Distribution Of Defects In A Large Software System

Stephen Wickham

B.Sc, University of Victoria, 1997

Project Submitted In Partial Fulfiliment Of
The Requirements For The Degree Of

Master Of Science

Mathematics, Computer And Physical Sciences

(Computer Science)

The University Of Northern British Columbia

January 2007

© Stephen Wickham, 2007

gH GOLU
BRITIS RAR

LB
Prince G@

of NORTHERN

MBIA
Vi
grge, Bno'

Abstract

This report summatizes the findings of a retrospective analysis of coding errors in
a major software system produced by a large Canadian software engineering firm.
The code-base of the system is approximately 1.7 million lines of C++ integrated
with third party RDBMS and GIS products. The safety related nature of the
system and the size of its code base make it an ideal candidate for an investigation
of software related defects. The investigation focuses ptrimarily on memory
management related defects referred to as “memory leaks.” A “memory leak”
results from the failure to return previously allocated heap memory. The
distribution of memory leaks is analyzed and a two-part memory leak
classification scheme is described. A secondary focus of the investigation is the
influence of decision complexity on system safety. This investigation yielded two
statistically significant findings. The first is a relationship between programmer
experience and memory leak creation. The second is a correlation between
subsystem complexity and memory leak density. The impact of software process

improvement measures are also discussed.

This document contains informaton proprietary to MacDONALD,
DETTWILER AND ASSOCIATES LTD.,, to its subsidiaties or to a third party
to whom MacDONALD, DETTWILER AND ASSOCIATES LTD. may have a
legal obligation to protect such information from unauthorized disclosure,
transfer, export, use or duplication. Any disclosure, use or duplication of this
document, or any of the information contained herein, for other than the specific
purpose for which it was disclosed is expressly prohibited, except as
MacDONALD, DETTWILER AND ASSOCIATES LTD. may otherwise agree

to in writing,

TABLE OF CONTENTS

I. Introductioncccievnsnnsscsecsunnnes 1
)] MOLIVALIONS woeuverrecrnnrsirsessissssecnmmssseserssssssssssessssssassessasssssassissssssassssssssssssenns 1
1.2 Document Organization 2

II. Background and Literature Review 3
21 SYstem OVEIVIEWcoviviinrcisiisincmisisssnsisissesnsssisssesisssssssssessosssssssesasssssns 3
2.2 Historical Context 5
23 Debug & Release Builds........ccouiricccnmmciicsiincssinisiscnssssssccnssnsens 5
24 Memory Management......eisseesnnssinsssissssssssssssssssssnies .7

241 Static MemOLY vt isssisssssssiasssins 7
242 Automatic Memoty ..umiciersienicissiscsns s w1
243 Free Store w7
25 Software Design Patternscisenenessssmmiessssssssesssssens 9
2.6 Software Safety and Relabilityccocovcerereecnimcernrsensienirseessesessssascsss 10
26.1 DEfiNIIONS ceuceerrcenirernsirsesseanessonaseasessensscssssssscsensans 11
2.6.2 Complexity & Safety......ciereuisciniunnee Hi2
2.63 Modularity & Safety.......uwirrievsecrcsirsecssniensecsescennense 18
264 Compiler Standards Compliance.............cucceennc 19
2T Software Testing 20
271 DefINItONS ..cvucmrerivecniriscncesirsesissasesessenesessserns 20
28002 Testing SrAtEIES....uimrrrncsnmmcsssissscssssseessesesnne 22
2.7.3 Static Analysis 22
274 Dynamic ANAlySis......ceerueesecesnesssnersersssssssssssssssssnsaes 23
2.8 SOftWALE PrOCESS....uuimmrisirisiiiiiscsiscssisscississssnssssscssssenssssossessassssssssansses 24
2.8:1 Process MOdelsccuevumriusceesscccenisenennnne 24
2,82 Process Measurement........covcevsnemsecccesersracanrsones w25

v

283 Process IMProvementiiinesisnsesiseesesesssnsees 26

2.8.4 Process Engineeing.........o.ereceverisssnessessssessscsnenns 28

IIIl. Methodologycccceerurunens 30
331 Memory Leak Detection..........ccuuu. 30

341 Dynamic Analysis........cuu. 30

3.1.2 Static Analysis .32

3.2 Memory Leak Classification............... 34

33 ANSI C++ Compliance..........ecuvvereccne .36

3.4 MELLICS c.ourrcmseniscinissiensseissssissssssessassaenss O

341 Memorty Leak Densityocmcenrrrisnsnernsisennncs .37

342 Complexity Measurementoiinmssercsnmssssnssecssecsnes 37

343 Programmer EXPenence........cmveninrrseceneusissinicsesinenns 38

IV. Experiments and Results 39
4.1 Memory Leak DiStIBUtIONcuucierecniuncinenssissmsisseessnssssissesssssessees o)

42 Memory Leak Density & Subsystem Complexity.........osuunemssvcersecenss 42

4.2.1 Dataset.. 42

4.2.2 Experimental Details and Resultscc.ocovveureurecrinccenes 4

4.3 Defect Density & Subsystem COmplexity.......ccomucisrimecmsscssssesscsscenss 46

44 Memory Leaks & Programmer Experience 47

4.4.1 Dataset 47

4.4.2 Experimental Details and Resultsccoveinvmnnecnsisinnininse 47

4.5 Process Improvement & Defect Density.......ciccimeccisncecinesceccrsecsnens 49

4.6 ANSI C4++4 Comphance........cmmimimisimmcesiessneessenssersesserssens 51

V. Conclusions..........ceeueens 53
5.1 ContrbutioNS....cucrsirssisrsesssssssssssssasssess 53

52 Findings .o, 55

53 Future Workvnrnrccrnsivcceinnns .55

VI Bibliography 56

VII. Appendix 1: Non Disclosure Agreement

LIST OF TABLES

1. FAA failure probability values

2. Cyclomatic Complexity Values

3. Halstead Complexity Measuresummessscsssecsssenisessssonces

4. Conte’s Modulatization Levels....vrervncrenrsnernernnes

5. SEI CMM Levels....

6. Review Process Desctiptioncuiecesnens

7. Life-cycle Leak Classification Categoties.....cvvcmrneuscssinnee

8. Dataset field desSCHPHONScceeieccinieunninsneeccrseessusenanioes

9. Complexity Density versus Leak Density Cotrelation Data.........ccunnece.

10. Chi Squared Analysis of Programmer Expetience....

11. Release B vs. C Defect Densities....uuverncenneeneecnnevenissesnnnes

12. Software defects identified by compiler error ...,

13. ANSI Compliance Error Examples ...

13

16

17

19

28

27

35

42

43

48

49

...51

52

LIST OF FIGURES

System Architecture Diagram........cccoverecenerncrrnnisennnns i
. MemOLY LaAYOUL......ciirininiissnsss st s s ssssessssss 8
. FAA failure probability chatt.......creneiictsciicivsrecsssnsccvssasees 13
. Example control graph ... 16
. Review Process FIOWChALTcccoeurecrnnmsicnsiinissinsinssinscssssnsssssssssssssssseses 28
. Memory Leak DiStrbUHONcivvuiscrmiisiscesiieescisensisessecssssacesssnssensesssees 40
. Leak Density vs Complexity Density Scatter Plot.....ccuiiminisnmssccsssisns 44
. Defect Density vs Subsystem Complexityovvvcvirecerissicsersaees 46

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Siamak Rezaei, for his guidance,
encouragement, and support throughout the course of this research. In addition I
would like to thank Dr. Robert Tait for his careful reviews and constructive
feedback. I would also like to acknowledge MacDonald Dettwiler & Associates
(MDA) for granting access to the intellectual property upon which this
investigation is based. Finally, I would like to thank Mr. Michael Lingren for
sharing his hard won insight and wisdom gained in the real world of software

engineering,

RDBMS

GIS

KSLOC

SEI

SLOC

GLOSSARY

Relational Database Management System
Geographic Information System
Thousand Source Lines Of Code
Software Engineering Institute

Source Line Of Code

Request For Proposal

Chapter 1

Introduction

1.1 Motivations

Memory management defects are a significant impediment to the successful
creation of any release build and to reliable software in general [MS06)]. As such,
this investigation placed major emphasis on coding practices that introduced
memory management problems. Findings made during this process are discussed
in the context of software safety, reliability, and correctness. The distribution of
errors in the code base is compared with developer experience and code
complexity. This paper argues that memory management related defects are

related to code complexity and programmer experience.

Approximately 31% of software projects will be cancelled prior to completion
[Sta%94]. Given this, it is easy to see why a mature, fielded, software system that
has undetrgone structured verification and customer acceptance is extremely
valuable. In the academic context the code base of such a system represents an
ideal research dataset. The findings resulting from this investigation are all the
more relevant because they are derived from a real world system. In spite of the
latent defects identified by this research, we must recognize all that has been done
correctly to get such a large system out the door and into the hand of the
customer. The findings presented here can teach us as much about what has

worked well in the past as they can about what can be improved in the future.

Software permeates almost every aspect of our daily lives. From the
microprocessor in a car to the instrument approach landing system that guides a
flight safely to the ground, our lives depend on code. To those industry and
academic professionals involved in the field, this is can be a disquieting thought
indeed. With software, come defects. That is the unavoidable reality of the
discipline. Some very notable accidents, some of which unfortunately involve the
loss of human life, have been traced back to software defects. Consider the
following: In June 1996, a Washington DC subway driver was killed when his
automatically controlled train slammed into a wall instead of stopping at the last
station [Her97]; On November 24" 1991, a British newspaper reported that
radiation safety doors at the Sellafield nuclear facility had been opened
accidentally due to a computer error [Hat95]. In short, software defects are a very

real problem.

1.2 Document Otrganization

The following section describes the overall structure of this document. The paper

is composed of five chapters and one appendix that are described below.

Chapter 1 presents introductory material, describes project motivations, and

outlines overall document structure.

Chapter 2 discusses background topics relevant to this project including software
safety and reliability, static analysis, dynamic analysis, complexity measurement,

memory management, and software defect classification.

Chapter 3 describes the methodology employed during this investigation. The
memory leak detection framework used is desctibed along with static analysis
tools and techniques. Problems and challenges associated with each of the

techniques are also discussed.

Chapter 4 presents findings and discusses results. Error distribution is discussed

and correlated with developer experience and code complexity.

Chapter 5 concludes the investigation with recommendations for future software

engineeting projects and suggestions for future work.

Appendix 1 contains the non-disclosure agreement between MDA and UNBC

that governs the dissemination of intellectual property contained herein.

Chapter 2

Background and Literature Review

2.1 System Overview

This paper documents the retrospective analysis of a large Windows based
software product. The product, herein referred to as “the system”, aids in the
design of instrument approach procedures for the aviation industry. The code-
base is approximately 1.7 million lines of C++ integrated with third party
RDBMS and GIS products. Object-oriented design principles are employed
throughout. The system is implemented as a series of subprojects, each
represented by a dynamic link library. The subprojects are grouped into layers as

follows:

e Data Management

e GIS and Geometry

¢ Common Aeronautics

¢ Procedure and Chart Design

e User Interface

The dataset used in this analysis was derived using the system’s automated
regression test facility. Because the test facility does not exetcise the user
interface, this layer was excluded from the analysis. Core system functionality in
all the remaining layers is included. The system architecture diagtam below

depicts high-level structure and component relationships.

