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Abstract

In obesity, adipose tissue expandability and triglyceride storage is challenged resulting 

in lipid accumulation in ectopic tissues, including pancreatic P-cells. It is hypothesized that 

accumulation of toxic lipid derivatives induces p-cell failure, causing dysregulated glucose 

homeostasis in obesity.

I am interested in understanding if manipulating expression of peroxisome proliferator 

activated receptors (PPARs), mediators of lipid sensing and metabolism, in p-cells during 

development of obesity will affect lipotoxic p-cell failure. Activation of endogenous PPAR5 in 

vitro has been shown to protect against lipotoxic P-cell failure. I report that PPARS 

overexpression in P-cells under lipotoxic conditions diminishes this protective effect. 

Furthermore, in vivo models of P-cell specific PPARy2 overexpression exhibit impaired 

carbohydrate metabolism. I report that islets from these obese mice demonstrate reductions in 

lipids promoting signalling of insulin release and upregulation o f genes regulating 

recruitment of fatty acids and lipid oxidation, which may explain carbohydrate metabolism 

impairments in these mice.
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CHAPTER 1

Lipotoxic mechanisms in the pathogenesis of obesity-induced type 2 diabetes
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1.1 Lipotoxicity

Recent estimates suggest that 347 million people worldwide are affected by type 2 

diabetes (T2D) and that this figure will rise to 439 million by the year 2030 (Danaei et al.,

2011; Shaw et al., 2010), placing an enormous strain on global healthcare systems.

Prevalence o f obesity exceeds these figures and has been established as the main risk factor 

for the development of T2D, with 80% of people diagnosed with T2D being overweight or 

obese (Smyth and Heron, 2006). T2D occurs when the regulatory actions o f insulin are 

ineffective at target tissues or the mechanisms by which insulin is secreted from P-cells o f the 

pancreas are impaired. These impairments result in dyslipidemia and the inability to maintain 

blood glucose levels within the normal physiological range in patients with the disease. 

Patients with T2D commonly demonstrate characteristics of the metabolic syndrome (Chavez 

and Summers, 2010; Cusi, 2010; Del Prato, 2009; Somwar et al., 2005), which is defined by 

the World Health Organization as elevated fasting blood glucose, insulin resistance, elevated 

blood pressure, elevated triglycerides or high-density lipoprotein (HDL) cholesterol, and 

central obesity with a body mass index greater than 30kg/m2 (Alberti and Zimmet, 1998; 

Stumvoll et al., 2005).

What remains unclear is whether impaired insulin action in T2D arises first, leading 

to dyslipidemia and associated symptoms of the metabolic syndrome, or if  symptoms 

associated with the metabolic syndrome arise first, causing impairments in insulin action and 

the progression of T2D. One of the prevailing hypotheses linking obesity to progression of 

T2D is lipotoxicity, where limitations of adipose tissue expandability result in the inability of 

adipose tissue to accommodate the chronic oversupply of energy in obese patients (Ahima, 

2006; Chavez and Summers, 2010; Gray and Vidal-Puig, 2007; Kershaw and Flier, 2004).
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Adipose tissue is a complex endocrine organ composed o f adipocytes, connective 

tissue, nervous tissue, vascular cells, and immune cells (Abedini and Shoelson, 2007; Ahima, 

2006; Kershaw and Flier, 2004). Adipose tissue plays an important role in the regulation of 

energy homeostasis through secretion of regulatory molecules called adipokines, such as 

leptin and adiponectin, that play a role in appetite regulation and act as insulin sensitizers 

respectively (Abedini and Shoelson, 2007; Ahima, 2006; Myers et al., 2008). In addition to 

its endocrine role, adipose tissue also acts as an energy reserve in which excess fuel is stored 

for later use as triglycerides (Gray and Vidal-Puig, 2007; Virtue and Vidal-Puig, 2010).

In order for adipose tissue to store excess lipids, preadipocytes must first undergo 

differentiation into mature adipocytes (Lefterova and Lazar, 2009; MacDougald and 

Mandrup, 2002). In instances where there is an influx of nutrients, mature adipocytes will 

recruit pre-adipocytes and transcriptional regulators, such as peroxisome proliferator 

activated receptor-y (PPARy), will facilitate the transformation o f preadipocytes into their 

mature cell type (Barak et al., 1999; Tontonoz et al., 1994).

Under conditions of chronic ovemutrition it has been suggested that adipose tissue is

unable to expand to an infinite capacity (Gray and Vidal-Puig, 2007) resulting in a deficit of

storage space. Some studies have suggested that physical space for expansion in cell

proliferation may be responsible for this finite limit o f storage in adipose tissue. When

adipocytes proliferate, there is a requirement for the extracellular matrix (ECM) surrounding

the cells to be remodelled to make room for the newly formed adipocytes. For this to occur,

proteases must be secreted by the cells to break down the ECM, which is a complex process

that requires time (Khan et al., 2009). The delay in ECM remodelling places physical stress

on the hypertrophic adipocytes resulting in rupture of the adipocytes and the release of lipids

which causes an immune response and resulting recruitment of macrophages (Shi et al.,
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2006). Macrophage recruitment begins a cycle in which adipose tissue expandability is 

thwarted and mature adipocytes are unable to recruit additional preadipocytes. Macrophage- 

dependent inhibition of preadipocyte differentiation results in a decrease in mature adipocyte 

formation and an even larger deficit of lipid storage space, causing an even further increase 

in circulating lipid levels and a further increase in the immune response and production of 

macrophages (Khan et al., 2009; Shi et al., 2006). The result is entry of excess lipids into the 

circulatory system and storage of lipids in ectopic tissues.

The term lipotoxicity has been used to describe the process of impaired cellular 

function and apoptosis due to the accumulation o f lipid species in non-adipose tissue (Chavez 

and Summers, 2010; Imrie et al., 2010; Schrauwen et al., 2010; Unger et al., 2010). A 

proposed mechanism includes the accumulation of non-esterified fatty acids resulting in 

increased production of lipid species such as ceramides and diacylglycerols (Boden, 1997; 

Kahn et al., 2006; Reaven et al., 1988), lipid species that can promote apoptosis as well as 

mediate an immune response and production of cytokines (Dbaibo et al., 2001; de la Monte 

et al., 2010; Lecour et al., 2006; Summers, 2006). Taken together, these outcomes promote 

activation of apoptotic pathways and induce oxidative stress in cells resulting in impairments 

in endoplasmic reticulum (ER) and mitochondrial function (Carobbio et al., 2011; Chavez 

and Summers, 2010; Kusminski et al., 2009; Schrauwen et al., 2010; Summers, 2006). In 

obesity, it has been demonstrated that accumulation of toxic lipid species in non-adipose 

tissues, such as skeletal muscle or the liver, may be responsible for impairments in insulin 

sensitivity at these sites, potentiating the progression towards dyslipidemia and 

hyperglycemia in T2D (Chavez and Summers, 2010; Summers, 2006). Another site of 

ectopic lipid deposition is the pancreatic islet itself and thus lipotoxic P-cell failure is a 

proposed mechanism in obesity induced T2D.



To understand obesity-induced pathogenesis of T2D, it is first useful to understand 

the mechanisms by which the pancreas regulates glucose and lipid metabolism. Insulin 

released from P-cells of the pancreas travels through the blood and binds insulin receptors on 

target tissues in the periphery. Upon binding of insulin to its receptor, a self- 

phosphphorylating tyrosine kinase, a series of phosphorylation events occurs within the 

cytoplasm. An example of this phosphorylation cascade in glucose uptake is the activation of 

the insulin receptor substrate family-1 (IRS-1), which contains phosphatidyl inositol 3-kinase 

(PI-3-K) (Boron and Boulpaep, 2005). The active form of PI-3-K then causes an activation of 

phosphatidyl inositol-4,5,-biphosphate (PIP2) to form phosphatidyl inositol-3,4,5- 

triphosphate (PI-3,4,5-P3), which will in turn cause the activation of phosphatidyl inositol- 

dependent kinase (PDK). A classic example of how insulin-activated PDK causes uptake of 

glucose from the blood is via the subsequent activation o f protein kinase B (PKB) which will 

act on the GLUT4 transporter causing its insertion into the plasma membrane so that glucose 

may be transported into the cell (Boron and Boulpaep, 2005). Insulin receptor activation 

promotes many anabolic glucose and lipid pathways while inhibiting catabolic pathways. 

Insulin also plays a considerable role in cell growth and cell survival through increasing 

DNA replication and protein synthesis (Costa et al., 2012; Zheng et al., 1997).

1.2 Lipotoxicity and peripheral insulin resistance in type 2 diabetes

Ectopic deposition of toxic lipid species in obesity inhibits insulin signalling 

contributing to insulin resistance and impaired glucose tolerance in T2D. The effects of 

insulin insensitivity can be seen in many tissue types throughout the body, including adipose, 

liver, and skeletal muscle.
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Insulin insensitivity in adipose tissue disrupts the activation of lipogenic pathways 

(Lewis et a l, 2002) and inhibition of lipolytic pathways (Holm et al., 2000) normally 

observed during the fed state. As seen in Figure 1.1, presence of insulin normally activates 

lipogenesis by increasing the activity of lipoprotein lipase (LPL), causing an increase in free 

fatty acid (FFA) production for transport into adipocytes for storage. Furthermore, once 

inside the adipocytes, conversion of FFAs to triacylglycerols (TAGs) will be promoted by 

insulin's activation of diacylglycerol acyl transferase (DGAT). However, as a result of insulin 

insensitivity LPL remains inactivated causing a decrease in FFA cleavage resulting in 

elevated levels o f TAG-rich very low density lipoproteins (VLDLs) and chylomicrons. 

Furthermore, due to the inability to activate DGAT, insulin insensitivity prevents the 

formation of TAGs from diacylglycerols (DAGs) and FFA precursors (Lewis et al., 2002;

Liu et al., 2007). The net result of inactive DGAT in adipose tissue is the accumulation o f 

toxic lipid species further exacerbating the lipotoxic state in adipocytes (Cusi, 2010).

In adipose tissue during the fed state, insulin also acts as an inhibitor of lipolysis to 

prevent the mobilization of FFAs from TAG stores. This inhibitory effect is achieved through 

binding of the insulin receptor on adipocytes, causing the phosphorylation of 

phosphodiesterase 3B (PDE3B) (Fig. 1.2), ultimately decreasing the activity of hormone 

sensitive lipase (HSL). However, under lipotoxic conditions when insulin binding is 

disrupted, HSL remains in its active form, allowing for uncontrolled hydrolysis of FFAs and 

glycerol from TAGs or perilipins (Holm et al., 2000). Elevated levels of circulating FFAs 

will be transported to the liver causing an increase in gluconeogenesis and elevations in 

blood glucose levels (Chen et al., 1999) further contributing to the impaired ability to 

regulate blood glucose levels in T2D.
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VL0LI 
Chylomicron

Activated LPL 
cleaves TAG from 
TAG-rich VLDLs TAG 
and chylomicrons 
to release FFA

Insulin stimulates the 
activation of lipoprotein 
lipase and 
diacylglycerol acyl 
transferase

FFA is actively 
transported into 
cytoplasm of 
adipocyte

Adipocyte

DGAT Triglyceride
Activation of 
diacylglycerol acyl 
transferase by insulin 
allows for the formation 
of triglycerides from 
diacyl glycerol and the 
incoming FFA

Figure 1.1 Mechanisms of insulin activation on lipogenesis in adipocytes. Insulin will cause 
activation o f lipoprotein lipase, allowing FFAs to be cleaved from VLDLs and chylomicrons 
arriving from the periphery. FFAs can then enter the adipocyte where they will combine with 
DAGs to become triglycerides. This conversion from FFAs and DAGs is achieved by 
insulin's activation of diacylglycerol acyl transferase.
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Insulin binds to receptors on adipocytes
Adipocyte

Q  Active PDE3B iahib itl Ike 
activation of cAMP and

r *
Protein K iiu t A

Binding of intnlin 
receptor causes 
phosphorylation of 
Phosphodiesterase 3B

Inactive PKA is 
phosphoryiate 

pcrilipins and 
hormone sensitive 
lipase

Perilipins remain
nnphosphorytated in the 
inactive form, protecting 
against Upotysii by HSL. 
Lypoiysis is inhibited

Hormone sensitive lipase remains 
uaphosphoryiated and inactive, preventing it 
from hydrolyzing fatty acids

Figure 1.2 Mechanisms of insulin inhibitory action on lipolysis in adipocytes. Binding of 
insulin receptors causes phosphorylation of PDE3B which can then inhibit the activation of 
cAMP and PKA. Due to inactive PKA and cAMP, HSL and perilipins remain 
unphosphorylated in their inactive form. The net result of this inactivation is inhibited 
lipolysis and a decrease in the hydrolysis o f TAGs.
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The liver is also an important organ regulated by insulin signalling. It has been 

demonstrated that lipid accumulation in hepatocytes due to high fat feeding causes a decrease 

in the expression of Insulin Receptor Substrate-2 (IRS-2) as well as increased markers of 

inflammation, resulting in insulin resistance and impaired carbohydrate metabolism (Xing et 

al., 2011). In the fed state when the supply of energy is high, insulin promotes the storage and 

utilization of glucose and lipids. When insulin sensitivity is impaired, insulin is unable to up 

regulate the transcription of glucokinase and glycogen synthase (Fig. 1.3) resulting in the 

inability to store glucose in the form of glycogen (Boron and Boulpaep, 2005). Furthermore, 

insulin insensitivity will result in uninhibited activity of glycogen phosphorylase and 

glucose-6-phosphatase allowing for the uncontrolled breakdown o f glycogen despite already 

elevated blood glucose levels. Insulin insensitivity also prevents glycolysis and the oxidation 

of pyruvate through impairments in the activity of glucokinase, phosphoffuctokinase, and 

pyruvate dehydrogenase resulting in the inability to break down glucose and the conversion 

to pyruvate. Inhibition of gluconeogenesis by the liver also becomes disrupted in cases of 

insulin insensitivity by preventing the inhibition o f phosphoenolpyruvate carboxykinase, 

fructose-1,6-bisphosphatase, and glucose-6-phosphatase (Boron and Boulpaep, 2005) 

allowing for synthesis o f glucose from pyruvate and further contribution to the chronic 

elevations in blood glucose levels in patients with T2D.
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VLDL

Figure 1.3 Mechanisms of insulin action in liver cells. In the liver, insulin plays a regulatory 
role in both glucose and lipid metabolism. Insulin promotes the utilization of glucose through 
activation of enzymes involved in glycolysis and the storage o f glucose through activation of 
enzymes involved in glycogen synthesis. Insulin also prevents the de novo synthesis of 
glucose through inhibition of enzymes involved in glycogenolysis and gluconeogenesis. 
Regulation of lipid metabolism in the liver is achieved through activation of enzymes 
promoting the conversion of FFAs to TAGs for transport to adipose tissue in VLDLs.

10



In addition to its role in glucose regulation, insulin is an important regulator o f lipid 

metabolism in the liver. In the fed state, this regulation of lipid metabolism ultimately results 

in the formation o f TAGs from FFAs which are then stored in the form of VLDLs for 

transport in the blood plasma to adipose tissue (Boron and Boulpaep, 2005). Impairments in 

insulin sensitivity prevent the activity of acetyl CoA carboxylase and fatty acid synthase, 

disrupting the conversion of acetyl CoA to FFA CoA. By impairing the formation of FFA 

CoA, insulin insensitivity ultimately causes the accumulation of FFAs in hepatocytes and 

prevents their transport to adipose tissue for storage.

In skeletal muscle, it has been suggested that mitochondrial dysfunction in muscle 

tissue may play a role in the development o f insulin resistance in T2D (Schrauwen et al., 

2010). One culprit for the mitochondrial dysfunction seen in muscle tissue is the 

accumulation of reactive oxygen species (ROS) leading to peroxidation of lipid species that 

can have detrimental effects on mitochondrial RNA and proteins resulting in impaired 

mitochondrial function (Schrauwen et al., 2010). It has also been shown that presence of 

toxic lipid species such as ceramides can prevent the translocation of the GLUT4 transporter 

into the plasma membrane (Hoehn et al., 2008; JeBailey et al., 2007), as well as disrupt the 

activation of the insulin receptor through promotion of phosphorylation at serine residues in 

place of tyrosine residues on IRS-1 (Yu et al., 2002).

