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Abstract 
This thesis is an exploratory analysis of automated mapping protocols that can be used to support 

Terrestrial Ecosystem Mapping and Predictive Ecosystem Mapping in British Columbia. This 

thesis employs neighbourhood analysis of elevation and its derivatives to discriminate the 

bioterrain elements defined by Terrestrial Ecosystem Mapping standards. In achieving these 

standards, discrimination beyond the basic topographic forms presented in current research is 

explored. 

The method developed strives to be 

• easily implemented by mapping projects employing standard GIS software 

• flexible so that the extracted topographic forms can be tailored to varying project objectives 

• compatible with the hierarchical procedure employed in Terrestrial Ecosystem Mapping 

• efficient and accurate in that the process is advantageous over manual mapping methods. 

The effect of data quality is addressed through an assessment ofDEM data interpolation 

techniques and classification accuracy. Random and systematic artifacts of the DEM that 

influence the quality of the derivatives are explored. The issue of scale-dependent shape is 

addressed by the constraints of objective-based mapping in which a map scale is specified and 

the most basic shape elements are aggregated into contiguous classes by a roving neighbourhood 

window. 

The results indicate that basic topographic elements are mapable from relief as well as first and 

second order elevation derivatives. These results give preliminary accuracy of 80% based on the 

three classes tested. The procedure requires decisions at every step, but it is felt that this 

complements the traditional mapping process in that it is hierarchical, and requires a synthesis of 

extensive knowledge of vegetation and landscape across many scales. 

Key Words: elevation, digital elevation model, topography, slope, aspect, curvature, Terrestrial 

Ecosystem Mapping, Predictive Ecosystem Mapping, scale, random, systematic error. 



Chapter 1 Introduction and Rationale 
1. 1 Introduction 

In the province ofBritish Columbia, the Resource Inventory Committee provides provincial 

standards for Terrestrial Ecosystem Mapping with applications in vegetation, biodiversity and 

ecological mapping. These ecosystem maps consist of landscape units, or polygons delineated 

by comparatively homogeneous physical and biotic characteristics (Jones et al., 1999). 

Terrestrial Ecosystem Mapping, as defined by the Province of British Columbia (Ecosystems 

Working Group, 1998, page 1 ), is "the stratification of a landscape into map units, according to a 

combination of ecological features, primarily climate, physiography, surficial material, bedrock 

geology, soil and vegetation" . The resulting maps are valuable tools for resource management 

and wilderness preservation within the 59 million hectares of crown land in the Province of 

British Columbia. 

Fieldwork and airphoto interpretation, the foundations ofterrestrial mapping, are costly, time-

consuming, and labour intensive to undertake across a large land base (Dikau, 1989 and Jones et 

al. , 1999). In order to address the expense of mapping, the government ofBritish Columbia 

assembled a Terrestrial Ecosystem Mapping Alternatives Task Force to develop standards for 

Predictive Ecosystem Mapping. To reduce costs, Predicitive Ecosystem Mapping is a digital 

modelling approach incorporating Terrestrial Ecosystem Mapping standards, pre-existing spatial 

and attribute digital data sources and remotely acquired data sources (for example, vegetation 

maps resulting from classification of remotely sensed data) into a model to predict a final 

ecosystem map product. 

The classification scheme to be used in this thesis is described in the guidelines of Standards for 

Terrestrial Ecosystem Mapping in British Columbia (Ecosystems Working Group, 1998). In 
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the Terrestrial Ecosystem Mapping guidelines, a distinction is made between terrain and 

topography. Terrain reflects the landform and parent material as well as any active and/or recent 

geomorphic processes. Topography describes landscape position, shape, aspect, and slope that 

are collectively referred to as bioterrain units. The latter will be the focus of this thesis. 

Bioterrain unit definitions from Vegetation Resources Inventory Photo Interpretation 

Procedures (Resource Inventory Branch, 1999) are given in Table 1. 

Table 1: Topographic Map Elements 

Bioterrain Unit Description 
flat (plain) level or very gently sloping <=5% (<= 30), unidirectional 

(planar), local surface irregularities generally have a relief < 1m 
gentle slope unidirectional (planar), >5%, <=26% (>30, <=15°), smooth 

profile either straight, concave, or convex, local irregularities 
generally < 1 m relief 

moderate slope unidirectional (planar), >26% <=49% (> 15° <=26°) ' ' ' smooth 
longitudinal profile either straight, concave or convex; local 
surface irregularities generally < 1 metre relief 

moderately steep slope unidirectional (planar), >49%, <=70%, (>26° , <=3 5 °) smooth, 
longitudinal profile that is either straight, concave or convex, 
local surface irregularities generally < 1 m relief 

steep slope unidirectional (planar), >70%, (> 35 °) smooth, longitudinal 
profile that is either straight, concave or convex, local surface 
irregularities generally < 1 m relief 

toe slope area differentiated from the lower slope of the hill, generally 
concave surface, specific aspect 

lower slope between valley floor and midslope, significant break in slope 
falling to moderate gradients, generally concave, specific aspect 

middle slope steep to moderately steep consistent slopes and steep rock walls 
with talus along the base, involve large areas, specific aspect 

upper slope directly below steep bedrock summits and above rnidslope, 
generally convex below crest, specific aspect 

ridge generally convex uppermost portion of a hill, convex in all 
directions, no distinct aspect, also a crest 

depressions circular or irregular area of lower elevation (hollow) than the 
surrounding terrain marked by an abrupt break in slope, greater 
than 2 m in depth, generally at foot of meso scale hill or 
generally level area 

warm aspect 135°-285°, slope>15° (26%) 
cool aspect 285°- 135°, slope>15° (26%) 

Adapted from Resource Inventory Branch, 1999; Howes and Kenk, 1997; Ryder, 1994; and 
Luttmerding, et al. , 1990. 
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According to the Standard for Terrestrial Ecosystem Mapping in British Columbia (Ecosystem 

Working Group, 1998), mapping classification follows a hierarchical system. Pre-typing 

involves delineating alpine tundra, parkland and other biogeoclimatic zones (Meidinger and 

Pojar, 1991 ). Prior to more detailed mapping, it is advised that the pre-typing involve 

considering the study area in terms of broad landscape areas of similar, repeatable units such as 

alpine, mountain slopes, valley floors, plateaus and plains. To this framework, more detailed 

mapping information is added to the site series level (i.e. , vegetation composition, soil and site 

description) (Ecosystem Working Group, 1998). The bioterrain elements considered in this 

thesis are part ofthe site description and, as illustrated in Table 1, are summarized as landscape 

position, shape, aspect and slope gradient. 

Since fieldwork and airphoto interpretation are costly, time-consuming, and labour intensive to 

undertake across a large land base, any supporting method that automates, in keeping with 

British Columbia provincial RIC mapping standards (Resource Inventory Branch, 1999), all or 

part of the mapping process will be a valuable, cost-saving tool. This thesis investigates the 

usefulness of digital elevation data in mapping the topographic component of the Terrestrial 

Ecosystem Mapping process employing a digital elevation model of a portion of mountainous 

landscape in northern British Columbia (Figure 1 ). 

1.2 TRIM Elevation Data 

The government ofBritish Columbia' s Terrain Resource Information Management (TRIM) 

Program provides digital planimetric maps at 1:20,000 scale. Of interest to this thesis is the 

TRIM Digital Elevation Model (DEM) data layer photogrammetrically captured under the 

direction of British Columbia Surveys and Resource Mapping Branch (Surveys and Resource 

Mapping Branch, 1990). ADEM is a set of points representing an elevation surface in explicit x, 

y and z values (in the case of the TRIM data, the coordinates are in Universal Transverse 
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Mercator (UTM) and the elevation in metres). These data will be used to create an elevation 

relief surface from which the bioterrain units will be extracted. 

1.3 History 

Prior to the advent of readily-available computers, limitations in processing large quantities of 

data resulted in a focus on manual techniques emphasizing the analysis of elevation profiles 

(Evans, 1972; Embleton, 1990). While these techniques were sophisticated, and in fact surface 

modelling pre-dates the electronic age, manual computation of even the smallest number matrix 

is an extremely time consuming process. As a result, statistical analysis for gridded elevation 

data was not used extensively prior to the 1970s. By the mid 1970s, Mark's (1975) literature 

review noted few attempts in which researchers employed the computational power and data 

handling capabilities of computer software to analyze topography quantitatively as a tessellated 

model. Computer processing power was greatly improved by the late 1980s. However, 

researchers had not yet taken advantage of the ease with which morphometric parameters could 

be modelled with a digital elevation model (DEM). O'Neill and Mark (1987) believed the gap in 

the literature was a result of difficulties in constructing DEMs from analogue (paper) sources. 

The early 1990s saw the advent of numerous, readily-available, government-generated DEMs. 

Embleton and Liedtke (1990) noted that by the mid 1980s the literature began to show evidence 

ofincreasingly challenging attempts at data reduction with respect to DEMs. Pike (1988) wrote 

that the 'enabling technology' of computer -aided analysis would be useful in the automation of 

shape analysis. Looking back through two decades of research, by the mid 1990s Gong (1994) 

noted that rapid advancements in computer and software technology had led to a revolution in 

surveying and mapping in the digital realm. However, the potential for digital elevation data 

analysis as a landform classification tool that automatically subdivided landscape into its 

constituent landforms had yet to be fully realized by the mid-1990s (Dymond et al. , 1995). 
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Within a year of Dymond's review of contemporary literature, there appeared two studies 

(Pelligini, 1995 and Wood, 1996) presenting methodologies that classified aDEM into 

topographic groupings. 

1.4 Statement of the Problem and Objectives 

The overall objective is to develop and test procedures for using a digital elevation model and its 

derivatives to meet Terrestrial Ecosystem Mapping standards for the classification of the 

topographic elements described in Table 1. Specific objectives are: 

• to develop and test a method to generalize topography from the raster DEM and its 

mathematical derivatives, based on Terrestrial Ecosystem Mapping standards 

• to assess the validity of the method by comparing its results with independently derived field 

and ground truth data. 

It is intended that the method be considered in terms of: 

• ease of execution and further use employing standard GIS software 

• flexibility, so that the extracted topographic forms can be tailored to changing project 

objectives 

• compatibility with the hierarchical procedure employed in Terrestrial Ecosystem Mapping 

• efficiency and accuracy in comparison with manual mapping methods. 

1.5 Thesis Organization 

This thesis is organized into six chapters: 

In Chapter llntroduction and Rationale I introduce and define Terrestrial Ecosystem Mapping 

and its importance to resource management in British Columbia as well as discussing the merit 

of an automated procedure that supports Terrestrial Ecosystem Mapping known as Predictive 

Ecosystem Mapping. TRIM (Terrain Resource Inventory Mapping), (Surveys and Resource 

Mapping Branch, 1990) elevation data are introduced as a tool to support mapping objectives. 
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The classification terminology is established, a brief history of landform mapping from elevation 

data is given, and the thesis objectives are stated. 

In Chapter 2 Literature Review I describe automated classification paradigms and compare them 

with traditional manual approaches. The discrimination of features is discussed in terms of 

elevation derivatives. A literature review is presented based on six sections: 

• classification paradigms 

• feature parameterization 

• topographic elements 

• data model selection 

• accuracy assessment 

• interpolation ofDEM 

Chapter 3 Methods I outline the method for DEM interpolation accuracy assessment, and 

neighbourhood analysis of elevation and DEM derivatives for bioterrain element classification. 

Chapter 4 Results and Discussion I discuss the strengths and weakness of the methods tested and 

give an accuracy assessment. 
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Chapter 2 Literature Review 

2. 1 Classification Paradigms 

Two views ofthe process of automated map classification are summarized in Table 2. 

Table 2: Steps in Modelling Land Surface Data into a Map Classification System 

Townshend, (1981) Brassel & Weibel, (1988) 
Step 1 Feature selection Structural recognition 
Step 2 Definition of rules delimiting classes Process recognition 

Process modelling 
Step 3 Extraction of features from images Process execution 

Assigning features of the image to classes 

Brassel and Weibel's (1988) term "structural recognition" aims to identify the desired map 

objects and is controlled by the objectives of the mapping procedure, the quality of the database, 

map scale and communication rules (graphic and perceptual limits) . 

Townshend's (1981) equivalent term for structural recognition is feature selection. In this stage 

the target structures are identified. Townshend discusses the traditional (human) contribution at 

this stage as being a process whereby the interpreter draws upon keys, analogues (possibly 

existing only in the interpreter's imagination) and deductive reasoning to classify the geographic 

data. Brassel and Weibel (1988) describe this phase as an intellectual evaluation. In both 

discussions, the authors emphasize the importance of the decisions of the human interpreter at 

the onset of the automation process. Dikau ( 1989) notes that relief forms are subjective in that 

their definition is pragmatic and often influenced by the knowledge of the interpreter. 

Deductive reasoning involves conclusions reached by the interpreter based on evidence in the 

image supported by ancillary information. The central component of human interpretation is the 

use of contextual information. The interpreter sees more than slope angle, for example, and can 
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integrate a vast set of topographic features at different scales. This is a process described by 

various researchers as synthetic: a synthesis of multiple scales, multiple views and the human 

experience (Townshend, 1981 ; Pike, 1988; Dikau, 1989). In this context, computer automation 

of feature selection can be limited by the simplistic linear processing capabilities of the computer 

language. Brassel and Weibel (1988) consider the process recognition stage a difficult stage to 

automate. Artificial Intelligence, for example, neural network analysis, is a an analysis 

proceedure resembling that of the thought processes of the human brain and is capable of pattern 

recognition. Artificial Intelligence in the form of neural network analysis is not considered here 

for two reasons. Firstly, it does not meet the criteria set out in this thesis that the method be 

easily executed and employed in standard GIS software. Secondly, as Gong (1995) notes, neural 

network analysis remains poorly understood in terms of its usefulness . 

Once the target structure parameters are established, these are modelled as a sequence of 

operational steps viewed by Brassel and Weibel (1988) as "process modelling" . "Process 

recognition" and "process modelling" in Brassel and Weibel's description of map generalization 

are described by Townshend (1981) as the "definition of rules delimiting classes" . Pike (1988) t 

viewed errain features as part of a geometric continuum. The challenge, in his view, is to 

categorized discretely this continuum. The compilation of rules outlined in these operational 

steps relies on the derivatives of elevation and a statistical method (Pike, 1988). 

The running ofthe model is termed "process execution" and the results are viewed as a map. 

Brassel and Weibel's process execution is described by Townshend in two steps, "extraction of 

features from images" and "assigning parts of the image to classes" . 

The strengths of an automated approach are computer speed and consistency during the feature 

extraction stage, which contrasts with potential human error due to fatigue, variation between 
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interpreters and the slower pace of work. A weakness of an automated approach is the inability 

to reproduce the synthetic results of the highly experienced human interpreter. 

2.2 Parameterization of Features 

Elevation derivatives of slope, slope gradient, slope between slope reversals, slope length, aspect 

and curvature are illustrated in Figure 2 and are discussed in the following sections. 

2.2.1 Slope Gradient and Aspect- The First Derivatives of Elevation 

Slope is the first derivative of elevation (the rate of change of elevation in any direction) and is 

defined as angle between a tangent to the surface and a horizontal (geoid-parallel) surface. 

Gradient is the slope in the direction of maximum slope (Evans, 1972; Evans, 1980). While 

gradient is given as an instantaneous value, it is measured over an area (Hodgson, 1995). The 

definition of that area in the field can be arbitrary (in raster DEMs it is by convention a distance 

of three cells) . Aspect is the direction of the slope gradient for any given location and is 

measured in degrees from grid north. 