TO PRINTER/PLOTER U S E R I NTERTFEA C E
e ol A S0 A9 Ty N _gedh N
1
I
““““““““““““““ X DOCUMENT)
REFERENCE o= mm e m e —m e m—m e m e — e —] BROWSER |
DOCUMENTS :
LIBRARY e e e)
| PRINT/PLOT
b FCUERTS - 2D DISPLAY Rl XML FORMS
]
i
i *___'
P 4 R
——— Dependency b4 | L,
I MAP OBJECTS |e—| IAP DISPLAY MS XML TOOLS
————— - Data Flow [
b
|
|
i 1
] WORKSPAGE :{ MAIN MENU
] UI DATA
i MANAGER AND 3D DISPLAY
] : D MANAGER l DIALOGS
i
|
DATA DATABASE] PROCE
CHART MFC OPEN GL
DATA
oo e > T
CHART
PROG. DB
DATA = PROCEDURE DESIGNER
[E AERO
B e BATE APPROACH DEPARTURE
ol | |8
ners o Z [w |- "
DATA <« AERO DB 8 o D ARRIVAL
% | 571 CHARTS ROUTES
: =
g OBSTACLE
< D DATA
OBSTACLE
g COMMON AERONAUTIC
k./\/\
[+ o T T T AERO-NAV. (¢— AIRSPACE
-
== TERRAIN
FILE DATA
TERRAIN SYSTEM
DATA GIS, GEOMETRY, TERRAIN
TERRAIN
DATA
TERRAIN MODEL GEOMETRY
= VECTOR
[‘: i DATA
VECTOR g = i
e z GEODETIC
) -+ | VECTOR | | ——] —] CALCULATOR
§ DATA |
o RASTER J
[DATA
RASTIR ——h EARTH MODEL ¢
DATA RASTER
DATA {
=

Figure 2-1: System Architecture Diagram

The data access and file systems layers provide an abstraction barrier between the
physical storage of data and its representation within the system. The GIS layer
interacts with the file system to retrieve digital terrain data and provides numerical
geometry services utilized by higher level subsystems. The Aeronautical and
Procedure Design layers implement core system algorithms, supported by the
database, file system, and GIS layers. The User interface layer sits at the highest
level and interacts with lower level subsystems as needed. The Data Ingest

subsystem manages external system interfaces.

2.2 Historical Context

The system has been in development for five years and has undergone three
major releases. Due to schedule and budget constraints a release build of the
system was not produced during the initial stages of development. By the time an
attempt was made to produce a release build the size of the code base had grown
significantly. Programming practices that produced code incompatible with a
release build were well entrenched. The severity of problems encountered and
volume of offending code caused the original release build to be abandoned. Data

used in this investigation was collected during a subsequent release build attempt.

2.3 Debug & Release Builds

Generally accepted software engineering practice dictates that source code is
compiled or “built” in two separate configurations: Debug & Release [Pet99]. A
“Debug” build is instrumented with symbolic debugging information that makes
diagnosis of software defects considerably easier. Symbols facilitate interactive
debugging by providing source code, line number, variable, and data type
information during program execution [ASU88]. In the Microsoft envitonment
memory management is tracked using a debug heap that buffers memory

allocations, tracks memory leaks, and protects the programmer from access

5

violations, etc. This instrumentation imposes significant performance overhead

and requires the distribution of supporting debug libraries.

Debug builds also disable compiler optimizations. Compiler optimizations are
“improvements” introduced by the compiler in order to increase the speed or
reduce the size of generated object code [ASU88]. Optimizations that are disabled
in a debug build but enabled in a release build can be responsible for altered

behaviour between the two configurations.

In contrast, a “Release” build is un-instrumented and is optimized for either size
ot speed. Generally speaking a release build will run considerably faster than a
corresponding debug build. It will have a smaller memory footprint, smaller

executable size, and will not require the distribution of supporting debug libraries.

By their very nature, debug builds are more tolerant of poor programming
practice. Code that compiles and runs (although perhaps not correctly) in a debug
build may crash in a release build. In general, release builds and debug builds are
developed in paralle] from project inception. In this way problems that prevent a

release build from compiling or running can be dealt with as they arise.

2.4 Memory Management

C++ defines three memory management mechanisms: static memory, automatic
memory, and the free store [Str97]. These mechanisms and theit relevance to this

project are described below.

2.4.1 Static Memory

Items allocated in static memory persist for the duration of program execution.
Static class members, static variables in functions, and global variables all reside in
static memory. Static memory is relevant to this investigation as it relates to

singleton allocations (see section 2.5).

2.4.2 Automatic Memory

Automatic or “stack allocated” memory is used to store local variables and
function arguments. Items allocated on the stack are automatically created and
destroyed as they come in and out of scope. Automatic memory is safe, simple,
and faster than heap allocation [MR94]. In fact, 10% of the leaks discovered
during this investigation involved heap allocations that could have been made on

the stack.

2.4.3 Free Store

The free store or “heap” is an area of memory used for dynamic allocation. Heap
allocation is used when the number and size of blocks in not known untl
runtime. Allocations and de-allocations are made explicitly using the new and
delete operator respectively. The free store is finite and is ultimately limited by the
resources of the host system. Once the program has finished using memory
allocated on the free store it must give that memory back. Failure to do will cause

problems, particularly in long running programs. The failure to return previously

allocated heap memory is referred to as a “memory leak”. The analysis of
programming practices leading to memory leaks, and the correlation of memory

leaks with code complexity is the major focus of this paper.

Figure 2-2 below illustrates typical memory layout. Memory is partitioned into
address ranges dedicated to each type of storage. Program code and static
variables are grouped together in static memory. A separate region, referenced by
the stack pointer, is dedicated to the program stack and associated “automatic”
memory. Finally, the “heap” or free store contains dynamically allocated memory
referenced via pointers. In the example below, two dynamic memory allocations

are referenced via static pointer variables.

’_ Dynamic chunk #1
Heap
: <4+ A000
Dynamic chunk #2
— <4+— 9FD3
Stack
Currently available
& 44— Stack Pointer
Other static variables
. Pointer variable #2 (9FD3)
Static
Pointer variable #1 (A000)
Program code —
| wikipedia.or

Figure 2-2: Memory Layout

Memory allocated on the heap has two interesting properties: it is unnamed and
un-initialized [Lip92]. In this context the “unnamed” property means the memory
must be manipulated indirectly via pointers. The “un-initialized” property means
just that, the memory is not set to any predefined value upon initialization.
Together these properties are responsible for a great deal of unintended system
behaviour [Koe88][Hat95][Mco93]. Many debug libraries attempt to protect the
programmer from poor pointer management by creating buffer zones and filling
newly allocated memory with a predefined dummy values. Strategies such as this
are helpful for diagnosing memory management problems during system
development but can foster a false sense of security. Once the protection
provided by the debug library is removed, a system that appeared stable in debug

configuration can become unusable.

2.5 Software Design Patterns

The concept of a design pattern has its basis in building architecture and was
originally conceived of by Christopher Alexander. Alexander defines a design
pattern as in the following manner, “Each pattern desctribes a problem which
occurs over and over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this solution a

million times over, with ever doing it the same way twice” [Ale77].

Essentially, a design pattern captures the essence of a problem’s solution in an
abstract and re-usable way. Just as component based development and object
oriented design foster code reuse, design patterns foster design re-use. While
design patterns are not a silver bullet, appropriate pattern application can make a
significant contribution to software quality [Ris98][Lar02]. Specifically, pattern

usage promotes abstraction, code re-use, and ease of maintenance.

The original software engineering design patterns catalogue was published in
1995. Its authors, Gamma, Helm, Johnson, and Vlissides are commonly referred
to as the Gang of Four (GoF). Their book publishes 23 patterns that have been
the focus of countless academic endeavours and are ubiquitous in the world of
software engineering. The system studied here utilizes a number of the creational,
structural, and behavioural patterns in this catalogue. The “Singleton” pattern

discussed below is relevant to the discussion of memory management.

The singleton design pattern ensures a class has only one instance, and provides a
global point of access to it [GHJ+95]. This pattern is used widely throughout the
system in question. The implementation of the singleton pattern studied here uses
a static pointer to a heap allocated object. This implementation created problems
as the static pointer was never explicitly destroyed and thus, the associated heap
allocation was never freed. In practice, this situation is benign, as a leak that
occurs at program termination cannot impact program execution in any
meaningful way. It did, however, create spurious errors during dynamic analysis
as benign singleton leaks were reported. Management of singleton lifetime is a
common problem in pattern based development [Ken03]. Numerous solutions

have been presented, the most notable being Alexandrescu’s Loki design [Ale01].

2.6 Software Safety and Reliability

Before discussing formal definitions of software safety some historical

background on software related accidents might help to provide context:

e A defect in the control software of the Therac-25 radiation therapy machine
resulted in a number of patient deaths. The defect was ultimately traced to a
race condition [Lev93].

10

e An Ariane 5 rocket exploded 37 seconds after launch due to an unhandled
exception when a 64 bit floating point variable was assigned to a 16 bit
unsigned integer [ESA96].

These accidents highlight the catastrophic effects that software defects can have.

Indeed it has been suggested that, under certain circumstances, the safest thing to

do may be avoid software all together [Hat95].

2.6.1 Definitions

Software safety has been defined in numerous ways by numerous authors.

Herrmann defines software safety as follows [Her99):

“Yeatures and procedures which ensure that a product performs predictably under normal and
abnormal conditions, and ensure the likelihood of an unplanned event occurring is
minimized and its consequences controlled and contained thereby preventing accidental injury

or death, whether intentional or unintentional”

The use of the term ‘minimized’ in the definition above is interesting. It hints at

the difficulty in achieving absolute reliability. This subject is discussed further

below.
Hatton defers to the Concise Oxford Dictionary:

reliability: ‘Of sound and consistent character or quality’

safety: ‘Freedom from danger or risks’
Hatton is careful to draw a distinction between reliability and safety. He states a
program can be unreliable but safe, meaning its defects do not create risk; or a

program can be reliable but unsafe, meaning it will produce consistently incortect

and potentially harmful results.

11

Conte distinguishes the terms fault and defect as follows [Con86]:

Sanlt: ‘an error that causes an incorrect result for a valid input’

defect: ‘evidence of the existence of a fault’

These definitions suggest that faults may be latent, but that defects do not exist

until they actually manifest themselves in some measurable way.

2.6.2 Complexity & Safety

Software safety and reliability problems have a wide range of causes. Lack of
process and structure, pootly defined requirements, and semantic idiosyncrasies
of the implementation language can all be contributing factors. An in depth
discussion of safety and reliability is beyond the scope of this work. One topic,
however, is of particularly relevance to this investigation: the influence of

complexity on safety.

The complexity of many safety critical systems (e.g. a nuclear reactor control
system) is so high that it is simply not possible to guarantee that software is
completely error free [LS93]. As a result, software specifications typically place an
upper bound on the probability of failure. The following excerpt from FAA
Advisory Circular 25.1309-1A on Systems Analysis and Design illustrates the
probabilistic nature of reliability specification [FAA88):

12

(1) Miner failure conditions may be probable.

