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Abstract

In face recognition, alignment of the face images has been a known open is­

sue. This thesis proposes a displacement based local aligning scheme to construct a 

structural descriptive image template for comparison. To conquer the registration 

difficulties caused by the non-rigidity of human face images, a block displacement 

strategy is introduced to apply the regional voting scheme to face recognition field. 

Local Binary Pattern (LBP) is adopted to construct this block LBP displacement- 

based local matching approach, we name LBP-DLMA.

Experiments are performed and have demonstrated the outstanding performances 

of this LBP-DLMA over the original LBP approach. It is expected and shown by 

experiments that this approach applies to both large and small sized images, and 

that it also applies to descriptor approaches other than LBP.



Contents

Abstract ii

List o f Tables v

List of Figures vii

Acknowledgement ix

1 Introduction 1

1.1 Overview....................................................................................................... 1

1.2 Research O bjective ....................................................................................  3

1.3 C ontributions.............................................................................................  3

1.4 Thesis O b je c tiv e .......................................................................................  4

2 The Face Recognition Problem 6

2.1 Image C a p tu r e ..........................................................................................  8

2.1.1 Digital im a g e .................................................................................  8

2.1.2 Taking a p h o to ..................................................................................12

2.2 Face Detection .............................................................................................. 15

2.3 Face Normalization........................................................................................ 16

2.4 Face R ecognition........................................................................................... 17

iii



3 Literature Survey 18

3.1 The LBP Approach and Its V a r ia n ts ....................................................... 21

3.1.1 LBP approach.....................................................................................21

3.1.2 T P L B P ..............................................................................................24

3.1.3 FPLBP .............................................................................................. 25

3.2 Regional V oting ............................................................................................ 26

4 Proposed Algorithms 29

4.1 LBP Displacement C oncepts.......................................................................33

4.2 Similarity M etrics......................................................................................... 36

4.3 An LBP Displacement Template Matching

Approach: LBP-DLMA................................................................................. 37

4.4 Another Version of LBP-DLMA: L B P-D T M A ..........................................38

5 Experiments 47

5.1 F E R E T .........................................................................................................48

5.2 F R G C ............................................................................................................49

5.3 L F W ............................................................................................................... 51

6 Extensibility 56

6.1 Descriptors Other Than LBP ....................................................................56

6.2 Applications with Low Resolution Images................................................. 57

7 Conclusion and Discussion 62

Bibliography 64

iv



List of Tables

4.1 LBP Displacement-based Local Matching Approach - Off-Line . . . .  39

4.2 LBP Displacement-based Local Matching Approach - On-Line . . . .  40

4.3 LBP Displacement Template Matching Approach-On-Line.................. 42

5.1 Parameters in our experiments....................................................................48

5.2 The recognition rates of the original LBP and weighted LBP, the 

LBP-DTMA, and LBP-DLMA for the FERET probe sets, the mean 

recognition rates of the Fb+Fc+Dupl, and results of permutation

test with a 95% confidence level.................................................................... 50

5.3 The recognition rates of the LBP-DTMA, LBP-DLMA boosted by

preprocessing schemes on the FERET probe sets, and a few known 

approaches........................................................................................................ 51

5.4 Recognition rates of LBP-DLMA approaches on FRGC Experiment

104  52

5.5 The accuracies of LBP-DLMA, LBP-DTMA and a few no-training

approaches for L F W .................................................................................... 55

6.1 Parameters for TPLBP and FPLBP in our experim ents.........................57

v



6.2 The recognition rates of original TPLBP, FPLBP, and TPLBP DLMA 

and FPLBP DLMA without /  with Preprocessing [48] for the FERET 

probe sets, the mean recognition rate of the Fb+Fc+Dupl, and re­

sults of permutation test with a 95% confidence level................................58

6.3 Average Error Recognition Rates and Standard Deviations of LBP

and LBP DLMA Algorithms, for Yale face set (32 x 32 pixels). . . .  60

6.4 Average Error Recognition Rates and Standard Deviations of LBP

and LBP DLMA Algorithms, for ORL face set (32 x 32 pixels ). . . 61

vi



List of Figures

2.1 Image processed for face recognition.......................................................  7

2.2 A face image ................................................................................................ 10

2.3 20 x 16 sized pixel matrix of the image in Figure 2.2 .............................. 11

2.4 Images taken with different angles and illumination conditions . . . .  13

2.5 Images taken at different t im e .....................................................................14

2.6 Images deviations ....................................................................................... 14

3.1 A basic LBP operator .................................................................................23

3.2 LBP d ic tio n ary ............................................................................................. 23

3.3 A TPLBP operator .................................................................................... 25

3.4 An FPLBP o p e ra to r ....................................................................................26

3.5 The flag model for voting..............................................................................27

3.6 Regional voting in face recognition ........................................................... 28

4.1 LBP M a p ...................................................................................................... 43

4.2 A pile of LBP displacement blocks of the LBP map in Figure 4.1(a) . 44

4.3 The LBP displacement description of the face in Figure 2.2 and an

amplified pile V z ,\ ...........................................................................................45

4.4 Best block similarity for every gallery image in a gallery set compared

with a probe image V .................................................................................... 46

vii



4.5 Comparison results of local voting and te m p la te ...................................... 46

5.1 ROC curves over View 2 of L F W ............................................................... 54

viii



Acknowledgement

Great thanks to my supervisor Dr. Liang Chen, who always has great confidence 

in me, who insists to name my playing with the data “experiment” and is always 

ready to provide his unreserved support. He is not only my academic adviser, but 

also a mentor and real friend (whose wife feeds me with the fancy foods that I have 

never had in my own kitchen).

Great thanks to my co-supervisor Dr. David Casperson, who generously squeezes 

me into his busy schedule all the time. I will benefit forever from his serious attitude 

in research. Dr. Casperson, merci beaucoup!

Thanks to my thesis committee member Dr. Jueyi Sui for his encouragement 

and insightful comments.

Thanks to my parents for their unconditional support for me. Thanks to my 

brother and husband who keep pushing me so I can finish this work in time.

Many thanks to all the people who have shared my days during my studies and 

work.

Special thanks to my grandma. I will miss her forever.

ix



Chapter 1

Introduction

1.1 Overview

Face recognition, as a branch in the fields of computer vision, pattern recognition, 

biometric recognition and neuroscience, refers to verification or identification of a 

human being based on the visual features of a face.

Face recognition has established its importance via its wide range of applications 

such as passport verification in customs, identity verification in bank systems, video 

surveillance in security systems and etc... In Canada, ICBC uses face recognition 

software[29] to help keeping drivers records in BC province; In Mexico the govern­

ment adopted F acelt®  face recognition technology [20] to eliminate duplicate voter 

registrations in presidential elections[19, 56]; around the world, face recognition sys­

tems are applied in economic entities, entertainment, homes or small appliances for 

security/entertainment purposes [38, 54].

As face recognition is a practical yet popular research field, researchers have 

proposed a variety of approaches lending face recognition techniques a high level of 

maturity. However, we have to admit that the human perception system still remains
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mysterious to science research. Consequently the state of the art face recognition 

algorithms mostly follow mathematical methods other than simulating the biological 

function of human brains. From the algorithms perspective, face recognition task 

is usually performed by the comparison of two face images to determine whether 

they belong to the same individual. Before comparison, a fundamental step for most 

algorithms is aligning the two face images.

Alignment is known to be a key factor to the face recognition algorithm for its 

considerable influence on the recognition rate. It is, however, also a thorny issue for 

which researchers have never come up with a precise definition[53, 62, 52, 51].

Affected by a variety of factors such as facial expressions, facial makeup, pose 

angle, image quality etc., neither is it possible for a perfect pixel-to-pixel alignment 

between two images, nor is this perfect alignment ideal or necessary for research 

needs.

Admitting this, we revise the definition of ideal alignment to that a good align­

ment does not focus on the best overlap of two images such that the rightmost corner 

of the mouth in one image is exactly the same position in a coordinate system as it is 

in the other image, but that the alignment best describes the features of the object 

to recognize: it should be tolerant of the deviation among images from the same 

person and tell the difference between images from different persons. The alignment 

task under this definition is now an alignment that approaches the ideal alignment 

as close as possible.

An immediate benefit of a better alignment is a relatively accurate description of 

the offset between two images, and also a higher recognition rate of the face recogni­

tion system. The pursuing of a better alignment contributes to a high performance 

recognition algorithm and thus becomes an important motivation for research, in­

cluding this work.
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1.2 Research O bjective

The objectives of this research work are to:

1. Design an alignment scheme that finds a relatively better alignment of two 

face images;

2. It should be generally adoptable prior to many face recognition approaches to 

improve their performances;

3. Apply voting theory to the face recognition field and test the performance of 

hard combination and soft combination for face recognition;

4. Develop an executable framework that integrates our approach and the exist­

ing face recognition approaches to evaluate our approach;

5. Take further experiments to test its extensibility.

1.3 Contributions

This work presents an innovative displacement-based aligning scheme that has a 

high portability to various descriptors and significant improvements in their perfor­

mances. The greatest contribution of this alignment scheme is that it takes into 

consideration the regional deviations and dynamically simulates a relatively better 

alignment for a particular pair of face images.

Regional voting theory is adapted to face recognition problems and has proved 

its strength for system stablility against image deviations/offsets/noises.

The block LBP displacement-based local matching approach reports outstanding 

experimental performances in comparison with the original LBP approach.
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Experiments demonstrate that our approach applies to not only large-sized im­

ages but also small-sized images, and that it also applies to descriptor approaches 

other than LBP.

Part of the contents of this thesis has been published in [17, 10].

1.4 Thesis Objective

The aim of this thesis is to provide a full view of our algorithm. The following 

objectives are realized to attain our goal:

1. Introduce the face recognition problem: investigate the face recognition system 

and discuss the factors that influence the performance of a face recognition 

system;

2. Review the state-of-the-art achievements in related fields, including those that 

inspire our approach;

3. Propose our approach;

4. Implement the research design; perform experiments and report experimental 

outcomes;

5. Refine the algorithm;

6. Test extensibility and report experimental outcomes.

This thesis is an expansion of these objectives and is organized as following:

Chapter 2 explores the face recognition problem and the processes of a face 

recognition system.

Chapter 3 provides a literature survey of some popular face recognition ap­

proaches and voting scheme studies. In particular Chapter 3 gives a full description
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for the LBP approach, which we choose as our representative descriptor to perform 

experiments; and a full description of the study on regional voting, which con­

tributes one of the most important inspirations of this work. Readers with related 

background can skip Chapters 2 and 3.

