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Abstract 

The larval stage of the mayfly Epeorus longimanus (Ephemeroptera: Heptageniidae) is an 

inhabitant of torrential stream habitats. It possesses several adaptations to high velocity 

environments, including a flattened body shape, a tilted head shield, and a "sucker-like" arrangement 

of abdominal gills. In order to relate the behavioural and morphological adaptations of E. longimanus 

to its habitat requirements, the distribution of this mayfly and a suite of environmental parameters 

were measured at a range of spatial scales (i.e. watershed, within-stream, and within-stone scales). 

Benthic macroinvertebrates were collected at 39 stream sampling sites throughout the lower 

portion of the Torpy River watershed in eastern British Columbia, in order to (1) identify the particular 

habitat preferences of larval Epeorus, and (2) examine the community structure of benthic 

macroinvertebrates in a northern watershed. Several environmental variables (e.g. discharge, stream 

surface slope, substrate size, pH, conductivity, riparian vegetation, etc.) were measured and related 

to patterns of faunal abundance using canonical correspondence analysis (CCA); this ordination 

technique divided the collected invertebrate taxa into four functional assemblages, each with well-

defined habitat requirements and trophic relationships. The results of the CCA showed that Epeorus 

larvae prefer high discharge streams with coarse substrata. To further examine the habitat 

requirements of this genus, benthic samples and several descriptors of the flow environment of the 

stream environment (e.g. mean velocity, near-bed velocity, depth, substrate size, Froude number, 

etc.) were obtained at 50 regularly located sampling sites in two adjacent, high-discharge streams 

with coarse bed material. Observed patterns of abundance of Epeorus were significantly and 

negatively related to velocity, depth, channel Reynolds number, and relative roughness. 

The near-bed hydraulic environment of shallow torrential streams was characterised by 

measuring velocity profiles, near-bed (U0002m} and mean (U0.50) velocities, and shear stresses (-rw) 

over the surface of five experimentally deployed and three naturally occurring stones in a high-

discharge stream in the Torpy River watershed. The velocity profiles measured above the stones 

regularly deviated from the "classic" log-normal shape. The profiles were often "wedge-shaped"; 

velocities were greatest a few millimetres above the bed, and decreased logarithmically below and 

above this height. Wall shear stresses and near-bed velocities generally increased from the front to 

the rear of each stone. 
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The daytime and night-time distributions of E. /ongimanus were recorded and related to shear 

stress, periphyton biomass, and substrate characteristics (e.g. stone roughness, topography). During 

the daytime, larvae preferred areas of the stone surface with high shear stress; during the night-time, 

larvae preferred areas of the stone surface with higher elevation and attached boundary layer flows. 

Periphyton density was significantly related to stone surface roughness and stone surface 

topography. A stone reversal experiment suggested that hydrodynamic factors , rather than food 

(periphyton) availability, proximally influence the microdistribution of E. /ongimanus larvae; however, 

the precise nature of the forces to which they respond remains unknown. E. longimanus larvae were 

also found to exhibit a strong diurnal migration, generally migrating to the upper surface of streambed 

stones at night, and retreating to the underside of the stones during the day. 

This study represents one of the first detailed examination of the relationship between the 

distribution of microscale hydrodynamic parameters, (e.g. shear stress, near-bed velocity) and 

benthic organisms at organism-defined spatial scales. The results demonstrate that flu id dynamics 

are the proximate factor that determines the microdistribution of benthic organisms in torrential 

stream environments. Additional research is required to investigate the ecological importance of 

these small-scale hydrodynamic parameters. In order to understand the behaviour and ecology of 

benthic stream organisms, models of flow in natural stream channels must be expanded to include 

patterns of flow at small, organism-defined scales immediately adjacent to the bed . 
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Chapter 1 

The influence of fluid dynamics on freshwater invertebrates: 

morphological, behavioural, and ecological adaptations 

Summary 

1. Hydrodynamic forces are potentially the most important factors influencing the distribution, 

biology, and trophic interactions of benthic invertebrates in lotic environments. 

2. Mean flows can be characterised by a series of directly measured hydrodynamic variables (i.e. 

mean velocity, depth, discharge) and parameters (Reynolds number, Froude number). Reynolds 

number and Froude number are of value in comparing flows between sites, as they are non-

dimensionalised indices describing flow regime and surface flow conditions, respectively. 

3. Measurements of flows immediately adjacent to the bed are relatively difficult to obtain, and as 

such, are rarely encountered in the literature. However, because they more closely represent the 

flows that benthic invertebrates experience, characterisation of fine-scale flows immediately above 

a substrate provides greater insight into the microhabitat preferences of stream invertebrates than 

do descriptors of mean flows. Fine-scale flow descriptors include shear velocity, shear stress, 

roughness Reynolds number, boundary layer thickness, and the thickness of the viscous 

sublayer. The importance of quantifying stream flow at several spatial scales is discussed. 

4. The microhabitat preferences of benthic stream invertebrates are closely related to the 

hydrodynamic characteristics of the environments they inhabit. Flow microenvironments influence 

the predator-prey interactions, movement, and feeding efficiency of benthic organisms. Generally, 

primary consumers possess specialised morphological and behavioural adaptations to specific 

hydraulic habitats, while predators tend to be 'hydraulic generalists'. 

5. Many invertebrates utilise the current to migrate downstream ('drift'). The numbers of individuals 

drifting generally peaks at night, suggesting that this behaviour may be an adaptation to search for 

more favourable microhabitats while avoiding visually oriented fish predation . However, size-

related increases in drift suggest that entry into the drift is not always active, and may, in some 

cases, be the result of the erosion of invertebrates from the bed during times of increased activity. 



6. Stream invertebrates, especially those inhabiting high-velocity habitats, often demonstrate a shift 

in microhabitat preferences as they grow. This type of ontogenetic shift may be largely due to the 

changes in hydrodynamic forces (i.e. lift, drag, and shear stress) that larvae experience as they 

increase in size. 

7. In order to maintain contact with the substrate, benthic invertebrates that inhabit areas of the 

streambed exposed to high velocities often exhibit marked morphological adaptations that 

manipulate local flow fields to reduce the erosional effects of lift and drag. Adaptations include 

flattened bodies that concentrate lift over the legs and body shapes that delay boundary layer 

separation. 

8. Suspension-feeding invertebrates (generally Trichoptera and simuliid Diptera) depend on suitable 

near-bed flow velocities to ensure an adequate supply of seston. Due to the intimate relationship 

between flow velocity and suspension-feeder ecology, suspension-feeding taxa often exhibit 

marked morphological adaptations for specific flow regimes. The behavioural adaptations of 

mayfly species that manipulate flow fields to excavate prey or suspension-feed are also 

discussed. 

Introduction 

The physical forces created by moving water are recognised as the most important factors 

shaping the benthic community in rivers and streams. The ever-present, generally unidirectional flow 

of streams has shaped the morphology (Weissenberger et al. 1991; Collier 1994; Pommen and Craig 

1995), behaviour (Osborne and Herricks 1987; Soluk and Craig 1990; Wetmore et al. 1990; 

Holomuzki and Messier 1993), diversity (Growns and Davis 1994; Quinn and Hickey 1994) and 

community structure (Lancaster and Hildrew 1993) of the invertebrate fauna which inhabit this 

complex environment. 

The distributions of benthic stream fauna are spatially and temporally variable. Many 

macroinvertebrate species migrate to the underside of streambed stones during the daylight hours, 

and return to the exposed, upper surfaces of the stones during the night (Allan et al. 1986; Peckarsky 

1996). Examination of the daytime and night-time distributions of benthic fauna reveals species-

specific patterns of abundance, which are in turn related to a variety of physical and biological factors . 

While many taxa demonstrate marked preferences for sheltered, depositional habitats (Bouckaert and 
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Davis 1999), others prefer exposed conditions (e.g. the upper surfaces of stones), where they are 

subjected to high velocities, high shear stress, and relatively thin boundary layers (Nowell and Jumars 

1984 ). While it is more expensive energetically to move about and forage in such conditions, 

invertebrates that inhabit this type of extreme microhabitat may benefit from more abundant algal food 

resources (Quinn et al. 1996), greater oxygen availability (Wiley and Kohler 1980; Golubkhov et al. 

1992), and decreased predation risk (Peckarsky et al. 1990; Hansen et al. 1991; Hart and Merz 1998). 

As such, the benthic macroinvertebrates that inhabit lotic systems are subject to an ecological 

dilemma. Benthic organisms benefit from hydraulic conditions that maintain interstitial microhabitats, 

elevate oxygen levels, reduce predation, and provide an energetically inexpensive method of 

downstream movement. These same hydrodynamic forces, however, are those acting to dislodge 

grazers from feeding sites, erode the streambed, and limit feeding opportunities of both predators and 

herbivores. The morphological and behavioural adaptations that have evolved in benthic fauna 

ensure that the ecological benefits of inhabiting these extreme habitats do not outweigh the costs . 

Thesis overview 

In this study, manipulative field experiments and surveys of naturally occurring benthic 

communities in a montane watershed in east-central British Columbia were used to examine the 

relationship between the distribution of stream invertebrates and physical factors across a range of 

spatial scales. Specifically, the ecological preferences of a single stream invertebrate, the torrential 

mayfly Epeorus longimanus (Ephemeroptera: Heptageniidae), were examined in detail. Mayflies of 

the genus Epeorus are grazers, and feed largely on growths of periphyton that encrust the upper 

surface of stones in high-velocity, mountainous streams (Resh and Rosenberg 1984). Three separate 

studies were used to examine the habitat requirements of this mayfly. (1) The large-scale (i.e. 

watershed- to stream-scale) habitat preferences and community associations of Epeorus spp. were 

examined in the tributaries of the lower portion of the Torpy River watershed using canonical 

correspondence analysis, a multivariate ordination technique. (2) The reach-scale habitat preferences 

of Epeorus spp. were measured by comparing local densities of this mayfly with a range of variables 

that describe channel and flow conditions (e.g. depth, mean velocity, and bed roughness). (3) The 

within-stone microhabitat preferences of E. /ongimanus were further characterised by comparing the 

microdistributions of mayfly larvae, near-bed water velocity, bed shear stress, periphyton, and several 
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stone surface variables (e.g. stone roughness) over the surface of five experimentally deployed and 

three naturally occurring streambed stones. These measurements allowed for an assessment of the 

factors that determine the distribution of torrential mayflies in high-gradient, mountainous streams. 

Stream hydrodynamics 

When describing flow in open channels, physical scientists commonly employ a large number 

of hydrodynamic parameters and ratios. As such, the task of the stream ecologist interested in the 

interactions between moving water and the community structure, behaviour, or functional morphology 

of benthic invertebrates can be challenging, as much of the existing literature provides little insight into 

which measurements are biologically or ecologically relevant. In addition, the technology for 

measuring flows at small spatial scales in the field is often expensive and/or difficult to employ. Not 

surprisingly, these difficulties have resulted in some misinterpretation of hydrodynamic phenomena 

(see Gore 1978; Buffagni et al. 1995). Fortunately, there has been an increased interest in these 

issues (e.g. Collier 1994; Hart et al. 1996; Bouckaert and Davis 1999), and several excellent reviews 

on the flow microenvironment of streams and rivers have been published (Nowell and Jumars 1984; 

Davis 1986; Davis and Barmuta 1989; Carling 1992; Hart and Finelli 1999). 

Mean flows in channels 

The movement of water is the most dominant physical feature in rivers and streams (Statzner 

and Higler 1986; Davis and Barmuta 1989), yet only relatively recently have ecologists begun to 

examine the biology and community ecology of benthic fauna in the context of relevant hydrodynamic 

theory (but see Ambuhl 1959). However, before one can characterise the flows experienced by 

macroinvertebrates at organism-defined spatial scales, an understanding of the basic principles of the 

mean motion of water in channels is essential. Even in straight, flat-bottomed channels, flow is 

complex and highly three-dimensional (White 1999). As streams are rarely, if ever, straight, and 

generally have rough, irregular beds, flows are spatially and temporally variable, and difficult to model 

(Young 1992; 1993; Hart et al. 1996). As a result, characterisation of flows in natural channels is 

usually achieved through extensive measurement. The most basic description of the stream 

environment necessarily includes mean velocity (U), channel depth (D), discharge (Q), and the wetted 

perimeter (P). An indication of turbulence intensity can be obtained by recording high-frequency 
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variations in velocity (u'); however, the response times of most instruments currently used to measure 

velocity in streams (e.g. propeller velocimeters) are too low to make such measurements meaningful 

(see Bouckaert and Davis 1998). 

Reynolds number 

The mean motion of flow in streams can be characterised by the Reynolds number (see Davis 

and Barmuta 1989). Analytic solutions (e.g. Navier-Stokes) that describe boundary layer flows do not 

exist for the conditions that are found within naturally occurring lotic systems, especially rivers and 

streams with irregular bed geometry and water surface topography. Solutions of the Navier-Stokes 

equation exist only for steady, uniform flows, where depths of flow do not vary over time, and shape, 

size, roughness, and slope of the channel are constant in the y direction. Such conditions are rarely, 

if ever, found in natural systems. Yet, the Navier-Stokes equation allows for a description of the flow 

in any given circumstance when inertial effects predominate over viscous effects, or vice versa. The 

resultant ratio of inertial to viscous forces is known as the Reynolds number (Re), and is an indicator 

of the turbulent properties of flow. Reynolds number is determined as 

Re = Ul/u (1-1) 

where U is velocity, I is the length scale, and u is the kinematic viscosity of water. When 

characterising flow in open channels, U is the mean channel velocity (generally measured at 60% of 

the total depth; see White 1999), and the length scale I is the total channel depth or the hydraulic 

diameter. Where calculated Reynolds numbers are less than unity (see figure 1-1 ), viscous forces 

dictate flow behaviour, and the influence of inertia can be neglected; such flow is said to be laminar. 

Streamlines are smooth and linear, and the water apparently 'slides' in layers (Carling 1992). 

However, when Reynolds numbers exceed unity, inertial effects predominate, and the immediate 

effects of viscosity can be neglected (Vogel 1994 ). Flow in this case is said to be turbulent, and is 

characterised by irregular, secondary motions. However, the critical value at which flow becomes 

turbulent varies depending on the frame of reference and the conditions of the boundary. In open 

channel flows, Reynolds numbers less than 500 suggest laminar flow, and the transition to fully 

turbulent flow occurs between Re = 10,000 and Re = 100,000. With the exception of extremely 
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shallow streams of water {i.e. a sheet of water sluicing over bedrock) or unusually slow streams {i.e. 

shallow, nearly stagnant channels), mean flow in natural systems is nearly always turbulent. Flows 

where the Reynolds number falls between 500 and 1 0000 are said to be transitional, and may 

oscillate between turbulent and laminar flow. However, the range of Reynolds numbers at which flows 

become turbulent is dependent on the conditions of the boundary. Streams whose beds are 

composed of coarse substrata make the transition to turbulence at lower Reynolds numbers than 

streams and rivers whose bottoms are made up of sand or fine gravels (Vogel 1994 ). In flow past the 

different regions around a submersed object, both laminar and turbulent flow may be present 

(Silvester and Sleigh 1985; Vogel 1994 ). 

Froude number 

The mean motion of flow in streams can also be described using the Froude number. The 

Froude number (Fr) is a dimensionless ratio of inertial to gravitational forces, and is calculated as 

Fr = U/(gD)0·5 (1-2) 

where U is mean velocity, g is acceleration due to gravity, and D is channel depth. Froude number is 

used to distinguish between the two predominant flow regimes in moving water. Froude numbers less 

than unity (Fr < 1) are seen in flows which are characterised by deep, smooth flowing water. This is 

termed subcritical, or tranquil, flow. Flow disturbances such as surface waves are propagated both up 

and downstream in subcritical conditions. Froude numbers greater than unity (Fr > 1) exist in flows 

that are characterised by broken, white water. This is alternately termed supercritical, or shooting, 

flow. In these circumstances flow disturbances are propagated only downstream. The transition from 

supercritical flow to subcritical flow is often accompanied by an abrupt elevation of the water surface 

known as a hydraulic jump (a form of shock that occurs when downstream depths are too great to 

maintain supercritical flow; see White 1999). Where flows accelerate from subcritical to supercritical 

flow, an abrupt decrease in surface elevation known as a hydraulic drop can also be seen. 

Reynolds number and Froude number are widely used to describe flow in open channels 

(Vogel 1994 ). Although their use has been criticised by some workers as inappropriate (in that they 

describe mean rather than near-bed flows; e.g. Hart et al. 1996), Reynolds number and Froude 
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number often correlate highly with distributions of benthic macroinvertebrates (Gore 1978; Wetmore et 

al. 1990; Buffagni et al. 1995). Reynolds number and Froude number are also of crucial importance in 

laboratory-based research, where flumes are employed to simulate the stream environment. An 

accurate reproduction of field conditions relies heavily on the measurements and design of 

experimental flumes (Lacoursiere and Craig 1990); well-designed flumes provide simplification of flow 

conditions so that flows can be "summarized from their constituent parts" (Craig 1993). 

Near-bed flows 

Flows moving over, through, and around the substratum of streams are very complex. 

Patterns of bulk flow, such as the plunging jet upstream of a hydraulic jump (where Fr > 1) or the fully 

turbulent flows of a bouldery, torrential stream (where Re > 1 00,000) are readily observed, measured, 

and understood. More difficult to observe are the complex, fine-scale patterns of flow that occur at the 

interface between streambed and moving water. Stream organisms exist almost exclusively in a zone 

that extends only a few millimetres above the surface of the substrate, and it is in this zone that the 

majority of the biotic processes in streams take place. 

The boundary layer 

As the water moves over the surface of the streambed, friction is created between the solid 

substrate and the moving water immediately adjacent to the surface. As a result, water immediately 

adjacent to the boundary has a velocity of zero. This 'no-slip' condition (referring to the fact that when 

a fluid moves over a solid, the fluid tends to shear above the boundary rather than 'slip' over the 

surface) results in a characteristically logarithmic velocity gradient above the bed. Although the 

velocity gradient is generally steepest immediately adjacent to the surface of the substrate, the 

velocity-retarding influence of the boundary may extend to the surface of the water in shallow flows, 

while in deeper channels the flow structure far from the bed may be entirely unaffected. This 

boundary-influenced layer of water is termed the boundary layer (see Figure 1-2). The thickness of 

the boundary layer (o) has been variously defined as the distance from the boundary at which water 

velocity reaches 90% (Silvester and Sleigh 1984; Vogel 1994) or 99% (Prandtl 1952; Jumars and 

Nowell 1984; White 1999) of the mean velocity. There is no sharply defined delineation to the outer 

limit of the boundary layer, as the transition from viscid to inviscid flow is continuous (Silvester and 
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Sleigh 1984 ). The thickness and flow conditions of the boundary layer (see Figure 1-2) are influenced 

by a number of physical factors, including water depth and velocity, channel slope, substrate 

roughness, and the dynamic viscosity of the fluid. 

Flow conditions within the boundary layer can be described by the local Reynolds number, 

Rex= U.xlu (1-3) 

where u. represents velocity at the distance downstream (x) over which the boundary layer has 

developed (usually the distance from the leading edge of a flat plate), and u is kinematic viscosity. 

Relatively large local Reynolds numbers indicate correspondingly thin boundary layer thicknesses. 

However, while the rate and nature of boundary layer growth over flat plates with well-defined leading 

edges are well understood (White 1999), the growth of boundary layers over rough bottoms in natural 

systems is not (see Bathurst 1994; Buffin-Belanger and Roy 1999). Over the topographically rough 

bottoms of natural streams, boundary layers repeatedly grow, detach, reattach, and grow again as 

water flows downstream. As a result of the regular interruption of boundary layer growth, boundary 

layers in gravel/cobble streams rarely, if ever, reach an equilibrium thickness (Nowell and Jumars 

1984; White 1999). Unfortunately, measurement of boundary layer conditions in naturally occurring 

systems remains relatively rare. With the exception of the fine-scale measurements obtained by Hart 

et al. (1996), the majority of studies on near-bed flow environments have failed to measure water 

velocities close enough to the bed to describe the hydraulic habitats experienced by stream benthic 

fauna. 

Shear velocity and shear stress 

Due to the exaggerated deformation of the velocity profile near the bottom, the boundary layer 

can also be regarded as a zone of shearing flow (see Figure 1-3). Shear velocity (U*), identified as an 

ecologically important factor by several workers (e.g. Carling 1992), is related to the shear stress 

acting on the bed. Shear stress (or, wall shear stress t w), is defined as 

(1-4) 
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where the square of shear velocity (U*) is multipl ied by the density of the fluid (p ). The relationship 

between velocity (u) and shear velocity (U*) within the boundary layer is described by the von Karman 

- Prandtllaw of velocity distribution, or the law of the wall (see Bergeron and Abrahams (1992) for a 

complete discussion), 

Uz = U*/K ln[(z-d)/Zo] (1-5) 

where Uz is velocity at height above the substrate z, K is von Karman's constant (empirically 

determined to be 0.4), d is the "zero-plane displacement", and Zo is the bed roughness length (see 

Appendix 2). However, while the ecological significance of shear velocity and shear stress are 

recognised, they are rarely determined in field studies. The relatively rare appearance of U* in the 

literature is due, in part, to its method of determination. Estimates of shear velocity are typically 

derived from the slope obtained by regressing velocity (u) on the logarithm of height above the bed (In 

z), 

(1-6) 

where K is von Karman's constant, u1 and u2 are velocities at distances from the boundary z1 and z2 . 

This relationship can alternatively, be expressed as 

U* = K m (1-7) 

where m is the slope of the regression of velocity (u) on the log of the distance from the boundary (z) . 

Several measurements of velocity in the log-layer adjacent to the boundary are required to obtain an 

accurate velocity profile and statistically accurate estimate of U*. Moreover, equations 1-5 and 1-6 

can only be applied in the log-layer where the plot of U on In z is linear. Obtaining a sufficient number 

of velocity measurements can be difficult; the few instruments capable of measuring flows at the fine 

spatial resolution required are extremely difficult to deploy close to the streambed in shallow, naturally-

occurring channels (see Hart et al. 1996). 
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Davis and Barmuta (1989) reported that a reasonable estimate of the shear velocity U* could 

be obtained from measurements of the relative bed roughness (a ratio of channel depth D to the 

height of the roughness elements k) and mean velocity U. 

U/U* = 5.75 log(12 D/k) (1-8) 

Unfortunately, this method of estimating shear velocity is limited to applications where only reach-

averaged values of U* are desired, and is probably of little value in determining U* at the small spatial 

scales necessary to characterise the hydraulic habitats of benthic invertebrates. The principal 

variables in Equation 1-8 (i.e. U, D, and k) are descriptors of average, rather than near-bed, channel 

characteristics. Hart et al. ( 1996) found that the velocity 10 em above the surface of stream cobbles 

was a poor predictor of velocities near the surface, making any estimation of near-bed flow 

characteristics from mean channel velocities suspect. In addition, Carling (1992) states that for 

natural channels, estimates of roughness factors are related both to the size and packing 

characteristics of gravel or cobble streambeds. Consequently, determinations of shear velocity (U*) 

are best made from velocity profile data (using Equation 1-6), rather than estimation methods (as in 

Equation 1-8). Higher values of U* will indirectly influence the growth of both algal and invertebrate 

taxa by increasing the fluxes of dissolved materials in near-bed flows. Higher shear velocities result in 

more rapid diffusion of nutrient supplies to periphytic diatoms (see Vogel 1994 ), and higher oxygen 

supply to mayflies such as Epeorus (Palmer 1995) and Ecdyonurus (Buffagni et al. 1995); many 

benthic organisms thrive in high velocity, exposed microhabitats (Vogel1994). 

The near-bed flows to which benthic invertebrates are exposed can also be described using 

the Reynolds roughness number (Re*), an index of turbulence at the fluid-boundary interface. The 

Reynolds roughness number is given as 

Re*= U*k5 /v (1-9) 

where U* is shear velocity, k5 is Nikuradse's roughness factor, and v is kinematic velocity. The 

viscous sublayer remains intact when Re* < 3.5; such flows are said to be smooth-turbulent (Carling 

1992; see also Davis and Barmuta 1989). When the values of Re* fall between 3.5 and 68 (3.5 and 
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1 00 in Vogel 1994 }, near-bed flows are in a transitional state, and the viscous sublayer develops 

intermittent turbulent disruptions. When the bed roughness exceeds the theoretical height of the 

viscous sublayer (see equation 1-10 below) or shear velocities (U*) become too great, the viscous 

sublayer disappears, and hydraulically rough-turbulent flow occurs (Re* > 68) (Carling 1992). The 

thickness of the viscous (or laminar) sublayer (8'} can be estimated using the following formula, 

8' = 11.6 vI U* (1-10} 

where v is kinematic viscosity, and U* is shear velocity (Carling 1993). Ambuhl, in his seminal work 

on the microhabitats of stream insects (1959), suggested that species living in high velocity 

environments were, in fact, living in the viscous sublayer, experiencing only minimal turbulence and 

relatively low velocities. While this represented a major advancement in behavioural hydrodynamic 

theory, his findings were not as widely applicable as he believed. In most naturally occurring flows, 

the viscous sublayer is absent (Carling 1992), and near-bed flows are fully turbulent. In addition, 

Statzner and Holm (1982) found that boundary layers were much thinner, relative to the body height of 

the mayfly Ecdyonurus, than Ambuhl had reported (see below). Statzner and Holm suggested that 

the conflicting results were due, in part, to the relatively large size of the tracer particles used by 

Ambuhl (larger particles may be unsuitable for detecting the fine-scale details of velocity gradients in 

the boundary layer). Staztner and Holm (1982; 1989) demonstrated that the patterns of flow around 

the bodies of benthic insects are more complex than previously thought; rather than being protected 

from the forces of the current by a viscous sublayer or thick boundary layer, velocity gradients are 

actually steeper over the bodies of the insects where they protrude into the flow. 

Organisms that inhabit streambed surfaces that are exposed to moving water must be able to 

maintain contact with the substrate. However, the velocity gradients in the microhabitats preferred by 

many benthic stream organisms are often quite steep (see figure 1-3). As a result, the forces of lift 

and drag acting to dislodge individual invertebrates can be quite substantial. The force due to drag 

(F ct) is defined as 

(1-11) 
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where Cd is the drag coefficient (a function of shape, orientation, and Reynolds number), p is the 

density of the fluid, S is surface area (alternatively defined as the frontal area of an organism; 

Weissenberger et al. 1991 ), and U is velocity (Vogel 1994 ). The biological validity of this relationship 

was demonstrated by Weissenberger et al. (1991 ), who found that drag acting on three benthic 

macroinvertebrate species was proportional to the square of near-bed velocity. However, as noted by 

Vogel (1994), application of Equation 1-11 to estimate the drag experienced by benthic organisms 

must be approached with care; the drag coefficient (Cd) is not a constant but rather a dimensionless 

form of drag (drag per unit area divided by the dynamic pressure) and varies with velocity. At the 

relatively high Reynolds numbers (Re ~ 1000, where the characteristic length is body length) 

experienced by macroinvertebrates inhabiting high velocity habitats, flow separation generally occurs 

somewhere along the body of the invertebrate. As a result, dynamic pressure differences between 

front and rear are substantial (the energy of decelerating fluid in the turbulent wake at the rear is lost 

through viscous damping and dissipated as heat) and the total drag is almost entirely due to pressure 

drag rather than skin friction (Vogel 1994 ). 

The strong velocity gradients inhabited by many benthic invertebrates also generate lift forces 

acting to dislodge organisms from the substrate. The force due to lift (F1) can be calculated as 

(1-12) 

where the variables p and U represent the density of water and velocity, C1 is the coefficient of lift 

(again, a function of shape, orientation, and Reynolds number), and S represents area (Vogel 1994). 

Statzner and Holm (1982; 1989) found that as flow crossed the bodies of various organisms it was 

compressed, creating even stronger velocity gradients over the organism. Statzner and Holm (1982) 

noted that maximum compression occurred over the thorax of Ecdyonurus venosus, and interpreted 

this as an adaptation to concentrate the forces of lift over the legs of the organism. Weissenberger et 

al. (1991) noted that the generally 'airfoil'-like form of many aquatic invertebrate taxa (e.g. the mayfly 

Epeorus) generate substantial lift forces, and also found that the mayfly Ecdyonurus was able to 

actively reduce lift by altering its body orientation. 

Invertebrates inhabiting high velocity, torrential habitats should possess morphological and/or 

behavioural adaptations that identify them as having adopted one of two strategies to maintain contact 
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with the substrate. Organisms should either be notably streamlined (a shape that delays boundary 

layer separation, reducing pressure drag but experiencing higher lift as a trade-off), or should more 

closely approximate a bluff body (reducing lift by increasing pressure drag due to early flow 

separation). Rhithrogena and Epeorus (Heptageniidae: Ephemeroptera) appear to belong to the first 

class; lift produced by their streamlined bodies is countered by a sucker-shaped arrangement of 

abdominal gills which acts as a 'sucker' to help keep them in contact with the substrate (see Vogel 

1994; Collier 1994). Pupal blepharicerid (Diptera) belong to the second class; the low pressure zone 

associated with vortices produced by separating flow at the rear of the body enhance respiration. 

The influence of bed geometry on stream flows 

The presence of large-scale flow structures, such as horseshoe (solenoidal) vortices , wake 

separation zones, and eddies are often accounted for in contemporary stream research (Nowell and 

Jumars 1984; Bouckaert and Davis 1998; Buffin-Belanger and Roy 1998). For example, Young 

(1992; 1993) proposed a system to classify near-bed flow regimes based on the height and spacing of 

bed roughness elements, which serves primarily as a descriptor of bed/flow interactions rather than a 

method of classifying flows immediately adjacent to the bed. For example, when the mean roughness 

height exceeds mean depth, the flow is categorised as chaotic. This characterisation, which includes 

the majority of torrential flows, suggests that the near-bed flows of shallow channels with substrates 

composed primarily of boulders are unpredictable. An earlier classification by Davis and Barmuta 

(1989) was based on additional hydraulic parameters, such as Reynolds number, Froude number, 

shear velocity, and the th ickness of the viscous sublayer. While these parameters are essential for 

the description of the near-bed flow environment, they cannot be measured easily in all instances. 

Davis and Barmuta (1989), therefore, proposed that the distribution of near-bed flow regimes can be 

estimated from vertical velocity profiles or even single measurements of mean velocities . However, 

while several studies have measured near-bed velocity gradients in order to establish the link between 

mean and near-bed flows in natural stream channels (e.g. Hart et al. 1996; Buffin-Belanger and Roy 

1998), the ecological validity of the proposed classification of Davis and Barmuta (1989) remains 

uncertain. 

Bed or wall shear stress is one of the most important factors limiting the distribution of benthic 

invertebrates (Davis and Barmuta 1989; Dittrich and Schmedtje 1995; Robertson et al. 1997). 
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Statzner and Muller (1989) developed a set of standardised hemispheres of different densities (FST 

hemispheres) which , when deployed on the stream channel bottom, indicate the total shear stress at 

the site. FST hemisphere results are, however, influenced by local bed topography (Dittrich and 

Schmedtje 1995) and provide a spatially integrated measurement of shear stress (Statzner and Muller 

1989). The latter attribute has lead to their widespread use in the determination of the hydraulic 

conditions in streams at the reach and patch scale (Peckarsky et al. 1990; Lancaster and Hildrew 

1993; Waringer 1993; Robertson et al. 1997). However, this technique provides little insight into 

small-scale distributions of bed shear stress on the surface of the substrate or the responses of 

individual insects to local shear stress production. 

Bed shear stress has also been quantified using estimates of shear velocity obtained from the 

slope of the semi-logarithmic plot of the velocity profile (e.g. Wiberg and Smith 1991 ; Li 1994; Rempel 

et al. 1999). In cases where the channel bed is topographically simple and boundary layer profiles 

can be accurately predicted from existing theory (see Schlichting 1979), this method provides wall 

shear estimates at the spatial resolution required to describe small-scale flow environments near the 

bed. However, although widely applied, the validity of this method of estimating wall shear stress is 

limited for several reasons . The model applies to topographically simple channels where the 

boundary layer has a characteristically logarithmic vertical distribution of velocity (Bergeron and 

Abrahams 1992). This velocity distribution is often assumed to be universal in open channels (e.g. 

Davis and Barmuta 1989), but bed irregularities (bedforms), including sand ripples and dunes (Li 

1994 ), pebble clusters (Buffin-Belanger and Roy 1998), cobbles (Bergeron 1994; Bathurst 1994 ), and 

streambed boulders (Hart et al. 1996), create pressure gradients which distort the boundary layer 

velocity distribution . In addition, boundary layer development can be inhibited in instances where the 

flow depth is limited, such as shallow tidal flows and shallow rivers (Nowell and Church 1979). As a 

result, estimates of shear stress obtained from either mean velocity measurements or relatively 

coarse velocity profile measurements in natural channels are potentially in error. Substantial errors in 

this method were confirmed by Hart et al. (1996), who demonstrated that boundary layer profiles in 

natural channels are likely to be too heterogeneous and complex to be easily explained by existing 

boundary layer theory. The relationship between bed geometry, mean flows, and wall parameters can 

only be examined by detailed mapping of velocities above the substrate (Davis and Barmuta 1989; 

Wetmore et al. 1990). 
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The distribution of velocity above a topographically complex streambed is a product of the 

relationship between bed geometry and various flow variables. Bathurst (1994) showed that in 

streams where the ratio of depth (D) to bed material diameter {dk) was greater than 10, velocity 

profiles adopted a semi-logarithmic distribution. Nowell and Church (1979), experimentally 

manipulating roughness spacing in a flume using a slightly lower relative submergences (D/dk = 8), 

found that the velocity profile above the bed roughness elements (Lego® blocks, in their case) 

noticeably deviated from the normally accepted semi-logarithmic shape. Nowell and Church (1979) 

further speculated that in natural channels with relative submergences lower than D/dk= 8, velocity 

profiles would not follow a simple logarithmic distribution, and methods that estimate mean velocity 

based on a few measurements and the assumption of a log-normal profile would have significant 

errors. Young ( 1992) stated that in cases where D/dk :::; 3, flow is chaotic, the structure of the flow is 

very complex, and the distribution and magnitude of near-bed velocities will be dependent on the 

shape of the local bed geometry. 

The flow in high gradient, mountain channels with coarse bed material is known to be 

substantially different from that in topographically simple channels. Jarrett (1990) demonstrated that 

the velocity profiles of mountain rivers (D/dk > 3) are non-logarithmic. Velocity profiles recorded by 

Jarrett are distinctively "S-shaped"; near-bed velocities are lower and near-surface velocities are 

higher than a logarithmically distributed velocity profile. He suggested that near-bed velocities are 

reduced as a result of form drag induced by the cobble and boulder bed material. Bathurst ( 1994) 

also investigated the velocity distribution of mountain rivers, and found similarly S-shaped velocity 

profiles in mountain river sites. However, Bergeron ( 1994) examined the flow structure in gravel-bed 

streams whose relative submergences ranged from 1.63 > D/dk > 8.58, and found that the majority of 

velocity profiles were neither semi-logarithmic in shape nor s-shaped. Velocity profiles over the 

topographically simple portions of the bed conformed closely to a "typical" semi-logarithmic shape, but 

then, as flow passed over obstacles on the bed {bedforms), the rising bed elevation created local flow 

acceleration and an associated pressure gradient. Bergeron (1994) concluded that the resulting non-

logarithmic velocity profiles consisted of two or more semi-log linear segments joined at inflection 

points ("knots"). Flow profiles some distance downstream of the bedforms continued to be non-

logarithmic due to boundary layer separation and associated regions of recirculating flow. 
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Although the degree of relative submergence (D/dk) may seem like a simple and easily 

employed rule of thumb by which the degree of near-bed velocity profile distortion may be estimated, it 

is important to note that almost all of the above studies were conducted at relatively coarse spatial 

scales. Li (1994), investigating near-bed flows over sand ripples at high spatial resolutions, found 

substantial near-bed velocity profile distortion even though relative submergences were relatively high 

(D/dk > 10). Similarly, Way et al. (1995), studying the relationship between macroinvertebrate habitat 

requirements and bedform I flow interactions over preformed, grooved concrete substrates with high 

relative submergences (D/dk »1 0), also found velocity profiles that deviated from the expected log-

normal distribution. This suggests that velocity profile distortion may develop near the bed in any case 

where water flows over a geometrically irregular surface, creating heterogeneous pressure gradient 

distributions. 

Although there is a solid empirical foundation for the examination of near-bed flows in natural 

stream channels, their general applicability, especially in torrential streams, is limited for three 

reasons. First, the vast majority of studies are conducted in streams and rivers where D/dk > 1. 

Torrential streams often have relative submergences less than 1 due to relatively shallow flows and 

extremely coarse bed material. As relative submergences decrease, flows should become 

increasingly complex and three-dimensional. Second, due to the types of instrumentation used, 

previous measurements of velocity profiles in natural streams have often failed to determine the shape 

of the velocity profile immediately adjacent to the bed {but see Li 1994; Hart et al. 1996). Third , the 

bed compositions of stream channels investigated in most studies are generally composed of finer 

materials than that regularly found in torrential stream channels. Flows over large bedforms are likely 

to be substantially different than flows over finer, more evenly distributed bed materials. 

A number of techniques exist to quantify flows with in a few millimetres of the bed. Of these 

instruments, only a few, such as the constant-temperature anemometer (CTA) and the laser-Doppler 

anemometer (LOA), are capable of measuring velocities at the spatial resolutions required to quantify 

near-bed flow variables. Unfortunately, these types of instruments are notoriously difficult to deploy in 

the field (Hart et al. 1996). Other more routinely deployed devices, such as propeller flow meters 

(Wetmore et al. 1990), bucket-wheel current meters (Rempel et al. 1999), electromagnetic current 

meters (EMCMs) (Bergeron 1994; Buffin-Belanger and Roy 1998), and acoustic doppler velocimeters 

(ADVs) (Bouckaert and Davis 1998) are robust but are incapable of measuring flows within millimetres 
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of the bed. The measurement of pressure difference by a Preston tube resting on a solid surface has 

been used to directly measure shear stress (Preston 1954 ), providing an alternative to estimating 

shear stress using the semi-logarithmic regression method. The addition of a static tube to a Preston 

tube deployed in this fashion results in a Preston-static tube (PST), a device capable of measuring 

wall shear stresses in flows characterised by curved streamlines (Ackerman et al. 1994). In addition 

to measuring shear stresses, a Preston-static tube can also be used to measure water velocities 

above the substrate {i.e. deployed as a Pitot-static tube) at spatial scales approximating the diameter 

of the dynamic tube (Ackerman and Hoover 2001 ). 

Meso-scale patterns: the link between macro- and micro-hydraulics 

Natural systems are patchy in space and time. Stream ecosystems are heterogeneous, both 

in terms of physical (hydrodynamic parameters, substrate size, light, oxygen) and biological (algal and 

faunal densities) characteristics (e.g. Palmer 1995). Ecologists have long sought to understand how 

small-scale heterogeneity in the stream environment affects the population dynamics, community 

ecology, and individual behaviour of benthic taxa (see Nowell and Jumars 1984; Davis and Barmuta 

1989; Carling 1992 for reviews). As hydrodynamic parameters are the most important environmental 

factors influencing patterns of invertebrate diversity and abundance (Statzner and Higler 1986), the 

ecological, behavioural, and morphological adaptations of benthic organisms to hydraulic 

environments are predictably diverse. 

Perhaps the single greatest topic of discussion among workers investigating the biology of 

invertebrates in lotic systems is the relevance of routinely measured parameters. For example, 

variables that describe channel morphology may be correlated with the abundance or distribution of 

certain species. Buffagni et al. (1995) found that the distribution of the mayfly Rhithrogena 

semicolorata is related to bed roughness. However, given the complex relationships that exist 

between bed geometry and hydrodynamic factors, R. semicolorata may, in fact, be responding to a 

suite of hydraulic variables (i.e. mean and near-bed velocity, depth, turbulence, or substrate 

roughness) that are functionally related to channel morphology (see Newbury 1984; Robert et al. 

1996; White 1999). Stream macroinvertebrates are taxonomically and morphologically diverse (Resh 

and Rosenberg 1984), but generally range in size from one to several millimetres. Thus, relating 

patterns of invertebrate abundance to hydraulic or hydrologic factors quantified at relatively large 
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scales (one to several orders of magnitude larger than the body size of benthic taxa) may provide little 

useful information on the proximal factors that influence the behaviour of individual organisms. These 

methodologies may, however, help understand the population biology of benthic taxa. While many 

benthic invertebrates are recognised as having well-defined preferences and adaptations for particular 

velocity ranges and substrate sizes, the mechanisms that link large-scale physical factors to small-

scale patterns of invertebrate behaviour are not well understood. 

Benthic-lotic coupling in the stream environment 

The interaction between flow and streambed geometry creates localised variations in nutrient 

supply, food exchange, and erosive shear (Davis 1986). In turn, these factors have considerable 

indirect influences on the biotic processes of the stream environment, such as predator-prey and 

grazer-producer interactions (e.g. Osborne and Herricks 1987; Peckarsky and Wilcox 1989). The 

patterns of invertebrate abundance and diversity that are a product of these abiotic and biotic 

interactions have been recognised by a number of workers (Jowett et al. 1991; Holomuzki and 

Messier 1993; Quinn and Hickey 1994; Collier et al. 1995). The association of patterns of abundance 

with hydrodynamic parameters has led to the development of habitat suitability models for several 

species (e.g. Deleatidium spp.; Jowett et al. 1991 ). Increasing numbers of studies of this type have 

led to the development of methodology and techniques appropriate for the description of the 

characteristics and distribution of 'patches' of hydraulically similar microhabitats across the 

streambed. Several comprehensive reviews (Nowell and Jumars 1984; Davis 1986; Davis and 

Barmuta 1989; Carling 1992) have stressed the importance of appropriately describing the small-scale 

hydrodynamic variation inherent in the stream environment, and suggest a suite of variables to do so. 

Indeed, significant relationships have been found between the abundances of invertebrate taxa and 

both simple (e.g. discharge, depth, and velocity) and complex (e.g. Reynolds number, Froude 

number) hydrodynamic parameters. 

Several studies have examined the microdistributions of sedentary and semi-sessile species 

(i.e. suspension-feeding caddisfly and simuliid (black fly) larvae; see Table 1-1 ). Suspension-feeding 

caddisflies (Trichoptera) are a trophically important group as they trap and process suspended 

particulate organic matter (POM) in a stream segment, increasing the efficiency of the local recycling 

of available resources (Wallace and Merritt 1980; Voelz and Ward 1996). Similarly, suspension 
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feeding black fly larvae (Diptera: Simuliidae) constitute an important pathway for energy flow in stream 

ecosystems (Merritt et al. 1996), transforming collected ultrafine POM (0.45 - 50 11m) into fine POM 

(50 11m - 1 mm), a form more readily utilised by stream organisms (Merritt 1987). Voelz and Ward 

(1996) found that the distributions of the suspension-feeding caddisflies Arctopsyche grandis and 

Brachycentrus occidentalis were largely restricted to the lower sides and bottoms of stones, where 

they were exposed to velocities less than 20 em s·1 . Individuals of both species aggregate underneath 

the leading edge of cobbles and boulders. While the flow patterns beneath stones would be complex 

(Statzner et al. 1988), flow entering the underside of stones from the front might be relatively 

unidirectional compared to the water exiting the side and rear of the stones. Voelz and Ward (1996) 

suggest that the distributions of these net-spinning caddisflies reflect the best local filtering velocities, 

and may also reflect areas with desirable levels of turbulence. Several studies (e.g. Wetmore et al. 

1990) have reported that suspension-feeding caddisflies prefer the exposed tops and sides of stones 

where the flow is typically rapid, has higher Froude numbers (average Fr = 0.6), and higher stream 

surface slopes. These microhabitats represent areas of converging streamlines, and the locally 

highest rates of seston delivery. However, Voelz and Ward (1996) suggest that the observed 

microhabitat preferences may, in fact, be seasonally variable. B. occidentalis and A. grandis exhibit 

seasonal shifts in positioning behaviour, moving into more exposed locations only during the late 

summer months when many of the previous studies had been conducted. Given that the underside of 

stones and interstitial spaces represent an important niche in streams (Voelz and Ward 1996; 

Robertson et al. 1997; also see Resh and Rosenberg 1989), future research on the nature of flows 

beneath substrate elements is needed. For example, the presence of a solenoidal (horseshoe) vortex 

around the front of the stone (Nowell and Jumars 1984; Craig 1996; Bouckaert and Davis 1998) would 

presumably alter the velocity and turbulence of the water entering the underside of stones, further 

influencing the microhabitat preferences of these suspension-feeding caddisflies . 

The net spinning hydropsychid caddisfly Hydropsyche also relies on local current to deliver an 

adequate supply of seston; as such, current velocity acts as an important selective pressure in 

determining net mesh aperture and food particle size (Fuller and Mackay 1980). Using 

hydrodynamically calibrated artificial substrates deployed in a natural stream, Osborne and Herricks 

(1987) found distributions of Hydropsyche to be related to flow patterns and turbulence intensity rather 

than average velocity. High degrees of hydraulic niche overlap were noted among the four species of 
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Hydropsyche studied (H. betteni, H. spama, H. cheilonis, and H. bronta); larvae of all four species 

were found in regions of rapidly spiralling vortices. These vortices may serve to increase the rates of 

seston capture by increasing capture rates without substantially increasing drag on the body of the 

insect (see Lacoursiere 1992). The findings of Osborne and Herricks (1987) agree with earlier 

hypotheses (e.g. Fuller and Mackay 1980) which suggest that variations in turbulence could be an 

important factor determining interspecific differences in microhabitat preferences among hydropsychid 

caddisflies. Similarly, Quinn and Hickey (1994) found that the suspension-feeding caddisfly taxa of 

New Zealand rivers were primarily associated with patches of high velocity and high turbulence 

intensity, and suggested that these two variables increase the particle capture rates of net-spinning 

suspension-feeders. Turbulence is thought to be important to suspension-feeding caddisflies with 

respect to their energy budget; while an organism will probably expend more energy maintaining a 

position in areas of higher velocity, the construction of nets in an area of rapid spiralling flows might 

act to increase rates of seston delivery (Osborne and Herricks 1987). This conclusion is supported in 

part by the findings of Peckarsky et al. (1990), who found that densities of Hydropsyche instabilis 

increase with FST hemisphere number, an indicator of surface velocities and shear stresses (see 

Statzner and MUller 1989). Peckarsky et al. (1990) also note, however, that H. instabilis spins a net of 

relatively coarse mesh, which may be regarded as an adaptation for high velocities . Similarly, the 

predatory caddisfly Plectrocnemia conspersa, which spins a silk net to ensnare invertebrate prey, 

modifies the design and aperture size of its net as flow rates increase (Townsend and Hildrew 1979). 