The slope gradient measure is derived from a mathematical surface. Florinsky (1998) states that 

true landscape is not smooth, therefore a comparison ofDEM derivatives to a reference (ground 

truth data) is not valid . He states that aspect errors are found in flat areas while slope gradient 

errors are predominantly found on steep slopes. The effect ofDEM resolution and accuracy are 

a significant factor in derivative accuracy. Florinsky further proposed assessing the accuracy of 

the derivative calculation technique along with assessing the accuracy of the DEM. 

2.2.2 Curvature- The Second Derivative of Elevation 

Curvature is the rate of change of slope (Evans, 1972; Evans 1980) and can be measured as 

profile curvature (the rate of change of gradient) or planimetric curvature (the rate of change of 

aspect) or a mean curvature (average ofboth). Curvature can be expressed as convex, concave 

or both (such as a saddle which is assigned a value of zero). 
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2.2.3 Slope Normal 

The slope normal is a vector oriented at 90° to a plane tangent to any point on the surface of the 

DEM. It is a unit vector defining the orientation of the cell surface in terms of slope gradient and 

aspect. Figure 3 illustrates the three angles that define the unit vector in relation to the 

orthogonal axes x, y and z. Characterization of a neighbourhood can then be undertaken using 

directional statistics (Hodgson and Gaile, 1999). For example, unidirectional (planar), convex 

and concave are terms used to describe the majority of the physiographic units in Terrestrial 

Ecosystem Mapping. In the planar class, the slope normals are parallel or sub-parallel and 

dispersion is zero. Dispersion indicates the variability or spread of the unit vectors in space and 

is similar to the standard deviation of the normal distribution. In the concave class the 

dispersion of the slope normals is minimized, approaching the value of the resultant normal 

(mean normal for an area of interest) . In the convex class, the slope normals approach maximum 

dispersion away from the resultant normal. 

2.3 Operational Definitions: Case Studies Classifying Topographic 
Elements 

Aggregation of an elevation surface into classes requires the ability to describe desired shape 

elements using meaningful parameters. The shape of any part of an elevation surface is 

recognized as a spatial phenomenon. Its identification is inherent in how elevation varies across 

the surface of the shape of interest. Roughness describes the variation amongst elevation values. 

Roughness is defined by vertical (relief) and horizontal (texture and grain) criteria. The primary 

elevation derivatives of gradient and aspect, along with the secondary derivative of curvature, 

describe roughness in terms of the interaction of vertical and horizontal criteria. The use of 

gradient and aspect as succinct descriptors of roughness finds its origins in an overview paper on 

research in geornorphornetrics by Evans (1972) . 
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Having found variable terminology and methods throughout his literature review, Evans (1972) 

set out to critique and clarify operational definitions and sampling procedures related to 

geomorphometrics. Evans's critique noted the use of as many variables as possible in 

multivariate analysis resulted in the potential contribution of irrelevant variables. Gong ( 1994) 

wrote that the low accuracy reported in many research initiatives he reviewed was a result of a 

lack of knowledge of suitable variables. Gong stated "we have a long way to go in studying 

algorithms for integrated analysis of multi-source data before an optimal selection of algorithms 

for certain tasks can be definitely made without much work on a trial-and-error basis" (p. 353). 

Evans critiqued the variation in terrain parameters used by researchers as well as what he viewed 

as an erroneous quest for one single unifying parameter which could discriminate landform. 

Evans proposed a unifying suite ofvariables (slope, aspect, profile curvature and plan curvature) 

to describe elevation in a non-redundant manner. He considered slope as arguably the most 

important descriptor of surface form. 

Evans also noted a distinction between general and specific geomorphometrics. General 

geomorphometry measured and analyzed landform characteristics applicable to any continuous 

rough surface. Specific geomorphometry dealt with the measurement of specific landforms (e.g. 

cirques, drumlins, or stream channels.) in a manner that was able to distinguish a specific 

landform from another. Specific geomorphometry suggested landform processes as described by 

terrain definitions. Mark' s (1975) research continued with a focus on landscape shape 

independent of geomorphic process (general geomorphometry). 

The relation between the horizontal and vertical dimensions of relief was noted by Mark (1975) 

as being described by gradient and aspect. He hypothesized that all form could be found in 

surface roughness (local relief) . He noted that roughness operates at two scales, grain (longest 
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wavelength - usually on the order of ridges between valleys) and texture (based on Nyquist 

sampling theory, the shortest wavelength is twice the cell size). 

Evans ( 1972) was critical of the analysis of gradient and aspect together as producing 

undesirable results, and recommends that they be treated separately. Mark supported Evans' 

view as valid when the tessellation model is composed of irregularly distributed surface points, 

but noted that with a regularly spaced model (raster DEM or regularly sized triangles), or 

weighted, irregular tessellation, the use of unit vectors to characterize slope gradient and aspect 

may be valid. 

Valleys might not form a regularly-spaced pattern and, in reality, tend to converge up-valley. 

Evans (1972) noted that, for this reason, research attempts to use spectral (Fourier) analysis of 

wavelengths as a model for valleys failed . Spectral analysis assumes a stationary signal such that 

the mean, variance etc. should be independent of location. This is not necessarily true of 

elevation data. Fourier transforms use sine functions as the basic functions into which sample 

data are decomposed. Sine functions may not necessarily represent the underlying landscape,. 

nor do non-sinusoidal shapes give harmonics that represent the underlying landscape. Focal 

analysis, in which a floating window performs an analysis on each data cell in turn, is useful in 

Fourier analysis in that it helps to overcome the problem of non-stationary data. However, the 

size of the window may not reflect the scale of the underlying landscape feature . 

Chui (1992) addressed this issue by employing wavelet analysis that can be translated and dilated 

to reflect the underlying position and local wavelength of elevation. Wavelet analysis produces a 

power spectrum at every cell. This creates a large output dataset requiring further processing in 

order to obtain meaningful results. 
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Pike (1988) employed non-redundant topographic attributes to quantifY a geometric signature 

(i.e., a set of measurements capable of discriminating landform units) that described the 

continuous topography of landslide types. The signature was derived from pre-mapped landslide 

types for which statistical estimates of central tendency and dispersion for altitude, altitude 

variance spectrum, slope between slope reversals, slope gradient, and curvature at fixed slope 

lengths were calculated. 

Using multivariate analysis Pike statistically discriminated two extreme landslide types: very 

hard and soft. The very hard landslide type consisted of regularly spaced, straight ribs between 

sharply incised flutes, sharp crests and steep slopes. "Soft" consisted of no flutes, irregularly-

spaced and poorly-incised drainages, broadly-rounded, largely gentle slopes with some steeper 

than 26°. He was not able to discriminate any of the intermediate types. 

Based on field engineering studies, Dikau (1990) hypothesized a high correlation between 

landslide location, geological formation, and geometrical slope properties of gradient, aspect and 

curvature. He hypothesized these attributes to be predictors of landslide hazard. He aimed to 

analyze the frequency distribution of these variables in order to provide weighting factors for 

landslide-susceptibility maps. It was a system intended to predict the potential for landslides in 

any given area and not to delineate a present landslide as a landform unit. Dikau's (1989) 

detailed description of landform analysis involved 20 variables, 200m cell resolution and filter 

windows 9.8 km x 9.8 km in size. He viewed his discriminant units as reliefforms composed of 

form elements, which in turn are composed of form facets , which in turn can be grouped by user-

defined criteria. 

Schmid-McGibbon ( 1993) tested a pre-existing terrain map for unit homogeneity by employing a 

neighbourhood filter for geomorphometric parameters of slope gradient and down-slope 
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curvature. She tested the results using relative variance and intra-class correlation. Her 

assumption was that the variance within map units is smaller than variance between map units 

for units of homogeneous terrain characteristics. As with Pike's work, the values of slope 

gradient and curvature were grouped using boundaries from a pre-existing vector map of the 

desired landform types and the summary statistics derived. 

At the onset of Schmid-McGibbon's thesis, she noted that the qualitative selection of filter size 

"does not consider accurately the level of detail that may be lost in the generalization process" 

(p. 27). She concluded that a reliable quantitative method for filter size selection cannot be 

determined and that neighbourhood sizes should be determined in conjunction with a visual 

interpretation of the maps, one that is left to human judgment and should consider the objective 

ofthe mapping project in the decision process. 

Her conclusions were: 

• The selection of a larger neighbourhood size for filtering the slope gradient map was 

appropriate to represent the dominant slope gradient classes within units of homogeneous 

landform patterns, and to eliminate the slope gradient differences among individual landform 

elements. 

• A by-product of the generalization- the short-wave map of the slope gradient- is of 

geomorphological utility, as the map shows considerable detail ofthe specific landform 

elements. 

• A by-product of the generalization - the filtered curvature map - shows sufficient detail with 

which to extract individual landform elements and patterns. 
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Blaszczynski (1997) undertook a two-stage automated landform classification. The first stage 

classified the DEM according to a cell being in a focal neighbourhood of general convexity, 

concavity and flatness . The second stage relied upon hydrologic terrain analysis capabilities 

derived from methods introduced by Jenson and Domingue (1988) in order to classify the terrain 

into ridge and valley lines. His final product was a map that included crests, concave areas, 

convex areas and troughs. 

Blaszczynski employed a 3 x 3 floating neighbourhood window in order to evaluate elevation 

using a modified average percent slope gradient equation by removing the absolute value for 

calculations of rise. Positive, negative or zero values were assigned to the centre cell based on 

whether the equation resulted in a predominantly concave, convex or flat neighbourhood. The 

use of local relief to assign concavity or convexity for ridge and ravine discrimination as 

described by Blaszczynski previously appeared in Jenson's (1985) work on hydrologic basins. 

In Blaszczynski's methods, flat areas could not be determined as sloping or non-sloping. He 

suggested that the application of a slope gradient algorithm to flat areas would then discriminate 

horizontal from sloping areas. In areas of saddle points, convexity canceled out concavity and 

the cell was assigned a value of zero. 

Further results were derived by Blaszczynski using the watershed analysis of Jenson and 

Domingue (1988): 

• fill single-cell depressions (considered error in the models) 

• calculate the flow directions for the filled DEM (the flow direction for each cell is the 

direction water will flow out of the cell along the steepest path that is encoded in a flow 

direction map) 
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• assign integers to cells representing how many other cells are flowing into it, where zero 

represents crests of ridges. 

This process is more computationally intensive by many orders of magnitude compared, for 

example, to a single pass of a 5x5 low pass filter over the same data set. The results delineate 

ridges as a single cell-width line of zero flow accumulation. This single line becomes chaotic at 

the down drainage end of the ridge. 

An examination ofBlaszczynski's map reveals terrain that is gently curving, repeating, linear 

ridges separated by gently curving, evenly spaced drainages. It is questionable whether his 

procedure is repeatable in rough mountain terrain. He noted that the method to identify ridge 

crests was no more than adequate. Extracting ridges and gullies from DEMs has been attempted 

by many researchers in the area of hydrologic modelling (for example Riazanoff and Cervelle, 

1988; Jensen and Domingue, 1988; Mark, 1984). 

Hobson ( 1972) investigated the use of slope normals as a means to describe surface roughness 

related to topography. He noted that vector magnitude ranged in value from zero (no preferred 

orientation to the normals, i.e., random terrain) to a value of one (identical orientation, i.e., a flat 

surface, sloping or horizontal) . He concluded that magnitude was usually high and vector 

dispersion low in areas characterized by similar elevations or equal rates of elevation change. In 

areas of non-systematic elevation changes, values of low vector strength and high vector 

dispersion were found. 

Hobson's use of vectors has an extensive basis in geostatistics. Hodgson and Gaile (1999) 

identified certain problems in using vector fields in GIS : an absence of data type and/or operators 

in GIS or Remote Sensing systems, and a lack of directional statistical capabilities in GIS , 

Remote Sensing and statistical packages. 
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Brabyn ( 1997) used neighbourhood analysis for macro landform classification on a 200m 

resolution DEM. No justification for the neighbourhood shape or size was used in his analysis. 

He grouped slope gradient as flat ( <8%) or sloping. A focal mean with a radius of 5600 m was 

applied to the slope gradient classes. Relative relief was calculated within the 5600 m 

neighbourhood and then classed into intervals. Brabyn then classed flat areas as upland or 

lowland. He noted an undesirable result of this process to be banding between plains and 

mountains. This progressive zonation was considered undesirable and was probably a result of 

the neighbourhood window incorporating flat and sloped areas in progressively changing ratios. 

The resulting map legend contained the following map elements: 

• flat or nearly flat plains 

• smooth plains, some local relief 

• tablelands with moderate relief 

• plains with hills 

• plains with high hills 

• plains with low mountains 

• plains with high mountains 

• open high hills 

• open low hills 

• open low mountains 

• open high mountains 

• low mountains 

• high mountains . 

Because of coarse cell size, 5 km neighbourhood filter size and differences in legends, the 

Brabyn (1997) method does meet TEM standards. In an example ofEvans' specific 
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geomorphometry, Tribe (1992) outlined a multi-step, detailed, decision-based procedure to 

extract valley heads and valley bottoms from aDEM. The results of this detailed process were 

partially successful and were implemented in a hydrologic model on an artificial data set. 

In Dymond' s (1995) work on mapping land components, he commented that no research had 

appeared that automatically subdivided the whole landscape into landform units. He generalized 

aspect by constraining the generalization process using streams with ridges defined by flow 

accumulation. Next, he split the aspect map into slope position by employing elevation 

thresholds to derive seven slope position classes. The flow accumulation data are, as has already 

been pointed out, computationally intensive to derive. The accuracy assessment of this 

procedure was a visual comparison to airphotos. Dymond's procedure would not meet 

Terrestrial Ecosystem Mapping standards for slope position. The break in slope used to define 

toe slope and valley bottom does fall consistently an incremental distance between river and 

ridge crest. Elevation thresholds for slope position would not be effective in all but the most 

idealized situation (very low gradient along valleys and ridges). 

Pellengrini (1995) and Wood (1995) published theses that automatically subdivided DEMs into 

landform units. Pellengrini makes the distinction between continuous and discontinuous analysis 

in order to classify shape from aDEM. Discontinuous analysis, in his view, refers to the 

neighbourhood analysis (floating window) used to identify ridges, valley lines and cumulative 

flow used in watershed analysis. Continuous analysis involves slope gradient and curvature 

analysis. 

Pellengrini further made a distinction between the analysis situation in which the DEM has a set 

resolution and the analysis is based in part on testing the results ofvarying sized window. 

Because the researcher seeks a set of unambiguous signatures for shape, the filter size is 
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important to that result. His alternative employed a fixed window size and altered the data set 

until it was sufficiently smooth to match the ideal characteristics of the filter itself 

He employed Fourier analysis as a tool to reduce noise by filtering in the frequency domain. The 

resulting surface was then analyzed employing a Hessian 2x2 matrix created from the second 

derivative of a partial quartic equation. From this matrix, equations and unknowns are derived 

which correspond to maximum and minimum curvature. The determination of the roots of these 

equations employs an area of linear algebra theory that uses algebraic eigenvalues. His resulting 

surface is discriminated into the following legend: 

• Peak (cell higher than neighbours) 

• Pit (reverse of peak) 

• Ridge (cell higher that surface points on either side) 

• Valley (opposite of ridge) 

• Hillside (not flat, exclusive of previous elements and sorted into convex, concave, saddle, 

sloping and inflection). 

