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ABSTRACT 

In British Columbia, broadcast burning following clearcutting has been used to meet forest management 

objectives such as site preparation for restocking timber species. However, effects of broadcast burning 

on ectomycorrhizae (ECM), which facilitate nutrient and energy cycling within forests, is poorly 

understood. Difficulties include a complex soil environment and uncertainties in ECM identification. To 

determine effects of broadcast burning following clearcutting on the diversity and abundance (percent 

colonization) of ectomycorrhizal fungi, morphological and molecular (PCR-RFLP) methods were used to 

assess naturally regenerating and outplanted hybrid white spruce seedlings growing in clearcut, clearcut 

plus burned, and adjacent mature sites in the Interior of British Columbia. Morphological 

characterization resulted in 24 fungal morphotypes. Significant treatment effects and seedling 

differences occurred between naturally regenerating seedlings in clearcut and mature sites and between 

naturally regenerating and planted seedlings in clearcut sites. The abundance of some morphotypes 

differed on planted seedlings in clearcut compared with clearcut plus burned sites and for planted 

seedlings in treated (clearcut and clearcut plus burned) compared with regenerating seedlings in 

untreated (mature) sites. A Russulaceae type and Thelephora were the most abundant morphotypes on 

regenerating seedlings in the mature and clearcut sites, respectively. Molecular characterization 

showed no significant differences for treatment effects or seedling type. Amplification of the ITS region 

for eight commonly occurring morphotypes revealed 12 genotypes (having a shared band pattern for 

one or none of three restriction endonucleases) with 18 variants (having similar band patterns for two 

restriction endonucleases). Cenococcum, Tuber, Hebeloma and Thelephora had only one genotype, 

however, Amphinema, E-strain, MRA, and a Russulaceae type each exhibited two or three genotypes. 

Morphology showed differences in occurrence and abundance of some ECM fungi following 

clearcutting, and clearcutting plus burning, suggesting that disturbance may be altering the fungal 

composition of hybrid white spruce seedlings on these sites towards ECM best able to adapt to changing 

environmental conditions. Using both characterization techniques provided a comprehensive estimate 

of diversity, specifically for total species richness when using morphology, and for increased 

understanding of inter- and intra-specific variation with respect to molecular characterization of 

ectomycorrhizal associations. 
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Introduction 

In British Columbia, broadcast burning (a form of prescribed burning) has been commonly used as a 

method of site preparation following clearcutting to help create a favourable environment for seedling 

establishment (Hawkes et at. 1990). To determine the efficacy of this treatment, it is necessary to 

examine the fire effects on the soil environment because the soil is a major determinant of site productivity 

(Agee 1993, Wells eta/. 1979). For example, plant growth and productivity potential are affected by soil 

moisture-holding capacity, nutrient status and porosity (Hungerford eta/. 1991 ). Numerous studies have 

been conducted on soil physical and chemical properties following clearcutting and burning. Burning 

effects are often confounded with those of clearcutting but in general, as the fire severity increases, 

negative impacts on the soil also occur, such as decreased soil porosity, increased soil erosion, and 

increased nutrient volatilization (Agee 1993, Wells eta/. 1979). 

The effects of broadcast burning on soil organisms have not been well documented. Of particular interest 

are fire effects on the overall diversity and abundance (percent colonization) of ectomycorrhizal fungi that 

live in symbiotic association with conifers, particularly commercial forest tree species. In forming 

ectomycorrhizae (ECM}, these fungi contribute to nutrient and water uptake by roots and to protection 

against root pathogens (Harley and Smith 1983}, providing a key link in nutrient and energy cycling within 

forest ecosystems (Dighton and Mason 1985). Some previous studies have reported a decrease in ECM 

abundance following fire and harvesting (Wright and Tarrant 1958; Harvey eta/. 1980; Perry eta/. 1982; 

Schoenberger and Perry 1982; Parke eta/. 1984 ). However, other studies reported an increase (Pilz and 

Perry 1984; Brainerd and Perry 1987; Richter and Bruhn 1993) or no decrease (Visser 1995) in ECM 

abundance following these disturbances. Obstacles in determining responses of ECM formation to fire 

include the complexity of the soil environment, differences in response to fire intensity and severity as well 

as difficulty in identifying fungal symbionts. 

Few studies have been conducted concerning the effects of fire on ECM diversity and these had limited or 

no descriptions of fungal types, making comparisons with current studies difficult. Recent efforts have 

been made to describe ECM using more detailed morphological characterization (Simard eta/. 1997a; 

Horton eta/. 1998; Visser eta/. 1998) as well as molecular (the polymerase chain reaction-restriction 



fragment length polymorphism, PCR-RFLP) methods (Kernaghan eta/. 1997; Horton and Bruns 1998, 

Jonsson eta/. 1999). Some weaknesses can be attributed to these two methods, including the inability of 

some morphotypes to be identified to the species level and the fact that some tips fail to amplify for 

molecular analysis. Traditional diversity indices (such as Shannon or Simpson) have been used in 

morphological analysis of ECM communities, however species uncertainty can be problematic because all 

species in a sample must be known (Magurran 1988). To assess diversity using molecular data, the Phi 

index has been derived by Egger (Baldwin 1999, M.Sc. Thesis). Using the Phi index, PCR-RFLP band 

patterns from ECM root tips are matched with every other tip in the sample and their distances 

(representative of their relatedness) are used instead of species richness and abundance data, in 

calculating molecular mycorrhizal diversity (Egger, pers. comm. 1999). By using a combination of 

morphological and molecular approaches, a more detailed assessment of mycorrhizal diversity and a 

better understanding of responses to burning effects can hopefully be obtained. 

The main objective of the present study was to determine, using both morphological and molecular 

characterization (PCR-RFLP) methods, the effect of broadcast burning following clearcutting on the 

diversity of ECM on planted and naturally regenerating hybrid white spruce (Picea engelmannii (Parry ex 

Engelm.) x g/auca (Moench) Voss). Mature, clearcut, and clearcut plus burned (cut plus burned) sites in 

the sub-boreal spruce (SBS) biogeoclimatic zone of central British Columbia were examined. In addition, 

the study was to explore differences in ECM diversity between planted and regenerating seedlings and to 

compare molecular results with previous morphological assessments. One of the main species used in 

reforestation in the Central Interior of British Columbia is hybrid white spruce, however, few studies have 

examined the ECM diversity of these seedlings planted on broadcast burned sites following harvesting. 

Previous studies have reported decreased abundance of ECM tips with an increase in disturbance (from 

undisturbed to clearcut, to cut plus burned sites) (Wright and Tarrant 1958; Harvey eta/. 1980; Perry eta/. 

1982; Schoenberger and Perry 1982; Parke eta/. 1984 ). Due to the more extreme environments created 

by site disturbance and possible decreases in available fungal inoculum, this trend might be expected. As 

well , the fungal community composition between treatments may differ as those species best able to 

adapt to particular conditions of clearcut and cut plus burned sites may be favoured. Initial site changes 
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caused by clearcutting can include increased temperature extremes due to loss of shading from 

vegetation , destruction of the organic layer as well as disturbance of the mineral layer, and decreased soil 

porosity and water infiltration due to soil compaction. Following the removal of boles, crowns and forest 

floor, Amaranthus eta/. (1996) reported that at moderate to severe soil compaction levels, decreased 

ECM abundance on outplanted Douglas-fir (Pseudotsuga menziesii var. g/auca [Beissn.] Franco) and 

western white pine (Pinus montico/a Dougl. ex D. Don) resulted . Disturbance of the organic and mineral 

layers is important, especially for fine roots. In a white spruce (Picea g/auca [Moench] Voss) -subalpine fir 

(Abies /asiocarpa [Hook.] Nutt.) stand, Kimmins and Hawkes (1978) found that approximately 70% of 

overstory and understory fine-root biomass was in the LFH and Ae horizons, at an average depth of 8 em. 

The initial flush of nutrients from the finer slash (Kimmins 1997) may be quickly lost when no roots or 

organisms are present to use them. 

Depending on the fire severity and intensity, subsequent burning following clearcutting could destroy 

additional sources of fungal inoculum such as roots, fungal spores and sclerotia or might discourage the 

presence of remaining animal vectors. However, broadcast burns of light to moderate severity may in fact 

create an environment of increased nutrient availability and reduced competition, for those organisms 

remaining on, or colon izing the site. Furthermore, a few years after disturbance, soil conditions should 

improve, due to the regrowth of vegetation , increased shading, the formation of an organic soil layer and 

the return of animal vectors. Although perhaps not as great as might be seen immediately after 

disturbance, differences in ECM abundance and diversity might still be expected to persist. 

ECM abundance and diversity might also be expected to be higher where there are many niches that 

specialized mycorrhizal fungi can colonize, such as in the mature forest. A steady supply of nutrients and 

water, regulation of temperature extremes and abundance of fungal inoculum sources and animal vectors 

should maintain a diverse and competitive community of ECM. Thus, there might be notable differences 

in fungal community composition between regenerating seedlings in the treated and untreated sites. 

Naturally regenerating seedl ings in mature sites could provide a reference for the possible inoculum 

(native fungi) existing on adjacent sites following disturbance. 
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Differences may exist between regenerating and planted seedlings in the same site. Seedlings originating 

from greenhouse and nursery stock may initially possess fungal inoculum when outplanted two years 

later. However, new roots are gradually replaced or colonized by in situ fung i. Bledsoe and Tennyson 

(1982) reported that previously inoculated Douglas-fir seedlings, outplanted on dry, burned over sites in 

eastern Washington were colonized by native fungi within five months, although some fungi from the 

original inoculum were still present. Inoculated ectomycorrhizal fungi on outplanted black spruce (Picea 

mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.) nursery seedlings, declined sharply after 

two growing seasons and indigenous fungi were noted 11 weeks after outplanting (Browning and Whitney 

1992). Another difference between planted and regenerating seedlings relates to the size of seedlings 

and their root systems. The larger root systems of the planted seedlings, grown under optimal conditions 

in the greenhouse and nursery for the first two years, might confer a greater chance of colonization by 

different and more ectomycorrhizal fungi when outplanted onto treated sites. 
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1. Literature Review 

1.1 PRESCRIBED BURNING: OBJECTIVES AND CURRENT USES 

Prescribed burning is the knowledgeable application of fire to a specific land area to accomplish 

predetermined forest management or other land use objectives (Merrill and Alexander 1987). In contrast, 

a wildfire is an unplanned or unwanted natural or human-caused fire (Merrill and Alexander 1987). 

Historically, wildfires have been the most important regenerative agent in coniferous forests (Ahlgren and 

Ahlgren 1960; DeByle 1976) but only recently have forest managers acknowledged this. After decades of 

fire suppression, forest managers are now attempting to utilize methods that mimic natural disturbance 

regimes, to meet goals of sustaining biological diversity and forest productivity (Delong and Tanner 

1996). In theory, fire should be reintroduced in the form of prescribed burns to those forest ecosystems 

that require periodic fire to maintain the character, diversity and vigour of the intrinsic plant and animal 

communities (Poulin et at. 1994). In British Columbia, such ecosystems include interior and northern 

forests in the sub-boreal spruce (SBS) biogeoclimatic zone (Vasbinder eta/. 1996). 

From a forest management standpoint, prescribed burning has been used to meet several objectives. 

These include reduction of the fire hazard, site preparation for replanting and seedling establishment, 

reduction of brush competition, facilitation of stand tending, site sanitization of disease organisms or insect 

pests, and natural ecosystem management as mentioned above (Hawkes et at. 1990; Weber and Taylor 

1992; Mutch 1994; Feller 1996). Ninety percent of the prescribed burning in Canada has occurred in 

British Columbia, from the period of 1984 to 1992 (Feller 1996), and fire has been used as an economical 

and efficient tool to meet some of the above objectives (DeByle 1976; Weber and Taylor 1992). Since 

1992, however, a decline in the amount of land burned in Canada for silvicultural purposes has occurred 

(Feller 1996). The main reasons for this decline are the logistical difficulties and economic costs in 

controlling fires that involve liability issues, shortage of qualified personnel and smoke concerns (Arno 

1996). Meeting criteria of biodiversity hinders the use of fire in preference for other silvicultural treatments 

such as partial or selective cutting , combined with the increased availability of machines for mechanical 

site preparation (Feller 1996; Dow, pers. comm. 1997). Despite this downward trend, prescribed fire still 

remains an important tool in vegetation management (Feller 1996). 
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Normally, a burn prescription uses guides such as the Canadian Forest Fire Weather Index and Canadian 

Forest Fire Behavior Prediction system (Merrill and Alexander 1987) and is laid out once a site has been 

assessed. Three options are available to burn slash, or logging debris, namely broadcast, windrow (piling 

of slash into long rows) or pile burning. Broadcast burning is lower in intensity and its effects are 

homogeneous throughout the site as slash is distributed evenly on the ground, compared to windrow and 

pile burning where soil effects are more localized and severe (DeByle 1976; Hawkes eta/. 1990). 

Broadcast burning imitates a natural fire better that the other two methods because there is less mineral 

soil disturbance, however, these fires are more difficult to control than slash pile burns (DeByle 1976). 

1.2 TERMINOLOGY AND IMPORTANT DEFINITIONS RELATED TO FIRE 

Critical concepts describing prescribed burns are the fire type, fire intensity, and fire severity. There are 

three basic types of fire in forests, categorized by the vertical strata where the burn occurs: the ground, 

surface and crown. In slash burns, only ground and surface fires occur. Ground fires, though of low 

intensity, are the most destructive as they smoulder slowly through packed organic matter and can kill 

roots in the forest floor. Surface fires exhibit flaming and burn rapidly , scorching bark and needles, killing 

seedlings and saplings, and opening serotinous cones. Each fire type releases different heat intensities 

and spreads at different rates, resulting in variable amounts of fuel consumed and levels of heating above-

and belowground (Barbour eta/. 1987; Hungerford eta/. 1991 ; Kimmins 1997). 

Fire intensity is defined as the rate of heat release per unit of ground surface area (kW/m) and is 

proportional to flame height and rate of spread (Wells eta/. 1979). The rate of spread is the speed at 

which the leading edge of the fire travels downwind; duration refers to the time over which energy release 

occurs at any particular location (Kimmins 1997). The combined effects of fire intensity and duration are 

expressed by the term fire severity. This can be a qualitative assessment of litter, duff and soil 

appearance (or disappearance) after burning (Wells eta/. 1979) or a quantitative measurement of the 

reduction in forest floor th ickness (Merrill and Alexander 1987; Haeussler 1991 ; Feller 1996). Most fires in 

the SBS zone have been characterized as medium to high intensity surface and crown fires (Parminter 

1992). 
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Fire severity is primarily influenced by four factors: fuel properties (compaction, composition and moisture 

content); weather conditions before and during fire (temperature, wind and precipitation); site conditions 

(topography and soil texture) ; and finally type of prescribed burn method used (Haeussler 1991 ). The 

timing of a fire is important in many respects. In particular, one must consider changes in plant phenology 

occurring throughout the year. For example, a fire in the early spring may not be as detrimental as one 

occurring in the summer because plants can resprout resulting in very little impact on the vegetation in the 

following year (Haeussler 1991 ; Kimmins 1997). Dormant plants (from late summer to early spring) are 

better protected against fire due to the presence of high levels of belowground carbohydrates and 

protected buds (Haeussler 1991 ). 

1.3 FIRE AND THE SOIL ENVIRONMENT 

Soil organisms play a major role in soil formation and nutrient cycling (Borchers and Perry 1990), yet soil 

biological responses to fire are some of the least studied aspects of the soil environment (Agee 1993). 

This may be due in part to the complexity of the soil environment, especially in the rhizosphere, the root 

surface and surrounding area where intense soil biological activity occurs (Borchers and Perry 1990). 

Here, nitrogen fixers, mycorrhizal fungi and root pathogens exist, interact, and use and/or produce 

carbon-rich root exudates, secretions of enzymes, chelators, growth hormones and antibiotics (Harley and 

Smith 1983). Extraction, identification and the study of small soil organisms such as bacteria and fungi 

often involves methods that are time-consuming, have a high degree of uncertainty, and that require 

constant revisions of taxonomy. 

Perhaps the most important soil organisms affecting the survival of seedlings are the fungi that live in 

symbiotic association with living plant roots, forming mycorrhizae (Harley and Smith 1983). These 

symbiotic fungi represent about 10% of all recognized soil fungal species (Molina eta/. 1992). 

Furthermore, an estimated 90% of all terrestrial plant species belong to families that are commonly 

mycorrhizal (Trappe 1987; Molina eta/. 1992). 
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1.4 ECTOMYCORRHIZAL FUNGI DIVERSITY AND SPECIFICITY 

Mycorrhizal fungi involved in mutualistic symbioses belong in the phyla Asco-, Basidia- and Zygomycotina 

and are grouped into seven currently recognized groups: vesicular-arbuscular, ecto- (ECM), ectendo-, 

arbutoid , monotropoid, ericoid, and orchid mycorrhizae (Harley and Smith 1983). ECM are symbiotic 

associations between fung i and angiosperm or gymnosperm hosts, many of which are important timber 

species worldwide and include species such as pine (Pinus} , spruce (Picea) , Douglas-fir (Pseudotsuga) 

and Eucalyptus. An excess of 5000 ectomycorrhizal fungi associate with likely more than 2000 plant host 

species (Kendrick 1992}, providing for a multitude of combinations. Different hosts may possess a few or 

many mycorrhizal fungal partners and fungi may be host specific, to intermediate, to broad host ranging, 

capable of forming functionally compatible mycorrhizae on few to several members of diverse families. 

Douglas-fir and pines for example, have possibly 2000 associated fungal species worldwide, based on 

sporocarp-host associations (Trappe 1977). Currently, the data suggest that most ectomycorrhizal fungi 

are intermediate to broad host ranging (Molina eta/. 1992). An example of a broad host ranging fungus is 

Thelephora , sometimes found on greenhouse-grown seedlings and capable of forming on members of 

many plant genera (lngleby eta/. 1990). However, several hundred species of fungi can be genus-

specific such as Sui/Ius granulatus, which only associates with Pinus species (Molina eta/. 1992). 

1.5 FUNCTIONS OF ECTOMYCORRHIZAL FUNGI 

Increased absorption and access to minerals, increased nutrient and water uptake by plant roots, 

protection against root pathogens and the ability to act as large reservoirs of plant derived carbon are 

several documented functions of ectomycorrhizal fung i (Harley and Smith 1983). Different fungi vary in 

the degree to which they can perform these functions (Perry and Rose 1983) but the details of their 

specific functional contributions largely remain unknown. 

The persistence and distribution of ectomycorrhizae in the absence of living hosts is not well documented 

(Harvey eta/. 1980; Amaranth us 1991 ). There is potential for woody shrubs colonizing a planted site to 

provide a source of inoculum for host tree species. For example, Arctostaphylos uva-ursi, may provide 

ectomycorrhizal fungal inoculum for pine and spruce in clearcuts in B.C. (Molina eta/. 1992). The 

suggestion of fungal linkages between plants of the same or different species implies a greater role by 
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mycorrhizae in seedling regeneration than is currently acknowledged. Newman (1988) proposed some 

important possibilities due to fungal linkages such as benefits to seedlings or to nutrient deficient plants 

that can link into a "hyphal network" and receive photosynthates from other hosts or from direct nutrient 

transfers from dying roots to living roots without going through the soil (where nutrients may be lost). 

Simard eta/. (1997b), using reciprocal isotope labeling, showed bidirectional carbon transfer between 

birch (Betula papyrifera Marsh.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings 

growing in the cedar-hemlock biogeoclimatic zone, and reported a net carbon gain by Douglas-fir. 

Transfer between hosts was facilitated by hyphal linkages but net carbon transfer must be demonstrated. 

1.6 CHARACTERIZATION OF ECTOMYCORRHIZAE 

1.6.1 Morphological techniques 

Morphologically, ECM are different from other mycorrhizae in that the fungus forms a sheath or mantle 

that surrounds the plant root and a Hartig net develops between the root epidermal and cortical cells 

(Harley and Smith 1983). In angiosperms, the Hartig net intercellular penetration is barred by the 

exodermis, whereas in gymnosperms (which do not possess an exodermis) penetration occurs up to the 

endodermis (Kendrick 1992). ECM morphotypes are characterized by using light microscopy to 

distinguish features such as colour, mantle structure, external hyphae, and presence and structure of 

rhizomorphs (Agerer 1987 -98; lngleby eta/. 1990; Agerer 1991 ; Goodman eta/. 1996). Only a few ECM 

have been unambiguously identified to genus and species level using this characterization method 

(Mehmann eta/. 1995) and the uncertainty may be partly due to the fact that morphology may vary 

according to changes in the root or soil environment, or to changes in host partner (Egger 1995). 

