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Abstract

This thesis presents a new theory of information modelling in natural language process-
ing that attempts to resolve anaphoric references, while also addressing the problem of
knowledge complexity. A modular model of semantic representation is introduced that
addresses the deficiencies of existing representations, as well as the drawbacks associated
with expanding these semantic representations. Rather than using a single semantic rep-
resentation to model human knowledge and the knowledge within a sentence, the theory
proposes a modular, multi-level model which is based around a semantic network. The
behaviour of the model uses theories on the nature of working and long-term memory
from cognitive psychology. Two methods of artificial neuron activation and decay were
implemented — the ACT-R model and the Thompson model. Maximum success rates of
54.10% and 83.61% were achieved for The Three Brothers corpus, and maximum success

rates of 56.00% and 86.67% were achieved for the Rumpelstiltskin corpus.
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CHAPTER ONE

Overview

She had a pretty gift for quotation, which is a serviceable substitute for wit.

- W. SOMERSET MAUGHAM

1.1 Introduction

It seems ironic that although natural languages are very difficult to model, the languages
themselves are quite effective and efficient for communication. If humans use their native
language with ease, then why is it so hard for computers to understand natural languages?
One of the most obvious answers is that the human brain is so complex. The complexity
of human knowledge, and the medium on which it is stored and processed, cannot be
understated.

This thesis presents a new theory of memory modelling in natural language processing
that attempts to resolve anaphoric references, while also addressing the problem of com-
plexity. Rather than using a single semantic model to represent human knowledge and the
knowledge within a sentence, the theory proposes a more general model where multiple
semantic representations can be used in a system that models the observed behaviour of

working and long-term memory.

1.2 Pronominal Anaphora Resolution

The goal of this thesis was to develop a multi-level model of human memory that is modular
and flexible, processes multiple well-known semantic representations such as semantic

networks, conceptual graphs and quasi-logical form, and uses these models to resolve



anaphoric references. In-particular, this thesis focused on the resolution of simple pronouns
such as he, she, they, etc. In the most general of cases, pronoun resolution is quite simply
a matter of searching backwards through a corpus of text until the first noun phrase that

matches such attributes as number and gender is found:

Bright and early the next morning, | the shoemakerji rose and went to 1 work bench. To his
amazement, there on the table were , already finished. a were beautifully made,

neat and true, and with not a single false stitch.

The situation can be made slightly more complex by making antecedents separate

entities in the context:

For some time that same thing happened, until || the good man | and s were thriving

and prosperous. But were not satisfied to have so much done for | them |3 and not know to
whom should be grateful.

But of course, this is not always the case. The next example, adapted from [Sidner 1983],

demonstrates where this method of resolution can break down:

My neighboursl have [a monster Harley 1200]2. l Theylg are really huge but gas efficient bikes.

In the second sentence, if an individual was to read just the pronoun they, their initial
preference for the reference may not be a monster Harley 1200 based on number alone.
In this context, a common preference for the pronoun they would be my neighbours. After
reading the remainder of the second sentence, it is apparent that this conclusion was
incorrect. Given the additional context, common knowledge concludes that the neighbours

are not motorcycles!.

1.3 Outline of Thesis

Chapter 2 discusses numerous semantic representations that have been introduced over the

past few decades. The general domain of use is covered for each semantic representation

!That is unless your neighbours actually are motorcycles.



as well as some of the drawbacks for each structure. Chapter 3 will discuss the evolution
of theories of short-term and long-term memory as well as current theories in human
memory. Several modern psychological models of short-term and long-term memory will
be elaborated on, as well as some computational memory models. In Chapter 4, the
discussion on semantic representations will move towards a theory on combining semantic
representations to overcome their individual deficiencies with the intention of creating a
system that is easier to understand and easier to expand. The theory will also model
human behaviour more closely.

Chapter 5 will discuss the current state of understanding in pronominal anaphoric
reference and anaphora resolution. Several theoretical problems will be introduced and
discussed. A number of modern anaphora resolution algorithms will be presented that
attempt to solve anaphoric reference issues. The chapter will conclude with an exami-
nation of what occurs when humans fail to resolve anaphoric references. In Chapter 6,
the combined semantic representation model, memory models, and anaphora resolution
algorithms will be integrated into a system that will attempt to solve anaphoric reference
problems introduced in Chapter 5. Chapters 7 will cover the methodology for testing the
implemented model, the results of testing, and a discussion of those results. Chapter 8
will conclude the thesis by comparing the testing results with the results of other models,

and a discussion on how the model presented in this thesis could be improved.



CHAPTER TWO

Declarative Semantic Structures

Oh, and sir, you’re wrong. We won’t be apart - we just won’t be together.

- ARNOLD J. RIMMER (Holoship)

Although many types of semantic representations have emerged during the history
of natural language processing research, understanding in the domain of semantics is
still limited. Some models fall short and are intended for a limited knowledge domain.
Others can be expanded but the resulting expansions are often unclear or more difficult
to computationally manage.

In this chapter, a number of semantic representation models are examined. As each
model is investigated, the shortcomings of each model will be shown. The examination
of these shortcomings will lay the initial groundwork for a hypothesis on improving these
models. By integrating each semantic model separately into a larger, multi-level system,
it is hypothesized that the resulting system would be easier to expand than a system with
a single complex semantic model, and would provide a diverse knowledge base from which
an anaphora resolution algorithm, or group of algorithms, could draw from. James Allen

makes a statement in [Allen 1995] to this vain:

...a vigorous debate about knowledge representation is actually the result of
each of the debaters focusing on one of the aspects of representation without
considering the concerns of the other.

Humans apply much implicit knowledge when understanding an utterance. Informa-
tion in long-term memory is not considered in many structures, and even if it is, the
information is stored only at the discourse level. Ignoring the complexity of a human

knowledge base only trivializes the vast learning power of the human mind.



2.1 Semantic Networks

Some of the earliest research with respect to semantic networks can be found in
[Quillian 1968] and [Collins and Quillian 1969]. Semantic networks were first introduced
as a model of human memory. How semantic networks are realized as models in com-
putation is quite a broad topic. Interpretation varies from graphs with concepts as
nodes and the associations between the nodes as links, to more complex graphs such
as Sowa’s conceptual graphs [Sowa 1984] or conceptual hierarchies [Ma and Isahara 2000]
[Chung and Moldovan 1993] . For the purposes of this thesis, semantic networks will be
restricted to the first definition, graphs with concepts as nodes and associations as links.

Figure 2.1 represents a semantic network that has a strength associated with each link.
The network roughly represents an artificial neural network, which will be discussed further
in Chapter 3. Each node'represents a single topic or concept. Thus, the relationship
between two semantic concepts is based on the strength of the association between the two
semantic concepts. The drawback of this model is that it only models a loose relationship
between topics. It does not identify what the relationship is. The next example illustrates

how drawing the appropriate knowledge from a semantic network would be difficult:

John had a son named Bob. His son is an excellent skier.

In this example, an anaphora resolution algorithm would have a difficult time resolv-
ing the possessive pronoun His without the father-son relationship being modelled more
explicitly.

[Kazuhiro et al 1992] and [Berger et al 2004, Belew 1987] demonstrate examples of se-
mantic networks with weighted links being used in kana-kanji conversion and information
retrieval, respectively. In Chapter 4 we will see that semantic networks will not be used
to model knowledge directly. Rather, they will be used to connect semantic concepts and

their associated semantic representations.

! A node does not necessarily represent a single neuron within the human brain. A node could represent
a group of neurons.