1.3 Lipotoxicity and p-cell failure in type 2 diabetes

Type 2 diabetes is thought to be initiated by the previously described impairments in 

insulin sensitivity associated with the lipotoxic effects in peripheral tissues; however, it has 

also been suggested that direct lipotoxic effects on p-cell function may contribute to the 

impairments in insulin secretion that accompany insulin resistance, resulting in
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hyperglycemia. A predominant theory in the literature for P-cell failure is P-cell exhaustion 

and disruption of the insulin secretatory pathways seen in Figure 1.4 due to lipotoxic 

accumulation in the P-cell (Kahn et al., 2006; Poitout, 2004; Robertson et al., 2004).

Under normal circumstances, glucose is acquired exogenously from a meal or 

synthesized endogenously in the liver through the processes of gluconeogenesis and 

glycogenolysis to drive the production of the ATP required to carry out normal cellular 

processes. In response to elevated blood glucose levels and uptake of glucose by the P-cells 

of the pancreas, insulin is secreted and binds cell receptors on target tissues causing an 

uptake o f glucose in the periphery. There are several mechanisms by which the p-cell can be 

stimulated to secrete insulin, the primary mechanism being elevation in blood glucose levels 

(Fig. 1.4). Other mechanisms that act on P-cells to secrete insulin include an influx of amino 

acids into the P-cell, binding of FFAs to G-protein coupled receptors -40 and -119 

(GPR40/119), binding of incretin hormones released by the stomach to induce insulin 

secretion, and nerve activation from the parasympathetic nervous system (Boron and 

Boulpaep, 2005; Grassiolli et al., 2007; Kahn et al., 2006; Overton et al., 2008; Prentki and 

Nolan, 2006).
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Figure 1.4 Mechanisms of action for the potentiation of insulin secretion from pancreatic P- 
cells. External stimuli promote the secretion of insulin through five primary mechanisms. 
Binding of glucose (1) or amino acids (2) will increase pyruvate production from the citric 
acid cycle causing an increase in the ratio of ATP to ADP resulting in closure of ATP- 
dependent K+ channels and membrane depolarization. Depolarization causes an increase in 
intracellular Ca2+ concentrations which promotes exocytosis of insulin granules. Binding of 
FFAs to G-coupled protein receptors (3) or incretin hormones to their respective receptors (4) 
will cause either closure of K+ channels through protein kinase A (PKA) activity or have 
direct effects on increasing intracellular Ca2+ levels through protein kinase C (PKC) activity. 
Activation of PKC can also be achieved by innervation from the parasympathetic nervous 
system (5) resulting in elevations in intracellular Ca2+ and the exocytosis of insulin granules. 
Modified from Boron and Boulpaep, 2005.
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As T2D progresses, tissues become more resistant to insulin, and P-cells increase 

insulin secretion to compensate for the decrease in insulin sensitivity. In many patients, the 

compensatory increase in insulin is not sustained as p-cells ultimately fail, resulting in 

impaired insulin secretion in conjunction with insulin insensitivity in peripheral tissues and 

induction of hyperglycemia in T2D (Poitout, 2004; Robertson et al., 2004). Lipotoxic effects 

of ectopic lipid accumulation described as a mechanism for insulin resistance in skeletal 

muscle, liver, and adipose tissue above, have also been associated with similar impairments 

on P-cell function. Although acutely FFAs stimulate insulin secretion, prolonged exposure of 

P-cells to FFAs impairs insulin secretion (Carpentier et al., 2000; Lee et al., 1994; Poitout, 

2004; Robertson et al., 2004; van Herpen and Schrauwen-Hinderling, 2008). The specific 

mechanisms by which ectopic lipid accumulation inhibits insulin secretion remains unclear. 

Ceramides and diacylglycerols have been shown to induce oxidative stress inducing 

apoptosis of P-cells (Summers, 2006; van Herpen and Schrauwen-Hinderling, 2008) while 

other studies suggest that changes in the expression of genes related to insulin secretion and 

other related signalling pathways may be the cause of impaired P-cell function due to 

elevations in the levels of FFAs (Lameloise et al., 2001; Shao et al., 2013; van Herpen and 

Schrauwen-Hinderling, 2008).

The lipotoxic hypothesis shows the progression of obesity-induced T2D as a 

confounding cycle in which oversupply of nutrients leads to lipotoxic accumulation of 

cytotoxic lipid species, resulting in insulin insensitivity in peripheral tissue and impaired 

insulin secretion from P-cells. Together, impairments in insulin sensitivity and secretion will 

lead to further impairments in lipid storage and alterations in immune response, lipid profiles, 

and adipokine profiles, which further exacerbate dyslipidemia in diabetic patients.
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At the heart o f this entire lipotoxic dilemma is the characterization and quantitation of 

lipid species disrupting the function of various cell types. As such, it would be wise to 

examine the regulation of lipid pathways to gain a better understanding o f the specific lipid 

species involved in lipotoxic impairment o f non-adipose tissue function. One such regulatory 

element that is known to play a primary role in the regulation of lipid metabolism is a family 

of nuclear transcription factors known as peroxisome proliferator activated receptors 

(PPARs) (Lee et al., 2003).

1.4 Peroxisome proliferator activated receptors: master regulators of lipid metabolism

PPARs are a family o f nuclear transcription factors that have been shown to have key 

regulatory effects on lipid metabolism (Barrera et al., 2008; Filip-Ciubotaru et al., 2011). The 

PPAR family consists of four isoforms in humans; PPARa, PPARp/8, PPARyl, and 

PPARy2, all of which are variably expressed throughout the body and have varied functions 

with respect to lipid metabolism (Barrera et al., 2008).

More specifically, PPARs are a member of the steroid hormone nuclear receptor 

family (Barrera et al., 2008). Upon binding of a FFA ligand to the ligand binding domain, the 

transactivating domain will undergo a conformational change and allow for 

heterodimerization with the retinoic X receptor and allow for binding to DNA at the 

peroxisome proliferator response elements (PPREs) within the promoter region of target 

genes (Palmer et al., 1995).

PPARa is highly expressed in liver and skeletal muscle in which activation will 

induce transcription o f genes involved in fatty acid oxidation (Evans et al., 2004). It has been 

seen that PPARa activation is a result of a fasting response in which pro-oxidative effects 

would be desirable in times o f fasting when exogenous nutrient supplies are low. It has also
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been shown recently that the pro-oxidative effects o f PPARa activation specifically in P-cells 

of obese mice are able to preserve p-cell function despite exposure to a high fat diet (Hogh et 

al., 2013).

PPARp/5, commonly termed PPARS, is also a pro-oxidative member of the PPAR 

family. PPARS has been shown to be expressed in similar levels across several tissue types 

(Barrera et al., 2008) and is an important mediator in lipid metabolism specifically in skeletal 

muscle and adipose tissue (Barish et al., 2006; Evans et al., 2004). In these tissues PPARS 

has been shown to play an important role in energy uncoupling and inhibition of 

macrophages in the immune response (Barish et al., 2006). More recently, a study has shown 

that PPARS may also play a role in the mechanical machinery required for the secretion of 

insulin in pancreatic p-cells (Iglesias et al., 2012).

PPARyl and PPARy2 have been established as primarily lipogenic and adipogenic 

transcription factors within the PPAR family. Being expressed most highly in adipose tissue, 

PPARyl and PPARy2 activation has been shown to increase lipogenesis and lipid storage as 

well as adipogenesis and adipokine production in adipose tissue (Evans et al., 2004;

Tontonoz et al., 1995; Tontonoz et al., 1994).

With their potent effects on lipid metabolism, PPARs are the molecular targets of 

pharmacological therapies for metabolic syndrome and T2D. Most notably, activation of 

PPARyl and PPARy2 is the mechanism of action for the thiazolidinediones (TZDs), a class 

of anti-diabetic drug (Forman et al., 1995; Lehmann et al., 1995) that potently improves 

insulin sensitivity and thus normalizes hyperglycemia in patients with T2D. Furthermore, 

synthetic PPARa agonists, the fibrates, are a class o f drug that have been designed to 

selectively target PPARa to effectively improve hypercholesterolemia and improve lipid
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profiles of patients with dyslipidemia (Lalloyer et al., 2006; Reifel-Miller et al., 2005; Staels 

et al., 2008). More recent studies have also attempted to couple the effect o f PPARS or 

PPARa activation with activation o f PPARy to combine the pro-oxidative benefits of PPARa 

or PPARS with the lipogenic characteristics of PPARy (Fievet et al., 2006; Gathiaka et al., 

2013).

1.5 A novel study for the characterization of PPARS and PPARy in pancreatic P-cell 
lipid metabolism

Many studies have investigated the impact of lipotoxicity causing impaired insulin 

sensitivity in peripheral tissue as well as impaired insulin secretion from P-cells o f the 

pancreas. What still remains unclear are the precise mechanisms by which the accumulation 

of lipid in P-cells disrupt the insulin secratory mechanisms described previously in this 

chapter. While a number of studies have explored the regulatory role of PPARs on lipid 

metabolism, immune response, and proliferation in insulin sensitive tissues, the impact of 

PPARs on lipid metabolism in pancreatic P-cells remains largely unknown.

Previously, Dr. Gray's laboratory has shown that PPAR overexpression in pancreatic 

P-cells of obese mice alters carbohydrate metabolism. Specifically overexpression of pro- 

oxidative PPARa in pancreatic P-cells improves carbohydrate metabolism in obese mice 

(Hogh et al., 2013), while P-cell overexpression of PPARyl or PPARy2 worsens obesity 

induced impairment of carbohydrate metabolism in obese mice (Hogh et al., 2014).

I hypothesize that p-cell specific overexpression of PPARs in a setting of obesity 

will alter p-cell lipid metabolism impacting p-cell function. This hypothesis will be 

explored through two studies; study 1 will examine if overexpression o f PPAR5 in 

pancreatic P-cells under lipotoxic conditions affects glucose stimulated insulin secretion with
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associated changes in gene expression (Chapter 2), and study 2 will utilize a mouse model of 

obesity to examine if p-cell specific overexpression of PPARy2 will induce changes in islet 

lipid and gene expression profiles associated with impairments in carbohydrate metabolism 

in these mice (Chapter 3).

These studies may provide evidence to support an important role for PPARs in the 

regulation of islet cell lipid metabolism and perhaps provide evidence to support the 

development o f PPAR targeted treatment strategies for p-cell dysfunction seen in patients 

with obesity induced T2D. Additionally, these studies will provide further insight into the 

types of lipid species contributing to lipotoxic P-cell failure in obesity.
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CHAPTER 2

Characterization of P-cell specific overexpression of PPARS on glucose stimulated
insulin secretion in vitro
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2.1 INTRODUCTION

Peroxisome proliferator activated receptor-5 (PPAR8) belongs to the PPAR nuclear 

transcription factor family, which regulates lipid metabolic pathways (Barrera et al., 2008; 

Filip-Ciubotaru et al., 2011). Previously PPARy and PPARa have been the primary members 

of the PPAR family targeted for improving insulin sensitivity and dyslipidemia respectively 

(Ravnskjaer et al., 2005; Reifel-Miller et al., 2005); however, in recent years PPAR5 has 

emerged as an alternative target that, when activated, may improve both o f these states in 

patients suffering from the metabolic syndrome and T2D (Barish et al., 2006).

Being expressed in several tissues throughout the body, including heart, muscle, 

adipose, liver, and intestines, PPAR5 function has been shown to play important roles in {}- 

oxidative pathways as well as in inflammation, and regulation of glucose metabolism. 

Collectively, these tissue specific effects o f PPARS activation have been shown to help 

regulate body weight, improve dyslipidemia, and improve peripheral insulin sensitivity 

(Barish et al., 2006; Gathiaka et al., 2013).

Congestive heart failure is one of the risks associated with the metabolic syndrome 

and is associated with decreased fatty acid oxidation (FAO) and a shift to a dependence on 

glucose metabolism (Stanley et al., 2005). A study in which PPAR5 expression was knocked 

out in cardiac tissue demonstrated that decreased contraction and relaxation o f cardiac 

muscle was associated with decreased cardiac output and failure (Cheng et al., 2004). 

Furthermore, it was found that failure resulting from deletion of PPARS was due to 

suppression of oxidative genes and lipid accumulation.

Muscle tissue is a highly active metabolic tissue and expresses PPARS at fifty times

that of PPARy and 10 times that of PPARa (Braissant et al., 1996). One study has suggested

that PPARS activation in muscle is an effective means o f reducing lipid strain on adipocytes
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to prevent lipotoxicity through increasing p-oxidation during high fat feeding (Tanaka et al., 

2003). Other studies have shown that PPAR5 mRNA is increased in response to fasting and 

exercise in muscle tissue and have suggested a role for PPAR5 in increasing FAO and 

insulin-dependent glucose uptake in these cells (Holst et al., 2003; Luquet et al., 2003).

Another tissue in which PPAR8 has been shown to play an important role in 

dyslipidemia and lipotoxicity through its regulation of p-oxidation and inflammation is 

adipose tissue. Overexpression of PPARS specifically in adipose tissue has been shown to 

play a protective role against obesity. Improvements in these transgenic mice are associated 

with a 20% reduction in body weight and a 40% lower inguinal fat pad mass (Wang et al., 

2003). These authors also noted a decrease in adipose tissue triglyceride content with 

reductions in circulating triglycerides and FFAs. Furthermore, the overexpression of PPARS 

in these mice caused an increase in the pro-oxidative genes uncoupling protein 1 and 3 

(UCP1 and 3). In contrast, these authors also report that in an adipose specific knockout o f 

PPARS, mice had significantly higher body mass with a reduction in the expression of UCP1 

and 3 (Wang et al., 2003). In summary, these authors suggest that PPARS improves 

dyslipidemia in adipose tissue by promoting fatty acid oxidation and increasing energy 

uncoupling, thereby improving insulin resistance in T2D.

Finally, PPARS has also been implicated in several metabolic pathways in the liver 

which may be implicated in the maintenance and treatment of the metabolic syndrome. The 

net result o f PPARS activation in the liver is a reduction in glucose output (Barish et al., 

2006). It is speculated that the PPARS dependent decrease in glucose output is due to an 

increased flux o f glucose into the pentose phosphate shunt resulting in an enhancement of 

fatty acid synthesis (Lee et al., 2006).
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Studies examining the targeted activation of PPAR8 may prove useful in the 

maintenance of symptoms associated with T2D and the metabolic syndrome. Administration 

of GW501516, a synthetic PPAR5 ligand, improves dyslipidemia by raising levels o f high 

density lipoproteins (HDL) while reducing circulating triglyceride levels (Oliver et al., 2001). 

It has been speculated that improvements in serum cholesterol levels are due to the increased 

expression of the ATP-binding cassette transporter 1 (ABCA1), a cholesterol transport 

protein, and decreased cholesterol absorption in the intestines due to a reduction in Niemann- 

Pick Cl-like 1 (Npclll), a protein involved in mediating the binding of cholesterol (van der 

Veen et al., 2005). PPARS activation has also been shown to mitigate the inflammatory 

immune response in macrophages (Barish et al., 2006), providing a possible target for 

improvements in adipose tissue expandability as a treatment for lipotoxicity and 

dyslipidemia.

Systemic administration of PPAR agonists have proven to be effective treatments for 

symptoms associated with T2D and the metabolic syndrome; however, it has been suggested 

that these treatments should be approached with caution as activation in all tissues may cause 

undesirable side effects. An example of such side effects occurs with systemic Rosiglitazone 

administration, in which PPARy improves peripheral insulin sensitivity at the cost of 

increased risk of cardiac failure (Nissen and Wolski, 2007). It is outlined here that activation 

of PPAR5 has varying tissue specific effects and therefore its role should be considered in all 

metabolic tissues before systemic administration of PPARS ligands is considered as a 

therapeutic approach to manage metabolic disease. Therefore, I am interested in the role of 

PPAR8 in pancreatic P-cells, a cell type where the role of PPARS has still not been fully 

elucidated.
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Studies investigating the role of PPAR5 on lipid metabolism in vitro have suggested 

that PPARS activation in HIT-15 cells, a hamster-derived P-cell line, causes an upregulation 

o f genes involved in mitochondrial FAO and helps to alleviate the impairments on glucose- 

stimulated insulin secretion induced by palmitate (Wan et al., 2010). Specifically, the authors 

report increased expression of FAO genes uncoupling protein 2 (UCP2), long chain acyl- 

CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4) and carnitine 

palmitoyl transferase 1 (CPT1). Further studies in INS 1 cells, a rat-derived P-cell line, report 

similar findings suggesting PPARS restores glucose-stimulated insulin secretion in conditions 

o f lipotoxicity and that PPARS is the most highly expressed member of the PPAR family in 

p-cells (Ravnskjaer et al., 2010).

