide 

cover from predators, foraging habitat, and resting and denning sites (Thompson and Colgan 

1994, Potvin et al. 2000, Carroll 2007, Cheveau et al. 2013). Extensive losses o f these late- 

successional forests due to timber harvesting may have direct impacts on marten populations 

(Steventon and Daust 2009, Webb and Boyce 2009). For example, Thompson (1994) found 

that marten had lower mean ages, lower reproductive success, and higher natural and 

trapping mortality across areas with a high level of forest harvesting. Both the habitat and 

count models developed in this study provide further evidence that the loss of habitat may 

result in declines in the abundance of marten populations.

Trappers in the recently and extensively logged West Study Area reported that they 

were having greater difficulty capturing marten; when interviewed, they suggested that 

habitat loss was the driving force for low capture rates. The empirical results of this study 

support those statements. Marten captures, and likely the density o f marten populations, 

varied with the availability of habitat. The trappers in the East Study Area, where timber

65



harvesting has been limited, did not report reductions in capture success. Since 1990, marten 

captures were stable or increasing (Figure 3.1c).

Conclusion

The results of this study suggest that the capture records maintained by trappers have 

considerable utility for empirically documenting variation in furbearer abundance relative to 

cumulative habitat change. Focusing on both capture records and trapping effort at the scale 

of the trapline avoids many of the pitfalls associated with the use of large-scale harvest 

databases typically maintained by management agencies (Smith et al. 1984, McDonald and 

Harris 1999, Poole and Mowat 2001). When trappers are engaged in the research or 

management process, records can be acquired at a low cost and over a relatively short time 

span. These data can be particularly important when studying cryptic species like furbearers 

(Ruette et al. 2003). Harvest records may be poor indicators o f short-term population trends 

(Erickson 1982, Poole and Mowat 2001); however, such records may be ideal for monitoring 

long-term trends provided researchers apply rigorous data management and control for 

influential factors, such as trapping effort.

Count models suggested that after controlling for effort, habitat change did influence 

capture success. This is some of the first empirical evidence indicating that rapid and large- 

scale forest harvesting can result in a decline in the abundance of marten populations. This is 

supported both by theory and the expert knowledge of trappers. Where the rapid extraction 

of timber results in large cutblocks, and the loss of forest complexity and habitat corridors, 

marten populations are likely at risk. Wildlife and forest managers must consider the 

cumulative impacts of forest harvesting and perhaps alternative silviculture practices when
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attempting to maintain large and widely distributed populations of marten (Payer and 

Harrison 2003).

The influence of forest harvesting on the habitat and population dynamics of lynx is 

unclear. Although the empirical evidence indicates that lynx abundance varies with habitat 

availability, expert knowledge of the trappers suggests that lynx populations are primarily 

influenced by prey populations. Availability of old-forest habitat may not necessarily 

promote lynx populations if prey species are not supported. Forest managers must consider 

promoting or enhancing habitat that benefits prey populations, often in the form of early serai 

forests, while maintaining adequate availability of old-forest habitat. Management of lynx 

populations would benefit from further research investigating the relationships between lynx, 

forest structure, and prey abundance.
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Chapter 4: General Summary and Management Considerations

Summary

I documented the cumulative impacts of landscape change on habitat availability and 

quality for three focal species (see Chapter 2). I developed expert-based habitat models to 

quantify habitat change in the central-interior of BC for fisher (Pekania pennanti), Canada 

lynx (Lynx canadensis), and American marten (Maries americana) since 1990. Throughout 

this process, I examined the utility of expert-based habitat modeling, including the 

quantification of uncertainty.

Across the West Study Area (see Figure 1.1), where recent forest harvesting was 

extensive, the availability and quality of habitat for all three species decreased dramatically. 

This result contrasted with the East Study Area where there was relatively little forest 

harvesting and habitat availability and quality remained stable over time. These results 

suggest that intensive forestry negatively effects the habitat of these three furbearer species in 

an immediate and cumulative manner. As a secondary outcome, this study illustrates the 

utility of expert knowledge for investigating the response of furbearers to cumulative 

landscape change.

I hypothesised that the extensive loss of habitat would have population implications, 

thus, I used trapping records to investigate the relationship between habitat change resulting 

from cumulative impacts and population abundance of lynx and marten (see Chapter 3). I 

used count models to relate capture success to habitat change, while controlling for other 

influential factors, including trapping effort. In both study areas, habitat availability and 

quality, along with trapping effort and trapline area, were found to positively influence

68



capture success of lynx and marten. These results suggest that habitat change may directly 

affect the abundance of lynx and marten in the study areas. These results also illustrate the 

utility of trapping records for investigating population dynamics of furbearers; however, a 

measure of trapping effort is required to relate environmental covariates, including habitat 

change, to fur harvest at the scale of individual traplines.

Modeling and Predicting Habitat Change

Expert-based habitat modeling required rigorous and defensible methods. The initial 

selection of experts was a critical step. I developed explicit criteria for identifying experts 

and then applied a peer-referral technique to select biologist and trapper experts for the study. 

By identifying seed experts from three unique disciplines of biologists, I was able to recruit 

ten biologists from different backgrounds and with broad knowledge of furbearers. Seed 

experts from the local trapping community were also used to aid in the identification of ten 

suitable trapper experts that met the requirements for this study. This provided me with two 

distinct groups of experts that offered unique perspectives during the development o f the 

habitat models. This approach also allowed me to test expert agreement and uncertainty 

within and between expert groups during the model development stages. The total number of 

experts was logistically manageable, allowing for personal instruction in the elicitation 

method, as well as direct and timely feedback on study progress and findings, while 

providing a wide breadth of knowledge of furbearer-habitat relationships. I assumed that the 

relatively large sample of experts prevented bias and influential error from any one 

individual (McBride and Burgman 2012).

My study design allowed the experts to participate and guide all stages of the 

development of the habitat models. Initially, they voted for three focal species that were
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considered to be economically important to the fur trapping industry and were hypothesised 

to be sensitive to landscape change associated with natural or anthropogenic disturbance. 

Fisher, lynx, and marten were selected as the focal species. Although similar in their general 

biology, these species use different habitats, and thus may be affected differently by 

cumulative landscape change.

The experts also selected the variables to be included in the habitat models. Overall, 

there was high consistency between experts both within and between groups when 

identifying variables hypothesised to influence the distribution of the three focal species; 11 

variables were identified for the fisher and marten models, while ten variables were identified 

for the lynx model. Uncertainty in the selection of habitat variables by biologists was highest 

for lynx and lowest for fisher. For trappers, uncertainty was highest for fisher and lowest for 

marten. Using the analytical hierarchy process (AHP), experts then evaluated the relative 

importance of each subcategory of variables for predicting the distribution of habitat. 

Elicitation of scores for each variable occurred with minimal operative errors and relatively 

high consistency within and between experts. When compared to biologist experts, trappers 

reported a higher confidence in the ranking of their scores; however, there was higher 

variation in the eigenvector scores generated using the variable rankings provided by the 

trappers (product of the AHP matrices representing the relative value of the habitat 

variables).

I used geographic information systems (GIS) to apply the expert-based habitat models 

to ten reference landscapes (i.e., registered traplines). I developed a chronology o f maps 

showing habitat change across each reference landscapes at four time intervals (i.e., 1990, 

2000, 2005, and 2013). According to the models, there were significant declines in habitat
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for fisher, lynx, and marten in the West Study Area, where high levels of forestry had 

occurred over the study period. The models predicted relatively little change in habitat for all 

three species in the East Study Area, where landscape changes have been minimal since 

1990.

I evaluated the uncertainty in expert-based models and the resulting habitat maps. I 

recreated the maps using the upper and lower 95th percentile eigenvector scores resulting 

from the AHP elicitation. I also created habitat maps based on the biologist and trapper 

scores separately. This assessment suggested that discrepancies between experts can 

influence the prediction of habitat area; however, a relatively high consistency of habitat 

scores between expert groups resulted in no significant changes to the conclusions of this 

study. As a form of model validation, the trappers evaluated the distribution and area of 

ranked habitat on their individual traplines. They reported highest accuracy scores for maps 

of marten habitat and the lowest for lynx. The low score for the lynx maps may have 

resulted from variation in the prediction of lynx habitat, due to their propensity to use varying 

serai stages and habitat types. Additionally, the lynx habitat model may have been overly 

influenced by the attributes o f old-forest stands, resulting in an over-prediction of habitat 

quality in areas of late-successional forests.

Population Modeling

I used trapping records maintained by each of the ten participating trappers to 

examine the relationship between lynx and marten population dynamics and habitat change. 

When using capture success as a proxy for population abundance one must control for 

trapping effort. Along with effort, I identified other factors that might explain capture 

success, including habitat availability and quality, trapline area, and climatic conditions.
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Determining the influence of cumulative landscape change on trapping success was of 

particular interest. Thus, I tested three variables representing change in habitat availability 

and quality over time, derived from the expert-based habitat models (see Chapter 2).