Figure 4 a and b illustrate an implementation ofPellengrini's work on the study area to be used in 

this thesis. The map is visually difficult to interpret and illustrates that the classes are 

fragmented into small units. The map could be simplified based on cartographic scale 

considerations. Based on project objectives, there is a minimum polygon size usually based on 

map output constraints. At a scale of 1 :20000 the minimum polygon size for this map would be 

32 contiguous raster cells at a cell resolution of 25m. A more detailed description ofthe class 

definitions would simplify this map. For example, are ridges taken to mean any raster cell above 

its neighbouring cells to the side? The definition can be expanded to include that the ridge is a 

long, linear feature, in an area of specific relief Ridges in low-lying areas and of small areal 

extent would be excluded. If the input DEM were smoothed further utilizing frequency domain 
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filtering, Figure 4b results. Table 3 illustrates the percentage of class cover types resulting from 

two levels of filtering. It can be seen that the degree of filtering has a profound effect on the 

percentage of class coverage. 

Table 3: Class Cover Changes Due to DEM Filtering 

Highly Filtered 3 b Moderately Filtered 3 a 
Shape Class Value Frequency Percent Shape Class Value Frequency Percent 
Peak 1 48 0.02 Peak 1 218 0.08 
Ridge 2 13746 5.24 Ridge 2 27262 10.4 
Saddle 3 3621 1.38 Saddle 3 4381 1.67 
Flat 4 8172 3.12 Flat 4 4057 1.55 
Ravine 5 13813 5.27 Ravine 5 27345 10.43 
Pit 6 69 0.03 Pit 6 278 0.11 
Convex Hillside 7 35208 13.43 Convex Hillside 7 29237 11 .15 
Saddle Hillside 8 91672 34.97 Saddle Hillside 8 108973 41.57 
Slope Hillside 9 22970 8.76 Slope Hillside 9 6727 2.57 
Concave Hillside 10 36856 14.06 Concave Hillside 10 29092 11 .1 
Inflection Hillside 11 35269 13.45 Inflection Hillside 11 19773 7.54 
Unknown Hillside 12 700 0.27 Unknown Hillside 12 4801 1.83 

Table 3 illustrates that the degree offiltering produces two different landscapes from the same 

DEM. 

Pellingini's work is an excellent tool which can be used to group curvature classes. The question 

arises as to whether the technique could be modified to fit project objectives (e.g. Terrestrial 

Ecosystem Mapping) and as to how to evaluate the degree of filtering required, and whether it is 

necessary to undertake eigenvector calculations to achieve project goals. This last question 

illustrates a valid need to consider computation intensity as one criterion by which to evaluate 

methods. The gains of faster computer speed and larger storage capacity are being taken up by 

research and applications covering huge land areas, add to this computations which are process 

intensive and data layers modelled as 32-bit, and computer system processing speeds and storage 

capacities are quickly stretched to the limit of effective processing. 
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One other researcher to successfully classify landform using fitted surfaces is Wood (1995). 

Wood employed first and second derivatives of quadratic surfaces fitted over multiple scales to 

discriminates pits, passes, peaks, ridges, and valley lines. Further to his PhD work in this area, 

Wood ( 1998) has recently employed the semi-axis of conic sections to model surface form at the 

ideal scale for that feature. Figure 5 illustrates the results ofWood's reseaerch as applied to the 

inset area of interest (Figure 1 ). It is seen from this illustration that ridge, valley lines, passes 

and peaks have been identified. This technique does not address the features required for 

Terrestrial Ecosystem Mapping (Table 1). 

An ideal system would identify the discrete landform desired. It is known that these forms can 

be identified over many scales. While Wood addresses these issues, and creates a system that is 

superior for the extraction of pits, passes, peaks, ridges, and valley lines, this thesis intends to 

address a method that is objective based: that is, one that incorporates techniques which 

discriminate the features required for Terrestrial Ecosystem Mapping. This requires more than 

the items discriminated by Pellengrini (1995) and Wood (1996), and is a technique that aims to 

be usable by the community employing Terrestrial Ecosystem Mapping as a tool. 

2.4 Data Model Selection 
The Digital Elevation Model and Triangulated Irregular Network Model are discussed in terms 

fo their strengths and weaknessed with respect to data accuracy and facilitity of use in modelling 

elevation derivatives . 

2.4.1 Regularly-Gridded Elevation Values: The Digital Elevation Model 
{OEM) 

Samples of elevation data derived from photogrammetry and tied to benchmark elevation values 

can be interpolated into a regular grid of elevation points. The topology of the model is explicit 
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in the raster file format provided that the row and column dimensions are known. As a result, z 

values are stored for each point. Only minimum and maximum x and y coordinates of the matrix 

are stored and coordinate values for any elevation point are derived as needed. 

The implicit topology and resulting neighbourhood relations of regularly-gridded elevation cells 

facilitate matrix analysis. Peuquet's ( 1984) view is that while the array structure is built into 

such lower order programming languages as FORTRAN, higher order languages enable the user 

to program for more complex data structures. Data redundancy occurring in flat areas can 

contribute to large file size. Another disadvantage of the grid model, in Peuquet's view, is the 

radial asymmetry that results in diagonal neighbours further apart than nearest neighbours. This 

can be addressed by applying a weighting to the diagonal values. 

Stocks and Heywood ( 1994) observed that the re-sampling of a random sample of elevation data 

to the regular grid introduces elevation errors that may be unacceptable. Gridding errors are 

reduced if the input elevations (control points) are more closely spaced and sufficiently dense to 

adequately represent the desired features . In variable terrain, data redundancy on a regular grid 

is minimized. Stocks and Heywood regard the grid structure ofDEMs, at suitable resolution, to 

be an effective terrain model in mountainous regions 

2.4.2 Triangular Irregular Networks {TIN) 

A TIN is an irregular array of elevation points assembled as a network of edges forming planar, 

space-filling, non-overlapping triangles. Significant landform features can be included in the 

original irregular elevation points as breaklines which can be set to influence or constrain the 

interpolation of sample elevation points to reflect such features as ridges, rivers or lakes, etc. 

(Kumler 1994; Douglas, 1986; Stocks and Heywood, 1994). 
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An advantage of this elevation model is its variable resolution that allows for few, large triangles 

in subdued landscapes and numerous, small triangles in high relief landscapes. In order to take 

full advantage of variable resolution, only significant data points are extracted from the data set 

prior to the interpolation. The inclusion of significant landforms as breaklines and breakpoints 

allows for placement of these landforms as precisely as the original sampling protocol and the 

storage precision ofthe model allow. 

Each point is stored explicitly as x, y and z values. The topology of the points, triangle edges 

and triangle adjacencies are also stored explicitly in files . As a result TINs are process intensive 

because the tabular records must be searched in every analysis step as well as when viewing the 

TIN. TIN derivatives of elevation, slope gradient and aspect for any given location must be 

calculated and the resulting polygon coverage converted to a raster grid for analysis beyond 

queries for slope gradient, aspect and elevation based on Boolean logic. The derivative values 

can be stored for each triangle facet as part of the topological files . The input control points are 

explicitly used as the triangle vertices and, as a result, the surface on any given triangle facet is 

modelled as a flat surface which may not represent the true shape. 

Kumler ( 1994) tested the accuracy of linear versus inverse-distance interpolators for a digital 

elevation model and found that the linearly interpolated DEM had smaller root mean square 

(RMS) error. He stated that no research existed that established the superiority of the TIN versus 

DEM model. He concluded that a TIN derived from points extracted from a DEM of adequate 

resolution was inferior to the DEM in modelling terrain based on an assessment of RMS error. A 

more useful method would have been to create the TIN directly from control points prior to 

comparison to the DEM. 
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While the variable resolution of TINs is advantageous with respect to minimizing data 

redundancy, other errors can be problematic. With a variety oftriangulation algorithms to select 

from, an ideal model should approximate the land surface with triangles approaching equilateral. 

Where there is rapid transition from a generally flat area to an area of rough topography, the 

triangles become long and narrow artifacts within the terrain model. Based on the work of 

nineteenth century mathematician Herman Amanders Schwartz, the triangles became 

increasingly long and thin, and the sum of the areas of these triangles diverges from the area of 

the true surface. 

The regular grid is an efficient method for retrieval and processing while the TIN is the more 

efficient method for minimizing file size as well as being an effective model for view shed 

analysis (Kumler, 1994; Stocks and Heywood, 1994). The gridded data structure is chosen in 

this work for maximum accuracy in representing rough terrain and to facilitate computation. 

2.5 Accuracy Assessment 

2.5.1 Classification Accuracy Assessment 
, 

The aggregation of surface derivatives into classes of ecologically significant surface forms will 

require an accuracy assessment. The classification will be compared against results determined 

by airphoto interpretation. 

According to Jensen (1996), Berry (1995) and Story and Congelton (1986), categorical data 

require a different approach for accuracy assessment than discussed in the subsequent section on 

DEM accuracy. The derived cartographic product can be tested against reference data known as 

ground truth. Ideally, ground truth should rely on field site visits, but due to costs, views from 

aircraft, airphotos and map products can be used as supporting data. Map products can be 

considered ground truth if the accuracy is known and can be shown to be of higher quality than 
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the expected accuracy ofthe mapping project in process. While a single value such as percent 

can be given for accuracy, a more thorough means of evaluating the accuracy of the map product 

can be found in the error matrix. ; 
•. 

An error matrix is a way of comparing ground truth collected in the field or from airphotos 

against predicted categories in the classified map. The two data sets are then tabulated as 

normalized frequencies in a co-occurrence matrix. The rows and columns are labeled in the 

same order with the class names. The column headings are assigned the ground truth class for 

any given point while the row headings are assigned the class type found from the classification 

method. The cell at which the same column and row number intersect, for example for ridge 

position, would indicate how many of the ground truthing points known to be landform type 
··. 

"ridge" were classified accurately. An examination of other cells in the same column gives '·: 

... 
information regarding what class of landform ground truthing locations of ridge positions were 

misclassified. 

Overall accuracy is calculated by dividing the total number of correct ground truthing points 

(the sum of the values along the matrix diagonal) by the total number of ground truthing 

locations overall. In the error matrix, each map class can be evaluated for errors of omission 

(producer's accuracy) and commission (user's accuracy) . Errors of omission are evaluated as the 

number of locations correctly classified for a landform type divided by the total number (all the 

column values) of ground truthing points for that landform type. However, as with the running 

example, each misclassified ground truth point for a ridge position represents an error for the 

misclassified class in question. Such an error is an error of commission. Errors of commission 

are calculated as the total number of ground truthing points correctly classified divided by all 

ground truthing point locations (total row values) that were classified (correctly or incorrectly) as 

that type. Values of the probability of chance agreement are also given for each class. 
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In testing the significance of the results, the null hypothesis states that the predicted classification 

differs from the expected classification for a given cell in the matrix due to chance sampling. In 

order to obtain a measure of chance agreement, Congalton and Mead ( 1983) recommend KAPPA 

analysis (Cohen, 1960). Equation 1 is the KAPPA coefficient of agreement : 

Equation 1 

where Po is the observed proportion of agreement (overall accuracy) and P e is the expected 

proportion of agreement due to chance (Rosenfield and Fitzpartick-Lins, 1986). A KAPPA 

value incorporates row and column products and can be used to determine if the correct results of 

the classification are a result of chance agreement, because it is a measure of the proportion of 

agreement determined once chance agreement is removed (Foody, 1992). 

2.5.2 OEM Accuracy Assessment 

The quality of the cartographic results of this thesis or any DEM derivative will depend in part 

on the quality of the elevation model from which they were derived. DEM error can propagate 

through the derived products and influence the user's ability to successfully extract desired 

landforms (Felicisimo, 1994; Florinsky, 1998; Lee et al., 1992; Bolstand and Stowe, 1994). In 

order to understand the nature of any error and its possible sources (which includes the impact 

of implementation of the procedures put forth in this thesis in practical applications), part of the 

accuracy assessment should involve assessing the faithfulness of the DEM in modelling the land 

surface. 

Errors in DEMs can result from two sources: the error inherent in the raw data points and error 

produced by the interpolation procedure with which the DEM is built (Brown and Bara, 1994; 

Desmet, 1997). The effects of various interpolators are discussed in a subsequent section. 
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The accuracy of the source data and the interpolator will have a significant effect on the accuracy 

ofthe DEM derivatives (e.g. slope gradient, aspect and curvature) (Gao, 1998). The error can 

have three sources: blunders, system specific and random (USGS, 1998). Blunders, consisting of 

misinterpretations, careless observations and recording failures, should be easily identified 

removed from the data. System-specific error occurs in a predictable pattern with a constant 

magnitude. This type of error can be caused by photogrammetric system errors such as 

deformation in the camera system, deficiencies in ground control points and stereo model 

orientation, and distortions introduced by the scanner. Systematic error can appear as a vertical 

elevation shift in all or parts of the data, as fictitious features, for example striations, or as 

improper readings caused by shadows, trees, or buildings. Random error is unpredictable in 

origin, having a normal distribution with small error more frequent than large error. 

Besides the following methods of error detection, visual verification is recommended (USGS, 

1998) using display techniques such as hypsometric tints, stereoscopic viewing using anaglyphic 

filters and shaded relief enhancement. These are particularly useful for blunders and for some 

forms of systematic error. 

Human error contributes to error in the raw data points. The photogrammetric stereo plotting of 

the data points are gathered along lines. The operator moves south to north, for example, then 

north to south to gather the adjacent line. As operators are evaluating the stereo image and keep 

pace with the progress of the automated plotter, the operator tends to underestimate elevation 

values as points are gathered as the line travels up slope, and overestimate elevation values as 

points are gathered as the line travels down slope gradient. As Hunter and Goodchild (1995) 

note, this results in striping between adjacent columns in the DEM. 
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In accuracy assessment, it is desirable to compare two independent data sets, one with higher 

accuracy that describes the same elevation surface. The need for a second data set not used in 

the interpolation results from the fact that most interpolators are exact in that the input elevation 

values appear again in the interpolated surface. The test points should be selected in order of 

preference from field control points (points sampled and surveyed on the ground), 

areotriangulated test points, and spot elevations (USGS, 1998). Edge consistency of each map 

sheet should also be checked. 

Root Mean Square Error (RMSE) (Equation 2) is the most widely used technique when 

comparing two data sets (e.g. Desmet, 1997). RMSE is a dispersion measure approximately 

equivalent to the standard deviation between two data sets where the larger the RMSE, the larger 

the difference between the two data sets. 

Equation 2 

where Z obs and Z int represent the observed and interpolated sample point and N represents the 

total number of sample points. 

RMSE does not provide a description ofthe variation of mean deviation across the DEM. This 

assumption of zero mean deviation may not be valid as it implies zero systematic error (Desmet, 

1997). The point density in the input data to the DEM is homogeneous, but the underlying 

landforms may be heterogeneous and it is known that error is often dependant on the type of 

landscape being modelled stereoscopically. As a result, the stated RMSE for the DEM cannot be 

considered a stationary random function (Lee et al. , 1992). As a summary value, RMSE may 

hide variation in error across a DEM. 
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Li ( 1994) proceeded with RMSE and since the accuracy of the check points was greater than that 

of the input points. However, spot heights available in TRIM data are not randomly distributed 

as they are selected from significant landforms (often ridges and peaks). Li (1988) suggests the 

following indices in addition to RMSE: the mean absolute difference between interpolated and 

true values (Equation 3) and the standard deviation of these differences (Equation 4). 

l"lz = Li Z obs - Zint I 
N 

L(i Z obs - Z int \-l"lz)
2 

p=~ N-1 

Equation 3 

Equation 4 

These equations allow for the modelling of error across the map by providing a measure of the 

variation of the error. The residuals can be mapped and a visual display of spatial distribution 

and magnitude of the error can be viewed. It may appear that error in the data points could be 

found clustered in one area, along the edges of the map, or associated with particular landforms. 

