
-

Distribution Of Defects In A Large Software System 

Stephen Wickham 

B.Sc, University of Victoria, 1997 

Project Submitted In Partial Fulfillment Of 

The Requirements For The D egree Of 

Master Of Science 

ill 

Mathematics, Computer And Physical Sciences 

(Computer Science) 

The University Of Northern British Columbia 

January 2007 

© Stephen Wickham, 2007 



Abstract 

This report summarizes the findings of a retrospective analysis of coding errors in 

a major software system produced by a large Canadian software engineering firm. 

The code-base of the system is approximately 1. 7 million lines of C++ integrated 

with third party RDBMS and GIS products. The safety related nature of the 

system and the size of its code base make it an ideal candidate for an investigation 

of software related defects. The investigation focuses primarily on memory 

management related defects referred to as "memory leaks." A "memory leak" 

results from the failure to return previously allocated heap memory. The 

distribution of memory leaks is analyzed and a two-part memory leak 

classification scheme is described. A secondary focus of the investigation is the 

influence of decision complexity on system safety. This investigation yielded two 

statistically significant findings. The first is a relationship between programmer 

experience and memory leak creation. The second is a correlation between 

subsystem complexity and memory leak density. The impact of software process 

improvement measures are also discussed. 
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Chapter 1 

Introduction 

1.1 Motivations 

Memory management defects are a significant impediment to the successful 

creation of any release build and to reliable software in general [MS06]. As such, 

this investigation placed major emphasis on coding practices that introduced 

memory management problems. Findings made during this process are discussed 

in the context of software safety, reliability, and correctness. The distribution of 

errors in the code base is compared with developer experience and code 

complexity. This paper argues that memory management related defects are 

related to code complexity and programmer experience. 

Approximately 31% of software projects will be cancelled prior to completion 

[Sta94]. Given this, it is easy to see why a mature, fielded, software system that 

has undergone structured verification and customer acceptance is extremely 

valuable. In the academic context the code base of such a system represents an 

ideal research dataset. The findings resulting from this investigation are all the 

more relevant because they are derived from a real world system. In spite of the 

latent defects identified by this research, we must recognize all that has been done 

correctly to get such a large system out the door and into the hand of the 

customer. The findings presented here can teach us as much about what has 

worked well in the past as they can about what can be improved in the future. 
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Software permeates almost every aspect of our daily lives. From the 

microprocessor in a car to the instrument approach landing system that guides a 

flight safely to the ground, our lives depend on code. To those industry and 

academic professionals involved in the field, this is can be a disquieting thought 

indeed. With software, come defects. That is the unavoidable reality of the 

discipline. Some very notable accidents, some of which unfortunately involve the 

loss of human life, have been traced back to software defects. Consider the 

following: In June 1996, a Washington D C subway driver was killed when his 

automatically controlled train slammed into a wall instead of stopping at the last 

station [Her97]; On November 24th 1991, a British newspaper reported that 

radiation safety doors at the Sellafield nuclear facility had been opened 

accidentally due to a computer error [Hat95] . In short, software defects are a very 

real problem. 

1.2 Document Organization 

The following section describes the overall structure of this document. The paper 

is composed of five chapters and one appendix that are described below. 

Chapter 1 presents introductory material, describes project motivations, and 

outlines overall document structure. 

Chapter 2 discusses background topics relevant to this project including software 

safety and reliability, static analysis, dynamic analysis, complexity measurement, 

memory management, and software defect classification. 

Chapter 3 describes the methodology employed during this investigation. The 

memory leak detection framework used is described along with static analysis 

tools and techniques. Problems and challenges associated with each of the 

techniques are also discussed. 
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Chapter 4 presents findings and discusses results. Error distribution is discussed 

and correlated with developer experience and code complexity. 

Chapter 5 concludes the investigation with recommendations for future software 

engineering projects and suggestions for future work. 

Appendix 1 contains the non-disclosure agreement between MDA and UNBC 

that governs the dissemination of intellectual property contained herein. 
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Chapter 2 

Background and Literature Review 

2.1 System Overview 

This paper documents the retrospective analysis of a large Windows based 

software product. The product, herein referred to as "the system", aids in the 

design of instrument approach procedures for the aviation industry. The code-

base is approximately 1.7 million lines of C++ integrated with third party 

RDBMS and GIS products. Object-oriented design principles are employed 

throughout. The system is implemented as a series of subprojects, each 

represented by a dynamic link library. The subprojects are grouped into layers as 

follows: 

• Data Management 

• GIS and Geometry 

• Common Aeronautics 

• Procedure and Chart Design 

• User Interface 

The dataset used in this analysis was derived usmg the system's automated 

regression test facility. Because the test facility does not exercise the user 

interface, this layer was excluded from the analysis. Core system functionality in 

all the remaining layers is included. The system architecture diagram below 

depicts high-level structure and component relationships. 
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The data access and file systems layers provide an abstraction barrier between the 

physical storage of data and its representation within the system. The GIS layer 

interacts with the file system to retrieve digital terrain data and provides numerical 

geometry services utilized by higher level subsystems. The Aeronautical and 

Procedure D esign layers implement core system algorithms, supported by the 

database, file system, and GIS layers. The User interface layer sits at the highest 

level and interacts with lower level subsystems as needed. The D ata Ingest 

subsystem manages external system interfaces. 

2.2 Historical Context 

The system has been in development for five years and has undergone three 

major releases. Due to schedule and budget constraints a release build of the 

system was not produced during the initial stages of development. By the time an 

attempt was made to produce a release build the size of the code base had grown 

significantly. Programming practices that produced code incompatible with a 

release build were well entrenched. The severity of problems encountered and 

volume of offending code caused the original release build to be abandoned. Data 

used in this investigation was collected during a subsequent release build attempt. 

2.3 Debug & Release Builds 

Generally accepted software engineering practice dictates that source code is 

compiled or "built" in two separate configurations: Debug & Release [Pet99]. A 

"Debug" build is instrumented with symbolic debugging information that makes 

diagnosis of software defects considerably easier. Symbols facilitate interactive 

debugging by providing source code, line number, variable, and data type 

information during program execution [ASU88]. In the Microsoft environment 

memory management is tracked using a debug heap that buffers memory 

allocations, tracks memory leaks, and protects the programmer from access 
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violations, etc. This instrumentation imposes significant performance overhead 

and requires the distribution of supporting debug libraries. 

Debug builds also disable compiler optimizations. Compiler optimizations are 

"improvements" introduced by the compiler in order to increase the speed or 

reduce the size of generated object code [ASU88]. Optimizations that are disabled 

in a debug build but enabled in a release build can be responsible for altered 

behaviour between the two configurations. 

In contrast, a "Release" build is un-instrumented and is optimized for either size 

or speed. Generally speaking a release build will run considerably faster than a 

corresponding debug build. It will have a smaller memory footprint, smaller 

executable size, and will not require the distribution of supporting debug libraries. 

By their very nature, debug builds are more tolerant of poor programming 

practice. Code that compiles and runs (although perhaps not correctly) in a debug 

build may crash in a release build. In general, release builds and debug builds are 

developed in parallel from project inception. In this way problems that prevent a 

release build from compiling or running can be dealt with as they arise. 

6 



2.4 Memory Management 

C++ defines three memory management mechanisms: static memory, automatic 

memory, and the free store [Str97]. These mechanisms and their relevance to this 

project are described below. 

2.4.1 Static Memory 

Items allocated in static memory persist for the duration of program execution. 

Static class members, static variables in functions, and global variables all reside in 

static memory. Static memory is relevant to this investigation as it relates to 

singleton allocations (see section 2.5). 

2.4.2 Automatic Memory 

Automatic or "stack allocated" memory is used to store local variables and 

function arguments. Items allocated on the stack are automatically created and 

destroyed as they come in and out of scope. Automatic memory is safe, simple, 

and faster than heap allocation [MR94]. In fact, 10% of the leaks discovered 

during this investigation involved heap allocations that could have been made on 

the stack. 

2.4.3 Free Store 

The free store or "heap" is an area of memory used for dynamic allocation. Heap 

allocation is used when the number and size of blocks in not known until 

runtime. Allocations and de-allocations are made explicitly using the new and 

delete operator respectively. The free store is finite and is ultimately limited by the 

resources of the host system. Once the program has finished using memory 

allocated on the free store it must give that memory back. Failure to do will cause 

problems, particularly in long running programs. The failure to return previously 
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allocated heap memory is referred to as a "memory leak". The analysis of 

programming practices leading to memory leaks, and the correlation of memory 

leaks with code complexity is the major focus of this paper. 

Figure 2-2 below illustrates typical memory layout. Memory is partitioned into 

address ranges dedicated to each type of storage. Program code and static 

variables are grouped together in static memory. A separate region, referenced by 

the stack pointer, is dedicated to the program stack and associated "automatic" 

memory. Finally, the "heap" or free store contains dynamically allocated memory 

referenced via pointers. In the example below, two dynamic memory allocations 

are referenced via static pointer variables. 