Chapter 4 presents our proposed approach.

Chapter 5 shows the experimental results and comparisons with some popular 

approaches for performance evaluation.

Chapter 6 discusses the extensibility of our approach to descriptors other than 

LBP, followed by a conclusion in Chapter 7.
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Chapter 2 

The Face Recognition Problem

A face recognition task is to verify or identify a person by the facial features.

Depending on the task objective, most face recognition problems fall into two 

categories: verification and identification. The former is a one-to-one problem: given 

a face and an identity, determine whether this face comply with the claimed identity 

while the latter is a one-to-many problem: given a face, the system needs claim its 

identity from known identities or claim that the identity is unknown.

From a general point of view, specific tasks and applications have been exten­

sively studied in face recognition, such as facial expression recognition, gender recog­

nition, skin texture recognition etc.. The source images can be from 2D images, 3D 

models, videos, software developed pictures or other sources.

Our study focuses on recognition of 2D images. The following discussion is within 

our study focus.

A face recognition system is a system that performs the face recognition task. 

It is usually constructed of three components: a gallery set, a probe set, and the 

recognition component. A gallery set is a set of gallery images with recognized 

identities registered with the system. To the understanding of the system, the
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gallery image(s)1 is the only knowledge and the standard description of its associated 

identity. A probe set is a set of probe images to be identified or verified. Sometimes 

a system does not store the probe set, instead, it intakes the probe image at a face 

recognition request. The recognition component, in a face verification task, takes in 

a probe image and its claimed identity, retrieves the gallery image(s) of the claimed 

identity, and compares this probe image with the gallery image (s) to make a positive 

or negative decision. In a face identification task, the recognition component takes 

in a probe image and compares it with every gallery image to determine the probe 

image’s identity or claim it does not recognize this probe image.

A face recognition system that performs the above mentioned tasks usually fol­

lows 4 steps:

Step 1: Image capture 

Step 2: Face detection 

Step 3: Image normalization 

Step 4: Face Recognition

Figure 2.1 shows the processes to prepare an image for face recognition.

(a) image capture (b) face detection (c) normalization

Figure 2.1: Image processed for face recognition

1 There may be more than one images for the same identity in a gallery set.
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2.1 Image Capture

We assume that a face recognition system has its gallery set already stored in its 

memory, either pre-taken or exported from an existing database; the probe image, 

on the contrary, is usually taken at the recognition request. The image is then fed 

to the system to perform the recognition task. Recognition is to perform operations 

on the images. Before we go further into the next step, we need explore several 

characteristics of images that affect the performace of a face recognition system.

2.1.1 D igital image

Images, as a manifestation of data, usually come in two forms: analog images and 

digital images. An analog image is continuous in tones with progressive changes, 

such as a photograph developed from the film or paint on canvas. A digital image 

is discrete, numerical representation stored as a matrix in a digital storage like a 

portable disk. An image in the computer storage system is always a digital image. A 

digital image can be taken by a digital camera, scanned from a photograph, projected 

from a 3D image, captured from a video or created by a graphical program. Analog 

images can be digitized by technical methods such like scanning.

The two categories of digital images are vector images and raster images. The 

former are mostly created by a graphical program based on vectors/functions while 

the latter are usually based on the dots, the smallest component that constructs an 

image, which is called a pixel. In a face recognition system, the probe image usually 

is a raster image. A raster digital image is characterised by following features.

An image can be one of the three color modes: binary, greyscale or color. In 

a particular color mode, a number of bits are used to represent the tones of each 

pixel. This number is called the bit depth or pixel depth. A bit depth of n yields 2n
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tones. For example, a binary image needs one digit, 0 or 1, representing two colors, 

typically black and white; a greyscale image usually takes 2 to 8 bits. In a color 

image, 24-bit is called true color and 30-bit or higher is called deep color, both of 

which are sufficient to represent images as real for human eyes. The greater the 

bit depth is, the more tunes the image can represent. The binary value of the bits 

defines the pixel value. An image is represented as a matrix of pixel values.

In a color image, pixel value is understood by the computer under certain color 

model. Most color models are either subtractive or additive mixing. Some famous 

color models are RGB, CMY, CMYK, HSV and HSL.

A big concern about a digital image is the storage it requires, which closely relates 

to its image size: the number of bits it takes to represent the image. Image size is the 

product of bit depth and number of pixels. The number of pixels is represented by 

pixel dimension, which is the product of number of pixels per column and number 

of pixels per row. For example, an image containing m pixels per column and n 

pixels per row is of size m  x n (pixels). Usually the bigger the image is, the more 

information it describes: high bit depth will give a richer tone scale and high pixel 

dimension will contain a greater scope or detailed texture.

A digital image is compressed to reduce space cost. Depending on the compres­

sion methods, number of colors and etc., images can be of various file formats, like 

TIFF, PNG, GIF, JPG, RAW, BMP, PSD to name a few. Preference of file formats 

varies by task and usually file formats are mutually transformable.

Figure 2.2 shows a 150 x 130 sized2 greyscale digital image. For illustration 

purposes, this image is resized to 20 x 16 and its pixel value matrix is shown in 

Figure 2.3. It is stored in a face recognition system as a •png file of bit depth 8 and 

the accompanying pixel values range between 0 and 255.

2150 x 130 means that this image has 150 pixels per column and 130 pixels per row.
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A face recognition system adopts the raster digital image. The recognition com­

ponent in fact performs pair comparison(s) between two matrices of pixel values.

Figure 2.2: A face image
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122 38 41 38 40 36 35 53 76 92 109 119 93 59 54 90
79 34 39 39 36 34 61 102 124 125 129 130 113 66 43 52
40 36 37 37 32 58 95 128 135 134 135 131 121 83 40 40
37 35 33 33 51 92 116 133 134 137 144 145 134 104 46 37
37 31 30 38 75 106 117 122 121 121 118 108 117 113 55 33
34 28 35 74 95 95 100 112 108 98 98 115 129 121 68 30
31 30 56 85 81 95 99 112 108 99 97 83 107 126 90 33
29 44 78 82 75 89 101 109 115 98 86 77 99 121 100 31
29 37 89 119 120 122 109 117 121 111 118 119 132 134 97 29
26 44 103 129 131 121 117 136 141 123 124 129 131 136 104 27
24 46 114 129 125 107 113 138 144 120 112 128 131 140 100 24
22 44 116 125 114 102 108 108 108 113 105 117 123 129 89 22
21 37 113 115 110 113 101 90 86 108 117 106 114 120 75 20
22 25 100 119 110 91 98 90 95 103 87 96 121 118 55 21
24 17 67 122 111 81 96 112 110 87 87 111 118 99 31 23
25 19 26 91 116 112 93 93 97 96 115 118 108 54 21 24
27 22 19 34 100 121 108 91 92 116 125 112 71 20 25 24
28 23 21 21 68 109 121 115 117 124 112 85 51 22 25 25
29 25 21 21 64 91 99 106 107 99 85 80 53 23 24 26
29 29 24 22 54 97 95 92 91 89 86 85 51 23 24 28

Figure 2.3: 20 x 16 sized pixel matrix of the image in Figure 2.2



2.1.2 Taking a photo

As we may easily claim that the more information the image contains, the higher 

recognition rate a system achieves. However, it is not true. We can simply learn 

this by thinking over how many times we took a high resolution picture that did not 

look like ourselves at all. Under this observation, one question arises immediately 

is: How can we take a picture that best describes our face? This may be answered 

differently from the aesthetic point of view or with concerns of face recognition rate. 

We here discuss several key influential factors that could be helpful to improve the 

performance of a face recognition system.

Photographic equipment is the first choice we make in research studies because 

we need to provide the parameters of the equipment we use to collect the data. 

Then follows image size. It seems that big-sized images (or big-sized faces to be 

precise) should always be preferred since it offers more information than smaller 

ones. However, bigger image size also requires long processing time due to its large 

number of bits. In an image processing system, such as a face recognition system, 

the trade-off between the image size and processing time is taken as the trade-off 

between accuracy and efficiency. Some images, like the medical images, require 

highly detailed information while others might call for a faster processing time. 

Such a trade-off should take under consideration the emphasized system features 

and task requirements.

Pose angle is a big concern for face recognition. The best angle of a picture 

taken for face recognition is the frontal image as it covers the whole region of the 

face. Pictures taken with an angle, horizontally, vertically or an arbitrary angle 

may cause absence of data while it is believed that full information of both sides 

of the face is helpful for the recognition decision as most of the human faces are 

not strictly symmetric. Also that pose angle causing different facial regions fall
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into different focal length to the lens will frequently result in distortion of the face3 

and illumination changes is a most frequent accompanying sideffect of post angle. 

Research shows that the recognition rate decreases as the pose angle increases, 

especially when the horizontal angle is greater than 30 degrees or the vertical angle 

is greater than 15 degrees [24].

Illumination, as studied in many research works, can greatly lower the recogni­

tion rate [41, 1]. That is to say, the change induced by illumination could be larger 

than the difference between individuals. Some face recognition approaches perform 

stably against illumination change, such as LDA. Some approaches apply strategies, 

such like histogram equalization, to reduce the illumination effects. We believe an 

illumination-oriented method should not be the final solution for a face recognition 

system, given that in the real world the image distortions vary and most likely are 

a result of a combination of many factors.

(a) pose angle (b) illumination

Figure 2.4: Images taken with different angles and illumination conditions

A possible solution against pose angle and illumination is that by a fine control 

of shooting conditions, we may strictly restrict the influence to a small scale to take 

most comparable images of a person; however, this fails to deal with uncontrollable 

circumstance such like a video surveillance image taken under any illumination from

3 Cosmetic guides suggest a 45-degree angle depression to give a look of skinner cheeks and 
bigger eyes to make a doll-like face.
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any angle, or images that are from different sources where it is infeasible to unify 

everything, such as photos taken at airports around the country.

There are also irresistible changes happen to human faces such as facial expres­

sions, aging, pimples and scars, makeups, apparels, cosmetic surgery, hair styles (hair 

growth), glasses, rings, color contacts and others accessories that people wear... A 

mature face recognition system should not refuse these changes as they are taken as 

part of the features of a human face.

(a) 2005 (b) 2006 (c) 2010 (d) 2012

Figure 2.5: Images taken at different time

(a) facial expression

(c) glasses (d) makeup

Figure 2.6: Images deviations 
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If an image is scanned from a photograph, machinery may cause image noise 

from an unclean surface or distortion from a warped or wrinkled original file.