The heterogeneous distribution of near-bed velocity in streams plays an ecologically important 

role in determining the distribution of stream microcrustacea, a group comprised of small-bodied 

cladocerans, copepods, and ostracods. Stream microcrustacea maintain an important trophic link in 

lotic ecosystems by feeding on detritus and detritus-associated organisms. While the patterns of 

microdistribution and abundance of other benthic invertebrate taxa have been associated with specific 

hydraulic habitats defined by a variety of hydrodynamic factors, Robertson et al. (1997) found that the 

distributions of microcrustacea are influenced by the fluctuations in flow associated with flood events 

('spates'). Epibenthic microcrustacea, taxa which inhabit the surface of the substratum, are 

particularly susceptible to erosion; ostracods can be displaced at velocities as low as 2 em s·1, and the 

cyclopoid copepod Eucyclops becomes numerous in the drift at 7.5 em s·1 (Richardson 1992). The 

average near-bed velocities of streams in which benthic microcrustacea abound frequently exceed 
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these values. During and after flood events, microcrustacea persist in flow refugia, areas of the 

streambed that retain low hydraulic stresses, even at high flows. Following the periods of high 

discharge that accompany rainfall or seasonal runoff, these flow refugia provide a source of 

microcrustacea from which denuded or disturbed areas of the bed can be repopulated. Epibenthic 

microcrustacea tend to be relatively broad-bodied, and dominate the species assemblage in streams 

that have large dispersive fractions (essentially, areas of the stream bed which maintain low shear 

stresses, even during disturbance events; Robertson et al. 1997). Similarly, Shiozawa (1991) found 

that epibenthic microcrustacea were associated with low-velocity patches of the streambed containing 

deposits of fine organic material and silts . Interstitial species, which are often slender and vermiform, 

comprise the majority of microcrustacean species in high velocity streams that have low dispersive 

fractions. Unlike epibenthic species, interstitial taxa, such as harpacticoid copepods, benefit from 

periods of high erosive forces. High bed shear stresses minimise the deposition of fine particles 

which, over time, tend to clog the pore space in bed gravels, reducing both flow-through rates and 

levels of oxygen experienced by subsurface taxa (Robertson et al. 1997). 

A test of the intermediate disturbance hypothesis by Townsend et al. (1997) provides an 

interesting perspective on the ecological role of flow refugia in determining the community composition 

of stream benthos. The intermediate disturbance hypothesis, whose early uses include an 

examination of patterns of diversity in coral reefs and tropical rain forests by Connell (1978), proposes 

that in patchy and dynamic environments, intermediate levels of physical disturbance should produce 

the highest species diversity. Intermediate levels of disturbance establish a ecological compromise 

between highly unstable systems where frequent disturbances produce a community composed 

primarily of a limited number of highly tolerant taxa able to rapidly colonise impacted patches, and 

stable systems where rare disturbances result in communities dominated by a few, competitively 

superior, species. Daily disturbances in flow (a result of hydropower regulation of the channel 

discharge) resulted in a loss of heptageniid mayflies in Swedish rapids (Malmqvist and Englund 1996), 

a trend attributed to increases in the sedimentation of transported fine particles associated with lower 

current velocities (generally, particles < 1 mm in diameter). In an undisturbed catchment, Townsend 

et al. ( 1997) found that macro invertebrate diversity was greatest at sites that experienced intermediate 

levels of flood-related disturbance. Variations in taxonomic richness were related to indices of bed 

disturbance, and Townsend et al. ( 1997) suggest that the primary location of flow refugia were low-
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velocity 'dead spaces' between large substrate elements. Invertebrate diversity decreased as the 

proportion of the bed material composed of fine sediments increased. Periods of high flow are 

thought to reduce the amount of fine sediment stored within streambeds, increasing oxygen 

availability (Robertson et al. 1997) and the percentage of available interstitial space. However, 

Townsend et al. (1997) acknowledge that the small-scale hydrodynamic factors that invertebrates 

detect and in turn respond to remain largely unexplored. 

The microdistribution of benthic grazers is also a function of the distribution of algal food 

resources. However, the growth of epiphytic algae (especially diatoms, the preferred food of many 

grazing invertebrate taxa) is, in turn, also a function of small-scale patterns of flow and variations in 

velocity (Quinn et al. 1996; see also Resh and Rosenberg 1984). As a result, the environmental 

factors that determine the microhabitats of grazers and algae can be difficult to separate. Jowett et al. 

(1991) found that while the abundance of the mayfly Deleatidium was correlated with a combination of 

Froude number and substrate size, it was most highly correlated with periphyton biomass. Similarly, 

Palmer (1995) found that the mayflies Epeorus and Baetis grew to larger sizes in high velocity 

environments with homogeneously distributed food resources, while Poff et al. (1990) demonstrated 

that current has a significant influence on algal abundance and invertebrate species composition in 

high velocity streams. The thinner boundary layers and higher shear velocities associated with 

microhabitats exposed to high velocities would reduce the diffusional distance to the boundary, 

increasing rates of nutrient and oxygen delivery to organisms on the stream bed (Carling 1992; Davis 

1986). This would benefit the growth of both periphyton and invertebrate grazers, many of which have 

relatively inefficient gills (Wiley and Kohler 1980; Golubkhov et al. 1992). An accurate separation of 

the flow requirements of primary producers and consumers awaits an experimental manipulation of 

algal communities across a range of microhabitat velocities. 

Invertebrate drift: migration using bulk flow 

Flowing water is used widely by stream macroinvertebrates for movement. While upstream 

movements of benthic invertebrates by crawling (Winterbottom et al. 1997) and swimming against the 

current (Abelson 1997; Rader and McArthur 1995) have been recorded, the vast majority of migratory 

movements in lotic environments are downstream, in the direction of least resistance. Either 

accidentally or intentionally, stream benthic invertebrates often enter the moving water column above 
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the substrate, and are carried downstream. Stream invertebrates actively enter the drift in order to 

escape fish and invertebrate predators, avoid competitors, or migrate to areas of higher food 

availability (Hildrew and Townsend 1982; Wooster and Sih 1995; Forrester 1994). Other factors 

influencing invertebrate drift include sunlight, discharge, turbidity, oxygen, and substrate (see Wiley 

and Kohler (1984) for a review). Although diurnal patterns vary between species, the numbers of 

stream invertebrates drifting during the day is generally low and constant, followed by dramatic 

increases at night (Sagar and Glova 1992). Rates of invertebrate drift are highest at dawn and dusk 

in many species. Several authors (e.g. Forrester 1994) have hypothesised that diel periodicity in drift 

addresses a significant source of selective pressure. Drifting invertebrates are an important source of 

food for many stream fishes, which feed almost entirely during the day as they rely on visual acuity to 

locate and attack prey (Walsh et al. 1988). As such, there should be strong selection pressure 

against behaviours (including drift) that expose individuals to visually oriented predation by fish. 

Invertebrate drift is generally thought to be an active process, where invertebrates detach 

from the substrate in order to migrate downstream (Wooster and Sih 1995). However, the precise 

mechanisms by which invertebrates detach from the streambed to initiate downstream movement 

have not yet been investigated. Whether stream insects simply detach from the surface of the 

streambed, swim briefly upward, or initiate a change in body position that creates sufficient lift to impel 

them upward into the water column is as yet unknown. However, several authors have noted that 

there are disproportionately high densities of large size classes of many species in the drift (e.g. 

Lancaster et al. 1996; Sagar and Glova 1992). Similarly, it has been noted that large invertebrates 

are more susceptible to erosion than smaller members of the same species; this variation in risk of 

detachment from the substrate is presumably due to the greater pressure drag and lift experienced by 

larger individuals (Davis 1986; also see Weissenberger et al. 1991 , and equations 1.11 and 1.12). 

Winterbottom et al. (1997) found that larger stoneflies of the predatory species Leuctra nigra were 

more likely to become detached from the substrate during changes in discharge than small 

individuals. Both Winterbottom et al. (1997) and Lancaster and Hildrew (1993) note that small L. nigra 

were able to move more easily in high velocities. Peckarsky and Cowan (1995) found that the activity 

levels of several predator (Megarcys signata and Kogotus modestus) and prey (Cinygmu/a sp., 

Epeorus deceptivus, Baetis bicaudatus, and Ephemerella infrequens) species increased at night, as 

did their use of the exposed upper surfaces of stones. Given that stone surfaces exposed to the flow 
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generally have higher local velocities , higher shear stresses, and thinner boundary layers than 

interstitial surfaces (Nowell and Jumars 1984; Davis 1986), it is possible that the diel periodicity of drift 

is due, at least in part, to the accidental dislodgement of diurnally active individuals moving over high-

risk hydraulic patches rather than intentional detachment for the purpose of migration. This is 

supported by the conclusions of Poff and Ward (1991 ), who interpreted the increases in drift 

associated with periods of increased discharge to an increases in the accidental detachment ("scour'') 

of invertebrates from the streambed. Periodic drift due to accidental detachment should be more 

pronounced in species that lack specific adaptations to high flow environments, yet are present in a 

wide range of hydraulic microhabitats (i.e. hydraulic generalists) . 

Once entrained in the drift, the responses of stream invertebrates vary. The length of time 

that an invertebrate spends in the drift before returning to the stream bottom (the return rate) is a 

result of the interaction between the hydraulic transport properties of the stream channel and the 

behavioural responses of the individual (Lancaster et al. 1996). Hydraulic 'dead zones' (areas of the 

stream bed where water is held in transient storage - stream margins, turbulent eddies, vortices 

attached to boulders or logs, and backflows associated with pools or bends) provide opportunities for 

invertebrates to regain the substrate. Lancaster et al. (1996) found that channels with the highest 

mean velocities had the lowest return rates, but also report that streams whose beds had high 

proportions of dead zones had relatively high rates of return, regardless of velocity. They also 

suggest that turbulence and channel-specific depth may increase the length of time invertebrates are 

entrained. 

By altering their behaviour, some invertebrates can alter the length of time spent in the drift. 

At very low velocities, some invertebrate taxa can actively increase time spent drifting (Poff and Ward 

1991 ). Winterbottom et al. (1997) found that the length of time spent in the drift by the leuctrid stonefly 

Leuctra nigra was entirely dependent on flow and the hydraulic characteristics of the channel. The 

inability of L. nigra to behaviourally modify its return rate is consistent with the findings of Lancaster et 

al. (1990) which show that L. nigra is a poor colonizer and disperses slowly. However, the length of 

time that the nemourid stonefly Nemoura pictetii spends in the drift is independent of flow factors . 

Behavioural control of return rate allows nemourids to colonise new substrates rapidly (Winterbottom 

et al. 1997; Lancaster et al. 1996), an attribute which allows individuals to minimise the length of time 

they are exposed to predation by fish . The capacity to efficiently util ise downstream transport in 
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moving waters is also important to the feeding ecology of stream herbivores. The mayflies Baetis 

bicaudatis and Epeorus deceptivus grew to larger body sizes when high velocities allowed them to 

drift successfully between high resource patches (Palmer 1995). Interestingly, the growth of these 

two grazing species was maximised when they entered the drift less frequently. Increases in time 

invested to 'search' (in the drift) for higher resource patches may be beneficial; however, time spent 

searching results in lost feeding opportunities in a patch of known resource availability. 

Ontogenetic shifts in hydraulic habitat and microdistribution 

The influence of moving water on a stationary body is dependent on spatial scale, as 

indicated by the Reynolds number. As benthic invertebrates generally increase in size and mass 

during their growth and development, one might expect to find size-related shifts in behaviour and 

microhabitat preference (see Table 1-1). 

The spatial niches of organisms change as they increase in size. Osborne and Herricks 

(1987) found ontogeny-related differences in microhabitat velocities among four ecologically similar 

species of the caddisfly Hydropsyche. H. cheilonis, H. sparna, and H. bronta occupied areas of the 

substratum where maximum velocities reached 25 em s·1, while the larvae of H. betteni were found in 

velocities as high as 35 em s·1. Although the degree of hydraulic niche overlap between the four 

species is high, H. betteni is roughly 1 0 - 15% larger at each instar than the other three hydropsychid 

species, which are virtually identical in size. Osborne and Herricks (1987) noted a similar intra-

specific trend; larger, higher instar larvae of the four Hydropsyche species were capable of inhabiting 

regions of higher microhabitat velocities. The results of Osborne and Herricks suggest that size-

related differences in hydrodynamic tolerances are a function of body size, rather than functional 

changes in capture net mesh dimensions. Collier et al. (1995) found that larger larvae of the 

hydrobiosid caddisflies Hydrobiosis parumbripennnis and Costachorema callistum tended to be more 

common in higher velocities than smaller larvae. Collier et al. (1995) concur that this difference is a 

function of the larger physical sizes of higher instars, and suggest that the large anal prolegs used by 

caddisflies to move over the substrate in fast currents may be more effective in maintaining position 

as they increase in size. 

Intraspecific variations in distribution of the leptophlebiid mayfly Deleatidium is size related as 

well (Collier 1994). While the velocity preferences of this species are relatively broad, it is generally 
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found in areas of higher flow (Jowett et al. 1991). Collier (1994) found that the abundance of smaller 

nymph size classes was greatest in relatively low-velocity patches (<40 em s·1
), while larger nymphs 

reached their highest densities in higher velocity habitats (>90 em s·1). Collier (1994) suggests that 

size-related differences in distribution might be a reflection of changes in oxygen requirements as 

individuals grow. Increases in size result in lower surface-to-volume ratios, which may, in turn, restrict 

respiratory gas exchange rates. Higher flow rates thin the boundary layers associated with 

invertebrate gills, resulting in increased diffusion of respiratory gases (Nowell and Jumars 1984 ). 

However, while oxygen and food supplies may be more readily available at high velocities, the 

proportion of total drag attributable to pressure drag is greatest for larger, late instar larvae (see Vogel 

1994 ). For stream insects, especially grazers foraging in high velocity microhabitats, this is a 

necessary tradeoff. Individuals can either avoid areas where high velocities and erosional forces (lift 

and drag) threaten to detach them from the substrate, or possess morphological and/or behavioural 

adaptations to counter the effects of lift and drag (Weissenberger et al. 1991; Collier 1994 ). For 

example, Buffagni et al. (1995) found that the velocity preferences of the mayflies Rhithrogena 

semico/orata and Ecdyonurus venosus, both obligate inhabitants of high flow environments, did not 

change with increasing size. Rather, larger individuals of both species tended to prefer substrates of 

greater roughness. Buffagni et al. (1995) suggest that bed roughness may provide a better descriptor 

of complex hydraulic characteristics near the stream bottom, citing turbulence and 'force of flow' as 

possible factors . These species may be taking advantage of flow microrefugia, small-scale surface 

irregularities that produce localised areas of relatively thick boundary layers (Davis and Barmuta 

1986). Larger mayflies may find maintenance of position in these areas to be less expensive 

energetically. A similar use of flow microrefugia was noted in the caddisfly Hydropsyche (Osborne 

and Herricks 1987); larvae are often found associated with small depressions and imperfections in the 

substrate surface. This may allow these suspension-feeding caddisflies to hold their nets in the higher 

velocities of the upper boundary layer, while restricting the exposure of the bulk of their bodies to the 

low shear stress, lift, and drag of a locally-thickened boundary layer. 

Benthic predators, which are not directly dependent on the epiphytic food resources available 

in high velocity patches, would not be expected to show the same specific adaptations to high velocity 

microhabitats. Winterbottom et al. ( 1997) found that large stoneflies of the species Leuctra nigra were 

more susceptible to changes in discharge than were smaller individuals, and suggested that while 
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larger individuals were more likely to be eroded, smaller L. nigra were able to move more easily over 

exposed areas of the stream bed at high velocities. Similarly, Lancaster and Hildrew (1993) reported 

that the distribution of small , early instar L. nigra did not change with increases in flow, and were 

generally associated with high velocities and coarse substrates. Thus, the distributions of stream 

predators (which rarely demonstrate specific adaptations to counter the erosional effects of high 

velocities; see below) may not be the result of a preference for low-velocity habitats. Rather, high 

near-bed velocities may act to prevent stream invertebrate predators may from foraging in high 

velocity habitats, where prey is often abundant. 

Hydrodynamics, prey, and predation: eating in the fast lane 

Given the ecological importance of morphological and behavioural adaptations to both stream 

hydrodynamics (e.g. Quinn et al. 1996) and predator-prey interactions (e.g. Tikkanen et al. 1997), it is 

of little surprise that research on the relationship between hydrodynamics and predator-prey 

interactions is growing. Basic ecological tenets state that harsh environments and physical 

disturbances weaken interactions between species (see Menge 1976). In freshwater lotic 

environments, where hydrodynamics play a pivotal role across physical scales ranging from river-wide 

zonations (Statzner and Higler 1986) to fine-scale respiratory currents over invertebrate gills (Wiley 

and Kohler 1980), one would expect to find a wide range of ecological and behavioural responses 

linking predator and prey (see Table 1-1 ). 

Peckarsky et al. (1990) provided the first formal test of the harsh-benign hypothesis in the 

stream environment, gauging the influence of hydraulic-habitat preferences on predator-prey 

interactions. The harsh-benign hypothesis, originally developed to explain the relative roles of 

predation and competition in structuring marine rocky intertidal communities (Menge 1976), can be 

used to assess the impact of predatory invertebrates on prey populations along a gradient of hydraulic 

regimes . Peckarsky et al. {1990) found that densities of the predatory stonefly Dinocras cephalotes 

peaked at FST hemisphere 11 (see Statzner and Muller (1989) for a description of the FST 

apparatus), indicating a preference for medium-range flows and shear stresses. However, the prey 

species of D. cephalotes (including Hydropsyche (Trichoptera), Baetis (Ephemeroptera), assorted 

Chironomid species, and the amphipod Gammarus (Crustacea)) showed preferences for higher flow 

conditions (average of FST hemisphere 18). When prey were distributed across a range of habitats, 
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predation impacts on the prey were significant only in those patches with hydraulic regimes favourable 

to the predators. The flatworm predator Dugesia dorotocepha/a is similarly limited in its predation on 

larval blackflies (Simulium vittatum) . Hart and Merz (1998) found that while D. dorotocephala will 

readily attack black fly larvae when it encounters them, the flatworm is poorly adapted to high 

velocities. As a result, high velocity sites not only acted as flow-mediated refuges from predation, but 

also coincided with areas where the feeding rates of the food-limited, suspension-feeding black fly 

larvae are maximised. Peckarsky et al. (1990) suggest that reductions in prey populations are not 

entirely due to predation; predator avoidance behaviours, including drift (Wooster and Sih 1995) and 

migration (Peckarsky and Cowan 1995) account for the majority of the observed community change. 

However, the criteria by which predators and prey perceive hydrodynamic conditions as being either 

'harsh' or 'benign' remain unknown for most species. 

Microhabitat overlap between prey and predator species may determine encounter rates, but 

this does not necessarily translate into prey preferences. Prey preferences are not only a function of 

availability, but also species-specific handling times and attack success rates (Sih and Wooster 1994). 

The perlodid stonefly Diura bicaudata demonstrates a strong preference for black fly larvae prey, even 

though microhabitat overlap with black fly species is minimal. D. bicaudata has the highest degree of 

microhabitat overlap with several species of mayfly, including Baetis, Ephemerella, and Heptagenia, 

yet rarely utilised them as prey (Tikkanen et al. 1997). Tikkanen et al. ( 1997) also found that baetid 

mayflies were able to risk interactions with predators due to highly effective escape manoeuvres. 

Interestingly, however, Palmer (1995) reported that rates of predation by the stonefly predator 

Megarcys signata on Baetis bicaudatis were higher at 10 em s-1 than 30 cm-1, as the swimming 

escape response of Baetis is less effective at lower velocities . It is possible that the higher shear 

stress, greater turbulence intensity, or thinner boundary layers at higher velocities interferes with the 

ability of M. signata to recognise the 'hydrodynamic signature' of the swimming baetids (see 

Peckarsky et al. 1990). Alternatively, once the escape response is initiated, higher velocities may 

reduce the rate of predation success by transporting prey out of the attack range of predators more 

quickly. 

Invertebrate predators also use hydrodynamic cues to detect prey and discriminate between 

preferred and non-preferred prey species. Peckarsky and Wilcox (1989) found that the perlodid 

stonefly Kogotus modestus never attacked motionless mayfly prey, but was able to use the pressure 
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wave patterns associated with swimming escape behaviour of the mayfly Baetis bicaudatus to 

recognise and attack this preferred prey species. Based upon the pressure wave patterns, K. 

modestus was also able to distinguish B. bicaudatus from Ephemerel/a infrequens, a non-preferred 

mayfly prey species. 

Black fly (simuliid) larvae increase the chance of surviving an attack by an invertebrate 

predator by detaching into the drift or vigorously biting the head region of the predator (Tikkanen et al. 

1997). These tactics are, unfortunately, relatively ineffective; black fly larvae are the preferred prey of 

predators such as the stonefly Megarcys signata, which attack blackflies with a relatively high capture 

probability when they are encountered. Yet rates of predation of black fly larvae are relatively low, 

due to a separation of the hydraulic niches of predator and prey. Suspension-feeding simuliid larvae 

aggregate in exposed microhabitats, preferably attaching in areas of low shear stress but relatively 

high velocity (Lacoursiere 1992), while M. signata prefers low velocity microhabitats along the 

periphery of streams. The microsite preferences of Simulium also moderate the predatory impacts of 

freshwater triclad flatworms on aggregations of larval black flies (Hansen et al. 1991; Hart and Merz 

1998). Due to the incomplete microhabitat overlap between triclads and their simuliid prey, the 

flatworms are unable to forage in areas of the bed that contain the highest densities of simuliids. 

Muotka and Penttinen ( 1994) found that the stonefly predator /soper/a grammatica is similarly 

excluded from the microhabitat preferred by the larval black fly Simulium sublacustre. They suggest 

that /. grammatica either simply avoids the areas of high current velocity preferred by the black fly 

larvae, or is competitively excluded from foraging in exposed areas by a species that moves more 

efficiently over the surface of stones at high velocities. High velocity patches do not provide a refuge 

from all stream predators, however. The microhabitat preferences of S. sublacustre and the predatory 

caddisfly Rhyacophila obliterata overlap highly when local water velocities reach 40- 60 em s·1; this 

results in high rates of consumption of the sedentary black flies by this large, active rhyacophilid 

predator (Muotka and Penttinen 1994 ). 

The importance of invertebrate predators to stream communities is also reduced during the 

hydraulic restructuring that occurs during floods and spates. Increases and redistributions of velocity 

and shear stress accompany increases in stream discharge. These often rapid changes can cause 

losses and changes in community structure (Lancaster 1996). Animals may be lost from 

microhabitats subject to high erosional forces, while individuals in low-flow refugia may remain 
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essentially unaffected (Lancaster and Hildrew 1993; Winterbottom et al. 1997). The individuals in 

these refugia, coupled with those that migrate into them during the disturbance event, will be available 

to recolonise denuded areas of the streambed when the distributions and levels of velocity and shear 

stress return to average. Lancaster ( 1996) found that the alderfly Sialis fuliginosa did not significantly 

shift its microdistribution with changes in discharge. As a result, the total impacts of this predator 

decreased during periods of hydraulic disturbance. Consumption of prey remained at pre-disturbance 

levels for those individuals found in refugia, but was reduced throughout the remainder of the 

streambed where prey populations had been reduced. Lancaster suggests that because S. fuliginosa 

is an active forager, it may simply be unable to feed efficiently in fast currents. However, flow 

disturbance events have very different effects on the feeding ecology of the caddisfly Plectrocnemia 

conspersa, a primarily lie-and-wait predator which spins silken nets in which prey become entangled. 

Lancaster (1996) found that, unlike S. fuliginosa, rates of prey consumption by P. conspersa 

increased during spate events. The microdistribution of P. conspersa remains similar to that of the 

invertebrate species it preys upon; it is uniformly distributed across hydraulic habitats at low flows, and 

becomes abundant in flow refugia during periods of high discharge. Increased rates of predation by 

P. conspersa may be a function of the increased movements of migrating prey in the process of 

searching for and moving into areas of lower velocity and shear stresses. However, Winterbottom et 

al. (1997) noted that the mobility of P. conspersa was related to increases in discharge; this suggests 

that changes in distribution of this caddisfly may be, in part, a result of dislodgement of individuals 

caught in exposed areas of high shear stress during flood-associated increases in discharge. This 

suggests that while the harsh-benign hypothesis may provide insight into the impacts a predator may 

have on prey populations across a wide range of hydraulic conditions, its application may be limited to 

those species that show well-defined hydraulic preferences. The predatory impacts of those species 

that are able to modify their predatory behaviour to accommodate the microhabitats occupied by a 

range of prey species may be less dependent on predator/prey microhabitat overlap. 
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Fine-scale flows: behavioural and morphological hydrodynamics 

Fine-scale manipulations of flow 

The benthic invertebrate taxa of lotic systems have evolved a range of adaptations to cope 

with hydrodynamic forces. They have, in many cases, coupled complex behaviours with specialised 

morphologies to utilise the energy of their environment (see Table 1-1 ). For example, the bodies of 

the larvae of the aquatic beetle genus Sclerocyphon (Coleoptera: Psephenidae) locally modify the 

thickness of the boundary layer to produce a suite of ecological and energetic benefits. Using dye 

injection, Smith and Dartnall (1980) found that these unique larvae live in turbulent environments, 

where turbulent boundary layers develop in high velocity flows . The streamlined, flattened bodies of 

Sc/erocyphon (figure 1-4) modify the developing boundary layer, increasing the thickness of the local 

viscous sublayer. A thickened viscous sublayer reduces the risk of dislodgement as Sclerocyphon 

grazes the epiphytic diatoms and other algae found on the upper surfaces of boulders and cobbles 

(Quinn et al. 1996). However, life within the viscous sublayer has disadvantages; the diffusion of 

respiratory gases within the viscous sublayer relies upon the relatively slow rates of molecular 

diffusion. In situations where the viscous sublayer is sufficiently thick to impair respiration, 

Sclerocyphon creates its own respiratory current using the anal tracheal gills located beneath the last 

abdominal tergite. The larvae extrude, then actively pump these gills, creating an area of localised 

turbulence at the rear of the body. This results in increased rates of respiration and waste removal 

while minimising increases in overall drag on the body. However, as Reynolds numbers increase, the 

viscous sublayer thins (Carling 1992), exposing the bodies of larval Sclerocyphon to a turbulent 

boundary layer. In these circumstances, Smith and Dartnall (1980) suggest that continued vortex 

production at the rear of the body is possibly no longer of use in ventilation, but rather may be acting 

to minimise pressure drag. In these high velocities, a secondary current that forces small amounts of 

water between the lateral laminae produces a phenomenon known as boundary layer suction. 

Boundary layers over the insect are further thinned, while boundary layer separation is delayed. As a 

result, pressure drag produced by the body of Sclerocyphon is reduced. 

As mentioned above, the bodies of the stream invertebrates that inhabit the exposed surfaces 

of the streambed have long been regarded as being adapted to the hydraulic forces of their 

environment. Ambuhl (1959) felt that dorso-ventral flattening could be regarded as an adaptation to 

maximise the proportion of the body in the boundary layer, avoiding, to the greatest extent possible, 
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mean water velocities. This idea was generally accepted until Statzner and Holm (1982) re-examined 

the fine-scale flow patterns around the body of the mayfly Ecdyonurus venosus, the same species that 

Ambuhl had studied 23 years earlier. They found that Ecdyonurus, and presumably similar mayfly 

species, are not simply "living a sheltered life in the boundary layer''. Moreover, the water moving 

over the body of E. venosus is far less smooth than Ambuhl had originally reported. Statzner and 

Holm ( 1982) found that water approaching the front of the mayfly slowed down substantially near the 

substrate at the front of the animal. Though Statzner and Holm (1982) do not discuss this trend, this 

pattern possibly indicates the presence of a horseshoe (solenoidal) vortex immediately in front of the 

head of the insect. The isovels ('layers' of equal water velocity) are then compressed as water flows 

up over the length of the thorax, then re-expand over the abdomen, suggesting that the lift and friction 

forces are concentrated over the thorax, where the legs of E. venosus are in contact with the bottom. 

Statzner and Holm (1982) regard this as an adaptation to maintain contact with the substrate in high 

velocities . Weissenberger et al. (1991) found that the morphology of Ecdyonurus counters much of 

the lift created by the steep velocity gradients over the thorax. The large head shield of this species 

can be angled to create negative angles of tilt, which reduces lift forces . The broad legs of 

Ecdyonurus, which are shaped like aerodynamic 'spoilers', can be angled to press the body down 

against the substrate. These morphological and behavioural adaptations can produce negative lift 

forces, minimising the energy Ecdyonurus must expend to maintain contact with the substrate. 

Alternatively, Weissenberger et al. found that Epeorus, another heptageniid mayfly, does not possess 

similar lift-reducing adaptations. The airfoil-shaped body of Epeorus produced much higher lift forces, 

which it apparently counters by anchoring itself to the substrate. Epeorus did, however, have the 

lowest drag coefficient of the species examined (Weissenberger et al. 1991 ). 

Of special interest is the relationship between lift, drag, and the morphology of the perlid 

stonefly Perla bipunctata (Weissenberger et al. 1991 ). The lift forces experienced by th is stonefly, 

which does not exhibit any specialised adaptations for life or movement in high flow environments, 

remain at very low levels until water velocities reach approximately 50 em s·1• Above this velocity, the 

lift forces experienced by an individual stonefly increase rapidly. This supports the results of Muotka 

and Penttinen ( 1994 ), which suggest that a thresh hold velocity exists, beyond which stonefly 

predators (generally 'hydrodynamic generalists') are prevented from seeking prey due to 
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hydrodynamic constraints. As lift forces increase, hydraulic generalists such as stonefly predators 

may experience difficulties maintaining contact with the substrate. 

Many benthic insect taxa (e.g. Diptera, Trichoptera) must enter a pupal stage before they can 

become reproductively mature adults (Resh and Rosenberg 1984 ). During the pupal stage, aquatic 

insects are generally immobile, and must therefore rely on the position adopted in the final larval instar 

to provide a continuous source of oxygen. Voelz and Ward (1996) found that the pupal cases of the 

caddisfly Brachycentrus occidentalis were clumped on the underside of the downstream side of 

boulders, a highly turbulent site which should provide high levels of dissolved oxygen while minimising 

shear stresses that might dislodge the pupating insects. A different approach is adopted by pupating 

blepharicerid larvae. Pommen and Craig (1995) found that morphological features of blepharicerid 

pupae produce respiratory vortices that interact with the pupal gills to create a unique, and efficient, 

method of plastronic gas exchange (see Vogel1994). 

The "scorpion posture", adopted by the mayfly Ephemerella when confronted by predators, is 

characterised by a vertical flexion and extension of the terminal abdominal segments and terminal 

filaments . Although recognised as a defensive behaviour by Peckarsky and Penton (1988), they 

ascribe it a largely mechanical function . Rather, this distinctive behaviour may play one of several 

hydrodynamic roles. The mayfly C/oeon dipterum positions its abdomen in a similar manner in order 

to initiate sufficient thrust during escape manoeuvres, during which accelerations can reach as high as 

6.5 m s·2 (Craig 1990). This suggests that the scorpion posture may reflect a 'pre-swimming' 

readiness on the part of Ephemerella. Alternatively, the extension of the abdomen and anal cerci into 

the upper levels of the benthic boundary layer may distort the flow fields around the animal's body, 

confusing predators as to the precise location and identity of the prey. 

The fluid mechanics of suspension feeding and 'erosional hunting' 

Several species of stream macroinvertebrate manipulate the hydrodynamics of their 

immediate surroundings in order to enhance feeding efficiency. Benthic taxa variously create vortices 

that enhance the efficiency of specialised suspension-feeding structures, erode soft sediments to 

expose buried prey, and re-suspend deposited organic food particles from the stream bed (see Table 

1-1 ). The creation and manipulation of vortices requires specialised morphological features and 
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behavioural adaptations. Consequently, taxa that employ hydraulic manipulation to acquire food are 

generally among the most unique denizens of the benthic community. 

The predatory larvae of the mayfly species Pseudiron centra/is employ an unusual method of 

hunting for and feeding on their preferred prey, larval chironomids that live concealed in the benthic 

sands of large northern rivers. Pseudiron larvae adopt a peculiar posture, positioning themselves on 

the upstream slopes of sand dunes, arching their thorax upward while holding their head and 

mouthparts close to the substratum (figure 1-5). Soluk and Craig (1990) found that this directs flow 

downward, resulting in the generation of a solenoidal vortex in front of the animal. The increased 

velocity of this 'horseshoe' vortex erodes sand in front of the animal, exposing their chironomid prey. 

As prey becomes exposed, it is seized and ingested by the mayflies. The mayfly slowly moves 

backward, excavating prey in a continuous trench. 

The predatory activities of the mobile stonefly Dinocras cepha/otes also result in the erosion 

of fine sediments (Statzner et al. 1996). The ecological importance of this stonefly approaches that of 

a keystone species (Jones et al. 1994 ), due to the large influence this species has on erosional 

processes in stream riffle habitats. The night-time activity levels of D. cephalotes larvae increase 

when prey are scarce; it is this patrolling for prey that leads to increased bioturbation of sediments. 

Increases in sediment transport in turn lead to increases in the depth of interstitial spaces. However, 

increased foraging activities were noted only in hydraulic habitats preferred by the stonefly (optimal 

shear stresses of 0.39 - 1.58 N m·2 for Dinocras; see Peckarsky et al. 1990). The authors suggest 

that increases in sediment entrainment by this stonefly are merely incidental, a behavioural 'by-

product' of increased activity. If local shear stresses are already close to incipient motion thresholds 

for sand, then the hydrodynamic disturbance provided by the presence of a stonefly will likely result in 

local increases in entrainment (Statzner et al. 1996). However, it is possible that increases in 

interstitial space could directly benefit these predators if localised erosion exposed larval chironomids, 

a known prey item of other stoneflies of the same family (Perlidae, see Stewart and Harper 1996). 

Soluk and Craig (1988) also investigated a unique method of suspension feeding utilized by 

the lotic mayfly Ametropus neavei. This mayfly also inhabits marginal regions of shifting sands in 

rivers throughout the holarctic region , and are found most commonly in velocities ranging from 18- 30 

em s·1
• In relatively slow flows, these mayflies simply bury themselves , leaving only their head and 

caudal filaments exposed (Clifford and Barton 1979). However, when the flows of their environment 
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exceed approximately 8 em s·1
, the behaviour of Ametropus changes. They orient themselves facing 

into the flow, and clear a shallow pit immediately in front of their head, and extend their prothoracic 

legs above them into the flow (Figure 1-6). They sweep their prothoracic legs towards their 

mouthparts every few seconds, with the rate of 'sweeping' increasing with velocity. Soluk and Craig 

(1988) found that modified microtrichia found on the forelegs were capturing food particles from the 

water column. The microtrichia function as an aerosol (or "hydrosol") filter (Braimah 1987), rather 

than a sieve (LaBarbera 1984 ), in that particles impact or collide with filter elements due to fluid 

dynamic forces . Aerosol filters capture particles much smaller than the spacing between filter 

elements (LaBarbera 1984 ). The minimal surface area required for aerosol capture presumably 

confers on Ametropus the same benefits it provides for other suspension-feeding aquatic fauna such 

as black fly (Diptera: Simuliidae) larvae {Chance and Craig 1986)- relatively low pressure drag. This 

reduction in drag is especially important for Ametropus, as the sand dune-like habitats inhabited by 

this species do not provide a source of firm attachment. In addition, Soluk and Craig (1988) found that 

the forelegs, which are presumably held in the upper levels of the boundary layer, direct relatively 

rapidly moving water downward in to the pit. In conjunction with the head and antennae, this creates 

a stable, horizontally rotating solenoidal vortex. The increased velocities of the redirected flow entrain 

food particles, while the vortex serves to keep the particles suspended and passes them over the 

collecting apparatus {hairy coxal plates, labrum, and mouthparts) multiple times. The authors suggest 

that the pit may also act as depositional trap, because shear stresses in pits are typically lower than 

those of surrounding sediments (Nowell and Jumars 1984 ). 

Another group of suspension feeders that manipulate vortices to enhance feeding efficiency 

are the larvae of the dipteran family Simuliidae {the blackflies). The various species of the genus 

Simulium enjoy a nearly cosmopolitan distribution, and are found in the running waters of streams 

from the arctic to the tropics (Craig 1977; Merritt et al. 1996). Due to the medical importance and 

pestiferous nature of simuliid adults, the feeding and positioning behaviour of the larvae have been 

studied extensively (Craig and Chance 1982; Chance and Craig 1986; Hart et al. 1991; Lacoursiere 

1992; Merritt et al. 1996), leading to some success in controlling populations using particulate, 

ingestible insecticides. As suspension feeders, simuliid larvae are elegantly adapted to moving water, 

manipulating local flow to create specialised patterns of vortices that gather food and bring it to the 

mouth, remove wastes, and facilitate respiration. 
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Chance and Craig ( 1986) present one of the most detailed studies on the interaction between 

the behaviour and hydrodynamics of black fly larvae. Larvae orient themselves with their 

posterolateral surface upstream, and twist their bodies 90 - 180°. This longitudinal twisting of the body 

results in one labral fan being closer to the substratum, while the other is held up into the upper 

boundary layer (Chance and Craig 1986}. The rotation also results in the adoral (concave) surface of 

the labral fans being exposed to the flow. With few exceptions (Craig 1977), simuliid larvae capture 

food from water using these modified labral fans, whose microtrichial structure is modified to present a 

nearly hydrodynamically ideal structure to the flow, resulting in minimal drag. The body is deflected 

from vertical by the flow, with angle of deflection increasing with velocity. The angle of deflection was 

once thought to be passive, regulated by drag acting on the body of the insect (Maitland and Penny 

1967; Chance and Craig 1986). Lacoursiere (1992), however, found that posture is in part 

behaviourally determined. The feeding stance is an outcome of feedback between flow forces and 

behaviour that acts to maintain the labral fans in an optimal feeding position. When disturbed, black 

fly larvae exhibit a characteristic "avoidance reaction"; they cease feeding and pull down closer to the 

substrate into the decreased velocities of the lower boundary layer. 

The adaptive significance of the positioning of the labral fans is only fully realised when it is 

placed in context of the flow patterns generated by the unique morphology of this insect (Figure 1-7). 

In addition to the longitudinal twisting of the body, black fly larvae 'yaw' their bodies across the mean 

flow up to 20°. This posture has a peculiar influence on the vortices generated by the modified 

cylindrical form of these larvae. Flow approaching near the substratum slows as it reaches the 

stagnation point at the front of the body, then accelerates (by a factor of 1.6 to 1.7) as the flow 

separates and passes on either side of the body just outside the 'horseshoe' vortex (Chance and 

Craig 1986). If the body approximated a symmetrical, but tilted, cylinder, the paired vortices 

generated would rise up the downstream side of the body, and detach at the top in a classic von 

Karman trail (Vogel 1994 ). However, due to the fact that the body is positioned across the flow as well 

as being twisted, only one of the paired vortices rises up the body while the other simply slips to the 

side and is carried, rotating, downstream. The upper vortex, which has greater angular velocity than 

the lower vortex due to the greater distance it must travel around the larval body, resuspends fine 

particulate organic matter that has been deposited on the substrate. This vortex then rises up the 

downstream side of the larval form, passing through the lower labral fan. As mean current velocities 
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increase, the angle of deflection of the larval body increases, resulting in the larvae lying closer and 

more parallel to the substrate. Although the cross-sectional area of the vortex discharging into the 

lower labral fan decreases, overall discharge changes very little due to increased velocities and a 

thinner boundary layer (Vogel 1994 ). 

While the lower labral fan filters water only from the attached, rising vortex, the upper labral 

fan captures food particles from an entirely different volume of water. The upper labral fan is held up 

into the upper levels of the boundary layer, where it is exposed to velocities higher than that of the 

body and lower labral fan . As velocities increase and angle of bodily deflection increases, the labral 

fan is exposed to higher velocities, but is maintained at approximately the same position in the 

boundary layer ( Lacoursiere 1992). The filtering efficiency of the labral fans is reduced as velocity 

decreases. Larval blackflies decrease the aperture opening between the rays of the labral fan as 

velocities decrease. At low velocities, Reynolds numbers are sufficiently low that a 'viscous zone' 

(viscous effects predominating at low Reynolds numbers at the scale of individual filter elements; see 

Braimah 1987) occupies most of the apertural space surrounding the rays and microtrichia. 

Lacoursiere and Craig (1993) estimated that 97% of the apertural space was occupied by this 'viscous 

zone' at velocities of 3.6 em s·1. However, as Reynolds numbers increase, less of the apertural space 

is occupied by these viscous effects (28% at 40 em s·1; Lacoursiere and Craig 1993). 

Directions for future research 

The behavioural and morphological adaptations of benthic invertebrates to the unidirectional 

flow of stream environments are diverse. Yet, due to the cosmopolitan nature of stream 

hydrodynamics in lotic systems worldwide, stream ecologists can enjoy an unparalleled discourse on 

the complex interactions between physics and biology in rivers and streams. The challenge that lies 

before behavioural and physical ecologists is twofold . First, data relating the biology of stream taxa to 

hydraulics must be collected and analysed in a manner appropriate to the question asked. Too often, 

authors seem content with a level of discussion that approximates 'this species seems to prefer 

medium velocities'. If a more complete understanding of the role that moving water plays in stream 

ecosystems is ever to be achieved, stream ecologists must become more comfortable with the 

concepts of shear, eddy production, and boundary layers (among others). Second, the nature of the 

flow that is actually experienced by animals on the substrate must be more thoroughly examined. The 
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validity of studies of large-scale processes and patterns will continue to be limited unless we 

understand the nature of flow in natural systems at organism-defined scales. 
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Table 1-1. Selected examples of behavioural and morphological 

adaptations of stream invertebrates to hydrodynamics 

Category 
Morphology I 
flow interactions 

Micropositioning 

Taxon I Adaptation (reference) 
1. Larvae of the caddisfly Sericostoma se/ysi 
from high velocity areas had heavier, narrower 
cases than those larvae from lower velocities 
(Delgado and Carbonell 1997). 

2. Water penny larvae (Sclerocyphon; 
Coleoptera: Psephenidae) were highly 
streamlined, and controlled the boundary layer 
over their bodies by suction through the lateral 
laminae (Smith and Dartnall 1980). 

3. Flow lines were compressed over the front 
of the Ecdyonurus cf. venosus, and boundary 
layer separation occurred over the bodies of E. 
venosus and Ancy/us fluviatilus (Gastropoda) 
(Statzner and Holm 1982). 

4. Steepest velocity gradients were found 
close to the bodies of several benthic taxa 
(Gastropods Ancylus, Acroloxus, and 
Potamopyrgus, the amphipod Gammarus, the 
larval caddisflies Anabolia, Micrasema, and 
Silo), where parts of their bodies protruded 
furthest into the flow (Statzner and Holm 1989). 

5. The mayfly Ecdyonurus tilted its head 
shield, and had femurs shaped like 'spoilers', 
while the mayfly Epeorus resisted lift by 
anchoring itself to the substrate . The drag 
forces experienced by the invertebrates were 
proportional to the square of the velocity 
(Weissenberger et al. 1991 ). 

1. Abundances of suspension-feeding black fly 
(Simulium vittatum) larvae were significantly 
related to velocity measured 2 mm above the 
bed. Maximum near-bed acclerations 
exceeded 1 x 104 em s·2 (Hart et al. 1996). 

2. Simulium vittatum larvae gathered in 
boundary layer separation zones, and avoided 
areas of maximal shear stress (Lacoursiere 
1992). 

3. The suspension-feeding caddisflies 
Arctopsyche grandis and Brachycentrus 
occidentalis preferred the bottoms and lower 
lateral sides of rocks rather than the upper, 
current-exposed, surfaces (Voelz and Ward 
1996). 

4. The suspension-feeding caddisfly 
Brachycentrus occidentalis preferred 
microhabitats with higher velocities, shallower 
depths, higher water surface slopes, and 
higher Froude numbers (Wetmore et al. 1990). 
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Inferred functional advantage 
1. Larvae in high velocities are more easily 
able to resist drag, reducing the risk of 
becoming detached from the bed. 

2. Streamlining and boundary layer suction 
allow larvae to maintain their position and 
move over the substrate in high velocity, 
highly turbulent flows . 

3. Lift is concentrated over the thorax of E. 
venosus (where the legs are in contact with 
the substrate), and boundary layer 
separation over both taxa suggests that the 
boundary layer may not be thick enough to 
provide substantial protection from high 
near-bed velocities. 

4. Simultaneous morphological adaptations 
to the forces of lift, pressure and friction 
drag, erosion, diffusion are impossible; 
adaptations will be a reflection of the 
organisms size and Reynolds number, and 
will change as the organism grows. 

5. The morphological adaptations of 
Ecdyonurus produce 'negative' lift, and press 
its body against the substrate in high-
velocity flows. Epeorus experiences high lift 
due to its 'airfoil ' shape, but counters this by 
attaching itself firmly to the substrate. 

1. Particle interception rates are a function 
of near-bed velocities and turbulence 
intensities; S. vittatum larvae position 
themselves in locales that maximise rates of 
particle delivery. Forces due to acceleration 
reaction may be greater than the forces 
imposed by pressure drag on these 
suspension-feeding larvae. 

2. Larvae can detect (and migrate to) areas 
of the bed with velocity profiles that will 
maximise particle flux through their labral 
fans while minimising drag on the bulbous 
posterior portion of their abdomen. 

3. The microdistributions of A. grandis and 
B. occidentalis may minimise predation and 
the risk of accidental detachment while 
allowing for 'acceptable' rates of particle 
capture and respiration. 

4. Larvae may choose sites with 
accelerating flow to maximise particle-
capture rates; however, as B. occidentalis 
larvae must extend their legs into the flow to 
suspension-feed, velocities must not be so 
high that food particles are washed away 
before they can be transferred to the mouth. 



Habitat selection 1. The macroinvertebrate communities 
associated with the front (solenoidal vortex) and 
downstream (wake) regions of stream boulders 
were distinctly different (Bouckaert and Davis 
1998). 

Ontogenetic 
shifts in habitat 
selection 

2. Invertebrate abundance was positively 
correlated with roughness and negatively 
correlated with slope. Associations of taxa with 
similar adaptations to flow to specific velocities, 
Reynolds numbers, roughness Reynolds 
number, and shear velocity were noted (Growns 
and Davis 1994 ). 

3. Densities of the mayflies Rhithrogena and 
Baetis were greatest at depths of 1.5 m before 
flooding, but shifted to depths of 0.5 m and 0.2 
m during periods of high discharge. Densities of 
the suspension-feeding caddisfly Hydropsyche 
were greatest at 1.5 m during all months; 
however, the location of the 1.5 m depth shifted 
laterally during floods (Rempel et al. 1999). 

4. Distinct microcrustacean assemblages were 
associated with areas of the streambed that 
retained low shear stress during periods of high 
discharge (Robertson et al. 1997). 

5. A relationship was found between the 
microdistribution of several stream taxa and 
various descriptors of the near-bed flow 
environment (including the estimated thickness 
of the laminar sublayer) (Statzner 1981 ). 

1. Larger nymphs of the rheophilous mayflies 
Rhithrogena semicolorata and Ecdyonurus gr. 
venosus preferred rougher substrata (Buffagni et 
al. 1995). 