I used NBRMs to relate harvest data from individual traplines to factors hypothesised 

to influence capture success. I developed sets of a priori candidate models and used AIC to 

identify the most parsimonious model from each set of explanatory hypotheses. The most 

parsimonious models explaining lynx captures in the West Study Area and marten captures 

in the East and West included a measure of trapping effort, habitat availability and quality, 

and trapline area; in all cases, these three predictor variables had a significantly positive 

influence on capture success. Weather variables were also included in the most parsimonious 

models for lynx captures in the East and West, and marten captures in the West, where 

extreme or mean minimum temperatures had a significantly negative influence on marten 

captures in the West Study Area and lynx captures in the East. I assessed the predictive 

ability of the top count models by testing for differences between observed and predicted 

harvest data and found that the models had relatively low predictive power. An increase in 

the number of participating trappers and resulting number of trapping records might improve 

the predictive ability of the count models.

Management Concerns and Recommendations

The results of this study provide insights into the influence of cumulative impacts of 

landscape change on the abundance and distribution o f furbearers in central-interior BC. To 

help guide management recommendations that minimize future cumulative impacts on 

habitat and populations, I conducted surveys with the ten biologist experts and nine of the
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trapper experts to discuss management concerns and recommendations. Semi-structured 

interviews were conducted via telephone with the trappers and semi-structured surveys were 

sent via email to the biologists. The interviews and surveys were structured to guide 

discussions of key concerns and recommendations toward habitat and population 

management for the focal species, as well as for the broader group of furbearers in the 

province.

Fisher

The biologists and trapper experts identified several key themes important to the 

management of fisher habitat (Table 4.1). Most biologists and trappers identified old 

deciduous trees (i.e., cottonwood and poplar) as limiting habitat features for fisher, as the 

rearing of young takes place primarily in such trees (Lofroth et al. 2010). Although mature 

deciduous trees are not generally targeted for timber harvest, the experts reported that they 

are often removed incidentally, or lost due to wind-fall in exposed logged areas.

At a landscape scale, the experts stressed the importance o f habitat connectivity in 

areas affected by extensive timber harvesting. The trappers were particularly concerned with 

the large size of the cutblocks. These experts may have implicitly recognized the large home 

range sizes and naturally low population densities of fisher (Weir and Almuedo 2010). The 

experts reported that extensive salvage logging of forest stands killed by mountain pine 

beetle (MPB) has resulted in a high density of cutblocks, pine-dominated forests that lack 

structure, and a lack o f contiguous mature forest. The biologists and trappers recommended 

that forest managers maintain linkage zones and corridors across the landscape, limit the size 

of cutblocks, and reduce the rate of timber harvest.
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Table 4.1. Recommendations by biologist and trapper experts for maintaining habitat and
numbers o f fisher in the central-interior of BC, Canada. Recommendations were obtained
through semi-structured interviews and surveys.

Habitat Concerns

Loss of denning trees (old deciduous) as a result 
of forestry practices.

High density of disturbances and large cutblock 
sizes across the landscape resulting in the loss of 
mature forests, reduced habitat connectivity, and 
increased patch isolation.

High rate of timber harvest associated with MPB 
salvage logging and the promotion of future pine- 
dominated forests lacking structure.

Lack of CWD retention in cutblocks.

Broadcast herbicide use as a silviculture practice 
resulting in loss of cover and prey habitat.

Population Concerns

Populations likely in decline resulting from MPB 
salvage logging.

Lack of population connectivity, particularly with 
low densities and large home ranges; population 
isolation could result in complete losses of 
populations.

Trapping may be an additive pressure on 
sensitive populations; uncertainty surrounding 
the sustainability of fisher harvest.

Lack of population monitoring to observe trends.

Climate change could have a positive effect on 
populations if a reduction in snow cover occurs.

Habitat Recommendations

Maintain and promote large, deciduous trees 
for denning sites; experiment with man-made 
structures as possible denning locations (i.e., 
denning boxes).

Focus habitat management on maintaining 
corridors and linkages; use logging 
prescriptions that reduce habitat fragmentation 
across landscapes.

Promote landscape heterogeneity, including 
prey habitat; reduce the rate of timber 
harvesting.

Retain CWD and dead standing trees to 
promote future habitat as cutblocks regenerate.

Reduce or eliminate the use of aerial 
herbicides as a silviculture practice.

Population Recommendations

See habitat recommendations for promoting 
fisher habitat.

See habitat recommendations for promoting 
habitat/population connectivity.

Trapping management or restrictions may be 
required in areas with small or declining 
populations; management of captures on 
individual traplines; minimize trapper by-catch 
in marten and lynx traps (i.e., restriction plates 
on marten traps).

Better inventory of population numbers and 
trends; increase in mark-recapture studies or 
analysis of trapping records.

Further research on impacts of climate change 
on fisher populations.
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Relative to elevated levels of forest harvesting across the central-interior of BC, 

experts were also concerned with a failure to retain sufficient amounts of coarse woody 

debris (CWD) in recent cutblocks. The experts suggested that greater amounts of CWD 

should be retained and that this strategy would promote future habitat as the cutblocks 

regenerate. Several trappers were also concerned with broadcast spraying of herbicides as a 

silviculture practice in regenerating cutblocks. They suggested that this practice decreases 

the diversity and structure of future habitat and reduces the quality of habitat for the prey of 

fisher. Finally, several trappers recognized a lack of coordination of management plans 

between multiple industrial sectors, as well as between industry and wildlife managers.

Many of the experts suggested that fisher populations are declining in the central- 

interior of BC, particularly where populations overlap with MPB salvage logging. They 

reported that the decline was a function of a loss of optimal habitat and a lack of population 

connectivity across the landscape. Some experts felt that population isolation due to 

fragmented landscapes could result in complete losses of fisher populations.

Most experts were uncertain when describing the potential impacts of trapping on 

fisher populations, as there is a lack of monitoring. Most biologists suggested that trapping 

may be an additive source of mortality for sensitive populations; however, the trappers were 

generally unconcerned about the impacts of trapping, likely due to low capture rates. Few 

trappers targeted fisher with most captures being incidental in marten or lynx traps. The 

biologists recommended better use of trapping records to monitor harvest and population 

trends. Also, they recommended that trapping restrictions be implemented in areas where 

populations are thought to be sensitive to overharvest or other anthropogenic impacts.
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Lynx

The biologists and trappers identified both positive and negative influences of 

landscape change on lynx habitat (Table 4.2). Most experts agreed that early serai forests 

resulting from logging or forest fires could potentially benefit lynx through the promotion of 

prey habitat; however, trappers were concerned about the length of time required before these 

habitats become optimal. Most experts recommended implementing forestry practices that 

promote heterogeneous landscapes, and provide early serai prey habitat.

Both expert groups were unsure o f the importance of old-forest stands and attributes 

for the productivity of lynx populations; several biologists stated a need for further research 

on lynx and their habitat requirements. Currently, there have been no relevant studies of lynx 

habitat requirements in the central-interior of BC. Many biologists and trappers suggested 

that there is a lack of mature forest attributes which may provide habitat for cover, resting, 

and denning, and such areas must be preserved as refuge habitat. Many trappers were 

concerned with the aerial broadcast spraying of herbicides, suggesting that this practice 

significantly impacts prey habitat in regenerating forests; they recommended the elimination 

of herbicides as a silviculture practice.

Most experts agreed that in the central-interior of BC lynx and hare populations cycle 

closely. Thus, as regenerating forests continue to provide ample habitat for hare, there may 

be little reason to consider the cumulative impacts of industrial development relative to the 

broad-scale habitat needs of lynx. Multiple trappers suggested that the amplitude and period 

of the hare population cycle, and subsequent lynx cycle, has stabilised as a result of increased 

hare habitat. Several biologists stated, however, that there is a lack of knowledge of lynx 

population dynamics in the northern portion of their range.
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Table 4.2. Recommendations by biologist and trapper experts for maintaining habitat and
numbers o f lynx in the central-interior o f BC, Canada. Recommendations were obtained
through semi-structured interviews and surveys.

Habitat Concerns

Large-scale habitat alterations, including large 
cutblocks, promoting homogenous landscapes.

Distribution of lynx is heavily reliant on the 
availability of prey habitat; regenerating 
cutblocks have slow recovery times before 
becoming suitable prey habitat.

Uncertainty surrounding the amount of elemental 
attributes required to sustain lynx populations; 
loss of mature forests and a lack of old-forest 
attributes on landscape.

Broadcast use of aerial herbicides reducing prey 
habitat and cover.

Population Concerns

Lynx populations may not be at risk where 
snowshoe hare populations are abundant; 
populations may increases in areas that have been 
subjected to logging or wildfires, however, it 
may take 20-30 years post-disturbance.

There is uncertainty surrounding the impacts of 
trapping; fur prices may lead to high trapping 
pressure, however northern populations may not 
be susceptible to over-trapping, due to wide 
distribution and nomadic behavior.

Currently, government has a passive approach to 
harvest management and it is unknown whether 
that is acceptable; lack of population monitoring 
and trapping data usage.

Lack of knowledge of population dynamics in 
northern part of range.

Habitat Recommendations

Implement forestry practices that promote 
heterogeneous landscapes and natural forest 
dynamics (i.e., young forests for prey habitat, 
mixed forests for bedding habitat, and mature 
forests for denning and cover habitat).

