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ABSTRACT 

Quantum teleportation has been investigated experimentally, for a variety of 

physical systems. However, it has been suggested that most methods of teleportation do 

not achieve true teleportation. This is because a complete Bell-operator measurement 

cannot be performed without interaction between the quantum particles involved in the 

teleportation. Since the Bell-operator measurement is a key factor in the teleportation 

procedure, teleportation cannot be realized in the manner proposed in the pioneering 

paper on teleportation. In this project, it is verified that, without interaction between the 

quantum particles involved in the teleportation procedure, true teleportation cannot be 

achieved. 
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Introduction 

Science fiction movies and novels brought about the concept of teleportation, 

where an object would disappear from one location and instantaneously reappear at 

another distant location. In classical physics, all properties of an object can be known. 

T deportation in the classical sense can be defined as the physical transfer of this system 

from one location to another. Alternatively, classical teleportation can be thought of as 

follows: a copy of the system can be replicated at the receiving location while the original 

could be destroyed at the initial location. The difference between the two is that the 

''transfer of the system" involves the breakdown of the system into several smaller 

components. These components are then sent to the fmal location. The "copying of the 

system" involves analyzing the system and sending the information about the system to 

the fmal location. Once the information is sent and the copy reconstructed at the fmal 

location, the original copy could be destroyed. This difference would be comparable to 

sending a letter and faxing a letter. 

In quantum mechanics, it is not possible to know all properties of a system at any 

one time. This is a consequence of Heisenberg's uncertainty principle. At the quantum 

level, for example, the exact position and momentum of a particle cannot be known at the 

same time. This principle also applies to other pairs of physical observables. Therefore, 

teleportation in the classical sense cannot be achieved since a complete analysis of the 

object to be teleported cannot be obtained. 
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In 1992, Charles H. Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa, 

Asher Peres and William K. Wootters [ 1] examined the question of transporting the 

quantum mechanical state of a particle instead of transporting the particle itself. lbis 

question led to the idea of quantum teleportation, where the quantum state of a particle is 

teleported from one particle onto another. It can be said that the quantum state of a 

particle has been teleported from one particle to another if the final state of the second 

particle is equivalent to the initial state of the first particle. Quantum teleportation of the 

state consists of three main concepts. These concepts involve the Einstein-Podolsky-

Rosen (EPR) effect, a Bell-operator measurement, and the classical transmission of the 

outcome of the Bell-operator measurement in order to perform a unitary operation. lbis 

will be further outlined after a discussion of the EPR effect. 

The EPR effect 

One concept needed for quantum teleportation is the idea behind the EPR 

paradox, originally described by Albert Einstein, Boris Podolsky and Nathan Rosen [2]. 

The teleportation scheme involves the use of the EPR effect, or entanglement. When two 

particles are entangled, the pair of particles must be thought of as one entity, not as two 

separate particles; i.e. the pair of particles must be described as an entangled two-particle 

system. Identical particles in a two-particle system are indistinguishable so it is only 

known that there are two particles in the system where each particle cannot be 

distinguished from the other. Before discussing the state of an entangled two-particle 
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system, we will review the notion of the spin state for particles. The spin state will be 

used to describe the state of an entangled two-particle system. 

Spin-Yz particles, such as electrons or protons, can have a component of Yz or -Yz. 

These can alternatively be described as spin "up" and spin "down". A spin-Yz particle can 

be prepared in an up or down state. In general, before the state of the particle is measured 

it is only known that the spin state, I~>, is a linear superposition of the up and down 

states, or It> and I.J..>. This superposition of states can be written as 

I~>= alt> + ~I.J..>, 

where a and ~ are complex numbers that satisfy the equation 

lal2 + 1~12 = 1. 

Note that the state ket is prepared in a definite direction and is therefore a pure state and 

not a mixed state. When the spin state of a spin-Yz particle has an equal chance of being 

measured in a spin up or down state, we may choose a = .VYz and ~ = .VYz. Therefore, the 

equation for the state I~> before the spin state is measured is 

I~> = .VYz (It> + i.J..> ). 

Once the state of the particle is measured, I~> is projected either onto jt> or I.J..> by the 

action of the measurement. However, each time the spin state I~> is measured there is a 

50% chance of being projected into the state It> or I.J..>. 

An entangled two-particle system has the states of the two particles in a linked 

superposition of states. This linked state is identified as an entangled two-particle state. 
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A consequence of being in an entangled two-particle state is that a measurement of one 

particle's quantum state allows you to know the quantum state of the other particle. With 

the measurement of only one particle's state, the knowledge of the two quantum states is 

instantaneous. This knowledge is a consequence of the entanglement. Entanglement will 

next be described for spin-Yz particles. 

Consider two spin-Yz particles prepared in an entangled two-particle state such 

that the total spin of the system is 0. If one particle is measured along one direction and 

projected into the (Yz) or up state, then the other particle is projected into the (-Yz) or down 

state along the same direction. Before the measurement, the two entangled particles can 

be separated by an arbitrary distance. Since the two particles are entangled, when the 

state of one particle is measured along a given direction, the state of the other particle in 

that same direction is instantaneously known. This occurs for any chosen distance 

between the two particles. Upon the measurement of one particle, that particle has a 50% 

chance of being in a spin up or down state. Due to the entanglement, the other particle 

must be in an opposite state. Therefore, if one particle is measured in a spin up state then 

the other particle must be in a spin down state and vice versa. This assigning of states 

follows from the conservation of angular momentum. 

The instantaneous effect of entanglement can give rise to great confusion since it 

seems to defy Einstein's theory of relativity. This effect is the knowledge of the states of 

both particles in an entangled pair upon the measurement of one particle. One could 

conclude that the knowledge of the state of the distant particle is being sent from the site 
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of the measured particle at a speed that is faster than the speed of light. However, after 

careful consideration, it is seen that entanglement does not violate causality. Consider 

two particles, say A and B, that are entangled. The state of one of the particles, let's say 

A, is measured by observer A. Observer B does not know that the state of particle A has 

been measured. This means that observer B does not have the knowledge that particle B 

has been projected into the opposite state of particle A. Without making a measurement, 

B will not know that its particle's state is in the opposite state of particle A until A sends 

that information classically to B. Once B knows that A has measured its state then B can 

check its own state and verify that it is in the opposite state of particle A. Since the 

information is sent via classical transmission from A to B, the entanglement does not defy 

the laws of relativity. Observer B does not initially know and can not know that particle 

B is in the opposite state of particle A until observer B makes measurements to confirm 

its state. 

In order to understand how strange entanglement is, we can look at this in the 

classical picture. Let's take two items, have them interact classically, and then separate 

the two some distance apart. A measurement upon one item's state would tell you what 

the other item's state would be. However, each subsequent measurement would give you 

the same results. This means that if item one was found to be "up", then item two would 

be "down" and in each subsequent measurement, item one would always be "up" and 

item two would always be "down". However, in quantum mechanics, the situation is 

much different. Consider the spin-0, two-particle state for two spin-'l'2 particles. A 

measurement of one particle's state can give either spin component up or spin component 
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down. This process can be repeated many times for a number of identical particles 

prepared in the same initial state, and measuring the spin component along the same 

direction. Before making a measurement, it is only knowri that the particle being 

measured has a 50% chance of being ''up" or "down". However, every time the one 

particle is found to be up. the other particle is always found to be down, and vice versa. 