Another approach to ECM identification is by linking reproductive structures or sporocarps (epigeous or 

hypogeous) to mycelia connected to underground root systems. ECM morphotypes in different areas of 

the world have been described and identified by this method (Agerer 1987 -98; lngleby eta/. 1990; Agerer 

1991 ; Agerer eta/. 1996-98). ECM can also be identified by pure culture synthesis from sporocarps and 

re-inoculating seedlings to describe ECM. However a minority of fungal species have been successfully 

grown in culture (Danielson 1984 ). 
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1.6.2 Molecular techniques 

Recent advances in molecular biology should help to provide a measure of ECM identification that is 

independent of environmental variation (Egger 1995). Restriction fragment length polymorphism (RFLP) 

analysis is used in combination with the polymerase chain reaction (PCR, Mullis and Faloona 1987), a 

process that amplifies target DNA sequences (from root tips, sporocarps or cultures) by the use of fungal-

specific primers (Egger 1995; Mehmann eta/. 1995; Gardes and Bruns 1996a). The internal transcribed 

spacer (ITS) region of the ribosomal unit of DNA (rONA) has been chosen for amplification because it is 

variable enough to identify most fungi to the species or species group level, although it may not be 

variable enough to distinguish between closely related species (Gardes and Bruns 1996a). The amplified 

DNA is then digested by restriction enzymes and the fragments (target sequences) are run on a gel, 

where they migrate at different speeds and separate during electrophoresis, due to their varying lengths 

(Egger 1992, Gardes and Bruns 1996a). The resulting bands, visible by staining the gel, can be 

compared to known DNA patterns for identification or stored for reference if no match is found. The 

success in identifying (or matching) a given gel will depend on the database used for comparison (Gardes 

and Bruns 1996a). 

1.6.3 Comparison of characterization techniques 

Recent studies indicate that the methods outlined above vary in the precision of fungal identification. 

Mehmann eta/. (1995) conducted a study on ectomycorrhizal diversity in a 40-year-old pure spruce 

(Picea abies) stand in Switzerland, and reported 23, 18 and seven types respectively, using molecular 

(ITS, PCR-RFLP method), morphological (using a dissecting microscope) and sporocarp techniques for 

identification. Sporocarp identification was the least reliable for assessing belowground diversity as 

fruiting varied with environmental conditions such as temperature, humidity and precipitation (Mehmann et 

a/. 1995). Morphotyping of soil cores was more reliable, however, molecular characterization revealed 

that one morphotype could represent one species, or that one morphotype could represent more than one 

species, or that several morphotypes could represent one species (Mehmann eta/. 1995). Gardes and 

Bruns (1996b) examined ECM diversity of a 40-year-old bishop pine (Pinus muricata) stand in California 

and reported 10 sporocarps and 20 RFLP types over a four-year period. Due to the inherent challenges 

of characterization approaches, a combination of morphological and molecular techniques may provide 
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more information about mycorrhizae than if using only one method. Environmental differences in 

morphology may reflect differences in functional diversity whereas molecular techniques may provide 

understanding of inter- and intra-specific diversity. 

1. 7 CALCULATING ECTOMYCORRHIZAE DIVERSITY 

Simple measures of diversity are richness (the number of species), and evenness (the distribution of 

species abundance). Richness measures can simply be counts of species or an average number of 

species per sampling unit to take unequal sample size into account, such as the Margalef index: DM9 = (S-

1) /In n, where S is the number of species and n is the number of individuals (Magurran 1988). Evenness 

measures the distribution of species abundance (Magurran 1988). Heterogeneity indices take both 

richness and evenness into account and two types are the information statistics indices and dominance 

measures, represented by the Shannon and Simpson index respectively (Magurran 1988). In some 

studies, morphological data has been analysed using the Shannon and Simpson composite diversity 

indices to measure species diversity for each seedling (Brainerd and Perry 1987; Simard 1997a). The 

Shannon index is calculated asH= -L P; In (P;), where P; =the proportional abundance of the ith species; 

Simpson index is computed as C = 1- L P;2 (Magurran 1988; Brewer 1994). H is sensitive to rare species 

(affected more by species richness), while Cis heavily weighted to the most abundant (dominant) species 

(Magurran 1988). As the value of the indices increase, so does diversity. These indices are non-

parametric, making no assumptions of normal data distribution however all species in the sample must be 

accounted for or known (Magurran 1988), which is rarely the case in soil microbial studies. A measure of 

evenness for the Shannon index can be calculated using the ratio of observed diversity to the maximum 

diversity: E = H I In S. 

The Sorenson coefficient of similarity measures beta diversity, the variation in species composition 

between areas of alpha diversity, and indicates how closely sites are related (Magurran 1988; Mehmann 

1995). It is calculated as: S = 2c I (a+b) , where a is the number of morphotypes in one plot, b is the 

number of the other and c is the number of morphotypes in common (Magurran 1988). A value of one 
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indicates total similarity. This qualitative measurement does not take into account species abundance 

(Magurran 1988). 

To calculate molecular diversity , which presents yet another level of complexity, the Phi index may be 

used, which was recently developed by Egger (Baldwin 1999, M.Sc. Thesis) . The index is based on 

phylogenetic distances and attempts to resolve the problem of intraspecific variation more adequately 

than traditional diversity indices (Baldwin 1999, M.Sc. Thesis). Following the analysis of RFLP band 

patterns, distance values for each root tip, compared with every other root tip, are calculated using the 

reciprocal of Dice's index based on shared and unique band patterns. The Phi index value is calculated 

based upon the distance matrix (Egger, pers. comm.1999) . The more distantly related species are, the 

greater the phylogenetic distances. The larger the value of the Phi index, the more genetically diverse the 

site is (Egger, pers. comm. 1999). 

1.8 FIRE EFFECTS ON MYCORRHIZAE 

1.8.1 Fire effects on soil organisms, soil properties and fungi 

Depending on the type of fire, there may be tremendous variation in the soil disturbance and 

consequently, in effects on mycorrhizae. Changes vary according to the severity of the fire ; a single 

severe fire will likely have greater impacts on mycorrhizae than several light or moderately severe ones 

(Agee 1993; Wells eta/. 1979). While examining the impact of fire on soils, it must also be kept in mind 

that prescribed burning is often used in conjunction with harvesting and that effects of both disturbances 

are often confounded (Hawkes eta/. 1990; Agee 1993). 

Fire affects mycorrhizae directly by consuming roots or other sources of fungal inocula in the soil. On 

clearcut and prescribed burn sites, fire intensity was positively correlated with the percent colonization of 

ECM roots on outplanted white pine (Pinus strobus L.) , however this was not noted for red pine (Pinus 

resinosa Ait. (Herr eta/. 1994 ). Fungi in chaparral soils were reported to tolerate temperatures of 155°C 

in dry soil and 1 oooc in wet soil (Dunn and DeBano 1977). In a low severity cool-burning prescribed fire 

in a mixed conifer forest in Cal ifornia , maximum surface temperatures only reached 1 oooc and at 5 em 
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belowground, temperatures were only sooc (DeBano eta/. 1998). The effect of fire on soil temperature 

depends on how deep the soil was heated, the maximum temperature that was reached and how long this 

temperature was maintained (Agee 1993). 

Indirectly, ECM can be affected by changes to the soil or aboveground environment. In a Douglas-fir/larch 

forest soil in western Montana, Harvey eta/. ( 1976) reported that in the top 38 em of soil, 95% of the 

active ECM were associated with organic material, mainly humus and decayed wood. Consumption of 

organic material and woody debris in severe fires should theoretically decrease fungal inocula for 

regenerating seedlings and decrease habitats for small mammals (Amaranthus 1991) which disperse 

spores of some ectomycorrhizal fungi (Maser eta/. 1978). Phoenicoid fungi (those preferring post-fire 

environments) may have an advantage due to their ability to produce hydrolase enzymes and to use 

substrates in the postfire environment (Egger 1986). Fire can also alter the dynamics of competition 

between ECM and other soil organisms. Bacteria are generally less susceptible to heat than fungi 

(Ahlgren 1974). In the increased pH environment, six years after moderately severe fires in subalpine 

forests in B.C. and Alberta, bacteria were more abundant than microbial fungi (Bissett and Parkinson 

1980). Rhizina undu/ata Fr., a parasitic fungus found on conifer roots such as those of Douglas-fir 

seedlings and growing in acid soil in the Pacific Northwest, increased after hot slash burns (Agee 1993; 

Wells eta/. 1979). Although not a major problem in B.C., Rhizina root rot can be destructive on postburn 

plantations (Baranyay 1972 in Silversides eta/. 1986). Actinomycete bacteria (Streptomyces) were 

reported to have produced antibiotics that inhibited mycorrhizal (Laccaria /accata [Scopp. ex Fr.] Bk. & Br.) 

and pathogenic ((Phellinus weirii (Murr.) Gilbertson) fungal growth in soils from clearcut and burned sites 

(Johnson and Curl 1972 in Perry and Rose 1983). Fire also resulted in a decrease in the activity of soil 

invertebrates, from three months to several years afterwards (Metz and Dindal 1980 in Borchers and 

Perry 1990). Heat, however, did not seem to be the cause of this decline but rather it was the postfire 

changes (drier environment, decreased food supply and greater temperature fluctuations) in the soil 

environment that was responsible (Ahlgren 1974). 
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Removal of the aboveground vegetation and the litter layer can lead to increased soil erosion and root 

strength loss, increased soil temperature extremes, decreased transpiration and decreased soil moisture 

due to the loss of shade (Wells eta/. 1979; Agee 1993; Kimmins 1997). Less visible effects of fire include 

the loss of some nutrients, a decrease in soil acidity, decreased bulk density and porosity of the soil, and 

changes in water repellency of the soil. In the quick combustion of organic matter, there is an immediate 

loss of some nutrients, largely nitrogen and to a lesser extent other elements (Agee 1993; Wells eta/. 

1979). Nitrogen is the nutrient most limited in many forest ecosystems, volatilizing at 175°C to 200°C 

(White eta/. 1973). In less severe fires, non-volatilized nitrogen can be leached from the system in the 

form of nitrate by nitrifying bacteria, that are sensitive to high temperatures (Agee 1993; Wells eta/. 1979). 

Total losses in nitrogen caused by fire cannot be immediately replaced by natural sources (from 

precipitation and free living nitrogen fixation) , however, over time, levels should return to normal (DeBell 

and Ralston 1970; Binkley 1991). 

Sulfur, potassium and other nutrients are converted to a more available form in residual organic material if 

the fire is less severe (Agee 1993). Calcium, magnesium and sodium are transformed to soluble mineral 

forms (Wells eta/. 1979) that are major components of ash (DeByle 1976; Agee 1993). These excess 

basic cations increase the pH of the soil , further affecting the availability of nutrients (Ahlgren and Ahlgren 

1960; Wells eta/. 1979). For example, chelated iron (Fe3+}, the form available to plants was less soluble 

at a higher pH (6.16) in a broadcast burned soil (Perry eta/. 1984 ). In addition, leaching of nutrients 

becomes greater in soils with low cation exchange capacity than in fertile soils where nutrients tend to 

adhere to clay and organic matter particles (Borchers and Perry 1990; Agee 1993). 

1.8.2 Effects of fire on mycorrhizal abundance and formation 

Although comparison between studies can be difficult, a majority of those reviewed reported decreases in 

the number of active mycorrhizal tips following fire disturbance (Table 1 ). Most studies were conducted in 

the Pacific Northwest using Douglas-fir as the preferred host. Different sources of mycorrhizae were 

examined, including naturally regenerating seedlings, soil cores, seedlings grown in the greenhouse from 

transferred soils and seedlings outplanted in disturbed and transferred soils. Total ectomycorrhizal 
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formation was usually measured by the number of active (live) root tips, and quantitative methods of 

assessment varied among investigators (Table 1 ). Differences found in these studies could be attributed 

to variation in the fire regimes, site conditions, host species and experimental protocol. Some studies 

reported an increase (Pilz and Perry 1984; Brainerd and Perry 1987), however many studies reported a 

decrease in ECM, from undisturbed to clearcut to burned sites (Harvey eta/. 1980; Perry eta/. 1982; 

Schoenberger and Perry 1982; Parke eta/. 1984 ). Some interesting conclusions were also presented. 

Harvey eta/. (1980) suggested that in difficult-to-regenerate sites, partial cutting may be less detrimental 

than burning in terms of ECM formation . Inoculum potential was examined in greenhouse studies 

conducted by Perry eta/. (1982) and Parke eta/. (1984), who found that seedlings grown in disturbed 

(clearcut plus burned) soils had decreased numbers of mycorrhizal tips than those in undisturbed (mature 

forest) sites. Brainerd and Perry ( 1987) examined mycorrhizae growing in soils in three sites along an 

elevation and moisture gradient and concluded that seedlings growing in cold, dry environments appeared 

to be more detrimentally affected by disturbance (clearcutting plus burning) than wetter and mesic sites. 

Greenhouse studies conducted by Schoenberger and Perry (1987) reported an increase of ECM in 

plantation soils previously clearcut plus burned (in Douglas-fir but not in western hemlock). Soil transfers 

from previously clearcut plus burned plantation sites were shown by Amaranth us and Perry ( 1987) to 

increase mycorrhizae formation in cold , dry sites. The authors speculated that mycorrhizae from the 

plantation soils were more compatible with seedlings in the clearcut environment than those in soil 

transferred from the mature forest. 
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1.8.3 Studies on mycorrhizal diversity and fire 

Some studies reviewed above discussed mycorrhizal diversity based on general groupings such as white 

and brown types and the black Cenococcum geophilum Fr. Using such a broad classification scheme, an 

accurate estimate of the mycorrhizal diversity cannot be obtained and the analysis is not very insightful. 

In a study describing 12 ectomycorrhizal morphotypes, Pilz and Perry (1984) reported that there were 

fewer ECM types found in disturbed compared with the undisturbed sites and that the aboveground 

changes caused by disturbance probably influenced mycorrhizal formation more than the soil 

environment. Schoenberger and Perry (1982) identified five major ECM groups, and reported that those 

associated with Douglas-fir were greater in abundance in unburned, clearcut soil. 

Diversity studies on mycorrhizae following disturbance have recently been conducted using traditional 

measures of diversity. Visser (1995) studied the effect of time in a successional study on ectomycorrhizal 

fungi in 6, 41 , 65 and 122-yr-old jack pine stands following wildfire and reported a significant increase in 

mycorrhizal species richness between the 6 and 41-yr-old stands. Simard eta/. (1997) reported a 

doubling in mean richness, diversity, and evenness of ECM on outplanted one-year-old Douglas-fir 

seedlings in untrenched compared to trenched sites in 90 to 120 year-old Douglas-fir and paper birch 

(Betula papyrifera Marsh.) dominated forests. Hagerman et at. (1999) reported reduced ECM richness 

and diversity from soil cores collected in clearcut compared to mature forest sites, in a subalpine forest 

dominated by 95 to 325 year-old subalpine fir and Engelmann spruce. 
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2. Morphological Characterization of Ectomycorrhizae Associated with Hybrid White Spruce 
Seedlings in the Aleza Lake Research Forest in the Central Interior of British Columbia 

ABSTRACT 

Broadcast burning is a forest management practice used for site preparation in British Columbia but its 

effects on ectomycorrhizae (ECM), which provide a key link in nutrient and energy cycling within forest 

ecosystems, is not well understood. To assess the effects of broadcast burning on ECM abundance and 

diversity, 88 outplanted and naturally regenerating hybrid white spruce seedlings growing in two replicate 

sites, each of mature, clearcut, and clearcut plus broadcast burned sites in the sub-boreal spruce (SBS) 

biogeoclimatic zone were examined. Fungal symbionts were characterized by morphological assessment 

and the ECM abundance and diversity were determined for each seedling. A total of 24 distinct ECM 

morphotypes were described, 14 of which had known fungal affinities at the genus level. The dominant 

types, matching descriptions of E-strain, Cenococcum, MRA, Amphinema, Hebeloma, The/ephora, and a 

Russulaceae type showed variable treatment and seedling type differences. The morphotypes E-strain, 

MRA, and Amphinema and the lightly colonized or non-mycorrhizal group were significantly more 

abundant on planted seedlings in the treated (clearcut and clearcut plus burned) than untreated (mature) 

sites. With respect to regenerating seedlings, Russulaceae type 1 was the most abundant morphotype in 

the mature forest and Thelephora was the most abundant morphotype in the clearcut sites. The diversity 

of ECM on planted seedlings between clearcut and clearcut plus burned sites was not significantly 

different, however, Cenococcum was significantly less, and Hebeloma and Russulaceae type 1 were 

significantly more abundant in clearcut plus burned sites compared with sites which were only clearcut. 

ECM diversity of regenerating seedlings was significantly lower in clearcut sites, compared to those in 

adjacent mature sites and compared to planted seedlings in the clearcut sites. Results show that 

changes in the occurrence and abundance of some ECM fungi is occurring following clearcutting and 

clearcutting plus burning . This suggests that disturbance may be altering the fungal composition on 

hybrid white spruce seedlings on these sites towards those types best able to adapt to the changing 

environmental cond itions. 
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2.1 INTRODUCTION 

In British Columbia, broadcast burning has been commonly used following clearcutting to meet forest 

management objectives, one of which is site preparation for seedling establishment after harvesting. This 

practice impacts the soil environment, thus affecting site productivity (Wells et at. 1979; Agee 1993). 

Studies conducted on the impacts of fire on soil physical and chemical properties have shown that effects 

vary according to fire intensity and severity. Furthermore, burning effects are often confounded with 

clearcutting, which usually precedes it (Agee 1993). Most broadcast burns, planned to be of low to 

medium severity, should have less drastic impacts than severe burns. Burning impacts may include 

charring and blackening of the soil surface, removal of competing vegetation , partial consumption of slash 

and partial reduction of the organic layer (Silversides et at. 1996). Less obvious effects include increased 

soil pH, increased availability of soil nutrients and increased soil temperature extremes (Wells et at. 1979; 

Agee 1993). Severe burns may cause more deleterious impacts than less severe burns such as soil 

erosion, volatilization of soil nutrients, decreased soil porosity and decreased water infiltration (Wells et at. 

1979; Agee 1993). 

The effects of broadcast burning on soil organisms have not been extensively studied. One important 

group in the soil is mycorrhizal fungi that live in a symbiotic relationship with plant roots, and provide 

essential functions such as increased water and nutrient uptake and protection against root pathogens 

(Harley and Smith 1983). Mycorrhizal fungi thus are a key link in nutrient and energy cycling within forest 

ecosystems (Dighton and Mason 1985). Of the seven currently recognized mycorrhizal classes, 

ectomycorrhizae (ECM) are represented by an excess of 5000 fungi which associate with likely more than 

2000 plant host species (Kendrick 1992), including commercially important conifer hosts such as spruce 

(Picea) and pine (Pinus) in the Central Interior of British Columbia. Ectomycorrhizal fungi have different 

physiological and ecological requirements such as optimum pH and temperature for growth (Cline et at. 

1987), tolerance to drought (Nilsen et at. 1998) and resistance to root pathogens (Perry and Rose 1983). 

It has been proposed that seedlings growing in disturbed soil environments could benefit from having 

access to a diversity of fungi; those symbionts best able to function would be favoured and could provide 

a buffering capacity for seedlings to adapt to changes in the environment (Perry et at. 1987, Simard eta/. 

1997). Furthermore, the loss of fungal species in a functional group might result in a diminished capacity 

of the group to work (Staddon et at. 1996) and hence diminished ecosystem function or a reduction in 

24 



ability of seedlings to successfully grow in disturbed environments. Thus the effect of site treatment on 

seedling ECM abundance and diversity should be an important consideration in forest management 

practices. One of the main species used in reforestation in the Central Interior of British Columbia is 

hybrid white spruce, however, few studies have examined the ECM diversity of these seedlings planted 

on broadcast burned sites following harvesting. 

Although some studies have been conducted on mycorrhizal formation following fire, less is known 

concerning mycorrhizal diversity (Staddon eta/. 1996). Burning might be expected to directly reduce the 

number of soil fungal species and sources of inoculum. Obstacles hindering fungal diversity studies 

following cutting and burning include the complexity of the soil environment, the difficulty in identifying 

fungal symbionts and differences in effects of fire intensity on ECM. The majority of the studies which 

examined mycorrhizal formation following harvesting and fire have reported decreased ECM abundance 

but comparisons between studies is difficult because of different methods used for assessment (Wright 

and Tarrant 1958; Harvey eta/. 1980; Perry eta/. 1982; Schoenberger and Perry 1982; Parke eta/. 

1984). For example, Wright and Tarrant (1958) assessed seedlings as being mycorrhizal or non-

mycorrhizal, Schoenberger and Perry (1982) examined the percent of mycorrhizal root tips per seedling 

and Parke eta/. ( 1984) used visual estimates on a scale of 20% increments. Descriptions of fungal types 

in these earlier studies were rudimentary, such as categorizing types into white, brown or black groups 

(Wright and Tarrant 1958), or using only macroscopic characteristics to describe types (Schoenberger 

and Perry 1982), compared to more recent studies on ECM diversity. The improved resolution and 

amount of information available has increased the scope of and confidence in ectomycorrhizae 

identification (Agerer 1987-98; lngleby eta/. 1990; Agerer 1991 ; Agerer eta/. 1996-98; Goodman eta/. 

1996). For example, Hagerman eta/. (1999) reported 39 mycorrhizal types from soil cores collected in a 

three year study of ECM on clearcuts in a subalpine forest in southern British Columbia. 

The main objective of the present study was to determine, using morphological characterization, the 

effect of broadcast burning following clearcutting on the abundance and diversity of ECM on outplanted 

and naturally regenerating hybrid white spruce seedlings growing in the sub-boreal spruce (SBS) 

biogeoclimatic zone of central British Columbia. Three different site types were compared: mature 

(undisturbed), clearcut only , and clearcut plus broadcast burning (cut plus burned) . A second objective 
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was to compare the ECM abundance and diversity between planted and regenerating seedlings on these 

sites to assess seedling difference. 