Based on the spatial variability of a surface modelled by the shape of the semivariogram2 of that 

surface, Brown and Bara (1994) used the estimates ofthe parameters that adequately modelled 

the semivariogram to characterize the shape patterns inherent in the DEM surface. These authors 

concluded that the fractal dimension of the surface as a function of the log-log transform of the 

semivariogram could detect DEM striping from human error in the photogrammetric elevation 

point acquisition phase. Systematic error in the DEM is enhanced in the derivatives (e.g. slope 

gradient, aspect) . (Brown and Bara, 1994; Walsh et al. , 1987; Lanter and Veregin, 1992). Such 

observations underscore the need to evaluate the quality and accuracy of the DEM prior to 

modelling. 

2 A semivariogram is estimated by the separation distance (lag), and is the average squared 
difference in an elevation value between pairs of input sample points separated by the lag. 
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As a mathematical function, a DEM is smooth in comparison to the ground it models. Florinsky 

(1998) notes that derivatives ofthe DEM are measured from the smooth mathematical function 

and not a measurement of the true ground surface. It would not be valid to compare the values or 

derivatives (e.g . slope gradient) ofthe mathematical function to measurements taken on the 

ground. In order to assess the accuracy of the derivatives (slope gradient, aspect, horizontal and 

vertical curvature), Florinsky proposes that the user consider the accuracy of the DEMand the 

precision of the calculation technique used to extract the derivative. It is obvious then that 

effective interpolation of sample points into the DEM is a critical step that can have profound 

impact on subsequent modelling. 

2.5.3 Data Filtering for Error Reduction 

Much of the literature reviewed included preparation of the DEM for classification by filtering to 

remove random and systematic error. The techniques included mean filtering via a moving 

window (Jenson and Dorninque, 1988), filtering in the frequency domain (Pellegrini, 1995), and 

pit and peak removal (Tarboton et al. , 1991). 

It has been previously noted that the process of using a stereo plotter to create the elevation point 

data can introduce random and systematic error. A random error point can appear as an extreme 

value when a window is passed over the data at any given neighbourhood locatio. Such an 

outlier would affect the result of neighbourhood analysis of shape within the neighbourhood. 

DEM error is magnified in first and second derivatives of elevation. Brown (1994) notes that 

systematic error not evident by error analysis of the DEM can become evident in the derivative 

surfaces. However, it should be noted that random and systematic error may fall within 

acceptable limits of accuracy for the DEM, as well as within acceptable limits for the scale of the 

mapping product based on project objectives. 
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Brown ( 1994) states that averaging filters in the spatial domain can reduce RMSE accuracy 

while attempting to reduce systematic error. The choice of error reduction can be made based on 

the objectives of the DEM analysis. If the analysis requires an accurate model of the elevation in 

aerial extent, as is the case in shape analysis, then the reduction of systematic error should be 

examined. Systematic error has been studied using fractal analysis (Brown and Bara, 1994). 

Once it is assumed that the fractal analysis has detected systematic error, the authors 

recommended mean filtering of the spatial data to remove the banding error. They recommended 

a filter window of 5x7 cells aligned in the direction of the banding. 

Pits (single cells significantly lower than neighbouring elevations) are an impediment to accurate 

modelling of neighbourhood shape and are especially problematic for hydrologic modelling. Pits 

can be removed by assessing neighbouring elevations, setting a threshold for acceptable 

differences and filling the pit by averaging the neighbouring elevations (Tarboton et al ., 1991). 

An erroneous single control point will cause an artifact of areal extent in the DEM in that it will 

influence its neighbours during the interpolation phase. An ideal treatment would be either a) a 

criteria that evaluates the control points prior to interpolation b) an identification of erroneous 

locations in the DEM, then elimination of control points at those locations and a re-interplolation 

oftheDEM. 

Frequency filtering is an improvement over the drawbacks of spatial domain mean filtering. In 

frequency filtering, short spatial wavelengths are defined as noise while longer spatial 

wavelengths are defined as representing real features in the data. Pelligrini ( 1995) notes that 

filtering in the frequency domain can remove outliers without modifying the entire surface. The 

magnitude and frequency of the error can be visualized in the frequency domain. 
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2. 6 Interpolation 

Elevation data can be modelled as a mathematical function using one of a variety of spatial 

interpolation techniques. Prior to interpolating the elevation data points into a digital elevation 

model, an understanding ofthe effects ofthe interpolator on the data should be gained. In order 

to gain such an understanding this section will compare point interpolation methods as applied to 

a scalar field z = f(x, y) (where z is the elevation and x, yare the Cartesian coordinates). 

With the exception of regionalized variable theory, interpolation is based on the assumption that 

the function (surface) is smoothly varying. With this basic assumption in mind, interpolation can 

fall into the three basic categories (Table 4, summarized from Burrough and McDonnell, 1998). 

Table 4: Overview of Interpolation Methods 

Method: Global Local Geostatistical 
Basic a global spatial structure value at unsampled uses regionalized 
assumption: imposed on point similar to values variable theory and 

interpolation while measured close by optimal 
short-range, location using a deterministic interpolation 
variation assumed to be model aspects of spatial 
random, unstructured variation when 
nmse estimating 

interpolation points 
Interpolation • trend surface • linear and inverse • kriging 
Technique: analysis distance weighting 

• classification • thin plate splines 
• regressiOn 
• spectral analysis 

In the case of high quality elevation point data characterized by minimal error, the user can 

assume that the majority of local, short-range variation is not noise but a meaningful model of 

the terrain. This discussion will focus on deterministic and stochastic models of local and 

geostatistical interpolators. 
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2.6.1 Deterministic Models 

Burrough and McDonnell (1998) summarize the process oflocal interpolation as follows : 

• defining a neighbourhood around the point to be predicted, or establishing the number of 

sample points to be included in the prediction; 

• finding the data points within this neighbourhood; 

• choosing a mathematical function to represent the variation over this limited number of 

points; 

• evaluating the function for the point on a regular grid. 

Linear Interpolation and Inverse Distance Weighting 

Linear interpolation (bilinear interpolation in a map plane) is based on the a priori assumption 

that elevation values change in a linear fashion (DeMers, 1997). An estimation ofthe value of 

an attribute at unsampled points is based on the measurements made at surrounding sampled 

points. 

In the inverse-distance method, the elevation at a point p, Zp , is interpolated using 

Equation 5 

where /i is the pre-determined distance within which the control point and the grid point fall 

(Unwin, 1981). 

It is possible for the operator to change the resolution of the grid, altern (the number of 

neighbours) and alter the weighting of 1;. The cell resolution to be used is not based on any 

numerical rules and is a function of operator choice, usually chosen to approximate the average 

point distance. While offering no solution to the selection of cell size, Zevenbergen and Thome 
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(1987) note "the choice of an appropriate grid mesh distance is clearly an important 

consideration" (p 55). While Clarke (1995) suggests statistics such as nearest neighbour, mean, 

minimum and maximum point separation, can support the selection of cell size, Lam ( 1983) 

notes that the nearest neighbour statistic will give the same result for specific examples of 

random and non-random patterns. 

Increasing the number of neighbours would have the effect of increasing the search distance 

resulting in a larger denominator in equation one and a smoother map. 

1 
If li is weighted as J: then values of b greater than one decrease the relative effect of distant 

points, resulting in a bumpier surface. Values less than one increase the importance of distant 

points and result in a smoother map. Commonly, b=2, the inverse distance squared weighting is 

used (Unwin, 1981). 

Distance li is zero when the point on the grid to be interpolated is coincident with a sample 

point. In this situation, the unsmoothed value of the sample point is copied directly to the output 

grid. Since the interpolated points are a local average (local being the search radius) and the 

sample points are copied directly to the output grid, the surface reaches a maximum and 

minimum at the sample points. This sensitivity to sample points can result in a surface with 

unnatural bumps and hollows at the sample sites. Another result of using the local average is the 

estimated values are never outside the range of the sample point values within the search radius. 

(Berry, 1995; Unwin, 1981 ; Burrough and McDonnell, 1998). Sample points may or may not be 

coincidental with the vertices of the grid, (i.e., li may not be zero), so the sample values may not 

in all cases be copied across to the DEM (Clarke, 1995). 
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Thin Plate Splines 

A spline is a polynomial surface used to represent spatial variation smoothly. Splining is based 

on the piece-wise fitting of a surface to a neighbourhood of sample points as exactly as possible, 

while at the same time ensuring that the transition from one neighbourhood to the next is as 

smooth as possible. Spline methods of surface interpolation assume that an approximation 

function should pass as close as possible to data points while being as smooth as possible. 

Sample points may contain values representing either errors or natural variation such that an 

exact spline could result in local artifacts of unnaturally high or low values. The thin plate spline 

attempts to overcome this problem by replacing the exact spline surface with a locally smoothed 

average. This is shown by: 

Equation 6 

where z is a sample point at location Xi and epsilon is the associated random error. The spline 

function p(x) should pass not too far from the data values where the smoothing spline is the 

function J that minimizes 

A<f ) + f w:[f Cx)- Y(x)] 
2 

I= I 

Equation 7 

A( J ) represents the smoothness of the function J and the second term represents the 

proximity or fidelity of the data. The weights w ~ are chosen to be inversely proportional to the 

error vanance; 

2 2 
Wi =pI Var [ & (xi)]= p/ s i Equation 8 
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where the value of p reflects the relative importance given by the user to each characteristic of 

the smoothing spline. Thin plate splines are used to interpolate digital elevation models when it 

is necessary to interpolate large areas quickly and efficiently (Burrough and McDonnell, 1998). 

The piece-wise interpolation approach results in quick calculation. Surfaces are very close to the 

values being interpolated only as long as the measurement errors associated with the data are 

small. In contrast to weighted averages, splines will retain small-scale features . Splines are 

aesthetically pleasing and quickly produce a clear overview of the data. The smoothness of 

splines means that mathematical derivatives can easily be calculated for direct analysis of surface 

geometry and topology. There are no direct estimates of errors associated with spline 

interpolation (Burrough and McDonnell, 1998) 

2.6.2 Optimal Interpolation 

Kriging 

Kriging quantifies the spatial variation of a regionalized variable by employing the semi 

variogram, which is analogous to the autocorrelation function in time series analysis. The value 

(i .e., elevation) at each grid point is then expressed as an unbiased weighted average of nearby 

measured elevations. The weights are chosen to minimize the RMS error over the area of the 

grid. In this sense, kriging is an "optimum interpolation method". Kriging also permits 

estimation of the error at each grid point associated with the variability of the data and the 

distances from the grid points to the measured elevations. This does not include, however, 

additional error that may be associated with the measured elevations. 

In contrast, linear, inverse-distance and spline interpolation methods lack: 

• direct estimates of the accuracy of the predictions 
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• an a priori method of determining if the best values have been chosen for the weighting 

parameters 

• an appropriate method of determining the size of the search neighbourhood 

• a technique to determine the number of points needed to compute the local average 

• a technique to determine the size, orientation and shape of the neighbourhood of interpolation 

• a technique to determine the interpolation weights other than as a simple function of distance 

kriging attempts to address these considerations (Burrough and McDonnell, 1998). 

Geostatistical methods such as kriging are based on the observation that spatial variation of a 

surface can be too irregular to be modelled by a simple, smooth mathematical function. 

Regionalized variable theory assumes that the spatial variation of any variable can be expressed 

as the sum of three major components. The components are trend, a spatially correlated 

component and random noise. 

The trend is a structural component having a constant mean. It is possible to eliminate trend -

also referred to as "drift"- in some kriging methods, (e.g. , universal kriging) . Universal kriging 

does assume a deterministic trend (Lam, 1983). The choice of method is based on an evaluation 

ofthe semivariogram. The second major component is a spatially correlated component known 

as the variation of the regionalized variable. Random noise is the third major component and is 

considered spatially uncorrelated or a residual error term. Kriging assumes that the measured 

data points are exact. By computing a semivariogram, however, it is possible to estimate the 

random noise in the data from the "nugget effect" (at zero lag) . 

In the case of the assumption of a trend, these three components are described at a surface point 

location, in this case known as X where the value of a random variable z at x is given by: 
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Z(x) = m (x) + i (x) + & .. Equation 9 

where m(x) is a deterministic function describing the structural component ofZ at x (the trend 

and not the elevation value z), E is the stochastic, locally varying but spatially dependent 

residuals from m(x) (i .e., the regionalized variable), and E is a residual, spatially independent 

Gaussian noise term having zero mean and variance C5 2 . In kriging, h, usually denotes lag. 

Logical increments for lag would be multiples of the grid cell size. Therefore, h ranges as 0, la, 

2a, ..... na, where a is the grid cell dimension. 

In ordinary kriging the drift is not taken into account, although it is not necessarily zero. Where 

no drift is assumed, m(x) equals the mean value in the sampling area and the average or expected 

difference between any two places x and x+h separated by a distance vector h will be zero. 

E[Z(x) - Z(x+h)] = 0 Equation 10 

where Z(x), Z(x+h) are the values of regionalized variable Z at locations x, x+h. It is assumed 

that the variance of differences depends on h, so that 

Yz *E[{Z(x)- Z(x+h)}2
] = Y (h) Equation 11 

where r (h) is the sernivariance at lag h. 

The assumption underlying kriging is that the data are stationary (i.e. , that the statistical 

properties of the data are constant spatially). While hardly any data are strictly stationary, it is 

sufficient that the data is nearly stationary. Semivariance can be estimated from the sample data: 
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1 n r (h)= -L: {z(x)- z(xi + h)} 2 

2n i= l 

Equation 12 

Equation 12 is the equation for semi variance, where n is the number of points of variable z 

separated by distance h. A plot of semivariance against lag is known as the experimental 

semivariogram. Figure 6 shows an example of an experimental variogram. The curve fitted 

through the derived data points can be described by the sill, range and nugget. At large values 

of the lag, h, the curve levels off at the sill. Values of the lag equal or greater than the range 

exhibit no spatial dependence. 

The curve reaches the sill at some value of y (h) known as the range. The range is the maximum 

lag for which the data can be considered spatially correlated. Within the range, the smaller the 

lag, the more similar the values of the regionalized variable (i.e., elevation) are likely to be. The 

range can be used to define the neighbourhood of interpolation since points separated by greater 

distances (lags) are uncorrelated. Measured elevations at distances father than the range can, 

however, be used in the kriging equations for given grid points, if necessary. They are 

"downweighted" because oftheir great distance. 

The model variogram intersects the y-axis at a positive value of h representing the "nugget 

effect" and is an estimate of E . For a regionalized variable characterized by noise, the nugget 

effect is the square of the standard error of a large number of repeat measurements at the same 

geographic location. That is, it is the square of the noise level in the data. It must be inferred by 

extrapolating the variogram to zero lag, and cannot be computed directly. 

Abbass et al., (1990) compared surface fitting algorithms for geophysical data and concluded 

that no one method of interpolation is universal. The authors felt that a choice of interpolator 
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should be made with respect to the distribution of points and the expected quality of the resulting 

surface. 

2. 7 Interpolation Implementation and Accuracy Assessment 

Varekamp et al. (1996) recommended that a spatial interpolation be carried out in the following 

steps: 

• exploratory data analyses 

• parameterization 

• validation 

• interpolation and display. 