There is no classical analogue for the phenomena. 

Quantum Teleportation 

When two spin-Yl particles are entangled in a pure state, a measurement of one 

particle's spin state in one direction results in the knowledge of the other particle's state in 

the same direction. The same knowledge can result for three particles being entangled. 

Teleportation of a quantum state using a two-state system can be illustrated as follows. 

The two-state system to be considered here will involve the two spin states of a spin-Yl 

particle. The basic scheme involves the use of three particles: A, B, and X. A and B are 

an entangled pair of indistinguishable particles that are prepared in a two-particle state 

l'f' AB>. Particle X is in the state I«Px> that is to be teleported. Particles A and B can be 

both accessed by the sender, "Alice", and the receiver, "Bob". For convenience, it is said 

that Alice has access to A and Bob has access to B. Alice wants to send the state I«Px> to 

Bob. Alice can use entanglement to send the state of X to Bob, i.e. to teleport the state 

I«Px> to Bob. Alice will split the information involving I«Px> into two parts, a classical part 

and a quantal part, and send these parts to Bob using two distinct methods. With the two 
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different sets of information, Bob can reconstruct the state l<j)x> at his location. The 

details of this process will be forthcoming shortly. 

Before the teleportation begins, the system can be illustrated as follows, where a 

continuous line indicates an entanglement between the two particles: see Figure (1). 

Here, particles A and Bare in a two-particle entangled state l'l' AB> and particle X is in an 

unknown state l<j)x>. It is very important to keep in mind that, initially, particle X is not 

entangled with particles A and B. The state l<j}x> is prepared beforehand and is the state 

to be teleported. 

It is important to note that the state l<j)x> is unknown to both Alice and Bob. If the 

state l<j)x> was known to Alice or Bob then it could be possible that this knowledge was 

used to change the state of particle B to be the same as the initial state of particle X. Thus 

true teleportation would not be achieved. As the knowledge of the initial state of particle 

X is unknown to both, then it cannot be said that Alice or Bob "accidentally" changed the 

state of particle B. 

The state of the three particles is a pure product state between the unknown state 

l<j)x> and the entangled pair. This product state can be expressed as 

l'l'XAB> = i<j)x> ® l'l' AB>. In this instance, no measurement upon the entangled pair can 

result in the knowledge of the state l<j)x>. This is because there is no classical information 
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exchanged between the two particles or quantum entanglement between the two states, 

l$x> and It{' AB>. 

In order to teleport the initial state of l$x> from Alice to Bob, Alice needs to 

perform a measurement, referred to as a "Bell-operator measurement", on particles A and 

X. In a Bell-operator measurement, one starts with two particles that are initially not 

entangled with each other. The measurement projects the two particles into an entangled 

state. The entangled state is one of the following four states, referred to as the Bell-

operator basis: 

lo/±>:> = .VIh (lt>l..i-> ± i..l->it>) 

I <I><±>:> = .VIh (lt>i'i> ± i..l->i..l->) 

Here, the "+" sign is allowed since we are focusing on only the spin state, not the spin 

and spatial states. The Bell-operator basis is four orthogonal states using two two-

component systems; e.g. two spin-lh particles. These entangled states are called the Bell 

states. 

The Bell-operator measurement on particles A and X will transmit the quantal part 

to Bob first. The quantal part is the changing of the state of particle B into one of four 

states described below. From these four states, Bob can transform the initial state of X 

onto particle B. This will be further outlined later. When the measurement is performed 

on particles A and X, it entangles the pair and projects the now two-particle system into 

one of the four Bell states. The state created by the Bell-operator measurement can be 

expressed as I <I> AX>. 
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The Bell-operator measurement produces two results. One result is that Alice 

now knows which of the four Bell states I <I> AX> is in. These four states dictate what state 

particle B is now in. The entanglement causes the state of particle B to be changed since 

it was in the two-particle state I'I' AB> before the measurement. The other result is that the 

state of X is no longer l~x>. This change is due to the entanglement since X is now part 

of a two-particle state. Therefore, the initial state l~x> no longer exists. Similarly, 

particle A is now part of a two-particle state J<l>AX>. The two-particle state of A and B 

after the measurement is different from I'I' AB>. Denote the state of particle B after 

measurement by W s>; the state of the three particles· system is I <I> AX> ® W s>: see Figure 

(2). The dashed line indicates that A and B were previously entangled but are no longer. 

This completes the transmission of the quantal part. 

Next comes the transmission of the classical part. After Alice's measurement, 

particle B has been projected into one of four pure states. The new state of particle B is 

not necessarily the final state that is wanted, since the Bell-state measurement projects the 

state I <I> AX> into one of four Bell-states. These states dictate what state particle B will be 

projected into. Each of these four states has an equal probability of occurring. The four 

possible states for particle B to be projected into are (see page 12): 

These states can be transformed into the initial state of particle X by the following 

transformations: 
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~B =M~'s where ~B = ~x 
and 

Note that in the first case, the case where Bob does not need to do a 

transformation, the state W 8> is already the same as l~x> except for a minus sign. The 

transformation is an application of one of the unitary operators above, which correspond 

respectively to 180-degree rotations around the z-, x-, andy-axes. Since Alice performed 

the Bell-operator measurement on particles A and X, she knows which Bell state I<I>AX> is 

in. This information is sent classically to Bob: see Figure (3). Bob uses this information 

to decide which transformation to perform on particle B. Once this transformation is 

complete, the state of B is the initial state of X. Particles A and X are left in one of the 

Bell states and particles A and B are no longer entangled due to the transformation. This 

means that at Alice, there is no evidence of the initial state of X. Now both the classical 

and quanta! elements of the unknown state have been transmitted. Therefore, the state 

l~x> can be said to have been teleported from Alice to Bob. Now that the transformation 

has occurred, the state of the system can be expressed as the pure product state 

l<l>ABx> = I<I>AX> ® l~s> since now, l~s> = l~x>. See Figure (4). 

Since the transformation information can be sent at no faster than the speed of 

light then the laws of relativity are still upheld. Therefore, within a time M ~ dm/c, 

where dAB is the distance between Alice and Bob, the state l~x> has been teleported. 
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Note that throughout the teleportation the state I«Px> has not been measured. 

Therefore, when the particle B is in its new state I«Px>, it is still an unknown state to both 

Alice and Bob. 

Quantum Teleportation Calculation 

Two particles, A and B, are prepared in the entangled state 

io/·) AB> = -..Jlh Cit A>l~s> - I~ A> its>). 

The initial state I«Px> is the unknown state that is to be teleported from Alice to Bob. This 

state can be expressed as 

I«Px> = ajt x> + bl~x>, 

where lal2 + lbl2 = 1. Before the state I«Px> is teleported, the three-particle system is in a 

pure product state where 

I'I'XAB> = I «Px> ® I '1'(-) AB> 

= Ca/-../2) Cit x>lt A>l~s> -It x>l~k>lt s>) + Cb/-../2)(1~x>lt A>l~s> -l~x>l~A>It s>). 

