
-

Distribution Of Defects In A Large Software System

Stephen Wickham

B.Sc, University of Victoria, 1997

Project Submitted In Partial Fulfillment Of

The Requirements For The D egree Of

Master Of Science

ill

Mathematics, Computer And Physical Sciences

(Computer Science)

The University Of Northern British Columbia

January 2007

© Stephen Wickham, 2007

Abstract

This report summarizes the findings of a retrospective analysis of coding errors in

a major software system produced by a large Canadian software engineering firm.

The code-base of the system is approximately 1. 7 million lines of C++ integrated

with third party RDBMS and GIS products. The safety related nature of the

system and the size of its code base make it an ideal candidate for an investigation

of software related defects. The investigation focuses primarily on memory

management related defects referred to as "memory leaks." A "memory leak"

results from the failure to return previously allocated heap memory. The

distribution of memory leaks is analyzed and a two-part memory leak

classification scheme is described. A secondary focus of the investigation is the

influence of decision complexity on system safety. This investigation yielded two

statistically significant findings. The first is a relationship between programmer

experience and memory leak creation. The second is a correlation between

subsystem complexity and memory leak density. The impact of software process

improvement measures are also discussed.

ill

This document contains information proprietary to MacDONALD,

DETIWILER AND ASSOCIATES LID., to its subsidiaries or to a third party

to whom MacDONALD, DETIWILER AND ASSOCIATES LID. may have a

legal obligation to protect such information from unauthorized disclosure,

transfer, export, use or duplication. Any disclosure, use or duplication of this

document, or any of the information contained herein, for other than the specific

purpose for which it was disclosed is expressly prohibited, except as

MacDONALD, DETIWILER AND ASSOCIATES LID. may otherwise agree

to in writing.

11

TABLE OF CONTENTS

I. Introduction ... 1

1.1 Motivations 1

1.2 D ocument Organization 2

II. Background and Uterature Review .. 3

2.1 System Overview 3

2.2 Historical Context 5

2.3 Debug & Release Builds 5

2.4 Memory Management 7

2.4.1 Static Memory 7

2.4.2 Automatic Memory 7

2.4.3 Free Store 7

2.5 Software D esign Patterns 9

2.6 Software Safety and Reliability 10

2.6.1 D efinitions 11

2.6.2 Complexity & Safety 12

2.6.3 Modularity & Safety 18

2.6.4 Compiler Standards Compliance 19

2.7 Software Testing 20

2.7.1 D efinitions 20

2.7.2 Testing Strategies 22

2.7.3 Static Analysis 22

2.7.4 Dynamic Analysis 23

2.8 Software Process 24

2.8.1 Process Models 24

2.8.2 Process Measurement 25

lV

2.8.3 Process Improvement ... 26

2.8.4 Process Engineering ... 28

III. Methodology .. 30

3.1 Memory Leak Detection ... 30

3.1.1 Dynamic Analysis 30

3.1.2 Static Analysis .. 32

3.2 Memory Leak Classification ... 34

3.3 ANSI C++ Compliance 36

3.4 Metrics ... 37

3.4.1 Memory Leak Density ... 37

3.4.2 Complexity Measurement ... 37

3.4.3 Programmer Experience ... 38

IV. Experiments and Results ... 39

4.1 Memory Leak Distribution .. 39

4.2 Memory Leak Density & Subsystem Complexity42

4.2.1 Dataset 42

4.2.2 Experimental Details and Results 44

4.3 Defect Density & Subsystem Complexity ... 46

4.4 Memory Leaks & Programmer Experience47

4.4.1 Dataset .. 47

4.4.2 Experimental Details and Results47

4.5 Process Improvement & Defect Density49

4.6 ANSI C++ Compliance ... 51

V. Conclusions 53

5.1 Contributions 53

5.2 Findings ... 53

5.3 Future Work , .. 55

VI. Bibliography ... 56

v

VII. Appendix 1: Non Disclosure Agreement .. 61

V1

LIST OF TABLES

1. FAA failure probability values 13

2. Cyclomatic Complexity Values ... 16

3. Halstead Complexity Measures .. 17

4. Conte's Modularization Levels ... 19

5. SEI CMM Levels .. 25

6. Review Process Description ... 27

7. Life-cycle Leak Classification Categories .. 35

8. Dataset field descriptions .. 42

9. Complexity Density versus Leak Density Correlation Data43

1 0. Chi Squared Analysis of Programmer Experience 48

11. Release B vs. C Defect Densities ... 49

12. Software defects identified by compiler error ... 51

13. ANSI Compliance Error Examples .. 52

Vll

LIST OF FIGURES

1. System Architecture Diagram 4

2. Memory Layout ... 8

3. FAA failure probability chart 13

4. Example control graph 16

5. Review Process Flowchart .. 28

6. Memory Leak Distribution ... 40

7. Leak D ensity vs Complexity Density Scatter Plot 44

8. Defect Density vs Subsystem Complexity 46

V1ll

ACKNOWLEDGMENTS

I would like to thank my supemsor, Dr. Siamak Rezaei, for his guidance,

encouragement, and support throughout the course of this research. In addition I

would like to thank Dr. Robert Tait for his careful reviews and constructive

feedback. I would also like to acknowledge MacDonald Dettwiler & Associates

(MDA) for granting access to the intellectual property upon which this

investigation is based. Finally, I would like to thank Mr. Michael Lingren for

sharing his hard won insight and wisdom gained in the real world of software

engmeenng.

lX

RDBMS

GIS

KSLOC

SEI

SLOC

RFP

GLOSSARY

Relational D atabase Management System

Geographic Information System

Thousand Source Lines Of Code

Software Engineering Institute

Source Line Of Code

Request For Proposal

X

Chapter 1

Introduction

1.1 Motivations

Memory management defects are a significant impediment to the successful

creation of any release build and to reliable software in general [MS06]. As such,

this investigation placed major emphasis on coding practices that introduced

memory management problems. Findings made during this process are discussed

in the context of software safety, reliability, and correctness. The distribution of

errors in the code base is compared with developer experience and code

complexity. This paper argues that memory management related defects are

related to code complexity and programmer experience.

Approximately 31% of software projects will be cancelled prior to completion

[Sta94]. Given this, it is easy to see why a mature, fielded, software system that

has undergone structured verification and customer acceptance is extremely

valuable. In the academic context the code base of such a system represents an

ideal research dataset. The findings resulting from this investigation are all the

more relevant because they are derived from a real world system. In spite of the

latent defects identified by this research, we must recognize all that has been done

correctly to get such a large system out the door and into the hand of the

customer. The findings presented here can teach us as much about what has

worked well in the past as they can about what can be improved in the future.

1

Software permeates almost every aspect of our daily lives. From the

microprocessor in a car to the instrument approach landing system that guides a

flight safely to the ground, our lives depend on code. To those industry and

academic professionals involved in the field, this is can be a disquieting thought

indeed. With software, come defects. That is the unavoidable reality of the

discipline. Some very notable accidents, some of which unfortunately involve the

loss of human life, have been traced back to software defects. Consider the

following: In June 1996, a Washington D C subway driver was killed when his

automatically controlled train slammed into a wall instead of stopping at the last

station [Her97]; On November 24th 1991, a British newspaper reported that

radiation safety doors at the Sellafield nuclear facility had been opened

accidentally due to a computer error [Hat95] . In short, software defects are a very

real problem.

1.2 Document Organization

The following section describes the overall structure of this document. The paper

is composed of five chapters and one appendix that are described below.

Chapter 1 presents introductory material, describes project motivations, and

outlines overall document structure.

Chapter 2 discusses background topics relevant to this project including software

safety and reliability, static analysis, dynamic analysis, complexity measurement,

memory management, and software defect classification.

Chapter 3 describes the methodology employed during this investigation. The

memory leak detection framework used is described along with static analysis

tools and techniques. Problems and challenges associated with each of the

techniques are also discussed.

2

Chapter 4 presents findings and discusses results. Error distribution is discussed

and correlated with developer experience and code complexity.

Chapter 5 concludes the investigation with recommendations for future software

engineering projects and suggestions for future work.

Appendix 1 contains the non-disclosure agreement between MDA and UNBC

that governs the dissemination of intellectual property contained herein.

3

Chapter 2

Background and Literature Review

2.1 System Overview

This paper documents the retrospective analysis of a large Windows based

software product. The product, herein referred to as "the system", aids in the

design of instrument approach procedures for the aviation industry. The code-

base is approximately 1.7 million lines of C++ integrated with third party

RDBMS and GIS products. Object-oriented design principles are employed

throughout. The system is implemented as a series of subprojects, each

represented by a dynamic link library. The subprojects are grouped into layers as

follows:

• Data Management

• GIS and Geometry

• Common Aeronautics

• Procedure and Chart Design

• User Interface

The dataset used in this analysis was derived usmg the system's automated

regression test facility. Because the test facility does not exercise the user

interface, this layer was excluded from the analysis. Core system functionality in

all the remaining layers is included. The system architecture diagram below

depicts high-level structure and component relationships.

3

Dependency
------+ Data Flow

DATA

PROC.&
CHART
DATA

1-
1/) w
(!)
~
<(

< 0

0:: w
(!)
<(z
<(
::::E
w
..J
u::

RASTER
DATA

TO PRINTER/PLOTER U S E R I N T E R F A C E
~-- ---- ---- - - --------- - -

r - ------- --- ---- -

DATABASE

§ 0:: w >-
I APPROACH I :5

§ 1/)
1/) w
(.) c:=J (.)
<(

~

§ 0

COMMON AERONAUTIC

H AERO-NAV. AIRSPACE

FILE
SYSTEM

GIS, GEOMETRY, TERRAIN

RASTER
DATA

Figure 2-1: System Architecture Diagram

4

The data access and file systems layers provide an abstraction barrier between the

physical storage of data and its representation within the system. The GIS layer

interacts with the file system to retrieve digital terrain data and provides numerical

geometry services utilized by higher level subsystems. The Aeronautical and

Procedure D esign layers implement core system algorithms, supported by the

database, file system, and GIS layers. The User interface layer sits at the highest

level and interacts with lower level subsystems as needed. The D ata Ingest

subsystem manages external system interfaces.

2.2 Historical Context

The system has been in development for five years and has undergone three

major releases. Due to schedule and budget constraints a release build of the

system was not produced during the initial stages of development. By the time an

attempt was made to produce a release build the size of the code base had grown

significantly. Programming practices that produced code incompatible with a

release build were well entrenched. The severity of problems encountered and

volume of offending code caused the original release build to be abandoned. Data

used in this investigation was collected during a subsequent release build attempt.

2.3 Debug & Release Builds

Generally accepted software engineering practice dictates that source code is

compiled or "built" in two separate configurations: Debug & Release [Pet99]. A

"Debug" build is instrumented with symbolic debugging information that makes

diagnosis of software defects considerably easier. Symbols facilitate interactive

debugging by providing source code, line number, variable, and data type

information during program execution [ASU88]. In the Microsoft environment

memory management is tracked using a debug heap that buffers memory

allocations, tracks memory leaks, and protects the programmer from access

5

violations, etc. This instrumentation imposes significant performance overhead

and requires the distribution of supporting debug libraries.

Debug builds also disable compiler optimizations. Compiler optimizations are

"improvements" introduced by the compiler in order to increase the speed or

reduce the size of generated object code [ASU88]. Optimizations that are disabled

in a debug build but enabled in a release build can be responsible for altered

behaviour between the two configurations.