(2) Major failure conditions must be improbable.

(3) Catastrophic failure conditions must be extremely improbable.

Figure 1: Probability vs. Consequence Graph

Conssquence of Fallure Condition

Caastrophic
Accident

Adverse
Effects on
Occupants

Unacceptable

Aplane
Damage
Emergency
Procedures

Abnormal
Procedures

Nuisance
Normal

Acceptable

Probab { Extr
L] mprobable leme!y

Figure 2-3: FAA failure probability chart

This specification assigns the following definitions and associated probabilities:

Table 2-1 FAA failure probability values

Description

Probability |

Probable Anticipated to occur one or more times during the | > 1 x 10°
entire operational life of an aircraft

Improbable | Not anticipated to occur dunng the lifetime of a | <1x 10°
single random airplane, but anticipated to occur | > 1x 10”
during the entire operational lifetime of all aircraft
of one type

Extremely | Not anticipated to occur during the entire | <1x 10°

Improbable | operational lifetime of all aircraft of one type

13

The negative impact of complexity of software safety is a recurring theme in

software engineering literature.

Conte defines five design principles, one of which is complexity. He states: “4
design should be kept as simple as possible. Design complexity grows as the number of control
constructs grows. The hypothesis is that designs with high complexity will contain more ervors”
[Con86).

Leveson re-iterates the importance of keeping designs simple in her commentary
on the Therac-25 accidents desctibed above. She states: “Basic software-engineering
principles that apparently were violated with the Therac-25 include: ...Designs should be kept
simple” [Lev93].

Hatton defines the terms C,, the natural complexity inherent in a problem, and C,
the actual complexity used solve it. While the inequality C, 2 C, will always hold, he
asserts that the difference between C, and C, should be kept as small as possible
[Hat95]. In plain English this means the complexity of software used to solve a
problem should be kept as close as possible to the inherent complexity of the

problem itself.

In addition to the discussion above, Banker et al. provide an excellent survey of
software maintenance related research [BDK+02]. Their meta-analysis cites
numerous publications that report a positive correlation between software

complexity and elevated defect rates.

Gitten et al. conducted experiments similar to those described in Chapter 4. Their
experiments attempted to establish a correlation between general defect densities
(e.g. not specific to memory leaks) and code complexity. Interestingly, they wete
not able to find an observable relationship between the two parameters

[GKGO5). They did, however, establish that the Pareto Principle (80:20 rule)

14

appears to apply to software defect distribution. Specifically, they found 100% of
the defects in 28% of the code, and 80% of the defects in 26% of the code.
Ostrand et al. also failed to find a correlation between code complexity and defect

rates [OWB04].

2.6.2.1 Complexity Metrics

The metrics of software complexity receive thorough treatment in the software
engineering literature. Complexity metrics exists to measure both logical and

computational complexity.

2.6.2.1.1 Logical Complexity Metrics

Logical complexity metrics quantify the complexity of a program’s decision
structure. Hatton distils the long list of available metrics to three: cyclomatic
complexity, static path count, and fan-in/fan-out [Hat93]. These are discussed

below.

2.6.2.1.1.1 Cyclomatic Complexity

McCabe originally described cyclomatic complexity in his classic 1976 paper
entitled “A Complexity Measure” [Mca76]. Cyclomatic complexity uses graph
theory to describe a program’s decision complexity. The commands of the
program are represented as nodes in the graph. If one command may execute 2
second command, the two nodes representing the commands are connected by
an edge in the graph. The formal definition of cyclomatic complexity is as follows
[SEIOG]:

Cyclomatic Complexity = E - N + 2; where
E = the number of edges in the graph
N = the number of nodes in the graph

15

For example, an if/else statement with the following control graph would have a

cyclomatic complexity value of 2 (4 edges — 4 nodes + 2):

Figure 2-4: Example control graph

The Carnegie Mellon Software Engineering Institute provides the following

guidelines for interpreting cyclomatic complexity values [SEI06]:

Table 2-2 Cyclomatic Complexity Values

- Risk Evaluation

Cyclomatic Complexity

1-10

a simple program without much risk

11-20 more complex, moderate risk
21-50 complex, high risk program
> 50 untestable program (very high risk)

Cyclomatic complexity is widely accepted as a predictor of defects and as a

measure of the difficultly in maintaining code [BDK+93][KS97].

2.6.2.1.1.2 Static Path Count

Static path count is simply the number of distinct paths through a program. The

mettic assumes all predicates are independent [Hat93].

16

2.6.2.1.1.3 Fan-in/Fan-out

Fan-in/Fan-out measures the number of times a particular function is referenced,
and the number of functions it references. Hatton defines the associated metric

as fan-in + fan-out + (fan-in x fan-out) [Hat93).

2.6.2.1.2 Computional Complexity Metrics

Computational complexity metrics quantify a program’s calculation complexity.
This type of metric is most appropriate in cases where program code contains

more calculation logic than branching logic.

The Halstead Complexity Measure is an excellent example of a computation
complexity metric. This metric quantifies complexity based on operators and
operands used in program source code. The metric is based on the following

parameters [Hal77][SEI06]:

nl = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators

N2 = the total number of operands

from which the following five measures are computed:

Table 2-3 Halstead Complexity Measures

Measure Symbol Formula

Program Length N N = N1+ N2
Program Vocabulary N n=nl+n2
Volume \ V =N x (log,n)
Difficulty D (n1/2) x (N2/n2)
Effort E DxV

17

Halstead’s complexity measures differ from McCabe’s cyclomatic complexity in
terms of their suitability. Halstead metrics focus on operators and operands. As
such they are better suited to measuring computational complexity. McCabe

metrics on the other hand are more focused on logical complexity [SEI06].

2.6.3 Modularity & Safety

The conventional wisdom in software engineering is that modularity is good
[Mco93]. However, both Hatton and Conte present evidence that suggests over
modularization can be as harmful as under modularization [Con86][Hat93].
Hatton asserts that proportionally more errors are committed in small software
components than large ones. He defines the following logarithmic relationship
between the number of static paths and the number of software defects in a
module where n, is the number of bugs, n, is the number of static paths, and ¢is 2

constant close to 1:

ny, = cloge(n,)

This formula predicts that a single module with a complexity of 100 will have less
defects that 10 modules each with a complexity of 10. This relationship is
significant as it desctibes the interaction between modularity, complexity, and

defect count.

18

Conte defines three levels of modularization:

Table 2-4 Conte’s Modularization Levels

Modularization Level Description

Unmodularized the entire program is written as one routine

Partially modularized the program is broken up into a “moderate” number
of subroutines

Super modularized the program is broken up into twice the number of
subroutines as the partially modulatized version

He has illustrated that the best level of reader comprehension is achieved with a
partially modularized version of a program [Con86]. This is relevant as
comprehension is a necessary prerequisite to successful program maintenance.
These somewhat counter-intuitive findings illustrate that modularity plays an
importance role in software safety, but that modularity is perhaps best applied in

moderation.

2.6.4 Compiler Standards Compliance

The extent to which a compiler adheres to a language standard is a key
determinant of software safety [Hat95]. The Microsoft Visual C++ 6.0 (VC 6)
compiler used for initial system development did not conform to the ANSI C++
standard in a number of significant ways [ANSIO3]. Visual C++ 8.0 (VC 8)
supersedes VC6 and exhibits improved ANSI compliance. As a result of this
improved compliance, a number of breaking changes have been introduced.
Code that compiled under the old compiler is now considered illegal. Almost
without exception, code that no longer compiles with VC 8 is in some way
incorrect. This finding is consistent with the assertion that the compiler itself is
often the simplest and most effective debugger [Mco93][Mey98]. As such porting
the code base from VC 6 to VC 8 made a major conttibution to system

correctness and achieving the goal of a stable release build. The nature and

19

distribution of breaking changes corrected during the compiler upgrade are
discussed at length in Chapter 4.

2.7 Software Testing

On average, software testing consumes at least 50% of the effort required to
produce a working, fielded software system [Bez90]. Given this, and given that
this investigation is concerned with the distribution of software defects, some
discussion of the topic is warranted. Having said this, software testing is a vast
topic that can only be given superficial treatment here. Portions of the discipline

that are of particular relevance to this investigation are discussed in this section.

2.7.1 Definitions

The terms “verification” and “validation” and “testing” are often used together in
the context of software evaluation. Marks provides the following definitions of

some commonly used (and confused) terms [Mar92):

validation: ‘A determination of the correctness of the final product produced
by a development project with respect to the user’s needs and
requirements.’

verifecation: ‘A demonstration of the consistency, the completeness, and the
correctness of the system ...

resting: ‘An examination of the behaviour of a system by executing the
system on a sample set’

The distinction between “verification” and “validation” is of particular interest.

Verification involves checking that the software correctly implements its

requitements. Validation involves ensuting that the software meets the

customer’s needs [Boe78][Som01]. A software product may dutifully implement a

set of requirements and remain completely unusable. The concept of “fit for

20

purpose” is relevant here. This idea accepts that software will never be completely

defect free, but states it must ultimately meet the needs of its users.

The word “sample” in the definition of ‘festing” above also warrants discussion.
The extent to which a test samples the program code it is evaluating is referred to
as the test’s code coverage. Since it is impossible to completely test any reasonably
complex software system, a subset of tests that has the highest probability of
detecting the most errors should be identified [Kit95].

The concept of regression testing must be also introduced. Bezier defines

regression testing as follows [Bez90]:

“any repetition of tests (usnally after software or data change) intended to show that the
Software’s bebaviour is unchanged except insofar as required by the change fo the
software or data”

A large portion of the dataset used in this investigation was collected using the

system’s automated regression testing capability.
Y gt g cap

Finally, some definitions of system size are relevant. The size of a system is a
major factor in determining a test strategy. Marks provides the following

definitions of system size in his book “Testing Very Large Systems” [Mar92]:

small: ‘A small system provides a single service, such as an inventory
system, an accounting system, or a billing system. Typically, a
small system is under 500 000 lines of code.’

medinm: ‘A medium system is one that provides several services. The
major difference between a small system and a medium system is
the functionality and integration of the functionality into a user-
oriented package. Typically, a medium system is 500 000 to 2
million lines of code.”

large: ‘A big software system provides many services. The major
difference between a medium and a big system is the complexity

21

of the functions. Complexity can be caused by complex
computational algorithms or by complex data relationships.
Typically a big system is more than 3 million lines of code.”

On the basis of line count alone, the system studied here would be
considered medium sized. However, the complexity of its algorithms, its
safety related nature, and high customer expectations mean it exhibits many

of the properties Marks attributes to large systems.

2.7.2 Testing Strategies

Two fundamental test strategies exist: “Black-box” testing and “White-box”
testing, Black-box testing evaluates software against its requirements. Tests of this
type are derived from the software’s specification rather than its internal
structure. Black-box tests are meant to take an objective, independent view of
software from a requirements based perspective. As such they should be written

in isolation from program code to the greatest extent possible [Kit95].