Prom above, the performance of a face recognition system relies heavily on the 

images. A face recognition system in practice may focus on specific factors for par­

ticular tasks while the study of the face recognition approaches should take into 

considerations all possible factors. A good recognition approach should minimize 

the intra-class difference and maximize the extra-class difference, that is, be stable 

against the biological feature distortion of human faces and image noises while re­

maining sensitive to the difference between different individuals. We further expect 

it be reasonably stable against a non-standard image with an angle, an unfavorable 

illumination or different image sizes.

2.2 Face D etection

Face detection, as a pre-process for the face recognition task, is itself a research 

field in object-class detection. It aims at finding faces in an image taken under any 

condition where there can be none, one or more faces. Sometimes the faces are 

processed by rotating, scaling or other means if the face in the image is not in a 

preferred position4.

In face recognition task, face detection is to find the location and size of the 

face and excludes background (non-face areas) from the image. Free face detection 

software include Facial landmark detector(Center of Machine Perception, Czech 

Technical University, Prague), face detection using support vector machine(SVM) 

(Omid Sakhi), FDLIB (W. Kienzle and etc.); companies like ACSYS, Betaface, 

Luxand offer commercial ones too[22].

4One example is when a boy does handstand, his face is upside down.
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2.3 Face Norm alization

Face normalization prepares the images for comparison. It comes in two forms: 

geometric normalization and image condition normalization.

Geometric normalization asks for a unified image size with fixed facial feature 

positions and scales (such as fixed centers of the eyes, distance between eyes5, the 

middle of the upper lip and other believed key facial features). This is achieved by 

clipping, resizing, scaling or rotation if necessary. Image condition normalization 

pre-processes images with unfavourable parameters such as lighting or contrast. 

This can be done by global filtering, local modification, histogram modification or 

with a lighting compensation mask.

Advanced features of face normalization include facial expression normalization, 

facial orientation and many others by global or local modifications. Technical means 

are adopted to minimize the deviations caused by image conditions.

As face detection and face normalization can be performed separately from face 

recognition, some recognition systems do not take this task into consideration but 

solely focuses on recognition. According to their different attitudes towards the 

two procedures, face recognition systems fall in two categories: the ones include 

face detection and normalization are called fully automated systems and those do 

not include the two procedures are called partially automated systems or semi­

automated systems.

5Figure 2.1(c) is normalized with distance between centers of eyes being 56 pixels and the 
centers of eyes lies on the 53th pixel of the same column.
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2.4 Face Recognition

Normalized images are ready for comparison. The result of comparison is the an­

swer to the identification or verification task. In the literature, many approaches 

are developed for face recognition purposes with various and reasonable emphases, 

namely feature-based methods, appearance-based methods, descriptor-based meth­

ods, template-based methods, and neural network methods. For example, in a 

feature-based method, facial features are extracted from the normalized faces to get 

the nose, eyes and other believed to be important features, and then the feature 

vectors from two images are compared to derive a final conclusion. In a descriptor- 

based method, a descriptor is applied to get a description of the face, usually in 

the form of a vector. Then comparison takes place between vectors. A detailed 

discussion of the comparison methods will be presented in the Literature Review.
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Chapter 3 

Literature Survey

Face recognition is easily seen as a bionics application as it is never difficult for a 

human being to recognize an acquaintance; however, it remains unknown how our 

brain performs such a task. Biologists and engineers keep exploring and have made 

many insightful yet interesting observations.

Wilmer et al[55] found that human face recognition ability is specific and highly 

heritable by observing “correlation of scores between monozygotic twins (0.70) was 

more than double the dizygotic twin correlation (0.29)” and that “low correlations 

between face recognition scores and visual and verbal recognition scores indicate that 

both face recognition ability itself and its genetic basis are largely attributable to 

face-specific mechanisms” [55]. Similar observations have been made in many studies 

supporting that the brains have a specific section to perform the face recognition. A 

good evidence for this claim might be the face blindness disorder (prosopagnosia) [23], 

in the study of which the fusiform face area[31] is believe to be specialized for face 

recognition. A model built by Haxby et al further suggested that facial identity and 

expression might be processed by separate systems [25, 42].

Young et al[60] drew their conclusion that facial features were processed holisti-
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cally from an experiment in which subjects found it more difficult to recognize the 

faces when the top half of one face is combined with the bottom half from another 

face [60]. Sadr et al made the interesting observations that recognition performance 

for faces without eyebrows was significantly worse than that for faces without eyes, 

which listed the eyebrow a key facial feature for face recognition that is no less 

important than the eyes [36].

Though extensive studies have been carried out to satisfy the curiosity for human 

face perception system, there is still a long way to go before we could translate the 

human perception manner into a computer-based algorithm and lead artificial face 

recognition in a biotic manner. Present research, other than simulating the biological 

functions of human brain, remains algorithmic in manner.

Artificial face recognition algorithms base recognition on comparison of paired 

face images. Varied in how the images are processed, most traditional algorithms 

adopt one of the two approaches: holistic approaches and regional approaches. The 

former calculate the image as an integrated input while the latter breaks the image 

into regions. In recent years a new scheme arises by adopting the voting theory to 

face recognition, referred as the regional voting approaches.

The research on face recognition initiates with holistic approaches in the late 

1980s. Holistic approaches take an entire human face as a numeric matrix which is 

converted into a vector in multidimensional space by concatenating the rows of ma­

trix one after another. These face vectors are then projected into lower dimension 

spaces for similarity measurement. Different approaches vary in their methods of 

projection (standard projection, differential projection or kernel Eigenspace projec­

tion). Examples of holistic approaches are the Eigenspace-based approaches such 

as Principle Component Analysis (PCA) [43] [49], a later 2D-PCA[59], Fisher Linear 

Discriminant (FLD)[6 ], Evolutionary Pursuit (EP), Linear Discriminant Analysis
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(LDA)[21], Independent Component Analysis (ICA) and etc. [2, 37, 50, 58, 5].

In the mid-1990s, research tends to focus on the different contributions of dif­

ferent regions from the face and thus led to a blossomming in the study of regional 

approaches. Regional approaches break the face into regions, aiming at preserving 

locality from which more discriminating face features would be used for compari­

son. Examples of regional approaches include subpattern PCA (SpPCA), Elastic 

Bunch Graph Matching (EBGM), Local Binary Pattern (LBP), Local Gabor Binary 

Pattern(LGBP), and Histogram Sequence (LGBPHS)[18, 3, 4, 47, 63].

For regional approaches, one thing worth mentioning is that when an approach 

extracts discriminative information locally from the face, shall it emphasize the 

biological features of the face, resulting the regions representing the facial features, 

or shall it emphasize the layout of the face features, resulting the regions representing 

portions of the face. Based on the assumption that some region might have more 

influence to identify a person, weight-scheme can be put to the regions to represent 

this property. Weights can be assigned based on the educated guesses such as that 

eyes and eyebrows are more discriminating than the cheek or forehead; or they can be 

empirical values that come out of the training process, if any. Regardless of whether 

focusing on features or spatial layout of the features, an accompanying concept that 

comes with many regional approaches is the descriptor, with which, a standard input 

face image is processed to a representation generated by this descriptor to better 

serve the calculation.

A new category of approaches that arose lately is regional voting approaches, 

which is more a general scheme[ll, 12, 13, 14] that could apply to many research 

fields other than face recognition[15, 16, 9]. The main objective of introducing the 

regional voting scheme is to create a system that is more stable against noise[14]. 

The voting theory applies to face recognition in such a way that voting scheme
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prevents the system from changing its decision based on the facial changes caused 

by aging, illumination changes or other irresistible influences.

3.1 The LBP Approach and Its Variants

3.1.1 LBP approach

Local Binary Pattern(LBP) is a regional descriptor-based approach originally pro­

posed by Ojala et al for texture description [45, 44] and later introduced to face 

recognition.

LBP works as follows:

Given a face image, an LBP operator applies to obtain its LBP map by thresh­

olding P sampling points on a circular neighbourhood of radius R centered at a 

pixel. Depending on the value of the center pixel and that of its neighborhood, a 

binary number 0  or 1  is assigned to its neighborhood representing whether the pixel 

value of this neighborhood is less than or greater than or equal to the center pixel 

value. Then the concatenation of the P binary values is taken as the label of this 

center pixel and all labels construct the LBP map of this image.

The LBP map is then divided into windows. In each window, a histogram repre­

senting the distribution of the numerical labels for pixels in this region is generated 

to be the texture descriptor of this region and histograms from all windows are 

concatenated to form the LBP description of the whole face image.

Figure 3.1 shows a basic LBP operator. Figure 3.1(a) is a 3 x 3 area from 

Figure 2.2. To calculate the LBP label for the pixel in the center, by thresholding 

8  sampling points on a circle of radius 1 , we obtain an eight-bit string, which, if 

counted anticlockwise from the bottom right one, equals 63 in decimal as in Figure 

3.1(c).
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A uniform pattern in LBP is defined as an eight-bit string which contains at most 

two bitwise 0 / 1  transitions if examined circularly, i.e. it is a circular concatenation 

of a series of Os and a series of Is. An eight-bit string has 57 uniform patterns. The 

LBP label dictionary is a vector of 58 elements, containing 57 uniform patterns and 

1 non-uniform element, as shown in Figure 3.2. Under this definition, the LBP label 

in Figure 3.1(c) will be labeled as in Figure 3.1(d).

Ojala et a![44] observed in their experiments that uniform pattern in texture im­

ages counts for about 90% and 70% for using 8  sampling points on a neighbourhood 

of radius 1  and 16 sampling points on a neighbourhood of radius 2  respectively and 

proposed to classify only the LBP labels in the uniform patterns and classify all 

non-uniform ones into one category.

In a more complicated form, LBP operator can have different radius with dif­

ferent sampling points that evenly distributed along the circular neighborhood. An 

LBP operator with P sampling points of radius R is denoted as LBPp r̂ . When 

a sampling point does not fall into the center of a pixel, bilinear interpolation is 

adopted to find the value of the sampling point. The LBP operator with consider­

ation of uniform patterns is denoted as LBPp2R.