Figure 2.1: Probabilistic Semantic Network

2.2 Conceptual Graphs

Some of the earliest work with respect to conceptual graphs can be attributed to Sowa in
[Sowa 1976, Sowa 1979, Sowa 1984]. Conceptual graphs are defined as a directed bipartite
graph with two types of nodes. Each node in the graph can be either a concept or a
conceptual relation. Concepts can be concrete (such as cat), or they can be abstract
(such as sadness). Conceptual relations can have an arity of n > 1. Figure 2.2 illustrates
conceptual relations with various arities.

Conceptual graphs are not limited to the simple relations shown in Figure 2.2. They
can also model simple sentences, as seen in Figure 2.3. Since conceptual graphs are used
extensively in database systems, relational database theory allows us to perform certain
operations to obtain new conceptual graphs, such as copy, restrict, join, and simplify. In
their basic form, conceptual graphs do not model the strength of relationships. Common
knowledge dictates that information stored in long-term memory is not as concrete as the
conceptual graph model it to be. Fuzziness with respect to relations is not accounted
for. Conceptual graphs, as defined by Sowa, do not model temporal information implied

by verb tense and verb aspect. This deficiency is apparent in Figure 2.4 adapted from



cat black

(b

father

©) mother

Figure 2.2: Conceptual Relations of Arity (a) 1 (b) 2 and (c) 3

[Sowa. 2000]

e s |—=Conea)
oG —— =

Figure 2.3: Conceptual Graph for Mary gave John the book.

Person:John Go City:Boston

Figure 2.4: Conceptual Graph for John is going to Boston

It is apparent that the tense and aspect have been lost for the verb phrase is going.
Tense and aspect could be reflected by adding another relation, as shown in Figure 2.5.

How would we model one event occurring before another event? Another relation would
seem to be a possible answer. This process of adding relations to reflect previous missed
information could lead to quite a rat’s nest. It becomes difficult to separate verbs and
nouns from other semantic information without adding more relations, and it potentially

becomes a model that is more difficult to expand and maintain.



Person:John Agnt Go City:Boston

Pres:Prog

Figure 2.5: Another Conceptual Graph for John is going to Boston

2.3 Conceptual Hierarchies

Conceptual hierarchies are a very common structure in object oriented programming.
They allow programmers to show how certain objects inherit the properties of another ob-
ject. Figure 2.6 illustrates an example of how classification and sub-classification have been
observed by biology throughout the world. Subclasses inherit attributes from their super-
class as well as adding their own attributes. Research in cognitive categorization, such as
[Kay 1971, Rosch et al 1976], suggests that the human mind stores and groups informa-
tion based on taxonomy in long-term memory. One of the main advantages of conceptual
hierarchies is that they are very efficient at storing information [Ma and Isahara 2000].

Information common to many concepts is only stored once.

Mammal
Carnivore
/ \
Dog Cat
Buddy Lady Malakyte Scat

Figure 2.6: Conceptual Hierarchy



One the main disadvantages of conceptual hierarchies is their intended use: modelling
concepts and the inheritance of characteristics between concepts. They are not intended

to model entire sentences or any kind of temporal information.

2.4 Event Timeline Models

The Bull Framework

In [Culce-Murcia and Larsen-Freeman 1999], Celce-Murcia and Larsen-Freeman adapted
the The Bull Framework [Bull 1960] (originally created for Spanish) for teaching ESL
students English. The Bull Framework proposes four axes of time: past, present future,
and hypothetical. The first three axes contain a point of reference in the centre and the
times occurring before and after the time of reference to the left and right, respectively.
Figure 2.7 demonstrates an example using the verb ski. The fourth axis, hypothetical, is

used to model hypothetical events, for example, events created using constructions like

if..then.
ski:1
i Past o o @
: Past Present Future
ski:1
. Future @ { ] @
Past Present Future
) Future Perfect
ski:1 | l
: Present @ @ @ @
Past Perfect ~ Simple Past Present Simple Future

"l skied in the Whistler—Blackcomb backcountry.”

Figure 2.7: Timeline Model

Since the Bull Framework was only intended for explaining verb tenses, it does not

suitably model many aspects of natural languages such as nouns, adjectives, and adverbs.

10



The Reichenbach Theory

In [Allen 1995], Allen presents Reichenbach’s theory on timeline representation from
[Reichenbach 1947]. Reichenbach theorized that each verb embeds information about
three points in time: time of speech (S), time of the event/state(E), and time of refer-
ence(R). In the simple aspect?, the time of the event/state and the time of reference are
always equivalent. This equivalency does not exist for the perfect and posterior aspects3.
Figure 2.8 gives a table outlining the various timelines for different tense and aspect com-
binations. Table 2.1 shows some example sentences and their tense/aspect. Reichenbach
methodology is very similar to that of Bull’s in that they both attempt to model a type
of temporal ordering, which is implied by varying tense and aspect combinations in sen-
tences. Naturally, Reichenbach’s theory does not attempt to account for the nature of

nouns, adjectives, and adverbs.

| Tense | Example Sentence |
Simple Present Jack sings
Simple Past Jack sang
Simple Future Jack will sing
Perfect Present Jack has sung
Perfect Past Jack had sung
Perfect Future Jack will have sung
Posterior Present | Jack is going to sing
Posterior Past Jack was going to sing
Posterior Future | Jack will be going sing

Table 2.1: Example Sentences Taken from [Allen 1995]

2.5 Thematic Roles

Thematic roles are linguistic entities (embodied in the form of noun phrases) that satisfy

certain semantic constraints implied by the main verb phrase of a sentence. The idea of

%It must be noted that the progressive aspect and perfect progressive aspect are missing from Allen’s
listings.
3 Allen refers to simple as being a tense, not an aspect.

11



Simple Perfect Posterior

S :
Present R : S S
E : E |R R E
Past E
R S E |[R{S R |S |E
Future E
S R S |E |R S |R |E

Figure 2.8: Reichenbach Timeline Model

thematic roles draws a close parallel to the morphological case systems found in languages
such as German and Latin, but expands on the case system by adding a much larger
number of cases.

Verb phrases require that these thematic roles are present before a sentence can make
sense semantically. Altmann demonstrated in [Altmann 1999] that even if all thematic
roles are met for a verb phrase, if the antecedent of a thematic role is not plausible, the
sentence will not make sense. Figure 2.9 gives an example of (a) an implausible antecedent
to a thematic role, and (b) a plausible antecedent to a thematic role. A major drawback
of the Thematic Role model is that it only considers concepts at the sentence level. It
does not attempt to address how concepts can be inter-related throughout are large body
of text.

The structure of English allows thematic roles to be located at different syntactic
positions within a sentence. The result is a sentence with a different syntactic structure
and more emphasis can be placed on certain roles. Although the syntactic structure is
different, when constructed properly, the new sentence should describe the same event.
Figure 2.10 gives an example. It is apparent that the antecedents of thematic roles can be
extracted from a sentence based on their semantic contribution to that sentence, rather
than the syntactic contribution. Table 2.2 outlines some of the thematic roles proposed

by Sowa in [Sowa 2000].

12



(a) A young toddler was running around his playroom. It was
empty except for some chairs in one corner and some pet
cats in the other. He chased a chair that he had run into
before.

(b) A young toddler was running around his playroom. It was
empty except for some chairs in one corner and some pet
cats in the other. He bumped a chair that he had run into
before.

Figure 2.9: [Altmann 1999] Thematic Implausibility:

(a) Bart threw a chicken at the house.

(b) A chicken was thrown at the house by Bart.

Figure 2.10: Sentences Implying The Same Event

2.6 Logical Form and Quasi Logical Form

The Core Language Engine was developed at the Stanford Research Institute and The
Center for the Study of Language and Information at Stanford University. The meth-
ods of anaphora resolution in the Core Language Engine [Alshawi et al 1989] are heavily
motivated by its internal semantic representation, logical form and quasi-logical form.
Quasi-logical form is based on first order logic, which has been used widely in the fields
of philosophy and linguistics. The structure of logical forms is motivated by the desire to
use and extend first order logic, which is well suited for modelling quantifier scoping and
anaphora.