In contrast, a "Release" build is un-instrumented and is optimized for either size

or speed. Generally speaking a release build will run considerably faster than a

corresponding debug build. It will have a smaller memory footprint, smaller

executable size, and will not require the distribution of supporting debug libraries.

By their very nature, debug builds are more tolerant of poor programming

practice. Code that compiles and runs (although perhaps not correctly) in a debug

build may crash in a release build. In general, release builds and debug builds are

developed in parallel from project inception. In this way problems that prevent a

release build from compiling or running can be dealt with as they arise.

6

2.4 Memory Management

C++ defines three memory management mechanisms: static memory, automatic

memory, and the free store [Str97]. These mechanisms and their relevance to this

project are described below.

2.4.1 Static Memory

Items allocated in static memory persist for the duration of program execution.

Static class members, static variables in functions, and global variables all reside in

static memory. Static memory is relevant to this investigation as it relates to

singleton allocations (see section 2.5).

2.4.2 Automatic Memory

Automatic or "stack allocated" memory is used to store local variables and

function arguments. Items allocated on the stack are automatically created and

destroyed as they come in and out of scope. Automatic memory is safe, simple,

and faster than heap allocation [MR94]. In fact, 10% of the leaks discovered

during this investigation involved heap allocations that could have been made on

the stack.

2.4.3 Free Store

The free store or "heap" is an area of memory used for dynamic allocation. Heap

allocation is used when the number and size of blocks in not known until

runtime. Allocations and de-allocations are made explicitly using the new and

delete operator respectively. The free store is finite and is ultimately limited by the

resources of the host system. Once the program has finished using memory

allocated on the free store it must give that memory back. Failure to do will cause

problems, particularly in long running programs. The failure to return previously

7

allocated heap memory is referred to as a "memory leak". The analysis of

programming practices leading to memory leaks, and the correlation of memory

leaks with code complexity is the major focus of this paper.

Figure 2-2 below illustrates typical memory layout. Memory is partitioned into

address ranges dedicated to each type of storage. Program code and static

variables are grouped together in static memory. A separate region, referenced by

the stack pointer, is dedicated to the program stack and associated "automatic"

memory. Finally, the "heap" or free store contains dynamically allocated memory

referenced via pointers. In the example below, two dynamic memory allocations

are referenced via static pointer variables.

Heao
Dynamic chunk #1

D ynamic chunk #2

Stack
Currently available

Other static variables

Static
Pointer variable #2 (9FD3)

Pointer variable #1 (AOOO)

Program code

Figure 2-2: Memory Layout

8

+- AOOO

+- 9FD3

+- Stack Pointer

wikibedia. orp

Memory allocated on the heap has two interesting properties: it is unnamed and

un-initialized [Lip92]. In this context the "unnamed" property means the memory

must be manipulated indirectly via pointers. The "un-initialized" property means

just that, the memory is not set to any predefined value upon initialization.

Together these properties are responsible for a great deal of unintended system

behaviour [Koe88][Hat95][Mco93]. Many debug libraries attempt to protect the

programmer from poor pointer management by creating buffer zones and filling

newly allocated memory with a predefined dummy values. Strategies such as this

are helpful for diagnosing memory management problems during system

development but can foster a false sense of security. Once the protection

provided by the debug library is removed, a system that appeared stable in debug

configuration can become unusable.

2.5 Software Design Patterns

The concept of a design pattern has its basis in building architecture and was

originally conceived of by Christopher Alexander. Alexander defines a design

pattern as in the following manner, "Each pattern describes a problem which

occurs over and over again in our environment, and then describes the core of

the solution to that problem, in such a way that you can use this solution a

million times over, with ever doing it the same way twice" [Ale77].

Essentially, a design pattern captures the essence of a problem's solution in an

abstract and re-usable way. Just as component based development and object

oriented design foster code reuse, design patterns foster design re-use. While

design patterns are not a silver bullet, appropriate pattern application can make a

significant contribution to software quality [Ris98] [Lar02]. Specifically, pattern

usage promotes abstraction, code re-use, and ease of maintenance.

9

The original software engmeenng design patterns catalogue was published in

1995. Its authors, Gamma, Helm, Johnson, and Vlissides are commonly referred

to as the Gang of Four (GoF). Their book publishes 23 patterns that have been

the focus of countless academic endeavours and are ubiquitous in the world of

software engineering. The system studied here utilizes a number of the creational,

structural, and behavioural patterns in this catalogue. The "Singleton" pattern

discussed below is relevant to the discussion of memory management.

The singleton design pattern ensures a class has only one instance, and provides a

global point of access to it [GHJ +95] . This pattern is used widely throughout the

system in question. The implementation of the singleton pattern studied here uses

a static pointer to a heap allocated object. This implementation created problems

as the static pointer was never explicitly destroyed and thus, the associated heap

allocation was never freed. In practice, this situation is benign, as a leak that

occurs at program termination cannot impact program execution in any

meaningful way. It did, however, create spurious errors during dynamic analysis

as benign singleton leaks were reported. Management of singleton lifetime is a

common problem in pattern based development [Ken03]. Numerous solutions

have been presented, the most notable being Alexandrescu's Loki design [Ale01].

2.6 Software Safety and Reliability

Before discussing formal definitions of software safety some historical

background on software related accidents might help to provide context:

• A defect in the control software of the Therac-25 radiation therapy machine
resulted in a number of patient deaths. The defect was ultimately traced to a
race condition [Lev93].

10

• An Ariane 5 rocket exploded 37 seconds after launch due to an unhandled
exception when a 64 bit floating point variable was assigned to a 16 bit
unsigned integer [ESA96].

These accidents highlight the catastrophic effects that software defects can have.

Indeed it has been suggested that, under certain circumstances, the safest thlng to

do may be avoid software all together [Hat95].

2.6.1 Definitions

Software safety has been defined in numerous ways by numerous authors.

Herrmann defines software safety as follows [Her99]:

'Jeatures and procedures which ensure that a product petjorms predictab!J under normal and

abnormal conditions, and ensure the likelihood of an unplanned event occurring is

minimized and its consequences controlled and contained therery preventing acczdental it!Jilry

or death, whether intentional or unintentional"

The use of the term 'minimized' in the definition above is interesting. It runts at

the difficulty in achieving absolute reliability. This subject is discussed further

below.

Hatton defers to the Concise Oxford Dictionary:

reliability: 'Of sound and consistent character or quality'

safety: 'Freedom from danger or risks'

Hatton is careful to draw a distinction between reliability and safety. He states a

program can be unreliable but safe, meaning its defects do not create risk; or a

program can be reliable but unsafe, meaning it will produce consistently incorrect

and potentially harmful results.

11

Conte distinguishes the terms fault and defect as follows [Con86]:

fault:

defect:

'an error that causes an incorrect result for a valid input'

'evidence of the existence of a fault'

These definitions suggest that faults may be latent, but that defects do not exist

until they actually manifest themselves in some measurable way.

2.6.2 Complexity & Safety

Software safety and reliability problems have a wide range of causes. Lack of

process and structure, poorly defined requirements, and semantic idiosyncrasies

of the implementation language can all be contributing factors. An in depth

discussion of safety and reliability is beyond the scope of this work. One topic,

however, is of particularly relevance to this investigation: the influence of

complexity on safety.

The complexity of many safety critical systems (e.g. a nuclear reactor control

system) is so high that it is simply not possible to guarantee that software is

completely error free [LS93]. As a result, software specifications typically place an

upper bound on the probability of failure. The following excerpt from FAA

Advisory Circular 25.1309-1A on Systems Analysis and Design illustrates the

probabilistic nature of reliability specification [F AA88]:

12

(1) Mi ner f ai lure cond i t i ons may be probable.

(2) Major failure cond i t i ons must be improbable.

(3) Catastrophic t'ail ure cond i tions must be extreme ly improbable.

Figure 1: Probability vs. Consequence Graph

Catastrophic
Accident c:

0
Adverse = , EffectS on g Occupants

(.)

Unacceptable

CD Airplane ...
i Damage
II.
'8 Emergency

l
Procedures

Abnonnal
Procedures

NuisanCe

Acceptable

Normal
Probable Improbable

Figure 2-3: FAA failure probability chart

This specification assigns the following definitions and associated probabilities:

Table 2-1 FAA failure probability values

Type Description Probability
Probable

Improbable

Extremely
Im robable

Anticipated to occur one or more times during the > 1 x 1 o-s
entire o erationallife of an aircraft
Not anticipated to occur during the lifetime of a ::::: 1 x 10-5

single random airplane, but anticipated to occur > 1 x 10-9

during the entire operational lifetime of all aircraft
of one e
Not anticipated to occur during the entire ::::: 1 x 10-9

o erationallifetime of all aircraft of one e

13

The negative impact of complexity of software safety is a recurring theme in

software engineering literature.

Conte defines five design principles, one of which is complexity. He states: "A

design should be kept as simple as possible. Design complexity grows as the number if control

constmcts grows. The f?ypothesis is that designs with high complexity wzll contain more errors"

[Con86].

Leveson re-iterates the importance of keeping designs simple in her commentary

on the Therac-25 accidents described above. She states: "Basic software-engineering

principles that apparentfy were violated with the Therac-25 include: .. . Designs should be kept

simple" [Lev93].

Hatton defines the terms C"' the natural complexity inherent in a problem, and C.,

the actual complexity used solve it. While the inequality c. 2: en will always hold, he

asserts that the difference between C. and Cn should be kept as small as possible

[Hat95]. In plain English this means the complexity of software used to solve a

problem should be kept as close as possible to the inherent complexity of the

problem itself.

In addition to the discussion above, Banker et al. provide an excellent survey of

software maintenance related research [BDK +02]. Their meta-analysis cites

numerous publications that report a positive correlation between software

complexity and elevated defect rates.

Gitten et al. conducted experiments similar to those described in Chapter 4. Their

experiments attempted to establish a correlation between general defect densities

(e.g. not specific to memory leaks) and code complexity. Interestingly, they were

not able to find an observable relationship between the two parameters

[GKGOS]. They did, however, establish that the Pareto Principle (80:20 rule)

14

appears to apply to software defect distribution. Specifically, they found 100% of

the defects in 28% of the code, and 80% of the defects in 26% of the code.

Ostrand et al. also failed to find a correlation between code complexity and defect

rates [OWB04].

2.6.2.1 Complexity Metrics

The metrics of software complexity receive thorough treatment in the software

engineering literature. Complexity metrics exists to measure both logical and

computational complexity.

2.6.2.1.1 Logical Complexity Metrics

Logical complexity metrics quantify the complexity of a program's decision

structure. Hatton distils the long list of available metrics to three: cyclomatic

complexity, static path count, and fan-in/ fan-out [Hat93]. These are discussed

below.

2.6.2.1.1.1 Cyclomatic Complexity

McCabe originally described cyclomatic complexity in his classic 197 6 paper

entitled "A Complexity Measure" [Mca76]. Cyclomatic complexity uses graph

theory to describe a program's decision complexity. The commands of the

program are represented as nodes in the graph. If one command may execute a

second command, the two nodes representing the commands are connected by

an edge in the graph. The formal definition of cyclomatic complexity is as follows

[SEI06):

Cyclomatic Complexity= E-N+ 2; where

E = the number of edges in the graph

N = the number of nodes in the graph

15

For example, an if/ else statement with the following control graph would have a

cyclomatic complexity value of 2 (4 edges- 4 nodes + 2):

Figure 2-4: Example control graph

The Carnegie Mellon Software Engineering Institute provides the following

guidelines for interpreting cyclomatic complexity values [SEI06]:

Table 2-2 Cyclomatic Complexity Values

Cyclomatic complexity is widely accepted as a predictor of defects and as a

measure of the difficultly in maintaining code [BDK +93] [KS97].