The teleportation is achieved through the Bell-operator measurement of particles 

X and A. This measurement projects the two particles into one of four orthogonal Bell 

states: 

I'I'(±}XA> = -..Jlh Cit x>l~ A> ± l~x>lt A>); 

I<I>(±)XA> = -..Jlh Cit x>lt A> ± l~x>l~ A>). 
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Note that the form of ltp(-)XA> is the same as the form of I'¥(-) AB>. In addition, these four 

states are a complete orthonormal basis for particles X and A. Before Alice's 

measurement, the state I'I'XAB> can be expressed using the Bell states since each direct 

product of X and A can be expressed in terms of the Bell operator basis vectors, ltp<±)XA> 

and l<l>(±)XA>: 

I'I'XAB> = I ~x> ® I tp<-) AB> 

= (a/-.J2) (it x>lt A>i-J..s> -It x>i-J..A>It s>) + 

(b/-.J2) (1-J..x>lt A>I-J..s> -1-J..x>I-J..A>It s>) 

= Y2 [ I'I'(-)XA> ( -alt s>- bi-J..s>) + I'I'(+)XA> ( -alt s> + bi-J..s>) + 

1<1>(-)XA> (ai-J..s> +bits>)+ l<l>(+)XA> (ai-J..s>- bits>)] 

Alice then performs the Bell-operator measurement; entangling particles A and X 

and projecting them into one of the four Bell states. Particle B is projected into one of the "' 

four pure states corresponding to the Bell state that A and X are in. Since particles A and 

X have an equal probability of being projected into any one of the four Bell states then the 

probability that the new state Ws> is the same as the initial state l~x> to be teleported is 

25%. With each of the other Bell states, a transformation must be done in order that 

Ws> = l~x>. (see pages 9, 10) After this transformation, the state of B is the initial state 

of X and particles A and X are left in one of the states ltp<±)XA> or l<l>(±)XA>. Thus, the 

state of X is said to have been teleported to B. 
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Experimental Quantum Teleportation 

As an example of experimental quantum teleportation, we can look at the 

experiment from the University of Innsbruck [3]. This paper was one of the first 

experimental verifications for quantum teleportation. Here the polarization state of a 

photon is teleported from one photon to another. 

ALI G E" 
.\1 

c \ as s·, c..c..\ 
~ ""' ~ t~ -r .......,o.. -\-.o~ 

u." 
YI.A \se. 8 ..... ---...oii;IIJIII!!:=~ 

"" ~ 
~ ... ·, jJ~(' d., 
? 1--. n -'t or\ 

Here, photons A and B produced as an entangled pair by sending a pulse of UV-

light through a nonlinear crystal. The UV -pulse then gets reflected back through the 

crystal. This creates another pair of entangled photons. One of these photons will be the 

photon X, the photon whose state will be teleported. Photon X can be prepared into any 

polarization that is chosen. The photon that is entangled with photon X is used as a 

trigger to know that photon X has been created and sent. 
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Alice then looks for coincidences behind a beam splitter (BS). This is where 

photon X and photon A are entangled by the Bell-operator measurement. Once Alice 

finds a coincidence at fl and f2, which indicates that she has photons A and X in the 

io/·)XA> state, Alice sends the classical information to Bob that she has this state. Bob 

then knows that the photon B is now in the initial state that photon X was in. Bob can 

check this using polarization analysis with the polarizing beam splitter (PBS) and the 

detectors, dl and d2. 

Findings 

Although experimental teleportation has been achieved, several criteria must be 

realized during the experiment in order to have "true" teleportation. One is that the initial 

state l~x> to be teleported must be unknown to both Alice and Bob. Another is that the 

entanglement must be verifiable. This allows that the teleportation has actually been 

achieved through the entanglement and having that information sent through the classical 

channel, and not through an accidental measurement of the state l~x>. 

However, one paper [4] suggests that the current methods ofteleportation cannot 

achieve 100% probability of success in the teleportation of an unknown state of an 

external quantum system. In [ 4] it is shown that by not allowing interaction between 

quantum particles, the complete nondegenerate Bell-operator measurements cannot be 

performed. Without interactions between the quantum particles, a Bell-operator 
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measurement can only be a degenerate measurement. A complete nondegenerate Bell-

operator measurement allows for each of the four Bell states to be distinguished from the 

other: lqA·) >, I'I'(+) >, 1<1><-> >,and I<I>(+) >. If each Bell state is not distinguishable, e.g. only 

I'I'> and 1<1>> can be distinguished from each other, then the Bell-operator measurement is 

said to be degenerate. In [ 4] it is also claimed that interaction between two quantum 

particles resulting in conditional state changes allows for a complete nondegenerate Bell-

operator measurement. 

An example of an interaction between quantum particles would be teleporting an 

arbitrary electronic state using trapped ions [5]. There would be two traps, trap A (Alice) 

and trap B (Bob). Ions A and B would initially be in trap B and ion X with the state to be 

teleported would be in trap A. Ion A would then be transferred to trap A where it would 

interact with ion X. This would result in a complete Bell-operator measurement. 

Another example of an interaction would be using photons, which have nonlinear 

interactions using optical Sum Frequency Generation (SFG) [6]. Here, four SFG 

nonlinear crystals are used in the measurement of the Bell-operator measurement and to 

distinguish the four Bell states. There are two SFG crystals of each type, type-I and type-

H. How the Bell states are made is by how the photons are sent into each crystal. 

Photons A and X can interact either in the type-I crystals or in the type-II crystals. This 

generates another higher frequency photon whose projection measurements correspond to 

the four Bell states for photons A and X. Interactions within the type-I crystals 
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correspond to the Bell states for I<I>(±~ and interactions within the type-II crystals 

correspond to the Bell states for io/±~. 

Since the Bell-operator measurement is a significant factor in the process of 

quantum teleportation then many methods of teleportation do not achieve reliable 

teleportation. Therefore, according to the authors of [4] complete quantum teleportation 

can only be achieved by allowing interaction between quantum particles. 

It will be shown in this project that, for distinguishable particles, bosons, and 

fermions, if there is no interaction between the quantum particles involved in the process, 

true quantum teleportation cannot be achieved. Methods similar to those in [ 4] are used 

for distinguishable particles. For bosons, it is shown using the polarization state of 

photons and using a method similar to what is used in [4]. A different proof from [4] is 

used for the spin-~ fermions. Thus, interaction between the quantum particles is shown 

in this project to be a necessary condition for true teleportation, although it may or may 

not be a sufficient condition. 