During exploratory data analyses outliers are identified. Varekamp et al. recommend using the 

coefficient of variation which is a dimensionless quantity measuring the amount of variation with 

respect to the mean. Global outliers can then be removed from the data by examining the 

histogram and determining the value of any outliers that can then be removed from the data set. 

Local outliers would require filtering of the file of control points prior to interpolation. Some 

assumption of maximum difference between neighbouring points would need to be made and 

any points exceeding this value can be removed from the file. 

The parameterization step involves determining the parameters required for implementing the 

interpolation procedure. As already discussed this involves selecting an appropriate cell 

resolution, neighbourhood size, weighting value or the spline smoothing parameter, for 

deterministic models, or determining the initial lag and computing an experimental variogram in 

order to select the best model variogram for kriging. 

The validation step involves estimating the accuracy of the interpolation procedure. A second 

set of sample points not used in the interpolation is compared to the surface values. The 
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interpolated surface is then checked against the sample data points kept aside for accuracy 

assessment using, for example, root mean square. The best interpolator is then selected. 

In the interpolation stage, the best interpolation method is implemented with optimal parameter 

values .. The results are then displayed for visual inspection. 

Desmet (1997) reviewed the literature on error in DEMs and notes that the effects of density and 

distribution of sample points, data sampling techniques and terrain characteristics are covered to 

some extent, but information about interpolation error is sparse. 

Data management and analysis include (Dikau, 1989): 

• storage of digitized spatial data; 

• evaluation of these data for the applied purpose; 

• simplification of the mapping process by modelling; 

• modelling of geomorphic processes based on quantified landforms. 

Assessing the accuracy of aDEM and its derivatives involves an understanding of the effect of 

the interpolator on the elevation data. Desmet (1992) concluded that a spline interpolator 

produced the most accurate interpolation. He notes that his results contradict those found in the 

literature and that his results are a product of the smoothness of the actual land surface for which 

his digital elevation model was built. 

Cressie's (1993) review ofthe literature showed that kriging did as well or better than other 

techniques. The smoothing effects of splines may not be desirable in the case of high quality, 

high-resolution elevation data as detail may be lost. The smoothing effect may be aesthetically 

pleasing but may not reflect the underlying landscape. Splines also require the user to select 

breakpoint positions in the absence of unbiased guidelines. The arrangment of the input elevation 
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data can profoundly influence the interpolate. It is desirable that the points be as randomly 

arranged as possible and include points places at important features . An inverse distance 

weighting interpolator produces a local average within the search radius resulting in interpolated 

points always lying within the range of the surrounding data. The output is influenced by the 

values of the weights and the search radius. The weights and the search radius are user-defined, 

lacking an unbiased method of selection. Kriging addresses most of the weakness of the 

previous interpolators in that it provides an a priori method of selecting the optimum weights; the 

size of the search neighbourhoods, and the nature of the error. In order to use kriging, the spatial 

variation of the data must be quantified by computing a variogram. Local and regional trends 

within elevation data can exist, and can be taken into account using "universal kriging" (UK). 

UK can cause problems, however, if the data are widely spaced or if extrapolating beyond the 

data domain, because the interpolated (or extrapolated) points do not necessarily lie within the 

elevation range of the data. 

The effect of the selected interpolator on the data can be managed using the implementation 

procedure of Varecamp et al. (1996), in which the input data quality, error removal, subsequent 

selection of interpolator, (including parameters), validation and final interpolation and display 

are carried out. This step-wise approach to managing the selection and use of an interpolator 

allows the user to consider the influence of the interpolator on the data with respect to a control 

set of elevation data points. 
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Two steps are involved in computer-automated mapping oftopographic features : 

• creation of aDEM, and 

• discrimination of topographic features from the DEM. 

Inaccuracies in the mapping product can be interpreted as the result of either DEM error, or poor 

discrimination techniques. Both random and systematic errors should be accounted for. As 

previously discussed, error in geographic information system (GIS) data layers will propagate 

through the analysis steps into subsequent data layers and be magnified in some cases. 

These two general steps are executed as follows : 

Creation of a DEM: 

• define required accuracy level 

• assess the input points to identify outliers representing "blunders" 

• delete a random set of points from the control points to be used for accuracy assessment 

• grid the elevation data 

• assess the gridded data through a) visual comparison with airphotos and shaded relief of 

DEM and b) statistical comparison with the assessment control points. 

Discrimination of topographic features from a DEM: 

• establish the mapping objectives through a) a statement and definition of the topographic 

features to be used, and b) the map scale 

• establish discrimination techniques based on neighbourhood analysis and relief, slope 

gradient, aspect, slope normal, average curvature, plan curvature and profile curvature 
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• test the neighbourhood analysis with respect to neighbourhood size, DEM filtering, and a 

hierarchy of discrimination 

• grade the results using accuracy assessment. 

The following software was used : ESRI, Redlands California, ARC Version 7.2.1 and GRID 

Version 7.2.1; Dr. J. Wood's LANDSERF; Dr. R. Eastman's IDRISI32, Clark University, MA, 

USA and PCI Enterprises, EASIPACEIIMAGEWORKS, Version 6.3, Richmond Hill, Canada. 

3. 1 Study Area 
The study area encompasses 300 km2 in the Omineca Mountains of north-central British 

Columbia (Figure 1). Nearly seventeen kilometres across each side, the area is centred on NTS 

1:20,000 map sheets 093N086, 093N087, 093N076 and 093N077 and can be defined by the 

following Universal Transverse Mercator coordinates: 379600 E. , 396700 E. , 6179200 N. , 

6197000 N ., (Zone 10 U, Datum NAD83). 

3.2 DEM Generation and Accuracy Assessment 

The DEM will be interpolated from a set of elevation points photogramrnetrically captured under 

the direction ofBritish Columbia Surveys and Resource Mapping Branch (Surveys and Resource 

Mapping Branch, 1990) representing the topographic surface in explicit x, y and z values 

(Universal Transverse Mercator- UTM coordinates and elevation in metres) stored in ASCII 

text files . The elevation points were captured under the British Columbia Terrain Resource 

Inventory Mapping !initiative (TRIM). TRIM mapping data is available from the Government of 

British Columbia Ministry of Environment Lands and Parks. 

The data is spatially partitioned into files according to 1 :20 000 scale map sheet boundaries. The 

data accuracy meets the standards of the North American Treaty Organization (NATO) Standard 

Agreement (ST ANAG) for maps. The error for the set of elevation points is given as the mean 

of the linear standard error in Z where 90 percent of all elevation control points are accurate 
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within 5 m of their true elevation, and linear standard error is greater than or equal to mean 

standard error. The error for data interpolated from those points is within 10m of their true 

elevation 90% ofthe time (Surveys and Resource Mapping Branch, 1990). 

The elevation data set does not contain the original control points as separate entities identifiable 

by a unique code. This creates the situation in which I am not able to extract a subset of points 

of higher accuracy. Since both elevation point types are grouped together in the data set, the 

assumption of vertical accuracy is 10 m. Permanently marked control points (accurate within a 

few centimetres) are available in the TRIM data, however, none of the markers are present in the 

study area. A check for their location revealed that in order to include 40 of these markers, the 

study area would have to be 90 x 90 kilometers in size producing a dataset 3600 x3600 pixels, at 

25 m per pixel. This proved prohibitive in terms of computer processing. 

A set of 500 easting and northern UTM coordinate numbers were randomly generated. These 

coordinates are used to select and remove data points from the input data set. These points are 

considered the check points. These points are of equal accuracy, matching the error for the 

permanent control points. While a check point set of higher accuracy is desirable, it is also 

desirable that the check points be randomly generated. The permanent control points are known 

not to be randomly selected as they represent heights of land, prominent ridges, bridges and road 

intersections. 

3.3 Elevation Data Preparation: Blunder Assessment and Control 
Point Removal 

For the interpolator to be chosen it must be within 10 m vertical accuracy with respect to the 

check points. A second level of evaluation will be made utilizing a shaded relief model of the 

DEM. A visual comparison will be made between the airphotos and the shaded relief to ensure 

the absence of artificial forms (artifacts) not evaluated by the check point method. 
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The elevation data are stored as a table, partitioned on an individual map sheet basis (BCGS 

1 :20,000). The files will be extracted and translated from government file format into ASCII 

format. The files will be appended and sorted based on the elevation value. Blunders, as 

defined by Survey and Mapping Branch, are errors in excess of 18.3 m (99.73% probability). 

While these were removed by Surveys and Resource Mapping Branch, blunders have been 

noted to appear in DEMs. The expected minimum and maximum elevation values will be 

established for the data based on an examination of the histrogram and any obvious blunders or 

zero values will be removed. It is assumed that any outliers to the histogram are blunders. These 

values will be confirmed by reviewed the 1:50,000 NTS maps for the expected maximum and 

minimum values for the area. The text files will be modified to match the required input format 

for ARC/INFO GRID. 

3.4 Interpolation Techniques and Accuracy Assessment 

Four methods of interpolation will be employed: kriging, spline, linear inverse distance 

weighting, linear and quintic interpolation of a Triangulated Irregular Network. The rationale 

behind the fourth choice is as follows . The TIN allows for the incorporation of breaklines, which 

are linear features used to enforce the TIN to retain important features,( i.e., a river, or a ridge) . 

Areal features such as lakes can also be used. The TIN is forced to place the triangle edge along 

the river, ridgeline, or lake shorelines. It is then possible to extract the grid DEM from this 

surface using a linear or a fifth order polynomial (quintic) interpolator. 

The following ARC and GRID commands were used to interpolate the elevation surfaces: ARC 

KRIGING and CREATETIN commands and GRID IDW and SPLINE commands. Default 

parameters, 25 m cell resolution, and a search radius of 15 points were used where applicable. 

The ARC TINLATTICE command was used to convert the resulting TINs into raster format. 
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Once the DEMs have been interpolated, the locational coordinates of the check points will be 

used to extract the elevation value for check locations within each of the four DEMs. The error 

for each DEM will be assessed using the following equations. 

fu = L i Z obs- Z int I 
N 

Equation 13 

Equation 14 

Equation 15 

All three equations refer to the check point data set and the corresponding interpolated elevation 

points. In these three equations, z obs is an elevation point in the check point data set (observed), 

Z . is an interpolated elevation point, N is the number of data points, & is the mean absolute mt 

difference between observed and interpolated points in the domain, and p is the standard 

deviation. 

3.5 Topographic Discrimination 

3.5.1 Mapping Objectives: Selecting Topographic Features and Map Scale 

As referenced by the Terrestrial Ecosystem Mapping manual, the bioterrain units found in 

Vegetation Resources Inventory Photo Interpretation Procedures (Resource Inventory Branch, 

1999) are defined in Table 1 and are the features to be discriminated from the DEM. 

Valley line (gully) will be added to this list as it is the complement to ridge and is expected to be 

useful in deriving slope units. 

While a fully automated approach is desirable, based on the literature review it is expected that a 

method by which the features will be discriminated in an heuristic and hierarchical manner will 



48 

be required in order to compliment the mapping standards as outlined by Resource Inventory 

Branch, (1999). In keeping with the standards, the initial mapping phase involves the derivation 

ofbroad landscape units . These include alpine, mountain slopes, and valley floors . In the next 

step, the topography is described in terms of landscape position and shape, slope, and aspect. 

The features will be mapped to 1:20,000 and, according to Terrestrial Ecosystem Mapping 

standards, this requires a minimum polygon size of2 hectares (ha) . Therefore, with a cell size of 

25 m, the minimum polygon size is 32 cells. 

The goal of the thesis is to produce a method that discriminates shape from aDEM that has the 

flexibility to meet stated project objectives. In this context, Terrestrial Ecosystem Mapping 

dictates landforms to be extracted. The scale has been stated as 1:20,000, which controls 

minimum class size. 

3. 6 Parameterization 

Can this method work at all map scales and at all landform sizes? The dilatation wavelets of 

Chui ( 1992) and conic sections of Wood ( 1998) address the issue that a specific landform can 

exist in varying sizes across the landscape. Pellengrini (1995) filtered the DEM until it matched 

an ideal fixed-sized filter with which to extract a fitted surface. 

The method selected here employs a neighbourhood window that will vary in size. The rationale 

is that the map units to be discriminated are assumed to exhibit a strong degree of homogeneity. 

A filter window will evaluate in a local neighbourhood the nature of the central cell with respect 

to its immediate neighbours. This creates a basic form element that meets the desired criteria 

(e.g. convex), which is taken to be an attribute of a specific legend class. Spatially, these 

elements will aggregate to one degree or another into contiguous areas that meet the minimum 

class size based on the map scale. If the aggregation does not meet the minimum class size, then 
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the unit is dissolved into the class that forms the greatest enclosing neighbour. Such an approach 

meets Terrestrial Ecosystem Mapping standards of ignoring local irregularities and basic 

mapping techniques of generalization to match a given scale. 

The fundamental approach incorporates Tomlin's (1990) neighbourhood analysis and employs a 

floating window to evaluate each DEM cell based on its neighbourhood values. The roving 

neighbourhood window will require a standard notation system. It will be based on the grid cell 

notation of the data layer known as G. Each cell is assigned a unique location Gi,j where i= 

1,2,3 ..... ,m; j=1,2,3, ... ,n and i, j represent the column and row address with respect to the central 

cell of the window m x m cells in size. 

The parameters to be tested in order to discriminate the surface forms from Table 1 are relief, 

slope, aspect, slope normal, average curvature, plan curvature and profile curvature. The slope 

gradient (8), aspect(¢), and curvature (K) will be derived from the DEM using the following 

equations based on the partial quartic equation cited in Zevenbergen and Thorne (1987), and 

derived by Evans (1972). They employ a finite difference approach in order to find the 

derviatives of the raster surface by fitting a local quadratic surface to each point. The full 

quadratic surface is given in Equation 16. 

Equation 16 

where Z is the elevation and A through I are surface coefficients and X, Y are coordinates with 

respect to Z5 (the central point) . Given the neighbourhood window: 

Zt z2 z3 
z4 Zs z6 
Z1 Zs Z9 
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these nine elevations are used to solve Equation 16. The coefficents for the surface function in 

Equation 16 are solved by: 

•' 

' 

.. ' 
;· 

· .. 

H = (Z2 - Z&) I 2L 

I= Zs 

where Lis the distance of the cell size (25 m). 

Slope Gradient= G cos()+ H sin() , at the origin cos() = -G I (G2 + H2
)

0
·
5 

Equation 17 

By convention, the negative sign in Equation 17 is ignored. 

Aspect ( ¢) = arctan (-H I -G) Equation 18 

Profile curavture is solved by employing the partial quadratic equation: 
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PrC = - 2(DG 2 + EH 2 +FGH)/ (G 2 + H 2
) Equation 19 

Plan curvature is solved employing the partial quadratic equation by: 

PIC= 2(DH 2 +EG 2 -FGH)I(G 2 +H 2
) Equation 20 

The values for curvature are given as radians per 1/100 metre where positive values are concave 

and negative values are convex. While Equations 19 and 20 do not give true curvature, 

Zevenbergen and Thome ( 1987) consider them to be directional derivatives that measure the 

same topographic properties as plan and profile curvature. 

Slope and aspect will be used to calculate the directional cosines that will describe each surface 

normal. The first step in calculating a surface normal is to determine the rectangular coordinates 

based on spherical coordinates p, 8 , ¢ (unit vector length 1, slope (in radians), and aspect (in 

radians), respectively). Figure 3 illustrates the angular descfiption of the slope normal with 

respect to orthagonal axes (James, 1994). 

y= p sin ¢ cos e X = p sin ¢ sin 8 z = p cos 8 Equation 21 

In which x, y, z are the rectangular coordinates on an orthogonal set of axes used to define a 

slope normal with its origin at 0,0. x, yare axes coincident with Cartesian coordinates and are 

oriented along east and north respectively. The z-axis is coincident with the vertical component 

of elevation (Figure 3 ). 