2.6.2.1.1.2 Static Path Count

Static path count is simply the number of distinct paths through a program. The

metric assumes all predicates are independent [Hat93].

16

2.6.2.1.1.3 Fan-in/ Fan-out

Fan-in/Fan-out measures the number of times a particular function is referenced,

and the number of functions it references. Hatton defines the associated metric

as fan-in + fan-out+ (fan-in x fan-out) [Hat93].

2.6.2.1.2 Computional Complexity Metrics

Computational complexity metrics quantify a program's calculation complexity.

This type of metric is most appropriate in cases where program code contains

more calculation logic than branching logic.

The Halstead Complexity Measure is an excellent example of a computation

complexity metric. This metric quantifies complexity based on operators and

operands used in program source code. The metric is based on the following

parameters [Hal77] [SEI06]:

n1 = the number of distinct operators

n2 =the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

from which the following five measures are computed:

Table 2-3 Halstead Complexity Measures

Measure Symbol Formula
N N = N1 + N2
N

Volume v
Difficul D
Effort E

17

Halstead's complexity measures differ from McCabe's cyclomatic complexity in

terms of their suitability. Halstead metrics focus on operators and operands. As

such they are better suited to measuring computational complexity. McCabe

metrics on the other hand are more focused on logical complexity [SEI06] .

2.6.3 Modularity & Safety

The conventional wisdom in software engineering is that modularity is good

[Mco93]. However, both Hatton and Conte present evidence that suggests over

modularization can be as harmful as under modularization [Con86] [Hat93].

Hatton asserts that proportionally more errors are committed in small software

components than large ones. He defines the following logarithmic relationship

between the number of static paths and the number of software defects in a

module where nb is the number of bugs, ~is the number of static paths, and cis a

constant close to 1:

This formula predicts that a single module with a complexity of 100 will have less

defects that 10 modules each with a complexity of 10. This relationship is

significant as it describes the interaction between modularity, complexity, and

defect count.

18

Conte defines three levels of modularization:

Table 2-4 Conte's Modularization Levels

Modularization Level Description
Unrnodularized the entire program is written as one routine
Partially modularized the program is broken up into a "moderate" number

of subroutines
Super modularized the program is broken up into twice the number of

subroutines as the partially modularized version

He has illustrated that the best level of reader comprehension is achieved with a

partially modularized version of a program [Con86] . This is relevant as

comprehension is a necessary prerequisite to successful program maintenance.

These somewhat counter-intuitive findings illustrate that modularity plays an

importance role in software safety, but that modularity is perhaps best applied in

moderation.

2.6.4 Compiler Standards Compliance

The extent to which a compiler adheres to a language standard is a key

determinant of software safety [Hat95]. The Microsoft Visual C++ 6.0 0fC 6)

compiler used for initial system development did not conform to the ANSI C++

standard in a number of significant ways [ANSI03]. Visual C++ 8.0 0fC 8)

supersedes VC6 and exhibits improved ANSI compliance. As a result of this

improved compliance, a number of breaking changes have been introduced.

Code that compiled under the old compiler is now considered illegal. Almost

without exception, code that no longer compiles with VC 8 is in some way

incorrect. This finding is consistent with the assertion that the compiler itself is

often the simplest and most effective debugger [Mco93][Mey98]. As such porting

the code base from VC 6 to VC 8 made a major contribution to system

correctness and achieving the goal of a stable release build. The nature and

19

distribution of breaking changes corrected during the compiler upgrade are

discussed at length in Chapter 4.

2. 7 Software Testing

On average, software testing consumes at least 50% of the effort required to

produce a working, fielded software system [Bez90]. Given this, and given that

this investigation is concerned with the distribution of software defects, some

discussion of the topic is warranted. Having said this, software testing is a vast

topic that can only be given superficial treatment here. Portions of the discipline

that are of particular relevance to this investigation are discussed in this section.

2.7.1 Definitions

The terms "verification" and "validation" and "testing" are often used together in

the context of software evaluation. Marks provides the following definitions of

some commonly used (and confused) terms [Mar92]:

validation: 'A determination of the correctness of the final product produced
by a development project with respect to the user's needs and
requirements.'

verification: 'A demonstration of the consistency, the completeness, and the
correctness of the system .. .'

testing: 'An examination of the behaviour of a system by executing the
system on a sample set'

The distinction between "verification" and "validation" is of particular interest.

Verification involves checking that the software correctly implements its

requirements. Validation involves ensuring that the software meets the

customer's needs [Boe78][Som01]. A software product may dutifully implement a

set of requirements and remain completely unusable. The concept of "fit for

20

purpose" is relevant here. This idea accepts that software will never be completely

defect free, but states it must ultimately meet the needs of its users.

The word "sample" in the definition of "testing" above also warrants discussion.

The extent to which a test samples the program code it is evaluating is referred to

as the test's code coverage. Since it is impossible to completely test any reasonably

complex software system, a subset of tests that has the highest probability of

detecting the most errors should be identified [Kit95].

The concept of regression testing must be also introduced. Bezier defines

regression testing as follows [Bez90]:

"atry repetition if tests (usual!J cifter siftware or data change) intended to show that the

siftware's behaviour is unchanged except insifar as required l!J the change to the

siftware or data"

A large portion of the dataset used in this investigation was collected using the

system's automated regression testing capability.

Finally, some definitions of system size are relevant. The size of a system is a

major factor in determining a test strategy. Marks provides the following

definitions of system size in his book "Testing Very Large Systems" [Mar92]:

small

medium:

large:

'A small system provides a single service, such as an inventory
system, an accounting system, or a billing system. Typically, a
small system is under 500 000 lines of code.'

'A medium system is one that provides several services. The
major difference between a small system and a medium system is
the functionality and integration of the functionality into a user-
oriented package. Typically, a medium system is 500 000 to 2
million lines of code.'

'A big software system provides many services. The major
difference between a medium and a big system is the complexity

21

of the functions. Complexity can be caused by complex
computational algorithms or by complex data relationships.
Typically a big system is more than 3 million lines of code.'

On the basis of line count alone, the system studied here would be

considered medium sized. However, the complexity of its algorithms, its

safety related nature, and high customer expectations mean it exhibits many

of the properties Marks attributes to large systems.

2. 7.2 Testing Strategies

Two fundamental test strategies exist: "Black-box" testing and ''White-box"

testing. Black-box testing evaluates software against its requirements. Tests of this

type are derived from the software's specification rather than its internal

structure. Black-box tests are meant to take an objective, independent view of

software from a requirements based perspective. As such they should be written

in isolation from program code to the greatest extent possible [Kit95].

In contrast, White-box testing requires knowledge of internal program structure.

Tests of this type are concerned with internal issues such as code coverage, logical

incompleteness, decision complexity, etc. White-box testing permits the test

author to choose input values that will most effectively exercise all braches of

program logic [I<.:it95]. The static and dynamic analysis techniques discussed

below also fall into this category of testing.

2. 7.3 Static Analysis

Static analysis describes the semantic and syntactic inspection of program source

code to detect software defects prior to program execution. The term

"Automated Software Inspection (ASI)" is also used to refer to this approach.

The first and most well known static analysis tool is Lint, created by Johnson at

22

Bell Labs in 1978 Ooh78]. Lint was designed to detect suspicious programming

constructs and non-portable code. Since then, commercial static analysis tools

have proliferated. These tools support a wide range of languages and many allow

the user to define custom rules that are specific to the coding standards of the

organization in question. In a sense, all code that is compiled undergoes

rudimentary static analysis. Object code cannot be generated from syntactically

illegal source, and can therefore never be executed. Some languages attempt to

increase the number of potential defects that can be detected statically. Strongly

typed languages such as Ada forbid implicit type conversions and make

constructs such as incomplete switch statements illegal. In this way, language

definition can make a significant contribution to software safety [Hat93]. All of

the metrics described in section 2.7 above can be measured statically. Static

analysis techniques have been shown to effectively predict failures and fault prone

modules [NWH +04].

2. 7.4 Dynamic Analysis

In contrast to static analysis, dynamic analysis describes the process of detecting

faults during program execution. This is a far less desirable state of affairs, as the

likelihood of detecting a defect at runtime depends on the quality of testing. By

definition, a fault that is only detectable at runtime may not be detected at all

[Hat93]. Many commercial tools exist to facilitate dynamic analysis. While this

investigation is concerned with memory management related defects, dynamic

analysis techniques can be applied to other functional areas including code

coverage and performance analysis. Two of the best-known dynamic analysis

tools for memory management are Rational's Purify and Parasoft's Insure++

tools. Most dynamic analysis tools work by instrumenting object code with

constructs that allow the tool to track where and when a particular defect

originates. In addition to the source code file and line number of the leak, the

23

most valuable data a dynamic analysis tool can report is the call stack associated

with the leak. The call stack provides crucial information on state of program

execution at the time the leak occurred. Interestingly, the Microsoft debug

libraries utilized in this investigation do not work by instrumenting object code.

Instead, the runtime library itself tracks the state of the heap. Unfortunately the

Microsoft debug library reporting functions to not provide call stack information.

As such all of the leak data used in this investigation was gathered without the

benefit of a call stack. Dynamic analysis tools used for code profiling and

performance tuning include Intel's vTune and Microsoft's Profile Guided

Optimization.

2.8 Software Process

The Oxford Dictionary of English defines a process as a series of actions or steps

taken in order to achieve a particular end. In the case of software engineering, the

end is typically the creation of a software product. This section discusses software

process topics relevant to this investigation.

2.8.1 Process Models

A software process model is an abstract representation of a software process

[Som01]. Well known software process models include the waterfall model, the

evolutionary (or spiral) model, re-use (or component) based development, and

formal methods. Many large software projects take a blended approach, using

different techniques for different parts of the system. The classic software

process models mentioned above are well documented in standard software

engineering textbooks and will not be discussed in detail. In this context it is

sufficient to identify elements common to all software process models. To a

greater or lesser extent, all models address the core topics of specification, design,

implementation, and verification.

24

2.8.2 Process Measurement

On a large project organizational characteristics eclipse the attributes of any single

individual. As such the quality of the software process governing the team

becomes a large determinant of the project's success [Kit95][Eva04]. There is a

growing body of work dedicated to the assessment and evaluation of software

process. For example, the Carnegie Mellon Software Engineering Institute (SEI)

introduced the concepts of organizational maturity and capability. These concepts

and the associated five level Capability and Maturity Model (CMM) are used to

quantify an organization's process model. The SEI's description of each level

(paraphrased by [Kit95]) is outlined below:

Table 2-5 SEI CMM Levels

Level Description
1: Initial Unpredictable and poorly controlled

2: Repeatable Can repeat previously mastered tasks.

3: D efined Process characterized, fairly well understood

4:Managed Process measured and controlled.

5: Optimized Focus on process improvement.

In short, CMM does not specify what an organization's process should be. Rather

it states that organization should have a process, follow it, measure how well it is

working, and continually improve it. Due to the competitive nature of software

engmeenng, an organization's CMM level can be a very sensitive piece of

information. It is often only disclosed to a client in a confidential bidding

situation. It is becoming increasingly common for large RFP's to specify a

minimum CMM certification level.

25

2.8.3 Process Improvement

The ability to evaluate a process and adjust it accordingly is a key indicator of an

organization's process "maturity". This feedback loop is referred to as process

improvement. A practical exercise in process improve taken from the system's

development is discussed below.