This section will discuss the Core Language Engine’s fully scoped logical form, and a
logical form where scoping rules are relaxed for reference resolution, quasi-logical form.
Although logical form and quasi-logical form were designed to handle many types of ref-
erence phenomena such as unscoped quantifiers, unscoped descriptions, and unresolved

relations, the phenomenon that will be focused on is unresolved reference. Resolution in

13



Agent
Beneficiary
Completion
Destination

Duration
Effector
Experiencer
Instrument
Location
Matter
Medium
Origin
Path
Patient
Point In Time
Recipient
Result
Start
Theme

Table 2.2: Thematic Roles

the Core Language Engine uses a set of reference resolution rules that propose possible log-
ical forms that can transform a quasi-logical form statement into a logical form statement.

Fully resolved logical forms must conform to the following set of properties:

e should be expressions in a disambiguated language.
e should be suitable for representing the meanings of natural language expressions.

¢ should provide a suitable medium for the representation of knowledge expressed in natural

language, and they should be a suitable vehicle for reasoning.

Figure 2.11 lists some of the grammar rules used in the Core Language Engine to
model the logical form language, and Figure 2.12 shows an example of logical form for the
sentence Every doctor visited Mary.

Not all references can be resolved immediately using logical form. Sentences such as
(1) Most doctors read every article, and (2) the bishops arrived contain references where

the scope of quantification is not exactly clear. In sentence (1), does each doctor in

14



(If -formula) — quant({quantifier), (variable), (restriction), (body))
(If-formula — [{functor),(argument,), (argumenty),-- - , (argumenty,)]
(functor) — (atom)
(quantifier) — forall|exists|---
(restriction) — (lf-formula)
(body) — (lf-formula)
(argument) — (lf_formula)

Figure 2.11: Logical Form Rules from the Core Language Engine [Alshawi et al 1989]
quant(forall,D, [doctor1,D],
[past,
quant (exists,E, [event,E],
[visit,E,D,mary1])])

Figure 2.12: Logical Form for Fvery doctor visited Mary

the most doctors set read all articles or does the most doctors set collectively read all
articles. This question can also be considered for sentence (2). Is the arrival of each
bishop from the the bishops a separate event (the distributive reading), or does a single
arrival event encompass all the bishops (the collective reading). The quasi-logical form
language extends the grammar of the logical form language to include rules that handle
unscoped quantifiers, as in sentence (1), under-specified relations, as in sentence (2), as
well as many other reference phenomena.

The logical form semantic representation is very well suited for modelling reference
information where quantification is of key importance, and the discourse contains utter-
ances where the exact scope of a quantifier is not clear. One of the biggest advantages
to using logical form is that it allows us to use a large body of knowledge relating to
first order logic. Although the Core Language Engine models some verb-structuresusing
logical form and quasi-logical form, it does not attempt to perform any temporal ordering
on the verb structures (as in the case of the timeline models from Section 2.4). Another

slight deficiency in logical form is how it handles “fuzzy” quantifiers such as some, many,

15



and few. In the Core Language Engine, the threshold defining the boundaries of these
quantifiers is given a definite value. Common sense dictates that certain quantifiers, such

as some, are fuzzy, and subject to contextual factors and personal preference.

2.7 Conclusion

This chapter has examined a number of semantic representations that are used in the fields
of natural language processing and knowledge management, such as semantic networks,
conceptual hierarchies, logical form and quasi-logical form. The benefits and potential
drawbacks were outlined for each representation. Chapter 3 will examine models of human
knowledge from the perspective of cognitive science. Chapter 4 will present a new model
of semantic representation that attempts to address the shortcomings mentioned in this
chapter by combining the representations into a modular multi-level system. This modular
system is easier to maintain and allows multiple anaphora resolution algorithms to operate

on a corpus simultaneously.

4Using first-order logic to model a verb phrase, intuitively, does not seem the most natural method to
model that knowledge.

16



CHAPTER THREE

Working & Long-Term Memory

Although there is still great debate about the exact nature and structure of working
memory and long-term memory, the majority of cognitive psychologists agree that the two
forms of memory are distinct in their behaviour and capacity [Logie 1996]. The human
mind does not have infinite time and infinite working memory capacity. If a natural
language processing system is to more closely model how humans process language, it
would make sense for that system to be constrained by the limitations and behaviour of
human memory. It is the intent of this thesis to stimulate more interest in memory model
approaches.

This chapter will outline some of the various views on working memory and long-
term memory. It will briefly discuss the evolution of theories of short-term and long-
term memory as well as current theories in human memory. Several modern psychological
models of short-term and long-term memory will be elaborated on, as well as some memory

models with a computational approach.

3.1 Working Memory Models

Some of the earliest work with respect to working memory can be found in the works of
William James (1905) [Richardson 1996]. James described working memory, then termed
primary memory, as being limited in capacity and volatile in nature. Primary memory was
considered to be a distinct system from long-term memory (called secondary memory at
the time). Information was retained in primary memory by rehearsal. Rehearsal was also
used to move information to and from secondary memory. Within this model, primary
memory did not control the flow or manipulation of the information, it only provided a

medium of storage.
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Richardson continues by describing that during the 1960’s, the theory of working
memory, then termed short-term memory, was extended to include a control mechanism.
This mechanism was responsible for the flow of information as well as processing. Instead
of being used only for the storage of information, the space in short-term memory was
shared with the processing of the control mechanism. Thus, in this model, there was a
trade-off in working memory between processing power (in the control mechanism) and
storage capacity.

The work of Baddeley on working memory is some of the most prominent. Gathercole
and Baddeley outline in [Gathercole and Baddeley 1993] the structure and behaviour of
Baddeley and Hitch’s working memory model. Figure 3.1 gives a visual representation
of their model. Gathercole and Baddeley state that the central ezecutive is the most im-
portant component of the model. The central executive is responsible for controlling the
flow of data within working memory, tile retrieval of data from long-term memory and
other memory systems, and the processing and storage of data. Baddeley expanded the
model to include an episodic buffer in [Baddeley 2000]. In addition to the central execu-
tive, an additional two slave systems are also included in the working memory model, the
phonological loop and the visuo-spatial sketch-pad. The phonological loop is responsible
for verbal information while the visuo-spatial sketch-pad handles visuo-spatial information.
Baddeley and Hitch used dual-task experiments in [Baddeley and Hitch 1974] to justify
the separation of the two slave systems. They discovered that when a subject performed a
verbal and a visual task concurrently, the individual could perform the tasks as efficiently
as if the task were performed serially. When the number of tasks for a single slave sys-
tem was increased to two tasks, the subject could not perform the tasks as efficiently as

performing them one at a time.

Limits of Working Memory

The limits of working memory are as intensely debated as the structure of working memory.

Early theories, such as Miller [Miller 1956, place specific limits on working memory. In
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Visuo-Spatial Sketch Pad Central Executive Phonological Loop

Figure 3.1: Baddeley and Hitch’s Working Memory Model

Miller’s view, working memory was seen as a short-term storage without any processing
ability. More recent work, such as that found in [Baddeley 1986, Haarmann et al 2003],
assumes that working memory is a multi-component system with processing capacity being
inversely proportional to storage capacity. In [Baddeley 1990], Baddeley hypothesized that
the span of working memory could partially be the result of the refresh-rate of items within
the current memory span :

If we assume that memory fades, then the memory span will be determined

by the number of items that can be refreshed before they fade away. That

number, of course, will depend on how rapidly the trace fades and on how long
it takes to articulate each item and hence refresh each memory trace.