LBP has reported high performance by maintaining three levels of localities: 

the labels on a pixel level, the histogram representation on a regional level and 

the concatenated histograms on a global level. As we believe regional approaches 

should outperform many holistic approaches, and LBP is one of the reported best 

performing regional approaches, we come to the choice of applying our scheme to 

this LBP approach.
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2 1 4 2 9 8 1 1 1

1 3 0 1 1 i n 1
7 4 c P 0 1 0 0

00111111—>63
binary to decimal

(a) A 3*3 Neighborhood (b) After Thresholding

(c) The pixel LBP value

63 is the 26-th value 
in the LBP Label Dictionary

(d) The pixel LBP label 

Figure 3.1: A basic LBP operator

String Decimal LBP label
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 2 2

0 0 0 0 0 0 1 1 3 3
0 0 0 0 0 1 0 0 4 4
0 0 0 0 0 1 1 0 6 5
0 0 0 0 0 1 1 1 7 6

0 0 0 0 1 0 0 0 8 6

0 0 0 0 1 1 0 0 1 2 7
0 0 0 0 1 1 1 0 14 8

0 0 0 0 1 1 1 1 15 9
0 0 0 1 0 0 0 0 16 1 0

0 0 0 1 1 0 0 0 24 1 1

1 1 1 1 1 1 1 0 254 56
1 1 1 1 1 1 1 1 255 57

non uniform 58

Figure 3.2: LBP dictionary
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3.1.2 T PL B P

Three-Patch LBP (TPLBP) was introduced by Wolf et al[57] as a variant of LBP.

It works as follows:

A patch C is defined as a w x w region centering on a pixel c. TPLBP, as is 

named, involves three patches to calculate a bit code which later contributes to the 

TPLBP code for this pixel.

For any pixel Cp, TPLBP first finds the patch Cp and S patches Ct(i 6  {1 , 2 , ■ • • , 5}) 

distributed evenly along a circle of radius r from cp. A pair of patches are two patches 

that are a  patches apart along this circle. One bit code is generated by thresholding 

the difference of distances between Cp and each patch from the pair, and the TPLBP 

code for the center pixel is a concatenation of all bit codes.

A TPLBP operator in a general form is denoted as TPLBPr!s;̂ a as shown in 

Figure 3.3. Defining a thresholding function f{x)  in Equation 3.1, the TPLBP code 

for p is given in Equation 3.2.

(3.1)
0, X < T

S - 1

TPLBPr,5 i1l,,Q(p) =  E C p )  d ( C ( i + a ) mocl 5 , C P ) ) 2  (3.2)
1 = 0

An image represented by its TPLBP codes is then divided into non-overlapping 

regions and a histogram representing the distributions of the codes is first gener­

ated for this region and then normalized to unit length. The concatenation of the 

normalized histograms constructs the TPLBP representation of this image.
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r  \
/ ‘ \

the 0th bit code for Cp generated by this TPLBPTis)U)ia is: 
f(d(C'p,C'o)-d(C'p,Ca))

Figure 3.3: A TPLBP operator

3.1.3 FPLBP

Followed TPLBP, Wolf et al proposed another variant of LBP, named Four-Patch 

LBP (FPLBP) [57]. Similar to TPLBP, FPLBP bases the bit code of cp on four 

patches distributed evenly along two circles of radii ri and f 2 , with two center 

symmetric patches on each circle and the inner patches apart a patches from their 

corresponding outer patches respectively.

Let C] j denote the i-th patch on the inner circle and C2 4  denotes the i-th patch 

on the out circle. With the same thresholding function /(s )  given in Equation 3.1, 

the FPLBPri^2 i5 ]lL,iQ is given in Equation 3.3.

FPLBPri)r2, =
S /2

C 2 , ( i + a )  mod s )  — d ( C i ^ i + s / 2 )  mod S> ^ 2  , ( i+ S /2 + a )  m od s ) ) 2 ‘ ( 3 . 3 )

i = 0

The global TPLBP description of the image is generated following the same 

process as in TPLBP.
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..a

the 0th bit code for cp generated by this FPLBP r i > r 2  swa is:
f(d(C1 ,0 ,C'2 ia)-d(C'1 ,5 /2 )  <?2 , ( S / 2 + a )  mod £>))

Figure 3.4: An FPLBP operator

3.2 Regional Voting

The stability of regional voting was proved by Chen and Tokuda in 2003[12], and 

later introduced to the studies of face recognition. To learn this voting scheme, we 

will first have a glance at the voting problem in general.

A voting problem is to ask a population of M. to select one winner out of N  

candidates. This selection can perform in two manners: direct popular voting and 

regional voting.

In direct popular voting, the M. voters each draws a vote to one of the H  

candidates and the candidate who gets the most votes wins. In regional voting (also 

called local voting or Electoral college), the M  electors are first grouped into X  

regions, and a direct popular voting for the M  candidates takes place within one 

region to generate a local winner on a winner-take-all basis. Later the regions, each 

performing as a single voter, vote for the final decision and the candidate who gets 

the most votes from the X  regions wins.

Noise is introduced to study the stability of voting schemes. A noise refers to
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a sudden change of the decision from one vote and the stability is watched against 

noise. A system is said to be stable if the final result remains against noise.

A simplest form of the voting model developed by Chen and Tokuda is illustrated 

in Figure 3.5. A binary flag of size 6  x 6  is used to represent the 36 voters in a two 

candidate voting; a white pixel means this voter votes for candidate A and a black 

pixel means this voter votes for candidate B. Figure 3.5(a) and Figure 3.5(c) show a 

block of noise turns over the original decision in a direct popular voting and Figure 

3.5(b) and Figure 3.5(d) demonstrate a regional voting retains the original decision 

confronted with the same noise.

U Hi D
(a) before noise 
popular voting 25:11 
white-dominated flag

(c) after noise 
popular voting 16:20 
black-dominated flag

to p le f t  reg ion : 

w h ite  V s b lack : 5:4 

w h ite -d o m in a te d  reg io n

(b) before noise 
regional voting 4:0 
white-dominated flag

to p le f t reg ion : 

w h ite  V s b lack: 1:8 

b la c k -d o m in a te d  reg ion

(d) after noise 
regional voting 3:1 
white-dominated flag

Figure 3.5: The flag model for voting
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(a) Face image A of size 22 x 18 into 6 x 3  regions (b) Face image I

Figure 3.6: Regional voting in face recognition



Chapter 4 

Proposed Algorithms

A deep look into the literature gives us the understanding that holistic approaches 

and regional approaches both take the whole face image as the input and each 

pixel, regardless of whether it is represented by its pixel value or some other value 

generated by a descriptor, contributes evenly likely to the final decision (even in a 

weighted scheme, the pixels in same-weighted regions contributes the same). We 

believe, as supported by [12, 14], such approaches lack tolerance for what is called 

noise (the sudden change of the values of some pixels which makes these pixels no 

longer corresponding to its original objective), neither do they enhance the ability 

to tolerant the biological deviations of face features which might happen only in 

some random regions of the face area and expose the disadvantage of fixed-weight 

scheme. In fact, a pre-set alignment always draws defects in some cases. Regional 

approaches work better, but still both holistic and regional approaches fail to deal 

with this issue.

These weaknesses of pre-set alignment schemes and fixed weight schemes lead 

us to the conception of a scheme that could dynamically locate a best alignment by 

simulating all possible alignments corresponding to all possible deviations of facial
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regions to conquer the alignment issue. Our scheme is established on the following 

observations.

First, admitting the existence of deviations means that a deviation is consistent 

with the real-world face features and different regions may (usually they do) have 

different deviations: sometime the forehead in the probe image has a positive de­

viation from the forehead in the gallery image while the mouth in the same probe 

image has a negative deviation from that in the gallery image. Thus the common 

regional methods of assuming that all regions have the same deviation may seem 

lose precision. Simply cutting an image into regions and combining them back into a 

face gains no advantage besides locality of facial features. We believe different devi­

ations should exist for every pair of corresponding regions from the galley image and 

the probe image. Deviation between each pair should be found dynamically rather 

than assuming they are aligned to their original location in the image by default. 

This dynamic aligning process is much like shifting one image/region around the 

other to find a better position to align the two. We therefore propose a framework 

that simulates every possible deviation in units of a pair of corresponding regions 

to conquer this problem.

Second, even a great change within a small region (corresponding to concentrated 

noise[1 2 ]) should not overturn the final recognition decision under circumstance 

where most of the other regions remain the same. It also means that even when 

there is a light change spread over every region (corresponding to salt-and-pepper 

noise[1 2 ]), as long as the regions retain this person’s identity, the final recognition 

decision should remain unchanged. For example, one might have temporary blood 

scabs on the chin and forehead from a car accident, which results in the similarity 

related to these regions to be extremely low, even further denies the final decision; 

while we intuitively perceive that the scabs should only be reflected on the decision
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of their region(s), leaving decisions of other regions unaffected. However, even in 

regional methods, changes caused by facial features deviation or image noise within 

one region will cause a change in the description of the whole face and thus result 

in a different similarity between two images. We believe we could gain system ro­

bustness by constraining regional deviation and regional noise within its own region 

by applying voting theory to our scheme.

Regional voting scheme is the right solution that meets our goal: system robust­

ness against noise. A face image fits in the regional voting scheme easily if each pixel 

is taken as a voter and the identities are taken as candidates. A face verification 

task is a one candidate voting where pixels vote for “positive” or “negative” to this 

candidate and the final decision is positive if the majority of pixels vote for positive 

or otherwise; A face identification task is a multi-candidate voting where each reg­

istered identity is a candidate and the pixel votes for one candidate and the final 

decision is the identity that gains the most votes. In two images, a noise happens if 

the pixel value in one image does not equal to its corresponding pixel in the other. 

In the theory part, noise corresponds to deviations or facial features changes. As an 

example, Figure 3.6 on page 28 shows two images of the same person and Figure 

3.6(b) shows a noise contaminated image caused by smiling.

The regional matching approach is adapted to face recognition in such a manner 

that a face image is divided into blocks (representing one region in the face) and 

decision from each block is made on statistics within this block which later votes 

for the final recognition decision. We then can take benefit from the voting scheme 

to construct an algorithm that is more stable against the deviation of face regions. 

Another immediate benefit is its stableness against noise. There are many reasons 

causing noise in images, such as regional shading from not preferred photographing 

or an unclean scanner surface when digitizing a filmed photo. As [14] suggests, re­
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gional voting gains robustness against both concentrated noise and salt-and-pepper 

noise.

As our intention originates from building an aligning scheme that may fit more 

than one comparison methods, the literature survey leads our attention to the de­

scriptor based approaches, then the LBP descriptor to be particular [64, 30, 3], LBP 

descriptor outperforms many state-of-the-art face recognition approaches by its high 

descriptive localities[3, 4], and a comparison between the original LBP and the 

regional matching LBP should be capable of exposing the advantage of regional 

matching schemes over other descriptors. Also, given that LBP has reported high 

recognition rate [3], it should be interesting to see whether we can go further and 

how far we can go in artificial face recognition.