As discussed in section 2.2 above, the MDA system has undergone three major

releases (A, B, and C). In an effort to reduce defect densities experienced in

releases A and B, a formal review process was introduced for release C. The

details of this process are described in this section. The effectiveness of this

process is analyzed and discussed in Chapter 4.

Releases A and B had very little process in support of implementation activities.

Formal work package descriptions were created and assigned to the responsible

programmer. However, no formal review or closure activities were performed.

The programmer's word was generally accepted as sufficient assurance that

coding activities had been properly completed. Problems related to system

integration and missing functionality were often not discovered until much later,

sometimes during formal testing activities.

There is a large body of evidence in the literature to suggest that code inspection

is a cheaper and more effective method of discovering defects that formal testing

[Mco95]. This evidence supports the decision by senior project staff to introduce

a formal review process.

The "Release C" software development process introduced a three-stage review

intended to establish the correctness of a work package in terms of standards

compliance and general usability. A corresponding checklist was created to

26

support each stage of the process. The process and workflow are described in the

following table and flowchart.

Table 2-6 Review Process Description

Review Stage Description
Code Review Team Leader reviews code for standards compliance,

readability, and general correctness. Static analysis is not
included as part of the review process.

Demonstration Programmer demonstrates new system capability to senior
project members. The demonstration is a high level
inspection intended to establish general correctness.
Workflow, requirements coverage, and usability are
emphasized. Formal verification is not performed.

Integration & Establishes closure by verifying that all code review action
Selloff items have been completed, requirements have been updated,

and common integration traps and pitfalls have been
considered.

27

optional
iteration

Work Package Start

Work Package Description issued to programmer

Programmer codes software

Input Code Review Output

Functionality Output
Demo.

Programmer completes all action items

Integration
Sell-off Output

Figure 2-5: Review Process Flowchart

2.8.4 Process Engineering

In the McGill-IBM Project on Software Process, Madhavji argues that most

software process models are too general to be of any practical value. He uses the

term "Software Process Engineering" to refer to the more detail oriented,

tangible treatment of the topic [MKL91]. Madhavji's most relevant assertion

refers to the relationship between software process and tool support: "Without

adequate process understanding, some aspects o/ supporting technology cannot be dfective.

Similarfy, without appropn·ate supporting technology, some aspects o/ the process are difficult to

understand." The code review process outlined above is a case in point. It contains

a "Code Review" item, which at a high level seems reasonable. However, without

appropriate tool support (e.g. effective automated code inspection), the process

28

cannot be effectively implemented. Conversely, an expensive static analysis tool is

ineffective if it is not used as a component of a larger software process. While

these statements may appear obvious, the findings documented in Chapter 4

suggest that the integration of software process and tool support is difficult to

achieve.

29

Chapter 3

Methodology

Two distinct datasets were collected during this investigation. The first set

contains memory leak data identified during dynamic and static analysis. The

second contains data on breaking changes collected during the compiler upgrade

discussed in section 2.6.4. Each of these datasets and their associated metrics are

discussed separately in this section.

3.1 Memory Leak Detection

Memory leaks were identified using both dynamic and static analysis techniques.

Both approaches have strengths and weaknesses that are discussed in Chapter 4.

Each memory leak detected was recorded and categorized according to type,

subsystem, and seniority of the responsible programmer. The programmer

responsible for a given memory leak was identified using the project's version

control system. The offending file revision was identified using bisection of the

revision history.

3.1.1 Dynamic Analysis

D ynamic analysis was conducted using the system's automated regression testing

capability in conjunction with Microsoft's debug heap facility. As part of the

normal development cycle, core portions of system functionality are automatically

regression tested. This testing checks for system crashes and differences in

30

expected results. The regression-testing tool uses a database of test cases intended

to achieve broad code coverage. The system's regression testing database contains

2209 test cases. A representative subset containing 1671 of these cases was

selected and used as the basis for dynamic analysis.

3.1.1.1 Code Coverage

An attempt was made to quantify the extent of code coverage achieved by the

regression-testing database. However, the code base and degree of

modularization proved too large for available profiling tools.

3.1.1.2 Instrumentation

After reviewing available memory leak detection tools the native support

provided by Microsoft's debug runtime libraries was selected. While not the most

user friendly, these proven facilities are available at no additional cost to the

existing development environment. Use of Microsoft's debug heap facilities

reqwres that each source @e be instrumented with a short pre-processor

directive:

#ifdef DEBUG
#define-new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = FILE
#endif

This macro replaces calls to the standard C++ new operator with a special

version that records the @e name, line number, and size of each allocation. At

any point during program execution, a system call can be made to report dynamic

allocations that have not yet been freed.

31

3.1.1.3 Detection Methodology

Debug heap memory leak detection facilities were validated though the deliberate

creation of various defects. Following validation of the general approach, the

code base was fully instrumented as described above. Analysis of the regression

test subset proceeded as follows:

1. Enable debug heap allocations at program start

2. Execute regression test case(s)

3. Dump leaked memory at program shutdown

4. Examine dump file and document leaks

This process was repeated over several weeks until the entire subset of regression

tests had been executed. Identification and documentation of leaks in this manner

was extremely time consuming. While the causes of some memory leaks are

obvious, others are extremely subtle. This challenge was complicated by the lack

of call stack information in the debug heap output report.

3.1.2 Static Analysis

Static analysis was conducted on the same core subsystems covered during

dynamic analysis. The C++test tool produced by Parasoft was employed. This

tool implements a wide range of industry standard rule sets. In addition it

provides a rule editor that allows the user to define custom rules. Rec. 58 from

the classic Ellemtel coding standards document was selected [Ele92] . This rule

states simply:

Do not allocate memory and expect that someone else will de-allocate it later.

32

I

The C ++test tool implements Ellemtel Rec. 58 as three separate rules as follows:

If local memory in:

• a global function is allocated via new it should be deleted in this function.

• a class is allocated via new it should be de-allocated in destructor via delete.

• a class is allocated via new a destructor should be defined as well.

The spirit of the Ellemtel rule is sufficiently general to cover all scenanos.

Unfortunately the specific implementation of this rule by Parasoft was too

simplistic and naive to be of much use. The Parasoft rules properly track

allocations via new and de-allocations via delete in the destructor but falls down

when alternative methods of allocation or clean up (e.g. template functions) are

used. In these cases the rules are triggered improperly and false violations are

reported. Some attempt was made to compensate for this by customizing the

rules to account for the specific coding style in question. The rule engine does

provide a rich grammar to describe a wide range of syntactic constructs.

However, considerable effort would be required to craft a custom rule set that

was sufficiently rich to correctly identify the majority of statically detected

memory management defects.

To the extent that it was able to correctly identify simple memory leaks, the static

analysis tool did make some contribution to the investigation. However, the

impact of this approach was not as great as was hoped. This limited experiment

involving static analysis has shown that considerable effort is required to create a

usable set of rules.

33

3.2 Memory Leak Classification

Numerous defect classification schemes have been proposed. Some, such as

Orthogonal Defect Classification (OCD) from IBM are comprehensive

[CBC+92] . Other schemes are more focused on a particular class of defect, such

as memory leaks [VS04][SC91]. A survey of the literature did not reveal a

classification scheme that would describe a memory leak both in terms of a class

life cycle and variable context. As such, a two part memory leak classification

scheme is proposed here. The first part describes the leak in the context of the

class life cycle. Class life cycle is divided into four phases: Initialization,

Implementation, Interface, and Destruction. The relationship between a memory

leak and the lifecycle of the affected class is highly relevant. Understanding where

in the class life-cycle most leaks occur can help to focus preventative action (e.g.

static analysis, code review) to achieve the greatest impact. Table 3-1 below

provides a defmition of each category and examples of the types of leaks that can

occur in each one.

34

Table 3-1 Life-cycle Leak Classification Categories

Classfication Description
Initialization Errors related to object creation and assignment.

Example 1: missing pointer initialization

Example 2: faulty assignment operator

Implementation Errors related to the core implementation of a particular
module.

Interface

Destruction

Example 1: a pointer is allocated but not deleted.

Example 2: a pointer already is use is overwritten

Errors related to poorly defined or understood class interfaces.

Example 1: The interface of the function specifies that the
pointer variable is deep copied. The caller assumes the pointer
is shallow copied and fails to call delete.

Example 2: a function interface specifies return by reference.
No corresponding member variable exists, so a reference to a
heap allocated local variable is returned.

Covers errors related to object destruction.

Example 1: memory is allocated using a member variable
pointer with no corresponding delete in either the destructor
or a reset method called by the destructor.

Example 2: no destructor defined.

The second part of the classification scheme describes the context of the

variables involved. Variable context can be either scalar or composite. Scalar

context refers to a single local or member variable. Composite context refers to

one or more local or member variables stored within a composite structure such

as a list, vector, or struct. The scalar versus composite context of a leak is

important as it can help to highlight data types and structures that may be poorly

understood by application programmers.

35

Together the two parts of the classification scheme describe a memory leak. For

example, the results of this investigation found that 32% of memory leaks were

related to class destruction. Of these 70% involved variables in scalar context;

while the remaining 30% involved variables m composite context. The

classification scheme described here is used in the experiments described in

Chapter 4.

3.3 ANSI C++ Compliance

The code base was migrated from VC6 to VC8 (see section 2.6.4 for details) one

subsystem at a time. Each breaking change encountered was documented and

categorized. In some cases the broken code was benign, while in others the more

standard compliant compiler had detected code that was legitimately incorrect.

Although this work forms a relatively minor part of the overall investigation these

errors are highly instructive. They offer tangible evidence of the relationship

between the standards compliance of a compiler and safety of the object code it

produces. The nature and distribution of these errors are discussed in Chapter 4.

36

3.4 Metrics

3.4.1 Memory Leak Density

Memory leak density is computed as the number of memory leaks detected in a

given subsystem divided by the size of that subsystem. Memory leak density is

reported as the number of leaks per 1000 source lines of code.

3.4.2 Complexity Measurement

McCabe's cyclomatic complexity was chosen as the most appropriate complexity

metric for this investigation. The popularity of this metric in the literature and

wide tool support were the primary reasons for this choice.

The CCCC (C++ Cyclomatic Complexity) tool was used to gather complexity

data. The tool was written by Tim Littlefair as part of his PhD thesis [Lit01].

CCCC computes various code metrics including McCabe's cyclomatic complexity

and source line counts.

Raw complexity data was transformed to the "Complexity D ensity" metric

proposed by Gill & Kemerer [GK91]. Complexity density is computed by

dividing a subsystem's cyclomatic complexity by its size in source statements.

This transformation normalizes complexity values and permits subsystems of

differing sizes to be compared. Complexity counts tend to be strongly correlated

with module size. This makes sense, as larger modules have more code and hence

more logic. Complexity metrics are sometimes discounted as indicators of

problematic code in favour of module size [OWB04]. However, when the

concept of complexity density is introduced, the value of complexity metrics as a

predictor is re-established. The findings presented in Chapter 4 support this

assertion.

37

3.4.3 Programmer Experience

The experience level of the programmer responsible for creating each memory

leak was classified as either Junior or Senior based on their ranking within the

firm. MDA uses a seven level ranking scheme for engineering staff. Programmers

at levels 1 to 3 were classified as Junior; programmers at levels 4-7 were classified

as Senior. Due to the project duration, some programmers moved from junior to

senior positions part way through the implementation. As such, the experience

level assigned to a given memory leak is the experience level of the responsible

programmer at the time the leak was created Banker et al. have reported a correlation

between programmer experience and error rates [BDK +02].