Heao 
Dynamic chunk #1 

D ynamic chunk #2 

Stack 
Currently available 

Other static variables 

Static 
Pointer variable #2 (9FD3) 

Pointer variable #1 (AOOO) 

Program code 

Figure 2-2: Memory Layout 
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Memory allocated on the heap has two interesting properties: it is unnamed and 

un-initialized [Lip92]. In this context the "unnamed" property means the memory 

must be manipulated indirectly via pointers. The "un-initialized" property means 

just that, the memory is not set to any predefined value upon initialization. 

Together these properties are responsible for a great deal of unintended system 

behaviour [Koe88][Hat95][Mco93]. Many debug libraries attempt to protect the 

programmer from poor pointer management by creating buffer zones and filling 

newly allocated memory with a predefined dummy values. Strategies such as this 

are helpful for diagnosing memory management problems during system 

development but can foster a false sense of security. Once the protection 

provided by the debug library is removed, a system that appeared stable in debug 

configuration can become unusable. 

2.5 Software Design Patterns 

The concept of a design pattern has its basis in building architecture and was 

originally conceived of by Christopher Alexander. Alexander defines a design 

pattern as in the following manner, "Each pattern describes a problem which 

occurs over and over again in our environment, and then describes the core of 

the solution to that problem, in such a way that you can use this solution a 

million times over, with ever doing it the same way twice" [Ale77]. 

Essentially, a design pattern captures the essence of a problem's solution in an 

abstract and re-usable way. Just as component based development and object 

oriented design foster code reuse, design patterns foster design re-use. While 

design patterns are not a silver bullet, appropriate pattern application can make a 

significant contribution to software quality [Ris98] [Lar02]. Specifically, pattern 

usage promotes abstraction, code re-use, and ease of maintenance. 
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The original software engmeenng design patterns catalogue was published in 

1995. Its authors, Gamma, Helm, Johnson, and Vlissides are commonly referred 

to as the Gang of Four (GoF). Their book publishes 23 patterns that have been 

the focus of countless academic endeavours and are ubiquitous in the world of 

software engineering. The system studied here utilizes a number of the creational, 

structural, and behavioural patterns in this catalogue. The "Singleton" pattern 

discussed below is relevant to the discussion of memory management. 

The singleton design pattern ensures a class has only one instance, and provides a 

global point of access to it [GHJ +95] . This pattern is used widely throughout the 

system in question. The implementation of the singleton pattern studied here uses 

a static pointer to a heap allocated object. This implementation created problems 

as the static pointer was never explicitly destroyed and thus, the associated heap 

allocation was never freed. In practice, this situation is benign, as a leak that 

occurs at program termination cannot impact program execution in any 

meaningful way. It did, however, create spurious errors during dynamic analysis 

as benign singleton leaks were reported. Management of singleton lifetime is a 

common problem in pattern based development [Ken03]. Numerous solutions 

have been presented, the most notable being Alexandrescu's Loki design [Ale01]. 

2.6 Software Safety and Reliability 

Before discussing formal definitions of software safety some historical 

background on software related accidents might help to provide context: 

• A defect in the control software of the Therac-25 radiation therapy machine 
resulted in a number of patient deaths. The defect was ultimately traced to a 
race condition [Lev93]. 
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• An Ariane 5 rocket exploded 37 seconds after launch due to an unhandled 
exception when a 64 bit floating point variable was assigned to a 16 bit 
unsigned integer [ESA96]. 

These accidents highlight the catastrophic effects that software defects can have. 

Indeed it has been suggested that, under certain circumstances, the safest thlng to 

do may be avoid software all together [Hat95]. 

2.6.1 Definitions 

Software safety has been defined in numerous ways by numerous authors. 

Herrmann defines software safety as follows [Her99]: 

'Jeatures and procedures which ensure that a product petjorms predictab!J under normal and 

abnormal conditions, and ensure the likelihood of an unplanned event occurring is 

minimized and its consequences controlled and contained therery preventing acczdental it!Jilry 

or death, whether intentional or unintentional" 

The use of the term 'minimized' in the definition above is interesting. It runts at 

the difficulty in achieving absolute reliability. This subject is discussed further 

below. 

Hatton defers to the Concise Oxford Dictionary: 

reliability: 'Of sound and consistent character or quality' 

safety: 'Freedom from danger or risks' 

Hatton is careful to draw a distinction between reliability and safety. He states a 

program can be unreliable but safe, meaning its defects do not create risk; or a 

program can be reliable but unsafe, meaning it will produce consistently incorrect 

and potentially harmful results. 
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Conte distinguishes the terms fault and defect as follows [Con86]: 

fault: 

defect: 

'an error that causes an incorrect result for a valid input' 

'evidence of the existence of a fault' 

These definitions suggest that faults may be latent, but that defects do not exist 

until they actually manifest themselves in some measurable way. 

2.6.2 Complexity & Safety 

Software safety and reliability problems have a wide range of causes. Lack of 

process and structure, poorly defined requirements, and semantic idiosyncrasies 

of the implementation language can all be contributing factors. An in depth 

discussion of safety and reliability is beyond the scope of this work. One topic, 

however, is of particularly relevance to this investigation: the influence of 

complexity on safety. 

The complexity of many safety critical systems (e.g. a nuclear reactor control 

system) is so high that it is simply not possible to guarantee that software is 

completely error free [LS93]. As a result, software specifications typically place an 

upper bound on the probability of failure. The following excerpt from FAA 

Advisory Circular 25.1309-1A on Systems Analysis and Design illustrates the 

probabilistic nature of reliability specification [F AA88]: 
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(1) Mi ner f ai lure cond i t i ons may be probable. 

(2) Major failure cond i t i ons must be improbable. 

(3) Catastrophic t'ail ure cond i tions must be extreme ly improbable. 

Figure 1: Probability vs. Consequence Graph 

Catastrophic 
Accident c: 

0 
Adverse = , EffectS on g Occupants 

(.) 

Unacceptable 

CD Airplane ... 
i Damage 
II. 
'8 Emergency 

l 
Procedures 

Abnonnal 
Procedures 

NuisanCe 

Acceptable 

Normal 
Probable Improbable 

Figure 2-3: FAA failure probability chart 

This specification assigns the following definitions and associated probabilities: 

Table 2-1 FAA failure probability values 

Type Description Probability 
Probable 

Improbable 

Extremely 
Im robable 

Anticipated to occur one or more times during the > 1 x 1 o-s 
entire o erationallife of an aircraft 
Not anticipated to occur during the lifetime of a ::::: 1 x 10-5 

single random airplane, but anticipated to occur > 1 x 10-9 

during the entire operational lifetime of all aircraft 
of one e 
Not anticipated to occur during the entire ::::: 1 x 10-9 

o erationallifetime of all aircraft of one e 
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The negative impact of complexity of software safety is a recurring theme in 

software engineering literature. 

Conte defines five design principles, one of which is complexity. He states: "A 

design should be kept as simple as possible. Design complexity grows as the number if control 

constmcts grows. The f?ypothesis is that designs with high complexity wzll contain more errors" 

[Con86]. 

Leveson re-iterates the importance of keeping designs simple in her commentary 

on the Therac-25 accidents described above. She states: "Basic software-engineering 

principles that apparentfy were violated with the Therac-25 include: .. . Designs should be kept 

simple" [Lev93]. 

Hatton defines the terms C"' the natural complexity inherent in a problem, and C., 

the actual complexity used solve it. While the inequality c. 2: en will always hold, he 

asserts that the difference between C. and Cn should be kept as small as possible 

[Hat95]. In plain English this means the complexity of software used to solve a 

problem should be kept as close as possible to the inherent complexity of the 

problem itself. 

In addition to the discussion above, Banker et al. provide an excellent survey of 

software maintenance related research [BDK +02]. Their meta-analysis cites 

numerous publications that report a positive correlation between software 

complexity and elevated defect rates. 

Gitten et al. conducted experiments similar to those described in Chapter 4. Their 

experiments attempted to establish a correlation between general defect densities 

(e.g. not specific to memory leaks) and code complexity. Interestingly, they were 

not able to find an observable relationship between the two parameters 

[GKGOS]. They did, however, establish that the Pareto Principle (80:20 rule) 
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appears to apply to software defect distribution. Specifically, they found 100% of 

the defects in 28% of the code, and 80% of the defects in 26% of the code. 

Ostrand et al. also failed to find a correlation between code complexity and defect 

rates [OWB04]. 

2.6.2.1 Complexity Metrics 

The metrics of software complexity receive thorough treatment in the software 

engineering literature. Complexity metrics exists to measure both logical and 

computational complexity. 

2.6.2.1.1 Logical Complexity Metrics 

Logical complexity metrics quantify the complexity of a program's decision 

structure. Hatton distils the long list of available metrics to three: cyclomatic 

complexity, static path count, and fan-in/ fan-out [Hat93]. These are discussed 

below. 