Implement forestry and silviculture practices 
(i.e., reforestation, broadcast burning, and late 
thinning) that rapidly promote early serai 
habitat for snowshoe hare populations.

Increased research on interactions of lynx with 
forestry practices; maintain large refuge areas 
of habitat; preserve mature forests.

Reduce or eliminate the use of aerial 
herbicides on regenerating cutblocks.

Population Recommendations

See habitat recommendations for promoting 
prey habitat.

Harvest management may not be necessary in 
northern portions of their range; restrict 
harvest (trapping and access) in southern 
portion of range (southern BC); harvest should 
be reduced during low periods in the 
population cycle to increase recovery speed.

Implement better use of harvest data for 
population abundance and population trends.

Increased research on population dynamics of 
lynx and the differences between populations 
inhabiting boreal and mountain ecosystems.
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They recommended better use of trapping records to monitor populations, and an overall 

increase in baseline population monitoring and research.

Many experts suggested uncertainty surrounding the impacts of trapping on lynx 

populations. Some biologists reported that trapping may be of concern to sensitive lynx 

populations in southern BC, but not necessarily in their northern range. They felt that lynx 

populations could benefit from reduced trapping pressure during low population cycles or 

restricted trapping of sensitive populations. In contrast, most trappers stated that lynx are 

insensitive to over-trapping due to their large home ranges and nomadic behavior. Some 

biologists suggested that there is currently a ‘hands o ff management approach to regulating 

lynx trapping in the northern half of the province; it is unclear whether this approach is 

acceptable. Most trappers recognized the importance of population management by trappers 

on individual traplines, or across multiple traplines.

Marten

The experts identified several concerns and recommendations for the management of 

marten habitat relative to cumulative landscape change (Table 4.3). At a landscape scale, the 

experts were concerned about extensive reductions in contiguous mature and old-growth 

conifer forests due to forestry, resulting in fragmented habitat and direct losses of critical 

habitat features. This was of particular concern for areas subjected to MPB salvage logging, 

where habitat may have been diminished to an extent that no longer supports viable marten 

populations. Trappers reported the negative impacts associated with large cutblocks resulting 

from salvage logging. They suggested a reduction in the size of cutblocks and the rate of 

forest harvest. Most experts recognized the importance of preserving contiguous tracts of old 

and mature forest that provides habitat connectivity.
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Table 4.3. Recommendations by biologist and trapper experts for maintaining habitat and
numbers o f marten in the central-interior o f BC, Canada. Recommendations were obtained
through semi-structured interviews and surveys.

Habitat Concerns

Loss of habitat connectivity due to forestry 
impacts; loss of large, contiguous patches of old- 
growth forest.

Loss of important habitat structures, including 
CWD; lack of CWD retention in cutblocks.

Replanting of lodgepole pine resulting in 
homogenous forests that lack complexity.

Large cutblock sizes associated with MPB 
salvage logging; timber being harvested at an 
unsustainable rate.

Aerial herbicide use reduces structure, diversity, 
and prey habitat in regenerating cutblocks.

Lack of research on population-level impacts of 
habitat change.

Population Concerns

Likely a decline in marten populations in central- 
interior BC due to extensive forest harvesting.

Risk of population fragmentation across 
disturbed landscapes.

Populations may be at relatively low risk 
province-wide given high abundance and wide 
distribution of marten, however, local 
populations may be at risk; lack of population 
monitoring and research investigating the 
impacts of trapping.

Risk of over-trapping sensitive populations, 
particularly on small traplines; fur prices may 
drive trapping pressure.

Trapping may be an additive pressure on 
sensitive populations

Habitat Recommendations

Maintain old- and mid-age conifer forests, and 
habitat connectivity and corridors.

Retain CWD and large-diameter standing trees 
within and around cutblocks to promote future 
habitat.

Stand-level forest practices to maintain or 
enhance structure; promote old-forest habitat 
attributes in younger stands to reduce recovery 
time.

Smaller cutblock sizes; reduce the rate of 
timber harvest.

Eliminate or reduce the use of aerial 
herbicides.

Further research on impacts of large-scale 
habitat loss, and ability of marten to inhabit 
younger forests.

Population Recommendations

See habitat recommendations for promoting 
marten habitat.

See habitat recommendations for maintaining 
habitat/population connectivity.

Increase research and population monitoring 
(i.e., mark-recapture estimates, or trapper 
samples); implement better use of trapping 
records for monitoring population trends.

Management of harvest on individual traplines 
is important; trappers should employ a 
cautious approach.

Establish refugia, free from trapping pressure.
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Both expert groups reported a heavy dependency of marten on old-forest habitat 

features for denning, resting, cover, and foraging. They suggested that these features may be 

limiting on industrially impacted landscapes. Many experts stressed the importance of 

preserving old forest stands that provide important elemental habitat features, such as CWD 

and structural complexity. Some biologists stated that the small home ranges of marten 

should allow for the successful implementation of stand-level management. They suggested 

that certain forestry practices can retain or promote the necessary elemental features and 

structure required by marten, reducing the recovery time of post-disturbance forests; a 

suggestion that is supported by previous research (Payer and Harrison 2003, Poole et al. 

2004).

Most biologists and trappers acknowledged that large tracts of marten habitat had 

been lost; therefore, there should be an emphasis on establishing practices that promote 

future habitat. This included the retention of CWD and dead standing trees in cutblocks. 

Several trappers suggested that slash piles within cutblocks should be left intact to provide 

sub-nivean access and prey habitat. Many trappers also suggested that aerial herbicides 

reduced the structural diversity, cover, and prey habitat in regenerating forest stands. Some 

experts cautioned against replanting cutblocks with primarily lodgepole pine, as this 

promotes future forests with simplified forest structure unsuitable for marten. Many 

biologists recognized a need for research on the ability of marten to use younger forests, as 

well as further research on the impacts of large-scale habitat change. Several trappers 

recommended increased coordination of management plans between industrial sectors to 

reduce cumulative impacts, and stated that there should be more consultation by industry 

with furbearer experts.
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Both expert groups were in agreement that there is likely a decline in marten 

populations in the central-interior of BC where MPB salvage logging has occurred. Several 

biologists, however, suggested that marten populations at a broad scale are at relatively low 

risk, due to their overall abundance, wide distribution, availability of residual habitat, and 

small home-range sizes. Most experts agreed that habitat loss was the primary concern, but 

several suggested that populations would recover over time as forests regenerated.

Many biologists felt that local populations may be at risk of over-trapping, although 

there is currently a lack of population monitoring, thus the impacts of trapping are relatively 

unknown. They recommended establishing refugia, free from trapping pressure. The 

biologists also supported increased research and population monitoring. Some trappers felt 

that there is a risk of over-trapping on individual traplines, particularly if harvest by trappers 

is mismanaged or high fur prices promotes increased trapping pressure. Conversely, several 

trappers suggested that marten are at low risk of over-trapping. Most trappers, however, 

agreed that managing marten harvest on individual traplines was important.

Furbearers in General

The experts also commented on management concerns and recommendations for the 

broader group of furbearers in BC (Table 4.4). Both expert groups recognized a lack of 

mandates for industry to manage, maintain, and promote furbearer habitat. Most trappers 

were particularly concerned with the rate of timber harvesting, the size of the cutblocks, and 

the overall loss of optimal habitat and travel corridors. They also suggested that the current 

minimum requirements for industry to preserve or promote habitat are inadequate.
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Table 4.4. Recommendations by biologist and trapper experts for maintaining habitat and
numbers o f the broader group o f furbearers in the central-interior o f BC, Canada.
Recommendations were obtained through semi-structured interviews and surveys.

Habitat Concerns

Few mandates for industry to manage, maintain, or 
promote furbearer habitat; current requirements 
may be insufficient.

Cumulative impacts from multiple, competing 
resource sectors.

Habitat loss resulting from rapid timber harvesting; 
large cutblocks and lack of corridors.

Reforestation can be a slow, lengthy process.

Simplified forest structures resulting from intensive 
forest harvesting and silviculture practices.

Lack o f knowledge of habitat requirements for 
furbearers.

Population Concerns

Populations may be affected at different 
spatiotemporal scales; population impacts may be 
greater at regional scales.

Lack of population monitoring and research; 
trapping data is currently underutilized.

Increased trapper access; trapping pressure may 
increase with fur prices.

Trapping may not be a concern for the persistence 
of ftirbearer species at the broad-scale, but may 
have implications on local populations.

Habitat Recommendations

Habitat management is important; priority 
should be placed on preserving old-growth 
forests.

Mitigate cumulative impacts; increase 
coordination amongst industry and 
consultation with furbearer experts.

Forest managers must maintain refuge 
habitats and landscape-level connectivity.

Habitat must be given sufficient time to 
regenerate before further alterations occur.

Modify harvest and silviculture practices to 
retain natural patterns across the landscape.

Increased research pertaining to habitat 
requirements of furbearers and impacts of 
habitat change.

Population Recommendations

Habitat management should be a priority for 
maintaining furbearer populations.

Increase scrutiny and use of trapping data; 
increase mandatory trapping reporting or 
inspections to collect population data, 
particularly for species at risk.