In contrast, White-box testing requires knowledge of internal program structure.
Tests of this type are concerned with internal issues such as code coverage, logical
incompleteness, decision complexity, etc. White-box testing permits the test
author to choose input values that will most effectively exercise all braches of
program logic [Kit95]. The static and dynamic analysis techniques discussed
below also fall into this category of testing.

2.7.3 Static Analysis

Static analysis describes the semantic and syntactic inspection of program source
code to detect software defects prior to program execution. The term
“Automated Software Inspection (ASI)” is also used to refer to this approach.

The first and most well known static analysis tool is Lint, created by Johnson at

72

Bell Labs in 1978 [Joh78]. Lint was designed to detect suspicious programming
constructs and non-portable code. Since then, commercial static analysis tools
have proliferated. These tools support a wide range of languages and many allow
the user to define custom rules that are specific to the coding standards of the
organization in question. In a sense, all code that is compiled undergoes
rudimentary static analysis. Object code cannot be generated from syntactically
illegal source, and can therefore never be executed. Some languages attempt to
increase the number of potential defects that can be detected statically. Strongly
typed languages such as Ada forbid implicit type conversions and make
constructs such as incomplete switch statements illegal. In this way, language
definition can make a significant contribution to software safety [Hat93]. All of
the metrics desctibed in section 2.7 above can be measured statically. Static
analysis techniques have been shown to effectively predict failures and fault prone

modules [NWH+04].

2.7.4 Dynamic Analysis

In contrast to static analysis, dynamic analysis describes the process of detecting
faults during program execution. This is a far less desirable state of affairs, as the
likelihood of detecting a defect at runtime depends on the quality of testing. By
definition, 2 fault that is only detectable at runtime may not be detected at all
[Hat93]. Many commercial tools exist to facilitate dynamic analysis. While this
investigation is concerned with memory management related defects, dynamic
analysis techniques can be applied to other functional areas including code
coverage and performance analysis. Two of the best-known dynamic analysis
tools for memory management are Rational’s Purify and Parasoft’s Insure++
tools. Most dynamic analysis tools work by instrumenting object code with
constructs that allow the tool to track where and when a particular defect

originates. In addition to the source code file and line number of the leak, the

23

most valuable data a dynamic analysis tool can report is the call stack associated
with the leak. The call stack provides crucial information on state of program
execution at the time the leak occurred. Interestingly, the Microsoft debug
libraries utilized in this investigation do not work by instrumenting object code.
Instead, the runtime library itself tracks the state of the heap. Unfortunately the
Microsoft debug library reporting functions to not provide call stack information.
As such all of the leak data used in this investigation was gathered without the
benefit of a call stack. Dynamic analysis tools used for code profiling and
performance tuning include Intel’s vTune and Microsoft’s Profile Guided

Optimization.

2.8 Software Process

The Oxford Dictionary of English defines a process as a series of actions or steps
taken in order to achieve a particular end. In the case of software engineering, the
end is typically the creation of a software product. This section discusses software

process topics relevant to this investigation.

2.8.1 Process Models

A software process model is an abstract representation of a software process
[Som01]. Well known software process models include the waterfall model, the
evolutionary (or spiral) model, re-use (or component) based development, and
formal methods. Many large software projects take a blended approach, using
different techniques for different parts of the system. The classic software
process models mentioned above are well documented in standard software
engineering textbooks and will not be discussed in detail. In this context it is
sufficient to identify elements common to all software process models. To a
greater or lesser extent, all models address the core topics of specification, design,

implementation, and vetification.

24

2.8.2 Process Measurement

On a large project organizational characteristics eclipse the attributes of any single
individual. As such the quality of the software process governing the team
becomes a large determinant of the project’s success [Kit95]{Eva04]. There is a
growing body of work dedicated to the assessment and evaluation of software
process. For example, the Carnegie Mellon Software Engineering Institute (SEI)
introduced the concepts of organizational maturity and capability. These concepts
and the associated five level Capability and Maturity Model (CMM) are used to
quantify an organization’s process model. The SED’s description of each level

(paraphrased by [Kit95]) is outlined below:

Table 2-5 SEI CMM Levels

Description

1: Initial Unpredictable and pootly controlled

2: Repeatable Can repeat previously mastered tasks.

3: Defined Process characterized, fairly well understood
4: Managed Process measured and controlled.

5: Optimized Focus on process improvement.

In short, CMM does not specify what an organization’s process should be. Rather
it states that organization should have a process, follow it, measure how well it is
working, and continually improve it. Due to the competitive nature of software
engineering, an organization’s CMM level can be a very sensitive piece of
information. It is often only disclosed to a client in a confidential bidding
situation. It is becoming increasingly common for large RFP’s to specify a

minimum CMM certification level.

25

2.8.3 Process Improvement

The ability to evaluate a process and adjust it accordingly is a key indicator of an
ofganization’s process “maturity”. This feedback loop is referred to as process
improvement. A practical exercise in process improve taken from the system’s

development is discussed below.

As discussed in section 2.2 above, the MDA system has undergone three major
releases (A, B, and C). In an effort to reduce defect densities experienced in
releases A and B, a formal review process was introduced for release C. The
details of this process are described in this section. The effectiveness of this

process is analyzed and discussed in Chapter 4.

Releases A and B had very little process in support of implementation activities.
Formal work package descriptions were created and assigned to the responsible
programmer. However, no formal review or closure activities were performed.
The programmer’s word was generally accepted as sufficient assurance that
coding activides had been properly completed. Problems related to system
integration and missing functionality were often not discovered until much later,

sometimes during formal testing activities.

There is a large body of evidence in the literature to suggest that code inspection
is a cheaper and more effective method of discovering defects that formal testing
[Mco95]. This evidence supports the decision by senior project staff to introduce

a formal review process.

The “Release C” software development process introduced a three-stage review
intended to establish the correctness of a work package in terms of standards

compliance and general usability. A corresponding checklist was created to

26

support each stage of the process. The process and workflow are described in the

following table and flowchart.

Review Stage
Code Review

Table 2-6 Review Process Description

Description
Team Leader reviews code for standards compliance,
readability, and general correctness. Static analysis is not
included as part of the review process.

Demonstration

Programmer demonstrates new system capability to senior
project members. The demonstration is a high level
inspection intended to establish general correctness.
Workflow, requirements coverage, and usability are
emphasized. Formal verification is not performed.

Integration &
Selloff

Establishes closure by verifying that all code review action
items have been completed, requirements have been updated,
and common integration traps and pitfalls have been
considered.

27

Work Package Start

(Work Package Description issued to programmer]

!

Programmer codes software]

7

Input# | Code Review

v

Software Software Functionality
Functionality Output——» Demonstration Form
Demo.]

v

r Programmer completes all action items 1

:

Integration
Sell-off

3

(Work Package Complete)

Software Code
Checklist

Software Engineering
Review Form

Output——

optional
iteration

oftware
Integration Sell-off
Checklist

Output——

Figure 2-5: Review Process Flowchart

2.8.4 Process Engineering

In the McGill-IBM Project on Software Process, Madhavji argues that most
software process models are too general to be of any practical value. He uses the
term “Software Process Engineering” to refer to the more detail ofiented,
tangible treatment of the topic [MKL91]. Madhavji’s most relevant assettion
refers to the relationship between software process and tool support: “Without
adeqnate process understanding, some aspects of supporting technology cannot be effective.
Similarly, without appropriate supporting technology, some aspects of the process are difficult to
understand.” The code review process outlined above is a case in point. It contains
a “Code Review” item, which at a high level seems reasonable. However, without

appropriate tool support (e.g. effective automated code inspection), the process

28

cannot be effectively implemented. Conversely, an expensive static analysis tool is
ineffective if it is not used as a component of a larger software process. While
these statements may appear obvious, the findings documented in Chapter 4
suggest that the integration of software process and tool support is difficult to

achieve.

29

Chapter 3

Methodology

Two distinct datasets were collected during this investigation. The first set
contains memory leak data identified during dynamic and static analysis. The
second contains data on breaking changes collected during the compiler upgrade
discussed in section 2.6.4. Each of these datasets and their associated metrics are

discussed separately in this section.

3.1 Memory Leak Detection

Memory leaks were identified using both dynamic and static analysis techniques.

Both approaches have strengths and weaknesses that are discussed in Chapter 4.

Each memory leak detected was recorded and categorized according to type,
subsystem, and seniority of the responsible programmer. The programmer
responsible for a given memory leak was identified using the project’s version
control system. The offending file revision was identified using bisection of the

revision history.

3.1.1 Dynamic Analysis

Dynamic analysis was conducted using the system’s automated regression testing
capability in conjunction with Microsoft’s debug heap facility. As part of the
normal development cycle, core portions of system functionality are automatically

regression tested. This testing checks for system crashes and differences in

30

expected results. The regression-testing tool uses a database of test cases intended
to achieve broad code coverage. The systemn’s regression testing database contains
2209 test cases. A representative subset containing 1671 of these cases was

selected and used as the basis for dynamic analysis.

3.1.1.1 Code Coverage

An attempt was made to quantify the extent of code coverage achieved by the
regression-testing database. However, the code base and degree of

modularization proved too large for available profiling tools.

3.1.1.2 Instrumentation

After reviewing available memory leak detection tools the native support
provided by Microsoft’s debug runtime libraries was selected. While not the most
user friendly, these proven facilities are available at no additional cost to the
existing development environment. Use of Microsoft’s debug heap facilities
requires that each source file be instrumented with a short pre-processor
directive:

#ifdef DEBUG

#define new DEBUG_NEW

$undef THIS FILE

static char THIS FILE[] = _ FILE ;
#endif

This macro replaces calls to the standard C++ new operator with a special
version that records the file name, line number, and size of each allocation. At
any point during program execution, a system call can be made to report dynamic

allocations that have not yet been freed.

31

3.1.1.3 Detection Methodology

Debug heap memory leak detection facilities were validated though the deliberate
creation of various defects. Following validation of the general approach, the
code base was fully instrumented as described above. Analysis of the regression

test subset proceeded as follows:

1. Enable debug heap allocations at program start
2. Execute regression test case(s)

3. Dump leaked memory at program shutdown

4

Examine dump file and document leaks

This process was repeated over several weeks until the entire subset of regression
tests had been executed. Identification and documentation of leaks in this manner
was extremely time consuming. While the causes of some memory leaks are
obvious, others are extremely subtle. This challenge was complicated by the lack

of call stack information in the debug heap output report.

3.1.2 Static Analysis

Static analysis was conducted on the same core subsystems covered during
dynamic analysis. The C++test tool produced by Parasoft was employed. This
tool implements a wide range of industry standatd rule sets. In addition it
provides a rule editor that allows the user to define custom rules. Rec. 58 from
the classic Ellemtel coding standards document was selected [Ele92). This rule

states simply:

Do not allocate memory and expect that someone else will de-allocate it later.

32

The C++test tool implements Ellerntel Rec. 58 as three separate rules as follows:
If local memory in:

e aglobal function is allocated via new it should be deleted in this function.
e 2 class is allocated via new it should be de-allocated in destructor via delete.

® 2 class is allocated via new a destructor should be defined as well.