2.6.2.1.1.1 Cyclomatic Complexity 

McCabe originally described cyclomatic complexity in his classic 197 6 paper 

entitled "A Complexity Measure" [Mca76]. Cyclomatic complexity uses graph 

theory to describe a program's decision complexity. The commands of the 

program are represented as nodes in the graph. If one command may execute a 

second command, the two nodes representing the commands are connected by 

an edge in the graph. The formal definition of cyclomatic complexity is as follows 

[SEI06): 

Cyclomatic Complexity= E-N+ 2; where 

E = the number of edges in the graph 

N = the number of nodes in the graph 
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For example, an if/ else statement with the following control graph would have a 

cyclomatic complexity value of 2 (4 edges- 4 nodes + 2): 

Figure 2-4: Example control graph 

The Carnegie Mellon Software Engineering Institute provides the following 

guidelines for interpreting cyclomatic complexity values [SEI06]: 

Table 2-2 Cyclomatic Complexity Values 

Cyclomatic complexity is widely accepted as a predictor of defects and as a 

measure of the difficultly in maintaining code [BDK +93] [KS97]. 

2.6.2.1.1.2 Static Path Count 

Static path count is simply the number of distinct paths through a program. The 

metric assumes all predicates are independent [Hat93]. 
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2.6.2.1.1.3 Fan-in/ Fan-out 

Fan-in/Fan-out measures the number of times a particular function is referenced, 

and the number of functions it references. Hatton defines the associated metric 

as fan-in + fan-out+ (fan-in x fan-out) [Hat93]. 

2.6.2.1.2 Computional Complexity Metrics 

Computational complexity metrics quantify a program's calculation complexity. 

This type of metric is most appropriate in cases where program code contains 

more calculation logic than branching logic. 

The Halstead Complexity Measure is an excellent example of a computation 

complexity metric. This metric quantifies complexity based on operators and 

operands used in program source code. The metric is based on the following 

parameters [Hal77] [SEI06]: 

n1 = the number of distinct operators 

n2 =the number of distinct operands 

N1 = the total number of operators 

N2 = the total number of operands 

from which the following five measures are computed: 

Table 2-3 Halstead Complexity Measures 

Measure Symbol Formula 
N N = N1 + N2 
N 

Volume v 
Difficul D 
Effort E 
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Halstead's complexity measures differ from McCabe's cyclomatic complexity in 

terms of their suitability. Halstead metrics focus on operators and operands. As 

such they are better suited to measuring computational complexity. McCabe 

metrics on the other hand are more focused on logical complexity [SEI06] . 

2.6.3 Modularity & Safety 

The conventional wisdom in software engineering is that modularity is good 

[Mco93]. However, both Hatton and Conte present evidence that suggests over 

modularization can be as harmful as under modularization [Con86] [Hat93]. 

Hatton asserts that proportionally more errors are committed in small software 

components than large ones. He defines the following logarithmic relationship 

between the number of static paths and the number of software defects in a 

module where nb is the number of bugs, ~is the number of static paths, and cis a 

constant close to 1: 

This formula predicts that a single module with a complexity of 100 will have less 

defects that 10 modules each with a complexity of 10. This relationship is 

significant as it describes the interaction between modularity, complexity, and 

defect count. 
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Conte defines three levels of modularization: 

Table 2-4 Conte's Modularization Levels 

Modularization Level Description 
Unrnodularized the entire program is written as one routine 
Partially modularized the program is broken up into a "moderate" number 

of subroutines 
Super modularized the program is broken up into twice the number of 

subroutines as the partially modularized version 

He has illustrated that the best level of reader comprehension is achieved with a 

partially modularized version of a program [Con86] . This is relevant as 

comprehension is a necessary prerequisite to successful program maintenance. 

These somewhat counter-intuitive findings illustrate that modularity plays an 

importance role in software safety, but that modularity is perhaps best applied in 

moderation. 

2.6.4 Compiler Standards Compliance 

The extent to which a compiler adheres to a language standard is a key 

determinant of software safety [Hat95]. The Microsoft Visual C++ 6.0 0fC 6) 

compiler used for initial system development did not conform to the ANSI C++ 

standard in a number of significant ways [ANSI03]. Visual C++ 8.0 0fC 8) 

supersedes VC6 and exhibits improved ANSI compliance. As a result of this 

improved compliance, a number of breaking changes have been introduced. 

Code that compiled under the old compiler is now considered illegal. Almost 

without exception, code that no longer compiles with VC 8 is in some way 

incorrect. This finding is consistent with the assertion that the compiler itself is 

often the simplest and most effective debugger [Mco93][Mey98]. As such porting 

the code base from VC 6 to VC 8 made a major contribution to system 

correctness and achieving the goal of a stable release build. The nature and 
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distribution of breaking changes corrected during the compiler upgrade are 

discussed at length in Chapter 4. 

2. 7 Software Testing 

On average, software testing consumes at least 50% of the effort required to 

produce a working, fielded software system [Bez90]. Given this, and given that 

this investigation is concerned with the distribution of software defects, some 

discussion of the topic is warranted. Having said this, software testing is a vast 

topic that can only be given superficial treatment here. Portions of the discipline 

that are of particular relevance to this investigation are discussed in this section. 

2.7.1 Definitions 

The terms "verification" and "validation" and "testing" are often used together in 

the context of software evaluation. Marks provides the following definitions of 

some commonly used (and confused) terms [Mar92]: 

validation: 'A determination of the correctness of the final product produced 
by a development project with respect to the user's needs and 
requirements.' 

verification: 'A demonstration of the consistency, the completeness, and the 
correctness of the system .. .' 

testing: 'An examination of the behaviour of a system by executing the 
system on a sample set' 

The distinction between "verification" and "validation" is of particular interest. 

Verification involves checking that the software correctly implements its 

requirements. Validation involves ensuring that the software meets the 

customer's needs [Boe78][Som01]. A software product may dutifully implement a 

set of requirements and remain completely unusable. The concept of "fit for 
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purpose" is relevant here. This idea accepts that software will never be completely 

defect free, but states it must ultimately meet the needs of its users. 

The word "sample" in the definition of "testing" above also warrants discussion. 

The extent to which a test samples the program code it is evaluating is referred to 

as the test's code coverage. Since it is impossible to completely test any reasonably 

complex software system, a subset of tests that has the highest probability of 

detecting the most errors should be identified [Kit95]. 

The concept of regression testing must be also introduced. Bezier defines 

regression testing as follows [Bez90]: 

"atry repetition if tests (usual!J cifter siftware or data change) intended to show that the 

siftware's behaviour is unchanged except insifar as required l!J the change to the 

siftware or data" 

A large portion of the dataset used in this investigation was collected using the 

system's automated regression testing capability. 

Finally, some definitions of system size are relevant. The size of a system is a 

major factor in determining a test strategy. Marks provides the following 

definitions of system size in his book "Testing Very Large Systems" [Mar92]: 

small 

medium: 

large: 

'A small system provides a single service, such as an inventory 
system, an accounting system, or a billing system. Typically, a 
small system is under 500 000 lines of code.' 

'A medium system is one that provides several services. The 
major difference between a small system and a medium system is 
the functionality and integration of the functionality into a user-
oriented package. Typically, a medium system is 500 000 to 2 
million lines of code.' 

'A big software system provides many services. The major 
difference between a medium and a big system is the complexity 
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of the functions. Complexity can be caused by complex 
computational algorithms or by complex data relationships. 
Typically a big system is more than 3 million lines of code.' 

On the basis of line count alone, the system studied here would be 

considered medium sized. However, the complexity of its algorithms, its 

safety related nature, and high customer expectations mean it exhibits many 

of the properties Marks attributes to large systems. 

2. 7.2 Testing Strategies 

Two fundamental test strategies exist: "Black-box" testing and ''White-box" 

testing. Black-box testing evaluates software against its requirements. Tests of this 

type are derived from the software's specification rather than its internal 

structure. Black-box tests are meant to take an objective, independent view of 

software from a requirements based perspective. As such they should be written 

in isolation from program code to the greatest extent possible [Kit95]. 

In contrast, White-box testing requires knowledge of internal program structure. 

Tests of this type are concerned with internal issues such as code coverage, logical 

incompleteness, decision complexity, etc. White-box testing permits the test 

author to choose input values that will most effectively exercise all braches of 

program logic [I<.:it95]. The static and dynamic analysis techniques discussed 

below also fall into this category of testing. 

2. 7.3 Static Analysis 

Static analysis describes the semantic and syntactic inspection of program source 

code to detect software defects prior to program execution. The term 

"Automated Software Inspection (ASI)" is also used to refer to this approach. 

The first and most well known static analysis tool is Lint, created by Johnson at 
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Bell Labs in 1978 Ooh78]. Lint was designed to detect suspicious programming 

constructs and non-portable code. Since then, commercial static analysis tools 

have proliferated. These tools support a wide range of languages and many allow 

the user to define custom rules that are specific to the coding standards of the 

organization in question. In a sense, all code that is compiled undergoes 

rudimentary static analysis. Object code cannot be generated from syntactically 

illegal source, and can therefore never be executed. Some languages attempt to 

increase the number of potential defects that can be detected statically. Strongly 

typed languages such as Ada forbid implicit type conversions and make 

constructs such as incomplete switch statements illegal. In this way, language 

definition can make a significant contribution to software safety [Hat93]. All of 

the metrics described in section 2.7 above can be measured statically. Static 

analysis techniques have been shown to effectively predict failures and fault prone 

modules [NWH +04]. 