Restrict trapping access and pressure on 
sensitive populations.

Increased public and trapper education on 
population management, particularly on 
individual traplines.
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Furthermore, they reported that a lack of coordination within and between industrial sectors 

relative to resource extraction is likely to result in cumulative impacts that reduce the extent 

and quality of furbearer habitat. Several biologists acknowledged that the loss of habitat 

associated with industry is often rationalized by eventual reforestation; however, this process 

may occur slowly over a long period of time. Additionally, many of the experts suggested 

that timber harvesting and subsequent silviculture practices are promoting the regeneration of 

simplified forest stands resulting in unproductive furbearer habitat. Most trappers reported 

that the use of aerial herbicides, as a silviculture practice, is detrimental to furbearer habitat.

The forest industry should implement harvesting and silviculture practices that mimic 

natural landscape changes, while preserving critical habitats. Both expert groups emphasized 

the importance of protecting old-growth forests and maintaining refuge areas. Several 

biologists proposed a multi-species approach to habitat management, rather than managing 

for individual species. This may reduce the complexity of developing and implementing 

multiple management plans while reducing problems associated with competing habitat 

requirements of single species.

Forestry and other industrial activities have impacts that vary across different 

spatiotemporal scales. At a province-wide scale, many biologists suggested that most 

furbearer species are not o f conservation concern. At a regional scale, however, the experts 

agreed that local populations may be at risk of declines. The majority of experts agreed that 

the most productive method of supporting furbearer populations is through habitat 

management.
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Although there was uncertainty amongst experts on the impacts of trapping on 

furbearer populations, most agreed that trapping at a broad scale has minimal impacts. Many 

experts, however, stated that the combination of habitat loss and trapping at a regional scale 

could be detrimental to local populations. Several biologists suggested restricting trapping 

opportunities for sensitive furbearer populations. There was a plea from most experts for an 

increase in research and population monitoring of furbearers in BC; further development of 

the use of trapping records and trapper-kills would be beneficial.

Research Conclusions

The results of this study suggest that the cumulative effects of forest harvesting can 

have considerable impacts on the abundance and distribution o f furbearer species. There was 

strong empirical evidence that the recent and rapid loss o f old forest across the West Study 

Area resulted in declines in furbearer habitat, and subsequently declines in population 

abundance, particularly for marten. Reports from trappers of high lynx numbers (also 

evident in the trapping records), however, suggested that lynx populations are stable or 

increasing despite a loss of mature-forest habitat. This finding suggested that lynx may be 

food-limited, rather than habitat-limited. In the East Study Area, where forest harvesting has 

been minimal, the results suggested that stable or increasing habitat availability and quality is 

promoting abundant furbearer populations. This finding was supported by high capture 

success for marten over time. Conversely, the trappers reported low numbers of lynx in the 

East Study Area despite limited forest harvesting and plentiful old-forest habitat. Again, this 

suggested that lynx were not necessarily dependent on old-forest habitat, but were influenced 

by other factors, including the availability of prey and prey habitat (early successional
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forests). The influence of forest harvesting on the habitat and population abundance of lynx 

remains unclear and warrants further research.

This study contributes to a growing body of ecological literature that validates the use 

and advantages of expert-based studies (Burgman et al. 201 la, McBride and Burgman 2012, 

Drescher et al. 2013). In this case, experts allowed the rapid and inexpensive development of 

models for predicting cumulative change in the availability of habitat for three furbearer 

species. Additionally, after controlling for trapping effort, capture records maintained by 

trappers had considerable utility for documenting the numerical response of furbearer 

populations to habitat change.

As demonstrated by others, expert-based habitat modeling can serve as an efficient 

and rapid method of documenting species distribution, particularly for cryptic species that are 

difficult to study (Store and Kangas 2001, Yamada et al. 2003, O’Neill et al. 2008).

Involving multiple groups of experts can provide unique, but complementary domains of 

expertise that minimizes bias and provides a fuller description of species-habitat 

relationships. The habitat models developed in this study had remarkably high consistency, 

resulting in model structure that was very similar among expert groups. The consistent 

results were likely the product of the development of a rigorous study design that included 

the identification of suitable experts, the application of an easily understood elicitation 

process, and the full and instructed involvement of the experts throughout the study.

The use of trapping records at the scale of the trapline appeared to be a reasonable 

method for documenting population dynamics, avoiding many of the pitfalls associated with 

large-scale harvest databases often generated by management agencies. Quantifying trapping
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effort was an important step to determining the influence of environmental covariates on 

capture success, and ultimately population abundance. Although harvest records may be 

poor indicators of short-term population dynamics, the use of such records may be ideal for 

monitoring long-term population trends of furbearers. For this study, I correlated harvest 

records with a time series of habitat change that occurred since 1990.

The application of rigorous and repeatable methods was essential for meeting the 

study objectives that were primarily focused on the quantification of habitat change and 

resulting population responses of fisher, lynx, and marten. Application of the study design 

was meant to generate confidence in the results, but also stimulate discussion and perhaps 

improve management of furbearers distributed across rapidly changing landscapes. 

Ultimately, these study findings are transparent and defensible and can be used by wildlife 

and forest managers to guide habitat and population management and strategic decisions 

relative to cumulative landscape change.
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Appendix A. Survey conducted by candidate trappers to assess their suitability as 
experts for the subsequent development of expert-based habitat models.
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Assessment of Trapping Activity
The following questionnaire has been developed in order to gain an 
understanding of your trapping experience and trapline activity. P lease  answ er 
the following questions by typing directly into the sp aces  provided, or by 
selecting the appropriate responses.

1) How many years have you been trapping furbearers in C anada?

2) How many years have you been trapping on your current trapline?

3) W here is your current trapline located?

4) W hat is the registration num ber for your current trapline?

5) Do you keep personal records of your trapping activity?

Y e s Q

N o O

6) If you answ ered 'Yes' to Question 3, p lease explain the types and extent of 
records that you keep (i.e. effort level, number of captures, location of 
captures, etc.).

7) Which species do you target on your trapline in most years?

□  B eaver □  Bobcat □ C o y o te  □ F is h e r  □  Lynx

□  Marten □  Muskrat □  Otter □  Wolf □  Wolverine
□  O ther | |
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8) W hat types of landscape change is currently occurring on your trapline, or 
has occurred in the past?

□  Forestry/Timber Harvesting

□  Mining 

Q  Pine Beetle Kill

□  Roads

□  Other

9) Describe any levels of landscape change that are currently occurring on 
your trapline, or have occurred in the past____________________________

U  Forest Fires

□  Oil and G as

□  Powerlines
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Appendix B. Examples of surveys conducted by biologist and trapper experts for the 
purpose of identifying the focal species and habitat variables, and evaluating habitat 
variables for the development of expert-based habitat models.
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Recommendation of Three Focal Species
The following survey has been developed to allow participating experts the 
opportunity to recommend three furbearers to serve a s  the focal species for the 
duration of the study. Keep in mind, the goal of this study is to understand the 
effects of landscape change on furbearer habitat and population trends. The 
study area  is central-interior British Columbia. P lease  answ er the following 
questions by typing directly into the sp aces  provided, or by selecting the 
appropriate responses.

1) Identify 3 of the following species that you feel would be most important to focus research 
towards during this study. Three species will be the focus of habitat modeling to investigate 
the effects of landscape change on habitat quality and availability. They will also be used to 
relate landscape change to population abundance. The study area is central-interior BC. 
Ideal focal species for this study will have ecological and economic importance, and will 
also be sensitive to, or affected by, various forms of landscape change:

□  Beaver □  Bobcat □  Coyote □  Fisher □  Lynx

□  Marten □  Mink □  Muskrat □  Otter □  Wolf

□  Wolverine 
|~ | Other |

2) a. P lease  provide a brief rationale a s  to why you selected species 1?

b. Why did you select species 2?
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c. Why did you select species 3?

Do you have any other suggestions or concerns regarding the selection of 
'  three species to serve as  the focal species during this study?
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C a n d id a te  H a b ita t a n d  D is tu rb a n c e  V a r ia b le s  fo r Lynx (L y n x  c a n a d e n s is )  
W in te r  H a b ita t M odel in C e n tra l-In te r io r  B ritish  C o lu m b ia

The following survey has been developed to aid in the identification of general habitat variables 
thought to influence distribution of lynx across winter range. P lease score the following variables 
in terms of their importance for identifying lynx habitat. In other words, which of the following 
variables should be included in a lynx winter habitat model in central-interior BC? Keep in mind 
we are simply identifying the general categories of variables that will be included in the models. 
During a subsequent survey, I will then ask you to rank the specific habitat variables in terms of 
importance. Please answer the following questions by typing directly into the spaces provided, or 
by selecting the appropriate responses. When completed, save the file and submit via e-mail to 
mbridger4@gmail.com

If you have any questions, please contact me at 250-961-5869, or by e-mail at 
mbridger4@gmail.com

Please rank the following habitat variables in terms of their importance for identifying lynx habitat, where 4 is very 
important; 3 is important; 2 is moderate; 1 is low importance; and 0 is unimportant. A habitat variable could be 
important whether it has a positive or negative influence on lynx distribution. A habitat variable would be 
unimportant if it had no influence on lynx distribution.