The spirit of the Ellemtel rule is sufficiently general to cover all scenarios.
Unfortunately the specific implementation of this rule by Parasoft was too
simplistic and naive to be of much use. The Parasoft rules propetly track
allocations via new and de-allocations via delete in the destructor but falls down
when alternative methods of allocation ot clean up (e.g. template functions) are
used. In these cases the rules are triggered impropetly and false violations are
reported. Some attempt was made to compensate for this by customizing the
rules to account for the specific coding style in question. The rule engine does
provide a rich grammar to describe a wide range of syntactic constructs.
However, considerable effort would be required to craft a custom rule set that
was sufficiently rich to correctly identify the majority of statically detected

memory management defects.

To the extent that it was able to correctly identify simple memory leaks, the static
analysis tool did make some contribution to the investigaion. However, the
impact of this approach was not as great as was hoped. This limited experiment
involving static analysis has shown that considerable effort is required to create a

usable set of rules.

33

3.2 Memory Leak Classification

Numerous defect classification schemes have been proposed. Some, such as
Orthogonal Defect Classificaion (OCD) from IBM are comprehensive
[CBC+92]). Other schemes are more focused on a particular class of defect, such
as memory leaks [VS04][SCI1]. A survey of the literature did not reveal a
classification scheme that would describe 2 memory leak both in terms of a class
life cycle and variable context. As such, a two part memory leak classification
scheme is proposed here. The first part describes the leak in the context of the
class life cycle. Class life cycle is divided into four phases: Initalization,
Implementation, Interface, and Destruction. The relationship between a memory
leak and the lifecycle of the affected class is highly relevant. Understanding where
in the class life-cycle most leaks occur can help to focus preventative action (e.g.
static analysis, code review) to achieve the greatest impact. Table 3-1 below
provides a definition of each category and examples of the types of leaks that can

occur in each one.

34

Table 3-1 Life-cycle Leak Classification Categories

Classfication

Description

Initialization

Errors related to object creation and assignment.
Example 1: missing pointer initialization

Example 2: faulty assignment operator

Implementation

Errors related to the core implementation of a particular
module.

Example 1: a pointer is allocated but not deleted.

Example 2: a pointer already is use is overwritten

Intetface

Errors related to pootly defined or understood class interfaces.

Example 1: The interface of the function specifies that the
pointer variable is deep copied. The caller assumes the pointer
is shallow copied and fails to call delete.

Example 2: a function interface specifies return by reference.
No corresponding member variable exists, so a reference to a
heap allocated local variable is returned.

Destruction

Covers errofs related to object destruction.

Example 1: memory is allocated using 2 member variable
pointer with no corresponding delete in either the destructor
or a reset method called by the destructor.

Example 2: no destructor defined.

The second part

of the classificadon scheme describes the context of the

variables involved. Variable context can be either scalar or composite. Scalar

context refers to a single local or member variable. Composite context refers to

one or more local or member variables stored within a composite structure such

as a list, vector, or struct. The scalar versus composite context of a leak is

important as it can help to highlight data types and structures that may be pootly

understood by application programmers.

35

Together the two parts of the classification scheme describe a memory leak. For
example, the results of this investigation found that 32% of memory leaks were
related to class destruction. Of these 70% involved variables in scalar context;
while the remaining 30% involved variables in composite context. The
classification scheme described here is used in the experiments described in

Chapter 4.

3.3 ANSI C++ Compliance

The code base was migrated from VC6 to VCB8 (see section 2.6.4 for details) one
subsystem at a time. Each breaking change encountered was documented and
categorized. In some cases the broken code was benign, while in others the more
standard compliant compiler had detected code that was legitimately incortect.
Although this work forms a relatively minor part of the overall investigation these
errors are highly instructive. They offer tangible evidence of the relationship
between the standards compliance of a compiler and safety of the object code it

produces. The nature and distribution of these errors are discussed in Chapter 4.

36

3.4 Metrics

3.41 Memory Leak Density

Memory leak density is computed as the number of memory leaks detected in a
given subsystem divided by the size of that subsystem. Memory leak density is

reported as the number of leaks per 1000 source lines of code.

3.4.2 Complexity Measurement

McCabe’s cyclomatic complexity was chosen as the most appropriate complexity
metric for this investigation. The popularity of this metric in the literature and

wide tool support were the primary reasons for this choice.

The CCCC (C++ Cyclomatic Complexity) tool was used to gather complexity
data. The tool was written by Tim Littlefair as part of his PhD thesis {Lit01].
CCCC computes various code metrics including McCabe’s cyclomatic complexity

and source line counts.

Raw complexity data was transformed to the “Complexity Density” metric
proposed by Gill & Kemerer [GK91]. Complexity density is computed by
dividing a subsystem’s cyclomatic complexity by its size in source statements.
This transformation normalizes complexity values and permits subsystems of
differing sizes to be compared. Complexity counts tend to be strongly correlated
with module size. This makes sense, as larger modules have more code and hence
more logic. Complexity metrics are sometimes discounted as indicators of
problematic code in favour of module size [OWBO04]. However, when the
concept of complexity density is introduced, the value of complexity metrics as a
predictor is re-established. The findings presented in Chapter 4 support this

assertion.

37

3.4.3 Programmer Experience

The experience level of the programmer responsible for creating each memory
leak was classified as either Junior or Senior based on their ranking within the
firm. MDA uses a seven level ranking scheme for engineering staff. Programmers
at levels 1 to 3 were classified as Juniot; programmerts at levels 4-7 were classified
as Senior. Due to the project duration, some programmers moved from junior to
senior positions part way through the implementation. As such, the experience
level assigned to a given memory leak is the experience level of the responsible
programmer af the fime the leak was created. Banker et al. have reported a correlation

between programmer experience and error rates [BDK+02].

38

Chapter 4

Experiments and Results

This chapter provides details and results of six separate experiments conducted
during the course of this investigation. The first experiment involves an analysis
of the type and distribudon of memory leaks encountered. The second
expetriment compates memory leak density with subsystem complexity. The third
experiment conducts a complementary investigation of the relationship between
general defect density (as opposed to memory leak density) and subsystem
complexity. The fourth experiment compares memory leaks with programmer
experience. The fifth experiment examines the impact of process improvement
on general defect density. The sixth experiment presents an analysis of ANSI

compliance related breaking changes identified during a C++ compiler upgrade.

4.1 Memory Leak Distribution

The goal of this experiment was to quantify memory leak distribution using the
classification system proposed in section 3.2. Figure 4-1 below illustrates that
majority of memory leaks identified relate to class implementation. This is not
surprising as a class implementation typically contains the majofity of the code
and the associated complexity. More interesting though, is the proportion of leaks
related to class destruction and the breakdown of scalar versus composite variable
context among them. Almost a third of leaks encountered are associated with

class destruction. On one hand this finding is troubling, as destructor logic tends

39

to be quite straightforward. It is encouraging, however, to realize that by focusing
on a single functional area a large positive impact can be realized. Experience
gained during this investigation showed that class destruction is one area that

lends itself well to static analysis.

Memory Leak Distribution

Composite
Destruction Initialization
10% 3%
Scalar
Destruction
22%
Implementation
Interface 57%
8%

Figure 4-1 Memory Leak Distribution

Interestingly, one third of destruction related leaks involved composite storage.
Leaks of this type typically consisted of lists or structs of pointers that were not
propetly de-allocated. These findings suggest that additional care must be taken
when using data structures of this type. As well, it is possible that static analysis

techniques could be employed to reduce this particular class of error.

The most significant discovery of this experiment was that 10% of all memory

leaks involved the unnecessary use of pointers. The term “unnecessary” must be

40

qualified: in this experiment, pointer usage was deemed unnecessary if the pointer
in question was local to the function and the associated allocation was not needed
once the function exited. In other words, a local, stack allocated vatiable would
have been equivalent. This finding suggests that pointer usage should be more
tightly constrained, perhaps even to the point of forbidding pointer usage unless
otherwise authorized. Indeed, some coding standatds prohibit the use of dynamic

metnory all together [MISRAO4].

41

4.2 Memory Leak Density & Subsystem Complexity

The goal of this experiment was to establish if a statistically significant correlation

exists between memory leak density and subsystem complexity.
4.2.1 Dataset

The dataset consists of 168 memory leaks identified using the static and dynamic
analysis techniques. Leaks were identified in 29 of 48 subsystems analyzed. Data
on the size and McCabe cyclomatic complexity of each subsystem was collected
and used to compute complexity density values. All data was collected using the
tools and techniques desctibed in Chapter 3. The dataset shown below contains
complexity density and leak density data along with associated mean and
difference values to support correlation analysis. Field descriptions for the dataset

are described in Table 4-1 below.

Table 4-1 Dataset field descriptions

Description

Size SLOC count
Complexity Cumulative McCabe complexity
Leaks Number of memory leaks detected

Complexity Density Complexity / Size
Leak Density (Leaks / Size) x 1000 (KSLOCs)
Rank X, Rank Y, D, D° | Spearman non parametric analysis values

42

134

yove [0l
6 (3 174 0c 00ee’0 SLS1°0 13 6SY 0coe 6¢
ol la 62 SZ L9080 96910 €l ovie G619l 8c
6 € 9l 61 1261°0 6.v1°0 L 6918 £92.S yX4
l - ve 1574 12lE0 16G1°0 6l 6018 91605 9c
9G6¢ 9l 9 44 66L1°0 62S1°0 £ 128¢ 920S¢ 14
18 6" Lz 8l L6Lv°0 INAARY 14 86V 65eee 1£4
b b= 14 € £v80°0 6€60°0 4 0ece LELEC 1 X4
b b bl ol £€851°0 9801°0 4 clEl Ge9Z1 44
6 € S 4 £¥80°0 v260°0 } 9601 125419 (¥4
6 € 6l 9l LLETO 18EL0 14 6¢eC 04891 0c
9l %4 0C 124 98820 0910 9 9eLe £6.0¢ 6l
6v L 8¢ (¥4 L¥8S°0 6LGL°0 13 09¢ cLil 8l
S¢ G- Ll cl GL61L°0 ZlLELo 14 6626 L6804 Ll
S¢ S L 9 40100 9101°0 b 6€.6 6v1€6 9l
9¢ S 14 Sl L¥62°0 0sEL’0 3 6SY oove Gl
0o¥y 74 L 1z 66L1°0 LLLLO £ 6.2y v1L0S¢C 147
1144 Sl- 9c 13 68010 LELL0 Gl (V%7 8899¢ el
68¢ Ll- ac S 920¢'0 SLoL0 € 9001 G166 cl
0 0 6 6 L8€1°0 980L°0 £ 8vec 42912 L
ol la 8l Vi 82120 9veEL’0 Z gocl 16E6 ol
14 Al € l £050°0 £080°0 4 L6€C 28.6¢ 6
621 1z 4 62 15200 £202°0 b 8681 6€88¢ 8
b b 4" €l G691°0 61€1°0 14 26801 26528 L
3 b S¢ 174 L18€0 00410 b 6eY £85¢C 9
9t 9- £l L S0LL°0 1S01L°0 v 99v¢ gsvee G
9l V- 8 14 1921°0 96600 4 08Gl 29851 4
14 4 St Ll £08L°0 66€1°0 b 9. 17201 €
4 A ol 8 18G1°0 ¥501°0 14 999¢ L0ESe 4
961 14 14 8¢ 0921°0 LL8L'0 14 EStPL £956. 3

Ayjuey x)juey (D018 M 4ad) (x} Ausuaq SyesT Axerdwoy azig waysAsqng

(A} Ausuaq yesn Axajdworn

eye(] UONEPII0T) ANSua(] Yex] snsraa Asua(y Lxadwon) z-p Jqe],

4.2.2 Experimental Details and Results

Analysis was performed on the dataset to determine whether a statistically
significant cotrelation exists between complexity density and leak density.
Spearman non-parametric analysis was selected in order to avoid making

assumptions regarding the distribution of data [JB92)].