38

Chapter 4

Experiments and Results

This chapter provides details and results of six separate experiments conducted

during the course of this investigation. The first experiment involves an analysis

of the type and distribution of memory leaks encountered. The second

experiment compares memory leak density with subsystem complexity. The third

experiment conducts a complementary investigation of the relationship between

general defect density (as opposed to memory leak density) and subsystem

complexity. The fourth experiment compares memory leaks with programmer

experience. The fifth experiment examines the impact of process improvement

on general defect density. The sixth experiment presents an analysis of ANSI

compliance related breaking changes identified during a C++ compiler upgrade.

4.1 Memory Leak Distribution

The goal of this experiment was to quantify memory leak distribution using the

classification system proposed in section 3.2. Figure 4-1 below illustrates that

majority of memory leaks identified relate to class implementation. This is not

surprising as a class implementation typically contains the majority of the code

and the associated complexity. More interesting though, is the proportion of leaks

related to class destruction and the breakdown of scalar versus composite variable

context among them. Almost a third of leaks encountered are associated with

class destruction. On one hand this finding is troubling, as destructor logic tends

39

to be quite straightforward. It is encouraging, however, to realize that by focusing

on a single functional area a large positive impact can be realized. Experience

gained during this investigation showed that class destruction is one area that

lends itself well to static analysis.

Memory Leak Distribution

Composite
Destruction Initialization

Scalar
Destruction

22%

8%

10% 3%

Implementation
57%

Figure 4-1 Memory Leak Distribution

Interestingly, one third of destruction related leaks involved composite storage.

Leaks of this type typically consisted of lists or structs of pointers that were not

properly de-allocated. These findings suggest that additional care must be taken

when using data structures of this type. As well, it is possible that static analysis

techniques could be employed to reduce this particular class of error.

The most significant discovery of this experiment was that 10% of all memory

leaks involved the unnecessary use of pointers. The term "unnecessary" must be

40

qualified: in this experiment, pointer usage was deemed unnecessary if the pointer

in question was local to the function and the associated allocation was not needed

once the function exited. In other words, a local, stack allocated variable would

have been equivalent. This finding suggests that pointer usage should be more

tightly constrained, perhaps even to the point of forbidding pointer usage unless

otherwise authorized. Indeed, some coding standards prohibit the use of dynamic

memory all together [MISRA04].

41

4.2 Memory Leak Density & Subsystem Complexity

The goal of this experiment was to establish if a statistically significant correlation

exists between memory leak density and subsystem complexity.

4.2.1 Dataset

The dataset consists of 168 memory leaks identified using the static and dynamic

analysis techniques. Leaks were identified in 29 of 48 subsystems analyzed. D ata

on the size and McCabe cyclomatic complexity of each subsystem was collected

and used to compute complexity density values. All data was collected using the

tools and techniques described in Chapter 3. The dataset shown below contains

complexity density and leak density data along with associated mean and

difference values to support correlation analysis. Field descriptions for the dataset

are described in Table 4-1 below.

Table 4-1 D ataset field descriptions

Field Description
Size SLOC count

Complexity Cumulative McCabe complexity

Leaks Number of memory leaks detected

Complexity D ensity Complexity / Size

Leak D ensity (Leaks/ Size) x 1000 (KSLOCs)

Rank X, Rank Y, D , D 2 Spearman non parametric analysis values

42

T
ab

le
 4

-2
 C

om
pl

ex
ity

 D
en

sit
y

ve
rs

us
 L

ea
k

D
en

sit
y

C
or

re
la

tio
n

D
at

a

C
om

pl
ex

ity

Le
ak

 D
en

si
ty

 (y
)

S
ub

sy
st

em

Si
ze

C

om
pl

ex
ity

Le

ak
s

D
en

si
ty

 (x
)

(p
er

 K
SL

O
C

)
R

an
k

x
R

an
k

y
D

DA

2
1

79
56

2
14

45
3

14

0.
18

17

0.
17

60

28

14

14

19
6

2
25

30
1

26
66

4

0.
10

54

0.
15

81

8
10

-2

4

3
55

45

77
6

1
0.

13
99

0.

18
03

17

15

2

4
4

15
86

2
15

80

2
0.

09
96

0.

12
61

4

8
-4

16

5

23
45

5
24

66

4
0.

10
51

0.

17
05

7

13

-6

36

6
25

83

43
9

1
0.

17
00

0.

38
71

26

25

1

1
7

82
59

2
10

89
2

14

0.
13

19

0.
16

95

13

12

1
1

8
38

83
9

78
58

1

0.
20

23

0.
02

57

29

2
27

72

9
9

39
78

2
23

97

2
0.

06
03

0.

05
03

1

3
-2

4

10

93
97

12

65

2
0.

13
46

0.

21
28

14

18

-4

16

11

21

62
7

23
48

3

0.
10

86

0.
13

87

9
9

0
0

12

99
15

10

06

3
0.

10
15

0.

30
26

5

22

-1
7

28
9

13

36
68

8
41

70

15

0.
11

37

0.
40

89

11

26

-1
5

22
5

14

25
01

4
42

79

3
0.

17
11

0.

11
99

27

7

20

40
0

15

34
00

45

9
1

0.
13

50

0.
29

41

15

21

-6

36

16

93
14

9
97

39

1
0.

10
46

0.

01
07

6

1
5

25

17

70
89

7
92

99

14

0.
13

12

0.
19

75

12

17

-5

25

18

17
12

26

0
1

0.
15

19

0.
58

41

21

28

-7

49

19

20
79

3
33

36

6
0.

16
04

0.

28
86

24

20

4

16

20

16
87

0
23

29

4
0.

13
81

0.

23
71

16

19

-3

9

21

11
86

4
10

96

1
0.

09
24

0.

08
43

2

5
-3

9

22

12
63

5
13

72

2
0.

10
86

0.

15
83

10

11

-1

1

23

23
73

7
22

30

2
0.

09
39

0.

08
43

3

4
-1

1

24

33
35

9
49

28

14

0.
14

77

0.
41

97

18

27

-9

81

25

25
02

6
38

27

3
0.

15
29

0.

11
99

22

6

16

25
6

26

50
97

6
81

09

19

0.
15

91

0.
37

27

23

24

-1

1
27

57

26
3

84
69

11

0.

14
79

0.

19
21

19

16

3

9
28

16

15
5

27
40

13

0.

16
96

0.

80
47

25

29

-4

16

29

30

30

45
9

1
0.

15
15

0.

33
00

20

23

-3

9

To
ta

l
24

64

43

\

4.2.2 Experimental Details and Results

Analysis was performed on the dataset to determine whether a statistically

significant correlation exists between complexity density and leak density.

Spearman non-parametric analysis was selected in order to avoid making

assumptions regarding the distribution of data [JB92].

I

I Leak Density vs. Complexity Density

I
0.9000

0.8000

0.7000

(.) 0.6000
0
..J • Ul 0.5000 ~,
:; 0.4000
-",

0.3000 ..J

0.2000

I 0.1000

0.0000 .

• •
...... •••

~ •
_

• • • •
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

I Complexity Density

Figure 4-2: Leak Density vs Complexity Density Scatter Plot

A scatter plot of the data show above revealed a potentially linear relationship

between the variables in question. As the complexity density (x-axis) increases,

there is an apparent increase in the leaks per KSLOC (y-axis).

44

...
:'

4.2.2.1 Spearman Analysis

Spearman non-parametric correlation calculations for the complexity density

versus leak density experiment are shown below:

H 0 =There is no correlation between complexity density and leak density.

rs=1- 6"'i.D2 =1- 6x2464 =0.39
N(N 2 -1) 29(29 2 -1)

The computed r value of 0.39 exceeds the critical r value of 0.37 (p = 0.05) for df

= 27 (two tailed).

These results allow us to reject H0 at ex = 0.05 and suggest a medium strength

correlation between complexity density and leak density.

4.2.2.2 Discussion

The Spearman test shows a medium strength correlation (r = 0.39; ex = 0.05).

Clearly there are many determinants of leak density in addition to program

decision complexity. Having said this, this result shows that a statistically

significant relationship exists between the two parameters. These findings are

consistent with similar research conducted by Nagappan et al [NBZ06].

45

II lj

\

4.3 Defect Density & Subsystem Complexity

As a complement to the Leak Density & Subsystem Complexity experiment, a

secondary investigation was conducted to see if a relationship existed between

general (e.g. not memory leak specific) defect density and subsystem complexity.

Data used in this experiment was gathered from the system's defect tracking

database. A subsystem was implicated in a defect if at least one of its files was

changed during the course of the defect's resolution. The defect count per

subsystem was converted to a density value. Complexity density values were

computed as described above. An initial scatter plot of the data shown in Figure

4-3 below showed no discernable relationship between the two parameters.

Defect Density vs Subsystem Complexity

14

0
12 - • 0 • ...J 10 • • 1/)

~ 8 • Cl> • c. 6 - • J!l .. • ~- • 0
.! 4 .. ~··· Cl>
0 2 • • • • 0

0 0.05 0.1 0.15 0.2 0.25

I
Complexity Density

Figure 4-3: Defect Density vs Subsystem Complexity

Subsequent numerical analysis using the Spearman technique confirmed this lack

of correlation (r ::::: -0.1). This finding is consistent with those of both Gitten and

Ostrand, both of whom found no signification relationship between subsystem

complexity and defect density [GKGOS][OWB04].

46

4.4 Memory Leaks & Programmer Experience

4.4.1 Dataset

This experiment utilized the same data set as the experiment described above.

For each memory leak in the dataset a responsible programmer was identified.

and classified as either junior or senior. Of the 168 memory leaks identified, 101

were created by junior programmers, while the remaining 67 were created by

Senior programmers. 24 junior programmers and 1 0 senior programmers are

represented in the dataset. All data was collected using the tools and techniques

described in Chapter 3.

4.4.2 Experimental Details and Results

Analysis was performed on the dataset to determine whether a statistically

significant relationship exists between the number of memory leaks created and

the level of programmer experience. D ue to the categorical nature of the data a

Chi-Squared (X2
) analysis was selected OB92].

47

4.4.2.1 Chi-Squared Analysis

Chi-Squared calculations for the programmer expenence versus memory leak

experiment are shown below:

H0 = There is no relationship between programmer expenence and the

creation of memory leaks.

Table 4-3 Chi Squared Analysis of Programmer Experience

Expected Leak values were computed by multiplying the total leaks found by the

proportion of Junior and Senior programmers on the project. For example,

approximately 70% of programmers are Junior level, as such the expected

number of leaks for Junior programmers is 70% of 168, or 118.59.

The computed X 2 value of 8.87 exceeds the critical value of 6.64 (p = 0.01) for 1

degree of freedom. This result allow us to reject H0 at rx = 0.01 and indicates that

senior programmers created proportionally more memory leaks than expected.

4.4.2.2 Discussion

This somewhat counter intuitive result may have a variety of causes. It is possible

that senior programmers are more comfortable with the advanced topic of

dynamic memory management. Given this they may be more likely to use the

technique and hence fall victim to its associated pitfalls. A second possible

explanation is that senior programmers are more productive than their junior

48

counterparts. As such, seruor programmers may produce a greater absolute

number of errors even their error rate is lower. Training issues must also be

considered. Although senior programmers may have more software development

experience in the broad sense, they may be less familiar with newer object

oriented techniques.