C o m V i t a o ^ I M r f i

0

O
1

o
2

o
3

o
4

o
G r o u n d  S f r u to  C o v e r o o o o o
S t a i d u n *  C o w y t a t t y  ( O w e r ta o r / ) o 0 o o o
C a n o p y  C o v e r  ( C r o w n  C l o s u r e ) o o o o o
O w % M t a a e  T t a a t ( H — t a i f t r a i ) o o o o o
D o m in a n t  ( L o w i n g )  T r e e  S p e c i e * o o o o o
F t i m a t S t a n d A g e o o o Q o
D i s t a n c e  t o  V f e te r  B o d ie s o o o o o
S t o p K S t a q p n f l t t ) o o o o o
A s p e c t  ( N ,S ,E ,  o r  W ) o o o o o
C mPHHKS*- o o o o o
S e r a l  S t a g e  ( A g e )  o f  O e a r - C u t a o o o o o
P x * o r t o n a f a a * ^ C u t e « m e « f c * r
f t a n g s o o o o o
D i s t a n c e  t o  R o o d s o o o o o
P i t a y B t t a t a m i W i f t a i B B o o o o 0
P r e s e n c e  o f  S a a r r s c / G a s  U n e s o o o o o
P w s e n c e r f a M t a F o f l o o o o o
H a b i t a t  F r a g m e n t a t i o n o o o o o

100

mailto:mbridger4@gmail.com
mailto:mbridger4@gmail.com


Confidence Scores for Habitat Variables: Please score your confidence in the answers you provided above for all habitat 
variables, where 10 is extremely confident. In other words, how certain are you in the answers you provided for each habitat 
and disturbance variable when considering their importance for influencing the distribution of lynx across their winter range.

1 2 3 4 5 6 7 6 9 1 0

cmnmmUfQ O o o o o o o o o o
G r o u n d  S h r u b  C o v e r o o 0 o o o o o o o
Q t w E a - f l  f l m y h n t g y o o o o o o o o o o
C a n o p y  C o y e r  ( C r o w n  C l o t u r e ) o o o o o o o o 0 o
P e n t f r  o f  m m im t f l i t *  * r e t ) o o o o o o o o o 0
D o m in a n t  ( L e t t i n g )  T r e e  S p e t i t a o o o o o o o o o o

o 0 0 o o o 0 0 0 0
P i t t a n c e  to W a te r  B o d ie s o o o o o o o o o o
S k 3 p t ( S t a a p n e M ) o 0 0 o 0 o o o o 0
A s p e c t  ( N ,S ,E ,  o r  W ) o o o o o o o o o o
C B M B t i : ' o o o o o o o o o o
S e r a i  S t a g e  ( A g e )  o f  C le a r - C tM o o 0 o o o o o o o
n w p o f t m  o f  C l e a r  C g W  e o o e e  Wrter 
Raige o o o o o o o o o o
D i s t a n c e  t o  R o a d s o o o o o o o o o o
D a n t a 1 e l  f t a ^ i  a n t l t e  ' o o o o o Q O o o Q
P r e s e n c e  o T S e t a n v c / G t a  U n e a o o o o o o o o o 0
P r e a a n c t o f  B u r n t  F b r e t f o o o o o o o o o o
H a b i a t  F r a g m e n t a t i o n o o 0 o o o o o o o
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P lease  suggest any additional information or additional habitat variables that 
you feel are important to consider when determining the distribution of lynx 
across their winter range in central-interior BC.___________________________
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M a r t e n  H a b i t a t  A s s e s s m e n t

The following is an assessment of the importance of specific habitat variables for the 
distribution of marten (Martes americana) across winter landscapes in the central-interior 
of British Columbia. The Analytical Hierarchy Process (AHP) is being used to obtain 
scores in the form of pairwise comparisons for every combination of habitat variables.
The scoring scheme for the AHP is provided below. *Important* You will be providing 
scores for the variables in the column on the left side of the AHP matrices compared to the 
variables in the row at the top of the matrices. Please keep in mind that all scores are 
comparative (e.g., A very important variable may be given a high score of ‘7’ or ‘9’ when 
compared to a low-importance variable, but may receive a lower score of ‘ 1’ compared to 
a variable that is equally as important). An example of an AHP matrix is provided below.

You are also asked to provide confidence scores for each of the matrices that you 
completed. In other words, on a scale from 1-10, how confident are you in the 
comparative scores you provided? (‘ 1 ’ being very low confidence and ‘10’ being very 
high)

Participants are asked to type their scores directly into the AHP comparison matrices 
provided.
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The scoring scheme for the AHP pairwise comparisons of habitat variables

1 = Equal importance 1 = Equal importance
3 = Moderately more important -3 = Moderately less important
5 = Strongly more important -5 = Strongly less important
7 = Very strongly more important -7 = Very strongly less important
9 = Extremely strongly more important -9 = Extremely strongly less important

2,4,6,8, = Intermediate values -2, -4, -6, -8 = Intermediate values

E xam ple: T his m atrix is  com paring the im portance o f  tree sp ecies for a given  
w ild life  sp ecies. For th is exam ple, w e start b y  com paring the variables in  the left 
colum n to the first variable in  the top row  (P ine). B y  default, Pine com pared to 
itse lf is o f  equal im portance, represented by a score o f  ‘ 1’. N ext. Spruce is 
m oderately m ore im portant than P ine, represented b y  a score o f  ‘3 '. Fir is  very  
strongly m ore im portant than Pine, represented by a score o f  ‘7 ’. H em lock is 
sn o n g ly  m ore im portant than Pine, represented by a score o f  ‘5 ’. F inally, 
D eciduous is  m oderately less im portant than P ine, represented by a score o f  ‘-3 ’. 
A ll shaded ce lls  are the opposite o f  their respective scores, and do not need  to be  
filled  out.

Pine Spruce Fir H em lock D eciduous
Pine 1

Spruce 3 i VV'w t*." *  ̂ ‘ *>f
Fir 7 5 1

H em lock 5 3 -3 1
D eciduous -3 -5 -7 -5 1
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A H P  C o m p a r is o n  M a tr ic e s  fo r  M a r te n  H a b ita t  V a r ia b le s

Please fill in the blank cells of the following AHP matrices. Give comparative scores (using the 
AHP scoring scheme) for the following habitat variables in terms of importance for marten 
winter habitat. Please refer to Habitat Variable Handout PDF for examples. ** Score the 
variables in the column on the left relative to the variables on die top row- * *

Coarse Woody Debris Load: Patch/Stand Spatial Scale

Medium

Moderate

Confidence Score: ■jq

Ground Shrub Cover (Understory Density): Patch/Stand Spatial Scale

Moderate (30-60% caver) 

1

Hi fih (>60% cover)LOW (<30% cover)
LOW’ (<30% cover)
Moderate (30-60% cover)
High (>60% cover)
Confidence Score

Structural Complexity (Overstory): Patch/Stand Spatial Scale

Moderate

Moderate

Confidence Score:

Canopy Cover (Crown Closure): Patch/Stand Spatial Scale

Open Minimal Moderate High
(<10%) (10-40%) (40 -  70%) (>70%)

Qpen(<10%)
Minimal (10-40%)
Moderate (40-70%)

High (>70%)
Confidence Score

105



Forest Stand Density of Mature Trees (Basal Area): Patch/Stand Spatial Seale

Moderate
Low (<2Qm‘/ha)
Moderate (20 -  40m"/ha)
High (>40m /ha)
Confidence Score:

Leading Tree Species (Forest Stand-Type): Patch/Stand Spatial Scale

Spruce Lodgepole Black Other Conifer (Sub- Deciduous Mixed
(W h.Ea Pine Spruce Alpine. Balsam (Conifer
Hy) Douglas) Deciduous)

Spruce
(WluteEngl/Hybnd)
Lodgepole Ptne
Black Spruce
Other Conifer (Sub-Alpine/
Balsam.' Douglas)
Deciduous 
Mixed (Coniferous.
Deciduous)
Confidence Score: -jq

Coniferous Stand Age: Patch/Stand Spatial Scale

Young (<20 Mid-Age (20- Mature (50-80 Old (>80 years)
years) 50 years) years)

Young (<20 years) 
Mid-Age (20-50 years)
Mature (50-80 years)
Old (>80 years)
Confidence Score: iq

Deciduous Stand Age: Patcli/Stand Spatial Scale

Young (<10 years) | Mid-Age (10-30 Mature-Old (>30
Young (<10 years)

M id-A se (10-30 years)

Mature-Old (>30 years)

Confidence Score:
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Clear-Cut Serai Stage (Age)

Recently cut (<5 years)

5-10 years

10 -  20 years

>20 years

Recently cut (<5 years) 5 - 1 0  years 10-20 years > 20 years
1

Confidence Score: -jq

Proportion of Clear-Cuts on Landscape: Landscape Spatial Scale

High level (>40%) | Medium Level (10-

1
High Level Cut C>40%)
Moderate Level Cut (10-40%) 
Low Level Cut (<10%) 
Confidence Score: 1Q

Burned Forest Stand Age

5-20 vears 20 vears
<5 years
5-20 years
>20 years
Confidence Score: -jq

Habitat/Patch Connectivity: Landscape Spatial Scale

Moderate
Low Connectivity
Moderate Connectivity
High Connectivity
Confidence Score
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Habitat Variable Classification Handout