In addition to its role in lipid metabolism in the p-cell, a recent in vivo model of p-cell 

specific PPARS knockout suggests a role for PPARS in the regulation of the cellular 

machinery involved in secretion of insulin granules (Iglesias et al., 2012). Here the authors 

report that removal of PPARS from the P-cell causes enhanced second phase insulin secretion 

associated with increased disassembly of filamentous actin, allowing for uninhibited 

secretion of insulin granules. These authors also report alterations in Golgi organization due 

to increased levels of protein kinase D (PKD).

The primary goal of this study will be to further characterize the role o f PPARS on P- 

cell function in a model of obesity. Chronic exposure to high levels of FFAs has been 

demonstrated to induce lipotoxicity in p-cells and impair glucose stimulated insulin secretion 

and induce apoptosis (Carpentier et al., 2000; Lee et al., 1994; Poitout, 2004; Robertson et 

al., 2004; van Herpen and Schrauwen-Hinderling, 2008).
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I hypothesize that overexpression of PPARS in a (J-cell line will restore glucose 

stimulated insulin secretion to levels seen in a non-lipotoxic settings due to the pro- 

oxidative potential of PPARS. This hypothesis will be tested through two experimental 

aims:

In aim 1 1 will measure oxidative gene expression in response to overexpression and 

activation o f PPARS in P-cells.

In aim 2 I will assess the impact of PPARS overexpression on p-cell function by measuring 

glucose stimulated insulin secretion in normal and lipotoxic conditions.

Results from these studies will set the ground work for future in vivo studies 

evaluating the effects o f P-cell specific overexpression of PPARS on whole animal glucose 

homeostasis in obesity induced T2D. Additionally, the use of palmitate will allow us to 

assess the suitability of long chain FAs as a natural PPARS ligand, an area o f research that 

remains yet unaddressed in the literature.

2.2 MATERIALS AND METHODS

Preparation of PPARS construct

A plasmid (dsAAV8) containing the Mus musculus-derived PPARS gene (GenBank 

ID: NC 000083.6) insert under control of the rat insulin promoter (dsAAV8-RIP-PPARS, 

5931 bp) was transformed into XL 1-Blue competent Escherichia coli cells for cloning. Cells 

were lysed and plasmid DNA was purified (Plasmid Plus Giga Kit, Qiagen, Valencia CA, 

USA). A restriction enzyme digest was performed using Mlul endonuclease (New England 

Biolabs, Whitby ON, Canada) and plasmid DNA sequenced to ensure plasmid contained the 

RIP-PPARS inserted region which can be expressed only in the presence of insulin.
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Cell culture

Several insulinoma cell lines have been generated for the in vivo examination o f P- 

cell function. Two of the most widely used o f these cell lines are MIN6, derived from mouse 

pancreatic islets, and INS1, derived from rat pancreatic islets (Skelin et al., 2010). For the 

purpose of this study, MIN6 cells were used for their ability to more closely mimic p-cells in 

vitro with respect to insulin secretion in response to glucose stimulation. Due to their robust 

nature and ease of culturing, INS1 cells were used in luciferase assays in which transfection 

of multiple constructs was required.

MIN6 cells were cultured using Dulbecco's Modified Eagles Medium (DMEM) 

(D5671, Sigma, Oakville ON, Canada) at 37°C and 5% CO2. Culture media was 

supplemented with 10% fetal bovine serum (vol/vol) (F6178, Sigma, Oakville ON, Canada ), 

200mM L-glutamine (G7513, Sigma, Oakville ON, Canada), 50pmol/L P-mercaptoethanol 

(M3148, Sigma, Oakville ON, Canada), and lOOU/mL penicillin-streptomycin (P4333, 

Sigma, Oakville ON, Canada).

INS1 cells were cultured using RPMI-1640 Medium (R8758, Sigma, Oakville ON, 

Canada) at 37°C and 5% CO2. Culture media was supplemented with 10% fetal bovine serum 

(vol/vol) (F6178, Sigma, Oakville ON, Canada ), lOmM HEPES (G7513, Sigma, Oakville 

ON, Canada), 25pmol/L P-mercaptoethanol (M3148, Sigma, Oakville ON, Canada), and 

lOOU/mL penicillin-streptomycin (P4333, Sigma, Oakville ON, Canada).

For overexpression of enhanced Green Fluorescent Protein (eGFP) and PPAR5,

MIN6 (Passage 18-24) and INS1 (Passage 85-95) cells were cultured at 50% confluency in

media containing no antibiotic. Cells were transfected with 800ng of plasmid DNA (24-well

plate) or 200ng of plasmid DNA (96-well plate) using lpL per well of Lipofectamine 2000

(11668019, Invitrogen, Burlington ON, Canada) and lOOpL per well of OPTI-MEM
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(11058021, Invitrogen, Burlington ON, Canada). Transfection efficiency of plasmid DNA 

was assessed by visualization of eGFP using 70% efficiency as an acceptable cut-off (Fig. 

S2.2).

Upon successful transfection of plasmid DNA, cells were incubated for either 24 or 

48 hours in cell culture media containing no treatment, 250pM palmitate, 500pM palmitate, 

DMSO vehicle (1:2000), or GW501516 in DMSO. Palmitate media was prepared (500pM 

stock concentration) by dissolving 56mg palmitic acid (P5585, Sigma, Oakville ON, Canada) 

in lOmL of water containing lmL of 1M NaOH. This solution was then heated to 70°C and 

0.5mL combined with 1.65mL of 20% bovine serum albumin (BSA) (A6003, Sigma, 

Oakville ON, Canada) preheated to 37°C. Complexed BSA and palmitic acid (6:1 molar 

ratio) were then added to 17.85mL of cell culture media preheated to 37°C. GW501516 

media was initially prepared by dissolving lmg GW501516 (ALX-420-032-M001, Enzo Life 

Sciences, Farmingdale NY, USA) in DMSO to create a 50pM stock solution; however, upon 

review of the luciferase assay results reported below, where it was observed that high 

concentrations of DMSO were not appropriate as a vehicle control, GW501516 was re­

prepared as a 2000pM stock solution in DMSO. Final GW501516 working solutions were 

created at a concentration o f 1 pM in cell culture media after optimization of treatment 

conditions with qPCR (outlined in results).
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Gene expression optimization

A recent publication regarding the use of qPCR suggests that several factors must be 

considered before one can publish robust data generated using this method (The MIQE 

guidelines) (Bustin et al., 2009). Some of these factors include proper handling o f RNA and 

generation of cDNA, optimization of PCR reaction efficiencies, and the use of stably 

expressed endogenous control genes with which to compare relative gene expression levels.

Relative gene expression is calculated taking into consideration the amplification 

efficiencies of primers and probes. Previously it has been acceptable to simply assume an 

amplification efficiency of 2, representing a perfect doubling of PCR product with each cycle 

of amplification. The MIQE guidelines suggests that expression levels should be calculated 

based on the actual efficiency for a given primer and probe set (Bustin et al., 2009), as this 

value will not be exactly 2 in all cases. For this reason, primer and probe sets for all genes 

evaluated in this study were designed and the optimal annealing temperature was established 

using a temperature gradient. Specificity o f primer and probe sets were evaluated on an 

agarose gel or using a melt curve with the Bio-Rad iQ5 software. After establishing 

specificity, standard curves for each primer and probe set were constructed to ensure 

efficiencies fell within the range of 1.8-2.2 (Table 2.1). Gene expression levels were then 

calculated using these calculated efficiency values.
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Table 2.1. Efficiency values (E) with slope and correlation coefficients (R2) for primer and 
probe sets optimized for gene expression analysis using optimal annealing temperature (Ta).

Gene Slope E R* Ta (°C)
Reference Targets
GAPDH 3.3481 1.99 0.996 65.0
P-actin 3.0145 2.09 0.990 67.7
GUSb 3.7727 1.84 0.998 61.7
TBP 3.483 1.94 0.989 61.7
Rpll9 3.5598 1.91 0.990 61.7

Targets o f  Interest
PPARS 3.219 2.04 0.999 55.9
CPU 3.236 2.04 0.994 57.0
UCP2 3.346 1.99 0.999 57.0
LCAD 3.125 2.09 0.999 57.0
PDK4 3.685 1.87 0.999 62.2
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Comparison o f gene expression levels using endogenously expressed housekeeping 

genes reduces variability in the qPCR reaction and should always be used according to the 

MIQE guidelines. To ensure suitable endogenous control genes were used in this study, five 

housekeeping genes were evaluated across conditions in which RNA was extracted from 

MIN6 cells overexpressing PPAR8 or eGFP and treated with 250pM palmitate or untreated 

cell culture media and the three most stably expressed genes were used in the experimental 

gene expression analysis. Using GeNorm's algorithm for establishing variability and an M- 

value cut off o f 1, it was found that P-glucuronidase (GusB), TATA-Binding protein (TBP), 

and p-actin were more stably expressed in p-cells than glyceraldehyde 3-phosphate 

(GAPDH) and 60S ribosomal protein L19 (Rpll9) (Fig. S2.3). As such, all future PPARS 

gene expression experiments were carried out with GusB, TBP, and p-actin as endogenous 

controls.

Gene expression Analysis

RNA was extracted from MIN6 cell cultures using RNeasy Mini Kit spin columns 

(74104, Qiagen, Valencia CA, USA). Total RNA samples were treated with Ambion 

TURBO-DNA free (AM 1907, Invitrogen, Burlington ON, Canada) to remove potential 

genomic DNA contamination. Concentration of RNA was determined using the Qubit RNA 

Broad Range Assay (Q10211, Invitrogen, Burlington ON, Canada) and purity assessed using 

260nm and 280nm absorbance readings from an ND-1000 spectrophotometer. Integrity of 

RNA samples was evaluated by visualizing intact 18S and 28S ribosomal RNA subunits 

separated on a 1.5% agarose gel (Supplemental Fig. 2.2). Reverse transcription was then 

earned out to generate cDNA using lpg o f input RNA with an iScript cDNA synthesis kit
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utilizing both oligo(dT) and random hexamer primers (170-8891, BioRad Laboratories, 

Hercules CA, USA).

cDNA was then used to evaluate gene expression levels relative to P-actin, TBP, and 

GusB. All qPCR reactions were carried out in triplicate using master mix containing 12.5pL 

iQ Supermix with Taqman probe (2.55pM), 2.5pL forward and reverse primers (lOpM), 

2.5pL RNAse free H2O, and 2.5pL cDNA (BioRad Laboratories; Sigma, Oakville, ON, 

Canada; IDT, Coralville, IA, USA; Ambion, Austin, TX, USA). Primer and probe sequences 

for these genes can be found in Table 2.2. Reactions were conducted on a BioRad iQ5 qPCR 

machine (BioRad iQ5 Multicolor RT-PCR Detection System, BioRad Laboratories, Hercules 

CA,

USA) using the following temperatures, times, and number of cycles: one cycle at 95°C for 

3min followed by 40 cycles alternating between 95°C for 10 seconds and primer-specific 

annealing temperature for 30 seconds.

Relative gene expression levels o f PPARS, carnitine palmitoyltransferase 1 (CPT1), 

uncoupling protein 2 (UCP2), long chain acyl-CoA dehydrogenase (LCAD), and pyruvate 

dehydrogenase kinase 4 (PDK4) were calculated with the delta-delta Ct method using 

Biogazelle's qbasePlus qPCR software (Zwijnaarde, Belgium). Primer and probe sequences 

for all endogenous control genes and experimental genes can be found in Table 2.2.
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Table 2.2 Primer and probe sequences used for real-time qPCR analysis of RNA extracted 
from MIN6 cells.

Gene Forward Primer (5'-3') Reverse Primer (5'-3') Probe (5'-3')
Endogenous
Controls
P-actin GCTCTGGCTCCTAGCACCAT GCCACCGATCCACACAGAGT GATCAAGATCATTGCTCCTCCTGAGCG

TBP CACCAATGACTCCTATGA CCAAGATTCACGGT AG AT A CCTATCACTCCTGCCACACCA

GusB CTCATCTGGAATTTCGCCGA GGCGAGTGAAGATCCCCTTC CGAACCAGTCACCGCTGAGAGTAATC

GAPDH TGCACCACCAACTGCTTAG GGATGCAGGGATGATGTTC CAGAAGACTGTGGATGGCCCCTC

Rpll9 GAAGCTGATCAAGGATGG CTTCCCTATGCCCATATG CATCCGCAAGCCTGTGACTG

Target Genes
PPAR8 CAACGAGATCAGTGTGCA TCACCTGGTCATTGAGGAA TCTACCGCTGCCAGTCCACCACA

CPT1 GCGTGCCAGCCACAATTC TCCATGCGGTAATATGCTTCAT CCGGTACTTGGATTCTGTGCGGCC

UCP2 GATCTCATCACTTTCCCTCTGGATA CCCTTGACTCTCCCCTTGG CGCCAAGGTCCGGCTGCAGA

LOAD GCATGAAACCAAACGTCTGGA TGTTTTGTAATTCAGATGCCCAGT TCCGGTTCTGCTTCCATGGCAAAA

PDK4 GACACGCTGGTCAAAGTTC GGACTACTGCTACCACATCA ATGTGGTCCCTACAATGGCTCAAGGCA
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Luciferase assay

To assess the ability to overexpress functional PPAR8 protein, a dual-luciferase 

reporter assay was used. The PPAR reporter assay (CCS-3026L, Qiagen, Valencia CA, USA) 

contains plasmid DNA with a firefly luciferase gene insert under control o f the peroxisome 

proliferator response element (PPRE-Luc). Expression o f Firefly luciferase is driven by the 

binding of the PPRE in the promoter region of the Firefly luciferase gene (Fig. 2.1). As such, 

using a luminometer to measure quantity o f light and the activity o f the luciferase enzyme in 

the conversion o f luciferin to oxyluciferin can be used as measure of active PPAR 

transcription factors. The PPAR reporter assay also contains a plasmid with a constitutively 

active Renilla luciferase (CMV-Luc) to normalize for transfection variability of firefly 

luciferase.
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Figure 2.1 Ligand binding o f PPAR5 will induce PPRE binding in the promoter region o f the 
luciferase gene. Luciferase activity can then be used as a measure of functional PPAR 
activity in cell culture. Figure modified from Snider, 2014.
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Experimental groups were established by co-transfecting INS1 cells with either RIP- 

eGFP, PPRE-Luc, and CMV-Luc constructs; or RIP-PPAR8, PPRE-Luc, and CMV-Luc 

constructs. Negative controls were established by transfecting cells with a construct 

containing a non-inducible luciferase gene and positive controls were established by 

transfecting cells with a construct containing a constitutively active Firefly luciferase gene. 

Cells were transfected and transfection efficiency assessed using fluorescent microscopy to 

visualize eGFP. Upon successful transfection, cells were incubated with untreated cell culture 

media, 250pM palmitate, DMSO vehicle (1:50 or 1:2000 v/v), or lpM GW501516 media.

Firefly and Renilla luciferase activity was measured using a Dual-Glo Luciferase 

Assay System (E2920, Promega, Madison WI, USA) with a luminometer to measure light 

intensity (Synergy 2 Multi-Mode Microplate Reader, BioTek, Winooski VT, USA). Results 

are expressed as a ratio of Firefly luminescence/Renilla luminescence.

Glucose stimulated insulin secretion assays

To assess the effect of PPAR8 activation and overexpression on insulin secretion in 

both non-obese and obese settings in MIN6, cells underwent a glucose stimulated insulin 

secretion and insulin content of the media was measured.