2. 7.4 Dynamic Analysis 

In contrast to static analysis, dynamic analysis describes the process of detecting 

faults during program execution. This is a far less desirable state of affairs, as the 

likelihood of detecting a defect at runtime depends on the quality of testing. By 

definition, a fault that is only detectable at runtime may not be detected at all 

[Hat93]. Many commercial tools exist to facilitate dynamic analysis. While this 

investigation is concerned with memory management related defects, dynamic 

analysis techniques can be applied to other functional areas including code 

coverage and performance analysis. Two of the best-known dynamic analysis 

tools for memory management are Rational's Purify and Parasoft's Insure++ 

tools. Most dynamic analysis tools work by instrumenting object code with 

constructs that allow the tool to track where and when a particular defect 

originates. In addition to the source code file and line number of the leak, the 
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most valuable data a dynamic analysis tool can report is the call stack associated 

with the leak. The call stack provides crucial information on state of program 

execution at the time the leak occurred. Interestingly, the Microsoft debug 

libraries utilized in this investigation do not work by instrumenting object code. 

Instead, the runtime library itself tracks the state of the heap. Unfortunately the 

Microsoft debug library reporting functions to not provide call stack information. 

As such all of the leak data used in this investigation was gathered without the 

benefit of a call stack. Dynamic analysis tools used for code profiling and 

performance tuning include Intel's vTune and Microsoft's Profile Guided 

Optimization. 

2.8 Software Process 

The Oxford Dictionary of English defines a process as a series of actions or steps 

taken in order to achieve a particular end. In the case of software engineering, the 

end is typically the creation of a software product. This section discusses software 

process topics relevant to this investigation. 

2.8.1 Process Models 

A software process model is an abstract representation of a software process 

[Som01]. Well known software process models include the waterfall model, the 

evolutionary (or spiral) model, re-use (or component) based development, and 

formal methods. Many large software projects take a blended approach, using 

different techniques for different parts of the system. The classic software 

process models mentioned above are well documented in standard software 

engineering textbooks and will not be discussed in detail. In this context it is 

sufficient to identify elements common to all software process models. To a 

greater or lesser extent, all models address the core topics of specification, design, 

implementation, and verification. 
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2.8.2 Process Measurement 

On a large project organizational characteristics eclipse the attributes of any single 

individual. As such the quality of the software process governing the team 

becomes a large determinant of the project's success [Kit95][Eva04]. There is a 

growing body of work dedicated to the assessment and evaluation of software 

process. For example, the Carnegie Mellon Software Engineering Institute (SEI) 

introduced the concepts of organizational maturity and capability. These concepts 

and the associated five level Capability and Maturity Model (CMM) are used to 

quantify an organization's process model. The SEI's description of each level 

(paraphrased by [Kit95]) is outlined below: 

Table 2-5 SEI CMM Levels 

Level Description 
1: Initial Unpredictable and poorly controlled 

2: Repeatable Can repeat previously mastered tasks. 

3: D efined Process characterized, fairly well understood 

4:Managed Process measured and controlled. 

5: Optimized Focus on process improvement. 

In short, CMM does not specify what an organization's process should be. Rather 

it states that organization should have a process, follow it, measure how well it is 

working, and continually improve it. Due to the competitive nature of software 

engmeenng, an organization's CMM level can be a very sensitive piece of 

information. It is often only disclosed to a client in a confidential bidding 

situation. It is becoming increasingly common for large RFP's to specify a 

minimum CMM certification level. 
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2.8.3 Process Improvement 

The ability to evaluate a process and adjust it accordingly is a key indicator of an 

organization's process "maturity". This feedback loop is referred to as process 

improvement. A practical exercise in process improve taken from the system's 

development is discussed below. 

As discussed in section 2.2 above, the MDA system has undergone three major 

releases (A, B, and C). In an effort to reduce defect densities experienced in 

releases A and B, a formal review process was introduced for release C. The 

details of this process are described in this section. The effectiveness of this 

process is analyzed and discussed in Chapter 4. 

Releases A and B had very little process in support of implementation activities. 

Formal work package descriptions were created and assigned to the responsible 

programmer. However, no formal review or closure activities were performed. 

The programmer's word was generally accepted as sufficient assurance that 

coding activities had been properly completed. Problems related to system 

integration and missing functionality were often not discovered until much later, 

sometimes during formal testing activities. 

There is a large body of evidence in the literature to suggest that code inspection 

is a cheaper and more effective method of discovering defects that formal testing 

[Mco95]. This evidence supports the decision by senior project staff to introduce 

a formal review process. 

The "Release C" software development process introduced a three-stage review 

intended to establish the correctness of a work package in terms of standards 

compliance and general usability. A corresponding checklist was created to 
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support each stage of the process. The process and workflow are described in the 

following table and flowchart. 

Table 2-6 Review Process Description 

Review Stage Description 
Code Review Team Leader reviews code for standards compliance, 

readability, and general correctness. Static analysis is not 
included as part of the review process. 

Demonstration Programmer demonstrates new system capability to senior 
project members. The demonstration is a high level 
inspection intended to establish general correctness. 
Workflow, requirements coverage, and usability are 
emphasized. Formal verification is not performed. 

Integration & Establishes closure by verifying that all code review action 
Selloff items have been completed, requirements have been updated, 

and common integration traps and pitfalls have been 
considered. 

27 



optional 
iteration 

Work Package Start 

Work Package Description issued to programmer 

Programmer codes software 

Input Code Review Output 

Functionality Output 
Demo. 

Programmer completes all action items 

Integration 
Sell-off Output 

Figure 2-5: Review Process Flowchart 

2.8.4 Process Engineering 

In the McGill-IBM Project on Software Process, Madhavji argues that most 

software process models are too general to be of any practical value. He uses the 

term "Software Process Engineering" to refer to the more detail oriented, 

tangible treatment of the topic [MKL91]. Madhavji's most relevant assertion 

refers to the relationship between software process and tool support: "Without 

adequate process understanding, some aspects o/ supporting technology cannot be dfective. 

Similarfy, without appropn·ate supporting technology, some aspects o/ the process are difficult to 

understand." The code review process outlined above is a case in point. It contains 

a "Code Review" item, which at a high level seems reasonable. However, without 

appropriate tool support (e.g. effective automated code inspection), the process 
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cannot be effectively implemented. Conversely, an expensive static analysis tool is 

ineffective if it is not used as a component of a larger software process. While 

these statements may appear obvious, the findings documented in Chapter 4 

suggest that the integration of software process and tool support is difficult to 

achieve. 
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Chapter 3 

Methodology 

Two distinct datasets were collected during this investigation. The first set 

contains memory leak data identified during dynamic and static analysis. The 

second contains data on breaking changes collected during the compiler upgrade 

discussed in section 2.6.4. Each of these datasets and their associated metrics are 

discussed separately in this section. 

3.1 Memory Leak Detection 

Memory leaks were identified using both dynamic and static analysis techniques. 

Both approaches have strengths and weaknesses that are discussed in Chapter 4. 

Each memory leak detected was recorded and categorized according to type, 

subsystem, and seniority of the responsible programmer. The programmer 

responsible for a given memory leak was identified using the project's version 

control system. The offending file revision was identified using bisection of the 

revision history. 

3.1.1 Dynamic Analysis 

D ynamic analysis was conducted using the system's automated regression testing 

capability in conjunction with Microsoft's debug heap facility. As part of the 

normal development cycle, core portions of system functionality are automatically 

regression tested. This testing checks for system crashes and differences in 
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expected results. The regression-testing tool uses a database of test cases intended 

to achieve broad code coverage. The system's regression testing database contains 

2209 test cases. A representative subset containing 1671 of these cases was 

selected and used as the basis for dynamic analysis. 

3.1.1.1 Code Coverage 

An attempt was made to quantify the extent of code coverage achieved by the 

regression-testing database. However, the code base and degree of 

modularization proved too large for available profiling tools. 

3.1.1.2 Instrumentation 

After reviewing available memory leak detection tools the native support 

provided by Microsoft's debug runtime libraries was selected. While not the most 

user friendly, these proven facilities are available at no additional cost to the 

existing development environment. Use of Microsoft's debug heap facilities 

reqwres that each source @e be instrumented with a short pre-processor 

directive: 

#ifdef DEBUG 
#define-new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = FILE 
#endif 

This macro replaces calls to the standard C++ new operator with a special 

version that records the @e name, line number, and size of each allocation. At 

any point during program execution, a system call can be made to report dynamic 

allocations that have not yet been freed. 
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3.1.1.3 Detection Methodology 

Debug heap memory leak detection facilities were validated though the deliberate 

creation of various defects. Following validation of the general approach, the 

code base was fully instrumented as described above. Analysis of the regression 

test subset proceeded as follows: 

1. Enable debug heap allocations at program start 

2. Execute regression test case(s) 

3. Dump leaked memory at program shutdown 

4. Examine dump file and document leaks 

This process was repeated over several weeks until the entire subset of regression 

tests had been executed. Identification and documentation of leaks in this manner 

was extremely time consuming. While the causes of some memory leaks are 

obvious, others are extremely subtle. This challenge was complicated by the lack 

of call stack information in the debug heap output report. 