Bell Operator Measurement Without Interaction Between Quantum Systems 

In this section, using the results from [4], it will shown that it is impossible to 

perform a complete nondegenerate Bell-operator measurement without using interaction 

between quantum systems. Since the Bell-operator measurement is only performed on 
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two particles, e.g. particles X and A, we will only be focusing on two particles during the 

proofs. The four distinct orthogonal single-particle Bell states, resulting from the Bell-

operator measurement, are defined by the experimental apparatus used in the teleportation 

scheme. The apparatus uses two channels, left (L) and right (R), and two particles enter 

into these two channels. The particles have a two-component system which is dependent 

upon what is being measured; in our case for a spin- Y2 particle, spin-up ( t ) and spin-

down ( -1- ) are the two states. The Bell-operator measurement can be separated into two 

stages: the unitary linear evolution and the local detection. The unitary linear evolution is 

the behaviour defmed by equations that describe the transformation that maps the state of 

a system at some initial time into some later time. We can write the general form for the 

unitary linear evolution for the four single-particle states as 

I t L > = Li ai I i > 

I -1-L > = Lj bd i > 

I t R > = Lj Cj I i > 

I -1-R > = Lj di I i > 

(1) 

Here the I i > represent the orthogonal single-particle local states of each of the particles 

going through the teleportation apparatus. The linearity implies that the evolution of a 

single particle in one channel is independent of the state of a particle in another channel. 
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Distinguishable Particles 

We can now defme the four eigenstates of the Bell operator for distinguishable 

particles. Using the four distinct single-particle states from the teleportation apparatus 

the Bell states are: 

I ~-) > = 1/.Y2 ( I t L > ® I -J..R >- I -J..L > ® I t R >) 

I 'f'{+) > = li.Y2 ( I t L > ® I -J..R > + I -J..L > ® I t R> ) 

I <I>(-)> = li.Y2 ( I t L > ® I t R > - I -J..L > ® I -J..R > ) 

I <I>(+) > = li.Y2 ( I t L > ® I t R > + I -J..L > ® I -J..R > ) 

(2) 

Since the particles are distinguishable, we can identify the particles as particle 1 and 

particle 2. During the linear evolution each particle can go through either of the two 

channels, where one particle goes through the left channel and the other particle goes 

through the right. This gives us the following eigenstates for the Bell operator: 

~~-) > = ~ { ( It L >, ® I -J..R >2 + I -J..R >, ® I t L >2 ) 

- ( I -J..L >, ® I t R >2 + I t R >, ® I -J..L >2) } 

I ~+) > = ~ { ( I t L >, ® I -J..R >2 +I -J..R >, ® I t L >2) 

+ ( I -J..L >, ® I t R >2 + I t R >I ® I -J..L >2) } (3) 

I <I>(-)>=~ { (I t L>l ®It R >2 +It R >I ®It L >2) 

- ( I -J..L >I ® I -J..R >2 + I -J..R >, ® I -J..L >2) } 
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I <I>(+)>= Y2 { (I t L >I ® I t R >2 + I t R >I ® I t L >2) (3) 

+ ( I 4.-L >I ® I 4.-R >2 + I 4.-R >I ® I 4.-L >2) } 

Since the evolution of the states is linear we can rewrite the Bell states using the general 

form for the unitary linear evolution of the teleportation procedure (1). The Bell state 

general form is: 

I \f'(-) > = Lij aij I i > ® lj > 

I o/+) > = Ljj Pij I i > ® u > 

I <I>(-) > = Ljj Yij I i > ® u > 

I <I>(+)>= Ljj Dij I i > ® lj > 

(4) 

We want to prove that that it is impossible to have measurability of the 

nondegenerate Bell operator without using interaction between quantum systems; thus 

assume that there is no interaction and prove by contradiction. Since there is no 

interaction, we require only local detectors; consequently, we can examine cases where 

pure product states I i > ® I j > are detected. This means that for a certain pair { i ~ j 1 we 

can have 

fori= i'andj = j' 

fori-::~; i'andlorj-::~; j~ 

First we will prove for i :;e j where i corresponds to one particle and j corresponds 

to the other particle. In order to perform a measurement of the nondegenerate Bell 

operator, for any selected pair { i, j} at least three out of the four coefficients aij, pij, yij, 
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and 3ij are equal to zero. This would imply a detection of one of the four states l"lJl(±) > 

and I<I>(±) >. This means that if the Bell-operator measurement results in the state ~~-) > 

then we would have that Uij ::1:- 0 and that ~ij = Yij = 3ij = 0. We can find the coefficients 

aij, ~ij, yij, and 3ij by inserting (1) into (3) to get the following: 

I "lJl(-) > = Y2 { ( Li ai I i > ® Lj dj lj > + Li di I i > ® Lj aj lj > ) 

- ( Lj bi I i > ® Lj Cj jj > + Lj Cj I i > ® Lj bj lj >)} 

= Y2 Lij { (aidj + ajdi)- (biCj + bjci) } I i > ® lj > 

= Ljj Uij I i > ® lj > 

I "lJl(+) > = Y2 { ( Li ai I i > ® Lj dj lj > + Li di I i > ® Lj aj jj > ) 

+ ( Lj bi I i > ® Lj Cj jj > + Lj Cj I i > ® Lj bj jj > ) } 

= Y2 Lij { (aidj + ajdi) + (biCj + bjci) } I i > ® jj > 

= Ljj ~ij I i > ® jj > 

I <t><-) > = Y2 { ( Li ai I i > ® Lj Cj lj > + Li Ci I i > ® Lj aj jj > ) 

- ( Lj bi I i > ® Lj dj jj > + Lj di I i > ® Lj bj lj >)} 

= Y2 Lij { (aiCj + ajci)- (bidj + bjdi) } I i > ® jj > 

= Ljj Yij I i > ® jj > 

(5) 
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I <1>+) > = 'li { ( Li ai I i > ® Lj Cj lj > + Li Ci I i > ® Lj aj lj >) 

+ ( Lj hi I i > ® Lj dj lj > + Lj di I i > ® Lj hjlj > ) } 

= 'li Lij { (aiCj + ajCi) + (bidj + bjdi) } I i > ® lj > 

= Ljj ()ij I i > ® I j >. 

This gives us the following equations for the coefficients: 

2aij = ( aidj + ajdi) - (bicj + bjCi) 

2pij = (aidj + ajdi) + (bicj + bjci) 

2yij = ( aiCj + ajCi) - (bidj + bjdi) 

2()ij = (aiCj + ajci) + (bidj + bjdi). 

(5) 

(6) 

We have that the two requirements for the measurability of the nondegenerate Bell 

operator are that there is at least one nonzero coefficient of the kind aij, pij, yij, and <>ij and 

that if for a certain pair i, j it is not zero, then all others are zero. Therefore, if for a 

certain pair { i, j} we choose aij ::~; 0 then pij = Yij = ()ij = 0. So, in order to prove that it is 

impossible to perform complete nondegenerate Bell operator measurement without using 

interaction between quantum systems then all we have to show is that either 

(i) Uij = Pij = Yij = ()ij = 0 for a certain i, j 

or 

(ii) the set of equations for Uij, pij, yij, and ()ij has no solution. 

Since the particles are distinguishable, this places strong restrictions on the unitary 

evolution (1 ). These restrictions apply because the particles cannot change their identity 
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since they are distinguishable. Therefore, if a particle is in the left channel then it is 

known that it is not in the right channel. From (1) we get that the restrictions are: 

ai ::;:. 0 => Ci = di = 0 

bi ::1:- 0 => Ci = di = 0 

Ci ::;:. 0 => ai = bi = 0 

di ::;:. 0 => ai = bi = 0. 

(7) 

Note that Ci = 0 does not mean that Cj = 0 since i corresponds to particle 1 and j 

corresponds to particle 2. To prove the impossibility of performing a complete 

nondegenerate Bell operator measurement, we will assume that ai::;:. 0 and Uij::;:. 0. Using 

the restrictions from (7) and the requirement for measurability of the Bell operator we get 

from (6): 

2aij = aidj - biCj ::;:. 0 

2f3ij = aidj + bicj = 0 

2yij = aiCj - bidj = 0 

2oij = aiCj + bidj = 0. 