Cells initially underwent two 1-hour glucose starvation periods in which they were 

incubated in glucose-free KRH buffer containing 5M NaCl, 1M KC1,1M Mg2S 0 4, 1M 

NaHC03, 1M CaCl2, 0.5M KH2P 04, 1M HEPES, and 0.5g BSA (Sigma, Oakville ON, 

Canada). Cells were then incubated for 1 hour in KRH buffer containing either basal 

(2.8mM) or stimulated (20mM) levels o f D-glucose (G8270, Sigma, Oakville ON, Canada) 

after which the buffer was collected for measurement of insulin.
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Insulin content was measured in triplicate using a Mouse Ultrasensitive Insulin 

ELISA (80-INSMSU-E01, Alpco, Salem NH, USA). Protein from cell culture wells was 

extracted using 400pL per well of RIPA buffer (R0278, Sigma, Oakville ON, Canada) 

containing IX HALT protease inhibitor and IX EDTA (78430, Thermo Scientific, Rockford 

Illinois, USA). Cells were incubated on ice for 5 minutes and the cell lysates collected and 

centrifuged for 15 minutes at 14,000xg. Supernatant was collected and total protein content 

measured using a Pierce BCA Protein Assay Kit (23225, Thermo Scientific, Rockford 

Illinois, USA). Insulin content from each sample was then normalized to total protein and 

expressed as ng insulin/mg protein.

Statistical analysis

Results are expressed as mean ± standard error o f the mean. Data were assumed to be 

normally distributed as tests for normality are difficult to conduct when working with small 

sample sizes such as cell culture biological replicates. One of the benefits of working with 

cell culture models is the high degree o f reproducibility between samples, which is often not 

the case when working with more heterogeneous human populations that require large 

sample sizes. For this reason, assuming a normal distribution and using student’s t-tests is 

acceptable here and most consistent with the literature. Comparisons were performed using 

student’s 1-tailed or 2-tailed t-tests with Graphpad Prism 6.0 software (La Jolla CA, USA). 

Significance was declared if p-values were less than 0.05.
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2.3 RESULTS

Preparation of PPAR8 construct

Restriction enzyme digest of purified plasmid DNA demonstrates successful cloning 

of dsAAV8 plasmid containing the RIP-PPAR5 gene insert (Fig. 2.2).
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Figure 2.2 Plasmid map demonstrating the location of Mlul restriction sites and RIP-PPAR5 
insert in dsAAV8 construct (a). Restriction enzyme digest shows successful cloning of 
dAAV8-RIP-PPAR8 construct (b). (UD=Undigested)
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Successful overexpression of PPAR8 mRNA in MIN6 transfected with RIP-PPAR8

Overexpression of PPAR8 induced by transfection of the RIP-PPARS plasmid was 

assessed in MIN6 cells using real-time PCR. It was found that MIN6 cells transfected with 

RIP-PPAR8 had a 95.08-fold increase in PPAR8 mRNA expression compared to non­

transfected MIN6 cells and a 130.7-fold change compared to cells overexpressing RIP-eGFP 

(Fig. 2.3). No significant difference in PPAR8 mRNA expression was observed between non­

transfected and RIP-eGFP cells.
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Figure 2.3 Transfection of MIN6 cells with RIP-PPAR8 plasmid resulted in a 95.08-fold 
increase in PPAR8 mRNA expression compared to non-transfected (NT) cells. 1-tailed t-test
***p < .001
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Gene expression analysis of MIN6 overexpressing PPAR5

Initial evaluation of gene expression resulted in no change to expression levels of 

PPAR8 target genes; CPT1, LCAD, and UCP2, after treatment with 250pM palmitate or 

lOOnM GW501516 for 48 hours (results not shown), while expression of PDK4 was 

undetectable in MIN6 mRNA samples. However, changes in gene transcription can occur 

within a specific window of time ranging from hours to days. It may be that changes in target 

gene expression are not detected when RNA samples are collected outside o f one o f these 

windows making it a possibility to observe no change in expression when these changes 

actually do exist. For this reason, optimal treatment times and optimal treatment 

concentrations to detect any changes in target gene expression were established in non­

transfected MIN6 cells so that target gene expression analysis could be repeated.

MIN6 cells treated with lpM GW501516 (1:50 v/v DMSO vehicle concentration) for 

6, 12,24, or 48 hours revealed significant increases in UCP2 (P = .05) after 24 hours of 

treatment and LCAD expression after treatment for 24 hours (P = .017) and 48 hours (P = 

.014) (Fig. 2.4). MIN6 cells treated with 250pM palmitate revealed a significant increase in 

expression of UCP2 (P = .037) and LCAD (P = .005); while treatment with 500pM palmitate 

caused a significant increase only in UCP2 (P = .042). Furthermore, the DMSO vehicle 

induced a significant increase in LCAD expression (P = .004), however, when treated with 

lpM  GW501516 expression of LCAD was significantly increased above the DMSO vehicle 

control (P = .027) (Fig. 2.5). Taken together, it was concluded that the experimental 

procedure should be duplicated with optimized parameters of 24 hours incubation time with 

250pM palmitate, and lpM GW501516.
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Figure 2.4 Optimization of treatment time for the induction of PPAR5 target genes in MIN6 
cells revealed that 24 hours o f treatment with l pM GW501516 ( l :50 v/v DMSO vehicle) was 
optimal and caused increases in two out o f three PPAR5 target genes. 2-tailed t-test 
*p < .05
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Figure 2.5 Optimization of ligand concentrations in MIN6 cells revealed that 250pM 
palmitate, and lpM GW501516 (1:50 v/v DMSO vehicle) were optimal for inducing 
increases in PPAR5 target genes LCAD and UCP2, and that the DMSO vehicle control 
caused an increase in expression of LCAD. 2-tailed t-test *p < .05, **p < .01 (V = DMSO 
vehicle control, GW = GW501516).
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Upon optimization of treatment times and ligand concentrations, the gene expression 

analysis of MIN6 cells overexpressing PPAR8 was repeated and it was found that treatment 

with 250pM palmitate or lpM GW501516 (1:50 v/v DMSO vehicle) both caused no increase 

in PPAR5 target genes UCP2 or LCAD (Fig. 2.6). These results are difficult to interpret, as 

both previous studies (Wan et al., 2010) and optimization of treatment conditions both show 

that activation with the PPAR8 ligand GW501516 can cause upregulation o f UCP2 and 

LCAD; however, upon repeating the experiment in which PPAR8 was overexpressed in 

MIN6 cells, no induction of these target genes was observed even when looking at RIP-eGFP 

control cells. Based on the inability to reproduce the upregulation of these PPAR5 target 

genes, it was decided that examination into ability of the PPAR5 construct to overexpress 

functional protein needed to be evaluated in a more controlled system before re-evaluating 

the effects of PPAR5 overexpression on upregulation of downstream target genes. For this 

reason, a PPAR-response element reporter system was utilized to look at the effect of PPAR8 

overexpression in the presence of GW501516, a high affinity PPAR8 ligand.
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Figure 2.6 Overexpression of PPAR8 in MIN6 cells treated with 250pM palmitate or lpM 
GW501516 (1:50 v/v DMSO) caused no change in expression of PPAR5 target genes UCP2 
or LCAD. 2-tailed t-test (V -  DMSO vehicle control, GW = GW501516).
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Overexpression of PPAR8 in INS1 yields functional PPAR8 protein

After target gene expression analysis in MIN6 cells overexpressing PPAR8 resulted 

in inconclusive findings, a PPAR-response element luciferase reporter assay was utilized as a 

more controlled system in which it was possible to assess the ability of the RIP-PPAR5 

construct to overexpress functional PPAR8 protein capable of binding to the peroxisome 

proliferator response element (PPRE) promoter region (Fig. 2.1). Initially it was found that 

INS1 cells treated with lpM GW501516 caused significantly increased luciferase activity; 

however, a vehicle treatment with 1:50 (v/v) DMSO also induced a significant increase in 

luciferase activity (results not shown). These findings highlighted an error in the original 

experimental design, which was likely impacting the results of previously conducted gene 

expression studies examining the effects of PPAR5 overexpression on regulation of target 

gene expression. The high concentration of DMSO (1:50 v/v) was itself inducing changes in 

target gene expression making it difficult to decipher the effects of PPAR8 agonism from 

DMSO effects in cell culture media. It was decided that robust conclusions could not be 

drawn from studies assessing the effects of PPAR8 activation with lpM GW501516 where 

the ligand was being delivered to cell culture media with such a high concentration of DMSO 

(1:50 v/v) and a new GW501516 stock solution was prepared in which the ligand could be 

added to cell culture media with a DMSO concentration of 1:2000 (v/v) while maintaining a 

final GW501516 concentration of lpM in cell culture media.

Upon preparation of a new 1 pM GW501516 stock solution (1:2000 v/v DMSO),

luciferase activity was re-assessed and it was observed in the RIP-eGFP control group that

palmitate induced a significant increase in luciferase activity (P < .001), while treatment of

RIP-eGFP cells with DMSO or the synthetic PPAR8 ligand GW501516 caused no increase in

luciferase activity (Fig. 2.7). When examining the effect of palmitate treatment on RIP-
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PPAR5 cells, it can be seen that luciferase activity is not significantly different than 250pM 

palmitate treated RIP-eGFP cells.

When comparing RIP-eGFP and RIP-PPAR5 INS1 cells without palmitate or 

GW501516, it was found that there was no difference in luciferase activity. Furthermore, 

RIP-PPAR8 cells showed no activation o f luciferase when treated with DMSO (1:2000 v/v), 

indicating that DMSO at the lower concentration is not causing activation of the PPRE. 

Results showed that treatment of RIP-PPAR5 cells with specific ligand (lpM  GW501516) 

induces a significant increase (P < .001) in luciferase activity not observed in the RIP-eGFP 

control cells treated with lpM GW501516.
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Figure 2.7 Treatment with GW501516 (1:2000 v/v DMSO), a synthetic PPAR5 ligand, 
reveals that overexpression with the RIP-PPAR5 plasmid in INS1 cells yields overexpression 
of functional PPAR5 protein and that palmitate may not be a preferential ligand for PPAR8. 
Luciferase activity is reported as a ratio o f Firefly luciferase/Renilla luciferase activity. 
2-tailed t-test **p < .01, ***p < .001
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Glucose stimulated insulin secretion in MIN6

Treatment o f control MIN6 cells (RIP-eGFP) with 250pM palmitate was found to 

decrease insulin secretion as expected due to the known lipotoxic effects o f palmitate 

exposure (Fig. 2.8) (P = .001) (Wan et al., 2010). Upon treatment o f RIP-eGFP cells with the 

PPAR8 ligand, lpM GW501516 (1:2000 v/v DMSO), it was found that stimulated insulin 

secretion levels were restored to levels of control cells treated with DMSO (P = .04), and that 

cells treated with 250pM palmitate were able to maintain stimulated insulin secretion levels 

in the presence of lpM GW501516.

When observing the effects of PPAR5 overexpression on insulin secretion in MIN6 

cells, it was found that increased PPAR5 levels in the presence of lpM GW501516 had no 

effect compared to cells overexpressing eGFP treated with lpM GW501516. Interestingly, in 

a lipotoxic setting in which cells were overexpressing PPAR8 and treated with 1 pM 

GW501516, decreased stimulated levels of insulin secretion were observed (P = .015) (Fig. 

2 .8).
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Figure 2.8 Glucose stimulated insulin secretion revealed that activation of endogenous 
PPAR5 in MIN6 cells preserved {3-cell function in a lipotoxic environment. Overexpression 
and activation of PPAR5 alone had no effect on glucose stimulated insulin secretion while in 
a lipotoxic environment PPAR8 overexpression and activation impaired glucose stimulated 
insulin secretion. 2-tailed t-test *p < .05
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2.4 DISCUSSION

Targeted activation of PPAR8 is emerging as a promising treatment for dyslipidemia 

and insulin resistance associated with T2D and the metabolic syndrome (Barish et al., 2006). 

PPAR8 activation with synthetic agonists has shown to improve serum cholesterol levels 

while restoring peripheral insulin sensitivity in rodent models of obesity and T2D (Oliver et 

al., 2001; van der Veen et al., 2005); however, tissue specific effects of systemic PPAR8 

activation need to be considered before a widely used treatment strategy can be adopted. The 

metabolic role of PPAR8 in pancreatic p-cells is still not clearly defined in the literature and 

should be further elucidated.

Previous in vitro studies have suggested PPAR8 activation plays a protective role 

against obesity-induced P-cell failure (Ravnskjaer et al., 2005; Ravnskjaer et al., 2010; Wan 

et al., 2010) while other in vivo models suggest that PPAR8 is responsible for inhibiting 

insulin secretion through changes in cellular machinery (Iglesias et al., 2012). The aim of this 

study was to further explore the role of PPAR8 in pancreatic P-cells in an obese setting and to 

examine the suitability of palmitate as a natural FA ligand for PPAR8. This was carried out 

using an in vitro model in which PPAR8 was overexpressed and subjected to a lipotoxic 

environment characteristic o f obesity.

Gene expression analysis confirmed that transfected MIN6 cells exhibited significant

overexpression o f PPAR8 mRNA (Fig. 2.3), after which it was decided that PPAR8 target

gene expression would be assessed to explore the functional effects of PPAR8

overexpression on downstream target genes. Treatment conditions including treatment time

(Fig. 2.4) and concentration o f agonists (Fig. 2.5) were first optimized to detect changes in

target gene expression. Literature review of previous studies resulted in varied concentrations

of GW501516 used to activate PPAR8 in cell culture ranging from lOOnM to lpM  (Cohen et
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al., 2011; Oliver et al., 2001; Tanaka et al., 2003; Wan et al., 2010). Additionally, 

concentrations of palmitate used to induce lipotoxicity vary from 250pM to 500pM in 

previously published studies (Chen et al., 2013; Hogh et al., 2013; Lalloyer et al., 2006). 

Treatment time was also considered due to variability that can occur in genetic activity and 

transcriptional pathways (McAdams and Arkin, 1997).

The effect of 250pM palmitate or lpM GW501516 on target gene expression was 

assessed after these parameters were determined to be the optimal conditions for detecting 

any changes in target gene expression levels. It was found that, for both UCP2 and LCAD, 

neither 250pM palmitate nor lpM GW501516 (1:50 v/v DMSO vehicle) induced changes in 

gene expression levels when comparing RIP-eGFP and RIP-PPAR8 cells (Fig. 2.6). 

Furthermore, despite optimization of treatment conditions, I was unable to reproduce the 

upregulation of UCP2 and LCAD even in RIP-eGFP control cells that was previously 

observed during optimization of treatment conditions, and therefore unable to draw robust 

conclusions regarding the effects of PPAR8 overexpression on regulation of downstream 

target gene expression. At this time, it was decided that it was necessary to examine the 

ability to overexpress functional PPAR5 protein in a more controlled setting using a 

luciferase reporter assay before considering functional changes on target gene expression 

associated with PPAR8 overexpression.

Gene expression analysis determined that dsAAV8-RIP-PPAR5 was able to increase 

PPAR8 expression 130.7-fold in MIN6 cells. The next step was to confirm that functional 

protein was translated from the transcripts generated from the construct. In order to assess the 

presence and levels of functional protein a PPRE-luciferase reporter system was utilized to 

measure the activity of PPAR5 induced with dsAAV8-RIP-PPAR5 in response to palmitate

and a PPAR5 specific ligand (GW501516) in INS1 cells.
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Initially, the experimental design of the luciferase reporter assay included treatment 

of INS 1 cells with GW501516 at a concentration of lpM in a DMSO vehicle at a 

concentration of 1:50 (v/v) in cell culture media. After initial examination o f luciferase 

activity it was found that this high concentration of DMSO was inducing luciferase activity, 

suggesting that DMSO was capable of binding PPAR transcription factors and activating the 

PPRE. This finding was interesting as this provides a reason for the inconclusive results 

regarding PPAR5 target gene expression analysis discussed previously. For this reason, a 

new GW501516 stock solution (1:2000 v/v DMSO) was prepared and the luciferase assay 

conducted on a second subset of INS 1 cells in an attempt to abolish the effects of the DMSO 

vehicle. Future experiments to determine the effect of PPAR8 overexpression in MIN6 cells 

will use a lower concentration of DMSO (1:2000 v/v) to evaluate the PPAR8-specific 

changes on target gene expression.