2.2 MATERIALS AND METHODS 

2.2.1 Site descriptions 

The study area included four treated sites (two clearcut and two cut plus burned) and two adjacent 

mature forest sites, located approximately 36 km east of Prince George, British Columbia, near the 

Bowron River in the south-western portion of the Aleza Lake Research Forest (Figure 1 ). This area is in 

the SBS biogeoclimatic zone, willow wet, cool (wk1) variant. The SBS zone is situated in the Central 

Interior of British Columbia with a latitudinal range of 51 o 30' to 59° N (Meidinger eta/. 1991) and a variant 

elevation range of 660 to 1140 m (Delong eta/. 1996). The climate in the SBS zone is continental, with 

severe snowy winters, and warm, moist, short summers and is characterized by seasonal temperature 

extremes with averages below ooc for four to five months of the year and above 1 ooc for two to five 

months (Meidinger eta/. 1991 ). Mean annual precipitation is 440 to 900 mm, of which 25 to 50 percent is 

snow. Uneven aged and multi-storied canopies have resulted from fire suppression; stand destroying 

fires ranging from 20 to 1000 ha in size occur approximately every 200 years (Delong eta/. 1996). 

Hybrid white spruce (Picea engelmannii (Parry ex Engelm.) x g/auca (Moench) Voss) and subalpine fir 

(Abies /asiocarpa (Hook.) Nutt.) are the climax species and hybrid spruce-oak fern is the zonal 

association (Meidinger et a/.1991 ). Dominant understory species at the zonal oak fern site include 

Lonicera invo/ucrata (Richards.) Banks ex Spreng., Ribes lacustre (Pers.) Poir in Lamarck, Vaccinium 

membranaceum Dougl. , Rubus parviflorus Nutt., Viburnum edu/e (Michx.) Raf., Oplopanax horridus 

(Smith) Miq., Gymnocarpium dryopteris (L.) Newm., Comus canadensis L. , Orthilia secunda (L.) House 

and Rubus pedatus J.E. Sm. (Delong eta/. 1996). Common soils in the Bowron River valley are 

Brunisolic Gray Luvisols and Gray Luvisols, formed on loam to clay glaciolacustrine deposits (Delong et 

a/. 1996). The humus forms are mor and moder types (Meidinger eta/. 1991 ). The mature forest study 

sites were approximately 100 and 200 years old ; vegetation and dominant canopy tree species were 

similar (Figure 2). The forest floor in the study area was dominated by both mor and moder types of 

humus and the mineral soils were silt loam to clay loam in texture. 
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1 mature site 1 
2 mature site 2 
3 clearcut site 1 
4 clearcut site 2 
5 clearcut burn site 1 
6 clearcut burn site 2 

Figure I. Location of sites in the Aleza Lake Research Forest, Prince George Forest District (insert from Prince 
George Forest District recreation map, BC MOF, FRBC, Feb. 1997. Scale approximately I :400 000). 

Figure 2. A portion of the forest floor in the mature site located in the Aleza Lake Research Forest, Central Interior 
of British Columbia (June 1997) 
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Figure 3. a) cut plus broadcast burned site and b) clearcut site located in the Aleza Lake Research Forest, Central 
Interior of British Columbia (June 1997). 



Northwood Pulp and Timber Limited held the license for both the clearcut and cut plus broadcast burned 

sites (pre-harvest silviculture data is shown in Appendix A). Table 2 summarizes site treatment and 

includes winter harvesting, fall burning and planting data. Planted hybrid white spruce seedlings 

consisted of two-year-old (one year greenhouse plus one year nursery) stock. Following harvesting, 

estimates of 30 to 46 em of moderate to heavy compact slash were typical of the clearcut sites which 

were to be broadcast burned (Ron Jansen, pers. comm. 1997). Using a prescribed fire predictor/planner, 

the desired reduction of the slash was targeted at four to six em, which is defined as a moderate fire 

severity (Feller 1996). However, no measurements were taken to determine fire severity such as depth of 

burn of the litter layer or fuel characterization. Therefore it cannot be certain that these prescribed burn 

objectives were met. Furthermore, fire intensity was not measured at the time of burning (Ron Jansen, 

pers. comm. 1997). 

Table 2. Site descriptions and dates for clearcut (C), and cut plus broadcast burned (CB) treatments in the Aleza 
Lake Research Forest. 

Site Elevation Harvesting Date/subsequent treatment Hybrid white 
(m) date/activity spruce planting 

c 1 675 1/92-3/92 (96.9 ha) 9/92 windrowing (86.6 ha) 6/93 (82.9 ha) 
6/93 mounding (1.9 ha) 6/94 (49.7 ha) 

6/95 (90.3 ha) 
C2 675 1/92-3/92 (38.1 ha) 9/92 windrowing, windrow burned (36.8 ha) 6/93 (36.8 ha) 
CB 1 686 11 /93-3/94 (84.1 ha) 6/94 bum (56.3 ha), mounding (24.5 ha) 6/95 (66.72 ha) 

10/94 bum for hazard reduction (80.9 ha) 
CB2 670 1/94-3/94 (38.2 ha) I 0/94 bum (36.6ha), mounding (6.1 ha) 6/95 (18.47 ha) 

2.2.2 Seedling sampling 

On June 23 and 24, 1997, a 50 m x 50 m block was established in each study site for sampling; each 

block was situated at least 10 m inside site boundaries to minimize edge effects. Blocks in the clearcut 

sites were situated at least 10 m away from windrows. Within each clearcut or cut plus burned site 

(Figure 3a, b), 28 planted hybrid white spruce seedlings were tagged, of which fourteen were randomly 

selected (using a computer-generated random number table) and double tagged. In each of the nearby 

mature sites, 16 naturally regenerating hybrid white spruce seedlings were tagged and eight were 

randomly selected. Half of these double-tagged seedlings were harvested in June and the remaining 

seedlings were harvested on August 27 and 28, 1997. At this time, eight naturally regenerating hybrid 

white spruce seedlings were also randomly selected from each of the clearcut sites. Almost no 
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regeneration of hybrid white spruce appeared to be occurring on either of the cut plus burned sites, 

though seedlings were found growing on the landings and roads leading into these sites. Unfortunately, 

this precluded sampling of regenerating seedlings on cut plus burned sites. A summary of the sampling 

design is presented in Table 3. 

Table 3. Sampling design for hybrid white spruce seedlings harvested from clearcut, cut plus burned and mature, 
sites in the Aleza Lake Research Forest. 

Seedling type Date Site type 
Mature Clearcut Cut plus burned 

Planted Spring - 14 (7 x 2 sites) 14 (7 x 2 sites) 
Fall 14 (7 x 2 sites) 14 (7 x 2 sites) 

Naturally regenerating Spring 8 (4 x 2 sites) - -
Fall 8 (4 x 2 sites) 16 (8 x 2 sites) 

Total 16 44 28 

Seedlings were harvested with the surrounding soil to a depth and radius of approximately 20 em, then 

bagged and transported in 7 L plant pots to avoid disturbing the root systems. Adjacent to each 

harvested seedling (with the exception of regenerating seedlings), soil samples and slash measurements 

were taken in both clearcut and cut plus burned sites. In the mature sites, where most seedlings were 

growing on a woody substrate, representative soil samples were collected nearby. Local site conditions 

including soil horizon thickness, soil moisture, seedling substrate and microtopography as well as 

seedling height and leader growth were recorded. The seedlings (88 in total) were stored at soc until 

ECM characterization. 

2.2.3 Soil and seedl ing analysis 

In the laboratory, soil pH , total carbon and nitrogen of the mineral and organic horizons, and seedling age 

and basal diameter were measured. Soil pH was measured by the CaCI2 method described in 

Hendershot et at. (1993) . Air dried, sieved (2 mm mesh) mineral and organic soil samples were mixed 

with 0.01 M CaCI2 in 50 ml conical tubes at 1:2 and 1:10 (soil :solution (g/ml)) ratios, respectively. They 

were then shaken mechanically (Eberbach shaker) for half an hour at high speed, allowed to settle for an 

hour and measured with a two point calibration pH meter (benchtop pHIISE meter, model 420A). Soil 

analysis of total carbon and nitrogen were conducted on a Carlo Erba NA 1500 Elemental Analyser using 

the standard Atropine with a detection limit of 0.01 %. Approximately 5 to 10 mg of organic and 30 to 60 
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mg of mineral sieved (0.15 mm mesh) soil were used for analysis. Carbon/nitrogen (C/N) ratios were 

then calculated. 

Using a dissecting microscope (Olympus SZ-30), seedling age was estimated by counting bud scars on 

the stem as well as growth rings on sanded cookies that had been cut just above the root collar. The 16 

regenerating seedlings collected in the clearcut were aged by counting bud scars only and were 

estimated to be four years old . Basal diameter was averaged over the longest and shortest diameters of 

the cookies. To estimate the stand age of the mature sites, each of the five largest diameter hybrid 

spruce and subalpine fir trees in each site were cored and the growth rings were counted. 

2.2.4 Ectomycorrhizae characterization 

For each seedling, root systems were soaked in cold water for several hours, then carefully washed to 

eliminate soil particles and organic debris. Occasionally, fine forceps were used to remove remaining soil 

particles, under the magnification of the dissecting microscope. The entire root system of naturally 

regenerating seedlings was sampled (Figure 4a), however, for planted seedlings, only lateral and 

egressed roots growing from the soil plug were selected (Figure 4b). Root systems were floated in water 

over a grid consisting of 2 cm2 cells. Root samples, 2 em long, were randomly sampled until 

approximately 200 tips were selected. If a cell contained greater than 20 root tips, a sub-cell (1 cm2 in 

size) was randomly sampled. Only healthy root tips (i.e. turgid root and intact meristem) with a length 

greater than three times the root width were selected. To avoid confusion with branching forms, an 

unbranched tip was considered as one mycorrhiza. If there were fewer than 200 root tips, all healthy tips 

were sampled. Initial macroscopic observations of ECM characteristics were made using the dissecting 

microscope. Subsequently, root squashes were prepared and viewed using a compound microscope 

(Olympus CH-2, 100-1000x). ECM features such as fungal mantle, presence of rhizomorph , emanating 

hyphae and other distinguishing characteristics were documented. Permanent slide mounts of squashes 

were made, fixed with high viscosity mountant (CMCP-10, Polysciences, Inc.). Macroscopic and 

microscopic features of root tips were photographed (Appendix B) using an automatic exposure (PM-

1 OAK) photomicrographic system either attached to a dissecting microscope (Olympus BX-50) or a 

compound microscope (Olympus SZ-40). 
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Figure 4. Root systems of a) naturally regenerating and b) planted hybrid white spruce seedlings harvested from 
mature forest and cut plus broadcast burned sites, respectively, in the Aleza Lake Research Forest, Central Interior 
of British Columbia. 
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All root tips were categorized as mycorrhizal, non-mycorrhizal or mycorrh izal but lightly colonized 

(unidentifiable because of poorly developed features) . Morphological descriptions of ECM were made 

with reference to a checklist (Appendix C) adapted from manuals by Agerer (1987-98), lngleby eta/. 

(1990), and Goodman eta/. (1996). If an ECM could not be readily identified to genus or species, the 

morphotype was given a type name, based on conspicuous features (Appendix D). For each seedling, 

the number of ectomycorrhizal morphotypes and the proportional abundance (p) of each were calculated. 

If the morphotype was not found on a seedling, a value of 0 was assigned. As well , the site where 

morphotypes occurred and the frequency of occurrence of each morphotype (number of seedlings on 

which they occurred) were recorded . Non-mycorrhizal and lightly colonized tips were grouped together to 

calculate overall ECM abundance or formation (percent colonization) on hybrid white spruce for each type 

of study site. 

2.2.5 Statistical analysis of morphotype abundance and diversity indices 

General seedling, environmental and site characteristics were compared using Students t-test. In 

addition, correlations (Pearsons product-moment) of seedling measurements (leader growth, height and 

basal diameter) with abundance data were calculated. Differences in ECM abundance for seven of the 

most commonly occurring morphotypes (Cenococcum, E-strain, MRA, Amphinema, Hebeloma, 

The/ephora and Russulaceae type 1 ). as well as for the lightly colonized, unknown category, were 

determined using a one-way ANOVA (STATISTICA for Windows Release 5.1 G 1997 edition, Statsoft, 

Inc.) for a completely randomized design. Data for replicate sites and for season were pooled as 

determined by Students t-test using a Bonferroni correction of a = 0.004 (a I number of comparisons= 

0.05 I 13). To compensate for a skewed distribution, the data were transformed by the arcsine .,Jp 

function (Sakal and Rohlf 1987), where p is the proportional abundance of a morphotype on a seedling. 

Due to an incomplete experimental design (see Table 3 for sampling design), a Bonferroni correction of a 

= 0.01 (0.05 1 5) was used for five planned comparisons: 1) between planted seedlings in clearcut and cut 

plus burned sites to test for burning effects; 2) between regenerating seedlings in mature and planted 

seedlings in clearcut sites to test for cutting and seedlings effects; 3) between regenerating seedlings in 

mature and planted seedlings in cut plus burned sites to test for treatment and seedling effects; 4) 
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between regenerating seedlings in mature and clearcut sites to test for cutting effects; and 5) between 

planted and regenerating seedlings in clearcut sites to test for seedling differences. 

The ectomycorrhizal diversity for each seedling was measured using the Shannon and Simpson 

composite indices, Shannon evenness and Margalef richness measures (Magurran 1988) (see Appendix 

E for sample calculations). Data for lightly colonized and uncolonized tips were excluded when 

calculating diversity measures and morphotype data were not transformed. Preliminary analysis (Student 

t-test, Bonferroni correction of a = 0.004) indicated that replicate sites and seasonal data could be pooled. 

One-way ANOVA was used in a completely randomized design to determine treatment or seedling effects 

on diversity as stated above. 

2.3 RESULTS 

2.3.1 Site and seedling characteristics 

Results comparing general site and seedling characteristics are presented in Table 4. The slash height in 

clearcut sites was significantly less than that on cut plus broadcast burned sites. The LFH layer 

thickness, ranging from 1.6 to 3.3 em, only differed significantly between clearcut site 1 and cut plus 

burned site 1. The pH and C/N values were higher in the LFH layer than in the mineral layer. Cut plus 

burned site 2 had a higher pH value than other treated sites. No differences were found for the C/N 

values between any of the sites. Seedling ages ranged from four to seven years (at the time of sampling) 

with the youngest seedlings occurring in the cut plus burned site 2 and clearcut sites (regenerating 

seedlings, data not shown) and the oldest seedlings in mature site 1. Planted seedlings were significantly 

taller and had significantly greater leader growth and basal diameter than naturally regenerating seedlings 

harvested from the mature sites. 
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Table 4. General site, seedlingt and soil characteristics (means ±SE)t for mature, clearcut and cut plus broadcast 
burned sites sampled in the Aleza Lake Research Forest. 

Mature l Mature 2 Clearcut 1~ Clearcut 2 Cut plus Cut plus 
burned 1 burned 2 

Slash (em) 5.9(0.5)a 7.1(0.8)a 10.4(0.9)b ll.O(l.l)b 
Soil data 
LFH layer 
thickness (em) 3.3(1.3)ab 2.8(0.3)ab 1.6(0.2)a 2.6(0.4)ab 3.0(0.3)b 2.2(0.3)ab 
pH 
LFH layer 4. 70(0.08)ab 4 .57(0.08)ab 4.57(0.07)a 4.45(0.06)a 4.57(0.15)a 5.09(0.14)b 
mineral layer 4.30(0.26)a 4.28(0.12)a 4.27(0.03)a 4.14(0.03)a 4.11(0.09)a 4.16(0.07)a 
C/N 
LFH layer 35.48a 32.50a 34.25(8.90)a 25. 99(2.4 7)a 26.00(2.44)a 22.96(0.79)a 
mineral layer 11.48(3.31)a 16.8(2.6)a 16.56(2.30)a 14.9(2.2)a 16.62(3 .OO)a 13 .7(1.1)a 
Seedling data 
age(yr±) 6.5(0.7)a 5 .5(0. 7)abc 5.8(0. 1)ab 6.0(0.2)ab 4.9(0.1)bc 4.3(0.2)c 
leader growth 
(em)§ 3.2(0.3)a 3.4(0.2)a 16.6(1.2)b 16.0(1.4)b 20.1(1.6)b 18.5(1.3)b 
height (em) 17.0(2.1)a 13.3( 1.1 )a 67. 1(4.3)b 64.9(2.3)b 69.3(3.0)b 66.5(2.2)b 
basal diameter 
(em) 0.3(0.l)a 0.3(0. l)a 1.7(0. l)b 1.6(0. l)b 1.5(0. l)b 1.5(0. l)b 

tdata does not include measurements for regenerating seedlings harvested from clearcut sites. 
~within rows, means followed by the same letters are not significantly different (p:$;0.05) as determined by one-way 
ANOVA. 
§leader growth was log transformed. Values presented here are non-transformed. 

2.3.2 ECM morphotype occurrence, frequency of occurrence and abundance 

Morphotype occurrence for the different treatments as well as other categories is summarized in Table 5. 

Overall, a total of 24 ECM morphotypes were described, four of which occurred on fewer than 5% (4) of 

the seedlings. More basidiomycete (19) than ascomycete (5) fungal symbionts were described. Fourteen 

types had morphological features that could be readily matched to descriptions in the published literature; 

the remaining were more difficult to confirm (Appendix F). 

Naturally regenerating seedlings from mature sites were associated with the most ECM morphotypes 

(20}, whereas regenerating seedlings in clearcut sites had the fewest (12). Planted seedlings from the 

clearcut and cut plus burned treatments had a similar number of morphotypes (17 and 18). Regenerating 

seedlings were associated with more morphotypes than planted seedlings (22 versus 20) even though 

fewer regenerating seedlings were examined in this study. Lightly colonized tips represented 18% of 

approximately 17000 tips analyzed. 
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Table 5. Morphotype occurrence on naturally regenerating and planted hybrid white spruce seedlings in treated 
(clearcut, and cut plus burned) and untreated (mature forest) sites in the Aleza Lake Research Forest, Central 
Interior of British Columbia. 
Site/category n Number ofmorphotypes Occurrence*(%) Meant(±SE) 
Mature (regenerating seedlings) 16 20 83 18 (2) 
Clearcut (regenerating seedlings) 16 12 50 10 (I) 
Clearcut (planted seedlings) 28 17 71 14 (2) 
Cut plus burned (planted seedlings) 28 18 75 15 (1) 
Shared in all sites 7 29 
Over all sites 88 24 100 
Ascomycetes 5 21 
Basidiomycetes 19 79 
On less than 4 seedlings 4 17 
Regenerating seedlings 32 22 92 
Planted seedlings 56 20 83 
*number of occurrences(%) out of total number of ECM morphotypes (24). 
tmean number ofmorphotypes are pooled over replicate sites (2) and seasons (fall and spring). Regenerating 
seedlings in clearcut sites were sampled only in the fall. 

The abundance and frequency of occurrence for all ECM morphotypes as well as treatment and seedling 

differences for the seven most commonly occurring morphotypes and for lightly colonized tips are shown 

in Table 6. Detailed statistical analyses for treatment and seedling differences are provided in Appendix 

G. The most common types of ECM included the ascomycetes Cenococcum, E-strain and MRA and the 

basidiomycetes Amphinema, Hebeloma, Thelephora and a Russulaceae type. Preliminary data analysis 

using the Students t-test indicated that replicate sites as well as seasons could be pooled (using a 

Bonferroni correction of a= 0.004), with one exception, E-strain, which showed significant differences for 

the cut plus burned replicate sites in the spring. This variation may have been due to the burning of site 1 

in the summer as well as in the fall. 

Analysis showed that the abundance of Hebeloma (14% versus 6%) and Russulaceae type 1 (5% versus 

1 %) was significantly greater in the cut plus burned sites compared to the clearcut sites. In contrast, the 

abundance of Cenococcum (1% versus 4%) was significantly less. 

Comparing treated sites (planted seedlings) to mature (regenerating seedlings), the abundance of E-

strain (6 to 13% versus 0.1 %), MRA (23 to 26% versus 4%), and Amphinema (14 to 18% versus 2%) as 

well as the lightly colonized tips category (19 to 26% versus 11 %) was significantly greater in both 

clearcut and cut plus burned sites. In contrast, Cenococcum (6 versus 1 %) was more abundant in mature 

than cut plus burned sites but was similar in abundance in mature and clearcut sites. Russulaceae type 1 
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(35% versus 1 to 5%) was significantly more abundant in mature sites than on any of the other sites, 

whether seedlings were planted or regenerating. The/ephora (35% versus 3 to 8%) was significantly 

more abundant on regenerating seedlings in the clearcut site than in the mature, cut plus burned, or on 

planted seedlings in the clearcut sites. Piloderma was only found on regenerating seedlings in both 

mature and clearcut sites and did not occur on planted seedlings (Table 6). 