Leak Density vs. Complexity Density

0.9000

0.8000

0.7000

0.6000

0.5000

0.4000

Leaks per KSLOC

0.3000

0.2000

0.1000

0.0000
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

Complexity Density

Figure 4-2: Leak Density vs Complexity Density Scatter Plot

A scatter plot of the data show above revealed a potentially linear relationship
between the variables in question. As the complexity density (x-axis) increases,

there is an apparent increase in the leaks per KSLOC (y-axis).

4.2.2.1 Spearman Analysis

Spearman non-parametric correlation calculations for the complexity density

versus leak density experiment are shown below:

H,= There is no correlation between complexity density and leak density.

2
B 622D - 6x2;164 s
NN>-1) 29(29%-1)

rs =

The computed r value of 0.39 exceeds the critical r value of 0.37 (p = 0.05) for df
= 27 (two tailed).

These results allow us to reject Hj at « = 0.05 and suggest a medium strength

cotrelation between complexity density and leak density.

4.2.2.2 Discussion

The Spearman test shows a medium strength correlation (r = 0.39; a« = 0.05).
Clearly there are many determinants of leak density in addition to program
decision complexity. Having said this, this result shows that a statistically
significant relationship exists between the two parameters. These findings are

consistent with similar research conducted by Nagappan et al [NBZ06].

45

4.3 Defect Density & Subsystem Complexity

As a complement to the Leak Density & Subsystem Complexity experiment, a
secondary investigation was conducted to see if a relationship existed between
general (e.g. not memory leak specific) defect density and subsystem complexity.
Data used in this experiment was gathered from the system’s defect tracking
database. A subsystem was implicated in a defect if at least one of its files was
changed during the course of the defect’s resolution. The defect count per
subsystem was converted to a density value. Complexity density values were
computed as described above. An initial scatter plot of the data shown in Figure

4-3 below showed no discernable relationship between the two parameters.

Defect Density vs Subsystem Complexity

14

12
€ LA
@ ¥ ¥y ¢
T 8 i
& * . .

6

2 P’ N, .
2 4
8 o £e%

2 r .e

b ® ®*o . &

0 0.05 0.1 0.15 0.2 0.25
L Complexity Density

Figure 4-3: Defect Density vs Subsystem Complexity

Subsequent numerical analysis using the Spearman technique confirmed this lack
of correlation (r = -0.1). This finding is consistent with those of both Gitten and

Ostrand, both of whom found no signification relationship between subsystem
complexity and defect density [GKGO05][OWB04].

46

4.4 Memory Leaks & Programmer Experience

4.4.1 Dataset

This experiment utilized the same data set as the experiment described above.
For each memory leak in the dataset a responsible programmer was identified.
and classified as either junior or senior. Of the 168 memory leaks identified, 101
were created by junior programmers, while the remaining 67 were created by
Senior programmers. 24 junior programmers and 10 senior programmers are
represented in the dataset. All data was collected using the tools and techniques

described in Chapter 3.

4.4.2 Experimental Details and Results

Analysis was performed on the dataset to determine whether a statistically
significant relationship exists between the number of memory leaks created and
the level of programmer experience. Due to the categorical nature of the data a

Chi-Squared (X°) analysis was selected [JB92].

47

4.4.2.1 Chi-Squared Analysis

Chi-Squared calculations for the programmer experience versus memory leak

experiment are shown below:

Hy= 'There is no relationship between programmer experience and the

creation of memory leaks.

Table 4-3 Chi Squared Analysis of Programmer Experience

Junior Senior Total 1
Actual Leaks (O) 101.00 67.00 168.00
Expected Leaks (E) 118.59 49.41 168.00
O-E -17.59 1759 168.00
(O -E)* 309.35 30835
(O—E)*/E 2.61 6.26 8.87

Expected Leak values were computed by multiplying the total leaks found by the
proportion of Junior and Senior programmers on the project. For example,
approximately 70% of programmers are Junior level, as such the expected

number of leaks for Junior programmers is 70% of 168, or 118.59.

The computed X? value of 8.87 exceeds the critical value of 6.64 (» =0.01) for 1
degree of freedom. This result allow us to reject Hyat « = 0.01 and indicates that

senior programmers created proportionally more memory leaks than expected.

4.4.2.2 Discussion

This somewhat counter intuitive result may have a variety of causes. It is possible
that senior programmers are more comfortable with the advanced topic of
dynamic memory management. Given this they may be more likely to use the
technique and hence fall victim to its associated pitfalls. A second possible

explanation is that senior programmers are more productive than their junior

48

counterparts. As such, senior programmers may produce a greater absolute
number of errors even their error rate is lower. Training issues must also be
considered. Although senior programmers may have more software development
experience in the broad sense, they may be less familiar with newer object

oriented techniques.

4.5 Process Improvement & Defect Density

This experiment utilized the project’s defect management database to assess the
impact of the process improvements discussed in section 2.8. Defect densities of
software written before and after the enactment of the review process were
compated. The defect densities discussed here are not restricted to memory
management problems. All pre-release defects from Release B and C are
compated. Post release defects are not considered, as Release C post release

defect data was not available at the time of writing,

Table 4-4 Release B vs. C Defect Densities

: Category Defects / KSLOC
Release B Pre-fielding 4.49
Release C Pre-fielding 5.07

It is clear from these figures that the process improvement measures introduced
between Release B and C did not help to reduce defect densities. Having said this
some qualification is required. Part of the strategy behind the review process was
to identify defects earlier during the development cycle. In effect, tumning post-
release defects into pre-release defects so they can be dealt with more easily and
cheaply. As such, it is possible that this effect is occurring here, as Release C pre-
release defects are indeed higher than in Release B. This picture will not be
complete until Release C post-release defects are available. Even so, a defect is a

defect, whether it occurs pre-release or post-release. While it is good to have

49

identified it, it would be better had it not occurred at all. The goal of the software
review process described here was to prevent defects from occutring through
improved understanding of requirements, code inspection, and peer review
demonstrations. Given these stated objectives, it is hard to argue that the process

was successful in the face of the numbers presented here.

The results presented throughout this investigation point to the need for a
comprehensive white-box testing program. Such a program would incorporate
both static and dynamic analysis techniques into the weekly build cycle of the
project. The project’s current black-box testing program is comprehensive, but

it is only part of the picture.

The existing regression automated regression and black-box testing regimes must
be supported by a parallel white-box program. Each type of testing emphasizes a
specific category of errors: Black-box testing is requirements focused, while
regression testing detects system crashes and unexpected behaviour changes.
White box testing can detect an entirely different category of defects, and to a
certain extent, can do so in a pre-emptive manner. Memory management, logical
errors (e.g. logical incompleteness, orphaned branches, etc), and complexity hot
spots can all be identified using static and dynamic analysis techniques. Without a

white-box regime, the testing program is simply not as complete as it could be.

50

4.6 ANSI C++ Compliance

This experiment examines the distribution of errors resulting from the compiler
upgrade described in section 2.6.4. This upgrade yielded approximately 3300
compiler warnings and errors. Once spurious and informational warnings were
reconciled, 1598 meaningful warnings and errors remained. From this set, 66
legitimate software defects were identified. The following table shows the

propottion of a particular type of error or warning that yielded a legitimate defect.

Table 4-5 Softwate defects identified by compiler error

O De Oportic De 0

DC O O
C2065 170 K, 0.02 Undeclared identifier
C2440 110 2 0.02 Type conversion
G26775 ! 1 1 Operator resolution
C2678 2 2 1 Operator resolution
C3867 35 35 1 Function call missing arg list
C4353 1 1 1 Non standard expression
C4430 300 oL, 0.07 Missing type specifier (default int)

It is interesting to note that some error types appear to have a higher predictive
value than others. There also appears to be an inverse relationship between the
frequency of an error and its predictive value. For example, error C3867 (function
call missing arguments) was 100% predictive, but was only 1/10" as frequent as
error C4430 (missing type specifier) which was only 7% predictive.

Examples of the unintended behaviour associated with each of the defect types

identified above are outlined in the table below.

51

cs

‘G 0) PapUNOI pue 1332UT UE 0] PaIdAU0d Apprdus
S ¢'G [eIAN] OWAWNU Y ‘919y umoys o[dwexs P Ul Ul
01 panEjap aq pnom I9gads odhy e oy parepap a39m e

{(x)o003
So[qemeA ‘9DA SY# 39PU) "UORESDSIAUT SR Supnp punoy J0xd ¢ = ATTen3oe X/ {€°G = X 3Suco | UOISIAUOD
Burpoo sno1a3uep Arenuaod pue Surxaa 1sowr oy sdeyaad st smT, adAT, 0skPD
“INOIABY2q Paunopun swos ‘9s1om sdeyzad 10 (
“seId € UT 3]s AJUTENISD ISOWe PlnoM s T, “Uorssaidxa uonoung D T
e se pasn Supq st TN e sieadde 31 9sed smp Ul “Jomd }
oy panidurod 9pod 3y 39dwod 9HA AP IPUf) IWABIS | Gpepn// (()PTTeAST<-d) TIAN =i d) IT
J1, 2 U1 3% J0ie3do (AN, [¢2130] Sulssiud € st 2394 3O 3y, paugapuq) SHEYD

{9sTeJ uanisix
NIXI Te3d 3

IVASU PIOM JUDWANEIS JI, Y JO Youwlq Snm, Iy U IpoOd
JO 300|q 9y puUE 30133 Inoy pafidwiod apod ayp 19dwiod 9HA
sy sopu() ‘Sums © parean pue sajonb ur paddeim Aposzzoour

}
8L922// (LTINd Sy == X) IT

£()00I = X Sna1e1s

ST ([IIVA ™S Sn[EA PIIEIdWNUD Y “OA0qE JUIWNLIS JI, Y U] 8,920
"$9POO STIEIS SAUPIP Iep STIEIG,, 3dAy pareIawnud At IIPISU0) {{TI¥d s ‘Ss¥d s} snijeis uwnus | wospedwo) | 692D
‘sadf) ur 3pnq Uey 19El

ourop 19sn JUIAJOAUT 129J9p SIP JO JuBLEA Joyoue sarmded
892D "oM[eA UIMdI S) UPYR JOYIEI UOROUNY SdUBSK(RIT A L98¢D// {doueysTgisb = x S1gnop

JO ssoIppe oy pauBisse ST X S[qeneA Ay Yons sy sy 1919wrered } L98ED
v Suipraoad nmowpm pofEd ST UORDUNJ | 2JUEISI(PAS,, YL, (pTOA) 007 pPTOA WSSy orveD

1 JO an[eA 1se] AP JuTsn 30U0 PIINDIXD dAY PROM 0[]
door sy apisut syuawnels oy “sadwod 9 A 9y 19pun) ‘[gereH] ‘(1)oogz
moeyaq pIpPUAU-UN Jo I[duwexs JISse[d € ST SKYI, IUSWIEIS } UORNOIXE
[onuod doo[a1 Jo pus 3y} Je UO[OD FWIS Y} ST 3I9Y JOIId YT, ST > T doo $90ZD
INOIABYDY DU

L(+4T 4] = T Uy a6y

uvondnosag POV I0135]

sojdurexy soxg souendwor) ISNV 9-+ J[qeL

Chapter 5

Conclusions

5.1 Contributions

The research presented here is distinct in two important ways. The first is the
focus on memory management problems in the context of code complexity.
When correlating defects with code complexity, existing research tends not to
distinguish between different categories of faults. The second is the use of the
complexity density metric, introduced by Gill and Kemeter, in the context of
memory management defects [GK91]. In addition, a two-part memory leak
classification scheme is described for categorizing a memory leak in terms of both

of class life cycle and variable context.