2. Larger net-spinning hydropsychid caddisfly 
larvae were found at higher velocities than 
smaller, less mature larvae. However, net mesh 
size did not increase with velocity among 
species (Osborne and Herricks 1987). 
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1. Benthic fauna associated with different 
microflow regions around stream boulders 
may not be responding to water velocity, 
but rather to other hydrodynamic factors 
(i.e. turbulence intensity) and/or factors 
related to hydrodynamics that are directly 
linked to the ecology of benthic organisms 
(i.e. deposition of particulate organic 
matter, exchange of dissolved gases). 

2. Invertebrate taxa with similar 
morphological or behavioural adaptations to 
flow can be classified as belonging to one 
of three 'flow exposure groups': obligates 
(found in turbulent, high shear habitats), 
facultatives (found in habitats with greater 
bed roughness), and avoiders (found in 
high velocity habitats where fluxes of 
dissolved oxygen and organic matter may 
be maximised). 

3. Many invertebrate taxa move from 
deeper water to shallower water during 
floods, possibly using the shore zone as a 
flow refugium during flood events. 

4. Areas of low shear stress ('refugia') may 
enable the survival of epbenthic 
microcrustacea during periods of high 
discharge. 

5. The distribution of various taxa reflects 
their degree of rheophily and dependence 
on high-velocity microhabitats. Many 
macroinvertebrates (e.g. suspension-
feeders) prefer habitats with specific 
hydraulic characteristics (e.g. certain 
ranges of turbulence, viscous sublayer 
thicknesses, etc.) 

1. As nymphs increase in size, their 
hydraulic preferences (i.e. for specific 
velocities or turbulence intensities) change; 
larger nymphs may be able to move and 
graze successfully in high-velocity habitats 
where smaller nymphs would be swept 
from the bed. 

2. Body size, rather than net mesh size, 
limits the distribution of net-spinning 
caddisflies. 



Suspension 
feeding 

Predator 
avoidance 

Predation 

Movement 
(swimming) 

1. The body of Simulium vittatum produced 
downstream, paired vortices; one of the vortices 
rose up the downstream side of the body, and 
passed through the lower of the two Ia bra I fans . 
The second, higher labral fan filtered water from 
the upper boundary layer. Larvae positioned 
side-by-side mutually enhanced flow between 
them (Chance and Craig 1986). 

2. The feeding stance of Simulium vittatum was 
found to be the result of feedback between the 
behaviour of the larvae and drag forces. The 
aperture size of the labral fans (filtering 
elements) increased with increases in velocity 
(Lacoursiere and Craig 1993). 

3. The mayfly Ametropus neavi suspension-fed 
using modified foreleg trichia, and by inducing a 
horizontally-rotating solenoidal vortex within a 
specially constructed pit (Soluk and Craig 1988). 

4. The larvae of four species of net-spinning 
hydropsychid caddisflies (Hydropsyche betteni, 
H. spama, H. cheilonis, and H. bronta) were 
found primarily in areas with rapidly spiralling 
vortices (Osborne and Herricks 1987). 

1. Black fly larvae abundance (Simulium 
vittatum) was negatively related to flatworm 
abundance (Dugesia dorotocephala, a predator) 
and positively related to velocity (Hart and Merz 
1998). 

2. Densities of prey (Baetis rhodani and 
Chironomidae) were reduced by the stonefly 
predator Dinocras cephalotes only in hydraulic 
regimes favourable to the predator (Peckarsky 
et al. 1990). 

1. Predation by the caddisfly predator 
Rhyacophi/a obliterata on larval blackflies 
(Simulium sublacustre) was greatest in areas of 
greatest microhabitat overlap (where velocities 
ranged from 40-60 em s·1} (Muotka and 
Penttinen 1994). 

2. The stonefly predator Kogotus modestus 
used the pressure wave patterns produced by 
escaping mayfly prey to distinguish between 
non-preferred (Ephemeral/a infrequens) and 
preferred (Baetis bicaudatus) prey species 
(Peckarsky and Wilcox 1989). 

3. Larvae of the mayfly Pseudiron centra/is 
arched their bodies and lowered their heads to 
create a solenoidal vortex , which eroded a pit in 
front of their bodies (Soluk and Craig 1990). 

1. The mayfly C/oeon dipterum was found to 
have a highly streamlined shape, and small, but 
projecting, gills (Craig 1990). 
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1. The downstream vortex created by the 
body of S. vittatum enhances feeding (by 
entraining particles from the substrate). 
The upper labral fan captures entrained 
particles convected from upstream. The 
morphology of these larvae also minimise 
drag while maximising particle-capture 
rates. 

2. The interaction between behaviour and 
morphology maximises the particle-capture 
efficiency of the larvae (4- 26 times more 
efficient than previously thought). 

3. The vortex enhances the delivery of 
seston to the particle-capture elements, 
and allows larvae to inhabit the 
noncohesive beds of sand-bottom rivers. 

4. Particle-capture rates of net-spinning 
caddisflies are dependent on flow patterns, 
not just velocity. Larvae preferred faster, 
turbulent flows to slower, more laminar 
flows. Turbulence (especially spiralling 
flows) may entrain particles or increase the 
flux of particles through the net of 
hydropsychid caddisflies. 

1. S. vittatum larvae prefer faster velocities 
not only to maximise rates of suspension 
feeding, but also to minimise the risk of 
predation by predators that are not adapted 
to high velocity habitats. 

2. Stream prey species can minimise the 
threat of predation by moving into areas of 
the streambed with abiotic regimes 
unfavourable to predators (hydraulic 
refugia). 

1. Prey acquisition rates will be greatest if 
predators are able to successfully access 
the hydraulic habitats inhabited by prey 
species. 

2. Use of hydrodynamic cues allows K. 
modestus to selectively predate on 
preferred prey. 

3. The solenoidal vortex erodes 
chironomid prey from the sandy sediments 
that P. centra/is larvae inhabit; the mayfly 
larvae seize any prey exposed in the 
eroded pit. 

1. The streamlined shaped of C. dipterum 
confers no advantage during swimming 
(due to relatively low Re}, but becomes 
important during 'acclerative escape 
motions', as a streamlined shape gives a 
low coefficient of added mass. 



Respiration 1 1. Flow variation did not influence the 
respiration rates of the mayfly Cinygmula 
grandifo/a, but at lower velocities the respiration 
rates of the stoneflies Stenopsyche mannorata 
and Skwala pusilla were compromised 
(Golubkhov et al. 1992). 

2. The pupa and gills of Blepharicerid larvae 
acted as 'bluff bodies', and paired vortices (and 
associated regions of low pressure) formed 
downstream of the gills (Pommen and Craig 
1995). 

3. At low dissolved oxygen levels, mayfl ies 
moved into positions on the substrate that were 
more exposed to the current (Wiley and Kohler 
1980). 
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1. The stonefly taxa generally inhabit high-
velocity microhabitats, and as such, are 
unable to respire efficiently unless gas 
exchange is enhanced by water flowing 
over their gills . C. grandifola , generally 
found in interstitial spaces or low-flow areas 
of the streambed, is not dependent on 
flowing water to maintain respiration rates . 

2. By generating vortices, the pupal gills of 
Blepharicerid larvae enhance gas 
exchange rates (due to the reduced 
solubility of air in low-pressure areas). 

3. Stream mayflies are able to 
behaviourally compensate for low oxygen 
levels by moving into high velocity 
microhabitats; presumably, respiration in 
these locations is enhanced by thinning 
boundary layers over their gills, and 
subsequently increasing rates of diffusion 
of dissolved gases. 
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Chapter 1 - Figures 
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Figure 1-1 . Reynolds number conditions for the occurrence of turbulent flows in open channels (see 
text for description of flow conditions in each case). 
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Figure 1-2. (A) Representation of the boundary layer in shallow water. The flow conditions of the 
bed layer may be turbulent or laminar, depending on hydraulic conditions. (B) The logarithmic 
boundary layer plotted on log-normal axes. The shear velocity (U*) is inversely proportional to the 
slope of the profile. The characteristic roughness length (Zo) can be estimated as the x-intercept of 
the regression line. U* and z0 can be estimated from the profile only if the profile is log-normal 
(modified from Carl ing 1992). 
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Figure 1-3. Diagram of the forces acting on a particle within a velocity gradient (velocity gradient 
shown as vectors on the left side of the diagram). The force due to lift (F1) acts to 'pull' the particle 
upwards, the force due to drag (Fd; integrated pressure drag and skin friction) acts to 'pull' the particle 
downstream, while shear stress (tw) acts to 'roll' the particle in the downstream direction. The 
thickness of the boundary layer (the height above the substrate at which velocities reach 90% of 
mainstream velocities) is denoted as 8. Flow is from left to right. 

51 



Figure 1-4. (a) Dorsal and (b) ventral views of a Sclerocyphon (Coleoptera: Psephenidae) larvae, 
showing the streamlined body form and lateral laminae. 1. Operculum covering gills; 2. Slot between 
lateral laminae. (reproduced from Smith and Dartnall 1980). 

Figure 1-5. Diagram of the patterns of flow used by Pseudiron centra/is (Ephemeroptera: 
Pseudironidae) to excavate prey from sand beds. This mayfly positions its body to create the 
necessary conditions for the formation of a solenoidal ("horseshoe") vortex, which it then uses to 
excavate prey from the sediment (reproduced from Vogel 1994; redrawn from Soluk and Craig 1990}. 
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Figure 1-6. Diagram of feeding posture adopted by larvae of the river mayfly Ametropus neavi 
(Ephemeroptera: Ametropodidae). Arrows indicate the direction of flow (reproduced from Soluk and 
Craig 1988). 
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Figure 1-7. Diagram of the flow patterns around the body of the black fly larva (Simulium vittatum, 
Diptera: Simuliidae). The flow in the diagram is from left to right, and the larva is yawing toward the 
viewer. Length of larva= 6.0 mm (reproduced from Merritt et al. 1996). 
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Chapter 2 

Environmental influences on macroinvertebrate distribution at 

reach and watershed scales 

Summary 

1. The relationship between within-watershed and within-stream distributions of benthic 

invertebrates was investigated in the tributaries of the lower Torpy River watershed in east-central 

British Columbia. 

2. The relationship between invertebrate community structure and several environmental variables 

was analysed using canonical correspondence analysis (CCA), a direct ordination technique. 

Aquatic macroinvertebrates were primarily distributed along a physical gradient (related to 

streambed substrate composition and discharge) and secondarily along a hydrochemical gradient 

(related to conductivity and dissolved oxygen). 

3. The CCA ordination divided the sampled invertebrates into four functional assemblages. Each 

assemblage had well-defined habitat requirements (erosional vs. depositional) and trophic 

relationships (e.g. scraper, collector-gatherer, etc.). 

4. Based on the results of the CCA, the habitat preferences of the heptageniid mayfly Epeorus, a 

representative torrential invertebrate, were further determined in two high discharge streams in 

the Torpy watershed. 

5. Densities of late instar Epeorus larvae were significantly and negatively correlated to velocity (U), 

depth (D), channel Reynolds number (Re), and relative roughness (D/kave). Habitat requirements 

of this mayfly may be related to food resource (periphyton) availability, predation, ontogenetic 

shifts (e.g. pre-emergence behaviour), and/or physiological requirements. 

Introduction 

One of the primary objectives of ecology is to understand the ways in which environmental 

factors influence the distribution of organisms. In streams, the structure of the benthic community 

and the distribution of organisms are influenced by water temperature (Hawkins et al. 1997), water 
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chemistry (Pienet et al. 1996; Williams et al. 1997), food resource availability (Hearnden and Pearson 

1991; Shannon et al. 1994 ), bed roughness (Growns and Davis 1994 ), substrate composition (De 

March 1976) and an array of biotic interactions (e.g. Hart and Merz 1998). Stream hydraulics, 

however, are generally thought to be the single most important physical factor influencing the 

structure of benthic invertebrate communities . The forces generated by moving water have 

substantial effects on the feeding, habitat selection, and inter-specific interactions of benthic fauna 

(Peckarsky and Wilcox 1989; Wetmore et al. 1990; Quinn et al. 1996). Hydraulic variables related to 

community structure include discharge and discharge stability (Malmqvist and Englund 1996), mean 

(Hearnden and Pearson 1991) and near-bed (Growns and Davis 1994) velocity, water surface slope 

(Danehy et al. 1999), thickness of the viscous sublayer (Statzner and Higler 1986), and turbulence 

intensity (Bouckaert and Davis 1998). 

Several authors have noted that changes in faunal assemblages occur from the headwaters 

to the mouth of a stream. The river continuum concept (Vannote et al. 1980) attributes such 

longitudinal gradients in macroinvertebrate diversity to system-wide shifts in metabolic, nutrient, and 

energetic factors. Subsequently, Statzner and Higler (1986) demonstrated that flow characteristics 

(i.e. 'stream hydraulics') are the most important factor controlling the zonation of stream invertebrate 

taxa. Growns and Davis (1994) suggested that the apparently contradictory conclusions of Vannote 

et al. (1980) and Statzner and Higler (1986) might, in fact, be complementary, as hydrodynamic 

factors strongly influence numerous components of the stream environment, and, as a result, have 

pervasive effects on ecological processes in streams. Several studies (e.g. Growns and Davis 1994) 

have demonstrated that the headwater-to-valley gradient along which macroinvertebrate taxa are 

distributed is defined by a number of hydraulic and channel factors, including stream width, water 

surface slope, Froude number, Reynolds number, bed roughness, and shear velocity. Hydrodynamic 

variables are also related to the distribution of macroinvertebrates between streams and within 

watersheds. Danehy et al. (1999) found that macroinvertebrates were distributed along an 

environmental gradient related to stream width and water surface slope, while Robertson et al. ( 1997) 

demonstrated that, in addition to hydrochemical variables, near-bed flow characteristics influenced 

the community structure of benthic microcrustacea in several streams. 

Clear patterns in the microhabitat preferences of individual macroinvertebrate taxa have been 

demonstrated by numerous studies. Stream invertebrates respond to small-scale variations in light 
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and UV intensity (Donahue and Schindler 1998), predation (Muotka and Pentinnen 1994 ), substrate 

roughness (Way et al. 1995), and food availability (Vaughn 1986). Near-bed hydraul ic conditions also 

influence habitat preferences by determining the levels of lift, drag, and shear stress experienced by 

organisms on the streambed (Statzner and Holm 1989; Weissenberger et al. 1991 ). Hydraulic forces 

may also influence benthic organisms indirectly, by mediating levels of predation (Hart and Merz, 

1998) and the availability of food resources (e.g. periphyton, see Vaughn 1986; Quinn et al. 1996), as 

well as ecologically important physical factors such as substrate particle size composition and oxygen 

availability (Golubkov et al. 1992; Carling et al. 1998). 

Several studies have demonstrated that simple hydraulic parameters (e.g. mean velocity, 

depth) are correlated with the distribution of individual taxa (e.g. Collier 1993). Generally, however, 

the habitat preferences of stream invertebrates are closely correlated with various combinations of 

hydrodynamic parameters (i.e. Froude number, Reynolds number, etc.) that better define the near-

bed flow environment. For example, Collier et al. (1995) found that the distribution of larvae of the 

hydrobiosid caddisflies Costachorema and Hydrobiosis were positively related to water velocity, 

Froude number, boundary layer Reynolds number, and inferred shear velocity. Similarly, Quinn and 

Hickey (1994) found that of all hydraulic parameters estimated, boundary Reynolds number was most 

strongly correlated with the distributions of several benthic invertebrate taxa in two New Zealand 

rivers . 

Many stream invertebrates that live in high velocity microhabitats exhibit adaptations to 

hydraulic stress. Black fly larvae reduce drag by modifying body posture (Lacoursiere 1992), while 

the mayfly Ecdyonurus alters femoral angle in order to counter the typically high lift forces of high-

velocity habitats (Weissenberger et al. 1991 ). Invertebrates that live on the upper surfaces of 

streambed stones exposed to high water velocities often exhibit morphological adaptations to 

maintain contact with the substrate. Blepharicerid larvae possess a row of ventral suckers (Vogel 

1994), while the abdominal gills of several mayfly species (e.g. De/eatidium var. myzobranchia 

(Collier 1994), Rhithrogena, and Epeorus (Vogel 1994)) are also arranged to form a ventral "sucker-

like" disk. Delgado and Carbonell (1997) found that the cases of the caddisfly Sericostoma se/ysi 

collected in high velocity habitats were heavier and more narrow than those from individuals collected 

in slower habitats, and interpreted this as an adaptation to counter lift and minimise drag, thus 

decreasing the probability of accidental entrainment. Studies by Robertson et al. ( 1995; 1997) and 
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Rempel et al. (1999) suggest that invertebrates lacking morphological adaptations to high velocities 

may instead rely on behavioural adaptations, and move into microhabitats characterised by low 

hydraulic stresses (i.e. low shear stress areas of the bed (including interstitial spaces), low velocity 

reaches, and shore zones). 

Many studies have also shown that the habitat preferences of stream invertebrates are 

related to large-scale environmental gradients such as substrate characteristics, discharge, mean 

velocity, hydrochemistry, and groundwater inputs (e.g. De March 1976, Growns and Davis 1994; 

Malmqvist and Englund 1996; Williams et al. 1997). As many of these factors are related to 

geographical or geomorphological features of the watershed, changes to the catchment of a stream 

are inevitably reflected in the stream itself. For example, forestry activities adjacent to streams are 

known to increase turbidity, increase inputs of coarse particulate organic matter, change temperature 

regimes, and alter primary production (Gurtz et al. 1980; Noel et al. 1986; Growns and Davis 1991 ). 

The structure of the benthic community changes rapidly in response to logging-induced alterations of 

the stream environment (Newbold et al. 1980; Wallace and Gurtz 1986), and changes in the benthic 

invertebrate community structure may persist nearly two decades later (Carlson et al. 1990; Stone 

and Wallace 1998). 

Given these observations, it is surprising that the majority of studies of stream invertebrate 

habitat preferences have examined the distribution of organisms at a single spatial scale. 

Distributions of biota and related environmental factors are often quantified at watershed, reach, or 

even smaller (patch or stone) scales; but rarely is more than one spatial scale considered in the same 

study. Remarkably, few studies have attempted to examine how the factors that directly influence the 

microdistributions of stream invertebrates at small scales are linked to the distribution of the same 

organisms within the stream system or watershed. For example, water velocity has been identified as 

a factor that influences the distribution of stream invertebrates within watersheds, stream systems, 

reaches, and on the surface of individual stones (Quinn and Hickey 1994; Hart et al. 1996; Danehy et 

al. 1999). However, only a few authors have attempted to determine if large-scale, community-level 

responses to variation in velocity are closely related to the microhabitat preferences of the constituent 

taxa with respect to velocity (but see various works by B. Statzner and others, including Statzner and 

Higler (1986) and Statzner and Holm (1989), see also Muotka and Pentinnen (1994)). 
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The goal of the present study is to examine the community-level and taxa-specific responses 

of stream macroinvertebrates to hydrochemical , physical, and riparian factors. A two-part 

experimental design was employed to accomplish this . First, canonical correspondence analysis 

(CCA) was used to examine community-level responses to a suite of commonly measured 

environmental factors (e.g. dissolved oxygen, temperature, bed composition , etc.) in gravel-, cobble-, 

and boulder-bed tributaries of a mountain watershed in north-central British Columbia. Second, the 

fine-scale habitat preferences of torrential mayfly larvae (Epeorus spp.) (Ephemeroptera: 

Heptageniidae) were measured in two high-discharge streams in the study area (the preferred habitat 

type of Epeorus larvae, based on the results of the CCA). Epeorus was chosen as a model organism 

as it shows watershed-wide preferences that can also be examined at within-stream spatial scales. 

The measurement of the habitat characteristics of this torrential mayfly genus at the two spatial 

scales (within-watershed and within-stream) allowed for an assessment of the linkages between the 

environmental factors that produce distributions of torrential fauna at large and small scales. 

Methods and Materials 

Watershed study area 

The Torpy River watershed is located approximately 90 km east of Prince George, in the 

MacGregor Range of east-central British Columbia. The study area consisted of the southern portion 

of the watershed, and encompassed the 116 tributaries that flow into the lower section of the Torpy 

River. This portion of the watershed is bounded on the west by the confluence of the Torpy and West 

Torpy Rivers (54° 02' 12" N, 121 o 25' 51 " W), and on the east by the furthest extent of forestry roads 

which provide access to the region (53° 49' 58", 120° 57' 49" W), near the confluence of the Torpy 

River with the Fraser River. This portion of the Torpy River valley has been logged continuously 

since 1963, and rates of disturbance due to forestry activities have increased in the last decade due 

to salvage harvests of conifer stands killed by western hemlock looper (Lambdina fiscellaria 

lugubrosa (Hulst) (Lepidoptera: Geometridae). 
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Watershed-scale sampling 

During the late summer and fall of 1996, a biological , geomorphic, and hydrochemical survey 

was conducted on all permanent (non-ephemeral) tributaries of the Torpy River within the study area. 

At each stream sampling site, several geomorphic, hydrochemical , and riparian factors were 

measured, including conductivity, pH, temperature, dissolved oxygen, substrate composition , 

catchment size, riparian vegetation composition, stream surface slope, discharge, and the presence 

of logging activity within the catchment. Conductivity and dissolved oxygen (DO) were measured 

using a multimeter (Corning Checkmate 90; Corning, Acton , Maine), and pH was measured using a 

Canlab pH meter (model 607; VWR Canlab, Mississauga, Ontario). Temperature was measured 

using an alcohol thermometer (+/- 0.2°C}, and stream surface slope (%) was measured using an 

inclinometer. 

Substrate composition was assessed at each sampling site by visually estimating the areal 

coverage of various sizes of substrate particles (using methodology modified from Allan (1995)). 

Substrate size was defined by the diameter of the substrate elements (streambed stones): boulders > 

300 mm, cobbles 75 - 300 mm, gravels 4 - 75 mm, fines < 4 mm. The bed of each stream sampling 

site was categorised as belonging to one of five classes, based on the areal coverage of the 

predominant particle size class: (1) boulder/cobble substrate (areal coverage by boulders > 30%), (2) 

cobble/gravel substrate (areal coverage by cobbles > 30%), (3) gravel/fines substrate (areal coverage 

by gravels > 30%), (4) inorganic/organic fines (areal coverage by fine sediments > 40%), or (5) 

organic fines/organic debris (areal coverage by organic debris> 40%). 

The riparian vegetation adjacent to each stream was classified as being dominated by one of 

the following plant species assemblages and/or functional plant types ; (1) closed coniferous canopy, 

dominated by white spruce (Picea glauca), subalpine fir (Abies lasiocarpa), and western hemlock 

(Tsuga heterophylla), (2) closed mixed canopy, dominated by conifers in combination with several 

deciduous species including Populus spp., paper birch (Betula papyrifera), and alder (Alnus spp.), 

and having shade tolerant species such as devil's club (Oplopanax horridus) beneath the canopy, (3) 

closed deciduous canopy, (4) open canopy, where riparian vegetation was dominated not by tree 

species but rather by various herbaceous plants including thimbleberry (Rubus parviflorus), goat's 

59 



beard (Aruncus diocius), and various fern species, and (5) wetland areas dominated by grasses and 

wetland species such as skunk cabbage (Lysichiton americanum). 

The discharge (Q) of each stream was determined using one of two methods. In larger 

streams (Q < 0.01 m3 s-1
, approximately), velocity was measured at 60% of depth across a relatively 

uniform stream section at regular intervals. The product of the velocity and area (section width x 

depth) of each section were summed to estimate discharge (as per Danehy et al. 1999). In smaller 

streams, which flowed under the access road via a culvert rather than a bridge, discharge was 

estimated by multiplying the cross-sectional area of the flow through the culvert (calculated from 

culvert diameter and maximum water depth) by the average water velocity (measured at 60% of 

maximum culvert water depth). 

An index of the catchment area size of each stream was obtained by averaging the distances 

from each stream to the two nearest streams. Between-stream distances were measured 

perpendicular to the stream, along the forestry access road in the lower Torpy River valley, using the 

vehicular odometer (the road paralleled the Torpy River). This variable was included in the ordination 

analyses as the factor AVEDIST (AVErage DISTance) as it is an index of the relative width of the 

catchment basin of a stream at the sampling point, rather than a true measure of the area of a 

stream's catchment. 

All sampling sites were located upstream of access roads or other disturbances (a minimum 

of 3 m) in order to minimise the influence of local anthropogenic activities on the biotic and abiotic 

components of the stream environment. 

Watershed-scale macroinvertebrate sampling 

Of the 116 streams in the lower Torpy River watershed, 28 streams had beds composed of 

gravels, cobbles, and/or boulders, and 88 streams had beds composed of fine organic material and/or 

inorganic silt and clay. Invertebrate samples were collected in streams whose beds were composed 

of coarse bed material. Of these 28 streams, the substrates of 15 were comprised of gravel or 

gravel/cobble riffles (riffle habitat), and the substrates of 2 were comprised primarily of boulders 

(boulder cascade habitat). Three invertebrate samples were obtained in each of these streams (i.e. 3 

replicate samples in representative riffle or boulder reaches). The remaining 11 streams had reaches 

of both riffle and boulder cascade habitats. In each of these 11 streams, 6 invertebrate samples were 
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obtained (i.e. 3 replicate samples in riffle habitat, 3 replicate samples in boulder cascade habitat). In 

total, invertebrates were sampled at 39 benthic sampling sites (i.e. 15 riffle streams (one sampling 

site each) + 2 boulder cascade streams (one sampling site each) + 11 streams with diverse 

substrates (two sampling sites per stream) = 39 sampling sites). As three invertebrate samples were 

collected at each site, a total of 117 invertebrate samples were obtained. 

A modified Surber sampler (sampling area = 0.090 m2
, modified by the addition of a 

removable sample 'trap') was used to obtain invertebrate samples at all sampling sites. At sampling 

sites whose beds were composed primarily of gravel or gravel/cobble riffles, the area within the 

sampler frame was disturbed to a uniform depth of 5 em, and any larger stones {diameter> 10 em) 

were cleaned by hand to remove any attached invertebrates. At sites where the streambed was 

composed almost entirely of boulders and large cobbles, the Surber sampler was placed over a 

representative boulder, and the boulder was scrubbed by hand to dislodge attached invertebrates. 

The boulder was then removed, and the remaining gravels were disturbed to a uniform depth in order 

to collect the remaining invertebrates. Samples were preserved and fixed in the field using 70% 

ethanol, sorted under a dissection microscope (2 - 6X), and identified to the lowest practical 

taxonomic level, usually family or genus. 

Within-stream macroinvertebrate sampling 

Over a two-week period in 1997 (July 23 - August 5) 50 benthic samples were obtained from 

two adjacent tributaries of the Torpy River using a modified Surber sampler (sampling area = 0.090 

m2
) . The two streams (streams 48 and 56) were hydrochemically similar, but differed with respect to 

physical parameters (Table 2-1 ). As such, the two streams represent a range of physical 

microenvironments available to stream macroinvertebrates. In order to prevent bias in the selection 

of sampling sites and to ensure that a representative range of benthic microenvironments were 

sampled in each stream, Surber samples were taken in the centre of the channel (rather than the 

thalweg), regularly (rather than randomly) every 10 m. Macroinvertebrates were preserved, fixed, 

and separated from debris using the methods detailed above. Abundance of the heptageniid mayfly 

Epeorus was determined for each sample. The microhabitat preferences of Epeorus were examined 

in further detail as this mayfly genus was thought, based on the results of the canonical 

correspondence analysis, to represent a typical member of the "torrential fauna" (Vogel 1994 ). 
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Before each sample was collected, several environmental variables were measured at each 

sampling site, including mean velocity, near-bed velocity, stream depth, and stream width . Mean 

velocity (U) was measured at 60% of total depth using a propeller velocimeter (propeller diameter = 
3.0 em; Swoffer current velocity meter model 2100; Swoffer Instruments Inc. Seattle, Washington). 

An integrated measurement of near-bed velocity was obtained by deploying the propeller velocimeter 

2 em above the bed, the minimum distance from the bed the velocimeter can be deployed without the 

propeller striking the surface (nominally, this velocity was measured 2 em above the bed, hence 

Ua.o2m). After benthic samples had been obtained, the lengths of the four largest stones contained 

within the sampling area were measured. 

Table 2-1. Comparison of environmental factors between streams sampled in 

microhabitat preference analysis 

Stream 48 a Stream 56 a 

Hydrochemical Factors 
Conductivity (!lS) 
PH 

218.0 
8.30 

247.0 
7.75 

Physical Factors 
Discharge (m3 s"1

) 0.191 0.332 
Average Surface Slope (%) 4.1 3.3 
Average Distance (km) b 0.50 0.95 

a stream 48 (km 22.0 Lower Torpy Road), stream 56 (km 25.8 Lower Torpy Road) 
b average of distance to the two adjacent streams (an indicator of catchment size) 

For each sampling site, several substrate and hydraulic parameters were calculated, 

including Froude number (Fr), channel Reynolds number (Re), average stone length (Lave; calculated 

as the mean of the longest-axis diameters of the four largest stones), standard deviation of stone 

length (L50), and relative roughness (D/kave). Channel Reynolds number and Froude number are 

determined as 

Re = Ul/u (2-1) 

and 

Fr = U/(gD)05 (2-2) 
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respectively, where U is velocity, I is the characteristic length scale (in this case, channel depth), u is 

the kinematic viscosity of water, g is gravitational acceleration (9.81 m s"2
), and D is channel depth. 

See appendix 1 for notation and formulae. 

Data Analysis 

Macroinvertebrate community structure was related to the measured environmental variables 

using canonical correspondence analysis (CCA). CCA is a gradient analysis technique that directly 

relates species abundances to environmental gradients (ter Braak 1986); such forms of ordination are 

appropriate to summarise the relationship of taxa to environmental variables when species show 

unimodal response curves to environmental gradients (see Palmer 1993; ter Braak 1986). CCA 

ordination analysis of the 117 benthic samples was conducted using CANOCO version 3.2 (ter Braak 

1991 ). 

In CCA, the weighted average indicates the 'centre' of the species distribution along a given 

environmental variable (ter Braak 1986). The difference in the weighted average of several species 

indicates the differences in the distribution of those species along the environmental variable. 

Species that place highest along an environmental variable ('vector') will have the highest weighted 

average with respect to that environmental variable . The significance of the extracted CCA axes was 

tested by an unrestricted Monte Carlo simulation (999 permutations). 

In order to minimise the influence of 'rare' taxa on the ordination, several taxa were excluded 

from the analyses (Gauch 1982). 'Rare' taxa were identified as those taxa whose 95% confidence 

interval of the pooled abundances included zero. This method removes taxa with relatively few 

occurrences; it is, however, biased towards removing those taxa that are relatively abundant at the 

few sites where they occur. The 24 remaining taxa were included in the analysis, and were given 

equal weighting. Throughout the analysis outliers were not removed ; all samples were examined , 

and thought to represent biologically valid observations. 

Two transformations of the taxa abundance and environmental data were undertaken. (1) As 

the distribution of individuals of a species are often highly contagious and have highly variable 

absolute abundances (see Williams et al. 1997), taxa abundances were ln{x+1) transformed, and 
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related to environmental variables using canonical correspondence analysis (CCA), as described by 

ter Braak (1986). (2) Since all environmental variables were measured on different scales, they were 

normalised prior to analysis to a mean of zero and a variance of one (ter Braak 1986; ter Braak 

1995). 

A preliminary principal components analysis (PCA; using Statistica 5.1, Statsoft, Oklahoma) 

was undertaken to assess whether there was collinearity between environmental variables . The PCA 

showed that there was a high degree of collinearity between the geographic variable KM (distance 

along the long axis of the watershed) and the logging (LOGPROX) and defoliation (DEFOL) variables. 

In order to account for the variation in invertebrate community structure due to either naturally 

occurring or anthropogenically induced geographical variation, and to account for seasonal variation 

in macroinvertebrate community structure (order of stream sampling along the watershed axis was 

sequential rather than random), KM was included as a covariate in the CCA ordination. 

To ensure that analysis of the macroinvertebrate community incorporates the distinct species 

assemblages that exist at small spatial scales, macroinvertebrate abundances at each sampling site 

(rather than stream averages) were included in the CCA ordination. Univariate analyses were 

conducted on 'reach-averaged' rather than 'stream-averaged' data (i.e. analyses conducted on 

stream sampling site data). This approach was adopted to ensure that habitat-specific responses in 

community and taxa-specific variables were not lost when riffle and boulder-cascade were combined 

to produce an average value. 

Coefficients of determination (R2
) of regression analyses are reported as percentages (R2 x 

100). 

Results 

Distribution within the watershed 

In total, ten environmental variables were measured and included in the CCA ordination 

analysis. A summary of the major variables is presented in Table 2-2. 

Macroinvertebrates were present in all 117 benthic samples collected at the 39 stream 

sampling sites. A total of 55 macroinvertebrate taxa were collected, with the taxonomic richness of 

the sampling sites ranging from 1 to 16 taxa. No single macroinvertebrate taxon was collected at 

64 



every sampling site. Several genera were, however, relatively widespread, including the stonefly 

Zapada and the predatory caddisfly Rhyacophila, which were found at 94.9% and 92.3% of the sites 

sampled, respectively. Several mayfly genera, including Drunella, Rhithrogena, and Baetis, were 

also relatively common in the study area. Taxonomic richness tended to decrease with increasing 

discharge (ANOVA, F(1,115) = 11.67, p < 0.001) (Figure 2-1}. However, total invertebrate 

abundance was not related to discharge. This suggests that the benthic invertebrate community in 

larger {i.e. higher discharge) streams was dominated by fewer species. Stream hydrochemistry was 

also related to discharge. While the conductivity of low discharge streams was variable, the 

conductivity of higher order streams was relatively uniform at about 250 !lS (Figure 2-2) . 

Table 2-2. Major environmental characteristics of the tributaries of the lower 

Torpy River watershed 

All Streams in the lower Torpy Benthic Sample Sites a 
River watershed (n=116) (n=39) 

Environmental variables Mean (SO) Ranqe Mean (SO) Ranqe 
Substrate composition ° - - 1.51 (0.75) 1-3 
Discharge (m3 s-1

} 0.070 (0.15) oe- 0.63 0.20 (0.20) 0.01-0.63 
Average distance c (km) 0.41 (0.15} oe -1.20 0.59 (0.31) 0.10-1 .20 
pH 7.76 (0.42) 6.30-8.40 8.13 (0.24) 7.35-8.40 
Dissolved Oxygen(%) 86.34 (9.19) 50- 100 93.23 (5.35) 69-100 
Riparian Vegetation b - - 2.23 (0.53} 2-4 
Stream Surface Slope (%) 5.46 (5.38) oe- 46.50 6.02 (3.86) 1.2-19.0 
Conductivity (!lS) 241 .8 (82.1) 30.6-404 258.0 (39.5) 195-400 
Riparian Defoliation d - - 0.28 (0.45) 0-1 
Logging d - - 0.28 (0.45) 0-1 
a benthic macromvertebrates samples were obtained at all stream s1tes which had gravel, gravel-
cobble, or boulder substrates. 
ban index (see text for description) 
c average distance to the two adjacent streams, measured perpendicular to the stream channel 
d dichotomous variables 
e approximately zero - unable to measure accurately using methods employed 
- not calculated for sites where invertebrate samples not obtained 

Taxonomic richness was related to degree of stream catchment disturbance (ANOVA, 

F(2, 114) = 11.24, p = 0.023) (see also Table 2-3). Streams with relatively recent logging activity 

(within the decade preceding the study; mean richness per sample = 6. 79 taxa, SE = 0.51) had 

significantly fewer taxa than streams with unlogged catchments (mean richness = 8.92 taxa, SE = 

0.53) {Tukey's HSD, p = 0.020). The taxonomic richness of streams with less recent logging activities 
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(10- 36 years before the study was conducted; mean richness = 8.79 taxa, SE = 0.48) was not 

significantly different than streams with either recently logged (Tukey's HSD, p = 0.68) or unlogged 

(Tukey's HSD, p = 0.37) areas. 

CCA ordination 

Canonical correspondence analysis ordination of the 117 benthic samples distinguished the 

influence of chemical (pH, conductivity, dissolved oxygen), physical, (stream surface slope, 

discharge, substrate size, and average distance to adjacent tributaries), and riparian (riparian 

vegetation and defoliation indices, and logging activities within catchment) factors on 

macroinvertebrate community composition. CCA ordination separated the stream sampling sites first 

by physical variables related to stream size and then by hydrochemical factors (Table 2-3). Axes I 

and II explained 59.5% of the total variance in the 'species-environmental variables' relationship (see 

Table 2-4 for a summary). The Monte Carlo test showed that axis I was significantly related to the 

species data (p = 0.01 ). CCA axis I was most strongly correlated with substrate composition (r1 = 

0.8696) and discharge (r1 = -0.7515), while CCA axis II was most strongly correlated to conductivity (r11 

= -0.4783) and dissolved oxygen (r11 = 0.4257); in addition, pH had a high intraset correlation with axis 

II (r11 = 0.3898). The weighted averages of each macroinvertebrate taxa on the measured 

environmental variables are displayed in a biplot (Figure 2-3), split for clarity into taxonomic and 

environmental variable components. 

The CCA biplot (Figure 2-3) and axis loadings (Table 2-3) indicate the existence of four 

functional assemblages of stream invertebrates (Table 2-5). The first assemblage (AS1) includes the 

taxa in the upper left quadrant of the biplot, and includes the trichopterans Agapteus, Lepidostoma, 

and Arctopsyche, as well as the stoneflies Kogotus and Zapada. AS1 taxa were generally erosional 

zone clingers, and include several shredder-detritivores (see Table 2-5). The preferred habitats of 

these genera include high discharge streams with high surface slopes, coarse substrates, and low 

conductivity. The riparian areas of streams whose benthic communities were dominated by AS1 

species were typically closed coniferous and deciduous canopies. The second assemblage (AS2) 

includes taxa located in the upper right quadrant of the biplot, and includes the stonefly Visoka, the 

caddisfly Rhyacophila, the mayfly Yoraperla, larval coleoptera of the family Elmidae, and dipteran 

larvae of the families Psychodidae, Empididae, and Chironomidae. Genera included in the AS2 
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assemblage were trophically diverse with leaf/litter associations (collector-gatherers and shredders). 

The AS2 assemblage included both erosional and depositional zone taxa that are categorised as 

clingers and burrowers (see Table 2-5). AS2 taxa were found at sites with low pH and fine 

substrates, but were poorly associated with discharge and riparian variables . Taxa of the third 

functional assemblage (AS3) are found in the lower right quadrant of the biplot, and are separated 

from AS2 taxa primarily on the basis of stream surface slope and conductivity. The AS3 assemblage 

includes the mayfly Cinygmu/a, larvae of the dipteran families Tabanidae, and Tipulidae, the Uenoid 

trichopteran Neothremma, and Oligochaeta. AS3 taxa were generally depositional zone burrowers, 

and were largely collector-gatherers (see Table 2-5). Benthic habitats dominated by the AS3 

assemblage included small, closely spaced streams with high conductivity, low slopes, and fine 

substrates. Riparian vegetation at AS3 sites tended to consist of open canopies, grasses, and 

wetland plant species. The fourth functional assemblage (AS4) includes the mayfly genera Epeorus, 

Rhithrogena, Drunel/a, and Baetis, as well as the caddisfly Glossosoma and the stoneflies Megarcys 

and Chloroperlidae. AS4 taxa were generally clingers and scrapers associated with erosional 

habitats (see Table 2-5). Sites preferred by these taxa had typically high discharge, large substrates, 

and high pH. 

The Baetid mayfly Baetis had high, negative loading on both axes I and II . This 

demonstrates a strong association with sites characterised by large substrates (cobbles and 

boulders). Baetis also has a high weighted average with respect to pH, and a low weighted average 

with respect to slope. Baetis abundance was only weakly associated with discharge, suggesting that 

stream size is not a strong habitat determinant for this genus. The weighted averages of Tipulidae 

and the caddisfly Neothremma (Uenoidae) demonstrate a strong preference of these two taxa for 

very small streams with low slope, high conductivity, and open, wetland-type riparian vegetation. 

Abundance of the heptageniid mayfly Epeorus in tributaries of the Torpy River was more 

closely related to the physical stream gradient (axis I} than the hydrochemical gradient (axis II} (Table 

2-6). This indicates that the habitat preferences of Epeorus include high discharge streams with 

coarse substrates. 
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Table 2-3. lntraset correlation coefficients of environmental variables with the 

first two axes of the Canonical Correspondence Analysis (CCA) a 

lntraset correlation coefficients 
Environmental variables c Label Axis I Axis II 
Substrate composition SUBSTR 86.96 7.45 
Discharge Q -75.15 33.53 
Averaged distance AVEDIST -70.77 39.36 
pH pH -62.28 -38.98 
Dissolved Oxygen DO -49.15 -42.57 
Riparian Vegetation RIPARIAN -38.48 -27.55 
Stream Surface Slope SLOPE 22.20 31 .09 
Conductivity COND 9.81 -47.83 
Riparian Defoliation DEFOL -5.94 27.52 
Logging LOGPROX 3.33 -13.11 
a environmental variables standardised to unit mean and variance (species data ln(x+1) transformed). 
b intraset correlation coefficients = 1 00 x r 
c variables ordered with respect to loadings on axis I. 

Table 2-4. Summary of Canonical Correlation Analysis (CCA) of lower Torpy 

River watershed data a 

CCA axis 
Eigenvalues 
Species-environment correlation 
Cumulative % variation explained 

0.258 
0.878 

II 
0.099 
0.729 

Species data 12.1 16.8 
Species- env. relationship 43.0 59.5 

a geographical variable KM entered as covariate in CCA 

Ill 
0.076 
0.685 

20.4 
72.2 

:E of Eigenvalues 
2.221* 

* Monte Carlo test of significance of extracted axes: overall test F = 4.13, p = 0.01 , Trace Statistic = 
0.60 

Distribution within the stream 

The ordination analysis (CCA) demonstrated that hydraulic and substrate factors appeared to 

be relatively important in determining the habitat preferences of the torrential mayfly Epeorus. 

Subsequently, the densities of Epeorus (ln(x+1) transformed densities) at 50 sites in two adjacent 

high-discharge streams (stream 48, n = 25; stream 56, n = 25) were measured and related to a series 

of hydraulic and substrate variables using single and multiple regression analyses (see Table 2-7). In 

independent regression analyses, channel depth (D) and mean water velocity (U) each accounted for 

a significant amount of the variation in Epeorus abundance (R2 = 16.73% and R2 = 25.36%, 

respectively; see Figures 2-4 and 2-5). Depth and velocity accounted for 33.20% of the variation in 

Epeorus abundance in multiple regression analysis, while channel Reynolds number (Re) accounted 
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for 16.83% (see Figure 2-6). Relative roughness (Dikave) was also significantly related to Epeorus 

abundance (Figure 2-7). Near-bed velocity (Uo.o2m). average stone length (Lave). maximum stone 

length (Lmax). stone length variation (L50), and Froude number (Fr) did not explain significant amounts 

of the variation in mayfly abundance. 

Table 2-5. Summary of ecological data a for common macroinvertebrate taxa 

collected in tributaries of the lower Torpy River b 

Assemblag_e I Taxa Habitat Habit Troe_hic Relationship_ 
AS1 
Agapteus Erosional Clingers Sc, C-G 
Arctopsyche Erosional Clingers C-F 
Kogotus Erosional Clingers Pr 
Zapada Erosional Sprawlers I clingers Sh-D 
Lepidostoma Erosional - Depositional Climbers - Sprawlers Sh-D 

-Clingers 
AS2 
Visoka NA NA NA 
Yoraperla NA NA Sh- D, Sc 
Rhyacophila Erosional Clingers Pr, C- G, Sh- H 
Elmidae Erosional Clingers C, G, Sc 
Psychodidae Depositional Burrowers C-G 
Chironomidae Erosional - Depositional Burrowers C- G, F, Pr 
AS3 
Tabanidae Depositional Sprawlers I burrowers Pr 
Cinygmula Erosional Clingers Sc, C-G 
Oligochaeta c Depositional Burrowers NA 
Empididae Erosional - Depositional Sprawlers I burrowers Pr (some C- G) 
Tipulidae Erosional - Depositional Burrowers Sh-D, C-G 
Neothremma Erosional Clingers Sc, C-G 
AS4 
Baetis Erosional- Depositional Climbers I clingers C- G, Sc 
Chloroperlidae Erosional Clingers Pr, Sc, C - G 
Megarcys Erosional Clingers Pr 
Drunella NA Clingers I sprawlers Sc, Pr 
G/ossosoma Erosional Clingers Sc 
Rhithrogena Erosional Clingers C - G, Sc 
Ee_eorus Erosional Clingers C - G, Sc 
a ecological information from Merritt and Cummins (1996), except where otherwise noted 
b see Figure 2-3 for ordination diagram 
c ecological information from Thorp and Covich (1991) 
C = collector, D = detritivore, F = filterer I suspension-feeder, G = gatherer, H = herbivore, Pr = 
predator, Sc = scraper, Sh = shredder, NA = information not available 

In streams 48 and 56, densities of Epeorus were generally highest in shallow flows (D < 0.20 

m), at low velocities (U < 30 em s-1
) , and at relatively low channel Reynolds numbers (Re < 100,000). 

Epeorus densities appeared to decrease with increases in all three hydraulic factors (Figures 2-4, 2-5, 

and 2-6). There was, however, a weakly significant relationship between channel depth and velocity 
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(R2=7.73%) (Figure 2-8). Regression analysis revealed a strong relationship between mean velocity 

(U) and near-bed velocity (Uo.o2m) (R2 = 45.47%) (Figure 2-9). In addition, densities of Epeorus were 

significantly higher in stream 48 than stream 56 (t = -5.47, p < 0.001 ). 

Table 2-6. Cumulative fit of Epeorus (Heptageniidae) abundance data against 

environmental axes (canonical correspondence analysis a) 

Axis I Axis II Total variance explained 
Cumulative fit 19.13% 21 .80% 31.38% 
(as percent of total variance) 
a for summary see Table 2-4 

Table 2-7. Simple linear and standard multiple regressions of Epeorus 

microdistribution a and various hydraulic and substrate characteristics 

Parameter (simple regress.) R" ANOVA(df) = F p (slope) p-value 
Depth (D) 16.73% (1 ,48) = 9.64 -8.29 0.0032 
Mean velocity (U) 25.36% (1,48) = 16.31 -4.42 < 0.001 
Near-bed velocity (Uo.o2m) 4.74% (1 ,48) = 2.39 -2.63 0.13 
Maximum stone length (Lmax) 2.34% (1,48)=1 .15 4.85 0.29 
Average stone length (Lave) 5.31% (1 ,48) = 2.69 13.70 0.11 
Stone length SO (Lso) 0.080% (1 ,48) = 0.040 2.30 0.84 
Relative roughness (0/kave) 23.17% (1 ,48) = 14.47 -0.56 < 0.001 
Froude number (Fr) 3.63% (1 ,48) = 1.81 -2.21 0.19 
Reynolds number (Re) 31 .19% (1 ,48) = 21.80 -0.000013 < 0.001 
Parameter (mutt. regress.) 
Depth + Mean U 33.20% (2,47) = 11.68 -5.91' -3.71 0.023, 0.0014 
a Epeorus densities ln(x+1) transformed 

Discussion 

The measured environmental factors were important in determining the benthic 

macroinvertebrate community structure in the 39 streams examined in the lower Torpy River 

watershed. Once geographical variation was accounted for, hydraulic and substrate variables 

appeared to be of primary importance in determining the macroinvertebrate species assemblages, 

while hydrochemical factors were of secondary importance. CCA ordination separated 

macroinvertebrate assemblages first by substrate composition, discharge, and catchment size, and 

second by conductivity and dissolved oxygen (see Tables 2-3 and 2-4). While several of these 

parameters (e.g. discharge, catchment size) may not be exactly those experienced by benthic 
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invertebrates, they do reflect the overall habitat structure and environmental gradients to which the 

benthic community responds. This conclusion is supported by similar findings elsewhere (e.g. 