Table 6. Mycorrhizae morphotype abundance* (mean percent (±SE)) and frequency of occurrence (%)for planted 
(pi) and naturally regenerating (r) hybrid white spruce seedlings in treated (clearcut, and cut plus burned) and 
mature sites in the Aleza Lake Research Forest, Central Interior of British Columbia. 
Morphotype Mature-r Clearcut-r Clearcut-pl Cut plus burn-pi 

n=l6 n=l6 n=28 n=28 
meant freq mean freq mean freq mean freq 

Cenococcum 5.5 (1.6)a 56 1.6 (0 .6)ab 44 4.1 (0.9)a 75 1.1 (0.5)b 36 
E-strain 0.1 (O. I)a 13 14.1 (7.0)ab 63 6.3 (1.3)b 75 12.7 (3.4)b 61 
MRA 4.3 (2 .5)a 38 11.2 (3.6)a 69 26.2 (2.8)b 100 23.3 (4.l)b 89 
Tuber 0.1 (0 . 1) 6 5.7 (2.9) 38 1.3 (1.3) 4 
ascomycete unknown 0.3 (0.3) 6 
Amphinema 2.0 (0.9)a 38 14.7 (6.4)ab 44 17.7 (4.7)b 79 13.9 (2.8)b 64 
Hebeloma 7.4 (2.4)ab 69 4.7 (2.6)a 19 6.2 (1.5)a 61 14.3 (2.3)b 82 
/nocybe 0.4 (0.3) 18 
Lace aria 0.5 (0 .5) 6 2.1 (1.2) 14 0.5 (0.3) 21 
Piloderma 5.8 (2 .7) 38 0.5 (0.4) 13 
Russulaceae 1 35.4 (6.4)a 94 3.8 (3.3)bc 19 1.0 (0 .6)b 21 5.1 (I. 7)c 57 
Russulaceae 2 1.4 ( 1.0) 13 1.6 ( 1.6) 7 0.2(0.1) 11 
Thelephora 8.3 (6 .0)a 44 34.9 (6.8)b 75 2.7 (1.4)a 29 4.0 (1.7)a 43 
Thelephoraceae-Iike 0.1(0.1) 6 
Tomente/la 1 3.1 (1.4) 50 0.8 (0.7) 13 0.1 (0 .1) 4 0.1 (0.1) 4 
Tomente/la 2 1.0 (0 .9) 13 1.0 ( 1.0) 7 0.3 (0.3) 4 
Tomente/la 3 0.1 (0 .1) 6 
non-rhizomorphic olive- 0.8 (0.3) 25 0.1 (0.1) 4 
green 
non-rhizomorphic thin 4.3 (1.4) 50 2.7(1.3) 39 2.7 (1.4) 43 
mantled 
non-rhizomorphic 0.7 (0 .5) 7 0.1(0.1) 4 
undamped 
non-rhizomorphic white 0.4 (0.3) 19 0.1 (0.1) 4 1.5(1.4) 7 
rhizomorphic brown 0.9 (0.9) 13 0.6 (0.3) 14 0.4 (0 .3) 7 
rhizomorphic orange 4.3 (3.9) 13 0.1 (0.1) 4 
rhizomorphic white 3.0 (1.3) 44 0.1 (0.1) 4 
lightly colonized 11.0(3 .1)a 94 7.9 (1.8)a 94 25.8 (2 .9)b 100 19.4 (2 .1)b 100 
*percent abundance= number of root tips for each fungal type I total number of root tips sampled per seedling x 100. 
twithin rows, means followed by the same letter are not significantly different (Bonferroni correction of a=0.01) as 
determined by separate one-way ANOVA comparisons for treatments and two seedling types. Transformed data 
(arcsin ..Jp, where p is morphotype abundance) were used. Means (±SE) presented are non-transformed values. 

In addition to abundance and frequency differences, ten of the 22 assessed morphotypes were 

significantly correlated (ps0.05, data not shown) to several seedling variables: leader growth, basal 

diameter and height. 
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2.3.3 ECM diversity 

For the diversity indices and evenness and richness measures, data for planted and regenerating 

seedlings in the mature, clearcut, and cut plus burned sites were not significantly different with respect to 

replicate site and season (spring and fall) (Students t-test, p~0 . 004) . Subsequently, replicate site and 

season data were pooled for further analysis. Graphical analysis (boxplots) of the pooled data indicated a 

few outliers, however these were not removed due to the small sample size. Analysis (one-way ANOVA) 

did not indicate violation of the assumptions. The seedling measurements such as leader growth, basal 

diameter and height were weakly correlated or non-significant for the diversity indices (p~O.OS) and were 

not included in statistical analysis. 

No significant differences were found between clearcut, and cut plus burned sites for planted seedlings 

with respect to richness, evenness or the Shannon and Simpson diversity indices (Table 7). However, 

ECM diversity of regenerating seedlings in clearcut sites was significantly lower than regenerating 

seedlings in mature sites and planted seedlings in the clearcut sites for both the Shannon {p=0.008) and 

Margalef (p=0.001) measures (Bonferroni correction of a = 0.01 ). Simpson index values were also low 

(p=0.059 and p=0.022) for these seedlings but were not significant. 

Similarity coefficients (Sorenson) supported these results; the least similar values resulted from 

comparisons between regenerating seedlings in clearcut sites to those in mature sites (0.63), and to 

planted seedlings in clearcut (0.62), and cut plus burned sites (0.53)(Table 8). The similarity coefficient 

for planted seedlings in the clearcut treatment versus the cut plus burned treatment was fairly high (0.86). 
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Table 7. Ectomycorrhizae richness, evenness and diversity measures (Shannon1 and Simpson2
, Shannon Evenness3 

and Margalert) showing mean values (±SE). Indices were assessed using one-way ANOV A to test for treatment 
effect (clearcut, cut plus burned, and unburned, mature) and to test for seedling differences (naturally regenerating, 
(n=16) versus planted (n=28) of hybrid white spruce seedlings growing in the Aleza Lake Research Forest, Central 
Interior of British Columbia. 

Treatment/ seedling type 
Clearcut /planted Cut plus burned/ planted 

1.19 (0.08)1 1.16 (0.06) 
0.61 (0.03)2 0.61 (0.03) 
0.71 (0.03)3 0.71 (0.03) 
0.90 (0 .06)~ 0.90 (0.06) 

Mature/ regenerating Clearcut/ regenerating 
1.30 (0.52) 0.87 (0.08) 
0.61 (0.22) 0.48 (0.04) 
0.69 (0.05) 0.62 (0.04) 
1.07 (0.12) 0.59 (0.05) 

Mature/ regenerating Clearcut/ planted 
1.30 (0.52) 1.19 (0.08) 
0.61 (0.22) 0.61 (0.03) 
0.69 (0.05) 0.71 (0.03) 
1.07 (0.12) 0.90 (0.06) 

Mature/ regenerating Cut plus burned/ planted 
1.30 (0.52) 1.16 (0.06) 
0.61 (0.22) 0.61 (0.03) 
0.69 (0.05) 0.71 (0.03) 
1.07 (0.12) 0.90 (0.06) 

Clearcut/ planted Clearcut/ regenerating 
1.19 (0.08) 0.87 (0.08) 
0.61 (0.03) 0.48 (0.04) 
0.71 (0.03) 0.62 (0.04) 
0.90 (0.06) 0.59 (0.05) 

tmeans are pooled for both replicate sites and season. 

F -statistic 
df(l, 54) 

0.067 
0.003 
0.000 
0.000 

df(l , 30) 
8.174 
3.844 
1.355 

14.567 
df(1, 42) 

0.579 
0.000 
0.058 
2.244 

df(1 , 42) 
1.054 
0.004 
0.082 
1.954 

df(l , 42) 
7.849 
5.618 
2.591 
13.453 

p-valuet 

0.797 
0.954 
0.988 
0.978 

0.008 
0.059 
0.254 
0.001 

0.451 
0.991 
0.810 
0.142 

0.311 
0.952 
0.776 
0.169 

0.008 
0.022 
0.115 
0.001 

tsignificant differences indicated in bold (p:50.0 1, Bonferroni correction for planned comparisons). P-values 
<0.0015 have been designated as 0.00 I. 

Table 8. Sorenson similarity coefficients calculated for ectomycorrhizae of naturally regenerating (r) and planted 
(pi) hybrid white spruce seedlings from unburned mature, clearcut, and cut plus burned sites in the Aleza Lake 
Research Forest, Central Interior of British Columbia. 
Treatment/ Similarity Visualization 
seedling comparisons* coefficient 
Mature-r versus clearcut-r 0.63 
Mature-r versus clearcut-pl 0.87 
Mature-r versus cut plus burned-pi 0.84 
Clearcut-r versus clearcut-pl 0.62 
Clearcut-r versus cut plus burned-pi 0.53 
C1earcut-pl versus cut plus burned-pi 0.86 

Maturr~r 
0.87 0.63 

Clearcut-pl % Clearcut-r 
0.~. ft53 

~.84 /.. 
Cut plus burned-pi 

*Site data were pooled for treatment/seedling comparisons. 

2.4 DISCUSSION 

2.4.1 ECM morphotype abundance 

The 24 ECM types found on hybrid white spruce in the present study, of which 14 were of recognizable 

taxonomic affinities, is comparable to the numbers reported in recent studies characterizing ECM. 
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Twenty-two morphotypes have been described on regenerating hybrid spruce seedlings growing in the 

Stone wildfire site, a Lodgepole pine (Pinus contorta var. latifo/ia Engelm.) dominated stand that was 

burned in the summer of 1992 (Egger and Massicotte 1999). On Sitka spruce (Picea sitchensis (Bong.) 

Carr.), 25 distinct mycorrhizal types (of which 14 were known) were reported on seedlings and trees 

growing in four forest types and four nurseries in the British Isles (Thomas eta/. 1983). However, 13 

ECM morphotypes were reported for naturally regenerating Sitka spruce growing in an uneven-aged 

plantation forest in southern Scotland that was selectively logged (Flynn eta/. 1998). For young to 

mature urban white spruce (Picea glauca (Moench) Voss) and blue spruce (Picea pungens Engelm.) 

growing in Calgary, Alberta, 25 mycorrhizal types were reported (Danielson and Pruden 1989). Bruns 

(1995) recently reviewed seven studies of small monoculture forests that examined fungal fruitbodies and 

mycorrhizae, and reported an average of 20 to 35 species typically found on those sites. In other studies, 

20, 22 and 19 ECM types, of which 14, 19 and 14 were identified to genus level or group, were described 

by Simard eta/. (1997}, Visser eta/. (1998) and Hagerman eta/. (1999} , respectively. 

The 20% ascomycetes and 80% basidiomycetes reported in the present study were also found to be 

similar to the percentages for six-year-old jack pine stands (Visser 1995). Danielson and Pruden (1989) 

reported different but highly variable values of 47(±27)% ascomycetes and 31 (±21)% basidiomycetes for 

urban blue and white spruce. 

Mycorrhizal formation , as measured indirectly by lightly colonized, unidentified tips and non-mycorrhizal 

tips was increased on planted seedlings in treated sites compared to regenerating seedlings in clearcut 

and mature forest sites (Table 6) . Th is was most likely due to seedling differences rather than to 

treatment effect: planted seedlings were larger and had correspondingly larger root systems, with more 

root tips that could potentially be colonized. Several studies have examined burning effects on ECM 

formation , mainly conducted in the Pacific Northwest with Douglas-fir. Sources of mycorrhizae varied and 

included naturally regenerating seedlings, soil cores, seedlings grown in the greenhouse on soils 

transferred from disturbed sites and seedlings planted in the field growing in disturbed and transferred 

soils. Some studies reported an increase (Pilz and Perry 1984; Brainerd and Perry 1987; Richter and 

Bruhn 1993) or no decrease (Visser 1995) in ECM abundance following disturbance. However, many 
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studies reported a decrease in ECM, from undisturbed to clearcut to burned sites (Harvey eta/. 1980; 

Perry eta/. 1982; Schoenberger and Perry 1982; Parke eta/. 1984). 

In a greenhouse bioassay of Douglas-fir and western hemlock (Tsuga heterophylla (Raf.) Sarg.), 

Schoenberger and Perry (1982) grew seedlings in soils from central Oregon that had been clearcut, cut 

plus burned, naturally burned, and undisturbed (old growth and young growth). Douglas-fir had more 

roots and ECM root tips in the unburned clearcut soils, followed by intermediate ECM colonization in the 

cut plus burned soils compared to the other sites. Western hemlock had the fewest roots and ECM root 

tips in the cut plus burned soils. 

In another greenhouse study, Perry eta/. (1982) examined mycorrhizal formation (number of active root 

tips per seedling) on Lodgepole pine, Engelmann spruce (Picea enge/mannii Parry ex Engelm.) and 

Douglas-fir seedlings grown in soils from 16-year-old clearcut, clearcut plus windrowed, windrow burned 

and adjacent mature forest sites in Montana. A significant decrease in the number of total and ECM root 

tips occurred in clearcut, clearcut plus windrowed and windrow burned sites compared to undisturbed 

forest sites. 

Parke eta/. ( 1984) grew Ponderosa pine and Douglas-fir seedlings in soil retrieved from clearcut, cut plus 

burned, and undisturbed sites in southwest Oregon and northern California in a greenhouse study to 

determine total ECM inoculation potential. Mycorrhizal colonization was quantified by visual estimates 

using a scale of zero to five that represented 20% increments. After growing seedlings 14 to 16 weeks, 

ECM colonization was greatest in undisturbed forest soils (80 to 100%), followed by clearcut soils (20% 

less) and cut plus burned soils (40% less). All treatments were significantly different. 

Seasonal differences in ECM abundance were not observed in the present study (no significant 

differences in seasonal abundance for the seven common types). Soil moisture was not measured but 

the soil was observed to be drier in August compared to June. Regenerating seedlings in the clearcut 

sites, which were only sampled in early fall when soil moisture was low, had fewer lightly colonized tips 

compared to planted seedlings in the disturbed sites. Reports in the literature, with respect to season and 

soil moisture are variable. An increase in numbers of ECM have been reported at the beginning of the 
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growing season for mature (Harvey eta/. 1978) and clearcut sites (Richter and Bruhn 1993). However, 

ECM colonization was higher for soils in dry montane compared to moist montane and mesic coastal 

sites in Oregon (Brainerd and Perry 1987). Brainerd and Perry (1987) suggested that in dry montane 

environments with limited moisture and shorter growing season, ECM may be more important in 

maintaining tree moisture and nutrient status. In contrast, under drought conditions, ECM was decreased 

in studies examining soil cores only (Nilsen eta/. 1998) and studies examining both soil cores and 

Norway spruce (Picea abies L. (Karst.)) seedlings (Feil eta/. 1988) compared to control sites and 

seedlings that were not subjected to drought. 

Many of the morphotypes found in the present study, such as the seven commonly occurring types 

discussed here, are considered to be broad host ranging, and match descriptions of those previously 

reported for spruce seedlings as well as other conifers, such as Pinus, Pseudotsuga, and Abies. 

Danielson and Pruden (1989) reported E-strain as the most common morphotype (38% found on urban 

white and blue spruce) , followed by Amphinema byssoides, Hebeloma, Tuber and Tomentella 

(approximately 30%). The/ephora and E-strain have also been reported on greenhouse or nursery grown 

spruce seedlings (Thomas eta/. 1983; lngleby eta/. 1990). Some of the dominant ECM that have been 

reported in clearcut subalpine forest sites include E-strain, Lactarius, Cenococcum, Piloderma, 

Hebe/oma, Amphinema and Cortinarius (Hagerman eta/. 1999). Most of these ECM with the exception 

of Lactarius were also found in clearcut sites in the present study. In the Eagle wildfire site, located 

adjacent to the Aleza Lake Research Forest, the most common ECM morphotypes reported on 

regenerating and planted spruce seedlings in burned salvaged-logged, burned unsalvaged and unburned 

sites, were similar to the seven most commonly occurring types reported in the present study (Egger and 

Massicotte 1998). Morphotypes found on jack pine stands, six years following wildfire, also included 

Cenococcum, E-strain, MRA, and Russula spp. and in 122-year-old jack pine stands, Cenococcum, 

Hebeloma, MRA , Piloderma, Russula spp. and Tomentella spp. were found (Visser 1995). 

In the present study, some differences in ECM abundance occurred between clearcut and cut plus 

burned sites, and between treated (regardless of treatment type) and untreated (mature) sites. For 

example, Hebeloma and Russu laceae type 1 were more abundant in cut plus burned sites than clearcut 

sites but Cenococcum was less abundant. Similarly , Amphinema, E-strain, and MRA were more 
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abundant in all treatment sites (planted seedlings) compared to untreated (mature) sites whereas 

Russulaceae type 1 was less abundant. 

Cenococcum was less abundant on planted seedlings in cut plus burned sites compared to planted 

seedlings in clearcut sites as well as seedlings in mature, undisturbed sites. ECM that successfullly 

colonize seedlings in burned sites may need to possess structures or propagules capable of surviving 

burns and tolerating adverse conditions in post-fire environments such as moisture stress. Cenococcum, 

a common but not abundantly occurring ECM (Wright and Tarrant 1958; lngleby eta/. 1990), is thought to 

be drought tolerant (Trappe 1969). It forms sclerotia, vegetative structures that may confer an advantage 

by increasing survival in disturbed sites. Cenococcum geophilum sclerotia, collected from soil samples in 

Wyoming, were found up to two years after fire in burned sites (Miller et at. 1994). Visser eta/. (1998) 

also found Cenococcum sclerotia up to two years following clearcutting in a mixedwood site in Alberta. 

Egger and Massicotte (1998) found Cenococcum ECM to be significantly less abundant on regenerating 

hybrid spruce in burned salvaged-logged sites than in mature, unburned sites. Schoenberger and Perry 

(1982) noted a decrease in the abundance of Cenococcum geophilum Fr. on western hemlock 

greenhouse seedlings growing in soils from cut plus burned plantations. Contrary to these reports and 

the present study, Pilz and Perry (1984) reported increased abundance of Cenococcum ECM on 

Douglas-fir grown in clearcut plus burned areas than in clearcut areas or in the undisturbed forest. 

Results by Pilz and Perry (1984) were based on macroscopic ECM characteristics; no Cenococcum 

mycorrhizae descriptions were provided in the study by Schoenberger and Perry. Furthermore, it is 

possible to confuse Cenococcum with other black mycorrhizae such as some Tomentel/a spp. and MRA 

(Danielson 1991 ). 

Hebeloma and Russulaceae type 1 were more abundant in the present study, on planted seedlings in cut 

plus burned sites than in clearcut sites. One possible reason may be due to the differences in slash 

heights and LFH layers in these treated sites. The depth of slash was greater in cut plus burned than in 

clearcut sites where windrowing most likely removed much of the larger woody debris. Windrowing may 

also have disrupted the LFH layer on the clearcut sites, and removed the nutrient rich forest floor. In 

contrast, burning of finer slash would add organic matter to the LFH layer on the cut plus burned sites. 

These activities may partially explain the significant differences between clearcut and cut plus burned 
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sites. More slash or a thicker LFH horizon could have beneficial moisture and nutrient effects and the 

higher abundance of Hebeloma and Russulaceae type 1 in cut plus burned sites may reflect this. Visser 

eta/. ( 1998) reported the presence of Hebeloma only on clearcut sites that received 1 0 em of wood chips 

and its absence on clearcut sites with no added wood chips or with 5 em of added wood chips, in a 

mixedwood site in Alberta. The increased abundance of Hebeloma and Russulaceae type 1 in cut plus 

burned sites may also be due to an association of these morphotypes with other woody shrubs (willow) or 

trees (birch, poplar) present on these sites that perhaps provided a source of inoculum. However, the 

relative abundance of vegetation in clearcut and cut plus burned sites was not quantified in the present 

study. Danielson (1991) reported Hebeloma fruitbodies under tall willows (Salix) and Visser eta/. (1998) 

reported Hebeloma and Russulaceae ECM on aspen (Populus tremuloides) roots. Kernaghan eta/. 

(1997) speculated that the Russulaceous ECM they studied were capable of colonizing woody shrubs 

such as Betula and Salix. 

Although the abundance of Amphinema, E-strain and MRA (as well as lightly colonized tips) was similar 

between planted seedlings in clearcut and cut plus burned sites, significant decreases were seen when 

comparing regenerating seedlings in the undisturbed mature sites to both types of treatment. Results in 

the present study suggest that both seedling type and treatment effect may be influencing colonization by 

these fungi for Amphinema and E-strain because intermediate abundance of these types occurred on 

regenerating seedlings in clearcut sites. However, for MRA and for lightly colonized tips, seedling type 

was likely influencing colonization as no significant differences were found between regenerating 

seedlings in mature and clearcut sites. In the Eagle fire study, E-strain, MRA and the lightly colonized 

group were more abundant and Amphinema was less abundant on regenerating spruce seedlings in 

burned salvaged-logged sites compared to mature sites (Egger and Massicotte 1998). However, on 

planted seedlings in that study, Amphinema was more abundant and the lightly colonized group was less 

abundant in burned salvaged-logged, than in burned unsalvaged sites. ECM abundance differences 

between the Eagle fire and the present study may be due to different fire types (wildfire versus broadcast 

burning). 

Rhizomorphs are an adaptive feature conferring advantages in disturbed sites and ECM that possess 

such mycelial networks may increase access to or storage of soil "nutrients" (Harley and Smith 1983). As 
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well, mycelia emanating from active mycorrhizal roots are thought to be an important source of inoculum 

for outplanted seedlings (Hagerman et at. 1999). In the present study, Amphinema was the dominant 

rhizomorphic fungi found on planted seedlings in disturbed sites and this may be due to its ability to 

increase access to and storage of soil nutrients as well as the ability to spread to and colonize other 

seedlings via rhizomorphs. The number of years after disturbance could also be a factor in the 

abundance of Amphinema; Danielson (1991) reported a large increase in abundance of Amphinema on 

outplanted white spruce growing on coal mine spoils, four and seven years after treatment with peat, 

fertilizer and sewage sludge. 

E-strain is believed to consist of a complex group of species (Danielson 1982; lngleby et at. 1990); 

possibly including post-fire ascomycetes belonging to the order Pezizales that are commonly found 

following burning of forest habitats (Petersen 1970 in Egger and Paden 1986). E-strain has been 

reported as a dominant ECM on disturbed sites such as coal spoils (Danielson 1991) and clearcuts 

(Hagerman et at. 1999). Additionally, E-strain fungi possess thick walled chlamydospores that may 

enhance survival in the soil after disturbance (Thomas eta/. 1983). Perhaps due to its limited mantle 

development, it does not compete as well in mature sites with other fungi that have thicker mantles, 

rhizomorphs or numerous emanating hyphae, but is able to thrive in extreme environmental conditions 

provided by disturbed sites. 