3.1.2 Static Analysis 

Static analysis was conducted on the same core subsystems covered during 

dynamic analysis. The C++test tool produced by Parasoft was employed. This 

tool implements a wide range of industry standard rule sets. In addition it 

provides a rule editor that allows the user to define custom rules. Rec. 58 from 

the classic Ellemtel coding standards document was selected [Ele92] . This rule 

states simply: 

Do not allocate memory and expect that someone else will de-allocate it later. 
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The C ++test tool implements Ellemtel Rec. 58 as three separate rules as follows: 

If local memory in: 

• a global function is allocated via new it should be deleted in this function. 

• a class is allocated via new it should be de-allocated in destructor via delete. 

• a class is allocated via new a destructor should be defined as well. 

The spirit of the Ellemtel rule is sufficiently general to cover all scenanos. 

Unfortunately the specific implementation of this rule by Parasoft was too 

simplistic and naive to be of much use. The Parasoft rules properly track 

allocations via new and de-allocations via delete in the destructor but falls down 

when alternative methods of allocation or clean up (e.g. template functions) are 

used. In these cases the rules are triggered improperly and false violations are 

reported. Some attempt was made to compensate for this by customizing the 

rules to account for the specific coding style in question. The rule engine does 

provide a rich grammar to describe a wide range of syntactic constructs. 

However, considerable effort would be required to craft a custom rule set that 

was sufficiently rich to correctly identify the majority of statically detected 

memory management defects. 

To the extent that it was able to correctly identify simple memory leaks, the static 

analysis tool did make some contribution to the investigation. However, the 

impact of this approach was not as great as was hoped. This limited experiment 

involving static analysis has shown that considerable effort is required to create a 

usable set of rules. 
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3.2 Memory Leak Classification 

Numerous defect classification schemes have been proposed. Some, such as 

Orthogonal Defect Classification (OCD) from IBM are comprehensive 

[CBC+92] . Other schemes are more focused on a particular class of defect, such 

as memory leaks [VS04][SC91]. A survey of the literature did not reveal a 

classification scheme that would describe a memory leak both in terms of a class 

life cycle and variable context. As such, a two part memory leak classification 

scheme is proposed here. The first part describes the leak in the context of the 

class life cycle. Class life cycle is divided into four phases: Initialization, 

Implementation, Interface, and Destruction. The relationship between a memory 

leak and the lifecycle of the affected class is highly relevant. Understanding where 

in the class life-cycle most leaks occur can help to focus preventative action (e.g. 

static analysis, code review) to achieve the greatest impact. Table 3-1 below 

provides a defmition of each category and examples of the types of leaks that can 

occur in each one. 
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Table 3-1 Life-cycle Leak Classification Categories 

Classfication Description 
Initialization Errors related to object creation and assignment. 

Example 1: missing pointer initialization 

Example 2: faulty assignment operator 

Implementation Errors related to the core implementation of a particular 
module. 

Interface 

Destruction 

Example 1: a pointer is allocated but not deleted. 

Example 2: a pointer already is use is overwritten 

Errors related to poorly defined or understood class interfaces. 

Example 1: The interface of the function specifies that the 
pointer variable is deep copied. The caller assumes the pointer 
is shallow copied and fails to call delete. 

Example 2: a function interface specifies return by reference. 
No corresponding member variable exists, so a reference to a 
heap allocated local variable is returned. 

Covers errors related to object destruction. 

Example 1: memory is allocated using a member variable 
pointer with no corresponding delete in either the destructor 
or a reset method called by the destructor. 

Example 2: no destructor defined. 

The second part of the classification scheme describes the context of the 

variables involved. Variable context can be either scalar or composite. Scalar 

context refers to a single local or member variable. Composite context refers to 

one or more local or member variables stored within a composite structure such 

as a list, vector, or struct. The scalar versus composite context of a leak is 

important as it can help to highlight data types and structures that may be poorly 

understood by application programmers. 
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Together the two parts of the classification scheme describe a memory leak. For 

example, the results of this investigation found that 32% of memory leaks were 

related to class destruction. Of these 70% involved variables in scalar context; 

while the remaining 30% involved variables m composite context. The 

classification scheme described here is used in the experiments described in 

Chapter 4. 

3.3 ANSI C++ Compliance 

The code base was migrated from VC6 to VC8 (see section 2.6.4 for details) one 

subsystem at a time. Each breaking change encountered was documented and 

categorized. In some cases the broken code was benign, while in others the more 

standard compliant compiler had detected code that was legitimately incorrect. 

Although this work forms a relatively minor part of the overall investigation these 

errors are highly instructive. They offer tangible evidence of the relationship 

between the standards compliance of a compiler and safety of the object code it 

produces. The nature and distribution of these errors are discussed in Chapter 4. 
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3.4 Metrics 

3.4.1 Memory Leak Density 

Memory leak density is computed as the number of memory leaks detected in a 

given subsystem divided by the size of that subsystem. Memory leak density is 

reported as the number of leaks per 1000 source lines of code. 

3.4.2 Complexity Measurement 

McCabe's cyclomatic complexity was chosen as the most appropriate complexity 

metric for this investigation. The popularity of this metric in the literature and 

wide tool support were the primary reasons for this choice. 

The CCCC (C++ Cyclomatic Complexity) tool was used to gather complexity 

data. The tool was written by Tim Littlefair as part of his PhD thesis [Lit01]. 

CCCC computes various code metrics including McCabe's cyclomatic complexity 

and source line counts. 

Raw complexity data was transformed to the "Complexity D ensity" metric 

proposed by Gill & Kemerer [GK91]. Complexity density is computed by 

dividing a subsystem's cyclomatic complexity by its size in source statements. 

This transformation normalizes complexity values and permits subsystems of 

differing sizes to be compared. Complexity counts tend to be strongly correlated 

with module size. This makes sense, as larger modules have more code and hence 

more logic. Complexity metrics are sometimes discounted as indicators of 

problematic code in favour of module size [OWB04]. However, when the 

concept of complexity density is introduced, the value of complexity metrics as a 

predictor is re-established. The findings presented in Chapter 4 support this 

assertion. 
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3.4.3 Programmer Experience 

The experience level of the programmer responsible for creating each memory 

leak was classified as either Junior or Senior based on their ranking within the 

firm. MDA uses a seven level ranking scheme for engineering staff. Programmers 

at levels 1 to 3 were classified as Junior; programmers at levels 4-7 were classified 

as Senior. Due to the project duration, some programmers moved from junior to 

senior positions part way through the implementation. As such, the experience 

level assigned to a given memory leak is the experience level of the responsible 

programmer at the time the leak was created Banker et al. have reported a correlation 

between programmer experience and error rates [BDK +02]. 
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Chapter 4 

Experiments and Results 

This chapter provides details and results of six separate experiments conducted 

during the course of this investigation. The first experiment involves an analysis 

of the type and distribution of memory leaks encountered. The second 

experiment compares memory leak density with subsystem complexity. The third 

experiment conducts a complementary investigation of the relationship between 

general defect density (as opposed to memory leak density) and subsystem 

complexity. The fourth experiment compares memory leaks with programmer 

experience. The fifth experiment examines the impact of process improvement 

on general defect density. The sixth experiment presents an analysis of ANSI 

compliance related breaking changes identified during a C++ compiler upgrade. 

4.1 Memory Leak Distribution 

The goal of this experiment was to quantify memory leak distribution using the 

classification system proposed in section 3.2. Figure 4-1 below illustrates that 

majority of memory leaks identified relate to class implementation. This is not 

surprising as a class implementation typically contains the majority of the code 

and the associated complexity. More interesting though, is the proportion of leaks 

related to class destruction and the breakdown of scalar versus composite variable 

context among them. Almost a third of leaks encountered are associated with 

class destruction. On one hand this finding is troubling, as destructor logic tends 
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to be quite straightforward. It is encouraging, however, to realize that by focusing 

on a single functional area a large positive impact can be realized. Experience 

gained during this investigation showed that class destruction is one area that 

lends itself well to static analysis. 

Memory Leak Distribution 

Composite 
Destruction Initialization 

Scalar 
Destruction 

22% 

8% 

10% 3% 

Implementation 
57% 

Figure 4-1 Memory Leak Distribution 

Interestingly, one third of destruction related leaks involved composite storage. 