Coarse Wood? Debris

Low CWD Lead

High CWD Load

Gronnd Sbrub Cover

Moderate CWD Load

H

■ 1
H 1

High CWD Load

' *

Moderate G rand Sbnb Cewr

f o -

High G rand Shrub C om High Crowd Shrab Cover
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Structural Compleiity (Overstory)

MbdeiaieSttnctacalCoaipkxtty

High Sttactanl Canptesitjr

Canopy Cover (Crown Closure:

Mnamai Canopy C om  (10-40%)

Modenle Canopy C ovh (40-70%) HighCaaopy C a m  (>70%)
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5-10 years

>20)«an



Hî propoiti(»ofckaitntf(>40%) Hi^ proportion of ckarcrt* (>40%)

Habitat/Patch Connectivity Across Landscape

Low Ctaneetm tf M odcntt Conoectraty

Hi^h Connectivity
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Appendix C. Description o f the classification o f habitat variables used to construct expert-
based habitat models for each focal species.
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TABLE C l. Descriptions o f the subclasses, levels, or categories o f habitat variables included
in the habitat models for fisher, lynx, and marten.

Canopy Cover Low =
- Crown closure <10%

Classifications adapted from Minimal =
Fuller and Harrison 2005, - Crown closure >10% and <40%
Proulx et al. 2006, Proulx Moderate =
2009 - Crown closure >40% and <70% 

High =
- Crown closure >70%

Coarse Woody Debris Low =
- Forest age <50 years, or forest age >50 and <150 years if leading tree species is

Classifications adapted from lodgepole pine
Clark et al. 1998 - If fire present, forest age <50 years if outside fire polygon, or forest age >50 and <150 

years if leading tree species is lodgepole pine
- All cutblocks 
Moderate =
- Forest age >50 and < 200, or forest age > 150 if leading tree species is lodgepole pine
- If fire present, forest age <50 if within fire polygon, or forest age >50 and £200 years, 
or forest age >150 years if leading tree species is lodgepole pine
High =
- Forest age >200 years and leading tree species is not lodgepole pine

Coniferous Stand Age Young =
- Coniferous leading tree species and forest age <20 years

Classifications adapted from Mid-Age =
Proulx et al. 2006, Proulx - Leading tree species and forest age >20 and <50 years
2009 Mature =

- Coniferous leading tree species and forest age >50 and <80 years 
Old =
- Coniferous leading tree species and forest age >80 years

Cutblock Age Recent =
<5 years since logging

Classifications based on field Young =
observations by M.Bridger 5 —10 years since logging
2013 Moderate =

10 — 20 years since logging 
Old =
>20 years since logging

Deciduous Stand Age Young =
- Deciduous leading tree species and forest age <10 years

Classifications based on field Mid-Age =
observations by M.Bridger - Deciduous leading tree species and forest age >10 and <30 years
2013 Mature -  Old =

- Deciduous leading tree species and forest age >30 years

Forest Fire Age Recent =
- Fire age < 5 years

Classifications adapted from Moderate =
Paragi et al. 1997 - Fire age >5 and <20 years 

Old =
- Fire age >20 years
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Forest Stand Density Low =
- Basal area <20

Classifications adapted from Moderate =
Fuller and Harrison 2005, - Basal area >20 and <40
Proulx et al. 2006, Proulx High =
2009 - Basal area >40

Ground Shrub Cover Low =
- Shrub crown closure <30% and soil type not mesic or hygric

Classifications adapted from - All cutblocks
Proulx 2009 Moderate =

- Shrub crown closure <30% and soil type mesic or hygric, or shrub crown closure 
>30% and <60%
High =
- Shrub crown closure >60%

Habitat Connectivity Low =
- All forest polygons that intersect cutblocks

Classifications based on GIS - High elevation, alpine regions
landscape metrics, M.Bridger - All cutblocks
2013 Moderate =

- All forest polygons that do not intersect cutblocks and ‘proportion of landscape 
logged’ variable is equal to ‘high’
High =
- All forest polygons that do not intersect cutblocks and ‘proportion of landscape 
logged’ variable is equal to ‘low’ or ‘moderate’

Leading Tree Species for Spruce =
Marten and Lynx - Forest polygons >60% Engelmann spruce, white spruce, or hybrid spruce, and 

secondary species is coniferous
Classifications based on Lodgepole Pine =
dominant leading species - Forest polygons >60% lodgepole pine, and secondary species is coniferous
found in the SBS and ESSF Black Spruce =
BEC Zones, Meidinger and - Forest polygons >60% black spruce, and secondary species is coniferous
Pojar 1991 Other Conifers =

- Forest polygons >60% Douglas fir, subalpine fir, balsam (true) fir, hemlock, or 
western cedar, and secondary species is coniferous
Deciduous =
- Forest polygons >60% birch, aspen, cottonwood, or poplar 
Mixed =
- Forest polygons <60% deciduous
- Or, forest polygons <60% coniferous and secondary species is deciduous
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Leading Tree Species for 
Fisher

Classifications based on 
dominant leading species 
found in the SBS and ESSF 
BEC Zones, Meidinger and 
Pojar 1991

Spruce =
- Forest polygons >60% Engelmann spruce, white spruce, or hybrid spruce, and 
secondary species is coniferous
Douglas Fir =
- Forest polygons >60% Douglas fir, and secondary species is coniferous 
Lodgepole Pine =
- Forest polygons >60% lodgepole pine, and secondary species is coniferous 
Black Spruce =
- Forest polygons >60% black spruce, and secondary species is coniferous 
Other Conifers =
- Forest polygons >60% subalpine fir, balsam (true) fir, hemlock, or western cedar, and 
secondary species is coniferous
Cottonwood =
- Forest polygons >60% cottonwood 
Deciduous -
- Forest polygons >60% birch, aspen, or poplar 
Mixed =
- Forest polygons <60% deciduous
- Or, forest polygons <60% coniferous and secondary species is deciduous

Proportion of Landscape 
Logged/Harvested

Classifications adapted from 
Hargis et al. 1999, Cheveau et 
al. 2013

Low Level =
- Trapline area divided by total cutblock area equals <10%
Moderate Level =
- Trapline area divided by total cutblock area equals >10% and <40% 
High Level =
- Trapline area divided by total cutblock area equals >40%

Structural Complexity

Classifications adapted from 
Proulx et al. 2006

Low =
- Forest age <80
- All cutblocks 
Moderate =
- Forest Age >80 and < 150, or forest age >150 if leading tree species is lodgepole pine 
High =
- Forest age >150 if leading tree species is not lodgepole pine
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Appendix D. Mean eigenvector scores (representing relative importance) resulting from the 
expert evaluation of fisher, lynx, and marten habitat variables.
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Appendix E. Examples o f expert-based habitat maps, providing a spatial representation of 
change in the availability and quality of habitat from 1990 to 2013.
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M arten H abitat 1990 M arten H abitat 20 1 3
H  Poor - 24452 ha 

I H  Moderate - 1 I172 ha

Waterbodies Waterbodies

M  Poor - 7642 ha 

m H  Moderate - 8386 ha 

" " I  Good- 12621 ha

Very Good -12696 ha

Example o f the expert-based habitat model for marten applied to a trapline in the West Study Area. The maps show the
availability and quality o f habitat in 1990 and 2013.
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Fisher Habitat 1990 
m i  Poor -11156 ha 
H I  Moderate - 25475 ha 

Good - 24469 ha 
L j  Very Good -10744 ha

Watertoodies Fisher Habitat 2013 
■ I  Poor-38615 ha 
H  Moderate - 21210 ha 

j Good - 10900 ha 
[___ ]  Very Good - 918 ha

Example o f the expert-based habitat model for fisher applied to a trapline in the West Study Area. The maps show the
availability and quality of habitat in 1990 and 2013.



Marten Habitat 1990 |
H I  Poor - 24234 ha 

H I  Moderate - 40783 ha 

[~ ~ n  Good - 28966 ha 

f  j Very Good - 20606 ha

Marten Habitat 2013
K  Poor - 17109 ha 

H |  Moderate - 52363 ha

Waterbodies Waterbodies

Good - 23798 ha

Very G ood-21319 ha

Example o f the expert-based habitat model for marten applied to a trapline in the East Study Area. The maps show the
availability and quality o f habitat in 1990 and 2013.