MRA occurs globally and is broad host ranging . It has been reported as both ectomycorrhizal and 

pathogenic though it is poorly understood in terms of its ecological function (Jumpponen and Trappe 

1998). Little is known about the species that comprise MRA and possible candidates include post-fire 

ascomycetes. In the present study, MRA varied morphologically: mantles were thin to well developed, 

with few to abundant emanating hyphae. While the well developed MRA may be able to persist in 

disturbed as well as undisturbed sites, MRA with poorly developed (patchy) mantles might be restricted to 

disturbed areas. MRA has been reported as dominant in disturbed sites such as trenched soils (Simard 

eta/. 1997) and amended oil sands (Danielson 1991 ). 

In the present study, Russulaceae type 1 had the greatest abundance of all ECM in the mature forest. It 

has been suggested that Russulaceae species may have a preference for fruiting in decaying wood in 
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North American coniferous forests (Schaffer 1975 in Kernaghan eta/. 1997). Piloderma was also 

abundant in mature sites in the present study and absent from all other sites except for a minor 

component of regenerating seedlings in clearcut sites. This fungus may prefer organic matter, a condition 

found in mature sites and is known to possess proteolytic enzymes to enable it to extract nitrogen from 

organic compounds (Dahlberg eta/. 1997). It also prefers fruiting in decayed wood and litter (Visser eta/. 

1998). In a 1 00-year-old Norway spruce stand in southern Sweden, Piloderma croceum Erikss. & Hjortst. 

accounted for 19% of the total mycorrhizal tips examined (Dahlberg eta/. 1997). In mixedwood stands of 

similar age in Alberta, P. byssinum (Karst.) Jul. was equally abundant (Visser eta/. 1998). In the Eagle 

fire study, both Russulaceae type 1 and Piloderma ECM of regenerating spruce were more abundant in 

mature than in burned salvaged-logged sites (Egger and Massicotte 1998). 

A possible difference in ECM colonization between regenerating and planted seedlings is that fungi 

commonly found in greenhouses (such as Thelephora) might be an additional source of inoculum for 

outplanted seedlings. Richter and Bruhn (1993) reported that Thelephora terrestris colonized Pinus roots 

for all three years after outplanting. In the present study, seedlings were not assessed for ECM before 

planting. However, Thelephora was found on all sites, and was most abundant on regenerating seedlings 

in the clearcuts. It may be likely that some of the Thelephora tips reported on regenerating seedlings in 

clearcuts were a Laccaria species, as these types have similar mantle and hyphal characteristics. Both 

The/ephora and Laccaria are reported to occur in a variety of habitats (lngleby eta/. 1990). In addition, 

Thelephora possesses rhizomorphs, and therefore may be better able to colonize roots of regenerating 

seedlings than non-rhizomorphic types. 

2.4.2 Treatment effects or seedling type differences on ectomycorrhizal diversity 

In the present study, broadcast burning did not appear to affect the ECM diversity of planted seedlings 

when clearcut sites were compared to cut plus burned sites. This is in contrast to the few burn studies 

that have examined ECM diversity . Pilz and Perry (1984) examined ECM on Douglas-fir seedlings grown 

in three western Cascade Mountain sites in undisturbed, mature (80 to 250 year old Douglas-fir/western 

hemlock), clearcut, and cut plus burned soils that had been transferred to each of the undisturbed , 

clearcut, and clearcut plus burned sites. They found more types of ECM in undisturbed than disturbed 

ones. Similarly , in a study of ectomycorrhizal fungal succession following wildfire in northeastern Alberta, 
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Visser (1995) reported a significant increase in mycorrhizal species richness between the six- and 122-

year old stands, using soil cores for ECM assessment. In a greenhouse bioassay, Brainerd and Perry 

(1987) examined the diversity of six-month-old Douglas-fir and ponderosa pine seedlings grown in soil 

from disturbed (three- to five-year-old clearcut plus burned) and undisturbed forest sites in Oregon. 

These sites represented a moisture/elevation gradient. Diversity (Shannon index) was highest in the dry 

montane site and lowest in the mesic coastal sites for undisturbed soils. Diversity decreased in disturbed 

soils in all site types. ECM morphotype information was not provided in this study. 

In the present study, a significant decrease in ECM diversity for the naturally regenerating seedlings in 

clearcut compared to mature sites was noted. Other studies have reported decreased diversity following 

disturbance. Simard eta/. (1997) conducted a trenching study in 90 to 120 year-old Douglas-fir and 

paper birch (Betula papyrifera Marsh.) dominated forests in the southern interior of British Columbia to 

determine the effect of ECM occurrence on one-year-old Douglas-fir seedlings outplanted for six to 16 

months. They reported a doubling in mean richness, diversity, and evenness of ECM per seedling in the 

untrenched versus trenched treatment. Hagerman eta/. ( 1999) examined clearcut size effects on ECM 

diversity and persistence in a subalpine forest dominated by 95 to 325 year-old subalpine fir and 

Engelmann spruce in southern British Columbia. They reported reduced ECM richness and diversity as 

well as reduced numbers of active fine roots in soil cores from clearcut compared to mature forest sites, 

sampled two and three growing seasons after logging. 

One reason for the difference in ECM diversity noted in the present study could be that the majority of 

hybrid spruce seedlings found in mature sites were rooted in woody substrates. Similarly, in 

approximately 100 to 200 year-old sub-boreal spruce stands in central British Columbia, 48% of hybrid 

spruce seedlings were found on rotting wood substrates (Kneeshaw and Burton 1997). Woody 

substrates provide a source of moisture (Harvey eta/. 1978), a haven for possible animal vectors that 

help to disperse mycorrhizal inocula (Maser eta/. 1978) and possibly better access to sunlight than 

seedlings on the forest floor. In a 250 year-old Douglas-fir/larch forest in western Montana, Harvey eta/. 

(1976) found that in the top 38 em of soil , 95% of the active ECM were associated with organic material, 

mainly humus and decayed wood. In a later study (Harvey eta/. 1981 ), they reported increased ECM 

numbers with increases in organic matter (up to 45% by volume) in the top 30 em of the soil, with more 
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tips in decayed wood than in humus. This could partly account for differences seen in the present study: 

the regenerating seedlings in the mature sites could benefit from the nutrient rich, moist, and shaded 

environment and from less stress associated with drought and temperature extremes. Another possible 

reason for differences in ECM diversity may be related to seedling age. Regenerating seedlings in 

mature sites were approximately two years older than those on clearcut sites. 

Regenerating seedlings in clearcut sites in the present study were also significantly less diverse than 

planted seedlings in the same site. Seedling measurements showed that planted seedlings were larger 

than regenerating seedlings and were therefore able to support the formation of a larger root system 

which could exploit larger soil volumes and reach more fungal propagules than regenerating seedlings. 

As well, planted seedlings had two years initial growth in the greenhouse and nursery soils and may have 

been colonized by fungi such as Thelephora and E-strain, respectively. Fewer regenerating seedlings 

were sampled on clearcut sites compared to planted seedlings. This, in combination with smaller root 

systems, may account for some of the lower species richness: rare, less abundant species comprised 

most of the ECM missing on regenerating seedlings. 

The fact that very few regenerating seedlings were found on cut plus burned sites was unexpected. It is 

unlikely that the absence of seedlings was related to the availability of mycorrhizal inoculum (planted 

seedlings in the same sites were colonized) but rather was related to seed source. High seedling 

regeneration may have occurred after 1993, a time when the seed crop was rated as good (John Revel 

pers. comm. 1999). At this time, clearcut sites were one year old and were potentially ideal for seedling 

regeneration. However, on the cut plus burned sites, cones and seedlings surviving the clearcutting (in 

the winter of 1993) would have been burned in 1994. The optimum conditions for Engelmann spruce 

(Picea enge/mannit) regeneration in the Engelmann Spruce-Subalpine Fir biogeoclimatic subzone are 

seedbeds created by clearcutting with exposure of mineral soil compared to a seedbed of undisturbed or 

burned forest floor (Feller 1998). Seedbeds created by low severity burns supported the largest number 

of living spruce seedlings after three growing seasons (Feller 1998). If the seed source is insufficient, 

white spruce does not readily regenerate after logging , requiring the outplanting of one- or two-year-old 

nursery (or greenhouse) grown seedlings (Silversides eta/. 1986). 
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Some differences in ECM diversity and abundance may be attributed to the general site, seedlings and 

soil characteristics. Those discussed previously include slash height and LFH layer thickness. Soil 

characteristics such as pH and C/N ratios did not appear to differ greatly and cannot be correlated to 

ECM abundance and diversity in this study as these measurements may not be representative of 

rhizosphere conditions. However, they are useful for general site descriptions and determining variability 

within and between sites. Carbon/nitrogen ratios were within the range of reported values in the 

literature; the minimum C/N ratios for organic and mineral soils are 20, and 10 to 12, respectively (Brady 

1974). A higher ratio represents a lower rate of decomposition and less readily available nitrogen and 

this would be expected for the LFH layer, where nitrogen would be bound and less available than in the 

mineral layer (Brady 1974). Seedling age varied among sites (four to seven years), generally being lower 

in cut plus burned sites due to a later planting date than those in clearcut sites and lower in regenerating 

seedlings in clearcut sites. Seedlings were older in the mature sites compared to all other sites. Finally, 

although the diversity indices in this study were not strongly correlated with the measured seedling 

parameters, the abundance values of nearly half of the assessed morphotypes were significantly 

correlated with leader growth, seedling height and basal diameter. For example, MRA abundance 

positively increased with increase in leader growth. More rigorous examination of these measurements 

(soil and site characteristics and seedling parameters) followed by other types of analysis such as 

canonical correspondence analysis may explain differences in ECM abundance. 

Difference in diversity may not have been detected due to the uncertainties in resolving and identifying 

some morphotypes, in particular some of the lightly colonized types. In the present study, the most 

abundant morphotypes appeared to be fairly easy to distinguish. The Shannon and Simpson indices 

assume that all species are known in the sample (Magurran 1988). Some ECM types were identifiable to 

the species level but others could only be resolved to the genus or family level. Walker (1987) discussed 

classification of Sitka spruce ECM claiming it was possible but not easy to determine mycorrhizae to the 

genus level. Use of traditional diversity indices (Shannon and Simpson) may not reflect real differences 

in diversity if a morphotype does not represent a species. The absence of some of the rare ECM on 

regenerating seedlings in the clearcut sites is probably the cause of significant differences seen in the 

richness measure and Shannon index, both which are sensitive to changes in the number of rare species. 
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The Shannon and Simpson indices may also be sensitive to sample size (Magurran 1988), which varied 

in the present study between the naturally regenerating and planted seedlings. 

In conclusion , results in the present study suggest that broadcast burning following clearcutting does not 

appear to be affecting ECM diversity. However, some changes in ECM abundance occurred as a result 

of both types of disturbance. The impact of these changes in abundance to seedling establishment and 

growth are unknown and require further studies. Although broadcast burning did not appear to have 

more adverse effects on mycorrhizal diversity than clearcutting , fungal diversity was reduced in 

regenerating seedlings in clearcut sites. Applications of results in the present study to forest 

management is limited to hybrid white spruce seedlings in the SBS biogeoclimatic zone willow wet, cool 

(wk1) variant. ECM abundance and diversity could not be correlated to a specific burn severity without 

depth of burn measurements, although a general estimate of a moderate severity was made. Future 

studies should endeavor to accurately measure fire severity and intensity. It should be noted that very 

few hybrid spruce seedlings regenerated on cut plus burned sites, reaffirming the current practice to 

replant these sites. 
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3. Molecular Characterization of Mycorrhizae Associated with Hybrid White Spruce Seedlings in 
the Aleza Lake Research Forest, Central Interior of British Columbia 

ABSTRACT 

Broadcast burning is a common form of site preparation following clearcutting in coniferous forests of 

British Columbia. Associated with many conifer and deciduous species, ectomycorrhizae (ECM) provide 

a key link in nutrient and energy cycling within forest ecosystems. To assess the impacts of broadcast 

burning practices on ectomycorrhizae (ECM) diversity, planted and naturally regenerating hybrid white 

spruce seedlings, growing in the sub-boreal spruce (SBS) biogeoclimatic zone in the Central Interior of 

British Columbia, were sampled from two treated (clearcut, and clearcut plus burned) as well as adjacent 

mature forest sites (uncut and unburned). During an initial study on ECM morphology, seedling root 

systems were characterized for mycorrhizae and approximately 1800 tips were subsampled for molecular 

analysis (PCR-RFLP). RFLP analysis of eight commonly occurring ECM morphotypes as well as lightly 

colonized tips revealed 12 genotypes (those that shared one or no band patterns of three restriction 

endonucleases) with 18 variants (those sharing similar band patterns for two of the three restriction 

endonucleases). Analysis of the commonly occurring morphotypes revealed that four (Cenococcum, 

Tuber, Hebeloma and The/ephora) exhibited only one molecular genotype. However, Hebeloma and 

The/ephora had several variants. The other four morphotypes (Amphinema, E-strain, MRA, and 

Russulaceae type 1) possessed two or three genotypes, some with several variants. The number of 

genotypes and variants appeared to increase with increasing disturbance from regenerating seedlings in 

mature sites (6 genotypes, 9 variants) to planted seedlings in clearcut plus burned sites (11 genotypes, 

17 variants). However, ECM molecular diversity, assessed using the Phi index, was not significantly 

different between treatments or for planted versus naturally regenerating seedlings. This suggests that 

the molecular diversity of ECM on hybrid white spruce seedlings was not affected by clearcutting or 

clearcutting plus broadcast burning. Molecular characterization provided a more comprehensive estimate 

of diversity, specifically for total species richness, in combination with morphological methods and 

increased understanding of inter- and intra-specific variation with respect to ectomycorrhizal associations. 
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3.1 INTRODUCTION 

Broadcast burning on clearcut sites has been used as a common method of site preparation prior to 

outplanting of seedlings (Hawkes eta/. 1990). The impacts of this practice have been summarized in 

reviews of numerous studies examining changes in soil chemical, physical and biological characteristics 

(Wells eta/. 1979; Agee 1993). Results vary, but in general more severe fires cause the most deleterious 

effects (e.g. increased soil erosion, decreased soil porosity, increased volatilization of plant nutrients and 

a decreased number of soil organisms). A growing number of studies have focussed on burning effects 

on important soil components such as mycorrhizae. Mycorrhizae are symbiotic fungal-plant root 

associations in which the fungal partner enhances moisture and nutrient uptake in exchange for plant 

carbohydrates (Harley and Smith 1983). They are believed to be essential to seedling growth and 

survival. Ectomycorrhizae (ECM), one of several types of symbioses, are associated with angiosperm 

and gymnosperm hosts; many of these are important commercial forest species (e.g. Picea, Pinus, Abies) 

in British Columbia. 

In general, previous studies of burning effects have reported decreases in ECM abundance, however, 

comparisons and interpretations are sometimes difficult due to different methods of assessment. For 

example, on clearcut plus burned sites in the field, Wright and Tarrant (1958) only assessed seedlings as 

being mycorrhizal or non-mycorrhizal, Pilz and Perry (1984) examined the mean number of mycorrhizal 

root tips per seedling and Parke eta/. ( 1984) used visual estimates on a scale of 20% increments. 

Descriptions of fungal types in these studies were rudimentary, such as categorizing types into white, 

brown or black groups (Wright and Tarrant 1958). In the last decade, the resolution of morphological 

identification has constantly improved, due to the publication of description standards (lngleby eta/. 1990; 

Agerer 1987 -98; Agerer eta/. 1996-98; Goodman eta/. 1996). However, morphological identification 

requires considerable skill and this may be hampered by problems such as the phenotypic variation of 

ECM on different hosts and under varying environmental conditions (Egger 1995). In contrast, molecular 

characterization of ECM is in theory easier to learn, is less time consuming in the processing of tips, and 

examines ECM genotypes that are independent of environmental variation (Egger 1995; Gardes and 

Bruns 1996). However, in order to make inferences from molecular data, molecular analysis still relies on 

comparisons with identified mycorrhizal tips, based on morphological data (Horton and Bruns 1998; 
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Varga 1998, M.Sc. Thesis; Egger and Massicotte 1999); on sporocarp data (Karen eta/. 1997; 

Kernaghan eta/. 1997}, or on cultures from identified root tips (Mehmann eta/. 1995). 

Molecular assessment includes DNA amplification by the polymerase chain reaction (PCR, Mullis and 

Faloona 1987), digestion of selected targeted sequences by restriction endonucleases and analysis of 

the restriction fragment length polymorphism (RFLP) band patterns (Gardes and Bruns 1996). The 

internal transcribed spacer (ITS) region of the ribosomal RNA gene unit of DNA (rONA) has been widely 

used for amplification. This region lies between the 18S and 25S rRNA coding genes and contains the 

5.8S rRNA gene flanked by two non-coding spacers called ITS1 and ITS2 (Gardes and Bruns 1996). 

Due to its relatively rapid rate of evolution, the ITS region is suitable for identification to the species or 

species group for most fungi (White eta/. 1990; Gardes and Bruns 1996). Several studies on ECM fungi 

have examined this region using the PCR-RFLP method. A study by Kraigher eta/. (1995) attempted to 

distinguish two species of Lactarius that are difficult to separate by morphological typing . Another study 

by Kernaghan eta/. (1997) compared morphological characterization of Russulaceae mycorrhizae to 

sporocarp tissue to confirm identification. Recently, Horton and Bruns (1998) examined fungal 

associates for possible linkages between Douglas-fir (Pseudotsuga menziesii D. Don) and bishop pine 

(Pinus muricata D. Don) and Horton eta/. (1998) examined ECM and dark septate fungal colonization on 

bishop pine after wildfi re. Jonsson eta/. (1999) examined mycorrhizae and sporocarps in a 

chronosequence study of ECM community and composition following wildfire in Scots pine (Pinus 

sylvestris) stands. Thus, PCR-RFLP analysis of the ITS region is currently being used in a variety of 

applications to address questions concerning ECM. 

The Shannon and Simpson indices are commonly used diversity indices that have been applied to ECM 

morphological data (Brainerd and Perry 1987; Simard eta/. 1997; Houston eta/. 1998). However, using 

these indices for ECM may be problematic. For example, for some ECM, it is possible that one 

morphological type (morphotype) could represent more than one species; for other ECM, one species 

may simply have more than one assemblage of morphological characteristics depending on its growth 

stage or on environmental conditions (Mehmann eta/. 1995). This problem of species uncertainty could 

violate the assumption of the diversity ind ices: that all species in a sample are known (Magurran 1988). 

However, these ind ices currently appear to be the best measure of diversity for morphological data. To 
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assess diversity using molecular data, the Phi index has been derived by Egger (Baldwin 1999, M.Sc. 

Thesis) . Using the Phi index, ECM root tips are matched with every other tip in the sample and their 

distances (representative of their relatedness) are used instead of species richness and abundance data, 

in calculating mycorrhizal molecular diversity of the entire sample (Egger, pers. comm. 1999). 

The main objective of this study was to determine, using molecular characterization (PCR-RFLP 

methods), the effect of broadcast burning following clearcutting on the diversity of ECM on planted and 

regenerating hybrid wh ite spruce growing in mature, clearcut, and cut plus burned sites in the SBS 

biogeoclimatic zone of central British Columbia. In addition, the study was to explore differences in ECM 

diversity between planted and regenerating seedlings and to compare molecular results with previous 

morphological assessments. The study further examined the Phi index as a useful measure of diversity 

for molecular analysis in place of traditional methods. 

3.2 MATERIALS AND METHODS 

3.2.1 Ectomycorrhizae sampling 

The study area included four treated (two clearcut and two cut plus burned) and two adjacent mature 

forest sites, located approximately 36 km east of Prince George, British Columbia, near the Bowron River 

in the south-western portion of the Aleza Lake Research Forest. The study area is part of the SBS 

biogeoclimatic zone, willow wet, cool (wk1) variant; climax tree species are hybrid white spruce (Picea 

engelmannii (Parry ex Engelm.) x glauca (Moench) Voss) and subalpine fir (Abies /asiocarpa (Hook.) 

Nutt.) and the hybrid spruce-oak fern is the zonal association (Meidinger eta/. 1991 ). A total of 88 hybrid 

white spruce seedlings were harvested, half in late June and half in late August 1997, from 50 m x 50 m 

blocks. Sampling included 16 regenerating seedlings from mature sites, 28 planted and 16 regenerating 

seedlings (only sampled in the fall) from clearcut sites and 28 planted seedlings from cut plus burned 

sites. Roots systems were washed and floated over a grid in water and 200 healthy (i.e. turgid roots with 

intact meristems) tips were randomly sampled for each seedling. Ten percent of the tips representing 

each ECM morphotype for each seedling were selected for molecular analysis (approximately 1800 root 

tips) and stored in 1 ml microcentrifuge tubes at -20°C until processed. Pre-harvest silviculture 

prescriptions are presented in Appendix A and morphological characterization and descriptions are 

presented in Chapter 2 and Appendices B, C and D. 
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3.2.2 DNA extraction 

Isolation of fungal DNA was conducted using a modified CTAB protocol (Zolan and Pukkila 1986). A thin 

section of the apical end of each root tip (approximately 2 mm) was excised, using a sterile dissecting 

blade for each morphotype, and was placed in a separate glass micromortar (Mandel Scientific) on ice 

( -20°C) for at least 15 minutes. The frozen tips were then quickly ground and suspended in 175 111 of 2X 

CTAB buffer (8 .6 ml autoclaved, millipore water, 3.54 ml 5M NaCI, 1.41 ml 1M Tris-HCI (12.1 g Tris 

(hydroxymethylamino-methane, Trizma® Base, Sigma Chemical Co.) and approximately 4.2 ml HCI to 

pH 8.0), 578 111 of 0.5M EDTA (Ethylenediaminetetraacetic acid) at pH 8.0, 2.89 ml of 10% CTAB 

(Hexadecyltrimethly-ammonium bromide, Sigma Chemical Co.), and 28.9 111 of 2-mercapto-ethanol 

solution. Tips were then reground and then transferred to steri le 1 ml microcentrifuge tubes. A final 175 

111 rinse with 2X CTAB was added to the micromortars and transferred to the microcentrifuge tubes. The 

contents of the tubes were incubated at 60°C in a heatblock (VWR Scientific) for 45 to 60 minutes. 