(8) 

We can see that this set of equations has no solution. We can show this as follows: 

or 

aiCj = bidj. 

Putting the previous equation into the following: 

2oij = aicj + bidj = 0 

we get both 
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and 

bidj = 0. 

Since ai :1:- 0, then Cj must be equal to 0 and either 

1. bi =0 

or 

11. dj = 0. 

With (i) bi = 0 and given that 

2~u = aidj + biCj = 0 

then we find that dj = 0 but from 

2au = aidj - biCj :1:- 0 

we find that this is a contradiction since then Uij = 0 and would therefore give no solution. 

With (ii) dj = 0 we have that 

aidj - biCj = 0 

since dj = 0 and Cj = 0. However, this also gives the result of au= 0 and so once again 

gives a contradiction. Therefore, the set of equations (8) has no solution. This is enough 

to prove that it is impossible to measure the Bell operator without using interaction 

between quantum systems for i :1:- j. 
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Now to prove fori= j. Here equation (4) becomes: 

I tp<-) > = Li <lii I i > ® I i > 

I 'P(+) > = Li ~ii I i > ® I i > 

I qi-> > = Li Yii I i > ® I i > 

I <I>(+) > = Li ~ii I i > ® I i > 

The decomposition of the Bell states are now: 

I 'P(-) > = Y2 { ( Li ail I i >1 ® di2 I i >2 + Li di1 I i >1 ® ai2 I i >2 ) 

- ( Li bil I i >I® Ci21 i >2 + Lj CjJ I i >I® bi2l i >2)} 

= Lj <ljj I i >I ® I i >2 

I tp(+) > = Y2 { ( Li ail I i >1 ® di2 I i >2 + Li di1 I i >1 ® ai2 I i >2 ) 

+ ( Li bi I I i >I ® Ci2 I i >2 + Lj Cj I I i >I ® bi2 I i >2 ) } 

= Li ~ii I i >I ® I i >2 

I <1>(-) > = Yz { ( Li ail I i >1 ® ci2 I i >2 + Li Cii I i >1 ® ai2 I i >2) 

- ( Lj bil I i >I ® di21 i >2 + Lj dil I i >I ® bi21 i >2) } 

= Li Yii I i >I ® I i >2 

I <I>(+)>= Yz { ( Li ail I i >1 ® Ci2 I i >2 + Li CiJ I i >1 ® ai2 I i >2) 

+ ( Lj bil I i >I ® di21 i >2 + Li dil I i >I ® bi21 i >2) } 

= Li ~ii I i >I ® I i >2 

(9) 

(10) 
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Here, we denote the particles by particle label "1" and particle label "2" since they can no 

longer be distinguished by i and j. This gives us the following equations for the 

coefficients: 

2aii = (aiidi2 + diiai2)- ChiiCi2 + Ciibi2) 

2~ii = (aiidi2 + di1ai2) + ChiiCi2 + Ciibi2) 

2Yii = (ai1Ci2 + Ci!ai2)- (bildi2 + dilbi2) 

28ii = (aiiCi2 + cilad + (biidi2 + diibi2) 

(11) 

Note that the form of these equations is identical to that of the equations for the 

coefficients above. Therefore, using the proof from above, it is shown that it is 

impossible to perform complete nondegenerate Bell operator measurement without 

quantum interactions for i = j. Thus, it has been proved for distinguishable particles that 

there cannot be a complete nondegenerate Bell-operator measurement without interaction 

between the quantum particles. 

Bosons 

Having proved that it is impossible to perform a complete nondegenerate Bell 

operator measurement without using interaction between quantum systems for 

distinguishable particles, we next do the proof for indistinguishable particles. First, we 

will show this for bosons. We will look at the case of photons, using the horizontal and 

vertical polarization states. 
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The Bell states are given by: 

I '1'(-) > = li.V2 (I tL >®I ~R >-I ~L > ® llR >) 

I '1'(+) > = 11.V2 ( I tL > ® I ~R > + I ~L > ® I SR >) (12) 

I <I>(-)> = li.V2 ( I $L > ® I $R > - I ~L > ® I ~R > ) 

I <I>(+)>= 11.V2 (I SL >®I t'R >+I ~L >®I ~R > ). 

Since we are dealing with bosons, which are identical particles, we have to symmetrize so 

we must have: 

I ~L > ® I ~R > ~ (1/.V2) (I tL >I ® I ~R >2 +I ~R >I ® I ~L >2 ). (13) 

Substituting this form into (12) we get: 

~~-) > = 1/2 { (I ~L>I ®I ~R>2 +I ~R>I ®I SL>2) 

- (I ~L>I ® I$R>2 +I ~>I® I ~L>2)} 

I '1'(+) > = 1/2 { (I ~L>I ®I ~R>2 +I ~R>I ®I $L>2) 

+ ( I ~L >t ® I $R >2 + I SR >I ® I ~L >2) } 

I <l>(-) > = 1/2 { (I SL>I ®I ~R>2 +I $R>I ®I SL>2) 

- ( I ~L >I ® I ~R >2 + I ~R >I ® I ~L >2) } 

I <l>(+) > = 1/2 { (I ~L>I ®I $R>2 +I tR>I ®I SL>2) 

+ ( I ~L >I ® I ~R >2 + I ~R >I ® I ~L >2) } . 

(14) 
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We can again use the following equations: 

I $L > = Li ai I i > 

I ~L > = Lj bi I i > 

I SR > = Lj Cj I i > 

I ~R > = Lj di I i > 

to find a general form for the eigenstates of the Bell operators. 

(15) 

From the treatment given above for distinguishable particles, we see that this can 

be written as: 

I tp<-) > = Ljj <Xij I i > ® u > 

I tp(+) > = Ljj Pu I i > ® lj > 

I $(-) > = Lij Yij I i > ® lj > 

I$<+)>= Lij <>u I i > ® lj >. 

(16) 

We have, putting (15) into (14) and letting i correspond to particle label "1" and j 

correspond to particle label "2": 

I \}/(-) > = 112 { ( Li ai I i > ® Lj dj lj > + Li di I i > ® Lj aj lj > ) 

- ( Lj bi I i > ® Lj Cj u > + Lj Cj I i > ® Lj bj u > ) } 

= 112 Lij { (aidj + ajdi)- (biCj + bjci) } I i > ® lj > 

= Ljj <Xij I i > ® u > 

(17) 
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I\}'(+)>= 1/2 { ( Lj ai I i > ® Lj dj lj > + Li di I i > ® Lj aj U >) 

+ ( Lj bj I i > ® Lj Cj lj > + Lj Cj I i > ® Lj bj lj >)} 

= 112 Lij { (aA + ajdi) + (biCj + bjci)} I i > ® lj > 

= Lij J3ij I i > ® u > 

I <1>(-) > = 112 { ( Li ai I i > ® Lj Cj lj > + Li Ci I i > ® Lj aj U >) 

- ( Lj bi I i > ® Lj dj u > + Lj di I i > ® Lj bj u > ) } 

= 112 Lij { (aicj + ajci)- (bidj + bjdi)} I i > ® U > 

= Lij ru I i > ® lj > 

I <I>(+)>= 1/2 { ( Li ai I i > ® Lj Cj U > + Li Ci I i > ® Lj aj lj >) 

+ ( Lj bi I j > ® Lj dj u > + Lj di I j > ® Lj bj lj > ) } 

= 112 Lij { (aiCj + ajCi) + (bidj + bjdi)} I i > ® lj > 

= Ljj Cij I i > ® I j >. 