Malmqvist and Englund 1996; Danehy et al. 1999). 

Rather than measuring macroinvertebrate diversity and abundance at the stream scale (i.e. 

sampling large areas of the stream bed or obtaining mean values of species richness and abundance 

by averaging several replicated samples), ordination analyses were conducted at the 'patch' scale 

(i.e. the area encompassed within the frame of the Surber sampler). Although several studies have 

shown that even relatively small areas may encompass several substantially different flow 

microhabitats (e.g. Hart et al. 1996; Robert et al. 1996), the size of the 'patch' (Surber sampler area) 

utilised in the present study was small enough (approximately 0.09 m2
) that the benthic community 

enclosed therein would be exposed to a similar range of environmental factors . This 'patch-scale' 

analysis was used because the structure of the benthic community, rather than invertebrate 

abundance or richness, was the objective of the ordination analysis . This patch size is large enough 

to include taxa commonly found within the reach, yet small enough that invertebrates collected within 

a single sample should belong to a characteristic assemblage that is influenced by a common set of 

environmental and biotic factors. 

Taxonomic richness 

The results indicate that taxonomic richness generally decreases with increasing discharge 

within the range measured. This result conflicts with the observations of Growns and Davis (1994) 

and Statzner and Higler (1986) who reported that taxonomic richness increased with increasing 

discharge. However, Figure 2-1 demonstrates that the relationship between benthic community 

composition and discharge is complex, and may, in part, be dependent on spatial scale (i.e. small-

scale habitat characteristics). Among small streams (Q < 0.1 m3 s·\ taxonomic richness is highly 

variable. As discharge increases (Q > 0.1 m3 s·\ the variation in taxonomic richness between 

streams decreases substantially, and fewer invertebrate taxa are present. This suggests that 

discharge and discharge-related parameters (including substrate composition, hydraulic variables, 

channel morphology, etc.) may have the strongest influence on community composition in large, high-

order streams. The substantial variation in taxonomic richness among low discharge, low-order 

streams suggests that as stream size decreases, factors other than discharge are more important in 
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structuring the benthic invertebrate community. Although an inverse relationship between discharge 

and taxonomic richness was unexpected, there are several possible explanations to account for these 

results. 

First, small-scale habitat complexity or chemical factors may be more important in influencing 

the structure of the benthic community in small streams than in large streams. For example, 

conductivity, which is relatively consistent (- 250 J.LS) at discharges greater than 0.1 m3 s-1
, is highly 

variable in streams with low discharge. Similarly, Growns and Davis (1994) found that while 

conductivity is variable in small streams, it is more consistent (about 250 J.LS) in streams of greater 

discharge. As such, if invertebrate diversity were strongly influenced by hydrochemical factors, 

taxonomic richness would be expected to be highly variable in low discharge streams, and more 

uniform in larger streams. This explanation agrees with the observed pattern. The relative 

importance of conductivity is supported by the results of the ordination analysis; intraset correlation 

coefficients of the CCA (see Table 4-3) reveal that conductivity is the most important hydrochemical 

factor influencing community composition. Similarly, Williams et al. (1997) found that the invertebrate 

community structure in eastern Canadian springs was dependent on water chemistry, especially on 

ionic composition and concentration. However, while both groundwater and surface water inputs may 

play an important role in determining invertebrate community structure, their individual effects are 

difficult to discern (Jones and Holmes 1996). 

There may also be a shift in the importance and nature of small-scale hydraulic factors such 

as boundary layer thickness and substrate-flow interactions (Carling 1992; Young 1992; Hart et al. 

1996) as streams increase in size (see Newbury 1984). However, the present study measured only a 

single, large-scale hydraulic factor (discharge) in each stream within the watershed-scale study area. 

The influence of small-scale hydraulic factors on the community structure in first-order streams is 

poorly understood, and requires further study. 

In addition, inter-stream variation in streambed disturbance regime could, in part, account for 

the observed pattern of decreased taxonomic richness with increased discharge. Surface runoff-fed 

streams tend to be 'flashy' and subject to frequent bed disturbance, while spring-fed streams are 

more stable and, as a result, subject only to infrequent bed disturbance. Input sources of small 

streams in the Torpy watershed are diverse, and include snowmelt, surface runoff, and groundwater 

(springs) (personal observation). As such, disturbance intensity and frequency may be substantially 
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more variable between first-order streams than between higher-order streams, wh ich have multiple 

inputs from diverse sources. Townsend et al. (1997), applying the intermediate disturbance 

hypothesis, found that species richness was low both in streams with frequent, intense bed 

disturbance (where relatively few, rapidly colonising species dominate the assemblage) and very 

infrequent bed disturbance (where relatively few, competitively superior species dominate the 

assemblage). As such, inter-stream variation in invertebrate diversity among small streams within the 

study area may be due, in part, to variable disturbance regimes, with streams with the highest 

taxonomic richness having intermediate frequencies of bed disturbance. Similarly, higher order 

streams with greater discharge could have increasingly stable beds, which leads to a community 

dominated by fewer, competitively superior invertebrate species. 

The pattern of decreasing invertebrate taxa richness with increasing discharge may also be 

the result of a community-level response to an unmeasured physical factor related to discharge. For 

example, mean channel velocity, average substrate particle size, and channel width increase with 

discharge (Newbury 1984; Hubert and Kozel 1993). This corroborates the observation of Townsend 

et al. (1997) who noted that richness increased with the percentage of the bed made up of small 

particles (8- 32 mm in diameter). While Townsend et al. (1997) attributed this trend to a decrease in 

bed stabil ity, it seems likely that it was due, at least in part, to the interaction between near-bed flow 

and bed roughness . However, the results of the present study and those of Townsend et al. (1997) 

conflict with the results of several studies relating channel characteristics to community structure. 

While the present study found that faunal richness was greatest in smaller streams, Statzner and 

Higler ( 1986) and Growns and Davis ( 1994) found that richness was greatest in the mid-reaches of 

streams. Both studies suggest that the highest species richness should occur in the areas of the 

highest hydraulic variation, where several species assemblages overlap due to habitat heterogeneity. 

This result also contradicts, at least superficially, the river continuum concept proposed by Vannote et 

al. (1980), which states that species richness is highest in mid-order reaches where environmental 

variation in greatest. It is important to note, however, that faunal richness in the present study was 

measured at the patch scale. In very small streams, a single patch (0.090 m2
, as defined by this 

study) can encompass a relatively large proportion of the streambed, and as such, may contain a 

number of microhabitat types (e.g. near-shore and thalweg zones, or high-velocity and low-velocity 

zones). In larger streams, where stream width was far greater than the width of the sampler, each 
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patch enclosed fewer microhabitat types (i.e. relatively uniform benthic habitat was sampled within 

the quadrat represented by the Surber sampler frame). As such, it is important to limit interpretation 

of the results to the patch scale. It is likely that total invertebrate diversity is greater in high discharge 

streams due to greater habitat complexity, more spatially diverse interstitial spaces, and greater 

hydraulic variability (Growns and Davis 1994; Statzner and Higler 1986; Townsend et al. 1997). If 

this assessment (greater habitat variation per patch in smaller streams) is accurate, then the 

observed pattern of decreasing richness with increasing discharge may actually support the river 

continuum concept, even though the taxonomic richness per reach may actually be greater. More 

research is needed to determine if the relationship between species richness and stream order is 

dependent on the spatial scale at which invertebrate fauna are sampled . 

Forestry activities in the watershed also appear to have an impact on the benthic invertebrate 

community. Streams whose catchments were disturbed by relatively recent logging activities had 

significantly fewer taxa than streams with undisturbed catchments . Logging activities are known to 

affect stream invertebrate communities; Newbold et al. (1980) found that macroinvertebrate diversity 

was lower in streams without riparian buffer strips than in those whose banks were protected with 

buffer strips. The decreased taxonomic richness in streams with adjacent logging may be the result 

of a shift in community structure. Stone and Wallace (1998) found that clearcutting reduced the 

proportion of scraper taxa in a mountain stream and increased the proportion of shredders. The 

proximity of the conductivity vector to the logging vector on the ordination diagram (Figure 2-3) 

suggests that logging activities increase water conductivity. This concurs with the findings of Growns 

and Davis (1991) who found that logging within the catchment of a stream significantly increased 

streamwater conductivity. They further suggested that increased conductivity was, in part, 

responsible for shifts in invertebrate community structure. In the present study, however, the weak 

relationship of the logging variable with either environmental axis suggests that the influence of 

forestry activities on invertebrate community composition in the Torpy watershed is limited. 

Community structure- CCA ordination 

The underlying physical gradient represented by the first CCA axis is associated with physical 

stream factors; large discharge streams with coarse substrates lie on the left of the ordination 

diagram, while small streams with beds composed of relatively fine particles lie on the right. The 
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eigenvalues and intraset correlation coefficients suggest that th is environmental gradient has the 

greatest influence on the structure of the macroinvertebrate communities in tributaries of the Torpy 

River watershed. Ordination analyses of benthic community structure by several other authors have 

also found that a physical gradient dominates benthic community structure. Danehy et al. (1999) 

found that the first axis was most strongly correlated with water surface slope and mean channel 

width, and attributed this to the dominant effect of headwater-to-valley environmental gradients on the 

macroinvertebrate community structure. Marchant et al. (1985) and Rossaro and Pietrangelo (1993), 

in separate studies of large-scale variation in benthic communities, both found that the underlying 

environmental gradient represented by the first axis was related to substrate particle size. 

CCA ordination of the benthic community divided the common invertebrate fauna into four 

functional assemblages, each associated with a distinct habitat type defined by physical and 

hydrochemical factors. Notably, the invertebrates of both the AS1 and AS4 assemblages were 

positively correlated with stream hydraulics (CCA axis 1), and are categorised as clingers inhabiting 

erosional habitats (Merritt and Cummins 1996). However, the taxa included in assemblage AS1 are 

generally dependent on allochthonous inputs as a food resource (two shredder-detritivore genera and 

a collector-gatherer), while the taxa of AS4 are almost exclusively scrapers, dependent on 

autochthonous production (periphyton) as a food source. This suggests that AS4, which includes the 

heptageniid mayfly Epeorus, may represent a functional assemblage that inhabits the exposed upper 

surface of streambed stones, and is found in bouldery, high velocity habitats {i.e. a boulder-torrent 

guild). Likewise, AS1 may represent an assemblage (i.e. a cobble/gravel riffle guild) that inhabits 

riffle habitats of high-discharge streams. 

The positive relationship between discharge and the suspension-feeding hydropsychid 

caddisfly Arctopsyche (AS1) supports earlier observations that the local abundances of hydropsychid 

and simuliid suspension-feeding taxa are related to high water velocities (Osborne and Herricks 1987; 

Growns and Davis 1994). However, while Arctopsyche was categorised as a flow obligate by Growns 

and Davis, it was not grouped with the other flow obligate taxa (e.g. Epeorus, Rhithrogena, etc.) in the 

ordination diagram (Figure 2-3). This suggests that other variables, such as channel slope, may be 

important in the microhabitat preferences of this genus. Hubert and Kozel (1993) reported that water 

surface slope was significantly and positively related to environmental factors that have been found to 
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be related to the habitat preferences of suspension-feeding taxa, such as the proportion of the bed 

composed of boulders (see Wetmore et al. 1990; Voelz and Ward 1996). 

Invertebrates included in the third functional assemblage (AS3) were negatively correlated 

with stream hydraulics. This functional assemblage is composed largely of collector-gatherer, 

burrower taxa. Hearnden and Pearson (1991) found that benthic macroinvertebrates with trophic 

relationships of this type were strongly associated with detrital deposits in pools with coarse 

substrates. Leaf litter deposits and current intensity are strongly related (Minshall 1984 ), and Growns 

and Davis (1994) suggest that detrital material (FPOM and CPOM), the food resource of collector-

shredder taxa, is unlikely to accumulate in areas of the stream bed with high current velocities. 

Wiggins (1996) classified most AS3 taxa (including psychodid, tabanid, tipulid, and empidid dipterans, 

as well as oligochaetes) as being depositional zone taxa. Several AS3 taxa have distinct adaptations 

for burrowing rather than movement on the exposed surface of the streambed, suggesting that these 

taxa belong to the flow avoider functional group. This supports the findings of Growns and Davis 

(1994) who found that flow avoiders are generally shredders. Taxa lying on the right side of the 

ordination diagram could be expected to be associated with depositional rather than erosional 

habitats, where low currents enhance the deposition of both CPOM and FPOM (Hearnden and 

Pearson 1991 ). 

Interestingly, the clinger mayfly Cinygmula was included in assemblage AS3, even though it 

is generally classified as an erosional zone genus (see Edmunds and Waltz 1996). This suggests 

that Cinygmula may not be as dependent on high velocity microhabitats as other erosional zone 

species. This result supports the findings of Golubkhov et al. (1992), who observed that Cinygmula 

grandifola was not as sensitive to the decreases in oxygen uptake associated with low flow velocities 

as other rheophilous species. 

Four of the six taxa included in the fourth functional assemblage group (AS4) have distinct 

adaptations that allow them to live in high velocity habitats and minimise the probability of being 

detached from the substrate. The heptageniid mayflies Epeorus and Rhithrogena have an abdominal 

gill arrangement that forms a sucker-shaped ventral disk, which is thought to function as a "suction 

cup" which prevents accidental detachment (Vogel 1994 ). The hairy ventral disk of Drunella is 

thought to function in similar fashion . The grazing caddisfly Glossosoma cements its case to large 

streambed stones, preventing it from being eroded from the bed . All four taxa would be categorised 
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as flow obligates, based on the criteria of Growns and Davis (1994) who placed stream invertebrates 

into three flow exposure groups (obligates, facultatives, and avoiders) based on behavioural and 

morphological adaptations to flow. These four taxa are only weakly associated with axis II , 

suggesting that the habitat preferences of flow obligates are determined almost entirely by physical 

(flow and substrate characteristics) rather than hydrochemical (e.g. conductivity) factors. AS4 taxa 

predictably show strong associations with coarse substrates. Erosional habitat grazers should be 

strongly associated with boulder and cobble substrates, as larger stones provide a relatively stable 

substrate for the growth of periphyton; smaller bed particles tend to be eroded and entrained at lower 

velocities (Minshall1984). 

Comparing the positions of the macroinvertebrate taxa within the ordination diagram to the 

known trophic relationships of the taxa demonstrates the ecological validity of CCA ordination. 

Organisms with similar habitat requirements and ecological roles have strong associations in Figure 

2-3. There are invertebrate predators associated with each of the four functional assemblages, 

suggesting some degree of resource partitioning among common predatory taxa. The predatory 

caddisfly Rhyacophila, one of the most ubiquitous invertebrate taxa in the Torpy River watershed, had 

a very weak weighted average with respect to axis II , demonstrating that it may be relatively 

insensitive to variations in water chemistry. The mayfly Rhithrogena, another commonly occurring 

benthic insect, was also very weakly associated with axis II. This suggests that while common 

invertebrate taxa may demonstrate preferences to certain ranges of physical habitat types, they may 

be relatively tolerant of a wide range of hydrochemical conditions. Additionally, the ordination sheds 

light on the ecological status of several taxa whose habitat preferences are poorly understood. For 

instance, the mayfly Drunefla, included in AS4 and shown to be strongly associated with axis I, is 

likely a erosional zone species (along with several other AS4 taxa including Epeorus and 

Rhithrogena) . 

The microdistribution of Epeorus 

Large-scale environmental factors (e.g. discharge, substrate composition, disturbance 

regime) determine the availability of niches within stream systems, and thus determine if certain taxa 

will be present. However, small-scale factors are of greater importance in determining the distribution 

of invertebrates within each reach or riffle. Increasingly, stream hydraulics are thought to be the 
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single most important factor determining the distribution of benthic organisms (see Davis and 

Barmuta 1986; Carling 1992; Hart et al. 1996}. So, while CCA ordination demonstrates that the 

mayfly Epeorus was associated with physical variables related to stream hydraulics (discharge, 

substrate composition), the spatial scale was too coarse to clearly define the microhabitat 

preferences of this genus. However, correlation of several physical stream factors with the 

distribution of Epeorus within two adjacent streams sheds light on the relationship between 

watershed-scale and small-scale patterns of distribution of benthic invertebrates. Neither simple 

parameters (U, U0.o2m. D, various substrate factors) nor ratios of parameters (Re, Fr, D/kave) provided 

the strongest correlations with Epeorus abundance (Table 2-7). Moreover, while a multiple 

regression model incorporating both velocity and depth explained 33.2% of the variation in Epeorus 

density, interpretation may be difficult. Larval Epeorus preferred a distinct range of depth and velocity 

conditions, namely depths less than 20 em, mean velocities less than 30 em s-1
, channel Reynolds 

number less than 100,000, and relative roughness (D/kave) less than 3. In other words, larvae 

preferred shallow, slow flows over rough beds. 

Local densities of Epeorus were significantly and negatively related to mean velocity and 

channel depth. This result was unexpected, as the distinct morphological adaptations of Epeorus, a 

known rheophilous, torrential macroinvertebrate, suggest that larvae should display a marked 

preference for high velocity flows . Collier (1994) found that De/eatidium var. myzobranchia, which has 

large overlapping gills in a sucker-like arrangement similar to that of Epeorus, was restricted to 

velocities greater than 0.90 m s-1
. Coll ier speculated that the morphological adaptations of 

Deleatidium allowed it to withstand high velocities and thus access areas of higher quality food 

resources . Weissenberger et al. (1991) note that Epeorus, though subject to substantial lift forces at 

high velocities (due to its 'airfoil' shape), is able to attach itself firmly to the surface of the bed, 

preventing accidental dislodgement from the substrate. 

It is difficult to separate the effects of velocity, depth, and bed morphology (see Minshall 

1984; Newbury 1984; Carling 1992), and as such, there are several possible explanations for this 

apparent discrepancy. Stream insects exist almost exclusively in a zone that extends only a few 

millimetres above the surface of the substrate. Epeorus is no exception; the microhabitat preferences 

of this genus are undoubtedly determined by near-bed rather than mean flows. The results, however, 

show that velocities near the bed (Uo.o2m} are correlated to mean velocities. If velocities measured at 
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2 em above the bed (U0.o2m) are, in turn, correlated to velocities immediately adjacent to the bed (e.g. 

Uo.oo2m). then it would appear that local densities of Epeorus are related to low velocities. However, 

the relationship between mean velocity and velocity immediately adjacent to the bed at the scale of 

the larvae (- 2 mm) may be not be consistent across the range of relative roughnesses (see Hart et 

al. 1996). As depth decreases and substrate roughness increases (primarily due to increased 

substrate particle size), velocities adjacent to the bed approach (or, in some cases, exceed) mean 

velocity due to flow constriction and the development of pressure gradients (see chapter 3). Thus, in 

shallow channels with low relative roughness, near-bed velocities may be higher than predicted by 

conventional boundary layer theory (see White 1999), and the distribution of Epeorus may be in 

response to some as yet unmeasured variable (e.g. near-bed turbulence intensity u'0002m ) . 

Substantial research into the distribution and nature of near-bed hydraulic parameters is needed 

before results of this kind can be interpreted with certainty. 

A more probable explanation is that Epeorus larvae are not, in fact, responding to velocity, 

but rather to other factors related to velocity. Depth, relative roughness, and substrate composition 

are significantly related to mean velocity (Nowell and Jumars 1984; Minshall 1984; Newbury 1984). 

As such, the preferences of Epeorus may be for shallow sites with low relative roughness, rather than 

low velocity. Larval Epeorus graze periphyton (mainly diatoms) from the exposed upper surfaces of 

streambed stones. Food resource availability may be higher in shallower areas; growth rates of 

periphyton are higher in shallow flows, as photosynthetically active radiation (PAR) is attenuated to a 

lesser degree. This interpretation is supported by Wellnitz et al. (1996), who concluded that light is 

the most important abiotic factor regulating algal abundance in streams. In addition, streambeds 

composed of larger particles are more stable (Minshall 1984 ), providing a site for long-term 

accumulation of algae. As such, beds with low values of 0/kave should provide a more suitable site for 

periphyton growth, and have, as a result, greater resources available to grazing invertebrates. A 

positive relationship between grazer abundance and periphyton abundance was demonstrated by 

Vaughn ( 1986), who found that densities of the trichopteran grazer Helicopsyche borealis were 

highest in areas of high algal chlorophyll a; larvae drifted from food-depleted areas of the substrate. 

Similarly, Kerans (1996) found that the hydropsychid grazer Hydropsyche s/ossonae used periphyton 

availability to assess microhabitat quality. 
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Oxygen availability may also be a factor in microhabitat selection. Epeorus larvae are 

intolerant of low oxygen concentrations, and are dependent on flow over their abdominal gills to 

obtain sufficient dissolved oxygen to survive (personal obseNation). When the height of the substrate 

roughness is less than three times the total depth (D/kave < 3), flow is considered "chaotic" (Davis and 

Barmuta 1989; Young 1992; 1993). Flow conditions immediately adjacent to the bed in chaotic flows 

are poorly understood (see Hart et al. 1996; chapter 3}, but may provide microflow conditions that 

enhance gas exchange. However, this is not likely the sole factor determining the microhabitat 

preferences of the genus, as Epeorus larvae often migrate to the underside of stones during the day 

(see chapter 4) where current velocities are substantially lower than the upper surface of streambed 

stones. 

Chaotic flows may also act to reduce the threat of predation. Bull trout (Salvelinus 

confluentus), common in tributaries of the Torpy River (G . Cho, UNBC grad student, unpublished 

data) may be unwilling to move into shallow, chaotic flows to feed . Similarly, American Dippers 

(Cine/us americanus) may be unable to forage efficiently in chaotic flows. However, while several 

studies (e.g. Hart and Merz 1998; Peckarsky et al. 1990) have demonstrated that high velocities can 

reduce invertebrate predation on stream insects, few studies have examined the effect of chaotic 

flows on predation intensity. More research on the ecological importance of flow regime is needed. 

An alternative explanation for the observed pattern of decreasing Epeorus density with 

increasing velocity is a possible ontogenetic shift in microhabitat preferences. Knopp and Cormier 

(1997) report that prior to emergence (which generally occurs in July and August), larval Epeorus in 

western Canada move from high velocity habitats into slower areas of the streambed. As samples 

were collected in late July I early August, pre-emergence behaviours may be a factor. Collier (1994) 

found that last instar males of the rheophilous mayfly Deleatidium var. myzobranchia preferred lower 

velocity habitats than females , possibly reflecting pre-emergence movement into suitable emergence 

sites. Increases in larval size may also, in part, explain the apparent preferences of larval Epeorus 

for relatively low-velocity habitats. Larger, later instar larvae of the caddisflies Arctopsyche grandis 

and Brachycentrus occidentalis are found in less current-exposed locations, possibly due to the 

greater "current forces" to which larger individuals are subjected (Voelz and Ward 1996). 

Preferences of larval Epeorus for areas of greater relative roughness may also be related to larval 

development. Buffagni et al. (1995) found that nymphs of the torrential mayfly species Rhithrogena 
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semicolorata and Ecdyonurus venosus moved into rougher areas in their last instar, possibly to find 

suitable sites for emergence. However, in the present study, larval abundance was correlated with 

relative bed roughness but not with substrate particle size. Although seemingly contradictory, this 

result can be explained if relative roughness is an important predictor of the flow conditions 

immediately adjacent to the surface of the substrate (i.e. turbulence intensity and structure, etc.) to 

which larval mayflies are exposed. Substrate roughness influences several relevant flow parameters 

including turbulence intensity and boundary layer conditions (Davis and Barmuta 1989; Young 1992; 

Robert et al. 1996). 

Mean velocity (measured at 60% of the total depth) proved to be more closely related to the 

distribution of Epeorus than measurements of near-bed velocity (recorded 2.0 em above the bed). 

This suggests that mean velocity may be a better predictor of the habitat preferences of Epeorus. 

Similarly, mean velocity may be a better indicator of flow conditions at the "patch" scale (i.e. in this 

case, 0.090 m2
) than a single measurement of near-bed velocity obtained in the centre of the patch. 

This is undoubtedly due to the heterogeneous nature of near-bed flows. Hart et al. (1996) found that 

near-bed velocities differed as much as fourfold over distances as small as a few centimetres. 

Interactions between streambed geometry and the current can produce variable local flows, and 

measurements of near-bed velocity are likely to be dependent on bed geometry and variation in 

microflow regime at the measurement point. This result supports the findings of Quinn and Hickey 

(1994) who found that in cobble-bedded channels, mean velocity was approximately as good a 

predictor of invertebrate variables as complex hydraulic parameters, while in more variable 

environments (especially over gravel beds), complex variables were more closely associated with 

invertebrate distributions. 

Contrary to expectations, Froude number (Fr) was not a good predictor of Epeorus 

distribution. Orth and Maughan (1983) found significant relationships between several 

macroinvertebrate taxa and Froude number. Similarly, Wetmore et al (1990) found that Froude 

number was the best predictor of feeding sites of the caddisfly Brachycentrus occidentalis and black 

fly larvae (Simulium vittatum). However, positioning with respect to Froude number may be important 

only in suspension-feeding taxa. B. occidentalis and S. vittatum are both suspension-feeding taxa, 

and Wetmore et al. (1990) suggest that the microhabitat preferences of these larvae (Fr = - 0.6 and -

0.7, respectively) are the result of larvae positioning themselves in zones of converging flow lines in 
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order to maximise seston delivery (often, larger Froude numbers are associated with accelerating 

flows where distances between adjacent, parallel streamlines are decreasing, which in turn increases 

the discharge per unit of cross-sectional area). If the primary ecological significance of Froude 

number is as an indicator of particle capture efficiency, it may be relatively unimportant to grazing 

macroinvertebrate taxa. Jowett et al. (1991) found that Froude number was not a good predictor of 

abundances of Deleatidium, a grazing mayfly. Rather, they found that mean velocity, depth, and 

substrate characteristics acted as better predictors of local larval abundance. In addition, Wetmore et 

al. (1990) found that the distribution of the grazing caddisfly G/ossosoma intermedium, though poorly 

related to Froude number, was significantly and negatively related to depth. The results of the 

present study similarly demonstrate that Froude number was not significantly related to Epeorus 

distribution, while mean velocity, depth, Reynolds number, and relative roughness (a substrate 

characteristic) were. This suggests that the physical factors to which grazing and suspension-feeding 

invertebrates respond may be different. Suspension-feeding organisms may position themselves in 

microflow regimes that maximise particle capture rates, while herbivorous macroinvertebrate taxa 

may prefer flow regimes that maximise algal growth and gas exchange while minimising predation 

and the probability of accidental detachment from the substrate. 

It is important to note, however, that the environmental factors measured in this study may 

not be those to which stream invertebrates are responding proximally. Several authors, including 

Wetmore et al. (1990) and Davis and Barmuta (1989), note that conventional samplers and field 

techniques often sample across several microhabitats. As such, using these techniques (i.e. 

propeller velocimeter, Surber sampler), it is difficult to discern the nature of the factors that Epeorus 

larvae respond to. Even a relatively small patch of cobble streambed may contain diverse flow types 

that vary substantially with respect to important flow descriptors. While many studies have found 

significant relationships between invertebrate ecology and a variety of flow characteristics, the nature 

of the hydrodynamic parameters to which benthic invertebrates actually respond remains largely 

unknown. These proximal hydrodynamic parameters may be related to micro-scale factors. For 

example, Hart et al. (1996), using a hot-film anemometer to measure near-bed flows in a natural 

stream channel, found that black fly larvae (Simulium vittatum) abundance was related to current 

velocity measured 2 mm above the bed (approximately the height of the labral fans). However, 
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studies of this kind are rare, and research on the relationship between macroinvertebrate behaviour 

and flows immediately adjacent to the bed (at the scale of the organisms of study) is needed. 

Conclusions 

The results of the present study support the hypothesis that hydrodynamic forces are the 

underlying ecological gradient that determines the distribution of benthic stream invertebrates at both 

the community and taxa-specific levels. Ordination divided the benthic fauna into distinct 

assemblages based primarily on physical factors (substrate, substrate composition, etc.) and 

secondarily on hydrochemical factors (pH, conductivity, etc.). However, while this result provides 

insight into the relative ecological importance of the various parameters, it does little to elucidate the 

proximal mechanisms that produce these functional assemblages. 

Further research is required to identify the parameters to which benthic organisms respond. 

However, this may prove difficult as many flow variables are intimately related (e.g. near-bed velocity 

and shear stress). For example, the results of the present study reveal that the abundance of the 

mayfly Epeorus was negatively related to channel Reynolds number. However, channel Reynolds 

number is a ratio that incorporates both channel depth and mean velocity. While it is possible that 

Epeorus, and other benthic invertebrate taxa, may respond to flow characteristics associated with low 

Reynolds number (e.g. specific regimes of eddy generation), or may have direct preferences for low 

velocities or shallow depths, it is possible that they are also responding to additional, unmeasured 

environmental parameters that are associated with either depth or mean velocity (e.g. near-bed 

velocity, bed roughness, UV radiation, etc.). To adequately describe the habitat preferences of any 

species of stream invertebrate, a combination of substrate and hydraulic parameters should be 

measured throughout the range of habitat types inhabited by the species. 
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Figure 2-1. Taxonomic richness of macroinvertebrate taxa in relation to stream discharge. A. 
Taxonomic richness measured per 'patch' (per Surber sample, - 0.090 m\ B. Taxonomic richness 
measured per stream (total taxa collected in all three benthic sample replicates per stream). 
Macroinvertebrates identified to lowest convenient taxonomic level, usually genus. 
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Figure 2-2. Conductivity versus stream discharge in tributaries of the lower Torpy River, British 
Columbia. 

Figure 2-3. (next page) Canonical correspondence analysis (CCA) biplot for the 24 benthic 
macroinvertebrate taxa and the 11 environmental variables of the lower Torpy River, British 
Columbia. For clarity, the biplot has been divided into constituent taxonomic (top) and environmental 
(bottom) variable components. Taxa scores labelled with open circles, environmental variables 
(vectors) labelled with arrows. A ln(x+1) transformation was performed on the taxa data. The 
following environmental variables are indices: DEFOL (riparian vegetation defoliation index; 0 = intact 
riparian vegetation, 1 = defoliated riparian vegetation), SUBSTR (substrate composition; higher 
values indicate increasingly fine bed material), LOGPROX (logging activities in proximity of stream 
catchment; 0 = no logging activity in catchment, 1 = logging in catchment), and RIPARIAN (riparian 
vegetation index; higher values indicate increasingly open streamside vegetation). See Methods and 
Materials and Tables 2-4 and 2-5 for further clarification of abbreviations used. 
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Figure 2-4. Relationship between abundance of Epeorus larvae and channel depth (D) in streams 48 
and 56 in the lower Torpy River watershed, British Columbia. 
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Figure 2-5. Relationship between abundance of Epeorus larvae and mean velocity (U, measured at 
0.60 - see text for details) in streams 48 and 56 in the lower Torpy River watershed, British 
Columbia. 
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in streams 48 and 56 in the lower Torpy River watershed, British Columbia. 
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streams 48 and 56 in the lower Torpy River watershed, British Columbia. 
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Figure 2-8. Relationship between mean velocity (U) and depth (D) measured in streams 48 and 56, 
located in the lower Torpy River watershed, British Columbia. 
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Figure 2-9. Relationship between near-bed velocity (Uo.o2m- velocity measured 2 em above the bed) 
and mean velocity (U - measured at 0.60). See text for details. 
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Chapter 3 

Near-bed hydrodynamics above boulders in shallow torrential 

streams 

Summary 

1. The near-bed hydraulic environment inhabited by torrential stream fauna was characterised by 

recording velocity profiles, near-bed velocities, and shear stress distributions over the upper 

surface of eight streambed boulders in a mountain stream located in east-central British 

Columbia. Flow at the study site was rough-turbulent. 

2. Velocity profiles above the boulders regularly deviated from a semi-logarithmic shape. Velocity 

profiles were often found to be 'wedge-shaped', with velocities increasing from the free surface 

downward, reaching a maximum a few millimetres above the stream bed; velocities below this 

point decreased rapidly and logarithmically towards the bed surface. Near-bed acceleration 

resulting from flow constriction by the curved leading edge of the boulder protruding upward is 

proposed as the mechanism producing this distinctive velocity distribution . 

3. Wall shear stress (-rw). measured using a Preston-static tube (PST) was generally lowest over the 

leading edge of the boulders, and increased over the upper surface, reaching a maximum near 

the rear of the stone (upstream of the point of flow separation, where the shear stress dropped off 

abruptly}. High shear stresses were also recorded on the sides of the boulders. 

4. Wall shear stress measurements made using the PST were similar to shear stress estimates 

made using the law of the wall (i.e. the velocity gradient method; estimating -rw based on the slope 

of the regression of U on In z) only at locations where velocity profiles were log-normally 

distributed. Where velocity profiles were wedge-shaped, the velocity gradient method 

underestimated 'tw compared to the direct measurements made using the PST. 

5. Bed geometry was found to be an important influence on near-bed flows in shallow streams with 

low relative submergences. Possible mechanisms by which bed geometry may influence near-

bed flow parameters are discussed. 
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Introduction 

The hydrodynamic forces created by moving water are perhaps the most important factors 

governing the behaviour, distribution, and ecology of benthic invertebrates in stream environments 

(Carling 1992; Hart et al. 1996; Hart and Finelli 1999). Benthic organisms living on the exposed 

surfaces of boulders and gravels are subjected to a suite of hydraulic forces that are variable in both 

time and space (Hart et al. 1996; Buffin-Belanger and Roy 1998). While at first glance this 

environment may seem hostile, there are benefits to living in habitats of this type. For example, high 

near-bed velocities decrease the risk of predation (Peckarsky et al. 1990; Hart and Merz 1998), 

increase the respiratory efficiency of the gills of stream benthic insects (Wiley and Kohler 1980; 

Pommen and Craig 1995), and increase the rate of seston delivery to suspension-feeding benthic 

invertebrates (Wetmore et al. 1990; Lacoursiere 1992). However, high velocities also increase the 

lift, drag, and shear stress acting to dislodge invertebrates from the substrate (Weissenberger et al. 

1991; Vogel 1994; also see Denny 1994; Delgado and Carbonell 1997). 

In addition to their role in regulating the biology of streams, hydrodynamics influence a 

number of physical processes, including dissolved oxygen levels (Moog and Jirka 1999), near-bed 

flow patterns (Jarrett 1990; Bergeron 1994 ), the level and structure of turbulence (Robert et al. 1996; 

Buffin-Belanger and Roy 1998; Sukhodlov et al. 1998), bed roughness (Nikora et al. 1998) and 

bedload movement (Blizard and Wahl 1998). Yet, despite the numerous studies that have been 

conducted within streams, few descriptions of stream flow have been made at spatial scales 

important to stream organisms (i.e. within millimetres of the surface of the bed; see Hart et al. 1996). 

Moreover, the generation of eddies, wall shear stress, and other boundary layer phenomena, which 

take place at these spatial scales, are likely to have direct effects on stream organisms. 

A number of recent studies have stressed the need to study the biology and environment of 

benthic invertebrates at the small spatial scales at which they experience flow (Carling 1992; Hart et 

al. 1996). However, due to the difficulty of characterising flow at organism-defined scales, most 

research efforts continue to examine the biology of stream macroinvertebrates at reach, or even 

watershed scales. It is reasonable to suggest that an understanding of the proximate and ultimate 

forces that shape the behaviour, ecology, and morphology of stream macroinvertebrates will be 

gained by examining the hydraulic processes of streams at biologically relevant spatial scales. This 
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is especially true of torrential streams where benthic organisms depend on high velocity habitats for 

nutrient delivery, protection from predation, and gas exchange (Vogel1994). 

Given the importance of small scale fluid phenomena to stream organisms, and the relative 

rarity of studies at these scales, it seems timely to describe the near-bed hydraulic environment 

experienced by larval insects in torrential streams with steep slopes and coarse substrates. To 

achieve this end, this study has three specific goals: (1 ), to examine the distribution of velocities over 

the upper surfaces of torrential stream boulders; (2), to measure the range and distribution of shear 

stress on stream boulders; and (3), to characterise the local channel hydraulics of torrential stream 

environments. This will be achieved through description of the flow environment of a shallow stream 

at high spatial resolution, as well as measurements of wall shear stress in a natural channel. 

Methods and materials 

Study Area and Experimental Approach 

The study site was located on a tributary of the Torpy River, located approximately 90 km 

east of Prince George, British Columbia, Canada (Figure 3-1 ). The 20 m study reach was a single 

thread, generally straight channel, with an average stream surface slope of 3.2%, although local 

water surface slopes regularly exceeded 70%. The bed was composed primarily of boulders and 

cobbles with patches of coarse gravel in the interstices (pockets) between the larger substrate 

elements (see chapter 2 for a definition of stone size classes). Streambed gravels were poorly 

cemented, due to the high gradient and seasonally variable discharge of the study stream. The 

maximum discharge of the stream recorded at the site during the study period (Aug.15 to Oct.15, 

1998) was 0.43 m3 s·1 on October 2, 1998. 

In order to examine the relationship between bed geometry, bulk flow, near-bed flow, and the 

benthic biota, a series of stones (also referred to as boulders depending on size; see below) were 

deployed in the stream channel at the site. Thirty stones (ranging in size from 22 - 36 em in 

diameter; i.e. small boulders, referred to below as stones or boulders, depending on size) were 

collected from the banks of streams within the Torpy River watershed, with care taken to obtain 

stones from above the high-water line. Obtaining stones in this fashion ensured that they would not 

have prior accumulations of dried biofilm from previous immersions, a factor that might influence 
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subsequent growth of periphyton. Light coloured (off-white to tan), naturally rounded stones were 

chosen in order to facilitate the observation of insect and algal distributions, as well as minimise the 

influence of substrate colour on insect behaviour. The stones were subsequently removed to the 

Aquatic Sciences Laboratory at UNBC, where they were cleaned with a stiff nylon brush and marked 

with an identification number and a 5 x 5 em grid of points (Figure 3-2). The reference grid provided 

an accurate and reliable system to facilitate the recording of the distribution of hydraulic and biotic 

parameters over the surface of each stone. The reference points were distributed in a modified 

Cartesian grid, the centre of which was a datum located at the intersection of the longest and second 

longest orthogonal axes (i.e. the centre of the upper surface of the stone). Both the grid and the 

identification number were applied to the stone using an indelible black felt marker (Sharpie® 

Permanent Marker; Sanford, USA). 

The stones were deployed in the active channel at the study site on August 20, 1998. In 

order to ensure that the stones were placed in 'natural' orientations, where possible, naturally 

occurring boulders were removed from the stream bed and replaced with stones of similar shape and 

volume. In addition, to minimise hydraulic interactions between substrates (see Davis and Barmuta 

1989; Young 1993), the stones were placed in the channel at approximately 1 m intervals in an offset 

pattern, such that no stone was immediately upstream of another. After deployment, the stones were 

left undisturbed for 10 days in order to accumulate the biofilm, periphyton, and benthic invertebrates 

characteristic of the stones of the surrounding stream bed. During this time the densities of larval 

Epeorus longimanus (a representative high velocity, torrential habitat species) were monitored on 

each of the deployed stones. After the acclimatisation period had ended, a series of measurements 

were made on the five stones that had the highest densities of E. longimanus. The measurements, 

which were used to estimate the preferred microhabitat of this torrential mayfly, included stream bed I 

water surface profiles, wall shear stress distributions, midline and midpoint velocity profiles, and 

identification of basic flow patterns through flow visualisation using fluorescein dye (see below). For 

comparison and verification, the flow fields of three additional naturally occurring boulders with 

similarly high densities of E. longimanus were also examined in the same manner. 

Some of the techniques were tested under field and laboratory conditions prior to their use in 

the field. Specifically, to compare the hydraulic conditions measured at the torrential stream site 

(stream 48) with the hydraulic conditions of relatively simple channels, a velocity profile, shear stress 
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estimate, and stream bed I water surface profile were obtained over a gravel bed riffle in an adjacent 

stream of lower average slope (1 .5%) but similar discharge. Three velocity profiles were also 

collected in a laboratory flume at UNBC (20 em x 20 em x 200 em long) at different velocities (0.242, 

0.382, and 0.465 m s·\ 

Apparatus 

The water surface and stream bed topography were measured in transects above each of the 

deployed and natural stones using a stream hydraulics profiling device, similar to the Wilson Creek 

flow profiler used by Wetmore et al. (1990). Whereas the Wilson Creek profiler consisted of a point 

gauge mounted on a triangular tripod table, the apparatus used in this study consisted of a 

rectangular, field deployable stage (table) with an adjustable leg at each corner. A cylindrical PVC 

socket (3" diameter) was mounted vertically in the centre of the field stage, permitting the quick and 

easy interchange of the two types of apparatus used to quantify the stream environment; (1) a point 

gauge to measure water surface I stream bed topography, and (2) a Preston-static tube (see below, 

and Appendix 4) to measure water velocity and shear stress. The field stage, while minimising 

disturbance to local flows, also allowed the Preston-static tube and point gauge to be fixed at any 

height with a minimum of flow-induced vibration. The stage consists of a rectangular aluminium 

frame (40 x 152 em) which could be levelled above the stream using the adjustable aluminium legs 

and a circular liquid bubble level. Positioning of the Preston-static tube in the streamwise (x) direction 

was made possible by a smaller (40 x 40 em) aluminium stage which could be adjusted on the rails 

formed by the long axis of the larger frame. The second, smaller frame in turn supports an acrylic 

sheet (36 x 40 x 1 em), in the centre of which the point gauge was fixed. The acrylic sheet, capable 

of sliding over the second aluminium frame on polyethylene runners, provided positioning in the 

cross-stream (y) direction, while a rack and pinion gauge fitted with a vernier scale provided 

positioning in the vertical (z) plane. Using this method, the Preston-static tube or point gauge could 

be positioned accurately at any point above the surface of the stream bed. 

Measurements of near-bed velocity profiles were made using a small-scale Preston-static 

tube (PST), essentially a Pitot-static constructed of a 90° bevelled tip syringe needle fixed to a side-

bored syringe needle (tube diameter = 0.88 mm; see Ackerman et al. (1994) for a detailed 
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description) . The Preston-static tube differs from a standard Preston tube in that the dynamic 

pressure port (which faces into the flow) is coupled with a static pressure port (on the sidewall). As a 

result, the difference between static pressure Ps and dynamic (or stagnation) pressure Po can be 

measured, and velocity or shear stress can be determined, depending on deployment (see below). A 

Validyne model CD379-1-2 membrane-type differential pressure transducer (Validyne Engineering; 

Northridge, CA), connected to the Preston-static tube via 2.0 m of flexible pressure lines (inside 

diameter= 3 mm), was used to measure differential pressure. Before each set of measurements was 

taken, the pressure lines connecting the Preston-static tube and pressure transducer were visually 

inspected for the presence of any introduced air bubbles that would potentially alter pressure 

transmission. Both the pressure transducer and the pressure lines were periodically flushed in order 

to minimise the possibility of the presence of trapped air, which would bias the differential pressure 

measurements. The pressure difference (which is related to velocity; see equation 3-2 below) was 

expressed as a voltage by a Validyne portable indicator (model CD379). Fifteen voltages were 

recorded over the course of approximately 30 seconds, due to the relatively slow response time of the 

Preston-static tube I pressure lines I pressure transducer system. These voltages were converted to 

differential pressure, then averaged. 

One of the primary disadvantages of both Preston tubes and Pitot tubes is that they must be 

aligned parallel to the flow; there are substantial errors in both Ps and Po associated with yaw angles 

greater than 10 degrees (White 1999). Preliminary diagnostic tests in both the lab flume and the 

natural stream channels confirmed that the inaccuracies associated with positioning errors less than 

10 degrees are negligible (Ackerman and Hoover 2001 ). When deployed in the field, flow 

visualisation using sodium fluorescein injected upstream of the Preston tube was used to ensure that 

the Preston tube was oriented parallel to the flow. To record velocity at a given height above the 

substrate, the Preston tube was deployed at the correct depth using the rack and pinion gauge. 

Then, using a long, thin needle (length = 200 mm, diameter = 1 mm), a filament of dye was injected 

approximately 10 mm upstream of the tube. The orientation of the tube with respect to the dye 

filament was then checked with a magnifying, subsurface periscope, which was oriented in the water 

perpendicular or downstream of the Preston-static tube. If the tube and dye trail were not parallel (i.e. 

the Preston tube was incorrectly oriented), the tube was readjusted in order to ensure that it was 

oriented directly into the flow. 
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The Preston-static tube used in this study is configured such that it can be used to directly 

measure wall shear stress when deployed on a surface (Ackerman et al. 1994 ). The Preston-static 

tube (PST} was developed for measuring wall shear in situations where the incorporation of a wall-

mounted static pressure tap is impractical {i.e. around small-scale objects where flow lines may be 

curved), but has been recently tested for use in a variety of field and lab conditions (Ackerman and 

Hoover 2001 ). 

The relationship between the voltage output of the pressure transducer and pressure head 

was determined by calibrating the pressure transducer by varying the pressure, produced by a 

column of water of known height, across the transducer membrane. A regression of head (height} 

against the voltage output provided the following relationship: 

Head= -0.00164 + (0.0508 x voltage) (3-1) 

(n = 15, R2 = 1.00; ANOVA F{1,13) = 5.29 x 1027
, p < 0.001). Bernoulli's equation, which relates 

pressure, velocity, and height of the fluid {head}, is 

P + 1/2pU2 + pgh =constant, (3-2) 

where P is the pressure in the moving fluid, p is the density of the fluid, g is gravitational acceleration 

(9.81 m s"2
), and h is the height of the fluid . Given equation 3-2, the relationship between pressure 

{head) and velocity is 

U = (2g~h}0·5 , (3-3) 

where the variables are as defined above. Preston ( 1954) demonstrated that the non-

dimensionalised pressure difference, x*, can be expressed as 

(3-4) 
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where ~p is the pressure difference, d is the diameter, and u is the kinematic viscosity of water. 