Following incubation, an equal amount (approximately 350 111) of 24:1 chloroform:isoamyl alcohol solution 

was added to the tubes, which were spin vortexed, then centrifuged for 10 minutes at 13000 rpm. 

To precipitate the DNA, the top aqueous layer was pi petted into a new microcentrifuge tube and an equal 

amount (approximately 350 11 l) of absolute isopropanol (stored at -5°C) was added. The tubes were 

mixed by inverting for 1 minute, then stored at -5°C for 10 minutes before being centrifuged at 13000 

rpm. Contents of the tubes were removed by air suction , leaving the pellet and approximately 100 111 of 

liquid. To remove salts from the pellet, about 175 f.tl of 70% ethanol (stored at -5°C) was added and the 

tubes were finger vortexed a few times and then centrifuged for 3 to 5 minutes at 13000 rpm. Two more 

washes with ethanol followed , then the remaining liquid was removed by air suction, leaving 

approximately 50 111 of solution , which was removed by placing the tubes in a dessicator (VWR Scientific) 

overnight. The remaining pellet was used for DNA amplification. 

3.2.3 DNA amplification 

The DNA pellet was resuspended with 50 111 of 8 mM of NaOH and heated to 60°C for 1 0 minutes in a 

heatblock. Subsequently, 4 111 was added to 27 111 of master mix (17.2 111 autoclaved , millipore water, 3.0 

11110X DNA Polymerase Buffer (BIO/CAN Scientific) , 3.0 1112mM dNTP stock solution (2mM each of 
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dATP, dCTP, dGTP and dTTP, Pharmacia Biotech), 2.4 J..! I25mM MgC12, 1.2J..!I each of 10 J..!M 

oligonucleotide primers ITS 1 (TCC GTA GGT GAA CCT GCG G) (White eta/. 1990) and NL6Bmun 

(CAA GCG TTT CCC TTT CAA CA) (Egger 1995), and 0.08 Il l of 5un its/lll pure or 1:1 UltraTherm™ DNA 

Polymerase to Polymerase Buffer (BIO/CAN) and put into 0.6 ml microcentrifuge tubes kept on ice. A 

drop of mineral oil (Sigma Chemical Co.) was added to prevent evaporation and the tubes were briefly 

spun to 10000 rpm. The Perkin Elmer Cetus Thermocycler was used for DNA amplification at two 

settings: 1) for robust, well colonized roots, denaturation at 94°C for 45 sec., annealing temperature of 

48°C for 45 sec., and an extension step at n oc starting at 130 sec., increasing 1 second per cycle for 35 

cycles and; 2) for lightly colonized roots or roots which were weakly amplified using the first protocol, 

similar settings as above except cycles were extended to 40, and annealing temperature was decreased 

to 46°C to increase possibility of amplification. As well, pure and 1:1 diluted DNA Polymerase were used 

for lightly colonized and robust tips, respectively. 

To determine whether there was sufficient DNA and to visualize double amplifications (double bands 

indicating the presence of two types of fungal DNA, called doublets), about 4 f.ll of loading buffer (0.003% 

bromophenol blue and 0.45% glycerol) was added to 4 f.ll of PCR product, loaded and then run with a 1 

Kb ladder standard (Life Technologies) on a 0.7% agarose (Sigma Chemical Co.) gel (0.7 g agarose in 

100ml of 10X TBE (108 g TRIZMA® Base, Sigma Chemical Co.), 55 g Boric acid and 40 ml 0.5 M EDTA 

and deionized water to make 1 litre). To stain the resulting bands, 22 f.ll of ethidium bromide was added 

to the gel when it was poured. Moderate to strong bands, ranging in size from 800-1200 base pairs, were 

selected for digestion. Doublets were stored for analysis in a future study. 

3.2.4 Digestion, gel electrophoresis and photography 

For digestion of PCR products, three restriction endonucleases were used. Approximately 7.4 f.ll of 

amplified DNA was added to 0.2 ml microcentrifuge tubes, each containing an endonuclease (0.5, 0.3 

and 0.4 f.ll of Alu I, Hinf I and Rsa I (Pharmacia Biotech) , respectively) , 2 f.ll of the corresponding buffer 

solution (Pharmacia Biotech) and 5 f.ll autoclaved filtered (millipore) water. These tubes were placed in 

an incubator at 3rC for a minimum of 5 hrs and then centrifuged briefly to remove condensation from the 

caps (if products were refrigerated) and 4 f.ll of loading buffer was added to the solution. The contents of 
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the tube were loaded and run on 2.5% high resolution gel (1.0% NuSieve agarose, 1.5% agarose, 1 OX 

TBE buffer) at approximately 90mV. Ethidium bromide (approximately 7 , .. dl100 ml) was added before 

pouring the gel , enabling band patterns to be viewed under the UV light. Digital images of gels were 

taken using the Gel Print 2000i photographic system (BioPhotonic Corp.) and were saved on disk as well 

as printed on Mitsubishi thermal paper (K65H Mitsubishi Electric Corp.). 

3 .. 2.5 Analysis of molecular data 

Band patterns were assessed using the RFLP analysis application software RFLPscan Plus, Version 3.0, 

(©1990-1996 Scanalytics). Band size was calibrated using the Desmile calibration method with log 

piecewise linear curve fitting and bands in all lanes were matched simultaneously at a 2% tolerance level; 

banding patterns across different gels were compared at a 6% variation level to compensate for 

differences in gels. Fragments less than 75 base pairs were not counted to reduce the possibility of 

including primer dimer products. Using RFLPscan Database, Versions 2.1 and 3.0 (©1990-1996 

Scanalytics) , 14 databases were created , separated by replicate site and season for each treatment. In 

addition, databases for eight commonly occurring morphotypes (Amphinema, Cenococcum, E-strain, 

Hebeloma, MRA , Russulaceae type 1, Thelephora , and Tuber) and for the group of lightly colonized but 

unidentified tips were created. 

Pairwise comparisons of all banding patterns were compiled for each database. Pairs of tips were 

matched using a modification of Dice's index; the modification was that Dice's index was converted to a 

distance value (i.e. 1-Dice's index). As calculated using the RFLPscan software, modified Dice's index= 

L (polymorphic bands) I (shared bands+ total bands) I 3 (Egger unpublished). Once all the possible 

pairwise combinations were examined, a distance matrix was created. Cluster analysis using the 

unweighted pair-group method with arithmetic means (UPGMA) of the distance matrix was done using 

the Neighbor-JoiningiUPGMA module in PHYLIP (Phylogeny Inference Package) Version 3.5c (©1986-

1993 Joseph Felsenstein ). The UPGMA phenograms produced were viewed using TreeView, Version 

Win 3.2 (©1998 Roderic DM Page). 
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From each phenogram, clusters of tips were selected to determine intra- or inter-specific variation by 

comparing the band patterns for all three enzymes. If the band size differed by more than 6% of the total 

molecular weight, the variation was considered a polymorphism. Tips with similar band patterns for two 

enzymes but differing for the third enzyme were classified as intraspecific variants (Gardes and Bruns 

1996). If only one or no enzyme band pattern was shared, then tips were considered to be different 

interspecific genotypes. Due to the large sample size, not all band patterns for all the tips were 

considered when reporting the major genotypes and variants; excluded tips were those that occurred 

infrequently (less than 10 in a cluster) or tips that were separated by a large distance (greater than 20%) 

in the phenogram. 

The newly derived Phi index (see Appendix H for calculations) was used to assess genetic diversity 

between treatments and for each of the eight commonly occurring morphotypes using band patterns from 

all successfully amplified and digested tips. One-way ANOVA (STATISTICA for Windows Release 5.1 G 

1997 edition, Statsoft, Inc.) was used to determine significant differences between treatments and 

between seedling types using a Bonferroni correction of alpha = 0.01 (a I number of comparisons =0.05 I 

5) for five planned comparisons due to an incomplete experimental design. Comparisons included: 1) 

between planted seedl ings in clearcut and cut plus burned sites to test for burning effects; 2) between 

regenerating seedlings in mature and planted seedlings in clearcut sites to test for cutting and seedlings 

effects; 3) between regenerating seedlings in mature and planted seedlings in cut plus burned sites to 

test for treatment and seedling effects; 4) between regenerating seedlings in mature and clearcut sites to 

test for cutting effects; and 5) between planted and regenerating seedlings in clearcut sites to test for 

seedling differences. 
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3.3 RESULTS 

3.3.1 Amplification and digestion success rates 

Of all tips selected for morphological characterization , 69% (1276) were successfully amplified and 

digested for RFLP analysis (Table 9). The eight commonly occurring morphotypes (Cenococcum, E-

strain , MRA, Tuber, Amphinema, Hebeloma, Russulaceae type 1 and Thelephora) plus the lightly 

colonized category, were further examined for band patterns. These comprised 91% of all successfully 

amplified tips. The level of amplification varied among types but in general was high among some of the 

commonly occurring ECM (e.g. Cenococcum, E-strain, Amphinema, Hebe/oma and Russulaceae type 1 ). 

For the well colonized ECM Tomentella type 1 and Piloderma, amplification rates were expected to be 

higher but a number of tips were lost in early extractions. 

For most well colonized tips favourable settings for amplification included denaturation at 94°C for 45 

sec., annealing temperature of 48°C for 45 sec., and an extension step at n oc starting at 130 sec., 

increasing 1 second per cycle for 35 cycles. The amplification success rate for E-strain, MRA, and non-

rhizomorphic thin mantled and unclamped types as well as for lightly colonized tips was improved by 

using a lower annealing temperature (48°C} and increasing the number of cycles from 35 to 40 cycles. 

Unsuccessful amplification included weak bands (showing insufficient DNA for further processing) or 

doublets. The morphotypes MRA, The/ephora and the category of lightly colonized tips had the highest 

percentage of doublets (8, 9 and 7%, respectively) followed by E-strain (5%). 
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Table 9. Summary of DNA amplification (PCR*) ofmycorrhizal root tips from naturally regenerating and planted 
hybrid white spruce seedlings growing in the Aleza Lake Research Forest, Central Interior of British Columbia. 
Morphotype Type Total Tips Amplification Doublets Doublets 

code tips amplifiedt rate(%) %total 
Cenococcum 2 68 53 77.9 I 1.5 
£-strain* 149 124 83 .2 8 5.4 
MRA* 3 326 204 62.6 27 8.3 
Tuber 4 29 17 58.6 
Ascomycete unknown 5 I 
Amphinema 9 258 221 85 .7 3 1.2 
Hebeloma I 145 115 79.3 5 3.4 
Jnocybe H 4 4 100.0 
Lace aria E 17 14 82.4 
Piloderma A 20 10 50.0 
Russulaceae I F 164 139 84.8 0.6 
Russulaceae 2 G 23 15 65.2 
Thelephora 8 176 113 64 .2 15 8.5 
Thelephoraceae-like p I I 100.0 
Tomentella I 6 17 .., 17.6 .) 

Tomentella 2 7 9 7 77.8 
Tomentella 3 0 I I 100.0 
Non-rhizomorphic olive-green J 3 2 66.7 
Non-rhizomorphic thin mantled* L 44 32 72.7 2 4.5 
Non-rhizomorphic undamped* M 3 2 66.7 
Non- rhizomorphic white K 9 8 88 .9 
Rhizomorphic brown undamped D 10 6 60.0 
Rhizomorphic orange undamped c 15 8 53.3 
Rhizomorphic white B 12 8 66.7 
lightly colonized* NIX 339 169 49.9 25 7.4 
Totals I meanst 1843 1276 69.2t 87 4.7t 
*settings include denaturation at 94°C for 45 sec., annealing temperature of 46°C for 45 sec., and an extension step 
at 72°C starting at 130 sec., increasing I second per cycle for 40 cycles. Otherwise, different annealing temperature 
(48°C) and number of cycles (35) were used. 
tincludes tips which were further digested and analysed for RFLP patterns and excludes those tips showing weak or 
double bands. 
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3.3.2 Band patterns of selected ECM morphotypes 

Molecular band patterns for eight commonly occurring ECM morphotypes and the lightly colonized , 

unknown group are presented in Tables 10 to 12. Table 10 shows the genotype (band pattern difference 

in more than one endonuclease) and variant (band pattern difference in only one enzyme) patterns for the 

four ascomycetes: Cenococcum, E-strain, MRA and Tuber. Band patterns of Cenococcum were 

represented by one major genotype. E-strain showed two genotypes; for genotype 2, band patterns of 

variants differed by the addition of a band in Hinf I, as well as a restriction site for Rsa I. For MRA, 

although genotype 2 only differed in the Rsa I endonuclease, it had more and different restriction sites 

and was distinctly larger in size than genotype 1. The distance on the phenogram was also sufficient 

(approximately 20%) to justify designating the two groups as separate genotypes. Like Cenococcum, 

Tuber showed one genotype. For ascomycetes, the total band size was highest for Tuber and lowest for 

Cenococcum. Most of the variants occurred on both regenerating and planted seedlings and in more 

than one treatment. MRA was an exception where genotype 2, occurred only on planted seedlings. 

Band patterns for the four basidiomycetes (Amphinema, Hebeloma, Russulaceae type 1 and The/ephora) 

are presented in Table 11 . Three different sets of band patterns for Amphinema, varying for Alu I and 

Rsa I, resulted in three genotypes. Of these, restriction sites varied from none (genotype 2, variant 1) to 

three (genotype 3) for Rsa I and from two to three sites for Alu I, producing a total of six variants. 

Interestingly, all band patterns for Hebeloma were similar to those of genotype 1 for Amphinema, 

including its three variants. Two genotypes were defined for Russulaceae type 1: genotype 2 differed 

from genotype 1 for all endonucleases in band pattern (having fewer restriction sites) but not for total 

band size for Alu I and Rsa I. Variants of genotype 1 differed in total band size for Hinfl. For 

The/ephora , only one genotype was resolved with two variants, differing in band patterns for A/u I. 

Most band patterns were seen in more than one treatment or type of seedling (Table 11 ). Exceptions 

included all three genotypes for Amphinema. Genotype 1, variant 3 for Amphinema, only occurred on 

regenerating seedlings in clearcut sites, genotype 2, variant 1, occurred on cut plus burned sites only, 

and genotype 3 only occurred on planted seedlings. 
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Table 10. RFLP band patterns of four ascomycete morphotypes amplified (PCR *) from naturally regenerating and 
planted hybrid white spruce seedlings in the Aleza Lake Research Forest, Central Interior of British Columbia. 
Type Genotypet (no. tips) Band patterns~ using Genotype (no. tips) Band patterns using 
(no. amplified Variant:j: (no. tips) three endonucleases Variant (no. tips) three endonucleases 
tips) Occurrence§ Alu I Hinfi Rsa I Occurrence Alu I Hinfi Rsa I 
Cenococcum Gen. I (45) 438 270 261 
(53) Var. I (45) 149 159 182 

M-r/ C-pll CB-pl l!.Q 127 137 
697 _..21 __22 

650 679 
E-strain Gen . I (65) 693 493 923 Gen. I (65) 686 507 983 
(124) Var. I (36) 186 160 Var. 2 (29) 185 I6I 

C-pll C-r/ CB-pl ill ill C-pl/ C-r/ CB-pl ill I44 
992 799 989 8I2 

Gen. 2 (30) 672 490 886 
Var. I (30) . I83 177 _.2£ 
C-pl/ C-r/ CB-pl ill 166 978 

97I ill 
98I 

MRA Gen. I (108) 620 428 558 
(204) Var. I (I08) I47 248 ill. 

M-r/ C-pl/ C-r/ CB-pl ill I68 733 
880 844 

Gen. 2 (32) 635 437 442 
Var. I (32) I47 248 I 55 
C-pl/ CB-pl ill I64 I42 

895 849 I24 
863 

Tuber Gen. I (IO) 587 327 357 
(17) Var. I (IO) I84 307 303 

M-r/ C-pl/ C-r I44 I76 255 
__!11 ill ___2.!. 
I029 935 I006 

* primers used for the ITS region of rDNA were ITS I and NL6Bmun. 
t genotypes were defined as tips having band pattern differences in more than one enzyme (Alu I, Hinfi, or Rsa 1). 
t variants were defined as tips having band pattern differences in only one enzyme. Genotypes and variants 
reported here include clusters on phenograms with :2:10 tips. 
§ M- mature, C- clearcut, CB- cut plus burned, r-regenerating seedling, pi-planted seedling. 
~band patterns presented were taken from a representative tip within each variant cluster in the phenogram. 
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Table II. RFLP band patterns of four basidiomycete morphotypes amplified (PCR *)from naturally regenerating 
and planted hybrid white spruce seedlings in the Aleza Lake Research Forest, Central Interior of British Columbia. 
Type Genotypet (no. tips) Band patterns~ using Genotype (no. tips) Band patterns using 
(no. amplified Variantt (no. tips) three endonucleases Variant (no. tips) three endonucleases 
tips) Occurrence§ Alu I Hinf I Rsa I Occurrence Alu I Hinfi Rsa I 
Amphinema Gen. I (117) 562 316 763 Gen . I (124) 360 321 779 
(221) Var. I (42) 191 285 1!.Q Var. 2 (60) 189 289 176 

M-r/ C-pll CB-pl 117 158 943 M-r/ C-pl/ C-r/ ill 165 955 
...21 146 CB-pl 661 152 
967 905 927 

Gen . I (124) 651 322 750 
Var. 3 (15) 189 282 176 
C-r .!l.Q 167 926 

960 ill 
924 

Gen. 2 (24) 361 321 988 
Var. I (24) 189 290 
CB-pl ill 165 

661 150 
926 

Gen . 3 (37) 579 320 323 Gen. 3 (37) 362 319 321 
Var. I (18) 189 286 292 Var.2(19) 190 292 286 
C-pl/ CB-pl 116 169 150 C-pl/ CB-pl ill 166 151 

.21. ill 136 670 153 _2Q 
981 932 901 930 848 

Hebeloma Gen. I (77) 577 320 764 Gen . I (77) 357 312 770 
(115) Var. I (20) 193 293 ill Var. 2 (3 I) 189 285 174 

M-r/ C-pll CB-pl 121 158 942 M-r/ C-pll CB-pl llQ 160 944 
99 149 656 146 

990 920 903 
Gen . I (77) 648 319 749 
Yar. 3 (26) 195 275 178 
M-r/ C-pll CB-pl ill 165 927 

956 150 
909 

Russulaceae 1 Gen. 1 (108) 527 313 783 Gen. I (108) 526 258 791 
(139) Var. I (78) 182 258 ill Var. 2 (30) 188 217 179 

M-r/ C-pll CB-pl 150 169 956 M-r/ C-r/ CB-pl 159 165 970 
ill !54 109 151 
970 ..21. 982 _5g 

988 883 
Gen . 2 (23) 670 337 567 
Var. I (23) 187 283 199 
M-r/ C-pll C-r/ CB-pl ill 169 ill 

968 .!21 947 
943 

Thelephora Gen. I (101) 576 310 783 Gen. I (101) 602 317 823 
(113) Var. I (45) 185 254 201 Var. 2 (56) 191 261 206 

C-pl/ C-r/ CB-pl 118 161 984 C-r/ CB-pl 159 167 1029 
ill 147 123 154 
992 104 1075 107 

976 1006 
*primers used for the ITS region of rONA were ITS I and NL6Bmun. 
tgenotypes were defined as tips having band pattern differences in more than one enzyme (Alu I, Hinfl, or Rsa 1). 
tvariants were defined as tips having band pattern differences in only one enzyme. Genotypes and variants reported 
here include clusters on phenograms with 2: I 0 tips. 
§M- mature, C- clearcut, CB- cut plus burned, r-regenerating seedling, pi-planted seedling. 
~and patterns presented were taken from a representative tip within each variant cluster in the phenogram. 
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Table 12 shows the analysis of band patterns for the lightly colonized category. A total of three 

genotypes were resolved (one variant each) and all patterns were similar to those of four previously 

described morphotypes (E-strain , MRA , Amphinema and Hebeloma) (Tables 10 and 11 ). The first band 

pattern closely resembled that of E-strain (genotype 1, variant 2) . The second band pattern, representing 

the largest cluster of tips in the phenogram for the lightly colonized group, matched the most common 

band pattern for MRA (genotype 1, variant 1 ). The third band pattern matched the most common band 

pattern of Amphinema as well as that of Hebeloma (genotype 1, variant 2) . All band patterns for the 

lightly colonized group were found in sites where the matched morphotype also occurred. No new band 

patterns were resolved for the lightly colonized groups using the criterion (a minimum of 10 tips per 

cluster in the phenogram) for reporting band patterns. 