3.2 Long-Term Memory Models and Associativity

Federmeier and Kutas mention in [Federmeier and Kutas 1999] that although long-term
memory is an integral component of sentence processing, the exact nature of how working-
memory interacts with long-term memory information is still largely unknown. Just as
there exists a debate as to the exact nature of working memory, differences in opinion
also exist on how pieces of information are associated within long-term memory. Feder-
meier and Kutas outline two hypotheses, the independent association hypothesis and the
associative symmetry hypothesis. The independent association hypothesis states that asso-

ciations in memory are not bidirectional. That is, given that the recall of item A triggers
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the recall of B, A — B, does not necessarily imply that the converse, B — A is true.
In the associative symmetry hypothesis, given A — B implies that B — A. Using the
independent association and associative symmetry hypotheses in the context of reading,
when a word corresponding to a semantic concept is accessed through the reading of a

sentence, the activation levels of neighbouring concepts may also increase.

3.3 ACT-R

The ACT-R theory of human cognition is rooted in ACT-E theory and ACT* theory
which were introduced by John Anderson in [Anderson 1976, Anderson 1983], respectively.
ACT-R models the interaction between two types of knowledge: procedural knowledge and
declarative. Procedural knowledge involves rules that define human cognitive behaviour.
Anderson formally calls these rules productions in [Anderson et al 2001]. Declarative
knowledge encompasses factual information that defines behaviour of cognition, defined
by Anderson as chunks. Examples of declarative knowledge are the sky is blue or snow
is white. One of the major factors that influences cognitive performance in the ACT-R
system is the granularity at which processing occurs. Production rules take at least 50ms

and at most 500ms to fire.

Procedural Long-Term Memory

ACT-R is a goal-oriented system that uses productions to define the cognitive behaviour
that acts upon declarative memory. Productions define actions such as retrieving infor-
mation to be processed, as well as actions that define the manipulation of the retrieved

information.

Declarative Long-Term Memory

In addition to the procedural memory, the ACT-R system also models declarative knowl-
edge, that is, knowledge that is defined as being not factual and does not control the

behaviour of cognition. Declarative memory is composed of chunks that are differentiated
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using a unique identifier. Each chuck has a type and may contain multiple slots, with
each slot linking to additional chunks. A good example can be taken from [Group 2004].

Using the sentence the dog chased the cat, we can derive the following chunk of declarative

memory:
Action023:

isa chase

agent dog

object cat

In this example, the type of the outer chunk is isa chase, and the two slots of the

chunk are filled with the chunks agent dog and object cat.

Declarative Memory Activation

In the ACT-R system, the retrieval of declarative chunks in memory is governed by the
speed at which they can be accessed. In [Anderson and Matessa 1997], Anderson defines
activation equations that predict the power law of learning and the power law of forgetting.

The activation level, A;, of a declarative memory chunk'is define as follows:

A = Bi+ZAiji (3.1)
J

where B; is the base level activation of the chunk i, A; is the activation of a chunk j
within the current focus of attention, and Sj; is the strength of the association between
chunk j and chunk i. The base level activation, B;, models the recency and frequency of
activation of the chunk ¢, and thus has a factor of decay associated with it. B; is defined

by ACT-R as:

!Anderson notes that the definition of chunks should not be confused with the definition from
Miller 1956]
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Bi = In (it;w) (32)
k=1

where ¢, is the time since the kthZuse of the chunk i, and w is the activation decay. In
[Anderson and Matessa 1997, Anderson et al 1998|,the value of w is fixed at 0.5. In order
for a chunk of declarative memory to be retieved and brought into the current focus, the

threshold of activation, o, must be met.

3.4 Computational Models of Memory

A survey of memory would not be complete without examining those models created
from a computational perspective. In particular, this section will examine the models of
memory presented by Schank in [Schank 1986] and Hunt in [Hunt 1973]. Although the
types of memory described by Schank and Hunt may have much information overlap with
previously described models, it is still relevant to examine computational models along
with psychological approaches. To some respect, the idea of memory modelling has been

largely ignored in the field of computational linguistics.

Event Memory and Generalized Event Memory

Event memory contains semantic knowledge for particular events experienced in a person’s
life. Schank states that events can be such things as going to Dr. Smith’s dental office last
Tuesday, and getting your tooth pulled or forgetting your dental appointment and having
them call you up and charge you for it. As a specific event remains in memory longer,
the exact details of the event begin to become less salient, and eventually, the event may
become a more generalized event or it may disappear entirely.

Generalized event memory, as the name describes, is a more generalized version of the

%In [Anderson and Matessa 1997], the index k is actually j. This was changed to prevent confusion
with the index j in the equation for A;. In addition, d is used as the decay rate, instead of w and A; is
used for the activation of node j instead of W;
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event memory described earlier. Generalized event memory is modelled as a portion of
memory that contains abstract events, i.e. events that have occurred numerous times and
thus have a template associated with them. As events from event memory are brought into
short term memory the associated generalized event is also brought in to aid in cognitive
processing. One of the results from this behaviour is that events from event memory will

become less and less salient and the more generalized event will only remain.

A Distributed Memory Model

In [Hunt 1973], Hunt describes a model of memory that builds upon the basic memory
model containing only short-term memory and long-term memory. As shown in Figure
3.2, Hunt adds an intermediate term memory structure that resides between short-term
and long-term memory, and buffer memory which is analogous to sensory memory in
other literature. Intermediate-term memory stores information about the current situa-
tion or episode, and thus intermediate-term memory is volatile like short-term memory.
The buffer memory is the most volatile of the structures, storing stimulus from sensory
input, such as auditory input, for only brief periods of time. In contrast to Baddeley’s
model of working memory where information flow within working-memory is controlled
by the central executive, Hunt’s model places control within the respective memory sub-
structures, Hunt notes that in his distributed memory model each memory component is
likely to be associated with varying anatomical areas of the human brain, but does not

provide evidence.

3.5 Neural Network Models of Associative Memory

Neural Networks, or more correctly artificial neural networks, attempt to model the be-
haviour of neurons within the human brain. Some of the earliest work on the modelling of
artificial neurons can be attributed to McCulloch and Pitts in [McCulloch and Pitts 1943]
and Hebb in [Hebb 1949]. Since the early work of McCulloch and Pitts, the field of arti-

ficial neural networks has developed into a mature field with large amounts of research in
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Artificial neurons are modelled after biological neurons. Axons send out signals to

another neuron’s dendrite. If the sum of the signals received by a neuron is greater than

some threshold, then the neuron fires, sending signals along its axons to other neurons.

Figure 3.3, adapted from [Russel and Norvig 1995], is an example of a typical biological

neuron. Artificial neurons attempt to model neurons at the level of a single biological

neuron. An artificial neuron does not attempt to model the actual physical chemical

reactions occurring, rather, they model neurons at more of a cause and effect level.

A typical artificial neuron can be found in Figure 3.4. The input values for neuron i,

A;, can be thought of as the dendrites. The output value, A;, is an axon. The strength

of the link between node i and some node j # ¢ is modelled using the Sj; term. The bias
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Figure 3.3: Biological Neuron

value, B;, is often used to influence base-level activation, allowing A; to be non-zero. The
actwation function of a neuron takes into consideration the input values, A;, and their
associated link strengths, Sj;, and generates a result f. Typically, the neuron activation

function f for a node ¢ is defined as follows:

k
f = Bi+> A;S; (3.3)

=0

The final portion of an artificial neuron is the threshold unit. If the total signal received
by the neuron is greater than some threshold, the neuron will fire. The actual value of the
threshold is defined by a threshold function, g(f). The resulting output from the neuron,
is represented as A;. In general, g can be any single-variable function, but the Equations

3.4-3.7 are some of the more commonly used.
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Figure 3.4: Multi-Input Neuron
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\
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tanszg(n) = m (37)

Neural Network Topology

A single set of inputs to a neuron is not very useful, or realistic. Of the 10!! neurons in the
brain, each neuron is connected to 10* other neurons. One of the most common configu-
rations of neural network topology is shown in Figure 3.5%. This three-layer configuration
allows arbitrary functions to be represented, and is the most commonly used in pattern

matching applications.