After re-establishing the luciferase assay, it was found that a lower concentration of 

DMSO (1:2000 v/v) provided a more suitable vehicle for delivery o f GW501516 to cell 

culture media, as this lower level caused no significant induction of luciferase activity (Fig. 

2.7). Furthermore, observation of RIP-eGFP cells expressing the luciferase construct revealed 

that treatment with palmitate caused an increase in luciferase activity (Fig. 2.7). Being that 

luciferase is under control of PPRE, which can bind any o f the PPAR isoforms, these 

findings suggest that treatment of INS 1 cells with palmitate induces activation of 

endogenously expressed PPARs. Despite being the most highly expressed member of the 

PPAR family in pancreatic P-cells (Ravnskjaer et al., 2010), treatment o f RIP-eGFP control 

cells with lpM GW501516, a PPAR5-specific agonist, caused no increase in luciferase 

expression. It may be the case here that endogenous expression and activation solely of the
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PPAR8 isoform in the (3-cell is insufficient to induce significant changes in luciferase 

expression despite its high expression relative to the other PPAR isoforms.

Examination of PPAR8 overexpression revealed that RIP-PPAR8 cells had no 

significant increase in luciferase activity compared to RIP-eGFP cells, suggesting that 

presence of non-activated PPAR8 protein without a ligand is not sufficient to bind the PPRE 

and induce expression of luciferase. Upon the addition of lpM GW501516 to RIP-PPAR8 

cells, I note a significant increase in luciferase activity not observed in the RIP-eGFP control 

group, suggesting that transfection of the RIP-PPAR8 plasmid induces overexpression of 

functional PPAR8 protein capable of binding a ligand and subsequent binding of the PPRE in 

the promoter region.

When observing the effect of palmitate treatment on RIP-PPAR8INS1 cells, it can be 

seen that there is no significant difference between RIP-eGFP and RIP-PPARS cells treated 

with palmitate, suggesting that palmitate is not causing an increase in luciferase activity 

despite having excess PPAR8 available. These findings imply that palmitate may not be the 

most suitable fatty acid ligand for PPAR8; however, from figure 2.7, it can also be seen that 

the palmitate-treated cells in both the RIP-eGFP and RIP-PPAR8 groups exhibit similar 

luciferase activity compared to the luciferase assay positive control. The positive control 

represents INS1 cells transfected with a plasmid containing the luciferase reporter gene under 

control of a constitutively active promoter, cytomegalovirus (CMV). Based on these findings, 

it could be that the reliability of the luciferase reporter assay above the threshold of the 

positive control cannot distinguish differences between experimental groups; therefore, it 

may be that palmitate is causing an activation of PPAR8 to induce luciferase activity but the 

sensitivity is outside the range of this assay. For this reason, further evaluation o f palmitate as 

a natural PPAR8 ligand is required.
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It has been reported here that transfection with the RIP-PPAR5 plasmid results in 

overexpression of PPAR8 mRNA and functional PPAR5 protein (Fig. 2.3 and 2.7 

respectively). For this reason it was suitable to look at the effect of PPAR8 overexpression on 

(3-cell function in MIN6 cells by measuring changes in glucose stimulated insulin secretion.

Analysis of glucose stimulated insulin secretion revealed that, upon treatment with 

250pM palmitate, MIN6 cells exhibited impaired insulin secretion in response to glucose as 

expected (Fig. 2.8). Furthermore, administration o f lpM GW501516 restored insulin 

secretion in RIP-eGFP cells, supporting previous in vitro studies suggesting that activation of 

endogenous levels of PPAR8 plays a protective role against lipotoxicity (Ravnskjaer et al., 

2010; W anet al.,2010).

Based on previous in vivo work, where it was reported that PPARS plays an inhibitory 

role on insulin secretion through changes in cellular machinery (Iglesias et al., 2012), I also 

examined the effect of PPARS activation on (3-cell function in non-lipotoxic conditions. 

Interestingly, I report here that in both RIP-eGFP and RIP-PPAR8 cells in the absence of 

palmitate, that PPARS activation causes no significant change in insulin secretion.

To further examine the pro-oxidative potential of PPARS in the P-cell, lipotoxicity

was induced in RIP-PPAR8 cells by palmitate exposure and lpM  GW501516 was

administered. Interestingly, it was seen that overexpression and activation of PPARS in the

absence of lipotoxicity caused no change in insulin secretion, while under lipotoxic

conditions, activation of PPARS in RIP-PPARS cells caused a significant decrease in insulin

secretion. The decrease in p-cell function observed in lipotoxic RIP-PPARS cells may be

explained by an increase in peroxisomal lipid oxidation leading to the formation of cytotoxic

peroxide species, or perhaps an increase in reactive oxygen species resulting from an increase

in mitochondrial P-oxidation. It has been previously demonstrated that pancreatic P-cells are
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not able to compensate for elevated levels of cytotoxic peroxides, resulting from reduced 

catalase activity inherent to p-cells, contributing to apoptosis (Eisner et al., 2011). It has also 

been shown that PPAR8 is involved in the upregulation o f genes involved in peroxisomal 

lipid oxidation such as peroxisomal acyl-coenzyme A oxidase 1 (Cheng et al., 2004; Wang et 

al., 2003), which catalyzes the desaturation of acyl-CoAs producing hydrogen peroxide as a 

bi-product. An increase in peroxisomal oxidative genes accompanied by an inability to 

compensate for the rise in cytotoxic peroxide species may explain the reduced insulin 

secretion observed in RIP-PPAR8 cells exposed to 250pM palmitate. Furthermore, these 

effects of lipid oxidation may not have been observed in RIP-eGFP cells exposed to 250pM 

palmitate with PPAR8 activation by lpM GW501516 as a result o f dosing. Activation of 

endogenous levels of PPAR8 might not be sufficient to induce accumulation of cytotoxic 

peroxide or reactive oxygen species, while the increased PPAR8 expression in RIP-PPARS 

cells may have a more pronounced effects on P-oxidation.

I have confirmed here that at endogenous levels of PPARS expression in the P-cell, 

administration of the PPARS agonist GW501516 restores insulin secretion in a lipotoxic 

setting. In the case of PPAR8 overexpression in a lipotoxic setting, it was observed that P-cell 

function once again deteriorated, suggesting PPARS may impair p-cell function by 

upregulating both peroxisomal and mitochondrial P-oxidative pathways. In the future, it will 

be useful to repeat gene expression studies using a more robust approach in which effects of 

DMSO have now been removed from experimental conditions. This will allow for the 

exploration of potential mechanisms, such as upregulation of mitochondrial and peroxisomal 

P-oxidation, into the impairments on p-cell function induced by PPARS overexpression under 

conditions of lipotoxicity.
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Furthermore, exploration into the role of PPAR8 in pancreatic P-cells will be required 

to assess the role of PPARS on whole animal glucose homeostasis. This will include the 

generation of a transgenic mouse model in which PPARS is overexpressed specifically in 

pancreatic P-cells of C57B16 mice where changes in carbohydrate metabolism will be 

measured. Finally, examination of P-oxidative pathways both in vitro and in vivo using qPCR 

and lipidomic analysis may reveal novel mechanisms for the role o f PPARS on P-cell 

function and insulin secretion.
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2.6 APPENDIX

Figure S2.1. Confocal microscopy of cell cultures revealed that transfection of MIN6 cells 
with dsAAV8-RIP-eGFP construct resulted in successful overexpression of eGFP.
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Figure S2.2. Total RNA extracted from MIN6 cells run on a 1.5% agarose gel demonstrated 
intact 18S and 28S ribosomal subunits indicating successful extraction o f non-degraded 
RNA.
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Figure S2.3. Assessment of endogenous control stability using GeNorm algorithm revealed 
P-actin, GusB, and TBP to be the most stable endogenous control genes.
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CHAPTER 3

Characterization of lipid and gene expression profiles in islets isolated from mice 
overexpressing PPARy2 specifically in pancreatic fl-cells

A version of this chapter has been submitted for publication:

Hogh, K. N., Craig, M. N., Uy, C. E., Nygren, H., Asadi, A., Speck, M., Fraser, J. D., 
Rudecki, A. P., Baker, R. K., Oresic, M., Gray, S. 2013. Overexpression o f PPARy 
specifically in pancreatic fl-cells exacerbates obesity-induced glucose intolerance, reduces p- 
cell mass and alters islet lipid metabolism. Submitted fo r  publication. Year o f Submission: 
2014.
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3.1 INTRODUCTION

Peroxisome proliferator activated receptors (PPARs) are a family of nuclear 

transcription factors that play a major role in the regulation of lipid metabolism (Barrera et 

al., 2008; Filip-Ciubotaru et al., 2011). PPARy has been established as a primarily lipogenic 

and adipogenic transcription factor within the PPAR family. Being expressed most highly in 

adipose tissue, PPARy activation in adipose tissue has been shown to increase lipogenesis 

and lipid storage, to induce adipogenesis and influence adipokine production, such as 

adiponectin (Evans et al., 2004; Tontonoz et al., 1995; Tontonoz et al., 1994).

Activation of PPARy has been a successful target for the treatment of type 2 diabetes 

(T2D) and symptoms of the metabolic syndrome. Studies have shown that systemic 

administration of drugs known as Thiazolidinediones (TZDs), which specifically activate 

PPARy, have potent anti-diabetic effects through improving insulin sensitivity in peripheral 

tissues (Day, 1999; Hauner, 2002). It is speculated that improvements seen in these patients 

may be a result o f the regulatory role PPARy plays on the expression of factors released from 

adipose tissue, including adiponectin, leptin, and tumor necrosis factor-a (TNF-a) (Ahmadian 

et al., 2013). It is also observed that these patients exhibit lower circulating levels of 

triglycerides and non-esterified fatty acids (NEFAs), suggesting that improvements in the 

lipotoxic state o f peripheral tissues is likely due to the effects of PPARy activation on lipid 

storage and adipogenesis leading to the improvements seen on impaired glucose tolerance in 

T2D (Kanda et al., 2010). Unfortunately, systemic administration of TZDs has been linked to 

harmful side effects and contraindications such as heart failure and cardiovascular risks in 

these already at-risk patients (Lago et al., 2007; Nissen and Wolski, 2007). For this reason, 

further exploration into the tissue specific effects of PPARy activation by TZDs has been a 

popular topic of research.
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Interestingly, associated with improvements in peripheral insulin sensitivity, an 

improvement in p-cell function can also be seen upon systemic administration o f TZDs in 

patients with T2D (Kanda et al., 2010). However, what remains unclear is whether TZDs 

play a direct role on improving P-cell function or if  these improvements are a secondary 

result o f improvements to insulin sensitivity and the lipotoxic state. Within the literature 

there has been much debate about the effect of PPARy activation in pancreatic p-cells on 

insulin secretion.

Studies in clonal P-cell lines have shown that activation o f PPARy causes an 

upregulation of genes involved in insulin gene transcription and secretion as well as glucose 

sensing (Gupta et al., 2010). It has also been shown that PPARy activation in the p-cell 

preserves P-cell function through inhibition of pro-apoptotic pathways resulting from high 

levels of glucose, lipids, cytokines, and islet amyloid polypeptide (IAPP) (Chung et al., 2011; 

Gupta et al., 2010). Conversely, other studies have demonstrated that activation or 

overexpression of PPARy and its co-receptors in clonal P-cell lines is unable to preserve p- 

cell function and that PPARy actually plays an inhibitory role in the secretion of insulin 

under lipotoxic conditions (Ravnskjaer et al., 2005; Welters et al., 2004).

This ambiguity in the literature can also be seen when reviewing the role of PPARy

on P-cell function in vivo. The normal P-cell response to high fat feeding is to increase p-cell

mass to compensate for the state of ovemutrition (Terauchi et al., 2007). One group has

suggested that p-cell specific knockout o f the PPARy gene impairs islet hyperplasia in

obesity (Rosen et al., 2003). The net result of this impairment was that animals administered

a high fat diet were unable to activate islet proliferative mechanisms resulting in reduced p-

cell function and impairments in glucose homeostasis. However, other in vivo studies

investigating the role of PPARy in the P-cell have reported that p-cell specific knockout of
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PPARy has no effect on the insulin sensitizing effects of TZD administration to mice fed a 

high fat diet (Welters et al., 2012).

Previously in Dr. Sarah Gray's lab, it has been shown that obese mice overexpressing 

PPARy 1 (P-PPARyl-HFD) or PPARy2 ((3-PPARy2-HFD) specifically in p-cells o f the 

pancreas have a worsened ability to maintain normal blood glucose levels compared to 

control mice overexpressing eGFP (P-eGFP-HFD) (Fig. 3.1a). It is of note that the 

impairments on glucose homeostasis in P-PPARyl-HFD and P-PPARy2-HFD mice are not 

associated with changes in body weight or peripheral insulin sensitivity in these animals (Fig. 

3.1b,c), suggesting changes in glucose homeostasis are likely a result of alterations in p-cell 

function. Indeed, P-PPARyl-HFD and P-PPARy2-HFD mice exhibit a decrease in P-cell 

mass and an increase in P-cell apoptosis (Fig. 3.2a,b). Furthermore, P-PPARyl-HFD mice 

also had significantly lower plasma insulin levels after an overnight fast, while p-PPARy2- 

HFD mice had significantly lower plasma insulin in the fed state (Table 3.1), which also 

supports PPARy overexpression playing a role in P-cell function in obesity.
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Figure 3.1 P-PPARyl-HFD and P-PPARy2-HFD mice demonstrate impaired glucose 
tolerance when challenged with an oral glucose tolerance test compared to P-eGFP-HFD 
control mice (a). Impairments in oral glucose tolerance are not associated with changes in 
body weight (b) or insulin sensitivity (c) in p-PPARy-HFD and p-PPARy2-HFD mice. 
2-tailed t-test **p < .01, ***p < .001. P-eGFP-HFD (n=6), p-PPARy-HFD (n=8) and 
P-PPARy2-HFD (n=8).
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Figure 3.2. P-PPARyl-HFD and p-PPARy2-HFD mice demonstrate decreased p-cell mass (a) 
associated with increased apoptosis in p-PPARy-HFD islets (b) compared to P-eGFP-HFD 
control mice. 2-tailed t-test *p < .05, **p < .01
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Table 3.1 Compared to P-eGFP-HFD control mice, P-PPARy-HFD mice demonstrated 
significantly lower plasma insulin levels after an overnight fast while P-PPARy2-HFD mice 
demonstrated significantly lower plasma insulin levels after random feeding.
2-tailed t-test *p < .05, ***p < .001

Plasma Insulin (ng/ml) P-eGFP-HFD P-PPARyl-HFD P-PPARy2-HFD

Overnight Fast 1.13 ±0.42 0.28 ±0.01 * 0.61 ± 0.22
2hr Refeed 3.68 ± 1.25 3.47 ± 1.09 3.00 ± 0.90
Random Fed 4.01 ±0.30 4.01 ± 0.47 2.55 ±0.26 ***
5min post glucose (GSIS) 1.64 ±0.63 1.44 ±0.24 1.14 ± 0.35
lOmin post glucose (GSIS) 1.75 ±0.47 1.40 ±0.54 1.23 ±0.47
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The objective of this study is to further elucidate the role o f PPARy in P-cells of the 

pancreas in an obese setting with the goal of identifying mechanisms causing the impaired 13- 

cell function in P-PPARy2-HFD mice. As described in Chapter 1, prolonged exposure o f P- 

cells to free fatty acids (FFAs) in vitro and in vivo causes impaired insulin secretion and p- 

cell failure (Carpentier et al., 2000; Lee et al., 1994; Poitout, 2004; Robertson et al., 2004; 

van Herpen and Schrauwen-Hinderling, 2008). Furthermore, it has been suggested that 

exposure o f P-cells to specific lipid species such as ceramides or diacylglycerols (DAGs) 

may induce oxidative stress promoting the activation of apoptotic pathways (Summers, 2006; 

van Herpen and Schrauwen-Hinderling, 2008). Alterations in lipid profiles have been 

suggested to cause changes in gene transcription or disruption of insulin signalling pathways 

thus contributing to P-cell failure (Lameloise et al., 2001; Shao et al., 2013; van Herpen and 

Schrauwen-Hinderling, 2008).