Table 12. Comparison of RFLP band patterns of lightly colonized but unknown ECM with known morphological 
types amplified (PCR*) from naturally regenerating and planted hybrid white spruce seedlings in the Aleza Lake 
Research Forest, Central Interior of British Columbia. 

Lightly colonized group Matched reference type 
Genotypet (no. tips) Band patterns for Genotype (no. tips) Band patterns for 
Variantt (no. tips) unknown type using Variant (no. tips) reference type using 
Occurrence§ three endonucleases Occurrence three endonucleases 

Alu I Hinfl Rsa I Alu I Hinfl Rsa I 
Lightly colonized a 661 504 967 E-strain 686 507 983 
Gen. a (II) 182 164 Gen. 1 (65) 185 161 
Var. a (11) ill 148 Var. 2 (29) ill 144 
C-pll CB-pl 957 816 C-pl/ C-r/ CB-pl 989 812 
Lightly colonized b 634 444 559 MRA 620 428 558 
Gen. b (60) 149 246 ill Gen . I (108) 147 248 175 
Var. b (60) I 13 162 732 Var. I (108) ill 168 733 
M-r/ C-pl/ C-r/ CB-pl 896 852 M-rl C-pll C-r/ CB-pl 880 844 
Lightly colonized c 359 318 760 Amphinema 360 321 779 
Gen. c (11) 190 288 177 Gen. I (124) 189 289 176 
Var. c (11) Ill 160 937 Var. 2 (60) ill 165 955 
M-r/ C-pll CB-pl 660 148 M-r/ C-pll C-r/ CB-pl 661 152 

914 927 
Hebel om a 357 312 770 
Gen. I (71) 189 285 174 
Var.2(31) llQ 160 944 
M-r/ C-pll CB-pl 656 146 

903 
*primers used for the ITS region of rONA were ITS 1 and NL6Bmun. 
tgenotypes were defined as tips having band pattern differences in more than one enzyme (Alu I, Hinfl, or Rsa 1). 
tvariants were defined as tips having band pattern differences in only one enzyme. Genotypes and variants reported 
here include clusters on phenograms with ;;o:IO tips. 
§M- mature, C- clearcut, CB- cut plus burned, r-regenerating seedling, pi-planted seedling. 
~and patterns presented are taken from a representative tip within each variant cluster in the phenogram. 
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3.3.3 Molecular diversity for commonly occurring morphotypes 

For the eight morphotypes examined plus the lightly colonized, unknown group (representing 74% of the 

1155 tips amplified}, 16 genotypes and 24 variants were identified, of which four genotypes and six 

variants appeared to be duplicates (Tables 10 to 13). These included the band patterns for Hebeloma 

and the lightly colonized group. Combining these similar band patterns left 12 distinct genotypes and 18 

variants. Cenococcum and Tuber were the least diverse, each with one genotype and variant 

representing 85% and 59% of tips amplified , respectively, for these types. The/ephora and Hebeloma 

also had only one genotype each, but had two and three variants, respectively . E-strain, MRA and 

Russulaceae type 1 were moderately diverse, with two genotypes and two to three variants, while 

Amphinema and the lightly colonized group were the most diverse, with three genotypes and three to six 

variants. Morphotypes with the three lowest and three highest Phi index values were Tuber, Thelephora, 

Cenococcum and the lightly colonized group, MRA and E-strain, respectively. 

Table 13. Molecular genotype and variant occurrence and diversity (Phi index)* for commonly occurring ECM 
morphotypes found on naturally regenerating and planted hybrid white spruce seedlings growing in treated (clearcut, 
and cut plus burned) and untreated (mature) sites in the Aleza Lake Research Forest, Central Interior of British 
Columbia. 
Morphotype n 
Cenococcum 53 
E-strain 124 
MRA 204 
Tuber 17 
Amphinema 221 
Hebeloma 115 
Russulaceae I 139 
Thelephora 113 
Lightly 169 
colonized§ 
Total/Mean~ 1155 

Genotypest 
I 
2 
2 
I 
3 
I 
2 
I 
3 

16 

Variantst 
I 
3 
2 
1 
6 
3 
3 
2 
3 

24 

Variants(% tips) 
85 
77 
69 
59 
81 
67 
94 
89 
49 

74~ 

*all amplified tips (n) are included in diversity analysis for each morphotype. 

Phi 
0.056 
0.135 
0.158 
0.036 
0.098 
0.063 
0.074 
0.055 
0.267 

tgenotypes were defmed as tips having band pattern differences in more than one enzyme (Alu I, Hinfl, or Rsa 1). 
tvariants were defined as tips having band pattern differences in only one enzyme. Genotypes and variants reported 
here include clusters on phenograms with :::: I 0 tips. 
§lightly colonized tips possessed Hartig nets but were not identifiable. 

Table 14 shows an assessment of genotype and variant occurrence for treatment and for regenerating 

versus planted seedlings for the eight ECM morphotypes and lightly colonized group. Previous 

morphotyping showed that morphotypes were found on all sites and types of seedlings. Blank cells refer 

to tips that either were not similar to any of the reported band patterns (Tables 10 to 14) and did not meet 

the criterion or did not successfully amplify to determine band patterns. Tuber, an exception, did not 
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occur on cut plus burned sites. MRA and Amphinema had twice as many genotypes and variants on 

planted compared to regenerating seedlings (Table 14). A trend of increasing genotypes and variants 

occurred for commonly occurring morphotypes as disturbance increased. Naturally regenerating 

seedlings in mature sites had the lowest number of distinctive genotypes (six and nine) and planted 

seedlings in cut plus burned sites had the most (11 and 17). Regenerating seedlings in clearcut sites had 

intermediate numbers (8 genotypes and 11 variants) . Planted seedlings in both treated sites had similar 

numbers of genotypes and variants (Table 14). 

Table 14. Number of molecular genotypes and variants for ECM found on naturally regenerating and planted hybrid 
white spruce seedlings growing in treated (clearcut, and cut plus burned) and untreated (mature) sites in the Aleza 
Lake Research Forest, Central Interior of British Columbia. 
Morphotype Mature/regenerating Clearcut/regenerating Clearcut/planted Cut plus burned/ 

planted 
Cenococcum 

E-strain 

MRA 

Tuber 

Amphinema 

Hebeloma 

Russulaceae 1 

Thelephora 

I genotype* 
I variantt 

I genotype 
I variant 
I genotype 
I variant 
I genotype 
2 variants 
I genotype 
3 variants 
2 genotypes 
3 variants 

2 genotypes 
3 variants 
I genotype 
I variant 
1 genotype 
I variant 
1 genotype 
2 variants 

I genotype 
I variant 
2 genotypes 
3 variants 
2 genotypes 
2 variants 
I genotype 
I variant 

1 genotype 
1 variant 
2 genotypes 
3 variants 
2 genotypes 
2 variants 

2 genotypes 3 genotypes 
4 variants 5 variants 
I genotype 1 genotype 
3 variants 3 variants 

2 genotypes 2 genotypes 2 genotypes 
2 variants 2 variants 3 variants 
I genotype I genotype l genotype 
2 variants I variant 2 variants 

Lightly colonizedt 2 genotypes I genotype 3 genotypes 3 genotypes 
2 variants I variant 3 variants 3 variants 

Total distinct 6 genotypes 8 genotypes II genotypes 11 genotypes 
types§ 9 variants II variants 15 variants 17 variants 
*genotypes were defined as tips having band pattern differences in more than one enzyme (Alu I, Hinfl, or Rsa 1). 
tvariants were defined as tips having band pattern differences in only one enzyme. Genotypes and variants reported 
here include clusters on trees with 2 10 tips. 
tlightly colonized tips possessed Hartig nets but were not identifiable. 
§all Hebeloma band patterns matched those of Amphinema; lightly colonized tips matched band patterns ofE-strain, 
MRA, Amphinema and Hebeloma. 

3.3.4 Treatment effects on ECM molecular diversity using the Phi, Shannon and Simpson indices 

Phenograms (a total of 14 (see Appendix I for example)) generated for each site database separated by 

season (spring and fall) and replicate (1 and 2) generally displayed large, distinct groups both for putative 

ascomycetes (Types 1 to 5, Table 9) and basidiomycetes (Types 6 toP, Table 9). These groups were 

separated by large distances (greater than approximately 30%). 

70 



Preliminary analyses on Phi index values (Student's t-test, Bonferroni correction of a=0.01) showed that 

neither season nor replicate site values differed significantly and that those databases could be pooled. 

However, pooling both repl icate sites and season would have reduced the sample size of Phi values 

(calculated for one database) to 1, precluding ANOVA. As a result, only season databases were pooled 

and analysis was done on both unpooled and pooled databases to examine the outcome of pooling on 

diversity assessment. No significant differences were found for treatment effect (clearcut, cut plus burned 

and undisturbed) or for seedling type (naturally regenerating versus planted) using the Phi index values 

as a measure of molecular diversity (one way ANOVA, a=0.01 using a Bonferroni correction) for either 

pooled or unpooled databases (Table 15). Pooling of the databases for season resulted in an increase in 

the Phi values for clearcut as well as cut plus burned sites and a decrease for the mature sites but this 

did not change ANOVA results. 

One way ANOVA (a=0.01 using a Bonferroni correction) of Shannon and Simpson composite indices 

were not significant for either treatment or seedling effect. Databases were kept separate for replicate 

site and season but Shannon and Simpson values were pooled for these variables, after conducting 

preliminary Student t-tests (Bonferroni correction of a=0.01 ). 
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Table 15 . Statistical summation' for treatment effect and seedling type on molecular diversity assessed using Phi, 
Shannon and Simpson index values (mean±SE)) for ECM associated with naturally regenerating and planted hybrid 
white spruce seedlings growing in treated (clearcut, and cut plus burned) and untreated (mature) sites in the Aleza 
Lake Research Forest, Central Interi or of British Columbia. 

Treatment/seedling type comparison 
Clearcut/planted Cut plus burned/planted 
0.268(0.006)1 0.240(0.0 13) 
0.270(0.006)2 0.253(0.008) 
3.221(0.061 )3 3.245(0.107) 
0.937(0.008)4 0.942(0.007) 
Mature/regenerating 
0.276(0.038) 
0.191(0.044) 
3.079(0.199) 
0.935(0.0 17) 
Mature/regenerating 
0.276(0.038) 
0.191(0.044) 
3.079(0.199) 
0.935(0.0 17) 
Mature/regenerating 
0.276(0.038) 
0.191(0.044) 
3.079(0.199) 
0.935(0.017) 
Clearcut/planted 
0.268(0.006) 
0.270(0.006) 
3.221(0.061) 
0.937(0.008) 

Clearcut/regenerating 
0.220(0.027) 
0.220(0.027) 
3. 135(0.1 39) 
0.936(0.01 4) 
Clearcut/planted 
0.268(0.006) 
0.270(0.006) 
3.22 1(0.061 ) 
0.93 7(0.008) 
Cut plus burned/planted 
0.240(0.013) 
0.253(0.008) 
3 .245(0.1 07) 
0.942(0.007) 
Clearcut/regenerating 
0.220(0.027) 
0.220(0.027) 
3.135(0.139) 
0.936(0.014) 

F-statistic (dt), p-value 

F( I ,6)=3 .664, p=O. l 04 
F( I ,2)=2.667, p=0.244 
F( I ,6)=0.036, p=0.856 
F( I ,6)=0.295, p=0.606 

F( I ,4)=0.877, p=0.402 
F( I ,2)=0.322, p=0.628 
F( I ,4)=0.032, p=0.866 
F( I ,4)=0.005, p=0.948 

F( I ,6)=0.037, p=0.854 
F( l ,2)=3 .199, p=0.2 16 
F( I,6)=0.470, p=0.519 
F( I,6)=0.011 , p=0.919 

F(l ,6)=0.783 , p=0.410 
F( l ,2)= 1.961 , p=0.296 
F( l ,6)=0.538, p=0.491 
F( I ,6)=0. 173, p=0.692 

F( I ,4 )=6.425, p=0.064 
F( I ,2)=3.285, p=0.212 
F( l,4)=0.483, p=0.525 
F( 1,4)=0.001 , p=0.994 

One-way ANOV A, p~O .O I, Bonferroni correction for planned comparisons. 
1Phi values, databases with season and replicate site data kept separate (unpooled) . 
2Phi values, databases with season data (pooled). 
3Shannon index, databases with season and replicate site data kept separate (unpooled). 
4Simpson index, databases with season and replicate site data kept separate (unpooled). 

3.4 DISCUSSION 

3.4.1 Genetic diversity between treatments and between seedling type 

In the present study, the genetic diversity of ECM associated with hybrid white spruce, as calculated by 

the Phi, Shannon and Simpson indices, did not appear to be significantly affected by treatment or 

seedling type. Similarly , Baldwin (1999, M.Sc. Thesis) also found no difference in ECM diversity (Phi, 

Shannon and Simpson indices) for regenerating black spruce (Picea mariana) seedlings growing in 

clearcut and cut plus burned sites (of low and high intensity burns) in a mixedwood paper birch (Betula 

papyrifera)-black spruce forest. In a recent study examining wildfire and salvage-logging effects on 

planted and naturally regenerating hybrid white spruce seedl ings, the Phi, Shannon and Simpson indices 

showed no significant effects of treatment on ECM diversity (Egger and Massicotte 1999). 
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Traditional diversity indices assume that all species in the sample are known and this may be difficult to 

determine with ECM. Molecular analysis differs from morphological assessment (which uses species 

counts based on descriptions) because the band patterns produced could represent interspecific or 

intraspecific variation of ECM. In this respect, the Phi index is a more appropriate measure than 

traditional diversity indices because it uses phylogenetic distance, which may be less variable than 

species descriptions, as a measurement of species relatedness. However, the accuracy of the Phi as a 

measure of molecular diversity depends on the number of tips and types that are successfully amplified. 

3.4.2 Genetic variation of hybrid white spruce ectomycorrhizae 

The 12 genotypes and 18 variants found on hybrid white spruce compares favourably to numbers 

reported in other studies on ECM diversity. Varga (1998, MSc. Thesis) found 14 and 31 distinct ECM 

RFLP topologies (or variants) for Sitka alder (Alnus sinuata [Regel] Rydb) and Lodgepole pine (Pinus 

contorta Dougl. ex Loud. var. /atifo/ia Engelm.), respectively, in the Central Interior of British Columbia, 

SBS biogeoclimatic zone. Mehmann eta/. (1995) reported 23 RFLP types (or variants) from fungal 

sporocarps and cultures originating from a 40-year-old Norway spruce stand in Switzerland and Horton et 

a/. (1998) reported 14 ECM molecular types (or variants) on Bishop pine seedlings five months after 

wildfire. Phenograms generated in the present study were very large and one consequence of this size 

was that RFLP patterns for the less abundant types as well as clusters of less than 1 0 tips were not 

examined. Therefore the number of genotypes and variants reported in the present study is most likely a 

conservative estimate. 

In the present study, the morphotypes Cenococcum and Tuber were each composed of one genotype 

and one variant. These ECM also had the lowest Phi values, suggesting a high degree of similarity 

among their isolates. Other studies on Cenococcum have reported variable levels of genetic variation. 

LoBuglio eta/. (1991 ), examining numerous isolates of Cenococcum over a large geographic area, found 

high genetic variation . However, studies (more limited in geographic range) by Varga (1998, M.Sc. 

Thesis}, Baldwin (1999, M.Sc. Thesis) and Egger and Massicotte (1998) reported two, four, and six types 

(or variants) respectively, for Cenococcum ECM. 
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The MRA, and E-strain types are believed to consist of complexes of fungal species (lngleby et at. 1990). 

These morphotypes had intermediate numbers of genotypes and variants (represented by approximately 

70 and 80% of the amplified tips for these types) but had the highest Phi values (which included all tips in 

the analysis). As well , MRA had more genotypes and variants on planted compared to regenerating 

seedlings; morphological results reported an increase in the abundance of this morphotype as well as E-

strain on planted compared to regenerating seedlings (Chapter 2) . Although individual morphotypes by 

treatment using the Phi values was not assessed, high index values suggest that these more abundant 

types may also be more diverse, having more genotypes or variants. Similar to the present study, Varga 

(1998, M.Sc. Thesis) reported two genotypes and three variants for MRA on Lodgepole pine. Egger and 

Massicotte ( 1998) reported five variants each for both E-strain and MRA. 

The Russulaceae species are often difficult to separate morphologically due to similar features (Horton 

and Bruns 1998). Horton and Bruns (1998) found three different Russulaceae ECM RFLP variants and 

Egger and Massicotte (1998) reported four variants. In the present study, Russulaceae type 1 was 

abundant in mature sites (morphologically) and amplified well for molecular analyses. Although it 

possessed similar numbers of genotypes and variants (accounting for 94% of amplified tips for this type), 

it had a lower Phi value and may have been less variable genetically. Phi index values are partially 

determined by distance; a low value may indicate that although several genotypes exist, these may be 

genetically quite similar. If there were many tips of closely related species having small distances and 

only few diverse species having larger distances, Phi values might be expected to remain low, although 

diverse species contribute more to the Phi index on average than closely related species (Egger pers. 

comm. 1999). 

Amphinema and Hebeloma ECM are also difficult to distinguish morphologically (lngleby et at. 1990). 

The molecular band patterns for Hebeloma were identical to those for one genotype and its variants for 

Amphinema. It is possible that Hebeloma was not found in the present study or that some Hebeloma tips 

were mistaken for Amphinema. If the second scenario were true, the number of genotypes and variants 

for Amphinema should be lower. Similar to the present study, Egger and Massicotte (1998) found that 

Amphinema and Hebeloma had a variant in common. On Sitka alder, 2 genotypes were reported for 

Hebeloma (Varga 1998, M.Sc. Thesis). Egger and Massicotte (1998) reported many variants for 
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Amphinema and eight variants for Hebeloma. Amphinema and Hebeloma had intermediate Phi values in 

the present study. 

The/ephora had only one genotype and two variants and these were found on both planted and 

regenerating seedlings. This suggests that Thelephora occurred independently of greenhouse inoculum, 

though some may have been on planted seedlings initially. This was also true for all E-strain variants, 

suggesting its occurrence was not solely due to nursery inoculum. In contrast, eight variants were 

reported for The/ephora from mature forest, burned-salvaged-logged, and burned-unsalvaged sites 

(Egger and Massicotte 1998). 

One of the most interesting groups was that of the lightly colonized, unknown group. The three 

genotypes resolved were all previously characterized as belonging to MRA , E-strain, and the similar 

Amphinema and Hebeloma band patterns. This suggests that lightly colonized tips may often belong to 

ECM that have been characterized. Scoring these as a group may be affecting abundance rather than 

richness measures as only three distinct morphotypes were found examining 50% of the tips. 

With respect to the molecular variation for the commonly occurring morphotypes, the total number of 

genotypes and variants appeared to increase with increase in disturbance (from mature to clearcut to cut 

plus burned sites) as well as increase from regenerating to planted seedlings. Jonsson eta/. (1999) did 

not find any changes in community composition following wildfire, but they did note an increased 

dominance in the commonly occurring types in fire-disturbed sites. In the present study (Chapter 2, Table 

14), an increase in the number of some commonly occurring types (MRA and Amphinema) occurred in 

disturbed sites. 

Caution should be used when interpreting intraspecific variation using the ITS region for amplification. In 

some instances, the ITS region may not be variable enough to determine differences in closely related 

species that other regions, such as the intergenic region (IGR) may detect (Gardes and Bruns 1996). In 

other situations, some fungi isolates may exhibit so much variation in the ITS region that they would be 

classified as different species (Gardes and Bruns 1996). Thus, the use of the ITS region may not reflect 

real differences in intraspecific variation of some morphotypes. 
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The percentage of tips available for RFLP analysis after amplification and digestion in the present study 

was 69%. This compares favourably with other studies (49% for alder and 63% for lodgepole pine (Varga 

1998, M.Sc. Thesis) ; 65% for black spruce (Baldwin 1999, M.Sc. Thesis) ; 60% for hybrid white spruce 

(Egger and Massicotte 1999); 56% for soil cores collected in one to 62 year-old Scots pine stands 

(Jonsson eta/. 1999). Amplification rates in the present study for commonly occurring morphotypes were 

more variable than those in the study by Varga (1998 M.Sc. Thesis) , who reported 67, 75 and 75% for 

Cenococcum, MRA and Amphinema, respectively. 

The percentage of doublets in the present study (approximately 5%) was similar to other studies (6% 

(Baldwin 1999 M.Sc. Thesis); 7% (Egger and Massicotte 1999) however, a higher rate of doublets (15%) 

was reported by Jonsson eta/. (1999). One of the explanations for doublet formation could be due to 

heteroduplex DNA products formed in the PCR reaction (Jonsson eta/. 1999). The authors further 

suggested that heteroduplexes could be attributed to heterogeneity in the amplified segment or from 

cross-hybridization between slightly different amplifications products in the PCR reaction (Jonsson eta/. 

1999). Another reason that doublets might occur is if ECM tips are additionally colonized with another 

ECM fungi or if fungal endophytes are present and are amplified . Endophytes grow within plant root cells 

(unlike ECM which grow between cells), are widely and abundantly distributed and easy to isolate. 

However, they are poorly understood in terms of their ecological function (Jumpponen and Trappe 1998). 

MRA has been reported to vary from being non-pathogenic (called dark septate endophytes) to 

pathogenic; little is known about which species or functional groups comprise this morphotype 

(Jumpponen and Trappe 1998). Nevertheless, endophytic types could have been inadvertently amplified 

during molecular analysis of MRA. In the present study, MRA had one of the highest rates (8%) of 

doublets. Thelephora also had a high rate of doublets (9%) as did the group of lightly colonized tips (7%). 