Leaks of this type typically consisted of lists or structs of pointers that were not 

properly de-allocated. These findings suggest that additional care must be taken 

when using data structures of this type. As well, it is possible that static analysis 

techniques could be employed to reduce this particular class of error. 

The most significant discovery of this experiment was that 10% of all memory 

leaks involved the unnecessary use of pointers. The term "unnecessary" must be 
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qualified: in this experiment, pointer usage was deemed unnecessary if the pointer 

in question was local to the function and the associated allocation was not needed 

once the function exited. In other words, a local, stack allocated variable would 

have been equivalent. This finding suggests that pointer usage should be more 

tightly constrained, perhaps even to the point of forbidding pointer usage unless 

otherwise authorized. Indeed, some coding standards prohibit the use of dynamic 

memory all together [MISRA04]. 
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4.2 Memory Leak Density & Subsystem Complexity 

The goal of this experiment was to establish if a statistically significant correlation 

exists between memory leak density and subsystem complexity. 

4.2.1 Dataset 

The dataset consists of 168 memory leaks identified using the static and dynamic 

analysis techniques. Leaks were identified in 29 of 48 subsystems analyzed. D ata 

on the size and McCabe cyclomatic complexity of each subsystem was collected 

and used to compute complexity density values. All data was collected using the 

tools and techniques described in Chapter 3. The dataset shown below contains 

complexity density and leak density data along with associated mean and 

difference values to support correlation analysis. Field descriptions for the dataset 

are described in Table 4-1 below. 

Table 4-1 D ataset field descriptions 

Field Description 
Size SLOC count 

Complexity Cumulative McCabe complexity 

Leaks Number of memory leaks detected 

Complexity D ensity Complexity / Size 

Leak D ensity (Leaks/ Size) x 1000 (KSLOCs) 

Rank X, Rank Y, D , D 2 Spearman non parametric analysis values 
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4.2.2 Experimental Details and Results 

Analysis was performed on the dataset to determine whether a statistically 

significant correlation exists between complexity density and leak density. 

Spearman non-parametric analysis was selected in order to avoid making 

assumptions regarding the distribution of data [JB92]. 

I 

I Leak Density vs. Complexity Density 
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Figure 4-2: Leak Density vs Complexity Density Scatter Plot 

A scatter plot of the data show above revealed a potentially linear relationship 

between the variables in question. As the complexity density (x-axis) increases, 

there is an apparent increase in the leaks per KSLOC (y-axis). 
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4.2.2.1 Spearman Analysis 

Spearman non-parametric correlation calculations for the complexity density 

versus leak density experiment are shown below: 

H 0 =There is no correlation between complexity density and leak density. 

rs=1- 6"'i.D2 =1- 6x2464 =0.39 
N(N 2 -1) 29(29 2 -1) 

The computed r value of 0.39 exceeds the critical r value of 0.37 (p = 0.05) for df 

= 27 (two tailed). 

These results allow us to reject H0 at ex = 0.05 and suggest a medium strength 

correlation between complexity density and leak density. 

4.2.2.2 Discussion 

The Spearman test shows a medium strength correlation (r = 0.39; ex = 0.05). 

Clearly there are many determinants of leak density in addition to program 

decision complexity. Having said this, this result shows that a statistically 

significant relationship exists between the two parameters. These findings are 

consistent with similar research conducted by Nagappan et al [NBZ06]. 
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4.3 Defect Density & Subsystem Complexity 

As a complement to the Leak Density & Subsystem Complexity experiment, a 

secondary investigation was conducted to see if a relationship existed between 

general (e.g. not memory leak specific) defect density and subsystem complexity. 

Data used in this experiment was gathered from the system's defect tracking 

database. A subsystem was implicated in a defect if at least one of its files was 

changed during the course of the defect's resolution. The defect count per 

subsystem was converted to a density value. Complexity density values were 

computed as described above. An initial scatter plot of the data shown in Figure 

4-3 below showed no discernable relationship between the two parameters. 

Defect Density vs Subsystem Complexity 

14 
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Figure 4-3: Defect Density vs Subsystem Complexity 

Subsequent numerical analysis using the Spearman technique confirmed this lack 

of correlation (r ::::: -0.1 ). This finding is consistent with those of both Gitten and 

Ostrand, both of whom found no signification relationship between subsystem 

complexity and defect density [GKGOS][OWB04]. 
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4.4 Memory Leaks & Programmer Experience 

4.4.1 Dataset 

This experiment utilized the same data set as the experiment described above. 

For each memory leak in the dataset a responsible programmer was identified. 

and classified as either junior or senior. Of the 168 memory leaks identified, 101 

were created by junior programmers, while the remaining 67 were created by 

Senior programmers. 24 junior programmers and 1 0 senior programmers are 

represented in the dataset. All data was collected using the tools and techniques 

described in Chapter 3. 

4.4.2 Experimental Details and Results 

Analysis was performed on the dataset to determine whether a statistically 

significant relationship exists between the number of memory leaks created and 

the level of programmer experience. D ue to the categorical nature of the data a 

Chi-Squared (X2
) analysis was selected OB92]. 
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4.4.2.1 Chi-Squared Analysis 

Chi-Squared calculations for the programmer expenence versus memory leak 

experiment are shown below: 

H0 = There is no relationship between programmer expenence and the 

creation of memory leaks. 

Table 4-3 Chi Squared Analysis of Programmer Experience 

Expected Leak values were computed by multiplying the total leaks found by the 

proportion of Junior and Senior programmers on the project. For example, 

approximately 70% of programmers are Junior level, as such the expected 

number of leaks for Junior programmers is 70% of 168, or 118.59. 

The computed X 2 value of 8.87 exceeds the critical value of 6.64 (p = 0.01) for 1 

degree of freedom. This result allow us to reject H0 at rx = 0.01 and indicates that 

senior programmers created proportionally more memory leaks than expected. 

4.4.2.2 Discussion 

This somewhat counter intuitive result may have a variety of causes. It is possible 

that senior programmers are more comfortable with the advanced topic of 

dynamic memory management. Given this they may be more likely to use the 

technique and hence fall victim to its associated pitfalls. A second possible 

explanation is that senior programmers are more productive than their junior 
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counterparts. As such, seruor programmers may produce a greater absolute 

number of errors even their error rate is lower. Training issues must also be 

considered. Although senior programmers may have more software development 

experience in the broad sense, they may be less familiar with newer object 

oriented techniques. 

4.5 Process Improvement & Defect Density 

This experiment utilized the project's defect management database to assess the 

impact of the process improvements discussed in section 2.8. Defect densities of 

software written before and after the enactment of the review process were 

compared. The defect densities discussed here are not restricted to memory 

management problems. All pre-release defects from Release B and C are 

compared. Post release defects are not considered, as Release C post release 

defect data was not available at the time of writing. 

Table 4-4 Release B vs. C Defect Densities 

It is clear from these figures that the process improvement measures introduced 

between Release B and C did not help to reduce defect densities. Having said this 

some qualification is required. Part of the strategy behind the review process was 

to identify defects earlier during the development cycle. In effect, turning post-

release defects into pre-release defects so they can be dealt with more easily and 

cheaply. As such, it is possible that this effect is occurring here, as Release C pre-

release defects are indeed higher than in Release B. This picture will not be 

complete until Release C post-release defects are available. Even so, a defect is a 

defect, whether it occurs pre-release or post-release. While it is good to have 
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identified it, it would be better had it not occurred at all. The goal of the software 

review process described here was to prevent defects from occurring through 

improved understanding of requirements, code inspection, and peer review 

demonstrations. Given these stated objectives, it is hard to argue that the process 

was successful in the face of the numbers presented here. 

The results presented throughout this investigation point to the need for a 

comprehensive white-box testing program. Such a program would incorporate 

both static and dynamic analysis techniques into the weekly build cycle of the 

project. The project's current black-box testing program is comprehensive, but 

it is only part of the picture. 

The existing regression automated regression and black-box testing regimes must 

be supported by a parallel white-box program. Each type of testing emphasizes a 

specific category of errors: Black-box testing is requirements focused, while 

regression testing detects system crashes and unexpected behaviour changes. 

White box testing can detect an entirely different category of defects, and to a 

certain extent, can do so in a pre-emptive manner. Memory management, logical 

errors (e.g. logical incompleteness, orphaned branches, etc), and complexity hot 

spots can all be identified using static and dynamic analysis techniques. Without a 

white-box regime, the testing program is simply not as complete as it could be. 
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4.6 ANSI C++ Compliance 

This experiment examines the distribution of errors resulting from the compiler 

upgrade described in section 2.6.4. This upgrade yielded approximately 3300 

compiler warnings and errors. Once spurious and informational warnings were 

reconciled, 1598 meaningful warnings and errors remained. From this set, 66 

legitimate software defects were identified. The following table shows the 

proportion of a particular type of error or warning that yielded a legitimate defect. 