4.5 Process Improvement & Defect Density

This experiment utilized the project's defect management database to assess the

impact of the process improvements discussed in section 2.8. Defect densities of

software written before and after the enactment of the review process were

compared. The defect densities discussed here are not restricted to memory

management problems. All pre-release defects from Release B and C are

compared. Post release defects are not considered, as Release C post release

defect data was not available at the time of writing.

Table 4-4 Release B vs. C Defect Densities

It is clear from these figures that the process improvement measures introduced

between Release B and C did not help to reduce defect densities. Having said this

some qualification is required. Part of the strategy behind the review process was

to identify defects earlier during the development cycle. In effect, turning post-

release defects into pre-release defects so they can be dealt with more easily and

cheaply. As such, it is possible that this effect is occurring here, as Release C pre-

release defects are indeed higher than in Release B. This picture will not be

complete until Release C post-release defects are available. Even so, a defect is a

defect, whether it occurs pre-release or post-release. While it is good to have

49

identified it, it would be better had it not occurred at all. The goal of the software

review process described here was to prevent defects from occurring through

improved understanding of requirements, code inspection, and peer review

demonstrations. Given these stated objectives, it is hard to argue that the process

was successful in the face of the numbers presented here.

The results presented throughout this investigation point to the need for a

comprehensive white-box testing program. Such a program would incorporate

both static and dynamic analysis techniques into the weekly build cycle of the

project. The project's current black-box testing program is comprehensive, but

it is only part of the picture.

The existing regression automated regression and black-box testing regimes must

be supported by a parallel white-box program. Each type of testing emphasizes a

specific category of errors: Black-box testing is requirements focused, while

regression testing detects system crashes and unexpected behaviour changes.

White box testing can detect an entirely different category of defects, and to a

certain extent, can do so in a pre-emptive manner. Memory management, logical

errors (e.g. logical incompleteness, orphaned branches, etc), and complexity hot

spots can all be identified using static and dynamic analysis techniques. Without a

white-box regime, the testing program is simply not as complete as it could be.

50

4.6 ANSI C++ Compliance

This experiment examines the distribution of errors resulting from the compiler

upgrade described in section 2.6.4. This upgrade yielded approximately 3300

compiler warnings and errors. Once spurious and informational warnings were

reconciled, 1598 meaningful warnings and errors remained. From this set, 66

legitimate software defects were identified. The following table shows the

proportion of a particular type of error or warning that yielded a legitimate defect.

Table 4-5 Software defects identified by compiler error

Error Error Defect Proportion Description
Number Count Count

C2065 170 3 0.02 Undeclared identifier
C2440 110 2 0.02
C2675 1 1 1
C2678 2 2 1
C3867 35 35 1
C4353 1 1 1
C4430 300 22 0.07

It is interesting to note that some error types appear to have a higher predictive

value than others. There also appears to be an inverse relationship between the

frequency of an error and its predictive value. For example, error C3867 (function

call missing arguments) was 100% predictive, but was only 1/ 10th as frequent as

error C4430 (missing type specifier) which was only 7% predictive.

Examples of the unintended behaviour associated with each of the defect types

identified above are outlined in the table below.

51

C
20

65

C
24

40

C
38

67

C
26

75

C
26

78

C
43

45

C
44

30

I
L

oo
p

Ex
ec

ut
io

n

I A
ss

ig
nm

en
t

I C
om

pa
ri

so
n

I
U

nd
ef

in
ed

Ty
pe

co

nv
er

si
on

Ta
bl

e
4-

6
A

N
SI

 C
om

pl
ia

nc
e

E
rr

or
 E

xa
m

pl
es

I f
o

r
(i

n
t

i
=

1;

i
<

10
;

i+
+

);

fo
o

(i
);

I v
o

id
 f

oo
 (

vo
id

)

do
ub

le
 x

=

g
et

D
is

ta
n

ce
;/

/C
3

8
6

7

I e
nu

m
 S

ta
tu

s
{s

PA

SS
,

s
FA

IL
};

S
ta

tu
s

x
=

fo
o

()
;

if

(x

==

"s
_F

A
IL

")

//
C

26
78

{

re
tu

rn

fa
ls

e
;

I I if

(p

!=
 N

UL
L

(p
->

is
V

al
id

 ()
)

{

re
tu

rn
 t

ru
e
;

ca
n

st
 x

fo

o
(x

);

5
.3

;
//

x
 a

c
tu

a
ll

y

52

//
C

43
45

5

T
he

 e
rr

or
 h

er
e

is
th

e
se

m
i

co
lo

n
at

 t
he

 e
nd

 o
f

th
e

lo
op

 c
on

tr
ol

st

at
em

en
t.

Th
is

 i
s

a
cl

as
sic

 e
xa

m
pl

e
of

 u
n-

in
te

nd
ed

 b
eh

av
io

ur

[H
at

95
].

U
nd

er
 th

e
V

C
6

co
m

pi
le

r,
th

e
st

at
em

en
ts

 in
si

de
 t

he
 lo

op

bl
oc

k
w

ou
ld

 h
av

e
ex

ec
ut

ed
 o

nc
e

us
in

g
th

e
la

st
 v

al
ue

 o
f i

.

T
he

"g

et
D

is
ta

nc
e"

fu

nc
tio

n
is

ca
lle

d
w

ith
ou

t
pr

ov
id

in
g

a
pa

ra
m

et
er

 li
st.

 A
s

su
ch

 t
he

 v
ar

ia
bl

e
x

is
as

si
gn

ed
 t

he
 a

dd
re

ss
 o

f
th

e
ge

tD
is

ta
nc

e
fu

nc
tio

n
ra

th
er

 t
ha

n
its

re

tu
rn

 v
al

ue
.

C
26

78

ca
pt

ur
es

 a
no

th
er

 v
ar

ia
nt

 o
f

th
is

 d
ef

ec
t

in
vo

lv
in

g
us

er
 d

ef
in

e
ra

th
er

 th
an

 b
ui

lt
in

 ty
pe

s.

C
on

si
de

r
th

e
en

um
er

at
ed

 t
yp

e
"S

ta
tu

s"
 t

ha
t d

ef
in

es
 s

ta
tu

s
co

de
s.

In

 t
he

 "
if

 s
ta

te
m

en
t a

bo
ve

,
th

e
en

um
er

at
ed

 v
al

ue
 s

_F
 A

IL
E

D
 is

in

co
rr

ec
tly

 w
ra

pp
ed

 i
n

qu
ot

es
 a

nd
 t

re
at

ed
 a

 s
tri

ng
.

U
nd

er
 t

he

V
C

6
co

m
pi

le
r

th
e

co
de

 c
om

pi
le

d
w

ith
ou

t e
rr

or
, a

nd
 t

he
 b

lo
ck

 o
f

co
de

 i
n

th
e

'tr
ue

'
br

an
ch

 o
f

th
e

'if
 s

ta
te

m
en

t
w

ou
ld

 n
ev

er

ex
ec

ut
e.

T
he

 e
rr

or
 h

er
e

is
a

m
is

si
ng

 lo
gi

ca
l '

A
N

D
' o

pe
ra

to
r &

&
 in

 t
he

 'i
f

st
at

em
en

t.
U

nd
er

 t
he

 V
C

6
co

m
pi

le
r

th
e

co
de

 c
om

pi
le

d
w

ith
ou

t
er

ro
r.

In
 t

hi
s

ca
se

 i
t

ap
pe

ar
s

th
at

 N
U

L
L

 i
s

be
in

g
us

ed
 a

s
a

fu
nc

tio
n

ex
pr

es
si

on
. T

hi
s

w
ou

ld
 a

lm
os

t c
er

ta
in

ly
 re

su
lt

in
 a

 c
ra

sh
,

or
 p

er
ha

ps
 w

or
se

, s
om

e
un

de
fi

ne
d

be
ha

vi
ou

r.

Th
is

 is
 p

er
ha

ps
 th

e
m

os
t v

ex
in

g
an

d
po

te
nt

ia
lly

 d
an

ge
ro

us
 c

od
in

g
er

ro
r

fo
un

d
du

ri
ng

 t
hi

s
in

ve
st

ig
at

io
n.

 U
nd

er
 t

he
 V

C
6,

 v
ar

ia
bl

es

th
at

 w
er

e
de

cl
ar

ed
 w

ith
ou

t a
 ty

pe
 s

pe
ci

fie
r w

ou
ld

 b
e

de
fa

ul
te

d
to

in

t.
In

th

e
ex

am
pl

e
sh

ow
n

he
re

,
th

e
nu

m
er

ic
 l

ite
ra

l
5.

3
is

im
pl

ic
itl

y
co

nv
er

te
d

to
 a

n
in

te
ge

r a
nd

 r
ou

nd
ed

 to
 5

.

Chapter 5

Conclusions

5.1 Contributions

The research presented here is distinct in two important ways. The first is the

focus on memory management problems in the context of code complexity.

When correlating defects with code complexity, existing research tends not to

distinguish between different categories of faults . The second is the use of the

complexity density metric, introduced by Gill and Kemerer, in the context of

memory management defects [GK91]. In addition, a two-part memory leak

classification scheme is described for categorizing a memory leak in terms of both

of class life cycle and variable context.

5.2 Findings

A statistically significant relationship was found between memory leak density

and subsystem complexity. The Spearman (non parametric) rank correlation

technique yielded a medium strength correlation (r = 0.39, ()(= 0.05).

A complementary investigation focusing on general defect densities did not find a

statistically significant relationship between general defects and subsystem

complexity. These findings are interesting as they suggest memory management

related problems could be sensitive to decision complexity.

53

An analysis of where memory leaks occurred during the class lifecycle indicated

that 57% of leaks occurred in class implementation logic, while 32% occurred in

class destructors. Of the destruction related leaks, 30% involved composite

storage. Leaks of this type typically consisted of lists or structs of pointers that

were not properly de-allocated. These findings suggest that additional care must

be taken when using data structures of this type.

On the whole, 10% of all memory leaks involved the unnecessary use of pointers.

This finding suggests that pointer usage should be much more tightly

constrained, perhaps even to the point of forbidding pointer usage unless

otherwise authorized.

A Chi-Squared analysis comparing memory leaks with programmer experience

showed that Senior programmers create proportionally more leaks than their

Junior counterparts (ex = 0.01).

The impact of a software process improvement effort was examined. A

structured process involving code review, demonstrations, and formal sell-off was

found to have no impact on general defect densities. These findings, together

with those listed above, are highly suggestive of a need for process improvement.

Specifically, a comprehensive white-box testing program is required. Automated

software inspection technologies are now sufficiently mature to support this

objective.

Coding defects identified as a result of improved ANSI C++ compliance were

enumerated and discussed. The frequencies and predictive power of various error

types were presented and an inverse relationship was noted between the two

parameters.

54

5.3 Future Work

This investigation has laid the groundwork work for a future prospective study. If

a comprehensive white-box testing program is introduced, its impact can be

measured using many of the same experiments and metrics employed here.

Differences from before and after can be measured and the impact of the testing

program can be quantified. Additional work in the area of static analysis is

required to support this goal.

Additional investigation into the relationship between memory leak density and

code complexity is also required. The findings presented here suggest a moderate

correlation between these two parameters. Future investigations will help to

improve our understanding of this relationship.

55

Bibliography

[Ale77]

[Ale01]

[ANSI03]

[ASU98]

[BDK+93]

[BDK+02]

[Bez90]

[Boe78]

[Con86]

[CBC+92]

C. Alexander. A Pattern Language. Oxford University Press,
1977.

A. Alexandrescu, Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison-Wesley, Boston, 2001.

American National Standards Institute. Programming languages
-C++, Final edition, 2003.