Appendix F. Candidate a priori model selection for predicting lynx and marten captures in
the West and East Study Areas across central-interior BC, Canada.
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TABLE F I. Candidate a priori models used to select the most parsimonious count model 

for understanding captures of lynx and marten by trappers in the West and East Study Areas 

across central-interior BC, Canada

Parameter Definitions

Param eter Abbreviation Description

Effort E Measure o f trapping effort on a scale 
from 0 - 1 0

Standardised Effort SE Measure of trapping effort relative to 
trapline area, where ‘Effort’ was 
multiplied by ‘Trapline Area’

Trapline Area TA Trapline area in hectares

Habitat Value HV Sum total of the raster habitat values 
on each respective trapline, 
according to expert-based habitat 
maps

Standardised Habitat Value SH Habitat relative to trapline area, 
where ‘Habitat Value’ was divided 
by ‘Trapline Area’

% Good and Very Good Habitat GVGH Percent of the respective trapline 
area composed of ‘Good’ or ‘Very 
Good’ habitat, according to expert- 
based habitat maps

Fur Price FP The average fur price from the 
previous year’s trapping season

Mean Minimum Temperature MMT Average daily minimum air 
temperature recorded at Prince 
George Airport weather station (Nov 
-  Jan for marten; Dec -  Feb for 
lynx)

Extreme Minimum Temperature EMT Average monthly extreme minimum 
air temperature recorded at Prince 
George Airport weather station (Nov 
-  Jan for marten; Dec -  Feb for 
lynx)

Snow Depth Sum SMS Cumulative snow depth recorded at 
Prince George Airport weather 
station (Nov -  Jan for marten; Dec -  
Feb for lynx)
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Candidate a priori count models for predicting lynx captures in the West Study Area.

Effort

Model Rank AICn AICcm>, Aj AICc
E + TA 1 412.83 1.000 0.000
E 2 430.79 <0.001 17.968
E + FP 3 431.47 <0.001 18.640
SE + TA 4 434.63 <0.001 21.800
SE + FP 5 451.77 <0.001 38.940
SE 6 455.01 <0.001 42.188

Habitat

Model Rank AIC„ AICchv A,AICf
GVGH + TA 1 468.41 0.673 0.000
SH 2 470.83 0.200 2.428
SH + TA 3 472.45 0.089 4.040
HV 4 474.77 0.028 6.368
HV + TA 5 476.87 0.010 8.460
GVGH 6 489.99 <0.001 21.588

Effort and Habitat

Model Rank AICc<- AICc»v, A, AICc
E + TA + GVGH 1 398.14 1.000 0.000
E + TA + SH 2 414.50 <0.001 16.360
E + SH 3 416.71 <0.001 18.569
E + GVGH 4 432.91 <0.001 34.769
SE + TA + HV 5 435.50 <0.001 37.360
SE + HV 6 444.43 <0.001 46.289

Effort and Weather

Model Rank AICc, AICcm'/ A, AICc
E + EMT 1 428.93 0.671 0.000
E + SDS + EMT 2 431.02 0.236 2.091
E + SDS 3 432.89 0.093 3.960
SE + SDS 4 456.55 <0.001 27.620
SE + MMT 5 456.61 <0.001 27.680
SE + SDS + EMT 6 457.34 <0.001 28.411
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Habitat and Weather

Model Rank AICc/ AICc)v, A, AICc
SH + EMT 1 470.39 0.388 0.000
SH + SDS 2 471.49 0.224 1.100
SH + SDS + EMT 3 471.78 0.194 1.391
SH + SDS + MMT 4 472.34 0.146 1.951
HV + EMT 5 476.01 0.023 5.620
HV + SDS 6 476.75 0.016 6.360
HV + SDS + EMT 7 478.16 0.008 7.771
GVGH + MMT 8 491.79 <0.001 21.400
GVGH + SDS 9 492.07 <0.001 21.680
GVGH + SDS + MMT 10 493.96 <0.001 23.571

Effort, Habitat, and Weather

Model Rank AICC( AICcHV A, AICc
E + TA + GVGH + EMT 1 397.97 0.615 0.000
E + TA + GVGH + SDS 2 400.29 0.194 2.312
E + TA + GVGH + MMT 3 400.32 0.191 2.344
E + TA + SH + EMT 4 412.44 <0.001 14.462
E + TA + SH + MMT 5 414.61 <0.001 16.636
E + TA + SH + SDS 6 416.33 <0.001 18.353
SE + TA + HV + EMT 7 435.77 <0.001 37.792
SE + TA + HV + MMT 8 437.14 <0.001 39.168
SE + TA + HV + SDS 9 437.15 <0.001 39.178
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Candidate a priori count models for predicting lynx captures in the East Study Area.

Effort

Model Rank AIC„ A1Cchv A, AICc
E + TA 1 127.26 0.947 0.000
E 2 134.96 0.020 7.700
SE + TA 3 135.82 0.013 8.560
SE 4 136.84 0.008 9.580
E + FP 5 137.00 0.007 9.740
SE + FP 6 137.90 0.005 10.640

Habitat

Model Rank AICc, Al CcH’, A, AICc
HV 1 168.52 0.662 0.000
HV + TA 2 170.72 0.239 0.204
SH 3 173.50 0.059 4.820
GVGH 4 174.30 0.040 5.620

Effort and Habitat

Model Rank AICc, AICfH’, A, AICe
E + SH 1 127.48 0.386 0.000
E + TA + SH 2 127.90 0.312 0.423
E + TA + GVGH 3 129.38 0.149 1.903
E + GVGH 4 129.42 0.147 1.940
SE + HV 5 136.26 0.005 8.780
SE + TA + HV 6 138.20 0.002 10.723

Effort and Weather

Model Rank AICc, AICcW»; A, AICe
E + TA + MMT 1 124.90 0.522 0.000
E + TA + EMT 2 125.10 0.472 0.200
SE + MMT 3 135.18 0.003 10.277
E + SDS 4 137.26 0.001 12.357
SE + SDS + MMT 5 137.68 0.001 12.780
SE + SDS 6 138.90 0.001 13.997
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Habitat and Weather

Model Rank AIC„ AICcw, A/ AICc
HV + SDS 1 169.70 0.383 0.000
HV + EMT 2 170.64 0.240 0.940
SH + SDS 3 172.14 0.113 2.440
HV + SDS + EMT 4 172.22 0.109 2.523
GVGH + SDS 5 173.80 0.049 4.100
SH + SDS + MMT 6 174.60 0.033 4.903
GVGH + EMT 7 175.54 0.021 5.840
SH + MMT 8 175.66 0.019 5.960
GVGH + SDS + MMT 9 175.92 0.017 6.223
GVGH + SDS + EMT 10 176.12 0.015 6.423

Effort, Habitat, and Weather

Model Rank AICCI AICcw, A, AICc
E + SH + SDS 1 129.32 0.244 0.000
E + SH + EMT 2 129.56 0.216 0.240
E + SH + MMT 3 129.82 0.190 0.500
E + GVGH + EMT 4 130.58 0.130 1.260
E + GVGH + MMT 5 130.98 0.106 1.660
E + GVGH + SDS 6 131.86 0.068 2.540
SE + HV + MMT 7 133.50 0.030 4.180
SE + HV + EMT 8 135.20 0.013 5.880
SE + HV + SDS 9 138.44 0.003 9.120
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Candidate a priori count models for predicting marten captures in the West Study Area.

Effort

Model Rank AICCI AICcW,- A,- AICc
E + TA 1 676.34 0.702 0.000
E + FP 2 678.78 0.207 2.440
E 3 680.43 0.091 4.083
SE + TA 4 718.66 <0.001 42.320
SE 5 738.79 <0.001 62.443
SE + FP 6 740.88 <0.001 64.540

Habitat

Model Rank AIC„ AICcH’f A/ AICc
HV 1 745.75 0.288 0.000
SH + TA 2 746.56 0.191 0.817
HV + TA 3 746.76 0.173 1.017
GVGH + TA 4 746.96 0.157 1.217
GVGH 5 747.01 0.153 1.260
SH 6 749.79 0.038 4.040

Effort and Habitat

Model Rank AICc/- AICcw/ A / AICc
E + TA + SH 1 662.79 0.996 0.000
E + TA + GVGH 2 673.89 0.004 11.100
E + GVGH 3 680.68 <0.001 17.892
E + SH 4 682.38 <0.001 19.592
SE + TA + HV 5 694.95 <0.001 32.160
SE + HV 6 736.78 <0.001 73.992

Effort and Weather

Model Rank AICc, AICcH', A, AICc
E + EMT 1 680.78 0.497 0
E + SDS + EMT 2 681.83 0.294 1.048
E + SDS 3 682.52 0.208 1.740
SE + MMT 4 740.20 <0.001 59.420
SE + SDS 5 740.82 <0.001 60.040
SE + SDS + MMT 6 742.35 <0.001 61.568
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Habitat and Weather

Model Rank AIC„ A I O , A,- AICc
H V+EM T 1 746.38 0.276 0.000
HV + MMT 2 746.98 0.205 0.600
HV + SDS 3 747.44 0.163 1.060
GVGH + MMT 4 748.38 0.102 2.000
GVGH + SDS 5 749.00 0.075 2.620
HV + SDS + MMT 6 749.07 0.072 2.688
SH + EMT 7 750.26 0.040 3.880
GVGH + SDS + MMT 8 750.53 0.035 4.148
SH + SDS 9 751.64 0.020 5.260
SH + SDS + EMT 10 752.31 0.014 5.928

Effort, Habitat, and Weather

Model Rank A IC c, A I O , A,- A IC c
E + TA + SH + EMT 1 660.83 0.486 0.000
E + TA + SH + MMT 2 661.41 0.364 0.582
E + TA + SH + SDS 3 663.20 0.149 2.367
E + TA + GVGH + EMT 4 674.37 0.001 13.537
E + TA + GVGH + MMT 5 674.69 <0.001 13.861
E + TA + GVGH + SDS 6 676.10 <0.001 15.272
SE + HV + MMT 7 692.43 <0.001 31.599
SE + HV + EMT 8 692.79 <0.001 31.956
SE + HV + SDS 9 693.50 <0.001 32.673
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Candidate a priori count models for predicting marten captures in the East Study Area.