Integrating the above proposed ideas, we come to the conception of construct­

ing a template framework that could dynamically generate all possible alignments 

from which we locate the best alignment based on displacement in units of image 

regions. LBP is used as the descriptor and regional voting is adopted to construct 

a displacement-based local matching approach, we name LBP-DLMA. We expect 

a high portability of this template to apply to any descriptor based matching ap­

proach. Further more, for a comprehensive framework, various descriptors can apply 

to the regions and thus a higher recognition rate is expected by taking advantage of 

the different descriptors.

LBP-DLMA works as follows:

Given a face image from the database, we first generate its LBP map. Believing 

that deviations vary among pairs of corresponding local regions from two images, 

we partition this LBP map into blocks. By assigning deviation values to blocks 

enumerately and respectively, we can generate a set of candidate face alignments, 

which together constructs the template description of the face. A best alignment is
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located as one whose similarity is highest among all.

Having located the best aligned face, every block in this best aligned face takes 

an internal election on a winner-take-all basis to generate the local decision of this 

block, which contributes one voter to determine the final decision.

4.1 LBP Displacem ent Concepts

Given a face image, we obtain its LBP map of size (rn +  2s) x (n+2s) using the LBP 

descriptor1 in [3]. By removing h, i, j, k pixels (h, i, j, k > 0, h 4 - i = 2s, j  + k = 2s) 

from top, bottom, leftmost and rightmost margins respectively, we obtain (2 s 4-1 ) 2  

slightly smaller LBP maps of size m  x n. Each m  x n sized map is called a layer 

and is denoted by 7,(1 < i < (2s 4 -1)2).

Then we partition each layer into K  x L blocks (K  blocks per column, L blocks 

per row). A block in the r-th row, c-th column of the I-th layer is denoted by Brc i. 

The set of corresponding blocks from all layers are called a pile of LBP displacement 

blocks, or an LBP displacement pile. The pile of blocks in the r-th row, c-th column 

is denoted by PrtC =  {Br^ i\ l  < I <  (2s 4 -1)2)}.

The set of all LBP displacement piles for a face image generates the template, 

or the LBP displacement description of the face image, denoted by T  =  {PriCJ l  < 

r < K, I < c < L,}.  Template for a gallery image is called a gallery template and 

template for a probe image is called a probe template.

A candidate face description, or candidate face for simplicity, is a recombination
2KJ.

of the blocks, one from each pile, in the template. The template has (2s 4-1) 

candidate faces2, representing all possible deviations of individual block. Let a test

1A11 following mentioned images are LBP maps of the images and to be simple, we use the term 
image referring to the LBP map of the image.

2Each block is selected from (2s 4  l ) 2 blocks of its own pile and a candidate face contains K x L  
blocks. Thus the number of candidate faces is ((2s 4  l )2)'K"xL, equally (2s 4  l ) 2KL.
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pair be two candidate faces from a gallery template and a probe template respec­

tively. A best matched pair can be located by exhaustively testing the similarities 

of the test pairs and choosing the pair with the highest similarity.

Such a template retains the three levels of localities that the original LBP oper­

ator has: LBP label on the pixel level, histogram on the regional level and concate­

nated histograms on the global level. It also represents three levels of deviations: 

fixed deviation on a window level, dynamic deviation on a regional level and multi­

deviation on a global level. It gains tolerance on the deviations of images from the 

same person from the three levels of deviations.

As an illustration of this template framework, assuming that Figure 4.1(a) is a 

18 x 14 sized LBP map of the face image in Figure 2.2. Let s =  1, by removing 2 

pixels from bottom, one pixel each from leftmost and rightmost margins, we obtain 

a 16 x 12 sized layer which we partition into 12 blocks, each of size 4 x 4, as shown 

in Figure 4.1(b). With different margins taken off, there are a total of 9 such 16 x 12 

sized layers, each of which can be partitioned into 12 blocks. Figures 4.2(a) - 4.2(i) 

show an LBP displacement block pile consisting blocks corresponding to the shaded 

block in Figure 4.1(b) from all layers. Note that the second block(Figure 4.2(b)) in 

the pile is the shaded block in Figure 4.1(b). We have 12 such LBP displacement 

piles, as shown in Figure 4.3. The union of the Z-th (Z =  1, 2, • • • ,9) blocks from all 

piles is the Ith layer, a 16 x 12 sized LBP map obtained by removing i, 2 — i, j  and 

2  — j  pixels from top, bottom, leftmost and rightmost margins respectively, where 

0 < i , j < 2 .  The set of all these 12 LBP displacement piles is the LBP displacement 

description template of this face image.

A drawback of such a “simulate by enumerate” strategy is the time cost. How­

ever, we make following observations to reduce the time complexity while retaining 

the descriptiveness of the template.
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The first observation is that duplicate test pairs3  exist in cases where the margins 

cut from gallery image and the probe image are the same. To reduce redundant 

comparisons we restrict that the margin parameters h, i, j, k in the probe template 

all equal s, yielding a probe template with only one block in each pile and only one 

layer in this template. This restriction will reduce comparisons4  of test pairs from 

(2s +  1)4* L to (2s +  1)2KL. Assuming the time cost for computing the similarity 

between the standard descriptions (without using template structures) of two face 

images is O(T), the total time complexity computing the similarity between two 

description templates will be O((2s + 1)2KLT) if we compare all pairs of candidate 

faces.

Under this restriction, the search for the best alignment would be the search 

for a candidate face in the gallery template which is best aligned with the probe 

template which contains only one face. We can define a best matched face being the 

gallery face from the best matched pair.

The second observation is that a best matched face retains its “best match” 

property over all regions5. That is, the candidate face from the gallery template 

which contributes the best match with the probe template should be a combina­

tion of blocks that are locally best matches of their own piles respectively. This 

observation suggests that not all candidate faces need be tested and only the locally 

best aligned regions should be under our consideration. By a divide-and-conquer

3Two images with the same margins still vary given different values of the margins, however 
the offset is too small to affect the final result thus we can take them as “duplicate test pair”.

4 A comparison associates with a test pair. A test pair is selected by choosing one candidate 
face from the gallery template out of (2s +  1)2KL choices, and one candidate face from the probe 
template out of the same choices, yielding (2s -I- l ) 2KL x (2s +  l ) 2KL choices of test pairs , equally 
(2s + l ) 4KL. By  restricting the probe template containing one candidate face, the choices of test 
pairs is reduced to (2s +  \ ) 2KL x 1, equally (2s +  1)2KL.

5 Proof: Assume the best matched face G contains one block B\ whose similarity with the 
corresponding block from the probe template is less than another block B 2 from its own pile. 
Replacing B \ by J52j we then have a face Q' whose similarity with the probe template is higher 
than G, which is contradictory to that Q is the best matched face.
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strategy, we can further reduce the time complexity to 6  0(K L(2s  -f 1 )2 T).

4.2 Similarity M etrics

Assuming the global LBP-based representations of two face images are Q — {Gj. G2 , "  '}  

and V  =  {Pi, 7 *2 , * • * }> the typical metrics for calculating the similarities between 

two global LBP descriptions are [3]: Euclidean Distance7, Histogram Intersection, 

Log-likelihood statistic and y square statistic:

Euclidean Distance:
i

(4.1)

Histogram Intersection: H(G,V) = £ m i n ( f t ,P i)
j

(4.2)

Log-likelihood Statistic: L{G,V) = Y , Gilo&Vi (4.3)

y square Statistic: (4.4)

Such metrics can also be used to calculate the similarity between the block level 

LBP descriptions of two blocks. As [3] suggests that the log-likelihood measure is 

not appealing for face recognition, we shall not use it as a similarity measure in this 

work. Note that in each block, there are one or more windows; the block level LBP 

description for a block is the concatenation of window level LBP statistics.

6A best aligned block is found within its own pile out of (2s + l ) 2 blocks and there are K  x L 
best aligned blocks to find to construct a best aligned face, so the total number of comparisons is 
(2s +  l ) 2 x K  x L, equally KL( 2s  +  l ) 2.

7We will use a squared version of Euclidean Distance for simplicity in calculation.
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4.3 An LBP Displacem ent Template M atching  

Approach: LBP-DLM A

Given a gallery set Q — {Q1, Q2, ■ ■ • } of size T and a probe image V, we base regional 

voting approach on the following vote definitions:

Let QPr,c denote the block pile in the r-th row, c-th column in the gallery tem­

plate, QBr^i  denote the block in the I-th layer from this pile, and let V B rfi denote 

the block in the r-th row, c-th column in the probe template8. V B r c also denotes 

the block pile that contains V B r c. Assuming the similarity between two blocks is 

defined as Sim(QBr,c,V B riC), with a higher value representing a higher similarity. 

We then define the similarity between two block piles as in Equation 4.5:

In a face verification task, one probe template V  is compared with one gallery 

template Q. For each block V B r c, its optimally aligned corresponding block QBT C Opt 

is the one from QPr,c that has greatest similarity with V B r,c, also the one that 

votes for the local identity of V B rc following Equation 4.6. A final decision is a 

confirmation or negation to the claimed identity, whichever that takes more votes 

from the blocks.

In a face identification task, one probe template V  is compared with every gallery 

template Ql in the gallery set. Block V B r c is believed to share the identity of QP*C 

which has the greatest similarity among all QP^C where t G {1,2, - * - , T}. The

8There is only one block each pile in the probe template, so no need for the layer subscript.

S i m ( G P r , c , P B r c )  =  max (Sim{^Br.)C,/,'PjBr,c}) 
l<i<(2 s+l) 2 

(4.5)

vote(7>J5r,c) =  THR(Sim{0PriC,PJ9riC}) (4.6)
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identity can be retieved by the parameter t following Equation 4.7.

vot e(VBrc) = arg max (Sim{QP^c,V B rc}) (4.7)

From the perspective of algorithm design, to match a probe V  against a gallery 

set of T  images, LBP-DLMA involves two stages: an offline process that prepares the 

gallery templates, one template for each image, and an online process that prepares 

the probe template and performs the comparison, as shown in Table 4.1 and Table-

4.2.

4.4 Another Version of LBP-DLM A: LBP-D TM A

The original motivation of adopting regional voting scheme is to conquer the regis­

tration difficulty caused by the non-rigidity of facial features. Regional voting works 

on the hard combination (local decisionsions within each block generate the final 

decision by majority voting) of the blocks. It outperforms the soft combination (sim­

ilarity values obtained in all blocks are accumluted to generate the final simlairty 

value) in general[14]. However, to a specific application, such like face recognition, 

we still see some ground for adopting soft combination.