A. Aho, R. Sethi, J. Ullman. Compilers. Principles, Techniques,
and Tools. Addison-Wesley, Reading, 1988

R. Banker, S. Datar, C. Kemerer, Dani Zweig. Software
Complexity And Maintenance Costs. Communications of the
ACM, Vol. 36, No. 11, November 1993, pp. 81-94.

R. Banker, S. Datar, C. Kemerer, Dani Zweig. Software Errors
and Software Maintenance Management. Information
Technology and Management, Vol. 3, No. 1/ 2, January 2002,
pp. 25-41.

B. Bezier. Software Testing Techniques, 2nd Edition. Van
Nostrand Reinhold, New York, 1990.

B. Boehm. Characteristics of Software Quality. North-Holland,
Amsterdam, 1978.

S. Conte. Software Engineering Metrics And Models.
Benjamin/ Cummings, Menlo Park, 1986.

R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B.
Ray, M Wong. Orthogonal Defect Classification - A Concept
for In-Process Measurements, IEEE Transactions on Software
Engineering, Vol. 18, No. 11, November 1992, pp. 943-956.

56

[Ele92]

[ESA96]

[Eva04]

[FAA88]

[GHJ+95]

[GKGOS]

[GK91]

[Hal77]

[Hat95]

[Her97]

lJoh78]

lJB92]

Ellemtel Telecommunications Systems Laboratories.
Programming in C++, Rules and Recommendations. Retrieved
on August 18th, 2006 from http: / / www.chris-lott.org/
resources/ cstyle/ Ellemtel-rules-mm.html

European Space Agency. Ariane 5 Flight 501 Failure Report by
the Inquiry Board. Retrieved on August 9th, 2006 from
http:// sunnyday.mit.edu/ accidents/ ArianeSaccidentreport.html

I. Evans. Achieving Software Quality Through Teamwork.
Artech House, London. 2004.

Federal Aviation Administration. Advisory Circular 25.1309-
lA. U.S. Department of Transportation, 1988.

E. Gamma, R. Helm, R. Johnson,]. Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Boston, 1995.

M. Gittens, Y. Kim, D. Godwin. The Vital Few Versus the
Trivial Many: Examining the Pareto Principle for Software.
Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC'OS), 2005.

G. Gill, C. Kemerer. Cyclomatic Complexity Density and
Software Maintenance Productivity. IEEE Transactions on
Software Engineering, Vol. 17, No. 12, December 1991, pp.
1284-1288.

M. Halstead. Elements of Software Science. Elsevier, New
York, 1977.

L. Hatton. Safer C. Developing Software for High-integrity and
Safety-critical Systems. McGraw-Hill, London. 199 5.

D. Herrmann. Software Safety and Reliability. IEEE Computer
Society Press, 1999.

S. Johnson. Lint, A C program checker. Computer Science
Tech. report 65. Bell Laboratories, 1978

R. Johnson, G. Bhattachary. Statistics: Principles and Methods.
Wiley, New York. 1992.

57

[Kit95)

[KS97]

[Lar02)

[Lev93)

[Lip92)

[Lit01]

[LS93)

[Mar92)

[Mca76]

[Mco93]

[Mey98]

[MISRA04)

E . Kit. Software Testing In The Real World. Addison-Wesley,
Harlow, 1995.

C. Kemerer. S. Slaughter. Determinants of Software
Maintenance Profiles: An Empirical Investigation. Software
Maintenance: Research And Practice, Vol. 9, pp. 235-251, 1997.

C. Larman. Applying UML And Patterns. Prentice Hall, 2002.

N. Leveson. An Investigation of the Therac-25 Accidents.
IEEE Computer, Vol. 26, No. 7,July 1993, pp. 18-41.

S. Lipmann. C++ Primer, 2nd Edition. Addison-Wesley,
Reading, 1992.

T. Littlefair. An Investigation Into The Use Of Software Code
Metrics In The Industrial Software Development
Environment., PhD thesis, Edith Cowan University, June 2001.

B. Littlewood, L. Strigini. Validation of ultrahigh dependability
for software-based systems. Communications of the ACM, Vol.
36, Issue 11, November 1993, pp. 69-80.

D. Marks. Testing Very Big Systems. McGraw-Hill, 1992

T. McCabe. A Complexity Measure. Proceedings of the 2nd
international conference on Software engineering (ICSE). San
Francisco, California, United States. IEEE Computer Society
Press, 1976.

S. McConnell. Code Complete. A Practical Handbook of
Software Construction. Microsoft Press, Redmond, 1993.

S. Meyers. Effective C++. 2nd Edition. Addison-Wesley,
Boston. 1998.

Motor Industry Software Reliability Association (MISRA).
Guidelines for the use of the C language in critical systems.
MIRA Ltd. Retrieved from http://www.misra.org.uk on
August 23'd, 2006

58

[MKL91]

[MR94]

[MS06]

[NBZ06]

[NWH+04]

[OWB04]

[Pet99]

[Ris98]

[Sta94]

[SEI02]

N. Madhavji, K. Toubache, E. Lynch. The IBM-McGill Project
on Software Process. Proceedings of the 1991 conference of
the Centre for Advanced Studies on Collaborative research.
October 1991.

]. Miller, G. Rozas. Garbage Collection is Fast, But a Stack is
Faster. MIT Artificial Intelligence Memo 1462, March 1994.

Microsoft Developer Network Library. Common Problems
When Creating a Release Build. Retrieved August 9, 2006 from
http:// msdn2.microsoft.com/ en-us/library/ dykf6bx9 .aspx

N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict
Component Failures. The 28"' International Conference on
Software Engineering (ICSE'06), 2006.

N. Nagappan, L. Williams,]. Hudepohl, W. Snipes, M. Vouk.
Preliminary Results On Using Static Analysis Tools For
Software Inspection. The 15"' International Symposium on
Software Reliability Engineering (ISSRE'04). 2004.

T. Ostrand, E. Weyuker, R. Bell. Where the bugs are.
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA'04). 2004.

C. Petzold. Programming Windows. Microsoft Press,
Redmond, 1999.

L. Rising. The patterns handbook : techniques, strategies, and
applications, collected and introduced by Linda Rising.
Cambridge University Press, 1998.

The Standish Group. The CHAOS Report (1994). Retrieved
August 9"', 2006 from http:/ /www.standishgroup.com/
sample_research/ chaos_1994_1.php

Software Engineering Institute. Carnegie Mellon University.
Capability Maturity Model Integration (CMMI), Version 1.1.
Retrieved on August 22"d, 2006 from
http: / /www.sei.cmu.edu/ cmmi/ models

59

[SEI06]

[Som91]

[Str97]

[SC91]

[VS04]

Software Engineering Institute. Carnegie Mellon University.
Cyclomatic Complexity. Retrieved on August 15th, 2006 from
http: / / www.sei.cmu.edu/ str/ descriptions

I. Sommerville. Software Engineering, 6th Edition. Addison-
Wesley, Harlow, 2001.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley, Boston, 1997.

M. Sullivan, R. Chillarege. Software Defects and their Impact
on System Availability - A Study of Field Failures in Operating
Systems. Proceedings of the 21" International Symposium on
Fault Tolerant Computing, 1991.

H. Verta, T. Saridakis. Detection of Heap Management Flaws
in Component-Based Software. Proceedings of the 30th
EUROMICRO Conference (EUROMICR0'04), 2004.

60

Appendix 1: Non Disclosure Agreement

This section contains a signed copy of a non disclosure agreement between

UNBC and MDA. This agreement governs the usage of the MDA intellectual

property upon which this investigation is based.

61

,•

.·

. . . .
..~ ... , .

MUTUAL CONFIDENTIAL DISCLOSURE AGREEMENT
THIS AGREEMENT made thrs _L day of June !rl the year 2006 (the •effectlve Date") . .

AND:

. . .
MacDONALD, DETTWI1..E:R AND ASSOCIATES L TO.
a compafLy d!Jly Incorporated under the laws of Can.eda,
having offices at 136!JO Commerce Far~ay, Richmnnd, British ColL.rnbia, Canada VOV 2J3,

UNIVERSITY OF NORTHERN BRITISH COLUMBIA
3333 Unlve sity W&f,
Prince George, B.C.
V2N4Z9 , .. ·

•,

.

tn co.'"lslderallon of 'lne utu21 premJses and agreements herein conta ed, and other good and valuable
co sldemo • the receipt a d suffl:oiency of w · fdi is areby i!ICknO'Medged, the parties agree as !ol O'lvs:

1.

..

"Confiden~ I ormation• shall mean any infot: at on wh!ch ls c.onfidential and proprietary Information of ee.ch
party· OOI'Icem g eac., party's technical, sclent:l'ic and bus:ness i !eres 1S :not generally avaDiilile fo · ttd
ptrtle! co~si3ting of but not limited to: (~ software (souroo i!J'\d execu ebJe o ob;ect coda), 21;}0rithms,
camp ter p ocessi (i systems. tee· rques. met cx:~oores. fOl'lTlULae. p ocesses, comp ations or infonnaUon,
drawings, pfOPO'sals, job otes, reports, records, end !!.pedficat!ons, en.d re~ted documo tntion In any media,
in uding e I od cations, enhancements, updates and derivatives: (i~ unique software end hatdNaT~
conf.E;urations, des~ co. cepls and sU malerials developed I e: erro ; (111) business plans. ovstorner
conte~.1:censes , the prices each party obtans or has obtB ned for its .soft\va o, prorucis or serV.ces a ... d eny
otrter mate Ia s cx lnfo!matioo relating to the business ~ each party o.· each party's good vi!U, esch party's
aubsldlaries, o·wners, affillat&s artd dMs'Ofls or eny of eec party's custo ers; (fV) any confidential
information n~any med}a which is O'M"'ec b:Y a thtd party end provided to either party u der a conflden · 'tf
ag~eeme, t; (v) lrecfe secre'.s w lch cerlvs eccoomlc va ue. sct\Jal or potential. rOfr. not being g~etally
known o cttler persons w o m~ht oblem eco omic value from t"...s dlsc:osure or se and Is tite sub'ect of
efforts that ar,e reasonable unde: the cirOJ.11sta cas o rna inteln Its secrecy: and (vi) any 00\er confttlent!al
information of each pacy whlc. is dtl.errn l ed by a CO'Jrt of competer:tjuriSd'ctlon o to r!se to th~ level o €
trade s&cret Li der appl:cai:lle ICI\'1.

. ~ Each party s e.l redu~ to tangible or!TI, mark as proprietary, and provide lo the othet party, only sucl
Confidental lnformalion relatinc to t11e subject matter descri::!e~ at tr.e end o~ thls Agreement (t e·"Subjeot
:\oiet1er"} 2s the pcrtiO! determ ~e Is ree.sonabiy ft)qufred to ach~eva- the Purpose as deli td below.

3. A!f lights, L'tle and Interest in and lo the Confidential I formal!'o shall remain the> exduslve worid"Mdo property
of the party •...tllch pro'llded · e Confidential I formation e)(cept the Confident's! tnfotmat:on owned by a third
party as set out i Article 1 (~' ot this Agreement.

4.. Ner.har !)arty she I, d.rectly or lnotrecUy, use the co· noential nfonnatlon for the desl!m or crea on of a1y
product cr SeNioe, or use lhe Conftder.tJa; tmormaUOn o any other mat~ner, exccpl E:s reasonably required for
the plJrpose dE~saioed at the end of1hi.s Agree:nent (the Pu!posej .