Effort

Model Rank AICc, AICch>,- A,- AICc
SE 1 468.23 0.431 0.000
SE + FP 2 470.17 0.163 1.944
SE + TA 3 470.19 0.161 1.964
E + TA 4 470.91 0.113 2.684
E 5 471.21 0.097 2.980
E + FP 6 473.21 0.036 4.984

Habitat

Model Rank AIC„ AICcw,- A,- AICc
GVGH + TA 1 439.31 1.000 0.000
GVGH 2 464.37 <0.001 25.056
HV 3 469.11 <0.001 29.796
SH + TA 4 470.47 <0.001 31.160
HV + TA 5 470.57 <0.001 31.260
SH 6 474.85 <0.001 35.536

Effort and Habitat

Model Rank AICc, AICch’, A, AICc
E + TA + GVGH 1 429.84 1.000 0.000
E + GVGH 2 451.81 <0.001 21.975
SE + TA + HV 3 465.90 <0.001 36.060
E + TA + SH 4 467.72 <0.001 37.880
SE + SH 5 468.43 <0.001 38.595
SE + HV 6 469.67 <0.001 39.835

Effort and Weather

Model Rank AICc, AICcW, A, AICc
SE + SDS 1 470.15 0.361 0.000
SE + EMT 2 470.31 0.334 0.160
SE + SDS + EMT 3 472.38 0.119 2.225
E + SDS 4 473.13 0.081 2.980
E + MMT 5 473.21 0.078 3.060
SE + SDS + MMT 6 475.38 0.027 5.225
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Habitat and Weather

Model Rank AICc/ AICcw,- A, AICc
GVGH + EMT 1 466.25 0.409 0.000
GVGH + SDS 2 466.41 0.377 0.160
GVGH + SDS + EMT 3 468.54 0.130 2.285
HV + MMT 4 471.23 0.034 4.980
HV + SDS 5 471.27 0.033 5.020
HV + SDS + MMT 6 473.36 0.012 7.105
SH + EMT 7 476.91 0.002 10.660
SH + SDS 9 476.99 0.002 10.740
SH + SDS + EMT 10 479.18 0.001 12.925

Effort, Habitat, and Weather

Model Rank AIC„ AICch>, A; AICc
E + TA + GVGH + SDS 1 431.96 0.364 0.000
E + TA + GVGH + EMT 2 432.22 0.319 0.266
E + TA + GVGH + MMT 3 432.23 0.317 0.276
SE + TA + HV + SDS 4 467.80 <0.001 35.849
SE + TA + HV + EMT 5 468.09 <0.001 36.132
SE + TA + HV + MMT 6 468.22 <0.001 36.261
E + TA + SH + SDS 7 469.63 <0.001 37.680
E + TA + SH + EMT 8 469.84 <0.001 37.886
E + TA + SH + MMT 9 470.01 <0.001 38.059
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Appendix G. Coefficients and statistical parameters generated from the top ranked negative
binomial regression models for the prediction o f lynx and marten captures in the West and East
Study Areas across central-interior BC, Canada.
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TABLE G l. Coefficients and statistical parameters generated from the top ranked negative
binomial regression models for the prediction o f lynx captures in the West Study Area across
central-interior BC, Canada.

Param eter P Standard
E rror

Z P 95%  C l  
Lower Upper

AICc Rank #1
Effort 0.391 0.037 10.60 <0.001 0.319 0.464

Trapline Area 0.003 <0.001 6.93 <0.001 0.002 0.004
GVG Habitat 0.017 0.004 4.22 <0.001 0.009 0.025

Extreme Min. Temp. 0.029 0.019 1.54 0.123 -0.008 0.066
Constant -2.488 0.633 -2.71 0.007 -2.952 -0.472

AICc Rank #2
Effort 0.391 0.037 10.50 <0.001 0.318 0.464

Trapline Area 0.003 <0.001 7.10 <0.001 0.002 0.004
GVG Habitat 0.018 0.004 4.38 <0.001 0.010 0.025

Constant -2.488 0.399 -6.24 <0.001 -3.270 -1.706
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TABLE G2. Coefficients and statistical parameters generated from the top ranked negative
binomial regression models for the prediction o f lynx captures in the East Study Area across
central-interior BC, Canada.

Param eter P Standard
E rror

Z P 95%  C l  
Lower Upper

AICc Rank #2
Effort 0.422 0.045 9.37 <0.001 0.334 0.510

Trapline Area 0.002 <0.001 3.73 <0.001 0.001 0.002
Mean Min. Temp. -0.099 0.044 -2.25 0.024 -0.186 -0.013

Constant -3.396 0.726 -4.67 <0.001 -4.821 -1.971

AICc Rank #2
Effort 0.443 0.048 9.30 <0.001 0.349 0.537

Trapline Area 0.002 <0.001 3.63 <0.001 0.001 0.002
Extreme Min. Temp. -0.050 0.023 -2.19 0.029 -0.094 -0.005

Constant -3.720 0.870 -4.27 <0.001 -5.426 -2.014
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TABLE G3. Coefficients and statistical parameters generated from the top ranked negative 
binomial regression models for the prediction o f marten captures in the West Study Area across
central-interior BC, Canada.

Parameter P Standard
Error

Z P 95%  C l  
Lower Upper

AICc Rank #1
Effort 0.278 0.023 12.05 <0.001 0.233 0.323

Trapline Area 0.002 <0.001 5.12 <0.001 0.001 0.002
Standardized Habitat 0.068 0.015 4.47 <0.001 0.038 0.098
Extreme Min. Temp. -0.025 0.012 -2.04 0.041 -0.048 -0.001

Constant -1.412 0.654 -2.92 0.003 -3.760 -0.740

AICc Rank #2
Effort 0.280 0.023 12.08 <0.001 0.235 0.326

Trapline Area 0.002 <0.001 5.09 <0.001 0.001 0.002
Standardized Habitat 0.067 0.015 4.40 <0.001 0.037 0.097

Mean Min. Temp. -0.048 0.025 -1.90 0.058 -0.098 0.002
Constant -2.071 0.738 -2.81 0.005 -3.517 -0.626

AICc Rank #3
Effort 0.279 0.023 11.94 <0.001 0.233 0.325

Trapline Area 0.002 <0.001 4.87 <0.001 0.001 0.002
Standardized Habitat 0.062 0.015 4.08 <0.001 0.032 0.091

Constant -1.412 0.654 -2.16 0.031 -2.694 -0.130

TABLE G4. Coefficients and statistical parameters generated from the top ranked negative 
binomial regression models for the prediction o f marten captures in the East Study Area across
central-interior BC, Canada.

Parameter P Standard Z P 95% C l
Error Lower Upper

AICc Rank #1
Effort 0.116 0.032 3.63 <0.001 0.054 0.179

Trapline Area 0.002 <0.001 5.51 <0.001 0.001 0.002
GVG Habitat 0.095 0.011 8.71 <0.001 0.073 0.116

Constant -2.262 0.649 -3.48 <0.001 -0.990 -0.990
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Appendix H. Difference in observed from predicted fur harvest records generated using 
negative binomial count models for lynx and marten from the West and East Study Areas 
across central-interior BC, Canada. A value o f zero suggests perfect prediction while 
negative values mean over-prediction and positive values mean under prediction.
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FIGURE HI. Difference in observed from predicted fur harvest records generated using the top ranked negative binomial count 
models E+TA+GVGH+EMT (a) and E+TA+GVGH (b) for lynx from the West Study Area across central-interior BC, Canada. A 
value of zero suggests perfect prediction while negative values suggest over-prediction and positive values suggest under-prediction
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FIGURE H2. Difference in observed from predicted fur harvest records generated using the top ranked negative binomial count 
g  models E+TA+EMT (a) and E+TA+MMT (b) for lynx from the East Study Area across central-interior BC, Canada. A value of zero 

suggests perfect prediction while negative values suggest over-prediction and positive values suggest under-prediction.
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FIGURE H3. Difference in observed from predicted fur harvest records generated using the top ranked negative binomial count 
models E+TA+SH+EMT (a), E+TA+SH+MMT (b), and E+TA+SH (c) for marten from the West Study Area across central-interior 
BC, Canada. A value of zero suggests perfect prediction while negative values mean over-prediction and positive values mean under
prediction.
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FIGURE H4. Difference in observed from predicted fur harvest records generated using the top ranked negative binomial count 
models E+TA+GVGH for marten from the East Study Area across central-interior BC, Canada. A value o f zero suggests perfect 
prediction while negative values mean over-prediction and positive values mean under-prediction.