Interestingly, a recent study examining doublets from post-fire ECM also found a high percentage in 

The/ephora (34%) and MRA (10%) morphotypes as well as in the lightly colonized group (25%) (Rosling 

eta/. unpublished). 

3.4.3 Comparison between molecular and morphotyping characterization 

Both molecular and morphological characterization methods have advantages and disadvantages in the 

identification of ECM. With respect to morphological techniques, a problem often reported is the 
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tremendous environmental variation of ECM morphotypes. Types that look and are reported as different 

may actually be the same, resulting in over-representation of species. In some instances, less 

conspicuous or common looking (e.g. white rhizomorphic or Russulaceae) mycorrhizae are lumped as 

similar morphotypes, resulting in under-representation of species. Molecular analyses appears to 

partially address the concern of environmental variation . In the present study, three situations occurred: 

1) one morphotype represented one RFLP genotype (e.g. Cenococcum, Tuber) ; 2) one morphotype had 

one RFLP genotype but several variants (e.g. Hebeloma, Thelephora) ; and 3) one morphotype had more 

than one RFLP genotype and variant (E-strain , Amphinema, Russulaceae type 1). In some instances, 

morphotyping methods appeared to agree with molecular assessments whereas in others it may have 

underestimated the ECM diversity. 

Morphotyping is a process that requires considerable time to examine root systems, especially when 

large samples need to be analysed. Molecular analysis (e.g. amplification, digestion, database matching) 

does not require a lot of time beyond the initial preparation, however, considerable time can be spent on 

analysing phenograms and determining the number of genotypes and variants. 

The task of identifying ECM using morphological techniques can be subjective. For example, 

differentiation between morphotypes is based on the observer's opinion of root colour, texture and mantle 

pattern. Differences in researcher interpretation may have contributed to some of the differences in 

diversity (Shannon and Margalef index) with respect to regenerating seedlings in the clearcut sites. Eight 

unknown, rare types were absent on these regenerating seedlings while two other types were unique to 

them (Chapter 2) . Some errors attributed to morphotyping differences might be restricted to those rare 

types. However, many broad host-ranging types have been consistently reported in studies possibly 

because these types may be easier to identify (such as Amphinema). Molecular data in the present study 

confirm this: tips of commonly occurring morphotypes found on the same regenerating seedlings in 

clearcut sites had similar band patterns when compared to tips from planted seedlings from the same site 

as well as from different sites. Similar to morphological techniques, analysis of band patterns is also 

subjective, both in determining band presence when examining gels, as well as determining whether a 

partial digestion or a double amplification has occurred. It was observed, however, that when tips of one 

morphotype were combined on one gel , differences were minimized and comparisons within a type were 
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easier to assess. Determining the number of genotypes and variants from the phenograms also requires 

individual interpretation. Using the criterion of ten tips per band pattern to determine whether genotypes 

or variants could be reported appeared to work well for large ECM databases, however, it may not have 

assessed smaller ECM databases (e.g. Tuber) as well. 

Differences in scientific terminology and methods are common problems for both morphological and 

molecular techniques (Mehmann eta/. 1995). This makes comparisons between studies challenging. 

Differences in morphological methods were discussed previously (see Introduction). With respect to 

molecular methods, different protocols, primers or endonucleases make it difficult to compare band 

patterns from different studies. ITS1-F (Gardes and Bruns 1991) and ITS4 (White eta/. 1990) have been 

frequently used (Karen eta!. 1997; Kernaghan eta!. 1997; Horton and Bruns 1998) but few studies have 

used NL6Bmun. The primer NL6Bmun was used in the present study as it is preferential for 

basidiomycetes but it also amplifies ascomycetes. The use of different endonucleases results in different 

fragment sizes and band patterns. In addition, bands may be matched at different levels of tolerance and 

different fragment size calculation algorithms may be used in other studies. This can result in different 

numbers of variants being reported . 

A problem unique to molecular methods was the difficulty of adequately amplifying the lightly colonized 

tips, and some thin-mantled MRA, thereby possibly biasing diversity analysis towards the types that 

amplified well. Sometimes even well colonized tips did not amplify due to unforeseen difficulties with 

extractions. However, as discussed earlier, lightly colonized tips appeared to be well represented by 

previously identified species, suggesting that failure to amplify tips may not greatly affect species richness 

results (genotypes and variants). Nevertheless, Phi values and diversity results that are influenced in 

part by the numbers of tips, may still be affected by the inability of some tips to be amplified. Failure to 

amplify some tips also made it difficult to calculate species abundance. For diversity analysis, the 

variable success rate in PCR amplification meant that databases could not be created for individual 

seedlings as was done with the morphological data. As a result, only one number could be calculated for 

each site treatment database using the Phi index. Morphological comparisons (ANOVA) based on 16 to 

28 diversity values for each site appeared to be a stronger statistical test than those based on two Phi 

values. 
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Despite the differences in number of diversity values, diversity measures obtained for molecular (Phi, 

Shannon and Simpson indices) and morphological (Shannon and Simpson values, evenness and 

richness measures) analytical techniques were mostly in agreement. Both studies showed no differences 

in ECM on planted seedlings growing in clearcut and cut plus burned sites. However, results for the 

morphology assessment between regenerating seedlings in mature and clearcut sites and between 

planted and naturally regenerating seedlings in the clearcut site (see Chapter 2) differed from molecular 

assessment, which showed no differences for these sites. This may partly be explained by the fact that 

rare types that were characterized morphologically, did not always successfully amplify. The Shannon 

composite index and Margalef richness measure, both sensitive to the number of morphotypes (Magurran 

1988), were perhaps better able to detect differences whereas the Phi index may not have been as 

sensitive to either increases or decreases in the number of types. Rare types counted in morphological 

analysis also may not have been included in molecular analysis because they did not amplify. The Phi 

index may be likened to the molecular counterpart of the Simpson index, as it appeared to be more 

sensitive to the most abundant species (genotypes and variants) whose distances contribute to the total 

distance more than do the less abundant ones. In the morphology assessment, the Simpson index was 

not found to be significant for either treatment or seedling effects in terms of diversity. 

Studies using species diversity and similarity indices to measure fungal community composition in the 

past, have not directly addressed community dynamics such as function and stability (Zak 1992). 

However, in a recent greenhouse study conducted by van der Heijden eta/. (1998), it was shown that 

arbuscular mycorrrhizal diversity was a major factor in contributing to the maintenance of plant 

biodiversity. Shoot and root biomass, hyphal length, and plant phosphorus showed increasing trends 

with increase in the number of mycorrhizal fungal species. Similar studies conducted for ECM would lend 

support to the belief that an increase in ECM diversity is beneficial for ecosystem functioning . Zak (1992) 

also suggests that examining species-abundance distributions will help to determine changes in fungal 

communities over time and to predict return times as well as determine better the role of disturbance 

events. In the present study however, treated sites were only compared for one growing season. In the 

assessment of using two methods of ECM characterization, it was found that morphological 

characterization provided a portrait of the fungal community, including rare types which may be missed or 
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may not amplify well using molecular methods. An assessment of morphotyping accuracy as well as the 

variation within morphotypes (species or isolate difference) can be obtained from molecular analysis. 

Research methods that choose several characterization techniques that complement each other provide 

a more comprehensive view of ECM abundance and diversity. 

3.4.4 Conclusions 

In conclusion , both morphological and molecular techniques showed no differences in ECM diversity for 

planted hybrid white spruce seedlings in the clearcut plus broadcast burned treatment compared to the 

clearcut treatment. However, morphological results showed a significant treatment effect between 

regenerating seedlings in clearcut and mature forest sites as well as a seedling effect between naturally 

regenerating and planted seedlings in clearcut sites. Morphologically, a total of 24 distinct morphotypes 

were described, 14 which were of known fungal affinities. Molecular analysis produced 12 genotypes and 

18 variants for eight common ECM types plus the lightly colonized, unknown group. Differences in the 

distribution and in the inter- and intra- specific variation of the commonly occurring morphotypes 

(Amphinema , Cenococcum, E-strain, Hebeloma, MRA, Russulaceae type 1, The/ephora , and Tuber) 

were also shown by morphological and molecular techniques. These results are limited to hybrid white 

spruce seedlings, growing in mature forest sites in the SBS biogeoclimatic zone willow wet, cool (wk1) 

variant as well as to windrowed clearcuts and to burns estimated to be of moderate severity. The 

limitations of morphological and molecular characterization techniques seem to be shared; they both 

have some subjective aspects and comparisons with other studies are difficult due to differences in 

materials and protocols. Using both methods together provides a more comprehensive view of ECM 

diversity as well as a verification or validation on the accuracy of each method . Improved standardization 

of both methods would facilitate the ability to assess ECM diversity in complex forest ecosystems. 
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Appendix C: Checklist for ectomycorrhizae morphological data (adapted from Goodman et al. 1996). 

Fungus: Date: 
Host: Location : 

Dissecting Microscope: 
Colour: 

Texture: smooth/ finely grainy/ felty/ velvety/ warty/ woolly/ cottony/ stringy/ short spiny/ long spiny/ 
other ________ _ 

Lustre: matte/ shiny/ reflective 

Branching: monopodia! pinnate/ monopodia( pyramidal/ dichotomous/ irregular/ coralloid/ tuberculate/ not 
branched/ other ________ _ 

Tip shape: straight/ beaded/ club-shaped/ tortuous/ bent 

Dimensions: length of system: __ mm tip length: __ mm tip width: __ mm 

Rhizomorphs: no yes (attachment and abundance) ______ _ 
Notes: 

Compound Microscope: 
Mantle: 
Outer: felt prosenchymal net prosenchymal net synenchymal interlocking irregular synenchymal non-interlocking 

irregular synenchymal regular synenchyma 
Inner: felt prosenchymal net prosenchymal net synenchymal interlocking irregular synenchymal non-interlocking 

irregular synenchymal regular synenchyma 
Thickness: __ fl m Cell Width: __ Jlm 

Hartig net: yes no 

Emanating Hyphae: 
Type: cystidial indeterminant 
Width: __ Jlm Length: __ Jlm Colour: ________ _ 
Septa: yes no Clamps (location): no yes ______ _ 
Ornamentation: none/ crystalline/ verrucose/ globular/ other ____ _ 
Notes: 

Mycelial Strands: 
Type: loose, undifferentiated/ smooth, undifferentiated/ slightly undifferentiated/ differentiated, random hyphae/ 

differentiated, central core/ highly differentiated 
Hyphae: as per emanating hyphae 
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Appendix E. An example of calculations for richness (Margalet), evenness (Shannon) and composite 
(Shannon and Simpson) index measures using ectomycorrhizae morphological abundance data for 
seedlings growing in mature site I in the Aleza Lake Research Forest, Central Interior of British 
Columbia. 

ECM fungus* Seedling 
2 3 4 5 6 7 8 

E-strain 0.01 I 0.010 
Cenococcum 0.315 0.167 0.144 0.098 
MRA 0.106 0.054 
Tuber 0.016 
Ascomycete unknown 0.053 
Amphinema 0.137 0.021 0.063 
Hebeloma 0.323 0.109 0.021 0.326 0.126 
lnocybe 
Lace aria 0.098 
Piloderma 0.404 0.118 0.183 0.209 
Russulaceae I 0.388 0.030 0.250 0.478 0.575 0.112 0.017 
Russu1aceae 2 0.135 
Thelephora 0.970 0.135 0.092 
Thelephoraceae-like 
Tomentella I 0.085 0.273 0.054 0.021 0.048 0.011 
Tomentel/a 2 0.167 
Tomentella 3 
Non-rhizomorphic olive-green 0.027 0.043 0.028 
Non-rhizomorphic thin mantled 0.076 0.133 0.026 0.086 0.115 
Non-rhizomorphic undamped 
Non-rhizomophic white 0.041 0.005 
Rhizomorphic brown undamped 0.011 
Rhizomorphic orange undamped 
Rhizomorphic white 0.043 0.130 0.070 0.213 
Total proportional abundance 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Number of tips (n)t 188 199 161 92 180 193 187 174 
Number of species (S) 6 2 6 8 6 10 8 10 
Marga1eft 0.955 0.189 0.984 1.548 0.963 1.710 1.338 1.744 
Shannon§ 1.330 0.135 1.617 1.779 1.381 1.438 1.787 2.108 
Simpson~ 0.673 0.058 0.775 0.797 0.692 0.629 0.802 0.866 
Shannon evenness# 0.742 0.195 0.903 0.856 0.771 0.624 0.859 0.915 
*All types in this study are listed although they may not all be found on seedlings in this site. 
tLightly colonized tips were excluded from the original sample of -200 tips assessed per seedling. 
tMargalef index = (S-1 )/In n, n being the total number of identified mycorrhizal tips. 
§Shannon= -L Pi In Pi, p being the proportional abundance of each morphotype/n, or the number in each cell. 
~Simpson = 1 - L pt 
#Shannon evenness = Shannon/ In S. 
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Appendix F. Ectomycorrhizae morphotypes found on naturally regenerating (r) and planted (pi) hybrid 
white spruce seedlings in treated (clearcut, and cut plus burned) and mature sites in the Aleza Lake 
Research Forest. Table shows known or suspected genera or species from comparisons made with the 
published literature. 

Morphotype Code Suspected Genera/species Reference 
Amphinema spp. 9 Amphinema byssoides (Pers .: Fr.) Erikss. Agerer 1987-1998 (plate 23); 

lngleby eta/. 1990; Danielson 1991 ; 
Goodman eta/. 1996 (CDE 6), 
Massicotte et a/. 19981

• 

Cenococcum spp. 

E-strain 

Hebe/oma 

Inocybe 

Laccaria 

Mycelium radicis 
atrovirens 

Piloderma 

Russulaceae l 

Russulaceae 2 
Thelephora 

Thelephoraceae 
Tomentella 1 

Tomentella 2 
Tomentella 3 
Tuber 

olive-green 
rhizomorph, brown 
rhizomorph, gold 

Amphinema-like 

2 Cenococcum geophilum Fr. 

Cenococcum 

Hagennan eta/. 1999 (OUC 020). 
Agerer 1987-1998 (plate II); 
Ingleby eta/. 1990; Danielson 1991; 
Goodman eta/. 1996 (CDE 10); 
Visser eta/. 1998. 
Hagennan eta/. 1999 (OUC 030); 
Massicotte et a/. 1998. 

Humaria hemisphaerica (Wigg.:Fr) Fuckel lngleby eta/. 1990. 
E-strain Danielson 1982; Visser eta/. 1998; 

Massicotte et a/. 1998. 
Hebeloma mesophaeum (Pers.) Que! 

Hebeloma-like 

H Inocybe p etiginosa (Fr.:Fr.) Gillet 
Inocybe appendiculata KUhn. 

E Laccaria proxima (Boud.) Pat. 
Gomphidius glutinosus (Schaeff.: Fr.) Fr. 

3 MRA Melin 
Type ITE.3 
Piceirhiza bicolorata 

A Piloderma byssinum (Karst.) Jiil. 
Piloderma croceum 
Piloderma-like 

F Piceirhiza gelatinosa 
Piceirhiza guttata 
Russula xerampe/ina 
Russula spp. Type 2 

G n/a 
8 Thelephora terrestris (Ehrh.) Fr. 

Thelephora terrestris Pers. 
Thelephora-like 
Lactarius deterrimus Groger. 

P n/a 
6 Type ITE.5 

Piceirhiza nigra 
Tomente//a-1 ike 

7 n/a 
0 n/a 
4 Tuber sp. 

Tuber puberulum Berk. 
J nla 
D n/a 
c n/a 

92 

lngleby eta/. 1990; Visser eta/. 
1998. 
Danielson 1991 ; Massicotte et a/. 
1998; Hagerman eta/. 1999 (OUC 
080). 
Ingleby eta/. 1990. 
Beenken et a/. in Agerer et a/ . 1996-
982; Agerer 1987-1998 (plate 94). 
Ingleby eta/. 1990. 
Agerer 1987-1998 (plate 58). 
Massicotte eta/. 1998; Visser eta/. 
1998. 
Ingleby eta/. 1990. 
Agerer 1987-1998 (plate 73). 
Visser eta/. 1998. 
Agerer 1987-1998 (plate 62). 
Hagennan eta/. 1999 (OUC 200). 
Agerer 1987-1998 (plates 30). 
Agerer 1987-1998 (plate 32). 
Agerer 1987-1998 (plate 2). 
Visser e t al. 1998. 

Ingleby eta/. 1990; Danielson 1991. 
Agerer 1987-1998 (plate 48). 
Massicotte eta/. 1998. 
Agerer 1987-1998 (plate 3). 

Ingleby eta/. 1990; Visser eta/. 
1998. 
Agerer 1987-1998 (plate 19). 
Goodman eta/. 1996 (CDE 2). 

Ingleby 1990; Massicotte eta/. 1998; 
Visser eta/. 1998. 
Agerer 1987-1998 (plate 22). 
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rhizomorph, white 8 Cortinarius obtusus Fr. 
undamped, thin mantle L n/a 
undamped, yellow M n/a 
unknown ascomycete 5 Genea verrucosa Vitt. 

white rhizomorph-like K n/a 

Agerer 1987-1998 (plate 12). 

Jakucs et al. in Agerer et al. 1996-
98 ; Agerer 1987-1998 (plate 120). 

1Massicotte, H.B ., Tackaberry, L.E., Ingham, E.R., and Thies, W.G. 1998. Ectomycorrhizae establishment on 
Douglas-fir seedlings following chloropicrin treatment to control laminated-root rot disease: assessment 4 and 5 
years after outplanting. Applied Soil Ecology I 0: 117-125. 
2Beenken, L., Agerer, R. and Bahnweg, G. 1996. lnocybe appendiculata KUhn+ Picea abies (L.) Karst. In 
Descriptions of ectomycorrhizae. Edited by R. Agerer, R.M. Danielson, S. Egli, K. Ingleby, D. Luoma, and R. Treu. 
Einhorn-Verlag, Schwabisch Gmiind, Germany. pp. 35-40. 
3 Jakucs, E., Bratek, Z., and Agerer, R. 1998. Genea verrucosa Vitt + Quercus spp. In Descriptions of 
ectomycorrhizae. Edited by R. Agerer, R.M. Danielson, S. Egli, K. Ingleby, D. Luoma, and R. Treu. Einhom-
Verlag, Schwabisch Gmiind, Germany. pp. 19-23. Plant hosts for all other morphotypes are reported to be Picea 
spp. 
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Appendix H. An example of a Phi index calculation for ectomycorrhizae molecular data (PCR-RFLP) after 
PHYLIP analysis. 

Tip I 2 3 4 5 6 7 8 9 10 
I 0.000 0.086 0.086 0.039 0.644 0.644 0.600 0.545 0.528 0.590 
2 0.086 0.000 0.048 0.000 0.609 0.609 0.630 0.662 0.581 0.492 
.., 0.086 0.048 0.000 0.048 0.758 0.758 0.630 0.662 0.644 0.556 .) 

4 0.039 0.000 0.048 0.000 0.609 0.609 0.630 0.662 0.581 0.492 
5 0.644 0.609 0.758 0.609 0.000 0.000 0.630 0.719 0.481 0.481 
6 0.644 0.609 0.758 0.609 0.000 0.000 0.630 0.867 0.630 0.481 
7 0.600 0.630 0.630 0.630 0.630 0.630 0.000 0.300 0.073 0.202 
8 0.545 0.662 0.662 0.662 0.719 0.867 0.300 0.000 0.257 0.321 
9 0.528 0.581 0.644 0.581 0.481 0.630 0.073 0.257 0.000 0.270 
10 0.590 0.492 0.556 0.492 0.481 0.481 0.202 0.321 0.270 0.000 
A 2.131 2. 166 2.718 2.160 3.108 3.508 2.479 3. 136 2.142 1.821 
B 0.237 0.241 0.302 0.240 0.345 0.390 0.275 0.348 0.238 0.202 
c 0.282 
n- 10 
D = cell matrix value 
A= I: (D2

) 

B =A I (n- I) 
C=I:B i n 

Protocol 
I . Databases from RFLP patterns were created for each treatment or morphotype using all tips that were 

successfully amplified and digested. The software packages used included RFLP analysis application RFLPscan 
Plus, Version 3.0, (© 1990-1996 Scanalytics) and RFLPscan Database Versions 2.1 and 3.0 (©1990-1996 
Scanalytics). 

2. Pairs of tips were matched for shared and unique bands at a 2% tolerance level within gels and a 6% variation 
level between gels to compensate for gel differences. The modified Dice's index (!-Dice's index) was used 
(sum (polymorphic bands) I (shared bands + total bands) I 3 restriction enzymes) to convert the resulting matrix 
of similarity values to distances). 

3. Clustal analysis using the unweighted pair-group method with arithmetic means (UPGMA) of the distance 
matrix was done using the Neighbor-Joining/UPGMA module in PHYLIP (Phylogeny Inference Package) 
Version 3.5c (© 1986-1995 Joseph Felsenstein). 

4. Each cell (D) in the matrix was squared and the columns were added (A), then divided by the sample size (n)-
I. The resulting value (B) for each column (tip) was summed and the final value was divided by n. Databases 
of various sizes can be compared as the sample size is taken into account in the calculation. Higher phi values 
represent a more genetically diverse site: smaller distances represent more closely related organisms. 
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Appendix I. Sample phenogram of MRA 
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Genotypes 1 and 2 are indicated by clusters contained within the lines. All other clusters were excluded. 
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