3Each circle in the diagram represents a multi-input artificial neuron.
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Figure 3.5: Multi-Layered Artificial Neural Network

Hebbian Unsupervised Learning

An artificial neuron by itself does not learn to perform complex tasks or match complex
patterns. A learning strategy must also be applied. Two strategies of artificial neuron
learning are supervised and unsupervised learning. 'This thesis will concentrate on the
latter of the two learning strategies. Within the human brain, neurons are connected to
many neighbouring neurons. The neuron must be capable of creating implicit associations
without direct intervention. Before outlining how an artificial neuron can learn to make
associations, it’s important that neuron association be properly defined. Hebb’s postulate

from [Hebb 1949] states:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased.

Using Hebb’s observation, the strength of the association between a neuron i and a

neuron j can be realized using Equation 3.8 adapted from [Luger and Stubblefield 1998]:

STR = S,'j-l-aAiAj (3.8)
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Si; is the strength of the association between neuron ¢ and neuron j, « is the learning
rate of the semantic link, and A; and A; are the current activation levels of neuron i and

neuron j, respectively.

3.6 Conclusion

This chapter examined numerous theories on the structure and behaviour of human mem-
ory. The evolution of working memory and long-term memory was examined from the per-
spective of cognitive psychology. Modern theories on human memory were also examined.
Models of human memory from computation, such as neural networks, event memory,
generalized event memory, and the distributed memory model were discussed. Baddeley’s
work with respect to working memory has demonstrated that there is a trade-off of ca-
pacity versus processing power in working memory. The ACT-R model established how
associations between concepts can be modelled as well as the activation of those concepts.
The discussion on neural network demonstrated how human memory can be modelled by
using the behaviour of biological neurons as its basis. In Chapter 6, the work of Badde-
ley, the ACT-R model of activation, and neural network theory will provide a basis for
the behaviour and structure of a memory model. A second model of activation, called
Thompson’s model, will also be introduced in Chapter 6. The results of testing using the

ACT-R and Thompson model will be discussed in Chapter 7.
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CHAPTER FOUR
Theory on Combining Semantic Structures

In Chapter 2, numerous semantic structures were outlined, as well as some of their
shortcomings in their purest forms. A common thread was that each structure needed to be
expanded in order to accommodate additional types of semantic information. The result
is a structure that is possibly more complex, without the guarantee that the new structure
can adapt to the dynamic nature of human knowledge and language. A structure that
works today may not necessarily work tomorrow. From a software engineering perspective,
modularizing the semantic structures makes the system easier to understand and easier
to expand. As deficiencies are found in the semantic structures, new structures can be

incorporated, and deficient structures can be removed.

4.1 Linking Semantic Structures

Intuitively, having completely disjoint semantic representations would not effectively model
the nature of human knowledge. Research in human memory has shown that when con-
cepts are activated in memory, related information may also be activated if the link be-
tween them is strong enough. Information from one semantic representation must somehow
be linked to related information in another semantic representation. Semantic networks,
which were introduced in Chapter 2, can be used to model the links between the semantic
representations. Figure 4.1 expands on Figure 2.1 by connecting the semantic concept
ship to various semantic representations such as quasi-logical form, conceptual graphs,
conceptual hierarchy, and a timeline model. The information from a semantic represen-
tation could also be connected to other concepts nodes within the semantic network. In
addition to the bare links, the strength of the links between concept nodes can also be
considered by adding weights to each link. In theory, the more often the concept node in

the semantic network is activated, the stronger the link will be to other concept nodes.
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This is similar to the behaviour of synapses originally theorized by Hebb in [Hebb 1949).
In addition, activation levels for the concept nodes can be modelled using activation level
models from artificial neural networks and ACT-R theory. The topology of the resulting
network differs from the traditional artificial neural network topology in that there is no
distinct input, hidden, or output layers. Rather, the concept nodes are connected in a
non-specific fashion. The resulting network is commonly called a localist network in other
literature. Single concepts are represented as a single node within the network. This
representation differs from networks like artificial neural networks, where a single concept
is represented as activations across a set of nodes, and nodes can represent more than one

concept.

Figure 4.1: Semantic Network Linking Semantic Representations

Implicit Semantic Links

It is plausible that knowledge which is represented using one semantic representation is
often intertwined with the knowledge within another. Figure 4.2 shows a good example
of how multiple semantic representations collectively model the sentence Once there was

a shoemaker who worked hard and was very honest. Notice that certain information such
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as shoemaker:1 and work:1 occur in more than one structure. We would like to some
how connect this information together, and a semantic network would be a good method

to achieve these connections. Concepts in the semantic network would be automatically

linked due to the information within their semantic representations.

work:1 shoemaker:1

quant(exists:1,B,[shoemaker:1,B])

_ Future Perfect
exists:
O @ ‘ 1

Past Perfect  Simple Past Present Simple Future

Linear

Future Perfect

P  — 4

Linear
Past Perfect ~ Simple Past Present Simple Future

B - Future Perfect
onest:
o . . 4

Past Perfect ~ Simple Past Present Simple Future

Linear

Figure 4.2: Multiple Semantic Representations

31



4.2 Modularization and The Human Mind

Creating a modularized model of semantic structures is not only a good engineering tech-
nique, it is also supported as model of the behaviour of the human mind by such psycho-
logical literature as [Foder 1983]|. Modularity of mind theorizes that parts of the human
mind are modular in nature and act autonomously with respect to other modules in the
mind. To some degree, the modularity is thought to be genetically determined. Foder’s
model of human mind requires that modules be specialized in their domain, encapsulate
their information from other modules, and have limited outputs to other modules. These

requirements are a natural result of the model described in this chapter.

4.3 Conclusion

This chapter has introduced a modular model of semantic representation that addresses
the drawbacks of existing semantic representations by connecting them using a semantic
network. This model allows new semantic representations to be added and removed from
a system without impacting the existing ones. It also addresses the desire to expand
a semantic representation to deal with new forms of knowledge. Instead of expanding
to a current semantic representation, a new semantic representation can be created and
plugged into an existing system. This modular separation of semantic representations also
permits the development of anaphora resolution algorithms for each semantic representa-
tion independently. It is apparent that in order to combine the semantic structures from
Chapter 2 using a semantic network, a theory of the exact nature of the network must
be considered. The link strength between concepts needs to be modelled, as well as the
activation levels for each node. Chapter 3 discussed theories on how link strengths and
activation levels are determined in the ACT-R system [Anderson et al 2001} and using
traditional artificial neural network theory. Chapter 6 will outline how activation theories
will be used in conjunction with a semantic network to define the behaviour of the model

proposed in this chapter.
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CHAPTER FIVE
Anaphoric Reference and Reference Resolution

Anaphoric reference is a linguistic mechanism with which reference can be made to
objects that have been introduced at an earlier point. References are typically made
with pronouns or different variations of definite/indefinite articles within a noun phrase.
Anaphoric references are also used to reference verb phrase structures. Anaphora, es-
pecially in the case of pronouns, often can be resolved by scanning backwards through a
corpus of text until the first noun phrase that matches such features as number and gender
is found, although Barbara Grosz demonstrated in [Grosz 1977] that this technique can

break down.