Table 4-5 Software defects identified by compiler error 

Error Error Defect Proportion Description 
Number Count Count 

C2065 170 3 0.02 Undeclared identifier 
C2440 110 2 0.02 
C2675 1 1 1 
C2678 2 2 1 
C3867 35 35 1 
C4353 1 1 1 
C4430 300 22 0.07 

It is interesting to note that some error types appear to have a higher predictive 

value than others. There also appears to be an inverse relationship between the 

frequency of an error and its predictive value. For example, error C3867 (function 

call missing arguments) was 100% predictive, but was only 1/ 10th as frequent as 

error C4430 (missing type specifier) which was only 7% predictive. 

Examples of the unintended behaviour associated with each of the defect types 

identified above are outlined in the table below. 
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Chapter 5 

Conclusions 

5.1 Contributions 

The research presented here is distinct in two important ways. The first is the 

focus on memory management problems in the context of code complexity. 

When correlating defects with code complexity, existing research tends not to 

distinguish between different categories of faults . The second is the use of the 

complexity density metric, introduced by Gill and Kemerer, in the context of 

memory management defects [GK91]. In addition, a two-part memory leak 

classification scheme is described for categorizing a memory leak in terms of both 

of class life cycle and variable context. 

5.2 Findings 

A statistically significant relationship was found between memory leak density 

and subsystem complexity. The Spearman (non parametric) rank correlation 

technique yielded a medium strength correlation (r = 0.39, ()( = 0.05). 

A complementary investigation focusing on general defect densities did not find a 

statistically significant relationship between general defects and subsystem 

complexity. These findings are interesting as they suggest memory management 

related problems could be sensitive to decision complexity. 
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An analysis of where memory leaks occurred during the class lifecycle indicated 

that 57% of leaks occurred in class implementation logic, while 32% occurred in 

class destructors. Of the destruction related leaks, 30% involved composite 

storage. Leaks of this type typically consisted of lists or structs of pointers that 

were not properly de-allocated. These findings suggest that additional care must 

be taken when using data structures of this type. 

On the whole, 10% of all memory leaks involved the unnecessary use of pointers. 

This finding suggests that pointer usage should be much more tightly 

constrained, perhaps even to the point of forbidding pointer usage unless 

otherwise authorized. 

A Chi-Squared analysis comparing memory leaks with programmer experience 

showed that Senior programmers create proportionally more leaks than their 

Junior counterparts (ex = 0.01). 

The impact of a software process improvement effort was examined. A 

structured process involving code review, demonstrations, and formal sell-off was 

found to have no impact on general defect densities. These findings, together 

with those listed above, are highly suggestive of a need for process improvement. 

Specifically, a comprehensive white-box testing program is required. Automated 

software inspection technologies are now sufficiently mature to support this 

objective. 

Coding defects identified as a result of improved ANSI C++ compliance were 

enumerated and discussed. The frequencies and predictive power of various error 

types were presented and an inverse relationship was noted between the two 

parameters. 
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5.3 Future Work 

This investigation has laid the groundwork work for a future prospective study. If 

a comprehensive white-box testing program is introduced, its impact can be 

measured using many of the same experiments and metrics employed here. 

Differences from before and after can be measured and the impact of the testing 

program can be quantified. Additional work in the area of static analysis is 

required to support this goal. 

Additional investigation into the relationship between memory leak density and 

code complexity is also required. The findings presented here suggest a moderate 

correlation between these two parameters. Future investigations will help to 

improve our understanding of this relationship. 
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Appendix 1: Non Disclosure Agreement 

This section contains a signed copy of a non disclosure agreement between 

UNBC and MDA. This agreement governs the usage of the MDA intellectual 

property upon which this investigation is based. 
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MUTUAL CONFIDENTIAL DISCLOSURE AGREEMENT 
THIS AGREEMENT made thrs _L day of June !rl the year 2006 (the •effectlve Date") . . 

AND: 

. . . 
MacDONALD, DETTWI1..E:R AND ASSOCIATES L TO. 
a compafLy d!Jly Incorporated under the laws of Can.eda, 
having offices at 136!JO Commerce Far~ay, Richmnnd, British ColL.rnbia, Canada VOV 2J3, 

UNIVERSITY OF NORTHERN BRITISH COLUMBIA 
3333 Unlve sity W&f, 
Prince George, B.C. 
V2N4Z9 , .. · 

•, 

. . . . . 

tn co.'"lslderallon of 'lne utu21 premJses and agreements herein conta ed, and other good and valuable 
co sldemo • the receipt a d suffl:oiency of w · fdi is areby i!ICknO'Medged, the parties agree as !ol O'lvs: 

1. 

.. 

"Confiden~ I ormation• shall mean any infot: at on wh!ch ls c.onfidential and proprietary Information of ee.ch 
party· OOI'Icem g eac., party's technical, sclent:l'ic and bus:ness i !eres 1S :not generally avaDiilile fo · ttd 
ptrtle! co~si3ting of but not limited to: (~ software (souroo i!J'\d execu ebJe o ob;ect coda), 21;}0rithms, 
camp ter p ocessi (i systems. tee· rques. met cx:~oores. fOl'lTlULae. p ocesses, comp ations or infonnaUon, 
drawings, pfOPO'sals, job otes, reports, records, end !!.pedficat!ons, en.d re~ted documo tntion In any media, 
in uding e I od cations, enhancements, updates and derivatives: (i~ unique software end hatdNaT~ 
conf.E;urations, des~ co. cepls and sU malerials developed I e: erro ; (111) business plans. ovstorner 
conte~.1:censes , the prices each party obtans or has obtB ned for its .soft\va o, prorucis or serV.ces a ... d eny 
otrter mate Ia s cx lnfo!matioo relating to the business ~ each party o.· each party's good vi!U, esch party's 
aubsldlaries, o·wners, affillat&s artd dMs'Ofls or eny of eec party's custo ers; (fV) any confidential 
information n~any med}a which is O'M"'ec b:Y a thtd party end provided to either party u der a conflden · 'tf 
ag~eeme, t; (v) lrecfe secre'.s w lch cerlvs eccoomlc va ue. sct\Jal or potential. rOfr. not being g~etally 
known o cttler persons w o m~ht oblem eco omic value from t"...s dlsc:osure or se and Is tite sub'ect of 
efforts that ar,e reasonable unde: the cirOJ.11sta cas o rna inteln Its secrecy: and (vi) any 00\er confttlent!al 
information of each pacy whlc. is dtl.errn l ed by a CO'Jrt of competer:tjuriSd'ctlon o to r!se to th~ level o € 
trade s&cret Li der appl:cai:lle ICI\'1. 

. ~ Each party s e.l redu~ to tangible or!TI, mark as proprietary, and provide lo the othet party, only sucl 
Confidental lnformalion relatinc to t11e subject matter descri::!e~ at tr.e end o~ thls Agreement (t e·"Subjeot 
:\oiet1er"} 2s the pcrtiO! determ ~e Is ree.sonabiy ft)qufred to ach~eva- the Purpose as deli td below. 

3. A!f lights, L'tle and Interest in and lo the Confidential I formal!'o shall remain the> exduslve worid"Mdo property 
of the party •...tllch pro'llded · e Confidential I formation e)(cept the Confident's! tnfotmat:on owned by a third 
party as set out i Article 1 (~' ot this Agreement. 

4.. Ner.har !)arty she I, d.rectly or lnotrecUy, use the co· noential nfonnatlon for the desl!m or crea on of a1y 
product cr SeNioe, or use lhe Conftder.tJa; tmormaUOn o any other mat~ner, exccpl E:s reasonably required for 
the plJrpose dE~saioed at the end of1hi.s Agree:nent (the Pu!posej . 
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5. 

.· ~ . 

MUTUAL CONFIDENTIAL DTSCL05URE AGREEMENT .· · : .· 
If the dfsclos re of the Confidential lr.fOtmation s o d gtve rlse to a busfness opportonltY to commercially 
e:xploll the Con .de tiel lnforma1lc , any such exploltaUon by e:lthef party, o: by either party asslst'ng a y third 
party, or the creation of arty product or service which Is d rectly or indirectly based en, de ived from, or US86 
theCa flden~Bi infcrmetlon without the otn!!lr party's co:tse liS not perrmrted. 

6. Ee party s/'tarl lceep the Confiden~211 formation o! tha other party I strict con den~. Ne •• er party sha!l 
dl. ~Jy or tldlrectly dlsclose, a r:ov access to, transmrt, or lrans~r the Coo denlfeJ lntotmal.b:'l of tt.e o~r 
psrty to a :,i d p,arty wccapt to tl ose of its employees, directors, egen~s. \..tlo ave a iiiCb,Jal need fo know Ill e 
Conflderrtiel Infer ation to the Purpose. Tt:e redp·e 1 shall, prior to diselos ng tne Co..,r.derrtial lnformstion 
to such emp!oyees a d age 1~ . obtain Uteir egrcement to ecetve and use the Conrtdenlle.J lr.fo:-melfon ,on a 
COilfid&nlial basis on !he same condiUons as contained in this Agreement. MDA w o l.s contempla 'ng the 
dlsctosu e of Co fidential Information to the University of Nortl'lern ac acknowledges al the lJniversfty by 
its very nature 15 an open pu lc research in51lMkm with students psssi~ throug an <lPOO and 
uncontro led rnanner and therefore cannot provide tha same o'Esree of S9CUrity for i's ovm Con ldentiaJ · • 
nformauon es that wll~cll is customary in an industrial rese8rch ce tnl. However, the Unlo/ersity wJII se 
the same care and cl iscn1tlon to avold disclosure of Confidemia I formation as It uses or its O'Ml slmilar 
Conf(de l:laJ 1 formatlon tilet it does not wtsn to dls~ose. . . 