(17) 

We can see that these expressions have the same form as those for the distinguishable 

particles, except for the factor of 2. This is also true for i = j. 

I \}'(-) > = 112 { ( Li ai I i > ® di I i > + Li di I i > ® ai I i > ) 

- ( Lj bi I i > ® Cj I i > + Lj Cj I i > ® hi I i > ) } 

= 112 Li { ( aidi + aidi) - (biCi + bici) } I i > ® I i > 

= Lj Ujj I i > ® I i > 

(18) 
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I o/+) > = 1/2 { ( Li ai I i > ® di I i > + Li di I i > ® ai I i >) 

+ ( Li hi I i > ® Ci I i > + Li Ci I i > ® hi I i > ) } 

= 112 Li { ( aidi + aidi) + (hici + hici) } I i > ® I i > 

= Li Pii I i > ® I i > 

I <I>(-)>= 1/2 { ( Li ad i > ® Ci I i > + Li cil i > ® ai I i >) 

- ( Li hi I i > ® di I i > + Li di I i > ® hi I i > ) } 

= 1/2 Li { (aiCi + aici)- (bidi + hidi)} I i >®I i > 

= Li Yii I i > ® I i > 

I <I>(+)>= 112 { ( Li ai I i > ® Ci I i > + Li Ci I i > ® ai I i >) 

+ ( Li hi I i > ® di I i > + Li di I i > ® hi I i > ) } 

= 112 Li { ( aiCi + aici) + (hidi + hidi) } I i > ® I i > 

= Lj Ojj I i > ® I i >. 

From (17) and (18), we get the following equations: 

2aij = ( aidj + ajdi) - (bicj + hjCi) 

2Pij = (aidj + ajdi) + (hicj + hjci) 

2yij = ( aicj + ajci) - (hidj + hjdi) 

28ij = ( aiCj + ajci) + (bidj + hA) 

and 

(18) 

(19) 
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J3ii = aidi + bici 

Yii = aiCi - bidi 

Dii = aiCi + bidi. 

(20) 

We will now show that it is impossible to perform complete nondegenerate 

measurements without quantum interaction for photons where i = j. Since the particles 

entering the two channels are identical, there are no similar restrictions as there are for 

distinguishable particles. Using the requirement for the measurability of the 

nondegenerate Bell operator, that for any given i, at least three out of the four coefficients 

<lii, J3ii. Yii. and Dii are equal to zero. Looking at the equations in (20) and assuming <lii * 0 

we have the following: 

From (20iii) we get that 

Putting this into (20iv) we get 

J3ii = aidi + bici = 0 

Yii = aici - bidi = 0 

and 

(20i) 

(20ii) 

(20iii) 

(20iv) 

Thus, we get that Yii = 0 and Dii = 0. This means that either ai or Ci is equal to 0, and that 

either bi or di is equal to 0. If ai = bi = 0 or di = Ci = 0 then <lii = 0 and this contradicts our 
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assumption. If ai = di = 0, then from (20ii) we have that bici = 0 and aii = 0, which 

contradicts our assumption. If bi = Ci = 0 then (20ii) gives aidi = 0, and again we have that 

aii = 0. Finally, Ci = di = 0 gives aii = 0, a contradiction once again. Thus, we find that 

Ujj = f3ii = 'Yii = Ojj = 0 

Thus, the requirement for measurability has been proven to be impossible for i = j for 

identical bosons. 

Now we can prove the impossibility of the Bell-operator measurement without 

quantum interactions for i -:t: j. Once again we will assume that aij -:t: 0 and, using the 

conditions from above, we can assume ai = bi = 0. We have from (19) the following: 

2aij = ajdi - bjCi -:t: 0 

2f3ij = ajdi + bjCi = 0 

2yij = ajCi - bjdi = 0 

2oij = ajci + bjdi = 0 

(21) 

We can see that these equations have the same form as (8) and thus we have no solution 

for (21) and have proven the impossibility of measurement for i -:t: j. Therefore, we have 

proved for identical bosons, in the case of photons, that it is impossible to perform 

complete nondegenerate Bell operator measurement without using interaction between 

quantum states. 
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Fermions 

Now we can look at the fermions. We again start with the Bell states: 

I o/•) > = l!...f2 ( I t L > ® I .,l,R > - I .,l,L > ® I t R > ) 

I o/+) > = l!...f2 ( I t L > ® I .,l,R > + I .,l,L > ® I t R > ) (22) 

I <1>(-) > = l/...f2 ( I t L > ® I t R >-I .,l,L > ® I .,l,R >) 

I <1>(+) > = l!...f2 ( I t L > ® I t R > + I .,l,L > ® I .,l,R > ). 

Since we have fermions, we must antisymmetrize, thus replacing I t L > ® I .,l,R > with: 

Substituting this form into (22) we get the antisymmetrized Bell states as follows: 

lo/-)> = 1/2 { (I tL>I ® l.,l,R>2 -l.,l,R>I ®I tL>2) 

- ( I .,l,L >I ® I t R >2 - I t R >I ® I .,l,L >2) } 

I o/+) > = 112 { ( I t L >I ® I .,l,R >2 -I .,l,R >I ® I t L >2) 

+ ( I .,l,L >I ® I t R >2 - I t R >I ® I .,l,L >2) } 

I <1>(-) > = 1/2 { ( I t L >I ® I t R >2- I t R >I ® I t L >2) 

- ( I .,l,L >I ® I .,l,R >2 - I .,l,R >I ® I .,l,L >2) } 

I <1>(+) > = 112 { ( I t L >I ® I t R >2 - I t R >I ® I t L >2 ) 

+ ( l.,l,L>I ® l.,l,R>2 -l.,l,R>I ® l.,l,L>2) }. 

(23) 

(24) 
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We can use the general form of the unitary linear evolution of the teleportation procedure 

for the four states 

I t L > = Li ai I i > 

I -1-L > = Li hi I i > 

I t R > = Li Ci I i > 

I -1-R > = Li di I i > 

(25) 

to find a general form for the eigenstates of the Bell operators. This can be written in 

general form as: 

I ~-) > = Lij aij I i > ® lj > 

I ~+) > = Ljj l3ij I i > ® lj > 

I <1>(-) > = Lij Yij I i > ® lj > 

I <l>(+) > = Lij 8ij I i > ® lj >. 