5.1 Types of Anaphoric Reference

Traditionally, anaphoric reference is observed in the use of pronouns such as he, she, or it
But within recent decades, there have been numerous proposals to extend the definition
of anaphoric reference to include other linguistic phenomena such as verb phrase ellip-
sis [Grosz 1977, Hardt 1997, Nash-Webber and Reiter 1977, Ginzburg and Cooper 2001},
presupposition [Piwek and Krahmer 2000, Geurts 1999], and temporal anaphora
[Paftee 1984]. In the context of this thesis, the domain of anaphoric references will be

restricted to pronominal references of noun phrases.

5.2 Problems in Anaphora Resolution

As stated before, in many cases resolving the antecedent for a pronoun is as simple as
searching backwards in a body for the first noun phrase that matches based on such
attributes as gender or number. But in some cases, a more complex model discourse must

be modelled in order to resolve a pronoun reference:
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John had a son named Bob. His son is an excellent skier.

In this example, a knowledge base about parent-child relationships must be known in
order to resolve the reference implied the possessive pronoun his. Even trivial references
can be more complex by introducing existential quantifiers, as illustrated by Partee in

[Partee 1984]:
Every farmer who owns a donkey beats it.

The pronoun it does not just reference a single donkey, the pronoun references multiple
instances of a donkey. The next example, adapted from [Sidner 1983], demonstrates where

this method of resolution can break down:

My neighbours)y have La monster Harley 1200}2, l They];, are really huge but gas efficient bikes.

In the second sentence, if an individual was to read just the pronoun they, their initial

preference for the reference may not be a monster Harley 1200 based on number alone.
In this context, a common preference for the pronoun they would be my neighbours. After
reading the remainder of the second sentence, it is apparent that this conclusion was
incorrect. Given the additional context, common knowledge concludes that the neighbours

are not motorcycles

5.3 Anaphora Resolution Algorithms

Determining the antecedent of an anaphor is central to the study of anaphoric reference.
Over the past few decades much research has involved creating computational meth-
ods to resolve these references. Works such as [Sidner 1979, Sidner 1983], [Grosz 1977,
Grosz and Sidner 1986], and [Carter 1985, Carter 1990] have concentrated on the study of
discourse and the theory of anaphora within a discourse, while [Hobbs 1986, Brown 2003,

Mitkov 1998| have focused more specifically on pronominal anaphora resolution. The next
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few sections will outline Carter, Hobbs, Brown, and Mitkov’s approaches to pronominal

anaphora resolution.

Hobbs’ Approach and Brown’s Algorithm

In [Hobbs 1986], Hobbs outlines a simple algorithm for the resolution of pronouns, and
although naive, it provides goods results. The algorithm works by starting at the location
of the pronoun and working back through the parse tree in a breadth-first manner until
a suitable antecedent match based on gender and plurality is found. When tested on 300
occurrences of references in selected corpora, the algorithm had a success rate of 88.7%
in resolving the anaphoric reference. Hobbs notes though that in over half of the cases,
there was only one plausible antecedent.

Hobbs analyzed the results further and went on to consider the results for the cases
when there was more than one plausible antecedent. Of the 132 cases where an antecedent
conflict existed, 98 were resolved by the algorithm, thus a 74.4% success rate. Hobbs goes
on to improve the naive algorithm by adding simple restrictions for resolving pronouns,
such as dates can’t move, places can’t move, and large fized objects can’t move. Without
these restrictions, the success of the resolution algorithm was, 81.8%, overall. When the
selectional restrictions were used, a 91.7% success rate was achieved.

In {[Brown 2003}, Brown outlines an algorithm for resolving noun phrase references that
is a variation on Hobbs algorithm. Figure 5.1 illustrates the algorithm in pseudo-code!.

Brown’s algorithm has the benefit of not specifying how a reference is resolved when
there are multiple antecedents for a single noun phrase, which consequently, allows the

implementor to choose how the antecedent can be resolved.

Carter’s Approach

In his PhD thesis, [Carter 1985], Carter describes in [Carter 1990] the approach used in

the SPAR system . The SPAR system initially starts by resolving semantic and syntactic

'In Figure 5.1, NP is an abbreviation for noun phrase.
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IF the NP is a proper name THEN
ATTEMPT to identify the reference in the knowledge base
IF no antecedent is found THEN
CREATE a new reference in the knowledge base
ELSE IF the NP is an indefinite NP THEN
CREATE a new reference in the knowledge base
ELSE IF the NP is a reflexive pronoun then
SET the reference to the subject of the clause
ELSE IF the NP is a pronoun THEN
CHECK NPs that precede for number/gender/person agreement
check NPs in previous sentences in the same manner
ELSE TF the NP is a definite NP THEN
CHECK NPs that precede for number/gender/person agreement
CHECK NPs in previous sentence in the same manner
IF no is antecedent is found THEN
CREATE a new reference in the knowledge base

Figure 5.1: Brown’s Anaphora Resolution Algorithm

issues without concerning itself with potential anaphoric references. Multiple structures
can result from this process depending upon the word-sense of the words within a sentence.
Given the sentence He picked up a jack, Carter theorizes two possible structures. One
structure where jack is interpreted as a playing card, and the second where it is a tool
used to raise an automobile. According to Carter’s algorithm, the pronoun he is left
unbound, and will be dealt with in further stages.

After the initial structures are generated, they are reprocessed and given scores based
on factors such as repeated relevant information and its influence on syntactic structure.
For example, in Figure 5.2, (b) would be given a higher score than (a) because a telescope
is used for seeing things, thus it is more highly related to the verb saw than the noun
phrase @ man. After assigning scores, the algorithm proceeds to use anaphora resolution

rules which Carter describes as being similar to those found in [Sidner 1979).
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I saw a man with a telescope I saw aman with a telescope

(a)

(b)

Figure 5.2: Two Parsings of I saw a man with a telescope

Mitkov’s Work

In [Mitkov 1998], Mitkov outlines an anaphora resolution algorithm that uses scoring fac-
tors to determine a plausible antecedent to a reference. The scoring factors are based
on the analysis of what Mitkov terms indicators. Indicators can be such things as the
definiteness of the possible antecedent, the givenness, indicating verbs, lexical reitera-
tion, prepositional position, and referential distance. The domain of possible scores is
{-1,0,1, 2}, with varying values being chosen for each indicator class. Figure 5.3 outlines
Mitkov’s algorithm in pseudo-code format. Mitkov claims a success rate of 89.7% with

this algorithm.

5.4 Resolution Failure

Many resolution algorithms make the assumption that the antecedent of an anaphora must
be resolved. Levine hypothesizes in [Levine et al 2000] that there are conditions under
which readers fail to resolve the anaphoric reference, yet are still able to comprehend the
text. Levine showed that if the antecedent was salient and distant enough from the point
of reference, readers were content with not resolving the reference if it was not disruptive

to the comprehension of the text. Although this finding could have a big impact on how
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EXAMINE the current sentence and the two preceding sentences
SELECT the noun phrases which agree in gender and number
APPLY the antecedent indicators to each candidate and assign scores
IF two candidates have an equal score THEN

SELECT candidate with the higher score for immediate reference
IF immediate reference does not hold THEN

SELECT the candidate with higher score for a collocational pattern
IF collocational pattern suggests a tie or does not hold THEN

SELECT the candidate with higher score for indicating verbs
IF this indicator does not hold THEN

SELECT the most recent candidate

Figure 5.3: Mitkov’s Anaphora Resolution Algorithm

anaphora resolution algorithms will work in the future, it does not begin to explain what

a comprehensible piece of text is.

5.5 Conclusion

This chapter has given an overview of the problem of anaphoric reference with respect
to pronouns, as well as algorithms that address reference resolutions. Chapter 6 will
describe an anaphora resolution algorithm that uses the theories on working memory and
activation, introduced in Chapter 3, to create a list of possible antecedents for a pronoun.
The algorithm will then use the idea of feature set scoring from Carter to form a basis
for resolving conflicts when multiple plausible antecedents exist. Chapter 7 will outline
the results of the algorithm when tested on The Three Brothers and the Rumpelstiltskin

corpora using the ACT-R model and the Thompson model of activation.
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CHAPTER SIX

System Modelling

If you don’t gosub a program loop, you’ll never get a subroutine.