The primary theme of this chapter will be to identify changes in specific genes or 

lipid species that may be linked to the impairments in glucose homeostasis seen in p* 

PPARy2-HFD mice. I hypothesize that mice overexpressing PPARy2 specifically in 

pancreatic p-cells will exhibit increased levels of lipid species previously determined to 

be lipotoxic to p-cells, with associated changes in lipogenic genes known to be regulated 

by PPARy2. This hypothesis will be tested through two experimental aims:

In aim 1 1 will measure mRNA expression of key target genes (insulin production, lipogenic 

pathways, ER stress, oxidative stress, mitochondrial lipid oxidation, peroxisomal lipid 

oxidation, and insulin signalling) in islets isolated from p-PPARy2-HFD mice using real-time 

PCR.
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In aim 2 I will quantify lipid species in pancreatic islets isolated from P-PPARy2-HFD mice 

using LC/MS.

Results from this study may provide insight into which lipid species are responsible 

for lipotoxic P-cell failure in obesity-induced T2D as well as help to further characterize the 

role that PPARy plays in pancreatic P-cell physiology.

3.2 MATERIALS AND METHODS

P-PPARyl-HFD and p-PPARy2-HFD transgenic mouse models

Transgenic mice overexpressing eGFP (P-eGFP-HFD), Mus musculus-deri\ed 

PPARy 1 (P-PPARyl-HFD, GenBank ID: N M 0 1 1146), or Mus musculws-derived PPARy2 

(P-PPARy2-HFD, GenBank ID: NM 011146) specifically in P-cells of the pancreas were 

previously characterized in Dr. Gray's laboratory to assess the role of PPARy in the P-cell on 

carbohydrate metabolism. A second cohort of mice was generated for the current study using 

intraperitoneal injection o f double stranded adeno-associated virus serotype 8 (dsAAV8) 

(5x10*2 vg/ms) coupled with the rat insulin promoter driving the expression of eGFP or 

PPARy2 (dsAAV8-RIP-eGFP and dsAAV8-RIP-PPARy2) (Children’s Hospital of 

Philadelphia (CHOP) Research Vector Core Services Philadelphia PA, USA) specifically in 

pancreatic p-cells. Post-infection, mice were administered a high fat diet containing 45% kcal 

as fat (D 12451, Research Diets, New Brunswick NJ, USA). Mice were monitored for 16 

weeks and the same trends in carbohydrate metabolism were observed in the second cohort, 

at which time mice were sacrificed for islet lipidomic and gene expression analysis.
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Pancreatic islet isolation

Mice were anaesthetized and then euthanized by cardiac puncture followed by 

cervical dislocation. Pancreata were perfused using collagenase XI (1 mg/ml) (C7657, Sigma) 

in Hanks balanced salt-solution (HBSS) (14185, Invitrogen) as previously described (Beith et 

al., 2008; Salvalaggio et al., 2002). Isolated islets were then either fixed in formalin for 

histological staining or stored at -80°C for qRT-PCR and lipidomic analysis.

Gene expression optimization

RNA extracted from pancreatic islets yields low concentrations of RNA. As such, 

RNA quantity for use in the generation o f cDNA was optimized. cDNA was generated from 

30ng, 50ng, lOOng, 300ng, or lOOOng of total MIN6 RNA and the expression levels of four 

different genes (PPARy 1, PPARy2, P-actin, and Rpll9) was assessed as a measure for 

reverse transcription efficiency. It was found that 50ng of input RNA was sufficient to 

provide qPCR threshold cycles (Ct) within the acceptable range, while still allowing for 

conservation of islet RNA (Appendix Fig. S3.1).

Primer and probe sets for all genes evaluated in this study were designed and the 

optimal annealing temperature was established using a temperature gradient. Specificity of 

primer and probe sets were evaluated on an agarose gel or using a melt curve with the Bio- 

Rad iQ5 software. After establishing specificity, standard curves for each primer and probe 

set were constructed to ensure efficiencies fell within the range of 1.8-2.2 (Table 3.2). Gene 

expression levels were then calculated using these calculated efficiency values.
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Table 3.2. Efficiency values (E) with slope and correlation coefficients (R2) for primer and 
probe sets optimized for gene expression analysis using optimal annealing temperature (TA).

Gene Slope E Rz Ta (°C)
Reference Targets
GAPDH 3.3481 1.99 0.996 65.0
P-actin 3.0145 2.09 0.990 67.7
GUSb 3.7727 1.84 0.998 61.7
TBP 3.483 1.94 0.989 61.7
Rpll9 3.5598 1.91 0.990 61.7

Targets o f  Interest
PPARy 3.5535 1.91 0.985 65.8
PPARy2 3.3055 2.01 0.999 54.8
CPT1 3.236 2.04 0.994 57.0
UCP2 3.346 1.99 0.999 57.0
ABC1 3.3277 2.00 0.995 54.8
PG Cla 3.365 1.98 0.989 54.0
CD36 3.3155 2.00 0.996 53.0
AOX 3.3354 1.99 0.991 61.9
Insulin 3.420 1.96 0.999 57.4
XBPls 3.4994 1.93 0.986 52.2
CHOP 3.5452 1.91 0.996 52.2
TXNIP 3.0588 2.12 0.996 54.0
PDX1 3.5209 1.92 0.998 60.8
GPR40 3.3893 1.97 0.997 60.8
SREPBlc 3.2963 2.01 0.999 53.8
GIPR 3.1446 2.08 0.995 54.0
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Comparison of gene expression levels using endogenously expressed housekeeping 

genes reduces variability in the qPCR reaction and should always be used according to the 

MIQE guidelines (Bustin et al., 2009). To ensure suitable endogenous control genes were 

used in this study, five housekeeping genes were evaluated across conditions in which RNA 

was extracted from MIN6 cells overexpressing PPARy2 or eGFP and treated with 250pM 

palmitate or untreated cell culture media and the two most stably expressed genes were used 

in the islet gene expression analysis. Using GeNorm's algorithm for establishing variability 

and an M-value cut off of 1, it was found that Rpll9 and P-actin were more stably expressed 

in P-cells than GusB, GAPDH, and TBP (Appendix Fig. S3.2). As such, all future analyses of 

islet gene expression were carried out with Rpll9 and p-actin endogenous controls.

Pancreatic islet gene expression

RNA from p-PPARy2-HFD and P-eGFP-HFD islets (120 islets per mouse) was 

extracted using RNeasy micro RNA kit (Qiagen, Valencia, CA, USA). Concentration was 

measured using Qubit RNA BR Assay Kit (Invitrogen, Burlington ON, Canada), purity 

assessed using spectrophotometry (nanodrop ND-1000, Thermo Scientific, Rockford, IL, 

USA) and integrity assessed by visualizing intact 18s and 28s rRNA bands using the 

Experion RNA StdSens chips (BioRad Laboratories, Hercules, CA USA). mRNA (50ng) was 

reverse transcribed to cDNA using random hexamers (Superscript III, Invitrogen) as per 

manufacturers protocol. Gene expression levels were evaluated as per the MIQE guidelines 

(Bustin et al., 2009) using two candidate reference genes. Genes used for reference included 

P-actin and 60S ribosomal protein L19 (Rpll9), established to be the most stable for PPARy 1 

and PPARy2 manipulation by the Genorm algorithm in qbase+ as described above 

(Biogazelle, Zwijnaarde, Belgium). Relative expression levels o f  several genes (PPARy,
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PPARy2, ATP binding cassette 1 (ABCA1), Cluster of differentiation-36 (CD36), Sterol 

regulatory element-binding protein lc  (SREBPlc), Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGCla), pancreatic duodenal homeobox 1(PDX1), 

gastric inhibitory polypeptide receptor (GIPR), FFA receptor GPR40, insulin, C/EBP 

homologous protein (CHOP), X-box binding protein-1 spliced (XBPls), thioredoxin- 

interacting protein (TXNIP), Uncoupling protein 2 (UCP2), Carnitine palmitoyltransferase 1 

(CPT1), and Alternative oxidase (AOX)) were assessed in islets isolated from P-PPAR/2- 

HFD and P-eGFP-HFD mice. qPCR master mix contained: iQ Supermix with Taqman probes 

(2.55pM) or iQ SYBR Green Supermix, Taqman forward and reverse primers (10pM), 

RNAse free H2O, cDNA (BioRad Laboratories; Sigma, Oakville, ON, Canada; IDT, 

Coralville, IA, USA; Ambion, Austin, TX, USA). Primer and probe sequences for these 

genes can be found in Table 3.1. Reactions were conducted on a BioRad iQ5 qPCR machine 

(BioRad iQ5 Multicolor RT-PCR Detection System, BioRad Laboratories, Hercules CA, 

USA) using the following temperatures, times, and number of cycles: one cycle at 95°C for 

3min followed by 40 cycles alternating between 95°C for 10 seconds and primer-specific 

annealing temperature for 30 seconds.
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Table 3.3 Primer and probe sequences used for real-time qPCR analysis of islets isolated
from P-eGFP-HFD and P-PPARy2-HFD mice.

Gene Forward Primer (5'-3') Reverse Primer (5'-3') Probe (5'-3'>
Reference
Targets
P-actin GCTCTGGCTCCTAGCACCAT GCCACCGATCCACACAGAGT GATCAAGATCATTGCTCCTCCTGAGCG

RpU9 GAAGCTGATCAAGGATGG CTTCCCTATGCCCATATG CATCCGCAAGCCTGTGACTG

Target o f
Interest
PPARy GCCTAAGTTTGAGTTTGCTGT CAGCAGGTTGTCTTGGATGT CTCAGTGGAGACCGCCCAGG

PPARy2 GGAGATTCTCCTGTTGAC CATGGTAATTTCTTGTGAAG CATGGTGCCTTCGCTGATGC

ABCA1 CTGTGTAT ACCTGG AG AG CATGGACTTGTTGATGAG CAATGAGACCAACCAGGCAATCC

CD36 GCCAAGCTATTGCGACATGA TCTCAATGTCCGAGACTTTTCA CACAGACGCAGCCTCCTTTCCACCT

SREBPlc CGGAAGCTGTCGGGGTAG GTTGTTGATGAGCTGGAGCA *

PG C la CCTCTTCAAGATCCTGTTA TGCTCATAGGCTTCATAG AAGCCACT ACAGACACCGCA

PDX1 ACATCTCCCCATACGAAGTGC GTAAGCACCTCCTGCCCACT *

GIPR TCAACAAAGAGGTGCAGTCG GGGGTCCCTTT ACCT AGCAG TTGTGTGGGAGCCAATTACA

GPR40 GGCTTCCTAGCTGCTCTC ACTGTTGTCCAGCCAGCTTC *

CHOP CTGCCTTTCACCTTGGAGAC CGTTTCCTGGGGATGAGATA *

X BPls GAGTCCGCAGCAGGTG GTGTCAGAGTCCATGGGA *

TXNIP CATGAGGCCTGGAAACAAAT ACTGGTGCCATTAGGTCAGG *

Insulin GGAGCGTGGCTTCTTCT ACA TTCATTGCAAAGGGGTGGGG *

UCP2 GATCTCATCACTTTCCCTCTGGATA CCCTTGACTCTCCCCTTGGG CGCCAAGGTCCGGCTGCAGA

CPT1 GCGTGCCAGCCACAATTC TCCATGCGGTAATATGCTTCAT CCGGTACTTGGATTCTGTGCGGCC

AOX AATTGGCACCT ACGCCCAG AGTGGTTTCCAAGCCTCGAA CGGAGATGGGCCACGGAACTCA

*SYBR Green master mix used in place of Taqman probes
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Measurement of islet lipid content with liquid chromatography/mass spectrometry

Isolated islet samples from P-eGFP-HFD and P-PPARy2-HFD mice were sent to 

Espoo, Finland where Dr. Matej Oresic and Heli Nygren from the VTT Technical Institute 

performed the islet lipid quantification. To each of the isolated islet samples, 50pl of 0.9% 

NaCl was added and tubes sonicated at 40kHz for 5 minutes at 5°C. Lipidomic analysis was 

conducted using 30pl o f this suspension. Samples were spiked with 20pl o f an internal 

standard solution composed of lysophosphatidylcholine LysoPC(17:0), phosphatidylcholine 

PC(17:0/17:0), phosphatidylethanolamine PE(17:0/17:0), ceramide Cer(dl8:l/17:0), 

phosphatidylglycerol PG(17:0/17:0), cholesteryl ester CE(19:0), phosphatidic acid 

PA(17:0/17:0), monoacylglycerol MG( 17:0/0:0/0:0), diacylglycerol DG(17:0/17:0/0:0), and 

triacylglycerol TG(17:0/17:0/17:0). lOOpl of Chloroform:Methanol solvent (2:1) was then 

added to each sample and the lower phase (60pl) was collected. To the lower phase, lOpl o f a 

standard solution composed of three stable isotope-labeled reference compounds was added. 

Liquid chromatography/Mass spectrometry (LC/MS) was then conducted using an injection 

of 2pl of each sample solution. Ordering for analysis of samples was established by 

randomization. Lipid content was analyzed using a Q-ToF Premier mass spectrometer 

(Waters) in positive ion mode (ESI+) in combination with an Acquity Ultra Performance 

Liquid Chromatography system. Raw data was processed using MZmine to identify lipid 

species based on retention time (RT) and mass to charge ratio (m/z) in comparison to an in 

house lipid species database. Lipid species were quantified through normalization to internal 

standards. Total islet protein content was measured using a micro-BCA-assay kit (Pierce).
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Analysis of lipidomic data from P-eGFP-HFD and p-PPARy2-HFD islets

LC/MS was used to determine the quantity o f 416 lipid species. Lipid levels were 

normalized to total islet protein content and were expressed as pmoles o f lipid per gram of 

protein. Each of the 416 lipid species were then analyzed individually or grouped into lipid 

classes (lysophosphatidylethanolamine (LysoPE), triacylglycerol (TG), 

lysophosphatidylcholine (LysoPC), ceramide (Cer), sphingomyelin (SM), 

phosphatidylethanolamine (PE), or phosphatidylcholine (PC)) for statistical comparison 

between P-eGFP-HFD and P-PPARy2-HFD islets.

Statistical analysis

Results are expressed as mean ± standard error of the mean. Data were assumed to be 

normally distributed as tests for normality are difficult to conduct when working with small 

sample sizes such as cell culture biological replicates and inbred transgenic animal models. 

One of the benefits o f working with cell culture and inbred animal models is the high degree 

of reproducibility between samples, which is often not the case when working with more 

heterogeneous human populations that require large sample sizes. For this reason, assuming a 

normal distribution and using student’s t-tests is acceptable here and most consistent with the 

literature. Comparisons were performed using student’s 1-tailed or 2-tailed t-tests with 

Graphpad Prism 6.0 software (La Jolla CA, USA). Significance was declared if p-values 

were less than 0.05.
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3.3 RESULTS

Successful overexpression of PPARy mRNA in p-cells of whole pancreas using adeno- 
associated virus (dsAAV8)

Overexpression of PPARy 1 and PPARy2 induced using the dsAAV8-RIP construct 

was assessed in islets isolated from p-eGFP-HFD and P-PPARy2-HFD mice using real-time 

PCR. PPARy2 contains an additional 30 amino acids at the N-terminal end of the PPARy 

transcript (Spiegelman, 1998). A primer/probe set that detected total PPARy expression 

showed transfection of MIN6 cells with dsAAV8-RIP-PPARyl induced overexpression of 

PPARy by 36-fold and transfection of MIN6 cells with dsAAV8-RIP-PPARy2 induced 

overexpression of PPARy by 5-fold compared to MIN6 cells expressing a control plasmid 

dsAAV8-RIP-eGFP (Fig. 3.3a). When using a primer/probe that specifically detects PPARy2 

to show the induction of PPARy expression by dsAAV8-RIP-PPARyl was due to an increase 

in PPARyl mRNA only, MIN6 cells overexpressing dsAAV-RIP-PPARy2 showed a 

significant 17-fold increase in PPARy2 expression compared to cells expressing either 

dsAAV8-RIP-PPARy 1 or dsAAV8-RIP-eGFP, with no difference in PPARy2 expression 

between cells overexpressing dsAAV8-RIP-PPARyl and dsAAV8-RIP-eGFP. Together 

these results suggest that the primer/probe sets are effectively able to distinguish between 

total PPARy and specifically PPARy2 mRNA expression.