Similarly, the non-dimensionalised shear stress, y*, can be expressed as 

(3-5) 

where 'tw is wall shear stress. Preston (1954) (also see Ackerman et al. 1994) showed that the 

relationship between x* and y* in the wall layer is 

y* = -1 .394 + 7/8 x*, (3-6) 

which can be represented as 

(3-7) 

where the constant A is given as 

(3-8) 

and the pressure difference ~P is given by 

~p = pg~h (3-9) 

The constant A is fixed at a given water temperature and density (density p and kinematic viscosity u 

are dependent on temperature; see appendix A in White (1999)), while the pressure difference ~Pis 

a function of the density of the medium (p), acceleration due to gravity (g; 9.81 m s·\ and head ~h . 

Channel conditions were characterised using Froude number (Fr). Froude number, an 

important descriptor of flow conditions in open channels, is the ratio of mean channel velocity to the 

propagational velocity of a surface wave (Fr = U I (gD)0
.
5

) . Where Froude numbers are less than 

unity (Fr < 1; subcritical flow), flows which are characterised by deep, smooth flowing water. Where 
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Froude numbers exceed unity (Fr > 1; supercritical flow), flows are characterised by broken, white 

water (see White 1999 and chapter 1 for further discussion). 

Sampling 

The shape of the water surface and stream bed were measured along downstream transects 

crossing the centre of the stones studied using the point gauge and vernier scale. Generally, water 

surface and bed elevations were obtained at 1 0 mm intervals over the boulders and at 20 mm 

intervals over the stream bed in front and rear of the boulder. The total length of each transect varied 

with the centreline diameter of the boulder. 

Velocity profiles were recorded above the centre (datum) of each of the five deployed and 

two of the naturally located boulders. In addition, velocity profiles were recorded above the surface of 

a smaller stone (N03), and above a gravel riffle (GR). Each profile consisted of velocities taken at 

incrementally increasing distances from the surface of the stone (0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 

and 33 mm). In instances where the water surface was greater than 33 mm from the surface of the 

stone, additional velocity measurements were taken at 10 mm intervals. These heights were chosen 

in order to provide the resolution necessary to describe both the near-bed and bulk flow fields. In all 

cases, velocity measurements could not be obtained in a zone extending approximately 3- 10 mm 

down from the water surface, due to the periodic exposure of the PST tip to air during frequent 

fluctuations in depth of the highly turbulent flow. Velocity profiles were obtained at 50 mm intervals 

along the centre line of the upper surface of three of the deployed boulders (stones 7, 31, and 25) in 

order to assess the changes in flow that occur as water crosses the upper surface of stream 

boulders. 

Distributions of wall shear stress over the surface of the five deployed boulders (stones 7, 31 , 

25, 23, and 1 0) and two of the three naturally occurring boulders (N01 and N02) were measured 

using the PST. In each case, the spatial distribution of shear stress was measured by recording 

shear stress in perpendicular transects . A streamwise transect of shear stress measurements was 

taken along the centreline of each boulder in the direction of flow at 25 mm intervals, while the 

second, cross-stream transect was taken perpendicular to the first at 50 mm intervals, crossing the 

streamwise transect at the centre of each boulder. The location of each shear measurement 

corresponded to points of the reference grid. In addition, single measurements of shear stress were 
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made on the upper surface of the third naturally occurring stone (N03), the gravel bed riffle (GR), and 

in the UNBC lab flume at the three different velocity settings. 

Data Analysis 

The stream bed I water surface data were plotted as profiles showing the upper and lower 

boundaries of the flow measured over each of the boulders. These profiles are hereafter referred to 

as "surface/bed contours" in order to distinguish them from the vertical velocity profiles obtained 

above the bed, which are termed "velocity profiles". 

Conventionally, mean velocity is determined as the velocity at 60% of the total depth (U0.60). 

However, Jarrett (1990) recommends that, in the case of mountain rivers, mean velocities are more 

accurately approximated by mid-depth velocities (Uo.so) than velocities at 60% of the total depth 

(U0.60). As such, for the purposes of this study, 'mean' or mid-depth velocities were estimated using 

Jarrett's (1990) 0.50 guideline. Near-bed (Uo.oo2m) and mid-depth (U0.50) velocities were estimated 

from the velocity profiles by interpolation using the velocities at the two depths of the profile that 

bracket the depth for which a velocity is required. The error associated with this method was thought 

to be minimal due to the high spatial resolution of the velocity profiles obtained (as noted above). 

Velocity profiles were categorised as belonging to one of three categories; (1) log-normal 

(displaying a typical semi-logarithmic shape); (2) wedge-shaped (displaying a distinctive shape in 

which velocities increase in logarithmic fashion downwards from the water surface, reaching a 

maximum value at a point near the bottom, and then decreasing); or (3) transitional (velocity profiles 

showing some near-bed distortion, and appear to be intermediate between log-normal and wedge-

shaped profiles). Tests of linearity (e.g. XLOF (Minitab 1985; Minitab Inc., State College, PA); see 

Bergeron 1994) were not used to determine if velocity profiles were log-linear. Rather, a vertical 

velocity variation index (0) of the relative magnitude of the difference between mid-depth and near-

bed velocities (equation 3-1 0) was used to categorise the velocity profiles, because the vertical 

distribution of near-bed velocities is a primary focus of the study. The index 0 is given as 

0 = (Uo.so- Uo.oo2m) I Uo.so (3-1 0) 
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where the subscripts 0.50 and 0.002m refer to 50% of the total channel depth and 2 mm from the 

bottom, respectively. In cases where 0 > 0.15, velocity profiles were categorised as being relatively 

log-normal (i.e. mid-depth velocities were substantially lower than near-bed velocities; category 1 ). In 

cases where 0 < -0.15 in magnitude (i.e. near-bed velocities substantially exceeded mid-depth 

velocities), velocity profiles were categorised as wedge-shaped (i.e. category 2). When the 

distribution of velocities was such that -0.05 < 0 < 0.05 (i.e. near-bed and mid-depth velocities were 

approximately equal}, velocity profiles were categorised as transitional (i.e. category 3). When the 

magnitude of the difference between mid-depth and near-bed velocities was intermediate between 

categories (-0.15 < 0 < -0.05 and 0.05 < 0 < 0.15), the functional type of the profile was determined 

by visually inspecting the plot of depth z against velocity u. 

All statistical analyses (regressions, ANOVA, ANCOVA) were conducted using Statistica 5.0 

(Statsoft, Tulsa, Oklahoma). Where the number of data points available for regression analyses were 

limited, R2
adi (R2 adjusted for a small sample size) was used as an indicator of the goodness of fit. 

Results 

Stream bed and water surface topography 

The stream bed and water surface topographies along the centre line of each of five 

deployed boulders (Figures 3-3 to 3-7), three naturally occurring boulders (Figures 3-8 to 3-10), and a 

gravel-bed riffle (Figure 3-11) are shown below. While the surface/bed contours collected over the 

boulders were quite variable in shape, they shared several common features. The elevation in water 

surface associated with deceleration of flow (i.e. hydraulic drop) at a stagnation point was seen at the 

upstream margin (i.e. front) of each of the stones, although the magnitude of the hydraulic drop was 

limited in several cases, and influenced by phenomena upstream. Subsequent decreases in water 

depth associated with accelerating and partially deflected flow were seen downstream along the 

upper surface of the boulders (Figures 3-6, 3-7, 3-8). Increases in water surface elevation associated 

with a hydraulic jump were also visible downstream of the boulders (Figures 3-3, 3-4). In addition to 

the downstream patterns noted in the centreline transects, as the height of streambed boulders 

approached the depth of the water (i.e. relative submergences decreased), water was forced to flow 

around the bed elements rather than over them (i.e. flow became increasingly three-dimensional). 
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The flow around stone 7 provides a representative example of these flow features, as the 

stream bed was composed of gravels and cobbles of substantially smaller diameter than the 

deployed boulder (see Figure 3-3). The changes in water surface elevation associated with the 

hydraulic drop, acceleration, and re-expansion in the hydraulic jump were seen over the front, upper 

surface, and rear of the stone, respectively. Similarly, stone 31 was located in a relatively smooth 

section of the study reach, and flow features similar to those noted above were also visible (Figure 3-

4). The same flow features were associated with stone 23 (Figure 3-6), although the surrounding 

substrate was composed of coarser bed material. Unlike the other deployed substrates, stone 25 

was located below an 80 mm cascade produced by water flowing over an upstream obstruction 

composed of boulders and cobbles (Figure 3-5). As a result, a substantial portion of the flow plunged 

onto the front edge of the stone. The angle of the approaching flow and the proximity of the stone 

immediately upstream interacted to create a zone of recirculating, interactive flow between the two 

stones. Of the three naturally positioned boulders, N01 was located in a high velocity location (Figure 

3-8), and provided little resistance to the flow due to bed material piled up against its leading edge. 

Boulder N02 was more similar to stone 7 in that it protruded into the flow, and the slope of the 

approaching flow was relatively flat (Figure 3-9). N03 was located in an exposed location on the 

stream bed, and had a substantial change in water surface slope over its surface (Figure 3-1 0). 

Compared to flow above the boulders, relatively little variation in water surface or bed 

elevation was recorded above the gravel riffle (GR; Figure 3-11 ). 

Velocity profiles 

The vertical distribution of velocity and the near-bed flow regimes over the upper surface of 

the torrential stream boulders were characterised through the measurement of 14 velocity profiles 

over the five deployed boulders and three profiles over the upper surface of three naturally occurring 

boulders. These profiles were compared to a profile measured over a gravel riffle and three profiles 

obtained at various velocity settings in a laboratory flume. 

Four vertical velocity profiles, separated by a distance of 50 mm, were measured above the 

upper surface of stone 7 (Figure 3-12). None of the profiles conformed to a logarithmic velocity 

profile model (see Table 3-1 ), although the profile obtained over the rear of the stone was distorted to 

a lesser extent than the profiles measured over the front of the stone. For purposes of comparison, 
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two additional velocity profiles were obtained over the centre of stone 7 during periods of elevated 

stream discharge (Aug. 7 and Sept. 30). The three velocity profiles obtained above stone 31 are 

shown in Figure 3-13, the four velocity profiles measured over the upper surface of stone 25 are 

shown in Figure 3-14, and the single velocity profiles were collected over the centres of stone 23 and 

stone 1 0 are shown in Figure 3-15. The upper surface of stone 1 0 extended nearly to the water 

surface. As a result, much of the flow was diverted around the sides of stone 10 rather than over its 

upper surface. One velocity profile was collected over the centre of the upper surface of stones N01, 

N02, and N03 (Figure 3-16). A single velocity profile was also obtained above a small stone in the 

gravel bed riffle site GR (Figure 3-16), located in an adjacent stream. As mentioned above, the bed 

of the gravel riffle site was composed of well-sorted, relatively fine gravels (see Figure 3-11 ). 

Flow immediately above the upper surfaces of the stones exhibited a variety of patterns. In 

many cases, velocity profiles deviated from a semi-logarithmic velocity distribution (where velocity 

increases with the logarithm of distance from the bed) in that they showed substantial near-bed 

distortion, often in the form of high velocity 'wedges' (e.g. Figure 3-12). This was especially 

pronounced where the leading edge of the stone was exposed to the flow and the geometry of the 

stone was curved or inclined (rather than square-edged) (Table 3-1 ). In these instances (stones 7, 

31, 23, N03), flow was constricted , and near-bed velocities (Uo.oo2m) substantially exceeded mid-

stream (U0.50; see Table 3-2) or near-surface velocities. Although measured at various points over 

the upper surface of different boulders, the distorted velocity profiles shared several common 

features. In each case, maximum velocities were recorded near the boundary (3 -10 mm above the 

stone surface); above this depth, velocities decreased in a logarithmic manner towards the free 

surface. In each case, velocities increased logarithmically from the bed to the depth at which the 

maximum velocity was recorded . 

Figure 3-12 shows that the velocity profile over the front ( 1 0 em upstream of centre) of stone 

7 was 'wedge' shaped (see Table 3-3 for a summary of velocity profile shapes at all stone locations). 

Velocity profiles obtained 5 em upstream of the stone's centre and stone's centre were transitional 

(intermediate between distorted, wedge-shaped profiles and logarithmically distributed profiles), while 

the velocity profile 5 em downstream of the stone's centre was approaching log-normal. While the 

inclined, curved leading edge of stone 7 created near bed acceleration over the front of the stone, the 

upper surface of the stone was generally flat. Surface flow conditions, as indicated by the Froude 
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number, also changed as flow crossed stone 7 (Table 3-2). Local Froude number, determined at the 

position of the velocity measurement, increased (10 em upstream of centre Fr = 0.98, 5 em 

downstream of centre Fr = 1.82) and became supercritical (i.e. Fr > 1) as flow crossed the boulder. 

The mean velocity also increased along the downstream transect, from U0.50 = 0.713 m s·1 to Uo.so = 

0.950 m s-1
. The height above the substrate at which maximum velocities were found increased in 

the downstream direction above stone 7 as well (see Figure 3-12) . The boundary layer thickness o 
(estimated as the height above the substrate at which velocities attain 90% of maximum) was 

approximately 3.5 mm at the front of the stone, and approximately 5 mm at the most downstream 

point measured (5 em downstream of centre). However, assigning a precise value of o to these 

locations above the boundary is difficult, due to the non-logarithmic nature of the velocity distribution. 

Table 3-1. Stone surface geometry and velocity profile shape categories for all 

sampled stone surface locations 

Stone Stone curvature Profile location• I Profile shape0 

+100 mm +50 mm 0 (centre) 
7 Leading edgec Wedge Transitional Transitional 
31 Entire Transitional Wedge 
25 Littled Wedge Wedge 
23 Entire Wedge 
10 Leading edge Log-normal 
N01 Little Transitional 
N02 Little Log-normal 
N03 Entire• Wedge 
GR (riffle) Little Log-normal 

-50mm 
Log-normal 
Wedge 
Wedge 

a locations at which velocity profiles were obtained are recorded with respect to the centre of the 
stone (e.g. +100 mm denotes that the profile was obtained 100 mm upstream of the stone's centre, 0 
denotes the centre of the stone) 
b see text for definition 
c curvature restricted to the leading edge of the stone; the centre of the stone was relatively flat 
d the upper surface of stone 25 was relatively flat; however, the stone was inclined slightly in the 
upstream direction (see Figure 3-5) 
e the upper surface of stone N03 was relatively flat; however, the stone was inclined steeply in the 
upstream direction (see Figure 3-1 0) 

The leading edge of stone 31 (Figure 3-4) was continuously curved, unlike stone 7. As the 

approaching flow crossed the front of stone 31, the rising bed elevation forced the flow near the bed 

to accelerate (Figure 3-14). As flow crossed the stone it became supercritical (Fr = 0.78, and Fr = 

1.67, 5 em upstream and 5 em downstream of the centre of the stone, respectively), mean velocities 

increased (Uo.so = 0.575 m s·1 to U0.50 = 0.925 m s·\ and near-bed velocities showed a marked 
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increase as well {Table 3-2). The near-bed high-velocity wedge was still present above the rear of 

the stone, suggesting that the velocity distortion may have projected off the rear of the stone. 

Table 3-2. Summary of flow conditions for all sampled stone surface locations 

Stone Date Location on stone • Uo.5D (m s· ) Uo.ooZm (m s·) Rex Fr Tw.PST 

7 Aug. 31 +100 mm 0.713 0.808 47,500 0.98 2.82 
7 Aug. 31 +50mm 0.825 0.803 72,800 1.35 2.06 
7 Aug. 31 0 (centre) 0.922 0.827 101 ,000 1.66 2.65 
7 Aug. 31 -50mm 0.950 0.720 110,000 1.82 2.17 
7 Sept. 30 0 (centre) 0.870 0.738 90,000 0.96 2.24 
7 Oct. 7 0 (centre) 1.260 0.783 95,400 0.77 2.51 
31 Sept. 2 +50mm 0.575 0.580 23,200 0.78 1.61 
31 Sept. 2 0 (centre) 0.747 0.796 56,700 1.13 2.82 
31 Sept. 2 -50 mm 0.925 1.010 103,000 1.67 3.88 
25 Sept. 8 +50mm 0.646 0.938 49,800 0.87 5.77 
25 Sept. 8 0 (centre) 0.418 0.982 81,000 0.60 3.52 
25 Sept. 8 -50mm 0.550 0.770 89,500 0.91 2.83 
23 Sept. 30 0 (centre) 0.527 0.598 46,000 0.97 1.50 
10 Sept. 23 0 (centre) 0.610 0.519 51 ,300 1.28 0.761 
N01 Sept. 26 0 (centre) 1.360 1.230 127,000 1.50 6.27 
N02 Sept. 27 0 (centre) 0.700 0.420 36,800 0.95 0.782 
N03 Aug . 7 Rear edge 0.958 1.183 88,700 1.45 6.34 
Gravel riffle Aug. 18 Centre 0.429 0.228 2130 0.41 0.217 
Flume 1 July 14 1.3 m downst.c 0.465 0.350 284,000 0.60 0.536 
Flume 2 July 14 1.3 m downst.c 0.382 0.290 236,000 0.41 0.339 
Flume 3 July 14 1.3 m downst.c 0.242 0.191 155,000 0.32 0.127 

a locations at which velocity profiles were obtained are recorded with respect to the centre of the 
stone (e.g. +100 mm denotes that the profile was obtained 100 mm upstream of the stone's centre, 0 
denotes the centre of the stone) 
b the distance from the leading edge (at the stagnation point) of the stone was used as the length 
scale to calculate local Reynolds number (Rex); in the case of the lab flume, the distance from the 
mouth of the flume {1.3 m) was used 
c measurements taken 1.3 m downstream of the mouth of the flume 

The upper surface of stone 25 was inclined upwards in the downstream direction (see Figure 

3-5). The three velocity profiles obtained over stone 25 were distinctly wedge-shaped, and revealed 

high near-bed velocities (Figure 3-14 ). However, there was no consistent increase or decrease in 

either near-bed (Uo.oo2m} or mean {U050) velocities as flow crossed the upper surface of the stone 

(Table 3-2}, possibly due to the highly three dimensional, complex flow patterns generated by the 

plunging flow. The inclined upper surface of stone 25 likely influenced both rates of acceleration and 

distributions of velocity. 

Stone 23 (Figure 3-6) had a relatively curved upper surface, and continuous flow constriction 

over the front half of the stone produced a wedge-shaped velocity profile over the centre of the stone 

110 



(Figure 3-15). The shape of this profile was similar to the profiles obtained over stone 31 and the front 

of stone 7. Maximum velocity was recorded 2.5 mm above the substrate, and velocities decreased 

logarithmically above this point. The current velocity 2 mm above the bed was greater (Uo.oo2m = 0.60 

m s"1
) than the mean velocity (Uo.so = 0.53 m s·\ Flow over the centre of the stone was 

approximately critical (Fr = 0.97). 

Table 3-3. Velocity profile shapes and regression parameters used in the 

estimation of U* and 'tw (velocity gradient method) 

Stone date Location on Velocity Regression coefficients f w-dU/dlnz AN OVA 
stone• profile shapeb n R' ad} slope( lAc F p-value 

7 Aug. 31 +100 mm Wedge 4 90.90 0.0607 0.589 30.95 0.031 
7 Aug. 31 +50mm Transit. 4 98.00 0.131 2.72 147.32 0.0067 
7 Aug. 31 0 (centre) Transit. 4 98.03 0.0915 1.34 150.60 0.0066 
7 Aug. 31 -50mm Log-nonn. 5 97.53 0.139 3.10 159.00 0.0011 
7 Sept. 30 0 (centre) Transit. 4 99.61 0.0835 1.11 776.62 0.0013 
7 Oct. 7 0 (centre) Log-nonn. 7 97.65 0.111 1.96 250.82 < 0.001 
31 Sept. 2 +50mm Transit. 5 94.53 0.0450 0.323 70.14 0.0036 
31 Sept. 2 0 (centre) Wedge 3 52.07 0.0596 0.568 3.17 0.33 
31 Sept. 2 -50mm Wedge 3 96.98 0.110 1.94 65.38 0.078 
25 Sept. 8 +50mm Wedge 6 98.05 0.0956 1.46 251.87 < 0.001 
25 Sept. 8 0 (centre) Wedge 4 93.13 0.104 2.33 41 .66 0.023 
25 Sept. 8 -50mm Wedge 3 97.37 0.0413 0.273 75.30 0.073 
23 Sept. 30 0 (centre) Wedge 3 94.42 0.0657 0.691 34.86 0.11 
10 Sept. 23 0 (centre) Log-nonn. 3 99.09 0.130 2.62 218.90 0.043 
N01 Sept. 26 0 (centre) Transit. 3 99.84 0.0770 0.948 1259.10 0.018 
N02 Sept. 27 0 (centre) Log-norm. 6 92.64 0.0978 1.53 64.00 0.0013 
N03 Aug. 7 Rear edge Wedge 3 86.82 0.0362 0.210 14.18 0.17 
Gravel Aug. 18 Centre Log-nonn. 5 96.47 0.0416 0.277 110.26 0.0018 
riffle 
Flume 1 July 14 1.3 m downst.d Log-nonn. 7 98.73 0.0591 0.559 468.14 < 0.001 
Flume 2 July 14 1.3 m downst.d Log-nonn. 7 96.53 0.0453 0.328 168.14 < 0.001 
Flume 3 July 14 1.3 m downst.d Log-nonn. 7 97.54 0.0418 0.280 198.46 < 0.001 

a locations at which velocity profiles were obtained are recorded with respect to the centre of the 
stone (e.g. +100 mm denotes that the profile was obtained 100 mm upstream of the stone's centre, 0 
denotes the centre of the stone) 
b see text for definition 
c U* is calculated as the product of the slope (13) and von Karman's constant (K = 0.4) (see Appendix 2 
for a complete discussion) 
d measurements taken 1.3 m downstream of the mouth of the flume 

In contrast, the velocity profile obtained over the centre of stone 1 0 (Figures 3-1 0 and 3-15) 

was approximately logarithmically shaped when compared to the profiles obtained above stones 7, 

31, 23, and 25. However, the water depth above this boulder was the lowest of the substrates 

included in the study (D = 23 mm). Flow over the centre of the stone was supercritical (Fr = 1.28), 

111 



and mean velocity was Ua.so = 0.61 m s·1. Current speed at 2 mm above the centre of stone 10 was 

0.519 m s·1
, and 8 , 1.5 mm {Table 3-2). 

There was little flow constriction over the upper surface of stone N01 (Figure 3-16); bed 

material deposited against the front of the stone limited the curvature at the leading edge. As 

expected, the velocity profile over the centre of the stone showed little evidence of near-bed velocity 

distortion. Near-bed velocities were high (Uo.oo2m = 1.23 m s·\ and the boundary layer was 

correspondingly thin (8 , 1.5 mm). The flow over the centre of stone N01 was supercritical (Fr = 1.50), 

and mean velocity was 1.36 m s·1 (Table 3-2). 

Stone N02 (Figure 3-9), although similar in exposure to flow and size to stone 7, had different 

geometry. The front of stone had an angular leading edge, where the front of stone 7 was rounded. 

Consequently, unlike the profile obtained over the centre of stone 7, the profile obtained over the 

centre of N02 was more logarithmically distributed, and showed no evidence of a near-bed high 

velocity wedge. The flow over N02 was nearly critical (Fr = 0.95), and the mean velocity was Ua.so = 
0.70 m s·1. The boundary layer thickness over the centre of N02 was 15 mm, and Ua.ao2m = 0.42 m s·1 

{Table 3-2). 

The upper surface of stone N03 was inclined in the downstream direction. The inclined 

surface of the stone continually constricted the flow as it crossed the upper surface of the stone. The 

single velocity profile collected over the apex of N03 {the rear of the stone) showed that the velocity 

distribution was highly wedge-shaped. The boundary layer thickness at this point was very thin (8 < 1 

mm), current speed at 2 mm height was 1.18 m s·\ and flow over the rear of stone N03 was 

supercritical (Fr = 1.45) {Table 3-2). 

Bed and water surface slope 

The slope of the water's surface (S5 ) changed dramatically as it passed over each stone (see 

Figures 3-3 to 3-10). High magnitude, positive rates of changes of water surface gradient in the 

downstream direction {dS5 / dx > 4.0% cm-1
) indicated that the water surface had a strongly convex 

shape, while low magnitude, positive rates of change of water surface gradient (0 < dS5 I dx < 4.0 % 

cm-1
) indicated a weakly convex free surface shape. Negative rates of change of the gradient of the 

water surface indicate a concave water surface topography. Although the magnitude of the rate of 
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slope change was variable, water surfaces were generally convex over the boulders {Table 3-4). The 

water surface over stones 23, 25, and 31 was typically convex as it accelerated over the stone, while 

the free surface over stone 7 was concave. 

Table 3-4. Water surface gradient (Ss) parameters for the five deployed and 

two natural stones 

Stone dS5 / dx (% em· ) ~adj (%) Number of measurement p-value 
points (n) 

7 -2.50 64.4 13 < 0.001 
31 4.64 86.8 16 < 0.001 
25 4.97 69.2 18 < 0.001 
23 4.07 92.3 8 < 0.001 
10 2.35 93.9 11 < 0.001 
N01 0.83 47.7 12 0.0053 
N02 (front)• -0.87 15.9 7 0.18 
N02 (rear)• 7.50 98.1 4 < 0.001 
a the water surface shape appeared to be segmented over stone N02 (i.e. the front and rear of the 
stone had different water surface shapes; see Figure 3-9) 

Shear stress measurements from velocity gradients 

Shear stress estimates were made using the velocity profile data (from determinations of U* 

based on the slope of dU I dlnz; see Table 3-3) for the deployed and naturally occurring boulders, 

gravel riffle site, and laboratory flume. In several cases, regression analyses were conducted using a 

limited number of points, as the logarithmic portion of the velocity profile was generally very thin 

(ranging from 2-7 mm for the boulders). Generally, the logarithmic portion of the velocity profile was 

thinner for wedge-shaped velocity profiles; as such, fewer data points were available for these 

regression analyses. Estimates of shear velocity (U*) made using velocity profile data were greater in 

locations where velocity profiles were log-normal (n = 5, mean = 0.044, SO = 0.017) than in locations 

where velocity profiles were transitional (n = 5, mean = 0.034, SO = 0.012) or wedge-shaped (n = 8, 

mean= 0.030, SO= 0.013) . 

Shear stress measurements from the Preston-static tube (PST) 

The Preston-static tube (PST) was used to directly measure the distribution of shear stress 

on the upper surface of each of the five deployed stones (Figures 3-17 to 3-21) and two of the 
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naturally occurring stones (N01 and N02; Figures 3-22 and 3-23). Similar shear stress distributions 

were observed in all five cases where the front face of the stone was exposed to the flow, providing 

substantial flow resistance (stones 7, 31, 23, 10, and N02). Generally, shear stress was relatively low 

over the front half of stones, but gradually increased, often to a maximum value, over the downstream 

half of each stone (Figures 3-17, 3-18, 3-20, 3-21, and 3-23, respectively). Shear stress was 

generally highest towards the rear of the stones, as water accelerated over the downstream edge. In 

two cases (stones 7 and 31 ), a sharp decrease in shear stress was recorded over the rear edge of 

the stone (see Figures 3-17 and 3-18, respectively). In both cases, flow visualisation confirmed that 

the shear stress measurements were obtained in or near the zone of flow separation. Flow 

visualisation also indicated that flow separation occurred at the rear of all stones examined in the 

study; however, the curvature at the periphery of the remainder of the stones prevented deployment 

of the PST near the zone of boundary layer separation. Some stones showed substantial lateral 

variation in wall shear stress (e.g. stones 31, 25, 10, N01 ). In several cases, the shear stress was 

lowest over the centre of the stone, and increased laterally to one or both sides. 

To varying degrees, the shear stress distributions recorded on stones 25 and N01 deviated 

from the patterns described above. Although low over the front of the stone, recorded values of -rw 

were uniformly high over the entire upper surface of stone 25 (Figure 3-19). Stone 25 was located 

beneath the 80 mm cascade; a jet of water that impinged on the left side (facing upstream) of the 

upper surface of the stone may have contributed to the high shear in that area. In addition, flow 

visualisation revealed that the complex pattern of flow produced by the plunging flow upstream of the 

stone created a zone of separated, recirculating flow at the front of the stone. 

There was only a limited increase in shear stress from the front to the back of stone N01 

(Figure 3-22). The shear stresses and velocities measured over stone N01 were the highest 

measured in the study. Very little of the front edge of the stone protruded into the flow due to gravels 

piled up against the leading edge. 

Stone 7 exhibited unexpectedly high shear stress at the leading edge of the stone (Figure 3-

17), possibly due to flow impingement in the region at the front of the stone where acceleration of the 

near-bed flow due to constriction is initiated. The highest shear stresses measured on stones 31 and 

10 were located at the lateral peripheries, rather than the midlines, of each boulder. Flow 
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visualisation indicated that the flow separated at the front of the boulder and accelerated around the 

periphery of the stone rather than flowing over the top. 

Comparison of shear stress measurements made using regression (dU I dlnz) and 

Preston-static tube (PST) methods 

Measurements of tw-Psr (i.e. based on the Preston-static tube) were plotted against 

simultaneously determined values of two{jU/dlnz (i.e. based on velocity gradient method using the slope 

of dU I dlnz) for comparison (Figure 3-24). The paired determinations of shear stress (tw) included in 

the analysis were obtained over the upper surface of the stream boulders (n = 17), over a gravel riffle 

(n = 1 ), and in a laboratory flume (n = 3). When all tw-Psr and two{jU/dlnz measurements were pooled, 

there was no significant relationship between measurements of shear stress obtained using the two 

methods (ANOVA, F(1 ,19) = 0.064, p = 0.80) (Figure 3-24). If the two methods were completely 

equivalent, direct measurements of shear stress using the PST would not only be related to estimates 

of shear stress using the slope of dU I dlnz, but would be numerically similar as well. However, the 

relationship was significant only when the data were segregated by the shape of the velocity profile 

{log-normal, transitional, and wedge-shaped). Where velocity profiles were log-normal, the 

relationship between tw-PST and two{jU/dlnz was significant (ANOVA, F(1 ,6) = 7.94, p = 0.030) (Figure 3-

25c). Moreover, the velocity gradient (U*) and direct (PST) methods of measuring tw were 

comparable in cases where the velocity profiles were log-normal (i.e. the 1:1 line of equality lies within 

the confidence intervals of the regression of •w-Psr on 1wo{jU/dlnz). However, there was no significant 

relationship between direct measurement using the PST and estimates using U* (extracted from the 

slope of dU I dlnz) for either wedge-shaped profiles (ANOVA, F(1 ,6) = 0.23, p = 0.85) or transitional 

profiles (ANOVA, F(1 ,3) = 0.070, p = 0.81) (Figures 3-25a and 3-25b). When velocity profiles 

displayed near-bed distortion (wedge-shaped profile cases), estimates of shear stress using the slope 

of dU I dlnz tended to underestimate shear stress when compared to direct measurements of wall 

shear using the PST. 
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Comparison of shear velocities (U*PsT) mean velocities (Uo.so) 

Shear velocity (U*PsT) ranged between 3.43 and 14.19% of mean velocity (U0.50) at all points 

at which profiles were taken (see Table 3-2). At points where the measured velocity profile was log-

normal , U* was 3.43 - 4.98% of U0 .50 . U* ranged between 5.44 - 6.97% of U0.50 where the velocity 

distribution was transitional, and from 6. 73 - 14.19% of U0.50 where velocity profiles were wedge-

shaped. U* was 4.65-4.98% of U0_50 when velocity profiles were measured in the lab flume, and U* 

was 3.42% of Ua.so at the gravel riffle site. 

Comparison of velocity profiles 

In order to compare the data from different stones, the velocity profiles were normalised by 

the shear velocity U*PsT and the total water depth D (i.e. U/U*, z/D; Figure 3-26). With the exception 

of the three atypical (impinging flow) profiles obtained above stone 25, the wedge shaped profiles are 

generally characterised by lower values of Ux/U*PsT. while log-normal profiles are characterised by 

higher values. 

Velocity profiles were also normalised using the velocity at mid-depth (U0.50) (Figure 3-27). In 

this case, logarithmically distributed velocity profiles were located at the lower end of the range of 

Ux/U0 _50, while wedge-shaped profiles were located at the upper end of the range, demonstrating that, 

in many cases, velocities near the bed substantially exceeded velocities at mid-depth. Where profiles 

were wedge-shaped, maximum velocities were found near the bed (in all cases Zmaxu < 0.20). 

Local Reynolds number, Froude number, and near-bed velocity 

The distance from the stagnation point at the front of the stone (located using dye 

visualisation) to the point of velocity measurement (x) was used as the length scale in determining the 

local Reynolds number Rex (an indicator of boundary flow conditions) for each velocity profile 

sampling location (Table 3-2). Calculations of Rex were made using near-bed velocity (Uo.oo2m) rather 

than mean velocity (U0.50) in order to describe the boundary flow conditions more accurately, given 

the occurrence of wedge-shaped velocity profiles (described above). Using these criteria, local 

Reynolds number (Rex) was found to be significantly related to Froude number (Fr), (R2 = 41 .07%; 

ANOVA, F(1,16) = 12.85, p = 0.0025) (Figure 3-28). However, an examination of the bed/surface 

contours indicates that three of the cases included in this model may have had atypical boundary 
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layer growth. In the first case, the plunge upstream of stone 25 created cascading flow that impinged 

directly upon the upper surface of the stone. In the second case, gravels piled up at the leading edge 

of the stone N01 may have prevented a stagnation point from developing at the leading edge of the 

stone. In the third case, skimming flow may have developed over stone 7 when the velocity profile 

was recorded on October 7, due to the increased depth resulting from rain and melting snow. When 

the profiles obtained in these three circumstances are excluded from the analysis, the relationship 

becomes more significant and meaningful (R2 = 81 .19%; ANOVA, F(1,11) = 47.49, p < 0.001). 

Interestingly, this relationship is stronger than the relationship between near-bed velocity Uo.oozm and 

mean velocity U0.50 (not shown). 

The relationship between Froude number and shear velocity determined using the PST 

(U*psr) is shown in Figure 3-29. The positive linear association between the two measurements is 

significant (ANOVA, F(1,19) = 6.27, p = 0.022). The relationship between U*duJdlnz (shear velocity 

determined the velocity gradient method) and Froude number was relatively stronger (ANOVA, 

F(1 , 19) = 9.57, p = 0.0060). Shear velocity (U*psr) was also significantly related to mean (Uo.so) and 

near-bed (Uo.oo2m) velocity (Figure 3-30), although the relationship was stronger for Uo.oozm (ANOVA, 

F(1 ,19) = 390.37, p < 0.001) than for U0.50 (ANOVA, F(1,19) = 14.18, p = 0.0013). 

Velocity profile shape and near-bed velocity 

Sampling locations on the stream bed with characteristically logarithmic velocity profiles had 

significantly lower near-bed velocities (Uo.oo2m) (ANOVA, F(2,18) = 10.36, p = 0.0010) than locations 

with either transitional (Tukey's HSD, p = 0.010) or wedge-shaped (Tukey's HSD, p = 0.0014) profiles 

(see Tables 3-2 and 3-3). There was no significant difference in near-bed velocities between points 

with transitional or wedge-shaped profiles (Tukey's HSD, p = 0.91 ). Although there was no significant 

difference in mean velocity between sites characterised by the three profile types (AN OVA, F(2, 18) = 

1.69, p = 0.21 ), there was a significant interaction between the near-bed and mean velocity (Rao's 

R(4,34) = 10.74, p < 0.001). This indicates that unlike bed locations that were characterised by log-

normal and transitional velocity profiles, mean velocities were lower than near-bed velocities in 

locations that had wedge-shaped velocity profiles . 

A one-way analysis of covariance (mean velocity as the covariate) showed that near-bed 

velocity varied significantly with profile type (ANCOV A, F(2, 17) = 28.17, p < 0.001). Near-bed 
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velocities were higher in locations with transitional and wedge-shaped velocity profiles than in 

locations with log-normal profiles (Tukey's HSD, p < 0.001 for both tests). There was no sign ificant 

difference in near-bed velocity between locations with transitional and wedge-shaped velocity profiles 

(Tukey's HSD, p = 0.71 ). Even the relatively small distortion in boundary flows found in locations with 

transitional velocity profiles may restrict the application of log-normal models of velocity distribution. 

Discussion 

Torrential stream beds are generally composed of boulders and cobbles, with gravel filling 

the interstices between the larger bed materials. The boulders, however, act as the major distributed 

roughness elements, and provide the majority of the flow resistance in the channel (Bergeron 1994 ). 

The hydraulic habitats associated with streambed boulders are inhabited by a distinct community of 

benthic organisms (Bouckaert and Davis 1998), each exhibiting adaptations that allow them to thrive 

in high velocity and high shear stress environments (Statzner and Holm 1982; Weissenberger et al. 

1991; Vogel 1994 ). The objectives of this study were to characterise the fluid dynamic characteristics 

of flow over the upper surfaces of torrential stream boulders, and to relate them to the distribution of 

near-bed and boundary flow parameters (e.g. 'tw, U*). The results of this study reveal that distinct 

patterns of shear stress, shear velocity, near-bed and mid-depth velocity are present over the upper 

surface of stream boulders, despite the complexity of the flow. Importantly, these observations differ 

from predictions made using open-channel hydraulic theory {White 1999). The near-bed patterns of 

flow recorded in this study also differ from the results of previous studies that have investigated 

channels with different characteristics, using different methods (e.g. Jarrett 1990; Hart et al. 1996; 

Bouckaert and Davis 1998). 

Velocity profile shape: deviations from log-normal 

This study demonstrates that velocity gradients above the upper surface of torrential stream 

boulders are heterogeneous, and regularly deviate from a semi-logarithmic shape. In many cases, 

water velocities increased logarithmically downward from the water surface, reaching a maximum 

only a few millimetres above the stream bed (i.e. stone surface). Below this point, velocities 

decreased rapidly in a logarithmic fashion towards the boundary. In these instances, the velocity 

gradients immediately above the stones were extremely steep, given the "no-slip" condition, and that 
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the measured velocities 0.5 mm above the stone surface reached as high as 1.1 m s·1 and regularly 

exceeded 0.60 m s·1
• These distinct velocity distributions are referred to as "wedge-shaped" profiles, 

in order to distinguish them from the "S-shaped" profiles recorded elsewhere in high gradient natural 

channels (Jarrett 1990; Bathurst 1994 ). While the majority of velocity profiles recorded here showed 

some evidence of this type of near-bed velocity profile distortion, several profiles were approximately 

log-normally distributed. Log-normal profiles generally occurred where there was sufficient 

downstream distance for boundary layer development, which suggests that bed geometry and flow 

interact to create highly diverse and spatially heterogeneous near-bed flow conditions. 

The wedge-shaped profiles recorded over stream boulders can be attributed to an uneven 

acceleration of the water column. In many cases, the leading edge of stones presented an inclined 

face to the flow, and, as noted by Hart et al. (1996), flow accelerated up the face of the stone. Where 

flow was substantially constricted as it crossed the stone (i.e. relative submergences were low and 

the front of the stone was inclined or curved) the water did not accelerate uniformly. Rather, flow 

near the bed accelerated at a greater rate than flow near the free surface, creating a jet-like structure 

in the near-bed flow (Figure 3-31 ). Velocity profiles obtained along centreline transects on stones 7 

and 31 suggest that a high velocity "wedge" (a near-bed velocity profile distortion characterised by 

high velocities at a point immediately above the bed, above and below which velocities decline) was 

created at the leading edge of the stone where the rising bed elevation constricted the flow (e.g., see 

Figures 3-3 and 3-4). As the upper surface of stone 31 was continuously curved, near-bed flows 

continued to be constricted, and as a result, the high velocity wedge increased in magnitude as flow 

crossed the upper surface of the stone. The curvature of stone 7 was restricted to the leading edge, 

and as a result, near-bed flows decelerated over the stone with boundary layer development, and the 

high-velocity wedge was dissipated by momentum transfer. Flow near the water surface was 

relatively unaffected by the constriction, and accelerated in the downstream direction due primarily to 

gravity. 

Where velocity profiles were wedge-shaped above stones 7 and 31, the core of the jet-like 

velocity structure (i.e. the 'tip' of the wedge) was located approximately 3 to 5 mm above the surface 

of the stone. Dissipation of the jet (or wedge) may have occurred when boundary layer thickness 

exceeded this height (assuming that boundary layer growth contributes substantially to viscous 

damping of the near-bed high velocity wedge). Based on the local Reynolds number Rex (using near-
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bed velocity U0 _002m as the velocity term) and an estimated critical boundary layer thickness (8cm; in 

this case the height above the substrate to which the boundary layer would have to develop to 

completely envelop the near-bed, high-velocity wedge) of 5 mm, the distance downstream (x) of the 

stagnation point required dissipate the wedge was approximately 164 mm above stone 7, and 162 

mm above 31. The distance downstream (x) required for the development of a boundary layer of a 

given thickness is given by 

(3-11) 

where Dent is critical boundary layer thickness and Rex is the local Reynolds number (White 1999). 

The velocity profile measured downstream of this point on stone 7 had returned to log-normal, as 

predicted. Conversely, the most downstream velocity profile measured above stone 31 was 163 mm 

downstream of the stagnation point. Contrary to what was expected, the high velocity wedge 

dominated the near-bed portion of the velocity profiles over the entire stone. The continuously curved 

upper surface of stone 31 may have contributed to continual flow constriction and, as a result, 

continued near-bed flow acceleration. 

In contrast, logarithmically distributed velocity profiles were recorded at relatively few 

locations above boulders at the site. At each of these points, substantial flow constriction above the 

stones may not have occurred, due to (1) the development of skimming flow (e.g. stone 7 during high 

discharge); (2) very low relative submergences (stone 10); or (3) square leading edges (stone N02). 

It is important to note that although velocity distributions were log-normal in each of these cases, 

velocities were recorded only at the centre of each stone. Near-bed flow constriction, a factor that 

leads to the development of wedge-shaped velocity profiles, may have occurred to a limited extent 

above the leading edge of each stone. However, there was no evidence of near-bed flow distortion 

by the time flow crossed the centre of the stone. The development of an approximately logarithmic 

velocity profile could then result, in part, from the low depth and long distance from the leading edge 

over which boundary layer growth may act to dissipate any near-bed velocity distortion. In addition, 

due to the limited depth, water was forced to flow round, rather than over, stone 10. This type of 

three-dimensional flow is poorly understood and difficult to model (see Bathurst 1994; Vogel 1994 ). 

The centreline velocity profiles recorded over stone 7 provide evidence for this scenario. The 
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distinctive near-bed velocity profile distortion (wedge) that developed over the front of the boulder was 

subsequently lost as flow crossed the stone and boundary layer thickness increased. 

Several authors investigating shallow flows in natural channels have also reported velocity 

distributions that do not conform to a semi-logarithmic form. The deviations from the typical 

logarithmically distributed velocity profile have been variously attributed to flow separation (Bergeron 

1994; Hart et al. 1996), skimming flow and high flow resistance near the bed (Bathurst 1994 ), and the 

development of an internal boundary layer downstream of flow reattachment (Bergeron 1994 ). 

However, the velocity distributions reported in these studies conform to neither a log-normal 

distribution nor a wedge-shaped velocity profile. In these studies, maximum velocities were generally 

recorded near the free surface, rather than near the bed . Rather than conflict with our results, the 

results of Bathurst (1994), Bergeron (1994), and Hart et al. (1996) illustrate the highly heterogeneous 

nature of flow fields present in the boundary layer flows of shallow streams with complex bed 

geometry (i.e. rough-turbulent flows). Flow constriction over and between boulders, flow deflection by 

obstacles, and boundary layer separation and reattachment will all contribute to velocity profiles that 

vary substantially over short distance. In part, the highly heterogeneous near-bed flow environment 

creates the wide array of "hydraulic niches" available to stream benthic organisms (see chapters 1 ,2, 

and 4). 

The S-shaped velocity profile recorded elsewhere in high gradient mountain rivers (Jarrett 

1990; also see Bathurst 1994) are characterised by velocities which are lower nearer the stream bed 

and greater near the water surface than a logarithmically distributed velocity distribution. In these 

flow conditions, the logarithmic profile fails to develop due to drag induced by the coarse bed 

material. Although both the present study and the work of Jarrett (1984; 1990; 1993) were conducted 

in mountain channels with cobble and boulder bed material, vertical velocity profiles were not found to 

be S-shaped here. In fact, the wedge-shaped profiles recorded in the present study are 

approximately the inverse of S-shaped profiles. Whereas logarithmically distributed profiles 

overestimate near-bed velocities and underestimate near-surface velocities in S-shaped profile flow 

conditions (Jarrett 1990), they underestimate near-bed velocities and overestimate near-surface 

velocities in cases where wedge-shaped profiles characterise the flow. The different findings (S-

shaped vs. wedge-shaped profiles) can likely be attributed to two factors. (1) The relative 

submergence of the bed material was greater in the channels studied by Jarrett (1990); as relative 
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depths increased, skimming flow developed, and the flow constriction required to accelerate near-bed 

flows did not occur. Boundary layer development is inhibited by limited flow depth in shallow 

channels (Nowell and Church 1979). (2) Previous studies, relying heavily on electromagnetic current 

meters and propeller velocimeters, have not measured flows immediately above the bed with the 

spatial resolution required to detect any distortions of the velocity profiles. Due to the complex bed 

topography of mountain streams, irregular pressure gradients will be common (White 1999}, and 

velocity gradients will be correspondingly complex and difficult to predict. 

Bathurst ( 1994) suggested that velocity gradients in mountain rivers would adopt a semi-

logarithmic shape only at relatively high relative submergences (D/dk > 1 0), which is consistent with 

the depth proposed by Nowell and Church (1979) for the development of log-normal velocity 

distributions (D/dk > 8). The results of th is study provide evidence that the development of semi-

logarithmic velocity profiles may also be dependent on bed morphology. At the gravel bed site, 

velocities were log-normally distributed (D/dk = 11 .24), which conforms to the criteria of Bathurst 

(1994). Log-normal velocity profiles were also recorded above stone N01 at D/dk = 0.60 and above 

stone 7 at D/dk = 1.60 (when the stream was at near-flood discharge). However, gravels piled up 

against the leading edge of stone N01 increased the relative submergence of the stone to 

approximately D/dk = 2.09. Also, because S-shaped velocity profiles develop as a result of form drag, 

velocity profiles above substrates that protrude farthest into the flow under skimming flow conditions 

may be relatively log-normal. Substrate size can also influence the shape of the velocity profile; log-

normal profiles may develop over large boulders at relatively low values of D/dk due to the relatively 

long distances available for boundary layer development. These results indicate that further study is 

required to examine the complexity of rough boundary layer flows. 