For a sample of slope normals within a neighbourhood window, a resultant normal, Rh , of the 

sample can be determined by: 

Equation 22 
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where Rh is the resultant normal for the sample, and Xi, Yi and Zi are the z, y and z components of 

the normal vectors from Equation 21 . 

An estimate of the hemispherical variance, S h , of the sample of slope normals around Rh can be 

determined by: 

Equation 23 

where N is the number of samples within the neighbourhood window (Hodgson and Gaile, 1999) 

An estimate of the hemispherical standard deviation, s h , of the sample of slope normals around 

Rh can be determined by: 

Equation 24 

(Hodgson and Gaile, 1999) 

A resultant normal ~ will be used to characterize the degree of dispersion of a sample of slope 

normals with Equations 23 and 24 . 

The results of the calculations of slope gradient, aspect, relief and slope normal will be placed 

into GIS layers and tested in various combinations in order to determine their suitability for 

discriminating the bioterrain units identified in Table 1. Thresholds based on the mean, variance 

and standard deviation for topographic legend elements will be interactively tested. 

3.8 Accuracy Assessment 

The resulting classification will be tested against reference ground truth derived from airphoto 

interpretation of the area. The two data sets will be tabulated as normalized frequencies in a co-
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occurrence matrix. Each map class will be evaluated for errors of omission and commission. It 

is theorized that the classification differs from the observed values for a given cell in the matrix 

due to chance sampling (Williams, 1984). Therefore, a KAPPA coefficient will be used to 

determine if the correct results of the classification are a result of chance agreement by removing 

the proportion of accuracy due to chance agreement. 

Kappa= (Po- Pe)/(1-pe) Equation 25 

Where Po is the observed proportion of agreement (overall accuracy) and Pe is the expected 

proportion of agreement due to chance. 
, 

n ;· 

Pe = L p r (i) * p /i) Equation 26 
i= l 

where n is the number of classes , r represents the row marginals and c represents the column 

marginals (Foody, 1992). The value for KAPPA ranges from 0 to 1, and is usually expressed as 

a percentage. 
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Chapter 4 Results and Discussion 
4. 1 DEM Interpolation and Error Assessment 

Interpolators run on the raw elevation points were universal kriging, linear and quintic TIN, 

spline and inverse weighted distance. Initial attempts to derive a semivariogram from the data 

produced the curve shown in Figure 7. The parabolic curve is indicative of non-stationary data 

(contains local trends) . Universal kriging, which does not assume local stationarity, was used as 

the kriging interpolator both with linear and quintic drift. 

The RMSE results of these interpolations found by comparing the 500 randomly removed 

control points with the DEM surface are shown in Table 5. The results for Equation 13, RMSE, 

for each of the tested interpolators are given in the second column. The results for Equation 14, 

mean absolute difference for each of the interpolators tested is given in the third column. 

Table 5: Interpolation Root Mean Square Error 

Interpolator for DEM: RMSE{m) Mean AbsoluteDifTerence (m) 
Universal Kriging- linear 5.6 3.9 
Universal Kriging- quintic 5.8 4.2 
Linear Interpolated from TIN 15 .3 14.3 
Quintic Interpolated from TIN 12.5 11.3 
Spline 5.4 3.9 
Inverse Weighted Distance 7.6 5.4 

An illustration of the randomly generated check points is shown in Figure 8a. The error 

residuals calculated at these points are shown in Figure 8b. The discrete, random error points are 

shown in the figure as an interpolated surface in order to enhance visualization. Only the largest 

of the error residuals are seen. Figure 8b illustrates the magnitude of the residuals across the 

DEM. Since a TIN is the single most commonly used interpolator for TRIM data in British 

Columbia, and kriging is highly recommended in the literature as the most accurate interpolator, 

these two are chosen for illustration. RMSE does not display the spatial distribution of random 
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error. The three dimensional representation of residual error shown in Figure 8b illustrates that 

the highest residuals for TIN are along the edge of the map extent. This is due to the inability of 

the convex hull to constrain the interpolation. Secondly, when the residuals are stratified by 

slope gradient class, regardless of the high spikes along the map edge, high residuals occur in 

moderate and steep slope areas. Table 6 lists the RMSE by slope class, while Table 7 lists the 

variation with respect to the mean residual by slope class. 

Table 6: Root Mean Square Error Stratified by Slope Class. 

Slope 0/o iwd tin I tinq spline krigl krigq 
Classes 
flat 0-5 3.2 7.5 8.0 2.5 2.5 2.7 
gentle 5-26 6.1 20.8 15 .7 4.0 4.4 4.2 
moderate 26-49 7.9 9.0 9.1 5.7 6.1 6.2 
moderate 49-70 10.7 9.5 8.9 7.3 7.4 7.2 
steep 
steep 70+ 15 .0 12.0 13 .1 12.0 11.8 13 .8 

Table 7: Variation with Respect to the Mean Residual Stratified by Slope Class. 

Slope % iwd tin I tinq spline krigl krigq 
Classes 
flat 0-5 4.0 7.3 7.4 3.3 3.2 3.2 
gentle 5-26 4.0 20.0 14.9 2.8 2.8 2.8 
moderate 26-49 5.2 6.7 6.8 3.7 3.8 3.8 
moderate 49-70 7.3 6.7 6.3 4.8 4.9 4.8 
steep 
steep 70+ 11.7 7.7 9.7 9.0 8.9 11.0 

The high residuals along the TIN map are not apparent for the kriged surface shown in Figure 8b. 

The high error points for TIN along the edge of the map are removed by clipping the DEM to a 

slightly smaller extent that excluded the edge errors, and the RMSE is recalculated and listed in 

Table 8. 
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Table 8: Interpolation Results 

Interpolator for DEM: RMSE (m) Mean AbsoluteDifference (m) 
Universal Kriging- linear 5.6 3.9 
Universal Kriging- quintic 5.8 4.2 
Linear Interpolated from TIN 7.1 5.4 
Quintic Interpolated from TIN 7.0 5.2 
Spline 5.4 3.9 
Inverse Weighted Distance 7.5 5.4 

All interpolators are within the stated limit ofRMSE <10m. Kriging and splining display the 

two lowest measures of random error. 

RMSE is not sensitive to systematic error in the form of artificial landforms since the basic 

assumption of RMSE is that the error it is testing is random. Among the bioterrain units to be 

discriminate are ridges. A second set of points is selected to focus on this bioterrain unit. The 

points removed from the data set were selected by Geodata B.C. for illustrating significant 

landforms (i .e., ridges and peaks), for cartographic output purposes. The reason for this step is 

that one of the stated advantages of a TIN model is the introduction of significant landform 

features via the breakline. 

Is the TIN better than kriging for representing ridges? These non-random points were also co-

incident with the TRIM breakline data. The results of the non-random ridge and hill points show 

that RMSE for kriging was 6 m. For a raster interpolated from a TIN that incorporated 

breaklines, the RMSE was 4 m, and when breaklines were not used, the RMSE for the raster 

from TIN was 6 m. In this case, neither interpolator was significantly superior. Assuming the 

breakline data are accurate, its use in the construction of a TIN is superior in retaining an 

accurate representation of the breakline features . 
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An inspection was made of the DEM using shaded relief in order to identify visual signs of 

systematic error (Figure 9). Visual comparisons were made between the shaded relief and the 

stereo pair of airphotos for the area. As Figure 9 illustrates, pronounced striping in the form of 

parallel ridges is seen in the lower left quadrant of the DEM. These are examples of the 

systematic error not revealed by the RMSE values. It is not possible to remove the stripping 

directly from the raster surface, as filtering will alter adjacent valid data as well . For this reason, 

any attemp to remove the stripping should be executing on the raw elevation point files prior to 

DEM interpolation. 

Figure 10 illustrates a subsection ofthe airphoto centred on a mountain valley. This valley is 

representative of the mountainous terrain from forested valley to alpine ridges and peaks. Figure 

11 illustrates the same valley as contour lines. Subsequent discussion focuses on a planimetric 

and perspective view of the shaded relief of this valley. The legend key in Figure 11 shows the 

field of view and location of observer for the perspective views. 

The perspective view (on the left of the figure) and shaded relief (on the right of the figure) 

samples are given in Figure 12 a-d. The inverse weighted distance produced strong systematic 

error in the form of regular bumps (Figure 12 c) . The rasters extracted from TINs in Figure 12a 

and b show bright mounds across the slopes that are not apparent in the airphoto. The kriged 

surfaces and the splined surfaces illustrate the most realistic surfaces of the data set based on a 

visual assessment of shaded relief and a comparison with stereo airphotos. 

The transect 1 in Figure 11 was used to sample elevation and slope gradient data from the 

various surfaces. Figure 13 compared the results in graph format. Mid-slope, as seen in Graph 

B, the elevation values for all surfaces are similar. At a slope crest, as shown in Figure 13, 

Graph A, elevation differences are noticed. Graph B illustrates a mid-slope section of the 
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elevation profile in which the surfaces are graphed as being close in value. Graph C illustrates a 

portion of the sampling transect which passes over an area of the TIN containing breaklines. 

TIN surfaces emphasized features constrained by breaklines. 

Since the literature states that elevation derivatives emphasize error in the DEM, transect 1 from 

Figure 11 was next used to sample the slope gradients derived from each surface. The results are 

shown in Figure 14 a-b . Ideally, the slope transect would be compared to slope values acquired 

in a more accurate manner. This has been shown to be a difficult process to undertake since 

some authors find it unacceptable to compare slope gradient derived from a mathematical 

function to slope gradient derived from the ground surface. It would be expected that such data 

would have some acceptable variation with respect to the slope gradient derived from the DEM, 

and it is not known how to reasonably compare the two in a precise fashion. The line transect for 

slope gradient in Figure 14 a and 14 b illustrates that elevation interpolation can significantly 

effect the derivatives, in this case slope gradient. 

The kriged DEM with linear drift was selected as the DEM. It has a low RMSE and the lowest 

systematic error based on visual inspection. 

4.2 Future Research for DEM Interpolation 

Future research can focus on quantifying random and systematic errors and their effective 

removal and/or reduction from the DEM. A more thorough understanding ofthe effect of a 

DEM interpolator on derivatives and, in turn, the impact on project goals would be a possible 

research undertaking. In the area of neighbourhood shape analysis, it may prove significant to 

understand how elevation derivatives are affected by changes in surface form as produced by the 

interpolator and by attempts at reducing random and systematic error. 
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These considerations would need to be taken in context with the intended use of the DEM. 

Viewshed (line of site) analysis, hydrologic analysis and shape analysis are three examples of 

DEM implementations that may prove to have individual requirements with respect to accuracy 

assessment of elevation and its derivatives. 

4.3 Feature Extraction 

The parameters of curvature, slope, and aspect are iteratively classified employing varying 

thresholds, which were assessed on-screen in order to compare their merits to discriminate shape. 

The comparison was made with airphotos and to a simultaneous cursor position on a shaded 

relief model, which was considered the visual analogue of shape. 

Is it possible that pre-existing methods could be used to extract ridges and valley lines? This 

question is based on the availability of methods used in hydrologic watershed analysis. As noted 

in the literature review, part of the process of creating watersheds involves extracting raster cells 

that are cells of zero flow accumulation (cells which are of higher elevation than their 

neighbours) . Figure 15 illustrates cells of zero flow accumulation in white. The study area is 

shown as a bounding white rectangle. Based on visual inspection, this output has no advantage 

over relief and curvature as a tool for ridge and valley line extraction. All three discriminate 

ridge and valley lines of various sizes and at all elevations. It may be desirable to be able to 

discriminate the top ridge as separate from a side slope ridge. The zero accumulation surface is 

part of a suite of output for watershed analysis that is computationally intensive and could prove 

prohibitive for processing large areas. 

4.3.1 Curvature 

Transect 2, shown in Figure 11 , is used to sample profile curvature at 25m intervals. Would it be 

possible to recognize the ridge and slope positions (especially toe slope) from the values of 

curvature? Figure 16 illustrates the results . The top graph illustrates the elevation along the 
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transect while the bottom graph illustrates profile curvature along the transect. The only 

identifiable signature in the bottom graph is for ridge and valley (in this deeply-incised mountain 

terrain) . Wood (1995) and Pellengrini (1995) were also able to extract ridges and valley lines 

employing their techniques, as can watershed analysis protocals (e.g. Jenson and Domingue 

(1988). 

Three types of curvature were reclassified according to convexity and concavity and the results 

for the valley of focus are shown in Figure 17 a-c. The light gray indicates areas that are convex, 

and darker gray areas that are concave and the black areas in which the neighbouring cells are 

equally convex and concave or flat. Average and plan curvature both capture ridges and valley 

lines. Figure 18 illustrates how a curvature map enhances systematic error in aDEM. The area 

of focus is shown in the figure as a black rectangle. The north-south ridges evident in the shaded 

relief of the DEM are seen in the curvature map illustrated in the figure. 

A further consideration is made based on computational efficiency. Curvature derivation creates 

raster layers stored in 32-bit format. To compare efficiency, an 8-bit format was assessed for its 

ability to discriminate ridges and valley lines in comparison to curvature. Appendix II, Filter 1, 

contains the algorithm for the filter used in this step. After applying the filter, a value greater 

than zero represents a cell in a neighbourhood that is concave and a value that is negative 

represents an area that is convex. The results, shown in Figure 19, were visually comparable to 

the convexity layers, and can be stored as an 8-bit layer in comparison to a 32-bit curvature 

layer. 

4.3.2 Slope Gradient and Aspect 

In a landscape such as the one used for this thesis, the highly varying relief and associated 

structure result in a slope class map containing much detail. Minor perturbations can be removed 

employing either a modal filter or dissolving criteria based on polygon GIS practices (available 
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in ARC/INFO and other commercial GIS) to match the desired scale. The criteria by which the 

contiguous cell values (analogous to polygons) are dissolves are discussed. A threshold is 

selected for the minimum polygon size for the resulting map. When a polygon is located below 

the threshold size, it is assigned the value of the largest adjacent neighbouring class. The results 

are shown in Figure 20. It is reasonable in this landscape that slope gradient values over 

extended areas would increase up the mountain sides. Lower slopes are found on the mountains 

ridges but are not seen in the scale ofFigure 20. 

Ridge crests are coincident with areas of maximum convexity in terms of profile curvature. The 

ridge descends down-valley and retains profile curvature convexity along its sides. Along-ridge 

shape may, at the same time, be concave. Along the ridge, landscape areas as narrow as single 

cells may cover areas of zero or low slope gradient. However, the slope gradient derivative is 

calculated from a 3x3 cell neighbourhood and such small landscape areas are not discernable in 

the DEM. The slope gradient value assigned to any given cell is the gradient determined from 

eight neighbouring cells. Zero or low slope gradient cells do not, as a result, consistently 

coincide with the ridge line in this case. Further investigation of the DEM over a greater area 

also indicated that low relief, broad areas several hundred metres in extent, are found in high 

elevation, alpine areas. This also hinders the effectiveness of using low slope values at high 

elevations to discriminate ridges. 

This pattern may not hold in other landscape areas. Other areas may exhibit low relief that in 

turn is generally smooth, or may exhibit rapid changes in slope gradient. Such variation supports 

the necessity that topographic analysis be considered in context with knowledge of the landscape 

in question and a clear vision of the intended map use (in terms ofboth scale and legend items). 