7. The Cor.Meotial !nformalbn $hall not be reprodUced · a1y form or sto ed rn a data base, by the recipie t 
wtlhOI.!t tne p !0! written consent of the ther paTty. AI! copies of t1e Co tldential lnformation shall contain only 
the same proprletary no'J:ce-6, whld'l appear on lhe oliginallnformatlon. 

a. This Agreem.en sh211l ot apply to Confidenl.ial lnkumatfon w lch can cliN!fty be proven by documen1etlon to 
h:av& beccm& read~ y avaiJable to fl".e generaf pub!ic in the sam& form thro g: o breach of this A~;reemen o.r 

. .. wtllch was lawfully obtaJned by the r~e t from an t dependent thlrd party .aving no confide tie.Jity 
Cbligaoo to eitl'ler ptlrty, ar which W&s ln tie rec~lent'a possession In lly recordlitd orm pno to de~ of 
dlsclosure by the other party. The burde o. providing these exceptio s reside& Wtlh the red,p'e t. This · . . · 
Agre-ement also appJ;es to (I) Confld~ ' In ormmion provided to eilher party e\len if' such Confidential 
lnforma~on could be, or was s•Jbseq;.~en y, obU!i ed by everse engineering. and (n) Confldemtial Information · 
reoetved by elttw party pr1or to this Ag eement belng s~ed. 

9. This Agreement shaU ot con sf te any ep!'ese:lt;at;o.n, wa ranty or guarantee to ei1her party w·llh respect lo 
the value of · e info;meticn ~o the reci lent or !hat the Con"ida tial lr.formal.ion dces not in~ I ge a"1y rig.:'$ of 
!l ird parties. 'el':her pa-ty shall be he1d Uabte for any e:-ro sot omlssfoM In he Conlidenttal nfOffll:atio , or 
use of the Confiaentlal lnformat:o:'l. 

10. 
·1. ~ . • 

The ente g Into of this Agreement st:aL r.ot coos Me any obllga"c:n em ihe pa1 of e'lher party to enter Into 
any rurther eg:eement •,vfth the other perty. 

' . 
11 . Both partl8s rerognize that eadl party may be engsged in 1 e devolopmen of harcware or softwa e orodu~ 

or other tech olr>gy or services M\k*l sy be co"!'lpetftive •oYilth lho;e of • a oftler party to th ' Agreer:'len and 
no• lng !n this Agreemen shaU be cona1rued to prohibit eitter par1y om en[1Bgl 9 i the et>~ch, 
d~e·cp snt, marke~ing, sa[e ot ltcensl 9 of a y p educt which Is lndep8i"''denUy developed a1d proc:t.sc.d 
wilhout · e use c~ lhe other party s Co:nflde ~al I formation . 

, . 12. Ee a1y shall pon comp!$tion of the Purpose or upon the request of 11-ie o e party, ~·.tlctlever ffrst 

13. 

. 
14. 

cooors. immoola~ly ewrn to tt1e othe ~art1 the Conftdential In ormallon. and all copies thereof In a:l omus, 
and permane tly<fe!ote the Confl'dentia! lnforrnetior1 from all ret ·aval systems and dsta bases In wt,.ch It ay 
be fou . 

T e term of lhl$ Agre9men.t shal aXrur.enc& on trie EtreoltJe Oa e and shall conll'lue.for lhe permd of time 
set o~ at the e ·· d of 1Ns Agteement and notwilhsta d g the fo:-egoing, neither party shall disc ose or utliize 
trade~ ·s a5 set ou'l in Article 1 (v) o' thls Agree:-nent for an u limited period of time. 

[ the 0\-&n of a br.cach by edlher party of errt p ov;slon ofthts Ag eement, lhe other partY'£n:an, in addltlon to 
and not In subsU~ tio for 8!tJ othe rentedy available lo · in r&s~=tect ct suc..l'l brea , be e~ed tot J ne!lve 
re;;Et. wh:Gh res~reins the party in breadl from com ittl g or eon nu·ng SlJch brooch. 
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MUTUAL CONFrDENTIAL DISCLOSURE AGREEMENT 

15. 1r It is held b~· a oou't or oUte lav;ruJ authorit'/ o~ coml)&tenl furlsdlotton that any prcllls lon of this A~reement or 
part thefei)f Is vc:d, ~ l&t;al, valid or unentoroeeble then c. eh p·ov' ·on or part 6ha I be deemed stricken, a d 

· · the Q,ain~ng pro 'sions shaA boe sever~Je and em~m valitl. Cn fuU ~orce and effect 

. . . 
'16. Neither party s a I assig lhfs Agreement or arty rl!jlts or obiTgatfo s uncle this Agreement without ' e prior 

wrrtten consent of lhe C!her party, and any atlempt to t!o so wr.ho t oonsent s ell be n II, void and of 0 
Gffeet. 

17. This Agreeme t s all be gove .ed by, subject to, Interpreted a d "eclforced in ell respects' accordanoe 'wttn 
the 1mvs wnt:h ap"''y the province of Brit:sh CO! _ mbia, Canade and t e partles she submit o lhe exo:u!Ne 
Jurisdlctron of e oourts o British Co:umb:a. 

18. Each party s a I comply and s. aJI cause fl.s affiliates to comply wllh all applfe<Die laws a d egula 'o s 
per".abting to e:xport or re-export of Confide reJ l.nforma:ion -o the o er part-1 o lts effilal6$. 

19. No wai\'er of any p·ovis!.011 of this Agreement or of any breach of this Agreement sha[l be effeo\ive ntess 
su~ walV&r is in \'1 • ng and signed by the party prcr .. id'ing such wa!ver. lvly s!gned wsiver sha not opera1G 
or be construed e-s a waiver of any otner pro fO 01' any other breech tA 1hts Ag eement. . 

.20. Neither party shall make use of wy dlsc nlons oooceming thia Agreement, ot' this Agreeme t ftsel(, tor 
p.ubllclly, advertislng or rna(l<eling, or disclose \hal either party has entered into thrs Agree:-nen!, wftho. t the 
prior written co sent of I e other ~. 

21 . This Agree ent coostttutes the entlre agreeme 'tend und~tar1C1lng between partles and supe~ ~ pr1or 
disc::uss'o s a~d a9r~ame Is betvtlee., lhe parties here:o relcrtlf'l9 generarlyio the ~me su~iect matte.-. 

Subjact Mztter: 
.J. -. 

Maste 's. Thesis from Step'neo WICkham regarcrng a retrospective a alysls of ~he GPO 
code base wm bo conducted. ~d-!!1g errors t' el cause memory leaks and interfere with 
th& creation of a release :> ·'ld , ... ~n be measur@d end C()rrected. The prtmary obrjecijve of 
the exerc!se Is e creaUon of a release bu~d or GPO. Supportlng objectives Inc ude 
Identification and co eclfo of memory le-aks, and prepar2 'on of e GPO eode base 
for ose with Microsoft Vis e StUdiO 2005. A ~port d lscuss.ng the problems 

· · ·- enoovntorcd and the d~stribution of errors will be provided. 

Purp:ose: · 

Term: 

COt 9'3.v1.0.oe.ns20 

To protect bUs'ness ser.s1rve confidentlc!J and p;op~etal)' i formation discllssed, 
developed endlor sup;:lled. 

FiVe {5) Years from me Effective Date cr three (3) years from the latest d2.te of dlscbsute 
of Confidential lnformatloo ::m one party to the oli'ler. vm chever ts later. 
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MUTUAL c ·oNFIOENTlAL DISCLOSURE AGREEMENT 
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. . IN WITNESS W EREOF, the parties heve entered into tJis Ag eement by their duly authorized repraenwtives . 
· ~ 

IV.ACDONA!..D, DETTWILER ANO ASSOCIATES TO. 
By. 

Neme: 

· TIDe: 

'' I o 

\=: . ·: ··6NNERsrTY oF NORT~m coL..UMB. rA. 
By: · :. · ~ . 

••: r · (Signc!lu1'13) 

Name.: 

~ · .· 'Title: 
• ':- . 

Oate: 

VPRsaaarch 

(Prlnladffyped} 

... . . ~ -·. . . ~ . . . . . 

, .·• 
· br. sra~Re~r· . ~· · · 
&f. .. . . .. - ~~ 'ik-

'9 ,· 

· Name: SlamaJs'Reml 
. . (Prlnted/Typed) 

· 'ntl&: ~~~·oct o.:b p.,.obss~r 
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