- KRYTEN (Justice)

Throughout Chapters 2, 3, and 4, varying theories on semantics representation, the
structure of human memory, and its behaviour have been discussed. This chapter will focus
on combining parts of these various theories to solve the problems of anaphora resolution
outline in Chapter 5. The model of long-term memory and working memory will be
outlined as well as the grammar rules and their interaction with the memory models. The
algorithm for anaphora resolution will also be discussed. For the purposes of this thesis,
the semantic network will be the only semantic representation that is implemented. The
implementation of other semantic representations, such quasi-logical form and concept
graphs, will be deferred to future work. The implementation and subsequent testing of
the semantic network will provide baseline results from which this future work can be

compared to.

6.1 Modelling Long-Term Memory

In this thesis, long-term memory will be modelled using a combination of the semantic
network theory described in Chapter 2 and the neural network theory described in Chapter
3

Semantic Networks for Long-Term Memory

Semantic networks are undirected graphs with strengths associated with the links between

nodes. Within the context of this thesis, as was described in Chapter 4, semantic networks

39



will not be used directly to store semantic information, rather, they are used to link the
other existing semantic structures (i.e. conceptual graphs, classification hierarchies, event
timelines, and quasi-logical form). This decision is intended to achieve a behaviour similar
to that observed in neural network theory. As the activation levels of a node within the
network increase, the activation of neighbouring nodes will also increase. Semantic markers
will be used to uniquely identify semantic structures and concepts.

Table 6.1 outlines the Prolog predicates. In the nn_semNode predicate, SemMarker
signifies the semantic marker for the node, Activation holds the current activation, and
ActHistory contains the activation history of the node. In the nn_semlLink predicate,
SemMarker:1 and SemMarker:2 identify the two structures or concepts being linked,
and Strength is, of course, the strength of the link. The nn_semNode and nn_semLink

predicates provide all that is required to build and modify a semantic network.

L Predicate | Description j
nn_semNode (+SemMarker,+Bias,+Activation,+ActHistory) | Semantic Node
nn_semLink(+SemMarker:1,+SemMarker:2,+Strength) Semantic Link

Table 6.1: Semantic Network Predicates

Activation Level Models

The two different models of semantic node activation levels will be used and tested in
this thesis: (1) The ACT-R model for activations of declarative memory, and (2) a model
derived empirically, called Thompson’s model. From the ACT-R model, Anderson’s model
for the activation level and activation decay for declarative memory will be used, and will
be based on Equations 3.1 and 3.2, as described in Chapter 3. Since the activation level
of the ACT-R equation is unbound, the satlins threshold equation, Equation 3.5, will be
applied to bound the resulting activations to the range —1 > A; < 1.

Thompson’s model will be based on Equation 3.3 for the activation function of a
semantic node, Equation 3.7 for threshold function, and the following equation for the

fading the activation:
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Ai = wAi (6.1)

where w is the decay rate of node i’s activation. The base level activation of node ¢ will be
set to B; = 0.0. It must be noted that the decay equation for Thompson’s model is not
applied during node activation, as in the case of the ACT-R model. Rather, decay will
occur, due to mental processing in working, which will be described in more detail later

in this chapter.

6.2 Working Memory

If the activation level of node i is greater than some activation threshold, o, node i will
be brought from long-term memory into working memory. Working memory acts as a

repository for concepts that are easily accessible for mental processing.

Working Memory Structure

In this thesis, working memory does not contain the actual structures that represent the
currently active concepts, rather, working memory is conceptualized as a list containing
semantic markers. The semantic markers act as links to the concepts within long-term
memory. As semantic concepts are activated, they are placed within the list representing

working memory, and as they decay, they are removed from the list.

Semantic Node Behaviour

The working memory model that was modelled is based on the model described by Bad-
deley in [Baddeley 1986, Baddeley 1990, Gathercole and Baddeley 1993). From Baddeley,
the theory on working memory capacity was used. The limits of working memory will
be based on the contention between storage capacity and processing time. Storage and

processing are inversely proportional to each other, and thus, processing will affect how
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quickly active concepts in working memory will fade. In this thesis, processing will be re-
stricted to the application of grammar rules only. As grammar rules are used (i.e. mental
processing), the activation levels of concepts in working memory will fade. This fading
effect of grammar rules gives the storage versus processing behaviour described in Bad-
deley’s model. When the activation level of node 4 falls below ¢, node i will be removed

from working memory.

Semantic Link Behaviour

As will also be described in Chapter 7, the semantic links between semantic nodes do
not exist when the system is initialized. Semantic links are created between the nodes in
working memory after each sentence is parsed and are given an initial link weight, S;; and
Sji (a semantic link for each direction). If the links already exists between nodes, new
links will not be created.

Although the strengths of links between the nodes are created with the same initial
value, they are updated independently after this creation. When a semantic node ¢ is
activated into working memory, the new strength of the link to node j is updated. The
equation for Hebbian learning, Equation 3.8, will be used for calculating the new semantic

link strength:

Sz'j = Sz'j + aAiAj

6.3 Prolog Model of Working Memory

The Prolog model of working memory will be a functor, wm_workingMemory/1, with a
single list as an argument. The list will contain the semantic markers of the concepts that
are currently active in working memory. The current activation level of a concept will
not be contained within the list, rather, the semantic marker will be used to look-up the
activation in the semantic network described earlier. For example, given that concepts

rimmer: 1, lister:1, and kryton:1 are active in working memory, the following functor would
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result:

wn_workingMemory([rimmer : 1,lister : 1, kryton: 1))

6.4 English Grammar Rules

One of the major advantages of using Prolog as an implementation language, is that it
allows the use of a Definite Clause Grammar to specify grammar rules. Definite Clause
Grammars also reduces the amount time required to code grammar rules by eliminating
the need to specify mechanism for consuming words from a sentence while parsing. For

example, rather that using the rule
adj([long | B],B).
to process the adjective long, we can use the Definite Clause Grammar rule
adj — [long].

Definite Clause Grammars are much more elegant because, notationally, they are very
similar to context-free grammars.The result being that the source code will be more read-
able, easier to maintain, and less prone to errors.

The cost associated with using a Prolog grammar rule will be explicitly modelled within
the grammar rules. Prolog allows us to add goals to Definite Clause Grammar rules that,
when expanded into regular Prolog predicates and clauses, do not consume words from

the input string while parsing. As an example, consider the following grammar rule:
sent(sent(NP, VP)) — np(NP), vp(VP)
Adding a processing cost, the resulting rule would be something similar to the following:

sent(sent(NP, VP)) — {nn_fadeNodes},np(NP), vp(VP)
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Here, the predicate nn_fadeNodes is a predicate that updates the activation levels of
concepts in working memory.

The placement of the cost predicate within the grammar rule is important. By placing
nn_fadeNodes at the front of the rule, the cost is incurred as soon as the rule is used. This
placement creates the behaviour that as more backtracking is performed on grammar rules,
the more complex the processing. Concepts will fade much more quickly from working
memory when backtracking occurs, as opposed to no backtracking. If nn_fadeNodes was
placed at the end of the grammar rule, the cost would only be incurred after the successful

completion of a grammar rule.

6.5 Annotated Parse Tree Model

In this thesis, the modelling of parse trees will be an extension to the model found in
[Sterling and Shapiro 1999|, where parse trees are stored in an embedded-functor form.