Due to the underlying geologic structure that exerts a significant control on the local topography, 

the slope gradients in the mountains of this area may be assessed as behaving differently from 
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another area. The clean grouping of slope classes may not repeat in other areas. This 

underscores the need for knowledge of the area to be mapped and, in terms of automating 

mapping support, the need for a suite of tools that is flexible and adjustable, based on an overall 

assessment of the area in question. 

These slope groupings can be interpreted in context with slope position. Upper mountain 

positions include high mountain shoulders, steep rock slopes and exposed ridges. Mid-slope 

positions include steep to moderately steep slopes and steep rock walls with talus along the base. 

Mid-slope positions cover large areas. Lower slope positions include a significant break in slope 

gradient that falls to moderate gradient. Lower slopes are areas of deposition. These 

descriptions, along with their respective ecological implications, illustrate the complexity of a 

straightforward discrimination of topographic form. The exceptions can make the discrimination 

more challenging. For example, even though the lower slopes are moderate in gradient and are 

areas of accumulation, they also could contain canyons, cliffs, and deeply-incised river channels. 

These examples of local extreme relief, in an area otherwise characterized as having moderate 

slope gradient, illustrate the complexity in classifYing form. 

Table 1 defines slope gradient groupings as being unidirectional (planar) with a smooth 

longitudinal profile that is straight, concave or convex, and local surface irregularities generally 

less than one metre relief This description describes an area of generally similar aspect. To 

evaluate the possibility of groupings being made based on the stated criteria a tool was required 

to quantifY slope gradient and aspect together. 

The three data layers given in equation 21 were derived that describe the slope normal. The 

resultant vector R - a measure of the magnitude of the sum of normal vectors within a given 

neighbourhood - was derived (illustrated in Figure 21 ). Visual inspection of the magnitude of R 
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indicates that it is analogous to roughness. High values indicate areas of systematic elevation 

change (flat to relatively smooth), and low values indicate elevation change that is chaotic or 

abrupt. For example, ridges and valley lines have the same range of values for R. One possible 

use ofR may be quantification of planar slope units which form part of the bioterrain unit 

descriptions listed in Table 1. The units are not expected to be truly planar, but to be relatively 

smooth and to fall within relatively narrow aspect ranges. 

The first method stratified the study area by overall relief: mountains, moderate relief and low 

relief This was achieved by testing a relief analysis neighbourhood of increasing size. Relief is 

the difference between the maximum elevation value in the analysis window and the minimum 

elevation value in the analysis window. The relief output from each filter was interactively 

queried to determine the relief value at the break in slope between mountainous and non-

mountainous areas. This value was then used as a threshold to classify the relief layer into a 

binary map that is mountainous and non-mountainous. This map is then compared to the shaded 

relief model and the airphoto to assess the results. It was determined that a smaller filter of size 

is required to discriminate medium relief and low relief (in non-mountainous areas) . Successful 

relief filtering requires an iterative and hierarchical approach. Medium/low relief discrimination 

requires a different window size than mountainous/non-mountainous. The relief threshold value 

will be unique for each landscape. It was necessary to derive mountainous and non-mountainous 

relief first. Once mountainous areas were identified, they were masked out of futher filtering. 

Only non-mountainous areas were filtered to determine moderate from low relief The results 

are shown in Figure 22. This layer can be used to discriminate ridges in mountains versus ridges 

in non-mountainous areas. 

The second method identified slope length. Cumulative slope length, shown in Figure 23 , was 

calculated using RUSLE code written by Hickey et al. (1994), and modified by Van Remortel et 
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al. (2001). This process is computationally intensive: a 500 x 600 raster was processed in four 

hours on a workstation with two Gb of memory. Each convergent catchment along the length of 

the whole slope contributes to the cumulative slope length. When the values are queried along 

the river at the bottom of the slope a value of3000 can be next to a value of 12000, reflecting the 

contributions of convergent and/or divergent catchments up-flow from each of the neighbouring 

cells. Cumulative slope length has a direct application in soil and moisture flow modelling but 

does not appear to be useful in modelling slope position. Figure 23 illustrates the convergence 

and divergence that occur along the gradient length. The red linework represents the watersheds 

derived using Jensen and Dominigue' s (1988) watershed analysis. 

An approach for future research that might prove more effective would be to employ Pike ' s 

slope between slope reversals (Pike, 1988). This approach would eliminate the effect of 

divergence and convergence contributing to slope length. As a result, the length of the slope 

from valley bottom to the ridge is determined as one unit that could be scaled to a specified 

length. Once all slope runs from ridge to valley bottom are determined and scaled to an equal 

length, then the resulting raster can be partitioned into slope position units. 

4.4 Accuracy Assessment 

Table 9 contains the error matrix for a preliminary assessment of the accuracy of the ridge and 

gully classification. These observed data points were collected through a visual assessment of 

the stereo airphotos. A series of points were listed in a digital file and assigned a class value: 

gully, slope and ridge. These three classes were selected to illustrate the accuracy assessment 

process. The remaining classes listed in Table 1 were not incorporated due to the absence of 

independantly acquired ground truth. Correctly classified forms fall on the diagonal. See section 

2. 5.1 for details on accuracy assessment. 



Table 9: Error Matrix 
Observed 

Gully Slope 
Predicted 
Gully 13 0 
Slope 7 10 
Ridge 0 2 
Column Totals 20 12 
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Ridge Row Totals 

0 13 
3 20 

31 33 
34 66 

The overall accuracy is the number correct divided by the total number of ground truth points. 

Overall accuracy is 80%. 

The error of omission (producer's accuracy) and the error of commission (user's accuracy) are 

listed in Table 10. 

Table 10: Errors of Comission and Omission 

Omission Commission 
Gully 65% 100% 
Slope 83% 50% 
Ridge 94% 94% 

Chance agreement is revealed by an analysis of the marginal values in the matrix, namely those 

values that are rnisclassified. When the proportion of accuracy due to change agreement is 

removed, the overall KAPPA statistic is 70% (the overall accuracy of the classification with 

chance agreement removed) . The KAPPA statistic for each class are: gully 100%, slope 39% 

and ridge 88%. The low value for the slope class is due to the ambiguity of the break between a 

ridge and the slope, and for the gully to the slope transition. This is due to the ground truth 

including a broader definition of slope and a narrower definition of ridge and gully (e.g. the ridge 

in the automated process extends further down slope than the ground truth). 

Based on the maps of ridge and valley line (gully) classification, the areas that are classified as 

valley lines also incorporate some gullies up the sides of the steep slopes. This over-
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classification causes the ground control points that are slopes to include ground points labeled as 

the gully class. As a result, the error of commission for the slope class is 50% and, once chance 

agreement is removed, the KAPPA statistic for this class is 40%. 

Preliminary results indicate that it is difficult to differentiate between valley side gullies and 

valley lines. As noted previously, it may be possible for valley lines to be incorporated as a tool 

to use in concert with the ridge lines in order to differentiate slopes Also, the ridge class 

incorporates the main ridges and subsidiary ridges that descend the valley sides. It is necessary 

under certain conditions to differentiate the two types of ridges. 

Differentiation of ridges could be carried out employing criteria of identifying local elevation 

maxima providing the filter window is of complementary (i.e., appropriate) size. Vegetation 

maps could also be employed to differentiate alpine ridges from forested ridges. Further 

investigation of more precise differentiation of ridges and valley lines and gullies could be 

carried out by incorporating watershed delineation. The drawback of this technique is that the 

watershed size is extracted based on a user-determined minimum size. The valley of interest is 

subdivided into five watersheds when a threshold size is set to capture two narrow watersheds to 

the east (Figure 23). For the purpose of this classification, the valley of focus was considered 

one watershed. The watershed boundaries are shown in red. There is no technique known in the 

literature that allows for watershed extraction based on variable size. 

The slope normals (Figure 21) did not contain information about neighbourhood shape. 

However, the resultant normal surface does contain information about roughness. Extensive 

research has been done on roughness and texture analysis (Haralick et. al., 1973; Haralick, 1979 

and Conners, et. al. , 1980; Wang L. and D.C. He, 1990). It is not known ifthe slope normals 

contain information that improves on texture analysis. 
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4.5 Discussion 
The accuracy ofDEMs and the derivative algorithms are cited in the literature as being of great 

importance in terms of mapping accuracy. Kriging proved in this case to be the most effective 

interpolator in terms of random and systematic error. Choosing interpolator parameters, and the 

selection of appropriate data spacing and cell size for the interpolators, are all contributing 

factors to the effective interpolation of an elevation surface. An understanding of the methods by 

which the derivatives are calculated with respect to neighbourhood size and their relation to the 

natural landscape surface are significant in terms of effective use of these data in terrestrial 

ecosystem mapping. 

The methods tested in this study and summarized in Table 11 achieve discrimination of features 

of complexity comparable to the complexity of the topographies addressed in other research 

initiatives cited in this thesis. These methods are decision-based, so further investigations should 

be undertaken in conjunction with specific Terrestrial Ecosystem Mapping objectives. 

Table 11: Assessment of Topographic Elements 

Bioterrain I Description 
Unit 
flat (plain) level or very gently sloping <=5% (<= 3°), unidirectional (planar), local 

surface irregularities generally have a relief < 1m 

METHOD Modal filter to remove local irregularities; slope classes in 
conjunction with roughness (R) to determine planar areas. 

gentle unidirectional (planar), >5%, <=26% (>3°, <=15°), smooth profile either 
slope straight, concave, or convex, local irregularities generally < 1 m relief 

METHOD Modal filter to remove local irregularities; slope classes in 
conjunction with roughness (R) to determine planar areas. 
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Table 11 Continued 
moderate 
slope 

METHOD 

moderately 
steep slope 

METHOD 

steep slope 

METHOD* 

toe slope 

METHOD* 

lower slope 

METHOD* 

middle slope 

METHOD* 

upper slope 

METHOD* 

unidirectional (planar), >26%,<=49%,(>15°,<=26°) smooth longitudinal 
profile either straight, concave or convex; local surface irregularities 
generally< 1 metre relief 

Modal filter to remove local irregularities; slope classes in 
conjunction with roughness (R) to determine planar areas. 

unidirectional (planar), >49%,<=70%, (>26° ,<=35 °) smooth, longitudinal 
profile that IS either straight, concave or convex, local surface 
irregularities generally< 1 m relief 

Modal filter to remove local irregularities; slope classes in 
conjunction with roughness (R) to determine planar areas. 

unidirectional (planar), > 70%, (> 35 °) smooth, longitudinal profile that is 
either straight, concave or convex, local surface irregularities generally < 
1m relief 

Modal filter to remove local irregularities; slope classes in 
conjunction with roughness (R) to determine planar areas. 

area differentiated from the lower slope of the hill , generally concave 
surface, specific aspect 

Slope between slope reversal I slope length and distance from valley 
line; assess for rapid change in profile curvature. 
between valley floor and rnidslope, significant break in slope falling to 
moderate gradients, generally concave, specific aspect 

Slope between slope reversal I slope length (scaled) divided into 3 
slope position classes. 
steep to moderately steep consistent slopes and steep rock walls with talus 
along the base, involve large areas, specific aspect 

Slope between slope reversal I slope length (scaled) divided into 3 
slope position classes. 

directly below steep bedrock summits and above rnidslope, generally 
convex below crest, specific aspect 

Slope between slope reversal I slope length (scaled) divided into 3 
slope position classes. 

* These methods are suggested, but were not implemented, and require further research. 
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Table 11 Continued 
ridge generally convex uppermost portion of a hill, convex in all directions, no 

distinct aspect, also a ridge 

METHOD Manipulate thresholds for profile curvature. 
depressions circular or irregular area of lower elevation (hollow) than the surrounding 

terrain marked by an abrupt break in slope, greater than 2 m in depth, 
generally at foot of meso scale hill or generally level area 

METHOD Watershed prepared DEM difference with original DEM, or 
watershed pit analysis techniques. 

warm aspect 135°-285°, slope>15° (26%) 

METHOD Aspect and slope class groupings. 
cool aspect 285° - 135°, slope>15° (26%) 

METHOD Aspect and slope class groupings. 

Definitions adapted from Resource Inventory Branch, 1999; Howes and Kenk, 1997; Ryder, 
1994; and Luttmerding, et al., 1990. Methods summarized from thesis. 

The methods listed in Table 11 illustrate that it is possible to generalize topographic elements 

from aDEM, based on Terrestrial Ecosystem Mapping standards. For slope position, the 

modification of cumulative slope length to Pike's slope between slope reversal is proposed, but 

was not executed. The way in which these methods are integrated into a Predictive Ecosystem 

Model will depend on the design of that model. This in tum is dependent upon the project 

objectives, map scale, data quality and the resulting legend design. The methods listed in Table 

11 constitute a flexible suite of tools that can be used to meet highly diverse mapping objectives. 

In Figure 24 the graphic output of the bioterrain raster layers described in Table 11 are shown. 

The relief layer is not listed in Table 11 but is useful as the TEM standards recommend a pre-

typing phase during which the area is stratified into broad landscape classes. 

The inability of cumulative slope (Figure 23) to be useful in discriminating slope position and 

modification of cumulative slope to Pike's slope between slope reversals as a solution to define 

slope position was discussed in section 4.3.2. 



70 

4.5. 1 Implementations 
Figure 25 illustrates another example of the usefulness of these bioterrain data layers in a 

vegetation mapping model. Predictive Ecosystem Mapping was developed in part with the 

objective of increased use of remote sensing to acquire data layers. For example, once a 

vegetation layer is classified from remotely sensed data, the site attributes of each vegetation 

object can be determined by a direct query of the bioterrain data layers determined using the 

methods discussed in this thesis. The attributes of the polygon resulting from the query are 

stored in an attribute database table that is linked to the final digital map. In the event that the 

polygon being queried covers multiple classes in any given bioterrain layer, a statistical summary 

is made of the resulting classes and the attribute is stored as a compound of those classes. 

Figure 26 illustrates a soil moisture regime model (Resource Inventory Branch, 1999) for the 

coastal rain forest of British Columbia. The bioterrain units as determined by the methods 

presented here can be incorporated into this model as five raster layers: slope position, slope 

classes, warm and cool aspect, ridge and valley line and depressions . As indicated in the figure, 

these layers are integrated into the binary decisions of the model where circled. As required in a 

Predictive Ecosystem Model, other data layers are needed to represent soil, bedrock and moisture 

conditions. 

4.5.2 Limitations and Usefulness 
The usefulness of these bioterrain layers is dependant upon the decisions during the production 

phase. This requires a thorough understanding of the landscape being interpreted in order to 

make effective decisions regarding the classes and thresholds needed to derive the bioterrain 

layers. This digital approach requires sufficient ground truth for each bioterrain class in order for 

an effective evaluation of the accuracy of the mapping products. Trained and knowledgeable 

landscape interpreters and the acquisition of quality ground truth for accuracy assessment are 
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required in order for effective implementation of these digital bioterrain layers. The absence of 

expert knowledge and accurate data can limit the effectiveness of the automated approach. Since 

the automated approach will always produce a data layer, it is important for the process to be 

assessed using quality ground truth . 

In comparing the digital approach to manual mapping, it can be stated that both approaches 

require high quality ground truth. In order for the ground truth to be statistically valid, a 

stratified random approach to selecting the ground truth sites is required. This can be time 

consuming and expensive. Once the data layers are established, then the mapping process is fast, 

consistent, updateable and flexible as opposed to human interpreters who introduce variation in 

mapping standards, human error and the time-consuming process of analog mapping. The digital 

approach is scale flexible in that the maps can be generalized as required. The objects can be 

treated as contiguous raster cells or converted to polygon line work allowing for further 

flexibility of the map product. 