(26) 

We have, putting (25) into (24) and letting i correspond to particle label "1" and j 

correspond to particle label "2": 

I~-)>= 112 { ( Li ai I i > ® Lj dj jj >- Li di I i > ® Lj aj jj >) 

- ( Li hi I i > ® Lj Cj I j > - Li Ci I i > ® Lj bj I j > ) } 

= 1/2 Lij { (aidj- ajdi)- (biCj- bjCi) } I i > ® jj > 

= Lij aij I i > ® jj > 

(27) 
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I'¥+>>= 1/2 { ( Li ai I i > ® Lj dj U >- Li di I i > ® Lj aj lj >) 

+ ( Lj bi I i > ® Lj Cj u > - Lj Cj I i > ® Lj bj u > ) } 

= 1/2 Lij { ( aidj - ajdi ) + (biCj - bjCi) } I i > ® U > 

= Ljj J3ij I i > ® u > 

I <t><-) > = 1/2 { ( Li ai I i > ® Lj Cj U >- Li Ci I i > ® Lj aj lj >) 

- ( Lj bi I i > ® Lj dj I j > - Lj di I i > ® Lj bj u > ) } 

= 1/2 Lij { (aiCj- ajCi)- (bidj- bjdi) } I i > ® lj > 

= Ljj Yij I i > ® u > 

I <I>(+)>= 1/2 { ( Li ai I i > ® Lj Cj U >- Li Ci I i > ® Lj aj lj >) 

+ ( Lj bi I i > ® Lj dj lj > - Lj di I i > ® Lj bj u > ) } 

= 1/2 Lij { ( aiCj - ajCi ) + (bidj - bjdi) } I i > ® U > 

This gives us: 

= Lij bij I i > ® u >. 

2aij = ( aidj - diaj ) - (biCj - Ci bj) 

2J3ij = (aidj - diaj) + (bicj - cibj) 

2yij = ( aiCj - Ciaj ) - (bidj - dibj) 

2bij = (aiCj- Ciaj) + (bidj- dibj). 

(27) 

(28) 

When i = j we have aii = J3ii = Yii = bii = 0. This is due to the antisymmetrization in accord 

with the Pauli principle since the product state vanishes when the two quantum numbers 
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are equal, i.e. i = j. Therefore, for i = j, the impossibility of measuring the complete 

nondegenerate Bell operator is proven. 

Now to prove fori* j. Let's consider the case where the detection of a certain 

product state I i > ® lj >signifies finding I o/-) >or I o/+) >. This means that for that pair 

{ i, j}, we have that aiJ * 0 or ~iJ * 0 and also have: 

2yij = ( aiCj - ajCi ) - (bidj - bjdi) = 0 

2Dij = ( aiCj - ajCi ) + (bidj - bjdi) = 0. 

(29) 

Here 'Yij and Dij must be equal to 0 since the detection signifies finding lo/±) > and not 

1<1>(±) >. From (29), we find the following: 

and 

This results in both 

and 

This gives 

and (30) 

Also we have that 
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or 

Therefore, this means that we have either of the following: 

(i) 

or 

(ii) 

In the first case, we can divide (i) by ajbjCjdj: 

Using the equalities from (30) we have that: 

c/cj - b/bj "# ,b/bj - c/cj 
b·c· b·c· a·d- a·d-JJ JJ ~J ~J 

Similarly, for the second case, we get: 

( bi I bj ) "# - ( Cj I Cj ). 

Here, the (-) sign does not matter due to the choice in constants from (16). 

Similar results can also be obtained to find that 
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Using the above results and the results from (30) we get that: 

(31) 

The same can be shown for the detection of I i > ® I j > signifying the finding of 

1<1>(-) 1<1>(+) . 0 ~ 0 . . . >or >, I.e. Y!i'* or uiJ -:t: gtvmg. 

Equations (31) and (32) are valid providing there are no vanishing denominators. 

(32) 

Now we want to prove that there cannot be a "common" state in the product states 

corresponding to finding I'IA±) > and 1<1>(±) >, i.e. we want to prove that there are no states 

in the two product states that are the same. We can prove this by contradiction: suppose I 

i > ® lj >corresponds to finding lo/±) >and I k > ® lj >corresponds to finding 1<1>(±) >. 

This would give us, from (31) and (32): 

(31a) 

(32a) 

From ( ai I aj ) = ( Ci I Cj ) and from ( ak I aj ) =~:- ( Ck I Cj ), dividing these two we get: 

This means that, according to (31 ), I k > ® I i > cannot be identified with finding ltp<±) >. 

From ( hi I bj ) -:t: ( Ci I Cj ) and from ( ~ I bj ) = ( Ck I Cj ), dividing these two we get: 

This means that, according to (32), I k > ® I i > cannot be identified with finding 1<1>(±) >. 

Therefore, I k > ® I i > cannot be identified with finding any state. Since I k > ® I i > can 
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be any arbitrary product state, then this is a contradiction; therefore, there cannot be a 

common state in the product states corresponding to finding lo/±) > and I <I>(±) >. 

We have shown that if detecting I i > ® I j > signifies fmding 1'1'(±) > while 

I k >®I m >signifies finding 1<1>(±) >then I i >, lj >,I k >,I m >are all different states. So 

we have 

( ai I aj ) = ( Ci I Cj ) =t; ( bi I bj ) = ( di I dj ), for lo/±) >, (31 b) 

(elk I am)= ( dk I dm) =t; ( bk Ibm)= ( Ck I Cm ), for 1<1>(±) >. (32b) 

For the same types of coefficients (eg. a and c) we can always find an equality and an 

inequality, e.g. 

and (33) 

( elk I am ) ::J; ( Ck I Cm ). 

Since all four states I i >, I j >, I k >, I m > are different then at least one out of the 

following inequalities is true: 

or (34) 

( aj I elk ) =t; ( Cj I ck ). 

We can prove this by assuming that the equations in (34) are both equalities. This would 

give us: 

and 
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Dividing these two equations we get: 

( ai I aj )( ~ I am ) = ( Ci I Cj )( Ck I Cm ). 

From (33), we know that ( ai I aj) = ( Ci I Cj) and so we are left with 

( ~ I am ) = ( Ck I Cm ) 

This however, contradicts (33) so we know that at least one of the inequalities in (34) 

must be true. This would mean that either I i > ® I m > or I k > ® I j > corresponds to the 

detection of 1<1>(±) >. This is a contradiction since I i > ® I j > corresponds to finding 

I~±) >. Therefore it is impossible to measure a nondegenerate Bell operator for fermions 

without interaction between the two quantum systems. 

Review of Literature 

The first experimental verification of quantum teleportation was performed at the 

University of Innsbruck in Austria. Bouwmeester et a/. [3], [7] produced pairs of 

entangled photons using the process of parametric down-conversion and used two-photon 

interferometry to transfer the polarization state of one photon to another. In their 

experiment, teleportation was shown for a chosen basis. For the polarization states, this 

consisted of horizontal and vertical polarization. Therefore, a superposition of the 

horizontal and vertical polarizations was chosen for the experiment. Also, the 

teleportation had to be shown to work for superpositions of those base states. This was 

shown using teleportation for circular polarization. However, true teleportation could 

only be achieved 25% of the time. Braunstein and Kimble [8] also suggested that this 
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still wasn't proper teleportation since Bouwmeester et a/. ' s procedure necessitates the 

destruction of the state at Bob in some of the cases. This results in the teleported state not 

being available for further examination. Bouwmeester et a/. responded that they believed 

that their teleportation procedure did involve all the properties required for true 

teleportation. 

Using a procedure similar to [3], Koniorczyk eta/. [9] investigated the possibility 

of teleporting superpositions of one- and two-photon states. Here, instead of two photons 

emerging from the parametric down-converter, two intersecting light cones would emerge 

where one is in the horizontal polarization state and the other is in the vertical 

polarization state. At the intersection of the two cones would be the superposition state to 

be teleported. When the paper was published, the process still needed to be found in 

order for the experiment to be realized. 