An example is shown in Figure 4.4 and Figure 4.5. Figure 4.4 shows the best 

block similarities of each gallery face Ql. By applying LBP-DLMA, each block in V  

gets a vote for the identity whose block similarity is highest among all. The voting 

result is shown is Figure 4.5(a) with the final identity decision goes to the identity of 

Ql who gains 7 votes out of 12. However, if we apply the soft combination, summing 

up all block similarities of Ql to obtain their global similarities respectively to find 

the best matched Q09* the result would be overturned. Figure 4.5(b) shows that 

final identity decision goes to the identity of Q2 because it has the highest similarity
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Table 4.1: LBP Displacement-based Local Matching Approach - Off-Line

P eram eters Chosen: Number of Piles in Each Image K  x L (K  piles per column, 
L piles per row), Shifting Value s, Number of Windows per Block wc x wt (wc piles 
per column, wt piles per row).
A. Off-Line G allery  Im age LB P D isplacem ent D escrip tion  C onstruction : 
Require: a gallery of face images; the size of the gallery is T.
For each image Q

1. Obtain the pixel label map by calculating the LBP pattern of each pixel (Note: 
The label map is slightly smaller than the original gallery image since the 
pixels on the boundaries may not have a label.) Assume the smaller size is 
(m +  2 s) x (n +  2 s).

2. For 1 =  0 to 2s

2.1. For j  = 0 to 2s
2.1.1. Remove i, 2s — i, j  and 2s — j  pixels from the leftmost, rightmost, 

topmost and bottommost boundaries of the label map to obtain a 
layer. (Note: as a total, there are (2s -I-1) 2  layers.)

2.1.2. Partition this layer into K x L  blocks; partition each block into wcxw l 
windows, where we obtain the LBP label statistics (histogram of pixel 
labels); then concatenate the LBP label statistics of all windows in 
each block into a block level LBP description.

3. Obtain the LBP displacement description of the gallery image by piling up 
the corresponding block level LBP descriptions into each pile.
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Table 4.2: LBP Displacement-based Local Matching Approach - On-Line

B. On-Line Face Recognition:
Require: V  is an (m +  2s) x (n -1- 2s) sized probe image.

B-l Obtain the LBP displacement description for V  as follows:

1. Obtain the pixel label map by calculating the LBP pattern of each pixel.
2. Remove s pixels from all four sides of the label map.
3. Partition the label map into K x L  blocks.
4. Partition each block into wc x wt windows, where we obtain window level 

LBP statistics, then concatenate the window level LBP statistics into a 
block level LBP description; each block LBP description constructs an 
LBP displacement pile; the set of all LBP piles is the LBP displacement 
description.

B-2 Do classification as follows:

1. Set vote counters V t =  0 for all t E {1 ,2, • • • , T}.
2. For r= l  to K 

2.1. For c= l to L
2.1.1. For QPlc, where t 6  {1,2, . . . ,  T}
2.1.1.1 Calculate S i m ( Q  P*c, V  Prc), according to Equation 4.5.

2.1.2. Find image index I  =  argmaxte{li2 ,-.,r}Sim(^Pr4 c,PPTtC).
2.1.3. Increase Vj by 1.

3. Classify the image as the identity of image g3 in the gallery set, where 
J  =  arg max V , .
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with V  as a whole.

It would be an endless discussion that in this example, which face, Q1 or Q2, 

look most like V. Regardless of the answer itself, we believe such a discussion 

has its theoretical contributions. This discussion gives us the insight to generate 

soft combination and thus come to the second version of our algorithm, the direct 

template matching approach, we name LBP-DTMA.

The main idea of LBP-DTMA is finding the best aligned face for every gallery 

image Q1 and calculate the global similarities of all best aligned faces. The one that 

has highest similarity claims the identity of V. LBP-DTMA works as follows9:

Given a gallery set of size T and a probe image V, we obtain the template 

descriptions for each Qt and V  as in LBP-DLMA.

Based on previous observations, the best aligned face can be found locally fol­

lowing Equation 4.8. For each Qt, find its best aligned candidate face that satis­

fies Equation 4.5 and calculate its similarity to V. This similarity is denoted by 

Sim(Qt,V) and taken as the similarity between Ql and V. V  shares identity of the 

one that has the highest similarity among all Ql, as in Equation 4.9.

Sim(Q,V) = max 'S~'Sim(^jBrci,V B rc)
l < l < ( 2 s + l ) 2 '

r ,c

= E  max Sim (£ J3r cj, P-Brc) (4.8)
' l<i<(2s+l)2

r,c

ID (V) =  arg ^max^(Sim(C/t,'P)) (4.9)

Algorithms are shown in Table 4.1 and Table 4.3.

9Any undefined symbols/terms we use in LBP-DTMA are applied from LBP-DLMA and all 
symbols we use in LBP-DTMA are consistent with the symbols from LBP-DLMA if not otherwisely 
defined.
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Table 4.3: LBP Displacement Template Matching Approach-On-Line

ON-LINE FACE RECOGNITION:
Require: V  is a probe image.

1. Obtain the description template for V  as follows:

1 .1 . Obtain the pixel label map by calculating the LBP pattern of each pixel 
as in approach A.

1.2. Remove s pixels from all four sides of the LBP map.
1.3. Partition the label map into K  x L  blocks;
1.4. Partition each block into wt x wc windows, where we obtain window level 

descriptions (histogram of pixel labels), then concatenate the window 
level descriptions into a block level description.

2. Do classification as follows:

2.1 For the description templates of each gallery image Ql (where t E 
{1,2,--- ,T})

2.1.1 For each pile QPr>c in the probe template
2.1.1 . 1  For each QBl c U in the pile QPlrc
2.1.1.1.1 Calculate Sim(5B{Aj,P B r,c) according to Equation (1 ), (2), 

(3) or (4) (as the similarity formula chosen)

2.2 Let S 1 — max(Sim(g-B* e V B rc).
r,c

2.3 Classify the image as the identity of image Q1 in gallery, where I  =
arg max S t .

t e i , 2 , - , r
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Figure 4.1: LBP Map
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Figure 4.2: A pile of LBP displacement blocks of the LBP map in Figure 4.1(a)
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Figure 4.3: The LBP displacement description of the face in Figure 2.2 and an 
amplified pile
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Figure 4.4: Best block similarity for every gallery image in a gallery set compared 
with a probe image V
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Figure 4.5: Comparison results of local voting and template
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Chapter 5

Experiments

We carry out experiments on FERET [34], “Faces in the Wild” (LFW) [28] and 

FRGC [35]. The usage of large, well developed databases avoids the bias from the 

images1 [34] and experimental results following the restrictions of the datasets are 

compared on the same platform to provide a more convincing evaluation for the 

algorithms.

LBP descriptor involves a few parameters. In all our experiments, as suggested 

in [3], we set the parameters as in Table 5.1. To further reduce the number of 

LBP displacement blocks in each pile, we restrict the relative offset by restricting 

|3 — i\ + |3 — j\ < 4. It is understandable that, in a practical system we may 

further improve the accuracies if we adjust these parameters on a “trial and error” 

basis though we do not include such a strategy in this work as we believe it is not 

necessary for research purposes2.

*As Phillips et al mentioned in [34]: “Before the database FERET, a large number of papers 
reported outstanding recognition results usually > 95 percent correct recognition on limited-size 
database usually < 50 individuals. ”

2 “If you torture the data long enough, it will confess.” —Ronald Coase.
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Table 5.1: Parameters in our experiments

LBP Operator: LBP ,^
radius of circle R=2
number of sampling points P=8
apply uniform pattern yes
LBP-DLMA:
number of blocks per LBP map 5 x 5  (K=5,L=5)
number of windows per block 7 x 7
margin cut from the LBP map s=3
margins on top,bottom,left,right h,6 -  h ,j, & — j  >  0;
other restrictions |3 — /i| +  |3 — j\ < 4

5.1 FERET

FERET database [34] is assembled to test and evaluate face recognition algorithm 

under standard tests and procedures. FERET consists of 14051 gray-scale images 

from 1199 individuals. The images vary in lighting conditions, facial expressions, 

pose azimuths, etc.. Subsets are presented with different task concerns.

We carry out experiments on FERET. Following the work in [3], five sets of 

FERET are used: the Fa gallery set that contains images of 1196 subjects, one 

image for each subject; the Fb probe set that contains 1195 face images of 1195 

subjects as in Fa but with alternative facial expressions; the Fc probe set that 

contains 194 face images taken under different illumination conditions on the same 

day as their respective Fa matches; the Dupl probe set that contains 722 face images 

taken anywhere between one minute and 1031 days after the corresponding images 

in Fa were taken; the Dup2 probe set being a subset of dupl that contains 234 

face images taken at least 18 months after the corresponding Fa images were taken. 

These five sets are designed for the study of algorithm performance against facial 

expressions(Fa, Fb), illuminations(Fa, Fc) and aging(Dupl, Dup2).
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All faces are first normalized into standard size 150 x 130 (150 pixels per column, 

130 pixels per row), where the distance between the centers of the two eyes is 56 

pixels and the segment connecting centers of two eyes lies on the 53rd pixel below the 

top boundary. The standard 150 x 130 elliptical mask from FERET data collection 

is used to exclude non-face areas from the LBP maps, and a few pixels are removed 

from each side of the mask since the LBP map of an image is always smaller than 

the original image.

Following [3], permutation test with 95% confidence level is also carried out using 

the image list, list640.srt, in the CSU face identification evaluation system package

[7]. Iist640.srt contains 4 images each for 160 subjects. 10000 permutations are 

tested, with each containing one image per subject in the gallery set and another in 

the probe set.

The results are shown in Table 5.2. The results of a few famous approaches are 

listed in the same table for comparison.

It is shown that LBP-DLMA not only improves the original LBP approach, but 

also achieves the performances at least comparable to the state of the art approaches.

It was explained in [48] that a preprocessing stage can significantly improve the 

performance of LBP approach. Therefore, we also do the experiments with the 

preprocessing as suggested in [48]. Results are shown in Table 5.3.

5.2 FRGC

We carry out the FRGC experiment 104 [35] of FRGC version 1, which is generally 

considered the most challenging in this FRGC VI dataset. It requires recognizing 

608 uncontrolled faces from 152 controlled gallery faces.