Using these primer/probe sets that detect total PPARy and PPARy2, p-PPARy2-HFD 

islets displayed a 25-fold increase in total PPARy mRNA compared p-eGFP-HFD islets (Fig. 

3.3b). Additionally, a 3168-fold increase was observed in PPARy2 mRNA in islets isolated 

from p-PPARy2-HFD mice compared to P-eGFP-HFD control mice.
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Figure 3.3 MIN6 cells overexpressing PPARy or PPARy2 under control of the rat insulin 
promoter demonstrate primer specificity for PPARy and PPARy2 mRNA (a). Isolated islets 
from P-PPARy2-HFD mice demonstrate significantly increased expression of PPARy2 
mRNA compared to P-eGFP-HFD control islets. 1-tailed t-test **p < .01, ***p < .001

Lipid profiles of islets isolated from p-PPARy2-HFD mice

Lipidomics is a relatively new field, and as such the standard for reporting lipid data 

has not yet been established in the literature. For this reason, lipid measurements were 

normalized to total islet number as well as total islet protein concentration for consideration. 

It was found that there were no significant differences between total islet number or islet 

protein concentration when comparing P-PPARy2-HFD and P-eGFP-HFD islets (Fig. 3.4a,b). 

It was also seen that strategies for normalization of lipid data resulted in similar trends when 

observing differences in total lipid classes between P-eGFP-HFD and P-PPARy2-HFD islets 

(Fig. 3.4c,d). Due to the similarities in results between normalization strategies, further 

analysis of lipid data was carried out normalizing lipid content to total protein only.
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Lipidomic analysis of pancreatic islets showed a significant decrease in total 

lysophophotidylcholines (LysoPCs) in islets isolated from P-PPARy2-HFD mice when 

compared to islets isolated from P-eGFP-HFD control mice (Fig. 3.4c). There were no 

significant changes in total lipids of the other lipid classes measured 

(Lysophosphatidylethanolamines (LysoPE), triacylglycerols (TG), ceramides (Cer), 

sphingomyelins (SM), phosphatidylethanolamines (PE), phosphatidylcholines (PC)). In 

comparing quantities of specific lipid species measured in islets isolated from P-PPARy2- 

HFD and P-eGFP-HFD control mice, it was found that P-PPARy2-HFD islets had 

significantly lower levels of LysoPC(18:0) and LysoPC(16:0) than P-eGFP-HFD control 

islets (P = 0.030 and P = 0.013 respectively) (Fig. 3.5a). It was also found that P-PPARy2- 

HFD islets had significantly higher levels o f PC(32:1) (Fig. 3.5b) with only a single ceramide 

species, Cer(dl8:1/23:0) being increased in p-PPARy2-HFD islets compared to P-eGFP-HFD 

control islets (Fig. 3.5c). Detection of monoacylglycerols (MAGs) and diacylglycerols 

(DAGs) were also included in the analysis, however due to low levels and sensitivity of the 

assay, detection of these species was unreliable and it was decided that a more targeted 

approach is required for reliable measures o f these lipid classes.

Lipidomics is based on comparison of mass spectrometry data to library databases. 

Due to the novelty of this field, it was expected that species would be measured of which the 

identity has not been established in any database. Interestingly, p-PPARy2-HFD islets had 

significantly higher levels of 10 unknown lipid species compared to P-eGFP-HFD control 

islets. Due to the novelty o f lipidomic profiling, the identity of these species is still uncertain 

and will require future re-analysis once the identity of these unknown species are determined.
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Figure 3.4 Number of islets isolated per mouse for lipidomic analysis (a) and total protein 
content of isolated islets (b) was not significantly different between p-eGFP-HFD and P- 
PPARy2-HFD mice. Normalization o f islet lipid species content as finol/islet (c) and 
pmol/gram of protein (d) show similar trends in total lipid classes between P-eGFP-HFD and 
P-PPARy2-HFD islets with significant decreases in total lysophosphatidylcholines.
2-tailed t-test *p < .05
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Figure 3.5 Islets isolated from P-PPARy2-HFD mice had significantly lower levels of two 
specific lysophosphatidylcholines (a) and significantly increased levels of a single 
phosphatidylcholine (b) and ceramide (c) species when compared to P-eGFP-HFD control 
islets. 2-tailed t-test *p < .05
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Gene expression analysis of isolated islets from PPARy2-HFD mice

Gene expression analysis o f islet mRNA revealed that P-PPARy2-HFD islets had 

significantly increased expression of the fatty acid transporter CD36, the fatty acid receptor 

GPR40, the acyltransferase C PU , the mitochondrial membrane protein UCP2, and the 

electron transport chain protein AOX compared to P-eGFP-HFD control islets (Fig. 3.6). 

Other genes measured were not significantly changed compared to control islets.

<D>
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3-PPARy2-HFD

CD TO
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Figure 3.6 Islets isolated from P-PPARy2-HFD mice demonstrated significantly increased 
mRNA expression o f CD36, GPR40, CPT1, UCP2, and AOX. 2-tailed t-test *p < .05,
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3.4 DISCUSSION

Activation of PPARy by systemic administration of TZDs has been used as an 

effective means for improving insulin sensitivity in patients with T2D. However, due to the 

potential cardiovascular side effects and other contraindications associated with this class of 

drugs, their use has become limited. These findings have led to further questions as to what 

effect PPARy plays in tissues other than adipose tissue, with P-cell function being of 

particular interest in the field o f T2D.

Previously, Dr. Gray's laboratory has reported that obese mice overexpressing 

PPARy 1 or PPARy2 specifically in (3-cells o f the pancreas exhibit impaired glucose tolerance 

when compared to obese control mice (Fig. 3.1a). It is also important to note that these 

impairments in glucose intolerance are not associated with changes in body weight between 

experimental groups or changes in insulin sensitivity at peripheral tissues (Fig 3.1b and c).

As such, it is speculated that the impairments in glucose tolerance seen in J3-PPARyl-HFD 

and P-PPARy2-HFD mice is related to changes mediated by PPARy 1 or PPARy2 in the p* 

cell.

To support this claim, islet morphology and function were assessed and it was found 

that P-PPARyl-HFD and p-PPARy2-HFD islets had a decrease in p-cell mass with increased 

apoptosis (Fig. 3.2a,b), with significantly lower plasma insulin levels (Table 3.1) compared 

to P-eGFP-HFD control mice. From these results it is clear that PPARyl and PPARy2 

overexpression in the p-cell has a significant effect on whole animal glucose homeostasis; 

however, the mechanisms by which these transcription factors are inducing impairments in 

islet function remains unclear.

One potential mechanism could be related to the known proliferative effects of

PPARy on islet morphology and P-cell mass. Previous studies have shown that activation o f
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PPARy in response to high fat feeding stimulates islet hyperplasia, allowing for an increase 

in p-cell mass as a compensatory mechanism in obesity (Rosen et al., 2003). Furthermore, 

these authors report that a P-cell specific knockout o f PPARy shows a blunting of this 

hyperplasia effect resulting in impaired glucose homeostasis in these animals. Other P-cell 

specific knockout studies have suggested that PPARy activation by TZDs in pancreatic p- 

cells has no effect on islet hyperplasia and ultimately has no effect on glucose homeostasis in 

these animals (Welters et al., 2012). Based on the findings in the PPARy knockout mice 

generated by Rosen et al., an enhancement in islet hyperplasia in obese mice overexpressing 

PPARy in the p-cell might have been expected (2003); however, a model of P-cell specific 

PPARy overexpression shows the opposite effect. Upon p-cell specific overexpression of 

PPARy 1 and PPARy2, there is a decrease in P-cell mass associated with increased apoptosis 

and impaired glucose homeostasis.

Upon initial evaluation, the impairments in glucose homeostasis associated with P- 

cell specific overexpression of PPARy may seem counterintuitive to previously published 

work (Rosen et al., 2003); however, it may be possible to explain these discrepancies with 

the question of dosage. PPARy 1 and PPARy2 are known to be highly expressed in adipose 

tissue, while in the P-cell, their expression is relatively low. When considering transgenic 

studies in which these transcription factors are knocked out, one must consider that this may 

have a drastically different effect, and not always completely opposite, to one in which the 

same gene is over expressed to pharmacological levels. It could be possible that cells 

overexpressing the PPARy 1 or PPARy2 transcription factors become overloaded with these 

proteins disrupting their function, or that perhaps secondary inhibitory effects of PPARy 1 or 

PPARy2 transcriptional regulation override the pro-transcriptional activity o f these proteins.
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A second possible mechanism, and the focus of this thesis chapter, for the 

impairments in p-cell function seen in P-PPARyl-HFD and P-PPARy2-HFD mice may be 

related to the known potent lipogenic effect of PPARy. The goal o f this study was to further 

explore the role that PPARy plays on lipid metabolism in pancreatic p-cells in an obese 

setting and to seek potential mechanisms for the changes observed in these animals. This goal 

was achieved by measuring changes in pancreatic islet lipid content and gene expression 

profiles in mice overexpressing PPARy2 specifically in P-cells.

I hypothesized that due to its lipogenic potential, overexpression of PPARy2 in 

pancreatic P-cells may cause alterations in lipid profiles resulting in accumulation of 

lipotoxic lipid species causing an impairment in P-cell function or increased activation of 

apoptotic pathways in these cells. p-PPARy2-HFD mice exhibited a more severe impairment 

in glucose tolerance than P-PPARyl-HFD mice and additionally PPARy2 is known to be the 

more lipogenic isoform of PPARy (Ahmadian et al., 2013). As such, lipidomic analysis was 

conducted on islets isolated from P-PPARy2-HFD and compared to lipid profiles in islets 

from P-eGFP-HFD control mice.

I hypothesized that islets isolated from P-PPARy2-HFD mice would yield increased

levels o f lipotoxic species known to induce oxidative stress and apoptosis, such as ceramides

and diacylglycerols (DAGs), and that there may be an increase in total triglycerides (TAGs)

due to the lipogenic role of PPARy2 on TAG synthesis in adipose tissue. Surprisingly, no

increase in either total triglycerides or ceramides was observed. Interestingly, a decrease in

total Lysophosphatidylcholines (LysoPCs) was the only observable difference in total lipid

classes between p-PPARy2-HFD and P-eGFP-HFD islets. Furthermore, when observing

specific lipid species within these lipid classes, it was found that p-PPARy2-HFD islets

exhibited a modest increase in only one single ceramide species, with DAG levels being so
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low in islet samples that sensitivity of the assay was unable to measure these species. Due to 

the established lipotoxic effects of ceramides and DAGs, it was surprising that increased 

apoptosis and decreased P-cell mass was not associated with increased accumulation of these 

lipotoxic species.

Despite seeing only modest changes in lipid species widely known to be lipotoxic, 

lipidomic analysis of islets led to further interesting findings with respect to changes in lipid 

profiles. It was found that p-PPARy2-HFD islets had significant decreases in total LysoPCs 

compared to P-eGFP-HFD control islets. Upon review o f the literature, changes in LysoPCs 

have been implicated in regulating P-cell function in many different tissue types in obesity 

and T2D.

It has been suggested by two groups that an accumulation of LysoPCs in liver and 

heart tissue carries a lipotoxic effect on these cell types by induction of ER stress and 

upregulation of pro-apoptotic p53 upregulated modulator of apoptosis (PUMA) (Gurung et 

al., 2011; Kakisaka et al., 2012). Here I report that a decrease of LysoPCs is associated with 

impaired p-cell function. These findings suggest that there may be different mechanisms at 

play involving the metabolism of LysoPCs depending on tissue type.

Indeed, further review of the literature has revealed that in patients with obesity and 

T2D, there is a significant decrease in circulating plasma LysoPC levels (Barber et al., 2012). 

In adipose tissue, it has been shown that increases in specific LysoPC species 12:0, 16:0, and 

18:0 caused an increase in the glucose 4 transporter and therefore increased glucose uptake in 

a dose dependant manner (Yea et al., 2009). These findings provide another example o f how 

changes in lipid profiles of adipose tissue could result in impaired glucose uptake and 

therefore lead to hyperglycemia in patients with T2D. Interestingly, the LysoPC species
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changes observed in adipose tissue during conditions of obesity are the same species that 

have been reported to change in this chapter (Fig. 3.5a).

Looking specifically at the role of LysoPCs in pancreatic P-cells, it has been shown 

that LysoPCs may play an important role in mediating the secretion of insulin granules. One 

study has shown that uptake of glucose by the P-cell may stimulate the conversion of 

phosphatidylcholines (PCs) to LysoPCs and arachidonic acid through the activity of 

Phospholipase A2 (iPLA2) (Fig. 3.7) (Ramanadham et al., 1999). This, as well as other 

studies, have shown that accumulation of arachidonic acid as well as LysoPCs causes an 

increase in insulin secretion and that inhibition o f the formation of either of these two lipids 

will cause a decrease in insulin secretion (Ramanadham et al., 1993; Ramanadham et al., 

1999; Wolf et al., 1991). Further studies have suggested that LysoPCs potentiate the 

secretion of insulin by binding to the G-coupled protein receptor-119 (GPR119) causing an 

increase in cyclic adenosine monophosphate (cAMP) levels (Overton et al., 2008; Soga et al.,

2005) ultimately leading to increased mobilization of intracellular calcium stores and 

increased secretion o f insulin granules (Fig 1.4) (Metz, 1988).

Figure 3.7. Glucose stimulates the activity o f phospholipase A2 (iPLA2) causing the 
conversion o f phosphatidylcholines to arachidonic acid and lysophosphatidylcholines 
potentiating the secretion of insulin in pancreatic p-cells.
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The suggested mechanisms for LysoPCs on insulin secretion correlate well with the 

findings in this chapter. In reviewing the literature, it seems that in P-cells LysoPCs are able 

to enhance insulin secretion. Here I have reported that P-PPARy2-HFD mice exhibit an 

increase in a specific PC, which is a LysoPC precursor, with a decrease in LysoPCs, which 

could be responsible for the observed impairment in P-cell function and whole animal 

glucose metabolism. Further studies will be required to assess how PPARy regulates the 

conversion of PCs to LysoPCs in pancreatic p-cells.

As stated previously, lipidomics is a relatively new field. For this reason, lipid species 

can be measured by LC/MS that do not yet have a known identity. It is of interest to note that 

islets from P-PPARy2-HFD mice had significantly increased levels of 10 additional unknown 

lipid species when compared to islets from p-eGFP-HFD control mice. Due to the unknown 

identity of these species it is difficult to speculate whether or not these species are playing a 

significant role and impossible to explore any mechanism by which they may be causing 

changes in P-cell function. In the future, when the identity of more of these lipid species are 

known, re-analysis of these data may reveal these species are lipotoxic species that increase 

lipotoxic stress in p-cells of P-PPARy2-HFD mice and do contribute to the impairments seen 

in glucose tolerance. For this reason, future reanalysis of these data may prove useful.

As PPARy2 is a nuclear transcription factor, it was useful to analyze gene expression

profiles of isolated islets in order to reaffirm mechanisms for impaired glucose homeostasis

arising from changes in lipidomic profiles as well as to identify other potential mechanisms

of impaired glucose metabolism in P-PPARy2-HFD mice. It was previously shown in Dr.

Gray's laboratory that overexpression of PPARy in the p-cell results in changes in plasma

insulin levels (Table 3.1). It has also been shown previously that PPARy can play a role in

the production o f insulin through binding to promoter regions in PDX1, a protein responsible
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for the production of insulin and differentiation o f mature P-cells (Gupta et al., 2008). As 

such, the role of PPARy on insulin production may provide the simplest explanation for the 

changes in carbohydrate metabolism seen in p-PPARy2-HFD mice. For this reason, mRNA 

expression was measured for the insulin gene as well as PDX1; however, it was found that 

there was no significant difference in the expression of either of these genes between p* 

PPARy2-HFD and P-eGFP-HFD islets (Fig. 3.6), suggesting PPARy2 overexpression in 

these p-cells is not inducing changes in insulin production that are responsible for the 

changes in glucose homeostasis.