. , ··- . .
. ... • :J' ...

. .
· ~ . .

·. ~
. ' ..

.. -.. :

. - . ~

..

...

"', .~

C01 ~3.vbl.060620 ·1· BNDA
..

' .,_ • l ~ . • .. _ ·
.. , .. ·,.,. .

·.

~ -.

.. ~ . , . ..
·.

. \

,.

. , . . .

. ,.

5.

.· ~ .

MUTUAL CONFIDENTIAL DTSCL05URE AGREEMENT .· · : .·
If the dfsclos re of the Confidential lr.fOtmation s o d gtve rlse to a busfness opportonltY to commercially
e:xploll the Con .de tiel lnforma1lc , any such exploltaUon by e:lthef party, o: by either party asslst'ng a y third
party, or the creation of arty product or service which Is d rectly or indirectly based en, de ived from, or US86
theCa flden~Bi infcrmetlon without the otn!!lr party's co:tse liS not perrmrted.

6. Ee party s/'tarl lceep the Confiden~211 formation o! tha other party I strict con den~. Ne •• er party sha!l
dl. ~Jy or tldlrectly dlsclose, a r:ov access to, transmrt, or lrans~r the Coo denlfeJ lntotmal.b:'l of tt.e o~r
psrty to a :,i d p,arty wccapt to tl ose of its employees, directors, egen~s. \..tlo ave a iiiCb,Jal need fo know Ill e
Conflderrtiel Infer ation to the Purpose. Tt:e redp·e 1 shall, prior to diselos ng tne Co..,r.derrtial lnformstion
to such emp!oyees a d age 1~ . obtain Uteir egrcement to ecetve and use the Conrtdenlle.J lr.fo:-melfon ,on a
COilfid&nlial basis on !he same condiUons as contained in this Agreement. MDA w o l.s contempla 'ng the
dlsctosu e of Co fidential Information to the University of Nortl'lern ac acknowledges al the lJniversfty by
its very nature 15 an open pu lc research in51lMkm with students psssi~ throug an <lPOO and
uncontro led rnanner and therefore cannot provide tha same o'Esree of S9CUrity for i's ovm Con ldentiaJ · •
nformauon es that wll~cll is customary in an industrial rese8rch ce tnl. However, the Unlo/ersity wJII se
the same care and cl iscn1tlon to avold disclosure of Confidemia I formation as It uses or its O'Ml slmilar
Conf(de l:laJ 1 formatlon tilet it does not wtsn to dls~ose. . .

7. The Cor.Meotial !nformalbn $hall not be reprodUced · a1y form or sto ed rn a data base, by the recipie t
wtlhOI.!t tne p !0! written consent of the ther paTty. AI! copies of t1e Co tldential lnformation shall contain only
the same proprletary no'J:ce-6, whld'l appear on lhe oliginallnformatlon.

a. This Agreem.en sh211l ot apply to Confidenl.ial lnkumatfon w lch can cliN!fty be proven by documen1etlon to
h:av& beccm& read~ y avaiJable to fl".e generaf pub!ic in the sam& form thro g: o breach of this A~;reemen o.r

. .. wtllch was lawfully obtaJned by the r~e t from an t dependent thlrd party .aving no confide tie.Jity
Cbligaoo to eitl'ler ptlrty, ar which W&s ln tie rec~lent'a possession In lly recordlitd orm pno to de~ of
dlsclosure by the other party. The burde o. providing these exceptio s reside& Wtlh the red,p'e t. This · . . ·
Agre-ement also appJ;es to (I) Confld~ ' In ormmion provided to eilher party e\len if' such Confidential
lnforma~on could be, or was s•Jbseq;.~en y, obU!i ed by everse engineering. and (n) Confldemtial Information ·
reoetved by elttw party pr1or to this Ag eement belng s~ed.

9. This Agreement shaU ot con sf te any ep!'ese:lt;at;o.n, wa ranty or guarantee to ei1her party w·llh respect lo
the value of · e info;meticn ~o the reci lent or !hat the Con"ida tial lr.formal.ion dces not in~ I ge a"1y rig.:'$ of
!l ird parties. 'el':her pa-ty shall be he1d Uabte for any e:-ro sot omlssfoM In he Conlidenttal nfOffll:atio , or
use of the Confiaentlal lnformat:o:'l.

10.
·1. ~ . •

The ente g Into of this Agreement st:aL r.ot coos Me any obllga"c:n em ihe pa1 of e'lher party to enter Into
any rurther eg:eement •,vfth the other perty.

' .
11 . Both partl8s rerognize that eadl party may be engsged in 1 e devolopmen of harcware or softwa e orodu~

or other tech olr>gy or services M\k*l sy be co"!'lpetftive •oYilth lho;e of • a oftler party to th ' Agreer:'len and
no• lng !n this Agreemen shaU be cona1rued to prohibit eitter par1y om en[1Bgl 9 i the et>~ch,
d~e·cp snt, marke~ing, sa[e ot ltcensl 9 of a y p educt which Is lndep8i"''denUy developed a1d proc:t.sc.d
wilhout · e use c~ lhe other party s Co:nflde ~al I formation .

, . 12. Ee a1y shall pon comp!$tion of the Purpose or upon the request of 11-ie o e party, ~·.tlctlever ffrst

13.

.
14.

cooors. immoola~ly ewrn to tt1e othe ~art1 the Conftdential In ormallon. and all copies thereof In a:l omus,
and permane tly<fe!ote the Confl'dentia! lnforrnetior1 from all ret ·aval systems and dsta bases In wt,.ch It ay
be fou .

T e term of lhl$ Agre9men.t shal aXrur.enc& on trie EtreoltJe Oa e and shall conll'lue.for lhe permd of time
set o~ at the e ·· d of 1Ns Agteement and notwilhsta d g the fo:-egoing, neither party shall disc ose or utliize
trade~ ·s a5 set ou'l in Article 1 (v) o' thls Agree:-nent for an u limited period of time.

[the 0\-&n of a br.cach by edlher party of errt p ov;slon ofthts Ag eement, lhe other partY'£n:an, in addltlon to
and not In subsU~ tio for 8!tJ othe rentedy available lo · in r&s~=tect ct suc..l'l brea , be e~ed tot J ne!lve
re;;Et. wh:Gh res~reins the party in breadl from com ittl g or eon nu·ng SlJch brooch.

CD1 1943.v1 ..0..<)5002(1 . .

.,

- ~

-·· ~

' ·

~ .. .

·.

. .

·.
. . '

~:

MUTUAL CONFrDENTIAL DISCLOSURE AGREEMENT

15. 1r It is held b~· a oou't or oUte lav;ruJ authorit'/ o~ coml)&tenl furlsdlotton that any prcllls lon of this A~reement or
part thefei)f Is vc:d, ~ l&t;al, valid or unentoroeeble then c. eh p·ov' ·on or part 6ha I be deemed stricken, a d

· · the Q,ain~ng pro 'sions shaA boe sever~Je and em~m valitl. Cn fuU ~orce and effect

. . .
'16. Neither party s a I assig lhfs Agreement or arty rl!jlts or obiTgatfo s uncle this Agreement without ' e prior

wrrtten consent of lhe C!her party, and any atlempt to t!o so wr.ho t oonsent s ell be n II, void and of 0
Gffeet.

17. This Agreeme t s all be gove .ed by, subject to, Interpreted a d "eclforced in ell respects' accordanoe 'wttn
the 1mvs wnt:h ap"''y the province of Brit:sh CO! _ mbia, Canade and t e partles she submit o lhe exo:u!Ne
Jurisdlctron of e oourts o British Co:umb:a.

18. Each party s a I comply and s. aJI cause fl.s affiliates to comply wllh all applfe<Die laws a d egula 'o s
per".abting to e:xport or re-export of Confide reJ l.nforma:ion -o the o er part-1 o lts effilal6$.

19. No wai\'er of any p·ovis!.011 of this Agreement or of any breach of this Agreement sha[l be effeo\ive ntess
su~ walV&r is in \'1 • ng and signed by the party prcr .. id'ing such wa!ver. lvly s!gned wsiver sha not opera1G
or be construed e-s a waiver of any otner pro fO 01' any other breech tA 1hts Ag eement. .

.20. Neither party shall make use of wy dlsc nlons oooceming thia Agreement, ot' this Agreeme t ftsel(, tor
p.ubllclly, advertislng or rna(l<eling, or disclose \hal either party has entered into thrs Agree:-nen!, wftho. t the
prior written co sent of I e other ~.

21 . This Agree ent coostttutes the entlre agreeme 'tend und~tar1C1lng between partles and supe~ ~ pr1or
disc::uss'o s a~d a9r~ame Is betvtlee., lhe parties here:o relcrtlf'l9 generarlyio the ~me su~iect matte.-.

Subjact Mztter:
.J. -.

Maste 's. Thesis from Step'neo WICkham regarcrng a retrospective a alysls of ~he GPO
code base wm bo conducted. ~d-!!1g errors t' el cause memory leaks and interfere with
th& creation of a release :> ·'ld , ... ~n be measur@d end C()rrected. The prtmary obrjecijve of
the exerc!se Is e creaUon of a release bu~d or GPO. Supportlng objectives Inc ude
Identification and co eclfo of memory le-aks, and prepar2 'on of e GPO eode base
for ose with Microsoft Vis e StUdiO 2005. A ~port d lscuss.ng the problems

· · ·- enoovntorcd and the d~stribution of errors will be provided.

Purp:ose: ·

Term:

COt 9'3.v1.0.oe.ns20

To protect bUs'ness ser.s1rve confidentlc!J and p;op~etal)' i formation discllssed,
developed endlor sup;:lled.

FiVe {5) Years from me Effective Date cr three (3) years from the latest d2.te of dlscbsute
of Confidential lnformatloo ::m one party to the oli'ler. vm chever ts later.

... ... '

·- . - . :~ . . -t_
· '
I h

•.

··.

·~ . .

-:: ·.1

~ . '

....
· · '

· .

.... · . .,

.. ~· -
-·

. ' ..
·, ,

MUTUAL c ·oNFIOENTlAL DISCLOSURE AGREEMENT
.. ' ~ _;. , - ·..... · .

... · . .

. . IN WITNESS W EREOF, the parties heve entered into tJis Ag eement by their duly authorized repraenwtives .
· ~

IV.ACDONA!..D, DETTWILER ANO ASSOCIATES TO.
By.

Neme:

· TIDe:

'' I o

\=: . ·: ··6NNERsrTY oF NORT~m coL..UMB. rA.
By: · :. · ~ .

••: r · (Signc!lu1'13)

Name.:

~ · .· 'Title:
• ':- .

Oate:

VPRsaaarch

(Prlnladffyped}

... . . ~ -·. . . ~

, .·•
· br. sra~Re~r· . ~· · ·
&f. - ~~ 'ik-

'9 ,·

· Name: SlamaJs'Reml
. . (Prlnted/Typed)

· 'ntl&: ~~~·oct o.:b p.,.obss~r

. ~ . :. -: . • . •r_.. .

· · Oaf&!··
=·

. . , · •. ·,
. .~· . ..

·~ ··: - ·.- .

·· - . .

~· ..

' ..

... . .

I ''' :,' 0

.·

· ..
. l .

. '

.. ·· ·'.

. ·-• _.·.r

' . ' . ,.
' .

. .. .

·.

:: .· .. :

. '.(