We normalize the face images into size 150 x 130 as we did for FERET exper-

49



Table 5.2: The recognition rates of the original LBP and weighted LBP, the LBP-DTMA, and LBP-DLMA for the FERET 
probe sets, the mean recognition rates of the Fb+Fc+Dupl, and results of permutation test with a 95% confidence level.

Method Fb Fc Dupl Dup2 Fb,Fc 
& Dupl

Permutation Test
lower mean upper

LBP, no weight 4] 93% 51% 61% 50% 78.20% 71% 76% 81%
LBP, weighted [4] 97% 79% 66% 64% 84.74% 76% 81% 85%

LBP-

DLMA

Euclidean Distance 99.37% 93.60% 79.66% 75.56% 92.10% 84.92% 89.24% 93.31%
Histogram intersection 99.39% 96.16% 82.52% 80.31% 93.32% 87.21% 91.22% 95.09%

Chi square statistic 99.31% 96.20% 82.23% 80.53% 93.18% 87.34% 91.33% 95.18%

LBP-

Template

Euclidean Distance 98.49% 90.21% 70.50% 61.11% 88.16% 78.13% 83.26% 88.13%
Histogram intersection 98.91% 92.78% 76.04% 68.38% 90.53% 83.13% 87.88% 92.50%

Chi square statistic 98.74% 91.24% 75.62% 65.81% 90.15% 83.13% 87.61% 91.88%



Table 5.3: The recognition rates of the LBP-DTMA, LBP-DLMA boosted by pre­
processing schemes on the FERET probe sets, and a few known approaches.

Method Fb Fc Dupl Dup2
Preproceed

LBP-DLMA

Euclidean Distance 99.29% 98.97% 85.37% 82.29%
Histogram intersection 99.37% 99.48% 88.40% 85.89%

Chi square statistic 99.37% 99.25% 88.71% 86.89%

preproceed

LBP-DTMA

Euclidean Distance 98.49% 98.45% 84.07% 82.05%
Histogram intersection 99.00% 98.97% 88.23% 86.75%

Chi square statistic 99.00% 98.45% 88.23% 86.75%
LGBPHS[63] 98.0% 97.0% 74.0 % 71.0%

HGPP61] 97.6% 98.9% 77.7 % 76.1%
SIS [32] 91.0% 90.0% 68.0 % 68.0%

Schwartz [39] 95.7% 99.0% 80.3 % 80.3%

iments. The results are shown in Figure 5.4. We also include the results of LBP- 

DLMA with a “preprocessing” stage, as suggested by Tan et al [48]. We can see 

that LBP-DLMA with and without preprocessing improve LBP with and without 

preprocessing significantly.

We should emphasize here that, our intension is to improve LBP approaches by 

using local matching scheme. It is not our intension to show that our approach 

is better than all possible approaches in all datasets. We understand some other 

approaches, such as [39], get better results for this experiment; we should add that 

those approaches actually use the settings more flexibly than we do —they use a 

training approach while we do not.

5.3 LFW

We have also carried out experiments on “Labeled Faces in the Wild” (LFW)3 [28]. 

LFW is a database containing 13,233 face images of 5,479 individuals collected from

3The set is available via LFW official site http://vis-www.cs.umass.edu/lfw.
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Table 5.4: Recognition rates of LBP-DLMA approaches on FRGC Experiment 104

LBP [26] LBP DLMA
Euclidean Histogram intersection Chi square statistics

28.1% 34.38% 32.17% 33.23%
LBP

with Preprocessing[26]
LBP DLMA with Preprocessing

Euclidean Histogram intersection Chi square statistics
58.1% 58.31% 67.47% 67.20%

LBP LBP Template
Euclidean Histogram intersection Chi square statistics

28.1% 42.94% 47.37% 47.20%
LBP

with Preprocessing[26]
LBP Template with Preprocessing

Euclidean Histogram intersection Chi square statistics
58.1% 74.01% 85.86% 86.18%

the web for the study of unconstrained face recognition. The faces were detected by 

the viola-Jones face detector and labeled by the name of individuals. 1,680 individu­

als in the database have two or more distinct photos. We test the performance of our 

approach on the 10 folds of view 2. All the face images were taken in unconstrained 

environments, exhibiting “ ‘natural’ variability in pose, lighting, focus, resolution, 

facial expression, age, gender, race, accessories, make-up, occlusions, background, 

and photographic quality” [28]. In this task, given two face images, the goal is to 

decide whether two images are of the same person. This is a binary classification 

problem, with two possible outcomes: “same” or “different” . LFW view 2 provides 

10 folds of face sets where the sets of people in different folds are disjoint; when 

testing on one fold, the other nine folds can be used for training. Results of various 

approaches have been reported at LFW official site4.

We use LFW-a version of images (the images aligned using a commercial face 

alignment software) [46]. The images are of size 250 x 250. We first crop them into 

images of size 90 x 78 (by removing 88 pixel margins from top, 72 from bottom,

4 Note that most of the approaches reported were developed only for the specific binary classi­
fication task; our approach was not intended to be applicable only to this kind of tasks.
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and 86 pixel margins from both left and right sides). Note that there were errors in 

the alignment of many images; we just keep them as they were (so some of the final 

cropped faces indeed are not correctly aligned).

In LBP-DLMA, since a “voting” is required in each pile, we need a few “reference 

faces” to find relative values. Here, we use a dummy set as “reference faces”: for 

the experiments in the i-th fold, we use the first images (named “***..-0001.jpg” ) 

of the first 10 individuals in the (i — l)th  fold (when i — 1 =  0, we use the 10th fold) 

as the dummy set.

For a pair of images x  and y, for each pile, we first obtain the similarity array 

between x  and the set consists of y and dummy set, then obtain the similarity array 

between y and the set consists of x  and the dummy set; the average to these two 

arrays are taken so as to make local decision according the this array.

Our results are shown in Figure 5.1 and Table 5.5.

Due to the fact that LBP-DLMA does not have a training process, our ap­

proach should be compared to other no-training approaches as suggested in LFW 

site; we also include the Receiver Operating Characteristic(ROC) curves of all these 

no-training approaches SD-MATCHES (L & R system with SIFT descriptors and 

MATCHES flavour), H-XS-40 (Histogram of LBP features with Chi Square simi­

larity measure and 40 windows), GJD-BC-100 (Gabor Jets Descriptors with Borda 

Count measure and 100 reference images) and LARK representation without super­

vision [40], which are available in both LFW site and [30], in Figure 5.1 and Table 

5.5. We can see that the LBP DLMA, regardless the similarity metrics that it uses, 

is significantly better than all other approaches.

For the alternate version LBP-DTMA, we can either use or not use dummy set. 

The results are shown as following:

53



tru
e 

po
sit

ive
 

ra
te

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
H-XS-40 

GJD-BC-100 
SD-MATCHES 

LARK unsupervised 
LBP DLMA, Euclidean 

LBP DLMA, Histogram intersection 
LBP DLMA, Chi square statistic

0.1

10 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.90.4
false positive rate

Figure 5.1: ROC curves over View 2 of LFW
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Table 5.5: The accuracies of LBP-DLMA, LBP-DTMA and a few no-training ap­
proaches for LFW

Approach Accuracy
SD-MATCHES 0.6410 ±  0.0062

H-XS-40 0.6945 ±  0.0048
GJD-BC-100 0.6847 ±  0.0065

LARK unsupervised 0.7223 ±  0.0049
Euclidean 0.7517 ±  0.0122

LBP-DLMA Histogram intersection 0.7648 ±  0.0186
Chi square statistic 0.7622 ±  0.0206

Euclidean 0.6905 ±  0.0235
LBP-DTMA Histogram intersection 0.7428 ±0.0144

Chi square statistic 0.7417 ±  0.0143
Euclidean 0.7352 ±  0.0180

LBP-DTMA, with Dummy Set Histogram intersection 0.7633 ±  0.0152
Chi square statistic 0.7613 ±  0.0172
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Chapter 6 

Extensibility

We expect that our approach can be applied to other descriptor approaches. Sim­

ply replacing LBP in Table 4.1 and Table 4.2 by any descriptor approach A, we 

should able to generate A-DLMA. We also expect that our approaches apply to low 

resolution images too.

6.1 Descriptors Other Than LBP

We test the extensionality of this displacement local matching approach on two vari­

ants of LBP: Three-Patch LBP (TPLBP) and Four-Patch LBP (FPLBP). Applying 

DLMA to TPLBP and FPLBP, we generate TPLBP-DLMA FPLBP-DLMA. Exper­

iments of TPLBP-DLMA and FPLBP-DLMA are carried out on FERET datasets. 

For the parameters required for TPLBP and FPLBP, we use the default values of

[57] as shown in Table 6.1:

The experimental results are shown in Table 6.2.

We can easily see that the performances of TPLBP-DLMA and FPLBP-DLMA 

are significantly better than TPLBP and FPLBP respectively.
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Table 6.1: Parameters for TPLBP and FPLBP in our experiments

TPLBP Operator: T P L B P 2 ^ , 3,5 

ring radius of circles 
patch size

r= 2

3 x 3, w = 3 
S= 8number of additional patches S= 8

distance between two apart patches a=5 
FPLBP Operator: F P L B P ^ 5 ,3 ,3 ,!
ring radii of two circles 
patch size
number of additional patches

ri =  4, r2 =  5 
3 x 3 , w=3 
S= 8

distance between two apart patches a = l

6.2 Applications w ith Low Resolution Images

A mathematical assumption for local matching schemes being superior than global 

matching schemes is that the nation should be “large” enough [1 1 , 14], although 

there is no fixed definition for “large”. We now try to demonstrate that the LBP- 

DLMA also works for applications with small sized images.

We use [8 ] ’s version of Yale and ORL face sets available via Cai’s website h t t p : / /  

www.cad.zju.edu.cn/hom e/dengcai/Data/FaceData.htm l, where all faces are of 

standardized size 32 x 32. The Yale dataset contains the images of 15 subjects, each 

with 1 1  images captured with variations of lighting conditions and facial expressions 

such as normal, happy, sad, sleepy, surprised and wink). ORL dataset contains the 

images of 40 subjects, each with 10 images captured with variations of expressions 

and details such as open eyes, close eyes, smiling, no-smiling, w/o glasses. For any 

given fc (fc =  2,3, • ■ - 8 ), fcTrain represents a split where fc images per subject are 

chosen with labels for training, the rest are used for test. For fair comparison, 50 

such random splits for each fcTrain of both Yale and ORL are available via Cai’s 

website.