Boschi et a/. [1 0] also used photons for the teleportation procedure but used two 

photons instead of three. Here, the state to be teleported is prepared on one of the 

entangled photons and therefore cannot be prepared outside. This resulted in Alice 

having the unknown state to be teleported and not an outside party. Ideally, this could 

result in 100% teleportation although it is not feasible for the teleportation of an unknown 

state of an external particle. 

These papers focus on the teleporting the state of a finite-dimensional system. 

However, the teleportation of continuous variables corresponding to infinite-dimensional 
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systems has also been realized. Furusawa et a/. [11] at the California Institute of 

Technology used the experimental setup described by [12]. Here the teleportation 

process uses states of an electromagnetic field. This procedure involves a third party, 

Victor, who produces the initial input in the form of a coherent state of the 

electromagnetic field. Once the teleportation is complete, Victor verifies that the 

teleportation has happened. Victor evaluates the amplitude and the variance of the field 

produced by Bob and compares it with the initial input. This brings about fidelity in 

teleportation, or the overlap between the input and output states. True teleportation for 

continuous variables in infinite-dimensional systems is realized when the input states are 

sufficiently equal to the output states, i.e. the fidelity is correct. Unlike [1 0] where no 

outside physical state can enter the device and [ 6] where the teleported state is destroyed 

at Bob, this can be considered a more correct version of teleportation according to the 

original paper [ 1]. 

One paper [13] suggests several criteria for ideal continuous-variable 

teleportation. These are: 

1. "The states should be unknown to Alice and Bob and supplied by an actual third 
party Victor." 

2. "Entanglement should be a verifiable used resource, with the possibility of 
physical transportation of the unknown states blocked at the outset. There should 
be a sense in which the output is 'close' to the input- close enough that it could 
not have been made from information sent through a classical channel alone." 

3. "Each and every trial, as defined by Victor's supplying a state, should achieve an 
output sufficiently close to the input. When this situation pertains, the 
teleportation is called unconditional." 
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4. "The number of bits broadcast over the classical channel should be 'minuscule' in 
comparison to the information required to specify the 'unknown' states in the 
class from which the demonstration actually draws." 

5. "The teleportation quality should be good enough to transfer quantum 
entanglement itself instead of a small subset of 'unknown' quantum states." 

6. "The sender and receiver should not have to know each other's locations to carry 
the process through to completion." [13] 

The focus of [13] is how to choose the fidelity such that criterion 2 is sufficiently met 

since ideal teleportation occurs when an unknown state is teleported from Alice and the 

exact same state occurs at Bob. Since fidelity allows the states only to be sufficiently 

close to each other, then this is a major concern for whether true teleportation has been 

achieved or not. Here, true teleportation should not be achieved unless fidelity of 1 

occurs. 

In a continuation of the work from [11], [14] uses the fact that a squeezed vacuum 

state is also entangled in number and phase, not just the amplitude and variance. By 

making joint number and phase measurements, this entanglement is used for the 

teleportation procedure. [14] shows that a given source of entanglement could yield more 

than one means of teleportation. 

It has been shown that the methods above do not give 1 00% reliable teleportation 

according to the original teleportation paper [1]. This was proven for the finite-

dimensional teleportation by showing that true teleportation could not be achieved with 

no quantum-quantum interaction. For the infinite-dimensional teleportation, it can be 
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said that unless the input state is exactly the same form as the output state then true 

teleportation has not been achieved. However, the above experiments agree that the 

output state must be only sufficiently close to the input state in order to have true 

teleportation, which can be considered a contradiction to the original teleportation paper 

[1]. However, the recent work [5] suggest that by using ions in a finite-dimensional 

system; the authors of [5] claimed that true teleportation could be achieved due to the 

quantum-quantum interaction between the two ions. This proposal shows that it is 

possible to have reliable teleportation for the internal states of trapped ions. 

Conclusion 

Although teleportation has been experimentally verified, it has been shown that 

true teleportation cannot be achieved without interactions between quantum particles. 

Here, it has been proven for distinguishable and indistinguishable particles, the case of 

photons for bosons and the case of spin-'ll particles for fermions, by showing that a 

complete nondegenerate Bell-operator measurement cannot be performed without 

interaction between the quantum particles to be teleported. This was shown by assuming 

that there was no interaction between the quantum particles and then proving by 

contradiction that the four Bell states could not be identified from each other. Without 

the complete Bell-operator measurement, teleportation, as proposed in the original paper, 

cannot be achieved. 
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The results of this project indicate that interactions between quantum particles are 

required for true quantum teleportation. Thus, we can conclude that interactions between 

quantum particles is a necessary condition for true quantum teleportation; the work in this 

project does not, however, show that such interactions between quantum particles is a 

sufficient condition for teleportation. 



ALICE BOB 

Figure 1. Alice and Bob share particles A and B in 
a two-particle state 1'1' AB>. Alice has access to 
particle X which is initially prepared in the state 

x> which is unknown to Alice and Bob. 

ALICE BOB 

--0 
v=c 

Figure 3. Alice sends the infonnation to Bob of 
what Bell-state particles X and A are in. 

45 

ALICE BOB 

--0 

Figure 2. Alice perfonns a Bell-operator 
measurement on particles X and A projecting them 
into the state l<l>XA> which is one of the four Bell 
states. The state of particle B has been changed to 

a'>. 

ALICE 

Figure 4. Bob uses the infonnation that Alice sent to 
perfonn a local unitary transfonnation on particle B 
to change the state of particle B from 1~8'> to l~a> 
which is the same fonn as the initial state of particle 
X. 



46 

BIBLIOGRAPHY 

[1] C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, Phys. 
Rev. 70, 1895 (1993) 

[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 41, 777 (1935) 

[3] D. Bouwmeester, J.-W. Pan, K. Mattie, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 
390 575 (1997) 

[4] L. Vaidman, N. Yoran, Phys. Rev. A 59 116 (1999) 

[5] E. Solano, C. Cesar, R. de Matos Filho, N. Zagury, Eur. Phys. Jour. D 13 121 (2001) 

[6] Y. Kim, S. Kulik, Y. Shih, arXiv:quant-phys 0010046 vol. 1 (2000) (available at 
http://xxx.lanl.gov I) 

[7] D. Bouwmeester, K. Mattie, J.-W. Pan, H. Weinfurter, A. Zeilinger, M. Zukowski, 
App/. Phys. B 61 749 (1998) 

[8] S. Braunstein, H. Kimble, Nature 394 840 (1998) 

[9] M. Koniorczyk, J. Janszky, Z. Kis, Phys. Lett. A 256 334 (1999) 

[10] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80 
1121 (1998) 

[11] A. Furusawa, J. S0rensen, S. Braunstein, C. Fuchs, H. Kimble, E. Polzik, Science 
282 706 (1998) 

[12] S. Braunstein, H. Kimble, Phys. Rev. Lett. 80 869 (1998) 

[13] S. Braunstein, C. Fuchs, H. Kimble, Jour. Of Mod. Optics 41 267 (1999) 

[14] G. Milburn, S. Braunstein, Phys. Rev. A 60 937 (1998) 