Neighbourhood analysis at a fixed window size can be critiqued in that it may not reflect the 

underlying scale of the bioterrain unit. What is demonstrated in this thesis is that in conjunction 

with carefully designed project objectives (the identification of the objects -bioterrain units- to 

be extracted), neighbourhood analysis is an effective analysis tool. While the window analysis 

assigns a single cell to a class, the bioterrain unit is considered to be defined by the aggregation 

or contiguity of the cells defined as a specific unit type. 

The minimum resolvable unit of the DEM, as controlled by the cell size, is known. In addition, 

the mapping criteria (the definition of the bioterrain unit, and its expected minimum size, median 

size and maximum size) are controlled by the map scale and the Terrestrial Ecosystem Mapping 

specifications. Prior knowledge on the part of the analyst required by Terrestrial Ecosystem 
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Mapping standards is expected for these methods to be effectively used. The methods are 

limited when the natural variation of the landscape within each bioterrain unit is not known. In 

this case, it is not known whether the DEM, in terms of scale and accuracy, is an effective model 

of that landscape variation, nor if the methods would be effective in capturing that variation . 

As stated, these methods are effective, in part, because they are easy to determine from a gridded 

DEM. This fulfills the criteria of Terrestrial Ecosystem Mapping standards in part, in that the 

methods are required to be accessible and non-proprietary. These methods do not fulfill all 

possible legend criteria in mapping with respect to all potential landscape features. There is a 

sense that such measures have been developed because they are easy to measure from a gridded 

DEM, not because they are geomorphologically significant, and they certainly do not pick up 

important features . As required, such features as drainage pattern or river profiles can be 

extracted based on other criteria and data processing approaches not cited in this thesis . 

These methods are flexible and allow for the integration of expert knowledge on the part of the 

analyst. These methods can be used in context with the hierarchical approach used in terrestrial 

ecosystem mapping. The overall discrimination of the landscape into broad units is supported by 

selecting threshold values from a relief layer. This approach allowed for the discrimination of 

the landscape into mountainous, non-mountainous, medium relief and low relief areas. 

Depending on the project criteria, the analyst may then choose to further discriminate these 

broad classes based on the methods listed in Table 11. 

It should be noted that the standards that govern Terrestrial Ecosystem Mapping are an initiative 

aimed at producing accurate, timely, and cost-effective map products. These automated methods 

incorporate expert knowledge at various steps. Once assessments are made for threshold values, 

the procedures can process large data sets in a consistent manner as quickly as the computer can 
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manage. This is an advantage over traditional methods in that interpretations between people 

vary slightly, and human error can propagate throughout the mapping process. 

These processes are dynamic in that it is expected that they can be adjusted for various 

landscapes. The processes are programmable and digital as are the resulting layers that lend 

themselves to digital revision. This is an advantage over traditional methods which result in 

analogue layers which are extremely time-consuming to revise. The traditional mapping 

approach is also rigid in that the map product is based on set polygon boundaries. The approach 

developed in this thesis result in data layers that are continuously varying from cell to cell. As a 

result, the final map product of polygon-analogous raster cell groupings can be adjusted to revise 

cell groupings to give up-dated polygon results reflecting changing project objectives or the 

incorporation of additional information. 

As per the requirements of Terrestrial Ecosystem Mapping and the stated objectives of this 

thesis, the methods produced should be easily employed in standard Geographic Information 

System (automated, georeferenced, spatial analysis software). The criteria developed by the 

committee are open to further definition that will continue to incorporate the developments made 

available through research in digital modelling. 
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Figure 1: Map of British Columbia and Study Area Location 
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The black line within the study area 
represents an inset area of interest 
discussed in detail in the thesis. 
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Figure 2: Digital Elevation Profile 
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Adapted from Pike, 1988, figure 2. 

Figure 2 illustrates an elevation profile with graphical representation 
of relief and the geometry of first and second derivatives of elevation. 
The circles represent grid cell spacing on an elevation surface. 

J • 
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Figure 3: Slope Normal 
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The thick black line in Figure 3 represents the slope normal in relation to the 
orthagonal axes (x, y represent planar coordinates and axis z represents elevation). 
See section 2.2.3 for further information. 
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Figure 4a: Curvature Classified using Eigenvector Analysis 
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Figure 4a, top, illustrates the inset area of interest 
(see Figure 1) classified using Idrisi Toposhape, 
employing Pellengrini's Eigenvector analysis. 
The DEM is unfiltered. 

A comparison can be made to the 
airphoto (bottom). 
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Figure 4b: Curvature Classified using Eigenvector Analysis 
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Figure 4b illustrates the inset area of interest (see 
Figure 1) classified using Idrisi Toposhape, 
employing Pellengrini's Eigenvector analysis (top). 
The DEM has been altered following Pellengrini's 
recommended frequency filtering. See Table 3 and 
accompanying text for discussion of the effect of 
DEM frequency filtering on the Eigenvector 
analysis. 

The airphoto (bottom) is for comparison. 
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Figure 5: Ridges, Passes, Peaks and Valleys 
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Figure 5 illustrates Wood's 
discrimination of passes peaks, 
ridges and valleys employing 
quadratic surfaces 

The top example of the study area 
illustrates Wood's results in raster 
format draped on a shaded relief. 
The middle example illustrates the 
same results in vector format 
draped on a shaded relief. 

The bottom airphoto is for 
comparison. 
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Figure 6: Experimental Variogram 
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From Burrough and McDonnell, 1998, figure 6.2, p.135 

Figure 6 is an example of an experimental variogram 
representing a simple transitional variogram with range, 
nugget and silL 
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Figure 7: Semivariogram 
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Figure 7 illustrates the parabolic concave upward shape of the estimated 
semivariogram at the origin. This is indicative oflocally changing linear drift 
in the data points. As a result, universal kriging with a first order polynomial 
to approximate the drift is employed to interpolate the DEM. The curve is 
interpreted to half the domain size, in this case, 8500 metres . 
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Figure 8a: Randomly Generated Check Points 
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Figure 8a illustrates the randomly generated points selected 
for removal from the input control point data. These points 
were subsequently used to assess the accuracy of the DEMs. 
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Figure 8b : Residual Surface 

Kriging 

Figure 8b illustrates a three-dimensinal perspective view of the residual error 
interpolated as a surface. At this scale, only the largest residuals are seen and represents 
a visualization of the spatial arrangement of the error show by the values in Table 5. 
In this case, it can be seen that significant TIN error is located at the edge of the surface. 
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Figure 9: Shaded Relief 

5km 

Figure 9 illustrates systematic error evident 
in a shaded relief model ofthe DEM surface. 
Examples of stripping (evident as thin north 
south ridges) are seen within the oval. 
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Figure 10: Airphoto ofValley 
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The airphoto illustrated in this figure represents the 
inset area shown in Figure 1. The inset area 
is discussed in the thesis with respect to 
Figures 11 , 12 and 13. 
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Figure 11: Elevation Profile and Observer Perspective 

Legend 

Sampling Transect 

0 
Location of Observer 

Direction of View 

0 2km 

Figure 11 illustrates the orientation of the perspective view 
and the sampling transects employed in Figures 12, 13 
and 14 respectively. 
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Figure 12a 

A perspective and plan view of shaded relief 
representing a raster from TIN (Linear) for the 
purpose of visual quality assessment.. 

Figure 12b 

A perspective and plan view of shaded relief 
representing a raster from TIN (Quintic) for the 
purpose of visual quality assessment. 
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Figure 12c 

A perspective and plan view of shaded relief 
representing a raster (Inverse Weighted Distance) 
for the purpose of visual quality assessment. 

Figure 12d 

A perspective and plan view of shaded relief 
representing a raster (Kriging - Liner Drift) 
for the purpose of visual quality assessment. 

2km 
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Figure 12e 

A perspective and plan view of shaded relief 
representing a raster (kriging- quinitic drift) 
for the purpose of visual quality assessment. 

Figure 12f 

A perspective and plan view of shaded relief 
representing a raster (Spline) for the purpose 
of visual quality assessment. 
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Figure 13: Elevation Profiles 
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Figure 13 illustrates elevation values sampled from Transect 1 (Figure 11 ). 
Details of the graph discussed in the text refer to the boxes labelled 
Graph A, Graph B and Graph C. 
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Figure 14a: Slope Profiles 
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Figure 14a, top, illustrates slope values sampled from Transect 1 (Figure 11). 
The bottom of Figure 14a illustrates the detail of the transect shown in Graph A. 
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Figure 14b: Slope Profiles 
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Figure 14b, top, illustrates a subsection of the slope values sampled from Transect 1 
(Figure 11), shown in Graph B, Figure 14a. The bottom ofFigure 14b illustrates a 
subsection of the slope values sampled from Transect 1, shown in Graph C, Figure 14a. 
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Figure 15: Flow Accumulation 

Skm 

Figure 15 illustrates, in white, raster cells of zero flow accumulation. 
For reference, the inset area of interest in shown as a white box. 
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Figure 16: Sampling Transect for Elevation and Profile Curvature 
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Transect 2, Figure 11 was used to sample elevation (top) and profile curvature (bottom) 
in order to quantify a threshold value to discriminate ridge and valley lines. 
The arrows represent the threshold values. Each of the broken, vertical lines contect 
points of equal distance along Transect 2. 
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Figure 17a: Profile Curvature 

2km 

Figure 17a represents profile curvature (the rate of change of gradient) to which a threshold 
has been applied in order to stratify the profile curvature data into a binary map with convex 
and concave values. Dark gray values correspond to raster cells pf convex value. Light gray 
values correspond to raster cells of concave values. Black cells are flat. 

A visual comparison is made between Figure 17a, band c in order to determine which form 
of curvature best represents ridges and valley lines. Contours are overlain in order 
to facilitate the process. 
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Figure 17b: Plan Curvature 

2km 

Figure 17b represents plan curvature (the rate of change of aspect) to which a threshold 
has been applied in order to stratify the plan curvature data into a binary map with convex 
and concave values. Dark gray values correspond to raster cells pf convex value. Light gray 
values correspond to raster cells of concave values. Black cells are flat. 

A visual comparison is made between Figure 17a, band c in order to determine which form 
of curvature best illustrates ridges and valley lines. Contours are overlain in order to 
facilitate the process. 
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Figure 17c: Average Curvature 

2km 

Figure 17c represents average curvature to which a threshold has been applied in order 
to stratify the average curvature data into a binary map with convex and concave values. 
Dark gray values correspond to raster cells pf convex value. Light gray values correspond 
to raster cells of concave values. Black cells are flat. 

A visual comparison between Figure 17 a, b and c is made in order to determine which 
form of curvature best represents ridges and valley lines. The contours are overlain in order 
to facilitate the comparison. 
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Figure 18: Profile Curvature 

5km 

Figure 18 illustrates profile curvature. White represents convex cells. Black represents 
concave cells. Gray represents intermediate values. For reference, the inset area of 
interest is shown as a black box. 
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Figure 19: Ridge and Gully 

5km 

White - Ridge 
Dark- Gully 

Figure 19 represents a map of ridge and gullies (valley lines) derived from the DEM 
employing the average difference filter (filter 1, Appendix II). 
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Figure 20: Slope Classes 

Filtered Slope Classes: 
modal filter, 5x5 neighbourhood 

Slope Classes: 

Original Slope Classification 

Dark to light: 
Flat 
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Medium 
Medium-steep 
Steep 

5km 
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Figure 21: Slope Normal - Vector Strength 

5km 

2km 
Figure 21 represents the vector strength of the slope normal for the study area (top) 
and the inset area of interest (bottom). White represents areas of low magnitude 
(flat or relatively smooth- systematic elevation change). Black represents areas of 
high magnitude (elevation change is chaotic or abrupt). 
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Figure 22: Relief 

5km 

Gray - mountains 
White - medium relief 
Black - low relief 
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Figure 23: Cumulative Slope Length 

5km 

Figure 23 represents cumulative slope length. Increasing values 
of accumulation of downslope moisture flow are illustrated as 
a progression from white to black. Hydrologic basins are delineated 
by the black lines. 
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Figure 24a: Bioterrain Layers 
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Aspect 

dark gray = warm aspect 
light gray = cool aspect 

See Table 11 for criteria defining 
warm and cool aspect and the methods 
by which they are derived. 

Depressions 

black = depression 

See Table 11 for criteria defining 
depression and methods by which 
depressions were derived. 
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Figure 24b: Bioterrain Layers 

Slope 

Dark to light shades: 
Flat 
Gentle 
Medium 
Medium-Steep 
Steep 

See Table 11 for criteria defining 
slope classes and the methods 
by which they are derived. 

Ridges and Gullies 

White - Ridge 
Dark Gray - Gullies 

See Table 11 for criteria defining 
ridges and methods by which 
they were derived. 
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Figure 24c: Bioterrain Layers 

Relief 

Black - Low Relief 
White - Medium Relief 
Gray - Mountainous Relief 

These relief classes are implemented in the 
broad landscape definitions recommended 
by the TEM standards for the landscape 
pre-typing phase. 

Slope Position 

Future Research 

See Table 11 for criteria defining slope 
position and the suggested methods 
by which they may be derived. 
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Figure 25 : Query ofBioterrain Layers 

Query: Pine, Ridge, Upper Slope, Warm , Steep Slope 

Vegetation Layer 
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Ridge and Gully 

Slope Position 

Aspect Classes 

Slope Classes 

Raster Layers Attribute Type 

Figure 25 illustrates how the bioterrain raster layers are queried under a vegetation 
polygon to determine site attributes. For the example of the pine polygon, the dominant 
bioterrain types are: ridge upper slope, warm aspect and moderate step slope. These 
attributes are stored in a database table in a record item coded to the pine polygon. 



116 

Figure 26: Soil Moisture Regime 
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Figure 26 illustrates the usefulness of the bioterrain 
units as discriminated by the methods developed in this 
thesis and listed in Table 11 . This Soil Moisture Regime 
model can incorporate the automated procedures (circled) 
tested in this thesis. 
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Appendix II 
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Filter 1 

Employing the following neighbourhood notation related to centre cell 0,0 

-1 ,1 0,1 1,1 
-1 ,0 0,0 1,0 
-1 ,-1 0,-1 1,-1 

The following filter determines the average difference between the centre analysis cell and each 
of its eight neighbours. lfthis average difference is 0, then the neighbourhood ofthe cell is 
either flat, or equally convex/concave. If the average difference is positive, then the 
neighbourhood is generally concave. If the average difference is negative, then the 
neighbourhood is generally convex. 

This filter is written as ARC/INFO AML, where RESULT is the average difference layer, and 
DEM is the elevation surface. 

&s gri d = DEM 

RESULT= (( %gr i d % (0 , 0) - %g r id% ( -1,-1 )) + ( %g rid % (0 , 0) -
%g ri d % ( -1, 0)) + ( %gr i d % (0 , 0) - %g ri d % ( -1, 1 )) + ( %g ri d % (0 , 0) -
%grid% (0 , 1 )) + ( %g ri d % (0 , 0) - %g r id% ( 1, 1)) + ( %gr i d % (0 , 0) -
%g rid% ( 1, 0)) + ( %gr id% (0 , 0) - %g ri d % ( 1, -1 )) + (%gri d % (0 , 0) -
%grid% (0 ,-1))) I 8 

&re t urn 