We perform experiments on Yale and ORL with LBP approach and LBP-DLMA
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Table 6.2: The recognition rates of original TPLBP, FPLBP, and TPLBP DLMA and FPLBP DLMA without /  with 
Preprocessing [48] for the FERET probe sets, the mean recognition rate of the Fb+Fc+Dupl, and results of permutation 
test with a 95% confidence level.

Method Fb Fc Dupl Dup2 Fb,Fc 
& Dupl

Permutation Test
lower mean upper

TPLBP
Euclidean Distance 94.64% 74.23% 62.33% 55.98% 81.71% 68.13% 74.12% 80.00%

Histogram intersection 96.44% 86.08% 74.65% 69.23% 88.04% 80.00% 85.06% 90.00%
Chi square statistic 95.98% 86.08% 74.79% 69.66% 87.83% 79.38% 84.50% 89.38%

TPLBP

DLMA

Euclidean Distance 99.26% 91.90% 75.97% 71.80% 90.62% 83.05% 87.51% 91.77%
Histogram intersection 99.48% 95.15% 79.79% 75.7% 92.35% 85.68% 89.83% 93.91%

Chi square statistic 99.38% 93.27% 78.83% 74.30% 91.79% 85.75% 89.90% 93.96%
Preprocessed

TLBP
DLMA

Euclidean Distance 98.88% 98.39% 77.56% 73.54% 91.54% 84.92% 89.27% 93.48%
Histogram intersection 99.14% 98.23% 83.17% 81.98% 93.60% 87.87% 91.88% 95.68%

Chi square statistic 99.15% 98.99% 82.31% 81.46% 93.38% 87.85% 91.85% 95.68%

FPLBP
Euclidean Distance 95.73% 69.59% 64.13% 54.70% 82.52% 72.50% 78.07% 83.13%

Histogram intersection 96.65% 74.23% 67.45% 56.84% 84.60% 75.94% 81.19% 86.25%
Chi square statistic 96.65% 74.23% 67.73% 56.41% 84.70% 75.63% 81.16% 86.25%

FPLBP

DLMA

Euclidean Distance 98.89% 76.16% 68.68% 57.11% 86.47% 79.64% 84.32% 88.91%
Histogram intersection 98.82% 81.09% 69.62% 60.98% 87.21% 80.84% 85.51% 90.09%

Chi square statistic 99.04% 84.38% 70.56% 60.50% 87.95% 81.12% 85.78% 90.31%
Preprocessed

FPLBP
DLMA

Euclidean Distance 98.74% 98.24% 75.10% 69.65% 90.61% 84.01% 88.27% 92.45%
Histogram intersection 99.00% 98.23% 76.96% 73.49% 91.39% 84.79% 89.07% 93.25%

Chi square statistic 98.94% 98.22% 77.19% 73.08% 91.44% 85.05% 89.33% 93.49%



approach. For LBP approach, we let the window numbers per row (per column) to 

be 8, although the numbers between 7 and 9 seems to get very close accuracy. For 

LBP-DLMA, we let the number of blocks per row (per column) to be 4, and the 

number of windows in a block to be 3 per row (per column). Due the small size of 

the images, for LBP and for the LBP embedded within LBP-DLMA, we test on the 

radius of a circle to be both 2 and 1. For the sampling points distributed evenly on 

the circle, we keep it to be 8 as we did in Section “Experiments”. The results are 

reported in Tables 6.3 and 6.4. We can easily find that LBP-DLMA can improve 

the accuracy of LBP approach regardless the parameters for generating the local 

binary pattern labels and regardless of the similarity measurements.
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Table 6.3: Average Error Recognition Rates and Standard Deviations of LBP and LBP DLMA Algorithms, for Yale face
set (32 x 32 pixels).

2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train
Error ±Std ErrorztStd ErrorztStd ErrorztStd ErrorztStd ErrorztStd Error ±Std

Eucl. 43.16 ±  5.11 37.22 ±  3.87 35.52 ±  3.77 33.10 ±  3.41 30.59 ±  4.10 30.97 zt 3.39 30.40 ±  5.51
CM|| LBP Hist. 39.87 ±  4.95 34.88 zt 4.11 32.27 ±  3.07 29.99 it 3.77 27.23 ±  4.43 27.48 zt 3.92 25.80 ±  5.33
3 Chi 40.47 ±  5.22 35.58 ±  3.89 33.28 ±  3.34 31.20 ±  3.85 28.59 zt 4.47 28.23 ±  4.35 27.51 ±  5.55
735? LBP Eucl. 34.33 ±  4.94 28.09 ±  3.31 25.08 ±  2.86 23.06 ±  3.29 21.79 zh 3.67 20.75 ±  3.64 19.86 ±  4.27
cd Hist 31.98 ±  4.56 25.68 ±  3.10 22.57 ±  2.16 20.72 zt 2.47 20.19 ±  3.36 18.88 zt 3.32 17.92 ±  4.07

DLMA Chi 32.85 ±  4.55 26.45 ±  3.10 23.98 ±  2.60 22.36 ±  2.95 21.32 zt 3.18 20.10 ±  4.06 19.18 ±  4.20
Eucl. 41.51 ±  5.69 35.41 ±  3.74 32.98 zt 3.77 31.22 ±  3.57 28.81 ±  3.57 29.33 zt 4.34 27.78 zt 5.93

II LBP Hist. 36.64 ±  4.79 31.39 zt 3.89 29.69 ±  2.95 26.44 ±  3.72 24.39 ±  3.59 23.87 ±  3.82 22.11 ±  5.05
3 Chi 37.50 ±  4.75 31.97 ±  3.70 30.15 zt 3.10 26.71 ±  4.06 24.32 zt 3.58 23.30 ±  4.01 21.29 ±  4.95
cS LBP Eucl. 31.08 ±  4.69 24.22 ±  3.07 21.23 ±  2.60 18.43 ±  3.27 17.46 ±  2.70 16.57 zt 3.41 15.09 zt 4.05

Hist. 28.52 ±  4.08 23.26 ±  2.42 19.70 zt 2.42 16.58 ±  3.39 16.49 zt 3.23 14.50 zt 3.30 13.81 ±  4.02
DLMA Chi 29.11 ±  4.22 23.60 ±  2.92 20.16 zt 3.05 16.92 zt 3.89 17.54 ±  3.00 15.61 ±  2.94 14.50 ±  4.37



Table 6.4: Average Error Recognition Rates and Standard Deviations of LBP and LBP DLMA Algorithms, for ORL face
set (32 x 32 pixels ).

2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train
E rroriS td ErrordtStd Error±Std Error±Std Error±Std Error±Std Error±Std

Eucl. 19.97 ±  2.86 12.75 ±  2.00 8.40 ±  1.84 5.98 ±  1.77 4.49 ±  1.84 3.33 ±  1.59 2.26 ±  1.79
<N

|| LBP Hist. 17.51 ±  2.75 10.80 ±  2.10 6.34 ±  1.64 4.29 ±  1.45 2.98 ±  1.60 2.14 ±  1.36 1.91 ±  1.78
tn3 Chi 17.14 ±  2.75 10.81 ±  2.14 6.47 ±  1.58 4.33 ±  1.42 3.03 ±  1.50 2.15 ±  1.33 1.68 ±  1.63
a3 LBP Eucl. 17.06 ±  2.49 10.07 ±  2.34 6.08 ±  1.45 3.97 ±  1.21 3.03 ±  1.21 1.77 ±  1.27 1.27 ±  1.17

o d Hist 15.54 ±  2.19 9.16 ±  2.04 5.26 ±  1.19 3.36 ±  1.41 2.56 ±  1.23 1.56 ±  1.18 0.83 ±  0.83
DLMA Chi 16.88 ±  2.42 10.01 ±  2.18 5.89 ±  1.44 4.06 ±  1.28 2.95 ±  1.36 1.92 ±  1.29 1.18 ±  1.08

Eucl. 20.03 ±  3.04 13.19 ±  2.26 9.02 ±1.70 6.12 ±  1.83 4.68 ±  1.65 3.38 ±  1.68 2.40 ±  1.51
rH

II LBP Hist. 16.35 ±  2.77 10.08 ±  1.83 6.29 ±  1.61 4.27 ±  1.21 3.28 ±  1.46 2.42 ±  1.42 1.93 ±  1.30
CD
3 Chi 16.49 ±  2.71 10.12 ±  2.14 6.13 ±  1.58 4.22 ±  1.26 3.18 ±  1.49 2.25 ±  1.56 1.70 ±  1.24

T3
LBP Eucl. 17.08 ±  2.14 10.48 ±  1.74 6.49 ±  1.48 4.46 ±  1.36 3.13 ±  1.51 2.12 ±  1.44 1.51 ±  1.38

e d Hist. 14.87 ±  2.30 8.62 ±  1.93 4.90 ±  1.22 3.09 ±  1.21 2.20 ±  1.27 1.22 ±  1.00 0.79 ±  0.93
DLMA Chi 16.38 ±  2.41 9.79 ±  2.26 5.80 ±  1.22 3.96 ±  1.24 3.15 ±  1.54 1.89 ±  1.12 1.50 ±  1.25



Chapter 7

Conclusion and Discussion

We introduce an LBP displacement concept so that LBP can be embedded into a 

local matching framework. The integration of LBP and regional voting, named LBP- 

DLMA, significantly improves the performances of the original LBP. Experiments 

also show that our approach can also be applied to descriptor approaches other than 

LBP and low resolution images.

The LBP-DLMA adopts local voting scheme, where winner-take-all is applied to 

select one “winner” when a pile of a probe is matched with a pile of a gallery image 

and a final decision is based on the votes of the regions (the blocks in the experi­

ments). The introduction of block represents three levels of deviations: fixed devi­

ation on a window level, dynamic deviation on a regional level and multi-deviation 

on a global level.

A following question is whether we can replace the local voting by “soft-combination” , 

where the similarities of corresponding LBP displacement piles are added up to form 

the similarity between the LBP displacement descriptions of a pair of faces. Indeed 

it was shown in [10] that the answer to this question is positive.

It may be interesting to investigate the adoption of more complex strategies, such
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as the randomized decision trees [33] for constructing/representing LBP displace­

ment pile, and the learning of a similarity metrics [27] for exploiting the similarity 

values or assessments of all LBP displacement piles of a pair of LBP displacement 

descriptions.

Future work could also be a framework that could apply this DLMP approach 

to 3D images even motion pictures. As our approach aims at a relatively better 

alignment, we also see some insight on applying this DLMA to other comparison- 

based research.
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