For example, given the following Definite Clause Grammar rule
sent — np, vp.
the equivalent Definite Clause Grammar rule with parse trees embedded would be
sent(sent (NP, VP)) — np(NP), vp(VP)

Sterling and Shapiro’s parse tree model will be extended to also include the antecedent

for pronoun references. Parse trees of the form
noun(N)

would take the following form for pronouns, where “Ant” is bound a plausible antecedent

for the pronoun or “null” if no antecedent exists.
noun(N, ant(Ant))

Since this extension to the parse tree model still adheres to the syntax of the original
model, existing pretty printers can be used on the model without any modifications. Figure

6.1 shows two example parse trees with an unresolved and a resolved antecedent.
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sent sent

/I\ /l\

np vp pp np vP PP
noun  ant verb noun  ant verb
He null ran in  the park He man:1l ran in  the park

(a) (b

Figure 6.1: Annotated Parse Trees with (a) Unresolved and (b) Resolved Antecedents

6.6 Lexical Feature Sets

Lexical feature sets have been used in various theories of natural language processing such
as Generalize Phrase Structure Grammars [Bennet 1995], in the Core Language Engine
[Alshawi et al 1989], and the LangEng project [Brown et al 2001]. Features sets allow
parsers to restrict parsing based on set of semantic attributes inherent to certain words.
For example, in addition to semantic meaning, nouns also have attributes that imply the
gender, person perspective, and plurality of the noun. The feature set syntax used in this
thesis will be an extension on feature set syntax of the LangEng Project.

Each noun entry will contain two feature sets. The first feature set, the lexical feature
set, will contain lexical entries such as the noun’s case, category, and so forth, The second
feature, called the semantic feature set, will contain semantic features such as the gender,
number, and person perspective. The following is an example of a noun entry with the

above features sets:
noun([case : nom, cat : np|, [gender : masc, num : sing, person : 3]) — [he]

Feature sets are used by anaphora resolution algorithms to resolve references when
multiple antecedents exist. Section 6.7 will discuss how the feature sets are used with an

anaphora resolution algorithm. Tables 6.2 and 6.3 illustrate the noun feature sets that
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were used in this thesis.

rFeatureJ Value Set —[ Description ]
sem prolog atom semantic marker
cat {np} marks lexical category
case {nom, acc, gen, dat, abl, loc, tmp} morphological case
sound {soft, hard} first consonant sound
type | {common, proper, gerund, pronoun, rlfz_pronoun} noun type

Table 6.2: Lexical Feature Set

| Feature | Value Set | Description |

gender | {masc, femn,neut} | gender of a noun
num {sing, plur,mass} | plurality of a noun

person {1,2,3} person perspective

Table 6.3: Semantic Feature Set

6.7 Anaphora Resolution Algorithm

In Chapter 5, various anaphora resolution algorithms were discussed. A common thread
between all the algorithms is that in the absence of multiple antecedents for a refer-
ence, the correct antecedent is identified, with the exception of those cases outlined in
[Levine et al 2000].

The algorithm that was implemented is combination of the ideas outlined by Brown in
[Brown 2003], Carter in [Carter 1985, Carter 1990], and the results from Koh and Clifton
in [Koh and Clifton 2002]. Brown’s algorithm will provide resolution for references that
only have one antecedent. From Carter, the idea of scoring factors to influence how
conflicts between lexically identical words are resolved was used.

The scoring factor for a semantic concept 7 will be a combination of the current ac-
tivation of node ¢ within working memory and relative similarity of the semantic feature

set of concept i to the semantic feature set of a pronoun j:
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Score; = A+ F; (6.2)

where Fj; a score based upon the relative similarity of the feature sets of concept i
and pronoun j. The value of F}; is computed by starting with an initial score of 1.0. Each
entry in the semantic feature set of concept 7 that matches an entry in pronoun j increases
F}; by a factor of ¢, and each entry that does not match decreases F;; by a factor of ¢ = %

The current activation of node ¢ will influence whether it is compared to pronoun j in
the anaphora resolution algorithm. The algorithm will ignore concepts with an activation
of less than o. Figure 6.2

FIND the semantic concepts currently in working memory
IF (at least one concept was found) THEN
FOR ( each concept ¢ found) DO
SET Score; = 1.0
FOR (each feature in the feature set of concept i) DO
COMPARE the feature value to the feature of the pronoun
IF (the values match) THEN
SET Score; = Score; * ¢
ELSE
SET Score; = Score; x
ADD the activation level(4;) of node i to Score;
FIND the concept with the highest value for Score;
SET the antecedent of the pronoun to that concept
ELSE
SET the antecedent of the pronoun to NULL

Figure 6.2: Pronoun Reference Resolution Algorithm Pseudo-code

6.8 Summary of Chapter

This chapter has examined models for long-term and working memory and how they were
realized in Prolog. It has also given a general overview of the format of the grammar rules

that are used as well as the feature sets and annotated parse trees that accompany the
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rules.
In Chapter 7, the model described in this chapter will be tested against a number of

corpora with varying decay rates for the semantic nodes.
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CHAPTER SEVEN

System Testing

This chapter will cover the methodology and procedures used for testing the anaphora
resolution algorithm described in Chapter 6 using the activation model from ACT-R and
the Thompson activation model. Various activation decay rates will be tested for each

model. The results will be compared to human-based resolution.

7.1 Overview of Testing Methodology

The anaphora resolution algorithm will be tested against a corpus selected from the Grim
Brothers library found at {Ockerbloom 2006]. The selected body of text was slighted
modified from their original form to facilitate ease of parsing while retaining the spirit of
reference placement. The modified text can be found in Appendix 8.3.

Each corpus will be tested independently and not have influence on the tests of the
other two corpora. That is to say, the working memory, and long-term memory will be
reset to a default configuration for each test phase. The bodies of text will be tested a
number of times each with different decay rates, w, for the semantic nodes within long-term

memory.

7.2 Testing Platform

The testing was performed on a 1.8GHz PowerPC G5 1.25 GB RAM under Mac OS X
v10.4.4 using SWI-Prolog v5.4.7.

7.3 Decay Rates

Since the decay rate, w, affects the activation levels in the ACT-R model differently than

those in the Thompson model, different sets of decay rates were chosen. The sets of decay
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rates were chosen in such a way that they presented a broad spectrum of the behaviour
for each model. The value of w ranged from values that caused short activation times, i.e.
fast activation decay, to values that caused low activation, and thus caused the contents
of working memory to be quite high.

In the ACT-R model, the values of w ranged from 0.05 to 0.30. The decay rate of
w = 0.5, which is used in ACT-R, was not chosen because preliminary testing showed
that the value caused an extremely high level of decay, which resulted in a large number
of pronouns being unresolved. This extreme decay is most likely due to the fact that the
ACT-R model may not be 100% compatible with a neural network-type model.

The decay rates in the Thompson model ranged from 9.90999 x 107! to 1.0. Although,
a decay rate of w = 1.0 would imply no decay, that is not actually the case. Since the
current activation is also based on neighbouring semantic nodes and the weight between

the nodes, a certain amount of decay will still occur.

7.4 Default Memory Configuration

Initially, the contents of working memory were empty. This initial state of working memory
was represented in Prolog by an empty list as the argument of the wm_workingMemory

functor:
wm_workingMemory([])

Long-term memory, was represented as a neural network, initially contained nodes for all
possible nouns that can be parsed by the system. Each node, i, had an initial activation
A; = 0.0, and bias B; = 0.0. The links between nodes did not exist, rather, they were

created as describe in Chapter 6.

7.5 Testing Procedure

The ACT-R and Thompson activation models of system were tested against all of the

sentences from the The Three Brothers corpus in sequence using various rates of decay.
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The following items were tabulated during testing:

o results of the anaphora resolution algorithm were tabulated against the expected results

outlined in the tagged corpora of Appendix B
e the maximum capacity of working memory across all decay rates for each activation model

e the growth of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>