The influence of bed geometry on near-bed and surface flow factors 

The results show that the relationship between shear velocity (U*) and mid-depth velocity 

(Uo.so) is dependent on the geometry of the channel bed. In shallow, "chaotic" flows (Young 1992}, 

where the depth of the channel is relatively shallow with respect to the height of the substrate 

elements and flows are highly three-dimensional and difficult to predict, it may be not be possible to 

estimate near-bed flow parameters based on measurements of average water velocity. In flow over a 

gravel riffle, U* was 3.42% of velocity at mid-depth . This agrees with the findings of lppen (1966), 
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who found that U* was 3% of free-stream velocity for water flow in a smooth-bottomed channel. In 

shallow flow over boulders, U* ranged between 3.97 and 14.12% of mid-stream velocities. This was 

consistent with results reported by Hart et al. (1996), who found that U* was approximately 10% of 

velocities measured 10 mm above stream boulders, and Denny and Shibata (1989), who reported 

that U* was between 5 and 15% of mean velocity in flows over rough bottoms. However, the results 

of the present study indicate that the relationship between shear velocity and free-stream velocity was 

also dependent on the shape of the velocity profile. Where near-bed acceleration distorted the 

velocity profile over boulders in shallow flows, U* was proportionally greater (6. 7 4 - 14.19% of U0.50) 

than in instances where velocity profiles were log-normal (3.97- 4.90%). This demonstrates that bed 

geometry substantially influences the local variability of near-bed hydraulic conditions in shallow 

streams. Where complex bed geometry creates an unpredictable relationship between mid-depth 

velocity and near-bed and wall flow parameters, measurement must replace estimation until a general 

theory is developed. 

Due to the heterogeneous bed geometry and flow conditions at the site, it was not 

unexpected that velocity measured 2 mm above the bed would be a better predictor of shear velocity 

U* than mean velocity (measured at 0.5D). Given the relationship between shear velocity and wall 

shear stress (•w = pU*2
) , velocity 2 mm above the boundary should have a correspondingly significant 

relationship with wall shear, as this depth would be assumed to be in, or near, the log layer. At 

several of the measurement locations, velocity profiles deviated so strongly from the logarithmic 

shape that near-bed velocities (Uo.oozm) exceeded velocities at mid-depth (U0.50) . In circumstances 

where boundary layer profiles vary from the typical log-normal shape, approximations of wall shear 

stress based on mean velocity may fail to adequately describe the relationship between local flow and 

wall shear stress. Physical instances where this type of boundary layer and velocity profile distortion 

may occur include flows with wall jets, free jets, or strongly positive or adverse pressure gradients 

(White, 1999). 

Models that predict average velocity and discharge based on the average slope of the free 

surface have been used extensively to interpret the flow environment in streams and rivers. 

However, these results show that the water surface slope is highly variable over very short distances. 

As flow crossed the upper surface of stream boulders, the water surface slope changed as much as 

5% cm·1
. This indicates that while water surface geometry may be used to estimate reach-averaged 
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velocities (see White 1999), it is of little use in measuring velocities over shorter distances (e.g. 1 em) 

in shallow, high gradient streams. Unfortunately, it is this spatial scale that is relevant to benthic 

macroinvertebrates. It is of interest, however, to note that the rate of change of the water surface 

gradient is remarkably consistent over the boulders. Positive rates of change of the water surface 

gradient suggest a convex surface slope shape, and thus imply supercritical approaching flow (White 

1999). This conclusion may, unfortunately, represent an oversimplification of flows over boulders in 

natural channels. In shallow, "chaotic", flows over coarse substrates, the shape of the free surface is 

the product of the complex relationship between depth (and change in depth as flow crosses 

bedforms), bed geometry, and the specific energy of the flow. Further experimentation is required to 

clarify the relationship among these factors. 

Wall shear stress in torrential streams 

Wall shear stress is commonly estimated using a determination of the shear velocity (U*) 

based on velocity profile data. Accurate estimates of wall shear stress are dependent on accurate 

determinations of U*, which are, in turn, a function of the slope of the velocity gradient. As such, 

errors in assessment of the thickness of the log-layer or 'overlap' layer may lead to substantial errors 

in estimates of U*. A visual or statistical assessment of the linearity of the near-boundary portion of 

the plot of dU I dlnz is usually used to determine the thickness of the log layer. However, in flow 

environments characterised by high velocities and high wall shear stress, the log layer can be very 

thin, and several measurements of velocity adjacent to the bed may be required to accurately 

determine the slope of the velocity gradient. Unfortunately, many instruments commonly used to 

measure water velocities in the field (e.g. propeller velocimeters) are incapable of measuring flows at 

the high spatial resolutions required . Moreover, the application of this method assumes that the 

shape of the near-bed velocity gradient is predictably logarithmic. The law of the wall (see White 

1999) will hold for regions immediately adjacent to the wall in all flow conditions where the bed is non-

eroding. However, in flows where the velocity profile is substantially distorted due to the presence of 

either adverse or positive pressure gradients, the accuracy of the velocity gradient method of 

estimating shear stress is not known. Our results indicate that in instances where the velocity profiles 
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were non-logarithmic {i.e. wedge-shaped or transitional}, estimates of tw based on the slope of dU I 

dlnz tended to greatly underestimate wall shear stress by an average of 60.78% (SE = 9.42%). 

Where relative submergences were sufficiently high, stream flows produced a distinctive 

pattern of wall shear stress (tw) over the exposed surface of the boulders. Often, the highest shear 

stresses were recorded on the lateral surfaces of the boulders (see Figures 3-18, 3-19, and 3-21). 

Shear stress was generally low over the front of the stones, and increased towards the rear of the 

stone as flow accelerated . In addition, flow visualisation of basic flow patterns showed that 

separation occurred over the rear edge of each of the stones. This was expected, as at the range of 

local Reynolds numbers calculated for the deployed stones at the site (Re = 45,200 to 1 08,000), 

boundary layers should separate at the lee side of each stone, and vortices should develop and be 

shed in the turbulent wake of each stone (Vogel 1994 ). Abrupt decreases in shear stress accompany 

flow separation (White 1999), and this pattern was observed in two of the seven stones over which 

shear stress distributions were recorded . Presumably, in cases where a sudden decrease in shear 

stress was not recorded, measurements of shear stress were not taken sufficiently far downstream, in 

the zone of recirculating, detached flow. These distinctive shear stress distributions are potentially 

important to the ecology and behaviour of benthic invertebrates, especially those taxa that inhabit the 

upper surfaces of stream boulders in torrential streams {i.e. torrenticolous fauna; Vogel 1994 ). For 

example, grazing invertebrates that exhibit adaptations to maintain contact with the stream bed and 

feed in high velocity habitats may be able to utilise high-shear stress areas of the substrate as a 

refuge from predators that lack similar adaptations (e.g. Hart and Merz 1998). 

Measurement of near-bed and wall flow conditions 

There have been several methods used to measure near-bed flow conditions in streams. 

Among these, the FST (Fiiesswasserstammtisch} hemisphere method has been used extensively to 

estimate flow conditions close to substrate in lotic environments (e.g. Statzner and Muller 1989; 

Dietrich and Schmedtje 1995). FST hemispheres provide estimates of near-bed "flow characteristics" 

or "hydraulic stress" (Statzner and Muller 1989), parameters that integrate several near-bed flow 

parameters including velocity, lift, drag, and shear stress. As such, FST hemispheres provide little 

information on the relative importance of these various flow characteristics . In practice, FST 
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hemispheres integrate flow conditions over relatively large horizontal and vertical distances (-50 mm 

and 25 mm, respectively). Consequently, the use of FST hemisphere methods may be inappropriate 

in investigations of small-scale phenomena, especially the fine-scale flow preferences of benthic 

invertebrates in shallow streams. This is especially true where velocity gradients deviate from log-

normal. In these cases, the FST hemisphere method will likely misrepresent flow conditions 

immediately adjacent to the stream bed. Another recent development involves the use of acoustic 

Doppler velocimeters, which have been used to measure the Reynolds stress (i.e. free shear stress 

above the bed), rather than the wall shear stress (Bouckaert and Davis 1998). While these 

measurements may be of interest to issues such as mass transfer in the water column, Reynolds 

stress may be of limited importance in describing the immediate forces experienced by benthic 

insects, especially where the movement of water is highly complex and unpredictable (i.e. rough-

turbulent boundary layer conditions). 

The Preston-static tube (PST) used in this study can be used to directly measure wall shear 

stress as well as measure current velocity immediately adjacent to the bed when deployed as a 

Preston-static tube (Ackerman et al. 1994; Ackerman and Hoover 2001 ). As such, it is capable of 

providing a description of the near-bed flow conditions experienced by benthic insects in high-velocity 

flows. The vertical distance over which the PST integrates velocity is very short (0.88 mm, the model 

used in this study) compared to propeller and bucket-wheel velocimeters (often> 10 mm). This high 

spatial resolution allows for the characterisation of flows in the region immediately above the bed 

(providing several measurements within 10 mm of the substrate), where other types of apparatus are 

limited. For example, the electromagnetic current meter used by Bergeron (1994) was unable to 

measure velocities closer than 19 mm from the bed. Similarly, the acoustic Doppler velocimeter, 

contrary to recent published reports (e.g. Bouckaert and Davis 1998), is unable to accurately 

measure velocities within centimetres of the bed (Finelli et al. 1999), and is thus unable to 

characterise the near-bed flow environment. The PST represents a simple, easily deployed device 

capable of measuring velocities at fine scales immediately above the bed, the region of the most 

relevance and interest to benthic biologists. Future PST designs could employ pressure transducers 

with faster response times and data logging to provide higher order moments of fluid dynamic 

measurements. Constant temperature (hot-film) anemometry can be used to measure near-bed 

velocities in streams at high spatial and temporal resolution, but is time consuming and notoriously 
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difficult to deploy in natural channels (Li 1994; Hart et al. 1996). Regardless , Hart et al. (1996) were 

able to successfully obtain near-bed velocity measurements in shallow streams using these 

instruments. 

The results indicate that the PST provides an accurate measurement of wall shear stress 

when compared to the traditional velocity gradient method (i.e. estimating shear stress from the slope 

of the regression of dU I dlnz). In the rough boundary layer flow conditions present in shallow, 

bouldery streams, velocities are seldom logarithmically distributed, and log-layers are often quite thin 

and restricted to a region adjacent to the bed where most current meters are unable to measure 

velocity. However, where boundary layers were very thin (8 < 3 mm), assessment of the thickness of 

the log-layer was problematic using the PST. Where near-bed velocity distortions impinge on the 

upper portion of the log-layer, estimates of shear stress using the velocity gradient method will 

consistently underestimate •w· In rough boundary layer flows similar to the ones described here, it 

may not be possible to assess log-layer flow conditions using the coarse spatial resolution provided 

by other velocity measurement devices. 

In ideal circumstances (uniform flow with a fully developed boundary layer over a 

topographically simple (flat) bed), wall shear stress measurements made using the Preston-Static 

tube corresponded with those obtained by estimating U* from the slope of the plot of U vs. In z 

(Figure 3-25; also see Ackerman and Hoover 2001 ). A well-developed log-layer would provide the 

relatively large number of velocity measurements required for an accurate estimate of the wall shear 

stress using the velocity gradient or shear velocity (U*) method (see Bergeron and Abrahams 1992; 

Biron et al. 1998). However, in flows over torrential stream boulders the log-layer is seldom thick 

enough to obtain an accurate estimate of U* using the velocity gradient method. The number of 

points used in the regression of U on In z were, in several cases, fewer than the suggested number 

required to accurately predict the slope of a line (Zar 1984 ). This is, however, a physical constraint 

imposed by the nature of near-bed flows over boulders in shallow streams. Near-bed velocity 

distortions often restricted the log-linear portion of the velocity profile to a few millimetres above the 

bed, limiting the number of velocity measurements that could be obtained in the log-layer. However, 

in instances where the velocity profile was not logarithmically distributed (i.e. wedge-shaped), 

estimates of shear stress were consistently lower in magnitude than measurements of shear stress 

made using the PST. This suggests that the log-layer may be thinner than indicated by the log-
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transformed velocity profile. If this is the case, the PST will provide a more accurate shear stress 

value than the velocity gradient method, assuming that the log-layer is thinner than the diameter of 

the PST (0.88 mm). As flows are rarely logarithmically distributed in shallow torrential streams (see 

Hart et al. 1996; Bergeron 1994 ), near-bed flow parameters should be directly measured rather than 

estimated, if possible. 

Conclusions 

The unexpectedly high near-bed velocities recorded over the surface of stream boulders in 

this study suggest that it may be necessary to re-evaluate the ecological role played by hydrodynamic 

forces in shallow, high gradient, stream environments (i.e. rough-turbulent flows). The importance of 

surface and bulk flow phenomena on the distribution and behaviour of benthic taxa has been 

explored by several authors (e.g. Wetmore et al. 1990; Delgado and Carbonell 1997). However, it 

has generally been assumed that the velocities to which invertebrates are exposed (i.e . near-bed 

velocities; approximated in this case as Ua.oo2m) could be accurately estimated using models based 

upon a logarithmic distribution of velocity. However, the results of the present study show that 

velocity profiles are often distorted by near-bed acceleration over the front and upper surfaces of 

large stones in shallow flows, and rarely conform to the familiar log-normal shape. As such, the 

velocities that invertebrates are exposed to may, in many cases, be greater than previously thought. 

Consequently, the practice of estimating near-bed flow parameters from measurements of mean 

velocity may lead to the underestimation of the lift and drag forces that torrential macroinvertebrates 

experience. 

The results of the present study also demonstrate that near-bed flow conditions in 

shallow, torrential streams are heterogeneous. In general, near-bed velocities and wall shear 

stresses appear to be greatest toward the rear (upstream of the separation point) and sides of 

boulders exposed to the flow. Torrential stream macroinvertebrates that show a preference for these 

areas of the stream bed might benefit from protection from predators, enhanced feeding 

opportunities, or increased rates of gas exchange (e.g. Golubkhov et al. 1992; Hart and Merz 1998). 

Benthic taxa that avoid these areas of the stream bed may be unable to cope with the shear, lift, and 

drag forces associated with this microhabitat, or lack the adaptations necessary to maintain contact 

with the substrate in high velocities. The data presented here indicate that at present only 
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measurement can ensure an accurate characterisation of the near-bed environment experienced by 

torrential stream invertebrates. Until models that describe the relationship between the bed 

geometry, channel characteristics, and flow are developed, the relationship between near-bed 

hydraulics and the behaviour, morphology, and ecology of benthic taxa in high velocity habitats will 

remain largely unknown for most taxa. 
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Chapter 3 - Figures 

British Columbia 

Prince 
George 

the Torpy River 
watershed 

Figure 3-1. Map of British Columbia, showing the location of the Torpy River watershed. 

A. B. 

g 

Figure 3-2. Diagrammatic representation of the grid system and deployment of the experimentally 
deployed stones. A. Side view. B. Plan view. Labels are as follows: d =datum marking the centre of 
the stone, g = grid point, id = stone identification label. 
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Figure 3-3. Stream bed and water surface topography of experimentally deployed stone 7 (centreline 
transect) measured on Sept. 5, 1998. The white bar delineates the extent of stone 7. The four 
locations at which velocity profiles were obtained are shown. The location marked "3" denotes the 
centre point (datum) of the stone. 
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Figure 3-4. Stream bed and water surface topography of experimentally deployed stone 31 
(centreline transect) measured on Sept. 2, 1998. The white bar delineates the extent of stone 31. 
The three locations at which velocity profiles were obtained are shown. The location marked "2" 
denotes the centre point (datum) of the stone. 
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Figure 3-5. Stream bed and water surface topography of experimentally deployed stone 25 
(centreline transect) measured on Sept. 8, 1998. The white bar delineates the extent of stone 25. 
The three locations at which velocity profiles were obtained are shown. The location marked "2" 
denotes the centre point (datum) of the stone. 
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Figure 3-6. Stream bed and water surface topography of experimentally deployed stone 23 
(centreline transect) measured on Sept. 30, 1998. The white bar delineates the extent of stone 23. 
The location at which the velocity profile was obtained is shown. The location marked "1" denotes the 
centre point (datum) of the stone. 
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Figure 3-7. Stream bed and water surface topography of experimentally deployed stone 10 
(centreline transect) measured on Sept. 30, 1998. The white bar delineates the extent of stone 10. 
The location at which the velocity profile was obtained is shown. The location marked "1" denotes the 
centre point (datum) of the stone. 
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Figure 3-8. Stream bed and water surface topography of naturally positioned stone N01 (centreline 
transect) measured on Sept. 26, 1998. The white bar delineates the extent of stone N01. The 
location at which the velocity profile was obtained is shown. The location marked "1" denotes the 
approximate centre of the stone. 
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Figure 3-9. Stream bed and water surface topography of naturally positioned stone N02 (centreline 
transect) measured on Sept. 27, 1998. The white bar delineates the extent of stone N02. The 
location at which the velocity profile was obtained is shown. The location marked "1" denotes the 
approximate centre of the stone. 
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Figure 3-10. Stream bed and water surface topography of naturally positioned stone N03 (centreline 
transect) measured on Aug. 7, 1998. The white bar delineates the extent of stone N03. The location 
at which the velocity profile was obtained is shown. 
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Figure 3-11. Stream bed and water surface topography of the gravel riffle site (GR) measured on 
Aug. 17, 1998. The white bar delineates the diameter of the stone above which the profile was 
measured. The location marked "1" is the point at which the velocity profile was obtained. 
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Figure 3-12. Velocity profiles obtained along the centreline of stone 7. The horizontal line above 
each velocity profile represents the water depth at that location. Mid-depth and maximum velocities 
increase as flow crosses stone 7. Wedge-shaped, transitional, and log-normal velocity profiles are 
labelled "w-s", "tr", and "1-n", respectively. Velocity profiles measured over the centre of the stone, 5 
em upstream of centre, 10 em upstream of centre, and 5 em downstream of centre are labelled "0", 
"1", "2", and "-1 ", respectively. Measurement points correspond to the marked grid locations. The 
velocity profile at the front of the stone is wedge shaped; the near-bed flow distortion becomes less 
evident as flow crosses the stone. 
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Figure 3-13. Velocity profiles obtained along the centreline of stone 31. The horizontal line above 
each velocity profile represents the water depth at that location. Mid-depth and maximum velocities 
increase as flow crosses stone 31. Wedge-shaped and transitional velocity profiles are labelled "w-s" 
and "tr'', respectively. Measurement points correspond to the marked grid locations. Velocity profiles 
measured over the centre of the stone, 5 em upstream of centre, and 5 em downstream of centre are 
labelled "0", "1", and "-1", respectively. 
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Figure 3-14. Velocity profiles obtained along the centreline of stone 25. The horizontal line above 
each velocity profile represents the water depth at that location. Velocity profiles measured over the 
centre of the stone, 5 em upstream of centre, and 5 em downstream of centre are labelled "0", "1", 
and "-1", respectively. Measurement points correspond to the marked grid locations. All velocity 
profiles above stone 25 were distinctly wedge-shaped, and labelled "w-s". 
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Figure 3-15. Velocity profiles obtained above the centres ("0") of stone 23 (labelled "s23") and stone 
10 (labelled "s1 0"). The horizontal line above each profile represents the water depth at that location. 
Wedge-shaped and log-normal velocity profiles are labelled "w-s" and "1-n", respectively. 
Measurement points correspond to the marked grid locations. 
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Figure 3-16. Velocity profile obtained above the centres ("0") of naturally positioned stones N01, 
N02, and N03, and the gravel riffle site ("GR"). The horizontal line above each profile represents the 
water depth at that location. Wedge-shaped, transitional, and log-normal velocity profiles are labelled 
"w-s", "tr", and "1-n", respectively. 
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Figure 3-17. The distribution of wall shear stress (-rw) over the upper surface of stone 7. Wall shear 
stress was measured using a Preston-static tube (PST) in two transects; a centreline transect in the 
direction of flow (upper left), and a second, cross-stream transect (lower right) perpendicular to the 
first, crossing the first transect at the centre of the stone. A composite bubble plot (lower left) shows 
the relative magnitude of shear stress across the surface of stone 7. The upper right hand diagram 
shows a top and side view of stone 7. The area superimposed on the top view of the stone 
corresponds to the area represented in the bubble plot. Error bars are standard error (SE). 
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Figure 3-18. The distribution of wall shear stress (tw) over the upper surface of stone 31 . Wall shear 
stress was measured using a Preston-static tube (PST) in two transects; a centreline transect in the 
direction of flow (upper left}, and a second, cross-stream transect (lower right) perpendicular to the 
first, crossing the first transect at the centre of the stone. A composite bubble plot (lower left) shows 
the relative magnitude of shear stress across the surface of stone 31 . The upper right hand diagram 
shows a top and side view of stone 31. The area superimposed on the top view of the stone 
corresponds to the area represented in the bubble plot. Error bars are standard error (SE). 
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Figure 3-19. The distribution of wall shear stress ('rw) over the upper surface of stone 25. Wall shear 
stress was measured using a Preston-static tube (PST) in two transects; a centreline transect in the 
direction of flow (upper left), and a second, cross-stream transect (lower right) perpendicular to the 
first, crossing the first transect at the centre of the stone. A composite bubble plot (lower left) shows 
the relative magnitude of shear stress across the surface of stone 25. The upper right hand diagram 
shows a top and side view of stone 25. The area superimposed on the top view of the stone 
corresponds to the area represented in the bubble plot. Error bars are standard error (SE). 
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Figure 3-20. The distribution of wall shear stress (tw) over the upper surface of stone 23. Wall shear 
stress was measured using a Preston-static tube (PST) in two transects; a centreline transect in the 
direction of flow (upper left), and a second, cross-stream transect (lower right) perpendicular to the 
first, crossing the first transect at the centre of the stone. A composite bubble plot (lower left) shows 
the relative magnitude of shear stress across the surface of stone 23. The upper right hand diagram 
shows a top and side view of stone 23. The area superimposed on the top view of the stone 
corresponds to the area represented in the bubble plot. Error bars are standard error (SE). 
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Figure 3-21. The distribution of wall shear stress (tw) over the upper surface of stone 10. Wall shear 
stress was measured using a Preston-static tube (PST) in two transects; a centreline transect in the 
direction of flow (upper left), and a second, cross-stream transect (lower right) perpendicular to the 
first, crossing the first transect at the centre of the stone. A composite bubble plot (lower left) shows 
the relative magnitude of shear stress across the surface of stone 10. The upper right hand diagram 
shows a top and side view of stone 10. The area superimposed on the top view of the stone 
corresponds to the area represented in the bubble plot. Error bars are standard error (SE). 
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Figure 3-22. The distribution of wall shear stress ('tw) over the upper surface of naturally positioned 
stone N01 . Wall shear stress was measured using a Preston-static tube (PST) in two transects; a 
centreline transect in the direction of flow (upper left), and a second, cross-stream transect (lower 
right) perpendicular to the first, crossing the first transect at the centre of the stone. A composite 
bubble plot (lower left) shows the relative magnitude of shear stress across the surface of stone N01 . 
The upper right hand diagram shows a top and side view of stone N01 . The area superimposed on 
the top view of the stone corresponds to the area represented in the bubble plot. Error bars are 
standard error (SE). 
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Figure 3-23. The distribution of wall shear stress ('tw) over the upper surface of naturally positioned 
stone N02. Wall shear stress was measured using a Preston-static tube (PST) in two transects; a 
centreline transect in the direction of flow (upper left), and a second, cross-stream transect (lower 
right) perpendicular to the first, crossing the first transect at the centre of the stone. A composite 
bubble plot (lower left) shows the relative magnitude of shear stress across the surface of stone N02. 
The upper right hand diagram shows a top and side view of stone N02. The area superimposed on 
the top view of the stone corresponds to the area represented in the bubble plot. Error bars are 
standard error (SE). 
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Figure 3-24. Relationship between wall shear stress measured by the PST (tw-Psr) and wall shear 
stress estimated from shear velocity based on the slope of of dU I dlnz (tw-<lU/dlnz) . The 1:1 regression 
line ("line of equality") is shown. Locations with log-normal velocity profiles are shown as circles 
(solid circles = field measurements, hollow circles = lab flume measurements), transitional profiles 
shown as grey squares, and wedge-shaped profiles shown as solid diamonds. Error bars are 
standard error (SE). 
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Figure 3-25. Relationship between wall shear stress measured by the PST (•w-Psr) and wall shear 
stress estimated from shear velocity based on the slope of dU I dlnz (-rw-dU/dlnz). Data are plotted 
separately, based on the velocity profile shape at the point at which shear stress was measured. 
Velocity profiles were wedge-shaped in (A), transitional in (B), and log-normal in (C). Locations where 
log-normal velocity profiles were recorded in the field are shown as solid circles , hollow circles 
indicate log-normal velocity profiles measured in the lab flume. The 1:1 regression line ("line of 
equality"; shown as a dotted line) is shown in each case. The linear regression line is also shown in 
each case (solid line). See text for significance tests of each plot. Error bars are standard error (SE). 
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Figure 3-26. Comparison of the velocity profiles obtained over naturally positioned boulders (n = 3), 
experimentally deployed boulders (n = 14 ), and a gravel riffle (n = 1 ). Velocities are normalised by 
shear velocity (U*) as measured by the PST. The vertical axis (distance from the boundary) is 
normalised by the total water depth (D). Wedge-shaped profiles are shown as a dashed line, 
transitional profiles shown as a solid grey line, and log-normal profiles shown as a solid black line. 
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Figure 3-27. Comparison of the velocity profiles obtained over naturally positioned boulders (n = 3), 
experimentally deployed boulders (n = 14 ), and a gravel riffle (n = 1 ). Velocities are normalised by 
velocities at mid-depth (U0.50) . The vertical axis (distance from the boundary) is normalised by the 
total water depth (D). Wedge-shaped profiles are shown as a dashed line, transitional profiles shown 
as a solid grey line, and log-normal profiles shown as a solid black line. 
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Figure 3-28. Relationship between Froude number (Fr) and local Reynolds number (Rex) at velocity 
sampling locations over the upper surface of the stones (including all experimentally deployed and 
naturally positioned stones). A significant relationship between the two parameters exists when all 
data are considered together {R2 = 41 .07%; ANOVA, F(1,16) = 12.85, p = 0.0025). However, when 
the stones which have impeded boundary layer growth {i.e. flow impinging on the stone surface from 
above - stone 25) and situations where skimming flow has possibly developed ("non-exposed 
stones"; stone N01 and stone 7 during near-flood discharge) are excluded from the analysis, the 
relationship is more significant (R2 = 81 .19%; ANOVA, F(1,11) = 47.49, p < 0.001). The regression 
line shown was calculated using all field data (the three lab flume points (hollow triangles) were 
excluded). "Exposed stones" included stones 7 (non-flood discharge), 31, 25, 23, 10, N02, and N03. 
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Figure 3-29. Relationship between Froude number (Fr) and shear velocity (U*). The relationship is 
significant (R2 = 25.21%; ANOVA, F(1 ,19) = 6.27, p = 0.022). The linear regression line is shown 
(solid line). Symbols and conventions as in figure 3-24. 
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Figure 3-30. Relationship between shear velocity (U*; measured using the PST} and water velocity, 
at mid-depth {U0.50) (R2 = 36.62%; ANOVA, F(1,19) = 14.18, p = 0.0013) and near the bed (Uo.oo2m} 
(R2 = 87.08%; ANOVA, F(1,19) = 390.37, p < 0.001). 
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Figure 3-31. Diagrammatic representation of the flow field above isolated boulders in shallow 
streams (D/dk < 2). In this simplified model , the approaching flow can be characterised as having two 
zones. The bulk flow zone, where velocities (Ubulk) are relatively homogeneously distributed in the 
vertical direction due to momentum transfer in the turbulent flow. The second, bed influenced zone 
(BIZ), is characterised by reduced velocities (boundary layer effects) and turbulence generation 
(growing I shedding eddies, and boundary layer separation). Flow at the front of the boulder is 
characterised by a horseshoe vortex (HV) and stagnation point (often unstable and oscillating). As 
flow crosses the front of the stone, near-bed flows are constricted; the influence of the constriction is 
vertically limited. As a result, the flow near the bed accelerates at a greater rate than flows near the 
surface. However, as flow crosses the relatively smooth upper surface of the stone, boundary layer 
growth dissipates the near-bed, high velocity "wedge". Flows subsequently separate off the rear of 
the stone, giving rise to recirculating flow zone (RFZ). The depth at which maximum velocities occur 
(Zmaxu) increase as flow crosses the boulder. 
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Chapter 4 

Microdistribution of Epeorus longimanus and periphyton on 

torrential stream boulders 

Summary 

1. Field measurements and experiments were conducted to examine the microdistribution of the 

torrential mayfly Epeorus /ongimanus (Heptageniidae) with respect to periphyton biomass, shear 

stress, and substrate characteristics (i.e. stone roughness, topography). 

2. Different factors influence larval distribution during daytime and night-time periods. During the 

day, the few larvae that remain on the upper stone surface tend to be found in high shear stress 

areas on the stone surface, generally towards the rear of the upper surface of the stones. During 

the night-time, larvae were found on the upper surface of the stone surface, and avoided areas 

where boundary layer flows had detached (i.e. the downstream edge of the stones). 

3. Periphyton densities were significantly related to stone surface roughness and topography (i.e. 

more algae on higher, rougher areas of the substrate). The relationship between the 

microdistributions of periphyton and E. longimanus larvae were nearly significant, suggesting that 

high densities of this grazing mayfly may tend to reduce local periphyton standing stock. In some 

cases, algal density and larval abundance appear to be inversely related . 

4. Shear stress generally increases from the front to the rear of submerged, protuberant stones (i.e. 

stones whose upper surfaces are beneath the water surface, but protrude upward into the main 

flow to a greater extent than the surrounding bed material). At the rear of the stones, shear 

stress abruptly decreases at or near where the flow separated. 

5. E. longimanus larvae migrate diurnally. Larvae generally retreat to the underside of stones during 

the day, and emerge during the night to graze on the upper, exposed surfaces of the stones at 

night. However, the rates of larval emergence and withdrawal differ, suggesting that the 

migration behaviour during dusk emergence may be functionally different from that of dawn 

withdrawal . 
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6. A stone reversal experiment suggests that the characteristic microdistribution of larval E. 

longimanus is a response to near-bed flow factors. However, larvae may be using this 

environmental cue to identify high-resource feeding areas. 

7. The adaptive significance of the results, especially as they relate to trophic and predator-prey 

interactions, are discussed. 

Introduction 

The examination of biotic processes at different spatial scales has become a major 

consideration in the study of benthic systems (e.g. Muotka and Pentinnen 1994; Voelz and Ward 

1996). Traditionally, the importance of large-scale (i.e. 10 - 104 m) processes has been a major 

focus in stream ecology, and the roles of these processes in determining macroinvertebrate diversity 

(Statzner and Higler 1986; Growns and Davis 1994 ), invertebrate drift (Lancaster et al. 1996), primary 

productivity (Wellnitz et al. 1996), and stream hydrology and hydraulics (Jarrett 1990) are well 

understood. However, microscale (i.e. 1 o·2 m - 1 m) phenomena, such as local variations in near-

bed hydraulics, appear to be of greater ecological importance within riffle segments (Dudgeon 1982; 

Collier et al. 1995) and on individual stones (Muotka and Pentinnen 1994; Hart et al. 1996; Voelz and 

Ward 1996). 

Recently, it has been suggested that the microdistribution of stream invertebrate are the 

result of species-specific responses to environmental factors such as substrate size (Jowett et al. 

1991 ), substrate roughness (Casey and Clifford 1989), habitat complexity (Way et al. 1995), food 

resource availability (Peckarsky 1996), and hydrodynamic parameters (Statzner 1981; Collier et al. 

1995). Biotic interactions, including predator-prey interactions (Mcintosh and Peckarsky 1996), have 

also been found to play roles in determining microhabitat use by benthic invertebrates. Most studies, 

however, have ignored the potentially important role that interactions between environmental and 

biotic factors might play in determining the microdistribution of stream invertebrates (but see Muotka 

and Pentinnen 1995; Hart and Merz 1998). 

Hydrodynamic variables are generally thought to be the most important factors affecting the 

ecology of benthic organisms in the stream environment (Hart et al. 1996; Carling 1992; Davis and 

Barmuta 1989). Near-bed velocities have been shown to influence the morphology, physiology, 

behaviour, and microdistribution of stream organisms (e.g. Wiley and Kohler 1980; Statzner and Holm 
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1982; Hart et al. 1996; Delgado and Carbonell 1997; Bouckaert and Davis 1998). However, the exact 

nature of the relationship between the forces generated by moving water and the biology of the 

benthic organisms is poorly understood, for two reasons . First, and primarily, stream ecologists have 

used methodologies and field techniques that are quite different in spatial scale from that of benthic 

invertebrates. For example, Muotka and Pentinnen ( 1994) found that aggregative responses of two 

stream invertebrate predators (/soper/a grammatica and Rhyacophila obliterata) to blackfly larvae 

prey in microhabitats of overlapping velocity preferences could not be detected unless they examined 

the distribution of the organisms at scales much smaller than those traditionally used in field 

experiments. Second, although it is widely recognised that benthic communities are sensitive to the 

forces generated by the moving water of streams, the precise nature of the hydrodynamic parameters 

to which stream invertebrates respond is poorly understood. The microdistribution and behaviour of 

benthic stream invertebrates have been variously attributed to near bed velocity (Hart et al. 1996), 

mean velocity (Collier 1994), turbulence intensity and Reynolds stress (Bouckaert and Davis 1998), 

lift and drag (Weissenberger et al. 1991 ), Froude number (Wetmore et al. 1990), Reynolds number 

(Statzner and Higler 1986), and the thickness of the viscous sublayer (Statzner 1981 ). This 

proliferation of causal factors has arisen because, in many cases, just one or two hydrodynamic 

parameters are measured and related to patterns of faunal abundance. Furthermore, many of the 

hydrodynamic parameters are closely related, and often derived from the same basic measurements 

of water velocity. 

Several recent studies of natural flows in stream channels have examined hydrodynamic 

parameters (i.e. velocity, turbulence intensity, turbulence structure) within the benthic boundary layer 

(e.g. Hart et al. 1996; Robert et al. 1996; Buffin-Belanger and Roy 1998). Of these studies, only Hart 

et al. (1996) have successfully measured and related near-bed flow parameters (velocity, tubulence 

intensity) to the distribution of benthic invertebrates. However, the relative rarity of studies of this kind 

is due to the fact that the spatial resolution of conventional instruments used to measure water 

velocity is quite coarse. Only recently have techniques been developed that allow for the examination 

of water flow at the fine spatial scales (i.e. mm - em) experienced by benthic invertebrates. For 

example, the electromagnetic current meter (EMCM) used by Robert et al. (1996) had a spatial 

resolution of 1.3 em, while the hot-film anemometer used by Hart et al. ( 1996) had a spatial resolution 

of 0.7 mm. Unfortunately, the hot-film anemometer used by Hart et al. was fragile and notably difficult 
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to deploy and cal ibrate in the field . Alternatively, fine-scale velocity measurements can be made with 

a suitably small Pitot-static tube (White 1999). An appropriately proportioned Pitot-static tube can 

also be deployed as a Preston-static tube (PST), and used to directly measure wall shear stress (see 

Ackerman et al. 1994 ). This device has been tested and applied in the field (Ackerman and Hoover 

2001 ). Wall shear stress (-rw). which is typically measured indirectly (e.g. Collier et al. 1995) or 

ignored (e.g. Jowett et al. 1991), is one of the most important forces affecting benthic invertebrates 

exposed to flow on the stream bed (Davis and Barmuta 1989; Vogel 1994 ). 

Stream hydrodynamics can also affect the structure of the benthic community. Peckarsky et 

al. (1990) demonstrated that predation effects of the stonefly predator Dinocras cepha/otes on the 

mayfly Baetis rhodani were greatest in hydraulic habitats favourable (benign) to the stonefly. By 

applying the "harsh-benign" hypothesis to stream ecosystems, Peckarsky et al. (1990) illustrated that 

predator impacts were lower in abiotic regimes that were harsher to predators. Similarly, Tikkanen et 

al. ( 1997) reported that simuliid larvae inhabited exposed microhabitats on the upper surface of 

stones, where they were rarely encountered by the stonefly predator Diura bicaudata; different 

microhabitat preferences between predators and prey lead to lower predator/prey encounter rates, 

and consequently, lower rates of predation . Hart and Merz (1998) further suggested that the inability 

of predators to access high-velocity microhabitats might create sites which, being "harsh" to 

predators, act as refuges from predation. Use of flow-mediated refuges would reduce not only the 

direct, lethal effects of predation (Kerans et al. 1995), but also the indirect effects predators have on 

benthic insect prey populations, such as reduced feeding rates (Peckarsky et al. 1993; Scrimgeour et 

al. 1994) and increased drift (Mcintosh and Peckarsky 1996). Moreover, prey species may be able to 

assess predation threat by associating the level of risk with some aspect of the environment (such as 

a characteristic range of water velocities) shared by predator and prey (Dill 1987; Peckarsky 1996). 

Flow can also influence the microhabitat preferences of many benthic invertebrate taxa by 

mediating the availability of resources . For example, Golubkov et al. (1992) found that the 

rheophilous stream insects Stenopsyche marmorata and Skwala pusilla were sensitive to low levels 

of dissolved oxygen, and consequently were found only in high velocity microhabitats in order to 

maximise rates of gas exchange across their tracheal gills. This concurs with the earlier results of 

Wiley and Kohler (1980), who found that mayflies moved to increasingly current-exposed surfaces as 

dissolved oxygen concentrations decreased, presumably to increase gas transfer rates across 
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respiratory exchange surfaces. In addition, rates of nutrient delivery and gas exchange are higher for 

benthic algae in high velocity microhabitats due to thinner and increasingly turbulent boundary layers 

(Nowell and Jumars 1984). 

The microdistribution and community structure of periphyton in streams is influenced by 

grazing by herbivorous invertebrate taxa (e.g. Lamberti and Resh 1985; Feminella et al. 1989; 

McCormick and Stevenson 1989}. Karouna and Fuller (1992) found that grazing by the mayflies 

Paraleptophlebia and Ephemerella subvaria reduced algal densities and significantly altered the 

community structure. In addition, invertebrate grazers may use periphyton abundance to assess the 

quality of a microhabitat (Kerans 1996}. However, because the microdistributions of 

macroinvertebrate grazers, periphyton, and near-bed flow parameters are interrelated, the relative 

influence of algae and flow factors on the local abundances of herbivorous stream invertebrates 

remains largely unknown. 

Nymphs belonging to the heptageniid mayfly genus Epeorus are abundant in fast flowing 

streams across western North America {Edmunds and Allan 1964 ). Epeorus nymphs are categorised 

as clingers, and are found in erosional stream habitats (Edmunds and Waltz 1996}. Epeorus is a 

representative torrential insect genus, displaying several adaptations to high velocity habitats 

including a flattened body and a ventral , "sucker-like" arrangement of gills (see Weissenberger et al. 

1991 ; Vogel 1994 ). While there is some disagreement regarding the manner in which these 

adaptations function, it is accepted that they enable Epeorus to maintain contact with the substrate in 

high velocities. Given the association of Epeorus larvae with high velocity habitats, it represents an 

ideal model organism to examine the relationship between near-bed hydrodynamics and the benthic 

invertebrates that inhabit high-velocity microhabitats. 

Given the linkages between hydrodynamics, predator-prey interactions, and periphyton 

communities, it seems reasonable to attempt to relate the microdistribution of the benthic biota of 

high-velocity streams to the abiotic components of the near-bed environment. While the relationships 

that exist between environmental parameters and the microdistribution of sessile, suspension-feeding 

organisms (i.e. caddisfly and blackfly larvae) are well documented, the microdistribution of mobile, 

grazing benthic macroinvertebrates such as Epeorus longimanus in relation to hydrodynamic forces 

are poorly understood. This purpose of this study is to examine the microdistributions of the mayfly 

E. longimanus and primary producers (periphyton) over the upper surface of torrential stream 

164 



boulders, and relate their distributions to a variety of environmental parameters, including near-bed 

hydrodynamics (e.g. shear stress) and stone surface characteristics (e.g. topography, roughness, and 

within-stone position). Diurnal variation in microdistribution of this grazing mayfly was also examined 

in order to determine if the same factors influence the distribution of E. longimanus larvae during day-

and night-time periods. 

Methods and materials 

Study site and experimental design 

The microdistribution of benthic invertebrates, algae, and near-bed flow parameters were 

examined during September and October 1998, in a 20 m reach of a third-order tributary within the 

Torpy River watershed (see chapter 3 for a description of the study site). Thirty small, light coloured, 

rounded stones, ranging in diameter from 22- 33 em, were marked with a 5 x 5 em reference grid of 

points and deployed in the active stream channel at the study site in early August 1998 (see chapter 

3 for a detailed description of the methodology used). Where possible, existing stones were removed 

from the stream bed and replaced with experimental stones of similar shape and volume to ensure 

that stream bed geometry within the reach was not altered significantly. To minimise hydraulic 

interactions between experimentally deployed substrates, the stones were placed in the channel at 

approximately 1m intervals in an offset pattern, such that no stone was immediately upstream of 

another (see Young 1992). 

After deployment, the stones were left for 1 0 days to accumulate biofilm, periphyton, and 

benthic invertebrates characteristic of the adjacent streambed. During this time the densities of larval 

E. longimanus (a representative high velocity, torrential habitat mayfly species) were monitored on 

each of the experimental stones. After the accl imatisation period had ended, the distribution of 

periphyton, macroinvertebrates, and shear stress (in addition to several other flow characteristics -

see chapter 3) were measured over the upper surface of the five stones that had the highest densities 

of E. longimanus. 

When possible, all parameters were measured during periods of similar stream discharge in 

order to ensure hydrodynamic similarity between sampling dates. 
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Insect distribution 

The number and distribution of larval E. longimanus within the 5 x 5 em grid marked on the 

upper surface of each of the five stones were recorded several times over a four week period (see 

Table 4-1 ). Densities of E. longimanus larvae were determined on a per quadrat basis, and 

converted to areal density (i.e. E. longimanus m·2 =number of insects within a 5 x 5 em quadrat I 0.05 

m x 0.05 m). Daytime distributions were recorded on 8 dates between September 2 and October 4, 

1998, while night-time distributions were recorded during the nights of September 16 and October 3, 

1998. Observations of larval mayfly distributions were made using a small plexiglass sheet (20 x 10 x 

0.7 em) held against the water surface and tilted in the upstream direction such that it allowed an 

unimpeded view of the stream bed. Use of this device did not substantially influence the behaviour of 

the larvae. Prior to the experiment, other viewing devices (e.g. plexiglass observation boxes, 

periscope viewers, etc.) were tested, but it was observed that larger, more visible apparatus disturbed 

the mayflies. Night-time observations of insect distributions were made using a headlamp (Petzl 

Zoom (4.5 volts); Petzl Distribution Sport, Crolles, France) for illumination . As the red portion of the 

visible spectrum has been reported as being less visible to stream insects (Mcintosh and Peckarsky 

1996), a red filter over the lens of the headlamp was initially used in an attempt to minimise 

disturbance to the larval mayflies. However, in this case, it was observed that movement of the light 

source rather than colour was the source of the disturbance. Subsequently, the use of the filter was 

discontinued, and movement of the headlamp minimised . 

Flow characterisation 

Using a Preston-static tube (see below), wall shear stress (tw) distributions were measured 

across the upper surface of the experimental stones in two orthogonal transects crossing the upper 

surface of each stone (Figure 4-1 c). Shear stress was measured every 2.5 em (i.e. at every grid 

point, and at intermediate positions between grid points) in a streamwise transect, and at 5 em 

intervals (i.e. at every grid point) in a cross-stream transect. The two transects intersected in the 

centre of the stone (position 0,0 in the marked grid). When insect and wall shear stress distributions 

were recorded on the same date, the insect distributions were recorded first to minimise disturbance 

of the larval mayflies. 
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Wall shear stress was measured using a Preston-Static tube (PST) (see Ackerman et al. 

1994; Ackerman and Hoover 2001 ). The PST used consists of a 90° bevelled tip syringe needle fixed 

to a side-bored syringe needle (tube diameter= 0.88mm). A Validyne model CD379-1-2 membrane-

type differential pressure transducer (Validyne Engineering; Northridge, CA), connected to the PST 

via 2m of flexible pressure lines (inside diameter= 3 mm), was used to measure differential pressure 

(the difference between static pressure Ps and dynamic pressure p0), which can be converted into 

shear stress (see chapter 3). An average differential pressure was obtained by averaging 15 

measurements obtained over approximately 30 seconds. The pressure transducer and pressure lines 

were periodically flushed with water in order to minimise the possibility of the presence of trapped air, 

which adversely affects differential pressure measurements. The accuracy of wall shear stress 

measurements using this method is dependent on proper orientation of the PST; the PST must be 

resting on the stone surface and oriented parallel to local flow such that a stagnation point forms at 

the dynamic tap (Ackerman and Hoover 2001 ). This orientation of the PST was achieved using 

sodium fluorescein dye and an underwater magnifying periscope viewer (Edmund Scientific, New 

Jersey, USA). Typically, when measuring shear stress at a point, the PST would be lowered until the 

tip was in contact with the surface of the stone. A filament of dye was then released immediately 

upstream of the PST using a hypodermic syringe fitted with a long, thin needle. Using the underwater 

viewer, the orientation of the dye filament was compared to the orientation of the PST. If the two 

were not parallel (i.e. the dynamic tap was not perpendicular to the flow), the PST was repositioned in 

the correct orientation using the micromanipulator and positioning elbow (see chapter 3). 

The distribution of boundary layer flow conditions (attached vs. separated boundary layer 

flows) over each stone was noted using flow visualisation . Using a hypodermic syringe fitted with a 

long, thin needle, fluorescein dye was injected into the flow at several points immediately upstream of 

each of the experimental stones. The extent of areas of recirculating dye (i.e. backflow associated 

with detached boundary layer flows) above each stone were recorded . 

Periphyton distribution 

At the end of the field study (October 7, 1998), all five stones were removed from the stream 

in order to measure the microdistribution of periphyton. The stones were removed at night (to 
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minimise exposure to ultraviolet light) and packed in ice in an insulated cooler for transport to the 

aquatic sciences lab at the University of Northern British Columbia, where periphyton samples were 

removed in circular quadrats using a rotating brush-and-suction sampling device (diameter = 2.72 

em). The algal sampling device consisted of a PVC cylinder (closed at the upper end and encircled at 

the lower end with a high-density foam rubber skirt) which housed a circular, nylon-bristled brush. 

The brush, in turn , was connected to a rotary tool (Dremel MultiPro rotary tool model 395; Winconsin, 

USA) via a brass shaft. Two lines opened into the side of the cylinder. The first was a water line, 

which allowed a jet of cold, distilled water to be introduced when the brush was activated, creating an 

algal slurry. The second was a vacuum line, which drew off the slurry. 

Algal samples were removed in three transects in the streamwise direction. The centre of 

each quadrat corresponded to a marked point (intersection) in the 5 x 5 em reference grid (Figure 4-

1 b). Only the upper surface of the stone was sampled; the effectiveness of the sampling device used 

in this study was limited, as are other devices, when used to obtain algal samples from the curved 

surface at the edges of rounded stones. However, this method was shown to be as effective as direct 

extraction in a comparison of methods (Hoover et al. in prep.). For chlorophyll a analyses, each algal 

sample was vacuum filtered onto a glass fibre filter (GF/C; Whatman, UK), immediately frozen at -

40°C, and extracted in 1 0 ml of 90% acetone (buffered with MgC03; as per Geider and Osborne 

1992) for 24h at soc in the dark. Chlorophyll a concentrations were determined using a 

spectrophotometer (Perkin Elmer UVNis Lambda 2S Spectrometer; Perkin Elmer, Germany) using 

the methods of Geider and Osborne (1992). 