Due to the lipogenicity of PPARy2, genes involved in the formation and recruitment 

of lipids were analyzed and it was seen that an increase in expression of CD36, a known 

PPARy2 target gene (Gupta et al., 2008; Parton et al., 2004), was observed in islets from P- 

PPARy2-HFD mice (Fig. 3.6). CD36 is a FFA membrane transport protein; as such, its 

increased expression would be consistent with the idea that in conditions of elevated FFAs, 

PPARy2 would compensate for the increased need for membrane transport of these lipids for 

entry into the cell for use in lipogenic pathways. However, upon looking at expression of 

ABCal, another gene mediating the efflux of cholesterol and phospholipids (Yokoyama,

2006), it was found that there was no significant difference between P-PPARy2-HFD and p- 

eGFP-HFD islets. Further evaluation of another lipogenic gene involved in the de novo 

synthesis o f cholesterol and FFAs, SREBPlc (Fernandez-Alvarez et al., 2011), also resulted 

in no change in expression levels when comparing p-PPARy2-HFD and P-eGFP-HFD islets 

(Fig. 3.6), suggesting that perhaps PPARy2 plays only a minor role in de novo lipid synthesis 

within the islet.

One o f the mechanisms of P-cell failure in obesity proposed in the literature is

activation o f apoptotic pathways as a result of ER stress and oxidative stress (Summers,
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2006; van Herpen and Schrauwen-Hinderling, 2008). To assess the role of PPARy2 

overexpression in ER stressor pathways, expression levels of CHOP; a protein that 

participates in the suppression of metabolic genes in times of ER stress (Chikka et al .. 2013), 

and XBPls; a protein involved in the maintenance of protein folding during times of ER 

stress (Iwakoshi et al., 2003), were measured. It was found that there were no changes in the 

expression levels of CHOP or XBPls in response to overexpression of PPARy2. To assess 

the role of PPARy2 overexpression in oxidative stress pathways, expression of TXNIP, a 

protein that interacts with thioredoxin to reduce oxidative stress through redox signalling 

(Yoshida et al., 2005), was measured and it was also found that there was no difference 

between the expression in p-PPARy2-HFD and P-eGFP-HFD islets. In both cases of ER and 

oxidative stress, it was found that PPARy2 overexpression in the P-cell had no effect on the 

expression of these genes (Fig. 3.6), suggesting the role o f PPARy2 on impaired glucose 

metabolism in these mice may not be due to ER or oxidative stress.

In addition to ER and oxidative stressor pathways, peroxisomal stress on the P-cell 

must also be considered. My findings that p-PPARy2-HFD mice exhibit increased expression 

of AOX are consistent with previously published work that suggest the lack o f catalase in 

pancreatic P-cells results in accumulation of cytotoxic peroxides that can induce apoptosis 

(Eisner et al., 2011). This finding may suggest that increased P-oxidation specifically 

through AOX in the peroxisome may induce apoptosis and could account for the decreases 

observed in p-cell mass in p-PPARy2-HFD islets (Fig. 3.2a).

Furthermore, p-PPARy2-HFD mice had significant increases in UCP2 and CPT1,

other genes involved in mitochondrial p-oxidation of lipid species (Fig. 3.6). Due to the

lipogenic nature of PPARy2, it was surprising to see an increase in genes involved in P-

oxidation; however, these findings are consistent with previous works that would explain an
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inhibitory role o f PPARy on insulin secretion and impairments in glucose homeostasis (Ito et 

al., 2004; Parton et al., 2004). In pancreatic islets it was shown that PPARy overexpression 

increased the expression of UCP2 and CPT1 causing a reduction o f ATP production, which 

would decrease the membrane polarization effect, required for mobilization o f intracellular 

calcium stores and the secretion of insulin described in Figure 1.4 (Ito et al., 2004; Parton et 

al., 2004). This effect is consistent with the changes in plasma insulin levels reported in 

Table 3.1, and could contribute to the impaired glucose homeostasis observed in p-PPARy2- 

HFD mice. Taken together with the findings that P-PPARy2-HFD mice exhibit increased 

expression o f FFA transport proteins (CD36) and increased expression of genes involved in 

peroxisomal (AOX) and mitochondrial (CPT1) P-oxidation, it could mean PPARy2 is 

responsible for recruitment of lipid species into P-cells for entry into P-oxidative pathways 

rather than the classic TAG synthesis paradigm seen in white adipose tissue. This theory 

would be consistent with the lipidomic results reported here where there was no increase in 

total TAG species as a result of p-cell specific PPARy2 overexpression (Fig. 3.4).

Finally, genes that have been implicated in signalling o f insulin secretion were 

assessed. In contrast to what would have been expected, it was found that P-PPARy2-HFD 

islets showed an increase in expression of GPR40 (Fig. 3.6), a protein that when activated 

has been shown to increase secretion of insulin from the P-cell as described in Figure 1.4. 

Due to decreased plasma insulin levels of P-PPARy2-HFD mice noted in Table 3.1, it would 

have been expected that a decrease in GPR40 would be observed, however this was not the 

case.

I have clearly demonstrated here that P-cell specific overexpression of PPARy2 plays

a significant role on the maintenance of plasma glucose levels, and that changes in the p-cell

rather than peripheral tissues are responsible for these observed changes. It is difficult to
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speculate whether these impairments in glucose homeostasis are a result of changes in islet 

morphology, such as decreased P-cell mass, or disruptions of insulin secretion brought on by 

changes in gene expression or lipid profiles. Further exploration is required to determine 

whether the reductions in LysoPCs observed here is a substantial enough change to impact 

whole animal glucose homeostasis. In addition, the role of PPARy2 in the formation of these 

lipid species is still unknown and requires further attention in order to highlight potential new 

mechanisms for the role of PPARy in P-cell lipid metabolism. It is likely that changes in 

glucose homeostasis observed here are a summation effect of the changes observed in islet 

morphology and changes in lipid as well as gene expression profiles.

This study has further enforced the idea that PPARy activation can have varying 

effects depending on tissue type. As with heart and cardiovascular complications, activation 

of PPARy in pancreatic p-cells seems to have a negative impact on P-cell function in obesity. 

Furthermore, this study outlines the complexity with which lipid metabolism can affect p-cell 

function in conditions of obesity and further exploration is required to assess the effect of 

specific lipid profile changes on insulin secretion and signalling in response to secretory cues 

from peripheral tissues. Tissue-specific activation of PPARy has become a popular area of 

research due to the potent anti-diabetic effects of TZD administration. I conclude here that in 

an obese setting, PPARy overexpression specifically in pancreatic P-cells impairs whole 

animal glucose homeostasis, which does not support the use o f TZDs to directly improve islet 

function.
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CHAPTER 4

Concluding remarks for exploring the role of PPAR5 and PPARy overexpression on 
pancreatic p-cell function with respect to obesity and T2D
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4.1 CONCLUDING REMARKS

Obesity has been established as the primary risk factor for the development o f type 2 

diabetes (T2D) and complications associated with the metabolic syndrome (Smyth and 

Heron, 2006). A key hypothesis explaining the link between T2D and obesity is lipotoxicity, 

where limitations in adipose tissue expandability leading to ectopic deposition of cytotoxic 

lipid species results in insulin insensitivity and P-cell failure (Ahima, 2006; Chavez and 

Summers, 2010; Gray and Vidal-Puig, 2007; Kershaw and Flier, 2004). It remains unclear 

whether elevations in circulating triglycerides, high-density lipoprotein cholesterol, and 

increased central obesity associated with the metabolic syndrome arise first causing 

impairments in insulin action and progression towards T2D, or if  insulin insensitivity arises 

first causing dyslipidemia leading to the symptoms associated with the metabolic syndrome 

described previously (Chapter 1). In an attempt to further elucidate the mechanisms leading 

to P-cell failure associated with obesity, I have explored the role of peroxisome proliferator 

activated receptors (PPARs), a family o f nuclear transcription factors described as master 

regulators o f lipid metabolism, on P-cell function both in vitro and in vivo.

Here I outline the effects o f PPARS and PPARy2 overexpression in a model of 

obesity in pancreatic P-cells. More specifically, I observed the role o f PPARS overexpression 

in vitro to assess the effect of PPARS activation on insulin secretion in both lipotoxic and 

non-lipotoxic conditions. I also report here potential mechanisms specific to pancreatic p-cell 

failure induced by dyslipidemia associated with P-cell specific PPARy2 overexpression in an 

animal model.

By further elucidating the role o f PPARs on P-cell function, better treatment strategies

can be developed targeting this family of transcription factors. This is an important aspect to

consider as systemic administration of PPAR agonists, despite showing marked
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improvements in insulin sensitivity and dyslipidemia, has been shown to cause adverse 

effects, including heart failure and cardiovascular risks, in already at-risk patients (Lago et 

al., 2007; Nissen and Wolski, 2007).

4.2 SIGNIFICANCE

Here I report the effects of p-cell specific overexpression of PPARS and PPARy2 on 

insulin secretion and carbohydrate metabolism. This study provides a useful addition to the 

scientific literature related to the effects of obesity on lipid metabolism within the P-cell. I 

have further elucidated the tissue-specific effects of PPARS and PPARy2 overexpression in 

the p-cell, which will provide insight into the role these transcription factors play in islet 

function and for development of future treatment strategies aimed at PPAR activation as a 

tool for improved insulin sensitivity and dyslipidemia in patients with T2D and the metabolic 

syndrome.

In summary, I have shown that overexpression of PPARS in MIN6 and INS1 P-cell 

models yields functional PPARS protein capable of binding to the peroxisome proliferator 

response element (PPRE) inducing transcriptional changes (Chapter 2). Furthermore, I have 

confirmed previous findings that activation of endogenous levels o f PPARS with a synthetic 

ligand in pancreatic P-cells plays a protective role against palmitate-induced lipotoxicity 

(Ravnskjaer et al., 2010; Wan et al., 2010). I also report that, under non-lipotoxic conditions, 

overexpression of PPARS with subsequent activation by a synthetic ligand causes no 

significant change in insulin secretion. When observing the effects of PPARS overexpression 

and activation in a lipotoxic setting however, I report an impairment on insulin secretion not 

observed in cells with endogenous levels of PPARS expression. In examining gene 

expression profiles, no changes in mitochondrial P-oxidative genes were detected. It is
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suggested that additional gene expression studies looking at these pathways be assessed 

before final conclusions are drawn; however, it may be that additional roles of PPARS in the 

P-cell may explain the observed changes in P-cell function. Taken together, these results 

suggest that treatment strategies involving PPARS agonists should consider dosing effects 

and nutrient availability when evaluating the effects of PPARS on P-cell function and 

ultimately effects on carbohydrate metabolism.

Previously Dr. Gray's laboratory has demonstrated that mice overexpressing PPARy 1 

or PPARy2 specifically in pancreatic P-cells in obesity exhibit impairments in glucose 

homeostasis associated with changes in p-cell function (Hogh et al., 2014). Here I report 

lipidomic and gene expression analysis of islets isolated from obese mice overexpressing 

PPARy2 specifically in pancreatic p-cells (Chapter 3). Lipidomic profiling of islets suggests 

that PPARy2 may down regulate lipid species previously shown to play a role in insulin 

secretion. More specifically, I observed decreases in lysophosphatidylcholines, lipid species 

shown to enhance insulin secretion from P-cells through signalling of G-protein coupled 

receptors (Overton et al., 2008; Ramanadham et al., 1993; Ramanadham et al., 1999; Soga et 

al., 2005; Wolf et al., 1991). Furthermore, gene expression analysis of isolated islets revealed 

that PPARy2 induced increases in expression of genes involved in the membrane transport o f 

lipids (CD36) as well as mitochondrial (UCP2, CPT1) and peroxisomal (AOX) lipid 

oxidation. Considering the changes in lipid and gene expression profiles, I suggest that 

PPARy2 activation plays an inhibitory role on insulin secretion and may induce cytotoxicity 

through activation of peroxisomal oxidative pathways leading to the accumulation of 

cytotoxic peroxide species in the P-cell. These findings will be useful when considering 

systemic effects o f PPAR agonism to assess what role PPARy activation will have on P-cell

function and ultimately whole animal carbohydrate metabolism.
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4.3 FUTURE DIRECTIONS

The focus o f this thesis has been to examine the role of PPARs, specifically PPARS 

and PPARy2, on p-cell function in a setting o f obesity-induced T2D. I have shown here that 

overexpression and activation of PPARS in a MIN6 model plays a significant role on the 

ability to secrete insulin in response to glucose under lipotoxic conditions. The role of 

PPARy 2 has been further characterized, here I report changes in islet lipid and gene 

expression profiles associated with impairments in whole animal carbohydrate metabolism of 

obese mice. These findings have revealed novel insights in which to further explore and 

characterize the specific role that PPARS and PPARy2 play on P-cell function in obesity.

Further studies related to PPARS in pancreatic P-cells will focus on the effects of 

PPARS overexpression specifically in pancreatic p-cells of C57B16 mice. A previous study 

has suggested that P-cell specific knockout of PPARS causes an increase in insulin secretion 

due to PPARS regulation o f cellular machinery (Iglesias et al., 2012). Generation of a chow- 

fed transgenic mouse overexpressing PPARS will further discern the role o f PPARS on P-cell 

function and may provide support to the claims of this previous study. Furthermore, 

overexpression of PPARS in pancreatic P-cells of mice on a high fat diet will allow for 

examination into the role of PPARS in the P-cell under conditions of obesity-induced 

lipotoxicity. Transgenic mice will be characterized by changes in carbohydrate metabolism 

as a result of PPARS overexpression by measuring glucose stimulated insulin secretion, oral 

glucose tolerance, and insulin sensitivity.

Transgenic mice will be generated using an intraperitoneal injection o f a double

stranded adeno-associated virus (dsAAV), specifically serotype 8 to target tissues of the

foregut (Hogh et al., 2013). Viral vectors will be used to deliver the construct containing the

PPARS gene insert under control of the rat insulin promoter (RIP) to induce overexpression
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of PPARS specifically in pancreatic P-cells. Effectiveness of transfection protocols will be 

evaluated using immunohistochemistry with PPARS specific antibodies to visualize 

fluorescence in pancreatic islet sections to confirm presence of PPARS protein in addition to 

measurement o f PPARS mRNA expression using qPCR.

Should any changes in carbohydrate metabolism be observed in PPARS transgenic 

mice, islets would be isolated to measure changes in specific lipid species using liquid 

chromatography in conjunction with mass spectrometry (LC/MS) in addition to changes in 

gene expression profiles. The aim of these studies will be to examine the in vivo effects of 

PPARS overexpression on carbohydrate metabolism and to explore possible mechanisms for 

any observed changes.

Future studies related to the role of PPARy in pancreatic P-cells will focus on further 

exploration into the mechanisms related to the impairments in carbohydrate metabolism 

observed in PPARy transgenic mice. Here I have explored the changes in gene expression 

and lipidomic profiles associated in pancreatic islets associated with P-cell specific PPARy2 

overexpression. It will be useful to generate another cohort of mice to examine the effects of 

PPARy 1 overexpression in P-cells. Through examining lipid and gene expression profiles in 

PPARy 1 transgenic mice, it may be possible to identify mechanisms common to PPARy2 

transgenic mice in addition to novel mechanisms related to PPARy 1 function. This study will 

allow for a broader understanding of the role of PPARy in pancreatic P-cells in an obese 

setting.

Additional studies related to PPARy2 expression in the P-cell will focus on

mechanisms of P-cell failure that I have eluded to here. Specifically, in vitro studies

examining the role of PPARy2 regulation of lysophosphatidylcholine (LysoPC) generation

will determine if  the decreased LysoPC levels I observed in pancreatic islets are substantial
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enough to cause changes in insulin secretion. Furthermore, the idea of cytotoxic 

accumulation of peroxide species as a result o f PPARy2 overexpression will be assessed to 

determine whether or not PPARy2 is shifting lipid metabolism towards preferential 

peroxidation of long chain fatty acids rather than mitochondrial P-oxidation alone.

The role of PPARs in several tissue types have been well characterized; however, in 

pancreatic P-cells, their function still remains unclear with many conflicting findings in the 

literature. The findings that I report here, in addition to the future studies I propose, will aid 

in elucidating the role of role of PPARs on islet pathophysiology in T2D. Furthermore, I have 

provided insight into the P-cell specific effects of PPAR agonists and how these effects may 

or may not contribute to the therapeutic effects of drug treatments in T2D and obesity.
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