5.2 Findings

A statistically significant relationship was found between memory leak density
and subsystem complexity. The Spearman (non parametric) rank cotrelation

technique yielded a medium strength correlation (r = 0.39, « = 0.05).

A complementary investigation focusing on general defect densities did not find a
statistically significant relationship between general defects and subsystem
complexity. These findings are interesting as they suggest memory management

related problems could be sensitive to decision complexity.

53

An analysis of where memory leaks occurred during the class lifecycle indicated
that 57% of leaks occutred in class implementation logic, while 32% occurred in
class destructors. Of the destruction related leaks, 30% involved composite
storage. Leaks of this type typically consisted of lists or structs of pointers that
were not propetly de-allocated. These findings suggest that additional care must

be taken when using data structures of this type.

On the whole, 10% of all memory leaks involved the unnecessary use of pointers.
This finding suggests that pointer usage should be much more tghtly
constrained, perhaps even to the point of forbidding pointer usage unless

otherwise authotized.

A Chi-Squared analysis comparing memory leaks with programmer expetience
showed that Senior programmers create proportionally more leaks than their

Junior counterparts (@ = 0.01).

The impact of a software process improvement effort was examined. A
structured process involving code review, demonstrations, and formal sell-off was
found to have no impact on general defect densities. These findings, together
with those listed above, are highly suggestive of a need for process improvement.
Specifically, a comprehensive white-box testing program is required. Automated
software inspection technologies are now sufficiently mature to support this

objective.

Coding defects identified as a result of improved ANSI C++ compliance were
enumerated and discussed. The frequencies and predictive power of various error
types were presented and an inverse relationship was noted between the two

parameters.

54

5.3 Future Work

This investigation has laid the groundwork wotk for a future prospective study. If
a comprehensive white-box testing program is introduced, its impact can be
measured using many of the same experiments and metrics employed here.
Differences from before and after can be measured and the impact of the testing
program can be quantified. Additional work in the area of static analysis is

required to support this goal.

Additional investigation into the relationship between memory leak density and
code complexity is also required. The findings presented here suggest a moderate
correlation between these two parameters. Future investigations will help to

improve our understanding of this relationship.

55

Bibliography

[Ale77]

[Ale01]

[ANSIO3]

[ASU98]

[BDK+93]

[BDK+02]

[Bez90]

[Boe78]

[Con86]

[CBC+92]

C. Alexander. A Pattern Language. Oxford University Press,
1977.

A. Alexandrescu, Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison-Wesley, Boston, 2001.

American National Standards Institute. Programming languages
- C++, Final edition, 2003.

A. Aho, R. Sethi, J. Ullman. Compilers. Principles, Techniques,
and Tools. Addison-Wesley, Reading, 1988

R. Banker, S. Datar, C. Kemerer, Dani Zweig. Software
Complexity And Maintenance Costs. Communications of the
ACM, Vol. 36, No. 11, November 1993, pp. 81-94.

R. Banker, S. Datar, C. Kemerer, Dani Zweig. Software Errors
and Software Maintenance Management. Information
Technology and Management, Vol. 3, No. 1/2, January 2002,
pp- 25-41.

B. Bezier. Software Testing Techniques, 2* Edition. Van
Nostrand Reinhold, New York, 1990.

B. Boehm. Characteristics of Software Quality. North-Holland,
Amsterdam, 1978.

S. Conte. Software Engineering Metrics And Models.
Benjamin/Cummings, Menlo Park, 1986.

R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B.
Ray, M Wong. Orthogonal Defect Classification - A Concept
for In-Process Measurements, IEEE Transactions on Software
Engineering, Vol. 18, No. 11, November 1992, pp. 943-956.

56

[Ele92]

[ESA96]

[Eva04]

[FAA8S]

[GH]+95]

[GKGO5)

[GKO1]

[Hal77]

[Hat95)

[Her97]

[Joh78]

JB92)

Ellemtel = Telecommunications Systems Laboratories.
Programming in C++, Rules and Recommendations. Retrieved
on August 18%, 2006 from http://www.chris-lott.org/
resources/ cstyle/Ellemtel-rules-mm.html

European Space Agency. Ariane 5 Flight 501 Failure Report by
the Inquiry Board. Retrieved on August 9%, 2006 from
http:/ /sunnyday.mit.edu/accidents/ ArianeSaccidentreport.html

I. Evans. Achieving Software Quality Through Teamwork.
Artech House, London. 2004.

Federal Aviation Administration. Advisory Circular 25.1309-
1A. U.S. Department of Transportation, 1988.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Boston, 1995.

M. Gittens, Y. Kim, D. Godwin. The Vital Few Versus the
Trivial Many: Examining the Pareto Principle for Software.
Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC’05), 2005.

G. Gil, C. Kemerer. Cyclomatic Complexity Density and
Software Maintenance Productivity. IEEE Transactions on
Software Engineering, Vol. 17, No. 12, December 1991, pp.
1284-1288.

M. Halstead. Elements of Software Science. Elsevier, New
Yotk, 1977.

L. Hatton. Safer C. Developing Software for High-integrity and
Safety-critical Systemns. McGraw-Hill, London. 1995.

D. Herrmann. Software Safety and Reliability. IEEE Computer
Society Press, 1999.

S. Johnson. Lint, A C program checker. Computer Science
Tech. report 65. Bell Laboratories, 1978

R. Johnson, G. Bhattachary. Statistics: Principles and Methods.
Wiley, New York. 1992.

57

[Kit95]

[KS97)

[Lar02]

[Lev93]
Lipo2)

[Lit01]

[L593]

[Mar92]

[Mca76]

[Mco93]
[Mey98]

[MISRA04]

E. Kit. Software Testing In The Real World. Addison-Wesley,
Harlow, 1995,

C. Kemerer. S. Slaughter. Determinants of Software
Maintenance Profiles: An Empitical Investigation. Software
Maintenance: Research And Practice, Vol. 9, pp. 235-251, 1997.

C. Larman. Applying UML And Patterns. Prentice Hall, 2002.

N. Leveson. An Investigation of the Therac-25 Accidents.
IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41.

S. Lipmann. C++ Primer, 2 Edition. Addison-Wesley,
Reading, 1992.

T. Littlefair. An Investigation Into The Use Of Software Code
Metrics In The Industrial Software Development
Environment., PhD thesis, Edith Cowan University, June 2001.

B. Littlewood, L. Strigini. Validation of ultrahigh dependability
for software-based systems. Communications of the ACM, Vol.
36, Issue 11, November 1993, pp. 69-80.

D. Marks. Testing Very Big Systems. McGraw-Hill, 1992

T. McCabe. A Complexity Measure. Proceedings of the 2nd
international conference on Software engineeting (ICSE). San
Francisco, California, United States. IEEE Computer Society
Press, 1976.

S. McConnell. Code Complete. A Practical Handbook of
Software Construction. Microsoft Press, Redmond, 1993.

S. Meyers. Effective C++. 2™ Edition. Addison-Wesley,
Boston. 1998.

Motor Industry Software Reliability Association (MISRA).
Guidelines for the use of the C language in critical systems.

MIRA Ltd. Retrieved from http://www.misra.org.uk on

August 237, 2006

58

[MKL91]

[MR94]

[MS06]

[NBZ06]

[NWH+04]

[OWB04]

[Pet99]

[Ris98]

[Sta9%4]

[SEI02]

N. Madhaviji, K. Toubache, E. Lynch. The IBM-McGill Project
on Software Process. Proceedings of the 1991 conference of
the Centre for Advanced Studies on Collaborative research.
October 1991.

J. Miller, G. Rozas. Garbage Collection is Fast, But a Stack is
Faster. MIT Artificial Intelligence Memo 1462, March 1994.

Microsoft Developer Network Library. Common Problems
When Creating a Release Build. Retrieved August 9, 2006 from
http:/ /msdn2.microsoft.com/en-us/library/dykf6bx9.aspx

N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict
Component Failures. The 28" International Conference on
Software Engineering (ICSE’06), 2006.

N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, M. Vouk.
Preliminary Results On Using Static Analysis Tools For
Software Inspection. The 15" International Symposium on
Software Reliability Engineering (ISSRE’04). 2004.

T. Ostrand, E. Weyuker, R. Bell Where the bugs are.
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’04). 2004.

C. Petzold. Programming Windows. Microsoft Press,
Redmond, 1999.

L. Rising. The patterns handbook : techniques, strategies, and
applications, collected and introduced by Linda Rising.
Cambridge University Press, 1998.

The Standish Group. The CHAOS Report (1994). Retrieved
August 9%, 2006 from http://www.standishgroup.com/
sample_research/chaos_1994_1.php

Software Engineering Institute. Carnegie Mellon University.
Capability Maturity Model Integration (CMMI), Version 1.1.
Retrieved on August 22, 2006 from
http:/ /www.sei.cmu.edu/cmmi/models

59

[SEI06]

[Som91]

[Str97]

[SCO1]

[VS04]

Software Engineering Institute. Camegie Mellon University.
Cyclomatic Complexity. Retrieved on August 15, 2006 from
http://www.sei.cmu.edu/str/descriptions

I. Sommerville. Software Engineering, 6™ Edition. Addison-
Wesley, Hatlow, 2001.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley, Boston, 1997.

M. Sullivan, R. Chillarege. Software Defects and their Impact
on System Availability - A Study of Field Failutes in Operating
Systems. Proceedings of the 21% International Symposium on
Fault Tolerant Computing, 1991.

H. Verta, T. Saridakis. Detection of Heap Management Flaws
in Component-Based Software. Proceedings of the 30th
EUROMICRO Conference (EUROMICRO’04), 2004.

60

Appendix 1: Non Disclosure Agreement

This section contains a signed copy of a non disclosure agreement between
UNBC and MDA. This agreement governs the usage of the MDA intellectual

property upon which this investigation is based.

61

:_!‘_.; 3

LY L ot .
5 i
04 v .