Stone surface characteristics (surface roughness and topography) 

A measure of stone roughness was obtained by placing a sheet of white printer/copier paper 

(75 g m"2
) over each 5 x 5 em quadrat. The paper was held firmly against the stone surface, and a 

pencil (1600 HB) was rubbed firmly and evenly over the surface of the paper producing a 'graphite 

rubbing' of the stone surface. The texture and irregularities of the stone surface were defined on the 

resultant 'rubbing'. All indentations in the stone surface whose long axis exceeded 5 mm in length 

were then counted on each 5 x 5 em 'rubbing', producing an estimate of the surface roughness 

(degree of pitting) within each quadrat. 
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The surface topography of each stone was determined by measuring the distance down from 

a level rod to each point on the grid. For example, the topographical measurement of the highest 

point of the stone surface was recorded as "0 em", a grid point 1.5 em lower was recorded as "1.5 

em", etc. 

Diurnal variation in behaviour 

Observations of diurnal changes in larval distribution {i.e. changes in numbers of larval 

mayflies on the upper surface of the five experimentally deployed stones) were made on two dates. 

The first set of observations was made from 13:00 h on Sept. 26 to 04:00 h on Sept. 27, 1998. The 

exact observation times varied sl ightly; depending on the numbers of mayflies, it took approximately 

five minutes to record mayfly numbers and positions and travel to the next stone. Observations were 

made at 2 hour intervals during the dusk hours (18:00 h - 22:00 h). In addition, a single 

measurement was taken at 09:00 h Sept. 27 (i.e. the following morning). 

On the second observational date, the density and distribution of larval E. longimanus over 

the upper surface of the five experimental stones were recorded every two hours over a 22-hour 

period, from 14:00 h on October 3 to 12:00 h on October 4, 1998 (with the exception of the mid-night 

period; no record was made at 02:00 h). In all cases, all larvae visible over the upper surface of each 

stone were recorded. Night-time observations were made with the aid of a headlamp. 

Light measurements were taken every 30 minutes using a quantum sensor and light meter 

(model LI-192SA and model Ll-250, respectively; LI-COR Inc., Nebraska, USA), except during 

periods of rapid light change (dawn and dusk, approximately 08:45 h- 09:30 hand 18:00 h- 19:45 

h, respectively), when they were recorded every 15 min. Light measurements were made on the 

streambank at the study site. 
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Table 4-1. Comparison of measured parameters at all sampling dates 

Stone Date (1998) Depth above datum Parameters measured 
(diameter) (centre) (mm) Shear I E. /ongimanus dist'n 

stress I Day night 
7 September 2 54 - Yes -

September 5 27 - Yes -
d = 29.0 em SeptemberS 2S - Yes -

September 13 55 - Yes -
September 16 36 Yes3 Yes -
September 26 90 - Yesb Yes 
September 27 95 - Yes Yes 
September 30 S4 Yes - -
October 3 120 - Yes Yes 
October4 115 - Yes Yes 

31 September 2 50 Yes3 Yes0 -
September 5 31 - Yesb -

d = 17.5 em SeptemberS 42 - Yes -
September 13 60 - Yes -
September 16 40 - Yesc -
September 17 41 Yes - -
September 26 96 - Yesb Yes 
September 27 99 - Yesb Yes 
October 3 11S - Yes Yes 
October4 114 Yesb Yes 

25 September 2 53 - Yes -
September 5 4S Yes3 Yesb -

d = 21 .0 SeptemberS 47 Yes3 Yes -
September 13 45 - Yesc -
September 16 4S - Yesc -
September 17 4S Yes - -
September 26 55 - Yes Yes 
September 27 56 - Yes Yes 
October 3 ss - Yes Yes 
October4 S2 - Yes Yes 

23 September 2 25 - Yes0 -
September 5 15 - Yesb -

d = 1S.5 em SeptemberS 19 - Yesb -
September 13 32 - Yesc -
September 16 26 - Yesc -
September 26 62 - Yesb Yes 
September 27 66 - Yes Yes 
September 30 30 Yes - -
October 3 S2 - Yes Yes 
October4 so - Yes Yes 

10 September 2 22 - Yes0 -
September 5 9 - Yesb -

d = 27.0 SeptemberS 10 - Yesc -
September 13 25 - Yesc -
September 16 15 - Yesb -
September 23 26 Yes - -
September 26 60 - Yesb Yes 
September 27 63 - Yes Yes 
October 3 so - Yes Yes 
October4 76 - Yes Yes 

a shear stress measured only at centre of stone (for purposes of companson); ent1re distribution 
recorded on all other dates 
b stone surface examined, no E. longimanus present 
c E. longimanus distribution recorded after 18:00 h (not included in analyses) 
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Stone rotation experiment 

The proximal relationship between hydrodynamic forces (e.g. shear stress), E. /ongimanus, 

and periphyton was examined by a substrate reversal experiment. The night-time microdistribution of 

E. longimanus larvae was recorded on the upper surface of three naturally occurring stones by 

recording the average density of larval E. /ongimanus in 5 em bins in the downstream direction. The 

stones selected were comparable in both size and E. longimanus density to the experimental stones. 

After the original distribution was recorded , each of the three stones were then rotated 180° (i.e. the 

original downstream edge became the upstream edge). After 40 minutes, the microdistribution of the 

mayfly larvae was recorded, and the stones were rotated 180° to their original orientation. The 

microdistribution of the mayflies was again recorded after 40 minutes. A one-way ANOVA was used 

to test if the mayflies had moved to new locations (i.e. were proximately responding to the new 

distribution of near-bed flow parameters) or had remained in their original microdistribution (i.e. 

proximately responding to substrate and food resource (periphyton) factors) . 

Analyses 

All mayfly microdistributions recorded between 08:00 hand 18:00 h (all dates) were averaged 

to produce a mean daytime microdistribution, while records between 20:00 h and 06:00 h were 

averaged to produce a mean night-time microdistribution . Dusk and dawn observations (06:00 h -

08:00 h and 18:00 h - 20:00 h, respectively) were not used in these analyses, in order to minimise 

the influence of the rapidly changing light level and corresponding changes in larval behaviour on 

analyses. In order to relate larval microdistributions to environmental factors measured over a period 

of several weeks, mean daytime and night-time larval densities were determined for each 5 x 5 em 

quadrat (see Table 4-1 for dates). To account for among-stone differences in biotic and abiotic 

parameters, stone diameter (a discrete, continuous variable) was included in all ANOVA models as a 

covariate, and in all standard multiple regression models as a covariable. 

Data were examined for normality and homogeneity of variance (Kruskai-Wallace W test and 

data visualisation including boxplots and frequency histograms). Daytime and night-time abundances 

of E. /ongimanus were not normally distributed. However, ln(x+1) and x0
·
5 transformations of these 

data did not meaningfully increase the normality of the data. As a result, in order to maximise the 
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interpretability of the results, all analyses were performed using the untransformed mayfly 

distribution/abundance data. 

As shear stress was measured at fewer points on the surface of the experimental stones than 

all other variables, two multiple regression analyses were performed with per quadrat mayfly density 

(daytime and night-time densities of E. /ongimanus) as the response variable. As such, for the 

ANOVAs, a Bonferonni adjustment of a was used (Tabachnick and Fidel! 1996), and the level of 

significance was reduced from a = 0.05 to a = 0.025. 

All analyses were conducted using Statistica 5.1 (1996; Statsoft, Tulsa, Oklahoma). 

Results 

It was possible to observe the behaviour and position of larval insects on the upper surface of 

stream stones, and the generic identity of individual insects could be determined . With the exception 

of extremely rare observations of larval blackflies (Simuliidae), and larval mayflies of the genera 

Baetis and Rhithrogena, the habitat represented by the upper surface of the stones was inhabited 

exclusively by larval Epeorus longimanus (Heptageniidae). 

Abiotic factors influencing the microdistribution of E. longimanus 

The microdistribution of E. longimanus larvae was dependent on both within- and among-

stone factors. When E. longimanus larvae were present on the upper surface of the stones in high 

numbers (generally at night), they were at highest densities upstream of the flow separation zone (at 

the downstream edge), near the stones' centre . There was no significant differences in per quadrat 

mayfly densities among stones during the night-time (ANOVA, F(4,130) = 0.40, p = 0.81). There was, 

however, a significant difference in mayfly densities among stones during the day (AN OVA, F(4, 130) 

= 5.08, p < 0.001) (Figure 4-2A). 

An ANCOVA was performed on daytime and night-time densities of E. /ongimanus, with 

boundary layer flow conditions as the predictor variable and stone diameter included as a covariate. 

During the night, there were significantly greater densities of mayflies in areas of the stones with 

attached boundary layer flows compared to areas with separated flows (F(1, 132) = 8.83, p = 0.0035) 

(Figure 4-28). In the daytime, although not significant (F(1,132) = 3.41, p = 0.067), the trend was 
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similar. In addition, regression analysis shows that night-time and daytime distributions of E. 

Jongimanus were significantly and positively related (R2 = 21 .12%; ANOVA F(1,133) = 35.62, p < 

0.001) (Figure 4-3). This trend demonstrates that although daytime densities were much lower, 

daytime microdistributions of E. Jongimanus were similar to those observed at night. 

During the night, per quadrat densities of E. longimanus varied significantly with streamwise 

(x) distance along the upper surface of the stones (ANCOVA, F{6, 127) = 4.32, p < 0.001) (Figure 4-

4). When the mayfly distributions of all stones were pooled, there were more mayfly larvae in the 

centre of the stones than at either the upstream or downstream edges (Figure 4-4; Table 4-2). 

However, there was no corresponding trend in daytime distributions of E. longimanus larvae 

(ANCOVA, F(6,127) = 1.63, p = 0.15). 

Table 4-2. Post-hoc comparison of means {Tukey's HSD test} following the 

significant ANCOVA on night-time distribution of Epeorus longimanus and 

streamwise {x} position 

Position (x) +1Scm +10 em +Scm 0 cma -S em -10 em -1S em 
+1Scm 
+10 em ns 
+Scm ns ns 
0 cma ns 0.039* ns 
-S em ns ns 0.037* ns 
-10 em ns ns ns 0.067 0.063 
-1S em ns ns ns 0.053 0.050 ns 
* significant at a=0.05 
ns = p > 0.075 
a centre of stone. 

Two sets of standard multiple regressions were performed between larval mayfly distribution 

(as the response variable} and a series of environmental factors (as predictor variables). Due to 

unequal sample sizes in the data subsets, the multiple regressions were performed separately. In the 

first multiple regression analysis, mayfly distribution {daytime and night-time microdistributions, 

analysed as subsets) was included as the response variable and shear stress as the predictor 

variable. In the second multiple regression analysis, mayfly distribution (again, daytime and night-

time microdistributions, analysed as subsets) was included as the response variable, and streamwise 

(x) position within the stone, stone surface roughness, and stone topography were included as the 
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predictor variables . In all analyses, stone diameter was included in both models as an ordinal , 

discrete variable to account for among-stone differences 

There were marked differences in the factors influencing the microdistributions of E. 

/ongimanus larvae between day and night periods. During the daytime, there were significantly more 

larval E. longimanus in areas of the substrate with higher shear stress (Figure 4-5), and on stones 

with larger diameters (Table 4-3; see also Figures 4-6 to 4-1 0). During the night-time, however, there 

was no sign ificant relationship between larval microdistribution and either shear stress or stone 

diameter. 

Larval microdistribution during the day was also positively related to streamwise position and 

stone diameter, and negatively related to topography (i.e. there were more larvae higher and further 

back on exposed stone surfaces; Table 4-4). During the night, larval microdistribution was only 

related to topography (i.e. more larvae higher on exposed stone surfaces; Table 4-4). However, the 

relationship between mayfly microdistribution and stone roughness approached significance (p = 

0.087), suggesting that there may be more mayflies on rough stone surfaces during the night. 

Table 4-3. Multiple regression analyses of the relationship between the 

microdistributions of periphyton and Epeorus /ongimanus (daytime and night-

time distributions) and wall shear stress ('tw) 

Model ~ {df) = F shear stress (z-w) Stone diametef 
p-va/ue fJ p-va/ue jJ 

a) daytime E.longimanus 36.15% (2,36) = 10.19 0.021 16.66 < 0.001 22.96 
b) night-time E. longimanus 2.08% (2,36) = 0.38 0.61 25.47 0.42 31.44 
c) periphytonb 5.11% (2,36) = 0.67 0.53 -0.16 0.27 -0 .19 
a stone diameter entered into the model as an ordinal discrete variable to partition out variance due to 
among-stone differences 
b presented as mass of chlorophyll a per cm2 

Biotic factors influencing microdistribution of E. longimanus 

The relationship between benthic biota, bed characteristics, and stream hydraulics was 

variable among stones. On stone 7, the centreline distributions of E. longimanus and periphyton had 

an inverse relationship, as did shear stress and E. longimanus density (Figure 4-6). However, this 

trend was not consistent among all stones. While the shear stress on the surface of stone 31 

increased from the front of the stone to the back, where it sharply declined, there is no clear 

174 



association with either algal or mayfly distributions (Figure 4-7). Similarly, on stone 23, there was a 

distinct increase in shear stress from front to back of the stone, where flow eventually separated 

(Figure 4-8). While this was mirrored by a front-to-back increase in mayfly densities, algal biomass 

tended to be greatest over the front and centre of the stone. Again, on stone 10, there was a similar 

front-to-back increase in shear stress (Figure 4-9). However, this was poorly related to the 

distribution of algae and mayflies, which tended to be inversely related (E. /ongimanus densities 

highest, algal biomass lowest over the centre of the stone). The shear stress over stone 25 was 

relatively uniform over the surface of the stone (Figure 4-1 0), with the exception of the leading edge 

{due to wake interference from upstream roughness elements). While there was little variation in 

algal densities over the surface of stone 25, densities of E. /ongimanus increased from the front to the 

back. 

Table 4-4. Multiple regression analyses of the relationship between the 

microdistribution of Epeorus /ongimanus (daytime and night-time) and 

streambed characteristics 

Model R' (df) = F p-value jJ 
A) daytime E. longimanus 22.95% (4,130) = 9.68 < 0.001 
Explanatory variables 
Streamwise position (x) 0.014 6.40 
Roughness 0.82 -0.15 
Topography < 0.001 -7.26 
Diameter3 < 0.001 13.51 

B) night-time E. longimanus 25.75% (4, 130) = 11.28 <0.001 
Explanatory variables 
Streamwise position (x) 0.38 12.72 
Roughness 0.087 6.21 
Topography < 0.001 -66.57 
Diameter3 0.50 13.86 

a stone diameter entered into the model as an ordinal discrete variable to partition out variance due to 
among-stone differences 

Factors influencing the microdistribution of periphyton 

There were significant differences in periphyton growth among the five stones (ANOVA 

F(4,61) = 1 0.49, p < 0.001) (see Figures 4-6 to 4-1 0). Two standard multiple regressions were 

performed between periphyton growth (measured as mass of chlorophyll a cm.2) as the response 

variable and streamwise distance, stone roughness, topography (height on stone), and local E. 
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/ongimanus density (the first and second regression models including daytime and night-time mayfly 

microdistribution densities, respectively) as predictor variables. Stone diameter was included in both 

models as an ordinal, discrete variable to account for among-stone differences. In both cases, only 

three of the variables contributed significantly to prediction of algal microdistribution density (Table 4-

5); roughness, topography, and stone diameter (the latter variable reflecting significant among-stone 

differences). Periphyton biomass tended to be greater higher on the stone surface, and greater algal 

densities were found in areas of the stone surface with greater surface roughness. In addition, the 

relationship between algal density and daytime and night-time microdistributions of E. longimanus 

approached significance (p = 0.060 and p = 0.055, respectively), suggesting that algal densities were 

reduced in areas of the stone surface where densities of E. longimanus were higher. Algal biomass 

tended to be highest over the centre of the stones, and lowest on the upstream and downstream 

edges (Figure 4-11 ); this difference, however, was not significant (ANCOVA, F(4,57) = 1.05, p = 
0.39). Periphyton microdistribution was not significantly related to shear stress (Table 4-3; see also 

Figure 4-6 to 4-10). 

An ANCOVA was performed on algal densities, with boundary layer flow conditions 

(separated vs. attached boundary layer flows) as the predictor variable and stone diameter as the 

covariate. While there tends to be more periphyton growth in those areas of the stone surface with 

attached boundary layer flows (Figure 4-12), the difference is not significant (ANOVA; F(1 ,63) = 2.65, 

p = 0.11). 

Diurnal variation in positioning 

E. longimanus displayed a distinct diel periodicity in their positioning (Figures 4-13 & 4-14). 

There were significantly more larvae on the upper surface of the stones during the night-time hours 

than there were during the day (ANOVA, F(1 ,268) = 58.35, p < 0.001 ). It is important to note, 

however, that daytime withdrawal of larvae from the upper surface of the stones was not complete. 

Daytime densities of E. longimanus on the upper surface of the stones were approximately 1 0% of 

night-time densities. While there were significant differences in daytime densities among stones, the 

daytime distribution of E. longimanus was significantly correlated with both shear stress and 

topography (Tables 4-3 & 4-4). This suggests that mayflies that remain on the upper surface of the 
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stones during the day were found predominantly in high shear stress areas near the apex of the stone 

surface. 

Table 4-5. Multiple regression analyses of the relationship between the 

microdistribution of periphyton to streambed characteristics and grazing 

mayfly densities 

Model Ft 
A) Periphyton densitya 29.76% 
~~~~~~~~----~ 

Variables 
Streamwise position (x) 
Roughness 
E. longimanus {day) 
Topography 
Diameterb 

B) Periphyton densitya 29.92% 
~~~~~~~~----~ 

Variables 
Streamwise position (x) 
Roughness 
E. longimanus (night} 
Topography 
Diameterb 

{df) = F 
(5,60) = 5.08 

(5,60) = 5.12 

p-va/ue 
< 0.001 

0.20 
< 0.001 

0.060 
< 0.001 

0.016 

< 0.001 

0.38 
< 0.001 

0.055 
< 0.001 
< 0.001 

fJ 

0.11 
0.093 
-0.0049 
-0.30 
-0 .26 

0.072 
0.10 
-0.00080 
-0.35 
-0 .36 

a mass of chlorophyll a per cmL 
b stone diameter entered into the model as an ordinal discrete variable to partition out variance due to 
among-stone differences 

The withdrawal of the mayfly larvae from the upper surface of the stones at dawn was abrupt 

compared to the variable timing of the emergence at dusk (Figure 4-15). There was an abrupt change 

in larval density on the upper surface of the stones at dawn (-07:00 h). The withdrawal of individuals 

from the upper surface coincided with the onset of detectable light levels in the morning. However, 

larval emergence was more gradual. Larvae began to emerge during late afternoon, when light levels 

were still relatively high, and continued to move to the exposed upper surface of the stones until well 

after dusk. The asymmetry between the highly variable rates of emergence and the relatively rapid 

withdrawal suggests that additional factors other than light level may have influenced the migration 

rates of E. longimanus from the underside of stream boulders to the upper surface. Net migration of 

larvae was limited during the night; there was little change in larval density between 23:00 and 05:00 

h. 
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Stone reversal 

The handling of the stones during the stone reversal experiment did not noticeably disturb the 

E. longimanus larvae. Larvae did not immediately or rapidly migrate from their original positions. 

Larval densities before and after stone handling were similar, and few, if any, larvae drifted from the 

stone surface. 

Figure 4-16 shows the results of the stone reversal experiment. In all three cases, there were 

generally higher densities of E. longimanus on the downstream portion of the stone (Figure 4-16a). 

When the stones were reversed, the mayflies retreated downstream to new positions on what were 

originally the leading edges of the stones (Figure 4-16b ). When the stones were returned to their 

original orientations, the mayflies reversed their movements, and returned to their original 

distributions (Figure 4-16c). This demonstrates that the proximal factor to which E. longimanus 

responded was local, near-bed hydrodynamic factors rather than distribution of algal food resources . 

There was a significant timex distribution interaction (ANOVA, F(12, 42) = 3.86, p < 0.001). The 

rotation of the stones resulted in a significantly different distribution of mayflies. Post-hoc linear 

regressions show that the initial (before initial rotation) and final (after the second rotation when 

stones were returned to their original orientation) distributions of E. longimanus on the upper surface 

of the three stones were significantly related (R2adi = 33.0%; ANOVA, F(1, 121) = 11.98, p = 0.0023). 

The initial and rotated (after the stone had been rotated 180°) distributions of E. longimanus were not 

related (R2adi = 0.058%, ANOV A, F(1, 121) = 1.01, p = 0.33), nor were the rotated and final 

distributions (R2adi= 0.98%; ANOVA, F(1,121) = 0.21, p = 0.65). 

Discussion 

The objective of this study was to examine the microdistribution of a highly mobile species of 

grazing heptageniid mayfly (Epeorus longimanus) with respect to near-bed flow parameters, 

streambed characteristics, and the microdistribution of algal food resources across the surface of 

torrential stream boulders. The results of the present study suggest that the proximate relationship 

between primary producers, grazers, and environmental variables may be more complex than 

previously thought. As hypothesised, the microdistribution of E. longimanus was significantly related 

to several environmental parameters, each measured at organismal spatial scales. However, the 
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results revealed that the functional relationship between the microdistributions of this torrenticolous 

grazer, periphytic algae, and near-bed and substrate characteristics differed between day- and night-

time periods, suggesting important behavioural inputs into the relationship . 

The importance of scale 

The densities of E. /ongimanus larvae and periphyton were significantly different among 

stones of similar size located adjacent to one another in the same reach . This demonstrates the 

importance of the spatial scale at which the behaviour of benthic biota is examined. The planar area 

of each of the stones used in this study was similar to the area traditionally sampled in benthic 

ecology studies. Surber or box-type samplers, which sample relatively large areas of the stream bed 

(- 500 cm2
), are often used to sample both the density and diversity of benthic taxa (e.g. Hynes 1971 ; 

Statzner 1981; Dudgeon 1982). If employed in this study, however, such methods would have 

sampled across several microhabitat types (e.g. sides vs. upper surfaces of streambed stones) and 

the microdistributions of both E. longimanus and the environmental parameters that influence the 

positioning of individual larvae would not have been detected. In order to determine which 

parameters influence the behaviour and ecology of stream invertebrates, the immediate environment 

of the invertebrates must be characterised at the spatial scales of the organisms themselves, rather 

than the scale of the observer. 

Recent studies have measured either the microdistribution of benthic taxa or environmental 

factors at small spatial scales, but rarely are both sets of parameters measured at fine, organism-

defined scales (but see Hart et al. 1996). For example, Voelz and Ward (1996) examined the 

microdistribution of the caddisflies Arctopsyche grandis and Brachycentrus occidenta/is using 3 x 3 

em quadrats, but measured current velocity only at the front, top, and bottom (leading edge) of each 

stone. In order to examine the spatial relationship between biotic and abiotic parameters at the scale 

of a torrential stream invertebrate, the present study quantified the microdistribution of larval E. 

longimanus over the surface of stream stones using 5 x 5 em (25 cm2
) quadrats, periphyton using 

5.84 cm2 circular quadrats, and shear stress at even finer spatial scales (measurements either 2.5 or 

5.0 em apart). 
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Factors influencing microdistribution 

The relationship between the microdistribution of E. longimanus larvae and biotic, 

hydrodynamic, and substrate factors differed between daytime and night-time periods. Night-time 

distributions of E. longimanus were significantly related to topography and flow separation factors . 

Larvae avoided areas of recirculating, separated flow, and grazed on algal growth high on the surface 

of streambed stones. During the night, the larvae were not strongly influenced by other measured 

substrate or hydrodynamic variables. However, in addition to topography, daytime distributions of E. 

/ongimanus on upper stone surfaces were related to shear stress and streamwise (x) distance along 

the stone surface. This demonstrates a diurnal shift in the functional responses of E. longimanus to 

environmental parameters. The relatively few (-10% of night-time densities) larvae that remained on 

the upper surface of streambed stones occupied high shear areas towards the rear of the upper stone 

surface. 

These results are consistent with the suggestion that the factors that influence the 

microdistribution of benthic invertebrates are different between daytime and night-time periods. The 

presence of visually oriented fish predators, for instance, is generally thought to cause several stream 

insect species to retreat to the underside of streambed stones during the day (e.g. Cowan and 

Peckarsky 1994 ). This ceases to be an important determinant of insect micropositioning during the 

night when fish predators can no longer see their prey. Similarly, Donahue and Schindler (1998) 

found that simuliid larvae migrated to shaded microhabitats during periods of intense solar radiation, 

demonstrating that exposure to UV also influences invertebrate microposition. In this fashion , UV 

acts as an environmental factor that modifies behaviour only during daylight hours. The results of the 

present study indicate that there may be diurnal variation in the responses of benthic invertebrate 

taxa to environmental factors that do not vary diurnally. 

Ecological hydrodynamics 

During the night, there were significantly fewer larval E. longimanus found in areas of the 

stone surface where flow separation occurred (i.e. areas of recirculating flow at the rear and, to a 

lesser extent, the front of the stones) . Larval E. longimanus tended to be found at highest densities 

over the centres and just downstream of the centres of the experimental stones, suggesting that they 
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preferred regions of stone surfaces where unidirectional, generally linear flow occurred. Peckarsky 

and Cowan (1995) showed that E. /ongimanus has distinct preferences for upper stone surfaces over 

upstream and downstream faces, while Rader and Ward (1990) found that mayflies in a Colorado 

river rarely used the front and rear sides of substrates, almost exclusively occupying the upper, lower, 

and lateral surfaces of substrates. Larval E. /ongimanus may preferentially select upper stone surface 

microhabitats where flow is unidirectional because they rely on several highly specialised 

adaptations, including a sucker-like arrangement of gills and a flattened, streamlined body shape, to 

maintain contact with the substrate in high velocity, high shear microhabitats. Weissenberger et al. 

(1991) note that in microhabitats with steep velocity gradients, organisms are at greater risk of being 

dislodged by lift than drag. Thus, the morphological adaptations displayed by larval E. longimanus 

may largely act to counter the typically high lift forces encountered by organisms on the upper 

surfaces of stones in torrential streams. The adaptations of this torrential mayfly enable it to 

effectively travel on the exposed surfaces of stones located in high velocity areas of the stream 

channel. E. /ongimanus larvae observed were able to move forward , sideways, and backward 

without difficulty in microhabitats where current velocities measured 2 mm above the substrate 

exceeded 1.0 m s·1
. 

The efficacy of these adaptations may be reduced, or even negated, in areas of variable flow 

direction and high turbulence intensities. As such, the upstream and downstream faces of stones 

may represent areas where contact with the substrate becomes more difficult for E. longimanus 

larvae. Vortices shed from the lee side of protuberant boulders alter the structure of the flow, 

producing high levels of turbulence above the downstream side of boulders (Robert et al. 1996). The 

streambed at the study site was composed of stones that protruded upwards into the water column 

(e.g. rough-turbulent flow). Flow in channels of th is type is characterised by convected eddies and 

flow structures whose motion is predominantly towards the bed ("sweeps"), which further acts to 

create unstable, turbulent flow conditions at the leading edge of exposed stream boulders. In 

addition, solenoidal {"horseshoe") vortices can form around the upstream side of stones protruding up 

into the flow (Vogel 1994; Bouckaert and Davis 1998), creating directionally variable, oscillating flows. 

Other torrenticolous mayfly species, including Rhithrogena, Ephemerella doddsi (see Minshall 1984) 

and Deleatidium (type myzobranchia) (Collier 1994), which have morphological adaptations similar to 

those of E. longimanus, would be expected to have similar microhabitat requirements . 

181 



Lacoursiere (1992) also found that simuliid larvae preferred regions of artificial substrates 

where flow was moving in a unidirectional fashion, and generally avoided areas exposed to high 

turbulence and variable flow direction. However, although similar, the microdistributions of simuliid 

and mayfly larvae are the result of different behavioural processes. While the grazing mayfly larvae 

migrated to locations that minimised the probability of accidental entrainment and maximised access 

to algal food resources, suspension-feeding blackfly larvae chose flow microhabitats that maximised 

delivery rates of food particles to their labral fans while minimising drag on the posterior portion of 

their abdomens (Lacousiere 1992; Lacoursiere and Craig 1993). 

Flow mediation of predator-prey interactions 

Larval E. longimanus made extensive use of the microhabitat represented by the exposed, 

relatively high-shear upper surfaces of torrential stream stones during the night and, to a lesser 

extent, during the day. Although predatory invertebrates (e.g. Rhyacophila, Drunella, and Megarcys) 

are relatively numerous in microhabitats preferred by Epeorus (see Chapter 2), and were collected at 

the study site {T. Hoover, unpublished data), these predators were never observed on the upper 

surface of the experimental stones during either day- or night-time periods, during the entire two 

month study period. This suggests that the upper surfaces of torrential stream boulders, which are 

typically exposed to high velocities and high shear stress, act as flow-mediated refuges (Hart and 

Merz 1998) from invertebrate predation for E. longimanus larvae. This conclusion conflicts with the 

findings of Peckarsky and Cowan ( 1995), who reported that the use of upper stone surfaces by E. 

longimanus did not represent a refuge from stonefly predation, as they observed that stonefly 

predators (Kogotus) were able to access all areas of streambed stone surfaces. However, the "high 

flow microhabitats" in the experimental stream chambers used by Peckarsky and Cowan {1995) had 

average current velocities of only 15.6 em s-1, while measured mean velocities over the substrates in 

the present study were much higher (range = 24.2- 136 ems-\ mean = 71 .8 em s-1) . The difference 

between the values recorded in the field in th is study and the values reported by Peckarsky and 

Cowan (1995) suggests the existence of a threshold velocity above which some stonefly predator 

taxa may not be able to forage for prey. 

Invertebrate predators, which generally lack the highly specialised morphological adaptations 

of torrenticolous grazers to maintain contact with the substrate in high velocity habitats (see 
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Weissenberger et al 1991; Statzner and Holm 1989; also see Minshall 1984; Vogel 1994 ), may either 

avoid high velocity areas (Muotka and Pentinnen 1994), or be eroded from the substrate when they 

attempt to access prey. Hart et al. (1996) note that while many prey species are sessile or semi-

sessile and have morphological adaptations that anchor them securely to the stream bed, many 

predators depend on a foraging mode to search for prey, a trait which selects for high speed and 

manoeuvrability rather than tenacity. Additionally, predators (especially the caddisfly Rhyacophila 

and the perlodid stonefly Megarcys) might be unable to exploit prey in high-velocity areas of the 

substrate due to the fact that they are generally larger that their mayfly prey, and larger organisms 

experience proportionally higher drag (Vogel 1994; Statzner 1981 ). The highly turbulent, high 

Reynolds number flows on exposed surfaces of torrential stream boulders may also prevent 

predators from recognising prey. The hydrodynamic cues (species-specific wave patterns generated 

by prey during escape manoeuvres) used by the predatory stonefly Kogotus modestus to discriminate 

prey species from non-prey species (Peckarsky and Wilcox 1989) might be disrupted in the highly 

turbulent flows above the bed of torrential stream boulders (see Hart et al. 1996). 

These results support the conclusions of Hart and Merz (1998) and Peckarsky et al. (1990) 

who found that direct predator impacts {i.e. lethal encounters) to prey populations were decreased in 

habitats which were hydrodynamically unfavourable to the predators. During the night, when E. 

/ongimanus were grazing on the upper surface of stream boulders, the degree of microhabitat overlap 

between predators (which have presumably remained in interstitial spaces or on the underside of the 

boulders) and prey was at a minimum. As such, the rate of predator/prey encounters should also be 

lowest during the night. In this system, however, the flow-mediated refuge from predation coincided 

spatially with high resource patches (periphyton densities were also greatest on the upper surface of 

stones). The negative effects of flow on predators and the spatial co-occurrence of high flow and 

high resource microhabitats may have combined to produce a positive indirect effect on larvae, 

similar to that observed in simuliid larvae populations by Hart and Merz (1998). As a result, other 

types of indirect impacts to mayfly prey populations attributed to the presence of predators may not 

apply to E. /ongimanus larvae in torrential habitats. For instance, Peckarsky et al. (1993) found that 

predator avoidance behaviour by Baetis bicaudatus resulted in lower feeding rates, and, as a 

consequence, lower growth rates and fecundities. Similarly, Peckarsky (1996) stated that Epeorus 

longimanus had reduced resource acquisition rates as a cost of predator avoidance. However, due to 
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the spatial overlap of areas of algal resource and refuge from predation, the feeding rates of E. 

/ongimanus in the torrenticolous stream habitats described here were probably not reduced in this 

fashion. In addition, increases in predator-induced drift, such as that reported in the mayfly Baetis by 

the stonefly Doroneuria baumanni (Lancaster 1990), may not occur in E. longimanus populations due 

to the low probability of predator-prey encounters during night-time feeding periods. Peckarsky 

(1996) found the presence of the stonefly predator Kogotus induced very little night-time drift in E. 

longimanus. Wooster and Sih (1995), in their review of drift and activity responses of benthic 

invertebrates to the presence of predators, found that stream invertebrate drift increased when 

invertebrate predators were present; however, no studies of the responses of torrenticolous taxa were 

included in their analyses. 

The daytime positioning of the larval E. longimanus that remained on the upper surface of the 

stones may represent a trade-off between exposure to predators and exposure to UV radiation. 

Several stream invertebrate taxa (e.g. simuliid larvae; Donahue and Schindler 1998) are known to be 

sensitive to UV radiation. When light levels increased to detectable levels in the morning, the majority 

of larval E. longimanus migrated to the underside of the stones. Only approximately 10% of the 

larvae observed on the upper surface of the stones during the night remained there during the day 

(Figures 4-13 and 4-14). The number of E. longimanus larvae that remained on the upper surface of 

streambed stones was related to the level of incident radiation; more larvae remained exposed on 

cloudy, overcast days than sunny days (personal observation). As a result, while high shear areas 

may act as a flow-mediated refuge from predation, levels of UV radiation may, in turn, mediate the 

use of these refugia . 

Diel periodicity 

The diel periodicity in positioning that was observed in E. longimanus is typical of the 

behaviour of mayflies seen in streams with visually oriented predators (Mcintosh and Peckarsky 

1996; Rader and Ward 1990). However, among-stone differences in the rates of dusk emergence 

and dawn withdrawal from the upper surfaces of the stones suggests that the behaviour exhibited by 

E. longimanus may be more than merely negatively phototactic. The timing of the emergence of E. 

longimanus larvae was highly variable among stones, and larvae emerged over several hours (see 

Figure 4-14). However, the withdrawal of larvae from the upper surface of all stones appeared to be 
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synchronous in that larvae withdrew to the underside of the stones within a relatively short period (< 2 

h). There are two possible explanations for the apparent asymmetry in the migratory behaviour of 

larval E. /ongimanus. First, the response to the proximal stimulus (light level) may vary between dusk 

and dawn. If larval E. longimanus are cued to emerge from the underside of the stones when 

ambient light levels decrease below a certain threshold value, the precise timing of the emergence 

should vary locally due to shading by adjacent stones. In sites with narrow, deep interstices between 

stones, larval emergence should begin somewhat earlier. By the same rationale, the timing of larval 

withdrawal should appear relatively co-ordinated . The upper surfaces of the protuberant stones, 

being higher than the surrounding streambed, should be essentially unshaded by adjacent stones. 

Larvae on the upper surfaces should have been exposed to similar light levels, and thus, when 

ambient light exceeded the threshold value, the withdrawal behaviour should have been cued at the 

same time for all individuals. Second, the dusk stimulus (light dropping below the threshold value) 

cued E. longimanus larvae to migrate to the upper surface and begin grazing; as a result, they may 

have immediately begun to forage as they migrated upward, reducing their travel speed. When light 

levels exceeded the threshold level at dawn, larvae were cued to cease feeding and migrate to the 

underside of the stone, unimpeded by incidental feeding . In this manner, speed of travel during the 

dawn withdrawal of diurnally active invertebrate grazers inhabiting coarse substrates should exceed 

travel speeds during dusk emergence. 

Shear stress 

In all cases where the stone protruded up into the flow (i.e. all stones except stone 25, which 

was located beneath a small plunge/cascade), shear stress (-rw) increased gradually from the front to 

the rear of the stone. Shear stresses recorded at the front of the boulder were generally low (-rw < 1.0 

Pa), while maximum shear stress values were generally recorded near the rear of the stone, 

immediately upstream of the separation point. Shear stress decreased abruptly at the rear of each 

stone, as shear stress is zero at points of flow separation (see White 1999). 

The relationship between the biology of benthic invertebrates and shear stress is generally 

poorly understood, despite several prominent reviews on the biological importance of near-bed 

hydrodynamics (e.g. Nowell and Jumars 1984; Davis and Barmuta 1989; Carling 1992) that 
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emphasised the potential importance of shear stress. Importantly, the distribution and magnitude of 

shear stress has yet to be measured at small (em) scales over the rocky surface of naturally occurring 

stream beds. This is due primarily to the difficulty in measuring 'tw in the field . Although shear stress 

can be determined from the near-bed, log-linear portion of the boundary layer velocity profile, such 

measurements are difficult and time-consuming to obtain in high velocity, shallow flows (see Hart et 

al. 1996), and are of questionable validity in instances where boundary layer profiles are distorted by 

pressure gradients (see Chapter 3). 

Statzner (1981) identified a relationship between several species of benthic invertebrates and 

"hydraulic stress", a factor that describes flow conditions at the surface of the substrate and is related 

to the theoretical boundary layer thickness. Recognising the potentially important role that bed 

stresses might play in benthic ecology, Statzner and Muller (1989) developed a set of standardised 

hemispheres (Fieisswasserstammtisch (FST) hemispheres) whose movement was correlated with 

boundary shear stresses and near-bed flow conditions. However, FST hemispheres were found to 

have several substantial limitations. Frutiger and Schib (1993) found that FST hemisphere movement 

was more correlated to mean velocity than near-bed velocity, and that the standardised deployment 

plate substantially interfered with local near-bottom microhydraulics. In addition, Dittrich and 

Schmedtje (1995) found that the relationship between FST hemisphere movement and wall shear 

stress depended on bed topography. Due to its small diameter and method of deployment, the 

Preston-static tube (PST) used in this study to measure the distribution of shear stress at small 

spatial scales does not experience these complications. Compared to other devices (i.e. hot-film 

anemometers; see Hart et al. 1996), the PST is relatively easy and quick to position , and is capable 

of directly measuring shear stress (Ackerman et al. 1994; Ackerman and Hoover 2001 ). As a result, 

the results presented here represent the only study to date that directly relates the microdistributions 

of benthic invertebrates and wall shear stress. 

If shear stress was the primary factor influencing the microdistribution of E. /ongimanus, the 

mayflies should have showed either a positive (rheophilic) or negative (rheophobic) response to 

increasing shear stress during the night-time period when they were actively foraging on the upper 

surface of the stones. As this was not the case, the distribution and movement of E. longimanus was 

apparently not limited by the high shear stress recorded on the upper surface of the torrential stream 

stones. In fact, the results show that E. longimanus larvae that remained on upper stone surfaces 
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during the day were found in high shear areas, possibly because such areas might act to exclude 

visually oriented vertebrate predators such as fish (e.g. Bull Trout Salvelinus confluentus) or birds 

(e.g. the American Dipper Cine/us americanus). Salmonid predators, such as those found in the 

study reach (Salvelinus confluentus; G. Cho, UNBC graduate student, unpublished data), generally 

exhibit a lie-in-wait mode of predation (e.g. Hughes 1998), and generally do not actively forage in high 

velocity microhabitats for prey. 

Stone reversal 

The results of the stone reversal experiment apparently contradict the conclusion that the 

night-time microdistribution of E. /ongimanus is unrelated to hydrodynamic factors . In the original 

orientation of the stones, E. /ongimanus larvae were aggregated towards the downstream side of the 

upper surface of all three substrates. When the stones were rotated 180°, the larvae quickly migrated 

downstream on the stone surface, adopting the same relative distribution {i.e. with respect to local 

flow patterns). When the stones were again rotated 180° (returning them to their original orientation), 

the larvae again migrated downstream on the stone surface, returning to their original distribution. 

This demonstrates that the larvae responded proximately to hydrodynamic cues, not algal densities or 

substrate characteristics. Although this result appears anomalous, the larval E. longimanus may 

have responded to some aspect of the near-bed flow environment (possibly shear stress -rw. near-bed 

velocity U0.002m. or turbulence intensity) to assess another, more directly important, ecological factor. 

For example, larvae may associate high-flow areas with abundant periphyton, and make use of this 

association to forage more efficiently. Alternatively, E. /ongimanus larvae may forage in high shear 

stress areas to minimise predation (Hart and Merz 1998) or maximise respiration (Wiley and Kohler 

1980). 

Periphyton microdistribution 

Periphyton density on the upper surface of the experimental stones was significantly and 

positively correlated with roughness and topography {i.e. greater mass of chlorophyll a cm·2 in higher 

and rougher areas of the stones). These results concur with the findings of Sanson et al. (1995) who 

reported a positive association between surface roughness and chlorophyll a. Peckarsky and Cowan 
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(1995) suggested that periphytic diatoms might be less prone to scouring from rough surfaces, but 

failed to propose a mechanism by which this might be possible. Rough surfaces provide a more 

suitable site for colonisation of diatoms (see Sanson et al. 1995). Furthermore, flows over rough 

surfaces become turbulent at lower velocities, which can, in turn, produce thicker boundary layers 

and viscous sublayers. Periphyton densities are known to be higher on the upper surfaces of stones 

(e.g. Vaughn 1986), a characteristic distribution produced by higher light levels (less shading and 

attenuation) and greater rates of nutrient delivery. 

The results suggest that E. longimanus may have had a negative impact on periphyton 

density. Although marginally insignificant, periphyton density was negatively correlated with both 

daytime (p = 0.060) and night-time densities (p = 0.055) of E. /ongimanus. Grazing invertebrates are 

known to have impacts on local algal densities. For example, Quinn et al. (1996) found that 

periphyton density declined with increasing near-bed velocities, and attributed this result to an 

increase in collector-browser invertebrates. Similarly, Feminella et al. (1989) found that grazing 

invertebrates reduced periphyton standing crops to a constant, low level , regardless of growth 

conditions. Vaughn (1986) found that the trichopteran grazer Helicopsyche borealis aggregated on 

the exposed upper surfaces of stones, the microhabitat with the greatest periphyton abundance, while 

the results of Casey and Clifford (1989) suggest that mayfly grazers tend to aggregate on areas of the 

substrate with the highest periphyton densities. 

No studies to date, however, have determined if E. longimanus, or any species of torrential 

grazer, locally reduce periphyton standing stock. Using the results of Cowan and Peckarsky (1994), 

a conservative feeding rate estimate of 6.0 x 1 o-7 g of pigment per animal per night can be calculated 

for Baetis bicaudatus. Assuming that E. longimanus and B. bicaudatus graze at approximately the 

same rate, the observed densities of E. /ongimanus should have a substantial impact on local 

standing crop of periphyton, grazing as much as 12% of the periphyton from the upper surface of the 

stones per night {based on larval densities of 400 individuals m-2, and periphyton densities of 2.0 x 1 o-

3 g pigment m-2
). This suggests, however, that E. longimanus impacts on periphyton abundance and 

distribution should be more substantial than our results indicate. The limited impact of E. /ongimanus 

on periphyton density is possibly due in part to mouthpart morphology; Karouna and Fuller (1992) 

found that the "brusher'' mouthparts of Epeorus have little impact on diatom densities on a variety of 

substrate types. 
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Conclusions 

The near-bed flow conditions measured in this study were heterogeneous both among and 

within stones. The local variability in measured hydrodynamic factors (i.e. wall shear stress, 

boundary layer separation) directly influenced the behaviour and distribution of the invertebrate taxa 

that inhabit shallow, high-velocity streams. Spatial variation in ecologically important hydrodynamic 

factors such as shear stress can influence dispersal, predator I prey interactions, and feeding. 

However, the relationship between periphyton, invertebrate grazers, and near-bed flow conditions is 

complex; while E. longimanus larvae responded proximally to hydrodynamic factors, the larvae in turn 

may have, through herbivory, reduced periphyton in areas of the substrate where they aggregated. 

However, the growth and distribution of benthic algae is also known to be directly influenced by near-

bed flows (e.g. Quinn et al. 1996). Due to the complexity of the relationship between hydrodynamics, 

periphyton, and benthic macroinvertebrates, studies at organism-defined spatial scales are needed 

before a more complete understanding of the linkages between hydrodynamics and benthic ecology 

can be gained. 

In addition, the majority of our knowledge of the ecology of mobile benthic invertebrates is 

based on observation of these organisms on the upper surfaces of streambed stones. However, 

most stream invertebrate taxa, including those which diurnally migrate to the upper surface of stones 

to graze on algae, spend much of their lives in interstitial spaces within the streambed (e.g. Rader 

and Ward 1990). Few studies have attempted to examine the activity of either predator or prey 

species during the day in the interstitial spaces beneath stones. Clearly, we need to know more 

about the behaviour of benthic invertebrate taxa at a wider variety of spatial scales before we can 

understand the relationships that exist between flow and the distribution of benthic organisms. 
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Chapter 4 - Figures 

A 8 c 
0 0 0 0 0 0 • 0 

I @)@)@)@)@) 0 0 0 0 I 0 0 0 • 0 0 
I 

0 0 I> 0~0 @)@@@)@ ............ 
I @@)@@)@) 0 0 0 Or 0 0 0 • 0 0 

0 0 0 0 0 0 • 0 

BF u• 10 em 

Figure 4-1. Diagrammatic representation of the upper surface of a stone, showing the distribution of 
each of the types of factors sampled. A) The distribution of pre-marked points over the stone surface 
(delineating a 5 x 5 em grid). The distribution of all parameters were recorded with respect to this 
grid; triangular marker in the middle of the stone denotes the centre of the stone ('datum'). The 
distribution of boundary layer flow conditions were also recorded (BF denotes the extent of the 
backflow region associated with boundary layer detachment at the rear of the stone). B) The 
distribution of algal samples (three parallel transects in the streamwise direction). The location of 
each algal sample is denoted by a larger circle superimposed over a grid 'point'. C) The distribution 
of shear stress measurements obtained on each stone (two orthogonal transects, crossing at the 
centre of the stone). The location of each shear stress measurement is denoted by a solid symbol. 
Scale bar is shown. 
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Figure 4-2A. E. /ongimanus larvae density among stones, and between day- and night-time periods 
(error bars = SD). Data are larval densities pooled over the entire study period. While differences in 
per quadrat mayfly densities among stones during the night-time are not significant (ANOVA, 
F(4,130) = 0.40, p = 0.81), differences in mayfly densities among stones during the day are (ANOVA, 
F(4, 130) = 5.08, p < 0.001 ). 
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Figure 4-28. E. /ongimanus larvae density in areas of the substrate with different boundary layer 
flow conditions (error bars = SE). Larval densities quantified at small scales (within 5 x 5 em 
quadrats). Data are mean larval densities, calculated from per quadrat densities measured over the 
entire study period and all stones. 
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Figure 4-3. Relationship between daytime and nighttime microdistributions of E. /ongimanus larvae. 
Areas of the stone surface that have relatively high densities of larvae at night tend to have high 
daytime densities. Data are mean larval densities, calculated from per quadrat densities measured 
over the entire study period and all stones. (Regression line shown; R2 = 21 .12%.) 
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Figure 4-4. The distribution of E. /ongimanus larvae {day and night) along the centre line of the 
upper surface of the experimental stones (error bars = SE). Data are larval distributions pooled over 
the entire study period. Daytime means were not significantly different. Nighttime means that were 
not significantly (at a = 0.05) or nearly significantly (p < 0.075) different are underlined (see Table 4-2 
for exact p-values). Flow is from left to right; stone centre is denoted by streamwise distance = 0. 
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Figure 4-5. Relationship between E. /ongimanus density (day and night) and wall shear stress (-rw) . 
(Regression lines shown; upper line = daytime larval densities, R2 = 36.15%, lower line = nighttime 
larval densities, R2 = 2.08%.) 
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Figure 4-6. Distribution of larval E. longimanus density (error bars = SE), periphyton density (error 
bars= SE), and shear stress ('tw) (error bars= SD) along the centreline transect of stone 7. Densities 
of E. longimanus larvae and periphyton appear to have an inverse relationship. Shear stress ('tw) 
decreases abruptly at the rear of the stone due to flow separation. Periphyton samples were 
collected from the field on October 7, 1998; E. longimanus densities and shear stress measurements 
were made on various dates throughout the study period (see Tables 4-1 and 3-2, respectively). 
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Figure 4-7. Distribution of larval E. /ongimanus density (error bars = SE}, periphyton density (error 
bars = SE), and shear stress ('tw) (error bars = SO) along the centreline transect of stone 31. Shear 
stress ('tw) decreases abruptly at the rear of the stone due to flow separation. Periphyton samples 
were collected from the field on October 7, 1998; E. longimanus densities and shear stress 
measurements were made on various dates throughout the study period (see Tables 4-1 and 3-2, 
respectively). 

202 



1200 - ------ night C)! 1000 E --o- day c 800 -(/) s 600 
:0:::. g. 400 u 
~ 200 
LJ.i 

0 -C)! 5 E 
(.) 

C) 4 
::J -co 3 
>. 

..c:. 2 0.. 
0 ..... 

..Q 1 

..c:. 
(.) 

0 

-co 4 a_ -C/) 
3 C/) 

Q) ..... -C/) 
2 ..... co 

Q) 
..c:. 
C/) 

0 
10 5 0 -5 -10 

streamwise distance X (X1 Q"2m) 

Figure 4-8. Distribution of larval E. longimanus density (error bars = SE), periphyton density (error 
bars = SE), and shear stress (-rw) (error bars = SD) along the centreline transect of stone 23. Shear 
stress (-rw} increases as flow accelerates as it crosses the stone; no measurements were obtained in 
the region of flow separation at the rear of the stone. Periphyton samples were collected from the 
field on October 7, 1998; E. longimanus densities and shear stress measurements were made on 
various dates throughout the study period (see Tables 4-1 and 3-2, respectively). 
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Figure 4-9. Distribution of larval E. /ongimanus density (error bars = SE), periphyton density (error 
bars = SE), and shear stress ('tw) (error bars = SO) along the centreline transect of stone 10. 
Densities of E. longimanus larvae and periphyton appear to have an inverse relationship. Periphyton 
samples were collected from the field on October 7, 1998; E. longimanus densities and shear stress 
measurements were made on various dates throughout the study period (see Tables 4-1 and 3-2, 
respectively). 
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Figure 4-10. Distribution of larval E. longimanus density (error bars = SE), periphyton density (error 
bars = SE), and shear stress {tw) (error bars = SD) along the centreline transect of stone 25. Flow 
from upstream plunged directly on the upper surface of stone 25; as a result, shear stress is high and 
relatively uniform across the upper surface. Periphyton samples were collected from the field on 
October 7, 1998; E. longimanus densities and shear stress measurements were made on various 
dates throughout the study period (see Tables 4-1 and 3-2, respectively). 
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Figure 4-11. Periphyton (chlorophyll a) densities along the centre line of the upper surface of five 
experimentally deployed stones (error bars = SE). Flow is from left to right; stone centre denoted by 
streamwise distance= 0. Sample sizes at each streamwise distance vary due to inter-stone variation 
in diameter. 
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Figure 4-12. Periphyton density in areas of the bed (i.e. experimentally deployed stones) with 
different near-bed flow conditions (error bars = SE). Sample sizes differ due to the relatively small 
area of each stone over which boundary layer separation had occurred . 
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Figure 4-13. Densities of E. /ongimanus larvae on the upper surface of the five experimentally 
deployed stones (error bars = SD) during September 26 - 27, 1998. Light (photosynthetically active 
radiation; 400-700 nm) fluxes are also shown (heavy solid line). 
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Figure 4-14. Densities of E. longimanus larvae on the upper surface of the five experimentally 
deployed stones (error bars = SO) during October 3 - 4, 1998. Light (photosynthetically active 
radiation ; 400-700 nm) fluxes are also shown (heavy solid line). 
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Figure 4-15. Change in E. /ongimanus density (error bars= SE) recorded on the upper surface of the 
experimentally deployed stones during October 3 - 4, 1998. Periods of light and dark represented by 
bar at bottom of figure. 
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Figure 4-16 (previous page). The effect of stone reversal on the positioning of E. longimanus 
larvae. (A) In their original orientations of the three stones (0°), larvae were at highest densities over 
the rear of the three stones. (B) After the stones were rotated 180°, the larvae moved downstream to 
new positions on the stone surface, although the distribution of larvae with respect to flow was similar 
(i.e. at highest densities over the rear of the stone). (C) When the stones were rotated back to their 
original orientations (0°), the larvae returned to their original distributions. E. /ongimanus distributions 
recorded approximately every 40 minutes (A: 18:58 h, 8: 19:48 h, C: 20:12 h). Open arrows indicate 
direction of flow. 
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Chapter 5 

Torrential stream microhabitats: flow, form, and function 

Summary 

1. Hydrodynamics are generally thought to be the single most important factor influencing the 

biology of benthic organisms. However, the near-bed flow microenvironments inhabited by 

torrential stream fauna are poorly understood, and currently accepted models of near-bed flows 

may, in some cases, be misleading. 

2. While near-bed flows in open channels with geometrically simple beds are predictable, flows in 

shallow streams with complex geometry and large relative roughness (e.g. rough-turbulent flows) 

are not. Pressure gradients, flow compression, and boundary layer separation ensure that the 

distribution of velocity in the near-bed region may rarely, if ever, conform to the standard, 

logarithmic model of boundary layer velocity distribution. 

3. Where local protruding obstacles constrict flow, the near-bed portion of the boundary is distorted, 

creating a "wedge-shaped" velocity profile. Invertebrates inhabiting these regions of the 

streambed will experience greater lift, drag, and shear forces than predicted by normal boundary 

layer theory. 

4. Epeorus longimanus (Heptageniidae), a torrential mayfly species, exhibits behavioural and 

morphological adaptations that allow it live in high velocity, high shear environments. The 

flattened shape and ventral, sucker-like gill arrangement of E. /ongimanus act to minimise the risk 

of accidental detachment from the upper surface of torrential stream boulders. The high velocity, 

lift, drag, and shear stress of this environment may also, in turn, act to decrease predation (by 

excluding both invertebrate and vertebrate predators) and increase food availability (by 

increasing rates of nutrient delivery to periphyton). 

5. The ecological implications of local heterogeneity in near-bed velocity (Uo.oo2m) and wall shear 

stress (tw) are discussed. 

213 



Physical - biological coupling in the stream environment 

It is generally thought that hydrodynamic parameters are the most important environmental 

factors affecting the ecology of organisms in lotic habitats (e.g. Davis and Barmuta 1989; Carling 

1992; Hart and Finelli 1999). Several studies have demonstrated that the forces of moving water 

influence the morphology, behaviour, distribution, trophic relationships, and intra- and interspecific 

interactions of benthic stream organisms (e.g. Chance and Craig 1986; Weissenberger et al. 1991 ; 

Collier 1994; Hart et al. 1996). However, despite the fact that the ecological importance of open 

channel hydraulics is widely accepted, the current understanding of stream flows at organism-defined 

spatial scales remains limited, especially in torrential stream environments. 

Knowledge of the relationships that exist between flow microenvironments and stream biota 

is based largely on fine-scale measurements obtained in laboratory flumes (e.g. Statzner and Holm 

1982; 1989; Weissenberger et al. 1991) and relatively coarse measurements of flow in naturally 

occurring stream channels (e.g. Wetmore et al. 1990; Statzner and Higler 1986; Collier et al. 1995; 

but see Hart et al. 1996). Laboratory-based studies use flow channels (flumes) to control basic flow 

variables (i.e. mean velocity, depth, turbulence intensity, etc.) and to minimise the influence of 

secondary flows and channel-specific flow patterns. As a result, flow in these channels is usually 

characterised by well-defined , fully developed, logarithmically distributed boundary layers with 

min imal turbulence, and bulk flow patterns that are approximately two-dimensional (see Statzner and 

Holm 1989; Weissenberger et al. 1991 ). Problems arise, however, when the results of these studies 

are used to extrapolate the near-bed flows of natural channels, and velocity distributions are 

assumed to approximate the standard logarithmic shape (see Carling 1992}. However, this 

assumption is not valid in the rapidly varied, highly three-dimensional flows of torrential streams. 

Measurement of near-bed flows at organismal scales is needed to elucidate the relationship between 

benthic organisms and the hydrodynamic factors that define torrential stream environments. 

The relationship between mean and near-bed flows 

Vertical distributions of velocity in channels are generally thought to conform to a standard 

logarithmic shape (Carling 1992; White 1999). As such, the relationship between mean and near-bed 

velocities is reasonably predictable in geometrically simple (flat-bedded and walled) channels of 
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known depth. However, the flow separation, local accelerations, and pressure gradients associated 

with topographic irregularities and complex bed geometries lead to complex, often unpredictable, 

distributions of velocity in natural streams. 

Mean velocities are correlated with velocities measured 2 em above the bed (Figure 5-1A) 

across a variety of stream habitat types (i.e. riffles, pools, etc.); velocities at this height above the bed 

are approximately half of mean velocity. However, when mean velocity is compared to the velocity 

measured immediately adjacent to the bed (Uo.oo2m. measured 2 mm above the bed), the two 

determinations of velocity are approximately equal (Figure 5-1 B). This suggests that where 

roughness elements protrude substantially into the flow of shallow channels, near-bed flows are 

accelerated to near-mean (or even exceeding mean) velocities. This demonstrates that the boundary 

layers (defined as the height above the boundary where velocities reach 90% of mean velocity) over 

the upper surface of protuberant stones are, in many cases, thinner than 2 mm. While benthic 

invertebrates in many stream habitats (i.e. gravel riffles) may be protected from mean velocities by 

thick boundary layers (Hart et al. 1996), invertebrates on the upper surface of torrential boulders may 

not be afforded such protection. 

Near-bed flows in torrential streams 

The results of the present study support the development of a model to describe the 

distribution of velocity within boundary layer flows above isolated roughness elements in shallow 

streams (where D < 3d). Flow approaching protuberant boulders in shallow torrential streams is 

generally turbulent due to the downstream convection of vortices detached from the lee side of 

upstream boulders (Hart et al. 1996). The vertical distribution of near-bed velocities approaching 

boulders is dependent on upstream bed geometry (for illustrative purposes will be assumed to be 

approximately log-normal; Figure 5-2). The vertical distribution of mean velocities higher in the water 

column would be expected to be relatively homogenous, as a result of efficient momentum transfer in 

the turbulent, high Reynolds number flow. As flow reaches the front of the boulder, a solenoidal 

("horseshoe") vortex may form, provided that flow interference from upstream roughness elements is 

not too great (Young 1992; 1993). If the stone provides a 'bluff-body' obstacle to the flow, a 

stagnation point will form at the leading edge of the stone as well. 
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Over the upper surface of the leading edge of the boulder, patterns of water movement will 

be three-dimensional as the flow splits and flows over and around the stone. Flow that crosses the 

upper surface of the stone will be constricted by the rising, inclined leading edge of the stone. 

However, the flow will not accelerate uniformly in the vertical direction; acceleration is evident 

primarily in fluid adjacent to the bottom, producing a distinct "wedge-shaped" profile (Figure 5-2, also 

see chapter 3). Two factors may contribute to the development of this unusual velocity distribution . 

First, near-bed flows are accelerated due to flow constriction rather than gravity. This conclusion 

(that flow near the bottom accelerates rapidly while flow near the surface remains relatively 

unaffected) is supported by the jet-like properties (namely a high-velocity core region; see White 

1999) of the near-bed "wedge" portion of the velocity profile (see chapter 3). Second, due to 

weathering of substrates in high-velocity streams, naturally occurring boulders are often 

characteristically rounded. The gradually curving leading edge of the front of the stones may be an 

essential element for the development of wedge-shaped velocity distributions. Nowell and Church 

(1979) did not find any evidence of a near-bed velocity profile distortion of this type when they 

recorded velocity profiles over equally sized, but rectangularly shaped, objects. Gradual constriction 

of the flow (and the development of the near-bed "wedge") may not occur when an inclined face is not 

presented to the flow. If wedge-shaped velocity profiles are the result of near-bed flow constriction , 

the distortion should be greatest at points where flow constriction is greatest. The effects of the 'no-

slip' condition cannot be ignored, however; boundary layer growth (and retardation of near-bed 

velocity) occurs downstream of the stagnation point due to the effects of viscosity. 

As flow crosses the centre of protuberant stones in shallow flows, the velocity profile 

distortion that was created by constriction over the leading edge of the stone begins to dissipate, 

presumably due to momentum transfer in the free shear layer above the high-velocity wedge and 

frictional effects and shear stress in the boundary layer below the velocity distortion. When the 

thickness of the boundary layer exceeds the height above the substrate where the magnitude of the 

near-bed distortion is greatest {the 'tip' of the 'wedge'), the distortion disappears completely. If the 

streamwise diameter {length) of the stone is shorter than the distance over which the 'wedge' is 

dissipated, the near-bed distortion is advected off the rear of the stone 

Although the development of wedge-shaped profiles in natural channels has not been 

discussed previously in the literature, examination of the results of earlier studies reveals that this 
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type of near-bed velocity profile distortion has been measured previously. Given that velocity at the 

streambed-fluid interface must be zero, four of the five stones above which Hart et al. (1996) 

measured flow fields have velocity profiles that, by the criteria used in chapter 3, would be 

categorised as wedge-shaped. Similarly, of the 15 serial profiles measured by Bergeron ( 1994) along 

a 3.6 m shallow stream reach, one of the two profiles (his profile 4) obtained over the leading edge of 

protuberant stones has a near-bed high-velocity wedge. It is difficult to determine if additional profiles 

measured by Bergeron (1994) also have near-bed velocity distortions, as he was unable to measure 

velocities within 1.9 em of the bed. In the present study, the velocity profile distortions producing the 

wedge were generally located within 1 em of the bed. It is likewise difficult to assess the shapes of 

the velocity profiles measured by Hart et al. (1996) because they neither provide the portions of the 

profile more than 1 em from the bed nor a measure of mean velocity. 

Ecohydraulics of Epeorus longimanus 

In shallow flows with relatively large, protuberant stones, the marked spatial heterogeneity of 

near-bed hydrodynamic parameters (notably near-bed velocity and wall shear stress) will have 

substantial impacts on the distribution and biology of benthic organisms. The highest densities of E. 

longimanus larvae were often found on the upper surface of torrential stream boulders (especially 

during the night}, where near-bed velocities and shear stresses were generally high. Where near-bed 

velocity profile distortions ('wedges') increased near-bed velocity gradients, the lift and drag 

experienced by mayfly larvae found on the exposed upper surface of boulders in torrential streams 

will be substantially higher than in regions of the bed with comparable mean velocities but thicker, 

normally distributed, boundary layers. 

Extreme hydraulic habitats do not appear to limit the movement or behaviour of this mayfly. 

E. longimanus larvae were observed to move easily about on areas of the substrate where near-bed 

velocities (Uo.oo2m} exceeded 1.0 m s-1
. Morphological and behavioural adaptations effectively counter 

the forces of lift, drag, and shear stress experienced by larvae in their preferred nighttime habitat. 

The ventral gills of larvae are arranged in a 'sucker-like' arrangement, their flattened, streamlined 

bodies have a relatively low drag coefficient (Weissenberger et al. 1991 ), and the reduction in number 

of anal cerci (from three to two) can also be regarded as a further adaptation to reduce drag. 
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Furthermore, the efficacy of the morphological adaptations of this species may be augmented if 

coupled with behavioural modifications of body position that further reduce hydraulic stresses (as for 

Simulium vittatum; Chance and Craig 1986). Although the physical means by which these 

adaptations allow E. longimanus to maintain contact with the substrate are poorly understood, it is 

apparent that they allow this mayfly to thrive in high velocity, high shear environments. 

Although invertebrates in high velocity habitats must incur energetic costs in order to maintain 

position, the results of the present study suggests that near-bed flow regimes of this type also confer 

substantial ecological benefits to those taxa with the requisite adaptations. A conceptual model of the 

relationship between hydrodynamic factors, predators, resource availability, and E. longimanus is 

shown in Figure 5-3. Invertebrate predators, which are generally adapted for locomotory efficiency 

rather than tenacity (Hart and Merz 1998), are unable to forage for prey (in this case, E. longimanus) 

in the high velocities to which the upper surfaces of torrential stream boulders are exposed . In this 

fashion, high velocity, high shear patches of the substrate may act as flow-mediated refuges from 

predation (Hart and Merz 1998; Peckarsky et al. 1990). Due to the direct, negative influence of flow 

on predators, flow may have an indirect, positive effect on local E. longimanus populations. The 

steep velocity gradients and high shear stresses of this environment also increase the rates of 

nutrient and dissolved gas delivery to the substrate surface, enhancing the growth of periphyton 

(especially diatomaceous species), which in turn act as a food resource of larval E. longimanus. This 

provides another pathway by which flow has indirect, positive effects on this mayfly. Through 

herbivory, larvae may have a negative impact on algal densities. However, because the near-bed 

flow regime also tends to exclude other grazing invertebrate taxa, interspecific competition for 

available algal food resources may be low, and total impacts may actually be quite limited. Finally, 

flow may also have a beneficial, direct influence on E. longimanus larvae. High near bed velocities 

and shear stresses may act to increase the respiratory efficiency of this rheophilous mayfly (see 

Golubkhov et al. 1992). 

Stream hydraulics I invertebrate interactions 

The results presented here are possibly the first report of shear stress distribution patterns 

across the surface of naturally occurring stream bedforms {i.e. generally, front-to-back asymmetry, 
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with shear stresses increasing from the front to the rear of the stone). As such, it may be necessary 

to re-evaluate the conclusions drawn by previous studies examining the microdistribution of stream 

insects. For example, Wetmore et al. (1990), studying the microdistribution of the suspension-

feeding caddisfly Brachycentrus occidentalis, concluded that Froude number was the best predictor 

of larval position. However, as shown in chapter 3, shear stress and Froude number both generally 

increased from the front of torrential stream boulders to the rear. Near-bed flow parameters may be a 

valid , untested alternative explanation for the microdistribution of suspension-feeding benthic insects. 

In order to estimate near-bed flows from mean velocity measurements, Wetmore et al. (1990) 

assumed, as have many recent studies, that the water column accelerates uniformly. The results 

presented here show that this assumption, if used to estimate near-bed flow conditions in shallow 

streams with complex bed geometries, could lead to substantial errors. Similarly, Delgado and 

Carbonell (1997) found that the case morphology of the caddisfly Sericostoma selysi varied with 

respect to water surface velocity, and subsequently attributed the differences as a response to 

counter the forces of drag. However, the results of this study suggest that the near-bed velocities to 

which benthic insects are exposed may, in fact, be only weakly related to mid-stream or near-surface 

velocities . As a result, the extent to and mechanisms by which shear, lift, drag, and near-bed 

velocities modify the behaviour and morphology of benthic insects remain largely unstudied. 

Moreover, the relative importance of the various hydraulic forces to which stream benthic insects are 

exposed remains poorly understood. The near-bed flows recorded in this study are variable over 

short distances, a factor that will influence the ecology of organisms inhabiting the exposed surfaces 

of boulders in high gradient streams. While some of the observed flow patterns conformed to 

commonly applied hydraulic theory (e.g. flow accelerating and becoming supercritical as it crosses 

boulders), some did not (e.g. wedge-shaped velocity profiles). 

With a few notable exceptions, few studies have explored the near-bed flow environments of 

streams at the scales at which benthic invertebrates experience them. Even fewer studies have 

examined the range and distribution of hydraulic parameters across the streambed at these 

organism-defined scales. Nowell and Jumars (1984) suggested that in shallow streams with 

topographically complex beds (where D < 3k), the three-dimensional patterns of flow generated would 

be of greater importance to the ecology of benthic invertebrates than average boundary skin friction. 

The results of the present study show that boundary flow conditions are, indeed, heterogeneous and 
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highly dependent on local bed geometry. As flow accelerates over the upper surface of stream-bed 

stones, shear stress at the boundary increases; however, the relationship is modified substantially by 

the shape of the substrate over which the water is flowing . Both flow constriction (which accelerates 

near-bed flow at a greater rate than at mid-depth) and thin boundary layers (a result of high near-bed 

velocities or short distances available for boundary layer development) define the near-bed flow 

environment. 

These findings, however, provide only a limited understanding of the relative importance of 

the various near-bed flow parameters to the ecology of the stream invertebrates that inhabit the upper 

surfaces of streambed stones. In comparison, the relative importance of the many hydraulic forces to 

which marine benthic invertebrates are exposed has been determined for several intertidal species. 

For example, Denny et al. (1985) demonstrated that acceleration reaction may perhaps be the most 

important force limiting the distribution of relatively large intertidal taxa, while Denny (1987) showed 

that lift may be the most important factor determining the distribution of intertidal mussels. However, 

coastal marine systems are very different from stream systems in that the flows, while of comparable 

velocity, are intermittent and bi-directional. In comparison, flows in stream habitats are relatively 

constant and unidirectional, and as such, the relative ecological importance of the various near-bed 

forces will be different. The forces of lift, drag, and shear will all tend to dislodge invertebrates from 

the substrate, but their relative importance is poorly understood. 

The boundary layers measured over the upper surface of the boulders were often extremely 

thin (-1 mm), supporting the conclusions of Statzner and Holm (1982) that benthic insects in streams 

are exposed to essentially free-stream velocities. In fact, at locations on the stream bed where 

velocity profiles were wedge-shaped rather than logarithmically distributed, benthic insects would be 

exposed to velocities far greater than those predicted by normal boundary layer theory. Hart et al. 

(1996) stated that, in shallow, high velocity stream flows the thickness of the benthic boundary layer 

was of sufficient thickness that benthic invertebrates (in their case, larval blackflies) would not 

experience free-stream current velocities. However, the velocity profiles recorded by Hart et al. (their 

Figure 1) would generally be classified as log-normal by the conservative 0 (vertical velocity 

variation) index used in this study. 

Buffin-Belanger and Roy (1998) showed that the lee side of pebble clusters represents a 

distinct hydraulic habitat with specific flow characteristics, and further suggested that stream 
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invertebrates might utilise this region as a refuge . Similarly, Bouckaert and Davis (1998) 

demonstrated that distinct macroinvertebrate communities inhabit the horseshoe vortex region in front 

of and the wake region behind stream boulders. The results presented here suggest that upper 

surface of stream boulders may be utilised in a similar fashion by a distinct community of benthic 

macroinvertebrates. The locally high shear stresses, thin boundary layers, and high near-bed 

velocities will act to exclude macroinvertebrate predators that are poorly adapted to high flow 

environments (Hart and Merz 1998; Peckarsky et al. 1990), while at the same time providing 

abundant grazing for herbivorous insects which are adapted to the high lift and drag of torrential 

environments (Weissenberger et al. 1991; Vogel 1994; Delgado and Carbonell 1997). The turbulent 

nature of shallow, high velocity flows might also prevent fish predators from predating on insects 

grazing on the upper surface of torrential stream boulders (see Metcalfe et al. 1997). Salmonids, 

which are the primary fish predators of aquatic insects in many northern mountain streams, typically 

inhabit pools below riffles and feed on drifting insects (Hughes 1998) in order to minimise the 

energetic costs associated with swimming and maintaining position in high velocity flows. As such, 

shallow, high velocity habitats may provide a refuge from fish predators as well. 

Directions for future research 

Increasingly, ecologists are adopting the view that flow is the most important factor in the 

stream environment, and are incorporating measurements of near-bed hydrodynamic parameters into 

their experimental designs. However, before stream ecologists can decide which factors to measure 

and ascertain the most efficient way to measure them, they must have a comprehensive 

understanding of the nature of near-bed flows in naturally occurring stream channels. Before this is 

possible, there are two principal areas where substantial research is required . First, new models of 

stream function that incorporate patterns of flow at small, organism-defined scales must be 

developed. While currently utilised models of flow in stream channels can be used to adequately 

predict large-scale phenomenon such as bedload movement and mean velocity, they are less useful 

in cases when they are used to describe or predict the nature of the near-bed flows that define the 

immediate environment of both macroinvertebrate taxa and periphyton. New models of stream flow 

will provide not only an understanding of near-bed flow velocities, but also of turbulence, shear 
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stress, and the role of substrate/flow interactions. Second, stream ecologists must be prepared to 

investigate the behaviour and ecology of benthic organisms at the scales at which they experience 

flows. While there are technical difficulties associated with this type of research, the potential 

rewards are substantial. Lotic research at appropriate spatial scales will not only provide ecologist 

with a greater understanding of the nature of biological-physical coupling in these environments, but 

will also provide a theoretical basis that can be utilised to mitigate human impacts to rivers and 

streams. 
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Chapter 5- Figures 
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Figure 5-1. The relationship between mean and near-bed flows. In both cases, the solid line 
represents the regression line fitted to the data, while the dashed line represents the 1:1 regression 
line (line of equality). A. Near-bed velocity (Ua.o2m; velocity measured at 2 em above the bed) versus 
mean velocity for 48 sites in two adjacent, high discharge streams (see Chapter 2). Predictably, 
near-bed velocities are correlated with, but lower than, mean velocities . B. Near-bed velocity U0.002m; 
velocity measured at 2 mm above the bed) versus mean velocity (U; measured at 50% of depth} for 
21 sites above the upper surface of protuberant boulders (see Chapter 3). Near-bed velocities are 
correlated with, but similar to, the mean velocities . 
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Figure 5-2. Diagrammatic representation of the flow field above isolated roughness elements in 
shallow, torrential streams (where D < 3d; e.g., rough-turbulent flow). The approaching flow (A) has 
two regions; a bulk flow zone (Umean) where velocity is relatively homogenous due to high rates of 
momentum transfer in the high Reynolds number flow, and a bed layer (BL) zone, where velocity is 
retarded due to viscous and form drag effects at the bed/fluid interface. Flow in the stagnation region 
(B) is characterised by a solenoidal ('horseshoe') vortex (HV), and a stagnation point in the front of 
the stone. Over the leading edge of the stone (C), near-bed flows are influenced by the growth of a 
boundary layer downstream of the 'leading edge' of the stone, and acceleration of the near-bed 
portion of the water column due to constriction of the relatively shallow flow by the continuously 
curving stone surface. The two processes combine to produce a small 'kink' or 'wedge' in the near-
bed portion of the velocity profile. As the distance from the leading edge of the stone grows, so does 
the boundary layer thickness. When flow is no longer being constricted (D), momentum transfer in 
the free shear layer above the 'wedge' and the continuously velocity-retarding influence of the 
boundary layer below the 'wedge' act to reduce the magnitude of the difference between mean and 
maximal (at the tip of the 'wedge') velocities . As a result, the wedge begins to dissipate. At the rear 
of the stone in the flow separation zone (E), the boundary layer separates, resulting in a backflow 
(BF), or attached vortex. 
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Figure 5-3. Diagram of the direct (solid arrows) and indirect (dashed arrows) relationships between 
flow, Epeorus longimanus, primary producers, and predator abundance, with the effect of each 
pathway indicated by a + (positive effect) or- (negative effect). The relative position of each factor 
signifies their relative roles; flow is always a cause and is positioned on the left, E. /ongimanus 
abundance is generally an effect and is positioned on the right, periphyton and predators both act as 
causes and exhibit effects; as such, they are positioned in the middle (adapted from Hart and Merz 
1998). 
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Appendix 1 

Notation and Formulae 

Notation and formulae used throughout the thesis are listed below. 

A) Notation 

p 
\fl 
K 

A 
cd 
c1 
d 
dk 
D 
D/kave 
Fd 
F1 
Fr 
g 
h 
k 
kave 
ks 
I 
Lmax 
Lave 
Lso 
m 
p 
Q 
R 
Re 
Reb 
Rex 
Re* 
u 
0 
Uz 
Uo.so 
Uo.oozm 
Uo.ozm 
U* 
x* 
y* 
z 
Zo 

coefficient of kinematic viscosity (m2 s"1) 

boundary layer thickness (m) 
viscous sublayer thickness (m) 
critical boundary layer thickness (m) 
wall shear stress, also denoted as -r0 (Pa) 
density of water (kg m "3) 

particle protrusion (as a proportion of diameter) 
von Karman's constant (empirically determined to be 0.40) 
constant used in the determination of -rw (see chapter 3) 
drag coefficient (dimensionless) 
lift coefficient {dimensionless) 
diameter of substrate elements (m) 
functional diameter of substrate elements (m) 
total channel depth (m) 
relative roughness {dimensionless) 
force due to drag (N) 
force due to lift (N) 
Froude number {dimensionless) 
acceleration due to gravity (9.81 m s"2

) 

head (m) 
roughness height (m) 
average roughness height (m) 
Nikuradse's roughness length (m) 
characteristic length scale (m) 
maximum stone length (in quadrat) (m) 
average stone length (of four largest stones in quadrat) (m) 
standard deviation of stone length (four largest stones in quadrat) 
Slope of a regression (used to determine U*; see below and Appendix 2) 
pressure term (N m"2

) 

discharge (m3 s"1
) 

hydraulic radius (m) 
Reynolds number {dimensionless) 
channel Reynolds number {dimensionless) 
local Reynolds number {dimensionless) 
Reynolds roughness number {dimensionless) 
mean channel velocity (m s"1

) 

vertical velocity variation index (dimensionless) 
velocity at height above the boundary z (m s·1

) 

velocity measured at 50% of depth (m s"1) 

velocity measured 2 mm above the bed (m s"1
) 

velocity measured 2 em above the bed (m s"1
) 

shear velocity (m s·1
) 

non-dimensionalised pressure difference {dimensionless) 
non-dimensionalised shear stress {dimensionless) 
distance from the boundary (m) 
roughness height (m) 
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B) Formulae 

Re = Ullu 
Fr = Ul(gD)0'5 

Rex= Uxxlu 
tw = pU*2 

Uz = U*IK ln[(z-d)IZo] 
U* = K [(u1 - u2)l(ln z1 - In z2)] 
U* = K m 
UIU* = 5.75 log(12 Dlk) 
Re* = U*k5 1v 
8' = 11 .5v I U* 
Fd = Y:z Cd pSU2 

F1 = Y:z C1 pSU2 

Head= -0.00164 + (0.0508 x voltage) 
P + 1 12pU2 + pgh = constant 
u = (2g~h)05 

x* = log10 [(~P x d2)1(4pu2)] 
y* = log1o [(twX d2)1(4pu2)] 
y* = -1 .394 + 718 x* 
tw =A X ~P718 

A= 1 I [101'394 x (d214pu)11~ 
~p = pg~h 
0 = (Uo.so- Uo.oo2m) I Uo.so 
x = Ocrrt I (0.16 I Re/7

) 

Dlkave = DI[0.5(Lave)] 

(1-1) (also equation 2-1) 
(1-2) (also equation 2-2) 
(1-3) 
(1-4) 
(1-5) 
(1-6) 
(1-7) 
(1-8) 
(1-9) 
(1-10) 
(1-11) 
( 1-12) 
(3-1) 
(3-2) 
(3-3) 
(3-4) 
(3-5) 
(3-6) 
(3-7) 
(3-8) 
(3-9) 
(3-1 0) 
(3-11) 

note: assumes '¥=0.5 

Note: the commonly determined bed roughness factor 'relative roughness' (Dikave) is more accurately 
designated 'relative depth' or relative submergence (see Nowell and Church 1979), as depth (D) is 
non-dimensionalised by the roughness factor kave· However, as is it an indicator of the degree of 
protrusion of the bed elements into the flow, this ratio is often referred to in this work as relative 
roughness, following the nomenclature established in Davis and Barmuta (1986). 
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Appendix 2 

Near-bed velocity profiles and wall shear stress (tw) estimation 

At a given point in a channel , the shear stress acting on the wall ('rw) can be estimated from 
velocity profile data using the 'law of the wall ' (see Vogel 1994; Wilcock 1996; and Biron et al. 1998 
for summaries). The law of the wall for the 'overlap layer' or 'log layer' is often expressed as 

Uz = U*/K ln{z!Zo) ( 1) 

where Uz is the horizontal velocity at a given elevation z above the boundary, U* is the shear velocity 
(not a measure of velocity in the standard sense, but rather a nominal velocity related the rate at 
which velocity changes in the vertical direction), K is von Karman's constant (empirically determined 
to be 0.40; see White 1999), and Zo is the roughness height (a parameter whose value is dependent 
on the roughness of the bed). As the roughness elements associated with the surface of the 
boundary increase in size {i.e. a smooth plate becomes covered with an encrusting growth of 
nodulous algae, or flat slate bedrock becomes covered with gravel), the rate of transfer of momentum 
in the fluid , and thus shear velocity, is altered. 

Shear velocity U* is defined as the square root of shear stress (-cw) divided as the density of 
the fluid (p ), 

(2) 

From this relationship, two aspects of the relationship between a moving flu id and a solid boundary 
are apparent. First, shear stress can be estimated from a velocity profile {by rewriting equation 2 as 
equation 3, and recognizing that, with care and appropriate equipment, all parameters in equation 1 
can be measured in either a field or lab setting). 

(3) 

Second, wall shear stress increases directly with increases in the density and exponentially with 
increases in the shear velocity of the fluid. Density, however, is not likely to change much in a given 
channel, even if we account for fluctuations in temperature or solute load. 

Despite the simple relationship between shear stress, shear velocity, and density, there can 
be substantial variation in the fluid dynamic parameters as fluid shears due to friction at the fluid/solid 
interface. If vertical transfer of momentum in the fluid is limited, the slope of the near-bed portion of 
the velocity profile (the plot of z on U) is relatively steep. Adjacent 'sheets' of water are moving at 
nearly the same velocity and 'slide' over one another only very slowly; shear stress in this case is 
relatively low. If the near-bed portion of the velocity profile is relatively flat, however, the velocities of 
adjacent 'sheets' of water are very different, and are 'sliding' over one another very quickly; shear in 
this instance will be relatively high. 

As the slope of the velocity profile is indicative of shear stress, the law of the wall can be 
applied to estimate •w· However, the nature of the law of the wall varies depending on the relative 
influence of viscosity which, in turn , varies with distance from the bed . When examining flows 
immediately adjacent to the bed, the dominance of viscous effects {boundary layer flows are a 
Reynolds-scalable phenomena) must be accounted for. The law of the wall as expressed in equation 
1 only applies to the portion of the water column that is strongly influenced by viscosity, generally the 
bottom 20% of the flow depth (see Biron et al. 1998 for a discussion). In the outer portions of the 
boundary layer (beyond the so-called 'overlap layer'), the log-normal nature of the profile does not 
apply, and the law of the wall as it appears in equation 1 no longer applies. Biron et al. (1998) 
demonstrated that shear stress is underestimated when the entire velocity profile, rather than the 
bottom 20%, is used. 

As long as the log-normal portion of the boundary layer is used, equation 1 can be rewritten 
as 

U*/K = dUx I dlnz (4) 
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which can be expressed as 

U*/K =[slope of plot of U on lnz] = m (5) 

and further simplified as 

U* = m K (6) 

where m is the slope of the plot of U on lnz. It is important to note that when making determinations 
of shear velocity U*, the slope of the profile must be that of the plot of U (response variable) on lnz 
(predictor variable); plots of lnz on U are only to be used for diagrammatic, rather than analytical, 
purposes. In addition, Bergeron and Abrahams (1992) note that because U is generally measured 
with greater error than is lnz, regressing lnz on U can lead to substantial errors in estimates of U*. 

The principle of estimating shear stress using velocity profile data can be best illustrated 
using an example. Using a small-scale Pitot-static tube, a velocity profile was obtained over a 
boulder in a third class torrential stream (Figure 1; stone 7, Oct. 7, 1998; see also chapter 3). The 
mean velocity in this location was 1.1 m s·1

. The velocity profile, and especially the near-bed portion 
(Figure 1 ), appears to be log-normal. By visually inspecting the semi-log plot (z loge transformed), it 
appears that the first eight points (or, within 1.28 em of the bed) comprise the log-layer (Figure 2). A 
linear regression of this portion of the profile (remembering to employ the proper plot of dU I dlnz) 
produces the following result (Table 1 ). 

Table 1. Linear regression of the log-layer portion of the velocity profile (Oct. 
7, 1998) 

U = 1.52 + 0.1151nz 
Predictor Coeff. 
Constant 1.523 
Lnz 0.115 

s = 0.0190 R2 = 98.0% 

Analysis of Variance 
Source DF 
Regression 1 
Error 6 
Total 7 

Stand. Dev. 
0.0383 
0.00680 

ss 
0.104 
0.00217 
0.106 

t-ratio 
39.77 
16.97 

MS 
0.104 
0.00036 

p 
0.000 
0.000 

F 
287.95 

p 
0.000 

The slope of the regression is 0.115, which, when applied in equation 6, gives a value of U* of 0.046 
m s·1

. This value, when incorporated into equation 3, provides an estimate of shear stress of 2.12 Pa. 
A steeper slope, implying higher rates of shear in the log-layer (as adjacent 'sheets' of water slide 
over one another at a higher rate), would produce a higher value of U*, and result in a higher value of 
'tw. 
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Figure 1. Velocity profile obtained over stone 7 on Oct. 7, 1998 using a Pitot-static tube. 

Figure 2. Logarithmic plot of the velocity profile in Figure 1, showing the linearity of the first eight 
points (indicating the portion of the profile which corresponds to the 'log-layer' or 'overlap layer'). 
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Appendix 3 

Ontogenetic changes in Epeorus deceptivus during the study 
period (Sept. - Oct. 1998) 

Approximately every three weeks during the study period (September to October, 1998; 
specific dates shown below), 5 Epeorus deceptivus larvae were collected at the study site in order to 
determine the ontogenetic changes in morphology. During this period, head capsule width increased 
by 19.4% (from 1.29 mm to 1.54 mm), while total body length (not including cerci) increased by 
67.3% (from 3.15 mm to 5.27 mm) (Figure 1 ). 

6 
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"' b ..-
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Figure 1. Change in body dimensions {head capsule width and total body length excluding cerci) of 
Epeorus deceptivus during the study period (dates shown). In all cases n = 5 {bars= SO). 
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Appendix 4 

Preston-static tube 

In natural systems, accurate measurements of hydrodynamic variables such as velocity, 
shear velocity, and shear stress are often difficult to obtain very close to the boundary. For example, 
constant temperature anemometers using hot-wire or hot-film sensors are fragile and susceptible to 
rapid fouling (Hart et al. 1996), particle image velocimetry (PIV) techniques cannot be easily utilized 
where a clear side-view of the flow is not possible, and acoustic-based techniques such as acoustic 
Doppler velocimeters (ADVs) suffer from resolution problems due to resonance when used to 
measure water velocity within 30 mm of the bed (Finelli et al. 1999). However, small-scale Pitot-static 
tubes and Preston-static tubes do not suffer from these types of problems, and can be used to 
accurately measure near-bed water velocities and shear stresses. 

In this study, measurements of near-bed velocity profiles and shear stress were made using 
a small-scale Preston-static tube (PST). The Preston-static tube used was configured to directly 
measure wall shear stress when deployed on a surface (Ackerman et al. 1994 ). The Preston-static 
tube was developed for measuring wall shear in situations where the incorporation of a wall-mounted 
static pressure tap is impractical (i.e. around small-scale objects where flow lines may be curved), but 
has been recently tested for use in a variety of field and lab conditions (Ackerman and Hoover, 2001 ). 

The Preston-static tube (Figure 1) was constructed of a 90° bevelled tip syringe needle fixed 
to a side-bored syringe needle (tube diameter= 0.88 mm; see Ackerman et al. (1994) for a detailed 
description). The Preston-static tube differs from a standard Preston tube in that the dynamic 
pressure port (which faces into the flow) is coupled with a static pressure port (on the sidewall) . As a 
result, the difference between static pressure Ps and dynamic (or stagnation) pressure p0 can be 
measured, and velocity or shear stress can be determined (see chapter 3 for a description of the 
relationship between differential pressure, water velocity, and shear stress). A Validyne model 
CD379-1-2 membrane-type differential pressure transducer (Validyne Engineering; Northridge, CA), 
connected to the Preston-static tube via 2.0 m of flexible pressure lines (inside diameter = 3 mm), 
was used to measure differential pressure. Pressure differences were expressed as a voltage by a 
Validyne portable indicator (model CD379). In order to obtain a mean differential pressure, 15 
voltages (obtained over an approximately 30 second time period) were averaged to obtain each 
measurement. Before measurements were taken, the pressure lines connecting the Preston-static 
tube to the pressure transducer were inspected for the presence of trapped air bubbles which would 
cause error in the differential pressure measurements. Preston-static tubes must be aligned parallel 
to the flow for accurate measurement. As such, before each measurement was made, the horizontal 
tube of the PST was oriented parallel to a fluorescein dye filament released immediately upstream 
from a long thin needle (length = 200 mm, diameter = 1 mm) (see chapter 3 for an additional 
description of Preston-static tube orientation and deployment). 
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Figure 1. A) The Preston-static tube measures wall shear stress using the difference between the 
total pressure (p0) and static pressure (p5 ). The PTot tap and ps tap are indicated (tube diameter d = 
0.88 mm; the diameter of the 20G syringe needles has been exaggerated for clarity). B) Deployment 
device used to position the Preston-static tube. The ball-and-socket connector allows the PST to be 
oriented parallel to the stream flow. The deployment device is mounted on a vertical support and 
attached to a xyz-positioning device (not shown; see chapter 3 for a description) (see also Ackerman 
and Hoover 2001 ). 
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Appendix 5 

Periphyton sampler 

The measurement of the biomass or chlorophyll content of periphyton, a community that 
includes microbes, protists (protozoans, and algae), and fungi within a 'polysaccharide matrix' (Lock 
et al. 1984 ), is one of the most important determinations in studies of the trophic structure of stream 
environments (Steinman and Lamberti 1996). Analyses of periphyton have been used to infer 
variations in photosynthetically active radiation (Steinman 1992), ultraviolet radiation (Bothwell et al. 
1994 ), herbivory (Lamberti et al. 1987), and water velocity (Steinman and Mcintyre 1986), among 
others. As such, it is important that any periphyton sampling technique incorporates the following 
criteria: (1) that a constant proportion (preferably all) of the biomass be removed; (2) that a known 
area be sampled; (3) that it is possible to apply the technique under a variety of conditions; and (4) 
that the results are repeatable. Unfortunately, most periphyton sampling techniques (e.g. scraping, 
brushing, or direct extraction of the substrate) are lacking with respect to one, or more, of the 
aforementioned criteria (Cattaneo and Roberge 1991 ). 

A device was developed to obtain algal samples from small, repeatable areas on the surface 
of periphyton-covered natural and artificial substrates. The device consists of a central cylinder (PVC 
pipe; inside diameter = 20 mm) 90 mm in length, sealed at one end and encircled by a high-density, 
closed-cell foam rubber skirt at the other (Figure 1 ). The rubber skirt extends approximately 5 mm 
from the end of the PVC cylinder, and is used to seal the device against the surface of the substrate 
from which the sample is being obtained. The cylinder contains a circular brush cut from the head of 
an Ultra-Stiff vegetable brush (Tupperware; Orlando, Florida) with nylon bristles (bristle length = 15 
mm). This circular brush is attached to a brass shaft (diameter= 3 mm, length = 130 mm), which 
extends upward through the device, and emerges through a hole in the upper end of the cylindrical 
housing (hole diameter = 3.5 mm). The length of shaft that extends above the device was fastened in 
the chuck of a hand-held, rotary carving tool (Ryobi® HT20VSK; Pickens, S.Carolina). The side of 
the cylindrical housing was fitted with two tubing ports separated at 90°. The first port, fixed slightly 
higher than the other, provides an entrance for water, while the second, lower port is attached to a 
vacuum line, allowing for the removal, via suction, of the algae-water slurry created when the within 
the device. 

When the device is pressed tightly against the surface to be sampled, the foam rubber skirt 
forms a seal against the substrate. Water is then introduced into the device via a line attached to the 
upper port (either a squirt bottle or distilled water tap can be used to control the flow of the water into 
the device), and the vacuum pump turned on. When the rotary tool is activated, the brush rotates, 
scrubbing algae from the substrate. The slurry produced gathers in a filter flask attached to a vacuum 
pump. The material can then be collected on a glass-fibre filter for determination of chlorophyll a 
content or organic/inorganic biomass (ash-free dry weight). 
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Figure 1. Diagram of the apparatus used to sample periphyton from the surface of naturally 
occurring and experimentally deployed substrates. The device consists of a plastic (PVC) cylinder 
(A), sealed at the upper end. During use, the bottom end of the cylinder is pressed to the substrate. 
A seal between the substrate and the cylinder is made by a high-density, foam rubber skirt (B) at the 
base of the cylinder. A cylindrical, nylon-bristled brush (C), is attached to a hand-held rotary carving 
tool (Ryobi® HT20VSK) via a brass shaft (D) (diameter= 3 mm) which extends upward through the 
device. Water is drawn into the device at (E). When the rotating brush is held against the substrate, 
the water and removed algae form a slurry that is carried off by suction (at F). The brush is shown 
extended from device for clarity. 
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Appendix 6 

Stone survey form 

The distributions of mayfly larvae on the upper surface of all experimentally deployed stones 
in the study were recorded using a form (see below) that featured a grid that reproduced the 
Cartesian grid marked on the surface of the stones (see chapter 3 and 4). Distributions of larvae on 
the surface of naturally occurring stones were recorded (using circles marked on the diagram of the 
stone; see below) on the same forms, by first measuring the stones (in situ) , and then sketching the 
shape and extent of the stones on the form. Then, the distributions of larvae were recorded in the 
same manner as in the pre-marked stones. 
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