MUTUAL CONFIDENTIAL DISCLOSURE AGREEMENT " 19

THIS AGREEMENT mede this _ﬂ_ dsy of Juna In the year 2006 (tha “Effectve Daw‘) &

bt g
) £
. . T
- -
. "

»

BY AND BETWEEN: T LT

‘4. !'
MacDONALD, DETTWILER AND ASSCCIATES LTD

8 company duly Incorporated under the laws of Caneada,
having offices at 13800 Commerce Parkway, Richmond, British Columbia, Canada VBV 2J3,

{"MDA")

UNIVERS(TY OF NORTHERN BRITISH COLUMBIA . e)
3333 University Way, . o ’
Prince George, B.C. e .

V2N4Z8 | . TR Bl

! -, - v e Iy
- L o ‘._'-f

In conalderation of the mutuzl premises and agreements herain contalned, and olher good and valuable
cunstaemuon the tecauptand sufficiency of which is hareby admowledged the parties agrn gs follows:

.1‘

v

’conﬁdenda' Informartﬁon shall mean any information which is confidential end proprielary informatfon of each,
party conceming each party's technical, scientfic and business infevests :not generelly avelable fo third

pearties conaisting of but not limited to: () sofware (source end executeble or oblact code), zlgerithms,
compuler procasaing systams, techniques, methocoiogles, formulae, processes, complistions of information,
drawings, proposals, |ob rioles, reports, recards, and specifications, end releted documontation in eny media,
including eli modifications, enhancemants, updates and dervatives; (i) unique software end hardware
configurations, desgn concepls and el materlals developed therefrom; (l) business plans, customer
contacts, fcensas, the prices each party obtains or has obtained for its software, producis or services and any
olher materials or information relatng to the business o each party or esch party’s good will, mach party's

- subsidisries, owners, offilatas and divisions or sny of eech pary’s cusiomers; [v) any confidential

information In"any mecfa which is ownec by a third pacly end provided (o elther party under a confidentialty
agresment; {v) trade secrets which cervae economic value, sctual or potentlal, from not being generalty
known ta other parsons who might oblein econemic value from ks cisclosure or use and is the subject of
effarts that are reasonable under the circumstances to meintein ts secrecy; and (vi) any othar confidential
information of esch pariy which is determined by 3 court of competertt Jurisdiction not to rise to the level of &
trade secret under appiicabla law,

Each party shall reduce o langible form, mark as propretery, and provide lo the other party, only such

Confidental nfonmation relating 1o the subject matter descridad at the end of this Agresment (the “Subject
Vatter®) 3 the parfies delermine is reasonably required 1o achleve the Purpose as defined balow.

Ali rights, {te and interest in and lo the Confidential Information shall remain the exclustve woridwide property
of the party which provided the Confidertial Information except the Confidential infarmaton owned by a third
party as st qutin Article 1(lv) of this Agreemant.

Neihar party shall, direclly or Indirectly, use the Confidential information for the design or creation of any
product or sérvice, or use the Confider-tia Information In &ny othar manner, except s reesonably required for
the purpose descrived at the end of this Agreament (the "Purpose™). . ,

o R

L

-

10.

1.

12,

" Cotesat.a0m0620 L

MUTUAL CONFIDENTIAL DléCLOSURE AGREEMENT ' ;
if the disclosure of the Confidential information should give rss to a business oppotuntly to commercially
axpiol the Confidential informatian, any such exploitation by efther party, or by either parly assisting any thid

" party, or the creetion of any product or service which is direclly or indirectly based on, derived from, or uses

the Confidents! infermetian withaut the otner party’s consent, s not permitted.

Each party shall kesp e Confidantel Information of the other party In strict confidence. Neither party shall
directly or Indirectly disclose, atow access io, ransmit, or iransfer the Confidentiel Informaton of the other
perly {a a third party excopt to those of its employess, directors, egents, who have an actual need to know the
Confidantial Infarmation for the Purpose. The recipieni shall, pror 1o diaciosing the Confidential informstion
to such employsss and agents, oblain their agresmenl i recelve and use the Confidentel information on @
canfidential basls on the same conditions as contained In this Agreement. MDA wha Is contemplating the

disclosure of Canfidential Information to the University of Norihern BC acknowledges thal the University by

its very neture 1s an open public rassarch institvtion with students pessing through in an cpen end

Lo
s e

uncontrolled manner and therefora cannot provide the same dagrea of security for #ts own Configential - .

information as that which ia customary in an industrial reseerch centre. However, the University will use

the same care and discretion to aveld disclosure of Confidentie! Information as it uses for its own similer

Confidenyal Information thet it does not wish 1o disciose.

he e

The Confidential Information shall not be reproduted in a7y form or stored In a data base, by the reciplent

without the prior writlen consent of the other party. All coples of the Confidential Information shell contain enly
the same proprietary notices, which appear on the eriginal Information. ‘]
This Agreement shall not apply to Cenfidental Information which can clearly be proven by documentstion to
have beceme regdily available to the general public in the same form througn no breach of this Agresment, or

disclosure by the cther party. The burden of providing these exceptions resides with the recipient. This
Agreement also apples to (1) Confidentia) Information provided to efther party even if such Confidential

Information could be, or was sudbsequenty, abtained by reverse enginesring. and (i) Confidential Information ™~

received by elther party prior o this Agresment being signed.

. This Agresment shall not constiuls any reprasantaton, waranty or guarantse to either pﬂy with respect (o

the value of the informetion ‘o the reciglent or that the Conidential Infermation doas not infrings any rights of
third pardes. Nelher party shali be held liable for any eors or omiaslons in the Confidential information, or
use of the Configential Information,

" The entertng Into of this Agreement shall r.ot constituta any obllgaﬁon on he part of eliher uartyb enter into

any lurther egreament with the other party. Sl
Both parfies recognize that each parly may be engsged in the dsvolopmont of harcware ormﬂmm prcaueus
or ather fechnology or services which may ba compatilive with those of the cther party to this Agreement, and
nothing In this Agreement shali he conatued to prohiblt elther perly from engaglng in the research,

development, marketing, sale or licenalng of any product which la Indepsndently developed and pmducod‘

without the uss af the other party's Cormdenﬂal lnformauon

Eech party shall upon completon of the Purpose or upon the request of me other parly whichever first

ocours, immedietely retum to the other party the Confidential Informalion and all copies thereof In ail forms,

and permanantly delete the Confldentis! information from ell retrisval systems and deta basas In which it may
be found.

The term of this Agreament shal commence on the Effecti+é Date and shall continue for the periad of time
set out at the and of this Agreement and notwithstanding the foregaing, nelther parly shall discisse o utlizs
trade sacrets as set out in Articte 1(v) of this Agresment for an unlimited period of ime.

In the event of & Yrosch by eliher party of eny provision of this Agreemant, the other party shall, in addition to
and not In subatiution for any other remedy avaiiable to & in regpect of such breach, be entied to injunctive
reilef which res'raineg the party in breach from commitiing or continuing such braach

"". P A
v

K3
»

.., which was lawiully obiained by the recipisnt from an [ndependent third party having no confidentiallty
* obligetion lo eithar parly, or which was in the reciclent'a possession n fully recordsd form prior to dete of

?LW

15

Sew

16.
17.

1a.

10.

21.

Subjact Mattar:

Purpose: -

Term:

S,

CO11923.1.0.080620

.0 .
..J ot £33
-

MUTUAL CONFIDENTIAL DISCLOSURE AGREEMENT b

It tis heid by @ cout or other lawful authorty of competent jurisdiction that any provision of this Agreement or
peart thereof Is void, llegal, nvalid or unenforoeable than such provision or part shall be deemed sirickan, and
the remaining provisions shall be severatle and rernain valld, in full ‘orce end effaect.

Neither party shall assign Lhis Agreement or dny rights o obiigations under this Agreement without the prior

written consent of the other party, and any atlempt to do so without congent shall be null, void and of no
eﬁm.

This Agreament shall be governed by, subject 1o, Interpreted and ‘erforcad in ell mspéé‘t; In accandance whn
the laws which apply In the province of Brit'sh Columbig, Canatie and the parties shall submit to he exclusive
Jurisdiction of the courts of Bﬁnsh Calumbia,

.Each party she'l oompty and shali cause hs affll Iatss to comply wrxh all ppllcebla taws and regulations

pertaning to export or re-export of Confidant'e] Information to the other party or ts affilates.

No waiver of amy provision of this Agreement or of any breach of thls Agresment shell be effective, unless
such walver is in writing and signed by the party providing such walver. Any signed waiver shal not operaie
or be construsd as 8 walver of any other provision of any other breech of this Agreement.

r;lanhar party shall make use of any discussions coneeming this Agrasment, or this Agreement itself, for - -
publicily, sdvertizing or marketing, or disclose that either party has emered into this Agreament. without the .

prior written: congent of the other party,

iy o

THils Agreement conatitutes the entrs agreement and understanding between partlos and supersedes &/ prior ‘

discussions and agresments between the parlles hereto relating generally to the seme suSjoct matter,

.~ code base will be conducted. Coding errors thel cause memory leaks and intecfare vith

D the crestion of a release ouild will be masasured end corractad. The primary obigctive of
the exerc'se Is the creallon of a release Luid of GPD. Supporting objectives include
Identification and comection of memory leaks, and preparstion of the GPD code base
for use with Microscft Visugl Stwdio 2005. Arepornt discussing the problems
encountered and tha distribution of errors will be provided.

" To protect busness sensiive ccnfidential and propristary information discussed,
davo[aped andfor supplied. .

X 'Fm {3 Ym from the Effocllve Dntn or three (3) ym from the latest date of disclosure
of Confidential Information from one party to the other, whichaver [s later,

PO
.
.
B e - .
. B - ---?
T B R b o
‘. "

Mastar's Thesls from Stephen Wickham regarcing 8 retrospeciive analysls of the GéD g

s’ N N S RS i

DR MUTUAL CONFIDENTIAL DISCLOSURE AGREEMENT
. .. e . - U oy,
. S 7

N WITNESS WHERECF, the paries heve enterad into this Agreemant by their duly authorized representstives.
MACDONALD, Dsrrwméﬂ AND ASSOCIATES LTD, - _ B
W - - ' ‘) N . ’ LS v i

(Signature 1: o

Nomw: '“‘ra-{ ol

STEPHEN J. W)

DIRECTOR, PROCURENENT SERVICE - .

- Tilie:
bt

] ’: C (Signature) ol T V ,:' : :3:-'.:\;.'3:;
Name: _D, Max Bioww e o

-
‘de o
B oele : . s
) £l
> . s - '
. . ¥
: . -
Dato: : .
=5 a
o
. . :
- 5 .
- f
- :;::l e :' g
- Dr, Slamak Rozael . -
: A ot
g :
B ¥ ‘ ‘.
» - ‘- 'F' . . .
Name: _SiomaKRezsel = "
. ° .
5 Bl
- +
Tite:
B
AR
EPRCRE, SN
D ﬁl" *
” 2.
T -)
. T - L -
hJ! .) :
gl . N .‘
' o LAY .
W e : ' -
v
‘ -
"« i
: i
¥ 4
O |
» = N R :
L el |
@ HE | }
i -
~
5
- ks '
A o |
L4
. & . -
. ‘ . |
e a4 . ‘
- - .
K .':. = Y > L . »
f : *, 5N v
>

-CD11543.v1.0.000820

: WISHGOLUMBLA o o

o (Printed/Typed) = | e ‘

“d

